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Abstract 

The contamination of ecosystems with plastic particles is a global challenge that needs, due to its com-

plexity, to be addressed by interdisciplinary research. Plastic particles were detected in every environ-

mental compartment, where the particles eventually can interact with their surrounding. This interac-

tion can be anything from the attachment of biomolecules and microorganisms on the surface of par-

ticles, over their uptake by organisms, up to the translocation of particles from exposed organs to other 

tissues, e.g. via cellular internalization. Interestingly, the interaction of an organism with plastic particles 

has been described to increase with decreasing particle sizes. Therefore, increased attention is paid to 

so-called microplastics, defined as particles < 5 mm. However, the pure definition of microplastics by 

their sizes is way too simplified to understand their potential adverse effects on the environment, or-

ganisms and human health. Microplastic is a hypernym of a plethora of different polymer types, each 

with specific and unique properties. However, the evaluation of the potential hazards deriving from 

microplastics currently relies on the controlled exposure of cells and organisms to model polystyrene 

microplastic particles. Although supposedly identical particles were used in different studies, the re-

ported results varied tremendously. While some studies found toxic effects on cells and organisms, 

others reported that the model microplastic particles were non-toxic or not harmful to organisms. Since 

the bulk material of model microplastic particles used in effect studies is polystyrene (PS), the differ-

ences between the reported results are probably not polymer-based but must derive from other particle 

properties.  

In my PhD thesis, I combine three interrelated topics that, in the end, all address one overall question: 

How do the surface properties of microplastic particles affect their interaction with cells and microor-

ganisms? The three interrelated topics are (1) how the initial surface properties determine the particles’ 

reactivity towards cells, (2) how the environmental exposure alters the surface properties of micro-

plastic particles and whether this affects the particles’ reactivity towards cells, and (3) whether the initial 

surface properties of microplastic particles of different polymer types determine their reactivity towards 

their interaction with microorganisms under laboratory and natural conditions. 

(1) I investigated how the initial surface properties of model microplastic particles affect their interac-

tions with cells and showed that supposedly identical microplastic particles substantially differ in their 

properties. Here, it crystalized that especially the zeta-potential may be one of the driving factors in 

how the model microplastic particles interact with cells and, subsequently, of cellular responses. How-

ever, not only the initial surface properties of model microplastic particles may determine their inter-

actions with cells, but additional surface alterations may contribute to a potential health risk deriving 

from microplastic pollution.  

(2) Under natural conditions, organisms and humans are mainly not exposed to pristine model micro-

plastic particles but rather to particles that were previously exposed to the environments. Here, bio-

molecules can attach to the surface of microplastic particles, forming an eco-corona. Therefore, in the 
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second topic of my PhD project, I addressed this aspect by analyzing if the environmental exposure of 

microplastic particles alters the particles' surface and whether this affects their interactions with cells. I 

showed for the first time that the coating of micrometre-sized microplastic particles with an eco-corona 

alters the physicochemical and mechanical properties of the particles. Furthermore, I was the first to 

show that this coating with an eco-corona enhances the particle-cell interactions and subsequent inter-

nalization of the particles, indicating that the eco-corona is acting like a trojan-horse facilitating the 

internalization into cells. 

(3) Based on the knowledge I have obtained from the first two topics of my PhD thesis, I wanted to 

shed light on whether the surface properties of different polymer types lead to a different formation 

and composition of a biofilm on larger microplastic particles. I found distinct biofilm formations and 

compositions on different polymer types under laboratory and natural conditions, due to the different 

properties of the different polymer types. Therefore, my previous findings that the surface properties 

determine the interactions between particles and cells is also true for the complex formation of a bio-

film. Finally, I propose that the differences in the biofilm composition lead to defined variations in 

Raman bands, which can be used as a spectral variation library, enabling the detection of microplastic 

particles in environmental samples without the time and cost-consuming purification protocols. 

The work presented in my PhD thesis clearly and unanimously emphasises the importance of the sur-

face properties of microplastic particles for their interactions with biota. The key message of my thesis 

is that in future experiments, the microplastic particles used in effect studies must be thoroughly char-

acterized. Furthermore, I highly recommend using environmentally exposed microplastic particles 

coated with an eco-corona since the use of pristine particles may lead to an underestimation of the risk 

deriving from plastic pollution since pristine particles interact significantly less with cells compared to 

environmentally exposed particles. 
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Zusammenfassung 

Die Verschmutzung von Ökosystemen mit Plastikpartikeln ist eine globale Herausforderung, die auf-

grund ihrer Komplexität durch interdisziplinäre Forschung angegangen werden muss. Kunststoffpar-

tikel wurden in allen Umweltkompartiment nachgewiesen, wo die Partikel letztlich mit ihrer Umgebung 

interagieren können. Diese Interaktion kann von der Anhaftung von Biomolekülen und Mikroorganis-

men an der Oberfläche eines Partikels über die Aufnahme durch Organismen bis hin zu deren Über-

gang mittels zellulärer Internalisierung von exponierten Organen in andere Gewebe reichen. Interes-

santerweise nimmt die Interaktion eines Organismus mit Kunststoffpartikeln mit abnehmender Parti-

kelgröße zu. Daher wird dem so genannten Mikroplastik, das als Plastikpartikel mit einer Größe von 

weniger als 5 mm definiert ist, erhöhte Aufmerksamkeit geschenkt. Die reine Definition von Mikro-

plastik anhand seiner Größe ist jedoch viel zu vereinfacht, um seine potenziell schädlichen Auswirkun-

gen auf die Umwelt, Organismen und die menschliche Gesundheit zu verstehen. Mikroplastik ist ein 

Oberbegriff für eine Vielzahl verschiedener Polymertypen, die jeweils spezifische und einzigartige Ei-

genschaften aufweisen. Die Bewertung der potenziellen Gefahren von Mikroplastik beruht jedoch der-

zeit auf der kontrollierten Exposition von Zellen und Organismen gegenüber Modellpartikeln aus Po-

lystyrol (PS). Obwohl in verschiedenen Studien vermeintlich identische Partikel verwendet wurden, 

variierten die Ergebnisse enorm. Während in einigen Studien toxische Wirkungen auf Zellen und Or-

ganismen festgestellt wurden, berichteten andere, dass die Modell-Mikroplastikpartikel nicht toxisch 

oder nicht schädlich für Organismen sind. Da das Hauptmaterial der in den Effektstudien verwendeten 

Modell-Mikroplastikpartikel PS ist, sind die Unterschiede zwischen den berichteten Ergebnissen wahr-

scheinlich nicht auf das reine Polymer zurückzuführen, sondern müssen durch andere Partikeleigen-

schaften bedingt sein. 

In meiner Doktorarbeit kombiniere ich drei miteinander verbundene Themen, die letztendlich alle auf 

eine übergeordnete Frage abzielen: Wie beeinflussen die Oberflächeneigenschaften von Mikroplastik-

partikeln ihre Interaktion mit Zellen und Mikroorganismen? Die drei miteinander verbundenen The-

men sind (1) wie die ursprünglichen Oberflächeneigenschaften die Reaktivität der Partikel gegenüber 

Zellen bestimmen, (2) wie die Umweltexposition die Oberflächeneigenschaften von Mikroplastikparti-

keln verändert und ob dies die Reaktivität der Partikel gegenüber Zellen beeinflusst, und (3) ob die 

ursprünglichen Oberflächeneigenschaften von Mikroplastikpartikeln verschiedener Polymertypen ihre 

Reaktivität in Bezug auf ihre Interaktion mit Mikroorganismen unter Labor- und natürlichen Bedin-

gungen bestimmen. 

(1) Ich untersuchte, wie sich die ursprünglichen Oberflächeneigenschaften von Modell-Mikroplastik-

partikeln auf ihre Wechselwirkungen mit Zellen auswirken und konnte zeigen, dass sich vermeintlich 

identische Mikroplastikpartikel in ihren Eigenschaften erheblich unterscheiden. Dabei kristallisierte 

sich heraus, dass vor allem das Zeta-Potential einer der treibenden Faktoren für die Interaktion der 

Modell-Mikroplastikpartikel mit Zellen und damit auch für die zellulären Reaktionen sein kann. Doch 
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nicht nur die ursprünglichen Oberflächeneigenschaften von Modell-Mikroplastikpartikeln können ihre 

Wechselwirkungen mit Zellen bestimmen, sondern auch zusätzliche Oberflächenveränderungen kön-

nen zu einem potenziellen Gesundheitsrisiko durch Mikroplastikverschmutzung beitragen.  

(2) Unter natürlichen Bedingungen sind Organismen und Menschen meist nicht reinen ursprünglichen 

Modell-Mikroplastikpartikeln ausgesetzt, sondern eher Partikeln, die zuvor in der Umwelt exponiert 

waren. Hier können sich Biomoleküle an die Oberfläche von Mikroplastikpartikeln anlagern und eine 

so genannte Öko-Korona bilden. Im zweiten Teil meines Promotionsprojekts untersuchte ich daher, 

ob die Umweltexposition von Mikroplastikpartikeln die Oberfläche der Partikel verändert und ob dies 

ihre Wechselwirkungen mit Zellen beeinflusst. Ich konnte als Erste zeigen, dass die Beschichtung von 

Mikroplastikpartikeln mit einer Öko-Korona die physikochemischen und mechanischen Eigenschaften 

der Partikel verändert. Darüber hinaus konnte ich erstmals zeigen, dass die Beschichtung mit einer 

Öko-Korona die Wechselwirkungen zwischen Partikel und Zelle und die anschließende Internalisie-

rung der Partikel begünstigt, was darauf hindeutet, dass die Öko-Korona wie ein trojanisches Pferd 

wirkt, das die Internalisierung in Zellen erleichtert. 

