# **OPTIMAL ADDITIVE QUATERNARY CODES OF DIMENSION 3.5**

ABSTRACT. After the optimal parameters of additive quaternary codes of dimension  $k \le 3$  have been determined in [2], there is some recent activity to settle the next case of dimension k = 3.5 [8, 9]. Here we complete dimension k = 3.5 and give partial results for dimension k = 4.

**Keywords:** additive codes, linear codes, quaternary codes, Galois geometry **Mathematics Subject Classification:** 94Bxx, 51E22

# 1. INTRODUCTION

A quaternary block code C of length n is a subset of  $\mathbb{F}_4^n$ . If C is closed under componentwise addition then C is called additive. If C is additive and closed under  $\mathbb{F}_4$  scalar multiplication then C is called linear. The parameter k such that the number of codewords |C| equals  $4^k$  is called the dimension of C (in both special cases). Clearly, k is an integer if C is linear and a half-integer if C is additive. For each integer s let  $n_k(s)$  denote the maximal length n such that an additive quaternary code of length n, dimension k, and minimum Hamming distance n - s exists. For  $k \leq 3$  the function  $n_k(s)$  was completely determined in [2]. In the sequence of papers [8, 9] the determination of  $n_{3.5}(s)$  was narrowed down to  $s \in \{6, 7, 12\}$ .<sup>1</sup> Geometrically,  $n_k(s)$  is the maximum number of lines in the projective space PG(2k - 1, 2) such that each hyperplane contains at most s lines, which corresponds to a binary linear code of length  $3n_k(s)$ , dimension 2k, and minimum Hamming distance  $2(n_k(s) - s)$  in coding theory terms<sup>2</sup> if we replace each line by its contained three points, see [2]. For  $k \leq 3.5$  and  $s \geq 4$  the known optimal parameters of binary linear codes imply the correct upper bounds for  $n_k(s)$ . The small cases of s that are covered in [4]. Taking the union of two multisets of lines implies  $n_k(s_1 + s_2) \ge n_k(s_1) + n_k(s_2)$  and  $n_k(s) \ge n_k(s-1) + 1$ . So, for k = 3.5 we only need constructions for  $s \in \{3, \dots, 13, 15, 21, 25, 26, 30, 31\}$  as base examples. Except for  $s \in \{6, 13\}$  examples can easily be found by prescribing a group of order 3 or 5 as a subgroup of the automorphism group and integer linear programming. For the two other cases we have used LinCode[5] to exhaustively generate linear binary codes as candidates whose corresponding multisets of points are then partitioned into lines.<sup>3</sup> As a compact representation we sort the columns of a generator matrix such that each consecutive triplet of columns corresponds to the three points of a line. Replacing three consecutive bits  $a_1$ ,  $a_2$ ,  $a_3$  by  $4a_1 + 2a_2 + a_3$  yields the following matrices

| (0000003333333333333333333333) | /000000333333                             | 3333333333333330 |
|--------------------------------|-------------------------------------------|------------------|
| 0333330000055555533333         | 000333000555                              | 5555555553330    |
| 0055550555305536600533         | 333555555000                              | 3333336660000    |
| 3005333563300003655655         | 535536033536                              | 5353660330553    |
| 0556363003530036503556         | 356365330365                              | 3636553305505    |
| 5636550363330330060650         | 506635055563                              | 3360600556600    |
| 3300355365056036053530         | 066356550635                              | 3006635506060    |
| \                              | `<br>```````````````````````````````````` | ·<br>••••••      |

for s = 6, 7, 12, and 13, respectively.

<sup>&</sup>lt;sup>1</sup>The example for s = 13 refers to [10].

<sup>&</sup>lt;sup>2</sup>Additionally, all occurring weights are even and the maximum weight is  $2n_k(s)$ .

<sup>&</sup>lt;sup>3</sup>There are a unique  $[66, 7, \{32, 34, \dots, 44\}]_2$ - and two  $[153, 7, \{76, \dots, 102\}]_2$ -codes.

