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ABSTRACT

The radial size convergence of the E� B staircase pattern is addressed in local gradient-driven flux tube simulations of ion temperature gra-
dient (ITG)-driven turbulence. It is shown that a mesoscale pattern size of �57–76 q is inherent to ITG-driven turbulence with Cyclone Base
Case parameters in the local limit.
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Ion temperature gradient-driven turbulence close to marginal
stability exhibits zonal flow pattern formation on mesoscales, so-called
E� B staircase structures.1 Such pattern formation has been observed
in local gradient-driven flux-tube simulations,2,3 including collisions4

and background E� B shear,3 local flux-driven realizations including
mean electric field shear,5 as well as global gradient-driven6–8 and
global flux-driven1,9–12 studies. In global studies, spanning a larger
fraction of the minor radius, multiple radial repetitions of staircase
structures are usually observed, with a typical pattern size of several
ten Larmor radii. By contrast, in the aforementioned local studies, the
radial size of E� B staircase structures is always found to converge to
the radial box size of the flux tube domain. The above observations
lead to the question: Does the basic pattern size always converges to the
box size, or is there a typical mesoscale size inherent to staircase struc-
tures also in a local flux-tube description? The latter case would imply
that it is not necessarily global physics, i.e., profile effects, that set (i)
the radial size of the E� B staircase pattern and (ii) the scale of
avalanche-like transport events. These transport events are usually
restricted to E� B staircase structures and considered as a nonlocal
transport mechanism.1 In this brief communication, the above ques-
tion is addressed through a box size convergence scan of the same
cases close to the nonlinear threshold for turbulence generation as
studied in Ref. 2.

The gyrokinetic simulations are performed with the non-linear
flux tube version of Gyrokinetic Workshop (GKW)13 with adiabatic

electron approximation. In agreement with Ref. 2, Cyclone Base Case
(CBC) like parameters are chosen with an inverse background temper-
ature gradient length R=LT ¼ 6:0 and circular concentric flux surfa-
ces. The numerical resolution is compliant to the “Standard resolution
with 6th order (S6)” setup of the aforementioned reference, with a
somewhat lowered number of parallel velocity grid points. It has been
carefully verified that this modification preserves the same physical
outcome as the original study. A summary of the numerical parame-
ters is given in Table I, and for more details about the definition of
individual quantities, the reader is referred to Refs. 2 and 13.

In the following, the box size is increased relative to the standard
box size ðLx; LyÞ ¼ ð76:3; 89:8Þ q in the radial and binormal direc-
tions. Here, x is the radial coordinate that labels the flux surfaces nor-
malized by the thermal Larmor radius q, and y labels the field lines
and is an approximate binormal coordinate. Together with the coordi-
nate s, which parameterizes the length along the field lines and is
referred to as the parallel coordinate, these quantities form the
Hamada coordinates.14 The increased box sizes are indicated by the
real parameter NR for radial and NB for the binormal direction with
the nomenclature NR � NB throughout this work. Note that the num-
ber of modes in the respective direction, i.e., Nx and Nm, respectively,
is always adapted accordingly to retain a spatial resolution compliant
to the standard resolution [Table I] and standard box size.

The E� B staircase pattern is manifest as radial structure forma-
tion in the E� B shearing rate defined as2,15,16
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x E�B ¼
1
2
@2h/i
@x2

; (1)

where h/i is the zonal electrostatic potential normalized by q�T=e
(q� ¼ q=R is the thermal Larmor radius normalized with the major
radius R, T is the temperature, and e is the elementary charge). The
zonal potential is calculated from the electrostatic potential / on the
two-dimensional x–y-plane at the low field side according to Ref. 3

h/i ¼ 1
Ly

ðLy
0
dy/ðx; y; s ¼ 0Þ: (2)

The E�B shearing rate x E�B is the radial derivative of the advecting
zonal flow velocity17,18 and quantifies the zonal flow induced shearing
of turbulent structures.17,19,20

Consistent with Ref. 2, the turbulence level is quantified by the tur-
bulent heat conduction coefficient v, which is normalized by q2vth=R
(vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
is the thermal velocity andm is the mass). Furthermore,

quantities q, R, T, vth, and m are referenced quantities from Refs. 2 and
13. In order to diagnose the temporal evolution of the staircase pattern
and to obtain an estimate of its amplitude the radial Fourier transform of
the E� B shearing rate is considered. It is defined by

x E�B ¼
X
kZF

x̂E�BðkZF; tÞ exp ðikZFxÞ; (3)

where x̂E�B is the complex Fourier coefficient and kZF ¼ 2pnZF=Lx
defines the zonal flow wave vector with the zonal flow mode number
nZF ranging in �ðNx � 1Þ=2 � nZF � ðNx � 1Þ=2. Based on the defi-
nitions above, the shear carried by the zonal flow mode with wave vec-
tor kZF is defined by jx̂E�BjnZF ¼ 2jx̂E�BðkZF; tÞj. In general, the
zonal flow mode that dominates the E� B staircase pattern, also

referred to as the basic mode of the pattern in this work, exhibits the
maximum amplitude in the spectrum jx̂E�BjnZF .