(3) Ausgehend von den Erkenntnissen, die ich in den ersten beiden Themen meiner Doktorarbeit ge-

wonnen habe, wollte ich herausfinden, ob die ursprünglichen Oberflächeneigenschaften verschiedener 

Polymertypen zu einer unterschiedlichen Bildung und Zusammensetzung eines Biofilms auf größeren 

Mikroplastikpartikeln führen können. Ich fand unterschiedliche Biofilmbildungen und -zusammenset-

zungen auf verschiedenen Polymertypen unter Labor- und natürlichen Bedingungen, was auf die un-

terschiedlichen Eigenschaften der verschiedenen Polymertypen zurückzuführen war. Daher gilt meine 

frühere Feststellung, dass die Oberflächeneigenschaften die Wechselwirkungen zwischen Partikeln und 

Zellen bestimmen, auch für die komplexe Bildung eines Biofilms. Basierend auf diesen Ergebnissen 

zeigten wir, dass die Unterschiede in der Zusammensetzung des Biofilms zu definierten Variationen in 

den Raman-Banden führen können, die als Bibliothek für spektrale Variationen verwendet werden 

können und den Nachweis von Mikroplastikpartikeln in Umweltproben ohne die zeit- und kostenin-

tensiven Reinigungsprotokolle ermöglichen. 

Die in meiner Dissertation vorgestellte Arbeit unterstreicht eindeutig und einstimmig die Bedeutung 

der Oberflächeneigenschaften von Mikroplastikpartikeln für ihre Wechselwirkungen mit Biota. Die 

Kernaussage meiner Arbeit ist, dass in zukünftigen Experimenten die Mikroplastikpartikel, die in Ef-

fektstudien verwendet werden, gründlich charakterisiert werden müssen. Darüber hinaus empfehle ich 

dringend, umweltexponierte Mikroplastikpartikel zu verwenden, die mit einer Öko-Korona beschichtet 

sind, da die Verwendung von reinen Partikeln zu einer Unterschätzung des Risikos ausgehend von der 

Plastikverschmutzung führen kann, da reine Partikel im Vergleich zu umweltbelasteten Partikeln deut-

lich weniger mit Zellen interagieren. 
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List of Abbreviations 

CP-AFM  Colloidal probe atomic force microscopy 

EPS   Extrapolymeric substances 

IgG   Immunoglobulin G 

LC-MS/MS  Liquid chromatography-mass spectrometry/mass spectrometry 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NMR   Nuclear magnetic resonance spectroscopy 

PA   Polyamide 

PCA   Principle component analysis 

PE   Polyethylene 

PET   Polyethylene terephthalate 

PP   Polypropylene 

PS   Polystyrene 

PVC   Polyvinyl chloride 

ROS   Reactive oxygen species 

SEM   Scanning electron microscopy 
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General Introduction 

Never before have the beneficial properties of plastic been so evident as in the time of the SARS-CoV-

2 pandemic. Personal protective equipment like medical face masks and FFP-2 masks are made of 

plastic materials and are deposited after usage. Therefore, plastic materials help prevent infections and 

help treat infected patients who need ventilation due to a severe disease course. Even the development 

and production of vaccines would not have been possible in such a manner without sterile single-use 

plastic materials. Nevertheless, although the need for sterile medical plastic products and personal pro-

tective equipment tremendously increased during the pandemic, the medical sector still plays a minor 

role in the overall demand for plastic materials. In 2020, the sector with the highest share of the 367 

million tons of plastic produced worldwide was the packaging sector, with 40.5% (Plastics Europe, 

2021). One advantage of plastic packaging materials is the reduction of transportation costs and the 

extension of the shelf life of food items (Chemical Sciences and Society Summit, 2020; Robertson, 

2016; White & Lockyer, 2020). These examples are only a few of many to highlight the favourable 

properties of the polymers. 

Plastic is a hypernym of a plethora of polymers, each having specific and unique properties for specific 

applications. Amongst the most often produced synthetic polymer types in 2020 are Polyethylene (in 

low and high density, PE), Polypropylene (PP), Polystyrene (extruded and solid, PS), Polyvinyl chloride 

(PVC), and Polyethylene terephthalate (PET) (PlasticsEurope, 2021). In general, plastics are light-

weight, have high plasticity and durability with relatively low production costs, leading to an increased 

demand for plastic products (Barnes et al., 2009) and, therefore, mass production. As soon as a plastic 

product is no longer needed, it is often disposed of. Although the circular economy of plastic materials 

is gaining more and more attention (World Economic Forum, 2016), there is still a non-negligible share 

of plastic directly entering the environment. Besides the intentional release into the environment or the 

disposal of plastic waste into uncompacted pits and landfills, the improper treatment of wastewater 

(GESAMP, 2016) or tyre abrasion (Knight et al., 2020; Kole et al., 2017; Verschoor et al., 2016) are 

sources of plastic waste. Here, the properties of the plastic materials mainly define their fate in the 

environment. For instance, the high durability of plastic materials turns into an environmental problem 

since this property conversely leads to the accumulation of plastics in the environment.  

Since the early 1970s, when one of the first studies on plastic waste in the marine environment was 

published (Carpenter & Smith, 1972), the monitoring of plastic pollution steadily increased, resulting 

in the fact that plastic is everywhere. Plastic was detected in all environmental compartments, from the 

marine (Andrady, 2011; Carpenter & Smith, 1972; Thompson et al., 2004) and limnetic (Dris et al., 

2015; Imhof et al., 2013; Piehl et al., 2019) to the terrestrial compartment (Möller et al., 2020; Piehl et 

al., 2018) and even in the atmosphere (Dris et al., 2016; Gasperi et al., 2015, 2018; Kernchen et al., 

2021; C. Liu et al., 2019; Stanton et al., 2019; Vianello et al., 2019). However, the occurrence of plastic 

pollution does not necessarily correlate with direct anthropogenic activities since plastics were found 
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in remote regions like islands (Imhof et al., 2017), the poles (Lacerda et al., 2019; Ross et al., 2021), and 

even in the deep sea (Woodall et al., 2014). Although the methods for monitoring plastic pollution are 

constantly developing and improving (Möller et al., 2020; O’Connor et al., 2019), we are still far from 

understanding the extent of the actual amount and concentrations of plastic materials occurring in 

nature.  

Plastics in the environment are usually classified by size, shape, and polymer type. Larger plastic items 

are defined as macroplastics (> 20 mm) and followed by mesoplastic (20 – 5 mm) (Barnes et al., 2009). 

The study of Thompson et al. (2004) first described plastic particles of microscopic size, which was the 

starting point of focussing on the so-called microplastic particles. However, almost two decades later, 

there is still no official definition of the actual size range of microplastics. Arthur et al. (2009) defined 

a highly accepted and used upper size limit of 5 mm. Since then, many improvements in sampling and 

analysing smaller particles have been established, but there is still no definition for the actual lower size 

limit. It has mostly been set between 1 to 20 µm (Frias & Nash, 2019), which also depends on the scope 

of the study. In my PhD thesis, I will refer to the lower size limit of 1 µm for microplastic particles.  

Next to size, microplastic particles found in the environment can be differentiated into primary and 

secondary microplastic particles. Primary microplastics are intentionally produced in small sizes, like 

raw pellets or particles added to cosmetics. Secondary microplastic results from the fragmentation of 

larger plastic items (Barnes et al., 2009; GESAMP, 2016) or tyre abrasion particles (Knight et al., 2020; 

Sommer et al., 2018). The mechanisms of fragmentation that have been described most frequently in 

the literature and are therefore of high evidential value are mechanical fragmentation, UV radiation, 

oxidation and hydrolysis (Barnes et al., 2009; Gerritse et al., 2020; Meides et al., 2021, 2022). Those 

processes lead to the leaching of additives and shortening of the polymer chains, eventually making 

them brittle and releasing particles in the micro-and nanometre size range (Gerritse et al., 2020). In this 

context, Meides et al. showed that the fragmentation of PS is a two-stage process, where photooxida-

tion at the near-surface layer is the first step, followed by microcrack formation and particle rupturing, 

eventually releasing a multitude of even smaller particles (Meides et al., 2021). However, since the var-

ious polymer types with their unique initial properties may have different mechanisms of fragmentation, 

it is undeniable that microplastics occur as a highly heterogeneous group in the environment, making 

it challenging to draw generally valid conclusions. Here the properties of the microplastic particles, like 

their density and broad size range, determine their occurrence in natural habitats and consequently 

allow the interaction of different organisms with the particles.  

Interaction of Organisms with Microplastic Particles 

Among the more obvious and well-described direct effects of plastic pollution is the entanglement in 

lost fishing gear leading to injuries or immobility, and the ingestion of plastic items leading to a false 

feeling of satiation and starvation (Laist, 1997). Furthermore, with decreasing sizes, the potential risks 
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deriving from particulate matter increase (Anbumani & Kakkar, 2018; Jeong et al., 2016; Khadka et al., 

2014), which makes microplastic particles available to a wide variety of organisms, ranging from uni-

cellular organisms (Bulannga & Schmidt, 2022) to invertebrates (Brehm et al., 2022; Browne et al., 2008; 

Desforges et al., 2015; Devriese et al., 2015), up to vertebrates (Lu et al., 2016).  