In order to complement [9] we give geometric constructions for the other base cases in Section 2. We give partial results for dimension k = 4 in Section 3.

# 2. GEOMETRIC CONSTRUCTIONS

Points in PG(k - 1, 4) map to lines in PG(2k - 1, 2). Taking a subcode of dimension one less geometrically corresponds to the projection through a point P. Each line containing P is mapped to a double-point Q and may replaced by an arbitrary line containing Q. Starting from a  $\mathbb{F}_4$ -linear code and the corresponding multiset of points, base examples for e.g. k = 3.5,  $s \in \{5, 21\}$  can be obtained this way.

A vector space partition of type  $1^{t_1}2^{t_2}\dots$  is a collection of subspaces that partition the set of points such that exactly  $t_i$  of these subspaces have dimension i, see e.g. [6]. It is well known that for each pair of integers, satisfying  $0 \le a < b$  and  $a \equiv b \pmod{2}$ , there exists a vector space partition of PG(b-1,q) consisting of  $t_2 = q^a \cdot \frac{q^{b-a}-1}{q^2-1}$  lines and a single *a*-dimensional subspace *A*. Each hyperplane *H* contains  $q^{a-2} \cdot \frac{q^{b-a}-1}{q^2-1}$  lines if  $A \not\leq H$  and  $q^{a-2}$  less otherwise. If a = 0 then we also speak of a line spread. Vector space partitions of types  $2^{40}3^1$ ,  $2^{35}3^14^1$  [6], and  $2^{32}5^1$  give base examples for k = 3.5,  $s \in \{8, 9, 10\}$  by removing the subspaces that are not two-dimensional.

Let  $\mathcal{L}_1$  be a multiset of  $n_1$  lines in  $\operatorname{PG}(k-1,q)$  and A be an a-dimensional subspace such that each hyperplane H contains at most  $s_0$  lines if  $H \ge A$  and at most  $s_1$  lines otherwise. Let  $\mathcal{L}_2$  be a multiset of  $n_2$  lines in  $\operatorname{PG}(a-1,q)$  such that each hyperplane contains at most  $s_2$  lines. Then, taking the multiset union of  $\mathcal{L}_1$  and  $\mathcal{L}_2$  with a suitable embedding of  $\operatorname{PG}(a-1,q)$  as A gives a multiset of  $n_1 + n_2$  lines in  $\operatorname{PG}(k-1,q)$  such that each hyperplane contains at most  $s_1$  lines. Applying this construction to  $\mathcal{L}_1$  arising from a vector space partition of type  $2^{40}3^1$  and three lines different lines in  $\operatorname{PG}(2,2)$  as  $\mathcal{L}_2$  gives a base example for (k,s) = (3.5, 11).

The existence of a vector space partition of type  $2^{32}5^1$  such that 4 lines are contained in a 4-dimensional space A is not hard to show. Taking the union with a second such example that contains the line missing in A and removing the five lines from A gives a base example for (k, s) = (3.5, 15).

Let l be a positive integer, H be a hyperplane of PG(l + 2, q), and A be a l-dimensional subspace of H. By  $B_1, \ldots, B_{q+1}$  we denote the (l + 1)-dimensional subspaces with  $A \le K_i \le H$ . Partition the set of all points except those from  $K_i$  by lines and denote the multiset union of lines of these q + 1 vector space partitions of type  $2^{t_2}(l + 1)^1$  by  $\mathcal{L}^*$ . If l is even we denote by  $\mathcal{L}_A$  a line spread of A and by  $\mathcal{L}_H$  a line spread of H. The multiset union of  $\mathcal{L}^*, \mathcal{L}_A$ , and q copies of  $\mathcal{L}_H$  consists of  $\frac{q^{l+3}-1}{q-1}$  lines and covers each point exactly q + 1 times.<sup>4</sup> The construction allows to remove  $\mathcal{L}_A$ , copies of  $\mathcal{L}_H$ , or subsets thereof in any combination.<sup>5</sup> Choosing l = 4 for k = 3.5 gives base examples for  $s \in \{25, 26, 30, 31\}$  as well as examples for  $s \in \{19, 20, 21, 24, 28, 29\}$ .