In the first test, the radial box size is increased while the binormal
box size is kept fixed to the standard size. The scan covers the realiza-
tions NR � NB 2 ½1� 1; 2� 1; 3� 1; 4� 1�. Each realization
exhibits an initial quasi-stationary turbulent phase and a second final2

phase with almost suppressed turbulence [Fig. 1(a)]. The latter state is
indicative for the presence of a fully developed staircase pattern as
depicted in Fig. 2. This type of structure is characterized by intervals of
almost constant shear with alternating sign satisfying the Waltz crite-
rion jx E�Bj � c18,21 [c is the growth rate of the most unstable linear
ion temperature gradient (ITG) driven Eigenmode], connected by
steep flanks where xE�B crosses zero. The negative gradient of the
perturbed perpendicular and parallel ion pressure (not shown) exhibit
positive corrugations in regions with maximum jxE�Bj and negative
corrugations at zero crossings of x E�B. A radial force balance analysis
suggests that the structures in xE�B as depicted in Fig. 2 are not a con-
sequence of the pressure gradient corrugations as discussed else-
where.22 Rather, the corrugations in the pressure gradient have to be
interpreted as a consequence of the staircase structure in xE�B due to
the stabilizing zonal flow–turbulence interaction. Figure 2(a) shows a
striking repetition of the staircase structure, with the number of repeti-
tions equal to NR. Hence, the basic size of the pattern not only con-
verges with increasing radial box size, but the converged radial size
also turns out to at least roughly agree with the standard radial box
size of Ref. 2. Due to the lack of a substantial turbulent drive in the
final suppressed state, no further zonal flow evolution is observed [Fig.
1(b)] and one might critically ask whether the structures shown in Fig.
2 represent the real converged pattern in a statistical sense. Note that
in the 3� 1 case the initial quasi-stationary turbulent state extends up
to a few �104 R=vth. During this period, the zonal flow mode with
nZF ¼ 3, i.e., the mode that dominates the staircase pattern in final
suppressed phase, undergoes a long-term evolution with a typical
timescale of several �103 R=vth. Hence, several of such cycles are cov-
ered by the initial turbulent phase, which is evident from the occur-
rence of phases with reduced amplitude around t � 8000R=vth and
t � 18 000R=vth. It is the nZF ¼ 4 zonal flow mode, i.e., the next
shorter radial scale mode, that dominates the shear spectrum

TABLE I. Resolution used in this paper for further information the author links to
Ref. 2.

Nm Nx Ns N�k Nl D �d D�k Dx Dy Order kyq kxq

S6 21 83 16 48 9 1 j�kj 0.2 0.1 0.1 6 1.4 2.1

FIG. 1. (a) Time traces of the heat conduction coefficient v for R=LT ¼ 6:0 for radial increased box sizes. (b) Time traces of jx̂E�BjnZF for radial increased box sizes.
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jx̂E�BjnZF in the latter two phases (not shown). This demonstrates a
competition between the nZF ¼ 3 and nZF ¼ 4 modes. Most impor-
tantly, no secular growth of the nZF ¼ 1 (box scale) zonal flow mode
is observed during the entire quasi-stationary turbulent phase [Fig.
1(b), dotted line]. The above discussion indicates that although the
nZF ¼ 3; 4 zonal modes compete, the pattern scale does not converge
to the radial box scale but rather to a mesoscale of �57–76 q (i.e.,
nZF ¼ 4; 3 in the 3� 1 case).

Since the radially elongated simulation domain might inhibit the
development of isotropic turbulent structures, in the second test, the
radial and binormal box size is increased simultaneously. This scan
covers the realizations NR � NB 2 ½1� 1; 1:5� 1:5; 2� 2; 2:5
�2:5; 3� 3�. Interestingly, suppression of the turbulence by the emer-
gence of a fully developed staircase pattern almost always occurs after
�1000R=vth [Fig. 3], i.e., significantly faster compared to the 3� 1

and 4� 1 realizations. As shown in Fig. 2(b), this test also confirms
the convergence of the staircase pattern size to a typical mesoscale that
is distinct from the radial box size in the NR > 1 realizations.