The main entry pathways for microplastics into the body are via inhalation and ingestion (Wright & 

Kelly, 2017). Upon uptake of microplastic particles, one potential risk is the translocation from the 

primarily exposed organs into surrounding tissues. The translocation of microplastic particles was al-

ready indicated more than a decade ago for marine mussels (Browne et al., 2008; von Moos et al., 2012). 

Since then, the evidence of microplastic particles translocation into tissues has increased since it has 

been shown in various species, ranging from invertebrate (Brehm et al., 2022; Browne et al., 2008; 

Messinetti et al., 2019; von Moos et al., 2012) up to vertebrate species (Zeytin et al., 2020), including 

mammals (Fournier et al., 2020; Hodges et al., 1995; Z. Liu et al., 2022). After administring PS model 

nanoplastic particles into the lung (Fournier et al., 2020) or gastrointestinal system (Liu et al., 2022) in 

mammals, the translocation was not only observed in other tissues (Liu et al., 2022) but even across 

the placental barrier and consequently are present in the foetal tissue which may impact the health of 

the offspring after birth (Fournier et al., 2020). The observation that plastic particles can translocate 

into tissues is not only true for laboratory experiments using model microplastic particles. For example, 

Barboza et al. (2020) showed microplastic particles in the dorsal muscel of three wild fish species. This 

finding is highly interesting since particles in the environment are substantially different to pristine 

model microplastic particles mainly used in laboratory experiments. To date, it is not understood how 

the microplastic particles used in laboratory studies or under natural conditions can overcome biolog-

ical barriers leading to their translocation and fate within an organism. Besides the size of the particles, 

their initial surface properties and surface alterations due to environmental exposure may play a decisive 

role in particle uptake and tissue translocation. For instance, it has been shown that the environmental 

exposure alters the surface of a particle that consequently leads to enhanced ingestion by organisms 

(Hodgson et al., 2018; Vroom et al., 2017). The authors suggest that the enhanced ingestion is due to 

a higher palatability of the particles due to the coating with a biofilm (Hodgson et al., 2018; Vroom et 

al., 2017).  

Formation and Composition of a Biofilm on Microplastic Particles 

By definition, a biofilm is a community of microorganisms releasing extracellular polymeric substances 

(EPS) to attach to different surfaces. It can consist of either single-microbial species, e.g. infections, or 

multiple microbial species predominantly occurring in natural environments (O`Toole et al., 2000). A 

biofilm can develop in any environment that provides a moist surface (Sutherland, 2001), including 

plastics in the environment (Lobelle & Cunliffe, 2011; Oberbeckmann et al., 2015; Rummel et al., 2017). 

The surface properties of the substratum play a decisive role in microbial colonisation with enhanced 

colonisation for rough, hydrophobic and non-polar surfaces (Donlan, 2002). Most plastic materials 
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show hydrophobic surfaces (Leeden & Frens, 2002; Zettler et al., 2013), further facilitating biofilm 

formation. Biofilm development is mainly described as occurring in five successive steps (O`Toole et 

al., 2000; Renner & Weibel, 2011). First, microorganisms reversibly attach to surfaces via pili, flagella, 

or membrane proteins and further extrude EPS, which initiates the second step of biofilm formation. 

The EPS mainly consists of water, secreted proteins and polysaccharides, DNA and RNA, ions, and 

particulate matter like detritus from the surrounding environment (Sutherland, 2001). At this point, 

microorganisms have already irreversibly attached to the surfaces, proliferate, form smaller colonies, 

and release additional EPS within the third step. The ongoing proliferation leads to the formation of 

three-dimensional structures, described as the fourth step: the maturing of a substantial biofilm. Lastly, 

cells can detach from the biofilm again and colonise newly available surfaces (O`Toole et al., 2000; 

Renner & Weibel, 2011b). At the beginning of my PhD project little was known about the biofilm 

formation on microplastics particles, especially in freshwater environments. Particularly if the initial 

surface properties of different polymer types determine the formation and composition of a biofilm 

was not in the focus in microplastic research. But why is it important to investigate the biofilm for-

mation on microplastic particles? 

A biofilm's formation on a microplastic particles' surface tremendously changes its properties, leading 

to different environmental behaviour. For instance, it has been shown that marine biofilms on plastics 

can inhabit algae species associated with alga blooms or the presence of Vibrio, a human pathogenic 

bacteria (Kirstein et al., 2016a; Zettler et al., 2013). Furthermore, plastic particles are transported pas-

sively within the environment, which means that associated biofilms are transported between different 

environments leading to a potential increase in invasive species (Gregory, 2009). However, a plastic 

particle coated with a biofilm is not only transported between different environments but also within a 

single environment. A positive buoyant particle coated with a biofilm starts to sink in the water column 

due to a heavier weight (Semcesen & Wells, 2021), making the particle available to a range of aquatic 

organisms (Imhof et al., 2013). As already mentioned, the biofilm on the surface of a particle can lead 

to a higher likelihood of being ingested (Hodgson et al., 2018; Vroom et al., 2017), consequently in-

creasing the bioavailability of microplastic particles.  

Earlier in this thesis, I described the potential of a microplastic particle to translocate from a primarily 

exposed organ to other tissues and the circulatory system. However, translocation is only possible for 

particles in the lower micrometre size range and even smaller. Forming a biofilm on a single particle of 

such small size is impossible, as bacteria are in the same size range as the particles themselves and, 

therefore, unable to attach. However, the surfaces of particles in the micrometre size range are also 

altered due to environmental exposure. Here, the surface alterations can be anything from simple 

changes in functional groups (Mao et al., 2020) to the coating with very complex biological matrices, 

like eco-coronas (Galloway et al., 2017; Sutherland, 2001). At the beginning of my PhD project, it was 

discussed whether these surface alterations may affect the particles’ reactivity towards cells. To under-

stand how the alterations of the surface properties of a particulate matter may determine its reactivity 
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towards cells, some basic understanding of a corona-formation is essential, which will be summarized 

in the following.  

Formation of an Eco-corona on small Microplastic Particles 

Most of the findings on the formation of coronas on particle surfaces originate from nanomaterial 

sciences. Those studies mainly used biological media, like blood or serum from a single organism 

(Lundqvist et al., 2008, 2011; Tenzer et al., 2011, 2013) or well-defined culture media (Fadare et al., 

2020; Nasser & Lynch, 2016). The obtained coronas on the nanoparticle surfaces consisted of up to 

300 proteins and were consequently defined as protein coronas (Tenzer et al., 2013). Several material 

properties, like their size and bio-physicochemical surface properties, are essential for developing a 

corona. The surface of a particle has higher free energy than the bulk material itself, which means that 

biomolecules from the surrounding media will progressively and selectively adsorb to the surface of a 

particle (Lundqvist et al., 2008; Monopoli et al., 2012). With increasing nanoparticle size, the thickness 

of a corona was found to increase, probably due to the curvature of smaller particles that may cause a 

decrease in the binding of larger substances (Nasser et al., 2019). Functionalized nanoparticles show a 

size-dependency in the corona composition since only 50% of the proteins were shared between two 

different sizes (100 and 50nm). In contrast, plain particles, meaning no additional surface functionali-

zation, of the same sizes shared 80% of the adsorbed proteins (Lundqvist et al., 2008). Tenzer et al. 

(2011) conclude that particle size rather quantitatively than qualitatively affects the protein corona since 

no mechanisms were described where size alone allows or completely abolishes the binding of specific 

proteins. 

Within less than half a minute, the first proteins attach to a nanoparticle surface, and the amount of 

proteins increases with increasing incubation time (Tenzer et al., 2013). With time a so-called hard 

corona emerges, consisting of proteins with high binding affinities. On top of the hard corona, loosely 

bound proteins develop a soft corona which is in constant exchange with surrounding biomolecules 

(Lundqvist et al., 2008, 2011; Monopoli et al., 2012). Although the whole protein corona, the hard and 

the soft corona, is not a static but rather highly dynamic system, initial bound proteins stay as a finger-

print of the coronas’ history even after the particle enters a different compartment (Lundqvist et al., 

2011).  

Once a particle is released into the environment, the surrounding media is much more complex than 

in experimental setups. It hosts different pro-and eukaryotes, conditioning the media with metabolites 

(Nasser et al., 2019). As a result, a particle released into this soup of organic matter faces a plethora of 

different biomolecules (Nasser et al., 2019), consequently coating the particle with a so-called condi-

tioning film (Cooksey & Wigglesworth-Cooksey, 1995; Loeb & Neihof, 1975; Lorite et al., 2011; 

Rummel et al., 2017). The often unknown biomolecules occurring within the environmental media 

make identifying the constituents of the coating challenging. In literature, the term eco-corona was 
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established for the initial conditioning film on microplastic particles in the environment (Galloway et 

al., 2017; Nasser et al., 2019; Nasser & Lynch, 2016), to which I will refer to in the following. So far, 

the components of an eco-corona were described as proteins, humic and fulvic acids, amino acids, 

lipids, polysaccharides and carbohydrates (Galloway et al., 2017; Pulido-Reyes et al., 2017; Rummel et 

al., 2017).  

These surface alterations may eventually change the particles’ identity, altering the reactivity of the 

particles towards organisms, tissues, and cells (Albanese et al., 2014; Monopoli et al., 2012; Nasser & 

Lynch, 2016; Pulido-Reyes et al., 2017; Walkey et al., 2012) and are therefore essential to consider in 

ecotoxicological studies (Nasser et al., 2019). However, the question remains how the surface altera-

tions due to the coating with an eco-corona may eventually alter the particles reactivity towards cells. 

Therefore, in the following I will describe the basic mechanisms how a particle can interact with cells 

and tissues. 

Interactions of Microplastic Particles with Tissues and Cells 

There are basically two pathways of how particulate matter can translocate across biological barriers, 

the para- and transcellular pathways. The paracellular pathway describes the transport in between cells, 

like through intercellular spaces and tight junctions (Carr et al., 2012). However, this pathway is re-

stricted to molecules or small particulate matter in the nanometre size range (Carr et al., 2012; Fröhlich, 

2012). The transcellular pathway is the direct interaction of a single cell with particulate matter and the 

subsequent cellular internalization. Here, cellular internalization can be subdivided into two steps: 

Within the first step, the surface of the particle interacts with the cell either by binding to cellular 

receptors (Aderem & Underhill, 1999) or by unspecific (e.g. electrostatic) interactions with the cell 

membrane (Forest et al., 2015). Upon adhesion to the cellular membrane, a particle can be internalised 

by various mechanisms. Among the different endocytosis mechanisms, phagocytosis and macropino-

cytosis are the ones which are relevant for micron-sized particles (Doherty & McMahon, 2009). Both 

phagocytosis and macropinocytosis are actin-dependent mechanisms (Aderem & Underhill, 1999; 

Canton, 2018). Phagocytosis is initiated by the interaction of ligands on the surface of a particle with 

specific receptors on the cellular membrane (Aderem & Underhill, 1999). A tight-fitting sleeve around 

a particle is formed through this direct interaction (Kerr & Teasdale, 2009). On the other hand, 

Macropinocytosis is not regulated directly through the interaction of a ligand associated with the parti-

cle surface and a membrane receptor but rather indirectly by the activation of receptor tyrosine kinases 

by different growth factors. This activation leads to a global increase in actin polymerisation at the cell 

surface and consequently forms membrane ruffles (Kerr & Teasdale, 2009). The process of macropino-

cytosis leads to a more fluid and loosely attached membrane surrounding the engulfed particle. The 

different mechanisms of endocytosis for micrometre-sized particles already highlights that the surface 

properties of a particle seems to be highly relevant for particle-cell interactions.  
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Interestingly, the cellular internalization and the intracellular transport of particulate matter have been 

studied since the 1960s using model microplastic particles, mainly PS and latex spheres (Korn & 

Weisman, 1967; Weisman & Korn, 1967). Since then, numerous commercial sources providing mono-

disperse model particles have been established on the market. Here it has to be noted that the com-

mercial availability of a huge size range of the PS model microplastic particles has led to frequent use 

in cytotoxicity and ecotoxicology studies investigating the potential effects of microplastic particles on 

the ecosystem, organismal and human health. Although the model microplastic particle may be suitable 

for understanding basic interaction mechanisms with particles and cells, they are not representative of 

microplastic particles in nature. Microplastic particles that occur in the environment, which conse-

quently can be taken up by organisms allowing the particles to interact with cells, are unspecifically 

coated with an eco-corona. The coating with an eco-corona makes the environmentally exposed mi-

croplastic particles substantially different from the pristine surface properties of model microplastic 

particles. The biomolecules of an eco-corona, such as proteins, could possibly take over the function 

as a ligand, leading to a specific interaction with cell membrane receptors and thus initiating the inter-

nalization process. Nevertheless, due to the synthesis of the model microplastic particle, functional 

groups (e.g. carboxylic or amin groups) appear on their surfaces, allowing unspecific interactions with 

cellular membranes. Although the monodisperse particles available on the market supposedly have 

similar properties, the composition and distribution of the functional groups on the surface of model 

particles may be different due to the synthesis method, which consequently could lead to differences 

in their interactions with cells. Here it has to be noted that the reported results regarding the potential 

effects of microplastic particles using the beforementioned model particles were inconsistent. While 

some studies found toxic effects on cells and organisms, others reported that the model microplastic 

particles were non-toxic or not harmful to organisms. 

At the beginning of my PhD thesis it has neither been investigated if the initial surface properties of 

model microplastic particles differ, nor if the environmental exposure of microplastic particles leads to 

the formation of an eco-corona. Furthermore, a systematic approach to evaluate the importance of the 

physicochemical properties of both pristine and environmentally exposed model microplastic particles 

for particle-cell interactions was missing. 
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Objectives of this thesis 

My PhD thesis consists of three interrelated topics that, in the end, all address one overall question: 

How do the surface properties of microplastic particles affect their interaction with cells and microor-

ganisms? I formulated several objectives to find answers to the very broad and open question. First, I 

investigated how the initial surface properties of model microplastic particles affect their interactions 

with cells and if these properties differ in supposedly identical particles. Second, I analyzed for the first 

time if the environmental exposure of microplastic particles alters the particles' surface and whether 

this affects their interactions with cells. Third, since the surface properties of the pristine particles al-

ready have a tremendous effect on how they interact with cells, I investigated if this finding exceeds to 

the biofilm formation and if we can take advantage of polymer-specific biofilm compositions for mi-

croplastic identification. 
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Hypothesis 1: The surface properties of model microplastic particles determine their 
interactions with cells 

 

1st objective 

Since microplastic particles can still be seen as a relatively new environmental stressor, little is known 

about their physico-chemical properties and how these may affect their potential toxicity. However, to 

not reinvent the wheel, it makes sense to take advantage of the extensive research conducted on other 

particulate matter. Therefore, the 1st objective of my PhD project was to perform a comprehen-

sive literature review on what is already known about the property-related effects of other par-

ticulate matter and how we potentially can transfer this knowledge to microplastic particles 

(Article 1).  

 

2nd objective 

To date, microplastic particles used for effect studies have mainly been categorised by polymer type, 

shape, and size, while their physicochemical surface properties were hardly considered. Although sup-

posedly the same model microplastic particles was used in effect studies, there have been contradictory 

statements, with some studies showing adverse effects and others showing none or very little. There-

fore, the 2nd objective of my thesis was to unravel if there are differences in the surface proper-

ties of supposedly the same model microplastic particles and whether this may lead to differ-

ences in the cellular responses (Article 2). 

 

3rd objective 

From the first two objectives, I have learned that one of the main drivers a particle interacts with cells 

is the particles' zeta-potential. However, a systematic approach was missing for measuring the correla-

tion of the zeta-potential and the particle adhesion to the cell membrane and subsequent internalization. 

Therefore, the 3rd objective of my thesis was to systematically analyse how the zeta-potential 

of pristine, functionalized and environmentally exposed model microplastic particles affect 

their interactions with cells in (Article 3). 
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Hypothesis 2: The environmental exposure alters the surface properties of microplastic 
particles and their interactions with cells 

 

4th objective 

The first three objectives of my PhD thesis mainly focused on pristine model microplastic particles and 

their interactions with cells. However, the microplastic particles in the environment do not have a 

pristine surface but are coated with an eco-corona. At the beginning of my PhD thesis, nothing was 

known about the surface alterations of micrometre-sized microplastic particles due to environmental 

exposure. Therefore, the 4th objective of my thesis was to investigate the formation of an eco-

corona on the surface of microplastic particles and if the eco-corona alters the particle-cell 

interactions and subsequent particle internalization (Article 4). 

 

5th objective 

It is essential to analyze the physico-chemical properties of an environmentally exposed microplastic 

particle as precisely as possible to understand their interactions with cellular membranes. Next to the 

physico-chemical characteristics of an eco-corona, the mechanical properties may also be a detrimental 

factor for particle-cell interactions. Therefore, the 5th objective of my PhD thesis was to under-

stand the mechanical properties of environmentally exposed microplastic particles (Article 5). 

 

6th objective 

I showed that the environmental exposure and, therefore, the coating with an eco-corona of a micro-

plastic particle significantly affects their interactions with cells. However, which internalization mecha-

nisms may be involved in the endocytosis process was not understood. Therefore, the 6th objective, 

was to shed light on which basic cellular internalization mechanisms occur for microplastic 

particles coated with an eco-corona compared to their pristine counterparts (Article 6). 
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7th objective 

The main question from the public, stakeholders and policymakers is whether microplastics harm hu-

mans. However, since microplastic is a group of different particles with many different properties that 

consequently determine their potential effects, it is impossible to answer this question with sufficient 

scientific evidence. There is still some lack of knowledge regarding the exposure pathways of humans 

to microplastics, the potential translocation mechanisms of microplastics and their fate within human 

tissues. Therefore, the 7th objective was to contribute closing this knowledge gap by reviewing 

the existing literature on the exposure pathways and setting a particular focus on the factors 

determining the tissue translocation of microplastics and whether this matches with found 

microplastic particles in the fate studies (Article 7). 

 

Hypothesis 3: The initial surface properties of polymers determine their interactions with 
microorganisms  

 

8th objective 

In the former objectives of my PhD thesis, I highlighted the importance of the surface properties of 

pristine and environmentally exposed microplastic particles for cellular internalization. However, be-

sides the microplastic particles in the micrometre size range, larger particles of hundreds of micrometres 

up to millimetres interact with their surroundings in different environments. The extent to which the 

surface properties of microplastics play a role in their interaction with microorganisms has been little 

studied to date. Therefore, the 8th objective was to understand how the initial surface properties 

of different polymer types determine the early-stage biofilm formation (Article 8). 

 

9th objective 

To study the time-dependent biofilm formation on microplastic particles, laboratory conditions are 

favourable to understanding the underlying mechanisms. Since in Article 8, I was able to show a poly-

mer and time-specific development of an early-stage biofilm, the question arises whether this is also 

true in natural environments. The 9th objective was to understand if the direct exposure of differ-

ent polymer types in a small freshwater stream leads to polymer-specific microbial biofilm 

compositions (Article 9). 
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10th objective 

To date, the isolation and subsequent identification of microplastic particles from environmental sam-

ples is time- and cost-intensive. The organic material must be removed from the environmental sample 

to allow the identification of the polymer types with particle-based analytical techniques, e.g. Raman 

spectroscopy. However, in the 8th and 9th objectives of my thesis, I was able to show that there are 

polymer-specific microbial biofilm development and compositions. Therefore, the 10th objective was 

to develope a Raman library of spectral variances due to the polymer-specific coating with a 

biofilm, enabling the detection of a polymer coated with a biofilm without the time- and cost-

intensive sample pre-processing (Article 10). 
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Summary of the articles – Hypothesis I 

Hypothesis 1: The surface properties of model microplastic particles determine their 
interactions with cells 

Objective 1: Extensive literature review on what is already known about the property-related effects of 

other particulate matter and how we potentially can transfer this knowledge to microplastic particles 

Article 1: From Properties to Toxicity: Comparing Microplastics to Other Airborne 
Microparticles 

The term microplastics summarizes a plethora of different polymer types of different sizes, shapes and 

physicochemical surface properties. Understanding the potential polymer-related adverse effects would 

require many experiments combining all the different properties with different sizes and shapes. To 

date, such data is not available, making it difficult to assess the risk associated with microplastics. Since 

performing experiments of all possible combinations is not practical, we aimed to identify the most 

critical properties of particle toxicity. Therefore, I contributed to an interdisciplinary review article 

where we reviewed the literature on well-studied airborne particulate contaminants that are frequently 

associated with health risks and classified as hazardous materials, such as asbestos, soot, or wood dust. 

We identified essential parameters like particle size, shape, surface charge, eco- and bio-corona, and the 

particles’ biopersistence being the main drivers for particle toxicity. By comparing the obtained infor-

mation to existing knowledge on microplastics toxicity, we provide the basis for a mechanistic under-

standing of microplastics toxicity. 

As a main result, we identified that the greatest adverse effects from microplastics potentially derive 

from very small (with a diameter smaller than 10 µm) particles and that surface alteration like ageing or 

the coating with an eco-corona can further accelerate their likeliness of toxicity. We furthermore out-

lined future directions for the research on microplastic toxicity. For instance, the microplastic particles 

used in an experimental setup should be characterized as well as possible. Here, the zeta-potential of a 

particle is a comparably ease-to-measure surface property and is highly recommended to be performed 

as a proxy of the particles’ reactivity towards its surrounding, including cells. The use of well-defined 

microplastic particles in effect studies will eventually allow conclusions about the main driver of the 

particles’ toxicity, similar to the other airborne particles described in the review article. Consequently, 

understanding the main drivers of toxicity will enable effective policymaking for finding solutions for 

the ongoing discussion on microplastic particle pollution and its’ potential adverse effects on the envi-

ronment, organisms and eventually human health. 
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Objective 2: Unravelling differences in the surface properties of supposedly the same model micro-

plastic particles and whether this may lead to differences in the cellular responses 

 

Article 2: Supposedly Identical Microplastic Particles Substantially Differ in their Material 
Properties Influencing Particle-Cell Interactions and Cellular Responses 

Rozman & Kalčíková (2022) stressed in their comprehensive review that the majority of studies used 

pristine PS microplastic particles with spherical shapes and sizes between 1-50 µm and only half of the 

microplastic effect studies took the effort to measure the particles' physicochemical properties. Regard-

ing effect studies on a cellular level, this is even more pronounced. For example, Stock et al. (2021) just 

recently stressed that “(…) all existing studies dealing with microplastic uptake and toxicity exclusively 

used spherical, monodisperse model polystyrene particles.”. Interestingly, although the numerous stud-

ies investigating the potential effects of microplastics used supposedly identical PS particles, the results 

show a large discrepancy, with some studies showing adverse effects and others showing none or very 

little. For instance, in toxicity studies of micro-and nanoplastics in mouse models, Stock et al. (2019) 

did not reveal histologically detectable lesions or significant signs of inflammatory responses after feed-

ing mice with 1, 4 and 10 µm-sized PS microplastic particles. However, other studies also using PS 

model microplastic particles did observe severe effects on the gastrointestinal system, liver pathologies 

like inflammatory responses or lipid accumulation using similarly sized particles of 0.5, 5 and 50 µm 

(Deng et al., 2017; L. Lu et al., 2018; Luo et al., 2019). These inconsistencies further exceed to in vitro 

cell models. Some studies observed little or no cytotoxicity for PS particles (Hesler et al., 2019; Rudolph 

et al., 2021; Stock et al., 2019), whereas other studies showed significant cytotoxicity (Prietl et al., 2014; 

Wu et al., 2019). 

I hypothesized that these discrepancies originate from the fact that nominally identical particles from 

different commercial sources substantially differ in their physico-chemical material properties and, con-

sequently, their particle-cell interactions and cytotoxicity. We conducted an in-depth characterization 

of nominally identical plain PS particles of 3 µm in diameter from two different commercial sources. 

NMR-spectroscopy revealed significant differences in the particle’s monomer content, and colloidal-

probe atomic force microscopy (cp-AFM) depicted different surface charge densities leading to differ-

ent zeta-potentials. The significantly different surface characteristics of the two particle types signifi-

cantly alter the number of particle-cell-interactions and subsequent internalization by two murine mac-

rophage cell lines. Additionally, cytotoxic effects are correlated to the particles´ properties since cells 

exposed to particles with a higher negative zeta-potential, and a higher monomer content decreased 

cell metabolism and proliferation. 

My study was the first to show that nominally identical particles from different commercial sources 

tremendously differ in their properties, explaining the varying results in effect studies on microplastics. 

We highlight that an in-depth material characterization of microplastics is needed to obtain comparable 
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results in toxicology and therefore contributes significantly to assessing risks derived from microplas-

tics. Furthermore, we emphasize that no general statements can be made about the effects of micro-

plastics per se, not even for the same type of polymer in the same size class.  
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Objective 3: Systematic analysis of how the zeta-potential of pristine, functionalized and environmen-

tally exposed model microplastic particles affects their interactions with cells 

Article 3: Nominally identical microplastic models differ greatly in their particle-cell 
interactions 

In literature, it has been described that the zeta-potential plays a decisive role in particle-cell interactions 

(Fröhlich, 2012; Jeon et al., 2018; Silva et al., 2014). When working on the 1st and 2nd objectives, it 

became evident that the zeta-potential is one of the main drivers for microplastic particle-cell interac-

tions. However, the influence of the zeta-potential of nominally identical microplastic particles from 

commercial sources on the particle-cell interactions has not been systematically studied. Differences in 

the zeta-potential of nominally identical model microplastic particles may determine the experimental 

outcome. Understanding the underlying mechanisms of particle-cell interactions is an integral step in 

evaluating the potential toxicity of microplastics.  

In article 3, a quantitative and highly multiplexed approach to investigate the role of the zeta-potential 

of nominally identical PS model microplastic particles from eight different manufacturers for particle-

cell adhesion and internalization is described. Here, we developed a microfluidic microscopy platform 

that uses convolutional neural networks for digital image processing to measure the adhesion strength 

of the particles to cellular membranes. We demonstrated that the particle-cell adhesion strength and 

the absolute internalization probability increase by multiple orders of magnitude with the increasing 

zeta-potential. Furthermore, microplastic particles that eventually interact with cells and tissues under 

realistic scenarios are most probably not pristine model microplastic particles but are coated with bio-

molecules from the environment. Therefore, we included microplastic particles coated with an eco-

corona in the analysis and also found a strong correlation between the particles' zeta-potential and their 

interactions with cells. 

Our results highlight that each nominally identical microplastic particle from any commercial source 

substantially differed in its properties, leading to different particle-cell interactions. Thus, I can further 

substantiate that one possible reason for the contradictory results in effect studies is the physico-chem-

ical properties of nominally identical particles from different manufacturers. Therefore, I highlight that 

it is of utmost importance to thoroughly characterise the microplastic particles used in effect studies, 

regardless of whether they are pristine or environmentally contaminated particles. Otherwise, state-

ments about microplastic particles' cytotoxicity cannot be made sufficiently. 
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Summary of the articles – Hypothesis II 

Hypothesis 2: Environmental exposure alters the surface properties of microplastic particles 
and their interactions with cells 

 

Objective 4: The formation of an eco-corona on the surface of microplastic particles and which role 

the eco-corona plays in particle-cell interactions and subsequent particle internalization 

 

Article 4: Environmental exposure enhances the internalization of microplastic particles into 
cells 

At the beginning of my PhD project, the interactions of microplastic particles with tissues and cells 

were only carried out with the described model microplastic particles. These model microplastic parti-

cles are often fluorescently labelled or functionalized. In objective 3, we highlighted that particles' func-

tionalization and environmental exposure tremendously affect the particles’ interactions with cells. 

Here, I want to focus on microplastic particles coated with an eco-corona since they differ substantially 

from model microplastic particles and resemble those occurring in nature.  

To that date, we were not aware of any published methods to reliably get an eco-corona on the surfaces 

of micrometre-sized microplastic particles. Since the particles were that small (3µm), exposing them to 

nature was not feasible. For instance, incubating the particles in net cages would either mean that the 

particles would get lost, contaminating the environment, or the mesh or pore sizes would be too small 

to allow microorganisms or biomacromolecules to enter the space where the particles were located. 

Therefore, I decided to use glass vials to incubate the particles directly in the media and refreshed the 

incubation media three times a week to allow a healthy and diverse microorganismal community within 

the media. To investigate whether the coating of the particles with an eco-corona was successful, we 

performed a thorough analysis using SEM, micro-Raman spectroscopy and X-ray photoelectron spec-

troscopy. With all three techniques, we could show the presence of biomolecules on the surface of 

microplastic particles exposed to fresh- and salt water. However, we did not detect any signs of bio-

molecules on the surfaces of non-environmentally exposed pristine particles (negative control particles 

incubated in ultrapure water) without an eco-corona.  

Fluorescence microscopy combined with fluorescently labelled microplastic particles was used to in-

vestigate particle-cell interactions. However, microplastic particles from the environment are usually 

not fluorescent, which consequently presents methodological difficulties for particle detection with 

standard fluorescence microscopy. Therefore, to be able to distinguish whether a particle has been 

internalized by a cell or only binds to the cell membrane, I chose the path of fluorescently labelling the 

filamentous actin of the cells. This approach enabled identifying environmentally exposed particles 

internalized by cells where the filamentous actin is surrounding the particle. 
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Finally, I analyzed whether microplastic particles coated with an eco-corona interact differently with 

cells than pristine microplastic particles. As this is a hitherto unexplored aspect and a sensitive topic, I 

worked with a high number of replicates. I incubated the microplastic particles either in fresh- or salt 

water to obtain an eco-corona on the surface of the particles. Furthermore, I used different control 

particles (particles incubated in ultrapure water or functionalized particles coated with antibodies) to 

understand the effect on microplastic particle-cell interactions and cellular internalization originating 

from the eco-corona. 

I showed for the first time that microplastic particles coated with an eco-corona significantly more 

often interacted with and became internalized by cells than their pristine counterparts. My results indi-

cate that environmentally exposed microplastic particles may pose more of a health risk to organisms 

that ingest these particles than pristine particles usually used in effect studies. The results of this study 

allow us to obtain a comprehensive picture of microplastic internalization by cells, which, in turn, will 

be indispensable for identifying how microplastic exposure might affect organisms in polluted envi-

ronments. 
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Objective 5: Understanding the mechanical properties of environmentally exposed microplastic parti-

cles 

 

Article 5: Repulsive Interactions of Eco-corona Covered Microplastic Particles Quantitatively 
Follow Modelling of Polymer Brushes 

In the 3rd and 4th article of my PhD project, we learned that the surface of microplastic particles is 

chemically altered due to incubation in the environmental samples, also altering the particles' zeta-

potential. However, besides the chemical alterations, changes in their physical properties could also 

affect the observed enhanced interactions with cells. For instance, the morphology of a particle and the 

particles' stiffness may contribute to the described phenomenon of the particles' higher reactivity. Hart-

mann et al. (2015) analyzed the stiffness-dependent internalization and subsequent transport of micro-

particles into cells. They showed that softer particles with a low stiffness are transported faster within 

cells than stiffer ones. Now, the question arises if the coating with an eco-corona may change the 

stiffness of a particle, potentially affecting the particles' internalization.  

In article 5, we measured the repulsive forces with cp-AFM of the surface of microplastic particles 

coated with an eco-corona and compared the measured forces with their pristine counterparts. We 

measured single particle-particle interactions and found a pronounced increase of long-range repulsive 

interactions upon eco-corona formation. These repulsive interactions indicate that the formation of an 

eco-corona on microplastic particles introduces a soft film on the surface. This film changes the parti-

cles' mechanical behaviour, making the microplastic particles softer. We also have indications that the 

thicker the eco-corona gets, the softer the microplastic particle appears. Considering the observation 

of Hartman et al. (2015) that soft particles are internalized faster than hard particles, one may assume 

that this could also apply to particles with an eco-corona. In article 4, I found that particles incubated 

for longer periods in the environmental media show a higher number of particle-cell interactions and 

internalization than particles incubated for shorter periods. If we assume that the eco-corona becomes 

thicker and thus softer with increasing exposure time, the results described in article 5 would be a 

possible explanation for the increased cellular interactions.  

Our study helps to further understand the complexity of an eco-corona and highlights that the chemical 

properties of the microplastic particles' surface and their physical properties can strongly influence their 

interactions with cells. 
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Objective 6: Which basic cellular internalization mechanisms occur for microplastic particles coated 

with an eco-corona compared to their pristine counterparts 

 

Article 6: Cellular internalization pathways of environmentally exposed microplastic particles: 
Phagocytosis or Macropinocytosis? 

In articles 3 and 4, we showed that in both environments, fresh- and salt water, an eco-corona develops 

on the surface of microplastic particles, altering their physico-chemical properties and, consequently, 

their interactions with cells. Interestingly, the origin of an eco-corona seems to play a minor role in the 

particles’ reactivity towards cells since we did not find significant differences in their particle-cell inter-

actions. 

However, we found slightly different zeta-potentials in article 3, so I assumed that there should be 

differences in the composition of the eco-corona since fresh- and salt water are very different environ-

ments. Therefore, in article 6, we investigated the proteinaceous components of the eco-corona derived 

from fresh- and salt water using liquid-chromatography-mass-spectrometry/mass-spectrometry (LC-

MS/MS). Interestingly, after correcting for background contamination, the proteinaceous composition 

of the eco-corona from fresh- or salt water was distinct. Therefore, I assumed there should be differ-

ences in how the particles interact with cellular membranes, although we did not see significant differ-

ences in our previous observations. 

The surface of the plasma membrane is the outer leaflet of a cell communicating with its environment 

(Doherty & McMahon, 2009). Basically, cellular internalization can be subdivided into two steps once 

a cell encounters foreign particulate matter in the micrometre-size range. Within the first step, the 

surface of the particle interacts with the cell either by binding to cellular receptors (Aderem & Underhill, 

1999) or by unspecific (e.g. electrostatic) interactions with the cell membrane (Forest et al., 2015). The 

biomolecules of an eco-corona, such as proteins, could possibly take over the function as a ligand and 

interact with membrane receptors, consequently leading to the adhesion of a particle to the cell mem-

brane. However, the altered zeta-potential of the particles coated with an eco-corona may also deter-

mine their electrostatic interactions. Therefore, investigating the adhesion strength of microplastic par-

ticles coated with an eco-corona in detail is essential to estimate the underlying mechanisms for particle 

internalization. 

To investigate the adhesion strength of microplastic particles coated with an eco-corona towards cells, 

we used the microfluidic microscopy platform described in article 3. With this approach, we can meas-

ure the forces needed to unbind a particle that attaches to cellular membranes, defining the particles' 

adhesion strength. Interestingly, there are no significant differences in the adhesion forces of particles 

to cells between fresh- and salt water derived eco-coronas, indicating that the origin of the eco-corona 

seems irrelevant to the particle binding strength to cells. This finding is consistent with the results from 
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article 5, showing that the enhancement of particle-cell interactions and internalization is independent 

of the origin of the eco-corona.  

Although we did not investigate differences in the adhesion strength of eco-corona particles towards 

cells, the distinct proteinaceous composition of the different eco-coronas may still determine the inter-

nalization mechanisms for microplastic particles. To unravel the mechanisms relevant to internalizing 

microplastic particles coated with an eco-corona, we inhibited the most relevant internalization mech-

anisms, phagocytosis and macropinocytosis (Doherty & McMahon, 2009). First, we inhibited phago-

cytosis and macropinocytosis simultaneously (inhibitors: Cytochalasin D and Amiloride) by inhibiting 

actin polymerisation. Furthermore, we used Amantadine to inhibit receptor-mediated internalization, 

namely phagocytosis. Our results show that macropinocytosis is the main internalization mechanism 

for microplastic particles coated with an eco-corona derived from salt water, whereas for the other 

particle types both internalization mechanisms seem to be involved.  

The results presented in article 6 are highly interesting since they show that the origin of an eco-corona 

does not influence the adhesion of a microplastic particle to a cellular membrane, whereas we present 

the first results, that the internalization mechanisms depend on the origin of the eco-corona. Based on 

our results, further investigations on the specific internalization mechanisms should be conducted to 

understand which properties of an eco-corona determine the enhanced microplastic particle-cell inter-

actions and internalization. 
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Objective 7: Closing knowledge gaps on the exposure pathways, the factors determining the tissue 

translocation and fate of microplastics in human tissues 

 

Article 7: Nano- and microplastics: a comprehensive review on their exposure routes, 
translocation, and fate in humans 

In the previous work of my PhD thesis, I showed that the surface properties of a microplastic particle 

determine their interactions with cells. Furthermore, the eco-corona acts as a game changer since the 

initial surface properties are additionally altered, enhancing the likelihood of particle-cell interactions 

and subsequent internalization. However, the overall question remains whether or not humans take up 

microplastic particles, if the particles interact with biological barriers, which may lead to their accumu-

lation in human tissues, which consequently may induce adverse effects. 

In article 7, I initiated an interdisciplinary literature review on the exposure pathways of humans to 

nano-and microplastics, describing the potential translocation mechanisms from primarily exposed or-

gans to other tissues and evaluating the knowledge of the fate of microplastic particles in human tissues. 

We found the three main exposure pathways of how humans can come in contact with microplastics. 

The most important routes are via ingestion of a contaminated vector, inhaling microplastics with am-

bient air, or applying personal care products containing microplastics. To get a detailed overview of the 

potential exposure of humans to microplastics, we reviewed the current literature regarding microplas-

tics in drinking water, beverages, and food for ingestion. We focused on the contamination levels of 

indoor environments and occupational sites for inhalation of microplastic particles. Furthermore, we 

summarized the current knowledge of microplastics in personal care products since those are directly 

applied to the skin or mucus membranes. We further summarized the current understanding of the 

translocation mechanism of particles from the primarily exposed organ (gastrointestinal tract, lung and 

skin) and critically reviewed the current literature regarding the fate of microplastics in human tissues. 

The main finding of our review article is that there is a discrepancy between detected particle sizes 

described in human tissues and those that can theoretically be translocated. We then critically discuss 

that the limitations of the available analytical techniques and the lack or improper description of quality 

assurance and quality control are responsible for these discrepancies. Finally, we recommended that 

further development of reliable methods for the isolation, purification and analysis of small microplas-

tics and nanoplastics is urgently needed to make accurate statements regarding the exposure and fate 

of nano-and microplastics within the human body. 
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Summary of the articles – Hypothesis III 

Hypothesis 3: The initial surface properties of polymers determine their interactions with 
microorganisms  

 

Objective 8: Understanding how the initially different surface properties of different polymer types 

determine the early-stage formation of a biofilm 

 

Article 8: Structural Diversity in Early-Stage Biofilm Formation on Microplastics Depends on 
Environmental Medium and Polymer Properties 

In the first two topics of my PhD thesis, I demonstrated how important the surface properties of 

micrometre-sized microplastic particles are for particle-cell interactions. Within the environment, many 

more size classes of microplastic particles of different polymer types exist. Here, pro- and eukaryotic 

organisms may develop a biofilm on the surface of the microplastic particles. Most studies analyzed 

mature biofilms either by incubating the particles for several months or years (Artham et al., 2009; 

Hossain et al., 2019; Webb et al., 2009) or analysing microplastic particles isolated directly from the 

environment with unknown incubation times (Oberbeckmann et al., 2014; Zettler et al., 2013). At the 

beginning of my PhD, it has already been discussed that the surface properties, like the particles’ surface 

morphology, surface charge (e.g. zeta-potential) or hydrophobicity, may determine the formation of a 

biofilm (Hossain et al., 2019; Rummel et al., 2017). However, a systematic approach was missing to 

correlate the initial surface properties with the development of a naturally grown biofilm. 

I assumed that the polymers' initial surface properties might contribute the most to the early-stage 

biofilm. Therefore, I investigated the time-dependent development of an early-stage biofilm and cor-

related my findings with the particles' initial properties. We measured the initial zeta-potential of three 

different hydrophilic polymer types of different chemical compositions (PA-containing amid groups, 

PET-containing ester groups and PVC-containing chloride). For a consecutive time-series (0, 0.5, 1, 2, 

5, 7, 11, and 14 days), we incubated the particles in two environmentally relevant media, fresh- and salt 

water. I analyzed the structural diversity on the surface of the particles by using SEM for each time 

point. Similar to what I found for the particle-cell interactions, the initial zeta-potential of the different 

polymer types determined the early-stage biofilm formation on the different polymer types. In fresh-

water environments, the microplastic particles made of PA with the highest initial zeta-potential 

showed the highest structural diversity, followed by PET with a lower zeta-potential and PVC having 

the lowest zeta-potential with the least structural diversity. Interestingly, PVC showed the highest struc-

tural diversity in the salt water treatment, followed by PA and PET. Although our results indicate that 

the early-stage biofilm formation depends on the incubation media and the particles’ initial zeta-poten-

tial other properties may also contribute to the observed differences.  
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Furthermore, I descriptively discussed the microorganismal structures found on the surfaces of the 

particles. Interestingly, I observed microorganismal structures that were only present on PA and PET 

microplastic particles incubated in freshwater but absent on PVC. We assume that these microorgan-

ismal structures are attracted explicitly by the properties of PA and PET but are repelled by the prop-

erties of PVC. Overall, we show that less than half a day of incubation already leads to the initiation of 

an early-stage biofilm. Furthermore, the structural diversity increased during the incubation time on all 

polymer types in both environmentally relevant media, indicating a subsequent development of an 

early-stage biofilm. Interestingly, I found signs of extracellular polymeric substances (EPS) on the sur-

face of PET and PVC in the salt water treatment after less than one week. The presence of EPS on a 

substrate indicates initiating the second step of biofilm formation, allowing microorganisms to prolif-

erate and form colonies (Renner & Weibel, 2011). 

The results described in article 8 once more highlight the importance of the initial surface properties 

of microplastic particles since it not only determines their interactions with cells but also their interac-

tions with pro- and eukaryotic organisms within an environment. 
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Objective 9: Understanding if the direct exposure of different polymer types in a small freshwater 

stream leads to polymer-specific microbial biofilm compositions 

 

Article 9: In situ Prokaryotic and Eukaryotic Communities on Microplastic Particles in a 
Small Headwater Stream in Germany 

Based on article 8, which results describe a fast and easy-to-measure technique to differentiate the early-

stage biofilm formation on different polymer types under laboratory conditions, the question arises 

whether the distinct biofilm formation on different polymer types is also true in nature. The incubation 

of microplastic particles under laboratory conditions enables the detailed investigation of single factors 

influencing biofilm formation. However, this approach only shows half the truth since seasonal dy-

namics, which can significantly influence the formation and composition of a biofilm (Kaevska et al., 

2016), are missing. Therefore, it is crucial to investigate the biofilm formation and composition grown 

under natural conditions directly in the environment. Several studies on the composition of a biofilm 

were performed on biofilms from marine aquatic environments (e.g., Oberbeckmann et al., 2015, 2016; 

Zettler et al., 2013), whereas data on freshwater biofilms is less abundant (Wright et al., 2021), especially 

in small headwater streams. Therefore, we directly exposed microplastic particles in a small headwater 

stream in Germany at two different time points within one year (spring and summer, four weeks of 

exposure, respectively). We chose four different polymer types (PE, PP, PS and PVC) to investigate if 

potential differences in the biofilm formation between polymers occur under natural conditions. We 

also used natural control particles made of quartz to elucidate polymer-specific effects. We used 16S 

and 18S amplicon sequencing and calculated the order of polymer type-specific pro-and eukaryotic 

community distances by Robust Aitchison principal component analysis (PCA). When we conducted 

these experiments, it was the first study focusing on prokaryotic and eukaryotic communities. It is 

essential to analyse both domains in biofilms, as a prokaryotic biofilm (consisting of bacteria and ar-

chaea) attracts eukaryotic predators such as protists and small metazoans. Analysing both makes it 

possible to depict the dynamics of a biofilm.  

Our results show that different microplastic particle polymer types were colonized by different pro-

and eukaryotic biofilm communities, irrespective of the season. PE particles always showed the highest 

number of detectable bacterial taxa. Significant differences to quartz samples were found for PE (in 

16S data) and PP samples (in 18S data). The bacterial composition of the closely clustering PS and PVC 

samples in the PCA did not differ, while the reference samples were placed apart from these two pol-

ymer types.  

As described earlier in this thesis, it was shown that invertebrates more likely ingest microplastic parti-

cles coated with a biofilm compared to pristine particles (Hodges et al., 1995; Vroom et al., 2017). 

Therefore it is essential to closely investigate the composition of a biofilm since it has been described 

that pathogenic bacteria can be part of the biofilm community (Kirstein et al., 2016b; Oberbeckmann 
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et al., 2016; Zettler et al., 2013) and consequently enter an organism due to ingestion. In article 9, we 

did observe pathogenic bacteria, like Enterobacter ludwigii, in all samples and those exhibited a higher 

relative abundance in biofilm samples than in water samples.  

The results of article 9 are consistent with my previous observations that the properties of a micro-

plastic particle, determined by its’ polymeric origin, lead to a distinct biofilm formation, also under 

natural conditions. 
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Objective 10: Develop a Raman library of spectral variances due to the polymer coating with a biofilm, 

which would enable the detection of a polymer coated with a biofilm without sample pre-processing 

Article 10: Spatio-chemical analysis of the plastisphere using Raman spectroscopy 

From the previous objectives in my PhD thesis, we learned that the composition of a biofilm can be 

distinct between different polymer types. To date, to identify the microplastic particles of different 

polymer types in an environmental sample it is essential to remove the organic material, e.g. the biofilm, 

from the plastic particles. This process of isolation and purification of an environmental sample to 

obtain the microplastic particles are costly, time-consuming, and often accompanied by the risk of 

contamination or loss of microplastic particles. To overcome the difficulties in isolation and purifica-

tion, it would be helpful to establish a method allowing the spectroscopic analysis of microplastic par-

ticles coated with a biofilm without sample pre-processing.  

Based on the polymer-specific biofilms that I described in article 8 and 9, we asked ourselves whether 

we could take advantage of these polymer-specific biofilms to identify microplastics using micro-Ra-

man spectroscopy. Therefore, we incubated 11 different polymer types and an additional control par-

ticle made of glass for one month in a microcosm setup consisting of fresh- or salt water. We used 

SEM and micro-Raman spectroscopy to elucidate polymer-specific biofilm signatures. As a result, we 

found a heterogeneous distribution of molecular signatures that indicate the presence of EPS from 

biofilms, although not polymer-specific. However, the Raman signatures of the EPS were mostly pre-

sent in parallel with the underlying surface signatures of the microplastic particles leading to spectral 

variances originating from the EPS. Therefore, we propose that the spectral variances of the micro-

plastic particles coated with a biofilm can be used to infest a spectral variant library. This library will 

help to increase the efficiency associated with the spectroscopic identification of microplastic particles 

from an aqueous environment. 
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Synopsis 

The work presented in my PhD thesis clearly and unanimously emphasizes the importance of the sur-

face properties of microplastic particles for their interactions with their surroundings. For instance, as 

soon as a microplastic particle enters the environment, its surface interacts with microorganisms, form-

ing a biofilm or an eco-corona on the particles' surface, depending on the size of the particle. Here I 

showed that the polymer type and its specific surface properties determine the biofilm formation and 

composition on larger microplastic particles. However, a microplastic particles' surface properties are 

not solely determined by the polymer type. I showed that nominally the same model microplastic par-

ticles of the same polymer type tremendously differ in their properties, depending on the type and 

settings of the synthesis used by the commercial source. Here, the surface of the microplastic particles 

significantly differed, and I unravelled that especially the zeta-potential seems to be one of the main 

driving factors that a particle interacts with cells and tissues, consequently influencing the experimental 

outcome. Therefore, I want to highlight that a thorough characterization of the surface properties of 

microplastic particles is essential to allow concluding the mechanisms of toxicity. 

However, under realistic scenarios, organisms and humans are not exposed to pristine microplastic 

particles. Still, they are mainly exposed to microplastic particles that previously interacted with envi-

ronmental compartments and are coated with an eco-corona. I was the first to show the formation of 

an eco-corona on micrometre-sized microplastic particles, performing a thorough analysis to under-

stand the physico-chemical and mechanical alterations of the surface properties and linked the surface 

properties to the particles’ reactivity towards cells. Here, the eco-corona can be considered a turning 

point as it increases the adhesion strength of particles to cells, the number of particle-cell interactions 

and the number of internalized particles. The increased reactivity of the particles towards cells can 

consequently affect the experimental outcome in eco-toxicity studies. 

Therefore, one question raised by media, stakeholders and policymakers whether we do have to be 

concerned about the potential health effects of deriving from plastic pollution cannot be answered at 

the moment since mainly pristine microplastic particles have been used. Nevertheless, my PhD project 

adds great value to be able to answer this question in the future. The key message of my thesis is that 

in future experiments, the microplastic particles used in effect studies must be thoroughly characterized. 

Furthermore, I highly recommend using environmentally exposed microplastic particles coated with 

an eco-corona since using pristine particles may lead to an underestimated risk deriving from plastic 

pollution since the particles interact significantly less with cells and tissues compared to environmen-

tally exposed particles.
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Outlook 

One, if not the main question, whether microplastics can be harmful to an organism, was not aimed to 

be answered within the framework of my PhD thesis. However, since the interactions with and inter-

nalization of pristine microplastic particles and also particles coated with an eco-corona by cells seems 

to be mainly driven by the particles’ physicochemical properties, these properties may eventually also 

trigger cytotoxic effects. For estimating the cytotoxicity of microplastic particles, different approaches 

are available, like measuring the metabolic activity by using an MTT- assay (MTT = 3-(4,5-dimethylthi-

azol-2-yl)-2,5diphenyltetrazolium bromide) or an increase in reactive oxygen species (ROS). Several 

studies show that only very high concentrations of microplastic particles can induce a decrease in met-

abolic activity (Rudolph et al., 2021; Stock et al., 2019, 2021) or an increase in ROS (Rudolph et al., 

2021; Wang et al., 2021; Wu et al., 2019). Furthermore, Visalli et al. (2021) highlighted that ROS pro-

duction was increased for short incubation of up to six hours when using high particle concentrations. 

In contrast, no increase in ROS can be detected after one-week exposure anymore (Visalli et al., 2021). 

This difference in ROS production indicates that cells in vitro are capable of homeostasis, but micro-

plastic particles seem not devoid of consequences to human cell lines (Visalli et al., 2021).  

To date, the available data is too limited to make reasonable statements about the cytotoxicity of mi-

croplastic particles (Brachner et al., 2020). This could be due to the fact that commonly used tests may 

not be sensitive enough to estimate the microplastic particle-induced cytotoxicity since they were orig-

inally designed to test soluble substances. Furthermore, the usual approaches to measuring cytotoxicity 

are based on the simultaneous examination of a pool of many cells. However, in my experimental setup 

performing single-cell analysis, I realised that not every cell interacts with a particle. If only a few indi-

vidual cells interact with microplastic particles, potentially showing adverse effects, this effect may 

therefore be lost in the mass of simultaneously tested cells. To overcome this problem, single-cell anal-

ysis of particle-cell interactions would clearly show if a cell interacting with a particle shows signs of 

cytotoxicity or not. However, analysing individual cells using microscopic techniques is time-consum-

ing and costly. But currently, it seems to be the only suitable technique to evaluate potential risks for 

cells interacting with microplastic particles.  

During his visit to the Chair of Biological Physics, we discussed this issue with Prof. Dr. Gareth W. Griffiths 

from the Department of Biosciences, University of Oslo, Norway. He suggested that one possibility for single-

cell effect studies could be imaging the activation of the nuclear factor ‘kappa-light-chain-enhancer’ of 

activated B-cells (NFkB). The main function of NFkB is the regulation of inflammation, mainly induced 

by ligand sensing at pattern-recognition receptors (PRRs). Cells of the innate immune system express 

PRRs to sense an extensive range of microbial components (pathogen-associated molecular patterns, 

PAMPs). These components may also be present in an eco-corona. In an inactive state, NFkB is se-

questered in the cytoplasm of a cell, and as soon as it becomes activated, it translocates into the nucleus 
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(for a review, see Liu et al., 2017). The translocation process of NFkB can be imaged via the fluores-

cently labelling of NFkB. Therefore I added the immuno-staining of the transcription factor NFkB to 

my workflow for differentiating whether a particle has been internalized by a cell or whether a particle 

only adheres to the cell membrane (Ramsperger et al., 2020). With this approach, we can perform 

single-cell analysis and can even distinguish between potential effects derived by the adhesion to cellular 

membranes or the internalization of the particles by cells. Although with the highly acknowledged help 

of Wolfgang Groß from the Chair of Biological Physics developing MatLab-based automatic image analy-

sis, single-cell analysis is still a very time-consuming approach. Therefore, I can only show preliminary 

results on the activation of NFkB induced by PS microplastic particles coated with an eco-corona and 

the respective control treatments within this thesis.  

As in our previous approaches, I incubated microplastic particles in either fresh- or salt water for the 

eco-corona coatings. As control treatments, I used the positive control of IgG and negative control of 

pristine particles without an eco-corona, as used in Ramsperger et al. (2020). Additionally, two more 

control treatments were conducted, control cells that were not exposed to any particulate matter and 

cells treated with lipopolysaccharides from Escherichia coli, known to induce the activation of NFkB (Liu 

et al., 2017). I treated three different murine macrophage cell lines (C7, ImKC and J774A.1) with the 

corresponding treatments, fluorescently labelled the cells and after image acquisition, measured the 

three-dimensional mean intensity of NFkB at the position of the nucleus of the cells. By explicitly 

analysing particle-cell interactions and comparing the fluorescence intensities to the respective control 

treatments, we can show that environmentally exposed microplastic particles induce the activation of 

NFkB.  
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The activation strength seems to be depended on the cell line and treatment, indicating the specific role 

of macrophages from different body compartments. Interestingly, pristine microplastic particles with-

out an eco-corona did not activate the NFkB signaling pathway for any tested cell line (Figure 1).  

 

 

Figure 1: Fluorescent intensity of the transcription factor NFkB at the location of the nucleus in three 

murine macrophage cell lines (C7, ImKC and J774A.1) after the treatment with microplastic particles 
coated with an eco-corona and control treatments. Control= untreated cells, UW= pristine microplastic par-
ticles, SW= microplastic particle coated with an eco-corona from saltwater, FW= microplastic particle coated 
with an eco-corona from freshwater, IgG= functionalized microplastic particles opsonized with the antibody 
IgG, LPS= lipopolysaccharides from gram-negative bacteria. In all cell lines, the LPS treatment induced the acti-
vation of the NFkB translocation into the nucleus. For the C7 cell line, only microplastic particles coated with an 
eco-corona derived from FW activate the translocation of NFkB into the nucleus. For the ImKC and J774A.1, 
both types of eco-corona coated microplastic particles induce the translocation of NFkB into the nucleus. Statis-
tical analysis pending. a.u. = arbitrary units. 

 

This last but preliminary aspect of my PhD thesis shows that microplastic particles coated with an eco-

corona are more frequently interacting with and become internalized by cells and ultimately cause 

stronger inflammatory responses than pristine particles. Liu et al. (2017) highlighted in their review 

article that “(…) deregulated inflammatory responses can cause excessive or long-lasting tissue dam-

ages, contributing to the development of acute or chronic inflammatory diseases.”. Finally, I would like 

to encourage other research groups investigating the potential risk of plastic pollution to include envi-

ronmentally exposed microplastic particles of different shapes in impact studies in order to draw real-

istic conclusions about the potential risk of microplastic particles for the environment, the organism 

and ultimately human health. 
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