For k = 3.5 and  $s \le 4$  we refer to [4].

# 3. PARTIAL RESULTS FOR DIMENSION 4

In Table 1 we state the known bounds for  $n_4(s)$ . Lower bounds based on quaternary linear codes are stated in columns headed with "L". Upper bounds, based on [4] for  $s \le 4$  and on binary linear codes for s > 4, are stated in columns headed with "U". Values of improved constructions are given in columns headed with "I". Open cases are marked in bold font and we remark that we have  $n_4(s) = n_4(s - 21) + 85$  for n > 60. For s > 60 there are improvements over the linear case iff s is congruent to 2, 3, 7, or 8 modulo 21. Generator matrices of the improvements are given in Section A. We observe that  $n_4(44) \ge n_4(23) + n_4(21)$  is attained with equality and that there are easy geometric constructions for  $s \in \{49, 50\}$ .

Choosing l = 5 for k = 4 yields a multiset  $\mathcal{L}^*$  of 160 lines with s = 40. Consider hyperplane H of the construction as PG(6, 2) and insert the lines from a vector space partition of type  $2^{32}5^1$ . This yields a multiset of 192 lines with s = 48. Now consider the special subspace A of the construction as PG(4, 2) and insert either three lines in a threedimensional subspace or the lines from a vector space partition of type  $2^{8}3^1$ . This yields examples for  $s \in \{49, 50\}$ .<sup>6</sup>

# REFERENCES

- [1] S. Ball, M. Lavrauw, and T. Popatia. On additive codes over finite fields. arXiv preprint 2406.08916, 2024.
- J. Bierbrauer, S. Marcugini, and F. Pambianco. Optimal additive quaternary codes of low dimension. *IEEE Transactions on Information Theory*, 67(8):5116–5118, 2021.
- [3] J. Bierbrauer, S. Marcugini, and F. Pambianco. An asymptotic property of quaternary additive codes. *Designs, Codes and Cryptography*, 92:3371–3375, 2024.
- [4] A. Blokhuis and A. E. Brouwer. Small additive quaternary codes. European Journal of Combinatorics, 25(2):161–167, 2004.
- [5] I. Bouyuklieva, S. Bouyuklieva, and S. Kurz. Computer classification of linear codes. *IEEE Transactions on Information Theory*, 67(12):7807–7814, 2021.

<sup>&</sup>lt;sup>4</sup>In [3] a 3-cover was used to construct asymptotically optimal quaternary additive codes.

<sup>&</sup>lt;sup>5</sup>Note the similarity to the removal of subspaces in the construction of Solomon and Stiffler for codes meeting the Griesmer bound [7, 11].

<sup>&</sup>lt;sup>6</sup>Actually, the constructions from Section 2 are sufficient to attain the maximal number  $n_k^q(s)$  of lines in PG(2k-1,q) such that at most s lines are contained in a hyperplane, assuming that s is sufficiently large. I.e., the upper bound implied by the Griesmer bound can always be attained if s is sufficiently large, c.f. [3]. We do not know what happens if we replace lines by subspaces with a larger dimension, see e.g. [1].