By contrast to the radial box size scan, the 3� 3 realization shows
a stationary pattern with four repetitions of the fully developed stair-
case structure, i.e., a somewhat smaller pattern size. Whether this is
related to a possible pattern size dependence on the binormal box
size or to the competition between patterns with the two sizes
k 2 ½57; 76�q as observed in the first test is addressed in the next
paragraph. The scale of structures developing in the 1:5� 1:5 and
2:5� 2:5 realizations (not included in Fig. 2 to preserve the clarity of
this figure) also lie within the range given above. Note that two addi-
tional realizations of the 3� 3 case with different initial conditions
and otherwise identical parameters confirm structure formation on
scales within the range given above.

FIG. 2. Comparison of shearing rate xE�B for each box sizes scan averaged over given time interval and the growth rate 6c of the most unstable linear ITG
driven Eigenmode. The staircase structures are radially shifted with respect to each over till alignment for better visibility: (a) radial: t1�1 2 ½2000; 5000�; t2�1
2 ½15 000; 18 000�; t3�1 2 ½43 000; 45 000�; t4�1 2 ½26 000; 28 000�; (b) isotropic: t1�1 2 ½2000; 5000�; t2�2 2 ½2000; 3000�; t3�3 2 ½2000; 3000�; and (c) binormal: t3�1:5
2 ½2000; 3000�; t3�2:5 2 ½2000; 3000�; t3�3 2 ½2000; 3000�; t3�5 2 ½1000; 3000�.
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In a third test, the binormal box size is varied with the radial box
size fixed to NR ¼ 3. This test covers the realizations NR � NB

2 ½3� 1:5; 3� 2:5; 3� 3; 3� 5�. As in the isotropic scan, the tur-
bulence subdued and a fully developed staircase pattern forms after
�2000R=vth [Fig. 4]. The convergence of staircase pattern can be seen
in Fig. 2(c) and confirms again a size of a typical mesoscale. Figure
2(c) also confirms that, indeed, a competition between patterns with
two sizes k 2 ½57; 76�q causing the different results for 3� 1 and
3� 3. The zonal flow mode number varies between nZF ¼ 3; 4 which
can be seen in Fig. 2(c) in the 3� 2:5 realization. The staircase struc-
ture has a pattern between three and four repetitions which get repre-
sented in the second repetition with no significant plateau at positive
shear. Instead, the pattern returns immediately after reaching the
maximum shear (þc) to the minimum shear (�c) of the third repeti-
tion in a steep flank. The Fourier analysis of this case yields no defi-
nitely basic mode rather two dominating modes with nZF ¼ 3; 4 with
a fraction of the maximum amplitude jx̂E�BjnZF each (not shown).

In the final test, the inverse background temperature gradient
length R=LT is varied at fixed 3� 3 box size. Since suppression of tur-
bulence usually occurs at later times when approaching the finite heat
flux threshold from below,2 the analysis aims to lengthen the phase
during which the zonal flow varies in time due to turbulent Reynolds
stresses. This scan covers realizations with R=LT 2 ½6:0; 6:2; 6:4�. In
the case of R=LT ¼ 6:2, turbulence suppression is observed for
t > 11 000R=vth, while stationary turbulence during the entire simula-
tion time trace of 12 000R=vth is found for R=LT ¼ 6:4. The finite

heat flux threshold, hence, is R=LT jfinite ¼ 6:360:1 in accordance with
Ref. 2. Although the initial quasi-stationary turbulence in the former
case is significantly longer compared to the R=LT ¼ 6:2 realization
discussed in the second test, a stationary pattern with basic zonal flow
mode nZF ¼ 3 establishes. Again, the nZF ¼ 1 (box scale) zonal flow
mode does not grow secularly during the entire turbulent phase. Also,
this test confirms the statistical soundness of the converged pattern
size of�57–76q.

Through careful tests this brief communication confirms the
radial size convergence of the E� B staircase pattern in local gyroki-
netic flux tube simulations of ion temperature gradient (ITG)-driven
turbulence. A mesoscale pattern size of�57–76 q is found to be intrin-
sic to ITG-driven turbulence for Cyclone Base Case parameters. This
length scale is somewhat larger compared to results from global studies
with finite q�, which report of a few 10q,1 and has to be considered
the proper mesoscale in the local limit q� ! 0. The occurrence of this
mesoscale implies that non-locality, in terms of Ref. 1, is inherent to
ITG-driven turbulence, since avalanches are spatially organized by the
E� B staircase pattern.1,2,6,15
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