|   | s  | L  | Ι  | U  | s  | L   | Ι   | U   | S       | L   | Ι   | U   |
|---|----|----|----|----|----|-----|-----|-----|---------|-----|-----|-----|
|   | 1  | _  |    | _  | 21 | 85  |     | 85  | 41      | 165 |     |     |
|   | 2  | -  |    | -  | 22 | 86  |     | 86  | 42      | 170 |     |     |
|   | 3  | 5  |    | 5  | 23 | 87  | 89  | 89  | 43      | 171 |     |     |
|   | 4  | 10 |    | 10 | 24 | 92  |     | 94  | 44      | 172 | 174 | 174 |
|   | 5  | 17 |    | 17 | 25 | 97  |     | 97  | 45      | 177 | 179 | 179 |
|   | 6  | 18 |    | 18 | 26 | 102 |     | 102 | 46      | 182 |     |     |
|   | 7  | 23 |    | 23 | 27 | 103 | 106 | 107 | 47      | 187 |     |     |
|   | 8  | 28 |    | 28 | 28 | 108 |     | 110 | 48      | 192 |     |     |
|   | 9  | 31 | 33 | 33 | 29 | 113 |     | 115 | 49      | 193 | 195 | 195 |
|   | 10 | 34 | 35 | 36 | 30 | 118 |     | 118 | 50      | 198 | 200 | 200 |
|   | 11 | 39 | 40 | 40 | 31 | 123 |     | 123 | 51      | 203 |     |     |
|   | 12 | 44 |    | 44 | 32 | 128 |     | 128 | 52      | 208 |     |     |
|   | 13 | 49 |    | 49 | 33 | 129 |     | 129 | 53      | 213 |     |     |
|   | 14 | 50 | 54 | 54 | 34 | 134 |     | 134 | 54      | 214 |     |     |
|   | 15 | 55 |    | 57 | 35 | 139 |     | 139 | 55      | 219 |     |     |
|   | 16 | 64 |    | 64 | 36 | 144 |     | 144 | 56      | 224 |     |     |
|   | 17 | 65 |    | 65 | 37 | 149 |     | 149 | 57      | 229 |     |     |
|   | 18 | 70 |    | 70 | 38 | 150 |     | 150 | 58      | 234 |     |     |
|   | 19 | 75 |    | 75 | 39 | 155 |     | 155 | 59      | 235 |     |     |
|   | 20 | 80 |    | 80 | 40 | 160 |     | 160 | 60      | 240 |     |     |
| 1 |    |    |    |    |    | 4 5 | . 1 | 0   | · · · · |     |     |     |

TABLE 1. Bounds for  $n_4(s)$ .

- [6] S. El-Zanati, G. Seelinger, P. Sissokho, L. Spence, and C. Vanden Eynden. On partitions of finite vector spaces of low dimension over GF(2). Discrete Mathematics, 309:4727–4735, 2009.
- [7] J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development, 4(5):532-542, 1960.
- [8] C. Guan, R. Li, Y. Liu, and Z. Ma. Some quaternary additive codes outperform linear counterparts. *IEEE Transactions on Information Theory*, 2023.
- [9] C. Guan, J. Lv, G. Luo, and Z. Ma. Combinatorial constructions of optimal quaternary additive codes. *IEEE Transactions on Information Theory*, pages 1–12, to appear.
- [10] S. Kurz. Computer classification of linear codes based on lattice point enumeration. In *International Congress on Mathematical Software*, pages 97–105. Springer, 2024.
- [11] G. Solomon and J. J. Stiffler. Algebraically punctured cyclic codes. Information and Control, 8(2):170–179, 1965.

## APPENDIX A. GENERATOR MATRICES FOR DIMENSION 4

Here we state the found examples improving  $n_4(s)$  over  $\mathbb{F}_4$ -linear codes. Starting from the compact representation of generator matrices introduced in Section 1 we apply the transformations  $0 \rightarrow 00$ ,  $3 \rightarrow 01$ ,  $5 \rightarrow 10$ ,  $6 \rightarrow 11$  and convert blocks of four bits to hexadecimal notation afterwards.

#### s = 10:

11104441155555554 11555555208AAAAA8 552AA29641A643AAFC 44921BCA4923CD27E0 4438571EA612608590 413253688DCEECD968 D8F3215BC62D5864C C25ED8DF9C07E3360C

### s = 11:

1041111045555555555 10555555542002AAAAAA 1542AAA5901A65402BBF 21098FF290919AA64FF0 AA1922185214F7AF80B7 1DAC26DA5553DC0A3C13 654BE1CE2720412FFD3B F878CACE099AD75B0170

#### s = 14:

## s = 23:

### s = 27:

#### s = 44:

## s = 45:

#### s = 49:

#### s = 50: