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Abstract

In this thesis we investigate the existence of pulsating solutions of the spherically symmetric
gravitational Vlasov-Poisson system on a linear level. To this end, we linearise the system
around compactly supported steady states, which we first introduce in detail at the begin-
ning of the thesis. In order to explain different aspects of oscillations on the non-linear
level – in particular, the pulsating behaviour, where the support of the solution changes
periodically – we employ three different linearisation methods. All of them lead to the same
linear operator whose spectral properties determine the dynamics on the linear level.

The analysis of this operator forms the main part of this thesis. Firstly, we analyse the
functional analytical properties of the operator and prove that it is self-adjoint if its domain
of definition is chosen appropriately. Then we explicitly determine its essential spectrum.
It is given by the radial particle periods within the underlying steady state, to which we
devote a separate analysis in the appendix.

On a linear level, oscillating solutions correspond to positive eigenvalues of the opera-
tor. We investigate their existence by developing an adaptation of the Birman-Schwinger
principle from quantum mechanics for our situation. We combine this with a reduction
method discovered by Mathur. Overall, this allows us to characterise the existence and
number of positive eigenvalues below the essential spectrum of the original operator by
spectral properties of a simpler operator. Using this characterisation, we can explain the
linear oscillations around some stationary solutions.

Afterwards, we consider the slightly modified setting of steady states surrounding a point
mass. If the steady state is sufficiently small compared to the point mass, we show that
perturbations are damped on a linear level. The main step towards this (non-quantitative)
damping result is to exclude eigenvalues embedded in the essential spectrum of the operator.
The absence of other eigenvalues can be ensured by applying the Birman-Schwinger-Mathur
principle described above.

To conclude, we discuss how the techniques developed here can be applied in related
situations and conduct a comprehensive numerical analysis. In particular, we investigate the
dynamics near the most commonly used steady states and show in which cases undamped
oscillatory behaviour occurs at the linear level. Moreover, we numerically show that the
actual non-linear effects can be accurately described by the analysis on the linear level
performed here.
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Kurzfassung

In dieser Abhandlung untersuchen wir die Existenz pulsierender Lösungen des sphärisch
symmetrischen gravitativen Vlasov-Poisson-Systems auf linearer Ebene. Dafür linearisieren
wir das System um stationäre Lösungen mit kompaktem Träger, die wir zu Beginn der
Arbeit zunächst ausführlich einführen. Um verschiedene Aspekte von Oszillationen auf der
nicht-linearen Ebene – insbesondere das pulsierende Verhalten, bei dem sich der Träger der
Lösung periodisch bewegt – erklären zu können, verwenden wir zur Linearisierung drei ver-
schiedene Verfahren. Alle führen auf denselben linearen Operator, dessen spektrale Eigen-
schaften die Dynamik auf der linearen Ebene bestimmen.

Die Analyse dieses Operators bildet den Hauptteil dieser Abhandlung. Zuerst
analysieren wir die funktionalanalytischen Eigenschaften des Operators und zeigen, dass er
bei geeigneter Wahl seines Definitionsbereiches selbstadjungiert ist. Anschließend bestim-
men wir sein wesentliches Spektrum explizit. Es ist gegeben durch die radialen Teilchenpe-
rioden in der zugrundeliegenden stationären Lösung, denen wir im Anhang eine gesonderte
Analyse widmen.

Auf linearer Ebene entsprechen oszillierende Lösungen positiven Eigenwerten des Op-
erators. Wir untersuchen deren Existenz durch Entwicklung einer Adaption des Birman-
Schwinger-Prinzips aus der Quantenmechanik für unsere Situation. Wir kombinieren dies
mit einer von Mathur entdeckten Reduktionsmethode. Insgesamt können wir so die Exis-
tenz und Anzahl der positiven Eigenwerte unterhalb des wesentlichen Spektrums des ur-
sprünglichen Operators durch spektrale Eigenschaften eines einfacheren Operators charak-
terisieren. Mittels dieser Charakterisierung können wir die linearen Oszillationen um einige
stationäre Lösungen erklären.

Im Anschluss betrachten wir die leicht modifizierte Situation von stationären Lösun-
gen, welche eine Punktmasse umgeben. Wir zeigen, dass wenn die stationäre Lösung
im Vergleich zur Punktmasse genügend klein ist, Störungen auf linearer Ebene gedämpft
sind. Der Hauptschritt zu diesem (nichtquantitativen) Dämpfungsresultat besteht darin,
im wesentlichen Spektrum eingebettete Eigenwerte des Operators auszuschließen. Die Ab-
wesenheit anderer Eigenwerte kann durch Anwendung des oben beschriebenen Birman-
Schwinger-Mathur-Prinzips sichergestellt werden.

Abschließend diskutieren wir einerseits, wie die hier entwickelten Techniken in ver-
wandten Situationen angewendet werden können, und führen andererseits eine umfassende
numerische Analyse durch. Insbesondere untersuchen wir die Dynamik nahe der populärsten
stationären Lösungen und zeigen auf, in welchen Fällen auf linearer Ebene ein ungedämpftes
oszillierendes Verhalten auftritt. Darüber hinaus stellen wir numerisch fest, dass die
tatsächlichen nicht-linearen Effekte durch die hier durchgeführte Analyse auf linearer Ebene
genau beschrieben werden können.
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Chapter 1

Introduction

Consider a long-existing galaxy. We aim to investigate its evolution by analysing a math-
ematical model of it. Because a galaxy is frequently perturbed, e.g., by the gravitational
forces of other nearby galaxies, only models that are resilient to slight perturbations can
describe real galaxies. What these models are is quite well understood – this is the subject
of stability theory which we will review below. Here we are interested in the less well com-
prehended question of how a galaxy (model) evolves qualitatively. A common hypothesis is
that relaxation mechanisms drive galaxies towards an equilibrium state [19, 104] and that
every slight perturbation gets damped away. However, observations suggest that certain real
galaxies may not be in such equilibrium state, cf. [101]. Explanations for these behaviours
have been extensively discussed in the (astro)physics literature [26, 33, 100, 101, 103, 104,
110, 111, 115, 124, 132, 148, 159, 161, 162, 163, 168, 171, 172, 174, 175, 176, 179, 180] and,
more recently, also in the mathematics literature [61, 62, 85, 86, 117]. These investigations
indicate that a non-damped galaxy exhibits an oscillatory behaviour of pulsating nature,
i.e., the galaxy expands and contracts in a time-periodic way. The aim of this thesis is to
study this phenomenon mathematically.

1.1 The Mathematical Set-Up

We describe the state of a galaxy at some fixed time t ∈ R by its phase space density
function f = f(t, x, v) ≥ 0. The phase space variables consist of the space variable x ∈ R3

and the velocity variable v ∈ R3. Integrating f(t) over some part of phase space gives the
mass of stars contained in this phase space region. The evolution of an individual star inside
the galaxy is determined by Newton’s equations of motion

ẋ = v, v̇ = −∂xU(t, x), (1.1.1)

where U = U(t, x) is the gravitational potential of the galaxy and ∂xU denotes its gradient
with respect to (henceforth abbreviated as “w.r.t.”) the space variable x. Here, we neglect
close encounters between stars, and also potential collisions. The latter implies that the
phase space density f is constant along the trajectories of stars, which leads to the Vlasov
equation

∂tf + v · ∂xf − ∂xU · ∂vf = 0, (1.1.2)

see [67] for a review of the origins of this equation.1 Middle dots · denote the Euclidean
scalar product. By Newton’s law for gravity, the gravitational potential solves the Poisson

1Although the conclusion of [67] is that collisionless Boltzmann equation would be the proper name of
the equation (1.1.2), we will still use the more common name Vlasov equation here.

1



2 CHAPTER 1. INTRODUCTION

equation
∆U = 4πρ, (1.1.3)

where ∆ denotes the Laplacian w.r.t. x, the gravitational constant is normalised to unity,
and ρ = ρ(t, x) is the (spatial) mass density of the galaxy given by

ρ(t, x) =

∫
R3

f(t, x, v) dv. (1.1.4)

Here, we assume that all stars have unit mass. We equip the Poisson equation with the
usual boundary condition at spatial infinity

lim
|x|→∞

U(t, x) = 0, (1.1.5)

corresponding to an isolated galaxy. The equations (1.1.2)–(1.1.5) form a closed system for
the evolution of f , known as the three-dimensional gravitational Vlasov-Poisson system.
For an extensive physical background to this system we refer to [19]. More mathematical
aspects, like the global existence of classical solutions, are reviewed in [47, 143]. The Vlasov-
Poisson system can also be used to model the evolution of particle ensembles other than
galaxies, which is why we will below use the more general term “particles” when referring
to the individual stars in a galaxy model.

We consider this system in spherical symmetry (or radial symmetry), i.e., we assume that
the phase space density function f is invariant under simultaneous rotations of x and v.
This means that the originally six-dimensional phase space can be parametrised by the
variables

r = |x|, w =
x · v
r
, L = |x× v|2, (1.1.6)

which can be interpreted as the spatial radius, the radial velocity, and the squared modulus
of the angular momentum. The space dependencies of the gravitational potential U and
the mass density ρ reduce to a dependency on the spatial radius r. In Section 2.1, we
discuss in detail the notion of spherical symmetry as well as the Vlasov-Poisson system in
the radial variables (r, w, L); we refer to this system as the radial Vlasov-Poisson system.
The main motivation for assuming spherical symmetry is that it simplifies the mathematical
analysis. From a physics point of view [44, Ch. IX, Sc. 1], it means that our model describes
spheroidal galaxies (and globular clusters).

We analyse solutions of the radial Vlasov-Poisson system close to steady states, i.e., close
to time-independent solutions f0 = f0(x, v) of the Vlasov-Poisson system. We will describe
below the class of steady states considered here. They are all compactly supported, have
finite mass, and are stable, which means that they are realistic models for galaxies in an
equilibrium state. As motivated above, it is our intention to establish the presence of oscil-
lating/pulsating solutions. It is natural to expect that such oscillations take place around
an equilibrium state. Hence, our strategy is to obtain (undamped) oscillatory solutions as
perturbations of steady states. It is, however, unclear whether such solutions exist. It is
also possible that all solutions close to a steady state converge towards the steady state.

Numerical simulations [115, 124, 132, 159, 161, 162, 168] revealed that the occurrence
of these qualitatively different behaviours depends on the steady state. In Figure 1.1.1, we
depict two (numerically computed) solutions starting close to different steady states. The
solution in the left panel shows an undamped oscillatory behaviour, and we can clearly see
that the oscillation is of pulsating nature, i.e., the solution moves radially in and out in a
time-periodic way. In contrast, the solution in the right panel is damped, i.e., after a brief
period of time it is nearly a steady state. Our aim is to analyse which of these two cases
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applies to which steady state. In particular, we want to understand the occurrence of the
former one.

Figure 1.1.1: The time evolutions of the radial mass densities (t, r) 7→ 4πr2ρ(t, r) of two
spherically symmetric solutions of the Vlasov-Poisson system. The colour gradients depict
the values of these functions, increasing from black to yellow. Both solutions start close
to different steady states. The initial data and the numerical method used to create these
plots will be presented in Section 8.4.

1.2 Outline of the Thesis

Let us now outline the analysis conducted in this thesis and discuss the connections to
previous research. The approaches and results presented here are primarily based on [62] and
the subsequent works [49, 61]. There is some overlap between [62] and the monograph [85]
by Kunze, which was developed simultaneously and independently of [62]. Hence, several
of the results presented here (in particular, those from Chapters 4 and 5 and Appendices A
and B) are also contained in [85]; we will consistently discuss the connections of our results
and those of [85]. The key aspects of [85] are also presented in the lecture notes [86].

Steady States (Sections 2.2 and 4.1)

The starting point for our analysis is a thorough understanding of the steady states of the
Vlasov-Poisson system. In Section 2.2, we review the well-established existence theory of
spherically symmetric, compactly supported steady states of the Vlasov-Poisson system,
cf. [14, 63, 130, 140, 146] and [19, Sc. 4.3]. We mainly follow [130] in this part.

The key idea is to search for time-independent solutions f0 of the form

f0(x, v) = ϕ(E(x, v), L(x, v)), (1.2.1)

where ϕ : R2 → [0,∞[ is a prescribed microscopic equation of state, E is the particle energy

E(x, v) =
1

2
|v|2 + U0(x) (1.2.2)
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determined by the gravitational potential U0 associated to f0, and L is the squared modulus
of the angular momentum given by (1.1.6). Obviously, E and L are conserved quantities
of the characteristic system (1.1.1) if U0 is spherically symmetric. Hence, (1.2.1) defines a
time-independent solution of the Vlasov equation (1.1.2). If ϕ is sufficiently smooth, this
solution is classical, but we do not require this to be the case, cf. Definition 2.2.2. The
precise class of steady states which will be considered in (the main part of) this thesis is
specified by the conditions (ϕ1)–(ϕ5) stated in Sections 2.2 and 4.1.2 Let us present here
the most “popular” steady states – i.e., the ones which are most commonly used in the
literature – covered by our analysis. We will review the other works that have considered
these steady states in Section 2.2. The first ones are the isotropic polytropes

f0(x, v) = (E0 − E(x, v))k+, (1.2.3)

where E0 < 0 is a negative cut-off energy, a subscript + denotes taking the positive part of
an expression,3 and k is the polytropic exponent. For the latter we require 0 < k < 7

2 . The
second important class of steady states are the King models

f0(x, v) = (eE0−E(x,v) − 1)+, (1.2.4)

with similar E0 < 0 as above. Steady states of the form (1.2.3) or (1.2.4) are isotropic,
which means that they depend only on the particle energy, but not explicitly on the angular
momentum. Our analysis also covers steady states that do not have this property; such
steady states are called anisotropic. The most important examples for this are polytropes4

f0(x, v) = (E0 − E(x, v))k+ (L(x, v)− L0)`+, (1.2.5)

with E0 < 0 as above, a parameter L0 > 0, and polytropic exponents k and ` satisfying
` > −1

2 and 0 < k < 3` + 7
2 . These steady states are called polytropic shells because the

positive lower bound L0 > 0 on the L-values results in an inner vacuum region of the steady
state, i.e., Rmin := inf{|x| | ρ0(x) 6= 0} > 0, where ρ0 denotes the mass density associated
to the steady state f0. For isotropic steady states, no such inner vacuum region exists, i.e.,
Rmin = 0. All of the steady states considered here have finite mass and finite extent, i.e.,
M0 :=

∫
R3 ρ0(x) dx < ∞ and Rmax := sup{|x| | ρ0(x) 6= 0} < ∞. These two properties are

ensured by incorporating the negative cut-off energy E0 into the ansatz, with f0(x, v) = 0
for E(x, v) ≥ E0. We will see later that it is not convenient to prescribe E0. Instead, it is
implicitly determined by the parameter

κ = E0 − U0(0). (1.2.6)

In the isotropic case, κ is in one-to-one correspondence with the central density ρ0(0) > 0,
cf. Remark 2.2.10 (a). For a polytropic shell (1.2.5), κ determines Rmin, i.e., the size of
the inner vacuum region. In Proposition 2.2.9, we show that any prescribed κ > 0 and
suitable microscopic equation of state ϕ lead to a spherically symmetric steady state with
the properties described above. In Appendix B, we show that isotropic polytropes (1.2.3)
(as well as polytropes (1.2.5) with L0 = 0) with different values of κ satisfy a scaling law.
It applies to all relevant quantities associated to the steady states, including the periods of

2Section 2.2 addresses the existence theory of steady states, while Section 4.1 separately presents further
assumptions on the steady states which are important for the subsequent analysis.

3See (2.2.13) for a rigorous definition of expressions of the form bα+.
4From a physics point of view, the term polytropic is only meaningful in the case L0 = 0 in (1.2.5).

However, for the sake of convenience, we also use this name in the case L0 > 0 here.
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possible oscillatory modes. This is similar to the Eddington-Ritter relation [39] known from
the context of gas spheres.

As mentioned previously, the steady states (1.2.3)–(1.2.5) (and all other steady states
satisfying the assumptions imposed in Sections 2.2 and 4.1) are stable. This is due to the
fact that they are all energy-decreasing, i.e.,

ϕ′ := ∂Eϕ < 0 (1.2.7)

inside the steady state support. This property is natural from a physics point of view [184];
it means that the concentration of ever more energetic particles is decreasing within the
equilibrium configuration. It was first argued by Antonov [9, 10] that this property leads
to stability, which is why (1.2.7) is also known as Antonov’s stability criterion. However,
Antonov’s result addresses only the linear stability of (certain) such steady states, i.e., the
stability after (formally) linearising the Vlasov-Poisson system around a fixed steady state.
Further linear stability results were developed in [15, 36, 37, 77, 128, 169]. Afterwards,
using techniques independent from the ones used to show linear stability, actual non-linear
stability results for (suitable) steady states satisfying (1.2.7) were proven, cf. [51, 52, 53,
54, 55, 56, 57, 94, 96, 150, 181], culminating in the orbital stability established in [97]. A
review of these stability results can be found in [119]. Stability ensures that a solution of
the Vlasov-Poisson system starting close to a steady state remains close to it. As motivated
above, we are interested in the qualitative behaviour of such solutions.

Linearisation (Chapter 3)

To study the qualitative behaviour of solutions close to some steady state f0, we linearise
the Vlasov-Poisson system around the steady state. In fact, the whole analysis in this thesis
only concerns this linearised system. For studying the presence of oscillatory solutions close
to steady states, it is convenient to first gain an in-depth understanding at the linear level
before attempting to prove the corresponding results at the non-linear level. The same
strategy already succeeded in the context of the Euler-Poisson system, which is somewhat
related to the Vlasov-Poisson system, where the presence of oscillatory solutions was es-
tablished first on the linear level [39, 107, 149] and afterwards transferred to the actual
non-linear system [74].

In Section 3.1, we describe the linearisation process in detail. The main idea is to insert
the formal expression f0+εf+O(ε2) with 0 < ε� 1 into the Vlasov-Poisson system (1.1.2)–
(1.1.5) and dispense with terms of order O(ε2). Here, f(t) : R3 × R3 → R gives the linear
order of the perturbation of the steady state, which we require to be spherically symmetric
and to vanish outside of the support of the steady state; see [15, App.] for a motivation of
the latter property. This process leads to a linear(ised) version of the Vlasov equation (1.1.2)
for f . Because the Vlasov equation is a first-order transport equation, so is its linearised
version. However, the existence of oscillating solutions is more convenient for a second-
order equation. Based on a calculation due to Antonov [8], the linearised Vlasov-Poisson
system can be rewritten as a second-order equation for the odd-in-v part f− of the linear
perturbation f , i.e., f−(t, x, v) = −f−(t, x,−v) . The resulting linearised Vlasov-Poisson
system in second-order formulation is of the form

∂2
t f− + Lf− = 0, (1.2.8)

where L is the linearised operator (or Antonov operator) associated to the underlying steady
state f0. This operator is given by

L := −T 2 −R. (1.2.9)
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The first term is the negative square of the transport operator

T := v · ∂x − ∂xU0(x) · ∂v. (1.2.10)

This part of L describes how the linear perturbation evolves according to the characteristic
flow of the steady state. The other part of the linearised operator describes the gravitational
forces of the perturbation via the gravitational response operator

Rg(r, w, L) := 4π |ϕ′(E,L)|w jg(r), (1.2.11)

which is defined for any suitable spherically symmetric function g = g(x, v) = g(r, w, L).
The function jg denotes the radial velocity density induced by g, cf. Lemma 4.4.1.

The behaviour of solutions of (1.2.8) is determined by the spectral properties of the
linearised operator L. By the linear stability results mentioned above, the spectrum of L
is positive. If λ > 0 is a positive eigenvalue of L with eigenfunction g, the function t 7→
cos(
√
λ t)g is a time-periodic solution of (1.2.8) with period

p =
2π√
λ
. (1.2.12)

In Section 3.1, we will see that this explains the oscillations of the kinetic and potential
energies of solutions of the Vlasov-Poisson system close to f0 to linear order. Hence, our
primary objective of showing the presence of oscillatory solutions corresponds to proving
the existence of positive eigenvalues of the linearised operator L. If no such eigenvalue
exists, it is expected that the solutions of (1.2.8) are damped; we will discuss this case in
more detail below.

However, the above does not explain the pulsating nature of the oscillations. To address
this issue, we offer two additional linearisation schemes in a mass-Lagrangian picture and
a Lagrangian picture in Sections 3.2 and 3.3, respectively. These linearisation schemes are
commonly used in related settings, cf. [75, 107, 109]; in the context of the Vlasov-Poisson
system, they have first been derived in [62, Sc. 3] and [172]. Both of these approaches also
lead to the equation (1.2.8) obtained from the Eulerian linearisation. To linear order, they
indeed explain the oscillations of the phase space support of solutions of the Vlasov-Poisson
system close to f0.

The Operators (Chapter 4)

In Chapter 4, we establish the foundations for the spectral analysis of the linearised op-
erator L for a fixed steady state f0 by analysing its functional analytical properties. The
natural Hilbert space for our analysis is a suitably weighted L2-space H (cf. Definition 4.2.3)
containing functions defined on the steady state support

Ω0 := {(x, v) ∈ R3 × R3 | f0(x, v) > 0}. (1.2.13)

Throughout this thesis, we will use the term support rather loosely; the support of some
function f may refer to {f > 0}, {f > 0}, or any set in between. Because L only covers
the evolution of the odd-in-v part of the linearised perturbation, we further consider the
odd-in-v subspace of H:

H := {f ∈ H | f is odd in v}. (1.2.14)

From a functional analysis point of view, the crucial part of L is the transport part
because the transport operator (1.2.10) is a derivative operator and thus unbounded. The
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properties of this operator were widely studied in the literature [53, 61, 62, 85, 96, 147,
148, 165]. We follow [147] to suitably define T in a weak sense on a subset D(T ) of H,
cf. Definition 4.2.5. This naturally leads to the weak definition of the squared transport
operator T 2 on a set D(T 2); the sets D(T ) and D(T 2) are both dense subsets of H and
contain smooth functions with compact support in Ω0. The definitions are designed so
that T : D(T ) → H is skew-adjoint, cf. Proposition 4.3.15, and T 2 : D(T 2) → H and
T 2
∣∣
H : D(T 2) ∩ H → H are self-adjoint, cf. Proposition 4.3.17; the latter operator is well-

defined because T reverses v-parity. The results are based on [147, Thm. 2.2] and [62,
Prop. 2], but they are proven here in a different way using the following tool.

The transport operator T can be interpreted as computing the derivative along the
characteristic flow of the steady state. In radial variables, the characteristic system turns
into the planar ODE

ṙ = w, ẇ = −Ψ′L(r); (1.2.15)

the variable L takes on the role of a parameter of this ODE. The characteristic flow is hence
determined by the effective potential

ΨL(r) := U0(r) +
L

2r2
, L, r > 0. (1.2.16)

For any L > 0, it is straight-forward to verify that ΨL is of single-well structure, i.e., it
attains a unique minimum Emin

L := min]0,∞[ ΨL = ΨL(rL) at some radius rL, and for ev-
ery Emin

L < E < 0 there exist two unique radii r−(E,L) < r+(E,L) such that (henceforth
abbreviated as “s.t.”) ΨL(r±(E,L)) = E; see Lemma 2.2.12 for a rigorous proof and Fig-
ure 2.2.1 for a visualisation. Hence, as the particle energy E(r, w, L) = 1

2w
2 + ΨL(r) is

conserved along the characteristic flow, every solution of (1.2.15) with L > 0 and energy
value Emin

L < E < 0 is periodic, cf. Section 2.2.2; for now, let us ignore the stationary point
(rL, 0) corresponding to the energy E = Emin

L . The periods are given by the (radial) period
function

T (E,L) := 2

∫ r+(E,L)

r−(E,L)

dr√
2E − 2ΨL(r)

, L > 0, Emin
L < E < 0. (1.2.17)

In order to study T , it is convenient to introduce new variables which are adapted to
the characteristic flow. For fixed L > 0, we parametrise a point in the (r, w)-plane by the
energy value E of the characteristic orbit it lies on and an angle type variable θ ∈ S1 ∼= [0, 1[
determining the position on the orbit; see Section 4.3.1 for details and Figure 4.3.1 for a
visualisation. This leads to the new variables (θ,E, L) ∈ S1×D0 on the steady state support,
which we refer to as action-angle type variables.5 Here, D0 := {(E,L) | L > L0, E

min
L <

E < E0} denotes the steady state support in (E,L)-variables; in the isotropic case we set
L0 := 0. In these variables, the transport operator and its square simply correspond to
suitably weighted derivatives w.r.t. θ:

T =
1

T (E,L)
∂θ, T 2 =

1

T (E,L)2
∂2
θ . (1.2.18)

These formulae are straight-forward to verify for smooth functions (cf. Lemma 4.3.8) and
also hold in the weak sense (cf. Lemmas 4.3.9 and 4.3.10).

The formulae (1.2.18) show that the properties of T and T 2 are intimately related to
the ones of the period function T . The properties of T will be important for other parts of

5We will explain in Remark 4.3.2 why (θ, E, L) are not true action-angle variables.
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this thesis as well, which is the reason why we thoroughly analyse the period function in
Appendix A. This analysis is mainly based on [62, App. B] and [85, Ch. 3]; other analyses
of the period function are conducted in [148, Apps. B and C] as well as, in different settings,
in [49, Sc. 3.2] and [61, App. A.2]. The main properties of T are that it is smooth as well as
bounded and bounded away from zero on the steady state support D0, cf. Proposition A.0.1.

Based on [62, Thm. 5.7], we use the action-angle type variables and apply Weyl’s crite-
rion [69, Thm. 7.2] to show that

σ(−T 2
∣∣
H) = σess(−T 2

∣∣
H) =

(
2πN
T (D0)

)2

, (1.2.19)

cf. Proposition 4.3.19; throughout this thesis we use the convention N = N \ {0}. Here, σess

denotes the essential spectrum, i.e., all elements of the spectrum that are not isolated
eigenvalues of finite multiplicity.

In Section 4.4, we analyse the functional analytic properties of the second part of the
linearised operator: The response operator R given by (1.2.11). It is straight-forward to
verify that R : H → H is bounded, symmetric, and non-negative, cf. Lemma 4.4.2; the same
properties also hold for the restriction of R to H. The symmetry of R is due to the weight
incorporated into H and H, cf. Remark 4.4.3.

By combining the properties of T 2 and R, we deduce that the linearised opera-
tor L : D(L) → H given by (1.2.9) is self-adjoint with the natural domain of definition
D(L) := D(T 2) ∩ H, cf. Lemma 4.5.2. In addition, in Proposition 4.5.4 we show that the
essential spectrum of L is entirely determined by the transport part, i.e.,

σess(L) = σess(−T 2
∣∣
H) =

(
2πN
T (D0)

)2

. (1.2.20)

This is due to the fact that the essential spectrum is stable under “relatively compact”
perturbations by Weyl’s theorem [69, Thm. 14.6]. In Lemma 4.5.3, we show that R is
such a perturbation of T 2

∣∣
H. As observed in [117, Thm. 1.1], a similar result also holds

for the absolutely continuous spectrum, cf. Remark 4.5.5. Because the period function T
is bounded on the steady state support D0, (1.2.20) implies that σess(L) is bounded away
from 0. The gap between 0 and inf(σess(L)) = min(σess(L)) is denoted by

G := ]0, inf(σess(L))[. (1.2.21)

We refer to G as the essential gap.6 In Proposition 4.5.11, we derive a positive lower
bound on the entire spectrum of L, i.e., we show inf(σ(L)) > 0. This is based on [62,
Thm. 7.5], where ]0, inf(σ(L))[ is called the spectral gap. The positivity of L is mainly due
to Antonov’s coercivity bound – a lower bound on the quadratic form 〈Lf, f〉H for odd-in-v
functions f first derived in [9, 10] – and corresponds to the linear stability of the steady
state. In Appendix C, we rigorously establish this linear stability result alongside a suitable
well-posedness theory for the linearised system (1.2.8) based on (semi)group theory.

As discussed before, our main interest is to show the existence of eigenvalues of the
linearised operator L. We restrict our search for eigenvalues to the essential gap G. The main
reason for this is that the existence of eigenvalues in G can be characterised by variational
principles. More precisely,

L has an eigenvalue ∈ G ⇔ ∃f ∈ D(L) \ {0} :
〈Lf, f〉H
‖f‖2H

< inf(σess(L)) =
4π2

sup2
D0

(T )
,

(1.2.22)

6In [62, Eqn. (1.34)], G is called the principal gap. This name is inspired by [111]. Here we prefer the
name essential gap, as it emphasises that G is the gap between the essential spectrum of L and 0.
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cf. Lemma 4.5.16. In Section 4.5.4, we also discuss further reasons why it is natural to search
for eigenvalues of L in G. By (1.2.22), a way to show the existence of such eigenvalues is to

insert some function f ∈ D(L) into 〈Lf,f〉H‖f‖2H
and compare the result to inf(σess(L)). In [85,

Ex. 2.1], it was observed that the quadratic form of L takes on a particularly simple form
for f = |ϕ′| rw. This leads to Kunze’s criterion for the existence of an oscillatory mode, cf.
Lemma 4.5.19, which, however, could not yet be (rigorously) verified for any steady state.

Inspired by techniques originating from the context of plasma physics, some other ap-
proaches were pursued in the literature to study the presence of eigenvalues of L. An
adaptation of the Kalnajs matrix method [19, Sc. 5.3.2] was derived in [175, 180]. A related
approach based on an expansion of the linear perturbation in the velocity variable was pur-
sued in [161]. In [174], the theory of van Kampen modes [19, Box 5.1] was established in
the context of the (gravitational) linearised Vlasov-Poisson system. Below we will present
in detail a different approach.

The Birman-Schwinger-Mathur Principle (Chapter 5)

In order to establish the presence of oscillatory modes, we aim to further characterise the
existence of eigenvalues of L in G. A related problem in the context of quantum mechanics
is to determine the negative eigenvalues of a Schrödinger operator S := −∆−V : H2(R3)→
L2(R3) for a given potential V : R3 → [0,∞[.7 As first observed by Birman [21] and
Schwinger [158], λ < 0 is an eigenvalue of S if and only if 1 is an eigenvalue of the Birman-
Schwinger operator

Bλ :=
√
V (−∆− λ)−1

√
V , (1.2.23)

and the associated eigenfunctions can be explicitly transformed into one another. The
reason why the eigenvalue problem for Bλ is more convenient to study than the original
one for S is that Bλ has nicer properties from a functional analysis point of view: Under
suitable assumptions on V , Bλ is a bounded integral operator.8 This transformation of
the eigenvalue problem became known as the Birman-Schwinger principle and provided
numerous insights into the properties of the negative eigenvalues of Schrödinger operators.
An extensive overview of the applications of the Birman-Schwinger principle in quantum
mechanics (and proofs of the properties stated above) can, e.g., be found in [99, Sc. 4.3].

It was first observed by Mathur [111] that an adaption of the Birman-Schwinger principle
can also be applied in the context of a linearised Vlasov-Poisson system. Subsequently, these
methods were refined and extended in [62, 85] as well as, in related settings, in [49, 61].
The analogue of the Birman-Schwinger operator (1.2.23) in our setting is

Qλ :=
√
R
(
−T 2|H − λ

)−1√R (1.2.24)

with λ ∈ G. Here,
√
R is the square root of the response operator R in the sense of [136,

Thm. VI.9]. It is explicitly given by

√
Rg(r, w, L) = 2

√
π |ϕ′(E,L)| w√

ρ0(r)
jg(r), (1.2.25)

7Under suitable assumptions on V , σess(S) = σess(−∆) = [0,∞[, cf. [69, Sc. 14.3]. This shows that the
negative eigenvalues of S are precisely the ones below its essential spectrum, and thus correspond to the
eigenvalues of L in G.

8Another way to think of the Birman-Schwinger principle is that it transforms a differential equation
(the eigenvalue problem for S) into an integral equation (the eigenvalue problem for Bλ).
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i.e., it has a similar form to R itself and thus has similar properties to R, cf. Lemma 4.4.4.
In Proposition 5.1.13, we derive an analogue of the Birman-Schwinger principle: The ex-
istence of an eigenvalue λ ∈ G of L is equivalent to 1 being an eigenvalue of Qλ. In
addition, in Proposition 5.1.14 we show that the number of eigenvalues of L smaller than
some λ ∈ G is identical to the number of eigenvalues of Qλ larger than 1. This quantitative
statement requires a careful treatment of the monotonicity of the eigenvalues of Qλ in λ,
cf. Section 5.1.1 and Remark 5.1.16. As in the context of quantum mechanics, the func-
tional analytic properties of Qλ are nicer than the ones of the unbounded operator L. By
Lemma 5.1.15, Qλ : H → H is compact, symmetric, and non-negative for λ ∈ G.

It is evident from (1.2.24) and (1.2.25) that any function in the range of Qλ is of
the separated form |ϕ′(E,L)|wF (r) with some suitably integrable F , cf. Lemma 5.2.2.
Hence, any eigenfunction of Qλ to a non-zero eigenvalue is of this form, which allows us to
restrict Qλ to such functions. This leads to the operator

Mλ : L2([Rmin, Rmax])→ L2([Rmin, Rmax]), (1.2.26)

which essentially describes how Qλ acts on the radial part F = F (r) of a function of the
form |ϕ′(E,L)|wF (r), cf. Definition 5.2.4. This reduction process is due to Mathur [111],
which is why we refer to Mλ as the Mathur operator. The operator Mλ is reduced in the
sense that it acts on functions of only one variable r. Nevertheless, the non-zero eigenvalues
of Qλ and Mλ are identical (cf. Lemma 5.2.5), so that the number of eigenvalues of L
smaller than λ ∈ G is also given by the number of eigenvalues of Mλ larger than 1, cf.
Proposition 5.2.7. We refer to this transformation of the original eigenvalue problem for L
into the one for Mλ as the Birman-Schwinger-Mathur principle.

To make use of this principle, we need to compute the Mathur operatorMλ as explicitly
as possible. By a Fourier expansion in the angle variable θ, it is possible to explicitly com-
pute the resolvent operator (−T 2|H−λ)−1 in action-angle type variables, cf. Lemma 4.3.18.
This leads to the following integral representation of the Mathur operator:

MλF (r) =

∫ Rmax

Rmin

Kλ(r, s)F (s) ds, F ∈ L2([Rmin, Rmax]), (1.2.27)

cf. Proposition 5.2.12. The integral kernel Kλ : [Rmin, Rmax]2 → R is explicitly known,
although it is rather intricate. This is because

√
R is not convenient to analyse in action-

angle type variables, which corresponds to the antagonism between transport and gravity
discussed in [105]. Nonetheless, we can show that Kλ is continuous on [Rmin, Rmax]2. Thus,
Mλ is a Hilbert-Schmidt operator.

In Section 5.3, we collect the main results provided by the Birman-Schwinger-Mathur
principle. Theorem 5.3.1 gives a sharp characterisation of the presence of eigenvalues of L
in G in terms of the Mathur operatorMλ. This characterisation is similar to [85, Thm. 4.13].
In Theorem 5.3.3, we derive explicit bounds on the number of eigenvalues of L in G inspired
by the Birman-Schwinger bound(s) from quantum mechanics [99, Cor. 4.3]. A related bound
is also contained in [117, Thm. 1.2], cf. Remark 5.3.4.

In Section 5.4, we then discuss (first) applications of the Birman-Schwinger-Mathur
principle. The main finding, Theorem 5.4.1, is due to [62, Thm. 8.15]. It shows that there
exits an oscillatory mode for polytropic shells (1.2.5) with k + ` ≤ 0 provided that the
longest particle period within the steady state is attained by the particles with the largest
orbit, i.e., supD0

(T ) = T (E0, L0). Although we cannot rigorously prove this property of
the period function, we will numerically verify that it is indeed satisfied in many cases,
cf. Observation 8.2.8. Other applications are that there exists an oscillatory mode if the
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period function T attains its maximum on the interior of the steady state support D0 (cf.
Corollary 5.4.3, which is due to [85, Cor. 4.16]) and that the number of eigenvalues of L
in G is finite for certain isotropic polytropes (1.2.3), cf. Corollary 5.4.4. The latter result is
inspired by [117, Cor. 1.3] and also requires some assumptions on the radial particle periods.

Damping (Chapter 6)

In Chapter 6, we study the opposite effect to (undamped) oscillations: Damping. The fact
that solutions of the linearised Vlasov-Poisson system can be damped on the macroscopic
level – despite the absence of dissipation – is well-explored in the context of plasma physics,
where it is known as Landau damping [91]. It was shown to hold on the non-linear level
in [120] and further developed in many directions; see [17] for a recent review. In the
gravitational case, some results towards damping (on the linearised level) were derived
in [103, 104, 110, 171]. Here, we study this issue by the spectral approach developed in [61].

The setting we consider here differs slightly from the previous one. We now add a point
mass M > 0 fixed at the spatial origin x = 0 to our model. The Vlasov equation (1.1.2)
becomes

∂tf + v · ∂xf −
(
∂xU +M

x

|x|3

)
· ∂vf = 0, (1.2.28)

the other equations (1.1.3)–(1.1.5) of the system remain unchanged. From a physics point of
view, the point mass can be interpreted as a simple model of a black hole, and we describe
the evolution of a (spheroidal) galaxy surrounding it; see [44, Ch. IX, Sc. 8] for a motivation
of this setting.

In Section 6.2, we extend the steady state existence theory to the system including a
point mass. We focus on steady states which are polytropic shells, i.e., which are of the form

f0(x, v) = ε (E0 − E(x, v))k+ (L(x, v)− L0)`+, (1.2.29)

with polytropic exponents k and ` as above. The parameter L0 > 0 ensures that the steady
state is bounded away from the singular point mass. The cut-off energy E0 < 0 is again
implicitly determined by the parameter κ, recall (1.2.6). It is important here that κ is
suitably chosen, cf. Remark 6.2.1; in particular, it now has to be negative. The factor ε
on the right-hand side of (1.2.29) is a parameter which we use to control the size of the
steady state. In Proposition 6.2.6, we study the limiting behaviour in the perturbative
regime ε → 0, i.e., we consider steady states which are small compared to the point mass.
Unsurprisingly, all steady state quantities converge to the respective quantities in the pure
point mass case ε = 0, and the radial supports have a non-trivial limiting configuration.

Linearising the Vlasov-Poisson system including a point mass around a fixed steady
state leads to a system of the same form as (1.2.8), and the linearised operator L has
similar properties to the case without a point mass, cf. Section 6.3. Furthermore, a Birman-
Schwinger-Mathur principle can be established in the same way as before. In Section 6.4,
we apply it to show that there is no eigenvalue of L in the essential gap G for a steady state
of the form (1.2.29) with polytropic exponent k > 1 and 0 < ε� 1, cf. Theorem 6.4.1.

In Theorem 6.5.5, we show for the same steady states that L also possesses no eigen-
values embedded into its essential spectrum σess(L). This is the crucial part of Chapter 6
and is based on transforming the eigenvalue equation into a Fourier series w.r.t. the angle
variable θ. In particular, our arguments require a careful treatment of the period function
function T (E,L) and the action-angle type variables (θ, E, L) in the near circular regime
E ≈ Emin

L .
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By choosing the parameter κ appropriately, we can ensure that any eigenvalue of L
either lies in G or σess(L), provided that ε is sufficiently small. Hence, the above implies
that L does not possess any eigenvalues. By the RAGE theorem (cf. [135, Thm. XI.115]
and Lemma C.0.7), we thus conclude that the linearised dynamics for a steady state of the
form (1.2.29) with k > 1 and 0 < ε � 1 are damped in the following (non-quantitative)
way, cf. Theorem 6.6.1: For any solution t 7→ f(t) of (1.2.8) with (f(0), ∂tf(0)) ∈ D(L) ×
(D(T ) ∩H),

lim
T→∞

1

T

∫ T

0
‖∂xUT f(t)‖2L2(R3) dt = 0, (1.2.30)

where UT f(t) denotes the gravitational potential induced by T f(t), cf. Definition 4.4.5. This
damping is similar to the one established in [61, Thm. 1.2 (b)]; here, we extended the results
from [61] to the actual spherically symmetric setting. The assumption k > 1 ensures that
the steady state is sufficiently smooth and leads to the finiteness of various integrals and the
vanishing of some boundary terms. The consideration of a steady state in the perturbative
regime 0 < ε � 1 is essential for our arguments in two main aspects: Firstly, it ensures
that several quantities, like the period function and its derivatives w.r.t. E, are close to the
respective quantities in the explicitly known limiting case ε = 0. Secondly, it allows us to
deduce that certain constants are sufficiently small. The latter could also be achieved in a
non-perturbative regime if one had quantitative control on the sizes of several constants (cf.
Remark 6.5.6) or if one only wants to show the absence of embedded eigenvalues at high
frequencies (cf. Remark 6.5.7).

Let us emphasise that the damping result for steady states in the perturbative regime
is not just a phase mixing effect. Although the gravitational response operator R tends to
zero as ε→ 0 (and the transport part does not), [61, Thm. 1.2 (a)] shows that the linearised
dynamics close to steady states with 0 < ε � 1 can also be undamped oscillatory, albeit
in a setting different from the one considered here. We expect the same behaviour here, cf.
Remark 6.4.2, although we cannot quite prove it (yet).

Similar Results in Related Settings (Chapter 7)

In Chapter 7, we demonstrate the versatility of our methods by presenting four further
settings in which they can be applied – we expect/hope that further fields of application
will arise in the future. The first one, presented in Section 7.1 and based on [62], is the
Vlasov-Poisson system in plane symmetry. It describes an ensemble of space-homogeneous,
gravitating planes passing freely through each other. This setting (or a related/equivalent
one) was considered in [43, 62, 84, 100, 108, 111, 179], although it is surely not as natural
as the spherically symmetric setting. As derived in [62, Sc. 2.2], there exist compactly
supported steady states of this system. The properties of the associated period functions
are better understood than in the spherically symmetric setting. This is because in plane
symmetry, gravity only acts (effectively) in one space dimension, simplifying certain ar-
guments. In addition, linearising the Vlasov-Poisson system in plane symmetry around a
fixed steady state again leads to a system of the form (1.2.8). The linearised operator L
has similar properties to the spherically symmetric setting. In particular, there again exists
a gap between 0 and the essential spectrum of L. The existence of eigenvalues of L inside
this gap can be characterised by an analogue of the Birman-Schwinger-Mathur principle.
The resulting criterion can be verified (in a fully rigorous way) for certain steady states, cf.
Theorem 7.1.3, proving the presence of oscillatory modes in plane symmetry.

In Section 7.2, we consider the radial Vlasov-Poisson system with a point mass fixed
at the spatial origin and additionally require that all particles have the same (positive) L-
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value, i.e., the same modulus of angular momentum. The latter assumption is not physically
motivated and is mainly intended to simplify some aspects of the mathematical analysis.
This setting was used in [61] to originally develop the methods from Chapter 6. In analogy
to (1.2.29), we consider steady states of the polytropic form

f0(r, w) = ε (E0 − E(r, w))k+ (1.2.31)

with polytropic exponent k > 1
2 as well as a suitable choice of the parameter κ. In The-

orem 7.2.1, we present the main result of [61] regarding the linearised dynamics around
these steady states in the perturbative regime 0 < ε � 1: If 1

2 < k ≤ 1, there exists
an oscillatory mode whose presence is shown after deriving an analogue of the Birman-
Schwinger-Mathur principle. If k > 1, any solution of the linearised system is damped in
a similar way to (1.2.30). This damping is verified by similar, but easier arguments than
those used to prove Theorem 6.6.1.

So far, all of our models have been purely Newtonian, neglecting the influences of rela-
tivistic effects. In the third and fourth sections of Chapter 7, we outline how our methods
can be applied in relativistic settings. In Section 7.3, we briefly introduce the relativistic
Vlasov-Poisson system for which the adaption of our methods is currently in progress [102].
Section 7.4 concerns the Einstein-Vlasov system, where adaptations of our methods were
used in [49] to characterise/prove linear stability. The techniques from [49] were further
extended in [182] to show the existence of oscillatory modes. A recent review discussing
these two relativistic settings and their connections to the Vlasov-Poisson system can be
found in [144].

Numerical Experiments (Chapter 8)

In Chapter 8 we carry out an extensive numerical analysis of the steady states, their period
functions, and the dynamics close to them in the setting of Chapters 2–5, i.e., in spherical
symmetry without a point mass. The program used for this analysis is publicly available,
cf. Chapter 8. In Section 8.1, we visualise the steady states (1.2.3)–(1.2.5) in different ways
and study their dependence on the various parameters.

In Section 8.2, we numerically analyse the period functions associated to these steady
states; to our knowledge, this is the first such analysis. The primary aim of this part is to
numerically verify the assumptions we have made at some points in this thesis regarding
the properties of T . For instance, for the isotropic steady states (1.2.3)–(1.2.4), we see that
the maximal period supD0

(T ) is always attained at (E0, 0) and that the period function is
increasing w.r.t. the particle energy E on the steady state support, cf. Observations 8.2.4–
8.2.6. These observations further reveal a promising approach to verify the E-monotonicity
of T rigorously. The same properties of T hold for polytropic shells (1.2.5) with ` < 0, cf.
Observation 8.2.8, which justifies the assumption on T in Theorem 5.4.1. For anisotropic
polytropes with k, ` > 0 and small values of L0 (

≥
)

0, the period function can behave
differently, cf. Observation 8.2.7.

After determining the maximal particle period of a steady state, we can numerically
check the validity of Kunze’s criterion (cf. Lemma 4.5.19). We find that the criterion is
satisfied for isotropic polytropes (1.2.3) with very small polytropic exponents 0 < k � 1, cf.
Observation 8.2.11, as well as for polytropic shells (1.2.5) with not too small values of L0,
cf. Observation 8.2.12.

To gain a more detailed understanding of the presence of oscillatory modes, we numeri-
cally analyse solutions of the linearised Vlasov-Poisson system for different steady states in
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Section 8.3. We do this by simulating the linearised Vlasov-Poisson system via a particle-in-
cell method adapted from investigations in non-linear settings, cf. below. Related methods
to simulate the linearised Vlasov-Poisson system were used in [93, 112, 173]. Our numer-
ical investigation shows that there exist (partially) undamped oscillatory solutions of the
linearised Vlasov-Poisson system for isotropic polytropes (1.2.3) with polytropic exponents
0 < k < 1.2 (cf. Observation 8.3.3) and that the periods of the oscillations correspond
to eigenvalues of L in the essential gap G (cf. Observation 8.3.4). For larger polytropic
exponents k > 1.3, all solutions exhibit a (fully) damped oscillatory behaviour with an os-
cillation period which is in resonance with the periods of individual stars within the steady
state. For the King models (1.2.4), the qualitative behaviour of solutions of the linearised
Vlasov-Poisson system depends on the parameter κ > 0: For small values of κ, there exist
undamped oscillatory solutions, whereas all solutions are damped for large values of κ, cf.
Observation 8.3.7. In particular, this shows that the presence/absence of oscillatory solu-
tions is not only a matter of steady state regularity, cf. Observation 8.3.6. For anisotropic
polytropes (1.2.5) with L0 = 0,9 the existence of undamped oscillatory solutions of the
linearised Vlasov-Poisson system depends linearly on the polytropic exponents k and `, cf.
Observation 8.3.8. A similar behaviour holds for polytropic shells (1.2.5) with very small
values of L0 > 0. For polytropic shells with larger values of L0, there always exist undamped
oscillatory solutions (as already suggested by Kunze’s criterion), cf. Observation 8.3.9.

We also numerically analyse the solutions of the pure transport equation ∂2
t f−−T 2f− =

0, which arises when neglecting the gravitational responseR in the linearised Vlasov-Poisson
system (1.2.8). This equation was often studied as a first step towards damping results,
cf. [27, 103, 116, 148]. However, we find that the solutions of the pure transport equation
differ qualitatively from those of the linearised Vlasov-Poisson system, cf. Observation 8.3.5.

In Section 8.4, we then numerically analyse solutions of the (non-linearised) Vlasov-
Poisson system close to steady states. Previous numerical studies of such solutions – using
numerical methods different from the ones we are using here – were conducted in [13, 66, 100,
115, 124, 127, 159, 168, 177, 180]. The most recent numerical study of the Vlasov-Poisson
system is [132], which is closely related to the issues considered here. Based on [132] and the
numerical investigations [5, 48, 50] of the Einstein-Vlasov system, we employ a particle-in-
cell scheme to simulate the system. Our code is based on the ones used in [5, 48, 50, 132],
yet we have entirely rewritten it to adjust to the present situation. Our primary aim is
to check whether solutions of the Vlasov-Poisson system close to steady states are indeed
accurately described by solutions of the respective linearised Vlasov-Poisson system. Most
fortunately, we find that they are, cf. Observation 8.4.4. More precisely, for any steady
state for which we observed undamped oscillatory solutions of the linearised Vlasov-Poisson
system, we see that the solutions of the non-linearised system close to the steady state
oscillate undamped with the same period. In contrast, if all solutions of the linearised
Vlasov-Poisson system were damped, the damping is also present for solutions of the non-
linearised system close to the respective steady state. In particular, the damping rates on
the linearised and non-linearised levels seem to be identical. This degree of consistency even
exceeds our expectations – for other PDEs, there occur damping effects when transitioning
from the linearised to the non-linearised level, cf. [164]. We thus confidently conclude that
the observed/proven properties of the linearised Vlasov-Poisson system indeed correspond
to the real effects on the non-linearised level.

9Above, we required L0 > 0 for polytropes (1.2.5). In fact, polytropes with L0 = 0 are not included in
most of the theoretical parts of this thesis, but it is nevertheless enlightening to study them numerically.
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Outlook (Chapter 9)

To conclude this thesis, Chapter 9 addresses several open questions that have remained
unanswered by our theoretical analysis, but which the numerical observations suggest to be
solvable in future work.

1.3 A Reader’s Guide

Before starting, we would like to add some comments on how to read this, admittedly rather
lengthy, thesis.

We will mostly refrain from giving references when using results from real analysis, ODE
theory, Lebesgue integration theory, or Sobolev space theory. In contrast, we will usually
provide references, mostly to [69] or [133, 134, 135, 136], when using results from functional
analysis or spectral analysis. This is because the author is less experienced in the latter
fields and thus more careful when dealing with them.

Some parts of our notation were already introduced above. In general, we will introduce
new symbols when they first appear and will often recall definitions/notations to ensure
clarity of the notation. Also, we try to choose the notation as intuitive as possible and in
accordance with common conventions from the literature.

The (numerous) footnotes in this thesis contain additional comments by the author.
These may be generalisations of proven statements, further explanations of arguments,
clarifications of non-rigorous statements, further links to other works, or minor additional
observations. The contents of the footnotes are, however, not essential.10

This thesis has three appendices which provide self-contained discussions, the inclusion
of which in the main chapters would have disrupted the flow of argumentation. It should
be emphasised that the appendices are not less important than the other chapters; in fact,
they are necessary for some key arguments. If the reader is particularly faithful and aims to
read this thesis in its entirety, we recommend the following order to ensure that the results
are presented in a cohesive manner. Read the main chapters sequentially. After Section 4.1,
read Appendix A, and then Appendices B and C after Chapter 5.

The presentation style of different parts of this thesis intentionally varies. Section 2.2 is
a review of known results, Chapter 3 contains formal calculations only, Chapter 8 is a pure
numerical analysis, and the other parts are mathematical analyses with different levels of
elaborateness. In general, the style here differs from the one of research papers, which often
resemble a sprint aiming to reach the destination as quickly as possible. This thesis instead
resembles a leisurely walk, deliberately embracing detours to fully savour the beauty of the
surrounding landscape. We will revisit this metaphor in Chapter 9, but for now, let us
embark on our joint journey.

10In short: If this is the only footnote you read in this thesis, you will be fine.
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Chapter 2

The Vlasov-Poisson System and its
Steady States

As motivated in the introduction, throughout this thesis we consider the Vlasov-Poisson
system under the assumption of spherical symmetry. The first part of this chapter, Sec-
tion 2.1, is devoted to carefully introducing the relevant concepts of spherical symmetry in
general and analysing the Vlasov-Poisson system within this setting.

Following this, Section 2.2 reviews the existence of time-independent solutions of the
radial Vlasov-Poisson system. In addition, we introduce and analyse several quantities used
in the succeeding stability analysis of these steady states.

2.1 The Radial Vlasov-Poisson System

Let us begin by introducing the concept(s) of spherical symmetry used here.

Definition 2.1.1 (Spherical Symmetry). Let n ∈ N.

(a) A function f : Rn → R is spherically symmetric (on Rn) if f(x) = f(Ax) for x ∈ Rn
and any rotation matrix A ∈ SO(n).

(b) A function f : Rn × Rn → R is spherically symmetric (on Rn × Rn) if f(x, v) =
f(Ax,Av) for x, v ∈ Rn and any rotation matrix A ∈ SO(n).

(c) A function f : Ω → R with Ω ⊂ Rn or Ω ⊂ Rn × Rn is spherically symmetric (on Ω)
if its extension by 0 is spherically symmetric in the sense of part (a) or part (b),
respectively.

Similar definitions are used for complex-valued functions. Later on, in Definition 4.2.1, we
generalise the concept of spherical symmetry to functions which are only defined almost
everywhere.

Note that spherical symmetry on Rn ×Rn differs from spherical symmetry on R2n.11,12

From a mathematical point of view, the main simplification in the spherically symmetric
case results from the fact that any spherically symmetric function can be expressed in lower-
dimensional variables. We discuss this feature as well as further properties of spherically
symmetric functions in the relevant case n = 3 in the following remark.

11Spherical symmetry on Rn × Rn is strictly weaker than spherical symmetry on R2n.
12In order to be constantly reminded of this difference, we always denote the phase space of the Vlasov-

Poisson system by R3 × R3 instead of R6.

17
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Remark 2.1.2. (a) Let f : R3 → R, x 7→ f(x) be spherically symmetric on R3. Writing

r := |x|, (2.1.1)

there exists a function f̃ = f̃(r) s.t.

f(x) = f̃(r). (2.1.2)

Explicitly,13 f̃(r) := f(r e1) defines a function as required.

(b) Let f : R3×R3 → R, (x, v) 7→ f(x, v) be spherically symmetric on R3×R3 and write14

r := |x|, w :=
x · v
r
, L := |x× v|2 (2.1.3)

for x, v ∈ R3 where these expressions are well-defined. Then there exists a function
f̃ = f̃(r, w, L) s.t.

f(x, v) = f̃(r, w, L). (2.1.4)

Explicitly, f̃(r, w, L) = f(r e1, w e1 +
√
L
r e2) yields a function as required; note that

changing from (x, v) to (Ax,Av) for A ∈ SO(3) leaves the variables (r, w, L) defined
in (2.1.3) unchanged.

(c) In parts (a) and (b) we deliberately state no domains of definition for the functions f̃ .
The reason for this is that in radial variables, one must handle the spatial origin
x = 0 with caution due to the presence of an (artificial) singularity there. Concretely,
it is unclear how/if f̃ must be defined at r = 0, in particular in part (b). Later, this
discrepancy will not be significant as the values of all relevant functions will only be
needed almost everywhere. Besides, it is usually more convenient to use the original
Cartesian coordinates when dealing with the spatial origin anyway.

(d) In the situations of part (a) and part (b), f̃ is uniquely determined by f on suitable15

domains of definition. In order to keep the notation concise, we identify f̃ with f and
write

f̃ = f (2.1.5)

by slight abuse of notation.

(e) The variable r as defined in (2.1.1) or (2.1.3) can be interpreted as the spatial radius,
while w takes on the role of the radial velocity (or radial momentum) and L is the
squared modulus of the angular momentum.

(f) In the situation of part (b), it is possible – and sometimes more convenient – to choose
different variables than (r, w, L). For example, the discrete approximation of the radial
Vlasov-Poisson system in [153] is performed in the variables

r := |x|, u := |v|, α := ^(x, v) = arccos

(
x · v
|x| |v|

)
, (2.1.6)

13ej ∈ R3 denotes the j-th canonical unit vector for j = 1, 2, 3, e.g., e1 := (1, 0, 0)T .
14In the physics literature, the symbol L typically denotes the angular momentum, i.e., the vector x× v ∈

R3, instead of its squared modulus. Although the actual angular momentum vector will not appear in this
work, we apologise to the reader for any confusion which might be caused by this deviation from the usual
notational convention.

15For part (a) consider f̃ : [0,∞[ → R, while a possible domain of definition for f̃ in the situation of
part (b) is ]0,∞[× R× [0,∞[.
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which we also use in our numerical analysis in Chapter 8. Similar as above, any
spherically symmetric function f : R3 ×R3 → R only depends on these variables, i.e.,
by slight abuse of notation,

f(x, v) = f(r, u, α). (2.1.7)

We now consider the Vlasov-Poisson system in spherical symmetry, i.e., a solution
launched by spherically symmetric initial data. If this symmetry class is to be well suited
for the analysis of the system, it must be preserved during the evolution. Indeed, it is:

Lemma 2.1.3. Let f̊ : R3 × R3 → [0,∞[ be some initial phase space distribution which is
continuously differentiable, compactly supported, and spherically symmetric on R3×R3. In
addition, let f : [0,∞[ × R3 × R3 → [0,∞[ be the classical solution of the Vlasov-Poisson
system satisfying f(0) = f̊ , which exists by [143, Thm. 1.11]. Then f(t) is spherically
symmetric on R3 × R3 at any time t ≥ 0. Furthermore, the associated potential U(t) and
mass density ρ(t) are both spherically symmetric on R3 for t ≥ 0.

Proof. The spherical symmetry of f(t) follows by the uniqueness of classical solutions [143,
Thm. 1.11] because R3 × R3 3 (x, v) 7→ f̊(Ax,Av) launches the classical solution [0,∞[ ×
R3 × R3 3 (t, x, v) 7→ f(t, Ax,Av), but f̊(A·, A·) = f̊ for A ∈ SO(3) by spherical symmetry
and the resulting solutions have to be identical. The spherical symmetries of ρ(t) and U(t)
then follow immediately by (1.1.3)–(1.1.5).

For more details on all parts of the above proof we refer to [143].
By a slight abuse of notation similar to Remark 2.1.2 (d), we hence write

f(t, x, v) = f(t, r, w, L), U(t, x) = U(t, r), ρ(t, x) = ρ(t, r), (2.1.8)

for every such spherically symmetric solution. Expressing the derivatives w.r.t. the Carte-
sian coordinates (x, v) in terms of derivatives w.r.t. (r, w, L) and writing the Poisson equa-
tion in its radial form leads to the following system of equations:

∂tf + w ∂rf −
(
U ′ − L

r3

)
∂wf = 0, (2.1.9)

U ′(t, r) =
4π

r2

∫ r

0
s2ρ(t, s) ds, lim

r→∞
U(t, r) = 0, (2.1.10)

ρ(t, r) =
π

r2

∫ ∞
0

∫
R
f(t, r, w, L) dw dL. (2.1.11)

Here, we use the shorthand
U ′ := ∂rU. (2.1.12)

We refer to (2.1.9)–(2.1.11) as the radial Vlasov-Poisson system or spherically symmetric
Vlasov-Poisson system.

2.2 Steady States

We now discuss the existence of stationary, i.e., time-independent, solutions of the radial
Vlasov-Poisson system. Although most of the results presented in this section are well-
known in the literature, we recall them here because a thorough understanding of the
equilibrium states is essential for the upcoming analysis. We mainly follow the approach
from [130].

To construct stationary solutions of the Vlasov-Poisson system, we first consider the
characteristic system associated to the time-independent Vlasov equation.
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Lemma 2.2.1. For some prescribed potential U ∈ C1(R3) we consider the ODE16

ẍ = −∂xU(x), (2.2.1)

or, equivalently,

ẋ = v, (2.2.2a)

v̇ = −∂xU(x). (2.2.2b)

The following assertions hold:

(a) The function

E : R3 × R3 → R, E(x, v) :=
1

2
|v|2 + U(x) (2.2.3)

is conserved along solutions of (2.2.2).17 We call E the particle energy or local
energy because E(x, v) can be interpreted as the energy of a particle with position
(x, v) ∈ R3 × R3 in phase space inside the potential U .

(b) Let U be spherically symmetric. Then the squared modulus of the angular momentum
given by

L(x, v) = |x× v|2, x, v ∈ R3, (2.2.4)

is conserved along solutions of (2.2.2).18

Proof. Both statements are straight-forward to verify. For part (b) note that ∂xU(x) =
∂rU(|x|) x

|x| for x ∈ R3 \ {0} due to the spherical symmetry of U .

The solutions f = f(x, v) of the time-independent Vlasov equation

v · ∂xf − ∂xU(x) · ∂vf = 0 (2.2.5)

for a (suitably smooth19) prescribed potential U = U(x) are given by functions f which
are constant along solutions of the associated characteristic system (2.2.2), see, e.g., [143,
Lemma 1.3]. Hence, if the potential is additionally spherically symmetric, any function
which only depends on E and L is a solution of the time-independent Vlasov equation.
This observation leads to the following ansatz for stationary solutions of the (radial) Vlasov-
Poisson system.

Definition 2.2.2 (Steady State). Let U0 ∈ C2(R3) be spherically symmetric in the sense
of Definition 2.1.1 (a). For ϕ : R× R→ [0,∞[ consider the ansatz

f0 : R3×R3 → [0,∞[, f0(x, v) := ϕ(E(x, v), L(x, v)) = ϕ

(
1

2
|v|2 + U0(x), |x× v|2

)
, (2.2.6)

where E is the particle energy induced by the potential U0 similar to (2.2.3), i.e.,

E(x, v) :=
1

2
|v|2 + U0(x), (x, v) ∈ R3 × R3. (2.2.7)

16Later on, all relevant potentials U are twice continuously differentiable so that the standard existence
and uniqueness results apply to the ODE (2.2.1).

17Indeed, E is the Hamiltonian function of the Hamiltonian system (2.2.2).
18Not only the squared modulus of the angular momentum is an integral of (2.2.2) in spherical symmetry,

but also the angular momentum vector x× v itself.
19For this statement it suffices if U is twice continuously differentiable.
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Then f0 is called a steady state or equilibrium or stationary solution of the Vlasov-Poisson
system if U0 is the gravitational potential induced by f0 via the Poisson equation, i.e.,

∆U0 = 4πρ0, lim
|x|→∞

U0(x) = 0, (2.2.8)

where

ρ0(x) :=

∫
R3

f0(x, v) dv =

∫
R3

ϕ(E(x, v), L(x, v)) dv, x ∈ R3. (2.2.9)

In this case, ϕ is called the associated ansatz function or microscopic equation of state.
If ϕ does not depend on L, i.e., under slight abuse of notation,

f0(x, v) = ϕ(E(x, v)), (x, v) ∈ R3 × R3, (2.2.10)

the steady state is called isotropic20. Steady states which are not isotropic are called
anisotropic.

As mentioned before, a steady state is indeed a solution of the Vlasov-Poisson sys-
tem (1.1.2)–(1.1.5) provided that it is sufficiently regular.

Lemma 2.2.3. Let f0 be a steady state of the Vlasov-Poisson system with differentiable
ansatz function ϕ. Then f0 is a solution of the Vlasov-Poisson system (1.1.2)–(1.1.5) with
potential U0 and mass density ρ0 as specified in Definition 2.2.2.

Proof. The fact that f0 solves the Vlasov equation (1.1.2) follows by Lemma 2.2.1 and the
chain rule. The validity of the remaining equations (1.1.3)–(1.1.5) is explicitly included into
Definition 2.2.2.

Before investigating the existence of steady states which are physically reasonable, we
wish to add some more comments on the important Definition 2.2.2.

Remark 2.2.4. (a) Although the Vlasov equation may not be solved in the classical way,
we include non-smooth steady states in our analysis. Such equilibria still have the
property that the phase space distribution function is constant along characteristics of
the Vlasov equation. This is usually referred to as a Lagrangian solution; for recent
discussions of this concept of solutions of the (time-dependent) Vlasov-Poisson system
we refer to [1, 83].

(b) In Definition 2.2.2 we explicitly require the potential to be spherically symmetric. This
is mandatory in order for L to be conserved along the characteristic flow of the Vlasov
equation. In particular, any steady state f0 as defined above is obviously spherically
symmetric in the sense of Definition 2.1.1 (b) and the associated stationary mass
density ρ0 is spherically symmetric in the sense of Definition 2.1.1 (a). Thus, the
statement from Lemma 2.2.3 similarly applies to the radial Vlasov-Poisson system.

However, as previously noted in [142, Thm. 3], [130], and [19, Box 4.1], it is not
necessary to explicitly require the spherical symmetry of U0 in the case of an isotropic
ansatz leading to a physically reasonable steady state. More precisely, [46, Thm. 4]
implies that any solution U0 ∈ C2(R3) of (2.2.8)–(2.2.10) with f0 having compact
support and finite mass has to be spherically symmetric w.r.t. some point in R3. In
other words, no such isotropic equilibria are lost by imposing the spherical symmetry
of U0 in Definition 2.2.2.

20For a discussion of the term isotropic from a physics point of view we refer to [19, Sc. 4.2.1(a)].
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(c) The majority of the mathematical literature regarding stationary solution of the
Vlasov-Poisson system focuses on spherically symmetric equilibria. Less is known
about the existence and further properties of non-radial steady states. We refer the
interested reader to [19, Chapter 4] for an overview over general physical relevant
equilibria and point out the mathematical investigations [139, 141, 145, 156, 167] of
non-radial steady states. Furthermore, we briefly discuss the Vlasov-Poisson system
and properties of its equilibria in a different symmetry class – plane symmetry – in
Section 7.1 of this thesis.

(d) It was first stated by J. H. Jeans in [76] that the phase space distribution function of
any stationary solution of the Vlasov-Poisson system can only depend on the phase
space variables through the integrals of motion. This statement is usually referred to
as Jeans’ theorem. In the radial setting, this means that every spherically symmetric,
stationary solution can be obtained via the ansatz (2.2.6). A rigorous proof of the
latter statement is given in [14].

We emphasize that this is a particular feature of the Vlasov-Poisson system. In the
case of the (somewhat related) Einstein-Vlasov system there are counterexamples to
Jeans’ theorem [154].

For some fixed microscopic equation of state ϕ, the construction of steady states of the
Vlasov-Poisson system is reduced to solving the semi-linear Poisson equation (2.2.8) for U0;
note that ρ0 depends on U0 by inserting the ansatz (2.2.6) into (2.2.9). Hence, it remains to
analyse which choices of ϕ lead to equilibria which are physically reasonable. This means
that each steady state f0 should have finite mass and compact support, i.e., the total mass

M0 :=

∫
R3×R3

f0(x, v) d(x, v) (2.2.11)

has to be finite and supp (f0) has to be bounded.

Both of these properties will be ensured by a microscopic equation of state ϕ of the form

ϕ(E,L) = Φ(E0 − E) (L− L0)`+ (2.2.12)

for E,L ∈ R, provided Φ, E0, L0, and ` are chosen suitably. Here, an index “+” denotes
the positive part of a function. More precisely, for b, α ∈ R we set21

bα+ :=

{
bα, if b > 0,

0, if b ≤ 0.
(2.2.13)

The parameter L0 ≥ 0 gives a lower bound on the L-values within the steady state support
and ` is some prescribed exponent. We require that these parameters and the energy
dependency function Φ satisfy the following properties:

(ϕ1) One of the following conditions is satisfied:

(i) L0 > 0 and ` > −1
2 . In this case the resulting steady state is called a shell; the

reason for this name will become apparent in Proposition 2.2.9 (c).

21The convention chosen in (2.2.13) for expressions of the form 0α+ with α ≤ 0 has no significant influence
on the properties of the resulting equilibria.
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(ii) L0 = 0 and ` ≥ 0.22 In particular, in the case L0 = 0 = ` we use the convention
00

+ = 1 in (2.2.12) and arrive at an L-independent23 ansatz function leading to
an isotropic steady state.

(ϕ2) Φ: R→ [0,∞[, Φ ∈ L∞loc(R), and

Φ(η) = 0, η ≤ 0. (2.2.14)

(ϕ3) There exists k ≥ 0 s.t. one of the following conditions is satisfied:

(i) There exist c, η0 > 0 s.t.

Φ(η) ≥ c ηk, 0 < η < η0. (2.2.15)

In this case we require 0 ≤ k < `+ 3
2 .

(ii) The function Φ is of the explicit form24

Φ(η) = ηk+, η ∈ R, (2.2.16)

with 0 ≤ k < 3` + 7
2 , where we again employ (2.2.13). In this case the ansatz

function as well as the resulting steady state are called polytropic, k and ` are
referred to as the polytropic exponents.25

The remaining parameter E0 < 0 in (2.2.12) is referred to as the cut-off energy because
ϕ(E,L) = 0 for E ≥ E0 by (2.2.14). We do not (directly) prescribe this parameter, but
it is implicitly determined by the equations satisfied by the steady state; this will become
more apparent later.

Let us now review some classes of ansatz functions of the form (2.2.12) which are com-
monly used in the literature. Polytropic equations of state

ϕ(E,L) = (E0 − E)k+ (L− L0)`+ (2.2.17)

and the associated steady states are widely studied, see, e.g., [14, 52, 140, 155, 181]. Such
polytropes with L0 = 0 also enjoy a distinct scaling property which we discuss in Ap-
pendix B.

Choosing L0 = 0 = ` in (2.2.17) yields the commonly studied isotropic polytropes with
equations of state of the form

ϕ(E,L) = ϕ(E) = (E0 − E)k+. (2.2.18)

Another class of steady states which plays a prominent role in the literature are the
King models26 induced by an ansatz function of the form

ϕ(E,L) = ϕ(E) =
(
eE0−E − 1

)
+
. (2.2.19)

22The assumption ` ≥ 0 in the case L0 = 0 is imposed for regularity reasons. More precisely, the
computations below show that the mass density ρ0 of an equilibrium with L0 = 0 > ` necessarily has a
singularity at the spatial origin, which is not desired.

23Obviously, only non-negative L-values are relevant in Definition 2.2.2.
24It is straight-forward to carry out the following analysis with (2.2.16) replaced by the more general

condition Φ(η) = c ηk+ for η ∈ R and some c > 0. In general, multiplying the ansatz function ϕ by some
factor merely results in a rescaling of the resulting steady state, cf., e.g., [35].

25For a discussion of the term polytropic from a physics point of view (in the isotropic case) we refer
to [19, Sc. 4.3.3(a)]. It should be noted that, physically, the term “polytropic” is only meaningful in the case
L0 = 0. For the sake of convenience, we use it here for general L0 ≥ 0.

26At this point it is worth referring to the brief historical discussion of the origins of these models in [79,
p. 232], which concludes that the name King model might be historically inadequate. To be consistent with
the literature, we nevertheless use this name here.
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Accordingly, this function is called the King ansatz function. Such equations of state were
first proposed in [78, 113, 114] as adequate models for stationary star clusters, see [79]
or [19, Sc. 4.3.3(c)] for physical derivations of this ansatz. In the mathematics literature,
the associated steady states and their properties are explicitly studied in [53, 57, 131] among
others. An ansatz function of the form (2.2.19) is obtained by setting Φ(η) = (eη − 1)+

for η ∈ R in (2.2.12); obviously, this choice of Φ satisfies the above conditions by choosing
k = 1 in (ϕ3) (i).

Before showing that ansatz functions of the form (2.2.12) indeed lead to physically
reasonable steady states, we add some comments on the choice of ϕ.

Remark 2.2.5. (a) In order to obtain physically reasonable steady states of the Vlasov-
Poisson system, the conditions imposed above can be relaxed in various aspects. For
example, energy dependencies Φ which are not locally bounded are also covered in [130].
However, the conditions imposed above – together with further assumptions stated in
Section 4.1 – will become useful when analysing the dynamics close to steady states
in the succeeding chapters of this thesis. Thus, we decided to refrain from reviewing
the construction of steady states under weaker conditions here in order to keep the
arguments in the present section more clear.

(b) It is straight-forward to extend the following investigation to ansatz functions ϕ which
are not separated in their variables (E,L) and with more general L-dependencies than
the power law incorporated in (2.2.12).27 Both of these features are merely chosen
for the sake of simplicity28 and because equations of state of the form (2.2.12) are
commonly used in the literature as reviewed above.

(c) In [146, Thm. 2.1] it is shown that the existence of a cut-off energy, i.e., some suit-
able E0 s.t. ϕ(E,L) = 0 for E ≥ E0, is mandatory for the resulting steady state to
have finite mass and compact support.

(d) In this thesis the whole analysis is limited to steady states with finite mass and compact
support, as those are the most physically relevant when modelling stationary galax-
ies. Nonetheless, other equilibria are also analysed in the physics literature, see [19,
Sc. 4.3] for an overview. Prominent examples of steady states with unbounded support
are the isochrone models [18, 64, 65] or the Plummer sphere [19, Sc. 4.3.3(a)]; the
latter corresponds to an isotropic polytropic ansatz (2.2.18) with exponent k = 7

2 . In
particular, this shows that the upper bound on k in (ϕ3) (ii) is necessary in order to
arrive at a compactly supported steady state.

In order to construct steady states of the Vlasov-Poisson system as defined in Defini-
tion 2.2.2, we first compute how ρ0 given by (2.2.9) depends on some spherically symmetric
U0 ∈ C2(R3) for ϕ as chosen above; the following calculation is similar to [130, p. 905].
Inserting (2.2.12) into (2.2.9) yields

ρ0(x) =

∫
R3

Φ

(
E0 −

1

2
|v|2 − U0(x)

)(
|x× v|2 − L0

)`
+

dv =

=
π

r2

∫ ∞
0

∫
R

Φ

(
E0 −

1

2
w2 − U0(r)− L

2r2

)
(L− L0)`+ dw dL (2.2.20)

27Some examples of steady states corresponding to ansatz functions that are different from (2.2.12) are
reviewed in [19, Section 4.3]. Let us only explicitly mention the Camm type steady states [25, 55] here, whose
associated microscopic equations of state are canonical extensions of the polytropes (2.2.17).

28For example, the explicit structure of the L-dependency in (2.2.12) simplifies the relation between ρ0

and U0 encoded into the function g defined in (2.2.25).
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for x ∈ R3 \ {0} and r = |x|. Here, we changed variables v 7→ (w,L) (recall (2.1.3) for the
definition of the new variables), used the relation

|v|2 = w2 +
L

r2
, (2.2.21)

and identified U0(x) = U0(r) as in Remark 2.1.2 (d). Next, we apply the change of variables
induced by E = 1

2w
2+U0(r)+ L

2r2 in the inner integral; observe that the integrand in (2.2.20)
is even in w. This leads to

ρ0(x) =
2π

r2

∫ ∞
0

∫ ∞
U0(r)+ L

2r2

Φ(E0 − E)
(L− L0)`+√

2E − 2U0(r)− L
r2

dE dL =

=
2π

r2

∫ E0

U0(r)+
L0
2r2

Φ(E0 − E)

∫ 2r2E−2r2U0(r)

L0

(L− L0)`√
2E − 2U0(r)− L

r2

dLdE; (2.2.22)

the whole integral is meant to vanish if U0(r) + L0
2r2 ≥ E0. For the second equality, we

changed the order of integration and restricted the domain of integration to the set where
the integrand does not vanish; recall (2.2.14). Inserting the standard integral identity∫ b

a
(s− a)α (b− s)β ds =

Γ(α+ 1) Γ(β + 1)

Γ(α+ β + 2)
(b− a)α+β+1, α, β > −1, a < b, (2.2.23)

into the inner integral, recalling ` > −1
2 , and using the final change of variables η = E0−E

then yields

ρ0(x) = 2`+
3
2π

3
2

Γ(`+ 1)

Γ(`+ 3
2)
r2`

∫ E0

U0(r)+
L0
2r2

Φ(E0 − E)

(
E − U0(r)− L0

2r2

)`+ 1
2

dE =

= 2`+
3
2π

3
2

Γ(`+ 1)

Γ(`+ 3
2)
r2`

∫ E0−U0(r)− L0
2r2

0
Φ(η)

(
E0 − U0(r)− L0

2r2
− η
)`+ 1

2

dη (2.2.24)

for x ∈ R3 \ {0}. Hence, by introducing the function

g : R→ R, g(z) :=

{
c`
∫ z

0 Φ(η) (z − η)`+
1
2 dη, if z > 0,

0, if z ≤ 0,
(2.2.25)

with

c` := 2`+
3
2 π

3
2

Γ(`+ 1)

Γ(`+ 3
2)
, (2.2.26)

the dependency of ρ0 on U0 can be written as

ρ0(x) = r2` g

(
E0 − U0(r)− L0

2r2

)
, x ∈ R3 \ {0}, r = |x|. (2.2.27)

We note that the above formula can also be suitably extended to x = 0. Concretely, in the
case L0 = 0 there holds ρ0(0) = 0 if ` > 0 and ρ0(0) = g(E0 − U0(0)) if ` = 0.

We thus analyse the function g, in particular, its regularity properties. The following
result is also contained in [130, p. 905].
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Lemma 2.2.6. The function g : R→ R is continuously differentiable with

g′(z) =

{
c` (`+ 1

2)
∫ z

0 Φ(η) (z − η)`−
1
2 dη, if z > 0,

0, if z ≤ 0,
(2.2.28)

for z ∈ R. Furthermore, g is strictly increasing on [0,∞[.

Proof. The continuous differentiability of g with derivative given by (2.2.28) is straight-
forward to verify using Lebesgue’s dominated convergence theorem; recall that we have
chosen ` > −1

2 and Φ ∈ L∞loc(R). The monotonicity of g on [0,∞[ then follows by (2.2.28)
since the condition (ϕ3) ensures that Φ is positive on ]0, η0[ for some η0 > 0.

In general, we cannot derive a more explicit form for g than (2.2.25). However, as, e.g.,
earlier noted in [14, Ex. 4.1], this is possible in the case of a polytropic ansatz.

Remark 2.2.7. Let Φ be as specified in (ϕ3) (ii), i.e., the ansatz is polytropic. Then, using
the integral identity (2.2.23) once again yields

g(z) = ck,` z
k+`+ 3

2
+ , z ∈ R, (2.2.29)

with

ck,` := 2`+
3
2 π

3
2

Γ(k + 1) Γ(`+ 1)

Γ(k + `+ 5
2)

. (2.2.30)

After inserting (2.2.27) into the semi-linear Poisson equation (2.2.8) for U0 and express-
ing the Laplacian in its radial form, we arrive at the integro-differential equation

U ′0(r) =
4π

r2

∫ r

0
s2`+2 g

(
E0 − U0(s)− L0

2s2

)
ds, r > 0. (2.2.31)

In a more concise way, the latter equation can be written as

U ′0(r) =
m0(r)

r2
, r > 0, (2.2.32)

where

m0(r) := 4π

∫ r

0
s2ρ0(s) ds, r ≥ 0, (2.2.33)

defines the local mass induced by the mass density ρ0. For r > 0, the value of m0(r)
describes the mass contained inside the ball Br(0).

Since U0 is smooth and spherically symmetric, we get U ′0(0) = 0 as one boundary
condition for (2.2.31). As usual, we also require that U0 vanishes at spatial infinity, i.e.,
limr→∞ U0(r) = 0. However, the latter boundary condition does not fit well with equa-
tion (2.2.31): In order to evaluate the right-hand side of (2.2.31) at some radius r > 0, one
has to know the values U0(s) for all smaller radii s ∈ ]0, r[. Thus, one instead prefers to
solve (2.2.31) by starting at the spatial origin r = 0 and then moving radially outwards. This
strategy is basically pursued in [14, 140, 146], where the existence of solutions of (2.2.31) is
shown29 for some prescribed value of U0(0). Afterwards, one adjusts this solution suitably
in order to satisfy the original boundary condition (1.1.5) at spatial infinity and verifies
that the resulting steady state is indeed physically reasonable.

29In the aforementioned works the class of ansatz functions differs from our choice of ϕ, but the equations
analysed there are still of the same type as in our situation.
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An elegant way of realising this mathematically is introduced in [130], which we also
follow here: The idea is to consider the function

y := E0 − U0 (2.2.34)

instead of U0. In this way the cut-off energy E0 < 0 – which was originally a prescribed
parameter as part of the microscopic equation of state ϕ – becomes part of the unknowns
and gets suitably adjusted later on. Inserting this definition into (2.2.31) yields the following
integro-differential equation for y:30

y′(r) = −4π

r2

∫ r

0
s2`+2 g

(
y(s)− L0

2s2

)
ds, r > 0. (2.2.35)

We equip this equation with the boundary/initial conditions31

y(0) = κ, y′(0) = 0, (2.2.36)

for prescribed κ > 0. Once a suitably regular solution y of (2.2.35)–(2.2.36) with

y∞ := lim
r→∞

y(r) < 0 (2.2.37)

is known, we set
E0 := y∞, U0 := E0 − y (2.2.38)

in order to arrive at a solution of the original equation (2.2.31) for U0. Here, we simply
solved (2.2.34) for U0 and ensured that U0 vanishes at spatial infinity by properly defin-
ing E0. In fact, the negativity of y∞ in (2.2.37) corresponds to the resulting steady state
being physically reasonable, i.e., having compact support and finite mass.

Hence, the main step is to show the existence of a solution y as described above.

Lemma 2.2.8. Let ϕ be an ansatz of the form (2.2.12) with `, L0, and Φ satisfying (ϕ1)–
(ϕ3). Then, for every κ > 0 there exists a unique solution y ∈ C2([0,∞[) of (2.2.35)–
(2.2.36) s.t. y∞ = limr→∞ y(r) ∈ ]−∞, 0[.

Proof. Existence and uniqueness of a solution y ∈ C1([0,∞[) follow by a standard contrac-
tion argument – recall g ∈ C1(R) by Lemma 2.2.6 – and by using the monotonicity of y.
In the case L0 = 0 this is described in [130, p. 906]. Similar arguments also apply in the
case L0 > 0, together with the observation

y(r) = κ, 0 ≤ r ≤
√
L0

2κ
. (2.2.39)

The regularity of g further implies y ∈ C2([0,∞[) after differentiating (2.2.35); for the
continuity of y′′ at r = 0 in the case L0 = 0 recall (2.2.27) and that we require ` to be
non-negative in this case.

Furthermore, since y′ ≤ 0, we know that y∞ exists in [−∞,∞[. It is easily verified that
y∞ > −∞ because once y has a zero at some radius, the solution can be explicitly extended
to larger radii. For the proof that y∞ is indeed negative, we distinguish between two cases.

30In [130], the integro-differential equation for y is called the “master equation” because obtaining steady
states of related systems is also reduced to solving a similar equation. Here, we prefer the more modest
name “equation (2.2.35)”.

31Since (2.2.35) is a first-order equation, equipping it with two initial conditions could lead to an overdeter-
mined system. However, we shall see that any (sufficiently smooth) solution y of (2.2.35) does automatically
satisfy y′(0) = 0.
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Firstly, in the situation where Φ satisfies (ϕ3) (i), we apply the “compact-support
lemma” from [130, Lemma 3.1] to deduce y∞ < 0; see [130, Sc. 4.1] for a proof that g
satisfies the estimate required in the compact-support lemma. As noted in [130, Sc. 4.3],
these arguments work in the case L0 > 0 as well.32

Secondly, we consider the situation of a polytropic ansatz with Φ as specified in (ϕ3) (ii).
In the case L0 = 0, it is proven in [151], see also [14, Lemma 5.3], that y possesses a zero,
which obviously leads to y∞ < 0. This statement can then be extended to the case L0 > 0
by a perturbation argument similar to [140, Thm. 1].

As described above, the existence of y as proven in Lemma 2.2.8 yields a physically
reasonable steady state. We collect this result as well as various properties of the resulting
equilibrium in the following statement.

Proposition 2.2.9 (Existence of Steady States). Let ϕ be an ansatz of the form (2.2.12)
with `, L0, and Φ satisfying (ϕ1)–(ϕ3). Furthermore, for κ > 0 let y be the solu-
tion of (2.2.35)–(2.2.36) obtained in Lemma 2.2.8. Then, setting U0 and E0 according
to (2.2.38), i.e., E0 = y∞ and U0 = E0 − y, yields a steady state of the Vlasov-Poisson
system as defined in Definition 2.2.2. This steady state enjoys the following properties:

(a) The total mass M0 defined in (2.2.11) is positive & finite.

(b) The steady state is radially bounded, i.e.,

Rmax := sup{r ≥ 0 | ρ0(r) > 0} <∞. (2.2.40)

(c) It holds that

{r > 0 | ρ0(r) > 0} =]Rmin, Rmax[, (2.2.41)

where

Rmin :=

√
L0

2κ
∈ [0, Rmax[. (2.2.42)

In particular, the radial support of the steady state is of the form

supp (ρ0) = [Rmin, Rmax]. (2.2.43)

(d) The support of the steady state is bounded, i.e., the sets

Ω0 := {(x, v) ∈ R3 × R3 | f0(x, v) > 0} (2.2.44)

and33

Ω0 := {(r, w, L) ∈ ]0,∞[× R× [0,∞[ | f0(r, w, L) > 0} (2.2.45)

are bounded. Similar to Remark 2.1.2 (d), we slightly abuse the notation and do
not notationally distinguish between the set Ω0 in (x, v)-coordinates and in (r, w, L)-
coordinates. We refer to Ω0, in either coordinates, as the phase space support of the
steady state.

32One way to adapt the arguments from [130, Lemma 3.1] to the case L0 > 0 is to consider z(r) := y(r)− L0
2r2

instead of y; note that limr→∞ z(r) = limr→∞ y(r).
33We restrict the set Ω0 in (r, w, L)-coordinates to r > 0, although it is reasonable to include points (0, w, 0)

with 1
2
w2 +U0(0) < E0 in this set as well. However, as earlier noted in Remark 2.1.2 (c), we prefer to avoid

the difficulties of the spatial origin in radial coordinates.
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(e) It holds that ρ0 ∈ C1(R3 \ {0}) and U0 ∈ C3(R3 \ {0}). If L0 > 0, there further holds
ρ0 ∈ C1(R3) and U0 ∈ C3(R3). The latter regularities are also present in the case
L0 = 0 provided that ` = 0 or ` > 1

2 .

Proof. The fact that U0 indeed defines a steady state is straight-forward to verify. In
particular, note that y ∈ C2(R3) since y ∈ C2([0,∞[) with y′(0) = 0 by (2.2.36).

Part (b) is a consequence of y∞ < 0, which was shown in Lemma 2.2.8, and

ρ0(r) > 0 ⇔ y(r)− L0

2r2
> 0, r > 0; (2.2.46)

this equivalence follows by (2.2.27). We then deduce part (a) since M0 = 4π
∫ Rmax

0 r2ρ0(r) dr
and r2ρ0(r) is bounded on compact radial intervals; the positivity of M0 also follows
by (2.2.46).

In order to show the precise form of the radial support claimed in part (c), first observe
that Rmin = inf(supp (ρ0)) follows by (2.2.39) and (2.2.46). What remains to be proven
is that the steady state only consists of one connected radial shell. If L0 = 0, this is due
to the monotonicity of y together with (2.2.46). In the case L0 > 0, first observe that
y′(r) + L0

r3 = 1
r2

(
L0
r −m0(r)

)
. Hence, the monotonicities of the two terms inside the latter

bracket yield that there exists a unique radius s0 > 0 s.t. y′(s0) + L0

s30
= 0. Therefore, the

function ]0,∞[ 3 r 7→ y(r)− L0
2r2 is increasing on ]0, s0] and decreasing on [s0,∞[. Together

with (2.2.46) we thus obtain (2.2.41) and (2.2.43).
As to the phase space support, observe that the ansatz (2.2.6) for f0 implies34

Ω0 ⊂ {E < E0}, (2.2.47)

where E is the particle energy induced by the stationary potential U0 via (2.2.7). Hence,
for (x, v) ∈ Ω0 we obtain the bounds |x| < Rmax and |v| <

√
2E0 − 2U0(0); for the latter

estimate we used that U0(x) ≥ U0(0) for x ∈ R3. Thus, we also deduce that r = |x| and
|w| ≤ |v| are bounded for (r, w, L) ∈ Ω0. Lastly, the boundedness of the L-component
can be seen by expressing the particle energy E in (r, w, L) coordinates and using (2.2.47),
resulting in L < 2R2

max(E0 − U0(0)).
The regularity of ρ0 stated in part (e) follows by differentiating (2.2.27) and using

Lemma 2.2.6. The claimed regularity of U0 is then due to (2.2.32). Finally, the regularities
at the spatial origin can be obtained in a similar way after extending (2.2.27) to x = 0.

Overall, we see that there indeed exits a plethora of physically reasonable steady states
of the Vlasov-Poisson system: For each choice of `, L0 and Φ we obtain a one-parameter
family of such equilibria with parameter κ > 0. Let us add some comments on the role of
this parameter as well as its connection to the cut-off energy E0.

Remark 2.2.10. Let f0 be a steady state as obtained in Proposition 2.2.9.

(a) Consider the situation of an isotropic equilibrium, i.e., ` = 0 = L0. Since U0 is
radially increasing and g is non-decreasing by Lemma 2.2.6, the relation (2.2.27) yields
that ρ0 is radially non-increasing on [0,∞[ and strictly decreasing on [0, Rmax] with35

ρ0(0) = g(κ) > 0. (2.2.48)

34In Lemma 4.1.4, we study the relations between the sets Ω0 and {E < E0} in more detail (for a further
restricted class of steady states).

35In the case of an isotropic polytrope, the formula (2.2.48) can be further simplified by using the explicit
representation of g derived in Remark 2.2.7.
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Hence, the parameter κ > 0 is in one-to-one correspondence to the central den-
sity ρ0(0) of the steady state; recall that g is injective on [0,∞[ by Lemma 2.2.6.36

(b) If L0 > 0, the parameter κ > 0 determines the size of the inner radial vacuum region
via (2.2.42).

(c) The value of the cut-off energy E0 = y∞ depends implicitly on the parameters `, L0,
Φ, and κ through the behaviour of the solution y from Lemma 2.2.8. Since y(Rmax) =
L0

2R2
max

by (2.2.46) and y′(r) = −M0
r2 for r ≥ Rmax, the main theorem of calculus yields

the representation

E0 = y∞ =
L0

2R2
max

− M0

Rmax
. (2.2.49)

In fact, the dependency of E0 on the steady state parameters is quite involved. For
general `, L0, and Φ, a fixed cut-off energy E0 < 0 can correspond to none, one,
or multiple steady states with equation of state (2.2.12). It is hence not possible to
prescribe the value of the cut-off energy E0 when constructing a steady state. In the
case of King’s equation of state (2.2.19), this follows from the results in [131]; see
Figure 8.1.7 for a visualisation of this fact.

A notable exception of this problem are polytropic ansatz functions (2.2.17) with L0 =
0, where the relation between E0 and κ simplifies due to the scaling law analysed in
Appendix B.

In the later part of this thesis we will use numerical methods to study and illustrate
further properties of steady states, see Section 8.1.

2.2.1 The Effective Potential

From now on let f0 be a fixed steady state as constructed in Proposition 2.2.9. We next
introduce a quantity which turns out to be crucial for the analysis of stationary solutions
of the Vlasov-Poisson system in spherical symmetry.

Definition 2.2.11 (The Effective Potential). Let L ≥ 0. The function

ΨL : ]0,∞[→ R, ΨL(r) := U0(r) +
L

2r2
(2.2.50)

is called the effective potential (of the steady state f0).

The additional term L
2r2 added to the original potential U0 plays the role of the squared

tangential velocity. The main reason why it is important to understand the properties of
the function ΨL is that it takes on the role of the potential when expressing the particle
energy E in (r, w, L) coordinates. More precisely, inserting (2.2.21) into (2.2.7) yields

E(r, w, L) =
1

2
w2 + U0(r) +

L

2r2
=

1

2
w2 + ΨL(r) (2.2.51)

for (r, w, L) ∈ ]0,∞[× R× [0,∞[.
The effective potential is, e.g., analysed in [14, p. 163f.], [57, Sc. 3.2], [62, Lemma 2.1],

[85, App. A.1], [96, Lemma 2.1], [147, Lemma 4.1], and [165, Thm. 2.4]. Nonetheless, as the
present class of steady states differs from the ones in the aforementioned works, we prefer
to include the (rather simple) proofs of the following results here as well.

36In fact, the condition (ϕ3) implies that g : [0,∞[→ [0,∞[ is one-to-one.
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Lemma 2.2.12 (Structure of the Effective Potential). (a) For any L > 0 there exists a
unique radius rL > 0 s.t.

min
]0,∞[

ΨL = ΨL(rL) < 0. (2.2.52)

This radius is given as the unique zero of Ψ′L on ]0,∞[ or, equivalently, as the unique
solution of

rLm0(rL) = L. (2.2.53)

It holds that Ψ′L < 0 on ]0, rL[ and Ψ′L > 0 on ]rL,∞[. We further introduce the
abbreviation

Emin
L := ΨL(rL) = min

]0,∞[
ΨL (2.2.54)

for the minimal energy for fixed L > 0.37

(b) Let

A0 := {(E,L) ∈ ]−∞, 0[× ]0,∞[ | Emin
L < E} (2.2.55)

denote the set of all admissible (E,L)-pairs. Then, for any (E,L) ∈ A0 there exist
two unique radii r±(E,L) s.t.

0 < r−(E,L) < rL < r+(E,L) <∞ (2.2.56)

and

ΨL(r±(E,L)) = E. (2.2.57)

Proof. Differentiating the effective potential radially yields

Ψ′L(r) = U ′0(r)− L

r3
=

1

r2

(
m0(r)− L

r

)
(2.2.58)

for r > 0 by (2.2.32). Since ]0,∞[ 3 r 7→ m0(r)− L
r is increasing for L > 0 and

lim
r→0

(
m0(r)− L

r

)
= −∞, lim

r→∞

(
m0(r)− L

r

)
= M0 > 0, (2.2.59)

there exists a unique rL > 0 with Ψ′L(rL) = 0. Moreover, Ψ′L < 0 on ]0, rL[ and Ψ′L > 0
on ]rL,∞[. Together with the limiting behaviour of the effective potential, which is given
by

lim
r→0

ΨL(r) =∞, lim
r→∞

ΨL(r) = lim
r→∞

U0(r) = 0, (2.2.60)

for L > 0, we deduce the claimed statements.

We note that most of the notations employed in the context of the effective potential
are based on [57]. The structure of the effective potential as well as the definitions of rL
and r±(E,L) are visualised in Figure 2.2.1; similar visualisations can be found in [85,
Fig. A.1] and [96, Fig. 1]. An actual plot of the effective potential (based on a numerical
computation) of an isotropic polytropic steady state is shown later in Figure 8.2.1.

37The name minimal energy is due to the obvious estimate E(r, w, L) ≥ E(rL, 0, L) = Emin
L for (r, w, L) ∈

]0,∞[× R× [0,∞[.
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r

ΨL(r)

U0

rL

Emin
L

E

r−(E,L) r+(E,L)

Figure 2.2.1: A schematic visualisation of the structure of the effective potential ΨL for
L > 0.

Remark 2.2.13. Due to the shape of the effective potential derived above, the steady states
obtained in Proposition 2.2.9 are said to have single-well structure. We emphasize that it
is a particular feature of the Vlasov-Poisson system that this property holds for all steady
states constructed as above. In the context of the Einstein-Vlasov system, it is an open
question for which steady states the analogous property is present. We refer to [49, Sc. 3.1]
for a detailed discussion of this aspect.

Before relating the effective potential to other important steady state quantities, we
derive further properties of ΨL and the radii rL and r±(E,L). Some parts of the following
results originate from [57, 96] and are also stated in [62, 85, 147, 165].

Lemma 2.2.14 (Properties of ΨL, rL, and r±). (a) The mapping ]0,∞[ 3 L 7→ rL is
continuously differentiable with

∂L(rL) =
1

4π r3
L ρ0(rL) +m0(rL)

, L > 0. (2.2.61)

Furthermore, rL is increasing in L with

lim
L→0

rL = Rmin, lim
L→∞

rL =∞. (2.2.62)

(b) The mapping ]0,∞[ 3 L 7→ Emin
L is continuously differentiable with

∂L
(
Emin
L

)
=

1

2r2
L

, L > 0. (2.2.63)

Furthermore, Emin
L is increasing in L with

lim
L→0

Emin
L = U0(Rmin) = U0(0), lim

L→∞
Emin
L = 0. (2.2.64)

(c) The mappings A0 3 (E,L) 7→ r±(E,L) are continuously differentiable with

∂Er±(E,L) =
1

Ψ′L(r±(E,L))
, ∂Lr±(E,L) = − 1

2r2
±(E,L) Ψ′L(r±(E,L))

,

(2.2.65)
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for (E,L) ∈ A0. Furthermore, r−(E,L) is increasing in L and decreasing in E while
r+(E,L) is decreasing in L and increasing in E, and there hold the following limiting
statements for fixed L∗ > 0 and U0(0) < E∗ < 0:

lim
A03(E,L)→(Emin

L∗ ,L
∗)
r±(E,L) = rL∗ , (2.2.66)

lim
A03(E,L)→(E∗,0)

r−(E,L) = 0, (2.2.67)

lim
A03(E,L)→(E∗,0)

r+(E,L) = r+(E∗, 0) ∈ ]Rmin,∞[, (2.2.68)

lim
A03(E,L)→(U0(0),0)

r+(E,L) = Rmin. (2.2.69)

Here, r+(E∗, 0) ∈ ]Rmin,∞[ is defined as the unique radius satisfying

U0(r+(E∗, 0)) = E∗. (2.2.70)

(d) For any L > 0 there holds

Emin
L ≥ −M

2
0

2L
. (2.2.71)

(e) For any (E,L) ∈ A0 there holds

L

2M0
≤ r−(E,L) < rL < r+(E,L) ≤ −M0

E
. (2.2.72)

(f) For any (E,L) ∈ A0 and r ∈ [r−(E,L), r+(E,L)] the following concavity estimate
holds:

E −ΨL(r) ≥ L (r+(E,L)− r) (r − r−(E,L))

2r2 r−(E,L) r+(E,L)
. (2.2.73)

Proof. The continuous differentiability of rL as well as (2.2.61) follow by (2.2.53) and the
implicit function theorem; note thatm0(rL) > 0 by (2.2.53). The limiting properties claimed
in (2.2.62) also follow by (2.2.53) since 0 ≤ m0 ≤ M0 < ∞ as well as m0 = 0 on ]0, Rmin]
and m0 > 0 on ]Rmin,∞[ by (2.2.41).

Since Emin
L = ΨL(rL), we then deduce the regularity of L 7→ Emin

L claimed in (b) as
well as (2.2.63). The fact that Emin

L tends to U0(0) as L → 0 follows, e.g., by observing

that ΨL(L
1
4 )→ U0(0) as L→ 0; obviously, Emin

L ≥ U0(0). The limiting behaviour of Emin
L

as L → ∞ is a consequence of the estimate (2.2.71) which we will prove later; recall that
Emin
L < 0 by (2.2.52).

The differentiability of r± and the formulae (2.2.65) can be derived similar to part (a)
by applying the implicit function theorem to (2.2.57) since Ψ′L(r±(E,L)) 6= 0. In order
to prove (2.2.66) let 0 < ε < rL∗ and choose δ1 > 0 s.t. ΨL∗(rL∗ ± ε) ≥ Emin

L∗ + 2δ1.
By part (a) as well as the continuous dependency of the effective potential on L, there
exists δ2 > 0 s.t. for every L > 0 with |L − L∗| < δ2 it holds that |rL∗ − rL| < ε and
ΨL(rL∗ ± ε) ≥ Emin

L∗ + δ1. Therefore, the monotonicity properties of the effective potential
yield that for every (E,L) ∈ A0 with |L − L∗| < δ2 and E ≤ Emin

L∗ + δ1 there holds
|r±(E,L)−rL∗ | < ε, which concludes the proof of (2.2.66). As to (2.2.67), first choose δ1 > 0
s.t. E∗+ δ1 < 0 and E∗− 2δ1 > U0(0). Parts (a) and (b) imply the existence of some L̃ > 0
s.t. U0(rL̃) < U0(0)+δ1 and Emin

L̃
< E∗−δ1. For 0 < L ≤ L̃ and |E−E∗| < δ1 we thus obtain

(E,L) ∈ A0 as well as the estimates U0(rL) < U0(0) + δ1 and r−(E,L) ≤ r−(E∗ − δ1, L)
by the monotonicities of U0, rL, and r−. In addition, for such L and r ∈ ]0, rL̃[ there holds



34 CHAPTER 2. THE VLASOV-POISSON SYSTEM AND ITS STEADY STATES

ΨL(r) ≤ U0(rL̃) + L
2r2 < U0(0) + δ1 + L

2r2 . Inserting r = r−(E∗ − δ1, L) < rL ≤ rL̃ for

0 < L ≤ L̃ into the latter inequality yields E∗ − U0(0)− 2δ1 <
L

2r2
−(E∗−δ1,L)

, which implies

r−(E∗ − δ1, L) → 0 as L → 0 and thus concludes the proof of (2.2.67). The limit (2.2.68)
with r+(E∗, 0) defined by (2.2.70) follows in a similar way as (2.2.66). For (2.2.69), observe
that r+(E, 0) → Rmin as E ↘ U0(0) = U0(Rmin). Together with the L-monotonicity of r+

we then deduce (2.2.69).
For part (d) we make use of the structure of solutions of the radial Poisson equation to

deduce

U0(r) = −m0(r)

r
− 4π

∫ ∞
r

s ρ0(s) ds ≥ −1

r

(
m0(r) + 4π

∫ ∞
r

s2 ρ0(s) ds

)
= −M0

r
(2.2.74)

for r > 0. Together with (2.2.53) we thus obtain

Emin
L = ΨL(rL) ≥ −M0

rL
+

L

2r2
L

= −m0(rL)
M0

L
+
m2

0(rL)

2L
=

= −M
2
0

2L

(
2
m0(rL)

M0
− m2

0(rL)

M2
0

)
≥ −M

2
0

2L
(2.2.75)

for L > 0.
For (E,L) ∈ A0, the estimate (2.2.74) implies that every r > 0 with ΨL(r) ≤ E there

holds E + M0
r −

L
2r2 ≥ 0. Solving this quadratic inequality yields

L

M0 +
√
M2

0 + 2EL
≤ r ≤ L

M0 −
√
M2

0 + 2EL
; (2.2.76)

note that M2
0 + 2EL > 0 by (2.2.71). Hence,

r−(E,L) ≥ L

M0 +
√
M2

0 + 2EL
>

L

2M0
, (2.2.77)

r+(E,L) ≤ L

M0 −
√
M2

0 + 2EL
=
−M0 −

√
M2

0 + 2EL

2E
< −M0

E
. (2.2.78)

Lastly, in order to prove the concavity estimate (2.2.73) we consider the function
ξ : [r−(E,L), r+(E,L)]→ R defined by

ξ(r) := E−ΨL(r)−L (r+(E,L)− r) (r − r−(E,L))

2r2 r−(E,L) r+(E,L)
, r ∈ [r−(E,L), r+(E,L)], (2.2.79)

for fixed (E,L) ∈ A0. The radial Poisson equation then yields

∂2
r [r ξ(r)] = −2Ψ′L(r)− rΨ′′L(r) +

L

r3
= −1

r
∂r
[
r2 U ′0(r)

]
= −4πr ρ0(r) ≤ 0. (2.2.80)

Thus, the mapping [r−(E,L), r+(E,L)] 3 r 7→ rξ(r) is concave with ξ(r±(E,L)) = 0, which
implies ξ ≥ 0 on [r−(E,L), r+(E,L)] and concludes the proof of part (f).

We refer to [85, App. A.1] for some additional properties of the effective potential, e.g.,
a more detailed analysis of some of the rates of convergence analysed in the above lemma.

A thorough understanding of the effective potential allows one to control the support of
the steady state. Concretely, (2.2.46) implies

{r > 0 | ρ0(r) > 0} = {r > 0 | ΨL0(r) < E0}. (2.2.81)
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Hence,
Rmin = r−(E0, L0), Rmax = r+(E0, L0), (2.2.82)

where we use the convention r−(E0, 0) := 0, which is consistent with Lemma 2.2.14 (c).
Furthermore, the L-support of the steady state, i.e., the set

L0 := {L(x, v) | (x, v) ∈ Ω0}, (2.2.83)

can be characterised explicitly:

Lemma 2.2.15. Let Lmax > L0 be defined as the unique solution of38

Emin
Lmax

= E0. (2.2.84)

If L0 = 0 = `,
L0 = [0, Lmax[. (2.2.85)

Otherwise,
L0 =]L0, Lmax[. (2.2.86)

Proof. Changing to (r, w, L)-coordinates and using (2.2.12) yields

L0 = {L | (r, w, L) ∈ ]0,∞[×R×[0,∞[ : (L−L0)`+ > 0 & Φ(E0−E(r, w, L)) > 0}. (2.2.87)

Observe that, for L ≥ 0, (L − L0)`+ > 0 is equivalent to L > L0 or L = L0 = 0 = `; recall
the conventions employed for (. . .)`+. The claimed statements are now a consequence of
E(r, w, L) ≥ Emin

L = E(rL, 0, L) for L > 0 and E(r, w, 0) ≥ U0(0) for (r, w) ∈ ]0,∞[ × R
combined with the monotonicity of L 7→ Emin

L and the fact that Φ > 0 on ]0, η0[ for some
η0 > 0 by (ϕ3).

In order to analyse all (E,L)-pairs associated to the energy support of the steady state,
we define

D0 := {(E,L) ∈ ]−∞, 0[× ]0,∞[ | L > L0 & Emin
L < E < E0}, (2.2.88)

where Emin
L is defined in Lemma 2.2.12. Equivalently,

D0 = {(E,L) ∈ A0 | L > L0 & E < E0} ⊂ A0, (2.2.89)

recall (2.2.55). Due to the regularity of L 7→ Emin
L shown in Lemma 2.2.14 (b), the set D0

is open. Although the name is somewhat misleading39, we sometimes refer to D0 as the
(E,L)-triangle of the steady state; however, we usually refer to it as the (E,L)-support of
the steady state. We illustrate the shape of this set in Figure 2.2.2, see also [85, Fig. 1.1]
and [117, Fig. 1] for similar visualisations. Actual numerical plots of D0 for some selected
steady states will be presented in Section 8.2.

If L0 > 0 or ` > 0, the set D0 is related to L0 via

L0 = {L | (E,L) ∈ D0}. (2.2.90)

In the case L0 = 0 = `, it holds that

L0 = {L | (E,L) ∈ D0} ∪ {0}, (2.2.91)

i.e., we generally exclude L = 0 from D0. The connection between D0 and the phase space
support Ω0 will be analysed in Lemma 4.1.5 after we have further restricted the class of
steady states. For now, we note

{(E(x, v), L(x, v)) | (x, v) ∈ Ω0} ⊂ D0. (2.2.92)
38The existence of such Lmax follows by Lemma 2.2.14 (b).
39The curve {(E,L) ∈ ]−∞, 0[× ]0,∞[ | E = Emin

L } is obviously not a straight line in general.
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L

E

D0

E0 < 0

L0 ≥ 0

Lmax

{(Emin
L , L) | L > 0}

Figure 2.2.2: A schematic visualisation of the (E,L)-support D0 of a steady state.

2.2.2 The Radial Particle Motions

The most important feature of the effective potential is that it is the key quantity de-
termining the particle motions in (r, w, L)-coordinates. In the original Cartesian (x, v)-
coordinates, the particle motions within the fixed equilibrium are given by the characteristic
system (2.2.2) with potential U = U0. In (r, w, L)-coordinates, this systems transforms40

to

ṙ = w, (2.2.93a)

ẇ = −Ψ′L(r), (2.2.93b)

together with

L̇ = 0. (2.2.94)

The latter equation allows us to interpret L as a parameter of the planar (i.e., two-
dimensional) system (2.2.93). The particle energy E given by (2.2.51) takes on the role
of the Hamiltonian function of (2.2.93). The term L

r3 appearing on the right-hand side
of (2.2.93b) is the centrifugal force. The aim of the present section is to analyse the be-
haviour of solutions of (2.2.93); a related discussion can, e.g., be found in [14, Sc. 2].

Let (R,W ) : I → ]0,∞[×R be the unique maximal solution of (2.2.93) with parameter41

L > 0 satisfying the initial condition (R,W )(0) = (r, w) for fixed (r, w) ∈ ]0,∞[ × R. We
require that the conserved energy value E = E(r, w, L) is negative; otherwise the solution
is not of interest.42 Now observe that the radial component R of the solution always stays
in [r−(E,L), r+(E,L)] by Lemma 2.2.12 since E = E(R(s),W (s), L) ≥ ΨL(R(s)) for s ∈ I.

Since the w-component is also bounded by |W (s)| ≤
√

2E − 2Emin
L , the solution is global,

i.e., I = R. There are two qualitatively different cases for the behaviour of the solution,
which are both visualised in Figure 2.2.3.

If (r, w) = (rL, 0), the solution is constant with energy-value E = Emin
L . Such radially

constant solutions are usually called circular [19, p. 145], as they correspond to circular
motions in Cartesian (x, v)-coordinates.

40More precisely, let (x, v) : I → R3 × R3 be a solution of (2.2.2) and assume that x(s) 6= 0 for s ∈ I.
Then, defining (r, w, L) according to (2.1.3) yields a solution (r, w, L) : I → ]0,∞[× R× [0,∞[ of (2.2.93).

41For now, we omit the case L = 0 although most of the arguments can be extended to this situation as
well, cf. Remark 2.2.17 (a).

42Later on, only the particle motions within the steady state support are relevant. The latter set, however,
only contains points where the particle energy is smaller than the cut-off energy E0 < 0.
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r

ṙ = w

stationary point
(rL, 0)

periodic solution with
energy E ∈]Emin

L , 0[

r−(E,L) r+(E,L)

Figure 2.2.3: A schematic phase space diagram of the ODE (2.2.93) in the (r, w)-plane for
fixed L > 0.

Otherwise, i.e., Emin
L < E < 0, we solve for W to obtain

W (s) = ±
√

2E − 2ΨL(R(s)) (2.2.95)

for s ∈ R. Thus, basic ODE theory yields that the solution is time-periodic and covers the
orbit (R,W )(R) = {(r̃, w̃) ∈ ]0,∞[ × R | E(r̃, w̃, L) = E}; note that this set is connected
and does not contain any stationary points of (2.2.93) due to the structure of the effective
potential derived in Lemma 2.2.12. More precisely, R oscillates between the radii r−(E,L)
and r+(E,L), where Ṙ(s) = 0 is equivalent to R(s) = r±(E,L) and Ṙ always switches
its sign when reaching r±(E,L).43 Applying the inverse function theorem and integrating
equation (2.2.95) as described in [19, Sc. 3.1] allows us to determine the oscillation period
– i.e., the time needed for R to travel from r−(E,L) to r+(E,L) and back – more ex-
plicitly. This important quantity is defined below, where we also introduce a more suitable
parametrisation of the solutions of the characteristic system (2.2.93) based on the conserved
quantities (E,L) similar to [49, Def. 3.5].

Definition & Lemma 2.2.16 (The Period Function). Let (E,L) ∈ A0, where A0 is the
set of admissible (E,L)-pairs defined in (2.2.55). Let (R,W )(·, E, L) : R → ]0,∞[ × R be
the maximal solution of the characteristic system (2.2.93) with parameter L satisfying the
initial condition

(R,W )(0, E, L) = (r−(E,L), 0). (2.2.96)

Then the solution (R,W )(·, E, L) is time-periodic with period given by

T (E,L) := 2

∫ r+(E,L)

r−(E,L)

dr√
2E − 2ΨL(r)

. (2.2.97)

The induced function T : A0 → ]0,∞[ is called the (radial) period function of the steady
state.

Proof. The properties of the solution (R,W )(·, E, L) are shown above. The integral (2.2.97)
is well-defined and finite since ΨL < E on ]r−(E,L), r+(E,L)[ and Ψ′L(r±(E,L)) 6= 0 by
Lemma 2.2.12.

43In an astrophysical context, the radii r−(E,L) and r+(E,L) are usually referred to as the pericenter
and apocenter of the particle motion, respectively, cf. [19, p. 145].
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In the course of this thesis we shall discover that the dynamical behaviour of solutions
of the Vlasov-Poisson system close to the fixed steady state f0 is crucially influenced by
the properties of the period function T . This is why we devote the entire Appendix A to a
thorough analysis of this function, including its regularity and boundedness for suitable44

equilibria. Similar analyses are conducted in [62, App. B] and [85, Ch. 3]. In Section 8.2, we
numerically investigate relevant properties the period function. In particular, we present
numerical plots of T on the (E,L)-triangle D0, recall (2.2.88), for some selected steady
states in Figures 8.2.2, 8.2.5, 8.2.9, and 8.2.10.

Let us add some concluding remarks on the particle motions within the fixed equilibrium.

Remark 2.2.17. (a) It is straight-forward to extend the above discussion to the case L =
0. In this situation, the radial characteristic system (2.2.93) becomes

ṙ = w, (2.2.98a)

ẇ = −U ′0(r), (2.2.98b)

with Hamiltonian E(r, w, 0) = 1
2w

2 + U0(r). After extending U0 via U0(r) := U0(−r)
for r < 0 – note that this defines a smooth45 extension of U0 since U0 ∈ C2(R3) –
it becomes apparent that the solutions of the system (2.2.98) behave similarly to the
case of non-zero angular momentum: For U0(0) ≤ E < 0 let (R,W ) : I → R2 be
the unique maximal solution of (2.2.98) satisfying the initial condition (R,W )(0) =
(−r+(E, 0), 0). Here, r+(E, 0) is defined in Lemma 2.2.14 (c) for U0(0) < E < 0
and we set r+(U0(0), 0) := Rmin according to (2.2.69). The minimal energy value
E = U0(0) again corresponds to the circular case, i.e., (R,W ) is constant. Otherwise,
i.e., U0(0) < E < 0, the solution is global, bounded, and time-periodic with period
given by

T (E, 0) := 2

∫ r+(E,0)

0

dr√
2E − 2U0(r)

. (2.2.99)

In light of Lemma 2.2.14 (c), the formula (2.2.99) is a natural extension of (2.2.97).
However, a rigorous proof that this indeed defines a continuous extension of the period
function for suitable equilibria is technically quite involved, see [85, Lemma 3.12].

We further note that in the case L = 0, the motion of a particle (in Cartesian (x, v)-
coordinates) is purely radial. More precisely, the particle moves on a fixed line through
the spatial origin and has no angular speed, cf. [19, Sc. 3.1].

(b) In the case L > 0 and E ≥ 0, the associated solution of the characteristic system
is no longer bounded. More precisely, let (R,W ) : I → ]0,∞[ × R be the maximal
solution of (2.2.93) with parameter L > 0 satisfying the initial condition (R,W )(0) =
(r−(E,L), 0) for some E ≥ 0.46 Here, r−(E, 0) is defined as the unique solution
of ΨL(r−(E,L)) = E; the existence of this radius follows by the structure of the
effective potential established in Lemma 2.2.12. It is then straight-forward to verify
that the solution exhibits the following limiting behaviour: lims→inf(I)R(s) = ∞ =

lims→sup(I)R(s) as well as lims→inf(I)W (s) = −
√

2E and lims→sup(I)W (s) =
√

2E.

44In Appendix A, we further restrict the class of steady states. This is in particular necessary to show
that T is bounded on D0, cf. Remark A.4.5.

45Here, “smooth” means that the right-hand side of the system (2.2.98) is, in particular, locally Lipschitz-
continuous.

46It follows by [143, Lemma 1.2] that any maximal solution of (2.2.93) exists for all times, i.e., I = R,
even in the case E ≥ 0, but this is not relevant here.
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(c) Although the solution of (2.2.93) is time-periodic in the case (E,L) ∈ A0, we empha-
sise that the associated solution of the characteristic system (2.2.2) in the Cartesian
(x, v)-coordinates is not time-periodic in general. This is due to the additional angular
motion in Cartesian coordinates, cf. [19, Sc. 3.1].
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Chapter 3

Linearising the Vlasov-Poisson
System

In this chapter, which is entirely based on [62, Sc. 3],47 we linearise the Vlasov-Poisson
system around a fixed equilibrium. The resulting system governs the dynamics of small
perturbations of the equilibrium up to first order and is widely studied in the astrophysics
literature [8, 19, 36, 37, 43, 71, 77, 111, 161] as well as in the mathematics literature [15,
53, 95] among others.

Let f0 be a fixed steady state of the Vlasov-Poisson system as constructed in Proposi-
tion 2.2.9 with associated potential U0, mass density ρ0, and equation of state ϕ. In fact,
in order to justify the following calculations we have to make further assumptions on the
equilibrium state, especially concerning the regularity of the equation of state ϕ. However,
we deliberately dispense with rigour and refrain from specifying these conditions here48 to
emphasise that the following arguments should be regarded only as the formal derivation of
a new system. One would have to make these calculations rigorous if one wants to deduce
properties of the non-linearised Vlasov-Poisson system, which is beyond the scope of the
present thesis.

We present three different methods to linearise the Vlasov-Poisson system, which each
allows for a different physical interpretation. Each approach leads to a linear operator whose
(spectral) properties determine the behaviour of solutions to the linearised system. Fortu-
nately49, these operators are (essentially) identical for the different linearisation schemes
used here. A rigorous analysis of the (spectral) properties of the operator will then be
conducted in the remainder of this work.

3.1 The Eulerian Picture

The most common way [8, 15, 53, 71, 77, 111] to linearise the Vlasov-Poisson system is
in Eulerian variables. The idea is to plug the (formal) expression f0 + εf + O(ε2) for

47The contents forming the basis of Section 3.3 are not included in the published version of [62], but can
be found in its preprint version arXiv:2102.11672v2.

48In Section 4.1, we explicitly state the class of equilibria for which we (rigorously) analyse the associated
linearised system. We note that the calculations in the present chapter can also be performed rigorously for
these equilibria.

49When linearising a system of differential equations in different coordinates, it is not to be expected to
arrive at the same linearisation. Even in a finite dimensional context, linearising in different coordinates can
lead to different system; nonetheless, such systems are always equivalent. In an infinite dimensional context,
this equivalence is also unclear.
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0 < ε� 1 into the Vlasov-Poisson system (1.1.2)–(1.1.5) and dispense with terms of order
O(ε2). For every time t, we require f(t) : R3×R3 → R to be spherically symmetric – recall
Definition 2.1.1 (b) – and to vanish outside of the support of the steady state. The latter
condition ensures that |εf(t)| � f0 on R3 ×R3 for 0 < ε� 1 and is a natural one, see [15,
App.] for a detailed discussion of this aspect. Using that the steady state f0 is a solution
of the Vlasov-Poisson system then leads to the linearised Vlasov equation

∂tf + T f − ∂vf0 · ∂xUf = 0, (3.1.1)

where T is the transport operator associated to the (characteristic flow of the) steady
state f0 defined in (1.2.10) and Uf = Uf(t) is the gravitational potential induced by the
linear perturbation f via the Poisson equation, i.e.,

∆Uf = 4πρf , lim
|x|→∞

Uf (t, x) = 0, (3.1.2)

ρf (t, x) =

∫
R3

f(t, x, v) dv, (3.1.3)

similar definitions for ρg and Ug are employed for general g : R3 × R3 → R. We refer
to (3.1.1)–(3.1.3) as the linearised Vlasov-Poisson system. A detailed (and mathematically
rigorous) analysis of this system can be found in [15], including an appropriate global
existence result in the case of suitable isotropic steady states.

Notice that (3.1.1) is a first-order transport-type equation for the linear perturbation f .
The presence of oscillatory solutions is, however, more convenient to analyse (and also
more “physically intuitive” [71, Sc. IIId)]) for a second-order equation. As a matter of
fact, V. A. Antonov [8] developed a method – typically referred to as the Antonov trick
– to rewrite the linearised Vlasov-Poisson system as a second-order system, see also [71,
Sc. IIId)]: We split f into its even and odd part in the velocity variable v, i.e.,

f±(t, x, v) :=
1

2
(f(t, x, v)± f(t, x,−v)). (3.1.4)

Obviously, f = f+ + f− as well as f+(t, x,−v) = f+(t, x, v) and f−(t, x,−v) = −f−(t, x, v),
i.e., f+ and f− are even in v and odd in v, respectively. The key observation is that the
linearised Vlasov-Poisson system (3.1.1)–(3.1.3) can also be decomposed into its even and
odd parts in v quite naturally. The reason for this is that the transport operator T reverses
v-parity50 and that the mass density is only determined by the even-in-v part, i.e., ρf = ρf+ .
Hence, splitting the linearised Vlasov equation (3.1.1) into its even-in-v and odd-in-v parts
leads to the identities

∂tf+ + T (f−) = 0, (3.1.5a)

∂tf− + T (f+)− ∂vf0 · ∂xUf+ = 0. (3.1.5b)

The next step is to differentiate the odd-in-v equation (3.1.5b) w.r.t. t and to insert the
even-in-v equation (3.1.5a). We then arrive at the following second-order identity for the
odd-in-v part of the linear perturbation:

∂2
t f− − T 2(f−) + ∂vf0 · ∂xUT (f−) = 0. (3.1.6)

We refer to this equation (coupled with (3.1.2)–(3.1.3)) as the linearised Vlasov-Poisson
system in second-order formulation. Its well-posedness is established in Appendix C (for a

50More precisely, T (f±) = (T f)± for sufficiently regular f , see Lemma 4.3.16 for a rigorous statement.
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suitable class of solutions). It is straight-forward to verify that the latter system is indeed
equivalent to (3.1.1)–(3.1.3): If f− solves (3.1.6), taking f+ as a solution of (3.1.5a) yields
a solution f := f+ + f− of (3.1.1). We will not discuss here how initial data f(0) for (3.1.1)
can be transformed into equivalent initial data f(0), ∂tf(0) for (3.1.6) and vice versa, as this
aspect is somewhat involved. The important point here is that any solution of one system
can be converted into a solution of the other, so that for the general study of solution
behaviour it is equivalent whether one considers (3.1.1) or (3.1.6).

We rewrite (3.1.6) as
∂2
t f− + L(f−) = 0 (3.1.7)

by introducing the operator L = −T 2−R. The first addend of this operator contains the in-
fluence of the steady state flow onto the perturbation, while the second addend corresponds
to the gravitational response of the perturbation and is given by

Rg := −∂vf0 · ∂xUT g (3.1.8)

for suitable g = g(x, v).
So far we have not used the assumption of spherical symmetry on the linear perturba-

tion f ; obviously, f being spherically symmetric implies that f± are too. We do this now
to rewrite (3.1.7) in the radial coordinates (r, w, L) introduced in Remark 2.1.2 (b). It is
straight-forward to verify that the transport operator can be written as

T = w ∂r −
(
U ′0 −

L

r3

)
∂w; (3.1.9)

in particular, T preserves spherical symmetry.51 In order to rewrite the response opera-
tor, we change to (w,L)-coordinates in the velocity integral of the mass density ρT g and
insert (3.1.9) to obtain

ρT g(r) =
π

r2

∫ ∞
0

∫
R
T g(r, w, L) dw dL =

π

r2
∂r

[∫ ∞
0

∫
R
w g(r, w, L) dw dL

]
(3.1.10)

for suitable, spherically symmetric g : R3 × R3 → R, which then leads to52

U ′T g(r) =
4π

r2

∫ r

0
s2ρT g(s) ds =

4π2

r2

∫ ∞
0

∫
R
w g(r, w, L) dw dL. (3.1.11)

In addition, differentiating the ansatz (2.2.6) for the steady state f0 yields

∂vf0(x, v) = ∂Eϕ(E(x, v), L(x, v)) v + ∂Lϕ(E(x, v), L(x, v))
(
2r2v − 2x · v x

)
. (3.1.12)

Since ∂xU = U ′ xr for any spherically symmetric function U : R3 → R and
(
2r2v − 2x · v x

)
·

x
r = 0, we deduce that the response operator R applied to some suitable, spherically sym-
metric function g : R3 × R3 → R can be written as

(Rg)(r, w, L) = −4π w ∂Eϕ(E,L) jg(r), (3.1.13)

where use the abbreviations E = E(r, w, L) and

jg(r) :=
π

r2

∫ ∞
0

∫
R
w g(r, w, L) dw dL. (3.1.14)

51See Remark 4.2.6 (g) for more rigorous statements.
52We will later verify the identity (3.1.11) rigorously for suitable g, see Lemma 4.4.6.
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The function jg can be interpreted as the (radial) velocity density induced by g.
Let us now discuss the relation between the spectral properties of the linearised op-

erator L and the behaviour of solutions of the linearised Vlasov-Poisson system in the
second-order formulation (3.1.7). We will later53 show that L is a symmetric operator when
defined on (a proper dense subset of) a suitable Hilbert space H. We hence only have to
consider real-valued elements of the spectrum of L.

Suppose that λ < 0 is a negative eigenvalue of L with eigenfunction g = g(x, v) =
g−(x, v). Then

f−(t, x, v) := e
√
−λ tg(x, v) (3.1.15)

defines a growing mode solution of (3.1.7), i.e., a solution which grows exponentially in
time. Hence, the steady state f0 is linearly unstable in this situation.

For the implications of the existence of the eigenvalue 0 of L as well as its physical
interpretation, we refer to [71, Sc. IIIf)].

However, as first observed in [9, 10], these two situations do not arise for a large class of
natural steady states54. More precisely, the whole spectrum of the linearised operator L is
positive; a rigorous proof of this statement is given in Proposition 4.5.11. Due to the absence
of zero mode solutions and growing mode solutions, it is reasonable to call such equilibria
linearly stable. A rigorous stability result for the linearised Vlasov-Poisson system (3.1.7)
is established in Lemma C.0.3.

Now suppose that λ > 0 is a positive eigenvalue of L with eigenfunction g = g(x, v) =
g−(x, v). Then

f−(t, x, v) := cos(
√
λ t) g(x, v) (3.1.16)

defines an oscillatory mode, i.e., a time-periodic solution of (3.1.7) with period p given by

p =
2π√
λ
. (3.1.17)

As discussed above, setting

f+(t, x, v) := − 1√
λ

sin(
√
λ t) (T g)(x, v), (3.1.18)

and f := f+ + f− then defines an oscillatory solution of (3.1.1)–(3.1.3).
At the level of the non-linearised Vlasov-Poisson system, such oscillation can be ob-

served, e.g., in the kinetic and potential energies. These energies are given by

Ekin(h) :=
1

2

∫
R3×R3

|v|2 h(x, v) d(x, v), (3.1.19)

Epot(h) := − 1

8π

∫
R3

|∂xUh(x)|2 dx =
1

2

∫
R3

Uh(x) ρh(x) dx (3.1.20)

for suitable h = h(x, v). For f as defined above, integrating by parts yields

Ekin(f0 + εf(t) +O(ε2)) = Ekin(f0)− ε sin(
√
λ t)

2
√
λ

∫
R3×R3

|v|2 (T g)(x, v) d(x, v) +O(ε2) =

= Ekin(f0)− 4π ε
sin(
√
λ t)√
λ

∫ ∞
0

r2 U ′0(r) jg(r) dr +O(ε2), (3.1.21)

53It is proven in Lemma 4.5.2 that the linearised operator is indeed self-adjoint when defined properly.
The symmetry of L is also formally explained in [8, 71].

54A precise definition of this class of equilibria is given in Section 4.1.
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and, by using (3.1.11),

Epot(f0 + εf(t) +O(ε2)) = Epot(f0) + 4π ε
sin(
√
λ t)√
λ

∫ ∞
0

r2 U ′0(r) jg(r) dr +O(ε2).

(3.1.22)

This shows that the kinetic and potential energies of the formal expression f0 + εf +O(ε2)
oscillate about the respective energies of the steady state f0 up to higher-order terms in
ε � 1. In Section 8.4, we will conduct a numerical analysis to investigate whether such
oscillations of Ekin and Epot can indeed be observed for solutions of the (non-linearised)
Vlasov-Poisson system.

However, as discussed in the introduction, the expansion and contraction of the spatial
support of solutions of the non-linearised system cannot be explained with the present,
Eulerian linearisation; observe that the phase space support of f±(t) defined by (3.1.16)
and (3.1.18) is time-independent. This is the reason why we present two additional lineari-
sation schemes in the following sections, aiming to explain this phenomenon.

3.2 The Mass-Lagrangian Picture

The following derivation is based on the so-called mass-Lagrange coordinates which are
often used in the context of the radial Euler-Poisson system, cf. [75, 107]. We restrict
ourselves from the start to the spherically symmetric situation, recall Definition 2.1.1 and
Remark 2.1.2. In contrast to the linearisation schemes from Sections 3.1 and 3.3, it is
essential in the present context to assume spherical symmetry from the beginning.

We first derive the radial Vlasov-Poisson system in mass coordinates before developing
a suitable Lagrangian linearisation scheme.

The Radial Vlasov-Poisson System in Mass Coordinates

Let f = f(t, r, w, L) ≥ 0 be a solution of the radial Vlasov-Poisson system (2.1.9)–(2.1.11)
with finite mass and compact support (in phase space). As usual, let ρ = ρ(t, r) denote the
associated mass density.

We assume that the solution consists of one connected radial region, i.e., there exist
non-negative functions R± = R±(t) s.t.

{r > 0 | ρ(t, r) > 0} =]R−(t), R+(t)[. (3.2.1)

This assumption simplifies much of the following calculations, but we expect that it can
be weakened. Notice, however, that this assumption is reasonable for solutions close to
the steady state f0, because the latter satisfies (3.2.1) by Proposition 2.2.9 (c). Further
note that choosing R−(t) ≡ 0 yields the natural situation of a solution with no inner radial
vacuum region; this case is covered in [62, Sc. 3.2].

We consider the local mass function m defined by

m(t, r) := 4π

∫ r

0
s2ρ(t, s) ds, r > 0; (3.2.2)

the value m(t, r) gives the amount of mass within the ball of radius r > 0 centred around
the spatial origin at time t. Accordingly, the total mass is

M := lim
r→∞

m(t, r) = 4π

∫ ∞
0

s2ρ(t, s) ds = m(t, R+(t)) <∞; (3.2.3)
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note that M is time-independent since the total mass is a conserved quantity of the Vlasov-
Poisson system, cf. [143, Sc. 1.5]. Differentiating (3.2.2) radially yields

∂rm(t, r) = 4πr2ρ(t, r), (3.2.4)

i.e., ∂rm(t, r) > 0 for R−(t) < r < R+(t) by (3.2.1). Hence, m(t) : ]R−(t), R+(t)[ → ]0,M [
is strictly increasing and possesses an inverse

r̃(t) : ]0,M [→ ]R−(t), R+(t)[, m 7→ r̃(t,m). (3.2.5)

The (physical) interpretation of r̃(t,m) is that it gives the radius of the ball around the origin
in which the mass m ∈ ]0,M [ of the solution f(t) is contained; in the physics literature,
r̃(t,m) is occasionally referred to as a Lagrangian radius [168]. This defines a change of
variables which we use to express the unknowns in the mass coordinates (m,w,L), i.e., we
consider

f̃(t,m,w, L) = f(t, r̃, w, L), ρ̃(t,m) = ρ(t, r̃), (3.2.6)

where r̃ = r̃(t,m). Furthermore, for a function g = g(·, w, L) we introduce the abbreviations

Q(g) :=

∫ ∞
0

∫
R
g(·, w, L) dw dL, J (g) :=

∫ ∞
0

∫
R
w g(·, w, L) dw dL, (3.2.7)

so that

ρ(t) =
π

r2
Q(f(t)), ρ̃(t) =

π

r̃2
Q(f̃(t)). (3.2.8)

In order to express the Vlasov equation in mass coordinates, we use (2.1.9) and (2.1.11)
to compute

∂tm(t, r) = 4π

∫ r

0
s2∂tρ(t, s) ds = −4π2

∫ r

0
∂rJ (f(t))(s) ds = −4π2J (f(t))(r); (3.2.9)

note that there are no boundary terms when integrating by parts in the second identity
because f(t) is assumed to be compactly supported. Furthermore, in the last identity we
used that J (f(t))(0) = 0, which can, e.g., be verified by repeating the calculation (3.2.9)
with r = R+(t). Hence, applying the chain rule yields

∂tf = ∂tf̃ + ∂mf̃ ∂tm = ∂tf̃ − 4π2J (f̃(t)) ∂mf̃ , (3.2.10)

∂rf = ∂mf̃ ∂rm = 4π2Q(f̃(t)) ∂mf̃ , (3.2.11)

and the radial Vlasov equation (2.1.9) takes the form

∂tf̃ + 4π2
(
wQ(f̃(t))− J (f̃(t))

)
∂mf̃ +

(
L

r̃3
− m

r̃2

)
∂wf̃ = 0. (3.2.12)

In order to derive a relation between the functions r̃ and f̃ , observe that

∂mr̃(t,m) =
1

4π2Q(f̃(t))(m)
(3.2.13)

for 0 < m < M by (3.2.4), (3.2.8), and the inverse function theorem. Integrating this
equation yields

r̃(t,m) = R−(t) +
1

4π2

∫ m

0

dµ

Q(f̃(t))(µ)
(3.2.14)



3.2. THE MASS-LAGRANGIAN PICTURE 47

for 0 < m < M ; note that, by (3.2.1), r̃(t, 0) = R−(t) extends r̃ suitably.
We refer to the equations (3.2.12) and (3.2.14) as the (radial) Vlasov-Poisson system

in mass coordinates, where we recall the abbreviations introduced in (3.2.7). Note that
the function R− = R−(t) is now a prescribed parameter of the system which determines
the inner boundary of the radial support of the solution.55 Another parameter is the total
mass M > 0 determining the range of the mass variable m. To the author’s knowledge,
the Vlasov-Poisson system has never been written down in these coordinates before (except
of [62, Sc. 3.2]). In particular, there are no existence results known for this system. In the
present thesis, we do not go into the existence theory of the Vlasov-Poisson system in mass
coordinates because we only use this system to formally derive an alternative linearisation
scheme. Nonetheless, analysing which choices of R−(t) and M (and initial conditions r̃(0)
and f̃(0)) yield suitable solutions of this system is an interesting question for future work.

Before proceeding, we derive a further identity for r̃ which will be useful below. The
first step is to observe that r̃(t,m(t, r)) = r for r ∈ ]R−(t), R+(t)[, which implies

0 = ∂t[r̃(t,m(t, r))] = ∂tr̃(t,m(t, r)) + ∂mr̃(t,m(t, r)) ∂tm(t, r) =

= ∂tr̃(t,m(t, r))− J (f(t))(r)

Q(f̃(t))(m(t, r))
(3.2.15)

by (3.2.9) and (3.2.13). Hence, inserting r = r̃(t,m) into this equation yields the identity

∂tr̃(t,m) =
J (f̃(t))(m)

Q(f̃(t))(m)
(3.2.16)

for 0 < m < M .

The Radial Vlasov-Poisson System in Mass-Lagrange Coordinates

Now let f0 = f0(r, w, L) be a steady state of the Vlasov-Poisson system as stated at the
start of this chapter and let f = f(t, r, w, L) be as above. In addition, we assume that f
has the same mass as the steady state f0, i.e., M = M0; recall the definitions of M0

and M in (2.2.11) and (3.2.3), respectively. We note that this condition is rather natural
from a physics point of view because it is, e.g., satisfied by so-called dynamically accessible
perturbations, see [118, Sc. VI.C] for a detailed discussion of this concept.

Therefore, the mapping

m0 : [Rmin, Rmax]→ [0,M ], m0(r) = 4π

∫ r

0
s2ρ0(s) ds (3.2.17)

is one-to-one by Proposition 2.2.9. Let

r̄ : [0,M ]→ [Rmin, Rmax], m 7→ r̄(m) (3.2.18)

denote the inverse of m0. We now express the unknowns in this new radial variable:

f̂(t, r̄, w, L) = f̃(t,m,w, L) = f(t, r̃, w, L), ρ̂(t, r̄) = ρ̃(t,m) = ρ(t, r̃), (3.2.19)

55Alternatively, one could prescribe the outer radius R+(t) instead of R−(t) by replacing (3.2.14) with

r̃(t,m) = R+(t)− 1

4π2

∫ M

m

dµ

Q(f̃(t))(µ)
;

this identity follows by integrating (3.2.13) and using the extension r̃(t,M) = R+(t).
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where m = m0(r̄) and r̃ = r̃(t,m) = r̃(t,m0(r̄)). If we further set

r̂(t) : ]Rmin, Rmax[→ ]R−(t), R+(t)[, r̂(t, r̄) := r̃(t,m0(r̄)), (3.2.20)

the equations (3.2.12) and (3.2.14) become

∂tf̂ +

(
w
Q(f̂(t))

Q(f0)
− J (f̂(t))

Q(f0)

)
∂r̄f̂ +

(
L

r̂3
− m0(r̄)

r̂2

)
∂wf̂ = 0, (3.2.21)

r̂(t, r̄) = R−(t) +

∫ r̄

Rmin

Q(f0)(s)

Q(f̂(t))(s)
ds; (3.2.22)

where we used that ∂r̄m = 4π2Q(f0) and (3.2.22) is obtained from (3.2.14) via the change of
variables s 7→ µ = m0(s). The ball of radius r̂(t, r̄) around the origin contains for the time
dependent solution f(t) the same amount of mass as the ball of radius r̄ does for the steady
state f0, i.e., m(t, r̂(t, r̄)) = m0(r̄). In this way the steady state’s mass distribution is used
as the reference frame for describing the mass distribution of the time dependent solution.
We hence refer to the system (3.2.21)–(3.2.22) as the (radial) Vlasov-Poisson system in
mass-Lagrange coordinates.

Moreover, observe that the identity (3.2.16) translates to

∂tr̂(t, r̄) =
J (f̂(t))(r̄)

Q(f̂(t))(r̄)
(3.2.23)

for Rmin < r̄ < Rmax.

Linearisation in Mass-Lagrange Coordinates

In order to linearise the Vlasov-Poisson system in mass-Lagrange coordinates (3.2.21)–
(3.2.22) around the steady state f0, we again consider the formal expressions

f̂ = f0 + ε δf̂ +O(ε2), ρ̂ = ρ0 + ε δρ̂+O(ε2), (3.2.24)

as well as

r̂(t, r̄) = r̄ + ε δr̂(t, r̄) +O(ε2) (3.2.25)

with 0 < ε � 1. In particular, inserting r̄ = Rmin and r̄ = Rmax into the latter expression
implies that R±(t) possess the expansions

R−(t) = Rmin + ε δR−(t) +O(ε2), R+(t) = Rmax + ε δR+(t) +O(ε2) (3.2.26)

with δR−(t) = δr̂(t, Rmin) and δR+(t) = δr̂(t, Rmax); it is straight-forward to extend the
definition (3.2.20) of r̂ to r̄ = Rmin and r̄ = Rmax.

We now expand (3.2.21)–(3.2.22) to first order in 0 < ε � 1, i.e., we insert the formal
expressions (3.2.24)–(3.2.26) into the system, use that the steady state solves the system,
and dispense with higher-order terms in ε. With the transport operator now being of the
form

T = w ∂r̄ −
(
m0(r̄)

r̄2
− L

r̄3

)
∂w, (3.2.27)



3.2. THE MASS-LAGRANGIAN PICTURE 49

we arrive at the system

∂tδf̂ + T δf̂ +

(
w
Q(δf̂)

Q(f0)
− J (δf̂)

Q(f0)

)
∂r̄f0 +

(
2m0(r̄)

r̄3
− 3L

r̄4

)
δr̂ ∂wf0 = 0, (3.2.28)

δr̂(t, r̄) = δR−(t)−
∫ r̄

Rmin

Q(δf̂(t))(s)

Q(f0)(s)
ds; (3.2.29)

note that J (f0) = 0 because f0 is even in w. Furthermore, linearising the identity (3.2.23)
yields

∂tδr̂(t, r̄) =
J (δf̂(t))(r̄)

Q(f0)(r̄)
. (3.2.30)

The next step is to transform the linearised system (3.2.28)–(3.2.29) into a second-order
system. This is achieved similarly to the Eulerian picture, i.e., we apply the Antonov trick
and split the linear perturbation δf̂ into its even and odd part in the (radial) velocity w:

δf̂ = δf̂+ + δf̂−, (3.2.31)

where

δf̂±(t, r̄, w, L) =
1

2

(
δf̂(t, r̄, w, L)± δf̂(t, r̄,−w,L)

)
. (3.2.32)

Before deriving suitable identities for these functions, note that Q(δf̂(t)) = Q(δf̂+(t)),
J (δf̂(t)) = J (δf̂−(t)), and that the transport operator (3.2.27) reverses w-parity, i.e.,
T (δf̂±) = (T δf̂)∓. Moreover, the ansatz (2.2.6) for f0 implies that f0 and ∂r̄f0 are even
in w while ∂wf0 is odd in w. Hence, (3.2.28)–(3.2.29) decomposes into even and odd parts
in w as follows:

∂tδf̂+ + T (δf̂−)− J (δf̂−)

Q(f0)
∂r̄f0 = 0, (3.2.33)

∂tδf̂− + T (δf̂+) + w
Q(δf̂+)

Q(f0)
∂r̄f0 +

(
2m0(r̄)

r̄3
− 3L

r̄4

)
δr̂ ∂wf0 = 0, (3.2.34)

δr̂(t, r̄) = δR−(t)−
∫ r̄

Rmin

Q(δf̂+(t))(s)

Q(f0)(s)
ds. (3.2.35)

In order to calculate the t-derivative of (3.2.34), we first use (3.2.27) and (3.2.33) to infer

∂tQ(δf̂+(t)) = −Q(T (δf̂−)) +
J (δf̂−)

Q(f0)
Q(∂r̄f0) =

= −∂r̄J (δf̂−) +
J (δf̂−)

Q(f0)
∂r̄Q(f0) = −Q(f0) ∂r̄

[
J (δf̂−)

Q(f0)

]
. (3.2.36)

Then, differentiating (3.2.34) w.r.t. t and inserting (3.2.30), (3.2.33), and (3.2.36) leads to

0 = ∂2
t δf̂− − T 2δf̂− + T

(
J (δf̂−)

Q(f0)
∂r̄f0

)
− w ∂r̄

[
J (δf̂−)

Q(f0)

]
∂r̄f0+

+

(
2m0(r̄)

r̄3
− 3L

r̄4

)
J (δf̂−)

Q(f0)
∂wf0 =

= ∂2
t δf̂− − T 2δf̂− −Rδf̂−, (3.2.37)
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where

Rg := −T
(
J (g)

Q(f0)
∂r̄f0

)
+ w ∂r̄

[
J (g)

Q(f0)

]
∂r̄f0 −

(
2m0(r̄)

r̄3
− 3L

r̄4

)
J (g)

Q(f0)
∂wf0 (3.2.38)

for suitable odd-in-w functions g = g(r̄, w, L). Using the ansatz (2.2.6) for f0 and the
structure of the transport operator (3.2.27) allows us to simplify the latter expression:

Rg = ∂Eϕ(E,L)

[
−T
(
J (g)

Q(f0)
∂r̄E

)
+ w ∂r̄

[
J (g)

Q(f0)

]
∂r̄E − w

(
2m0(r̄)

r̄3
− 3L

r̄4

)
J (g)

Q(f0)

]
=

= ∂Eϕ(E,L)

[
−w J (g)

Q(f0)
∂2
r̄E − w

J (g)

Q(f0)

(
2m0(r̄)

r̄3
− 3L

r̄4

)]
=

= −4π2∂Eϕ(E,L)
w

r̄2
J (g), (3.2.39)

where we used the fact that T (∂Eϕ(E,L)) = 0 in the first equation and

∂2
r̄E = ∂2

r̄

[
1

2
w2 + U0 +

L

2r̄2

]
= −2m0

r̄3
+

4π2

r̄2
Q(f0) +

3L

r̄4
(3.2.40)

in the last equation of (3.2.39).
We have therefore shown that the linearised dynamics in mass-Lagrange coordinates is

governed by the equation
∂2
t δf̂− + Lδf̂− = 0, (3.2.41)

where the linearised operator L is again of the form (1.2.9). In particular, comparing (3.2.39)
to (3.1.13) shows that R is indeed identical to the response operator in the Eulerian picture.

Assume now that λ > 0 is an eigenvalue of L = −T 2 −R with corresponding odd-in-w
eigenfunction g = g(r, w, L). Then δf̂−(t) = cos(

√
λ t)g solves the linearized system (3.2.37).

If we impose the initial condition δr̂(0) = 0, (3.2.25) and (3.2.30) yield

r̂(t, r̄) = r̄ + ε
sin(
√
λ t)√
λ

J (g)

Q(f0)
(r̄) +O(ε2). (3.2.42)

Hence, to linear order, the radius of the ball containing a certain mass oscillates around the
corresponding radius r̄ for the steady state. Note that the period of this oscillation is 2π√

λ
,

which is the same as in the Eulerian picture. Of course, the details of the oscillation – like
which portions of the configuration take part in it – depend on the actual eigenfunction g,
but, to linear order, (3.2.42) still nicely explains the pulsating behaviour of the solution in
the case of a positive eigenvalue of L.

3.3 The Lagrangian Picture

The main concept in this section is to interpret a solution of the Vlasov-Poisson system
as redistributing the particles in phase space. We first derive the system for the mapping
which describes this redistribution process before linearising it.

The Lagrangian Formulation of the Vlasov-Poisson System

We study the initial value problem for the Vlasov-Poisson system (1.1.2)–(1.1.5) with initial
data

f̊ = f0 ◦ Z̊−1, (3.3.1)
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where f0 is the fixed steady state and

Z̊ : Ω0 → Ω0 (3.3.2)

is a diffeomorphism onto some open set Ω0 ⊂ R3 × R3; recall the definition (2.2.44) of Ω0.
We further assume that Z̊ is measure-preserving, i.e., det ∂zZ̊ = 1 on Ω0, where we use the
notation z = (x, v). Initial data of the form (3.3.1) are said to be dynamically accessible from
the steady state f0, cf. [118, Sc. VI.C], and are particularly natural from a physics point of
view as, e.g., an external force acting on the equilibrium leads to such perturbations.

We describe the solution of the Vlasov-Poisson system induced by the initial value f̊
using the time-dependent family

Z(t) = (X(t), V (t)) : Ω0 → Ωt (3.3.3)

of measure-preserving diffeomorphisms onto open sets Ωt ⊂ R3 × R3 s.t.

Ẋ = V, V̇ = −∂xUZ(t)(X), (3.3.4)

where

UZ(t)(x) = −
∫
R3×R3

f0(z̃)

|x−X(t, z̃)|
dz̃, ∂xUZ(t)(x) =

∫
R3×R3

x−X(t, z̃)

|x−X(t, z̃)|3
f0(z̃) dz̃.

(3.3.5)
We refer to (3.3.4)–(3.3.5) as the Lagrangian formulation of the Vlasov-Poisson system. The
basic unknown of this system is the flow map Z(t) and the configuration space is the set
of measure-preserving diffeomorphisms. The mathematical structure of this configuration
space is studied in [38, Sc. 4], see also [109]. The initial condition becomes

Z(0) = Z̊. (3.3.6)

If Z(t) is a solution of this initial value problem, f(t, z) = f0(Z(t)−1(z)), extended by 0
outside Ωt = Z(t,Ω0), defines a solution of the corresponding initial value problem for the
original Vlasov-Poisson system (provided that the steady state f0 is sufficiently regular) with
supp (f(t)) = Ωt. This can be verified by using the relation between the Vlasov equation
and the characteristic flow Z(t) ◦ Z̊−1, cf. [143, Lemma 1.3].

Conversely, let f be a sufficiently regular solution56 of the Vlasov-Poisson system (1.1.2)–
(1.1.5) satisfying the initial condition f(0) = f̊ . We then define Z(t) = (X,V )(t) : Ω0 →
R3 × R3 as the solution of

Ẋ = V, V̇ = −∂xU(t,X), (X,V )(0, x, v) = Z̊(x, v), (3.3.7)

where U = U(t, x) is the gravitational potential associated to f . Since f(t, z) =
f0(Z(t)−1(z)) by (3.3.1) and [143, Lemma 1.3(b)], it is straight-forward to verify that Z
indeed solves (3.3.4)–(3.3.6).

Linearisation in the Lagrangian Formulation

We now linearise the Vlasov-Poisson system in the Lagrangian formulation (3.3.4)–(3.3.5)
around the steady state f0; see [172, Sc. III] for a related approach. In the Lagrangian

56The regularity of f is required for the regularity of Z. For example, if f is a classical solution in the
sense of [143, Sc. 1.2], Z(t) : Ω0 → Z(t,Ω0) defined by (3.3.7) is indeed a measure-preserving diffeomorphism,
cf. [143, Lemma 1.2].
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formulation, the equilibrium state corresponds to the initial condition Z̊ = id. We denote
the solution of (3.3.4)–(3.3.5) with Z(0) = id by Z0(t), which is the characteristic flow of
the steady state.

For small perturbations of the steady state it is expected that Z(t) ◦ Z0(t)−1 remains
close to the identity. Hence, the natural definition of the linear perturbation δZ is given
through the (formal) expansion

Z(t) ◦ Z0(t)−1 = id + ε δZ(t) +O(ε2), (3.3.8)

or equivalently,

Z(t) = Z0(t) + ε δZ(t) ◦ Z0(t) +O(ε2), (3.3.9)

for 0 < ε � 1. Differentiating (3.3.9) w.r.t. t and linearising, i.e., dropping higher-order
terms in ε, leads to

Ż = Ż0 + ε [(∂t + T )δZ] ◦ Z0, (3.3.10)

where T = v · ∂x− ∂xU0 · ∂v is again the transport operator of the steady state. In order to
derive a system governing the evolution of δZ(t) we expand the right-hand side of (3.3.4),
in particular, the force term ∂xUZ(t) defined in (3.3.5): First observe

∂xUZ0(t)+ε δZ(t,Z0(t))(X0(t) + ε δX(t, Z0(t))) = ∂xUZ0(t)(X0(t)) + ε I1 + ε I2, (3.3.11)

where we again dropped the higher-order terms in ε and introduce the abbreviations

I1 = I1(t, z) := ∂ε
∣∣
ε=0

∂xUZ0(t)(X0(t, z) + ε δX(t, Z0(t, z))), (3.3.12)

I2 = I2(t, z) := ∂ε
∣∣
ε=0

∂xUZ0(t)+ε δZ(t,Z0(t))(X0(t, z)). (3.3.13)

Since UZ0(t) = U0 is the gravitational potential of the steady state and thus smooth, we
deduce

I1 = D2U0(X0(t, z)) δX(t, Z0(t, z)), (3.3.14)

where D2U0 denotes the Hessian matrix of U0. Computing I2 is harder because ε is part
of the function generating the potential. We resolve this problem by rewriting I2 s.t. the
ε-dependence is again contained in the argument of a suitable potential. Multiplying I2

with a test function ψ ∈ C∞c (Ω0) and integrating w.r.t. z ∈ Ω0 leads to∫
R3×R3

I2(z)ψ(z) dz =

=

∫
R3×R3

f0(z̃) ∂ε
∣∣
ε=0

[∫
R3×R3

X0(t, z)− (X0(t, z̃) + ε δX(t, Z0(t, z̃)))

|X0(t, z)− (X0(t, z̃) + ε δX(t, Z0(t, z̃)))|3
ψ(z) dz

]
dz̃ =

=

∫
R3×R3

f0(z̃) ∂ε
∣∣
ε=0

[
−
∫
R3×R3

X0(t, z̃) + ε δX(t, Z0(t, z̃))− x̄
|X0(t, z̃) + ε δX(t, Z0(t, z̃))− x̄|3

ψ(Z0(t)−1(z̄)) dz̄

]
dz̃

(3.3.15)

by inserting (3.3.5) and using the measure-preserving change of variables z̄ = Z0(t, z). In
order to rewrite the latter expression, we introduce the notation

UψZ0(t)(x) := −
∫
R3×R3

ψ(z̄)

|x−X0(t, x̄)|
dz̄ = −

∫
R3×R3

ψ(Z0(t)−1(z̄))

|x− x̄|
dz̄, x ∈ R3,

(3.3.16)
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for the gravitational potential generated by ψ ◦ Z0(t)−1. This potential is again smooth
and, continuing the calculation (3.3.15), we arrive at∫

R3×R3

I2(z)ψ(z) dz =

= −
∫
R3×R3

f0(z̃) ∂ε
∣∣
ε=0

[
∂xU

ψ
Z0(t)(X0(t, z̃) + ε δX(t, Z0(t, z̃)))

]
dz̃ =

= −
∫
R3×R3

f0(z̃)D2UψZ0(t)(X0(t, z̃)) δX(t, Z0(t, z̃)) dz̃. (3.3.17)

Reversing the change of variables performed in (3.3.15) and changing the order of integration
then yields∫

R3×R3

I2(z)ψ(z) dz = −
∫
R3×R3

ψ(z) ∂xdivxŨδX(t)(X0(t, z)) dz, (3.3.18)

where

ŨδX(t)(x) := −
∫
R3×R3

f0(z̃)

|x− x̃|
δX(t, z̃) dz̃, x ∈ R3, (3.3.19)

is the gravitational potential generated by f0 δX(t). Since ψ is arbitrary we hence conclude

I2 = −∂xdivxŨδX(t)(X0(t, z)). (3.3.20)

Inserting (3.3.10), (3.3.11), (3.3.14), and (3.3.20) into (3.3.4) and comparing terms linear
in ε then results in

(∂t + T )δX = δV, (3.3.21a)

(∂t + T )δV = −D2U0 δX + ∂xdivxŨδX , (3.3.21b)

where we again used that Z0(t) : Ω0 → Ω0 is a diffeomorphism. The system (3.3.21) is the
Lagrangian linearisation of the Vlasov-Poisson system, which was previously stated in [172,
Eqn. (6)].

In order to further analyse this system we use certain commutator relations between the
transport operator T and derivatives w.r.t. x and v. For smooth functions f : R3×R3 → R
and vector fields F : R3 × R3 → R3 direct computation yields57

T ∂xf = ∂xT f +D2U0 ∂vf, (3.3.22)

T ∂vf = ∂vT f − ∂xf, (3.3.23)

T divxF = divxT F +D2U0 ·DvF, (3.3.24)

T divvF = divvT F − divxF, (3.3.25)

where the dot in (3.3.24) denotes the Frobenius inner product. Using (3.3.24) and (3.3.25)
implies that every solution δZ = (δX, δV ) of the system (3.3.21) satisfies

(∂t + T )(divzδZ) = (∂t + T )(divxδX + divvδV ) =

= D2U0 ·DvδX + divx(∂t + T )δX − divxδV + divv(∂t + T )δV =

= D2U0 ·DvδX + divxδV − divxδV + divv(−D2U0δX + ∂xdivxŨδX(t)) = 0. (3.3.26)

57Obviously, the same identities also hold when f or F are only defined on a subset of R3 × R3.
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Because the unique solution of the initial value problem (∂t + T )g = 0, g
∣∣
t=0

= 0 is given
by g(t, z) ≡ 0, cf. [143, Lemma 1.3], the calculation (3.3.26) shows that divzδZ(t) = 0 for
all t provided this is true for t = 0. In this situation, the flow δZ is measure preserving,
i.e., phase space volume is preserved at the linear level. This property is required for
the solution Z given by (3.3.9) to be in the configuration space of the (non-linearised)
Lagrangian formulation of the Vlasov-Poisson system (3.3.4)–(3.3.5).

In what follows, we restrict δZ to a particular form which guarantees this preservation of
phase space volume. Concretely, we assume that there exists a smooth function h : R×Ω0 →
R, (t, z) 7→ h(t, z) s.t. δZ is the skew-gradient of h, i.e.,

δX = ∂vh, δV = −∂xh. (3.3.27)

We call h the generating function of the linear perturbation δZ. Inserting the ansatz (3.3.27)
into (3.3.21) leads to the following system for the generating function:

(∂t + T )∂vh = −∂xh, (3.3.28a)

(∂t + T )∂xh = D2U0 ∂vh− ∂xdivxŨ∂vh. (3.3.28b)

Using the commutator identities (3.3.22) and (3.3.23) transforms this system into

∂v(∂t + T )h = 0, (3.3.29a)

∂x(∂t + T )h = −∂xdivxŨ∂vh. (3.3.29b)

Integrating (3.3.29a) in v using that {v ∈ R3 | (x, v) ∈ Ω0} is connected for fixed x ∈ R3

then shows that (3.3.29) is equivalent to

(∂t + T )h = f(t, x) (3.3.30)

for some f : R× R3 → R with

∂xf = −∂xdivxŨ∂vh. (3.3.31)

We next apply the Antonov trick similar to Section 3.1, i.e., we split the generating
function h = h(t, x, v) into its even-in-v and odd-in-v parts h±. Decomposing (3.3.30) in a
similar way leads to the system

∂th+ + T (h−) = f, (3.3.32a)

∂th− + T (h+) = 0. (3.3.32b)

After differentiating (3.3.32b) w.r.t. t, inserting (3.3.31) and (3.3.32a), and observing
that ∂vh+ is odd in v and thus does not contribute to Ũ∂vh = Ũ∂vh− since f0 is even
in v, we arrive at

∂2
t h− − T 2(h−)− v · ∂xdivxŨ∂vh− = 0. (3.3.33)

This equation is the second-order formulation of the Lagrangian linearisation of the Vlasov-
Poisson system for the ansatz (3.3.27) for δZ; recall that T is given by (1.2.10) and Ũ is
defined in (3.3.19).

We again restrict the discussion to radial perturbations, i.e., we assume that the generat-
ing function h is spherically symmetric in the sense of Definition 2.1.1. By Remark 2.1.2 (b),
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we may thus write h = h(t, x, v) = h(t, r, w, L); analogous representations in (r, w, L)-
coordinates also hold for h±. Changing to radial variables allows us to rewrite the poten-
tial Ũ∂vh− : First, we integrate by parts in v and insert (3.1.12) to obtain

Ũ∂vh−(t)(x) = −
∫
R3×R3

f0(z̃)

|x− x̃|
∂vh−(t, z̃) dz̃ =

∫
R3×R3

h−(t, z̃)

|x− x̃|
∂vf0(z̃) dz̃ =

=

∫
R3

1

|x− x̃|

∫
R3

h−(t, z̃)
[
∂Eϕ(Ẽ, L̃) ṽ + ∂Lϕ(Ẽ, L̃)

(
2|x̃|2ṽ − 2x̃ · ṽ x̃

)]
dṽ dx̃

(3.3.34)

for x ∈ R3, where we use the abbreviation (Ẽ, L̃) = (E(z̃), L(z̃)). Next, we use the spherical
symmetry of h−(t), E, and L and apply the change of variables ṽ 7→ (w(z̃), L(z̃)) = (w̃, L̃)
defined by (2.1.3) to derive the following identity for the inner integral in (3.3.34):∫

R3

h−(t, z̃)
[
∂Eϕ(Ẽ, L̃) ṽ + ∂Lϕ(Ẽ, L̃)

(
2|x̃|2ṽ − 2x̃ · ṽ x̃

)]
dṽ =

=
π

|x̃|3
x̃

∫ ∞
0

∫
R
w̃ h−(t, |x̃|, w̃, L̃) ∂Eϕ(E(|x̃|, w̃, L̃), L̃) dw̃ dL̃ (3.3.35)

for x̃ ∈ R3 \ {0}.58 In particular, the two terms containing ∂Lϕ cancel each other out.59

Inserting (3.3.35) into (3.3.34) shows, after a straight-forward calculation60, that Ũ∂vh− is

a radial vector field, i.e., there exists Ṽh−(t) : ]0,∞[→ R s.t. Ũ∂vh− is of the form

Ũ∂vh−(t)(x) =
x

|x|
Ṽh−(t)(|x|), x ∈ R3 \ {0}. (3.3.36)

For such radial vector fields there holds the identity

∂xdivxŨ∂vh− = ∆Ũ∂vh− , (3.3.37)

which, together with (3.3.34) and (3.3.35), implies

∂xdivxŨ∂vh−(t)(x) = −4π2 x

|x|3

∫ ∞
0

∫
R
w ∂Eϕ(E(|x|, w, L), L)h−(t, |x|, w, L) dw dL

(3.3.38)
for x ∈ R3 \ {0}. We have thus shown that the second-order formulation of the Lagrangian
linearisation of the Vlasov-Poisson system (3.3.33) takes on the following form in radial
coordinates (r, w, L):

∂2
t h− + L̃(h−) = 0, (3.3.39)

where

(L̃g)(r, w, L) := −(T 2g)(r, w, L) +
4π2

r2
w

∫ ∞
0

∫
R
w̃ ∂Eϕ(E(r, w̃, L̃), L̃) g(r, w̃, L̃) dw̃ dL̃

(3.3.40)
for suitable odd-in-w functions g = g(r, w, L).

58One way to establish (3.3.35) is as follows: Pick A ∈ SO(3) s.t. Ax̃ = |x̃| e3 and apply the change of

variables given by Aṽ = (

√
L̃
|x̃| cos(φ),

√
L̃
|x̃| sin(φ), w̃)T with 0 < φ < 2π, L̃ > 0, and w̃ ∈ R.

59Recall that a similar effect also occurred when linearising in Eulerian coordinates (cf. Section 3.1), i.e., all
terms which contain the L-derivative of ϕ cancel out when considering spherically symmetric perturbations.

60Choose A ∈ SO(3) s.t. Ax = |x| e3 and express Ax̃ in standard spherical coordinates.
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Observe that L̃ differs from the operator L defined in (1.2.9) which occurs when using
the linearisation schemes from Sections 3.1 and 3.2.61 Nonetheless, the following equivalence
holds:

L(g ∂Eϕ) = ∂Eϕ L̃g (3.3.41)

for g as above, which is due to T (g ∂Eϕ) = ∂Eϕ T g. In particular, on a formal level, the point
spectra of L and L̃ are identical since any eigenfunction g̃ of L̃ gives an eigenfunction g :=
∂Eϕ g̃ of L to the same eigenvalue and vice versa.62

Now assume that λ > 0 is an eigenvalue of the linearised operator L and thus, by the
above discussion, also an eigenvalue of L̃. Let g = g(r, w, L) be an odd-in-w eigenfunction
associated to the eigenvalue λ of L̃. Then

h−(t, r, w, L) := cos(
√
λ t) g(r, w, L) (3.3.42)

defines a solution of (3.3.39) which is 2π√
λ

-periodic in time. Integrating (3.3.32a) in t then

yields an associated even-in-w part h+ which is also time-periodic. Overall, we arrive
at a 2π√

λ
-periodic solution δZ of the Lagrangian linearisation of the Vlasov-Poisson sys-

tem (3.3.21) generated by h = h+ +h− via (3.3.27). By the above discussion, the solution f
of the Vlasov-Poisson system in Eulerian coordinates associated to the flow map Z given
by (3.3.9) then satisfies

supp (f(t)) = Z(t,Ω0) = {z + ε δZ(t, z) | z ∈ Ω0} (3.3.43)

to linear order. Hence, on the linear level, the eigenvalue λ leads to a perturbed solution f
whose phase space support oscillates (or pulsates) around the respective support of the
steady state f0 with period 2π√

λ
. Recall that the linearisation in mass-Lagrange coordinates

could only explain the pulsations of the radial support of the solution, while the present
linearisation scheme shows that the entire phase space support of the solution indeed pul-
sates.

61We would arrive at the operator 1
∂Eϕ
L instead of L̃ if we replaced h with h

∂Eϕ
in the ansatz (3.3.27) for

the linearised perturbation.
62Later we limit the discussion to steady states where ∂Eϕ does not vanish on the steady state support.

This is why we do not worry about possible zeros of ∂Eϕ when relating L to L̃.



Chapter 4

Properties of the Operators

In this chapter we analyse the operators which describe the linearised dynamics around a
fixed steady state f0. The class of equilibria for which we (can) conduct this analysis is
further restricted compared to Section 2.2. We collect all assumptions on the underlying
steady state f0 in Section 4.1 and prove some technical properties of the equilibrium.

As derived in Chapter 3, the linearised dynamics around this steady state are governed
by the linearised operator L = −T 2 − R via the equation (1.2.8). In order to study the
properties of L, we have to define it on a suitable domain D(L) of a fitting Hilbert space.
In particular, defining the derivative operator T (and its square) in a suitable weak sense
is important in order for the resulting operators to behave well from a functional analysis
point of view. All these definitions are provided in Section 4.2.

In Sections 4.3 and 4.4, we then separately analyse the two parts T 2 and R of the
linearised operator. Afterwards, we combine these properties in a suitable way to study the
whole linearised operator L in Section 4.5. With the discussion from Chapter 3 in mind, it
is of particular interest to investigate the existence of positive eigenvalues of L, which we
start doing in Section 4.5.4. Further techniques to analyse the presence of such eigenvalues
will then be developed in Chapter 5.

Most of the definitions and results from this chapter originate from [62, 147]. Related
discussions can also be found in [49, 61, 85, 165].

4.1 The Steady States Under Consideration

We consider a steady state f0 as constructed in Proposition 2.2.9. Recall that f0 is spheri-
cally symmetric in the sense of Definition 2.1.1 (a), solves the Vlasov-Poisson system in the
sense of Definition 2.2.2, and is of the form

f0(x, v) = ϕ(E(x, v), L(x, v)) = Φ(E0 − E(x, v)) (L(x, v)− L0)`+ (4.1.1)

for x, v ∈ R3. Here, L is the squared modulus of the angular momentum given by (2.2.4)
and E is the particle energy defined as

E(x, v) =
1

2
|v|2 + U0(x), E(r, w, L) =

1

2
w2 + ΨL(r), (4.1.2)

where U0 and ΨL are the potential and the effective potential (recall Definition 2.2.11)
associated to the steady state, respectively. In order to establish the existence of the steady
state, we made the assumptions (ϕ1)–(ϕ3). For the upcoming analysis, we additionally

57
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require that the parameters `, L0, and Φ of the microscopic equation of state ϕ satisfy the
following conditions:63

(ϕ4) If L0 = 0, then ` = 0, i.e., the steady state is isotropic.

(ϕ5) The function Φ is continuous on R and continuously differentiable on ]0,∞[ with

Φ′(η) > 0, η > 0. (4.1.3)

Hence, ϕ given by (2.2.12) is continuously differentiable w.r.t. E on ]−∞, E0[×R.64

We extend ∂Eϕ with 0 onto R2 and use the abbreviation

ϕ′ := ∂Eϕ (4.1.4)

for this extension.

Some comments on these additional assumptions are in order.

Remark 4.1.1. (a) The condition (ϕ4) implies that we consider either an isotropic
steady state (L0 = 0 = `) or a shell (L0 > 0). Compared to (ϕ1), we now exclude
ansatz functions with L0 = 0 < ` by assuming (ϕ4). The reason for this is the follow-
ing: For any steady state of the form (4.1.1) with L0 = 0 < `, there hold 0 ∈ supp (ρ0)
and ρ0(0) = 0, recall (2.2.27) and Proposition 2.2.9 (c). These two properties, how-
ever, result in the period function T being unbounded on the (E,L)-triangle D0, cf.
Remark A.4.5, which is undesirable for the following analysis.65

(b) We shall see later that the monotonicity condition (ϕ5) is crucial to the mathematical
basis of our analysis, cf. Remark 4.4.3. This condition is, however, also natural from
a physics point of view [184]: It implies ϕ′ < 0 inside the steady state support, i.e.,
the concentration of ever more energetic particles is decreasing within the equilibrium
configuration. We further note that the dynamics close to the steady state might be
qualitatively different for steady states which do not satisfy (ϕ5), see [53, 178].

(c) One could weaken the monotonicity condition (ϕ5) by only requiring Φ′(η) > 0 for
0 < η ≤ κ, where κ = E0 − U0(0) > 0 is the parameter used for the construction of
the steady state in Proposition 2.2.9. The reason for this is that we only need ϕ′ < 0
inside the steady state support and E0 − E(x, v) ∈ ]0, κ] for (x, v) ∈ Ω0. Anyway, the
values of Φ on ]κ,∞[ do not affect the associated steady state, which is why we stick
to (ϕ5).

(d) Together with (ϕ2), the continuity of Φ on R implies limη↘0 Φ(η) = 0, which ensures
that several boundary terms will vanish in what follows. From a physics point of view,
it makes sure that the steady state passes continuously from its phase space support
into the vacuum, at least at the part of the boundary given by {E = E0}.

(e) The continuity of Φ′ on ]0,∞[ is included into (ϕ5) to make sure that integrals in-
volving ϕ′ are well-defined.66 It is possible to relax this assumption.

63Recall that the cut-off energy E0 < 0 is only implicitly determined by the parameter κ = E0−U0(0) > 0
and the equations satisfied by the steady state, cf. Proposition 2.2.9.

64By (ϕ2), ϕ is obviously differentiable on ]E0,∞[× R as well with ∂Eϕ = 0 on ]E0,∞[× R.
65Most of the results proven in this chapter can also be obtained in the case of an unbounded period

function (and steady state support) by refining the arguments suitably. In the specific situation of an
isochrone steady state [18, 64, 65], this will be part of [7].

66More precisely, we use the continuity of ϕ′ to make sure that various integrands are measurable.
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(f) The monotonicity condition (ϕ5) implies that we necessarily have to choose k > 0 in
the polytropic case (ϕ3) (ii).

Further observe that the conditions (ϕ1)–(ϕ5) are satisfied by the prominent exam-
ples of ansatz functions (2.2.17)–(2.2.19), at least after suitably adjusting the parameters.
Concretely, the anisotropic polytropes

ϕ(E,L) = (E0 − E)k+ (L− L0)`+ with L0 > 0, ` > −1

2
, 0 < k < 3`+

7

2
, (4.1.5)

the isotropic polytropes

ϕ(E,L) = ϕ(E) = (E0 − E)k+ with 0 < k <
7

2
, (4.1.6)

and the (isotropic) King models

ϕ(E,L) = ϕ(E) =
(
eE0−E − 1

)
+

(4.1.7)

are all part of the admissible class of steady states.
Before actually analysing the linearised system associated to the steady state f0, we

derive some technical statements involving the equilibrium. The first result is an important
integration-by-parts identity which will be frequently used in the remainder of this thesis.
The same identity is established in [57, p. 507], [62, Eqn. (4.5)], [96, Eqn. (B.3)], and [85,
Lemma 2.5] among others, see also [58, Lemma 4.4] for more general such formulae in a
different context. Recall (2.2.9) for the definition of the stationary mass density ρ0.

Lemma 4.1.2. For r > 0 it holds that∫ ∞
0

∫
R
w2 |ϕ′(E(r, w, L), L)| dw dL =

r2

π
ρ0(r). (4.1.8)

Proof. We use (ϕ5) to obtain∫ ∞
0

∫
R
w2 |ϕ′(E(r, w, L), L)| dw dL = −

∫ ∞
0

∫ √2E0−2ΨL(r)

−
√

2E0−2ΨL(r)
w2 ϕ′(E(r, w, L), L) dw dL

(4.1.9)
for r > 0; the inner integral is meant to vanish if E0 − ΨL(r) ≤ 0. By (4.1.1) and (4.1.2),
there holds

wϕ′(E(r, w, L), L) = ∂w[ϕ(E(r, w, L), L)] = ∂wf0(r, w, L) (4.1.10)

for (r, w, L) ∈ Ω0, recall (2.2.47). Hence, for all (L, r) ∈ ]0,∞[× [0,∞[ where the w-integral
in (4.1.9) does not vanish, integrating by parts yields

−
∫ √2E0−2ΨL(r)

−
√

2E0−2ΨL(r)
w2 ϕ′(E(r, w, L), L) dw =

∫ √2E0−2ΨL(r)

−
√

2E0−2ΨL(r)
f0(r, w, L) dw =

=

∫
R
f0(r, w, L) dw; (4.1.11)

in particular, the boundary terms vanish due to (ϕ5)67 and the last identity follows by (ϕ2).
Inserting (4.1.11) into (4.1.9) then implies∫ ∞

0

∫
R
w2 |ϕ′(E(r, w, L), L)|dw dL =

∫ ∞
0

∫
R
f0(r, w, L) dw dL =

r2

π
ρ0(r) (4.1.12)

67In fact, we impose the continuity of Φ on R mainly so that the boundary term disappear here. If we
would not do this, limη↘0 Φ(η) could be positive, resulting in the presence of boundary terms in (4.1.11).
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for r > 0 by changing variables from (w,L) to v. In the above arguments we have focused
on the case where the integrals do not vanish. Notice, however, that the sets where ϕ and ϕ′

vanish are identical by (ϕ2) and (ϕ5).

The second result gives an estimate on the velocity integral of ϕ′ and will be used to
bound various integrals later. This estimate originates from [62, Eqn. (2.5)], see also [15,
p. 166] for a similar bound in the isotropic case and [49, Sc. 4.1] for related arguments in a
different context.

Lemma 4.1.3. There exists a constant C > 0 s.t. for all x ∈ R3 there holds∫
R3

|ϕ′(E(x, v), L(x, v))| dv ≤ C. (4.1.13)

Proof. For x ∈ R3 \ {0} and r = |x|, we perform a calculation similar to (2.2.20)–(2.2.27)
to rewrite the integral on the left-hand side of (4.1.13) as follows:∫

R3

|ϕ′(E(x, v), L(x, v))|dv

=
π

r2

∫ ∞
L0

∫ √2E0−2ΨL(r)

−
√

2E0−2ΨL(r)
Φ′
(
E0 −

1

2
w2 −ΨL(r)

)
(L− L0)`+ dw dL =

=
2π

r2

∫ E0

ΨL0
(r)

Φ′(E0 − E)

∫ 2r2E−2r2U0(r)

L0

(L− L0)`√
2E − 2ΨL(r)

dLdE =

= c` r
2`

∫ E0−ΨL0
(r)

0
Φ′(η) (E0 −ΨL0(r)− η)`+

1
2 dη (4.1.14)

with constant c` > 0 again given by (2.2.26); the integral is meant to vanish if E0−ΨL0(r) ≤
0.68 Since ` > −1

2 , integrating by parts yields∫
R3

|ϕ′(E(x, v), L(x, v))|dv = r2`g′(E0 −ΨL0(r)), (4.1.15)

where g′ is defined in (2.2.28). This estimate also extends to x = 0 using the convention
00 = 1 in the isotropic case L0 = 0 = `. We thus conclude (4.1.13) because g′ is continuous
by Lemma 2.2.6, E0 −ΨL0(r) ≤ κ for r > 0, and sup{r2` | ρ0(r) > 0} <∞.

Next, we use the further assumptions (ϕ4) and (ϕ5) on the steady state to derive useful
representations of the (interior of the) steady state support Ω0.69 Recall (2.2.44) and (2.2.45)
for the definition of Ω0 in (x, v)-variables and (r, w, L)-variables, respectively.

Lemma 4.1.4 (The Structure of Ω0). (a) In the isotropic case L0 = 0 = ` it holds that

Ω0 = {(x, v) ∈ R3 × R3 | E(x, v) < E0}, (4.1.16)

Ω0 = {(r, w, L) ∈ ]0,∞[× R× [0,∞[ | E(r, w, L) < E0}. (4.1.17)

Otherwise, L0 > 0 and it holds that

Ω0 = {(x, v) ∈ R3 × R3 | E(x, v) < E0 & L(x, v) > L0}, (4.1.18)

Ω0 = {(r, w, L) ∈ ]0,∞[× R× [0,∞[ | E(r, w, L) < E0 & L > L0}. (4.1.19)
68In the polytropic case Φ(η) = ηk+, one could, in fact, explicitly compute the integral (4.1.14) by applying

the integral identity (2.2.23).
69Notice that the statements of Lemma 4.1.4 (a)–(c) are, in general, not true if the steady state satisfies

only (ϕ1)–(ϕ3) because it could then be possible that Φ(η) = 0 for some η > 0.
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(b) In (x, v)-coordinates as well as in (r, w, L)-coordinates it holds that

Ω0
a.e.
= {E < E0 & L > L0}, (4.1.20)

i.e., the sets are identical up to sets of measure zero.

(c) In Cartesian (x, v)-coordinates, the set Ω0 ⊂ R3 × R3 is open.70

(d) The relation between the representations of Ω0 in (x, v)-coordinates and (r, w, L)-
coordinates is

Ω0 = {(x, v) ∈ R3 × R3 | x 6= 0 & (|x|, x · v
|x|

, |x× v|2) ∈ Ω0}. (4.1.21)

Proof. The representations of Ω0 claimed in part (a) follow directly by the ansatz (4.1.1)
because Φ(η) > 0 is equivalent to η > 0 by (ϕ2) and (ϕ5); recall the convention (2.2.13).

Part (a) together with the fact71 that {(x, v) ∈ R3 × R3 | L(x, v) = 0} forms a set of
measure zero in R3 × R3 then yields the relation (4.1.20).

Ω0 being open in R3 × R3 is due to the regularity of U0, while part (d) follows directly
by the definitions of the different representations of Ω0.

Lastly, we study the connection between Ω0 and the (E,L)-support D0 of the steady
state; recall (2.2.88) for the definition of the latter set.

Lemma 4.1.5. In the isotropic case L0 = 0 = ` it holds that

D0 = {(E(x, v), L(x, v)) | (x, v) ∈ Ω0 with L(x, v) > 0 & E(x, v) 6= Emin
L(x,v)}; (4.1.22)

recall Lemma 2.2.12 for the definition of Emin
L . In the anisotropic case L0 > 0 it holds that

D0 = {(E(x, v), L(x, v)) | (x, v) ∈ Ω0 with E(x, v) 6= Emin
L(x,v)}; (4.1.23)

In both cases,

D0
a.e.
= (E,L)(Ω0) = {(E(x, v), L(x, v)) | (x, v) ∈ Ω0}. (4.1.24)

The analogues of these statements in (r, w, L)-coordinates hold true as well.

Proof. For (x, v) ∈ R3 × R3 with L(x, v) > 0, changing to (r, w, L)-coordinates yields

E(x, v) ≥ ΨL(x,v)(|x|) ≥ Emin
L(x,v), (4.1.25)

with

E(x, v) = Emin
L(x,v) ⇔ x · v = 0 & |x| = rL(x,v) (4.1.26)

by Lemma 2.2.12. Together with Lemma 4.1.4 this shows (4.1.22) and (4.1.23). In order to
deduce (4.1.24) we further note that {(x, v) ∈ R3 × R3 | x · v = 0 ∨ x × v = 0} is a set of
measure zero.

70Ω0 is also open in (r, w, L)-coordinates when considering it in the topology of ]0,∞[× R× [0,∞[.
71Note that L(x, v) = 0 is equivalent to x = 0 ∨ v ∈ span(x).
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4.2 Definition of the Operators & Function Spaces

For a fixed steady state f0 as specified in the previous section, we now lay the mathematical
foundations for the upcoming analysis by defining the function spaces and operators in a
suitable way. The definitions provided here originate from [62, 147, 165].

We start by generalising the concept of spherical symmetry introduced in Definition 2.1.1
to functions which are only defined almost everywhere (henceforth abbreviated as “a.e.”).

Definition 4.2.1 (Spherical Symmetry Almost Everywhere). Let n ∈ N.

(a) A function f : Rn → R is spherically symmetric almost everywhere (on Rn) if for any
rotation matrix A ∈ SO(n) there holds f(x) = f(Ax) for a.e.72 x ∈ Rn.

(b) A function f : Rn×Rn → R is spherically symmetric almost everywhere (on Rn×Rn)
if for any rotation matrix A ∈ SO(n) there holds f(x, v) = f(Ax,Av) for a.e.73

(x, v) ∈ Rn × Rn.

(c) A function f : Ω → R with Ω ⊂ Rn or Ω ⊂ Rn × Rn is spherically symmetric almost
everywhere (on Ω) if its extension by 0 is spherically symmetric a.e. in the sense of
part (a) or part (b), respectively.

(d) We add a subscript “r” to function spaces to indicate that we are restricting them to
their spherically symmetric (a.e.) subspace, e.g.,

C1
r (Ω0) = {f ∈ C1(Ω0) | f is spherically symmetric on Ω0 ⊂ R3 × R3}, (4.2.1)

L2
r(Ω0) = {f ∈ L2(Ω0) | f is spherically symmetric a.e. on Ω0 ⊂ R3 × R3}. (4.2.2)

Similar to Remark 2.1.2, spherical symmetry a.e. again allows us to express a function in
lower-dimensional variables adapted to the symmetry. We state this property in the relevant
case n = 3 in the following remark without giving any proofs but refer the interested reader
to [165, Sc. 2.4] for a more detailed discussion.

Remark 4.2.2. (a) Let f ∈ L1
loc(R3) be spherically symmetric a.e.74 Then there exists a

measurable function f̃ : [0,∞[→ R s.t. f(x) = f̃(|x|) for a.e. x ∈ R3. Moreover, f̃ is
uniquely determined a.e. on [0,∞[ by this property.

(b) Let f ∈ L1
loc(R3 × R3) be spherically symmetric a.e. Then there exists a measurable

function f̃ : ]0,∞[× R× [0,∞[→ R s.t. f(x, v) = f̃(|x|, x·v|x| , |x× v|
2) for a.e. (x, v) ∈

R3×R3. Moreover, f̃ is uniquely determined a.e. on ]0,∞[×R×[0,∞[ by this property.

(c) In the situation of part (b), f being odd in v a.e., i.e., f(x,−v) = −f(x, v) for a.e.
(x, v) ∈ R3×R3, is equivalent to f̃ being odd in w a.e., i.e., f̃(r,−w,L) = −f̃(r, w, L)
for a.e. (r, w, L) ∈ ]0,∞[× R× [0,∞[.

(d) In the situations of part (a) and part (b), we again identify f̃ with f and write f̃ = f
by slight abuse of notation.

We next define the underlying function spaces for our analysis. Similar spaces are used
in [49, 61, 62, 85, 96, 111, 147, 165] among others.

72The set of measure zero may depend on the rotation matrix.
73The set of measure zero may depend on the rotation matrix.
74As usual when dealing with elements from an Lp-space, this means that one representative of the

equivalence class defined by f is spherically symmetric a.e.
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Definition 4.2.3 (The Spaces H and H). (a) Let

H := {f : Ω0 → R measurable & spherically symmetric a.e. | ‖f‖H <∞}, (4.2.3)

where

‖f‖2H :=

∫
Ω0

1

|ϕ′(E,L)|
|f(x, v)|2 d(x, v) (4.2.4)

and we use the abbreviation (E,L) = (E,L)(x, v). Recall ϕ′(E,L) < 0 on Ω0 by (ϕ5)
and by the properties of Ω0 derived in Lemma 4.1.4 (a). As usual, we identify objects
in H which are identical almost everywhere. The inner product on H associated to
the norm (4.2.4) is given by

〈f, g〉H :=

∫
Ω0

1

|ϕ′(E,L)|
f(x, v) g(x, v) d(x, v), f, g ∈ H. (4.2.5)

(b) Let
H := {f ∈ H | f is odd in v a.e.}. (4.2.6)

Let us add some comments on these function spaces.

Remark 4.2.4. (a) The space H is (the spherically symmetric subspace of) a weighted
L2-space. As such, it has the usual properties of L2-spaces, in particular, (H, 〈·, ·〉H)
is a real-valued separable Hilbert space with dual space H∗ ∼= H.

Similar statements also hold for H, i.e., (H, 〈·, ·〉H) is a separable Hilbert space as
well.

(b) The reason why we include the weight 1
|ϕ′| in the function space H will become apparent

when studying the response operator R in Section 4.4, see Remark 4.4.3. During the
analysis of the transport operator T in Section 4.3 we thus have to include the weight
in various integrals, but we shall see that the weight does not cause any issues there.

(c) Because any element of H is spherically symmetric a.e. on Ω0, we can express it
in (r, w, L)-variables a.e. by Remark 4.2.2 (b).75 Changing to these variables in the
integrals (4.2.4) and (4.2.5) yields

‖f‖2H = 4π2

∫
Ω0

1

|ϕ′(E,L)|
|f(r, w, L)|2 d(r, w, L), (4.2.7)

〈f, g〉H = 4π2

∫
Ω0

1

|ϕ′(E,L)|
f(r, w, L) g(r, w, L) d(r, w, L), (4.2.8)

for f, g ∈ H, where we use the abbreviation E = E(r, w, L).

(d) On any compact subset K of Ω0, the weight |ϕ′(E,L)|−1 is bounded. In the
isotropic case L0 = 0 = ` this follows by (ϕ5) and the structure of Ω0 derived in
Lemma 4.1.4 (a). Otherwise, L(x, v) is bounded by Lmax < ∞ and bounded away
from L0 > 0 for (x, v) ∈ K.

Thus, any measurable, bounded, and spherically symmetric function with compact
support in Ω0 lies in H. In particular, Cc,r(Ω0) ⊂ H.

75Due to the weight included in H, extending f ∈ H with 0 onto R3 × R3 does not necessarily lead to
f ∈ L1

loc(R3 × R3). Nonetheless, extending |ϕ′(E,L)|−1/2f with 0 gives an element of L1(R3 × R3) and
applying Remark 4.2.2 (b) to this function then yields that f can indeed be written in (r, w, L)-coordinates
a.e.
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(e) Similar to part (d), |ϕ′(E,L)| is bounded on compact subsets of Ω0. In particular,
H ⊂ L2

loc,r(Ω0).

(f) Later on, it is sometimes convenient to also include complex-valued functions in our
analysis. A function f : Ω0 → C is said to be in H if Re(f) ∈ H and Im(f) ∈ H. The
canonical extension of the inner product on H to complex-valued f, g ∈ H is given by

〈f, g〉H :=

∫
Ω0

1

|ϕ′(E,L)|
f(x, v) g(x, v) d(x, v). (4.2.9)

The same convention is also used for general sets: A complex-valued function is meant
to lie in a set that is initially defined only for real-valued functions if both its real and
imaginary parts do. In the same way, one obtains the real or imaginary part of a
(linear) operator applied to a complex-valued function by applying the operator to the
real or imaginary part of the function, respectively. By slight abuse of notation, we
will not notationally distinguish between objects and their complex-valued analogues.

In fact, including complex-valued functions everywhere in our analysis would not make
a conceptual difference. However, since the Vlasov-Poisson system is naturally real-
valued, we try as far as possible to carry out all arguments with real-valued functions
only.

We now consider the first part of the linearised operator L, the transport operator T ;
recall (1.2.10) for an informal definition. The aim is to define T as a linear operator on a
subset of H which is as large as possible. Due to the derivatives contained in T , we cannot
define T (in a meaningful way) on the whole space H – choosing the “right” domain is a
non-trivial task. The following definition originates76 from [147, Def. 2.1], which in turn is
based on the author’s master thesis [165]. The same definition is used [62] and variations
of it can be found in [49, 58, 61].

Definition 4.2.5 (The Transport Operator T ). For f ∈ L1
loc,r(Ω0), the transport term T f

exists weakly if there exists some µ ∈ L1
loc,r(Ω0) s.t. for any test function77 ξ ∈ C1

c,r(Ω0)
there holds ∫

Ω0

1

|ϕ′(E,L)|
f T ξ d(x, v) = −

∫
Ω0

1

|ϕ′(E,L)|
µ ξ d(x, v), (4.2.10)

where T ξ is defined classically via

T ξ(x, v) := v · ∂xξ(x, v)− ∂xU0(x) · ∂vξ(x, v), (x, v) ∈ Ω0. (4.2.11)

In this case T f := µ weakly. The domains of T and T 2 are defined as

D(T ) := {f ∈ H | T f exists weakly & T f ∈ H}, (4.2.12)

D(T 2) := {f ∈ D(T ) | T f ∈ D(T )}. (4.2.13)

The resulting operator T : D(T ) → H is called the transport operator, T 2 : D(T 2) → H is
the squared transport operator.

Although we wanted to restrict ourselves here only to the definition of the operators,
we cannot resist from discussing some properties of the weak definition of T similar to [147,
Rem. 2] and [165, p. 23].

76Compared to [147, Def. 2.1], we choose a different class of test functions here. However, as noted in
Remark 4.2.6 (e) and [147, Rem. 2 (c)], this results in an equivalent definition.

77Recall that Ω0 is open by Lemma 4.1.4 (c).



4.2. DEFINITION OF THE OPERATORS & FUNCTION SPACES 65

Remark 4.2.6. (a) If T f exists weakly for some f ∈ L1
loc,r(Ω0), it is uniquely determined

a.e. on Ω0.This can be seen by applying the fundamental lemma of the calculus of
variations [98, Thm. 6.5] in (r, w, L)-coordinates.

(b) It holds that C1
c,r(Ω0) ⊂ D(T ). In addition, for f ∈ C1

c,r(Ω0), the weak definition of
T f coincides with the classical definition (4.2.11).

We verify this statement similarly to [147, Prop. 1] and [165, Lemma 3.2].78 First
observe that T (defined classically by (4.2.11)) preserves the spherical symmetry of
f ∈ C1

c,r(Ω0) because U0 is spherically symmetric.79 Hence, T f ∈ Cc,r(Ω0) ⊂ H.
For (x, v) ∈ Ω0 let (X,V ) : R → R3 × R3 denote the maximal solution of the char-
acteristic system (2.2.2) associated to the steady state satisfying the initial condition
(X,V )(0, x, v) = (x, v); this solution is global-in-time by [143, Lemma 1.2].80 Apply-
ing the chain rule yields the following alternative expression of the transport operator:

T f(x, v) = ∂s
∣∣
s=0

[f((X,V )(s, x, v))], (x, v) ∈ Ω0; (4.2.14)

note that (X,V )(s, x, v) ∈ Ω0 for s ∈ R, (x, v) ∈ Ω0 by Lemmas 2.2.1 and 4.1.4.
Furthermore, for any s ∈ R, the mapping (X,V )(s) : Ω0 → Ω0 is a measure-preserving
C1-diffeomorphism because the right-hand side of the characteristic system (2.2.2)
is divergence-free [143, Lemma 1.2]. Hence, using this diffeomorphism to change
variables yields∫

Ω0

1

|ϕ′(E(x, v), L(x, v))|
f((X,V )(s, x, v)) ξ((X,V )(s, x, v)) d(x, v) =

=

∫
Ω0

1

|ϕ′(E(x, v), L(x, v))|
f(x, v) ξ(x, v) d(x, v) (4.2.15)

for every test function ξ ∈ C1
c,r(Ω0) and s ∈ R, where we have again used that E and L

are conserved along characteristics by Lemma 2.2.1. Differentiating this equation
w.r.t. s,81 inserting s = 0, and using (4.2.14) then shows

〈f, T ξ〉H = −〈T f, ξ〉H . (4.2.16)

(c) If T f and T g exist weakly for f, g ∈ L1
loc,r(Ω0), it is straight-forward to verify that

T (αf + g) exists weakly for α ∈ R with T (αf + g) = αT f + T g. Hence, D(T ) is a
linear subspace of H and T : D(T )→ H is a linear operator.

(d) In part (b) we have proven C1
c,r(Ω0) ⊂ D(T ). Moreover, standard approximation

arguments show that C1
c,r(Ω0) is a dense subspace of H. Hence, D(T ) is a dense

subspace of H and the linear operator T : D(T )→ H is densely defined on H.

(e) Choosing C∞c,r(Ω0) instead of C1
c,r(Ω0) as the class of test functions in Definition 4.2.5

results in an equivalent weak definition of the transport term. This can be verified by

78If further regularity of ϕ were to be assumed, this property would become easier to prove as one could
simply integrate by parts in (4.2.10). In general, however, we cannot apply (the classical definition (4.2.11)
of) T on the integral weight |ϕ′|−1.

79A detailed proof of this statement is provided in [165, Lemma 3.3 a)].
80In the case where the conserved energy value is negative, this also follows by the arguments from

Section 2.2.2.
81Note that we can switch the order of differentiation and integration due to Remark 4.2.4 (d) and the

compact supports of f and ξ.
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standard mollifier arguments, see [147, Rem. 2 (c)], and it also follows by the more
general approximation result which we will establish in Lemma 4.3.31. We prefer to
use this larger class of test functions in order to be able to, e.g., insert functions
depending on the particle energy E as test functions in (4.2.10); notice that E is, in
general, not infinitely differentiable.

(f) One might be tempted to weakly define the transport term T = v·∂v−∂xU0(x)·∂x by just
requiring that the derivatives ∂v and ∂x both exist weakly. However, Definition 4.2.5
defines the transport term in a weak sense on a larger set of functions compared to this
näıve approach.82 It is hence crucial to weakly define the transport term as a whole
via an integration by parts identity like (4.2.10) to arrive at a domain of definition
which is as large as possible.

(g) As discussed in part (b), T preserves spherical symmetry of smooth functions. For
f ∈ C1

r (Ω0), the transport term T f takes on the following form in radial variables:

T f(r, w, L) = w ∂rf(r, w, L)−Ψ′L(r) ∂wf(r, w, L), (r, w, L) ∈ Ω0. (4.2.17)

Further properties of the transport operator will be studied in Section 4.3.
We also feel obliged to briefly review two alternative ways to define the transport oper-

ator in a weak sense which are used in the literature.

Remark 4.2.7. The transport operator T can be interpreted as computing the derivative
along characteristics of the steady state flow. Mathematically, this corresponds to the rep-
resentation (4.2.14) of T . This interpretation can be used to define the transport operator
in alternative ways:

(a) In [53, Proof of Lemma 2.4], the transport operator is defined as the generator of a
suitable C0-group, see also [165, Rem. 3.10]. More precisely, let (X,V ) : R×Ω0 → Ω0

be defined as in Remark 4.2.6 (b), i.e., (X,V ) denotes the characteristic flow of the
steady state. For s ∈ R and83 f ∈ H we define (U(s)f) : Ω0 → R via

(U(s)f)(x, v) := f((X,V )(s, x, v)), (x, v) ∈ Ω0. (4.2.18)

Using the properties of the characteristic flow (X,V ) from [143, Lemma 1.2], it is
straight-forward to verify that (U(s))s∈R is a unitary C0-group [40, Def. I.5.1] on the
Hilbert space H. Hence, by Stone’s theorem [40, Thm. II.3.24], the group possesses a
skew-adjoint generator T̃ : D(T̃ )→ H defined by

T̃ f := lim
s→0

U(s)f − f
s

, f ∈ D(T̃ ), (4.2.19)

where

D(T̃ ) := {f ∈ H | lim
s→0

U(s)f − f
s

exists as a limit in H}. (4.2.20)

As earlier noted in [165, Rem. 3.10], one can in fact show that this definition is
equivalent to the one from Definition 4.2.5. This is due to the skew-adjointness of

82We shall see in Lemma 4.3.9 that the transport term exists weakly for (suitably integrable) functions
which depend on E and L only. For instance, 1{E<E0− 1

k
} ∈ D(T ) for k ∈ N, but partial derivatives of

1{E<E0− 1
k
} contain distributional terms (for sufficiently large k).

83In [53], these arguments are actually carried out on the unweighted space L2(R3 ×R3) and without the
restriction to spherical symmetry.
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T : D(T ) → H which will be shown in Proposition 4.3.15 combined with the obser-
vation that T and T̃ coincide on the dense subspace C1

c,r(Ω0) of H, which is due
to (4.2.14).84

(b) We will present the methods used to define the transport operator in [85, Lemma B.8]
in more detail in Section 4.3.1. The basic idea is as follows: Use the (suitably nor-
malised) proper time along steady state characteristics as a periodic variable on the
phase space support Ω0. The transport operator T corresponds to a partial deriva-
tive w.r.t. this new variable (up to the multiplication with suitable constants); see
Lemma 4.3.9. The weak existence and suitable integrability of the transport term T f
can then be characterised via the convergence of (suitably weighted) Fourier series
w.r.t. the proper time variable. It will be shown in Remark 4.3.13 that this way of
defining T is equivalent to Definition 4.2.5.

We next define the second part of the linearised operator L, the response operator R;
recall (1.2.11) for an informal definition. The following definition is based on [62, Eqn. (4.4)]
and is also used in [61, Eqn. (1.15)].

Definition 4.2.8 (The Response Operator R). For f ∈ H define the a.e. spherically
symmetric function Rf : Ω0 → R by

Rf(r, w, L) := 4π |ϕ′(E,L)|w jf (r), a.e. (r, w, L) ∈ Ω0, (4.2.21)

where we use the abbreviation E = E(r, w, L) and recall that the a.e. spherically symmetric
velocity density jf : R3 → R associated to f is given by

jf (r) :=
π

r2

∫ ∞
0

∫
R
w f(r, w, L) dw dL, a.e. r > 0. (4.2.22)

Here, f is extended by 0 to R3 × R3.

The properties of the response operator will be studied in detail in Section 4.4. In
particular, we will show that R is indeed well-defined on H, cf. Lemma 4.4.2. Moreover, in
Corollary 4.4.7 we will derive an alternative representation for Rf under the assumption
that f is suitably smooth.

We have now collected all tools to rigorously define the whole linearised operator L as
in [62, Def. 4.4]; see also [61, p. 20] and [49, Def. 4.2 (d)] for similar definitions.

Definition 4.2.9 (The Linearised Operator L). Let

D(L) := D(T 2) ∩H, (4.2.23)

where H and D(T 2) are introduced in Definitions 4.2.3 and 4.2.5, respectively. Then the
linearised operator or Antonov operator is defined by

Lf := −T 2f −Rf, f ∈ D(L). (4.2.24)

Functional analytic and spectral properties of the linearised operator L will be studied in
Section 4.5. Let us conclude the present section with a short remark regarding the domain
of definition D(L) of the linearised operator.

84It follows similarly to [136, p. 256] that two skew-adjoint operators which coincide on a dense subspace
are identical.
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Remark 4.2.10. As derived in Chapter 3, the linearised operator L describes the evolution
of the odd-in-v part of the linear perturbation only. This is why we restrict the domain D(L)
of the linearised operator L to the odd-in-v subspace H of H. From a purely mathematical
point of view, however, one could also consider L on the domain D(T 2), i.e., include the
even-in-v parts of all functions. This is done in [62], but we shall see that the analysis of
the linearised operator is not significantly affected by the differing domains.85

4.3 The Transport Operator T

In this section we analyse the transport operator86 T introduced in Definition 4.2.5. The
results presented here mainly originate from [62, Scs. 4.1 and 5.1] and [147, 165]. Related
analyses are also contained in [85, App. B] as well as, in different settings, in [49, Sc. 5.1]
and [61, Lemma 3.7].

We first introduce a crucial tool for studying the transport operator: action-angle type
variables. This tool is then used in Sections 4.3.2–4.3.4 to analyse functional analytical
properties and spectral properties of the transport operator T and its square T 2. In Sec-
tion 4.3.5 we then prove a useful approximation result.

4.3.1 Action-Angle Type Variables

In order to study the transport operator T , it is useful to work in new variables on the
steady state support Ω0, recall Proposition 2.2.9 (d) for the definition of this set, which are
adapted to the characteristic flow of the steady state. These variables are introduced in the
following definition; the underlying intuition will be discussed afterwards. In order to study
the (linearised) Vlasov-Poisson system and related systems, these variables and variations
of it are used in [49, 53, 61, 62, 85, 105, 126, 147, 148] among others.

Definition & Lemma 4.3.1 (Action-Angle Type Variables). Let

Ω∗0 := {(r, w, L) ∈ Ω0 | L > 0 & (r, w) 6= (rL, 0)}, (4.3.1)

i.e., Ω∗0 contains all elements of Ω0 with L > 0 except for (r, w, L) ∈ Ω0 with minimal en-
ergy E(r, w, L) = Emin

L . For fixed (r, w, L) ∈ Ω∗0, we thus have E := E(r, w, L) ∈ ]Emin
L , E0[,

which means (E,L) ∈ D0 by Lemma 4.1.5. Now let (R,W )(·, E, L) be as specified in Def-
inition 2.2.16, i.e., it is the T (E,L)-periodic solution of the characteristic system (2.2.93)
associated to the steady state satisfying the initial condition (R,W )(0, E, L) = (r−(E,L), 0).
Then there exists a unique θ ∈ S1 on the circle87,88

S1 := R/Z (4.3.2)

s.t.

(R,W )(θ T (E,L), E, L) = (r, w). (4.3.3)

85The only noteworthy difference is that the nullspace of L with domain D(T 2) is non-trivial, cf. [62,
Cor. 7.3], while the nullspace of L with domain D(L) = D(T 2) ∩H is trivial, cf. Corollary 4.5.10. However,
considering L on D(T 2) ∩ (ker(L)⊥) results in similar properties of the operator as for the domain D(L).

86We use the term transport operator rather loosely here. For example, we also use it to refer to (weakly
defined) transport terms T f with f ∈ L1

loc,r(Ω0).
87We always identity R/Z with the unit circle {z ∈ C | |z| = 1} in the complex plane using the standard

homeomorphism S1 3 θ 7→ e2πiθ.
88It is sometimes convenient to think of S1 as the interval [0, 1] where the endpoints are identified.
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This defines the mapping

Ω∗0 3 (r, w, L) 7→ (θ,E, L) ∈ S1 × D0, (4.3.4)

which is one-to-one. We refer to the new variables (θ,E, L) as action-angle type variables.
The variable θ ∈ S1 is the angle variable, while (E,L) ∈ D0 are the action variables.89

Proof. All statements claimed above are due to the properties of the characteristic flow
(R,W )(·, E, L) derived in Section 2.2.2. In particular, recall that the orbit of the T (E,L)-
periodic solution (R,W )(·, E, L) is of the form

(R,W )(R, E, L) = {(r, w) ∈ ]0,∞[× R | E(r, w, L) = E} (4.3.5)

for (E,L) ∈ D0.

As an aside, we note that one could as well define this change of variables on the larger
domain

{(r̃, w̃, L̃) ∈ ]0,∞[× R× ]0,∞[| Emin
L̃

< E(r̃, w̃, L̃) < 0} 3 (r, w, L) 7→ (θ,E, L) ∈ S1 × A0.
(4.3.6)

However, for the analysis of the linearised Vlasov-Poisson system, it suffices to work on the
support of the underlying steady state.

Illustratively, changing to action-angle type variables works as follows: In order to rep-
resent some (r, w, L) ∈ Ω∗0, one first chooses the actions (E,L) ∈ D0 s.t. (r, w, L) lies on
the associated characteristic orbit. Next, the angle θ ∈ S1, which corresponds to the nor-
malised proper time of the characteristic solution starting at the minimal radius r−(E,L),
determines the position on the orbit. This procedure is visualised in Figure 4.3.1.

r

ṙ = w

(rL, 0)(r−(E,L), 0)(r−(E,L), 0)

(r, w)

characteristic orbit
containing (r, w) with
energy E ≡ E(r, w, L)

θ =̂ normalised time it takes to travel
from (r−(E,L), 0) to (r, w)

Figure 4.3.1: A schematic visualisation of the relation between (r, w, L) ∈ Ω∗0 and the
associated action-angle type variables (θ,E, L) ∈ S1 × D0 for fixed L > 0.

In the context of general Hamiltonian systems, changing to such variables is a well-known
technique. Under some additional assumptions, they are called action-angle variables. We
refer to [11, 19, 92, 105] for a detailed background and discuss the relation to our vari-
ables (θ,E, L) next.

89Given the name action-angle type variables, one could argue that it is more natural to write these
variables in the order (E,L, θ) instead of (θ, E, L). However, from a mathematics point of view, we think
that (θ, E, L) is the most natural order of these variables. Moreover, as the terminology action-angle variables
is commonly used in the literature, we choose not to use the name angle-action type variables for (θ, E, L)
here. We apologise to the reader for any confusion that might be caused by this convention of ours.
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Remark 4.3.2 (“True” Action-Angle Variables). We will see in Remark 4.3.5 that the
change of variables (r, w, L) 7→ (θ,E, L) is not measure-preserving. Hence, (θ,E, L) cannot
be action-angle variables as defined in the above references. However, because the interpre-
tation of the variables (θ,E, L) is similar to the one of action-angle variables, we use the
terminology action-angle type variables here.

A derivation of “true” action-angle variables in our setting can be found, e.g., in [85,
App. A.1]. We do not include this derivation here, but still briefly state that “true” action-
angle variables are given by

(θ,A, L), (4.3.7)

where A = A(E,L) is the area function introduced in Definition A.3.6. Because ∂EA = T >
0 by (A.3.31), the mapping ]Emin

L , 0[ 3 E 7→ A(E,L) is injective for fixed L > 0. Hence, the
relation between A and E is one-to-one. Since the meaning of the “true” action variable A,
cf. Remark A.3.7, is, however, not as intuitive as the physical interpretation of the particle
energy E, we stick to the variables (θ,E, L) here.

Let us next show that changing to action-angle type variables or back is smooth.

Lemma 4.3.3. The change to action-angle type variables given by (4.3.4) is a C1-
diffeomorphism.

Proof. By the regularities of (R,W ) and T established in Lemmas A.3.2 and A.3.3, the
dependence of (r, w) on (θ,E, L) is (even twice) continuously differentiable. In addition, a
straight-forward computation shows

det(D(r, w, L)(θ,E, L)) = T (E,L) det(

(
W (θ T (E,L), E, L) ∂ER(θ T (E,L), E, L)

Ẇ (θ T (E,L), E, L) ∂EṘ(θ T (E,L), E, L)

)
)

(4.3.8)
for (θ,E, L) ∈ S1 × D0. By the discussion from Remark A.3.4, the latter determinant
equals 1. The claimed regularity of (4.3.4) hence follows by the inverse function theorem.

In Definition 4.3.1, the angle variable θ is only implicitly determined by (r, w, L) ∈ Ω∗0
through (4.3.3). The next lemma, which is based on [62, Eqn. (5.3)], provides a more
explicit way of calculating the angle.

Lemma 4.3.4. For (E,L) ∈ A0 let

θ(·, E, L) : [r−(E,L), r+(E,L)]→ [0,
1

2
], θ(r, E, L) :=

1

T (E,L)

∫ r

r−(E,L)

ds√
2E − 2ΨL(s)

.

(4.3.9)
This mapping is continuous and one-to-one. In addition, it is continuously differentiable
on ]r−(E,L), r+(E,L)[ with

∂rθ(r, E, L) =
1

T (E,L)

1√
2E − 2ΨL(r)

, r ∈ ]r−(E,L), r+(E,L)[. (4.3.10)

Furthermore, for (r, w, L) ∈ Ω∗0, the associated angle θ ∈ S1 defined by Definition 4.3.1
is explicitly given by90 {

θ(r, E, L), w ≥ 0,

1− θ(r, E, L), w ≤ 0.
(4.3.11)

90Observe that w = 0 corresponds to r = r±(E,L), where the two expressions θ(r, E, L) and 1− θ(r, E, L)
are equal.



4.3. THE TRANSPORT OPERATOR T 71

Proof. All statements concerning the mapping θ(·, E, L) are straight-forward to verify; recall
the integral representation (2.2.97) of the period function T . The relation between θ(·, E, L)
and the angle θ from Definition 4.3.1 follows by applying the inverse function theorem
similarly to Section 2.2.2.

Throughout this thesis we use the action-angle type variables to represent spherically
symmetric (a.e.) functions on the steady state support. We next introduce the notational
framework for this and further analyse the change of variables. These results and notational
conventions are based on [62, Sc. 5.1] as well as [49, Sc. 3.3] and [61, Sc. 3.2].

Remark 4.3.5. For f : Ω∗0 → R we write, by slight abuse of notation,

f(r, w, L) = f(θ,E, L), (4.3.12)

where (r, w, L) ∈ Ω∗0 and (θ,E, L) ∈ S1 ×D0 are related as specified in Definition 4.3.1. By
Lemmas 4.1.4 and 4.1.5, there holds

Ω0
a.e.
= Ω∗0, (4.3.13)

which is why we also write (4.3.12) a.e. for functions f : Ω0 → R which are spherically
symmetric a.e.

Furthermore, for any spherically symmetric a.e. and integrable function f : Ω0 → R it
holds that∫

Ω0

f(x, v) d(x, v) = 4π2

∫
Ω0

f(r, w, L) d(r, w, L) = 4π2

∫
S1×D0

T (E,L) f(θ,E, L) d(θ,E, L).

(4.3.14)
While the first identity can be verified similarly to Remark 4.2.4 (c), the second identity can
be obtained as follows: Applying Fubini’s theorem and changing variables via E = E(r, w, L)
yields

∫
Ω0

f(r, w, L) d(r, w, L) =

(∫
Ω0∩{w>0}

+

∫
Ω0∩{w<0}

)
f(r, w, L) d(r, w, L) =

=

∫
]0,∞[2

∫ ∞
ΨL(r)

(
f(r,

√
2E − 2ΨL(r), L) + f(r,−

√
2E − 2ΨL(r), L)

) dE d(r, L)√
2E − 2ΨL(r)

,

(4.3.15)

where f = f(r, w, L) is extended by 0 to the whole space ]0,∞[× R× ]0,∞[. Again switch-
ing the order of integration and using Lemmas 2.2.12 and 4.1.5 to adjust the domain of
integration yields∫

Ω0

f(r, w, L) d(r, w, L) =

=

∫
D0

∫ r+(E,L)

r−(E,L)

(
f(r,

√
2E − 2ΨL(r), L) + f(r,−

√
2E − 2ΨL(r), L)

) dr d(E,L)√
2E − 2ΨL(r)

.

(4.3.16)

For the first addend on the right-hand side, we apply the change of variables θ = θ(r, E, L)
given by Lemma 4.3.4. A similar change of variables for the second addend, recall (4.3.11),
and another application of Fubini’s theorem then shows (4.3.14).
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Later on we will frequently work with weak derivatives w.r.t. the angle variable θ ∈ S1.
As the concepts of weak derivatives and Sobolev spaces are usually studied on open subsets
of Rn, we introduce the analogous concepts on the circle S1 next; recall (4.3.2) for the
definition of S1.91

Remark 4.3.6 (Sobolev Spaces on the Circle). Let

L2(S1) := {y : S1 → R | y measurable with ‖y‖L2(S1) <∞}, (4.3.17)

where ‖ · ‖L2(S1) is the norm induced by the canonical scalar product

〈y, z〉2 :=

∫
S1

y(θ) z(θ) dθ =

∫ 1

0
y(θ) z(θ) dθ, y, z ∈ L2(S1), (4.3.18)

and we identify elements of L2(S1) which are identical a.e. Obviously, L2(S1) is a Hilbert
space and

L2(S1) ∼= L2(]0, 1[). (4.3.19)

Furthermore, for j ∈ N, a function y ∈ L2(S1) is j times weakly differentiable on S1

with y(j) = z ∈ L2(S1) weakly if∫
S1

y(θ) ξ(j)(θ) dθ = (−1)j
∫
S1

z(θ) ξ(θ) dθ (4.3.20)

for any test function92 ξ ∈ C∞(S1) ∼= {ζ ∈ C∞(R) | ζ is 1-periodic}. Accordingly, for
m ∈ N, let

Hm(S1) := {y ∈ L2(S1) | ∀j ∈ {1, . . . ,m} :

y is j times weakly differentiable with y(j) ∈ L2(S1)}. (4.3.21)

If – like the author – one prefers to work with “classical” Sobolev spaces on open subsets
of Rn, we note the relation

Hm(S1) ∼= {y ∈ Hm(]0, 1[) | ∀j ∈ {0, . . . ,m− 1} : y(j)(0) = y(j)(1)} (4.3.22)

for m ∈ N; observe that Hm(]0, 1[) ↪→ Cm−1([0, 1]), i.e., the boundary conditions in the
latter set are imposed for the continuous representatives of the respective functions.

As discussed earlier, cf. Remark 4.2.10, it is of particular interest to analyse (spherically
symmetric a.e.) functions on Ω0 which are odd in v. The following remark, which is based
on [62, Rem. 5.3], shows how this parity translates into action-angle type variables.

Remark 4.3.7. Let

L2,odd(S1) := {y ∈ L2(S1) | y(θ) = −y(1− θ) for a.e. θ ∈ S1}. (4.3.23)

Using the properties of the characteristic flow of the steady state derived in Section 2.2.2,
it is easy to verify that for every f ∈ H,93,94

f ∈ H ⇔ for a.e. (E,L) ∈ D0 : f(·, E, L) ∈ L2,odd(S1). (4.3.24)
91We deliberately omit here giving references to the rich literature regarding Sobolev spaces on general

manifolds because we think that these are overly complex for our specific situation of a circle.
92Because S1 is a closed manifold, the support of any such test function is compact.
93A similar characterisation of oddness in v also holds for general spherically symmetric a.e. functions

which are not necessarily contained in H.
94Note that f(·, E, L) ∈ L2(S1) for a.e. (E,L) ∈ D0 by Remark 4.3.5 and Fubini’s theorem.
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As stated at the start of the present section, action-angle type variables are particularly
useful when studying the transport operator because T simply corresponds to a partial
derivative in (θ,E, L)-variables. We first derive this property for smooth functions. The
following lemma is based on [62, Lemma 5.1].

Lemma 4.3.8. For m ∈ N and95 f ∈ Cmr (Ω0) it holds that f(·, E, L) ∈ Cm(S1) for (E,L) ∈
D0 with

T mf(θ,E, L) =
1

T (E,L)m
∂mθ f(θ, E, L), (θ,E, L) ∈ S1 × D0. (4.3.25)

Proof. The statements follow by the chain rule; recall the representation (4.2.17) of the
transport operator in (r, w, L)-coordinates.

The analogous representation of T in action-angle type variables also holds for the weak
definition of the transport operator. This will be a fundamental ingredient for the analysis
of the operator T : D(T ) → H. The following lemma originates from [62, Lemma 5.2];
variations of it can also be found in [49, Prop. 5.1 (b)] and [61, Lemma 3.7 (b)].

Lemma 4.3.9 (The Transport Operator in Action-Angle Type Variables). It holds that96

D(T ) =
{
f ∈ H | for a.e. (E,L) ∈ D0 : f(·, E, L) ∈ H1(S1)

with

∫
D0

T (E,L)−1

|ϕ′(E,L)|

∫
S1

|∂θf(θ, E, L)|2 dθ d(E,L) <∞
}
. (4.3.26)

If f ∈ D(T ),

T f(θ,E, L) =
1

T (E,L)
∂θf(θ,E, L) for a.e. (θ, E, L) ∈ S1 × D0. (4.3.27)

Proof. We follow the proof of [62, Lemma 5.2] and start by considering f ∈ D(T ). By
Lemma 4.3.8, a change of variables as in Remark 4.3.5, and the weak definition of T we
obtain the following equations for every test function ξ ∈ C1

c,r(Ω0):

4π2

∫
D0

1

|ϕ′(E,L)|

∫
S1

f(θ,E, L) ∂θξ(θ,E, L) dθ d(E,L) =

=

∫
Ω0

1

|ϕ′(E,L)|
f(x, v) T ξ(x, v) d(x, v) = −

∫
Ω0

1

|ϕ′(E,L)|
T f(x, v) ξ(x, v) d(x, v) =

= −4π2

∫
D0

T (E,L)

|ϕ′(E,L)|

∫
S1

T f(θ,E, L) ξ(θ,E, L) dθ d(E,L). (4.3.28)

We now choose the test function ξ to be factorised in θ and (E,L), i.e.,

ξ(θ,E, L) = ζ(θ)χ(E,L), (θ,E, L) ∈ S1 × D0, (4.3.29)

where ζ ∈ C∞(S1) and χ ∈ C∞c (D0). In particular, every such choice of ζ and χ induces a
valid test function ξ ∈ C1

c,r(Ω0) by Lemmas 4.1.5 and 4.3.3. Inserting the ansatz (4.3.29)

95It would actually suffice to impose the regularity of f on Ω∗0 in order to show (4.3.25).
96Since the period function T is bounded and bounded away from 0 on D0 by Proposition A.0.1 (a), one

could also leave out the factor T (E,L)−1 in the integral contained in (4.3.26).
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into (4.3.28) yields∫
D0

χ(E,L)
1

|ϕ′(E,L)|

∫
S1

f(θ,E, L) ζ̇(θ) dθ d(E,L) =

= −
∫
D0

χ(E,L)
T (E,L)

|ϕ′(E,L)|

∫
S1

T f(θ, E, L) ζ(θ) dθ d(E,L). (4.3.30)

Since this holds true for every χ ∈ C∞c (D0), it follows∫
S1

f(θ,E, L) ζ̇(θ) dθ = −T (E,L)

∫
S1

T f(θ,E, L) ζ(θ) dθ for a.e. (E,L) ∈ D0

(4.3.31)
and ζ ∈ C∞(S1). In particular, the set of measure zero in (4.3.31) can be chosen indepen-
dently of ζ by considering a countable subset of C∞(S1) which is dense in H1(S1).97 Since
ζ ∈ C∞(S1) is arbitrary, this means that f(·, E, L) is weakly differentiable on S1 for a.e.
(E,L) ∈ D0 with

∂θf(·, E, L) = T (E,L) T f(·, E, L) weakly; (4.3.32)

recall Remark 4.3.6. In particular, by Remark 4.3.5,

4π2

∫
D0

T (E,L)−1

|ϕ′(E,L)|

∫
S1

|∂θf(θ,E, L)|2 dθ d(E,L) = ‖T f‖2H <∞, (4.3.33)

and hence ∂θf(·, E, L) ∈ L2(S1) for a.e. (E,L) ∈ D0 by Fubini’s theorem. We have thus
proven that f is indeed contained in the set on the right-hand side of (4.3.26).

Conversely, consider f in the set on the right-hand side of (4.3.26), i.e., f ∈ H and
f(·, E, L) ∈ H1(S1) for a.e. (E,L) ∈ D0 with∫

D0

T (E,L)−1

|ϕ′(E,L)|

∫
S1

|∂θf(θ,E, L)|2 dθ d(E,L) <∞. (4.3.34)

For any test function ξ ∈ C1
c,r(Ω0), we change variables via (4.3.14), apply Lemma 4.3.8,

and integrate by parts on S1 in the weak sense to obtain∫
Ω0

1

|ϕ′(E,L)|
f T ξ d(x, v) = 4π2

∫
D0

1

|ϕ′(E,L)|

∫
S1

f(θ,E, L) ∂θξ(θ,E, L) dθ d(E,L) =

= −4π2

∫
D0

1

|ϕ′(E,L)|

∫
S1

∂θf(θ,E, L) ξ(θ, E, L) dθ d(E,L) =

= −
∫

Ω0

T (E,L)−1

|ϕ′(E,L)|
∂θf ξ d(x, v). (4.3.35)

By Definition 4.2.5, this means that T f exists weakly and is given by

T f =
1

T (E,L)
∂θf. (4.3.36)

In particular,

‖T f‖2H = 4π2

∫
D0

T (E,L)−1

|ϕ′(E,L)|

∫
S1

|∂θf(θ,E, L)|2 dθ d(E,L) <∞ (4.3.37)

by (4.3.34), which shows f ∈ D(T ).

97One way to construct such a dense subset is as follows: Let A ⊂ C∞c (]0, 1[) be countable and dense
in H1

0 (]0, 1[); such a set exists since H1
0 (]0, 1[) is separable and C∞c (]0, 1[) is dense in H1

0 (]0, 1[). Then,
{q + y | q ∈ Q, y ∈ A} ⊂ C∞(S1) is dense in H1(S1); recall Remark 4.3.6.
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The analogous result is also true for the squared transport operator.98 This is based
on [62, Cor. 5.4]; variations of this result can be found in [49, Prop. 5.1 (b)] and [61,
Lemma 3.7 (b)].

Lemma 4.3.10. It holds that

D(T 2) =
{
f ∈ H | for a.e. (E,L) ∈ D0 : f(·, E, L) ∈ H2(S1)

with

∫
D0

T (E,L)−1

|ϕ′(E,L)|

∫
S1

|∂θf(θ,E, L)|2 dθ d(E,L) <∞

and

∫
D0

T (E,L)−3

|ϕ′(E,L)|

∫
S1

|∂2
θf(θ,E, L)|2 dθ d(E,L) <∞

}
. (4.3.38)

If f ∈ D(T 2),

T 2f(θ,E, L) =
1

T (E,L)2
∂2
θf(θ,E, L) for a.e. (θ,E, L) ∈ S1 × D0. (4.3.39)

Proof. The statements follow by applying Lemma 4.3.9.

We have thus shown that the action-angle type variables introduced in Definition 4.3.1
provide simple characterisations of the transport operator and its domain of definition.
Before applying these characterisations to analyse T , we discuss another useful feature of
the action-angle type variables (θ,E, L). The discussion is based on [61, Sc. 2] and [62,
Rem. 5.18], where similar techniques are used in slightly different contexts. We also refer
to [85, App. B.1] for similar arguments.

Remark 4.3.11 (Fourier Expansion in the Angle Variable). Let f ∈ H be fixed. For j ∈ Z
and a.e. (E,L) ∈ D0 let

f̂(j, E, L) :=

∫
S1

f(θ, E, L) e−2πij θ dθ ∈ C (4.3.40)

be the j-th Fourier coefficient of f(·, E, L) ∈ L2(S1). Since (S1 3 θ 7→ e2πij θ)j∈Z is an
orthonormal basis of99 L2(S1), Lebesgue’s dominated convergence theorem yields100

∑
j∈Z

f̂(j, E, L) e2πij θ := lim
n→∞

n∑
j=−n

f̂(j, E, L) e2πij θ = f(θ,E, L) as a limit in H.

(4.3.41)

Although the Fourier coefficients and the basis functions are both complex-valued, the
Fourier partial series can be written as a real-valued trigonometric polynomial:

n∑
j=−n

f̂(j, E, L) e2πij θ = a0(E,L)+
n∑
j=1

aj(E,L) cos(2πj θ)+
n∑
j=1

bj(E,L) sin(2πj θ) (4.3.42)

98One can also represent higher powers of the weakly defined transport operator in action-angle type
variables in a similar way, but this is not relevant here.

99In order for (e2πij θ)j∈Z to define an orthonormal basis of L2(S1), recall (4.3.17), we have to include
complex-valued functions into L2(S1) as well. This is to be understood in the sense of Remark 4.2.4 (f).

100Since orthonormal bases are invariant under reordering, one could also use different denumerations of Z
to define the limit

∑
j∈Z . . . and arrive at an equivalent definition.
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for n ∈ N, θ ∈ S1, and a.e. (E,L) ∈ D0, where

a0(E,L) := f̂(0, E, L) =

∫
S1

f(θ,E, L) dθ, (4.3.43)

aj(E,L) := f̂(j, E, L) + f̂(−j, E, L) = 2

∫
S1

f(θ,E, L) cos(2πj θ) dθ, (4.3.44)

bj(E,L) := i
(
f̂(j, E, L)− f̂(−j, E, L)

)
= 2

∫
S1

f(θ,E, L) sin(2πj θ) dθ, (4.3.45)

for j ∈ N.

If f ∈ H, i.e., f is odd in v a.e., it follows that aj = 0 for j ∈ N0 by Remark 4.3.7.
Hence, the above implies

∞∑
j=1

bj(E,L) sin(2πj θ) = f(θ,E, L) as a limit in H for f ∈ H. (4.3.46)

Since the transport operator simply corresponds to a partial derivative w.r.t. to the
angle variable θ ∈ S1, Fourier expansion in θ provides further useful representations of T
and T 2. This is based on [62, Rem. 5.18].

Lemma 4.3.12 (Fourier Expansion of the Transport Operator). The following identities
hold as limits in H:

T f(θ, E, L) =
2πi

T (E,L)

∑
j∈Z

f̂(j, E, L) j e2πij θ, f ∈ D(T ), (4.3.47)

T 2f(θ,E, L) = − 4π2

T (E,L)2

∑
j∈Z

f̂(j, E, L) j2 e2πij θ, f ∈ D(T 2), (4.3.48)

T 2f(θ,E, L) = − 4π2

T (E,L)2

∞∑
j=1

bj(E,L) j2 sin(2πj θ), f ∈ D(T 2) ∩H, (4.3.49)

where f̂ and bj are defined in (4.3.40) and (4.3.45), respectively.

Proof. Applying the Fourier expansion introduced in Remark 4.3.11 to the representations
of T f and T 2f from Lemmas 4.3.9 and 4.3.10 and using

∂̂θf(j, E, L) = 2πij f̂(j, E, L), f ∈ D(T ), j ∈ Z, a.e. (E,L) ∈ D0, (4.3.50)

which follows by integrating by parts, yields the claimed statements.

We further note that the Fourier expansion can also be used to characterise the domains
of definition of T and T 2.

Remark 4.3.13. For the Sobolev spaces on the circle introduced in Remark 4.3.6, there
holds

Hm(S1) =
{
S1 3 θ 7→

∑
j∈Z

cj e
2πij θ ∈ R | (cj)j∈Z ⊂ C with

∑
j∈Z

(1 + j2)m |cj |2 <∞
}

(4.3.51)
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for m ∈ N, where the sum is meant to converge in L2(S1).101 Hence, by using Lemmas 4.3.9
and 4.3.10 as well as the boundedness of T on D0 established in Proposition A.0.1, we obtain

D(T m) =
{
S1 × D0 3 (θ,E, L) 7→

∑
j∈Z

cj(E,L) e2πij θ ∈ R | cj : D0 → C measurable, j ∈ Z,

with
∑
j∈Z

(1 + j2)m ‖cj‖2H <∞
}

(4.3.52)

for m ∈ {1, 2}, where the sum is meant to converge in H.

In [85, App. B], the characterisations (4.3.52) of D(T ) and D(T 2) are used to define
these sets. The transport operator T : D(T )→ H and its square T 2 : D(T 2)→ H are then
defined via (4.3.47) and (4.3.48), respectively, cf. [85, Lemma B.8].

4.3.2 Self-Adjointness of the Squared Transport Operator

In this section we establish first functional analytic properties of the transport operator
T : D(T ) → H and its square T 2 : D(T 2) → H. The main results are that these operators
are skew-adjoint102 and self-adjoint, respectively. This means that T ∗ = −T and (T 2)∗ =:

T 2∗ = T 2, where A∗ denotes the adjoint of a suitable operator A; for background on the
functional analytical concepts used in this section, we refer to [136, Ch. VIII] and [69, Chs. 4
and 5].

We first prove that the transport operator is skew-adjoint, and then use this result to
afterwards study the squared transport operator. The skew-adjointness of the transport op-
erator is a crucial property for the analysis of the (linearised) Vlasov-Poisson system. It has
previously been stated in this context in [53, p. 805], [61, Lemma 3.7 (a)], [62, Prop. 4.2 (a)],
and [96, Prop. 4.1 (i)] among others. For T : D(T )→ H defined as in Definition 4.2.5, the
skew-adjointness was first proven in [147, Thm. 2.2] and [165, Thm. 3.18]. Here, however,
we pursue a strategy different from [147, 165] and make use of the representation of T in
action-angle type variables.

Remark 4.3.14. In [147, 165], the skew-adjointness of T : D(T ) → H is proven without
using action-angle type variables. This proof has, in fact, conceptual advantages as it can
be generalised to related system more directly. For instance, it is unknown whether (the
analogue of) the effective potential associated to relevant steady states of the Einstein-Vlasov
system has the same structure as ΨL does here, cf. the discussion in [49, Sc. 3.1]. This
structure is, however, crucial in order to introduce action-angle type variables. Hence,
one cannot use action-angle type variables in the context of the Einstein-Vlasov system in
general. Nonetheless, in [147], the skew-adjointness of the transport operator is also proven
for suitable steady states of the Einstein-Vlasov system.

The proofs in [147, 165] mainly rely on a suitable approximation result for the transport
operator, cf. [147, Prop. 2] and [165, Thm. 3.15], whose proof is, however, quite technical.
We will also need this approximation result later, see Section 4.3.5, but not yet to obtain
the results of the present section.

101More precisely, we require that the limit limn→∞
∑n
j=−n cj e

2πij θ exists in L2(S1) and that it is real-

valued a.e. on S1.
102The terminology skew-adjoint is inspired by the finite-dimensional setting, where a matrix A ∈ Rn×n

satisfying AT = −A is usually called skew-symmetric. Skew-adjoint operators are also often called anti-self-
adjoint, but we do not like this name very much and will hence not use it here.
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The main idea of our proof, which is also outlined in [62, Prop. 5.15 (a)] in a different
context, is that Lemma 4.3.9 allows us to reduce the application of the transport operator T
to the calculation of the partial derivative w.r.t. the angle variable θ; recall Definition 4.2.5
for the definition of the transport operator and its domain of definition.

Proposition 4.3.15 (Skew-Adjointness of the Transport Operator). The transport operator
T : D(T ) → H is skew-adjoint as a densely defined operator on H, i.e., T ∗ = −T . In
particular, T is skew-symmetric, i.e.,

〈T f, g〉H = −〈f, T g, 〉H , f, g ∈ D(T ). (4.3.53)

Proof. Recall that the transport operator T : D(T ) → H is linear and densely defined on
the Hilbert space H by Remark 4.2.6. The domain of definition of its adjoint T ∗ is given
by

D(T ∗) = {f ∈ H | ∃1T ∗f ∈ H ∀ξ ∈ D(T ) : 〈T ξ, f〉H = 〈ξ, T ∗f〉H}. (4.3.54)

If f ∈ D(T ∗), there thus holds

〈T ξ, f〉H = 〈ξ, T ∗f〉H (4.3.55)

for any test function ξ ∈ C1
c,r(Ω0); recall C1

c,r(Ω0) ⊂ D(T ) by Remark 4.2.6 (b). By
Definition 4.2.5, this means that the transport term T f exists weakly with T f = −T ∗f ∈ H.

Conversely, if f ∈ D(T ), changing variables via (4.3.14) and using Lemma 4.3.9 yields

〈T ξ, f〉H = 4π2

∫
D0

1

|ϕ′(E,L)|

∫
S1

∂θξ(θ,E, L) f(θ,E, L) dθ d(E,L) (4.3.56)

for ξ ∈ D(T ). Integrating by parts (in the weak sense) in the inner integral – notice that
ξ(·, E, L) ∈ H1(S1) and f(·, E, L) ∈ H1(S1) for a.e. (E,L) ∈ D0 by Lemma 4.3.9 – and
reversing the change of variables hence implies

〈T ξ, f〉H = −〈ξ, T f〉H , (4.3.57)

i.e., f ∈ D(T ∗) with T ∗f = −T f ∈ H.

The next step is to deduce an analogous result for the squared transport operator
T 2 : D(T 2) → H as well as for its restriction to odd-in-v functions T 2 : D(T 2) ∩ H → H.
We first verify that the restriction of T 2 to odd-in-v functions is indeed well-defined by
studying how applying the transport operator affects the v-parity of a function; a similar
discussion is contained in [85, Rem. B.18] and [165, Lemma 3.3 and Cor. 3.17] as well as
in [49, Prop. 5.1 (f)] in a different context.

Lemma 4.3.16. The transport operator T : D(T )→ H reverses v-parity, i.e.,

(T f)± = T (f∓) =: T f∓, f ∈ D(T ); (4.3.58)

in particular, f ∈ D(T ) is equivalent to f± ∈ D(T ). As in Chapter 3, a subscript + or −
denotes the even-in-v or odd-in-v part of a function, respectively, i.e.,103

f±(x, v) :=
1

2
(f(x, v)± f(x,−v)), a.e. (x, v) ∈ Ω0, f ∈ H. (4.3.59)

Accordingly, the squared transport operator T 2 preserves v-parity, i.e.,

(T 2f)± = T 2f±, f ∈ D(T 2), (4.3.60)

and f ∈ D(T 2) is equivalent to f± ∈ D(T 2). In particular, T 2f ∈ H for f ∈ D(T 2) ∩H.
103Note that the set Ω0 is even-in-v, in the sense that (x, v) ∈ Ω0 is equivalent to (x,−v) ∈ Ω0.
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Proof. The identity (4.3.58) is straight-forward to verify in the case of a smooth function
f ∈ C1

c,r(Ω0) using the chain rule, cf. [165, Lemma 3.3]. Then, by using that even-in-v and
odd-in-v functions are orthogonal w.r.t. 〈·, ·〉H , we deduce

〈(T f)±, ξ〉H = 〈T f, ξ±〉H = −〈f, T ξ±〉H = −〈f, (T ξ)∓〉H = −〈f∓, T ξ〉H (4.3.61)

for f ∈ D(T ) and any test function ξ ∈ C1
c,r(Ω0), which shows (4.3.58). The claims regarding

the squared transport operator follow from the results for T .

Using Proposition 4.3.15, we now show that T 2 : D(T 2)→ H and T 2 : D(T 2) ∩H → H
are self-adjoint; recall Definitions 4.2.3 and 4.2.5 for the definitions of H and D(T 2). This
result is crucial when studying the operator associated to linearised Vlasov-Poisson system
in the second-order formulation. Similar results are contained in [62, Prop. 4.2] and [85,
Lemma B.8 (b)] as well as in [49, Prop. 5.1 (a)] and [61, Lemma 3.7] in different settings.

Proposition 4.3.17 (Self-Adjointness of the Squared Transport Operator). The following
assertions hold.

(a) The squared transport operator T 2 : D(T 2) → H is self-adjoint as a densely defined
operator on H.

(b) The operator T 2
∣∣
H : D(T 2)∩H → H is self-adjoint as a densely defined operator on H.

Proof. First observe that C2
c,r(Ω0) ⊂ D(T 2) by Remark 4.2.6 (b), which shows that

T 2 : D(T 2) → H is indeed densely defined on H. In order to obtain the self-adjointness
of T 2, we proceed as in [62, Proof of Prop. 4.2 (c)]: By Proposition 4.3.15, the trans-
port operator T : (T ) → H is closed104 and it holds that T 2 = −T ∗T as well as
D(T 2) = {f ∈ D(T ) | T f ∈ D(T ∗)}. It hence follows by von Neumann’s theorem [133,
Thm. X.25] that T 2 : D(T 2)→ H is self-adjoint.

For part (b), first note that T 2 : D(T 2)∩H → H is well-defined by Lemma 4.3.16. The
same arguments as above further show that it is densely defined since C2

c,r(Ω0)∩H is dense
in H. Similar to [62, Proof of Prop. 4.2 (d)], the self-adjointness of the restricted operator
T 2
∣∣
H follows by part (a) by splitting all functions into their even and odd parts in v. More

precisely, the adjoint T 2
∣∣∗
H of the operator in part (b) is defined on

D(T 2
∣∣∗
H) = {f ∈ H | ∃1T 2

∣∣∗
Hf ∈ H ∀ξ ∈ D(T 2) ∩H : 〈T 2ξ, f〉H = 〈ξ, T 2

∣∣∗
Hf〉H}. (4.3.62)

For f ∈ D(T 2
∣∣∗
H), Lemma 4.3.16 implies the following for all ξ ∈ D(T 2):

〈T 2ξ, f〉H = 〈(T 2ξ)−, f〉H = 〈T 2ξ−, f〉H = 〈ξ−, T 2
∣∣∗
Hf〉H = 〈ξ, T 2

∣∣∗
Hf〉H . (4.3.63)

Hence, by part (a), f ∈ D(T 2) with T 2f = T 2
∣∣∗
Hf . Conversely, if f ∈ D(T 2) ∩ H, the

symmetry of T 2 from part (a) yields

〈T 2ξ, f〉H = 〈ξ, T 2f〉H , ξ ∈ D(T 2) ∩H, (4.3.64)

which means f ∈ D(T 2
∣∣∗
H) with T 2

∣∣∗
Hf = T 2f ∈ H.

A more direct proof of the self-adjointness of T 2 : D(T 2) → H based on the Fourier
expansion in the angle variable, cf. Remark 4.3.13, can be found in [85, Lemma B.8 (b)].

104By [136, Thm. VIII.1], the adjoint of a densely defined operator on a Hilbert space is always closed.
Thus, any skew-adjoint operator is closed.
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4.3.3 The Spectrum of the Squared Transport Operator

The aim of this section is to analyse the spectrum of the squared transport operator re-
stricted to odd-in-v functions −T 2

∣∣
H : D(T 2) ∩ H → H as thoroughly as possible; recall

Definition 4.2.5 for the definition of this operator. The reason for this is that certain parts
of the spectrum of the linearised operator L are determined by the spectrum of −T 2

∣∣
H, cf.

Section 4.5.2. Recall that T 2
∣∣
H is self-adjoint by Proposition 4.3.17. For general background

on the concepts of spectral theory for self-adjoint operators that we use in this section, we
refer to [69, 133, 136].

Of particular help for the analysis of the spectrum of −T 2
∣∣
H are the action-angle type

variables introduced in Section 4.3.1. The Fourier series expansion from Lemma 4.3.12 al-
lows us to explicitly derive resolvent operators for −T 2

∣∣
H. This is based on [62, Eqn. (8.15)],

see also [85, Cor. B.10].

Lemma 4.3.18. For the spectrum of the operator −T 2
∣∣
H : D(T 2) ∩H → H it holds that

σ(−T 2
∣∣
H) ⊂

(
2πN
T (D0)

)2

, (4.3.65)

where (
2πN
T (D0)

)2

:=

{
4π2j2

T (E,L)2
| (E,L) ∈ D0, j ∈ N = N \ {0}

}
, (4.3.66)

T is the period function, and D0 denotes the (E,L)-triangle defined in (2.2.88). For105

λ ∈ R \
(

2πN
T (D0)

)2
, the resolvent operator106

(
−T 2

∣∣
H − λ

)−1
: H → H (4.3.67)

is given by

(
−T 2|H − λ

)−1
f(θ, E, L) =

∞∑
j=1

bj(E,L)
4π2j2

T (E,L)2 − λ
sin(2πj θ), f ∈ H, (θ,E, L) ∈ S1 × D0,

(4.3.68)
which is meant to hold as a limit in H with bj determined by f via (4.3.45).

Proof. Using the Fourier series expansion (4.3.46) of f ∈ H yields

‖f‖2H =
1

2

∞∑
j=1

‖bj‖2H . (4.3.69)

Hence,∥∥∥∥∥∥
∞∑
j=1

bj
4π2j2

T 2 − λ
sin(2πj ·)

∥∥∥∥∥∥
2

H

=

∞∑
j=1

∥∥∥∥∥ bj
4π2j2

T 2 − λ

∥∥∥∥∥
2

H

‖ sin(2πj ·)‖2L2(S1) ≤

≤ dist

(
λ,

(
2πN
T (D0)

)2
)−2

1

2

∞∑
j=1

‖bj‖2H = dist

(
λ,

(
2πN
T (D0)

)2
)−2

‖f‖2H , (4.3.70)

105A similar statement also holds for complex-valued λ ∈ C \
(

2πN
T (D0)

)2

.
106We always identify λ with the operator λ id.
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which shows that (4.3.68) indeed defines a bounded operator for λ ∈ R\
(

2πN
T (D0)

)2
; note that

the limit (4.3.68) is odd-in-v a.e. by Remark 4.3.7 sinceH is closed and sin(2πj·) ∈ L2,odd(S1)
for j ∈ N.

The fact that (4.3.68) defines the inverse of (−T 2
∣∣
H − λ) : D(T 2) ∩ H → H is straight-

forward to verify using the Fourier series expansions (4.3.46) and (4.3.49) as well as the
Fourier characterisation of D(T 2) derived in Remark 4.3.13.

Lastly, note that the entire spectrum of −T 2
∣∣
H has to be real-valued because the oper-

ator is self-adjoint, cf. [69, Thm. 5.5].

The lemma above bounds the size of the spectrum of −T 2
∣∣
H, but leaves it open which

elements are actually contained in this set. The following result shows that σ(−T 2
∣∣
H)

is indeed as large as the lemma above allows it to be. Furthermore, we can explicitly
determine the essential spectrum σess of the operator, i.e., all elements of the spectrum
which are not isolated eigenvalues of finite multiplicity, cf. [69, Ch. 7] or [136, p. 236] and
recall that the operator under consideration is self-adjoint. This result forms the basis for
all further spectral statements about −T 2

∣∣
H and the whole linearised operator L. It is

based on [62, Thm. 5.7]; see also [85, Lemma B.12] for a slightly different proof as well
as [61, Lemma 3.7 (e)] for an adaption of the result.

Proposition 4.3.19 (The Spectrum of the Squared Transport Operator on H). The spec-
trum of the operator −T 2

∣∣
H : D(T 2) ∩H → H is given by

σ(−T 2
∣∣
H) =

(
2πN
T (D0)

)2

, (4.3.71)

recall (4.3.66) for the definition of the set on the right-hand side. Furthermore, the spectrum
is purely essential, i.e.,

σess(−T 2
∣∣
H) = σ(−T 2

∣∣
H). (4.3.72)

Proof. We first show λ∗ := 4π2n2 T (E∗, L∗)−2 ∈ σess(−T 2
∣∣
H) for fixed n ∈ N and (E∗, L∗) ∈

D0. The idea is that

S1 × D0 3 (θ,E, L) 7→ δ(E∗,L∗)(E,L) sin(2πn θ) (4.3.73)

is an “eigendistribution” of −T 2
∣∣
H, where δ denotes Dirac’s delta distribution.107 Hence,

λ∗ is an “approximate eigenvalue”, and suitably approximating the eigendistribution shows
that it belongs to the essential spectrum.

This idea can be turned into a rigorous proof by applying Weyl’s criterion, see [69,
Thm. 7.2] or, in the case of a bounded operator, [136, Thm. VII.12]. In our situation, it
states that λ∗ ∈ σess(−T 2

∣∣
H) iff there exists a sequence (fj)j∈N ⊂ D(T 2) ∩ H with the

following three properties:

(i) ‖fj‖H = 1 for j ∈ N.

(ii) ‖ − T 2fj − λ∗fj‖H → 0 as j →∞.

(iii) fj ⇀ 0 in H as j →∞.

107More precisely, (4.3.73) formally solves −T 2f = λ∗f if one takes (4.3.39) as the definition of the squared
transport operator. Furthermore, in the light of Remark 4.3.7, the expression (4.3.73) is formally odd in v.
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In order to construct such a sequence, which is then usually called a Weyl sequence, we
approximate the Dirac delta distribution contained in (4.3.73) as follows:108 For j ∈ N let
χj : R2 → R be measurable and s.t.

supp (χj) ⊂ D0 ∩B 1
j
(E∗, L∗) (4.3.74)

as well as ∫
D0

χ2
j (E,L) d(E,L) =

1

2π2
. (4.3.75)

It is straight-forward to explicitly define such χj by a rescaling scheme. We then define the
a.e. spherically symmetric function fj : Ω0 → R for j ∈ N by

fj(θ,E, L) :=

√
|ϕ′(E,L)|
T (E,L)

χj(E,L) sin(2πn θ), (θ, E, L) ∈ S1 × D0. (4.3.76)

In order to verify that (fj)j∈N indeed forms a Weyl sequence, first note that fj ∈ D(T 2)
for j ∈ N by Lemma 4.3.10 and since T is bounded and bounded away from zero on the
compact support of χj by Proposition A.0.1. Furthermore, fj ∈ H by Remark 4.3.7 since
sin(2πn·) ∈ L2,odd(S1). Let us now verify the properties (i)–(iii):

(i) For j ∈ N, changing variables via (4.3.14) and using (4.3.75) yields

‖fj‖2H = 4π2

∫
D0

T (E,L)

|ϕ′(E,L)|

∫
S1

|fj(θ,E, L)|2 dθ d(E,L) =

= 4π2

∫
D0

χ2
j (E,L)

∫
S1

sin2(2πn θ) dθ d(E,L) = 1. (4.3.77)

(ii) Lemma 4.3.10 implies

− T 2fj(θ,E, L) =
4π2n2

T (E,L)2
fj(θ,E, L), a.e. (θ,E, L) ∈ S1 × D0, (4.3.78)

for j ∈ N. Hence,

‖−T 2fj − λ∗fj‖2H =

= 4π2

∫
D0

T (E,L)

|ϕ′(E,L)|

∣∣∣∣ 4π2n2

T (E,L)2
− λ∗

∣∣∣∣2 ∫
S1

|fj(θ,E, L)|2 dθ d(E,L) =

= (2π)6n4

∫
D0

χ2
j (E,L)

∣∣∣∣ 1

T (E,L)2
− 1

T (E∗, L∗)2

∣∣∣∣2 ∫
S1

sin2(2πn θ) dθ d(E,L) =

= 25π6n4

∫
D0

χ2
j (E,L)

∣∣∣∣ 1

T (E,L)2
− 1

T (E∗, L∗)2

∣∣∣∣2 d(E,L). (4.3.79)

Because the period function T is positive and continuous on D0 by Proposi-
tion A.0.1 (b), the integrand of the latter integral converges pointwise to zero as
j →∞ by (4.3.74). Together with (4.3.75), Lebesgue’s dominated convergence theo-
rem implies

∥∥−T 2fj − λ∗fj
∥∥
H
→ 0 as j →∞.

108Although (χj)j∈N is used to approximate the Dirac delta distribution, we note that χj does not conver-
gence to δ(E∗,L∗) as j →∞ in the sense of distributional convergence [98, Sc. 6.3].
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(iii) First note that H∗ ∼= H by the Riesz representation theorem. For every h ∈ H and
j ∈ N, applying the Cauchy-Schwarz inequality yields

|〈fj , h〉H | ≤ ‖fj‖H

(
4π2

∫
supp (χj)

T (E,L)

|ϕ′(E,L)|

∫
S1

|h(θ,E, L)|2 dθ d(E,L)

) 1
2

. (4.3.80)

Since ‖fj‖H = 1 by (i), the integral on the right-hand side tends to zero as j → ∞
by (4.3.74) and Lebesgue’s dominated convergence theorem. Hence, fj ⇀ 0 in H as
j →∞.

We have thus proven (
2πN
T (D0)

)2

⊂ σess(−T 2
∣∣
H). (4.3.81)

Since the essential spectrum is always closed,109 we deduce(
2πN
T (D0)

)2

⊂ σess(−T 2
∣∣
H) ⊂ σ(−T 2

∣∣
H). (4.3.82)

Combining this statement with Lemma 4.3.18 concludes the proof.

The proposition above hence shows that the spectrum of −T 2
∣∣
H is entirely determined

by the period function T , or, to be more precise, by the values which T attains on D0. Let
us briefly discuss the possible shapes of the set σ(−T 2

∣∣
H). This is based on [62, Rem. 5.10].

Remark 4.3.20 (The Structure of the Spectrum of the Squared Transport Operator).
Inspired by [61, Eqn. (3.11)], let

Tmin := inf
D0

T, Tmax := sup
D0

T ; (4.3.83)

it follows by Proposition A.0.1 (a) that both of these values are positive and finite. Since D0

is connected and T is continuous by Proposition A.0.1 (b), there holds

T (D0) = [Tmin, Tmax], (4.3.84)

and, accordingly,

σ(−T 2
∣∣
H) =

⋃
j∈N

[
4π2j2

T 2
max

,
4π2j2

T 2
min

]
; (4.3.85)

see also [85, Lemma B.12], where the spectrum is written down in the same way. The
qualitative structure of this set depends on the ratio of Tmin and Tmax:

If Tmax ≥ 2Tmin,

σ(−T 2
∣∣
H) =

[
4π2

T 2
max

,∞
[
. (4.3.86)

In [61], one solely works in this setting, cf. [61, Lemma 3.10 (b) and Cor. 3.11]. Since
the spectrum is connected, it is referred to be of a single gap structure due to the “gap”
between 0 and minσ(−T 2

∣∣
H).

109In order to see that the essential spectrum is closed, observe that the whole spectrum is always closed,
cf. [69, Thm. 1.2], and that, by definition, σess contains all non-isolated elements of the spectrum. In the
case of a bounded and self-adjoint operator, the fact that σess is closed is proven in [136, Thm. VII.9].
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In contrast, if Tmax < 2Tmin, there are also gaps inside σ(−T 2
∣∣
H). For instance, if

3
2 ≤

Tmax
Tmin

< 2,

σ(−T 2
∣∣
H) =

[
4π2

T 2
max

,
4π2

T 2
min

]
∪̇
[

16π2

T 2
max

,∞
[
. (4.3.87)

In general, the number of gaps inside σ(−T 2
∣∣
H), not counting the one between 0 and

minσ(−T 2
∣∣
H), is given by

sup{j ∈ N0 | (j + 1)Tmin > j Tmax}. (4.3.88)

In particular, the spectrum has infinitely many gaps iff T is constant on D0.
In the situations (4.3.86) and (4.3.87), the set σ(−T 2

∣∣
H) is visualised in Figure 4.3.2.

0

4π2

T 2
max

16π2

T 2
max

4π2

T 2
min

0
4π2

T 2
max

16π2

T 2
max

4π2

T 2
min

Possible shapes of σ(−T 2
∣∣
H)

Figure 4.3.2: A schematic visualisation of the spectrum of −T 2
∣∣
H in the two situa-

tions (4.3.86) and (4.3.87).

So far we have only studied the spectrum of the squared transport operator when it is
restricted to odd-in-v functions. With regard to the analysis of the linearised operator L, this
is the relevant case, cf. Remark 4.2.10. However, with the same methods as above, one can
also determine the spectrum of the non-restricted squared transport operator T 2 : D(T 2)→
H. This is done in [62, Sc. 5.1] and mentioned in [85, Rem. B.11], and we also state the
results here.

Remark 4.3.21. The spectrum of −T 2 : D(T 2)→ H is of the form

σ(−T 2) = σess(−T 2) =

(
2πN0

T (D0)

)2

, (4.3.89)

where the set on the right-hand side is defined similarly to (4.3.66). Compared to the re-
stricted operator −T 2

∣∣
H : D(T 2) ∩ H → H, cf. Proposition 4.3.19, 0 is now part of the

(essential) spectrum. This can be seen by replacing the θ-dependency in the eigendistribu-
tion in the proof of Proposition 4.3.19 by a non-vanishing, constant-in-θ function. Note that
such θ-dependence does not correspond to an odd-in-v expression, cf. Remark 4.3.7. The
fact that no further elements besides 0 are contained in σ(−T 2) \ σ(−T 2

∣∣
H) can be verified

similarly to Lemma 4.3.18 by explicitly deriving the resolvent operator (−T 2 − λ)−1 using
the Fourier expansions (4.3.41) and (4.3.48).

Although Proposition 4.3.19 determines the spectrum of −T 2
∣∣
H explicitly, and even

shows that the spectrum is purely essential, it still remains unclear whether −T 2
∣∣
H pos-

sesses eigenvalues. Note that the elements of the essential spectrum might be eigenvalues
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of infinite multiplicity, embedded eigenvalues, or just “approximate eigenvalues”, cf. [69,
Ch. 7]. Understanding whether −T 2

∣∣
H possesses eigenvalues is important when studying

the behaviour of solutions of the so-called “pure transport equation” ∂t + T f = 0, which
is studied in [27, 103, 116, 148] among others, but on which we will not further elaborate
at this point. The following lemma shows that the presence of eigenvalues of −T 2

∣∣
H is

determined by the level sets of the period function T defined in Definition 2.2.16.

Lemma 4.3.22 (Eigenvalues of the Squared Transport Operator on H). If there exists
t > 0 s.t. the level set

T
∣∣−1

D0
({t}) = {(E,L) ∈ D0 | T (E,L) = t} (4.3.90)

has positive (Lebesgue) measure, then, for every j ∈ N,

4π2j2

t2
(4.3.91)

is an eigenvalue of −T 2
∣∣
H : D(T 2) ∩H → H with eigenfunction110

S1 × D0 3 (θ, E, L) 7→
√
|ϕ′(E,L)|1T |−1

D0
({t})(E,L) sin(2πj θ). (4.3.92)

Conversely, if T
∣∣−1

D0
({t}) has measure zero for every t > 0, no eigenvalues of

−T 2
∣∣
H : D(T 2) ∩H → H exist.

Proof. If T
∣∣−1

D0
({t}) has positive measure for some t > 0, it is straight-forward to verify

that (4.3.92) indeed defines an eigenfunction to the eigenvalue (4.3.91) using Lemma 4.3.10.
In particular, the eigenfunction is an element of D(T 2) ∩H by Remark 4.3.7.

In the case where no such t exists, suppose that λ ∈ R is an eigenvalue of −T 2
∣∣
H with

associated eigenfunction f ∈ D(T 2)∩H, i.e., −T 2f = λf . Recall that −T 2
∣∣
H is self-adjoint

by Proposition 4.3.17, which is why every eigenvalue of the operator is necessarily real-
valued. Inserting the Fourier expansions (4.3.46) and (4.3.49) into the eigenvalue equation
yields

λ

∞∑
j=1

bj(E,L) sin(2πj θ) =
4π2

T (E,L)2

∞∑
j=1

bj(E,L) j2 sin(2πj θ), (θ,E, L) ∈ S1 × D0,

(4.3.93)
where both sides hold as limits in H and the Fourier coefficients bj are determined by f
via (4.3.45). Equating the coefficients hence implies

λ bj(E,L) =
4π2

T (E,L)2
bj(E,L) j2, j ∈ N, (E,L) ∈ D0. (4.3.94)

Since f is an eigenfunction, it cannot vanish identically, which means that there exist j∗ ∈ N
and a set A∗ ⊂ D0 with positive measure s.t. bj∗ 6= 0 a.e. on A∗. By (4.3.94), we thus deduce

λ =
4π2

T (E,L)2
(j∗)2 for a.e. (E,L) ∈ A∗, (4.3.95)

which contradicts the assumption that every level set of T
∣∣
D0

has measure zero.

In Section 8.2, numerical simulations will indicate that the level sets of the period
function on D0 have measure zero, cf. Observation 8.2.10.

110For every A ⊂ T
∣∣−1

D0
({t}) with positive measure, S1 × D0 3 (θ, E, L) 7→

√
|ϕ′(E,L)|1A(E,L) sin(2πj θ)

defines an eigenfunction as well. Hence, the eigenvalue (4.3.91) has infinite multiplicity.
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4.3.4 Spectral Properties of the Transport Operator

The aim of this section is to study further, spectral type properties of the transport operator
T : D(T )→ H; recall that this operator is skew-adjoint by Proposition 4.3.15. Of particular
interest is to characterise the nullspace (or kernel) of T , i.e., the eigenspace associated to the
eigenvalue zero. The first mathematically rigorous result in this direction was [14, Thm. 2.2].
For the weak definition of the transport operator as in Definition 4.2.5, the nullspace was
first determined in [147, Thm. 2.3] and [165, Thm. 3.21], see also [49, Prop. 5.1 (c)], [53,
p. 805f.], [61, Lemma 3.7 (c)], [62, Prop. 4.2 (b)], [85, Lemma B.9], and [96, Prop. 4.1 (i)] for
related statements. Here, we follow an easier and more direct strategy than in [147, 165],
which is based on the use of the action-angle type variables introduced in Section 4.3.1.

Proposition 4.3.23 (The Nullspace of the Transport Operator). The nullspace of the
transport operator T : D(T )→ H is given by

ker(T ) = {f ∈ H | ∃g : R2 → R s.t. f(x, v) = g(E(x, v), L(x, v)) for a.e. (x, v) ∈ Ω0}.
(4.3.96)

Proof. Reformulating the claimed statement in action-angle type variables, we have to show
that the nullspace of T is given by the functions in H which are a.e. independent from the
angle variable θ ∈ S1. This is, however, evident from Lemma 4.3.9 since

ker
(
∂θ : H1(S1)→ L2(S1)

)
= {S1 3 θ 7→ c | c ∈ R}. (4.3.97)

The above proposition is closely related to Jeans’ theorem, i.e., the statement that every
spherically symmetric steady state of the Vlasov-Poisson system depends on E and L only,
cf. Remark 2.2.4 (d). We discuss this connection in the following remark.

Remark 4.3.24. Imagine that f0 is a general spherically symmetric stationary solution of
the Vlasov-Poisson system, not necessarily of the form (2.2.6).111 The fact that f0 solves
the stationary Vlasov equation, potentially in a weak sense, can be interpreted as f0 lying
in the nullspace of its associated transport operator. If the latter is of the form as in the
above proposition, the stationary solution can only depend on the phase space variables (x, v)
through E and L, which is precisely the statement of Jeans’ theorem.

Due to this connection, the results in [147, 165] determining the nullspace of the trans-
port operator are also referred to as Jeans’ theorem.

In the context of general Hilbert space theory, the situation where ker(T ) consists of
functions depending only on the conserved quantities E and L of the associated character-
istic flow is also called ergodic, cf. [136, Sc. II.5].112

As an aside, we note that the orthogonal projection onto the closed subspace ker(T )
of H has been studied several times in the literature, cf. [53, Eqn. (29)], [96, Lemma 4.2],
[147, Eqn. (17)], and [165, Def. and Rem. 3.20]. For f ∈ H, it is given by the zeroth Fourier
coefficient f̂(0) defined in (4.3.40). This projection occurs naturally when transforming
the linearised operator into a reduced operator for the potential as done in [53, Thm. 1.1].
However, we do not need this projection here.

An important consequence of Proposition 4.3.23 is that non-trivial odd-in-v functions
are not in the nullspace of the transport operator. We even obtain the following useful
result.

111This, more general, concept of a stationary solution of the Vlasov-Poisson system is not covered in Defi-
nition 2.2.2. We simply mean, analogously to before, that f0 is constant along solutions of the characteristic
system. This corresponds to f0 solving the stationary Vlasov equation in an appropriate sense.

112More precisely, the characteristic flow of (2.2.93) is called ergodic in our situation.
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Corollary 4.3.25. It holds that
H ⊂ ker(T )⊥, (4.3.98)

where the latter set denotes the orthogonal complement of ker(T ) w.r.t. the inner product
on H, i.e.,

ker(T )⊥ := {f ∈ H | ∀g ∈ ker(T ) : f ⊥ g, i.e., 〈f, g〉H = 0}. (4.3.99)

Proof. For f ∈ H and g ∈ ker(T ), changing to action-angle type variables via (4.3.14) and
using Proposition 4.3.23 yields

〈f, g〉H = 4π2

∫
D0

T (E,L)

|ϕ′(E,L)|
g(E,L)

∫
S1

f(θ,E, L) dθ d(E,L) = 0, (4.3.100)

where the latter equality is due to Remark 4.3.7.

Besides characterising the nullspace of the transport operator, it is also important to
understand the structure of the range (or image) of T . In particular, the range has a
natural connection to the orthogonal complement of ker(T ): Since the transport operator
is skew-adjoint by Proposition 4.3.15, it holds that

ker(T )⊥ = im(T ), (4.3.101)

cf. [24, Cor. 2.18]. Using the representation of T in action-angle type variables, we next
show that im(T ) is closed113 and derive a useful characterisation of this set. This is based
on [62, Lemma 5.5], see also [49, Prop. 5.1 (d)] for an adaptation of this result. We further
note that similar ideas are already presented in [57, Sc. 3.2]. However, no action-angle type
variables are used there, which makes the arguments more technical.114

Lemma 4.3.26 (The Range of the Transport Operator). The range and the nullspace of
the transport operator T : D(T )→ H are related as follows:

im(T ) = ker(T )⊥ = {f ∈ H | for a.e. (E,L) ∈ D0 :

∫
S1

f(θ, E, L) dθ = 0}; (4.3.102)

recall (4.3.99) for the definition of the set ker(T )⊥.

Proof. We start by proving the second identity in (4.3.102). The claim that any f ∈ H
with

∫
S1 f(θ,E, L) dθ = 0 for a.e. (E,L) ∈ D0 is an element of ker(T )⊥ follows by the same

arguments as the ones used the prove Corollary 4.3.25. Conversely, let f ∈ ker(T )⊥. By
Proposition 4.3.23, every χ ∈ C∞c (D0) corresponds to the element S1 × D0 3 (θ,E, L) 7→
χ(E,L) of ker(T ). Hence, changing variables via (4.3.14) shows∫

D0

T (E,L)

|ϕ′(E,L)|
χ(E,L)

∫
S1

f(θ,E, L) dθ d(E,L) = 0 (4.3.103)

for every such χ, which implies
∫
S1 f(θ,E, L) dθ = 0 for a.e. (E,L) ∈ D0.

As to the first identity in (4.3.102), observe that the skew-symmetry of T derived in
Proposition 4.3.15 immediately yields im(T ) ⊂ ker(T )⊥. In order to verify the converse

113We will not explicitly state that im(T ) is closed below, but this statement will follow from the fact that
ker(T )⊥ is closed.

114In fact, the relation (4.3.104) corresponds to [57, Eqn. (3.13)] after rewriting the θ-integral in (r, w, L)
variables.
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inclusion, consider f ∈ ker(T )⊥ and define the spherically symmetric a.e. function g : Ω0 →
R via

g(θ,E, L) := T (E,L)

∫ θ

0
f(τ, E, L) dτ, a.e. (θ,E, L) ∈ S1 × D0. (4.3.104)

Since
∫ 1

0 f(θ,E, L) dθ =
∫
S1 f(θ,E, L) dθ = 0 for a.e. (E,L) ∈ D0 by the arguments from

above, g(·, E, L) is indeed well-defined on S1 for a.e. (E,L) ∈ D0. Moreover, g(·, E, L) is
weakly differentiable on S1 for a.e. (E,L) ∈ D0 with

∂θg(·, E, L) = T (E,L) f(·, E, L) weakly on S1 for a.e. (E,L) ∈ D0; (4.3.105)

recall Remark 4.3.6 for the definition of weak derivatives on the circle S1. Furthermore, by
the Cauchy-Schwarz inequality,

|g(θ,E, L)|2 ≤ T (E,L)2

∫
S1

|f(τ, E, L)|2 dτ for a.e. (θ,E, L) ∈ S1 × D0, (4.3.106)

which implies

‖g‖2H ≤ 4π2

∫
D0

T (E,L)3

|ϕ′(E,L)|

∫
S1

|f(τ, E, L)|2 dτ d(E,L) ≤ sup
D0

2(T ) ‖f‖2H <∞ (4.3.107)

since the period function T is bounded by Proposition A.0.1 (a). Hence, g ∈ H, and together
with

4π2

∫
D0

T (E,L)−1

|ϕ′(E,L)|

∫
S1

|∂θg(θ, E, L)|2 dθ d(E,L) = ‖f‖2H , (4.3.108)

we conclude g ∈ D(T ) with T g = f by Lemma 4.3.9, which means f ∈ im(T ).

In fact, the proof not only implies that im(T ) and ker(T )⊥ are identical, but also shows
how to explicitly construct g ∈ D(T ) s.t. T g = f for prescribed f ∈ ker(T )⊥. Refining
these arguments further provides a way of explicitly determining the inverse of the transport
operator on the set ker(T )⊥. Since this representation of the inverse of T is also useful in
other contexts, we state it next. This result is based on [49, Prop. 5.1 (g)].

Lemma 4.3.27 (The Inverse of the Transport Operator). The mapping T : D(T ) ∩
ker(T )⊥ → im(T ) is bijective, with inverse T −1 : im(T )→ D(T ) ∩ ker(T )⊥ given by

T −1f(θ,E, L) = T (E,L)

(∫ θ

0
f(τ, E, L) dτ −

∫
S1

∫ σ

0
f(τ, E, L) dτ dσ

)
(4.3.109)

for f ∈ im(T ) and a.e. (θ,E, L) ∈ S1 × D0.

Proof. Similar arguments as in the proof of Lemma 4.3.26 show that (4.3.109) indeed defines
a function in D(T ) satisfying T (T −1f) = f for f ∈ im(T ) = ker(T )⊥; note that the
additional term on the right-hand side of (4.3.109) compared to (4.3.104) is independent
of θ and does thus not contribute to T (T −1f). However, the additional term obviously has
the effect that

∫
S1 T −1f(θ,E, L) dθ = 0 for a.e. (E,L) ∈ D0, which implies T −1f ∈ ker(T )⊥

by Lemma 4.3.26. Hence, T −1 : im(T )→ D(T )∩ ker(T )⊥ given by (4.3.109) is indeed well-
defined. Furthermore, for f ∈ D(T ) ∩ ker(T )⊥, using Lemma 4.3.9 and the main theorem
of calculus yields

T −1(T f)(θ,E, L) =

∫ θ

0
∂θf(τ, E, L) dτ −

∫
S1

∫ σ

0
∂θf(τ, E, L) dτ dσ =

= f(θ,E, L)− f(0, E, L)−
∫
S1

(f(σ,E,L)− f(0, E, L)) dσ = f(θ,E, L) (4.3.110)

for a.e. (θ,E, L) ∈ S1 × D0, where we again used
∫
S1 f(σ,E,L) dσ = 0.
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A different way of deriving the inverse of the transport operator is by using the Fourier
series expansion (4.3.47) similarly to Lemma 4.3.18, see [85, Lemma B.13]. Observe
that (4.3.102) characterises f ∈ ker(T )⊥ by the property that the zeroth Fourier coeffi-
cient of f vanishes, i.e., f̂(0, E, L) = 0 for a.e. (E,L) ∈ D0; recall Remark 4.3.11 for the
definition of the Fourier coefficients.

Another statement which can be obtained by a Fourier series expansion is the following
useful Poincaré type inequality for the transport operator. It is based on [62, Cor. 5.8]; see
also [85, Lemma B.13 (a)], where a similar estimate is derived using the inverse of T .115

Lemma 4.3.28 (A Poincaré Type Inequality for the Transport Operator). For all f ∈
D(T ) ∩ ker(T )⊥ it holds that

‖T f‖H ≥
2π

supD0
T
‖f‖H ; (4.3.111)

note that T is bounded on D0 by Proposition A.0.1 (a).

Proof. Lemma 4.3.26 implies f̂(0, E, L) = 0 for a.e. (E,L) ∈ D0. Hence, Fourier expand-
ing f and T f , see (4.3.41) and (4.3.47), respectively, yields

‖T f‖2H =
∑

j∈Z\{0}

∥∥∥∥2π

T
j f̂(j)

∥∥∥∥2

H

≥ 4π2

sup2
D0

(T )

∑
j∈Z\{0}

‖f̂(j)‖2H =
4π2

sup2
D0

(T )
‖f‖2H . (4.3.112)

We have actually chosen a more direct proof here than in [62, Cor. 5.8], where the
estimate (4.3.111) is proven by variational principles for the operator −T 2. Nevertheless,
we briefly discuss this alternative proof, as it provides further insights into the Poincaré
type inequality from above.

Remark 4.3.29. Recall that the spectrum of −T 2 : D(T 2) → H is given by (4.3.89). In
particular, since the period function T is bounded on D0 by Proposition A.0.1, 0 is an
isolated eigenvalue of −T 2 with eigenspace ker(T ). The latter is due to the observation
that for any f ∈ D(T 2) with T 2f = 0 it holds that 0 = 〈−T 2f, f〉H = ‖T f‖2H by the
skew-symmetry of T from Proposition 4.3.15. If one excludes this eigenspace and considers
the restriction of −T 2 onto the orthogonal complement of ker(T ), the eigenvalue 0 vanishes
from the spectrum, i.e.,

σ(−T 2
∣∣
ker(T )⊥

) =

(
2πN
T (D0)

)2

, (4.3.113)

cf. [69, Prop. 6.6]. Using standard variational principles, see, e.g., [69, Prop. 5.12] or [134,
Thm. XIII.1], it hence follows that

〈−T 2f, f〉H ≥
(

2π

supD0
T

)2

‖f‖2H , f ∈ D(T 2) ∩ ker(T )⊥. (4.3.114)

By the skew-symmetry of T , we thus deduce the estimate (4.3.111) for f ∈ D(T 2)∩ker(T )⊥.
One can then extend this inequality to f ∈ D(T ) ∩ ker(T )⊥ by approximating f by its
Fourier partial series, cf. (4.3.41). Notice that the property f ⊥ ker(T ) is preserved by
this approximation scheme since it is equivalent to f̂(0, E, L) = 0 for a.e. (E,L) ∈ D0 by
Lemma 4.3.26.

115The reason why we do not derive an inequality of the form (4.3.111) by estimating the operator norm
of T −1 is that it is harder to get the optimal constant in this way; cf. Remark 4.3.29 for a discussion that
the estimate (4.3.111) is, in fact, sharp.
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In particular, this alternative proof shows that the Poincaré type estimate (4.3.111) is
sharp.116 For instance, one can explicitly construct a normalised sequence of functions s.t.
both sides of (4.3.111) tend to each other by proceeding as in the proof of Proposition 4.3.19
and approximating the eigendistribution S1 × D0 3 (θ,E, L) 7→ δ(E∗,L∗)(E,L) sin(2π θ) for
(E∗, L∗) ∈ D0 with T (E∗, L∗) close to supD0

T .

To conclude this section we state the spectrum of the transport operator T : D(T ) →
H. We will not need this result for the subsequent analysis, which is why we keep the
arguments rather short. However, we think that this result ought to be part of a complete
presentation of the properties of the transport operator. We follow the same strategy as
in Proposition 4.3.19 to derive the spectrum T . This strategy is, essentially, also described
in [111, Sc. 2.2].

Remark 4.3.30. If one extends the function spaces to complex-valued functions, the spec-
trum of the transport operator T : D(T )→ H is given by

σ(T ) = σess(T ) =

(
2πiZ
T (D0)

)
, (4.3.115)

where the set on the right-hand side is defined similarly to (4.3.66). This can be shown
by explicitly deriving the resolvent operators using the Fourier expansion (4.3.47) as in
Lemma 4.3.18, and then applying the Weyl criterion similarly to the proof of Proposi-
tion 4.3.19 to deduce that the eigendistribution

S1 × D0 3 (θ, E, L) 7→ δ(E∗,L∗)(E,L) e2πin θ (4.3.116)

corresponds to the element 2πin
T (E∗,L∗) of σess(T ) for any n ∈ Z and (E∗, L∗) ∈ D0.

By Proposition 4.3.23, 0 is, in fact, an eigenvalue of T with the (infinite dimensional)
eigenspace ker(T ). The presence of further eigenvalues of the transport operator T is,
similar to Lemma 4.3.22, equivalent to the period function T

∣∣
D0

possessing level sets with

positive measure. More precisely, if T
∣∣−1

D0
({t}) has positive measure for some t > 0, 2πin

t is
an eigenvalue of T for any n ∈ Z.

4.3.5 An Approximation Result

The last part of the analysis of the transport operator is to establish an approximation result
which will later allow us to extend some statements from smooth functions to elements
of D(T ). The approximation result is based on [147, Prop. 2] and [165, Thm. 3.15], where it
is mainly used to derive the skew-symmetry of the transport operator T . Due to a careful
treatment of the transport operator in action-angle type variables, we did not need the
approximation result for this purpose, cf. Remark 4.3.14. The result is, however, useful
for other tasks. Related arguments are also used in [57, p. 504ff.]. An adaptation of the
approximation result is included in [49, Prop. 5.1 (e)].

Lemma 4.3.31. Let f ∈ D(T ). Then there exists a sequence of smooth functions (fj)j∈N ⊂
C∞c,r(Ω0) s.t.

fj → f and T fj → T f in H as j →∞. (4.3.117)

116The estimate (4.3.111) being sharp means that the constant 2π
supD0 T

cannot be replaced by any larger

value, although we are not certain whether there exists a function f ∈ D(T ) ∩ ker(T )⊥ s.t. there holds
equality in (4.3.111).
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In addition to supp (fj) being compact in Ω0 in Cartesian (x, v)-coordinates, the support
of fj in radial (r, w, L)-coordinates is also compactly contained in Ω0.117 Moreover, if f ∈ H,
one can choose fj ∈ H for j ∈ N.

Proof. We follow [147, Prop. 2] and [165, Thm. 3.15] and split the proof into several steps.

Step 1: Reduction to a Compact Support. For j ∈ N let χj ∈ C∞(R) be an increasing cut-off
function s.t.

χj(s) = 0 for s ≤ 1

2j
and χj(s) = 1 for s ≥ 1

j
. (4.3.118)

We then set

fj(x, v) := χj(L(x, v)− L0)χj(E0 − E(x, v)) f(x, v), a.e. (x, v) ∈ Ω0. (4.3.119)

Lemma 4.3.9 shows fj ∈ D(T ) with T fj = (χj ◦ (L− L0)) (χj ◦ (E0 − E)) T f for j ∈ N.
Hence, by Lebesgue’s dominated convergence theorem,

fj → f and T fj → T f in H as j →∞. (4.3.120)

By applying the following arguments to fj with j ∈ N sufficiently large instead of to f , we
may assume that f has compact support118 in Ω0. More precisely, we assume that there
exists some m ∈ N s.t.

f(x, v) = 0 for a.e. (x, v) ∈ Ω0 with |x| ≤ 1

m
∨ L(x, v) ≤ L0 +

1

m
∨ E(x, v) ≥ E0 −

1

m
.

(4.3.121)
In particular, since the integral weight |ϕ′(E,L)| is bounded on compact subsets of Ω0, cf.
Remark 4.2.4 (e), there holds f, T f ∈ L2(Ω0).

Step 2: The Approximation Sequence. We mollify f in (r, w, L)-variables in order to con-
struct the desired approximating sequence. Let J ∈ C∞c (B3

1(0)) be a standard three-
dimensional mollifier, i.e., B3

1(0) = B1(0) ⊂ R3,
∫
R3 J = 1, and J ≥ 0. We further define

Jn := n3J(n·) as well as

fn := Jn ∗ f, gn := Jn ∗ T f (4.3.122)

for n ∈ N, where the convolution is to be interpreted in (r, w, L)-variables. Due to the
compact supports of f and T f , we deduce that fn and gn have compact supports in Ω0

for sufficiently large n ∈ N. In addition, after possibly increasing the number m ∈ N from
above, we may assume B̄ 1

m
(supp (fn)) ⊂ Ω0 and that (4.3.121) holds with f replaced by fn

for sufficiently large n. We further deduce fn ∈ C∞c,r(Ω0) for sufficiently large n ∈ N since
changing from (r, w, L)-variables to (x, v)-variables is smooth away from {x = 0}. Using
standard mollifying arguments as well as the fact that the integral weight |ϕ′(E,L)|−1 is
bounded on compact subsets of Ω0, cf. Remark 4.2.4 (d), yields

fn → f and gn → T f in H and L2(Ω0) as n→∞. (4.3.123)

Moreover, by choosing a mollifier J = J(r, w, L) which is even in w, the property that f is
odd in v carries over to the approximating functions (fn)n∈N.

117More precisely, this means that supp (fj) b Ω̊0 in (r, w, L)-coordinates. In particular, supp (fj) is
bounded away from {r = 0} and {L = 0}.

118The support of f is compact in Ω0 both in Cartesian (x, v)-variables as well as in the radial (r, w, L)-
variables; notice that the lower bound on |x| = r is due to the lower bound on L.



92 CHAPTER 4. PROPERTIES OF THE OPERATORS

Step 3: Boundedness. We next show that (T fn)n∈N is bounded in L2(Ω0). In order to
do so, we use the representation (4.2.17) of the transport operator in (r, w, L)-variables to
rewrite T fn(z) for z = (r, w, L) ∈ supp (fn) b Ω0 and sufficiently large n ∈ N as follows:

T fn(z) = w [(∂rJn) ∗ f ](z)−Ψ′L(r) [(∂wJn) ∗ f ](z) =

=

∫
B 1
n

(z)

[
(w − w̃) ∂rJn(z − z̃)−

(
Ψ′L(r)−Ψ′

L̃
(r̃)
)
∂wJn(z − z̃)

]
f(z̃) dz̃+

+

∫
Ω0

[
w̃ ∂rJn(z − z̃)−Ψ′

L̃
(r̃) ∂wJn(z − z̃)

]
f(z̃) dz̃, (4.3.124)

where z̃ = (r̃, w̃, L̃). Since B 1
m

(supp (f)) 3 z̃ 7→ Ψ′
L̃

(r̃) is Lipschitz continuous, we obtain

the following estimate:∣∣∣∣∣∣
∫
B 1
n

(z)

[
(w − w̃) ∂rJn(z − z̃)−

(
Ψ′L(r)−Ψ′

L̃
(r̃)
)
∂wJn(z − z̃)

]
f(z̃) dz̃

∣∣∣∣∣∣ ≤
≤ C

n

∫
B 1
n

(z)
|DJn(z − z̃)| |f(z̃)| dz̃ = Cn3 (|DJ(n·)| ∗ |f |)(z) (4.3.125)

for z = (r, w, L) ∈ supp (fn) b Ω0 and all sufficiently large n ∈ N, where the constant
C > 0 depends on the support of f but is independent from n; the constant is allowed to
change its value from line to line. In order to bound the second term on the right-hand
side of (4.3.124), observe that |ϕ′(E,L)| f ∈ D(T ) with T (|ϕ′(E,L)| f) = |ϕ′(E,L)| T f by
Lemma 4.3.9 and the compact support of f . Hence,

4π2

∫
Ω0

[
w̃ ∂rJn(z − z̃)−Ψ′

L̃
(r̃) ∂wJn(z − z̃)

]
f(z̃) dz̃ = −〈T (Jn(z − ·)), f〉L2(Ω0) =

= −〈T (Jn(z − ·)), |ϕ′(E,L)| f〉H = 〈Jn(z − ·), |ϕ′(E,L)| T f〉H = 4π2gn(z) (4.3.126)

for sufficiently large n ∈ N, where the second to last equation is due to Definition 4.2.5.
Inserting (4.3.125) and (4.3.126) into (4.3.124) then yields

‖T fn‖2 ≤ Cn3 ‖|DJ(n·)| ∗ |f |‖2 + ‖gn‖2 (4.3.127)

for sufficiently large n ∈ N, where the Lp-norms are interpreted in (r, w, L)-variables here.
Applying Young’s inequality shows

Cn3 ‖|DJ(n·)| ∗ |f |‖2 ≤ Cn3 ‖|DJ(n·)‖1 ‖f‖2 = C‖DJ‖1 ‖f‖2, (4.3.128)

which, together with the fact that (gn)n∈N converges in L2(Ω0), implies that (T fn)n∈N is
indeed bounded in L2(Ω0).

Step 4: Weak Convergence. Due to the previous step there exists a subsequence of (fn)n∈N –
which, by slight abuse of notation, we again denote by (fn)n∈N – and a spherically symmetric
a.e. limiting function g ∈ L2(Ω0) s.t.

T fn ⇀ g in L2(Ω0) as n→∞. (4.3.129)

In particular, the compact supports of fn carry over to g, which implies g ∈ H. We need
to show g = T f . In order to verify this equality, let ξ ∈ C1

c,r(Ω0) be a test function as
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required in Definition 4.2.5. Since 〈·, ξ〉H ∈
[
L2(Ω0)

]′
by the compact support of ξ, the

weak convergence (4.3.129) and (4.3.123) imply

〈g, ξ〉H = lim
n→∞

〈T fn, ξ〉H = − lim
n→∞

〈fn, T ξ〉H = −〈f, T ξ〉H . (4.3.130)

Step 5: Strong Convergence. Due to the previous step there holds T fn ⇀ T f in L2(Ω0) as
n→∞. We upgrade this limiting behaviour to actual strong convergence in H by passing
to convex combinations of fn. More precisely, Mazur’s lemma implies that for every n ∈ N
there exists Nn ≥ n and weights cnn, . . . , c

n
Nn
∈ [0, 1] with

∑Nn
j=n c

n
j = 1 s.t.

T

Nn∑
j=n

cnj fj

 =

Nn∑
j=n

cnj T fj → T f in L2(Ω0) as n→∞. (4.3.131)

Letting Fn :=
∑Nn

j=n c
n
j fj for n ∈ N then defines the desired approximating sequence be-

cause, by the compact supports of fn, the limit (4.3.131) also holds in H.

4.4 The Response Operator R

In this section we analyse the response operator R given by Definition 4.2.8. The results
presented here mainly originate from [62, Lemma 4.3 and App. A.1] and [49, Lemma 5.15];
see also [61, Lemmas 3.8 and 3.9] and [85, Lemma B.15] for related results.

We first show that the mass density ρf and the radial velocity density jf induced by a
function f ∈ H are well-defined; recall that Rf contains the factor jf .

Lemma 4.4.1. Let f ∈ H. Then the associated mass density119

ρf : R3 → R, ρf (x) :=

∫
R3

f(x, v) dv (4.4.1)

and the associated radial velocity density

jf : R3 → R, jf (x) :=

∫
R3

x · v
|x|

f(x, v) dv (4.4.2)

are well-defined a.e., where we extend f by 0 onto the whole space R3 × R3. In addition,
ρf , jf ∈ L2(R3) with

‖ρf‖2 + ‖jf‖2 ≤ C‖f‖H , (4.4.3)

where the constant C > 0 depends only on the fixed steady state. Furthermore, ρf and jf
are spherically symmetric a.e. in the sense of Definition 4.2.1 (a) and, in radial variables,
there hold the representations

ρf (r) =
π

r2

∫ ∞
0

∫
R
f(r, w, L) dw dL, a.e. r > 0, (4.4.4)

and (4.2.22).

119It will always be clear from the context whether we refer to the (trivial) mass density ρf with f = 0 or
to the mass density ρ0 = ρf0 of the steady state when writing ρ0.
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Proof. Using the Cauchy-Schwarz inequality and Lemma 4.1.3 yields

‖ρf‖22 ≤
∫
R3

(∫
R3

|ϕ′(E,L)| dv
)(∫

R3

1

|ϕ′(E,L)|
|f(x, v)|2 dv

)
dx ≤ C‖f‖2H , (4.4.5)

which shows that ρf is indeed well-defined and square-integrable. Since x·v
|x| is bounded

for (x, v) ∈ Ω0, similar arguments yield the respective statements for jf as well as the es-
timate (4.4.3).120 The fact that the a.e. spherical symmetry of f implies that ρf and jf
are spherically symmetric a.e. is easy to verify using Definition 4.2.1. The representa-
tions (4.2.22) and (4.4.4) then follow by the usual change of variables v 7→ (w,L).

In particular, the above lemma shows that the expression (4.2.21) defining R is indeed
well-defined. We next show that the response operator defines a bounded operator R : H →
H. This is based on [62, Lemma 4.3] and [49, Lemma 5.15].

Lemma 4.4.2 (Main Properties of the Response Operator). The response operator
R : H → H is well-defined, linear, bounded, symmetric, and non-negative. The latter means
〈Rf, f〉H ≥ 0 for f ∈ H and we write R ≥ 0, cf. [69, Def. 5.11] or [136, Sc. VI.4].121 More-
over, Rf ∈ H for f ∈ H.

Proof. For f ∈ H, we express ‖ · ‖H in radial variables via (4.2.7) and apply Lemma 4.1.2
to obtain

‖Rf‖2H = 26π4

∫ ∞
0

j2
f (r)

∫ ∞
0

∫
R
w2 |ϕ′(E,L)|dw dLdr = (4π)3

∫ ∞
0

r2 ρ0(r) j2
f (r) dr.

(4.4.6)
Inserting the representation (4.2.22) of jf and using that ρ0 is bounded by Proposition 2.2.9
then yields

‖Rf‖2H ≤ C
∫ ∞

0

1

r2

(∫ ∞
0

∫
R
w f(r, w, L) dw dL

)2

dr ≤

≤ C
∫ ∞

0

1

r2

(∫ ∞
0

∫
R
w2 |ϕ′(E,L)|dw dL

)(∫ ∞
0

∫
R

|f(r, w, L)|2

|ϕ′(E,L)|
dw dL

)
dr ≤

≤ C
∫ ∞

0

∫ ∞
0

∫
R

|f(r, w, L)|2

|ϕ′(E,L)|
dw dLdr = C‖f‖2H , (4.4.7)

where used the Cauchy-Schwarz inequality and, once again, Lemma 4.1.2. The constant
C > 0 in this calculation depends only on the fixed steady state and is allowed to change
from line to line. We have thus shown that R : H → H is indeed well-defined and bounded;
R is obviously linear since jf depends linearly on f . In addition, it is evident that Rf is
odd in w for f ∈ H since the particle energy E is even in w. Thus, Rf is odd in v, recall
Remark 4.2.2 (c), and Rf ∈ H.

In order to verify the remaining properties, let f, g ∈ H. Expressing the inner product
〈·, ·〉H in radial variables via (4.2.8) shows

〈Rf, g〉H = 24π3

∫
Ω0

w jf (r) g(r, w, L) d(r, w, L) = (4π)2

∫ ∞
0

r2 jf (r) jg(r) dr. (4.4.8)

Because the latter expression is symmetric in f and g, we deduce that R is symmetric.
Furthermore, by inserting g = f into (4.4.8), we conclude that R is non-negative.

120The proof of Lemma 4.4.2 will illustrate a different strategy to establish jf ∈ L2(R3), which will be
based on Lemma 4.1.2 and the boundedness of ρ0 instead of Lemma 4.1.3.

121Different from the cited literature, we call an operator with this property non-negative instead of positive.
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The proof above uses the fact that we have included the weight 1
|ϕ′| into the L2-space H

in an essential way. Let us elaborate on this point.

Remark 4.4.3 (On the Weight 1
|ϕ′|). For the response operator R : H → H to be symmet-

ric, it is crucial that we have included the weight 1
|ϕ′| into the L2-space H; recall Defini-

tion 4.2.3 for the definition of H. This can be seen in (4.4.8), where the factor |ϕ′(E,L)|
contained in Rf cancels out with the integral weight. Without this cancellation, the response
operator R would not be symmetric in general. The symmetry of R is, however, used in
Section 4.5 to show that the whole linearised operator L = −T 2−R is symmetric, which in
turn is important to analyse the spectrum of L.

This further shows that it is essential for our arguments that ϕ′ does not change its
sign, at least on the support of the steady state. If ϕ′ would change its sign, one would
have to replace the factor |ϕ′| in Rf with −ϕ′. In order to preserve the cancellation effect
described above, one would then have to include the weight 1

ϕ′ (or − 1
ϕ′ ) into the underlying

L2-space. This would lead to an indefinite inner product space, cf. [22], instead of the Hilbert
space H and thus make all arguments significantly more complicated.122 To prove statements
about solutions of the linearised Vlasov-Poisson system in this setting, it is probably more
convenient not to work with such spaces but to analyse the system more directly; this is,
e.g., done in [53, Sc. 2].

This is the reason why we impose the condition (ϕ5) on the steady state, which ensures
ϕ′ < 0 on the steady state support. In order to obtain the symmetry of the response operator,
one could, in principle, also consider steady states with ϕ′ > 0. We do, however, restrict
the analysis here to steady states with ϕ′ < 0, since these equilibria are more natural from
a physics point of view, recall the discussion in Remark 4.1.1 (b), and are thus mainly
considered in the literature.

Next, we determine the square root of the response operator R : H → H, i.e., we derive
a linear and bounded operator

√
R : H → H with

√
R ≥ 0 and (

√
R)2 = R. This square

root operator will play an important role in Chapter 5, cf. Remark 5.1.12. Since R : H → H
is bounded and non-negative by Lemma 4.4.2, such a square root operator exists, cf. [136,
Thm. VI.9]. Fortunately, by taking

√
Rf to be of a similar form as Rf , we can derive the

square root operator explicitly. This is based on [49, Lemma 5.15] and [61, Lemma 3.8].

Lemma 4.4.4 (The Square Root of the Response Operator). The square root
√
R : H → H

of the response operator R : H → H is given by

√
Rf(r, w, L) := 2

√
π |ϕ′(E,L)| w√

ρ0(r)
jf (r), f ∈ H, a.e. (r, w, L) ∈ Ω0. (4.4.9)

Moreover,
√
R is a symmetric operator and

√
Rf ∈ H for f ∈ H.

Proof. Using the representation (4.2.22) of jf and Lemma 4.1.2 yields

√
R
√
Rf(r, w, L) = 2

√
π |ϕ′(E,L)| w√

ρ0(r)
j√Rf (r) = 4π |ϕ′(E,L)| w

ρ0(r)
jf (r) jw |ϕ′|(r) =

= 4π |ϕ′(E,L)|w jf (r) = Rf(r, w, L) (4.4.10)

122Another way to ensure that the linearised operator is symmetric is to consider 1
ϕ′L on the unweighted

L2-space L2(Ω0). This is, e.g., done in [8, 71, 77]. However, if ϕ′ changes its sign on the steady state
support, the associated kinetic energy

∫
Ω0

1
−ϕ′ |f(x, v)|2 d(x, v) can be negative, which essentially leads to

similar problems as the ones described above.
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for f ∈ H and a.e. (r, w, L) ∈ Ω0. The remaining properties of
√
R can be verified similarly

to the proof of Lemma 4.4.2. Concretely, for f ∈ H, applying Lemma 4.1.2 and the Cauchy-
Schwarz inequality yields

‖
√
Rf‖2H = 24π3

∫
Ω0

|ϕ′(E,L)|w2 1

ρ0(r)
j2
f (r) d(r, w, L) = (4π)2

∫ ∞
0

r2 j2
f (r) dr =

= (2π)4

∫ ∞
0

1

r2

(∫ ∞
0

∫
R
w f(r, w, L) dw dL

)2

dr ≤

= (2π)4

∫ ∞
0

1

r2

(∫ ∞
0

∫
R
w2 |ϕ′(E,L)|dw dL

)(∫ ∞
0

∫
R

f(r, w, L)2

|ϕ′(E,L)|
dw dL

)
dr ≤

≤ C‖f‖2H . (4.4.11)

Moreover,
√
Rf is obviously odd in v, i.e.,

√
Rf ∈ H. There further holds

〈
√
Rf, g〉H = 23π

5
2

∫
Ω0

w√
ρ0(r)

jf (r) g(r, w, L) d(r, w, L) = 23π
3
2

∫ ∞
0

r2√
ρ0(r)

jf (r) jg(r) dr

(4.4.12)
for f, g ∈ H, which shows that (4.4.9) indeed defines a symmetric, non-negative operator.

The last part of this section is concerned with deriving an alternative representation
of the response operator Rf (and its square root) provided that f is sufficiently smooth.
More precisely, the aim is to rigorously establish a representation like (3.1.8) for Rf if the
transport term T f exists in the weak sense, cf. Definition 4.2.5. As a preparation for this,
we first introduce and analyse gravitational potentials induced by functions in H.

Definition & Lemma 4.4.5 (Gravitational Potentials). For f ∈ H let Uf : R3 → R be
the gravitational potential induced by ρf , i.e.,

Uf := − 1

| · |
∗ ρf ; (4.4.13)

recall Lemma 4.4.1 for the properties of ρf . It then holds that Uf ∈ C(R3) with
lim|x|→∞ Uf (x) = 0 as well as Uf ∈ Lp ∩ L∞(R3) for every p > 3. Furthermore, Uf is

differentiable in the distributional sense with ∂xUf ∈ Lp(R3;R3) for 3
2 < p ≤ 6, and there

holds the estimate123

‖Uf‖∞ + ‖∂xUf‖2 ≤ C‖ρf‖2, (4.4.14)

where the constant C > 0 depends only on the fixed steady state. There further holds

∆Uf = 4πρf (4.4.15)

in the distributional sense. Moreover, Uf is spherically symmetric with

U ′f (r) =
4π

r2

∫ r

0
s2ρf (s) ds, r > 0, (4.4.16)

in the weak sense.

123Similar estimates also hold for other Lp-norms of Uf and ∂xUf .
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Proof. Lemma 4.4.1 yields ρf ∈ L2(R3), and the support of ρf is bounded by the compact
radial support of the steady state. Thus, ρf ∈ L1 ∩ L2(R3) with

‖ρf‖p ≤ C‖ρf‖2, 1 ≤ p ≤ 2, (4.4.17)

for some constant C > 0 as specified above. Basic potential theory [98, Thm. 6.21 and
Ch. 10] hence yields the claimed regularity and integrability of Uf and ∂xUf as well
as (4.4.14) and (4.4.15). The spherical symmetry of Uf together with (4.4.16) follows by a
straight-forward calculation using the a.e. spherical symmetry of ρf .

We obtain further information about Uf when we know more about f . Concretely, we
consider the situation f ∈ im(T ) in the following lemma. The additional properties of Uf
in this case will then allow us to deduce alternative representations of the response operator
and its square root. This is based on [62, App. A.1], see also [61, Lemma 3.9] and [85,
Lemma B.15 and Cor. B.16] for related results. Some of the following arguments were also
used earlier in [53, Proof of Thm. 1.1].

Lemma 4.4.6. Let f ∈ D(T ). In addition to the properties of UT f which follow from
Lemma 4.4.5, it holds that UT f ∈ C ∩H2(R3) with

‖UT f‖∞ + ‖UT f‖H2 ≤ C‖T f‖H (4.4.18)

for some constant C > 0 which depends only on the underlying steady state. Moreover,

U ′T f (r) = 4πjf (r), a.e. r > 0. (4.4.19)

Proof. The key observation on which the proof is mainly based is∫
R3

ρT f (x) dx = 〈|ϕ′|, T f〉H = −〈T |ϕ′|, f〉H = 0, (4.4.20)

which is due to |ϕ′| ∈ H by Lemma 4.1.3 with |ϕ′| ∈ ker(T ) by Proposition 4.3.23 and
the skew-symmetry of the transport operator T , cf. Proposition 4.3.15. Since supp (ρT f ) ⊂
B̄Rmax(0), we hence obtain the following estimate for x ∈ R3 with |x| ≥ 2Rmax:

|UT f (x)| =

∣∣∣∣∣
∫
BRmax (0)

ρT f (y)

|x− y|
dy −

∫
BRmax (0)

ρT f (y)

|x|
dy

∣∣∣∣∣ ≤ 2Rmax

|x|2
‖ρT f‖1. (4.4.21)

Since UT f is continuous by Lemma 4.4.5, this shows UT f ∈ L2(R3). Together with (4.4.15)
and the estimates (4.4.3), (4.4.14), and (4.4.17) we hence conclude UT f ∈ H2(R3)
with (4.4.18).

In order to prove (4.4.19), we first consider the case f ∈ C∞c,r(Ω0) and further assume
that the support of f is bounded away from {x = 0}.124 In this situation, (4.4.19) follows
by integrating the radial Poisson equation as in [57, App.] or [96, Eqn. (B.1)]. Concretely,
by (4.4.16),

U ′T f (r) =
4π2

r2

∫ r

0

∫ ∞
0

∫
R
T f(s, w, L) dw dLds =

=
4π2

r2

∫ ∞
0

∫
R
w

∫ r

0
∂rf(s, w, L) ds dw dL = 4πjf (r) (4.4.22)

124The calculation (4.4.22) is true without assuming that the support of f is bounded away from {x = 0}.
However, imposing this additional assumptions makes it easier to see that the boundary term arising from
the radial origin vanishes.
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for r > 0, where we inserted the representation (4.2.17) of T f . Applying the approximation
result from Lemma 4.3.31 as well as the estimates (4.4.3) and (4.4.18) then allow us to
conclude that (4.4.19) indeed holds for every f ∈ D(T ).

Inserting (4.4.19) into the response operator and its square root, cf. (4.2.21) and (4.4.9),
respectively, then yields the desired alternative representations of these operators.

Corollary 4.4.7. For f ∈ D(T ) it holds that

Rf(r, w, L) = |ϕ′(E,L)|wU ′T f (r), (4.4.23)
√
Rf(r, w, L) =

1

2
√
π
|ϕ′(E,L)| w√

ρ0(r)
U ′T f (r), (4.4.24)

for a.e. (r, w, L) ∈ Ω0.

4.5 The Linearised Operator L

In this section we analyse the linearised operator L = −T 2
∣∣
H − R

∣∣
H defined in Defini-

tion 4.2.9. We first combine suitable properties of the squared transport operator and the
response operator derived in Sections 4.3 and 4.4 to obtain functional analytic properties
of L and to determine the essential spectrum of L. The remaining part of this section is
then concerned with studying the entire spectrum of L. We mainly follow [62] here.

Before we get to the statements described above, we first state that the linearised oper-
ator is indeed a well-defined linear operator.

Lemma 4.5.1. The linearised operator L : D(L) → H is a well-defined linear operator
which is densely defined on H.

Proof. Lemma 4.3.16 shows that the squared transport operator preserves v-parity, which
implies T 2f ∈ H for f ∈ D(L) = D(T 2) ∩ H. In addition, D(L) is dense in H by
Proposition 4.3.17 (b). Since the response operator is defined on the whole space H
with Rf ∈ H for f ∈ H by Lemma 4.4.2, we conclude the claimed statements regard-
ing L = −T 2

∣∣
H −R

∣∣
H : D(L)→ H.

4.5.1 Self-Adjointness of the Linearised Operator

The aim of this section is to show that the linearised operator L : D(L)→ H is self-adjoint.
This seems plausible since both of the addends of L = T 2

∣∣
H −R

∣∣
H have this property, cf.

Proposition 4.3.17 (b) and Lemma 4.4.2.125 However, in general, even if the sum of two
self-adjoint operators is densely defined, it need not be self-adjoint again.126 Fortunately,
in our specific situation, the self-adjointness of L is rather easy to deduce since the response
operator R is bounded. This is based on [62, Lemma 4.5], see also [61, Lemma 3.10 (a)]
and [85, Lemma B.17] for similar results.

Lemma 4.5.2 (Self-Adjointness of the Linearised Operator). The linearised opera-
tor L : D(L)→ H is self-adjoint as a densely defined operator on H.

125Note that any bounded and symmetric operator is self-adjoint, which means that R
∣∣
H is indeed self-

adjoint by Lemma 4.4.2.
126An easy example for this is the following: Let A : D(A)→ H be a self-adjoint operator on some general

Hilbert space H. In addition, assume that A is unbounded, i.e., D(A) ( H. Then the sum of A and
−A : D(A)→ H is D(A) 3 x 7→ 0, which is not self-adjoint since D(A) ( H.
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Proof. The claim follows by the Kato-Rellich theorem, cf. [69, Thm. 13.5] or [133,
Thm. X.12], since T 2

∣∣
H : D(L)→ H is self-adjoint by Proposition 4.3.17 (b) and R

∣∣
H : H →

H is bounded and symmetric by Lemma 4.4.2.

4.5.2 The Essential Spectrum of the Linearised Operator

The aim of this section is to explicitly determine the essential spectrum of the linearised op-
erator L : D(L)→ H. Loosely speaking, the reason why this succeeds is the following: Recall
that we have explicitly determined the essential spectrum of −T 2

∣∣
H in Proposition 4.3.19

using Weyl’s criterion. The latter criterion also illustrates that every element in the essential
spectrum is generated by infinitely many approximate eigenfunctions. Hence, finite dimen-
sional perturbations of −T 2

∣∣
H do not affect the essential spectrum. The same is also true

for compact perturbations, i.e., adding some compact operator to −T 2
∣∣
H, since compact op-

erators are “almost finite dimensional”, see [69, Thm. 9.15] or [136, Thm. VI.13] for precise
statements. Although the response operator might not be compact, the next lemma shows
that it is relatively (T 2

∣∣
H)-compact, and this property suffices for the above arguments.

The lemma is based on [62, Thm. 5.9], see also [49, Lemma 5.16], [61, Lemma 3.10 (b)],
or [85, Cor. B.19] for related results.

Lemma 4.5.3 (Relative (T 2
∣∣
H)-Compactness of the Response Operator). The response op-

erator R
∣∣
H : H → H and its square root

√
R
∣∣
H : H → H are both relatively (T 2

∣∣
H)-compact

in the sense of [69, Def. 14.1]. This means that the operators R
(
−T 2|H − λ

)−1
: H → H

and
√
R
(
−T 2|H − λ

)−1
: H → H are both compact for every λ ∈ ρ(−T 2

∣∣
H).

Proof. Because R = (
√
R)2 and

√
R is bounded by Lemma 4.4.4, it suffices to show that√

R
∣∣
H is relatively (T 2

∣∣
H)-compact.127

By [40, III Def. 2.15 and Ex. 2.18(1)], this is equivalent to
√
R :
(
D(L), ‖T 2 · ‖H + ‖ · ‖H

)
→ H (4.5.1)

being compact; the domain of
√
R in (4.5.1) is D(L) = D(T 2) ∩ H equipped with the

graph norm of T 2.128 To prove this statement, consider a sequence (fn)n∈N ⊂ D(L) s.t.
(fn)n∈N and (T 2fn)n∈N are bounded in H. Applying the Poincaré type inequality from
Lemma 4.3.28 to T fn ∈ im(T ) = ker(T )⊥, recall Lemma 4.3.26 for the latter identity,
shows that (T fn)n∈N is also bounded in H. By Lemma 4.4.6, (UT fn)n∈N ⊂ C ∩H2(R3) is
thus bounded in H2(R3). Moreover, the identity (4.4.19) implies supp (∂xUT fn) ⊂ B̄Rmax(0)
for n ∈ N. Hence, using the compact embedding H2(BRmax(0)) b H1(BRmax(0)), we obtain
that (∂xUT fn)n∈N is (strongly) convergent in L2(R3;R3) after extracting a subsequence –
by slight abuse of notation, we do not notationally distinguish between this subsequence
and the original sequence. Then, using Lemma 4.1.2 and the representation (4.4.24) of

√
R

yields

‖
√
Rfn −

√
Rfm‖2H = π

∫
Ω0

|ϕ′(E,L)| w2

ρ0(r)

∣∣U ′T fn(r)− U ′T fm(r)
∣∣2 d(r, w, L) =

=

∫ ∞
0

r2
∣∣U ′T fn(r)− U ′T fm(r)

∣∣2 dr =
1

4π
‖∂xUT fn − ∂xUT fm‖22 → 0

(4.5.2)

127Since R and
√
R are essentially of the same form, straight-forward modifications of the arguments below

also yield a more direct proof that R
∣∣
H is relatively (T 2

∣∣
H)-compact.

128Alternatively, one could show that
√
R
(
−T 2|H − λ

)−1
is compact by using the Fourier series represen-

tation (4.3.68) of
(
−T 2|H − λ

)−1
. This, more direct, approach is pursued in [85, Proof of Cor. B.19].
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as n,m→∞. This means that (
√
Rfn)n∈N is a Cauchy sequence in H and thus, since H is

complete, (strongly) convergent in H.

As motivated before, the lemma above can be used to derive a connection between the
essential spectra of −T 2

∣∣
H and L.

Proposition 4.5.4 (The Essential Spectrum of the Linearised Operator). The essential
spectrum of the linearised operator L : D(L)→ H is given by

σess(L) = σess(−T 2
∣∣
H) =

(
2πN
T (D0)

)2

, (4.5.3)

where the latter set is defined in (4.3.66).

Proof. Since L = −T 2
∣∣
H − R

∣∣
H and R

∣∣
H is relatively (T 2

∣∣
H)-compact by Lemma 4.5.3,

Weyl’s theorem [69, Thm. 14.6] implies that the essential spectra of −T 2
∣∣
H and L are

identical. The explicit form of σess(−T 2
∣∣
H) is due to Proposition 4.3.19.

We refer to Remark 4.3.20 for a discussion about the structure of σess(L) = σess(−T 2
∣∣
H)

including schematic visualisations of this set.
As observed in [117, Thm. 1.1], not only the essential spectrum of L is determined by

the one of −T 2
∣∣
H, but also further/different parts of the spectrum. Let us discuss this

matter in the following remark.

Remark 4.5.5. The equation (4.4.23) can be rewritten as

Rf = T KT f, f ∈ D(T ), (4.5.4)

where K : H → H is given by

Kf := |ϕ′|Uf , f ∈ H; (4.5.5)

recall Definition 4.4.5 or the definition of Uf . Note that KT f ∈ D(T ) for f ∈ D(T ) by
Lemma 4.4.6. The integrability of |ϕ′|, cf. Lemma 4.1.3, together with the estimates (4.4.3)
and (4.4.14) shows that K is a bounded operator. Moreover, K is symmetric and non-positive
with quadratic form given by

〈Kf, g〉H = − 1

4π

∫
R3

∂xUf (x) · ∂xUg(x) dx, f, g ∈ H. (4.5.6)

In order to derive further properties of K, note that by the spherical symmetry a.e. of f ∈ H
and ρf , (4.4.13) can be rewritten as

Uf (r) = −4π2

∫
Ω0

f(s, w, L)

max{r, s}
d(s, w, L), r > 0. (4.5.7)

Hence, K is an integral operator of the form

Kf(r, w, L) = 4π2

∫
Ω0

1

|ϕ′(E(r̃, w̃, L̃), L̃)|
K(r, w, L, r̃, w̃, L̃) f(r̃, w̃, L̃) d(r̃, w̃, L̃), f ∈ H,

(4.5.8)
with integral kernel K : Ω0 × Ω0 → R given by

K(r, w, L, r̃, w̃, L̃) := −|ϕ
′(E(r, w, L), L)| |ϕ′(E(r̃, w̃, L̃), L̃)|

max{r, r̃}
(4.5.9)
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for a.e. (r, w, L), (r̃, w̃, L̃) ∈ Ω0. By condition (ϕ5), the integral kernel K is continuous on
Ω0 × Ω0. Thus, by Mercer’s Theorem (see [32, III §5] and, for a more general version of
the theorem, [42, Thm. 2.4]), K is a trace class operator [136, Sc. VI.6] with trace given by

Tr(K) = 4π2

∫
Ω0

|K(r, w, L, r, w, L)|
|ϕ′(E,L)|

d(r, w, L) = 4π2

∫
Ω0

|ϕ′(E,L)|
r

d(r, w, L); (4.5.10)

the latter integral is finite by Lemma 4.1.3.
Kato-Birman theory [135, Sc. XI.3] then reveals further connections between the lin-

earised operator L and the squared transport operator −T 2
∣∣
H. For instance, as shown

in [117, Thm. 1.1], the absolutely continuous spectra of L and −T 2
∣∣
H are identical; see [136,

Sc. VII.2] for the definition of this part of the spectrum. This statement can be proven as
follows: By [34, 88, 89], it suffices to show that (L − z)−1 − (−T 2

∣∣
H − z)−1 is a trace

class operator for one/any z ∈ C \ R. Using the second resolvent identity [69, Prop. 1.9]
and (4.5.4), this operator can be written as

(L − z)−1 − (−T 2
∣∣
H − z)

−1 = (−T 2
∣∣
H − z)

−1T KT (L − z)−1. (4.5.11)

The Fourier series representation of (−T 2
∣∣
H − z)

−1 derived in Lemma 4.3.18 shows that

(−T 2
∣∣
H − z)

−1T is a bounded operator on H. Moreover, T (L − i)−1 = T −1T 2(L − i)−1 is
bounded by [69, Lemma 13.6];129 notice that T −1 : H → H is bounded by Corollary 4.3.25
and Lemma 4.3.27. Hence, as the composition of a trace class operator and bounded op-
erators is again in the trace class, cf. [136, Thm. VI.19], we conclude that the absolutely
continuous spectra of L and −T 2

∣∣
H are indeed identical.

4.5.3 Positivity of the Linearised Operator

It follows by Propositions 4.5.4 and A.0.1 that the essential spectrum of the linearised
operator L : D(L)→ H is positive, i.e.,

inf(σess(L)) > 0. (4.5.12)

The aim of this section is to show that the same is also true for the entire spectrum of L.
As discussed in Chapter 3 and proven in Lemma C.0.3, this property corresponds to the
linear stability of the underlying steady state. We mainly follow [62, Sc. 7.1] here.

The basis for the results of this section forms the Antonov coercivity bound. This classical
estimate gives a positive lower bound on the quadratic form of the linearised operator
〈Lf, f〉H for suitably regular, spherically symmetric, odd-in-v functions f : Ω0 → R. It was
first proven in [9, 10] for isotropic polytropic steady states (1.2.3). Simplified proofs and
extensions of the original result covering a larger class of steady states were then developed
in [36, 37, 57, 77, 96, 128, 169]. Further adaptions and applications of the estimate are
contained in [53, Lemma 3.1], [61, Lemma 3.10 (c)], [62, Prop. 7.1], [85, Thm. 1.2], and [119,
Prop. 3.5] among others. In fact, it is mainly the monotonicity condition (ϕ5) which is
needed to establish such estimate; due to this reason, the condition (ϕ5) is sometimes
called the Antonov (linear) stability condition. We first present a simplified version130 of

129One can apply the first resolvent identity [69, Prop. 1.6 (2)] to deduce that T (L − z)−1 is, in fact,
bounded for any z ∈ C \ R.

130In Lemma 4.5.6, we require that the supports of the functions under consideration are bounded away
from the spatial origin. This assumption allows us to avoid several technical arguments in the proof of
the lemma. Nonetheless, due to Lemma 4.3.31, establishing the estimate for such functions still suffices to
extend the estimate to more general functions afterwards.
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the estimate for smooth functions before extending it to more general functions. Since the
present class of steady states differs from the ones used in the literature, we also include a
proof here which is based on [57, App.].

Lemma 4.5.6 (Antonov’s Coercivity Bound for Smooth Functions). Let f ∈ C2
c,r(Ω0) be

odd in v and s.t. the support of f is bounded away from {x = 0}. Then there holds the
estimate

〈Lf, f〉H ≥
∫

Ω0

1

|ϕ′(E,L)|
U ′0(r)

r
|f(x, v)|2 d(x, v), (4.5.13)

where, as usual, r = |x|.

Proof. By the skew-symmetry of the transport operator derived in Proposition 4.3.15, the
quadratic form of L is of the form

〈Lf, f〉H = ‖T f‖2H − 〈Rf, f〉H . (4.5.14)

Using the Cauchy-Schwarz inequality and Lemma 4.1.2 gives the following estimate for the
second term on the right-hand side:

〈Rf, f〉H = 24π3

∫
Ω0

w f(r, w, L) jf (r) d(r, w, L) =

= (2π)4

∫ ∞
0

1

r2

(∫ ∞
0

∫
R
w f(r, w, L) dw dL

)2

dr ≤

≤ 24π3

∫
Ω0

1

|ϕ′(E,L)|
ρ0(r) |f(r, w, L)|2 d(r, w, L). (4.5.15)

In order to estimate the first term on the right-hand side of (4.5.14), we consider the
spherically symmetric function g : Ω0 → R defined by

g(r, w, L) :=
1

rw
f(r, w, L). (4.5.16)

Since f is odd in v and vanishes at r = 0, (4.5.16) indeed defines a continuously differentiable
function on Ω0. Applying the product rule to the representation (4.2.17) of the transport
operator yields

T f = T (rw g) = g T (rw) + rw T g (4.5.17)

as well as
(T f)2 = r2w2 (T g)2 + T

(
rw g2 T (rw)

)
− rw g2 T 2(rw). (4.5.18)

Hence, the first term on the right-hand side of (4.5.14) can be rewritten as follows:

1

4π2
‖T f‖2H =

∫
Ω0

1

|ϕ′(E,L)|
r2w2 (T g(r, w, L))2 d(r, w, L)+

+

∫
Ω0

1

|ϕ′(E,L)|
T
(
rw g2 T (rw)

)
d(r, w, L)+

−
∫

Ω0

1

|ϕ′(E,L)|
rw g(r, w, L)2 T 2(rw) d(r, w, L). (4.5.19)

The first term on the right-hand side of this equation is obviously non-negative.131

The second term vanishes by the skew-symmetry of the transport operator; note that

131In the literature, this term is often included in the right-hand side of the Antonov bound, which then gives
a “sharper” estimate than (4.5.13). Here, we just drop this term since it is not helpful for our applications.



4.5. THE LINEARISED OPERATOR L 103

rw g(r, w, L)2 T (rw) defines a smooth function on Ω0. In order to rewrite the third term,
we use the radial Poisson equation to deduce

T 2(rw) = T
(
w2 − rΨ′L(r)

)
= −rw

(
Ψ′′L(r) +

3

r
Ψ′L(r)

)
= −rw

(
4πρ0(r) +

U ′0(r)

r

)
(4.5.20)

for r > 0 and w ∈ R. Hence,

‖T f‖2H ≥ 4π2

∫
Ω0

1

|ϕ′(E,L)|

(
4πρ0(r) +

U ′0(r)

r

)
r2w2 g(r, w, L)2 d(r, w, L) =

= 4π2

∫
Ω0

1

|ϕ′(E,L)|

(
4πρ0(r) +

U ′0(r)

r

)
f(r, w, L)2 d(r, w, L). (4.5.21)

Inserting (4.5.15) and (4.5.21) into (4.5.14) then shows (4.5.13).

In order to extend the above estimate to a larger set of functions, we first introduce
an extension of the quadratic form of the linearised operator similar to [62, Def. 4.4], see
also [85, Cor. B.19].

Definition & Lemma 4.5.7 (The Quadratic Form of the Linearised Operator). For f ∈
D(T ) ∩H let

〈Lf, f〉H := ‖T f‖2H −
1

4π
‖∂xUT f‖22; (4.5.22)

this expression is well-defined by Lemma 4.4.6.132 Furthermore, for f ∈ D(L), this defini-
tion is consistent with the usual definition of the quadratic form of L.

Proof. Let f ∈ D(L). Using the skew-symmetry of the transport operator, cf. Proposi-
tion 4.3.15, and the identity (4.4.19) from Lemma 4.4.6 yields

− 〈T 2f, f〉H − 〈Rf, f〉H = ‖T f‖2H − (4π)2

∫ ∞
0

r2 j2
f (r) dr =

= ‖T f‖2H −
∫ ∞

0
r2 U ′T f (r)2 dr = ‖T f‖2H −

1

4π
‖∂xUT f‖22, (4.5.23)

which shows that (4.5.22) is indeed consistent with the usual definition of 〈Lf, f〉H .

By applying the approximation result from Section 4.3.5, we obtain that the Antonov
coercivity bound from Lemma 4.5.6 can be extended to D(T ) ∩H.

Lemma 4.5.8 (Antonov’s Coercivity Bound on D(T ) ∩ H). For f ∈ D(T ) ∩ H there
holds the estimate (4.5.13), where the left-hand side is to be interpreted in the sense of
Definition 4.5.7.

Proof. Let (fj)j∈N ⊂ C∞c,r(Ω0) ∩ H be an approximation sequence as constructed in
Lemma 4.3.31, i.e., fj → f and T fj → T f in H as j → ∞. By Lemma 4.5.6, the es-
timate (4.5.13) holds after replacing f with fj for j ∈ N; in particular, the support of fj
is bounded away from {x = 0} for j ∈ N by Lemma 4.3.31. Furthermore, Lemma 4.4.6
implies 〈Lfj , fj〉H → 〈Lf, f〉H as j → ∞. The same convergence as j → ∞ also holds for

the right-hand side of (4.5.13) because
U ′0(r)
r is bounded on the radial support of the steady

132From a mathematics point of view, one could further extend this definition to f ∈ D(T ) which are not
necessarily odd in v. However, as discussed in Remark 4.2.10, the linearised operator is only meaningful for
odd in v functions.
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state. In the case L0 > 0, this is obvious since Rmin > 0. Otherwise, the steady state is
isotropic by (ϕ5) and, by the radial Poisson equation (2.2.32),

U ′0(r)

r
=
m0(r)

r3
=

4π

r3

∫ r

0
s2 ρ0(s) ds→ 4π

3
ρ0(0) as r → 0, (4.5.24)

which also shows the boundedness of
U ′0(r)
r .

An immediate consequence of the above lemma is that L is a non-negative operator.133

The same observation is stated in [62, Cor. 7.2].

Corollary 4.5.9. The linearised operator L : D(L) → H is non-negative, i.e., σ(L) ⊂
[0,∞[.

Proof. Lemma 4.5.8 shows that the quadratic form of L is non-negative on D(L). By
standard variational principles, cf. [69, Prop. 5.12] or [134, Thm. XIII.1], we then conclude
the non-negativity of the spectrum of L.

As motivated at the start of this section, we aim to show not only that L is non-
negative, but even that it is positive, which means σ(L) ⊂ ]0,∞[.134 A key observation
in this direction is that 0 is not an eigenvalue of L. As the previous corollary, this result
follows directly from the Antonov coercivity bound and is based on [62, Cor. 7.3].135

Corollary 4.5.10. The nullspace of the linearised operator L : D(L) → H is trivial, i.e.,
ker(L) = {0}.

Proof. Since the radial weight
U ′0(r)
r = m0(r)

r3 in the integral on the right-hand side of (4.5.13)
is positive for r ∈ ]Rmin, Rmax], the claim follows by Lemma 4.5.8.

Together with the characterisation of the essential spectrum of L from Proposition 4.5.4,
the above two corollaries already yield the desired positivity of L.

Proposition 4.5.11 (Positivity of the Linearised Operator). There exists a constant c > 0
depending on the underlying steady state s.t. for all f ∈ D(T ) ∩H there holds the estimate

〈Lf, f〉H ≥ c‖f‖2H , (4.5.25)

where the left-hand side is given by Definition 4.5.7. This means that the linearised operator
is positive, i.e.,

inf(σ(L)) ≥ c > 0. (4.5.26)

Proof. By the approximation result from Lemma 4.3.31 and standard variational principles,
cf. [69, Prop. 5.12] or [134, Thm. XIII.1], the validity of the estimate (4.5.25) is equivalent
to (4.5.26). Let us suppose that the latter is false, i.e., by Corollary 4.5.9, inf(σ(L)) = 0.
Since the spectrum of an operator is always closed [69, Thm. 1.2], 0 has to lie inside the
spectrum of L. By Proposition 4.5.4 and the boundedness of the period function T on D0,
0 is not in the essential spectrum of L, so it must be an eigenvalue. But this contradicts
Corollary 4.5.10.

133The non-negativity of the linearised operator is defined similarly to the response operator, cf.
Lemma 4.4.2.

134Since the spectrum of an operator is always closed, σ(L) ⊂ ]0,∞[ is equivalent to inf(σ(L)) > 0.
135Note that the domain of definition of the linearised operator in [62, Sc. 7.1] is D(T 2), which is larger

then the domain of definition D(L) chosen here. This leads to the fact that the nullspace of the linearised
operator in [62, Cor. 7.3] is larger than the nullspace of L here.
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Although the above proposition already shows the desired positivity of (the spectrum
of) L, we will now provide alternative proofs for this statement. On the one hand, this will
illustrate how the positivity of L could be proven without prior knowledge of its essential
spectrum, which may be helpful in other situations. On the other hand, this will show how
to obtain more explicit lower bounds on L.

The following result is based on the observation that the radial weight
U ′0(r)
r contained

in the right-hand side of Antonov’s coercivity bound (4.5.13) is bounded away from 0 for
certain steady states. The analogous observation is used in [62, Thm. 7.9] and [85, Thm. 1.2].

Lemma 4.5.12. Assume that the underlying steady state is isotropic, i.e., L0 = 0 = `.
Then, for all f ∈ D(T ) ∩H,

〈Lf, f〉H ≥
M0

R3
max

‖f‖2H , (4.5.27)

where the left-hand side is to be interpreted in the sense of Definition 4.5.7 and M0 > 0 is
the total mass of the steady state, recall (2.2.11).

Proof. As observed in [85, Lemma A.6 (a)], the function ]0,∞[ 3 r 7→ U ′0(r)
r is non-increasing

in the case of an isotropic steady state since

∂r

[
U ′0(r)

r

]
=
U ′′0 (r)− 1

r U
′
0(r)

r
=

4πρ0(r)− 3
r U
′
0(r)

r
=

4π

r

(
ρ0(r)− 3

r3

∫ r

0
s2ρ0(s) ds

)
≤ 0

(4.5.28)
for r > 0, where we used that ρ0 is non-increasing by Remark 2.2.10 (a). Hence,

U ′0(r)

r
≥ U ′0(Rmax)

Rmax
=

M0

R3
max

, r ∈ ]0, Rmax]. (4.5.29)

Inserting this estimate into the coercivity bound from Lemma 4.5.8 yields (4.5.27).

Unfortunately, the radial weight
U ′0(r)
r is not bounded away from 0 if the steady state

is anisotropic. Recall that L0 > 0 in this case by assumption (ϕ4), and thus Rmin > 0

by (2.2.42). Hence,
U ′0(r)
r = m0(r)

r3 vanishes at the boundary of Ω0 since m0(Rmin) = 0.
Before considering the case of a general, not necessarily isotropic, equilibrium, we illus-

trate that the arguments from above can also be used to derive an explicit upper bound
on the period function T on D0 for isotropic steady states. In particular, the proof of the
lemma below does not use the boundedness of T established in Section A.1, which means
that it provides an alternative way of establishing supD0

(T ) < ∞. The lemma is inspired
by [85, Cor. 2.2].

Lemma 4.5.13. Assume that the underlying steady state is isotropic, i.e., L0 = 0 = `.
Then

sup
D0

2(T ) ≤ 4π2R
3
max

M0
. (4.5.30)

Proof. Using the non-negativity of the response operator R proven in Lemma 4.4.2 and the
bound (4.5.27) from the lemma above yield

〈−T 2f, f〉H ≥ 〈Lf, f〉H ≥
M0

R3
max

‖f‖2H , f ∈ D(T 2) ∩H. (4.5.31)

By standard variational principles, cf. [69, Prop. 5.12] or [134, Thm. XIII.1], we thus deduce

inf
(
σ(−T 2

∣∣
H)
)
≥ M0

R3
max

. (4.5.32)
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Using the explicit structure of the spectrum of −T 2
∣∣
H derived in Proposition 4.3.19, we

hence conclude (4.5.30).

The remaining part of this section is devoted to finding an alternative way to prove the
positivity of L in the case of a general steady state, including the situation of an anisotropic
equilibrium. We proceed as in [62, Sc. 7.1] and first consider an intermediate variational
problem based on [62, Prop. 7.4]. The techniques used in the proof of this result are inspired
by related arguments for Schrödinger operators [98, Ch. 11] as well as, in the context of
the linearised Vlasov-Poisson system, by variational principles for the so-called “Guo-Lin
operator”, see [53, Lemma 3.1] and [165, Prop. 4.8]. A related estimate is shown in [95,
Thm. 1.3] in the case of an isotropic polytropic steady state (1.2.3); see [119, Sc. 3.6] for a
review of these arguments.

Lemma 4.5.14. Let

λ̃ := inf
f∈D(T )∩H

f 6=0

〈Lf, f〉H
‖T f‖2H

= inf
f∈D(T )∩H

f 6=0

1−
‖∂xUT f‖22
4π‖T f‖2H

; (4.5.33)

see Definition 4.5.7 for the latter identity and recall f ⊥ ker(T ) for f ∈ H by Corol-
lary 4.3.25. Then

λ̃ ∈ ]0, 1[ (4.5.34)

and the infimum (4.5.33) is attained by a minimiser.

Proof. Let (fj)j∈N ⊂ D(T ) ∩H be a normalised minimising sequence, i.e., ‖T fj‖H = 1 for
j ∈ N and 〈Lfj , fj〉H → λ̃. Our aim is to obtain a minimising function of the variational
problem (4.5.33) as a suitable limit of (fj)j∈N. Following [62, Prop. 7.4], we split the proof
into several steps.
Step 1: Convergence of the Potentials. Lemma 4.4.6 implies UT fj ∈ Cr ∩H2(R3) for j ∈ N
and that (UT fj )j∈N is bounded in H2(R3). Hence, there exists a spherically symmetric a.e.
function ψ ∈ H2(R3) s.t.

UT fj ⇀ ψ and ∆UT fj ⇀ ∆ψ in L2(R3) as j →∞ (4.5.35)

and
∂xUT fj ⇀ ∂xψ in L2(R3;R3) as j →∞ (4.5.36)

after extracting a subsequence – by slight abuse of notation, we do not change the name
of the minimal sequence when passing to a subsequence of the original sequence through-
out this proof. The identity (4.4.19) yields supp (∂xUT fj ) ⊂ B̄Rmax(0) for j ∈ N, and
thus supp (∂xψ) ⊂ B̄Rmax(0). Together with the compact embedding H2(BRmax(0)) b
H1(BRmax(0)) we therefore obtain

∂xUT fj → ∂xψ in L2(R3;R3) as j →∞. (4.5.37)

Step 2: Weak Convergence of (T fj)j∈N. Since (T fj)j∈N is bounded in H, there exists g ∈ H
s.t. T fj ⇀ g in H as j → ∞ after extracting a subsequence. Moreover, by Lemma 4.3.16,
T fj is even in v a.e. for j ∈ N and this property carries over to the weak limit g.

Step 3: The Connection Between the Above Limits. For every h ∈ L2
r(R3) ∼=

[
L2
r(R3)

]′
,

Ω0 3 (x, v) 7→ |ϕ′(E,L)|h(x) is an element of H ∼= H ′ by Lemma 4.1.3. Hence, by the
previous step it follows that

ρT fj =

∫
R3

T fj(·, v) dv ⇀

∫
R3

g(·, v) dv = ρg in L2
r(R3) as j →∞; (4.5.38)
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as before, functions defined on Ω0 are extended by 0 to the entire space R3 × R3. On the
other hand, 4πρT fj = ∆UT fj ⇀ ∆ψ in L2(R3) as j → ∞ by (4.4.15) and (4.5.35). Hence,
by the uniqueness of weak limits in L2

r(R3) we deduce136

∆ψ = 4πρg a.e. on R3. (4.5.39)

From this identity we conclude

ψ = Ug a.e. on R3. (4.5.40)

because solutions of the Poisson equation are unique in Lp(R3). More precisely, the latter
can be obtained as follows: The embedding H1(R3) ↪→ L6(R3) yields ψ ∈ L6(R3), while
Lemma 4.4.5 shows Ug ∈ L6(R3). Thus, u := ψ−Ug ∈ L6(R3) and u is harmonic by (4.5.39).
The mean value property of harmonic functions then implies u ≡ 0, i.e., (4.5.40).

Step 4: The Minimiser. Since T fj ∈ ker(T )⊥ for j ∈ N by Lemma 4.3.26, there holds
g ∈ ker(T )⊥. The same lemma thus implies that there exists f ∈ D(T ) s.t. T f = g. In
addition, we can choose f to be odd in v a.e. because g is even in v a.e. and T f+ = g− = 0
by Lemma 4.3.16. Using the convergence (4.5.37), we deduce

1− 1

4π
‖∂xUT f‖22 = 1− 1

4π
‖∂xψ‖22 = lim

j→∞
1− 1

4π
‖∂xUT fj‖

2
2 = lim

j→∞
〈Lfj , fj〉H = λ̃. (4.5.41)

Thus, if ‖∂xUT f‖2 = 0, the above would imply λ̃ = 1. However, this would contradict the
fact that inserting f ∈ D(T ) ∩ H \ {0} with ∂xUT f 6≡ 0 into the infimum (4.5.33) directly
yields λ̃ < 1.

Therefore, ‖∂xUT f‖2 > 0, and thus f 6≡ 0. This means that we can take f as a test
function in the infimum (4.5.33), which, together with (4.5.41), leads to

1− 1

4π
‖∂xUT f‖22 = λ̃ ≤ 1−

‖∂xUT f‖22
4π‖T f‖2H

, (4.5.42)

i.e., ‖T f‖H ≥ 1. On the other hand, the weak lower semicontinuity of the weighted L2-
norm ‖ · ‖H yields

‖T f‖H ≤ lim inf
j→∞

‖T fj‖H = 1. (4.5.43)

Overall, ‖T f‖H = 1 and therefore

λ̃ = 1− 1

4π
‖∂xUT f‖22 = 〈Lf, f〉H =

〈Lf, f〉H
‖T f‖2H

, (4.5.44)

which shows that f is indeed the desired minimiser.

Step 5: Positivity of λ̃. It follows by the previous step that f ∈ D(T ) ∩ H with ‖f‖H > 0.
Hence, the Antonov coercivity bound from Lemma 4.5.8 implies 〈Lf, f〉H > 0 since the

radial weight
U ′0(r)
r is positive on ]Rmin, Rmax]. By (4.5.44), we thus conclude λ̃ > 0.

Before using this result to deduce the positivity of L, we discuss an interpretation of the
variational problem (4.5.33).

136Notice that f̃j ⇀ f̃ in L2(R3) is equivalent to f̃j ⇀ f̃ in L2
r(R3) for (f̃j)j∈N ⊂ L2

r(R3) and f̃ ∈ L2
r(R3).
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Remark 4.5.15. For γ > 0 let Lγ := −T 2− 1
γ R : D(L)→ H. This family of operators will

be studied in detail in Section 5.1.1. Compared to the linearised operator L, the gravitational
response term R gets “amplified” in Lγ by choosing smaller values of γ > 0. After extending
the quadratic form associated to Lγ onto D(T )∩H similarly to Definition 4.5.7, we obtain

γ 〈Lγf, f〉H = γ ‖T f‖2H − 〈Rf, f〉H = 〈Lf, f〉H − (1− γ) ‖T f‖2H (4.5.45)

for f ∈ D(T ) ∩ H and γ > 0. This reveals a connection between Lγ and the variational
problem (4.5.33): For the minimiser f∗ ∈ D(T )∩H obtained in Lemma 4.5.14, there holds
〈L(1−λ̃)f

∗, f∗〉H = 0. Moreover, Lγ ≥ 0 is equivalent to γ ≥ 1− λ̃.

This shows that for the non-negativity of the linearised operator L = L1, cf. Corol-
lary 4.5.9, it is crucial that the gravitational response term is not weighted too strongly.

Combined with the Poincaré type inequality from Lemma 4.3.28, the above lemma yields

〈Lf, f〉H ≥ λ̃ ‖T f‖2H ≥
4π2

sup2
D0

(T )
λ̃ ‖f‖2H , f ∈ D(T ) ∩H. (4.5.46)

This shows that 4π2λ̃
sup2

D0
(T )

> 0 is a lower bound on L, which was used in [62, Thm. 7.5] as

well as in [61, Lemma 3.10 (c)].

4.5.4 Eigenvalues of the Linearised Operator ?

As motivated in Chapter 3, our key interest regarding the linearised operator L : D(L)→ H
is whether it possesses eigenvalues. By the results from the previous section, every eigenvalue
of L has to be positive and thus corresponds to a pulsating mode of the linearised Vlasov-
Poisson system. In this section we (start to) discuss whether such eigenvalues exist.

We restrict the discussion to the presence of eigenvalues of L inside the essential gap G,
recall (1.2.21) for the definition of this set. In the case of such an eigenvalue, the oscillation
period of the perturbed equilibrium is larger than the radial period of every single particle
in the steady state – a property which seems quite intuitive. There are, however, also more
profound reasons for restricting the search for eigenvalues of L to G:

1. We shall see in Chapter 6 that it is quite natural that there are no eigenvalues of L
embedded into its essential spectrum. This can be proven for some equilibria, cf.
Section 6.5, but is expected to hold for a larger class of steady states as well. The
latter claim will be supported by the numerical simulations in Section 8.3, which will
show that, for a large class of steady states, the behaviour of solutions of the linearised
Vlasov-Poisson system is determined by whether an eigenvalue of L exists in G, see
Observations 8.3.4 and 8.3.7.

2. The discussion in Section 6.5 will show that the question of whether there exist eigen-
values of L inside its essential spectrum is rather difficult to answer. Similar difficulties
also arise in the study of Schrödinger operators, cf. [134, Sc. XIII.13].

3. Eigenvalues in G can be characterised using variational principles, which is not possible
for other eigenvalues (without further effort).

The application of variational methods was already suggested in [71, p. 258] and is our
main tool for analysing the presence of eigenvalues.
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Lemma 4.5.16 (Variational Characterisation of Eigenvalues in the Essential Gap). The
bottom of the spectrum of the linearised operator L : D(L)→ H is given by137

inf(σ(L)) = inf
f∈D(L)
f 6=0

〈Lf, f〉H
‖f‖2H

. (4.5.47)

In addition, the linearised operator L : D(L)→ H possesses an eigenvalue138 in the essential
gap G if and only if

inf(σ(L)) < inf(σess(L)) =
4π2

sup2
D0

(T )
. (4.5.48)

In this case, the infimum (4.5.47) is attained by an eigenfunction to the eigenvalue inf(σ(L))
of L.

Proof. The characterisation (4.5.47) of inf(σ(L)) follows by standard variational principles,
cf. [69, Prop. 5.12] or [134, Thm. XIII.1]. If (4.5.48) holds true, inf(σ(L)) is an eigenvalue
of L with finite multiplicity by the definition of the essential spectrum. In this situation,
it is straight-forward to verify that any eigenfunction is a minimiser of (4.5.47). Moreover,
inf(σ(L)) > 0 by Proposition 4.5.11, i.e., inf(σ(L)) ∈ G. Conversely, if (4.5.48) does not
hold true, there cannot be an element of σ(L) inside G.

Using similar arguments, one can also characterise the presence of multiple eigenvalues
of L inside the essential gap G variationally, see Lemma 5.1.3 (with γ = 1).

In [85, Sc. 1.6], obtaining the infimum (4.5.47) is interpreted as finding the best con-
stant c > 0 in the estimate (4.5.25).139

Inspired by (4.5.46), a näıve approach to obtain a small value of the quadratic form
〈Lf, f〉H is to insert the minimiser f ∈ D(T ) ∩ H of the variational problem from
Lemma 4.5.14. Unfortunately, this strategy does not seem to be very helpful because
the minimiser f is not known explicitly and because f is not necessarily a minimiser of

infg∈D(T )∩H\{0}
‖T g‖2H
‖g‖2H

, cf. Remark 4.3.29.

A more promising approach to estimate inf(σ(L)) is to insert a function into the
quadratic form for which the linearised operator can be easily computed. The following
lemma gives an example of such a function. It is based on [85, Ex. 2.1]; related arguments
are also used in the proof of Lemma 4.5.6.

Lemma 4.5.17. Consider the spherically symmetric a.e. function f : Ω0 → R defined via

f(r, w, L) := |ϕ′(E,L)| rw, a.e. (r, w, L) ∈ Ω0. (4.5.49)

Then f ∈ D(L) with

Lf(r, w, L) =
U ′0(r)

r
f(r, w, L), a.e. (r, w, L) ∈ Ω0. (4.5.50)

137Since the spectrum of an operator is always closed and L ≥ 0 by Corollary 4.5.9, there actually holds
inf(σ(L)) = min(σ(L)).

138L possessing an eigenvalue in G always means that L possesses at least one eigenvalue in G.
139The infimum (4.5.47) indeed defines the best constant in (4.5.25) because, by the approximation result

from Lemma 4.3.31, inf
f∈D(T )∩H

f 6=0

〈Lf, f〉H
‖f‖2H

= inf
f∈C∞c,r(Ω0)∩H

f 6=0

〈Lf, f〉H
‖f‖2H

= inf
f∈D(L)
f 6=0

〈Lf, f〉H
‖f‖2H

.
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Proof. By Lemma 4.1.3, there obviously holds f ∈ H. Lemma 4.1.2 yields

Rf(r, w, L) = 4π|ϕ′(E,L)| rw jw |ϕ′|(r) = 4πρ0(r) f(r, w, L), a.e. (r, w, L) ∈ Ω0.
(4.5.51)

Furthermore, T 2f = |ϕ′(E,L)| T 2(rw) by Lemma 4.3.10, which implies f ∈ D(T 2) by a
similar discussion as in Remark 4.2.6 (b). Recalling the calculation (4.5.20) from the proof
of Lemma 4.5.6, we thus deduce

T 2f(r, w, L) = −
(

4πρ0(r) +
U ′0(r)

r

)
f(r, w, L), a.e. (r, w, L) ∈ Ω0. (4.5.52)

Combining (4.5.51) and (4.5.52) then shows (4.5.50).

Remark 4.5.18. The above lemma shows that (4.5.49) would define an eigenfunction of L
if

U ′0(r)
r were constant on the steady state support. This is the case for the Kurth steady

state introduced in [90], see also [62, Sc. 6.1], [87], and [143, Sc. 1.3] for further analyses.
This steady state has been developed so that a suitable rescaling of it leads to an oscillatory
solution (on the non-linearised level). However, the Kurth steady state does not satisfy the
assumptions (ϕ1)–(ϕ5) imposed here; it is rather irregular at the boundary of its phase space
support.

Inserting the function from the above lemma into the quadratic form of L, along with
Lemma 4.5.16, yields a criterion for the existence of an eigenvalue of L into the essential
gap G. This observation is due to [85, Cor. 2.2], which is why we refer to the following
result as Kunze’s criterion.

Lemma 4.5.19 (Kunze’s Criterion for the Existence of Eigenvalues). If

sup
r∈]Rmin,Rmax]

U ′0(r)

r
<

4π2

sup2
D0

(T )
, (4.5.53)

the linearised operator L : D(L)→ H possesses an eigenvalue inside the essential gap G.140

In the case of an isotropic steady state, i.e., L0 = 0 = `, the supremum on the left-hand
side of (4.5.53) is explicitly given by

sup
r∈]Rmin,Rmax]

U ′0(r)

r
=

4π

3
ρ0(0), (4.5.54)

recall Remark 2.2.10 (a) for an explicit representation of ρ0(0).

Proof. Let f ∈ D(L) be defined via (4.5.49). By (4.5.47) and (4.5.50) we obtain

inf(σ(L)) ≤ 〈Lf, f〉H
‖f‖2H

=
1

‖f‖2H

∫
Ω0

1

|ϕ′(E,L)|
U ′0(r)

r
f(x, v)2 d(x, v) ≤ sup

r∈]Rmin,Rmax]

U ′0(r)

r
.

(4.5.55)
Lemma 4.5.16 thus yields the claimed criterion for the existence of eigenvalues of L.

The identity (4.5.54) in the case of an isotropic steady state is due to the fact that

]0,∞[ 3 r 7→ U ′0(r)
r is non-increasing – which follows by the calculation (4.5.28), see also [85,

Lemma A.6 (a)] – and because of limr→0
U ′0(r)
r = 4π

3 ρ0(0), cf. (4.5.24).

140It seems tempting to use the explicit bound on sup2
D0

(T ) from Lemma 4.5.13 to estimate the right-hand
side of (4.5.53) in the case of an isotropic steady state and thus arrive at a more explicit criterion which

does not require knowledge on the period function. However, since M0
R3

max
=

U′0(Rmax)

Rmax
, the bound from

Lemma 4.5.13 is not helpful for this purpose.
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In Section 8.2, we will numerically check this criterion and see that it is indeed satisfied
for some steady state, cf. Observations 8.2.11 and 8.2.12. The strength of the criterion from
Lemma 4.5.19 is that it is rather easy to check, since only the gravitational potential of the
steady state and the (maximum of the) period function need to be known. However, given
that we used several estimates to derive the criterion, we cannot expect it to be particularly
sharp. This is meant in the sense that we cannot expect the criterion to be satisfied in
every situation in which there exists an eigenvalue of L inside G.

For this reason, we will develop an additional, sharp criterion for the existence of eigen-
values of the linearised operator L inside the essential gap G in Chapter 5.
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Chapter 5

The Birman-Schwinger-Mathur
Principle

In this chapter we derive a sharp criterion for the existence of eigenvalues of the linearised
operator L : D(L) → H in the essential gap G; recall Section 4.2 for the definition of the
operator and the function spaces and recall (1.2.21) for the definition of G. Throughout this
chapter, we assume that the underlying steady state f0 satisfies the conditions (ϕ1)–(ϕ5)
stated in Sections 2.2 and 4.1.

As discussed in the introduction, our approach is motivated by the classical Birman-
Schwinger principle used to characterise negative eigenvalues of Schrödinger operators, see,
e.g., [99, Sc. 4.3]. It was first observed by Mathur [111] that similar techniques are also
useful in the context of the linearised Vlasov-Poisson system. In addition, Mathur showed
that all relevant information contained in the Birman-Schwinger operator are also contained
in a reduced operator. Extensions of this method were then developed in [62, 85] for the
linearised Vlasov-Poisson system, in [49] for the linearised Einstein-Vlasov system, and
in [61] for a slightly modified version of the linearised Vlasov-Poisson system. Here, we
follow [62, Sc. 8] and [49, Sc. 6]. More precisely, the general concepts are based on [62], but
we include several improvements developed in [49]. For instance, we derive a quantitative
bound on the number of eigenvalues of L in G which is not included in [62]. The connections
between our results and the ones from [85, Ch. 4] will be discussed in Remark 5.2.16.

We begin by adapting the Birman-Schwinger principle to our specific situation in Sec-
tion 5.1, followed by the application of Mathur’s reduction method in Section 5.2. The
resulting criteria for the existence of eigenvalues of L in G are then collected in Section 5.3.
Lastly, in Section 5.4, we discuss first applications of these criteria.

5.1 A Birman-Schwinger Principle

The aim of this section is to develop a Birman-Schwinger principle for the linearised oper-
ator L. Our strategy is inspired by [98, Step 1 in Proof of Thm. 12.4].

As a preparation, we first consider the following auxiliary family of operators. The
definition is based on [49, Def. 6.1]; the same operators also appear in [62, Sc. 8.1].

Definition 5.1.1 (The Operators Lγ). For γ > 0 let

Lγ := −T 2 − 1

γ
R : D(L)→ H. (5.1.1)

113
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The parameter γ > 0 controls the weight of the gravitational response term in Lγ : The
smaller γ > 0, the stronger the gravitational response term is weighted. In the case γ = 1
we recover the linearised operator, i.e.,

L1 = L. (5.1.2)

5.1.1 Analysis of the Operators Lγ
The first part of Section 5.1 is devoted to an analysis of the functional analytic and spectral
properties of the operators Lγ introduced in Definition 5.1.1. This is based on [49, Sc. 6.1].
The reasons why it is useful to analyse these operators will become apparent at the close of
this section, cf. Remark 5.1.10.

We first show that the operators Lγ are self-adjoint and that their essential spectra do
not dependent on γ. This is due to the reason that the essential spectrum is determined
by the transport part −T 2

∣∣
H, which carries no γ-weight. The lemma is based on [49,

Lemma 6.2].

Lemma 5.1.2. For γ > 0, the operator Lγ : D(L)→ H is self-adjoint as a densely defined
operator on H. Its essential spectrum is given by

σess(Lγ) = σess(L) = σ(−T 2
∣∣
H); (5.1.3)

the latter set is explicitly determined in Proposition 4.3.19.

Proof. The claims follow by the same arguments as the respective statements for L in Sec-
tions 4.5.1 and 4.5.2 because −T 2

∣∣
H is self-adjoint by Proposition 4.3.17 and R is bounded

and symmetric by Lemma 4.4.2 as well as relatively (T 2
∣∣
H)-compact by Lemma 4.5.3.

In particular, the above lemma shows inf(σess(Lγ)) = inf(σess(L)) > 0 and that the
essential gap G is disjoint with σess(Lγ) for γ > 0.

Although the essential spectrum of Lγ is independent of γ > 0, the entire spectrum
of Lγ does depend on γ. We have already noted this in Remark 4.5.15, where we have seen
that the non-negativity of Lγ , i.e., σ(Lγ) ⊂ [0,∞[, is equivalent to γ ≥ 1 − λ̃. In order
to characterise the elements of σ(Lγ) \ σess(Lγ) inside the essential gap G, we extend the
variational principle from Lemma 4.5.16. A similar statement can be found in [49, Def. &
Prop. 6.4].

Definition & Lemma 5.1.3 (The Values µn(γ)). For γ > 0 and n ∈ N let141,142

µn(γ) := sup
g1,...,gn−1∈H

(
inf

h∈D(L), ‖h‖H=1,
h⊥g1,...,gn−1

〈Lγh, h〉H

)
. (5.1.4)

Then µn(γ) is finite, and either

(i) µn(γ) < inf(σ(−T 2|H)). In this case there exist at least n eigenvalues (counting
multiplicities) of Lγ below inf(σ(−T 2|H)), and µn(γ) is the n-th smallest eigenvalue
(counting multiplicities) of Lγ.

or

141As usual, the orthogonality in (5.1.4) is meant w.r.t. the inner product 〈·, ·〉H .
142In the case n = 1, the supremum in (5.1.4) is dropped and one takes the infimum over all h ∈ D(L) with
‖h‖H = 1. This notational convention is used throughout this section.
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(ii) µn(γ) = inf(σ(−T 2|H)). In this case there exist at most n − 1 eigenvalues (counting
multiplicities) of Lγ below inf(σ(−T 2|H)), and µn+j(γ) = inf(σ(−T 2|H)) for j ∈ N.

Proof. For h ∈ D(L) with ‖h‖H = 1 there holds

〈Lγh, h〉H = ‖T h‖2H −
1

γ
〈Rh, h〉H ≥ −

‖R‖H→H
γ

(5.1.5)

by the skew-symmetry of the transport operator, cf. Proposition 4.3.15. Here, ‖R‖H→H
denotes the operator norm of R : H → H, which is finite by Lemma 4.4.2. This shows that
the operator Lγ is bounded from below. Then the statement is just the min-max principle
for semi-bounded, self-adjoint operators, see [134, Thm. XIII.1] or [160, Prop. II.32].

In the above statement – and everywhere else in this thesis – the multiplicity of an
eigenvalue λ of Lγ refers to the dimension of the associated eigenspace ker(Lγ − λ id) =
{f ∈ D(L) | Lγf = λf}. In general, this dimension can be infinite. In the case λ /∈ σess(Lγ),
the eigenspace is finite dimensional by the definition of the essential spectrum.

Our aim is to analyse the properties of the mappings ]0,∞[ 3 γ 7→ µn(γ) for n ∈ N as
thoroughly as possible. The following lemma is a regularity statement for these mappings.
It is based on [49, Lemma 6.6], which is in turn inspired by [134, XIII Problem 2] and [160,
Thm. II.33].

Lemma 5.1.4. For fixed n ∈ N, the mapping ]0,∞[ 3 γ 7→ µn(γ) is non-decreasing and

|µn(γ)− µn(β)| ≤
∣∣∣∣1γ − 1

β

∣∣∣∣ ‖R‖H→H , γ, β > 0. (5.1.6)

In particular, ]0,∞[ 3 γ 7→ µn(γ) is continuous.

Proof. For γ > 0 and h ∈ D(L) with ‖h‖H = 1 let

fh(γ) := 〈Lγh, h〉H , γ > 0. (5.1.7)

We first prove the claimed properties for fh instead of µn. For 0 < γ < β, the non-negativity
of R, cf. Lemma 4.4.2, implies

fh(γ) = ‖T h‖2H −
1

γ
〈Rh, h〉H ≤ ‖T h‖2H −

1

β
〈Rh, h〉H = fh(β). (5.1.8)

Furthermore, by the Cauchy-Schwarz inequality,

|fh(γ)− fh(β)| =
∣∣∣∣1γ − 1

β

∣∣∣∣ 〈Rh, h〉H ≤ ∣∣∣∣1γ − 1

β

∣∣∣∣ ‖R‖H→H (5.1.9)

for any γ, β > 0.
The next step is to show that the monotonicity (5.1.8) and the estimate (5.1.9) carry

over from fh to the sup-inf µn. For this purpose, let

Iγ(g1, . . . , gn−1) := inf
h∈D(L), ‖h‖H=1,
h⊥g1,...,gn−1

fh(γ) (5.1.10)

for γ > 0 and g1, . . . , gn−1 ∈ H. For fixed g1, . . . , gn−1 ∈ H, γ, β > 0, and h ∈ D(L) with
‖h‖H = 1 and h ⊥ g1, . . . gn−1, we obtain

Iγ(g1, . . . , gn−1) ≤ fh(γ) ≤ fh(β) +

∣∣∣∣1γ − 1

β

∣∣∣∣ ‖R‖H→H (5.1.11)



116 CHAPTER 5. THE BIRMAN-SCHWINGER-MATHUR PRINCIPLE

by (5.1.9). Taking the infimum over all such h and switching the roles of γ and β hence
yields

|Iγ(g1, . . . , gn−1)− Iβ(g1, . . . , gn−1)| ≤
∣∣∣∣1γ − 1

β

∣∣∣∣ ‖R‖H→H . (5.1.12)

For fixed g1, . . . , gn−1 ∈ H, this implies

µn(γ) ≥ Iγ(g1, . . . , gn−1) ≥ Iβ(g1, . . . , gn−1)−
∣∣∣∣1γ − 1

β

∣∣∣∣ ‖R‖H→H (5.1.13)

for γ, β > 0. Taking the supremum over all g1, . . . , gn−1 ∈ H thus yields

µn(β)− µn(γ) ≤
∣∣∣∣1γ − 1

β

∣∣∣∣ ‖R‖H→H , γ, β > 0, (5.1.14)

which shows (5.1.6) after switching the roles of γ and β.
Furthermore, (5.1.8) implies Iγ(g1, . . . , gn−1) ≤ Iβ(g1, . . . , gn−1) for 0 < γ < β and

g1, . . . , gn−1 ∈ H. Taking the supremum over all g1, . . . , gn−1 ∈ H yields the claimed
monotonicity of µn.

The monotonicity of µn corresponds to the fact that decreasing γ > 0 means that we
assign more weight to the non-positive term − 1

γ R in the operator Lγ , which leads to the
spectrum of Lγ to be shifted towards more negative values. In fact, the monotonicity from
the previous lemma is even strict if µn departs from inf(σ(−T 2|H)) > 0. The lemma is
based on [49, Lemma 6.7], which is in turn inspired by [98, Proof of Thm. 12.1].

Lemma 5.1.5. Fix n ∈ N and suppose that there exists γ0 > 0 s.t. µn(γ0) < inf(σ(−T 2|H)).
Then ]0, γ0] 3 γ 7→ µn(γ) is strictly increasing.

Proof. First observe that Lemmas 5.1.3 and 5.1.4 imply µi(γ) < inf(σ(−T 2|H)) for 1 ≤ i ≤
n and 0 < γ ≤ γ0. In particular, µi(γ) is an eigenvalue of Lγ for all such i and γ. Choosing
orthonormal eigenfunctions to these eigenvalues of Lγ , we deduce that for every 0 < γ ≤ γ0

and 1 ≤ i ≤ n there exists hγi ∈ D(L) s.t. Lγhγi = µi(γ)hγi , ‖hγi ‖H = 1, and hγj ⊥ hγi for
i 6= j ∈ {1, . . . , n}.

Now fix 0 < γ < β ≤ γ0 and let c1, . . . , cn ∈ R be s.t. h∗ :=
∑n

i=1 cih
β
i ∈ D(L) satisfies

1 = ‖h∗‖2H =
∑n

i=1 c
2
i and h∗ ⊥ hγ1 , . . . , h

γ
n−1.143 Then

〈Lβh∗, h∗〉H =
n∑
i=1

c2
i µi(β) ≤ µn(β)

n∑
i=1

c2
i = µn(β) < inf(σ(−T 2|H)), (5.1.15)

which implies 〈Rh∗, h∗〉H > 0 since ‖T h∗‖2H ≥ inf(σ(−T 2|H)), recall Remark 4.3.29. Thus,

〈Lγh∗, h∗〉H = ‖T h∗‖2H−
1

γ
〈Rh∗, h∗〉H < ‖T h∗‖2H−

1

β
〈Rh∗, h∗〉H = 〈Lβh∗, h∗〉H . (5.1.16)

The last step is to observe that the supremum in µn(γ), see Definition 5.1.3, is at-
tained when choosing g1, . . . , gn−1 = hγ1 , . . . , h

γ
n−1. This is due to the fact that the spec-

trum of Lγ restricted to the orthogonal complement of span{hγ1 , . . . , h
γ
n−1} is given by

143The existence of such c1, . . . , cn ∈ R can be obtained as follows: For h̃ =
∑n
i=1 cih

β
i with ar-

bitrary c = (c1, . . . , cn) ∈ Rn, h̃ ⊥ hγ1 , . . . , h
γ
n−1 is equivalent to

∑n
i=1 cizi = 0, where zi :=

(〈hβi , h
γ
1 〉H , . . . , 〈h

β
i , h

γ
n−1〉H) ∈ Rn−1 for i = 1, . . . , n. Since the n vectors z1, . . . , zn ∈ Rn−1 have to be

linearly dependent, we conclude the existence of c as claimed.
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σ(Lγ
∣∣
span{hγ1 ,...,h

γ
n−1}⊥

) = (σ(Lγ) \ {µ1(γ), . . . , µn−1(γ)}) ∪ {µn(γ)}, cf. [69, Prop. 6.6]. In

particular, inf(σ(Lγ
∣∣
span{hγ1 ,...,h

γ
n−1}⊥

)) = µn(γ) and thus, by standard variational princi-

ples,144 µn(γ) = inf{〈Lγh, h〉H | h ∈ D(L) ∩ span{hγ1 , . . . , h
γ
n−1}⊥, ‖h‖H = 1}.

Together with (5.1.15) and (5.1.16) we hence conclude

µn(γ) = inf
h∈D(L), ‖h‖H=1,
h⊥hγ1 ,...,h

γ
n−1

〈Lγh, h〉H ≤ 〈Lγh∗, h∗〉H < 〈Lβh∗, h∗〉H ≤ µn(β). (5.1.17)

The above lemma shows that once the n-th eigenvalue of Lγ departs from the essential
spectrum σess(Lγ) = σ(−T 2

∣∣
H), the mapping µn is strictly monotone for smaller values of γ.

However, for n ≥ 2, we are not certain whether the n-th eigenvalue µn actually departs from
the essential spectrum. For the first eigenvalue, it follows by Remark 4.5.15 that this is the
case since

µ1(1− λ̃) = 0, (5.1.18)

where λ̃ ∈ ]0, 1[ is the infimum from Lemma 4.5.14. We even get the following limiting
behaviour of µ1, which is based on [49, Lemma 6.8].

Lemma 5.1.6. It holds that limγ↘0 µ1(γ) = −∞.

Proof. Since

µ1(γ) = inf
h∈D(L),
‖h‖H=1

〈Lγh, h〉H = inf
h∈D(L),
‖h‖H=1

(
‖T h‖2H −

1

γ
〈Rh, h〉H

)
(5.1.19)

for γ > 0, we just choose some h̃ ∈ D(L) with ‖h̃‖H = 1 and145 〈Rh̃, h̃〉H > 0 to conclude

µ1(γ) ≤ ‖T h̃‖2H −
1

γ
〈Rh̃, h̃〉H → −∞, γ → 0. (5.1.20)

On the other hand, the limiting behaviour of all eigenvalues µn(γ) as γ tends to infinity
is rather clear. This is based on [49, Lemma 6.9].

Lemma 5.1.7. For every n ∈ N there holds limγ→∞ µn(γ) = inf(σ(−T 2|H)) > 0.

Proof. First note that the limit limγ→∞ µn(γ) exists in ] − ∞, inf(σ(−T 2|H))] by Lem-
mas 5.1.3 and 5.1.4. The claim then follows by the observation that for any γ > 0 and
h ∈ D(L) with ‖h‖H = 1 there holds the estimate

〈Lγh, h〉H = ‖T h‖2H −
1

γ
〈Rh, h〉H ≥ inf(σ(−T 2|H))− ‖R‖H→H

γ
, (5.1.21)

where we used the variational identity inf(σ(−T 2|H)) = infg∈D(L)\{0}
‖T g‖2H
‖g‖2H

once again.

The monotonicity of µn(γ) in n and γ allows us to translate the number of eigenvalues
of L = L1 below some prescribed λ < inf(σ(−T 2|H)) into the position of the zeros of the
mappings ]0,∞[ 3 γ 7→ µn(γ) − λ for n ∈ N. For this purpose, we define the following
quantities similar to [49, Def. & Rem. 6.10].

144In particular, Lγ
∣∣
span{hγ1 ,...,h

γ
n−1}

⊥ : D(L)∩ span{hγ1 , . . . , h
γ
n−1}⊥ → span{hγ1 , . . . , h

γ
n−1}⊥ is self-adjoint.

This can be verified by using similar arguments as in [69, Lemma 7.3].
145〈Rh, h〉H > 0 follows if jh 6≡ 0 a.e., recall (4.4.8).
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Definition & Lemma 5.1.8 (The Values γn(λ)). For n ∈ N and λ < inf(σ(−T 2|H)) we
define γn(λ) ∈ [0,∞[ as follows:

(i) If µn(γ) > λ for every γ > 0, let γn(λ) := 0.

(ii) Otherwise, define γn(λ) > 0 via µn(γn(λ)) = λ.

Then γn(λ) is well-defined. In the case (ii), λ is an eigenvalue of Lγn(λ). In addition,
γn+1(λ) ≤ γn(λ) for n ∈ N.

Proof. Lemmas 5.1.4, 5.1.5, and 5.1.7 show that (i) and (ii) uniquely define γn(λ) ≥ 0. The
additional claims follow by Lemma 5.1.3.

The properties of µn(λ) from Lemmas 5.1.3–5.1.7 as well as the definition of γn(λ) are
illustrated in Figure 5.1.1.

γ

σess(Lγ) = σ(−T 2
∣∣
H)

λ

γ1(λ)γ2(λ)1− λ̃

µ1(γ)µ2(γ)
µ3(γ)

inf(σ(−T 2
∣∣
H))

Spectrum of Lγ

Figure 5.1.1: Possible behaviour of µn(γ) and the definition of γn(λ). The dotted curve
departing from µ1(γ) illustrates that it is possible that µ1(γ0) = inf(σ(−T 2

∣∣
H)) for some

γ0 > 0.

An interpretation of the values γn(λ) will be discussed in Remark 5.1.16.
As motivated before, the positions of γn(λ) reveal the number of eigenvalues of the

linearised operator L = L1 below λ < inf(σ(−T 2|H)). This is the key result regarding the
operators Lγ . It is based on [49, Prop. 6.11].

Lemma 5.1.9. For λ < inf(σ(−T 2|H)) the following identities hold:

#{eigenvalues < λ of L (counting multiplicities)} = #{n ∈ N | γn(λ) > 1}, (5.1.22)

#{eigenvalues ≤ λ of L (counting multiplicities)} = #{n ∈ N | γn(λ) ≥ 1}. (5.1.23)

When referring to both (5.1.22) and (5.1.23), we write

#{eigenvalues
(
≤

)
λ of L (counting multiplicities)} = #{n ∈ N | γn(λ)

(
≥

)
1}. (5.1.24)

Proof. By Lemma 5.1.3,

#{eigenvalues
(
≤

)
λ of L (counting multiplicities)} = #{n ∈ N | µn(1)

(
≤

)
λ}. (5.1.25)

Since µn(1)
(
≤

)
λ for some n ∈ N is equivalent to γn(λ)

(
≥

)
1 by the above lemmas, we thus

conclude (5.1.24).
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We note that the number of eigenvalues ≤ λ of the linearised operator L (counting
multiplicities) is finite for λ < inf(σ(−T 2|H)) because L ≥ 0 by Corollary 4.5.9 and
inf(σess(L)) = inf(σ(−T 2|H)) > λ.

To conclude the analysis of the operators Lγ , let us explain our motivation for conducting
this analysis.

Remark 5.1.10. The lemma above shows that the properties of Lγ – in particular, the
properties of the eigenvalues µn(γ) – allow us to characterise the amount of eigenvalues
of L below some λ < inf(σ(−T 2|H)). We will further develop this result to arrive at a
characterisation of the amount of eigenvalues of L in the essential gap G. If one is not
interested in the precise number of eigenvalues of L in G, but only in whether L possesses
an eigenvalue in G or not, such a detailed analysis of Lγ is not necessary. This is why such
an analysis is not included in [62].

5.1.2 The Birman-Schwinger Operator

Armed with the tools collected in Section 5.1.1, we are now in the position to establish a
connection between the spectra of the linearised operator L and the following operator. We
will comment on the definition afterwards.

Definition 5.1.11 (The Birman-Schwinger Operator Qλ). For λ < inf(σ(−T 2|H)) let

Qλ :=
√
R
(
−T 2|H − λ

)−1√R : H → H, (5.1.26)

recall Lemma 4.4.4 for the definition of
√
R. This operator is called the Birman-Schwinger

operator associated to L with parameter λ.

Remark 5.1.12. The form of the Birman-Schwinger operator Qλ in Definition 5.1.11
differs from the ones in [62, Eqn. (8.1)] and [111, Eqn. (3.3)]. In our notation, the Birman-

Schwinger operator in [62, 111] is R
(
−T 2|H − λ

)−1
: H → H. The definition (5.1.26) is

based on [49, Def. 6.12], see also [61, Eqn. (5.1)] for an adaption in the context of a
linearised Vlasov-Poisson system. As discussed in the introduction, the use of the square
root operator

√
R is motivated by the analysis of Schrödinger operators. In this way, the

operator Qλ is symmetric, cf. Lemma 5.1.15, which is not the case in [62, 111]. This
property will simplify the analysis later on, see Remark 5.2.9.

Before studying the properties of Qλ, we derive the connection between the eigenvalues
of Lγ and Qλ. This is based on [49, Prop. 6.13] and [61, Lemma 5.1].

Proposition 5.1.13 (A Birman-Schwinger Principle). Let γ > 0 and λ < inf(σ(−T 2|H)).
Then λ is an eigenvalue of Lγ if and only if γ is an eigenvalue of Qλ. In this case,
the multiplicities of these eigenvalues are equal and the associated eigenfunctions can be
transformed explicitly into one another:

(a) If f ∈ D(L) is an eigenfunction of Lγ to the eigenvalue λ,

g :=
√
R f ∈ H (5.1.27)

is an eigenfunction of Qλ to the eigenvalue γ.

(b) If g ∈ H is an eigenfunction of Qλ to the eigenvalue γ,

f :=
(
−T 2|H − λ

)−1√R g ∈ D(L) (5.1.28)

is an eigenfunction of Lγ to the eigenvalue λ.
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Proof. If f ∈ D(L) is a solution of Lγf = λf , there also holds γ
(
−T 2 − λ

)
f = Rf .

Applying
√
R
(
−T 2|H − λ

)−1
to this equation and writing R =

√
R
√
R yields

γg = γ
√
Rf = Qλ

√
Rf = Qλg, (5.1.29)

where g is defined via (5.1.27).
Conversely, if g ∈ H solves the eigenvalue equation Qλg = γg and f ∈ D(L) is defined

via (5.1.28), it follows that

Lγf − λf =
(
−T 2 − λ

)
f − 1

γ
Rf =

√
R g − 1

γ

√
RQλg = 0. (5.1.30)

What remains to be proven is that linear independence of eigenfunctions is preserved
by (5.1.27) and (5.1.28). In particular, this will show that f = 0 is equivalent to g = 0
under the transformation (5.1.27) or (5.1.28).

First, let f1, . . . , fn ∈ ker(Lγ−λ) be linearly independent and define gi :=
√
R fi ∈ H for

1 ≤ i ≤ n. Suppose that there exist c1, . . . , cn ∈ R s.t. 0 =
∑n

i=1 ci gi =
√
R(
∑n

i=1 cifi). We

then apply 1
γ

(
−T 2 − λ

)−1√R to the latter equation and use that Lγf = λf is equivalent

to 1
γ

(
−T 2 − λ

)−1Rf = f for some f ∈ D(L). This implies 0 =
∑n

i=1 cifi, and thus
c1 = . . . = cn = 0 since f1, . . . , fn are linearly independent.

Conversely, for linearly independent g1, . . . , gn ∈ ker(Qλ − γ) let f1, . . . , fn ∈ D(L) be

given by fi :=
(
−T 2|H − λ

)−1√R gi for 1 ≤ i ≤ n. Suppose that there exist c1, . . . , cn ∈ R
s.t. 0 =

∑n
i=1 cifi =

(
−T 2|H − λ

)−1√R(
∑n

i=1 ci gi). Applying
√
R to this equation yields

0 = Qλ(
∑n

i=1 ci gi) = γ
∑n

i=1 ci gi, which shows c1 = . . . = cn = 0.

Together with the relation between the eigenvalues of L and the ones of Lγ established
in Lemma 5.1.9, the above proposition yields the following quantitative relation between
the spectra of the linearised operator L and the Birman-Schwinger operator Qλ. It is based
on [49, Prop. 6.14], see [61, Lemma 5.1] and [62, Lemma 8.2] for non-quantitative versions
of this result.

Proposition 5.1.14 (Quantitative Relation Between the Eigenvalues of L and Qλ). For
λ < inf(σ(−T 2|H)) it holds that

#{eigenvalues
(
≤

)
λ of L (counting multiplicities)} =

= #{eigenvalues
(
≥

)
1 of Qλ (counting multiplicities)}, (5.1.31)

where we use the same notational convention as in Lemma 5.1.9.

Proof. Using the notation introduced in Definition 5.1.3 and the properties of the eigenval-
ues of Lγ – in particular, Lemma 5.1.5 – together with Proposition 5.1.13 implies

#{n ∈ N | ∃γ
(
≥

)
1 : µn(γ) = λ} = #{eigenvalues

(
≥

)
1 of Qλ (counting multiplicities)}.

(5.1.32)
By Lemma 5.1.9, the number on the left-hand side equals the amount of eigenvalues

(
≤

)
λ

of L counting multiplicities.

At first glance, it may not be clear what benefit Proposition 5.1.14 provides us, since it
merely transforms the original eigenvalue problem for L into another eigenvalue problem.
The reason why the latter is more convenient to analyse is because the Birman-Schwinger
operator Qλ possesses nicer properties from a functional analytic perspective than the (un-
bounded) operator L. We derive these properties of Qλ in the following lemma. It is based
on [49, Lemma 6.15], [61, Lemma 5.1], and [62, Lemma 8.3].
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Lemma 5.1.15 (Properties of the Birman-Schwinger Operator). For λ < inf(σ(−T 2|H))
the operator Qλ : H → H introduced in Definition 5.1.11 is linear, bounded, symmetric,
non-negative, and compact.

Proof. The proof relies on the properties of −T 2
∣∣
H and

√
R established in Section 4.3 and

Lemma 4.4.4: Qλ is linear, bounded, and symmetric because
(
−T 2|H − λ

)−1
and
√
R both

have these properties; the symmetry of
(
−T 2|H − λ

)−1
follows from the symmetry of T 2,

cf. Proposition 4.3.17, and

〈f,
(
−T 2|H − λ

)−1
g〉H = 〈

(
−T 2|H − λ

) (
−T 2|H − λ

)−1
f,
(
−T 2|H − λ

)−1
g〉H =

= 〈
(
−T 2|H − λ

)−1
f, g〉H (5.1.33)

for f, g ∈ H. In addition,
√
R being relatively (T 2

∣∣
H)-compact by Lemma 4.5.3 means that√

R
(
−T 2|H − λ

)−1
is a compact operator. Hence, since

√
R is bounded, Qλ is compact as

well. In order to show the non-negativity of Qλ, first observe that
(
−T 2|H − λ

)
≥ 0 implies(

−T 2|H − λ
)−1 ≥ 0, i.e.,

〈
(
−T 2|H − λ

)−1
g, g〉H ≥ 0, g ∈ H. (5.1.34)

Inserting g =
√
R f for f ∈ H into (5.1.34) and using the symmetry of

√
R then implies

Qλ ≥ 0.

Furthermore, there is a connection between the quantities from Section 5.1.1 and the
spectrum of the Birman-Schwinger operator:

Remark 5.1.16 (The Spectrum of the Birman-Schwinger Operator). For λ <
inf(σ(−T 2|H)), Proposition 5.1.13 shows that the values γn(λ) > 0 introduced in Defini-
tion 5.1.8 are precisely the non-zero eigenvalues of Qλ. Moreover, each value is repeated
according to the multiplicity of the associated eigenvalue, i.e., if γ > 0 is an eigenvalue
of Qλ of multiplicity j ∈ N, #{n ∈ N | γn(λ) = γ} = j. Using the properties of Qλ from
Lemma 5.1.15 further yields

σ(Qλ) \ {0} = {γn(λ) | n ∈ N, γn(λ) > 0}. (5.1.35)

The usual variational principles146 hence provide the following variational characterisation
of γn(λ) for n ∈ N:147

γn(λ) = inf
g1,...,gn−1∈H

(
sup

h∈H, ‖h‖H=1,
h⊥g1,...,gn−1

〈Qλh, h〉H

)
. (5.1.36)

In addition to the properties of Qλ for fixed λ proven above, we now derive the mono-
tonicity of Qλ in the parameter λ. This is inspired by [99, p. 77].

Lemma 5.1.17. For µ ≤ λ < inf(σ(−T 2|H)) there holds

Qµ ≤ Qλ (5.1.37)

in the sense of operators.

146The characterisation (5.1.36) follows, e.g., by applying [134, Thm. XIII.1] to −Qλ.
147The identity (5.1.36) also holds in the case γn(λ) = 0.
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Proof. By the first resolvent identity [69, Prop. 1.6(2)] we obtain

Qλ −Qµ =
√
R
[
(λ− µ)

(
−T 2|H − λ

)−1(−T 2|H − µ
)−1
]√
R. (5.1.38)

We thus conclude (5.1.37) since every term on the right-hand side of (5.1.38) is non-negative.
More precisely, (−T 2|H − λ)−1(−T 2|H − µ)−1 ≥ 0 can be verified using (5.1.34) and the
square root lemma [136, Thm. VI.9].

In particular, the above lemma shows that the eigenvalues of Qλ are non-decreasing in λ,
i.e., by Remark 5.1.16, γn(µ) ≤ γn(λ) for n ∈ N and µ ≤ λ < inf(σ(−T 2|H)). This follows
by the variational characterisation (5.1.36) of the eigenvalues. This observation is consistent
with Proposition 5.1.14 since the left-hand side of (5.1.31) is evidently non-decreasing in λ.

5.2 Mathur’s Reduction Method

In this section we use the specific structure of the Birman-Schwinger operator Qλ =√
R
(
−T 2|H − λ

)−1√R to limit the search of eigenvalues ≥ 1 of Qλ to a reduced set-
ting. This method goes back to Mathur [111, Sc. 3.2] and was then developed further
in [49, 61, 62, 85]. We follow [49, Sc. 6.3] and [62, Sc. 8.1] here.

The reduction is based on the following simple observation which originates from [111,
Sc. 3.1]; see also [49, Rem. 6.16], [61, Eqn. (5.4)], and [62, p. 672].

Remark 5.2.1. Let λ < inf(σ(−T 2|H)). Then im(Qλ) ⊂ im(
√
R), which shows that any

eigenfunction f ∈ H of Qλ corresponding to a non-zero eigenvalue lies in im(
√
R).

We next show that the range of
√
R – recall Lemma 4.4.4 for the properties of this

operator – is the subspace of a function space which is isometric to L2([Rmin, Rmax]). This
is based on [49, p. 46f.], [61, p. 29], and [62, Lemma 8.4].

Lemma 5.2.2 (The Range of
√
R). Any f ∈ im(

√
R) is of the form

f(r, w, L) = |ϕ′(E,L)| w

r
√
ρ0(r)

F (r), a.e. (r, w, L) ∈ Ω0, (5.2.1)

for some F ∈ L2([Rmin, Rmax]). Moreover, for any f : Ω0 → R spherically symmetric a.e.
of the form (5.2.1) with F : [Rmin, Rmax]→ R, there holds

f ∈ H ⇔ F ∈ L2([Rmin, Rmax]). (5.2.2)

If, in addition, g ∈ H is of the form g(r, w, L) = |ϕ′(E,L)| w

r
√
ρ0(r)

G(r) for a.e. (r, w, L) ∈
Ω0,

〈f, g〉H = 4π 〈F,G〉L2([Rmin,Rmax]). (5.2.3)

Proof. For f : Ω0 → R of the form (5.2.1), Lemma 4.1.2 yields

‖f‖2H = 4π2

∫
Ω0

|ϕ′(E,L)| w2

r2ρ0(r)
F (r)2 d(r, w, L) = 4π

∫ Rmax

Rmin

F (r)2 dr. (5.2.4)

This shows (5.2.2), and a similar calculation also yields (5.2.3). Recalling the properties
of
√
R established in Lemma 4.4.4, we further conclude that any f ∈ im(

√
R) is of the

form (5.2.1) for some F ∈ L2([Rmin, Rmax]).
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Remark 5.2.3. The above lemma states

im(
√
R) ⊂

{
f(r, w, L) = |ϕ′(E,L)| w

r
√
ρ0(r)

F (r) | F ∈ L2([Rmin, Rmax])
}
. (5.2.5)

This inclusion is, in fact, strict. A sharp characterisation of the range of
√
R is given by

im(
√
R) =

{
f(r, w, L) = |ϕ′(E,L)| w

r
√
ρ0(r)

F (r) | F
√
ρ0
∈ L2([Rmin, Rmax])

}
. (5.2.6)

Notice that the smooth function ρ0 vanishes at r = Rmax, which is why the set on the
right-hand side of (5.2.6) is a strict subset of the set on the right-hand side of (5.2.5).

The identity (5.2.6) can be verified by refining the proof of Lemma 4.4.1. More precisely,
for any f ∈ H, the Cauchy-Schwarz inequality and Lemma 4.1.2 yield

‖ r
√
ρ0
jf‖2L2([Rmin,Rmax]) =

∫ Rmax

Rmin

r2

ρ0(r)

(
π

r2

∫ ∞
0

∫
R
w f(r, w, L) dw dL

)2

dr ≤

≤ π2

∫ Rmax

Rmin

1

r2ρ0(r)

(∫ ∞
0

∫
R
w2|ϕ′(E,L)| dw dL

)(∫ ∞
0

∫
R

f(r, w, L)2

|ϕ′(E,L)|
dw dL

)
dr =

= π

∫ Rmax

Rmin

∫ ∞
0

∫
R

1

|ϕ′(E,L)|
f(r, w, L)2 dw dLdr =

1

4π
‖f‖2H <∞, (5.2.7)

where jf is given by (4.2.22). This shows that
√
R f is contained in the set on the

right-hand side of (5.2.6). Conversely, for fixed F : [Rmin, Rmax] → R with F√
ρ0
∈

L2([Rmin, Rmax]) consider the spherically symmetric a.e. function f : Ω0 → R defined via
f(r, w, L) = 1

2
√
π
|ϕ′(E,L)| w

rρ0(r) F (r) for a.e. (r, w, L) ∈ Ω0. Then f ∈ H by (5.2.2) and
√
Rf(r, w, L) = |ϕ′(E,L)| w

r
√
ρ0(r)

F (r) for a.e. (r, w, L) ∈ Ω0 by Lemma 4.1.2.

The above observations suggest the definition of the following “reduced” operator de-
scribing the effect of the Birman-Schwinger operator Qλ on the “radial part” F of a function
of the form (5.2.1). Similar definitions can be found in [49, Def. 6.17], [61, Lemma 5.2],
and [62, Def. 8.5].

Definition 5.2.4 (The Mathur Operator Mλ). Let λ < inf(σ(−T 2|H)). For F ∈
L2([Rmin, Rmax]) define f ∈ H via (5.2.1). Since Qλf ∈ im(

√
R) by Remark 5.2.1, there

exists a unique MλF ∈ L2([Rmin, Rmax]) s.t.

Qλf(r, w, L) = |ϕ′(E,L)| w

r
√
ρ0(r)

MλF (r), a.e. (r, w, L) ∈ Ω0, (5.2.8)

cf. Lemma 5.2.2. The resulting mapping

Mλ : L2([Rmin, Rmax])→ L2([Rmin, Rmax]), F 7→ MλF (5.2.9)

is called the Mathur operator with parameter λ.

As explained in the introduction, the Mathur operator is reduced in the sense that it
acts on functions of one variable, compared to functions of three variables in the case of Qλ.

As already indicated by Remark 5.2.1, non-zero eigenvalues of Qλ andMλ are equivalent
to each other. This is shown in the following lemma which is based on [49, Lemma 6.18],
[61, p. 31], and [62, Lemma 8.10(a)].
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Lemma 5.2.5. Let λ < inf(σ(−T 2|H)) and γ ∈ R \ {0}. Then γ is an eigenvalue of Qλ if
and only if γ is an eigenvalue of Mλ. In this case, the multiplicities of these eigenvalues
are equal.

Proof. Suppose that γ is an eigenvalue of Qλ with multiplicity148 n ∈ N, which means that
there exist orthogonal eigenfunctions f1, . . . , fn ∈ H. By Remark 5.2.1, fi ∈ im(

√
R) for

1 ≤ i ≤ n, which, by Lemma 5.2.2, implies that there exist F1, . . . , Fn ∈ L2([Rmin, Rmax])
s.t.

fi(r, w, L) = |ϕ′(E,L)| w

r
√
ρ0(r)

Fi(r), a.e. (r, w, L) ∈ Ω0, (5.2.10)

for 1 ≤ i ≤ n. By Definition 5.2.4, there holds MλFi = γFi for 1 ≤ i ≤ n. Moreover,
by (5.2.3), the functions F1, . . . , Fn are non-trivial and pairwise orthogonal, which shows
that the multiplicity of the eigenvalue γ of Mλ is at least n.

Conversely, suppose that γ is an eigenvalue of Mλ with multiplicity m ∈ N ∪ {∞} and
let (Fi)i=1,...,m be a set of associated orthogonal eigenfunctions. Defining fi for 1 ≤ i ≤ m
via (5.2.10) then yields fi ∈ H with Qλfi = γfi. By (5.2.3), the functions (fi)i=1,...,m are
non-trivial and pairwise orthogonal, which shows that the multiplicity of the eigenvalue γ
of Qλ is at least m.

A characterisation of the non-zero eigenvalues of the Birman-Schwinger operator Qλ is
provided in Remark 5.1.16. Together with the lemma above, we obtain the same character-
isation for the eigenvalues of the Mathur operator Mλ.

Remark 5.2.6. For λ < inf(σ(−T 2|H)), the non-zero eigenvalues of the Mathur operator
Mλ are given by the values γn(λ) > 0 introduced in Definition 5.1.8. Moreover, these
values are sorted in descending order and each eigenvalue is repeated according to its (finite)
multiplicity.

Combining Proposition 5.1.14 and Lemma 5.2.5 yields the following relation between
the spectra of the linearised operator L and the Mathur operatorMλ. This is based on [49,
p. 52], see also [61, Prop. 5.3] and [62, Thm. 8.11(a)] for non-quantitative versions.

Proposition 5.2.7 (Quantitative Relation Between the Eigenvalues of L and Mλ). For
λ < inf(σ(−T 2|H)) it holds that

#{eigenvalues
(
≤

)
λ of L (counting multiplicities)} =

= #{eigenvalues
(
≥

)
1 of Mλ (counting multiplicities)}, (5.2.11)

where we use the same notational convention as in Lemma 5.1.9.

This result basically contains the desired criteria for the existence of eigenvalues of L in
the essential gap G. Before deriving these criteria in Section 5.3, we analyse the properties
of the Mathur operator Mλ. The first observation is that Mλ inherits the functional
analytical properties of the Birman-Schwinger operator from Lemma 5.1.15. This is based
on [49, Prop. 6.19], [61, Lemma 5.2], and [62, Lemma 8.8].

Lemma 5.2.8 (Properties of the Mathur Operator). For λ < inf(σ(−T 2|H)) the operator
Mλ : L2([Rmin, Rmax])→ L2([Rmin, Rmax]) introduced in Definition 5.2.4 is linear, bounded,
symmetric, non-negative, and compact.

148Since Qλ is compact by Lemma 5.1.15, the multiplicity of any non-zero eigenvalue of Qλ is finite.
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Proof. Mλ being linear, bounded, symmetric, and non-negative follows readily from the
respective properties of Qλ together with (5.2.3). For instance, for F ∈ L2([Rmin, Rmax]),

‖MλF‖2L2([Rmin,Rmax]) =
1

4π
‖Qλf‖2H ≤ C ‖f‖2H = 4πC ‖F‖2L2([Rmin,Rmax]), (5.2.12)

with f ∈ H given by (5.2.1).

In order to see thatMλ is compact, let (Fi)i∈N ⊂ L2([Rmin, Rmax]) be bounded. For i ∈
N define fi ∈ H via (5.2.10). Then, by (5.2.3), (fi)i∈N is bounded inH. Since Qλ is compact,
there exists a subsequence (fij )j∈N ⊂ (fi)i∈N s.t. (Qλfij )j∈N is (strongly) convergent inH. In
particular, (Qλfij )j∈N is a Cauchy sequence inH. By (5.2.3) and (5.2.8), (MλFij )j∈N is thus
a Cauchy sequence in L2([Rmin, Rmax]), and hence (strongly) convergent in L2([Rmin, Rmax]).

Remark 5.2.9. As discussed in Remark 5.1.12, the form of the Birman-Schwinger operator
chosen in Definition 5.1.11 yields the symmetry of Qλ. As seen above, this directly leads to
the Mathur operator to be symmetric as well on the natural function space L2([Rmin, Rmax]).

In [62, 111], where Qλ is non-symmetric, the symmetry of the associated Mathur oper-
ator instead has to be achieved by suitably modifying the function space.

In addition to the above properties of the Mathur operator Mλ, in the light of Propo-
sition 5.2.7, it is important to understand what the largest eigenvalue of Mλ is. This is
analysed in the following lemma which is based on [49, p. 51], [61, p. 31], and [62, p. 680].149

Lemma 5.2.10. Let λ < inf(σ(−T 2|H)). Then

sup(σ(Mλ)) = max(σ(Mλ)) = ‖Mλ‖, (5.2.13)

where ‖ · ‖ denotes the operator norm on L2([Rmin, Rmax]) given by

‖Mλ‖ = sup{‖MλF‖2 | F ∈ L2([Rmin, Rmax]), ‖F‖2 = 1} =

= sup{〈MλF, F 〉2 | F ∈ L2([Rmin, Rmax]), ‖F‖2 = 1}. (5.2.14)

Proof. Since Mλ is bounded, symmetric, and non-negative by Lemma 5.2.8, the rela-
tion (5.2.13) follows by [136, Thm. VI.6]. Furthermore, by the usual variational principles,
sup(σ(Mλ)) is given by the expression in the second line of (5.2.14), which proves the
identity (5.2.14).

The monotonicity of the Birman-Schwinger operator Qλ in the parameter λ also carries
over to the Mathur operator Mλ.

Lemma 5.2.11. For µ ≤ λ < inf(σ(−T 2|H)) there holds

Mµ ≤Mλ (5.2.15)

in the sense of operators.

Proof. The assertion follows by Lemma 5.1.17 and (5.2.3).

149The statement analogous to Lemma 5.2.10 is also true for the Birman-Schwinger operator instead of the
Mathur operator.
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We will see later that this monotonicity is, in fact, strict, cf. Lemma 5.2.15.

The most important property of the Mathur operator is that it is an integral operator
with an explicit integral kernel. This was first observed in [111, Eqn. (3.19)]. The following
result is based on [61, Lemma 5.2] and [62, Prop. 8.6]. Related, but more complicated
calculations can be found in [49, Sc. 6.3.2].

Proposition 5.2.12 (Integral Representation of the Mathur Operator). For λ <
inf(σ(−T 2|H)) and F ∈ L2([Rmin, Rmax]) there holds

MλF (r) =

∫ Rmax

Rmin

Kλ(r, s)F (s) ds, a.e. r ∈ [Rmin, Rmax], (5.2.16)

with integral kernel Kλ ∈ L2([Rmin, Rmax]2) given by150

Kλ(r, s) :=
32π2

rs

∞∑
n=1

∫
D0(r)∩D0(s)

|ϕ′(E,L)|
T (E,L)

sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L))
4π2n2

T (E,L)2 − λ
d(E,L)

(5.2.17)
for r, s ∈ [Rmin, Rmax], where the function θ is defined in Lemma 4.3.4 and

D0(r) := {(E,L) ∈ D0 | r−(E,L) < r < r+(E,L)}, r ∈ [Rmin, Rmax]. (5.2.18)

In the case Rmin = 0, (5.2.17) is to be interpreted as

Kλ(r, 0) := 0 =: Kλ(0, r), r ∈ [0, Rmax]. (5.2.19)

In particular, Mλ is a Hilbert-Schmidt operator, cf. [136, Sc. VI.6]. Moreover, Kλ is
continuous on [Rmin, Rmax]2.

Proof. The proof relies on the explicit characterisations of
(
−T 2

∣∣
H − λ

)−1
and
√
R derived

in Lemmas 4.3.18 and 4.4.4, respectively. Let F ∈ L2([Rmin, Rmax]) be fixed and consider the
associated function f ∈ H induced by (5.2.1). Fourier expanding f in the angle variable θ,
cf. Remark 4.3.11, yields the Fourier expansion (4.3.46), where the Fourier coefficients
bn : D0 → R for n ∈ N are given by (4.3.45). Using the explicit form (5.2.1) of f , they can
be rewritten as

bn(E,L) = 4

∫ 1
2

0
f(θ,E, L) sin(2πn θ) dθ =

= 4
|ϕ′(E,L)|
T (E,L)

∫ r+(E,L)

r−(E,L)

F (r)

r
√
ρ0(r)

sin(2πn θ(r, E, L)) dr (5.2.20)

for n ∈ N and a.e. (E,L) ∈ D0, where we used Lemma 4.3.4 to change variables. Hence, by
Lemma 4.3.18,(
−T 2

∣∣
H − λ

)−1
f(θ,E, L) =

= 4
|ϕ′(E,L)|
T (E,L)

∞∑
n=1

∫ r+(E,L)

r−(E,L)

F (r)

r
√
ρ0(r)

sin(2πn θ(r, E, L)) dr
sin(2πn θ)
4π2n2

T (E,L)2 − λ
(5.2.21)

150The series in the definition of Kλ is meant to convergence pointwise. In the proof, however, we shall see
that it also converges uniformly and that switching the order of summation and integration yields the same
function.
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for a.e. (θ,E, L) ∈ S1 × D0 as a limit in H. In addition, by Lemmas 4.4.4 and 4.1.2,

√
Rf(r, w, L) = 2

√
π |ϕ′(E,L)| w√

ρ0(r)

F (r)

r
√
ρ0(r)

jw |ϕ′|(r) = 2
√
π |ϕ′(E,L)| w

r
F (r)

(5.2.22)
for a.e. (r, w, L) ∈ Ω0. Hence, replacing f with

√
Rf in (5.2.21) yields(

−T 2
∣∣
H − λ

)−1√Rf(θ,E, L) =

= 8
√
π
|ϕ′(E,L)|
T (E,L)

∞∑
n=1

∫ r+(E,L)

r−(E,L)

F (r)

r
sin(2πn θ(r, E, L)) dr

sin(2πn θ)
4π2n2

T (E,L)2 − λ
(5.2.23)

for a.e. (θ,E, L) ∈ S1 × D0 as a limit in H. In order to apply
√
R on the latter expression,

we first note that the radial velocity density induced by some g ∈ H via (4.2.22) can be
rewritten as

jg(r) =
2π

r2

∫ ∞
0

∫ ∞
0

w g(r, w, L) dw dL =
2π

r2

∫
D0(r)

g(r,
√

2E − 2ΨL(r), L) d(E,L) =

=
2π

r2

∫
D0(r)

g(θ(r, E, L), E, L) d(E,L) (5.2.24)

for a.e. r ∈ [Rmin, Rmax]. Inserting g =
(
−T 2

∣∣
H − λ

)−1√Rf into this calculation then
shows

Qλf(r, w, L) =
√
R
(
−T 2

∣∣
H − λ

)−1√Rf(r, w, L) =

= 32π2|ϕ′(E,L)| w

r2
√
ρ0(r)

∫
D0(r)

|ϕ′(Ẽ, L̃)|
T (Ẽ, L̃)

∞∑
n=1

∫ r+(Ẽ,L̃)

r−(Ẽ,L̃)

F (s)

s
sin(2πn θ(s, Ẽ, L̃)) ds

· sin(2πn θ(r, Ẽ, L̃))
4π2n2

T (Ẽ,L̃)2
− λ

d(Ẽ, L̃) (5.2.25)

for a.e. (r, w, L) ∈ Ω0. Hence, by Definition 5.2.4,

MλF (r) =
32π2

r

∫ Rmax

Rmin

F (s)

s

∫
D0(r)∩D0(s)

|ϕ′(E,L)|
T (E,L)

·
∞∑
n=1

sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L))
4π2n2

T (E,L)2 − λ
d(E,L) ds. (5.2.26)

In order to derive this identity, we switched the integration and summation and then applied
Fubini’s theorem to switch the order of integration. The former step can be verified by using
the integrability of F and the positivity of r−(E,L) for (E,L) ∈ D0.

What is missing to deduce (5.2.16) is that we can switch the summation with the
(E,L)-integral on the right-hand side of (5.2.26). To verify this operation, we first extend
the mapping θ from Lemma 4.3.4 as follows:

θ(r, E, L) := 0 for (E,L) ∈ D0, r ∈ ]0,∞[ \ [r−(E,L), r+(E,L)]. (5.2.27)

Although this extension of θ(·, E, L) has a jump discontinuity at r = r+(E,L), the mapping

]0,∞[23 (r, s) 7→ sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L)) (5.2.28)
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is continuous for every n ∈ N and (E,L) ∈ D0. Furthermore, there exists a constant C > 0
s.t. ∣∣∣∣∣

m∑
n=1

sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L))
4π2n2

T (E,L)2 − λ

∣∣∣∣∣ ≤ C
m∑
n=1

1

n2
≤ C π2

6
(5.2.29)

for r, s > 0, (E,L) ∈ D0, and m ∈ N; recall λ < inf(σ(−T 2|H)) = 4π2

sup2
D0

(T )
. Hence, for fixed

(E,L) ∈ D0, the mapping

]0,∞[23 (r, s) 7→
∞∑
n=1

sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L))
4π2n2

T (E,L)2 − λ
(5.2.30)

is continuous and the series converges uniformly in r, s > 0. Since |ϕ′| is integrable on D0

by Lemma 4.1.3151 and infD0(T ) > 0 by Proposition A.0.1 (a), the estimate (5.2.29) further
shows∫

D0(r)∩D0(s)

|ϕ′(E,L)|
T (E,L)

∞∑
n=1

sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L))
4π2n2

T (E,L)2 − λ
d(E,L) =

=

∞∑
n=1

∫
D0(r)∩D0(s)

|ϕ′(E,L)|
T (E,L)

sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L))
4π2n2

T (E,L)2 − λ
d(E,L) (5.2.31)

for r, s > 0 and that (5.2.31) defines a function which is continuous in (r, s) ∈ ]0,∞[2. We
have thus proven (5.2.16) and that Kλ is continuous on ([Rmin, Rmax] \ {0})2.

It remains to show that Kλ is also continuous on {(r, s) ∈ [0, Rmax] | r = 0∨s = 0} in the
case Rmin = 0; recall that Kλ is given by (5.2.19) on this set. Due to the assumption (ϕ4),
Rmin = 0 only occurs when the steady state is isotropic. The estimate (5.2.29) yields

|Kλ(r, s)| ≤ C

rs

∫
D0(r)∩D0(s)

|ϕ′(E)| d(E,L) ≤

≤ C

rs
min

{∫
D0(r)

|ϕ′(E)|d(E,L),

∫
D0(s)

|ϕ′(E)|d(E,L)

}
(5.2.32)

for r, s ∈ ]0, Rmax]. In order to show that this expression tends to zero as r or s tend to
zero, we consider

Lmax(r) := sup{L > 0 | L ∈ L0 & r−(E0, L) < r < r+(E0, L)}, r ∈ ]0, Rmax[; (5.2.33)

recall that L0 = [0, Lmax[ by (2.2.85). By (2.2.82) and the monotonicities of r±, cf.
Lemma 2.2.14, we obtain {L > 0 | L ∈ D0(r)} =]0, Lmax(r)[ for r ∈ ]0, Rmax[. Hence,
for r ∈ ]0, Rmax[ there holds the estimate∫

D0(r)
|ϕ′(E)|d(E,L) ≤

∫ Lmax(r)

0

∫ E0

U0(0)
|ϕ′(E)| dE dL = Lmax(r) Φ(κ); (5.2.34)

recall that Φ(0) = 0 by the assumptions (ϕ2) and (ϕ5). Furthermore, from the identity

E0 = ΨLmax(r)(r−(E0, Lmax(r))) = U0(r−(E0, Lmax(r))) +
Lmax(r)

2r−(E0, Lmax(r))2
, (5.2.35)

151Notice that
∫
D0
|ϕ′(E,L)| d(E,L) ≤ C

∫
Ω0
|ϕ′(E,L)| d(x, v) by Remark 4.3.5 and Proposition A.0.1 (a).
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which is simply the definition of r−, we deduce

Lmax(r) = 2r−(E0, Lmax(r))2[E0 − U0(r−(E0, Lmax(r)))] ≤ 2r2κ (5.2.36)

for r ∈ ]0, Rmax[. Combining (5.2.32), (5.2.34), and (5.2.36) then proves the claimed conti-
nuity.

Remark 5.2.13. The above proof shows that one could continuously extend Kλ by 0 onto
[0,∞[2. In particular, Kλ vanishes on ∂

(
[Rmin, Rmax]2

)
. One could hence also equivalently

define the Mathur operator Mλ on the space L2([0,∞[) by extending all functions by 0 as
usual.

Since the spectrum of the Birman-Schwinger operator Qλ is related to the one of the
Mathur operator Mλ, the above proposition also yields further properties for the former
operator.

Remark 5.2.14. Since the Birman-Schwinger operator Qλ : H → H is non-negative and
compact by Lemma 5.1.15 and its non-zero eigenvalues are identical to the ones of Mλ

(respecting multiplicities) by Lemma 5.2.5, the above proposition and [136, Thm. VI.22]
imply that Qλ is a Hilbert-Schmidt operator as well.

As a first, rather trivial application of the integral representation of the Mathur operator,
we show that the monotonicity ofMλ derived in Lemma 5.2.11 is strict. This is based on [62,
Rem. 8.12].

Lemma 5.2.15. The mapping]
−∞, inf(σ(−T 2|H))

[
3 λ 7→ ‖Mλ‖ (5.2.37)

is positive and strictly increasing. Here, ‖Mλ‖ denotes the operator norm of the (bounded)
Mathur operator Mλ : L2([Rmin, Rmax])→ L2([Rmin, Rmax]).

Proof. Proposition 5.2.12 shows that for any F ∈ L2([Rmin, Rmax]) there holds

〈MλF, F 〉L2([Rmin,Rmax]) =

∫ Rmax

Rmin

∫ Rmax

Rmin

Kλ(r, s)F (r)F (s) ds dr =

= 32π2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − λ

(∫ r+(E,L)

r−(E,L)

F (r)

r
sin(2πn θ(r, E, L)) dr

)2

d(E,L).

(5.2.38)

Note that we switched the order of the summation and the integrals in the last step of this
calculation – similar arguments as in the proof of Proposition 5.2.12 can be used to justify
these operations.

Now fix some F s.t. 〈MλF, F 〉2 does not vanish. This means that the r-integral on
the right-hand side of (5.2.38) does not vanish for every n ∈ N and a.e. (E,L) ∈ D0.152

Obviously,

0 < 〈MµF, F 〉L2([Rmin,Rmax]) < 〈MλF, F 〉L2([Rmin,Rmax]), µ < λ < inf(σ(−T 2|H)).
(5.2.39)

Since the suprema on the right-hand side of (5.2.14) are attained by eigenfunctions to the
eigenvalue ‖Mλ‖ of Mλ, we hence conclude that ‖Mλ‖ is indeed positive and strictly
increasing in λ.

152An explicit example of such a function will be constructed in the proof of Theorem 5.4.1.
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As mentioned before, the properties of the Mathur operator are analysed in [85, Ch. 4]
as well, see also [86, Sc. 9]. To conclude the present section, we compare the results in [85] to
the ones above and state some additional properties of the Mathur operator proven in [85].

Remark 5.2.16. Proposition 5.2.12 shows that the operator defined in [85, Def. 4.1]
corresponds to the Mathur operator Mλ; note that the angle variable θ ranges in [0, 2π]
in [85], which leads to different factors at several places of the analysis. The main prop-
erties of Mλ from Lemmas 5.2.8, 5.2.10, and 5.2.11 and Proposition 5.2.12 are proven
in [85, Lemma 4.3]. In addition, it is shown that the mapping ] − ∞, inf(σ(−T 2|H))[ 3
λ 7→ Mλ is continuous w.r.t. the Hilbert-Schmidt norm as well as that the mapping153

C \ [inf(σ(−T 2|H)),∞[ 3 λ 7→ Mλ is analytic w.r.t. to the operator norm and that the
derivatives of the latter mapping possess an integral representation similar to Mλ itself.
The relations between the Mathur operator, the Birman-Schwinger operator (in a similar
form as in [62, 111]), and the eigenvalues of the linearised operator in the essential gap are
established in [85, Lemmas 4.4 and 4.6 and Thm. 4.5].

The limiting behaviour of the Mathur operator Mλ and its eigenvalues in the limit
λ ↗ inf(σ(−T 2|H)) is then analysed in [85, Lemmas 4.7–4.12]. For instance, it is shown
in [85, Lemma 4.9] that limλ↗inf(σ(−T 2|H))Mλ exists in the Hilbert-Schmidt norm under
suitable assumptions on the period function T . We will also discuss some aspects of this
limiting behaviour in the succeeding section, but not as comprehensively as in [85].

In [85, Scs. 4.2 and 4.3], the properties of the Mathur operator are used to derive criteria
for the (non-)existence of eigenvalues of L below its essential spectrum and applications of
these criteria are discussed. We will present some of these results (or adaptations of them)
in the succeeding sections.

A particular emphasis in [85] is placed on characterising whether the bottom of the essen-
tial spectrum of the linearised operator L, given by inf(σess(L)) = inf(σ(−T 2|H)) = sup(G),
is an eigenvalue or not. Concretely, characterisations for inf(σ(−T 2|H)) being an eigen-
value of L are derived in [85, Lemma 4.12, Thms. 4.14 and 4.15, and Cor. 4.17] under
a variety of assumptions on the underlying steady state and its period function. Here, we
do not analyse much the question whether inf(σess(L)) = inf(σ(−T 2|H)) = sup(G) is an
eigenvalue of L because we believe that it is more promising to show the existence of an
eigenvalue of L in G than to show that sup(G) is an eigenvalue. In addition, in Section 6.5
we will present different arguments which prove the absence of eigenvalues of L in σess(L),
including inf(σess(L)) = min(σess(L)) = sup(G). However, we will consider a different set-
ting there. Our focus on the existence of eigenvalues of L in G is also motivated by the
numerical observations from Section 8.3. For instance, for all isotropic polytropes (except
the transitional cases), the numerics indicate that eigenvalues are always located in G, cf.
Observation 8.3.4. For anisotropic polytropes, we have also numerically observed the pres-
ence of eigenvalues of L embedded into its essential spectrum, but not necessarily located at
the bottom of the essential spectrum, cf. Observation 8.3.9. Nonetheless, for a large range of
King models, the smallest eigenvalue of L is in fact equal (or at least, close) to inf(σess(L)),
cf. Observation 8.3.7. Hence, the results from [85] could be valuable in proving the existence
(or absence) of eigenvalues for such steady states.

In addition, in [85, Ch. 5], the Mathur operator Mλ with λ = 0 is studied. In particu-
lar, a connection between M0 and the “Guo-Lin operator” [53, Lemma 3.1], see also [165,
Ch. 4], is established. Note that the largest eigenvalue ofM0 equals 1− λ̃ ∈]0, 1[ by (5.1.18),

153It is straight-forward to extend the definitions of the Birman-Schwinger operator Qλ and the Mathur
operatorMλ to λ ∈ C \σ(−T 2

∣∣
H). It will, however, be sufficient for the proofs of the criteria in Section 5.3

to consider real-valued λ.
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which is consistent with the fact that the linearised operator L is positive by Proposi-
tion 4.5.11. Further note that in the case λ = 0, an alternative representation of the Mathur
operator without the θ-Fourier series can be derived by using Lemma 4.3.27 to compute T −2

instead of Lemma 4.3.18.

5.3 Criteria for the (Non-)Existence of Oscillatory Modes

In this section we use the properties of the Mathur operatorMλ established above to char-
acterise the existence and estimate the amount of eigenvalues of the linearised operator L
in the essential gap G. This is based on [49, Sc. 6.4], [61, Sc. 5.1], and [62, Sc. 8.1]. As
discussed in Remark 5.2.16, related results are also contained in [85, Ch. 4].

The main result of this entire thesis is the following sharp characterisation of the exis-
tence of eigenvalues of L in G. It originates from [62, Thm. 8.11(a) and Rem. 8.12]; see [61,
Prop. 5.3] and [85, Thm. 4.13] for similar results.

Theorem 5.3.1 (A Sharp Criterion for the Existence of Oscillatory Modes in G). Let

M := lim
λ↗inf(σ(−T 2|H))

‖Mλ‖ ∈ ]0,∞], (5.3.1)

where ‖Mλ‖ denotes the operator norm of the Mathur operator Mλ analysed in Lem-
mas 5.2.10 and 5.2.15. Then,

M > 1 ⇔ L possesses an eigenvalue in G. (5.3.2)

Proof. If M > 1, there exists λ ∈ G s.t. ‖Mλ‖ > 1. By Lemma 5.2.10, the Mathur
operatorMλ thus possesses an eigenvalue > 1. Hence, by Proposition 5.2.7, L possesses an
eigenvalue < λ which, by the positivity of L shown in Proposition 4.5.11, lies in G.

Conversely, if M ≤ 1, the strict monotonicity of λ 7→ ‖Mλ‖ established in Lemma 5.2.15
yields ‖Mλ‖ < 1 for every λ < inf(σ(−T 2|H)). Hence, Mλ possesses no eigenval-
ues ≥ 1 and, by Proposition 5.2.7, L has no eigenvalues ≤ λ. As this holds for any
λ < inf(σ(−T 2|H)), we conclude that L cannot possess an eigenvalue in G.

Although the above criterion is mainly used to characterise the existence of eigenvalues
of L in G, the methods from the previous sections also yield some information regarding
the associated eigenfunctions.

Remark 5.3.2. Suppose that we are in the situation M > 1 in the above theorem, i.e., there
exists an eigenvalue λ ∈ G of L. By Proposition 5.1.13 and Lemma 5.2.5, 1 is an eigenvalue
ofMλ. Let F ∈ L2([Rmin, Rmax]) be an associated eigenfunction ofMλ to the eigenvalue 1.
The proof of Lemma 5.2.5 shows that f ∈ H given by (5.2.1) is an eigenfunction of Qλ to the
eigenvalue 1. Proposition 5.1.13 thus implies that (−T 2

∣∣
H − λ)−1

√
Rf is an eigenfunction

of L to the eigenvalue λ. Furthermore, the calculations in the proof of Proposition 5.2.12,
cf. (5.2.23), show that this eigenfunction of L is of the form

8
√
π
|ϕ′(E,L)|
T (E,L)

∞∑
n=1

∫ r+(E,L)

r−(E,L)

F (r)

r
sin(2πn θ(r, E, L)) dr

sin(2πn θ)
4π2n2

T (E,L)2 − λ
(5.3.3)

for a.e. (θ,E, L) ∈ S1 × D0; the series is to interpreted as a limit in H.
Since the multiplicity of eigenvalues is preserved in the statements of Proposition 5.1.13

and Lemma 5.2.5, we actually obtain that every eigenfunction of L associated to an eigen-
value in G is of the form (5.3.3) for some λ ∈ G and an eigenfunction F ∈ L2([Rmin, Rmax])
of Mλ to the eigenvalue 1.
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The second main result of this chapter is that the integral representation of the Mathur
operator can also be used to bound the number of eigenvalues of the linearised operator L in
the essential gap G in terms of a suitable integral. In the context of Schrödinger operators,
such bounds are due to [21, 158] and are usually called “Birman-Schwinger bounds”, see,
e.g., [99, Cor. 4.3].154 The result is inspired by [49, Thm. 6.24]; some of the calculations in
the proof are based on [62, p. 678].

Theorem 5.3.3 (A Birman-Schwinger Bound on the Number of Oscillatory Modes in G).
It holds that

#{eigenvalues ∈ G of L (counting multiplicities)} ≤ sup
λ∈G
‖Kλ‖2L2([Rmin,Rmax]2), (5.3.4)

where Kλ is the integral kernel of the Mathur operatorMλ introduced in Proposition 5.2.12.
Moreover, for the square root of the supremum on the right-hand side of (5.3.4) there holds
the estimate

sup
λ∈G
‖Kλ‖L2([Rmin,Rmax]2) ≤

≤ 32π2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − 4π2

sup2
D0

(T )

∫ r+(E,L)

r−(E,L)

sin2(2πn θ(r, E, L))

r2
dr d(E,L),

(5.3.5)

where D0 is the (E,L)-support of the steady state given by (2.2.88), T is the period function
introduced in Definition 2.2.16, and the function θ is defined in Lemma 4.3.4. In addition,
since Kλ is continuous on [Rmin, Rmax]2, there holds the alternative estimate

sup
λ∈G
‖Kλ‖L2([Rmin,Rmax]2) ≤ (Rmax −Rmin) sup

λ∈G
‖Kλ‖L∞([Rmin,Rmax]2) ≤

(Rmax −Rmin) sup
r,s∈]Rmin,Rmax]

32π2

rs

∞∑
n=1

∫
D0(r)∩D0(s)

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − 4π2

sup2
D0

(T )

d(E,L),

(5.3.6)

where D0(r) is defined in (5.2.18) Notice that all of the expressions in (5.3.4), (5.3.5),
and (5.3.6) – including the number of eigenvalues of L in G – can be infinite.

Proof. For fixed λ ∈ G, Remark 5.2.6 shows that the positive eigenvalues of Mλ are given
by the values γn(λ) > 0 introduced in Definition 5.1.8. Recall that each of these value is
repeated according to the multiplicity of the respective eigenvalue of Mλ and that they
are sorted in descending order, i.e., γn(λ) ≥ γn+1(λ). Let m := #{n ∈ N | γn(λ) > 0} ∈
N ∪ {∞} denote the amount of such positive eigenvalues counting multiplicities. Notice
that Lemmas 5.2.10 and 5.2.15 show m ≥ 1 since the largest eigenvalue of Mλ is given by
γ1(λ) = ‖Mλ‖ > 0. Proposition 5.2.7 thus yields

#{eigenvalues ≤ λ of L (counting multiplicities)} =

= #{1 ≤ n ≤ m | γn(λ) ≥ 1} ≤
m∑
n=1

γn(λ)≥1

γn(λ)2 ≤
m∑
n=1

γn(λ)2. (5.3.7)

154More precisely, the Birman-Schwinger bound in quantum mechanics is derived by estimating the Hilbert-
Schmidt norm of a suitable operator. This is also our strategy in Theorem 5.3.3.
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Since Mλ is a Hilbert-Schmidt operator by Proposition 5.2.12, there holds, by [136,
Thms. VI.16 and VI.22(b)],

m∑
n=1

γn(λ)2 = ‖Mλ‖2HS. (5.3.8)

Here ‖Mλ‖HS denotes the Hilbert-Schmidt norm of Mλ which, by [136, Thm. VI.23], is
given by

‖Mλ‖HS = ‖Kλ‖L2([Rmin,Rmax]2). (5.3.9)

Altogether, we thus conclude

#{eigenvalues ≤ λ of L (counting multiplicities)} ≤ ‖Kλ‖2L2([Rmin,Rmax]2) (5.3.10)

for every λ ∈ G, which proves (5.3.4).

In order to establish the estimate (5.3.5), we again fix λ ∈ G. For any f ∈
L2([Rmin, Rmax]2) there holds

|〈Kλ, f〉L2([Rmin,Rmax]2)| ≤

≤ 32π2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − λ
·

·
∫ r+(E,L)

r−(E,L)

∫ r+(E,L)

r−(E,L)

∣∣∣∣sin(2πn θ(r, E, L)) sin(2πn θ(s, E, L))

rs
f(r, s)

∣∣∣∣dr ds d(E,L) ≤

≤ 32π2 ‖f‖2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − λ

∫ r+(E,L)

r−(E,L)

sin2(2πn θ(r, E, L))

r2
dr d(E,L)

(5.3.11)

by the Cauchy-Schwarz inequality. Similar arguments as in the proof of Proposition 5.2.12
justify interchanging the integrals and the series during this calculation. By Riesz’s repre-
sentation theorem we thus obtain

‖Kλ‖L2([Rmin,Rmax]2) ≤

≤ 32π2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − λ

∫ r+(E,L)

r−(E,L)

sin2(2πn θ(r, E, L))

r2
dr d(E,L). (5.3.12)

Although it is not necessary for this proof, we note that the integral on the right-hand
side is finite. This can be shown analogously as in the proof of Proposition 5.2.12 by using

the integrability of |ϕ′| on D0 and the inequality r−(E,L) ≥
√
L√

2E0−2U0(0)
for (E,L) ∈ D0.

Anyway, inserting the estimate λ < inf(σ(−T 2|H)) = 4π2

sup2
D0

(T )
into the right-hand side

of (5.3.12) yields (5.3.5).

The additional estimate (5.3.6) follows trivially from Proposition 5.2.12.

An important special case of the above theorem is that the right-hand side of (5.3.5)
or (5.3.6) being strictly smaller than one implies that there are no eigenvalues of L in G.

Moreover, observe that the finiteness of the integral on the right-hand side of (5.3.5)
or (5.3.6) is only unclear for the n = 1 addend. For this term, the integrability depends
on where the period function T “attains” its supremum on D0 and how T behaves close to
these points. For example, [85, Lemma 4.9] provides a criterion on the period function which
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guarantees that the right-hand side of (5.3.5) is finite. We will derive a similar criterion
below, cf. Corollary 5.4.4. A related result is also contained in [117, Cor. 1.3].

A bound on the number of eigenvalues of L inside the essential gap which is related
to Theorem 5.3.3 is proven in [117, Thm. 1.2]. Let us briefly discuss the relation of these
bounds.

Remark 5.3.4. In [117, Sc. 4], a bound on the number of eigenvalues is derived by esti-
mating the trace of a different Birman-Schwinger type operator Q̃λ. In our notation, it is of

the form Q̃λ = (−T 2
∣∣
H−λ)−

1
2R(−T 2

∣∣
H−λ)−

1
2 , where (−T 2

∣∣
H−λ)−

1
2 :=

√
−T 2

∣∣
H − λ

−1

can be shown to exist and written down explicitly using the Fourier series expansion in the
angle variable θ. The functional analytical properties of Q̃λ are similar to the ones of Qλ,
in particular, Q̃λ is symmetric, non-negative, and compact. Moreover, similar arguments
as in the proof of Proposition 5.1.13 show that the non-zero eigenvalues of Q̃λ are identical
to the ones of Qλ (respecting multiplicities), which are in turn the same as for the Mathur
operator Mλ, cf. Lemma 5.2.5. Hence, the three operators Q̃λ, Qλ, and Mλ share the
same trace [136, Thm. VI.18]. The same statement is also true for the Hilbert-Schmidt
norm [136, Thm. VI.22] of these operators.

Evidently, both the trace and the squared Hilbert-Schmidt norm give an upper bound on
the number of eigenvalues ≥ 1. The latter is used to derive the bound from Theorem 5.3.3,
the former is used in [117, Prop. 4.1]. For the Mathur operator, such a trace-based bound
can be established by modifying the proof of Theorem 5.3.3 as follows:

#{eigenvalues ≤ λ of L (counting multiplicities)} =

= #{n ∈ N | γn(λ) ≥ 1} ≤
∑
n∈N

γn(λ) = Tr(Mλ) =

∫ Rmax

Rmin

Kλ(r, r) dr, (5.3.13)

where the latter equality is due to Mercer’s Theorem [42, Thm. 2.4]. The expression on the
right-hand side of (5.3.13) can then be estimated independently of λ in a similar way as
‖Kλ‖2.

It is not possible to say in general whether the bound relying on the squared Hilbert-
Schmidt norm or the trace-based bounds are sharper. There may be situations (especially
when there are many eigenvalues < 1 of Mλ) where the Birman-Schwinger bound from
Theorem 5.3.3 is superior, and other situations (especially when there are many eigenvalues
> 1 of Mλ) where the trace-based bounds from (5.3.13) and [117, Thm. 1.2] are superior.
In any case, it should be acknowledged that the bound from [117, Thm. 1.2] looks cleaner
than the bounds derived here.

5.4 Applications of the Criteria

In this section we present (first) applications of the criteria for the existence of oscillatory
modes derived in the previous section. Further applications will then be discussed in the
succeeding chapter.

The first application originates from [62, Thm. 8.15] and shows the existence of an
oscillatory mode for certain anisotropic polytropic steady states under a suitable assumption
on the radial period function T . We will comment on the validity of this assumption as well
as on the class of steady states after the proof.
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Theorem 5.4.1 (Existence of an Oscillatory Mode for Some Polytropes). Consider the
situation of a polytropic steady state (1.2.5) with parameters k, `, and L0 satisfying

L0 > 0, ` > −1

2
, 0 < k < 3`+

7

2
, k + ` ≤ 0. (5.4.1)

Assume that the period function T “attains” its supremum on D0 at (E0, L0), i.e.,

sup
D0

T = T (E0, L0). (5.4.2)

Then the linearised operator L possesses an eigenvalue in the essential gap G.

Proof. Let λ ∈ G and F ∈ L2([Rmin, Rmax]) with ‖F‖2 = 1. Using Lemma 5.2.10 and the
integral representation of the Mathur operator from Proposition 5.2.12, the same calculation
as in the proof of Lemma 5.2.15 yields

‖Mλ‖ ≥ 〈MλF, F 〉2 =

= 32π2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − λ

(∫ r+(E,L)

r−(E,L)

F (r)

r
sin(2πn θ(r, E, L)) dr

)2

d(E,L) ≥

≥ 32π2

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2

T (E,L)2 − λ

(∫ r+(E,L)

r−(E,L)

F (r)

r
sin(2π θ(r, E, L)) dr

)2

d(E,L).

(5.4.3)

Fixing F and considering the limit λ↗ inf(σ(−T 2|H)) = 4π2

sup2
D0

(T )
, we obtain

M = lim
λ↗inf(σ(−T 2|H))

‖Mλ‖ ≥

≥ 32π2

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2

T (E,L)2 − 4π2

sup2
D0

(T )

(∫ r+(E,L)

r−(E,L)

F (r)

r
sin(2π θ(r, E, L)) dr

)2

d(E,L) ≥

≥ c
∫
D0

|ϕ′(E,L)|
T (E0, L0)− T (E,L)

(∫ r+(E,L)

r−(E,L)

F (r)

r
sin(2π θ(r, E, L)) dr

)2

d(E,L), (5.4.4)

where we used the monotone convergence theorem, the assumption (5.4.2), the bound
infD0 T > 0 from Proposition A.0.1 (a), and

1

T (E,L)2
− 1

T (E0, L0)2
≤ 2

T (E0, L0)− T (E,L)

inf3
D0

(T )
, (E,L) ∈ D0, (5.4.5)

Here, c > 0 is some constant depending on the fixed steady state and is allowed to change
its value throughout this proof.

Our aim is to construct a function F s.t. the r-integral on the right-hand side of (5.4.4)
is bounded away from zero for (E,L) close to (E0, L0). For this purpose let ε > 0 be chosen
s.t. the interior of the set

Nε := [E0 − ε, E0]× [L0, L0 + ε] (5.4.6)

is contained in D0; recall (2.2.88) for the definition of D0. Such ε exists since L 7→ Emin
L is

continuous by Lemma 2.2.14 (b) and Emin
L0

< E0. Next, let

r 1
2
(E,L) := R(

1

4
T (E,L), E, L), (E,L) ∈ A0, (5.4.7)



136 CHAPTER 5. THE BIRMAN-SCHWINGER-MATHUR PRINCIPLE

where R is defined as in Definition 2.2.16. By Proposition A.0.1 (b) and Lemma A.3.2, r 1
2

is continuous on A0. Moreover, by Lemma 4.3.4,

θ(r 1
2
(E,L), E, L) =

1

4
. (5.4.8)

Hence, after possibly reducing ε > 0, there exists an open interval I ⊂ [Rmin, Rmax] con-
taining r 1

2
(E0, L0) s.t.

sin(2π θ(r, E, L)) ≥ 1

2
, (E,L) ∈ Nε, r ∈ I; (5.4.9)

note that the mapping θ is continuous by Lemma 4.3.3. Now let F := |I|−
1
2 1I . Obviously,

‖F‖L2([Rmin,Rmin]) = 1. Inserting this choice of F into (5.4.4) and using Rmin > 0 and (5.4.9)
thus yields

M ≥ c
∫ L0+ε

L0

∫ E0

E0−ε

|ϕ′(E,L)|
T (E0, L0)− T (E,L)

dE dL. (5.4.10)

The final step is to show that the latter integral is infinite for the steady states under
consideration. Taylor expanding the denominator of the integrand results in

T (E0, L0)− T (E,L) = ∂ET (E0, L0) (E0 − E)− ∂LT (E0, L0) (L− L0)+

+ o(|(E,L)− (E0, L0)|) (5.4.11)

as (E,L) → (E0, L0), note that T is continuously differentiable on a neighbourhood of
(E0, L0) ∈ A0 by Proposition A.0.1 (b). Thus, after possibly reducing ε > 0, there exists a
constant C > 0 s.t.

0 ≤ T (E0, L0)− T (E,L) ≤ C (E0 − E + L− L0), (E,L) ∈ Nε. (5.4.12)

Inserting this estimate together with the polytropic structure of ϕ into (5.4.10) hence yields

M ≥ c
∫ L0+ε

L0

∫ E0

E0−ε

(E0 − E)k−1(L− L0)`

E0 − E + L− L0
dE dL = c

∫ ε

0

∫ ε

0

ηk−1ν`

η + ν
dη dν, (5.4.13)

where we used the obvious changes of variables η = E0−E and ν = L−L0. Since k+ ` ≤ 0
by (5.4.1), the latter integral is indeed infinite.155 This can be seen by the following simple
calculation:∫ ε

0

∫ ε

0

ηk−1ν`

η + ν
dη dν ≥

∫ ε

0

∫ ν

0

ηk−1ν`

2ν
dη dν =

1

2k

∫ ε

0
νk+`−1 dη =∞. (5.4.14)

We thus conclude M =∞, which, by Theorem 5.3.1, proves the claimed statement.

Remark 5.4.2. (a) The assumption (5.4.2) on the period function is rather natural: It
means that the particles in the steady state configuration with the longest radial period
are those with the largest energy E = E0 and the smallest L-value L = L0. Notice that,
by the monotonicities of r±, these particles correspond to the largest radial orbits in
the steady state configuration. For instance, (5.4.2) would be true if the radial period
function would be non-decreasing in E and non-increasing in L, i.e.,

∂ET ≥ 0 & ∂LT ≤ 0 on D0. (5.4.15)

155It can, in fact, be shown that the integral on the right-hand side of (5.4.13) is infinite if, and only if,
k + ` ≤ 0.
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Unfortunately, we are not able to prove (5.4.2) for any steady state, and even less so
for the anisotropic steady states considered in the theorem above. Some mathematical
evidence why (5.4.15) should be true and ideas towards a proof of it are discussed in
Section A.3.3.

Nonetheless, the numerical simulations in Section 8.2 indicate that (5.4.2) is true for
a large class of steady states including polytropes with parameters satisfying (5.4.1),
see Observation 8.2.8.

(b) In the above proof, we verify the criterion from Theorem 5.3.1 by showing that M
is infinite, although it would suffice to prove M > 1. This is achieved by assuming
that T attains its supremum at (E0, L0) and that ϕ is not too regular at (E0, L0).
In Section 6.4, we shall see in a different situation that sufficiently high regularity of
the steady state at (E0, L0) leads to the absence of eigenvalues of L in G. However,
the numerical simulations from Section 8.3 indicate that the regularity of the steady
state (at (E0, L0)) alone does not determine whether there exists an eigenvalue, cf.
Observation 8.3.6.

(c) The first three conditions from (5.4.1) make sure that the associated steady state satis-
fies the general assumptions (ϕ1)–(ϕ5). The fourth condition from (5.4.1) guarantees
that (the microscopic equation of state ϕ associated to) the steady state is not too
regular at (E0, L0). As only the behaviour of ϕ close to (E0, L0) is relevant for the
above proof, one could obtain the existence of an oscillatory mode for a non-polytropic
steady state in an analogous way as long as

Φ(η) & ηk, 0 < η � 1, (5.4.16)

for k satisfying (5.4.1).

As an aside, we note that in the polytropic case (1.2.5), the whole analysis of Chap-
ters 2–5 can also be carried out with parameters L0 > 0, k > 0, and ` > −1 satisfying
k < 3`+ 7

2 and k + `+ 1
2 > 0. This is done in [62] and then leads to a slightly more

general version of the above theorem, cf. [62, Thm. 8.15]. Here, we prefer to include
the assumption ` > −1

2 in the polytropic situation in order to be able to present the
arguments in the polytropic and non-polytropic cases in a more unified way.

The second application of the criteria from Section 5.3 originates from [85, Cor. 4.16]. It
shows that if the supremum of the radial period function T on D0 is attained as a maximum
on this set, there exists an oscillatory mode in the essential gap. Recall that the set D0

is open and (E0, L0) ∈ ∂D0. However, we note in advance that it is not to be expected
that this assumption on T is satisfied by many steady states. On the contrary, during the
numerical study in Section 8.2, we have not seen a single steady state where it is satisfied,
cf. Observation 8.2.9.

Corollary 5.4.3 (Existence of Oscillatory Modes if T Attains Maximum on D0). Assume
that there exists (E∗, L∗) ∈ D0 s.t.

T (E∗, L∗) = sup
D0

T. (5.4.17)

Then the linearised operator L possesses an eigenvalue in the essential gap G.

Proof. We start by proceeding as in the proof of Theorem 5.4.1: For any F ∈
L2([Rmin, Rmax]) with ‖F‖2 = 1 there holds the estimate (5.4.4) with T (E0, L0) replaced by
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T (E∗, L∗). The same arguments as above again yield that r 1
2

= r 1
2
(E,L) and θ = θ(r, E, L)

are continuous with θ(r 1
2
(E∗, L∗), E∗, L∗) = 1

4 , recall (5.4.7) and Lemma 4.3.4 for the defini-

tions of these quantities, respectively. Hence, there exist an open interval I ⊂ [Rmin, Rmax]
which contains r 1

2
(E∗, L∗) > 0 and which is bounded away from r = 0 as well as some ε > 0

with Bε(E
∗, L∗) ⊂ D0 s.t.

sin(2π θ(r, E, L)) ≥ 1

2
, (E,L) ∈ Bε(E∗, L∗), r ∈ I. (5.4.18)

Similar to (5.4.10), choosing F := |I|−
1
2 1I in (5.4.4) yields

M ≥ c
∫
Bε(E∗,L∗)

|ϕ′(E,L)|
T (E∗, L∗)− T (E,L)

d(E,L), (5.4.19)

where c > 0 is some constant depending on the steady state. By Remark 4.2.4 (d), |ϕ′|
is bounded away from zero on Bε(E

∗, L∗). Moreover, since T is twice continuously dif-
ferentiable on D0 by Lemma A.3.3, the assumption (5.4.17) implies ∂ET (E∗, L∗) = 0 =
∂LT (E∗, L∗) and thus, by Taylor’s theorem,

0 ≤ T (E∗, L∗)− T (E,L) ≤ C|(E∗, L∗)− (E,L)|2, (E,L) ∈ Bε(E∗, L∗), (5.4.20)

for some constant C > 0. Inserting these findings into (5.4.19) hence shows

M ≥ c
∫
Bε(E∗,L∗)

d(E,L)

|(E∗, L∗)− (E,L)|2
=∞, (5.4.21)

from which we conclude the claimed statement by Theorem 5.3.1.

The last application we present here shows that for certain steady states, the amount
of eigenvalues of the linearised operator L in the essential gap G is finite, i.e., there is no
accumulation of eigenvalues at sup(G) = inf(σess(L)). This result will again require suitable
assumptions on the behaviour of the radial period function T . The result is inspired by [117,
Cor. 1.3], where a similar statement is shown for a larger class of steady states, but under
more assumptions on T .156 As discussed in Remark 5.3.4, the results in [117] rely on a bound
on the amount of eigenvalues of L in G which is qualitatively different from Theorem 5.3.3.
Furthermore, the following result is related to [85, Lemma 4.9]; the class of steady states
and some calculations in the proof are also similar to [85, Cor. 4.17].

Corollary 5.4.4 (Finitely Many Eigenvalues in G for Some Isotropic Polytropes). Consider
an isotropic polytropic steady state (1.2.3) with polytropic exponent 1 < k < 7

2 . Assume that
the period function T “attains” its supremum on the (E,L)-support D0 (given by (2.2.88))
only at (E0, L0) = (E0, 0), i.e.,

sup
D0

T = T (E0, 0) and T < T (E0, 0) on D0 \ {(E0, 0)}. (5.4.22)

156In our notation, [117, Cor. 1.3] shows that there are finitely many eigenvalues of L in G for all isotropic
polytropes with polytropic exponents 0 < k < 7

2
provided T (E0, 0) = supD0

(T ) with ∂2
L( 1

T
)(E0, 0) > 0 and

∂ET (E0, 0) > 0. Notice that the latter property is rigorously established for all isotropic steady states in
Lemma A.3.23, which originates from [85, Lemma 3.15]. Although not explicitly stated in [117, Cor. 1.3],
the first line of the calculations in [117, Sc. 5] shows that it is additionally assumed that the maximum of T
on D0 is attained only at (E0, 0).
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Here, T (·, 0) denotes the continuous extension of T to L = 0 mentioned in Re-
mark 2.2.17 (a), and we assume that this extension is continuously differentiable, so that157

T ∈ C1(D0). (5.4.23)

Then the amount of eigenvalues of the linearised operator L in the essential gap G is finite.

Proof. By Theorem 5.3.3, it remains to show that the right-hand side of (5.3.5) is finite. A
straight-forward to derive estimate of this expression is

C

∫
D0

|ϕ′(E)|
supD0

T − T (E,L)

∫ r+(E,L)

r−(E,L)

dr

r2
d(E,L) ≤ C

∫
D0

|ϕ′(E)|
T (E0, 0)− T (E,L)

d(E,L)

r−(E,L)
,

(5.4.24)
where C > 0 is some constant depending on the steady state. To estimate the 1

r−(E,L) -factor,

note that ΨL(r−(E,L)) = E implies

1

r−(E,L)
=

√
2E − 2U0(r−(E,L))√

L
≤
√

2E0 − 2U0(0)√
L

=

√
2κ√
L
. (5.4.25)

This shows that the integral on the right-hand side of (5.4.24) is finite if one bounds the
domain of integration away from (E0, 0) ∈ ∂D0, i.e., away from the only point where the
denominator vanishes. To see that the integral also remains finite in the region around
(E0, 0), let ε > 0 be s.t.

∂ET > 0 on Nε := [E0 − ε, E0]× [0, ε] ⊂ D0; (5.4.26)

such ε exists by (5.4.23) and Lemma A.3.23. Hence, by the mean value theorem,

T (E0, 0)− T (E,L) ≥ T (E0, L)− T (E,L) ≥ 1

C
(E0 − E) (5.4.27)

for (E,L) ∈ Nε. Restricting the integral on the right-hand side of (5.4.24) to Nε and using
this estimate as well as (5.4.25) yields∫

Nε

|ϕ′(E)|
T (E0, 0)− T (E,L)

d(E,L)

r−(E,L)
≤ C

∫
Nε

(E0 − E)k−1

E0 − E
d(E,L)√

L
. (5.4.28)

The latter integral is finite since k > 1.

We emphasise that the numerical simulations from Section 8.2 indicate that the assump-
tion (5.4.22) holds for all isotropic polytropes, cf. Observation 8.2.4.

157Notice that T can be extended in a continuously differentiable way on ∂D0 \{L = 0} by the results from
Section A.4, see Lemmas A.4.6 and A.4.8 and Remark A.4.7. Showing that T can be extended to L = 0 in
a continuously differentiable way should be possible by applying the arguments from [85, Thm. 3.13] to the
integral representations of ∂ET and ∂LT derived in Lemmas A.3.9 and A.3.16.
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Chapter 6

Damping

The primary focus of this thesis so far has been to show the existence of oscillatory modes
around as many steady states as possible. The goal of this chapter is to prove the opposite
statement: the linearised dynamics around (other) steady states are damped.

To achieve this, we deviate from the previous setting and add a point mass fixed at
the spatial origin to the Vlasov-Poisson system. This new system will be introduced in
Section 6.1, the existence of steady states will be discussed in Section 6.2. The advantage of
the point mass is that all crucial properties of a steady state – like the behaviour of its radial
particle periods – are known as long as the steady state is “small” compared to the point
mass. The precise meaning of the steady state being “small” and the corresponding limiting
behaviour will be discussed in Section 6.2.1. Subsequently, we will analyse the linearised
Vlasov-Poisson system as well as the linearised operators associated to such steady states.
We shall see that all occurring operators behave similarly to the case without a point mass,
so that we can apply the methods from Chapters 4 and 5 once again. In Section 6.4, we
will then prove that for a small and sufficiently regular steady state, no eigenvalues of the
linearised operator exist in the essential gap of its spectrum. The other part is to establish
the absence of eigenvalues embedded into the essential spectrum of the linearised operator.
This will be done in Section 6.5 and is the crucial part of this chapter. In the final section,
all these results are combined with the analysis from Appendix C to conclude that solutions
of the linearised system associated to such steady states are indeed damped in a suitable
way.

This whole chapter is mainly based on [61], where the same questions are studied in a
slightly different (and easier) setting.

6.1 The Radial Vlasov-Poisson System Around a Point Mass

Throughout this chapter, we consider the radial Vlasov-Poisson system with a point mass
M > 0 fixed at the radial origin r = 0. The point mass resembles a compact, static object,
and our aim is to model the matter surrounding it. This is a simple (i.e., Newtonian) model
for a galaxy surrounding a black hole. Including the gravitational force of the point mass
into the radial Vlasov-Poisson system (2.1.9)–(2.1.11) leads to the system

∂tf + w ∂rf −
(
U ′ +

M

r2
− L

r3

)
∂wf = 0, (6.1.1)

U ′(t, r) =
4π

r2

∫ r

0
s2ρ(t, s) ds, lim

r→∞
U(t, r) = 0, (6.1.2)

141
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ρ(t, r) =
π

r2

∫ ∞
0

∫
R
f(t, r, w, L) dw dL, (6.1.3)

for the spherically symmetric phase space density f = f(t, r, w, L). Recall Section 2.1 for
the definition of spherical symmetry and the radial variables (r, w, L). Notice that the
gravitational potential U = U(t, r) does not include the gravitational force of the point
mass, but only the one of the matter surrounding it. We refer to the system (6.1.1)–
(6.1.3) as the radial Vlasov-Poisson system around a point mass. In Cartesian coordinates
(x, v) ∈ R3 × R3, the system is given by (1.1.3)–(1.1.5) and (1.2.28).

In [157], the existence of classical solutions of (6.1.1)–(6.1.3) is studied. Due to the
(singular) point mass located at the radial origin r = 0, any smooth solution has to vanish at
r = 0. In [157, Thm. 2.1], it is proven that any spherically symmetric, compactly supported,
smooth initial distribution f̊ which possesses an L-vacuum at the centre, i.e., f̊(r, w, L) = 0
for L ≤ L1 for some L1 > 0, launches a unique classical solution of (6.1.1)–(6.1.3).

6.2 Steady States Around a Point Mass

In this section we construct and analyse stationary solutions of the radial Vlasov-Poisson
system around a point mass. The approach is very similar to the case without a point mass,
cf. Section 2.2, which is why we will present the arguments here rather concisely.

For the stationary phase space density f0 we make the ansatz

f0(x, v) = ϕ(E(x, v), L(x, v)), (x, v) ∈ (R3 \ {0})× R3, (6.2.1)

where, as before, L(x, v) = |x× v|2 is the squared modulus of the angular momentum and

E(x, v) =
1

2
|v|2 + U0(x)− M

|x|
, (x, v) ∈ (R3 \ {0})× R3, (6.2.2)

is the particle energy. Similar to Definition 2.2.2, f0 is a steady state of the system (6.1.1)–
(6.1.3) if U0 is the gravitational potential induced by f0 via the radial Poisson equation

U ′0(r) =
m0(r)

r2
, r > 0, lim

r→∞
U0(r) = 0, (6.2.3)

where m0 is the local mass of the steady state, i.e.,

m0(r) := 4π

∫ r

0
s2ρ0(s) ds, r > 0, (6.2.4)

induced by the stationary mass density

ρ0(r) :=
π

r2

∫ ∞
0

∫
R
f0(r, w, L) dw dL, r > 0. (6.2.5)

We choose an ansatz function of the polytropic form

ϕ(E,L) := ε ϕ̃(E,L) := ε (E0 − E)k+ (L− L0)`+, E, L ∈ R, (6.2.6)

where ε > 0 is a parameter which we will use later to control the size of the steady state. We
again employ the convention (2.2.13) regarding (. . .)α+. To ensure that the steady state is
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bounded away from the (singular) point mass, we take L0 > 0. For the polytropic exponents
k, ` ∈ R we require158

k > 0, ` > −1, k + ` > −1

2
, (6.2.7)

for now. The cut-off energy E0 < 0 is determined implicitly through the other parameters,
cf. below. We note that it is straight-forward to extend the following analysis to a more
general class of ansatz functions, more precisely, to all sufficiently smooth ϕ̃ which satisfy
the conditions (ϕ1)–(ϕ5) from the case without a point mass with L0 > 0. However, we
believe that the findings of this chapter can be presented more clearly when considering
only polytropic equations of states.

In order to construct a steady state of the form (6.2.1), we repeat the calcula-
tions (2.2.20)–(2.2.27) to deduce that the relation (6.2.5) can be rewritten as

ρ0(r) = ε r2`g

(
E0 − U0(r) +

M

r
− L0

2r2

)
, r > 0, (6.2.8)

with g : R → [0,∞[ being determined by the polytropic exponents k and `. Concretely,
analogous to Remark 2.2.7, the function g is of the explicit form

g(z) = ck,` z
k+`+ 3

2
+ , z ∈ R, (6.2.9)

where the constant ck,` > 0 is given by (2.2.30). By the assumption (6.2.7) on the range of
the polytropic exponents,

g ∈ C1(R) ∩ C∞(R \ {0}). (6.2.10)

With ρ0 given by (6.2.8), the search for a steady state is reduced to solving the integro-
differential equation (6.2.3) for U0. Inspired by [130], we again solve this equation by
considering the function

y := E0 − U0 (6.2.11)

instead of U0. The resulting equation for y is

y′(r) = −4π

r2

∫ r

0
s2`+2g

(
y(s) +

M

s
− L0

2s2

)
ds, r > 0. (6.2.12)

We again equip this equation with the boundary/initial conditions

y(0) = κ, y′(0) = 0, (6.2.13)

for some prescribed κ ∈ R; below we will derive the suitable range for the parameter κ. We
note that the whole steady state including the function y need not be defined at r = 0. For
solving the y-equation (6.2.12) it is, however, convenient to extend y to r = 0; we shall see
next that this can be done without any difficulties. The same arguments as in Lemma 2.2.8
show that for every κ ∈ R there exists a unique solution y ∈ C2([0,∞[) of (6.2.12)–(6.2.13).
This solution possesses a vacuum region around the spatial origin, i.e., there exists Rmin > 0
s.t.

y(r) = κ, y′(r) = 0, ρ0(r) = 0, 0 ≤ r ≤ Rmin. (6.2.14)

158Note that the range of these parameters is larger than in the anisotropic polytropic case without a point
mass, recall (4.1.5). As already noted before, cf. Remark 5.4.2 (c), the analysis in the case without a point
mass could, in fact, also be carried out with a polytropic ansatz (2.2.17) with parameters satisfying (6.2.7),
k < 3`+ 7

2
, and L0 > 0.
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The maximal radius Rmin with this property is explicitly given by

Rmin :=


−M+

√
M2+2κL0

2κ , if κ > 0 or − M2

2L0
< κ < 0,

L0
2M , if κ = 0,

∞, if κ ≤ −M2

2L0
.

(6.2.15)

In particular, choosing κ ≤ −M2

2L0
results in the trivial solution y ≡ κ, ρ0 ≡ 0 ≡ U0. For this

reason, we always assume κ > −M2

2L0
. For the later analysis, we further restrict the range

of κ to

− M2

2L0
< κ < 0. (6.2.16)

Let us briefly motivate this choice of the κ-range:

Remark 6.2.1. The crucial part of Section 2.2 is to show that the steady state is compactly
supported, i.e., to show that supp (ρ0) is compact. In the present setting, however, it is trivial
to see that the support of ρ0 is compact in the case κ ≤ 0: any solution y of (6.2.12) is
non-increasing, and thus the initial condition (6.2.13) with κ ≤ 0 leads to limr→∞ y(r) < 0,
which implies that supp (ρ0) is indeed bounded. Due to this reason, the associated steady
states in the case κ ≤ 0 are called trivially bounded. Similarly, in the case κ < 0, using the
estimate y(r) ≤ y(0) = κ < 0 yields the following bound on the support of ρ0:

ρ0(r) = 0 for r ≥ −M −
√
M2 + 2κL0

2κ
. (6.2.17)

In particular, this bound is uniform in the parameter ε > 0 and will turn out to be essential
when considering the limit ε → 0 later on. Notice that for this argument, no further
restrictions on the polytropic exponents k and ` need to be imposed (besides (6.2.7)). In
particular, k can be chosen arbitrarily large, which was not possible in the case without a
point mass, cf. Remark 2.2.5 (d).

Nonetheless, we note that choosing κ > 0 also leads to a compactly supported steady
state around the point mass. This can be shown similarly to Lemma 2.2.8. However, for
κ ≥ 0, the support need not be uniformly bounded in ε.

Once a solution y of (6.2.12)–(6.2.13) with κ satisfying (6.2.16) is known, the cut-off
energy E0 and the stationary potential U0 can be obtained via

E0 := lim
r→∞

y(r) ∈ ]−∞, 0[, U0 := E0 − y. (6.2.18)

The resulting steady state f0 is then given by (6.2.1). Let us collect the properties of this
steady state.

Proposition 6.2.2 (Existence of Steady States Around a Point Mass). Let ϕ be an ansatz
function of the form (6.2.6) with parameters ε > 0, L0 > 0, and polytropic exponents k, `
satisfying (6.2.7). In addition, let κ be in the range specified in (6.2.16). Then there exists
a steady state f0 of the radial Vlasov-Poisson system around a point mass (6.1.1)–(6.1.3)
of the form (6.2.1) with E0 and U0 given by (6.2.18). This steady state enjoys the following
properties:

(a) The total mass

M0 := lim
r→∞

m0(r) = 4π

∫ ∞
0

r2ρ0(r) dr (6.2.19)

of the steady state is positive & finite. Notice that M0 gives the mass of the steady
state only; it does not contain the fixed point mass M > 0.
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(b) The steady state is radially bounded, i.e.,

Rmax := sup{r ≥ 0 | ρ0(r) > 0} <∞. (6.2.20)

(c) The radial support of the steady state is given by

supp (ρ0) = [Rmin, Rmax], (6.2.21)

where

Rmin :=
−M +

√
M2 + 2κL0

2κ
=: R0

min > 0, (6.2.22)

Rmin < Rmax <
−M −

√
M2 + 2κL0

2κ
=: R0

max. (6.2.23)

Due to (6.2.21), we sometimes refer to the steady state as a stationary shell surround-
ing the point mass.

(d) The (phase space) support of the steady state is bounded, i.e., the set Ω0 defined as
in (2.2.44) or (2.2.45) is bounded.

(e) It holds that ρ0 ∈ C1([0,∞[) and U0 ∈ C3([0,∞[). In addition, U0, ρ0 ∈
C∞([0,∞[\{Rmin, Rmax}).

Proof. All statements were either proven above or follow in the same way as in Proposi-
tion 2.2.9.

Before introducing and analysing further quantities associated to a steady state, let us
briefly review alternative approaches to construct steady states around a point mass.

Remark 6.2.3. In [157], the existence of polytropic steady states (with fixed ε and a smaller
range for the polytropic exponents k and ` compared to (6.2.7)) is shown via the variational
approach developed in [55]. In this way, one also obtains the non-linear stability of these
steady states. We shall see later that the steady states constructed in Proposition 6.2.2 are
linearly stable, cf. Section 6.3. We note that, after suitably adjusting the range (6.2.7) of the
polytropic exponents, the present steady states can also be shown to be non-linearly stable
by applying the methods from [57, 59], cf. [121].

Another approach to construct “small” steady states is to interpret them as a perturba-
tion of the trivial solution. Mathematically, the existence of such perturbations which solve
the (stationary) Vlasov-Poisson system with a point mass can be derived by applying the
implicit function theorem. In the case of the Einstein-Vlasov system with a black hole at
the centre – which is the general relativistic analogue of the present setting – this strategy
is pursued in [72, 73]. In this general relativistic setting, the existence of steady states sur-
rounding a black hole is also proven in [49, 137] using similar methods as those presented
above.

An important quantity associated to a fixed steady state f0 as constructed above is its
effective potential. In the case without a point mass, this function is analysed in detail in
Section 2.2.1. In the present setting, we obtain similar results.

Definition & Lemma 6.2.4 (The Effective Potential). For L > 0 let

ΨL : ]0,∞[→ R, ΨL(r) := U0(r)− M

r
+

L

2r2
. (6.2.24)
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This function is called the effective potential of the underlying steady state. It has the same
properties as those derived in Lemma 2.2.12, i.e., there exists a unique minimising radius
rL > 0 s.t.

ΨL(rL) = min
]0,∞[

ΨL =: Emin
L ∈ ]−∞, 0[, (6.2.25)

and for every E ∈ ]Emin
L , 0[ there exist two unique radii 0 < r−(E,L) < rL < r+(E,L) <∞

s.t.

ΨL(r±(E,L)) = E. (6.2.26)

In addition, the regularity and limiting statements from Lemma 2.2.14 hold, where m0(r)
and M0 have to be replaced with m0(r) +M and M0 +M , respectively.

Proof. The assertions can be proven similarly to the case without a point mass.

We note that the radii r± are related to Rmin and Rmax as follows:

Rmin = r−(E0, L0), Rmax = r+(E0, L0). (6.2.27)

The effective potential appears naturally when expressing the particle energy E, cf. (6.2.2),
in radial variables. Concretely,

E(r, w, L) =
1

2
w2 + ΨL(r), (r, w, L) ∈ ]0,∞[× R× ]0,∞[. (6.2.28)

This shows that the (E,L)-support of the steady state is

D0 := {(E,L) | L > L0, E
min
L < E < E0}. (6.2.29)

The shape of this set is visualised in Figure 2.2.2; it is similar to the case without a point
mass. In analogy to (2.2.86) and (2.2.90), the L-support of the steady state is of the form

L0 := {L | (E,L) ∈ D0} =]L0, Lmax[, (6.2.30)

where Lmax ∈ ]L0,∞[ is given as the unique solution of

Emin
Lmax

= E0. (6.2.31)

The set D0 is a subset of the set of all admissible (E,L)-pairs

A0 := {(E,L) | L > 0, Emin
L < E < 0}. (6.2.32)

By the regularity of ]0,∞[ 3 L 7→ Emin
L , the sets D0 and A0 are both open subsets of R2.

Similar to Section 2.2.2, being “admissible” means that any solution of the radial charac-
teristic system

ṙ = w, ẇ = −Ψ′L(r), (6.2.33)

with parameter L and conserved energy value E is time-periodic provided (E,L) ∈ A0. In
analogy to Definition 2.2.16, the periods of these solutions are given by the (radial) period
function

T : A0 → ]0,∞[, T (E,L) := 2

∫ r+(E,L)

r−(E,L)

dr√
2E − 2ΨL(r)

. (6.2.34)

Most of the properties of T are similar to the case without a point mass, cf. Appendix A.
We will study further properties of this function within the analysis below.
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6.2.1 Limiting Behaviour as ε→ 0

As motivated above, we are interested in steady states of the form (6.2.1) with 0 < ε� 1.
The reason for this is that all steady state quantities converge to explicitly known objects
in the limit ε→ 0. Let us first collect these limiting quantities.

Lemma 6.2.5 (The Pure Point Mass Case). The pure point mass case corresponds to the
situation where the gravity is solely determined by the point mass. The effective potential
in this situation is

Ψ0
L : ]0,∞[→ R, Ψ0

L(r) := −M
r

+
L

2r2
(6.2.35)

for L > 0. This function has similar properties as the ones derived in Lemma 6.2.4: For
L > 0, the minimum of Ψ0

L is attained at the radius

r0
L :=

L

M
; (6.2.36)

the minimal value is given by

Emin0
L := Ψ0

L(r0
L) = −M

2

2L
. (6.2.37)

Similar to (6.2.32) let

A0
0 := {(E,L) | L > 0, Emin0

L < E < 0} (6.2.38)

denote the set of admissible (E,L)-pairs in the pure point mass case. Setting

r0
±(E,L) :=

−M ∓
√
M2 + 2EL

2E
, (E,L) ∈ A0

0, (6.2.39)

defines the two unique radii 0 < r0
−(E,L) < r0

L < r0
+(E,L) which solve Ψ0

L(r0
±(E,L)) = E.

These radii are related to R0
min and R0

max defined in (6.2.22) and (6.2.23), respectively, via

R0
min = r0

−(κ, L0), R0
max = r0

+(κ, L0). (6.2.40)

The particle motions within the gravitational field of the point mass are described by ṙ = w,
ẇ = −(Ψ0

L)′(r). Solutions of this ODE with parameter L and conserved energy value E are
time-periodic provided (E,L) ∈ A0, and their periods are given by

T 0 : A0
0 → ]0,∞[, T 0(E,L) := 2

∫ r0
+(E,L)

r0
−(E,L)

dr√
2E − 2Ψ0

L(r)
=

π√
2

M

(−E)
3
2

. (6.2.41)

Moreover, similar to (6.2.29), we set

D0
0 := {(E,L) | L > L0, E

min0
L < E < κ} (6.2.42)

for L0 and κ as specified in Proposition 6.2.2. The L-values in this set are

L0
0 :=]L0, L

0
max[, (6.2.43)

with maximal L-value given by

L0
max = −M

2

2κ
. (6.2.44)
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Proof. The only non-trivial part is the second equality in (6.2.41). To verify it, first observe

T 0(E,L) = 2

∫ r0
+(E,L)

r0
−(E,L)

dr√
2E − 2Ψ0

L(r)
=
√

2

∫ r0
+(E,L)

r0
−(E,L)

dr√
E + M

r −
L

2r2

=

=

√
2√
−E

∫ r0
+(E,L)

r0
−(E,L)

r√
(r0

+(E,L)− r) (r − r0
−(E,L))

dr. (6.2.45)

In order to compute this integral, we make the usual affine change of variables s =
r−r0
−

r0
+−r0

−
,

where r0
± := r0

±(E,L). We thus arrive at

T 0(E,L) =

√
2√
−E

(r0
+ − r0

−)

∫ 1

0

√
s√

1− s
ds+

√
2√
−E

r0
−

∫ 1

0

ds√
s (1− s)

=

=
π√
−2E

(
r0

+(E,L) + r0
−(E,L)

)
. (6.2.46)

Inserting (6.2.39) into the latter expression then implies the claimed identity.

We now fix the parameters L0, k, `, and κ as specified in Proposition 6.2.2 and study
the limiting behaviour of the steady states as ε → 0. In order to make the ε-dependency
more visible, we add a superscript ε to all quantities associated to the steady state f0 = f ε0
when analysing this limit – this is consistent with the notation chosen in Lemma 6.2.5 for
the quantities in the pure point mass case corresponding to ε = 0. The following result is
partially based on [61, Lemma 3.6].

Proposition 6.2.6 (Limiting Behaviour as ε→ 0). The following assertions hold:

(a) The functions ρε0, (ρε0)′, mε
0, U ε0 , (U ε0 )′, (U ε0 )′′, and (U ε0 )′′′ converge to zero uniformly

on [0,∞[ as ε→ 0.

(b) Eε0 → κ as well as rεL → r0
L and Eminε

L → Emin0
L locally uniformly in L > 0 as ε→ 0.

(c) Lεmax → L0
max as ε→ 0.

(d) Rεmin = R0
min and Rεmax → R0

max as ε→ 0.

(e) For ε ≥ 0 let

T εmin := inf
Dε0
T ε, ∂ET

ε
min := inf

Dε0
∂ET

ε, ∂2
ET

ε
min := inf

Dε0
∂2
ET

ε, (6.2.47)

T εmax := sup
Dε0

T ε, ∂ET
ε
max := sup

Dε0
∂ET

ε, ∂2
ET

ε
max := sup

Dε0
∂2
ET

ε; (6.2.48)

in particular, T ε ∈ C2(Aε0). Then T εmin → T 0
min, T εmax → T 0

max, ∂ET
ε
min → ∂ET

0
min,

∂ET
ε
max → ∂ET

0
max, ∂2

ET
ε
min → ∂2

ET
0
min, and ∂2

ET
ε
max → ∂2

ET
0
max as ε→ 0. In particu-

lar, since ∂ET
0
min > 0, there exist c > 0 and ε0 > 0 s.t.

∂ET
ε ≥ c on Dε0, 0 < ε < ε0. (6.2.49)

Before proving the above proposition let us briefly comment on the limiting behaviour.
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Remark 6.2.7. When we previously mentioned in vague terms that the steady state “gets
small”, we mainly meant the convergences stated in part (a), in particular, the total mass M ε

0

of the steady state tending to zero. However, it is crucial for the subsequent arguments
to understand how precisely this “getting small” is realised. For instance, an alternative
approach would be to keep ε > 0 fixed and instead let the parameter κ tend to −M2

2L0
. This

would also yield the convergences in part (a). However, as κ ↘ −M2

2L0
, the steady state

support would contract to a single point, more precisely, Rmin → r0
L0

and Rmax → r0
L0

. This
is qualitatively different from the limiting behaviour as ε→ 0, where the supports of “small”
steady states do not contract but instead converge to a non-trivial limiting configuration.
For the radial support, this is evident from part (d). We shall see later that it is crucial to
realise the steady states “getting small” in this way.

The proof of Proposition 6.2.6 is the subject of the remaining part of this section, and
it is no fun. Part (a) will be proven in Lemma 6.2.8, part (b) follows by Lemmas 6.2.8
and 6.2.9, part (c) is due to Lemma 6.2.13, part (d) will be shown in Lemma 6.2.11, and
part (e) follows by Lemmas 6.2.21, 6.2.22, and 6.2.26. Although one gains a lot of insights
into the properties of steady states through the following arguments, we advise the reader to
omit this part on a first reading and proceed with Sections 6.3–6.6. There, the applications
of the results from Proposition 6.2.6 will become clear.

Convergence of the Potential, Mass Density, and Cut-Off Energy

The first step is to show that the mass density ρε0 and the gravitational potential U ε0 con-
verges to zero as ε → 0 in a suitable way. This forms the basis for all further conver-
gence results. The lemma is based on [61, Lemma A.1], which is in turn inspired by [49,
Lemma 3.3].

Lemma 6.2.8. As ε → 0 it holds that ρε0, (ρ
ε
0)′,mε

0 → 0 uniformly on [0,∞[, M ε
0 → 0,

Eε0 → κ, and (U ε0 )(n) → 0 uniformly on [0,∞[ for n ∈ {0, 1, 2, 3}.

Proof. By Proposition 6.2.2 (c) there holds supp (ρε0) ⊂ [R0
min, R

0
max], and for r ∈

[R0
min, R

0
max] we obtain

ρε0(r) = ε r2`g(Eε0 −Ψε
L(r)) ≤ ε ck,` max{(R0

min)2`, (R0
max)2`}

(
κ+

M

R0
min

)k+`+ 3
2

(6.2.50)

by (6.2.7)–(6.2.9) since Eε0 − Ψε
L(r) = yε(r) + M

r −
L

2r2 ≤ κ + M
R0

min
. We hence conclude

ρε0 → 0 uniformly on [0,∞[. This also implies the uniform convergence of the local mass
mε

0 to 0 as ε → 0. In particular, the total mass M ε
0 = mε

0(R0
max) tends to 0 as ε → 0.

Because (yε)′(r) = −mε0(r)
r2 for r > 0 with mε

0(r) = 0 for 0 ≤ r ≤ Rεmin = R0
min, cf. (6.2.12)

and (6.2.14), we deduce (yε)′ → 0 as ε→ 0 uniformly on [0,∞[. Next observe

yε(r) = κ+

∫ r

0
(yε)′(s) ds, r ≥ 0, (6.2.51)

and thus

yε(r) = κ+

∫ R0
max

R0
min

(yε)′(s) ds+

(
M ε

0

r
− M ε

0

R0
max

)
, r ≥ R0

max. (6.2.52)

This shows yε → κ uniformly on [0,∞[ as well as Eε0 = limr→∞ y
ε(r)→ κ as ε→ 0. We have

hence proven (U ε0 )(n) → 0 uniformly on [0,∞[ for n ∈ {0, 1}, recall (6.2.18). The uniform
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convergence of (ρε0)′ to 0 follows by the same arguments as above by differentiating (6.2.8);
recall (6.2.7). Further differentiating (6.2.3) w.r.t. r > 0 yields

(U ε0 )′′(r) = 4πρε0(r)− 2
mε

0(r)

r3
, (6.2.53)

(U ε0 )′′′(r) = 4π(ρε0)′(r)− 8π
ρε0(r)

r
+ 6

mε
0(r)

r4
, (6.2.54)

from which we conclude the claimed uniform convergences of the second-order and third-
order derivatives of U ε0 .

We note that in the case of a more regular steady state, corresponding to k + ` being
larger, it is straight-forward to extend the above result to higher-order derivatives of ρε0
and U ε0 .

Convergence of the Radii rεL and rε±

The next step is to show the convergences of the radii rεL and rε± = rε±(E,L) defined by
the effective potential Ψε

L, cf. Definition 6.2.4, to the respective quantities introduced in
Lemma 6.2.5. We start with the minimising radius rεL and the associated minimal energy
value Eminε

L . This is based on [61, Lemma A.2], but the proof is significantly simplified here.

Lemma 6.2.9. The mappings [0,∞[× ]0,∞[ 3 (ε, L) 7→ rεL and [0,∞[× ]0,∞[ 3 (ε, L) 7→
Eminε
L are both continuous at ε = 0 locally uniformly in L. More precisely, for any δ > 0

and L2 > L1 > 0 there exists ε0 > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with
|L− L∗| < ε0 there holds |rεL − r0

L∗ | < δ and |Eminε
L − Emin0

L∗ | < δ.

Proof. For ε ≥ 0 and L > 0, the radius rεL is given as the unique critical point of Ψε
L, i.e.,

it solves the equation

mε
0(rεL) +M − L

rεL
= 0; (6.2.55)

here we set m0
0 ≡ 0. Solving this equation for rεL and using (6.2.36) yields

|rεL − r0
L∗ | =

∣∣∣∣L∗M − L

mε
0(rεL) +M

∣∣∣∣ ≤ |L∗ − L|M
+
|L|
M2

sup
[0,∞[

(mε
0). (6.2.56)

The uniform convergence mε
0 → 0 as ε→ 0 proven in Lemma 6.2.8 hence shows the claimed

continuity of rεL.
Together with the uniform convergence U ε0 → 0 established in Lemma 6.2.8 we then

deduce Eminε
L = Ψε

L(rεL) → Ψ0
L(r0

L∗) = Emin0
L∗ locally uniformly in L∗ as ε → 0. More

precisely, for δ, L1, and L2 as above we choose 0 < ε0 < min{ δ8(r0
1
2
L1

)2, 1
2L1, 1} s.t. |U ε0 | ≤ δ

4

on [0,∞[ and |rεL − r0
L| < min{1

2r
0
1
2
L1
, 1} for 0 ≤ ε < ε0 and 1

2L1 ≤ L ≤ L2 + 1. For ε, L∗,

and L as in the statement of the lemma we then have 1
2r

0
1
2
L1
≤ rεL, r

0
L∗ ≤ r0

L2+1 + 1, from

which we obtain

|Ψε
L(rεL)−Ψ0

L∗(r
ε
L)| ≤ |U ε0 (rεL)|+ |L− L

∗|
2(rεL)2

≤ δ

4
+ 2
|L− L∗|
(r0

1
2
L1

)2
≤ δ

2
. (6.2.57)

We hence deduce

|Eminε
L − Emin0

L∗ | ≤ |Ψε
L(rεL)−Ψ0

L∗(r
ε
L)|+ |Ψ0

L∗(r
ε
L)−Ψ0

L∗(r
0
L∗)| ≤

≤ δ

2
+

∣∣∣∣MrεL − M

r0
L∗

∣∣∣∣+

∣∣∣∣ L∗

2(rεL)2
− L∗

2(r0
L)2

∣∣∣∣. (6.2.58)
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Using the convergence of rεL established above thus allows us to conclude |Eminε
L −Emin0

L∗ | < δ
after potentially shrinking ε0 > 0.

The next step is to establish the analogous convergence result for the radii rε±(E,L).
For this sake let

A0 := {(ε, E, L) | ε ≥ 0, (E,L) ∈ Aε0} (6.2.59)

denote the set of all admissible (ε, E, L)-triplets; this notation is similar to [61, Eqn. (A.10)].
The following lemma is based on [61, Lemma A.3 (a)].

Lemma 6.2.10. The mappings A0 3 (ε, E, L) 7→ rε±(E,L) are continuous at ε = 0 uni-
formly on suitably bounded (E,L)-sets. More precisely, for any δ > 0, L2 > L1 > 0, and
E1 < 0 there exists ε0 > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and Emin0

L∗ < E∗ < E1

as well as L > 0 and Eminε
L < E < E1 with |(E,L) − (E∗, L∗)| < ε0 there holds

|rε±(E,L)− r0
±(E∗, L∗)| < δ.

Proof. For ε ≥ 0 and (E,L) ∈ Aε0, the radii rε±(E,L) are the unique solutions of

E = Ψε
L(rε±(E,L)) = U ε0 (rε±(E,L)) + Ψ0

L(rε±(E,L)). (6.2.60)

Hence, similar to (6.2.39), there holds the identity

rε±(E,L) =
−M ∓

√
M2 + 2L(E − U ε0 (rε±(E,L)))

2E − 2U ε0 (rε±(E,L))
. (6.2.61)

Since U ε0 → 0 uniformly as ε → 0 by Lemma 6.2.8, it is straight-forward to verify that
the difference between this expression and r0

±(E∗, L∗) given by (6.2.39) can be estimated as
follows provided that ε0 > 0 is sufficiently small:

|rε±(E,L)− r0
±(E∗, L∗)| ≤ C(|E − E∗|+ |L− L∗|+ sup

[0,∞[
|U ε0 |), (6.2.62)

where C > 0 depends on E1, L1, and L2, but is uniform in (E,L), (E∗, L∗), and ε. This
estimate together with Lemma 6.2.8 readily implies the claimed continuity.

An immediate consequence of the above lemmas is the convergence of Rεmax. This is
based on [61, Eqn. (A.11)].

Lemma 6.2.11. Rεmax → R0
max as ε→ 0.

Proof. Since R0
max = r0

+(κ, L0) and Rεmax = rε+(Eε0, L0) for ε > 0, cf. (6.2.40) and (6.2.27),
respectively, the claim follows by Lemmas 6.2.8 and 6.2.10.

Next, we show that the convergence (2.2.66) of rε± in the near circular regime is “uni-
form” in ε. The lemma is based on [61, Lemma A.3 (b)].

Lemma 6.2.12. The radii rε±(E,L) converge to r0
L∗ as (ε, E, L) → (0, Emin0

L∗ , L∗) locally
uniformly in L∗ > 0. More precisely, for any δ > 0 and L2 > L1 > 0 there exist ε0 > 0
and η > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with |L − L∗| < ε0 as well as
Eminε
L < E < Eminε

L + η there holds |rε±(E,L)− r0
L∗ | < δ.

Proof. The convergence can be proven in a way similar to Lemma 6.2.10. More precisely,
inserting E∗ = Emin0

L∗ into (6.2.62) yields

|rε±(E,L)− r0
L∗ | ≤ C(|E − Emin0

L∗ |+ |L− L∗|+ sup
[0,∞[
|U ε0 |) (6.2.63)

for C > 0 as before provided that ε0 > 0 and η > 0 are sufficiently small. Together with
the uniform convergence U ε0 → 0 as ε → 0 proven in Lemma 6.2.8 and the locally uniform
convergence Eminε

L → Emin0
L∗ as (ε, L) → (0, L∗) shown in Lemma 6.2.9, we conclude the

claimed convergence.
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“Convergence” of Dε
0

The next step is to establish the convergence of the (E,L)-support Dε0 to D0
0 as ε→ 0 in a

suitable sense; recall (6.2.29) and (6.2.42) for the definitions of these sets. The first step in
this direction is the convergence of the L-support, i.e., the convergence of Lεmax to L0

max as
ε→ 0; recall (6.2.31) and (6.2.44) for the definitions of the latter two quantities.

Lemma 6.2.13. Lεmax → L0
max as ε→ 0.

Proof. For any δ > 0 with δ < L0
max there holds Emin0

L0
max−δ

− κ < 0 < Emin0
L0

max+δ − κ; note

that L0
max satisfies Emin0

L0
max

= κ. By Lemmas 6.2.8 and 6.2.9, there exists ε0 > 0 s.t. for all

0 ≤ ε < ε0 there holds Eminε
L0

max−δ
− Eε0 < 0 < Eminε

L0
max+δ − E

ε
0. Hence, L0

max − δ < Lεmax <

L0
max + δ, which concludes the proof.

A direct consequence of the convergence of the L-support is that the (E,L)-support Dε0
is uniformly bounded for ε� 1.

Lemma 6.2.14. There exist ε0 > 0 and L1 > L0 s.t. the following assertions hold:

(a) For every 0 ≤ ε < ε0 there holds Lε0 ⊂ ]L0, L1[.

(b) For every 0 ≤ ε < ε0 there holds

Dε0 ⊂ {(E,L) | L0 < L < L1, E
minε
L < E <

κ

2
} ⊂

]
−M

2

2L0
− 1,

κ

2

[
× ]L0, L1[. (6.2.64)

Proof. Part (a) follows by Lemma 6.2.13. The first inclusion in (6.2.64) is due to
Lemma 6.2.8. For the second one, we apply Lemma 6.2.9 to infer Eminε

L0
> Emin0

L0
− 1 =

−M2

2L0
− 1 for 0 ≤ ε < ε0 after potentially shrinking ε0 > 0.

The next result establishes the desired convergence Dε0 → D0
0 as ε→ 0 in a suitable way.

Due to Dε0 being two-dimensional, this is more complex than the convergence Lε0 → L0
0.

Lemma 6.2.15. For every δ > 0 there exists ε0 > 0 s.t. the following statements hold:

(a) For every (E∗, L∗) ∈ D0
0 and 0 ≤ ε < ε0 there exists (E,L) ∈ Dε0 s.t. |(E,L) −

(E∗, L∗)| < δ.

(b) For every 0 ≤ ε < ε0 and (E,L) ∈ Dε0 there exists (E∗, L∗) ∈ D0
0 s.t. |(E,L) −

(E∗, L∗)| < δ.

Proof. Let δ > 0 be arbitrary and choose ε0 > 0 and L1 > L0 > 0 according to
Lemma 6.2.14. In addition, we require ε0 < δ

2 and ε0 < L0
max − L0 as well as d :=

κ − Emin0
L0

max−ε0
< δ; the latter is possible since L 7→ Emin0

L is continuous. By Lemmas 6.2.8

and 6.2.9, there exists ε1 ∈ ]0, ε0[ s.t. |Eε0 − κ| < d
3 and |Eminε

L −Emin0
L∗ | <

d
3 for 0 ≤ ε < ε1,

L0 ≤ L∗ ≤ L1, and L > 0 with |L− L∗| < ε1.
Now let (E∗, L∗) ∈ D0

0 and 0 ≤ ε < ε1. If L∗ ≥ L0
max − ε0, we set L := L0

max − ε0 > L0

and E := κ− d
2 = Emin0

L + d
2 . Since E = κ− d

2 < Eε0 − d
6 and E = Emin0

L + d
2 > Eminε

L + d
6 ,

there holds (E,L) ∈ Dε0. Furthermore, |L − L∗| ≤ ε0 <
δ
2 and |E − E∗| ≤ d

2 < δ
2 since

E∗ < κ = E + d
2 and E∗ > Emin0

L∗ ≥ Emin0
L = E − d

2 . Hence, |(E∗, L∗) − (E,L)| < δ.

Otherwise, i.e., if L∗ < L0
max − ε0, we just set L := L∗ and obtain Eminε

L < Emin0
L + d

3 <

Emin0
L0

max−ε0
+ d

3 = κ− 2
3d < Eε0 − d

3 . In order to choose E, we distinguish between three cases:
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Firstly, if Eminε
L < E∗ < Eε0, we just keep E := E∗. Secondly, if E∗ ≤ Eminε

L , observe that
E∗ > Emin0

L > Eminε
L − d

3 and E∗ ≤ Eminε
L < Eε0 − d

3 . Hence, for E := E∗ + d
3 there holds

(E,L) ∈ Dε0 with |E −E∗| = d
3 <

δ
3 . Thirdly, if E∗ ≥ Eε0, there holds E∗ < κ < Eε0 + d

3 and

E∗ ≥ Eε0 > Eminε
L + d

3 . Thus, setting E := E∗− d
3 yields (E,L) ∈ Dε0 with |E−E∗| = d

3 <
δ
3 .

In all cases we have hence shown the existence of (E,L) ∈ Dε0 with |(E,L)− (E∗, L∗)| < δ,
which concludes the proof of part (a).

For part (b), we first shrink ε0 > 0, if necessary, according to Lemmas 6.2.8 and 6.2.9
s.t. |Eε0−κ| < δ

2 and |Eminε
L −Emin0

L∗ | <
δ
2 for 0 ≤ ε < ε0 as well as L0 ≤ L∗ ≤ L1 and L > 0

with |L − L∗| < ε0. By Lemma 6.2.13, there exists 0 < ε2 < ε0 s.t. |Lεmax − L0
max| < ε0

for 0 ≤ ε < ε2. Now let 0 ≤ ε < ε2 and (E,L) ∈ Dε0 be arbitrary. If L ≥ L0
max,

we set L∗ := L0
max. Then, L∗ ≤ L < Lεmax < L∗ + ε0, and thus |L − L∗| < ε0 < δ

2 .

Furthermore, setting E∗ := κ = Emin0
L∗ yields E < Eε0 < κ + δ

2 = E∗ + δ
2 and E > Eminε

L >

Emin0
L∗ − δ

2 = E∗ − δ
2 . Thus, |(E,L) − (E∗, L∗)| < δ and (E∗, L∗) ∈ D0

0. Otherwise, i.e.,
if L < L0

max, we just set L∗ := L. In order to choose E∗ we distinguish between three
cases: Firstly, if Emin0

L < E < κ, we keep E∗ := E. Secondly, if E ≤ Emin0
L , observe that

E > Eminε
L > Emin0

L − δ
2 . Setting E∗ := Emin0

L hence gives |E − E∗| < δ
2 . Thirdly, if E ≥ κ,

there holds E < Eε0 < κ+ δ
2 . Thus, setting E∗ := κ yields |E−E∗| < δ

2 . In all cases we have

hence shown the existence of (E∗, L∗) ∈ D0
0 with |(E,L) − (E∗, L∗)| < δ, which concludes

the proof of part (b).

Convergence of the Period Function

We next show the convergence of the period function T ε to T 0 as ε → 0 on the respective
domains of definition Dε0 and D0

0 in a suitable sense. This requires a particularly careful
treatment of the near circular regime E ≈ Eminε

L . By the analysis from Section A.4, the
period function is given by derivatives of the effective potential Ψε

L evaluated at rεL in this
regime. The following lemma analyses the convergence of derivatives of Ψε

L in this region.
It is based on [61, Lemma A.4].

Lemma 6.2.16. Let n ∈ N0 and 0 < L1 < L2. In the case n ≥ 4, we require R0
min < r0

L1
<

r0
L2

< R0
max.159 Then (Ψε

L)(n)(s) converges to (Ψ0
L∗)

(n)(r0
L∗) as E → Eminε

L , L → L∗, and
ε→ 0 uniformly in L∗ ∈ [L1, L2] and s ∈ [rε−(E,L), rε+(E,L)]. More precisely, for any δ > 0
there exist ε0 > 0 and η > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with |L−L∗| <
ε0 as well as Eminε

L < E < Eminε
L + η < 0 there holds |(Ψε

L)(n)(s) − (Ψ0
L∗)

(n)(r0
L∗)| < δ for

s ∈ [rε−(E,L), rε+(E,L)].

Proof. Let L2 > L1 > 0 be fixed. By Lemma 6.2.12, there exist 0 < R− < R+ s.t.
[rε−(E,L), rε+(E,L)] ⊂ [R−, R+] for (ε, E, L) as above with sufficiently small ε0 > 0 and
η > 0. In the case n ≤ 3, the claim follows easily by Lemmas 6.2.8 and 6.2.12. The
additional assumption in the case n ≥ 4 ensures that we can further achieve [R−, R+] ⊂
[R0

min + 2d,R0
max − 2d] ⊂ [Rεmin + 2d,Rεmax − d] for some (ε, E, L)-independent d > 0 by

shrinking ε0 > 0 and η > 0 if necessary; this is possible by Lemmas 6.2.11 and 6.2.12. Hence,
(Ψε

L)(n) exists on [rε−(E,L), rε+(E,L)] by Proposition 6.2.2 (e). After showing (U ε0 )(n) → 0
uniformly on [R0

min +2d,R0
max−2d] as ε→ 0 by iterating the arguments from Lemma 6.2.8,

the claimed statement follows in the same way as above.

The above lemma is the key tool to prove the convergence of T ε(E,L) in the near-
circular regime. Essentially, we add the limit ε→ 0 to the result from Corollary A.4.2. The
following lemma is based on [61, Lemma A.5].

159In the case n ≥ 4 one could alternatively require r0
L1
> R0

max or r0
L2
< R0

min.
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Lemma 6.2.17. The period function T ε(E,L) converges to T 0(Emin0
L∗ , L∗) as E → Eminε

L ,
L → L∗, and ε → 0 locally uniformly in L∗ > 0. More precisely, for any δ > 0 and L2 >
L1 > 0 there exist ε0 > 0 and η > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with
|L−L∗| < ε0 as well as Eminε

L < E < Eminε
L + η there holds |T ε(E,L)−T 0(Emin0

L∗ , L∗)| < δ.
Here, T 0(Emin0

L∗ , L∗) denotes the continuous extension of T 0 onto (Emin0
L∗ , L∗) for L∗ > 0.

By Lemma 6.2.5, this extension is given by

T 0(Emin0
L∗ , L∗) = 2π

(L∗)
3
2

M2
=

2π√
(Ψ0

L∗)
′′(r0

L∗)
, L∗ > 0. (6.2.65)

Proof. The proof proceeds in the same way as the one of Lemma A.4.1 (with FL(r) ≡ 1).

It relies on the bound |[(Ψε
L)′′(s)]−

1
2 − [(Ψ0

L∗)
′′(r0

L∗)]
− 1

2 | < δ
π for 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2,

and L > 0 with |L−L∗| < ε0 as well as Eminε
L < E < Eminε

L +η and s ∈ [rε−(E,L), rε+(E,L)];
this holds by Lemma 6.2.16 for sufficiently small ε0 > 0 and η > 0, note that (Ψ0

L∗)
′′(r0

L∗) =
M4

(L∗)3 > 0.

In order to establish the uniform convergence of T ε on Dε0, we next prove the pointwise
convergence of T ε(E,L). This is based on [61, Lemma A.7] and is very much similar to
Lemma A.3.1.

Lemma 6.2.18. The mapping A0 3 (ε, E, L) 7→ T ε(E,L) is continuous at ε = 0. More
precisely, for any δ > 0 and (E∗, L∗) ∈ A0

0 there exists ε0 > 0 s.t. for all 0 ≤ ε < ε0 and
(E,L) ∈ Aε0 with |(E,L)− (E∗, L∗)| < ε0 there holds |T ε(E,L)− T 0(E∗, L∗)| < δ.

Proof. The proof proceeds in the same way as the one of Lemma A.3.1 (with FL(r) ≡ 1 and
m = 1

2): We apply Lebesgue’s dominated convergence theorem to the integral T ε(E,L) after

the affine change of variables r 7→ s =
r−rε−(E,L)

rε+(E,L)−rε−(E,L) . The dominating, integrable function

is derived using the concavity bound (2.2.73). The pointwise convergence of the integrand
follows by the continuities of [0,∞[ × ]0,∞[23 (ε, L, r) 7→ Ψε

L(r) and A0 3 (ε, E, L) 7→
rε±(E,L) at ε = 0, cf. Lemmas 6.2.8 and 6.2.10.

Unsurprisingly, the above continuity is uniform on compact (E,L)-sets, where compact
means, in particular, that the set is bounded away from minimal energies.

Lemma 6.2.19. The continuity of A0 3 (ε, E, L) 7→ T ε(E,L) at ε = 0 from Lemma 6.2.18
is uniform on compact (E,L)-sets. More precisely, for any L2 > L1 > 0, E1 < 0, η > 0,
and δ > 0 there exists ε0 > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and Emin0

L∗ + η ≤
E∗ < E1 as well as L > 0 and Eminε

L < E < 0 with |(E,L) − (E∗, L∗)| < ε0 there holds
|T ε(E,L)− T 0(E∗, L∗)| < δ.

Proof. This is a standard proof in calculus. Suppose that the statement is not true for some
L2 > L1 > 0, E1 < 0, and η > 0. This means that there exists δ > 0 s.t. for all j ∈ N with
j ≥ 3 there exist εj ∈ [0, 1

j [, L1 ≤ L∗j ≤ L2, and Emin0
L∗j

+ η ≤ E∗j < E1 as well as Lj > 0 and

E
minεj
Lj

< Ej < 0 with |(Ej , Lj)− (E∗j , L
∗
j )| < 1

j and |T εj (Ej , Lj)− T 0(E∗j , L
∗
j )| ≥ δ. Then,

for every sufficiently large j, Ej ≥ E∗j −
η
4 ≥ E

min0
L∗j

+ 3
4η ≥ E

min0
Lj

+ 1
2η and Ej ≤ 1

2E1 as well

as 1
2L1 ≤ Lj ≤ L2 + 1 by Lemma 6.2.9. For these j there hence holds (Ej , Lj), (E

∗
j , L

∗
j ) ∈

{(E,L) | 1
2L1 ≤ L ≤ L2 + 1, Emin0

L + 1
2η ≤ E ≤ E1}. Since the latter set is compact,

there exists (Ē, L̄) within this set s.t. (Ej , Lj) → (Ē, L̄) and (E∗j , L
∗
j ) → (Ē, L̄) as j → ∞

after passing to subsequences. By Lemma 6.2.18, this implies T εj (Ej , Lj)→ T 0(Ē, L̄) and
T 0(E∗j , L

∗
j )→ T 0(Ē, L̄) as j →∞, which is the desired contradiction.
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Combining Lemmas 6.2.17 and 6.2.19 yields the desired uniform convergence of the
period function. This is based on [61, Lemma A.8].

Lemma 6.2.20. The mapping A0 3 (ε, E, L) 7→ T ε(E,L) is continuous at ε = 0 uniformly
on suitably bounded (E,L)-sets. More precisely, for any δ > 0, L2 > L1 > 0, and E1 < 0
there exists ε0 > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and Emin0

L∗ < E∗ < E1 as
well as L > 0 and Eminε

L < E < E1 with |(E,L) − (E∗, L∗)| < ε0 there holds |T ε(E,L) −
T 0(E∗, L∗)| < δ.

Proof. Let δ > 0, L2 > L1 > 0, and E1 < 0 be arbitrary. We choose ε0 > 0 and η > 0
according to Lemma 6.2.17 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with |L−L∗| <
ε0 as well as Eminε

L < E < Eminε
L + 2η < 0 there holds |T ε(E,L) − T 0(Emin0

L∗ , L∗)| < δ
2 . In

addition, after potentially shrinking η > 0, there holds |T 0(E∗, L∗)−T 0(Emin0
L∗ , L∗)| < δ

2 for
L1 ≤ L∗ ≤ L2 and Emin0

L∗ < E∗ < Emin0
L∗ + η by the explicitly formulae from Lemma 6.2.5

and (6.2.65). For this fixed η > 0, we now shrink ε0 > 0, if necessary, according to
Lemma 6.2.19 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and Emin0

L∗ + η ≤ E∗ < E1 as well as
L > 0 and Eminε

L < E < 0 with |(E,L)−(E∗, L∗)| < ε0 there holds |T ε(E,L)−T 0(E∗, L∗)| <
δ. In addition, we choose ε0 > 0 to be sufficiently small s.t. ε0 <

η
2 and |Eminε

L −Emin0
L∗ | <

η
2

for 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with |L−L∗| < ε0; this is possible by Lemma 6.2.9.
Now let 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and Emin0

L∗ < E∗ < E1 as well as L > 0 and
Eminε
L < E < E1 with |(E,L) − (E∗, L∗)| < ε0. If E∗ ≥ Emin0

L∗ + η, the above immediately
shows |T ε(E,L)−T 0(E∗, L∗)| < δ. Otherwise, i.e., E∗ < Emin0

L∗ +η, we obtain E < E∗+ε0 <
Emin0
L∗ + 3

2η < Eminε
L +2η. By our choice of η > 0, we again conclude |T ε(E,L)−T 0(E∗, L∗)| <

δ.

Together with Lemma 6.2.14, the above lemma implies the uniform convergence of T ε

to T 0 as ε→ 0 on the (E,L)-support Dε0. Combining this with the convergence “Dε0 → D0
0”

as ε → 0 established in Lemma 6.2.15, we thus deduce the convergence of T εmin and T εmax.
This is based on [61, Lemma A.9].

Lemma 6.2.21. There holds limε→0 T
ε
min = T 0

min and limε→0 T
ε
max = T 0

max, where

0 < T 0
min = T 0(Emin0

L0
, L0) = 2π

L
3
2
0

M2
<

π√
2

M

(−κ)
3
2

= T 0(κ, L0) = T 0
max <∞ (6.2.66)

by (6.2.16), Lemma 6.2.5, and (6.2.65).

Proof. For fixed δ > 0 we choose ε0 > 0 s.t. for all 0 ≤ ε < ε0, (E∗, L∗) ∈ D0
0, and

(E,L) ∈ Dε0 with |(E,L) − (E∗, L∗)| < ε0 there holds |T ε(E,L) − T 0(E∗, L∗)| < δ; as
discussed above, this is possible by Lemmas 6.2.14 and 6.2.20. By Lemma 6.2.15 (b), there
further exists ε1 > 0 s.t. for all 0 ≤ ε < ε1 and (E,L) ∈ Dε0 there exists (E∗, L∗) ∈ D0

0 s.t.
|(E,L)− (E∗, L∗)| < ε0. This implies T ε(E,L) ≤ T 0(E∗, L∗) + δ ≤ T 0

max + δ. Thus, for any
0 ≤ ε < ε1 there holds T εmax ≤ T 0

max + δ, in particular, T εmax < ∞. By Lemma 6.2.15 (a),
we can shrink ε1 > 0 s.t. for all 0 ≤ ε < ε1 and (E∗, L∗) ∈ D0

0 there exists (E,L) ∈ Dε0 s.t.
|(E,L) − (E∗, L∗)| < ε0, which yields T 0(E∗, L∗) ≤ T ε(E,L) + δ ≤ T εmax + δ. We hence
conclude T 0

max ≤ T εmax + δ. Similar arguments show |T εmin − T 0
min| < δ for 0 ≤ ε < ε1 after

potentially shrinking ε1 > 0.

Convergence of the Derivatives of the Period Function

We also need the analogous results for the partial derivatives ∂ET
ε and ∂2

ET
ε of the period

function. We shall see that the arguments are similar, but more technically involved than
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for T ε itself. Mainly due to the former reason, but also due to the latter one, we keep the
presentation here shorter than above.

Let us first analyse the regularity of T ε.

Lemma 6.2.22. For ε ≥ 0 there holds T ε ∈ C2(Aε0). Moreover, the partial derivatives ∂ET
ε

and ∂2
ET

ε possess the integral representations (A.3.32) and (A.3.84). The former holds for
all (E,L) ∈ Aε0, the latter holds for all (E,L) ∈ Aε0 with rεL /∈ {Rεmin, R

ε
max}.

Proof. The regularity of T ε follows in the same way as in Lemma A.3.3; it relies on the
regularity of U ε0 established in Proposition 6.2.2 (e). The integral representations of ∂ET

ε

and ∂2
ET

ε can also be derived similarly to the case without a point mass; recall U ε0 ∈
C∞([0,∞[\{Rεmin, R

ε
max}).

Using the integral representations of the partial derivatives, we derive their limiting
behaviour as ε→ 0 in the same way as for T ε. We start by establishing a suitable analogue
of Lemma 6.2.17. This is based on [61, Lemmas A.12 and A.15].

Lemma 6.2.23. Let L2 > L1 > 0 be s.t. R0
min < r0

L1
< r0

L2
< R0

max.160 Then the partial

derivatives ∂ET
ε(E,L) and ∂2

ET
ε(E,L) of the period function converge to ∂ET

0(Emin0
L∗ , L∗)

and ∂2
ET

0(Emin0
L∗ , L∗), respectively, as E → Eminε

L , L → L∗, and ε → 0 uniformly in
L∗ ∈ [L1, L2]. More precisely, for any δ > 0 there exist ε0 > 0 and η > 0 s.t. for all
0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with |L−L∗| < ε0 as well as Eminε

L < E < Eminε
L + η

there holds |∂ET ε(E,L)− ∂ET 0(Emin0
L∗ , L∗)| < δ and |∂2

ET
ε(E,L)− ∂2

ET
0(Emin0

L∗ , L∗)| < δ.

Here, ∂ET
0(Emin0

L∗ , L∗) and ∂2
ET

0(Emin0
L∗ , L∗) denote the continuous extensions of ∂ET

0

and ∂2
ET

0, respectively, onto (Emin0
L∗ , L∗) for L∗ > 0. By Lemma 6.2.5, these extensions are

given by

∂ET
0(Emin0

L∗ , L∗) = 6π
(L∗)

5
2

M4
, ∂2

ET
0(Emin0

L∗ , L∗) = 30π
(L∗)

7
2

M6
, L∗ > 0. (6.2.67)

Proof. First notice that Lemmas 6.2.11 and 6.2.12 allow us to always assume
[rε−(E,L), rε+(E,L)] ⊂ ]Rεmin, R

ε
max[ for (ε, E, L) as above by choosing ε0 > 0 and η > 0

sufficiently small. In particular, U ε0 is infinitely differentiable on the relevant domains of
integration.

The proof now proceeds in two steps: First, we apply the (extended) mean value theorem
as in the proofs of Lemmas A.4.6 and A.4.9 to study the limits of∫ rε+(E,L)

rε−(E,L)

(Gε1,L)′(r)√
2E − 2Ψε

L(r)
dr (6.2.68)

and
1

2

∫ rε+(E,L)

rε−(E,L)

(Gε3,L)′(r)√
2E − 2Ψε

L(r)
dr (6.2.69)

instead of ∂ET
ε(E,L) and ∂2

ET
ε(E,L), respectively. Here, (Gε1,L)′ and (Gε3,L)′ are given

by (A.3.75) and (A.4.36)–(A.4.37), respectively, on the radial interval ]Rεmin, R
ε
max[ for L > 0

and ε ≥ 0.

The second step is then to proceed as in the proof of Lemma A.4.1 and show that (6.2.68)

and (6.2.69) converge to π
(G0

1,L∗ )′(r0
L∗ )√

(Ψ0
L∗ )′′(r0

L∗ )
and π

2

(G0
3,L∗ )′(r0

L∗ )√
(Ψ0

L∗ )′′(r0
L∗ )

, respectively. Using Lemma 6.2.5,

160The assumptions on r0
L1

and r0
L2

are only necessary to prove the statements regarding ∂2
ET

ε.
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it is straight-forward to verify that the latter two values are equal to the extensions given
by (6.2.67). The proof mainly relies on the bound∣∣∣∣∣∣ (Gεi,L)′(r)√

(Ψε
L)′′(s)

−
(G0

i,L∗)
′(r0

L∗)√
(Ψ0

L∗)
′′(r0

L∗)

∣∣∣∣∣∣ < δ

π
(6.2.70)

for i ∈ {1, 3}, 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and L > 0 with |L − L∗| < ε0 as well as
Eminε
L < E < Eminε

L + η and r, s ∈ [rε−(E,L), rε+(E,L)]. This holds for sufficiently small
ε0 > 0 and η > 0, which can be verified by Taylor expanding (Gεi,L)′ as in the proofs of
Lemmas A.3.18 and A.4.9 and then applying Lemma 6.2.16.

The next step is to establish the pointwise convergence of ∂ET
ε and ∂2

ET
ε similar to

Lemma 6.2.18. This is based on [61, Lemmas A.13 and A.16].

Lemma 6.2.24. Let L2 > L1 > 0 be s.t. R0
min < r0

L1
< r0

L2
< R0

max. Then the mappings
A0 3 (ε, E, L) 7→ ∂ET

ε(E,L) and A0 ∩ {L1 ≤ L ≤ L2} 3 (ε, E, L) 7→ ∂2
ET

ε(E,L) are both
continuous at ε = 0. More precisely, for any δ > 0 and (E∗, L∗) ∈ A0

0 there exists ε0 > 0 s.t.
for all 0 ≤ ε < ε0 and (E,L) ∈ Aε0 with |(E,L)− (E∗, L∗)| < ε0 there holds |∂ET ε(E,L)−
∂ET

0(E∗, L∗)| < δ and, provided L1 ≤ L∗ ≤ L2, also |∂2
ET

ε(E,L)− ∂2
ET

0(E∗, L∗)| < δ.

Proof. The proof proceeds similarly to the one of Lemma 6.2.18, which is in turn based
on the proof of Lemma A.3.1. We show the claimed convergences via Lebesgue’s domi-
nated convergence theorem: For this, we first rewrite the integral representations (A.3.32)
and (A.3.84) of ∂ET

ε and ∂2
ET

ε, respectively, using the affine change of variables r 7→
s =

r−rε−(E,L)

rε+(E,L)−rε−(E,L) . The pointwise convergence of the resulting integrand of (A.3.32) then

follows by the convergences established in Lemmas 6.2.8 and 6.2.10 together with the con-
tinuity of [0,∞[ × ]0,∞[23 (ε, L, r) 7→ GεL(r) at ε = 0; the latter is due to Lemmas 6.2.8
and 6.2.16. Similar arguments also yield the continuity of [0,∞[ × [L1, L2] × ]0,∞[ 3
(ε, L, r) 7→ (Gε1,L)′(r) at ε = 0. We hence obtain the pointwise convergence of the integrand
resulting from (A.3.84). Together with the concavity bound (2.2.73), we further deduce that
the integrands are bounded by an integrable function locally uniformly in (ε, E, L).

Identical arguments as in the proof of Lemma 6.2.19 show that these continuities are
uniform on compact (E,L)-sets. Together with Lemma 6.2.23 we hence conclude the desired
uniform convergences of ∂ET

ε and ∂2
ET

ε as ε→ 0.

Lemma 6.2.25. The mappings A0 3 (ε, E, L) 7→ ∂ET
ε(E,L) and A0 3 (ε, E, L) 7→

∂2
ET

ε(E,L) are both continuous at ε = 0 uniformly on suitably bounded (E,L)-sets. More
precisely, for any δ > 0, E1 < 0, and L2 > L1 > 0 with R0

min < r0
L1
< r0

L2
< R0

max there ex-

ists ε0 > 0 s.t. for all 0 ≤ ε < ε0, L1 ≤ L∗ ≤ L2, and Emin0
L∗ < E∗ < E1 as well as L > 0 and

Eminε
L < E < E1 with |(E,L)− (E∗, L∗)| < ε0 there holds |∂ET ε(E,L)− ∂ET 0(E∗, L∗)| < δ

and |∂2
ET

ε(E,L)− ∂2
ET

0(E∗, L∗)| < δ.

Proof. The claims follow by combining Lemmas 6.2.23 and 6.2.24; see Lemma 6.2.20 for a
similar proof.

Since R0
min < r0

L0
< r0

L0
max

< R0
max, the above lemma does, in particular, show the

uniform convergences of ∂ET
ε and ∂2

ET
ε on Dε0. We hence conclude the convergences of the

minimal and maximal values of ∂ET
ε and ∂2

ET
ε on Dε0; recall (6.2.47) and (6.2.48) for the

definitions of these values. The lemma is based on [61, Lemma A.14 and A.17].
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Lemma 6.2.26. It holds that limε→0 ∂ET
ε
min = ∂ET

0
min, limε→0 ∂ET

ε
max = ∂ET

0
max,

limε→0 ∂
2
ET

ε
min = ∂2

ET
0
min, and limε→0 ∂

2
ET

ε
max = ∂2

ET
0
max, where

0 < ∂ET
0
min = ∂ET

0(Emin0
L0

, L0) = 6π
L

5
2
0

M4
<

3π

2
√

2

M

(−κ)
5
2

= ∂ET
0(κ, L0) = ∂ET

0
max <∞,

(6.2.71)

0 < ∂2
ET

0
min = ∂2

ET
0(Emin0

L0
, L0) = 30π

L
7
2
0

M6
<

15π

4
√

2

M

(−κ)
7
2

= ∂2
ET

0(κ, L0) = ∂2
ET

0
max <∞,

(6.2.72)

by (6.2.16), Lemma 6.2.5, and (6.2.67).

Proof. The claimed convergences follow by Lemma 6.2.25 in the same way as in the proof
of Lemma 6.2.21.

6.3 Linearisation and the Operators

The aim of this section is to linearise the system from Section 6.1 around a steady state
surrounding a point mass and introduce and analyse the occurring operators. This will turn
out to work very much similar to Chapters 3–5, which is why we will keep the presentation
here rather short. We advise the reader to first familiarise him or herself with these chapters
before reading the following part.

Let f0 be a fixed steady state of the radial Vlasov-Poisson system around a point mass
as constructed in Proposition 6.2.2. Following the arguments in Chapter 3, including the
Antonov trick, we arrive at the following second-order equation for the odd-in-v part f of
the linear perturbation:

∂2
t f + Lf = 0. (6.3.1)

Again, L is the linearised operator associated to the steady state given by

L = −T 2 −R, (6.3.2)

where

T = v · ∂x −
(
∂xU0(x) +M

x

|x|3

)
· ∂v = w ∂r −Ψ′L(r) ∂w (6.3.3)

is the transport operator and R is the gravitational response operator defined as in (3.1.13).
The equation (6.3.1) is the linearised Vlasov-Poisson system around a point mass in second-
order formulation.

The behaviour of its solutions is determined by the (spectral) properties of L. To analyse
them, we again rigorously define L on a suitable (subspace of a) Hilbert space. This is
achieved in the same way as in Chapter 4: The underlying Hilbert space H is the spherically
symmetric L2-space over Ω0 with weight |ϕ′(E,L)|−1 defined as in Definition 4.2.3. As
before, ϕ′ := ∂Eϕ, and this function is negative on the interior of the steady state support
because k > 0, recall (6.2.6)–(6.2.7). We define L on the domain D(L), which is contained
in the odd-in-v subspace H of H, similarly to Definition 4.2.9. The two parts T 2 and R of L
are defined as in Definitions 4.2.5 and 4.2.8, respectively. Using these definitions, it turns
out that the operators have the identical properties as in the case without a point mass for
a steady state with L0 > 0. This is due to the fact the relevant relations like (6.2.1) as
well as the structure of the effective potential, cf. Lemma 6.2.4, are preserved by adding the



6.3. LINEARISATION AND THE OPERATORS 159

point mass. The only difference compared to Chapter 4 is that one has to add the central
point mass to the local mass of the steady state in certain arguments, i.e., one has to replace
m0(r) = r2U ′0(r) with m0(r) +M . For instance, Antonov’s coercivity bound (4.5.13) in the
case of a point mass becomes

〈Lf, f〉H ≥
∫

Ω0

1

|ϕ′(E,L)|

(
U ′0(r)

r
+
M

r3

)
|f(x, v)|2 d(x, v), f ∈ D(T ) ∩H. (6.3.4)

Furthermore, the same analysis as in Chapter 5 yields an analogue of the Birman-
Schwinger-Mathur principle, i.e., analogous versions of the criteria from Section 5.3 in the
case of a point mass. From now on, we hence use the definitions and results from Chapters 4
and 5 in the present setting without further comments.

As a preparation for the following analysis, we now establish some further lemmas. The
first one gives us control on the behaviour of the (change to) action-angle type variables
close to minimal energies. It is based on [61, Lemma 3.5].

Lemma 6.3.1. For (E,L) ∈ A0, let R(·, E, L) : R→ ]0,∞[ be the unique maximal solution
of R̈ = −Ψ′L(R) satisfying the initial condition R(0, E, L) = r−(E,L), i.e., R is defined as
in Definition 2.2.16. Furthermore, let

r : S1 × A0 → ]0,∞[, r(θ,E, L) := R(θ T (E,L), E, L); (6.3.5)

this functions gives the radial component of the change to action-angle type variables, cf.
Definition 4.3.1. Then r ∈ C2(S1 × A0) and there exists a constant C > 0 s.t. for all
(θ,E, L) ∈ S1 × D0 the estimates

|r(θ,E, L)− rL|+ |∂θr(θ,E, L)| ≤ C
√
E − Emin

L (6.3.6)

and

|∂Er(θ,E, L)| ≤ C√
E − Emin

L

(6.3.7)

hold. The constant C can be bounded in terms of Tmax, ∂ETmax, Lmax, and
‖U ′′0 ‖L∞([Rmin,Rmax]) as well as M and the steady state parameters L0, k, `, and κ.161

Proof. In the same way as in Lemma A.3.2, the claimed regularity of r follows by basic
ODE theory since U0 ∈ C3([0,∞[) by Proposition 6.2.2 (e); further recall T ∈ C2(A0).

For (E,L) ∈ D0 let α(·, E, L) : R→ R be the unique global solution of the linear ODE

α̈ = −Ψ′′L(R(·, E, L))α, α(0) = 1, α̇(0) = 0; (6.3.8)

in the case E = Emin
L we set R(·, Emin

L , L) ≡ rL. Note that this defines a continuous
extension of R because of R(R, E, L) = [r−(E,L), r+(E,L)] and (2.2.66). Since

|Ψ′′L(r)| ≤ C, r ∈ [Rmin, Rmax], L ∈ [L0, Lmax], (6.3.9)

Grönwall’s inequality implies |α(s, E, L)| ≤ C for (E,L) ∈ D0 and s ∈ [0, Tmax]. The
constant C > 0 is allowed to change its value throughout this proof, but it can al-
ways be bounded by the quantities specified above. Moreover, similar to Lemma A.3.2,
∂ER(s, E, L) = α(s, E, L) ∂Er−(E,L) for s ∈ R and (E,L) ∈ A0, which shows

∂Er(θ,E, L) = Ṙ(θ T (E,L), E, L) θ ∂ET (E,L) + α(θ T (E,L), E, L) ∂Er−(E,L) (6.3.10)

161C being bounded in terms of these parameters means that C is uniformly bounded if these parameters
range in a compact set.
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for θ ∈ S1 and (E,L) ∈ A0. For the first term on the right-hand side the estimate

|Ṙ(θ T (E,L), E, L)| =
√

2E − 2ΨL(r(θ,E, L)) ≤
√

2E − 2Emin
L ≤

√
2 (κ+ M

R0
min

)√
E − Emin

L

(6.3.11)

holds for θ ∈ S1 and (E,L) ∈ D0. It thus remains to show

|∂Er−(E,L)| ≤ C√
E − Emin

L

, (E,L) ∈ D0, (6.3.12)

in order to deduce (6.3.7).
To prove (6.3.12), first observe that for L ≥ L0 and s ∈ [Rmin, rL],

Ψ′′L(s) = −2
Ψ′L(s)

s
+
L

s4
+ 4πρ0(s) ≥ L0

(R0
max)4

=
1

C
(6.3.13)

since Ψ′L(s) ≤ 0. Hence, by (2.2.65) and the mean value theorem,

|∂Er−(E,L)| = −1

Ψ′L(r−(E,L))
=

1

Ψ′′L(s) (rL − r−(E,L))
≤ C

rL − r−(E,L)
, (E,L) ∈ D0,

(6.3.14)
for some s ∈ [Rmin, rL]. Applying the mean value theorem twice again shows

(rL − r−(E,L))2

E − Emin
L

= 2(r−(η, L)− rL) ∂Er−(η, L) =
2

Ψ′′L(s)
(6.3.15)

for (E,L) ∈ D0 as well as some η ∈ ]Emin
L , E0[ and s ∈ [Rmin, rL]. Inserting (6.3.9)

and (6.3.13) into (6.3.15) hence yields

1

C

√
E − Emin

L ≤ rL − r−(E,L) ≤ C
√
E − Emin

L , (E,L) ∈ D0. (6.3.16)

Together with (6.3.14) this shows (6.3.12), and we conclude (6.3.7).
Moreover, since

∂θr(θ,E, L) = T (E,L) Ṙ(θ T (E,L), E, L) (6.3.17)

and
|r(θ,E, L)− rL| ≤ |∂θr(τ, E, L)|+ |r−(E,L)− rL| (6.3.18)

by the mean value theorem for (E,L) ∈ D0 and some τ ∈ S1, the inequalities (6.3.11)
and (6.3.16) also imply (6.3.6).

The second lemma extends the results from Lemmas 4.4.5 and 4.4.6 regarding the prop-
erties of gravitational potentials of the form UT f . It is based on [61, Lemma 3.9].

Lemma 6.3.2. Let f ∈ D(T ). In addition to the properties of UT f which follow from
Lemmas 4.4.5 and 4.4.6, in radial variables there holds UT f ∈ H2 ∩ C1([0,∞[) with

‖UT f‖H2 + ‖UT f‖∞ + ‖U ′T f‖∞ ≤ C ‖T f‖H (6.3.19)

for some constant C > 0 which depends on the steady state parameters L0, k, `, κ,
and ε and which is locally uniformly bounded in ε ≥ 0. In action-angle type vari-
ables, i.e., UT f (θ,E, L) = UT f (r(θ,E, L)) with r defined as in Lemma 6.3.1, there holds
UT f ∈ C1(S1 × A0) with

|∂EUT f (θ,E, L)| ≤ C√
E − Emin

L

|U ′T f (r(θ,E, L))|, (θ, E, L) ∈ S1 × D0, (6.3.20)
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and∫
D0

|ϕ′(E,L)| |ÛT f (n,E,L)|2 d(E,L) ≤ C

n2
ε

∫
R3

|∂xUT f (x)|2 dx, n ∈ Z∗, (6.3.21)

for a constant C > 0 as in Lemma 6.3.1. Here, ÛT f denotes the Fourier transform of
S1 × D0 3 (θ,E, L) 7→ UT f (θ,E, L) w.r.t. the angle variable θ, recall Remark 4.3.11, and
we use the notation

Z∗ := Z \ {0}. (6.3.22)

Proof. Since Rmin = R0
min > 0 and U ′T f = 0 on [0, Rmin] by (4.4.16), UT f ∈ H2(R3)

implies UT f ∈ H2(]0,∞[). In addition, the identity (4.4.19) shows U ′T f = 0 on [Rmax,∞[,
from which we deduce UT f = 0 on [Rmax,∞[ because limr→∞ UT f (r) = 0. Together
with the embedding H2(]0, R0

max[) ↪→ C1([0, R0
max]), we hence conclude UT f ∈ C1([0,∞[).

These arguments also yield the bound (6.3.19). In particular, going through the proofs of
Lemmas 4.1.3, 4.4.1, 4.4.5, and 4.4.6 shows that all occurring constants can be bounded by
the steady state parameters as claimed above; recall the bound (6.2.23) on Rmax.

The regularity of UT f in action-angle type variables and the estimate (6.3.20) then
follow by Lemma 6.3.1 since ∂EUT f (θ,E, L) = U ′T f (r(θ,E, L)) ∂Er(θ,E, L) for θ ∈ S1 and

(E,L) ∈ D0. For the Fourier coefficients ÛT f there holds

2πin ÛT f (n,E,L) = ∂̂θUT f (n,E,L), n ∈ Z, (E,L) ∈ D0. (6.3.23)

Together with Parseval’s theorem as well as the identities ∂θUT f = U ′T f ∂θr, (4.3.14),
(6.3.17), and (4.1.8) we thus conclude∫

D0

|ϕ′(E,L)| |ÛT f (n,E,L)|2 d(E,L) ≤ C

n2

∫
D0

|ϕ′(E,L)|
∑
j∈Z
|∂̂θUT f (j, E, L)|2 d(E,L) =

=
C

n2

∫
S1×D0

|ϕ′(E,L)| |U ′T f (r(θ,E, L))|2 |∂θr(θ,E, L)|2 d(θ, E, L) ≤

≤ C

n2

∫ Rmax

Rmin

|U ′T f (r)|2
∫ ∞

0

∫
R
w2|ϕ′(E,L)|dw dLdr =

=
C

n2

∫ Rmax

Rmin

r2|U ′T f (r)|2ρ0(r) dr ≤ C

n2
ε ‖∂xUT f‖22 (6.3.24)

for n ∈ Z∗ and C as specified above; in the last inequality we used (6.2.8) to estimate
‖ρ0‖∞.

6.4 Absence of Eigenvalues in the Essential Gap

The aim of this section is to show that the linearised operator L : D(L) → H associated
to certain “small” steady states does not possess an eigenvalue inside its essential gap. As
in (1.2.21), the essential gap G is defined as

G :=

]
0,

4π2

(Tmax)2

[
. (6.4.1)

We fix the steady state parameters L0, k, `, and κ as specified in Proposition 6.2.2. For
ε > 0, let f0 be the steady state given by Proposition 6.2.2. The result is an application of
the Birman-Schwinger-Mathur principle developed in Chapter 5; by the discussion above, it
can also be applied in the present setting with a point mass. The result is inspired by [61,
Thm. 5.4], and the techniques used in the proof are related to those used for Corollary 5.4.4.
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Theorem 6.4.1 (Absence of Eigenvalues in G for ε � 1). In addition to (6.2.7), assume
that the polytropic exponent k satisfies

k > 1. (6.4.2)

Then there exists ε0 > 0 s.t. for any 0 < ε < ε0 the linearised operator L has no eigenvalues
in the essential gap G.

Proof. By Theorem 5.3.3 it remains to show

32π2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − 4π2

(Tmax)2

∫ r+(E,L)

r−(E,L)

sin2(2πn θ(r, E, L))

r2
dr d(E,L) < 1.

(6.4.3)
The integral on the left-hand side can be estimated as follows:

32π2
∞∑
n=1

∫
D0

|ϕ′(E,L)|
T (E,L)

1
4π2n2

T (E,L)2 − 4π2

(Tmax)2

∫ r+(E,L)

r−(E,L)

sin2(2πn θ(r, E, L))

r2
dr d(E,L) ≤

≤ C
∫
D0

|ϕ′(E,L)|
Tmax − T (E,L)

d(E,L). (6.4.4)

Here, the constants C > 0 always depend on the fixed steady state parameters L0, k, `,
and κ as well as on ε0 > 0, but are independent of ε ∈ ]0, ε0[. We choose ε0 > 0 sufficiently
small in order to deduce the boundedness of Tmax and (Tmin)−1 via Proposition 6.2.6 (e),
and recall the uniform bounds on Rmin and Rmax derived in Proposition 6.2.2 (c). After
possibly reducing ε0 > 0, we apply (6.2.49) and the mean value theorem to obtain

Tmax − T (E,L) = Tmax − T (E0, L) + T (E0, L)− T (E,L) ≥ 1

C
(E0 − E) (6.4.5)

for (E,L) ∈ D0; note (E0, L) ∈ D0, and thus T (E0, L) ≤ Tmax. Inserting this estimate
together with (6.2.6) into the right-hand side of (6.4.4) leads to∫

D0

|ϕ′(E,L)|
Tmax − T (E,L)

d(E,L) ≤ Cε
∫
D0

(E0 − E)k−2(L− L0)` d(E,L) =

= Cε

∫ Lmax

L0

(L− L0)`
∫ E0

Emin
L

(E0 − E)k−2 dE dL =

= Cε

∫ Lmax

L0

(L− L0)` (E0 − Emin
L )k−1 dL; (6.4.6)

recall k > 1. Since E0 − Emin
L < κ + M

R0
min

, ` > −1, and Lmax is uniformly bounded for

ε ∈ ]0, ε0[ by Proposition 6.2.6 (c) (after possibly reducing ε0 > 0 again), the integral in the
latter expression is uniformly bounded for ε ∈ ]0, ε0[. Thus, with ε0 > 0 sufficiently small,
the right-hand side of (6.4.6) is indeed smaller than one, and we conclude (6.4.3).

Notice that the assumption (6.4.2) on the regularity of the steady state is crucial for
the above proof: If 0 < k ≤ 1, the integral in the second line of (6.4.6) would be infinite.
In particular, we do not believe that the assumption (6.4.2) can be weakened without
fundamentally changing/improving the strategy of the proof.

In the context of analysing the spectrum of L in G, it is a natural question whether we can
also prove the existence of eigenvalues in G for sufficiently small steady states surrounding a
point mass which are less regular than the ones satisfying (6.4.2). Unfortunately, this turns
out to be more complicated than showing the absence of such eigenvalues. To conclude this
section, let us briefly discuss this issue.
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Remark 6.4.2 (Existence of Eigenvalues in G for ε� 1 ?). In addition to (6.2.7), assume
that the polytropic exponents k and ` satisfy

k + ` ≤ 0. (6.4.7)

With Theorem 5.4.1 in mind, it seems promising that one can prove the existence of an
eigenvalue in G by applying Theorem 5.3.1. More precisely, after deriving an estimate
similar to (5.4.10), we would like to show that an integral of the form∫ L0+ι

L0

∫ E0

E0−ι

|ϕ′(E,L)|
Tmax − T (E,L)

d(E,L) (6.4.8)

is large, where ι > 0 is some (small) ε-independent number. By Proposition 6.2.6 and
Lemma 6.2.20, we know that Tmax − T (E0, L0)→ 0 as ε→ 0, which yields∫ L0+ι

L0

∫ E0

E0−ι

|ϕ̃′(E,L)|
Tmax − T (E,L)

d(E,L)→∞, ε→ 0, (6.4.9)

by similar calculations as in the proof of Theorem 5.4.1. However, due to the ε-factor
included in ϕ = εϕ̃, recall (6.2.6), we cannot infer from (6.4.9) that (6.4.8) gets large
for 0 < ε� 1.

We would get around this problem if

Tmax = T (E0, L0). (6.4.10)

If this were true, we would be in the same situation as in Theorem 5.4.1 and the inte-
gral (6.4.8) would be infinite for any ε > 0. By Proposition 6.2.6 (e) and the shape of D0,
for all sufficiently small ε > 0 there exists L∗ ∈ [L0, Lmax] s.t. Tmax = T (E0, L

∗). Proving
L∗ = L0 requires knowledge of the L-monotonicity of T . However, the period function T 0

is constant in L in the limiting case ε = 0, cf. Lemma 6.2.5. Hence, the L-monotonicity
of T for 0 < ε � 1 is harder to analyse compared to the arguments in Section 6.2.1. We
will later discuss a way of studying this L-monotonicity, cf. Chapter 9.

6.5 Absence of Embedded Eigenvalues

The aim of this section is to show that the linearised operator L : D(L)→ H associated to
certain “small” steady states does not possess any eigenvalues embedded into its essential
spectrum; recall that σess(L) is given by (4.5.3). Let L0, k, `, and κ be fixed as specified
in Proposition 6.2.2. For ε > 0, let f0 be the steady state given by Proposition 6.2.2. This
whole section is based on [61, Sc. 4]; here, we “generalise” the results to steady states with
an L-dependency.

As a preparation, we first derive additional properties of the period function in the
regime 0 < ε� 1 and introduce some notation.

Lemma 6.5.1. There exists ε0 > 0 s.t. the following assertions hold for any 0 < ε < ε0:
For any L ∈ [L0, Lmax], the mapping

T (·, L) : [Emin
L , E0]→ [Tmin(L), Tmax(L)], E 7→ T (E,L) (6.5.1)

is one-to-one and strictly increasing, where

Tmin(L) := T (Emin
L , L), Tmax(L) := T (E0, L); (6.5.2)
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the former value refers to the continuous extension of the period function to minimal energies
defined by (A.4.11). We denote the inverse of (6.5.1) by

E(·, L) : [Tmin(L), Tmax(L)]→ [Emin
L , E0], (6.5.3)

i.e., E(t, L) is defined via

T (E(t, L), L) = t, L ∈ [L0, Lmax], t ∈ [Tmin(L), Tmax(L)]. (6.5.4)

Moreover, the mapping [L0, Lmax] 3 L 7→ Tmin(L) is strictly increasing, and thus Tmin =
Tmin(L0).

Proof. The claimed monotonicity of T (·, L) follows by Proposition 6.2.6 (e). By Proposi-
tion 6.2.2 (e) and Lemma 6.2.4, L 7→ Ψ′′L(rL) = 4π ρ0(rL) + L

r4
L

is continuously differentiable

with

∂L
[
Ψ′′L(rL)

]
=

4πρ′0(rL)− 4L
r5
L

4πr3
Lρ0(rL) +M +m0(rL)

+
1

r4
L

, L > 0. (6.5.5)

By Proposition 6.2.6 and (6.2.36), the latter expression tends to − 3
(r0
L)4 < 0 as ε → 0

uniformly on compact L-sets. Together with Proposition 6.2.6 (c) we hence conclude the
claimed monotonicity of [L0, Lmax] 3 L 7→ Tmin(L).

In order to show the absence of embedded eigenvalues of L, we first translate the eigen-
value equation into a first-order Fourier setting. This is based on [61, Lemma 4.1].

Lemma 6.5.2. Suppose that L : D(L) → H possesses the eigenvalue 4π2m2

T 2
m

for some m ∈
N = N \ {0} and Tm ∈ [Tmin, Tmax] with eigenfunction g ∈ D(L). In addition, let 0 < ε < ε0

with sufficiently small ε0 > 0. Then the function162 f = g + Tm
2πimT g enjoys the regularity

f ∈ D(T ) and the equation

f̂(n,E,L) = −Tm
|ϕ′(E,L)| Ûf (n,E,L)

Tm − m
n T (E,L)

, n ∈ Z∗, a.e. (E,L) ∈ D0, (6.5.6)

holds. Moreover, Uf = Tm
2πimUT g, so that the statements of Lemmas 4.4.6 and 6.3.2 apply

to Uf , and U ′f 6≡ 0.

Proof. First observe Ug = 0 since g is odd in v. Using (4.4.23), it is then easy to check
that f is an eigenfunction of the operator

L̃ : D(T )→ H, L̃h := T
(
h+ |ϕ′(E,L)|Uh

)
(6.5.7)

to the eigenvalue 2πim
Tm

. Notice that U ′h ∈ L2([0,∞[) for h ∈ H by Lemma 4.4.5. Hence, by

Lemmas 4.1.3 and 4.3.9, |ϕ′(E,L)|Uh ∈ D(T ), which shows that L̃ is well-defined. Writing
the eigenvalue equation for f in action-angle type variables via Lemma 4.3.9 leads to

1

T (E,L)
∂θ
(
f + |ϕ′(E,L)|Uf

)
=

2πim

Tm
f a.e. on S1 × D0. (6.5.8)

We then apply the Fourier transform w.r.t. θ onto this equation, cf. Remark 4.3.11 and
Lemma 4.3.12, to obtain

n

T (E,L)

(
f̂(n,E,L) + |ϕ′(E,L)| Ûf (n,E,L)

)
=

m

Tm
f̂(n,E,L), n ∈ Z∗, a.e. (E,L) ∈ D0;

(6.5.9)

162Obviously, f is complex-valued. Operators acting on such a function is to be understood in the sense of
Remark 4.2.4 (f).
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recall the regularity of Uf = Tm
2πimUT g in action-angle type variables shown in Lemma 6.3.2.

It is convenient to rewrite this equation in the following form:(
Tm −

m

n
T (E,L)

)
f̂(n,E,L) = −Tm|ϕ′(E,L)| Ûf (n,E,L), n ∈ Z∗, a.e. (E,L) ∈ D0.

(6.5.10)
By Proposition 6.2.6 (e), the set of (E,L) ∈ D0 with Tm− m

n T (E,L) = 0 has zero measure
for n ∈ Z∗ provided ε0 > 0 is sufficiently small. We thus conclude (6.5.6).

Lastly, assume that U ′f = 0. Then Uf = 0 by Lemma 4.4.5, and thus f = 0 a.e.

by (6.5.9). By the definition of f , this means T g = −2πim
Tm

g, which is impossible since g 6≡ 0
is odd in v and T reverses v-parity, cf. Lemma 4.3.16.

The above lemma suggests that the (n,E,L)-values where the denominator on the right-
hand side of (6.5.6) vanishes play a distinguished role in the study of embedded eigenvalues.
We call such frequency-action triples (n,E,L) ∈ Z∗×D0 resonant. The next lemma provides
quantitative bounds on the number of frequencies that are nearly resonant, i.e., on the
amount of n-values where the denominator gets small. This is based on [61, Lemma 4.3
and Eqn. (4.7)].

Lemma 6.5.3 (δ-Resonant Set). For fixed (m,Tm) ∈ N × [Tmin, Tmax] and 0 < δ < 1
2Tmin

consider the δ-resonant set

Lδm :=
{
n ∈ Z∗ | ∃(E,L) ∈ D0 : |Tm −

m

n
T (E,L)| < δ

}
; (6.5.11)

recall the continuous extension of T onto D0 given by (A.4.11). Then Lδm ⊂ N and there
exists a constant C > 0, which can be bounded in terms of Tmin and Tmax, s.t.

n

m
+
m

n
≤ C, n ∈ Lδm. (6.5.12)

In addition, Lδm possesses the disjoint decomposition

Lδm = Rm ∪ Pδm ∪N δ
m, (6.5.13)

where

Rm := {n ∈ Lδm | ∃(E,L) ∈ D0 : Tm −
m

n
T (E,L) = 0}, (6.5.14)

Pδm := {n ∈ Lδm | ∀(E,L) ∈ D0 : Tm −
m

n
T (E,L) > 0}, (6.5.15)

N δ
m := {n ∈ Lδm | ∀(E,L) ∈ D0 : Tm −

m

n
T (E,L) < 0}. (6.5.16)

Proof. If −δ < Tm − m
n T (E,L) < δ for some n ∈ Z∗ and (E,L) ∈ D0, clearly m

n > 0 since
δ < 1

2Tmin, i.e., n ∈ N. Furthermore,

1

2

Tmin

Tmax
<
Tmin − δ
Tmax

≤ Tm − δ
T (E,L)

<
m

n
<

Tm + δ

T (E,L)
≤ Tmax + δ

Tmin
<

3

2

Tmax

Tmin
. (6.5.17)

The decomposition identity (6.5.13) follows since T is continuous on D0 and D0 is path-
connected.

Another useful piece of notation for the proof of the absence of embedded eigenvalues
is given in the following lemma. It is based on [61, Def. 4.4].
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Lemma 6.5.4 (The Function pm,n). Let 0 < ε < ε0 with sufficiently small ε0 > 0, and let
(m,Tm) ∈ N× [Tmin, Tmax] and 0 < δ < 1

2Tmin. For n ∈ Lδm define

pm,n(t) := − n
m

log(Tm −
m

n
t) + Cp, t ∈ [Tmin, Tmax] with t <

n

m
Tm. (6.5.18)

Here, Cp is chosen independently of m, Tm, n, and ε s.t. pm,n ≥ 0 on its domain of
definition. Obviously, pm,n is an antiderivative of the map t 7→ 1

Tm−mn t
, and pm,n(t) → ∞

as Tm − m
n t↘ 0. Moreover, for any α > 0 there exists a constant C > 0 s.t.

pm,n(t) ≤ C (Tm −
m

n
t)−α, t ∈ [Tmin, Tmax] with t <

n

m
Tm; (6.5.19)

besides its dependency on the exponent α, the constant C has the same properties as Cp.

Proof. The existence of Cp as specified above is due to Lemma 6.5.3 together with the fact
that Tmax = T εmax is uniformly bounded for ε ∈ ]0, ε0[ by Proposition 6.2.6 (e). Similar
arguments also show (6.5.19) since sα log(s)→ 0 as s↘ 0.

We have now gathered all tools to prove the central result of this section, which is based
on [61, Thm. 4.5].

Theorem 6.5.5. In addition to (6.2.7), assume that the polytropic exponent k satisfies

k > 1. (6.5.20)

Then there exists ε0 > 0 s.t. for any 0 < ε < ε0 the linearised operator L has no embedded
eigenvalues, i.e., no eigenvalues within its essential spectrum σess(L).

Proof. By way of contradiction, we assume that there exists an eigenvalue of L inside its
essential spectrum, which by (4.5.3) means that it is of the form 4π2m2

T 2
m

for some m ∈ N
and Tm ∈ [Tmin, Tmax]. Let f ∈ D(T ) be the associated function derived in Lemma 6.5.2,
i.e., the relation (6.5.6) holds, the statements of Lemmas 4.4.6 and 6.3.2 apply to Uf , and
U ′f 6≡ 0.

Step 1: An Energy Type Identity. We multiply (6.5.6) with −T (E,L) Ûf (n,E,L), sum
over n ∈ Z∗, and integrate over D0. By Parseval’s theorem, the left-hand side of the resulting
identity equals

−
∫
D0

T (E,L)

∫
S1

f(θ,E, L)Uf (θ,E, L) dθ d(E,L) = −
∫

Ω0

f(r, w, L)Uf (r) d(r, w, L) =

=
1

16π3

∫
R3

|∂xUf (x)|2 dx; (6.5.21)

notice that f̂(0, ·) vanishes a.e. on D0 by (6.5.9). As a result, we obtain the energy type
identity

1

16π3
‖∂xUf‖22 = Tm

∑
n∈Z∗

∫
D0

|ϕ′(E,L)|T (E,L)

Tm − m
n T (E,L)

|Ûf (n,E,L)|2 d(E,L). (6.5.22)

Choosing δ = 1
4Tmin, we use (6.5.13) to decompose the sum on the right-hand side as follows:

‖∂xUf‖22
16π3

=

= Tm

 ∑
n∈Z∗\Lδm

+
∑
n∈Rm

+
∑
n∈Pδm

+
∑
n∈N δm

∫
D0

|ϕ′(E,L)|T (E,L)

Tm − m
n T (E,L)

|Ûf (n,E,L)|2 d(E,L).

(6.5.23)
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Let us analyse and estimate the integral(s) in the last line of this calculation, starting with
the terms where n /∈ Lδm. First note the obvious bound

1

|Tm − m
n T (E,L)|

≤ 1

δ
≤ C, (E,L) ∈ D0, n ∈ Z∗ \ Lδm. (6.5.24)

Throughout this proof, the constants C > 0 are always allowed to depend on the fixed steady
state parameters L0, k, `, and κ as well as on ε0 > 0, but are independent of m, Tm, n,
and ε. Since (Tmin)−1 and Tmax are bounded uniformly in ε ∈ ]0, ε0[ by Proposition 6.2.6 (e),
we further obtain

1

|Tm − m
n T (E,L)|

≤ C |n|
m
, (E,L) ∈ D0, n ∈ Z∗ \ Lδm. (6.5.25)

Together with (6.3.21) we hence deduce we following estimate for the first sum on the
right-hand side of (6.5.23):

Tm
∑

n∈Z∗\Lδm

∫
D0

|ϕ′(E,L)|T (E,L)

Tm − m
n T (E,L)

|Ûf (n,E,L)|2 d(E,L) ≤

≤ C
∑

n∈Z∗\Lδm

√
|n|√
m

∫
D0

|ϕ′(E,L)| |Ûf (n,E,L)|2 d(E,L) ≤

≤ C√
m
ε ‖∂xUf‖22

∑
n∈Z∗\Lδm

1

|n|
3
2

≤ C√
m
ε ‖∂xUf‖22. (6.5.26)

For n ∈ Pδm, Lemma 6.5.4 and an integration by parts in the particle energy E yield∫
D0

|ϕ′(E,L)|T (E,L)

Tm − m
n T (E,L)

|Ûf (n,E,L)|2 d(E,L) =

=

∫
D0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)
∂E [pm,n(T (E,L))] |Ûf (n,E,L)|2 d(E,L) =

= An +Bn +

∫ Lmax

L0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)
pm,n(T (E,L)) |Ûf (n,E,L)|2

∣∣∣E=E0

E=Emin
L

dL ≤

≤ An +Bn, (6.5.27)

where for n ∈ Pδm,

An := −2

∫
D0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)
pm,n(T (E,L)) Re

(
∂EÛf (n,E,L) Ûf (n,E,L)

)
d(E,L),

(6.5.28)

Bn := −
∫
D0

∂E

[
|ϕ′(E,L)|T (E,L)

∂ET (E,L)

]
pm,n(T (E,L)) |Ûf (n,E,L)|2 d(E,L). (6.5.29)

In the last line of (6.5.27), we used k > 1 to deduce ϕ′(E0, L) = 0 for L ≥ L0, which shows

that the boundary term at E = E0 vanishes; note that Ûf (n, ·) ∈ C1(A0) by Lemmas 6.3.2
and 6.5.2. By (6.2.49) and Lemma 6.5.4, the other boundary term is non-positive provided
ε0 > 0 is sufficiently small.

A little more caution is needed to perform the analogous arguments for n ∈ Rm. By
the definition of this set, cf. (6.5.14),

tn :=
n

m
Tm ∈ [Tmin, Tmax]. (6.5.30)
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Let
L+(t) := sup{L ∈ [L0, Lmax] | Tmin(L) ≤ t}, t ∈ [Tmin, Tmax]; (6.5.31)

recall (6.5.2) for the definition of Tmin(L). For L ∈ ]L+(tn), Lmax] there holds T (E,L) ≥
Tmin(L) > tn for Emin

L ≤ E ≤ E0 by Lemma 6.5.1 provided ε0 > 0 is sufficiently small, i.e.,
Tm − m

n T (E,L) < 0. For L ∈ [L0, L+(tn)] we set

En(L) :=

{
E(tn, L), if tn ≤ Tmax(L),

E0, otherwise;
(6.5.32)

recall (6.5.4) for the definition of E(t, L). The quantities L+(t) and En(L) are defined s.t.

{(E,L) ∈ D0 | Tm −
m

n
T (E,L) > 0} = {(E,L) | L0 < L < L+(tn), Emin

L < E < En(L)}
(6.5.33)

holds for n ∈ Rm. Hence, for n ∈ Rm, a calculation similar to (6.5.27) yields∫
D0

|ϕ′(E,L)|T (E,L)

Tm − m
n T (E,L)

|Ûf (n,E,L)|2 d(E,L) =

≤
∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′(E,L)|T (E,L)

Tm − m
n T (E,L)

|Ûf (n,E,L)|2 dE dL =

= An +Bn +

∫ L+(tn)

L0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)
pm,n(T (E,L)) |Ûf (n,E,L)|2

∣∣∣E=En(L)

E=Emin
L

dL ≤

≤ An +Bn, (6.5.34)

where for n ∈ Rm,

An := −2

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′(E,L)|T (E,L)

∂ET (E,L)
pm,n(T (E,L))·

· Re
(
∂EÛf (n,E,L) Ûf (n,E,L)

)
dE dL, (6.5.35)

Bn := −
∫ L+(tn)

L0

∫ En(L)

Emin
L

∂E

[
|ϕ′(E,L)|T (E,L)

∂ET (E,L)

]
pm,n(T (E,L)) |Ûf (n,E,L)|2 dE dL.

(6.5.36)

In the last line of (6.5.34), we again used that the boundary term coming from E =
Emin
L is non-positive. The other boundary term vanishes for every L ∈ [L0, L+(tn)[. In

the case tn > Tmax(L), this is due to ϕ′(E0, L) = 0. If tn = Tmax(L), En(L) = E0.
Hence, k > 1 together with (6.5.19) again yields that the boundary term vanishes. Lastly,

in the case Tmin(L) < tn < Tmax(L), first note that Ûf (n,En(L), L) = 0 by (6.5.10).

Since Ûf (n, ·, L) : ]Emin
L , 0[ → C is continuously differentiable by Lemma 6.3.2, we again

use (6.5.19) to infer that the boundary term vanishes.
Altogether, inserting (6.5.26), (6.5.27), and (6.5.34) into (6.5.23) and using that the

terms with n ∈ N δ
m are non-positive yields

‖∂xUf‖22 ≤
C√
m
ε ‖∂xUf‖22 + Tm

∑
n∈Rm

(An +Bn) + Tm
∑
n∈Pδm

(An +Bn). (6.5.37)

Step 2: Estimating An for n ∈ Pδm and n ∈ Rm. To cope with the degeneracy of the
action-angle type variables at minimal energies E = Emin

L , we introduce powers of

δEL := E − Emin
L (6.5.38)
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as weights in our estimates. Observe that

2πin Ûf (n,E,L) = ∂̂θUf (n,E,L), n ∈ Z, (E,L) ∈ A0. (6.5.39)

For any n ∈ Pδm we insert this identity into (6.5.28) and apply (6.5.12) and the Cauchy-
Schwarz inequality to deduce

|An|2 ≤
C

n2

∣∣∣∣∫
D0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)
pm,n(T (E,L))|∂EÛf (n,E,L)| |∂̂θUf (n,E,L)|d(E,L)

∣∣∣∣2 ≤
≤ C

m2

∫
D0

|ϕ′(E,L)|T (E,L) δEL |∂EÛf (n,E,L)|2 d(E,L) ·

·
∫
D0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)2
pm,n(T (E,L))2 |∂̂θUf (n,E,L)|2

δEL
d(E,L). (6.5.40)

Applying Cauchy’s inequality and summing over n ∈ Pδm yields∑
n∈Pδm

|An| ≤
C√
m

∑
n∈Pδm

∫
D0

|ϕ′(E,L)|T (E,L) δEL |∂EÛf (n,E,L)|2 d(E,L)+

+
C

m
3
2

∑
n∈Pδm

∫
D0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)2
pm,n(T (E,L))2 |∂̂θUf (n,E,L)|2

δEL
d(E,L). (6.5.41)

By the same arguments we also obtain∑
n∈Rm

|An| ≤
C√
m

∑
n∈Rm

∫
D0

|ϕ′(E,L)|T (E,L) δEL |∂EÛf (n,E,L)|2 d(E,L)+

+
C

m
3
2

∑
n∈Rm

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′(E,L)|T (E,L)

∂ET (E,L)2
pm,n(T (E,L))2 |∂̂θUf (n,E,L)|2

δEL
dE dL.

(6.5.42)

The first sums on the right-hand sides of (6.5.41) and (6.5.42), respectively, combine to give

C√
m

∑
n∈Pδm∪Rm

∫
D0

|ϕ′(E,L)|T (E,L) δEL |∂EÛf (n,E,L)|2 d(E,L) ≤

≤ C√
m

∑
n∈Z

∫
D0

|ϕ′(E,L)|T (E,L) δEL |∂EÛf (n,E,L)|2 d(E,L) =

=
C√
m

∫
D0

|ϕ′(E,L)|T (E,L) δEL

∫
S1

|∂EUf (θ,E, L)|2 dθ d(E,L), (6.5.43)

where we used the Plancherel identity in the last line; notice ∂EÛf (n,E,L) = ∂̂EUf (n,E,L)
for (E,L) ∈ A0 and n ∈ Z since Uf ∈ C1(S1×A0) by Lemmas 6.3.2 and 6.5.2. We continue
the calculation (6.5.43) by using the bound (6.3.20) and applying the change of variables
θ 7→ r = r(θ,E, L) defined by (4.3.9), note that ∂θr(θ,E, L) = T (E,L)

√
2E − 2ΨL(r):

C√
m

∫
D0

|ϕ′(E,L)|T (E,L) δEL

∫
S1

|∂EUf (θ,E, L)|2 dθ d(E,L) ≤

≤ C√
m

∫
D0

|ϕ′(E,L)|T (E,L)

∫
S1

|U ′f (r(θ,E, L))|2 dθ d(E,L) =

=
C√
m

∫ Rmax

Rmin

|U ′f (r)|2
∫
D0(r)

|ϕ′(E,L)|√
2E − 2ΨL(r)

d(E,L) dr, (6.5.44)
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where D0(r) is defined in (5.2.18) for r ∈ [Rmin, Rmax]. In order to compute the (E,L)-
integral on the right-hand side of (6.5.44) for fixed r ∈ ]Rmin, Rmax[, let Lmax(r) ∈ ]L0, Lmax]
be defined as the unique solution of ΨLmax(r)(r) = E0; the same notation has been used in
the proof of Proposition 5.2.12. Then

∫
D0(r)

|ϕ′(E,L)|√
2E − 2ΨL(r)

d(E,L) = kε

∫ Lmax(r)

L0

∫ E0

ΨL(r)

(E0 − E)k−1(L− L0)`√
2E − 2ΨL(r)

dE dL =

= Cε

∫ Lmax(r)

L0

(L− L0)`(E0 −ΨL(r))k−
1
2 dL ≤ Cε (6.5.45)

because k > 1
2 and ` > −1, where we used the standard integral identity (2.2.23) as well

as the estimate E0 − ΨL(r) ≤ κ + M
R0

min
and the uniform boundedness of Lmax = Lεmax for

0 < ε� 1, cf. Proposition 6.2.6 (c). Overall, (6.5.43), (6.5.44), and (6.5.45) yield

C√
m

∑
n∈Pδm∪Rm

∫
D0

|ϕ′(E,L)|T (E,L) δEL |∂EÛf (n,E,L)|2 d(E,L) ≤ C√
m
ε ‖∂xUf‖22.

(6.5.46)

It remains to estimate the second sums on the right-hand sides of (6.5.41) and (6.5.42),
respectively. We start with the more challenging part, the resonant contribution
from (6.5.42). Since ∂θUf = U ′f ∂θr, changing variables via θ 7→ r = r(θ,E, L), applying
Plancherel’s theorem, and using the uniform-in-ε ∈ ]0, ε0[ bounds from Proposition 6.2.6
lead to

∑
n∈Rm

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′(E,L)|T (E,L)

∂ET (E,L)2
pm,n(T (E,L))2 |∂̂θUf (n,E,L)|2

δEL
dE dL ≤

≤ C
∑
n∈Rm

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′|
δEL

pm,n(T )2

∫
S1

|∂θUf (θ,E, L)|2 dθ dE dL =

= C
∑
n∈Rm

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′|T
δEL

pm,n(T )2

∫ r+(E,L)

r−(E,L)
|U ′f (r)|2

√
2E − 2ΨL(r) dr dE dL ≤

≤ C
∑
n∈Rm

∫ Rmax

Rmin

|U ′f (r)|2 dr

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′|√
δEL

pm,n(T )2 dE dL. (6.5.47)

To estimate the latter expression we have to bound the action integrals

In,m :=

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′(E,L)|√
δEL

pm,n(T (E,L))2 dE dL. (6.5.48)

First note that for n ∈ Rm, L ∈ [L0, L+(tn)], and E ∈ [Emin
L , En(L)[,

Tm −
m

n
T (E,L) ≥ m

n
(T (En(L), L)− T (E,L)) ≥ 1

C
(En(L)− E) (6.5.49)

by (6.2.49) and Lemma 6.5.3; in particular, this estimate holds in both cases of the defi-
nition (6.5.32) of En(L). Together with the bound (6.5.19) with exponent α = 1

4 , we thus
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obtain

In,m ≤ C
∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′(E,L)|√
δEL

(
Tm −

m

n
T (E,L)

)− 1
2

dE dL ≤

≤ Cε
∫ L+(tn)

L0

(L− L0)`
∫ En(L)

Emin
L

(E0 − E)k−1√
E − Emin

L

(En(L)− E)−
1
2 dE dL ≤

≤ Cε
∫ Lmax

L0

(L− L0)`(E0 − Emin
L )k−1 ≤ Cε, (6.5.50)

where we again used the integral identity (2.2.23) and k > 1. Inserting (6.5.50) into (6.5.47)
and using the bound #Rm ≤ #Lδm ≤ Cm, which is due to Lemma 6.5.3, yields

C

m
3
2

∑
n∈Rm

∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′(E,L)|T (E,L)

∂ET (E,L)2
pm,n(T (E,L))2 |∂̂θUf (n,E,L)|2

δEL
dE dL ≤

≤ C

m
3
2

ε ‖∂xUf‖22 #Rm ≤
C√
m
ε ‖∂xUf‖22. (6.5.51)

In an analogous, but simpler way we also obtain

C

m
3
2

∑
n∈Pδm

∫
D0

|ϕ′(E,L)|T (E,L)

∂ET (E,L)2
pm,n(T (E,L))2 |∂̂θUf (n,E,L)|2

δEL
d(E,L) ≤ C√

m
ε ‖∂xUf‖22;

(6.5.52)
just replace L+(tn) and En(L) with Lmax and E0, respectively, in the above arguments.
Altogether, we have thus proven∑

n∈Rm∪Pδm

|An| ≤
C√
m
ε ‖∂xUf‖22. (6.5.53)

Step 3: Estimating Bn for n ∈ Pδm and n ∈ Rm. Estimating Bn, recall (6.5.29)
and (6.5.36) for the definitions of these integrals, works similarly to estimating the sec-
ond sums on the right-hand sides of (6.5.41) and (6.5.42), respectively. In order to estimate

|Ûf |, we use (6.5.39) and (6.5.12) to obtain

|Ûf (n,E,L)|2 ≤ C

n2
|∂̂θUf (n,E,L)|2 ≤ C

m2
|∂̂θUf (n,E,L)|2 (6.5.54)

for n ∈ Rm ∪ Pδm and (E,L) ∈ A0. An additional information that needs to be used is
the uniform-in-ε ∈ ]0, ε0[ boundedness of ∂2

ETmax, cf. Proposition 6.2.6 (e). Besides these
points, the only argument which one has to modify is the derivation of an analogue of the
estimate (6.5.50) in the case where ϕ′ is replaced with ϕ′′ := ∂2

Eϕ. Let us outline how this
can be done: For n ∈ Rm, applying (2.2.23), (6.5.49), and the estimate (6.5.19) with fixed
exponent 0 < α < min{1, k − 1} yields∫ L+(tn)

L0

∫ En(L)

Emin
L

|ϕ′′(E,L)|
(
E − Emin

L

) 1
2 pm,n(T (E,L)) dE dL ≤

≤ Cε
∫ L+(tn)

L0

(L− L0)`
∫ En(L)

Emin
L

(E0 − E)k−2

(
E − Emin

L

) 1
2

(En(L)− E)α
dE dL ≤

≤ Cε
∫ L+(tn)

L0

(L− L0)`(E0 − Emin
L )k−α−

1
2 dL ≤ Cε; (6.5.55)
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note that there is no (δEL)−1-weight in the integrals Bn. Overall, we obtain∑
n∈Rm∪Pδm

|Bn| ≤
C

m
ε ‖∂xUf‖22. (6.5.56)

Step 4: The Finale. Inserting the estimates (6.5.53) and (6.5.56) into (6.5.37) yields

‖∂xUf‖22 ≤
Cfinal√
m

ε ‖∂xUf‖22. (6.5.57)

With ε0 > 0 small enough this gives the desired contradiction for 0 < ε < ε0, recall ∂xUf 6≡ 0
by Lemma 6.5.2.

The strategy of the above proof can also be used to show the absence of embedded
eigenvalues in more general situations. The following remarks regarding this matter are
based on [61, Rems. 4.6 and 4.8 and Cor. 4.7].

Remark 6.5.6 (A Criterion for the Absence of Embedded Eigenvalues). The above proof
shows that a sufficient condition for the absence of embedded eigenvalues is Cfinalε < 1,
where Cfinal > 0 is the constant appearing in the final estimate (6.5.57). In principle,
the constant Cfinal > 0 is explicitly computable; it depends on the underlying steady state
through quantities like k, `, L0, κ, Rmin, Rmax, Tmin, Tmax, ∂ETmin, ∂ETmax, and ∂2

ETmax.
As long as the relevant properties of the period function – most importantly, those from
Lemma 6.5.1 – as well as appropriate regularity properties of the steady state – which are
a suitable substitute for (6.5.20) – are present, the above proof also works in more general
situations. For instance, this includes the steady states from Sections 2.2 and 4.1 without a
central point mass. Hence, in the general case, the above proof shows that some (explicitly
computable) constant being sufficiently small implies that no embedded eigenvalues occur.

Remark 6.5.7 (No Embedded Eigenvalues at High Frequencies). In the above proof we have
carefully tracked the dependence of the constants on m ∈ N. This fixed number correspond to
the frequency of the embedded eigenvalue; recall that, by the proof of Proposition 4.3.19, an
element of the essential spectrum of the form 4π2m2

T (Em,Lm) corresponds to the eigendistribution

S1 × D0 3 (θ,E, L) 7→ sin(2πmθ) δ(Em,Lm)(E,L).163,164 It is evident that one could also
obtain a contradiction from (6.5.57) by choosing m sufficiently large (instead of choosing ε
sufficiently small). For instance, in the case of a steady state as above with ε = 1, i.e.,

f0(x, v) = (E0 − E(x, v))k+ (L(x, v)− L0)`+, (6.5.58)

with polytropic exponents satisfying (6.2.7) and (6.5.20), the above proof shows that there is

no embedded eigenvalue of form 4π2m2

T 2
m

with Tm ∈ [Tmin, Tmax] and sufficiently large frequency

m � 1. As discussed in the previous remark, this does, however, require that certain
properties of the period function are also valid in the case ε = 1.165 Provided that this was
true, we hence conclude that there exists a constant C0 > 0 depending on the steady state
(in an explicitly computable way) s.t. there are no embedded eigenvalues larger than C0.

As discussed in the previous remark, this also holds in more general settings (under
suitable assumptions), including the case without a point mass.

163Note, however, that the frequency number m associated to some λ ∈ σess(L) = σ(−T 2
∣∣
H) is not unique

in general.
164By Proposition 4.5.4, the essential spectra of L and −T 2

∣∣
H are identical. The same proof – which is based

on the relative compactness established in Lemma 4.5.3 – also shows that the associated eigendistributions
for −T 2

∣∣
H are also eigendistributions for L, cf. [69, Proof of Thm. 14.6].

165The proof of Lemma 6.5.1 uses 0 < ε� 1 in a crucial way; concretely, the smallness of ε is used to infer
∂ETmin > 0. To show that (Tmin)−1, Tmax, ∂ETmax, and ∂2

ETmax are finite (for the fixed choice of ε = 1),
one can proceed as in Section A.4 and continuously extend the partial derivatives onto ∂D0.
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6.6 Damping for Small Shells Surrounding a Point Mass

In this section we collect the results of the present chapter (and Appendix C) to conclude
that the linearised dynamics around certain equilibria are indeed damped. This result is
based on [61, Thm. 1.2 (b)].

Theorem 6.6.1 (Damping for Small Shells Surrounding a Point Mass). For fixed M > 0,
let f0 be a polytropic steady state around the point mass M as constructed in Propo-
sition 6.2.2 with the following parameters: Let k and ` be polytropic exponents satisfy-
ing (6.2.7) and

k > 1. (6.6.1)

Moreover, let L0 > 0 and we further restrict the range (6.2.16) of the parameter κ by
requiring

− 2−
2
3
M2

2L0
< κ < 0. (6.6.2)

Then there exists ε0 > 0 s.t. for any choice 0 < ε < ε0 of the smallness parameter ε of
the steady state the following holds: For any (f̊ , g̊) ∈ D(L) × (D(T ) ∩ H), the solution
R 3 t 7→ f(t) ∈ D(L) of the linearised system (6.3.1) launched by the initial condition
(f(0), ∂tf(0)) = (f̊ , g̊) is damped in the following way:

lim
T→∞

1

T

∫ T

0
‖∂xUT f(t)‖2L2(R3) dt = 0, (6.6.3)

where UT f(t) is the gravitational potential induced by T f(t), cf. Definition 4.4.5.

Proof. From (6.2.66) and (6.6.2) we obtain

T 0
max

T 0
min

> 2. (6.6.4)

Hence, Proposition 6.2.6 (e) yields
Tmax

Tmin
> 2 (6.6.5)

upon choosing ε0 > 0 sufficiently small. The essential spectrum of the linearised operator,
which is given by (4.5.3), thus contains no gaps (besides the essential gap G), more precisely,

σess(L) =

[
4π2

T 2
max

,∞
[
; (6.6.6)

recall the discussion in Remark 4.3.20.

By Proposition 4.5.11, the spectrum of L can only contain positive elements. Theo-
rem 6.4.1 shows that L does not possess eigenvalues in the essential gap G =]0,∞[\σess(L),
and Theorem 6.5.5 implies that there are no (embedded) eigenvalues of L in σess(L). To
apply the latter two results, we have to potentially shrink ε0 > 0 again. Altogether, we
conclude that L possesses no eigenvalues.

The damping property (6.6.3) is then due to Lemma C.0.7; in particular, the discussion
in Appendix C shows that (6.3.1) is equivalent to the first-order system (C.0.2) and that
this system is well-posed. Notice that all the results from Appendix C remain true in
the present setting with a point mass; the results are based only on the properties of the
operators derived in Chapter 4, which also hold in the present setting, cf. Section 6.3.
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The additional assumption (6.6.2) on the range of κ ensures that the spectrum of the
linearised operator is of the “single gap structure” (6.6.6) for 0 < ε � 1. For this reason,
the assumption (6.6.2) is called the single gap condition in [61]. It seems possible to get rid
of this assumption (and replace it with (6.2.16)) by extending the methods from Section 6.5
so that they also yield the absence of eigenvalues of L in the gaps of σess(L).

As discussed in Appendix C, the damping property (6.6.3) is, admittedly, rather weak.
It is an interesting problem to prove a stronger type of damping in the situation of the
above theorem, cf. Chapter 9.



Chapter 7

Similar Methods in Related
Situations

In this chapter we demonstrate that the methods presented above can also be applied in
related situations. The settings in Sections 7.1 and 7.2 are simplifications of the above
situation(s), and we can thus derive improved results there. In Sections 7.3 and 7.4 we
(briefly) discuss how to extend the methods to relativistic settings. The latter project is
still in its infancy and we mainly outline the difficulties that must be overcome in the future.

Throughout this chapter we focus on the differences to the previous setting(s) and do
not repeat arguments known from above. Therefore, the reader should already be familiar
with the previous chapters and Appendix A.

7.1 The Vlasov-Poisson System in Plane Symmetry

So far, we have always assumed that both the steady state and the (linear) perturbation
are spherically symmetric; recall Definition 2.1.1 for the definition of this symmetry class.
We now present another symmetry class. The definition is based on [62, Sc. 1.2], and we
generally follow [62] in this section.

Definition 7.1.1 (Plane Symmetry). (a) A function f : R3 → R is plane symmetric
(on R3) if there exists f̃ : R→ R s.t.

f(x) = f̃(x1) = f̃(−x1), x = (x1, x2, x3) ∈ R3. (7.1.1)

(b) A function f : R3×R3 → R is plane symmetric (on R3×R3) if there exists f̃ : R×R3 →
R s.t.

f(x, v) = f̃(x1, v) = f̃(−x1,−v1, v̄), x = (x1, x2, x3) ∈ R3, v = (v1, v̄) ∈ R3.
(7.1.2)

Throughout this section we write v = (v1, v̄) for v ∈ R3.

From a physics point of view, the mass density of a configuration (like a galaxy) being
plane symmetric means that the density is constant in the (x2, x3)-plane. On a particle
level, this corresponds to a system of space-homogeneous, gravitating planes passing freely
through each other. In addition, we require reflection symmetry in the x1-direction in (a)
and in the (x1, v1)-direction in (b).166 Plane symmetry is surely not as natural as spherical

166The reflection symmetry imposed in Definition 7.1.1 is of mathematical nature rather than being moti-
vated physically. Nonetheless, we shall see later that any suitable (x2, x3)-independent steady state of the
Vlasov-Poisson system is reflection symmetric in the x1-direction.
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symmetry, but configurations with this symmetry (or one-dimensional configurations which
are related/equivalent to it) are nonetheless studied in the astrophysics literature [84, 100,
108, 111, 179]. In particular, we refer to [43, Ch. I] for further discussions regarding the
physical relevance of this setting.

The Vlasov-Poisson System in Plane Symmetry

Similar as before we again identify f̃ with f in the situation of Definition 7.1.1 (a) or (b)
by slight abuse of notation. Moreover, we will occasionally write x instead of x1 for the
remaining one-dimensional space variable. With these notational conventions, in plane
symmetry the Vlasov-Poisson system (1.1.2)–(1.1.4) becomes

∂tf + v1 ∂x1f − U ′ ∂v1f = 0, (7.1.3)

U ′′ = 4πρ, (7.1.4)

ρ(t, x1) =

∫
R3

f(t, x1, v) dv, (7.1.5)

where f = f(t, x1, v), ρ = ρ(t, x1), and U = U(t, x1) are all assumed to be plane symmetric
in the above sense. A prime ′ now denotes a derivative w.r.t. x1. Notice that the reflection
symmetry imposed in Definition 7.1.1 behaves well with these equations. This system is not
yet complete without a suitable boundary condition (at spatial infinity). Due to the homo-
geneity in the (x2, x3)-direction, the boundary condition (1.1.5) is no longer appropriate.167

Instead, we require that U is explicitly given by

U(t, x1) = 2π

∫
R
|x1 − y| ρ(t, y) dy, x1 ∈ R. (7.1.6)

Note that U(t) is plane symmetric if ρ(t) is. In addition, if ρ(t) is sufficiently regular, U(t)
solves the equation (7.1.4) and there holds

U ′(t, x1) = 2π

∫
R

sign(x1 − y) ρ(t, y) dy = 4π

∫ x1

0
ρ(t, y) dy, x1 ∈ R; (7.1.7)

the latter equation again requires ρ(t) to be reflection symmetric. In this case, we further
deduce

lim
x1→∞

U ′(t, x1) = − lim
x1→−∞

U ′(t, x1), (7.1.8)

which is a natural substitute for (1.1.5).168 It states that the forces at positive and negative
infinity are equally strong and point in opposite directions. We refer to the system (7.1.3),
(7.1.5), and (7.1.6) as the Vlasov-Poisson system in plane symmetry. It should be noted
that this system is, in fact, equivalent to the one-dimensional Vlasov-Poisson system since
one can simply integrate out the v̄-dependency of f . However, we prefer to keep the system
in the above form since it is closer to the astrophysics literature and we think that the
analogies to the spherically symmetric case are more clear.

167The boundary condition limx1→±∞ U(t, x1) = 0 is also inappropriate. To see this, consider the (phys-
ically natural) situation where ρ is non-negative and possesses a compact support in x1, say supp (ρ) ⊂
[−R,R]. Any solution U of (7.1.4) is then linear on R \ [−R,R]. If U also satisfies the boundary condi-
tion limx1→±∞ U(x1) = 0, it thus has to vanish outside [−R,R]. But since the second derivative of U is
non-negative, this would imply that U vanishes identically.

168From a mathematics point of view, solutions of (7.1.4) and (7.1.8) are only uniquely determined up to
the addition of a constant. However, such a translation of U(t) does not affect the solutions of the Vlasov
equation (7.1.3). By imposing that U is of the explicit form (7.1.6), we fix this additive constant.
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Plane Symmetric Steady States

We now construct suitable steady states of the above system by proceeding in the same way
as in the spherically symmetric case in Section 2.2. This is based on [62, Sc. 2.2].

In the case of a time-independent, plane symmetric potential U0 = U0(x1), the charac-
teristic system associated to the Vlasov equation (7.1.3) is

ẋ1 = v1, v̇1 = −U ′0(x1). (7.1.9)

We leave out the trivial equations for v̄ as it is simply conserved along the characteristic flow.
This illustrates that the “effective dimension” of the phase space is now 2, parametrised
by the variables (x1, v1), compared to the three-dimensional phase space with variables
(r, w, L) in spherical symmetry.169 Another conserved quantity is the particle energy given
by

E(x1, v1) :=
1

2
v2

1 + U0(x1), x1, v1 ∈ R. (7.1.10)

Similar to Definition 2.2.2, we search for stationary solutions which only depend on the
phase space variables (x1, v) through these conserved quantities, i.e.,

f0(x1, v) = ϕ(E(x1, v1), v̄), (x1, v) ∈ R× R3, (7.1.11)

for a suitable ansatz function ϕ. Such f0 is a plane symmetric steady state if f0 and U0 are
related via (7.1.5)–(7.1.6).

Inspired by (2.2.12), we choose ϕ to be of the separated form

ϕ(E, v̄) = Φ(E0 − E)β(v̄), E ∈ R, v̄ ∈ R2. (7.1.12)

Here, β : R2 → [0,∞[ is a continuous function with compact support which is normalised
as follows: ∫

R2

β(v̄) dv̄ = 1. (7.1.13)

As before, E0 ∈ R is the cut-off energy which we determine below. For the energy-
dependency function Φ we consider either the polytropic ansatz

Φ(η) = ηk+, η ∈ R, (7.1.14)

with polytropic exponent k > 1
2 or the King ansatz

Φ(η) = (eη − 1)+, η ∈ R; (7.1.15)

recall that (. . .)+ denotes the positive part of an expression. All of the following also
works for more general steady states. However, in order to understand the basic concepts,
including the differences to the spherically symmetric case, we focus on this class of steady
states here. As discussed in the spherically symmetric setting, (7.1.14) and (7.1.15) are the
most common ansatz functions.

Inserting (7.1.11)–(7.1.13) into (7.1.5) yields the following equation for the stationary
mass density ρ0:

ρ0(x1) :=

∫
R3

f0(x, v) dv =

∫
R

Φ(E0 −
1

2
v2

1 − U0(x1)) dv1 =

=
√

2

∫ E0−U0(x1)

0

Φ(η)√
E0 − U0(x1)− η

dη, x1 ∈ R; (7.1.16)

169Although L is conserved along the characteristic flow of spherically symmetric equilibria, the remaining
system (2.2.93) for (r, w) depends on L. This is different from the role of v̄ in the plane symmetric setting
because the system (7.1.9) is independent of the conserved value of v̄.
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the latter integral is meant to vanish if U0(x1) ≥ E0. The relation between ρ0 and U0 is
hence given by the function

g : R→ R, g(z) :=

{√
2
∫ z

0
Φ(η)√
z−η dη, if z > 0,

0, if z ≤ 0;
(7.1.17)

more precisely,
ρ0(x1) = g(E0 − U0(x1)), x1 ∈ R. (7.1.18)

To study the regularity of g, we integrate by parts to obtain

g(z) = −2
3
2

∫ z

0
Φ(η) ∂η

[√
z − η

]
dη = 2

3
2

∫ z

0
Φ′(η)

√
z − η dη, z > 0; (7.1.19)

notice that Φ(0) = 0. Hence, g is of a similar form as the respective function in the radial
case, recall (2.2.25), with ` = 0 and Φ being replaced by Φ′. Similar to Lemma 2.2.6, we
thus obtain that g is continuously differentiable on R with g′ > 0 on ]0,∞[; note that k > 1

2
in the polytropic ansatz (7.1.14). Furthermore, in the polytropic case we can again apply
the integral identity (2.2.23) to derive the following explicit representation of g:

g(z) = ck z
k+ 1

2
+ , z ∈ R, (7.1.20)

for some constant ck > 0 depending on the polytropic exponent k. To construct plane
symmetric steady states, we again consider

y := E0 − U0 (7.1.21)

instead of U0. Since U0 shall solve the one-dimensional Poisson equation (7.1.4) with right-
hand side 4πρ0, we arrive at the following equation for y = y(x1):

y′′ = −4π g(y). (7.1.22)

This equation is fundamentally simpler than the respective equation (2.2.35) in the spheri-
cally symmetric setting. It is a simple autonomous ODE for y with conserved quantity

1

2

(
y′
)2

+ h(y), (7.1.23)

where

h(z) := 4π

∫ z

0
g(y) dy, z ∈ R. (7.1.24)

Analysing the level sets of (7.1.23) in the (y, y′)-plane shows that any maximal solution
of (7.1.22) is global in x1. In addition, for every non-constant solution y ∈ C2(R) there exists
a unique x∗ ∈ R s.t. y′(x∗) = 0 < y(x∗). By shifting the x1-variable of such solution, we can
always assume x∗ = 0. Then the resulting solutions are indeed plane symmetric in the sense
of Definition 7.1.1 (a). Moreover, for any such solution there holds limx1→±∞ y(x1) = −∞,
while the limits limx1→∞ y

′(x1) = − limx1→−∞ y
′(x1) exist and are explicitly given by

lim
x1→∞

y′(x1) =

∫ ∞
0

y′′(ξ) dξ = −2π

∫
R
ρ0(ξ) dξ =: −2πM0, (7.1.25)

where ρ0 is defined by y via

ρ0(x1) := g(y(x1)), x1 ∈ R, (7.1.26)
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and ρ0 is obviously plane symmetric. This shows that the non-constant solutions of (7.1.22)
can be parametrised by their total mass M0 > 0. Equivalently, one can also use κ = y(0) >
0 to parametrise the solutions in a similar way as in the spherically symmetric setting;
here, M0 and κ are in one-to-one correspondence via170

2π2M2
0 =

1

2

(
lim
x1→∞

y′(x1)

)2

= h(y(0)), (7.1.27)

recall our choice of x∗ and that h is strictly increasing on ]0,∞[. For ρ0 given by (7.1.26),
we define U0 via (7.1.6). By (7.1.7), U ′0(x1) = 4π

∫ x1

0 ρ0(ξ) dξ for x1 ∈ R, and thus

lim
x1→∞

U ′(t, x1) = 2πM0 = − lim
x1→−∞

U ′(t, x1). (7.1.28)

This shows U0 + y ≡ const. In order to determine E0 ∈ R s.t. (7.1.21) holds, let R0 > 0 be
the unique positive zero of y. Then y(±R0) = 0 and supp (ρ0) = [−R0, R0]. Evaluating U0

at x1 = R0 hence yields

E0 := U0(R0) + y(R0) = U0(R0) = 2π

∫ R0

−R0

(R0 − ξ) ρ0(ξ) dξ = 2πR0M0. (7.1.29)

For any ansatz of the form (7.1.12) and any choice of M0 > 0, the above procedure hence
yields a plane symmetric steady state f0 given by (7.1.11) which is compactly supported in
R× R3 and has total mass M0.171

The Period Function in Plane Symmetry

The particle motions within a plane symmetric steady state f0 as constructed above are
described by the characteristic system (7.1.9). Obviously, the potential U0 is of “single-
well structure” similar to ΨL in the spherically symmetric setting, cf. Lemma 2.2.12. More
precisely, for any E > U0(0) = minR(U0) there exist unique x−(E) < 0 < x+(E) = −x−(E)
s.t.

U0(x±(E)) = E. (7.1.30)

In addition, for x ∈ R, U0(x) < E is equivalent to x−(E) < x < x+(E), and there
holds limE↘U0(0) x±(E) = 0. Next note that the particle energy E defined in (7.1.10) is
a conserved quantity of the characteristic system (7.1.9). The constant solution (x1, v1) ≡
(0, 0) corresponds to the energy value E = U0(0). For every other solution there holds
E > U0(0) and the solution is global and time-periodic with period

T (E) := 2

∫ x+(E)

x−(E)

dx√
2E − 2U0(x)

= 4

∫ x+(E)

0

dx√
2E − 2U0(x)

. (7.1.31)

As in the spherically symmetric case, the properties of these periods are crucial to under-
stand the behaviour of solutions of the plane symmetric Vlasov-Poisson system close to the
fixed underlying steady state f0. Fortunately, the properties of T are fundamentally easier
to analyse in plane symmetry compared to the spherically symmetric case. The following
lemma is based on [62, Lemma 2.6 and Props. 2.7 and 2.8].

170In the case of spherically symmetric steady states, the results from [131] show that κ = y(0) and the
total mass M0 are not in a one-to-one correspondence in general.

171In particular, different from the spherically symmetric setting, we do not need an upper bound on the
polytropic exponent k in order to arrive at a compactly supported steady state, recall Remark 2.2.5 (d).
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Lemma 7.1.2 (Properties of the Period Function in Plane Symmetry). The period func-
tion T : ]U0(0),∞[ → ]0,∞[ defined by (7.1.31) is continuously differentiable and strictly
increasing with

lim
E↘U0(0)

T (E) =
2π√
U ′′0 (0)

=

√
π√

ρ0(0)
=: T (U0(0)). (7.1.32)

Proof. The same arguments as in Lemma A.3.9 show that T is differentiable with derivative
given by

T ′(E) =
1

E − U0(0)

∫ x+(E)

x−(E)

G(x)√
2E − 2U0(x)

dx =
2

E − U0(0)

∫ x+(E)

0

G(x)√
2E − 2U0(x)

dx

(7.1.33)
for E > U0(0), where, in analogy to (A.3.33),

G : R→ R, G(x) :=

{
U ′0(x)2−2(U0(x)−U0(0))U ′′0 (x)

U ′0(x)2 , if x 6= 0,

0, if x = 0.
(7.1.34)

Similar to Lemma A.3.10, it follows that G is continuous; note U0 ∈ C3(R) since g is
continuously differentiable. Hence, the same arguments as in Lemma A.3.1 show that T ′ is
continuous. Next observe that differentiating the numerator of G yields

∂x
[
U ′0(x)2 − 2(U0(x)− U0(0))U ′′0 (x)

]
= −2(U0(x)− U0(0))U ′′′0 (x), x ∈ R. (7.1.35)

By (7.1.4), the third derivative of U0 is given by U ′′′0 (x) = 4πρ′0(x) for x ∈ R, and this
expression is negative for x ∈ ]0, R0[ by (7.1.18) since U ′0 and g′ are both positive on ]0,∞[.
Because G(0) = 0, we hence conclude G > 0 on ]0,∞[ which shows the claimed monotonicity
of T via (7.1.33). The identity (7.1.32) can be proven similarly to Lemma A.4.1.

The reason why the monotonicity of T is so much easier to show here than in the
spherically symmetric setting, cf. Section A.3.3, is that the radial Poisson equation U ′′0 +
2
rU
′
0 = 4πρ0 is replaced by the simpler one-dimensional Poisson equation U ′′0 = 4πρ0 in

plane symmetry. From a physics point of view, this corresponds to the fact that in plane
symmetry, gravity only acts (effectively) in one space dimension.

Linearisation and the Operators

For a fixed steady state f0 as above, we now linearise the plane symmetric Vlasov-Poisson
system around f0. This is based on [62, Sc. 3]. The same arguments as in Chapter 3 show
that the linearised system can be written in the form

∂2
t f + Lf = 0. (7.1.36)

Here, f is the odd-in-v1 part of the plane symmetric, linearised perturbation. More precisely,
g := f(t) : R× R3 → R satisfies

g(x1, v) = −g(x1,−v1, v̄) = −g(−x1, v), (x1, v) ∈ R× R3; (7.1.37)

notice that any function which is odd in v1 and which satisfies the reflection symmetry (7.1.2)
is also odd in x1. In addition, f(t) has its support inside

Ω0 := {(x1, v) ∈ R× R3 | f0(x1, v) > 0} = {(x1, v1) ∈ R× R | E(x1, v1) < E0} × {β > 0}.
(7.1.38)
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The linearised operator L is, in analogy to (1.2.9), of the form

L = −T 2 −R, (7.1.39)

with transport operator
T := v1 ∂x1 − U ′0(x1) ∂v1 (7.1.40)

and response operator given by

Rg(x1, v) := 4π |ϕ′(E, v̄)| v1 jg(x1), (x1, v) ∈ Ω0, (7.1.41)

where

jg(x1) :=

∫
R
v1 g(x1, v) dv, x1 ∈ R, (7.1.42)

for suitable g : R× R3 → R. As before, we use the notation ϕ′ := ∂Eϕ.
In order to study the behaviour of solutions of (7.1.36), we analyse the spectrum of the

linearised operator L (which first has to be defined in a mathematical rigorous manner). For
instance, a positive eigenvalue of L again corresponds to an oscillating solution of (7.1.36).
Similar to Definition 4.2.3, the underlying function space for this spectral analysis is

H := {f : Ω0 → R measurable & plane symmetric a.e. | ‖f‖H <∞}, (7.1.43)

where

‖f‖2H :=

∫
Ω0

1

|ϕ′(E, v̄)|
|f(x1, v)|2 d(x1, v), (7.1.44)

and f being plane symmetric a.e. means that (7.1.2) holds a.e. on Ω0. Moreover, note that
by the choice of the energy-dependency function Φ of the steady state, ϕ′(E, v̄) < 0 on Ω0.
With the canonical inner product H becomes a Hilbert space. Furthermore, in analogy
to (4.2.6), we denote the odd-in-v1 subspace of H by

H := {f ∈ H | f is odd in v1 a.e.}; (7.1.45)

this means that for any f ∈ H, the equations (7.1.37) hold a.e. on Ω0. Analogous to
Definitions 4.2.5 and 4.2.8, the operators T and T 2 can be defined in a suitable weak
sense on dense subsets D(T ) and D(T 2) of H, respectively, while R can be defined on the
entire space H. In particular, notice that T 2 and R both map functions from H back into
this space. Accordingly, the suitable domain of definition of L is D(L) := D(T 2) ∩H. The
properties of T , T 2,R, and L can be analysed using the same techniques as in the spherically
symmetric case. Crucial for this is that we can again reparametrise Ω0 \ ({(0, 0)} ×R2) by
introducing action-angle type variables (θ,E, v̄) ∈ S1 × I0 × {β 6= 0}, where

I0 :=]U0(0), E0[ (7.1.46)

denotes the energy support of the steady state. In particular, v̄ is part of the action variables.
As in Section 4.3, one can then prove that −T 2

∣∣
H : D(L)→ H is self-adjoint and possesses

the spectrum

σ(−T 2
∣∣
H) = σess(−T 2

∣∣
H) =

(
4πN

T ([U0(0), E0])

)2

; (7.1.47)

the additional factor 4 (compared to the spherically symmetric case, cf. Proposition 4.3.19)
comes from the fact that S1 × I0 × {β 6= 0} 3 (θ,E, v̄) 7→ sin(2πnθ) δ(E∗,v̄∗)(E, v̄) (for-
mally) satisfies the reflection symmetry (7.1.2) only for even n ∈ N. The response operator
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R
∣∣
H : H → H is bounded, symmetric, and relatively (T 2

∣∣
H)-compact. Thus, the linearised

operator L : D(L)→ H is self-adjoint with essential spectrum given by

σess(L) = σ(−T 2
∣∣
H) =

(
4πN

T ([U0(0), E0])

)2

. (7.1.48)

Moreover, a plane symmetric analogue of Antonov’s coercivity bound holds, which implies
σ(L) ⊂ ]0,∞[, i.e., the underlying steady state is linearly stable. All these results (and
further ones) are proven in more detail in [62, Scs. 4.2, 5.2, and 7.2].

A Birman-Schwinger-Mathur Principle

In order to study the existence of eigenvalues of L in the essential gap

G :=

]
0,

16π2

sup2
I0(T )

[
= ]0,min(σess(L))[, (7.1.49)

one can derive a Birman-Schwinger-Mathur principle in plane symmetry by repeating the
arguments from Chapter 5. More precisely, the plane symmetric analogue of the Mathur
operator, cf. Definition 5.2.4 and Proposition 5.2.12, is

Mλ : L2([−R0, R0])→ L2([−R0, R0]), MλF (x) :=

∫ R0

−R0

Kλ(x, y)F (y) dy, (7.1.50)

for λ ∈ G, with integral kernel Kλ : [−R0, R0]2 → R defined by

Kλ(x, y) := 32π

∞∑
n=1

∫
I0(x)∩I0(y)

Φ′(E0 − E)

T (E)

sin(4πn θ(r, E, L)) sin(4πn θ(s, E, L))
16π2n2

T (E)2 − λ
dE,

(7.1.51)
where

I0(x) := {E ∈ I0 | x−(E) < x < x+(E)}, x ∈ R. (7.1.52)

We omit the calculations leading to this operator here; they can be found in [62, Sc. 8.1].
The number of eigenvalues of L in G is related to the Mathur operator in the same ways as
in Theorems 5.3.1 and 5.3.3. Fortunately, the criterion from Theorem 5.3.1 is now easier to
verify than in the spherically symmetric case. This leads to the following result, which is
based on [62, Thm. 8.13].

Theorem 7.1.3 (Existence of Oscillatory Modes in Plane Symmetry). Let f0 be a plane
symmetric steady state as constructed above, with an energy dependency function Φ which
is either polytropic (7.1.14) with polytropic exponent 1

2 < k ≤ 1 or of King type (7.1.15).
Then the associated linearised operator L possesses an eigenvalue in the essential gap G,
corresponding to an oscillating solution of the linearised system (7.1.36).

Proof. The same arguments as in the proof of Theorem 5.4.1 yield

M ≥ c
∫ E0

E0−ε

Φ′(E0 − E)

supI0(T )− T (E)
dE (7.1.53)

for sufficiently small ε, c > 0 depending on the steady state. The number M is defined
similarly to (5.3.1); as discussed above, M > 1 would imply the existence of an eigenvalue
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of L in G. By Lemma 7.1.2, supI0(T ) = T (E0) and T ′ is continuous on ]U0(0),∞[. Hence,
there exists a constant C > 0 s.t.

sup
I0

(T )− T (E) ≤ C(E0 − E), E ∈ [E0 − ε, E0]. (7.1.54)

Inserting this estimate into (7.1.53) yields

M ≥ c
∫ E0

E0−ε

Φ′(E0 − E)

E0 − E
dE = c

{
k
∫ ε

0 η
k−2 dη, Φ polytropic with 1

2 < k ≤ 1∫ ε
0
eη

η dη, Φ of King type
=∞,

(7.1.55)
and we conclude.

It is mainly due to two reasons why the criterion for the existence of oscillatory modes is
easier to verify here than in the spherically symmetric case. Firstly, we know by Lemma 7.1.2
that the period function T attains it maximal value on I0 at the largest energy value E0.
In Theorem 5.4.1, we have to assume the analogous property (5.4.2) in spherical symmetry.
As already discussed above, this simplification in plane symmetry comes from the fact that
gravity (effectively) acts in only one space dimension here. Secondly, the effective action
space in plane symmetry is only one-dimensional, parametrised by the variable E, while it
is two-dimensional in spherical symmetry with variables (E,L). This leads to the action
integrals to be more singular in plane symmetry, more precisely, the integral on the right-
hand side of (7.1.53) is infinite for a larger range of k compared to (5.4.10). Nonetheless,
in the above theorem we also have to assume that the steady state is not too regular.

A natural next question in the plane symmetric setting is whether one can show the
absence of eigenvalues of L for smoother steady states. This question is open. In order
to proceed as in Sections 6.4 and 6.5, one always needs that certain constants given by
the steady state are sufficiently small. This smallness does not seem to be much easier to
establish in plane symmetry than it is in spherical symmetry.

7.2 The Vlasov-Poisson System With Single L Around a
Point Mass

In this section we consider the radial Vlasov-Poisson system around a fixed point mass
M > 0 from Section 6.1 with the additional assumption that all particles have the same L-
value, i.e., the modulus of the angular momentum (vector) is the same for all particles. There
is no physical motivation behind this assumption, but a mathematical one: Eliminating the
L-dependency simplifies some parts of the analysis. Let L > 0 be the fixed L-value of all
particles.172 The radial Vlasov-Poisson system with single L around a point mass is

∂tf + w ∂rf −
(
U ′ +

M

r2
− L

r3

)
∂wf = 0, (7.2.1)

U ′(t, r) =
4π

r2

∫ r

0
s2ρ(t, s) ds, lim

r→∞
U(t, r) = 0, (7.2.2)

ρ(t, r) =
π

r2

∫ ∞
0

∫
R
f(t, r, w) dw. (7.2.3)

172Due to the fixed point mass we have to exclude particles flying through the spatial origin. This is
achieved by assuming L to be non-zero.
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Here the phase space density function f = f(t, r, w) no longer depends on L; the dimension
of phase space is reduced from 3 to 2 by fixing L. Throughout this section we follow [61],
where the same system was used to develop the methods presented in Chapter 6. As we
saw in Chapter 6, methods from the situation with single L can indeed be generalised to
the full spherically symmetric case. Nonetheless, fixing L is still a simplification because we
no longer have to pay attention to the L-dependencies – allowing us to focus more on the
key concepts. Moreover, fixing L yields a system which, in some aspects, is closer to the
full radial system than the plane symmetric system introduced in the previous section. The
reason for this is that gravity is still described by the (radial,) three-dimensional Poisson
equation (7.2.2) instead of the one-dimensional equation (7.1.4). We further note that
although we only consider the situation of a single L with a point mass here, it is also
possible to make the same simplification without a point mass. In fact, the existence of
radial steady states and their properties with the single L-value L = 0 (without a point
mass) is analysed in [129, Kap. 5]. The particles in such steady states have pure radial
motions, cf. Remark 2.2.17 (a).

Similar as in Section 6.2 we search for a steady state of the system (7.2.1)–(7.2.3) of the
form

f0(r, w) = ϕ(E(r, w)), (r, w) ∈ ]0,∞[× R, (7.2.4)

where, as before,

E(r, w) :=
1

2
w2 + U0(r) +

L

2r2
− M

r
=:

1

2
w2 + Ψ(r), (r, w) ∈ ]0,∞[× R, (7.2.5)

is the particle energy. The function f0 is a steady state provided U0 is the gravitational
potential induced by f0 via (7.2.2)–(7.2.3). As in Section 6.2 we restrict the discussion to
polytropic ansatz functions of the form

ϕ(E) := εϕ̃(E) := ε(E0 − E)k+, E ∈ R, (7.2.6)

where E0 < 0 is the cut-off energy, ε > 0 is a smallness parameter, and k is the polytropic
exponent satisfying

k >
1

2
. (7.2.7)

By the same arguments as in Proposition 6.2.2, it follows that for any value of the parameter

κ ∈ ]− M2

2L
, 0[ (7.2.8)

there exists a steady state of the form (7.2.4) with E0−U0(0) = κ which has finite mass and
compact support in phase space. In particular, the support is bounded uniformly in ε since
the steady states are “trivially bounded” by the assumption κ < 0, recall Remark 6.2.1.
Furthermore, for fixed k and κ the convergence statements analogous to Proposition 6.2.6
apply as ε → 0. For a more detailed discussion of the existence of steady states and their
properties we refer to [61, Scs. 3.1–3.3 and App. A].

Linearising the system (7.2.1)–(7.2.3) around a steady state f0 as above leads to the
following system for the odd-in-w part f = f(r, w) = −f(r,−w) of the linearised perturba-
tion:

∂2
t + Lf = 0, (7.2.9)

where the linearised operator L is again of the form

L = −T 2 −R. (7.2.10)
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Here,

T := w ∂r −Ψ′(r) ∂w (7.2.11)

is the transport operator and

Rg(r, w) := 4π2 |ϕ′(E)| w
r2

∫
R
w̃ g(r, w̃) dw̃ (7.2.12)

defines the gravitational response operator for suitable functions g on (the interior of) the
steady state support

Ω0 := {(r, w) ∈ ]0,∞[× R | f0(r, w) > 0} = {(r, w) ∈ ]0,∞[× R | E(r, w) < E0}. (7.2.13)

Similar as before, the underlying Hilbert space for the spectral analysis of L is

H := {f : Ω0 → R measurable | ‖f‖H <∞}, (7.2.14)

where

‖f‖2H := 4π2

∫
Ω0

1

|ϕ′(E)|
|f(r, w)|2 d(r, w). (7.2.15)

The analysis of the operators T , T 2, R, and L can be performed in the same way as in
Section 6.3, which is in turn based on Chapters 4 and 5, and yields the analogous results as
above. We do not elaborate on this here, but refer to [61, Scs. 3.4 and 5.1] for a (slightly)
more detailed discussion. We will use the same notation as before for the objects occurring
in this analysis.

Based on this we can now apply the methods from Sections 6.4 and 6.5 to study the
absence/presence of eigenvalues of L for steady states in the regime 0 < ε� 1. This leads
to the following result which originates from [61, Thm. 1.2].

Theorem 7.2.1 (Oscillations vs. Damping for Steady States With Single L Around a Point
Mass). For fixed M,L > 0 let f0 be a steady state of the radial Vlasov-Poisson system with
single L around a point mass as constructed above. We further require that the parameter κ
satisfies173

− 2−
2
3
M2

2L
< κ < 0. (7.2.16)

Then there exists ε0 > 0, depending on κ and the polytropic exponent k > 1
2 , s.t. the

following assertions hold if the smallness parameter ε > 0 of the steady state satisfies
0 < ε < ε0:

(a) If 1
2 < k ≤ 1, there exists a positive eigenvalue of L in the essential gap corresponding

to an oscillating solution of the linearised system (7.2.9).

(b) If k > 1, any solution R 3 t 7→ f(t) ∈ D(L) of the linearised system (7.2.9) launched
by initial data (f(0), ∂tf(0)) ∈ D(L)× (D(T ) ∩H) is damped in the following way:

lim
T→∞

1

T

∫ T

0
‖U ′T f(t)‖

2
2 dt = 0. (7.2.17)

173The additional assumption (7.2.16) on the range of the parameter κ is only used to show the damping
result in part (b). For part (a) it suffices if κ satisfies (7.2.8).
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Proof. The proof of part (a) is similar to the one of Theorem 7.1.3: We first proceed as in
the proof of Theorem 5.4.1 to derive the following estimate on the number M characterising
the presence of an eigenvalue of L in the essential gap:

M ≥ c
∫ E0

E0−ι

|ϕ′(E)|
Tmax − T (E)

dE, (7.2.18)

where c, ι > 0 are (small) ε-independent constants and Tmax := sup] min(Ψ),E0[(T ) denotes
the maximal period in the steady state. Similar to Proposition 6.2.6 (e) it follows that
Tmax = T (E0) for 0 < ε � 1. Hence, together with the usual regularity of the period
function T we obtain

M ≥ c
∫ E0

E0−ι

|ϕ′(E)|
E0 − E

dE = ckε

∫ ι

0
ηk−2 dη =∞, (7.2.19)

which concludes the proof of part (a).
Part (b) follows by similar, but simpler arguments as in Theorem 6.6.1: We first

use (7.2.16) to infer, for 0 < ε � 1, that any isolated eigenvalue of L has to lie below
the bottom of the essential spectrum of L. Then, applying the Birman-Schwinger-Mathur
principle once again shows that no such eigenvalue exists by estimating M in the same way
as in Theorem 6.4.1. Lastly, the absence of embedded eigenvalues of L follows in the same
way as in Theorem 6.5.5. Note that in the proof of Theorem 6.5.5, all major steps – like
integrating by parts – are always performed in the E-integral and can thus be adapted to
the present setting.

It should be emphasised that the above theorem shows a sharp dichotomy between
oscillation(s) and damping for polytropic steady states. While increasing the polytropic
exponent k, the transition from oscillation to damping takes places precisely at the point
where the steady states (7.2.4) become continuously differentiable at the boundary ∂Ω0 of
their phase space support.

To conclude this section, let us compare the above theorem to the results obtained in
the full radial setting in Chapter 6. On the one hand, the class of steady states for which
we can show damping is effectively the same. On the other hand, there are two main
reasons why we can now prove the existence of oscillatory modes for “all” other polytropic
steady states while this was more difficult in the full radial setting: Firstly, fixing L leads
to the action space to be only one-dimensional here. As a consequence, the integral on the
right-hand side of (7.2.18) gets infinite for a larger range of k compared to the respective
integral (5.4.10) in the full radial case. The same mechanism was also present in the plane
symmetric setting in the previous section. Secondly, fixing L allows us to conclude where
the period function T attains its maximal value on the steady state support by using that T
is energy-increasing for 0 < ε � 1. In the full radial case, this is more difficult due to the
additional L-dependency of the period function, recall Remark 6.4.2.

7.3 The Relativistic Vlasov-Poisson System

The relativistic Vlasov-Poisson system is

∂tf +
v√

1 + |v|2
· ∂xf − ∂xU · ∂vf = 0, (7.3.1)

∆U = 4πρ, (7.3.2)
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ρ(t, x) =

∫
R3

f(t, x, v) dv, (7.3.3)

lim
|x|→∞

U(t, x) = 0. (7.3.4)

Compared to the (non-relativistic) Vlasov-Poisson system (1.1.2)–(1.1.5), only the Vlasov
equation (7.3.1) changed. It now corresponds to the characteristic system

ẋ =
v√

1 + |v|2
, v̇ = −∂xU(t, x). (7.3.5)

In particular, the (modulus of the) velocity ẋ of any particle is always smaller than the speed
of light, which is normalised to unity here. It is this boundedness property that gives the
system its name. It should be noted, however, that the system is not “purely relativistic”
since gravity is still given by Newton’s law (7.3.2). The relativistic Vlasov-Poisson system
should hence be thought of as a “hybrid system”. Even though the relativistic Vlasov-
Poisson system is surely not as physically relevant as the pure Newtonian Vlasov-Poisson
system or the fully relativistic Einstein-Vlasov system, it is still natural to first extend the
methods from the Vlasov-Poisson system to the relativistic Vlasov-Poisson system. This
can reveal general difficulties arising in relativistic settings.

For instance, the existence theory of (compactly supported, spherically symmetric)
steady states is very much similar for the relativistic Vlasov-Poisson system than for the
(non-relativistic) Vlasov-Poisson system, cf. [130], but the (non-linear) stability analysis is
conceptionally more difficult in the former setting. We refer to [144, Sc. 4] for a recent
review regarding this issue. Nonetheless, in [59] the non-linear stability of a large class
of steady states of the relativistic Vlasov-Poisson system is proven. This stability result
mainly relies on an analogue of Antonov’s coercivity bound, cf. [59, Lemma 3.4].

To the author’s knowledge, the linearisation of the relativistic Vlasov-Poisson system
has not yet been analysed. We do not attempt to do so here, but simply refer to [102], where
the linearised relativistic Vlasov-Poisson system will be studied in detail, culminating in an
analogue of the Birman-Schwinger-Mathur principle which gives a criterion for the existence
of oscillating modes. Let us just mention here that the linearised system in second-order
formulation is again governed by an operator of the form (1.2.9) and that the structure of
the particle orbits is the same as in the non-relativistic case.

7.4 The Einstein-Vlasov System

In this section we want to discuss a genuinely general relativistic setting, the Einstein-
Vlasov system. This whole section is based on [49]. We further refer to [182] for an even
more detailed discussion than in [49] as well as to [144] for a recent review which also covers
most of the topics we will discuss below.

Using Schwarzschild coordinates to parametrise spacetime and assuming spherical sym-
metry, asymptotic flatness, and a regular centre, the Einstein-Vlasov system reads

∂tf + eµ−λ
v√

1 + |v|2
· ∂xf −

(
λ̇
x · v
r

+ eµ−λ µ′
√

1 + |v|2
)x
r
· ∂vf = 0, (7.4.1)

e−2λ(2rλ′ − 1) + 1 = 8πr2ρf , (7.4.2)

e−2λ(2rµ′ + 1)− 1 = 8πr2pf , (7.4.3)

λ̇ = −4πreλ+µ jf , (7.4.4)
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e−2λ

(
µ′′ + (µ′ − λ′)(µ′ + 1

r
)

)
−e−2µ

(
λ̈+ λ̇(λ̇− µ̇)

)
= 8πqf , (7.4.5)

ρf (t, r) = ρf (t, x) =

∫
R3

√
1 + |v|2 f(t, x, v) dv, (7.4.6)

pf (t, r) = pf (t, x) =

∫
R3

(x · v
r

)2
f(t, x, v)

dv√
1 + |v|2

, (7.4.7)

jf (t, r) = jf (t, x) =

∫
R3

x · v
r

f(t, x, v) dv, (7.4.8)

qf (t, r) = qf (t, x) =
1

2

∫
R3

∣∣∣∣x× vr
∣∣∣∣2 f(t, x, v)

dv√
1 + |v|2

, (7.4.9)

lim
r→∞

µ(t, r) = 0 = lim
r→∞

λ(t, r) = λ(t, 0). (7.4.10)

Here, f = f(t, x, v) = f(t, r, w, L) is the spherically symmetric phase space density of the
configuration under consideration; spherical symmetry and the radial coordinates (r, w, L)
are defined as before, cf. Definition 2.1.1 and Remark 2.1.2. We always assume that f(t)
has compact support. The equation (7.4.1) for f is the Vlasov equation; a dot ˙ denotes
a derivative w.r.t. t. Instead of a gravitational field as in the case of the Vlasov-Poisson
system, gravity is now described by the metric coefficients µ = µ(t, x) = µ(t, r) and λ =
λ(t, x) = λ(t, r) solving the field equations (7.4.2)–(7.4.5). The source terms ρf , pf , jf , and
qf induced by f via (7.4.6)–(7.4.9) are the energy density, radial pressure, particle current,
and tangential pressure, respectively. The boundary conditions (7.4.10) ensure asymptotic
flatness and a regular centre. For (physical and mathematical) background on this system
we refer to [4, 138, 144] and the references therein.

Steady States

In order to construct suitable steady states of the above system we make a similar ansatz
as in (2.2.6):

f0(x, v) = ϕ(E(x, v), L(x, v)) = Φ

(
1− E(x, v)

E0

)
(L(x, v)− L0)`+, (x, v) ∈ R3 × R3.

(7.4.11)
The particle energy E induced by the stationary metric coefficient µ0 is now given by

E(x, v) = eµ0(x)
√

1 + |v|2, (x, v) ∈ R3 × R3, (7.4.12)

and L = L(x, v) is defined as before. For the sake of simplicity, we assume the energy
dependency function Φ to be of the polytropic form

Φ(η) = ηk+, η ∈ R, (7.4.13)

with polytropic exponent 0 < k < ` + 3
2 . Similar as before, 0 < E0 < 1 is the cut-off

energy which is implicitly determined by other parameters. The L-dependency of the ansatz
function is given by the parameter L0 ≥ 0 and the (other) polytropic exponent ` > −1

2 ;
recall our convention (2.2.13). Choosing L0 = 0 = ` leads to the important isotropic steady
states which only depend on the phase space coordinates through the particle energy E.

Similar, but more difficult arguments as in Section 2.2 show that any choice κ > 0 of
the parameter

κ = ln(E0)− µ0(0) (7.4.14)
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results in a compactly supported steady state f0 of the above system, cf. [130]. The param-
eter κ describes how relativistic the steady state is – larger values of κ correspond to more
relativistic equilibria, see [50, Eqn. (2.11)].

Linearisation and the Operators

We again linearise the system (7.4.1)–(7.4.10) around a fixed steady state as constructed
above. A second-order formulation of the linearised system analogous to (1.2.8) has first
been derived in [71, Sc. IVd)], see also [58, Lemma 4.21]. It is of the form

∂2
t f + Lf = 0, (7.4.15)

where f = f(t, x, v) is the odd-in-v part of the linearised perturbation which is again
assumed to be spherically symmetric. The linearised operator is

L := −B2 −R, (7.4.16)

where

B := T + S (7.4.17)

is referred to as the essential operator; this name is due to [182]. It consists of the transport
operator

T := −e−λ0(∂vE · ∂x − ∂xE · ∂v) (7.4.18)

as well as the non-local operator S defined by

Sf(r, w, L) := −4πr|ϕ′(E,L)| e2µ0+λ0

w pf − w2√
1 + w2 + L

r2

jf

 (7.4.19)

for suitable spherically symmetric functions f = f(x, v) = f(r, w, L) on the phase space
support of f0. We again use the notation ϕ′ = ∂Eϕ here. Moreover, λ0 is the metric coeffi-
cient of the steady state and pf and jf are defined as in (7.4.7) and (7.4.8), respectively. The
remaining term on the right-hand side of (7.4.16) is the gravitational response operator R
given by

Rf(r, w, L) := 4π|ϕ′(E,L)| e3µ0
(
2rµ′0 + 1

)
w jf . (7.4.20)

In order to analyse the behaviour of solutions of (7.4.15), we again study the (functional
analytic and) spectral properties of the linearised operator L. It turns out that the proper-
ties of the linearised operator L are more diverse here than for Vlasov-Poisson system. This
is particularly evident in the fact that linear stability now depends on the parameter κ.
More precisely, for a fixed isotropic ansatz L0 = 0 = ` with polytropic exponent 0 < k < 3

2 ,
there holds the following:

• [60, Thm. 5.1]: If 0 < κ � 1, the steady state is linearly stable in the sense that a
coercivity estimate similar to Antonov’s coercivity bound (Lemma 4.5.6) holds.

• [58, Thm. 4.3]: If κ � 1, the steady state is linearly unstable in the sense that L
possesses a negative eigenvalue corresponding to an exponentially growing solution of
the linearised system (7.4.15).
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Hence, in addition to the existence of positive eigenvalues corresponding to oscillating so-
lutions of the linearised system (7.4.15), it is now necessary to (first) study the existence of
negative eigenvalues of the linearised operator L.174

To analyse the linearised operator L, it is convenient to proceed as in Chapter 4 and
start by studying the (only) unbounded part of L, the squared transport operator T 2.
However, when trying to apply the methods from Section 4.3 to the transport operator
in the relativistic setting, one immediately encounters a major obstacle: In general, it
is unknown whether the (analogue of the) effective potential has the single-well structure
that ΨL has in the Newtonian case, recall Lemma 2.2.12 and Remark 2.2.13. The single-well
structure, in turn, is necessary to introduce action-angle type variables as in Section 4.3.1.
For a detailed discussion of the presence of the single-well structure for steady states of
the Einstein-Vlasov system, including a formal definition of the property, we refer to [49,
Sc. 3.1]. In particular, it follows by [49, Lemma 3.2] and [60, Cor. 3.2] that the single-well
structure is present for isotropic steady states which are not too relativistic, i.e., L0 = 0 = `
and 0 < κ � 1. Numerical simulations clearly indicate, however, that the single-well
structure is also present for a much larger class of steady states, cf. [182, Sc. 2.4.2].

Under the assumption that the single-well structure is present, one can proceed as in
Section 4.3 to prove that T 2 is self-adjoint175 and determine its essential spectrum, cf. [49,
Prop. 5.1 and Remark 6.3] as well as [182, Thm. 4.3.18]. Here we always mean that T 2 acts
only on odd-in-v functions and require that it is defined on the “right” domain of definition.
Using that the non-local operators S and R are both bounded and relatively compact w.r.t.
the transport part, cf. [182, Lemmas 4.3.12, 4.3.14, and 4.3.15], it can then be deduced
that B2 and L are self-adjoint with

σess(L) = σess(−B2) ⊂ σess(−T 2), (7.4.21)

again assuming that the operators act only on odd-in-v functions and are defined on a suit-
able domain of definition, cf. [49, Lemma 6.2 and Remark 6.3] as well as [182, Thm. 4.3.18].

Oscillating Solutions

Assume that (the spectrum of) L is positive. By the stability result cited above and [182,
Thm. 5.1.4], this is, e.g., the case if the steady state is isotropic and 0 < κ� 1. A natural
question is whether one can derive an analogue of the Birman-Schwinger-Mathur principle
to characterise the presence of eigenvalues below inf(σess(L)). Such an eigenvalue would
again correspond to an oscillating solution of the linearised system (7.4.15). However, when
trying to adapt the methods from Chapter 5 to the present setting, a major difficulty arises:
Instead of having to compute (−T 2 − λ)−1, which is rather easy using action-angle type
variables, recall Lemma 4.3.18, we now have to compute (−B2 − λ)−1. The latter is very
challenging due to the additional non-local term S contained in B, and it has not (yet) been
achieved. One way to overcome this issue might be to introduce a wave operator relating B
to T . For now, showing the presence of oscillating solutions via a Birman-Schwinger-Mathur
principle remains open.

Despite all the additional difficulties that the Einstein-Vlasov system brings with it
compared to the Vlasov-Poisson system, there is a (recently developed) way of showing the
existence of certain oscillating solutions which only works in the relativistic setting: For a

174We refer to [71, Sc. IVf)] for a discussion regarding the effects of a zero eigenvalue of L and otherwise
neglect this aspect here.

175Proving the skew-adjointness of T and the self-adjointness of T 2 can, in fact, also be done without using
action-angle type variables or the single-well structure, cf. Remark 4.3.14 and [147].
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fixed isotropic ansatz L0 = 0 = ` with polytropic exponent 0 < k < 3
2 , the linear stability

results cited above imply inf(σ(L)) > 0 for small κ > 0 and inf(σ(L)) < 0 for large κ.
Hence, assuming that the bottom of the spectrum of L = Lκ changes continuous in κ, there
exists κ0 > 0 s.t. inf(σ(Lκ0)) = 0 as well as inf(σ(Lκ)) > 0 for 0 < κ < κ0. Under the
additional assumption that inf(σess(Lκ)) is always positive and continuous in κ, we deduce
0 < inf(σ(Lκ)) < inf(σess(Lκ)) for κ < κ0 with κ0−κ� 1. For such κ, inf(σ(Lκ)) has to be
an eigenvalue of L = Lκ corresponding to an oscillating mode. These arguments originate
from [182, Ch. 6]. In particular, the continuity assumptions on the spectra of L are verified
in [182] for suitable families of equilibria.

Steady States Surrounding a Black Hole

In the above discussion, it became clear that the single-well structure is crucial for the
spectral analysis of the linearised operator L. One class of steady states where this property
can be rigorously verified can be obtained in a perturbative regime similar to the one
from Chapter 6. Concretely, we consider a shell of Vlasov matter surrounding a fixed
Schwarzschild black hole. The system analogous to (7.4.1)–(7.4.10) including such a black
hole is stated in [49, Sc. 1.1]. As in Section 6.2, one can construct compactly supported
steady states of this system of the form (7.4.11) with sufficiently large176 L0 > 0 and an
additional smallness parameter ε > 0. Choosing 0 < ε� 1 leads to stationary shells which
are small (compared to the fixed black hole) in a similar way as in Proposition 6.2.6 (a).
In this regime, the single-well structure can be rigorously proven. We refer to [49, Scs. 2
and 3] for proofs of these properties. A different approach to construct small steady states
surrounding a Schwarzschild black hole is pursued in [72].

A Birman-Schwinger-Mathur Principle for Linear Stability

As discussed above, it is unclear whether one can derive a version of the Birman-Schwinger-
Mathur principle to characterise the presence of eigenvalues below inf(σess(L)) > 0. How-
ever, it is possible to derive such a principle for the existence of non-positive eigenvalues
of L. The latter is easier because instead of (−B2 − λ) with λ > 0 one has to invert B2.
This is possible in a semi-explicit way using action-angle type variables, cf. [49, Sc. 5.2.2].
In particular, we again have to assume the single-well structure of the effective potential.
By proceeding similarly to Chapter 5, we can then translate the existence of non-negative
eigenvalues of L into the existence of an eigenvalue ≥ 1 of a suitable Hilbert-Schmidt oper-
atorM : L2([0,∞[)→ L2([0,∞[), cf. [49, Prop. 6.20 and Thm. 6.22]. Moreover, there holds
a Birman-Schwinger type bound similar to Theorem 5.3.3 bounding the number of negative
eigenvalues by a suitable norm of the integral kernel associated to M, cf. [49, Thm. 6.24].

The criterion for the absence of non-positive eigenvalues of L can be verified in the
perturbative regime described above. We hence conclude the linear stability – in the sense
of [49, Def. 4.4] – of sufficiently small stationary shells surrounding a Schwarzschild black
hole, cf. [49, Thm. 7.1].

176More precisely, L0 has to be larger than twelve times the squared mass of the fixed black hole to ensure
that the steady state is bounded away from the event horizon of the black hole.
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Chapter 8

Numerical Experiments

In this chapter we analyse and visualise several of the quantities we encountered in our
mathematical studies via numerical simulations. We start with the steady states and the
(radial) period functions associated to them in Sections 8.1 and 8.2. Subsequently, in
Sections 8.3 and 8.4, we numerically simulate the linearised Vlasov-Poisson system and
the (non-linearised) Vlasov-Poisson system. The general aim of this chapter is to get an
impression of which statements about solutions of the Vlasov-Poisson system close to steady
states are true and how the theory developed here can help to prove them rigorously.

Throughout this chapter, we only consider the setting from Chapters 2–5, i.e., spherical
symmetry without a point mass, as it is the most relevant one from a physics point of view.
Straight-forward modifications of our code yield simulations of the spherically symmetric
setting with a point mass (cf. Section 6.1), the plane symmetric setting (cf. Section 7.1), the
single-L setting with a point mass (cf. Section 7.2), or the relativistic Vlasov-Poisson system
(cf. Section 7.3). More modifications would be necessary to obtain numerical simulations
of the Einstein-Vlasov system (cf. Section 7.4).

The code we use here is newly written. It is based on the codes used in [48, 50] to
simulate the Einstein-Vlasov system, which are in turn based on the codes used earlier
in [5, 132]. We will briefly outline our numerical methods at the beginning of each of the
following sections. We refrain from providing more detailed descriptions and instead make
our code publicly available via the following link:

https://github.com/c-straub/radVP

The code is written in C++ in an object-oriented way. We have tried to keep the code as
simple as possible, and in particular have not used any specialised programming library, to
make it understandable for less programming experienced readers as well. The simulations
– in particular, the numerically expensive ones in Sections 8.3 and 8.4 – were run on the
supercomputers provided by the Keylab HPC of the University of Bayreuth. All figures in
this chapter (as well as Figure 1.1.1) were created using gnuplot.177

We will state the main findings of this chapter not as theorems, propositions, or lem-
mas, but as observations. Any such observation is based on numerical simulations which
we describe before stating the observation. As a caveat, we emphasise that each of the
observations might be distorted by the numerical methods chosen, possible programming
errors, our choices of numerical parameters, our choices of states/quantities/cases to con-
sider, our interpretation of the data, or a combination of these factors. We sincerely hope
that our extensive testing of the program during its development and a thorough analysis
of the obtained data has minimised these effects.

177We further used the online tool https://www.iloveimg.com/compress-image to compress all images.
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8.1 Numerics of Steady States

In this section we numerically analyse the steady states introduced in Section 2.2 and the
(macroscopic) quantities associated to them. Here, the aim is not to gain new insights, but
rather to reinforce our understanding of steady states by visualising them in various ways.
We study the shapes of macroscopic quantities like the mass density ρ0 and gravitational
potential U0 as well as “global” quantities like the total mass M0 and maximal radius Rmax.
Other steady state quantities which are more tied to the particle motions, like the effective
potential ΨL or the (E,L)-support D0, will be analysed in Section 8.2.

The Numerical Method

For a prescribed ansatz of the general form (2.2.12) and a prescribed parameter κ > 0,
we compute a steady state by solving the integro-differential equation (2.2.35) with initial
condition (2.2.36). This is implemented numerically via the midpoint method with radial
step size ≤ 10−6. The function g defined by (2.2.25) is evaluated by computing the integral
via Simpson’s rule. In the polytropic case, we instead use the explicit formula (2.2.29). Once
a numerical solution y of (2.2.35)–(2.2.36) is found, the steady state and the (macroscopic)
quantities associated to it are defined as described in Proposition 2.2.9. A similar algorithm
for computing steady states of the Vlasov-Poisson system is used in the numerical study [132]
and in the context of the Einstein-Vlasov system in [6, 48, 50].

Families of steady states are calculated by executing several calls of the above algorithm
in parallel using the Pthreads API in C++.

The Isotropic Polytropic Steady State k = 1 = Rmax

We first consider a single steady state with isotropic polytropic equation of state (2.2.18).
For the sake of simplicity, we choose the polytropic exponent k = 1 resulting in a(n affine)
linear dependence of the phase space density f0 on the particle energy E. The parameter κ
is chosen s.t. the resulting steady state is radially supported on the unit interval, i.e.,
Rmax = 1. This is possible by the scaling laws from Appendix B. We denote this κ-value
by κ∗; numerical computations yield κ∗ ≈ 0.614. Several macroscopic quantities associated
to this steady state are depicted in Figure 8.1.1. In the course of this chapter, we will always
use this steady state as a prototype for the numerical analysis.

Isotropic Polytropic Steady States

Let us next consider general isotropic polytropic steady states (1.2.3) with polytropic ex-
ponents 0 ≤ k < 7

2 . Because the steady states become more and more elongated as the
polytropic exponent k approaches 7

2 , we always restrict ourselves here to k ≤ 3.2. For
every such ansatz, we again choose the parameter κ > 0 s.t. Rmax = 1; this is possible
by Appendix B.178 These values κ∗ as well as the values of the total mass of the resulting
steady states are depicted in Figure 8.1.2 as functions of the polytropic exponent k. The
mass densities and gravitational potentials of a few of these steady states are plotted in
Figure 8.1.3.

In Figure 8.1.4 we plot the (R,M)-diagrams for some selected isotropic polytropic ansatz
functions, i.e., the values of Rmax and M0 for steady states with a fixed ansatz function and
different values of κ > 0. The plots match the scaling law (B.0.11) to high accuracy. As

178We note that the scaling laws (B.0.8) and (B.0.10) for the maximal radius and the total mass of steady
states, respectively, also hold in the case k = 0.
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Figure 8.1.1: Macroscopic quantities associated to the isotropic polytropic steady
state (1.2.3) with polytropic exponent k = 1 and Rmax = 1. The four panels show the
mass density ρ0, the radial mass density r 7→ 4πr2ρ0(r), the gravitational potential U0, and
the local mass m0, respectively.

Figure 8.1.2: The top panel shows the values κ∗ leading to Rmax = 1 for the isotropic
polytropes as a function of k. The bottom panel shows the values of the total mass M0 of
the resulting steady states.

an aside, we note that we used κ-values of up to 200 in Figure 8.1.4. Steady states with
large κ-values are generally more difficult to compute numerically because g(y(r)), and thus
ρ0(r), cf. (2.2.27), attains large values for r ≈ 0 in this case. Nonetheless, even for such
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Figure 8.1.3: Macroscopic quantities associated to the isotropic polytropes (1.2.3) with
polytropic exponents k ∈ {0, 1

2 , 1,
3
2 , 2,

5
2 , 3} and Rmax = 1. The top panel shows the mass

densities ρ0 and the bottom panel the gravitational potentials U0.

large values of κ, the numerics remain accurate.

Figure 8.1.4: (R,M)-diagrams for the isotropic polytropes with polytropic exponents k ∈
{0, 1

2 , 1,
3
2 , 2,

5
2 , 3}, i.e., the values of the maximal radius Rmax and the total mass M0 of the

steady states with fixed equation of state and different values of κ > 0. See [129, Abb. 3.2]
for a related figure.
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King Models

We next consider the King models (1.2.4) with different values of the parameter κ > 0.
The mass densities and gravitational potentials of a few of these steady states are plotted
in Figure 8.1.5. Notice, in particular, the very large values of ρ0 close to the spatial origin
r = 0 in the case of large κ. They are due to the exponential King ansatz function Φ, which
leads to g defined by (2.2.25) to grow rather fast.

Figure 8.1.5: Macroscopic quantities for the King models (1.2.4) with parameter κ ∈
{1

2 , 1, 2, 4, 8, 12, 16}. The top panel shows the mass densities ρ0 in a logarithmic scale and
the bottom panel the gravitational potentials U0.

As mentioned several times before, in the case of King’s equation of state (2.2.19), a
scaling law like (B.0.11) does not hold. This qualitative difference between polytropes and
King models can be seen quite clearly in the (R,M)-diagrams: Unlike the monotonic curves
in the polytropic case, cf. Figure 8.1.4, the (R,M)-diagram is a spiral for King’s equation
of state, see Figure 8.1.6. This spiral structure is proven rigorously in [131] and accurately
reproduced by our numerics. It should be noted again that large κ-values of up to 30 –
leading to very large ρ0(0)-values – are used in Figure 8.1.6. For the numerics to work
accurately in this regime, we have (immensely) reduced the radial step size in the steady
state computation for large κ.

Moreover, as an illustrative support of the discussion from Remark 2.2.10 (c), the
dependence of the cut-off energy E0 on the parameter κ in the case of King’s equation
of state is visualised in Figure 8.1.7. It is evident from this figure that the mapping
]0,∞[ 3 κ 7→ E0 ∈ ]−∞, 0[ is neither injective nor surjective for King’s equation of state.

Anisotropic Polytropic Steady States with L0 = 0

Let us return to polytropic equations of state (2.2.17). Unlike before, however, we now
consider anisotropic steady states. We start with the situation where there is no inner radial
vacuum region, i.e., L0 = 0 = Rmin. Note that, due to the assumption (ϕ4), such steady
states are not included in the analysis of Chapters 4–5. Nevertheless, they are interesting
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Figure 8.1.6: The black curve is the (R,M)-diagram of the King models, i.e., the values of
the maximal radius Rmax and the total mass M0 of steady states with King’s equation of
state (2.2.19) and different values of κ ∈ [ 1

10 , 30]. As κ increases, one moves into the spiral.
The red crosses mark the positions of the κ-values {1

2 , 1, 2, 4, 8, 12, 16} used in Figure 8.1.5.
Similar figures can be found in [129, Abb. 4.1] and [131, Fig. 1].

Figure 8.1.7: The cut-off energy E0 as a function of the steady state parameter κ for King’s
equation of state (solid line) and the isotropic polytropes with k = 1 (dashed line).

to analyse numerically – in particular, because of the property discussed in Remark A.4.5,
which we will address further in the following section.

The most striking difference of these steady states compared to isotropic ones is that
the mass density vanishes at the spatial origin r = 0. This can be seen in Figure 8.1.8,
where we plot the mass densities and gravitational potentials of some of these steady states.
In this figure, we again chose all κ-values s.t. Rmax = 1. Note that the scaling laws from
Appendix B apply to this class of steady states. The scaling law (B.0.11) for the (R,M)-
diagrams is again accurately reproduced by our numerics, see Figure 8.1.9.
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Figure 8.1.8: Macroscopic quantities associated to anisotropic polytropic steady
states (2.2.17) with L0 = 0 and κ chosen s.t. Rmax = 1. The top left panel shows the
mass densities ρ0 for the polytropic exponents ` = 1 and k ∈ {0, 1, 2, 3, 4, 5, 6}, the bot-
tom left panel the associated potentials U0. The two panels on the right show the same
quantities for polytropic exponents ` = 3 and k ∈ {0, 2, 4, 6, 8, 10, 12}.

Figure 8.1.9: (R,M)-diagrams for some anisotropic polytropes with L0 = 0, i.e., the values
of the maximal radius Rmax and total mass M0 of steady states with fixed equation of
state and different values of κ > 0. The left panel contains the (R,M)-diagrams for the
polytropic exponents ` = 1 and k ∈ {0, 1, 2, 3, 4, 5, 6}, the right panel the diagrams for ` = 3
and k ∈ {0, 2, 4, 6, 8, 10, 12}. See [129, Abb. 3.3] for a figure related to the left panel.

Polytropic Shells

The last class of steady states which we discuss in this section are polytropes (1.2.5) with
L0 > 0. These steady states possess an inner radial vacuum region, i.e., Rmin > 0. The
inner vacuum region is clearly visible in Figure 8.1.10, where we plot macroscopic quantities
associated to a few of such steady states. As L0 increases, the inner vacuum region gets
larger by (2.2.42), while the steady states approach the respective configuration with L0 =
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0 = Rmin (which we discussed and illustrated above) as L0 ↘ 0.

Figure 8.1.10: Macroscopic quantities associated to polytropic steady states (1.2.5) with
κ = 1. The top left panel shows the mass densities ρ0 for the polytropic exponents (k, `) =
(1, 0) and L0 ∈ {0, 1

1000 ,
1

100 ,
1
10 ,

1
2 , 1}, the bottom left panel the associated potentials U0.

The two panels on the right show the same quantities for polytropic exponents (k, `) = (1, 1)
and L0 ∈ {0, 1

100 ,
1
10 ,

1
2 , 1}.

It should also be noted that the scaling laws from Appendix B get lost when choosing
L0 > 0 in the polytropic ansatz. Some (R,M)-diagrams for such polytropes are plotted in
Figure 8.1.11. Qualitatively, however, they do not appear significantly different from the
corresponding curves in the case L0 = 0. We further observed that (R,M)-diagrams for
polytropic equations of state with ` < 0 and L0 > 0 are qualitatively similar to the ones
depicted in Figure 8.1.11.

8.2 Numerics of the Period Function

In this section we analyse the (radial) period function T associated to the steady states from
Section 2.2; recall Definition 2.2.16 for the definition of the period function. The properties
of the period function were essential at several places in this thesis. However, despite the
detailed analysis in Appendix A, we have not yet succeeded in rigorously proving all the
properties of T we need to conclude some desired statements regarding solutions of the
linearised Vlasov-Poisson system. The numerical analysis presented below shall help us to
understand which statements about T are true and which strategies might be helpful to
prove them rigorously. A focus will be on the monotonicity of the period function w.r.t. its
two variables E and L, as this property is particularly important for our applications.

To the author’s knowledge, this is the first numerical analysis of the (radial) period
function associated to steady states of the Vlasov-Poisson system. A related study in the
context of the Einstein-Vlasov system is conducted in [182, Sc. 2.4.2].
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Figure 8.1.11: The solid lines are the (R,M)-diagrams for some polytropic equations of
state, i.e., the values of the maximal radius Rmax and the total mass M0 of steady states
with the fixed equation of state and different values of κ > 0. The dashed lines depict the
respective values of the minimal radius Rmin. The left panel contains the (R,M)-diagrams
for polytropes with k = 1, ` = 0, and L0 ∈ {0, 1

1000 ,
1

100 ,
1
10 ,

1
2 , 1}, the right panel the

(R,M)-diagrams for k = 1, ` = 1, and L0 ∈ {0, 1
100 ,

1
10 ,

1
2 , 1}.

The Numerical Method

We start with a fixed steady state f0 computed numerically as described in the previous
section. Our aim is to compute T (E,L) for (E,L) ∈ A0. Due to the singular integrand,
we do not use the integral representation (2.2.97) of the period function for this task. In-
stead, we compute (the relevant parts of) the solution (R̃, W̃ )(·, E, L) : R → ]0,∞[ × R
of the radial characteristic system (2.2.93) with parameter L satisfying the initial condi-
tion (R̃, W̃ )(0, E, L) = (r+(E,L), 0).179,180 In order to determine T (E,L), we just have to
wait until the velocity component of the solution (R̃, W̃ )(·, E, L) becomes positive since

1

2
T (E,L) = inf{s ≥ 0 | W̃ (s, E, L) > 0}. (8.2.1)

To compute (R̃, W̃ )(·, E, L), we actually do not solve (2.2.93) directly but instead trans-
form (back) to Cartesian coordinates and solve (2.2.2). More precisely, for given radial
coordinates (r, w, L), associated Cartesian coordinates s.t. (2.1.3) holds are, e.g., given by

x = (r, 0, 0), v = (w,

√
L

r
, 0). (8.2.2)

Once the initial condition (r+(E,L), 0, L) is transformed to Cartesian coordinates in this
way, we solve (2.2.2) until x · v = rw becomes positive and obtain the value of T (E,L)
via (8.2.1). The reason why it is more convenient to work in Cartesian coordinates is
because this avoids difficulties arising close to the spatial origin r = 0. This will become
even more important in the following section, where we have to solve the characteristic
system with more general initial data. In addition, using Cartesian coordinates allows us

179Another reason why we do not calculate the integral (2.2.97) but instead compute the solutions of
the characteristic system is because we have to numerically solve the characteristic system anyway when
simulating the linearised Vlasov-Poisson system, cf. Section 8.3.

180The reason why we choose the initial condition (r+(E,L), 0) instead of (r−(E,L), 0) (as in Defini-
tion 2.2.16) is that the effective potential ΨL is rather steep at r ≈ 0. This makes the calculation of r−(E,L)
more difficult and prone to numerical errors compared to r+(E,L), in particular, for small values of L.
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to compute T (E,L) for L = 0 as well, recall Remark 2.2.17 (a). However, the price we pay
is that the six-dimensional system (2.2.2) is, of course, numerically more expensive to solve
than the planar system (2.2.93).

To solve (2.2.2) numerically, we use the classical Runge-Kutta method (henceforth ab-
breviated as “RK4”) with time step size δt ≤ 10−6.

Furthermore, we extend the period function to points (Emin
L , L) lying on the minimal

energy curve by using the extension formula (A.4.11). Extensive testing has shown that
this indeed extends the values of T (E,L) for (E,L) ∈ A0 in a continuous way with high
accuracy. This demonstrates that our numerical computation of the period function T (E,L)
works accurately, even in the near circular regime E ≈ Emin

L .
For several aspects of the following analysis, e.g., to accurately compute the maximum

of T on D0, it is necessary to evaluate the period function on a very large set of (E,L)-pairs.
This is realised by performing several evaluations of the period function in parallel using
the Pthreads API in C++ again.

The Isotropic Polytropic Steady State k = 1 = Rmax

As in Section 8.1, we start our analysis by considering in detail the isotropic polytrope (1.2.3)
with polytropic exponent k = 1 and parameter κ > 0 chosen s.t. Rmax = 1. Because
the radial particle motions are determined by the effective potential ΨL, we first depict
this function for some values of L ∈ L0 in Figure 8.2.1. Encouragingly, the shape of ΨL

computed numerically is as described in Lemma 2.2.12, and the figure is consistent with
the monotonicity and limiting properties proven in Lemma 2.2.14.

Figure 8.2.1: The effective potential ΨL for some values of L for the isotropic polytropic
steady state k = 1 = Rmax. The L-value associated to the red line is Lmax (up to numerical
errors and rounding). The dashed black line shows the value of the cut-off energy E0.

The associated period function T on (the closure of) the (E,L)-support D0 is visualised
in Figure 8.2.2. Note that the shape of D0 obtained numerically is qualitatively identical to
the one of the schematic visualisation in Figure 2.2.2.

Figure 8.2.2 reveals two important insights. Firstly, we see that the maximum of T
on D0 is attained at (E0, 0), i.e.,

sup
D0

(T ) = T (E0, 0). (8.2.3)

The point (E0, 0) corresponds to the bottom right corner in Figure 8.2.2. The value of the
period function attained there is given by T (E0, 0) ≈ 4.727. The fact that T

∣∣
D0

indeed
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Figure 8.2.2: The (E,L)-support D0 of the isotropic polytrope k = 1 = Rmax and values of
the period function T (colour gradient) attained on it.

attains its maximum at (E0, 0) has been checked by comparing T (E0, 0) to all the other
(more than 5·105) T -values used in Figure 8.2.2. By the scaling laws derived in Appendix B,
(8.2.3) holds for all κ > 0 if it holds for one value of κ. Let us summarise this finding.

Observation 8.2.1 (Maximum of T for the Isotropic Polytrope k = 1). In the case of an
isotropic polytropic steady state (1.2.3) with polytropic exponent k = 1, the maximum of the
period function T on the (E,L)-support D0 of the steady state is attained at the maximal
energy value E0 and the minimal L-value L0 = 0, i.e., (8.2.3) holds. In addition, this is the
only point where the maximal period is attained.

Secondly, the period function T is even monotonic181 w.r.t. both of its variables on D0.
More precisely, T is increasing in E and decreasing in L on D0. This property can already be
seen in Figure 8.2.2. It is even more clearly visible in Figure 8.2.3, where we depict T (·, L)
and T (E, ·) for some fixed values of L and E. We verified these monotonicities by analysing
the functions T (·, L) and T (E, ·) for more (than 1000) values of L and E. Up to an error of
5 · 10−6, these functions are indeed monotonic. By Appendix B, these monotonicities hold
for every κ > 0 if they hold for one κ.

Observation 8.2.2 (T -Monotonicity for the Isotropic Polytrope k = 1). In the case of an
isotropic polytrope (1.2.3) with polytropic exponent k = 1, the period function T is increasing
in E and decreasing in L on the (E,L)-support D0 of the steady state.

As an aside, we note that the minimal value of the period function T on D0 is attained
at the minimal energy value U0(0) = limL↘0E

min
L and the minimal L-value L0 = 0, i.e., at

(U0(0), 0). This point corresponds to the bottom left corner in Figure 8.2.2. The minimal T -
value is given by T (U0(0), 0) ≈ 1.296. The fact that the T -minimum is attained at this point

181In this chapter, we generally do not distinguish between strict and non-strict monotonicity, as this
difference is hard, if not impossible, to detect numerically. Similarly, we do not distinguish between positive
and non-negative numbers.
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Figure 8.2.3: Values of the period function T for the isotropic polytropic steady state
k = 1 = Rmax. The left panel shows the function T (·, L) on [Emin

L , E0] for some values
of 0 ≤ L < Lmax, the right panel the function T (E, ·) on [0, Lmax(E)] for some values of
U0(0) < E ≤ E0. Here, Lmax(E) := sup{L > 0 | Emin

L < E} for U0(0) < E < 0.

fits to the monotonicity observed above combined with the monotonicity of L 7→ T (Emin
L , L)

proven in Lemma A.4.3.

Although the discussion in Section A.3.3 mainly shows that it is rather difficult to prove
the statements from Observation 8.2.2 rigorously, it also contains a useful criterion for these
monotonicity properties: By Lemma A.3.22, the statements from Observation 8.2.2 follow if
the two functions Gref

L and Href
L are both positive on ]r−(E0, L), rL[ for every 0 < L < Lmax.

These two functions are essentially given by the effective potential and its derivatives up to
second order. We plot these functions as well as GL and HL for some values of L

(
≥

)
0 in

Figure 8.2.4.

As indicated by Lemma A.3.20 and (A.3.98), the functions GL and HL do not take
only one sign on ]r−(E0, L), r+(E0, L)[ for 0 < L < Lmax. Nonetheless, the func-
tions Gref

L and Href
L are positive on [r−(E0, L), rL[ for L ∈ ]0, Lmax[. This is clearly

visible in Figure 8.2.4, where it even looks like Gref
L and Href

L are radially decreasing
with limr↘rL G

ref
L (r) = 0 = limr↘rL H

ref
L (r). The positivity of these functions has also

been further checked by considering more L-values than in Figure 8.2.4 (50 equidistant
L ∈ ]0, Lmax[). Up to an error of 10−4, Gref

L and Href
L are always positive. Extending the

scaling laws from Appendix B to Gref
L and Href

L again allows us to generalise this finding to
all values of κ > 0.

Observation 8.2.3 (Positivity of Gref
L and Href

L for the Isotropic Polytrope k = 1). In
the case of an isotropic polytrope (1.2.3) with polytropic exponent k = 1, the functions Gref

L

and Href
L defined in (A.3.102) and (A.3.103), respectively, are positive on ]r−(E0, L), rL[ for

0 < L < Lmax.

As an aside, we note that we have also numerically analysed the limits of the par-
tial derivatives ∂ET and ∂LT in the near circular regime, i.e., the limits of ∂ET (E,L)
and ∂LT (E,L) as (E,L) → (Emin

L∗ , L
∗) for 0 < L∗ ≤ Lmax. These limits are explicitly

given by the formulae (A.4.17) and (A.4.23) derived in Lemmas A.4.6 and A.4.8, respec-
tively. It turned out that for each of the (more than 1000) values of L∗ we considered,
lim(E,L)→(Emin

L∗ ,L
∗) ∂ET (E,L) is positive and lim(E,L)→(Emin

L∗ ,L
∗) ∂LT (E,L) is negative. This

behaviour is just as expected in the light of the above observation.
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Figure 8.2.4: The two top panels show the functions GL and HL defined in (A.3.33)
and (A.3.64), respectively, on [r−(E0, L), r+(E0, L)] for some values of L ∈ [0, Lmax[ for
the isotropic polytropic steady state k = 1 = Rmax. In the case L = 0 we replace ΨL with
U0 in the definitions of GL and HL; the resulting functions are depicted by the dashed lines.
The bottom panels show the functions Gref

L and Href
L defined in (A.3.102) and (A.3.103),

respectively, on [r−(E0, L), rL[ for some values of L ∈ ]0, Lmax[.

Isotropic Polytropic Steady States

Let us next analyse the period function associated to general isotropic polytropes (1.2.3).
As before, we consider the polytropic exponents 0 ≤ k ≤ 3.2 and always choose the param-
eter κ > 0 s.t. Rmax = 1 for the resulting steady states. The values of the period function T
on the (E,L)-support D0 for a few isotropic polytropes are shown in Figure 8.2.5; recall
Figure 8.2.2 for the same plot with polytropic exponent k = 1. At first glance, the shape
of D0 and the behaviour of the period function on this set appears to be qualitatively the
same for all isotropic polytropes. Nevertheless, let us discuss in detail the similarities and
differences for different polytropic exponents k.

Firstly, the maximum of the period function is always attained at (E0, 0). This is
already indicated by Figure 8.2.5, where the point (E0, 0) corresponds to the bottom right
corner of each plot. We have also checked this finding by scanning through all the T -values
computed and by considering more polytropic exponents than in Figure 8.2.5. Hence,
Observation 8.2.1 seems to hold for general isotropic polytropes.

Observation 8.2.4 (Maximum of T for General Isotropic Polytropes). In the case of an
isotropic polytrope (1.2.3) with polytropic exponent 0 ≤ k ≤ 3.2, the maximum of the period
function T on the (E,L)-support D0 of the steady state is attained at the maximal energy E0

and the minimal L-value L0 = 0, i.e., (8.2.3) holds. In addition, this always seems to be
the only point where the maximal period is attained.

The maximal and minimal values of T on D0 for the different polytropic exponents are
shown in Figure 8.2.6; they will become important in the following section.
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Figure 8.2.5: The (E,L)-supports D0 of isotropic polytropes with polytropic exponents
k ∈ {0, 1

2 ,
3
2 , 2,

5
2 , 3} and Rmax = 1 as well as values of the associated period functions T

(colour gradient) attained on these sets.

Figure 8.2.6: The maximal and minimal values of the period function T on the (E,L)-
support D0, i.e., Tmax = supD0

(T ) and Tmin = infD0(T ), for isotropic polytropes with
Rmax = 1 as a function of the polytropic exponent k ∈ [0, 3.2].

Secondly, regarding the monotonicity of the period function, we find that T is again
always increasing in E, i.e., T (·, L) is increasing on [Emin

L , E0] for any 0 ≤ L < Lmax. This
can be seen quite clearly in Figure 8.2.5, but we have also checked it for several polytropic
exponents 0 ≤ k ≤ 3.2 in the same way as in the case k = 1 = Rmax above. This
monotonicity property is further supported by the observation that the function Gref

L is
always positive on ]r−(E0, L), rL[ for 0 < L < Lmax. In the case of the polytropic exponent
k = 3, this will be illustrated below in Figure 8.2.8 below. The monotonicity of the period
function w.r.t. L is more diverse: For not too large values of the polytropic exponent k,
up to about 2.35, the period function is decreasing in L, i.e., T (E, ·) is decreasing on
[0, Lmax(E)] for U0(0) < E ≤ E0. We have checked this finding in the same way as the E-
monotonicity above, and also observed that the function Href

L is positive on ]r−(E0, L), rL[
for 0 < L < Lmax. For larger polytropic exponents, however, the period function is no longer
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monotonic w.r.t. L.182 As this qualitative difference is not well visible in Figure 8.2.5, we
depict T (E0, ·) in the case of the polytropic exponent k = 3 in Figure 8.2.7. This finding is

Figure 8.2.7: T (E0, ·) on [0, Lmax] for the isotropic polytrope with k = 3 and Rmax = 1.

also supported by the observation that the function Href
L is no longer positive for all values

of 0 < L < Lmax. This can be seen from Figure 8.2.8, where we plot Href
L and Gref

L for some
values of L in the case of the polytropic exponent k = 3.

Figure 8.2.8: The functions Gref
L and Href

L defined in (A.3.102) and (A.3.103), respectively,
on [r−(E0, L), rL[ for some L ∈ ]0, Lmax[ for the isotropic polytrope with k = 3 and Rmax =
1.

Figure 8.2.8 also reveals two further insights: Firstly, we see that Href
L is negative on

the entire radial domain ]r−(E0, L), rL[ for large183 values of L. By Lemma A.3.22, this
implies ∂LT (E,L) > 0 for such values of L and every Emin

L < E < E0. Secondly, it should
be noted that the positivity of Href

L gets lost only for not too small values of L. For small
values of L, Href

L is positive. This is both consistent with Figure 8.2.7, where we see that
T (E0, ·) is only non-decreasing for not too small values of L. The period function being
decreasing in L for small values of L is also important for the fact that the maximum of T
is attained at (E0, 0), recall Observation 8.2.4. Let us summarise our findings regarding the
monotonicity of T .

182We have not invested much effort in precisely determining the threshold polytropic exponent at which
the L-monotonicity of T gets lost. Our simulations merely show that the L-monotonicity holds for polytropic
exponents k ≤ 2.35, while it does not hold for k ≥ 2.4.

183Here, an L-value being large refers to its relative position within the L-support [0, Lmax] of the steady
state.
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Observation 8.2.5 (T -Monotonicity for General Isotropic Polytropes). In the case of an
isotropic polytropic steady state (1.2.3) with polytropic exponent 0 ≤ k ≤ 3.2, the period
function T is increasing in E on the (E,L)-support D0 of the steady state. Moreover, the
function Gref

L defined in (A.3.102) is positive on ]r−(E0, L), rL[ for 0 < L < Lmax.

If the polytropic exponent is not too large (smaller than about 2.35), the period function
is decreasing in L on the (E,L)-support D0 of the steady state, and the function Href

L defined
in (A.3.103) is positive on ]r−(E0, L), rL[ for 0 < L < Lmax. For larger polytropic exponents,
the period function is not monotonic in L.

King Models

We next analyse the period function associated to the King models (1.2.4). Here, we choose
the parameter κ in the range 0 < κ ≤ 7.5. The reason for this is that the mass density ρ0

attains very large values near the radial origin r = 0 for large values of κ, recall Figure 8.1.5.
This makes the computation of the particle motions rather difficult numerically. One way
in which this problem manifests itself is as follows: By (A.4.4) and (A.4.11), large values
of ρ0(0) lead to small values of the period function T (E,L) in the near circular regime
E = Emin

L for small L. Since T (E,L) can only be determined numerically as a multiple of
the time step size δt, computing such small periods is prone to numerical errors. In fact, we
also applied our program to King models with larger values of κ, but some curious effects
occur there. Whether these are real or due to these numerical difficulties, we do not feel
able to confidently decide here.

Anyway, the values of the period function on the (E,L)-support D0 for some values
of 0 < κ ≤ 7.5 are depicted in Figure 8.2.9.

Figure 8.2.9: The (E,L)-supports D0 of King models with κ ∈ {1
2 , 1, 2, 4, 6, 7.5} and values

of the respective period functions T (colour gradient) attained on these sets.

The behaviour of the period function for the King models is, in fact, very similar to the
isotropic polytropic case. We analysed King models with more than 100 κ-values ∈ ]0, 7.5]
and observed the following.



8.2. NUMERICS OF THE PERIOD FUNCTION 209

Observation 8.2.6 (Properties of T for King Models). In the case of a King model (1.2.4)
with parameter 0 < κ ≤ 7.5, the maximum of the period function T on the (E,L)-support D0

of the steady state is always attained at (E0, 0), i.e., (8.2.3) holds.
Moreover, T is increasing in E on D0, and the function Gref

L defined in (A.3.102) is
positive on ]r−(E0, L), rL[ for 0 < L < Lmax.

For not too large values of κ (up to about 5.5), the period function is decreasing in L
on the (E,L)-support D0 of the steady state, and the function Href

L defined in (A.3.103) is
positive on ]r−(E0, L), rL[ for 0 < L < Lmax. For larger values of κ, the period function is
not monotonic in L.

Anisotropic Polytropes Including Polytropic Shells

The next (and last) class of steady states examined in this section are anisotropic poly-
tropes (1.2.5). We always choose κ = 1 here; recall that the scaling laws from Appendix B
do not apply in the case L0 > 0.

We first consider the polytropic exponents k = 1 = `. As shown in Remark A.4.5, the pe-
riod function T is unbounded on D0 in the case L0 = 0 since limA03(E,L)→(U0(0),0) T (E,L) =
∞. This fact is indicated by the plot in the left panel of Figure 8.2.10, where (U0(0), 0)
is the bottom left corner and bright colours correspond to large values of T . If we now
choose a positive but very small value for L0, the period function is bounded on D0 by
Proposition A.0.1 (a), but its maximum on D0 is still attained at (Emin

L0
, L0). For instance,

this is the case when choosing L0 = 1
1000 ; the values of the period function on D0 in this

situation are depicted in the right panel of Figure 8.2.10.

Figure 8.2.10: The (E,L)-supports D0 of polytropic steady states with polytropic exponents
k = 1 = ` and parameters κ = 1 and L0 ∈ {0, 1

1000}. The colour gradients depict values of
the respective period functions attained on these sets.

Although we have only studied this behaviour for one choice of polytropic exponents
and one value of κ, it is very plausible that it occurs generally for polytropes with ` > 0
since steady states ought to depend continuously on the parameter L0.

Observation 8.2.7 (Polytropes with T -Maximum not at (E0, L0)). For any poly-
trope (1.2.5) with polytropic exponents k, ` > 0 satisfying k < 3`+ 7

2 and sufficiently small
L0 > 0, the maximum of the period function T on D0 is not attained at (E0, L0), but at
(Emin

L0
, L0).

It should not be too hard to prove this statement rigorously by considering the limit
L0 → 0 and arguing similarly to Section 6.2.1. Anyway, the take-home message of the above



210 CHAPTER 8. NUMERICAL EXPERIMENTS

observation is that we cannot expect the maximum of T on D0 to be attained at (E0, L0)
in general.

We next choose the polytropic exponents k = 1
4 and ` = −1

4 . This case is qualitatively
different from the one above because ` is now negative. Analysing where T attains its
maximum on D0 in this situation is important in the light of Theorem 5.4.1. When choosing
the parameter L0 within the set

{
10j/2 | j ∈ {−10, . . . , 2}

}
(and again κ = 1), the behaviour

of T is qualitatively the same as for isotropic polytropes. In particular, the maximum of
the period function on D0 is always attained at (E0, L0). This observation is also (partially)
included in [62, Rem. 8.16]. We have confirmed the same properties for more polytropes
with ` < 0, cf. below, and always verified it in the same way as described in the context of
isotropic polytropes.

Observation 8.2.8 (Examples for Theorem 5.4.1). For any polytropic steady state with ex-
ponents (k, `) ∈ {( 1

10 ,−
2
5), ( 1

10 ,−
1
4), ( 1

10 ,−
1
10), (1

4 ,−
2
5), (1

4 ,−
1
4), (2

5 ,−
2
5)} as well as param-

eters κ = 1 and L0 ∈
{

10j/2 | j ∈ {−10, . . . , 2}
}

, the period function attains its maximum
on D0 at (E0, L0). Moreover, the period function is always increasing in E, but not always
monotonic w.r.t. L on D0.

This observation hence provides explicit examples of steady states satisfying the as-
sumptions of Theorem 5.4.1, see also Remark 5.4.2 (a). It should be noted that the chosen
polytropic exponents and values of L0 and κ are not special, but serve only as exemplary
choices. We expect that the properties from the observation above also hold for more gen-
eral choices of k > 0, ` < 0, κ > 0, and L0 > 0 satisfying (5.4.1), since we have not yet
encountered any such parameters were it is not satisfied.

Further General Observations

We now collect some additional, less central observations regarding the period function that
we made for all steady states encountered during the above analysis. The first one concerns
the position at which the period function attains its maximum on D0. Although we have
seen that this position is not necessarily (E0, L0), we still observed the following.

Observation 8.2.9 (T -Maximiser is Always on Boundary). For every steady state consid-
ered above, the maximum of the period function T on the steady state support D0 is attained
on the boundary of D0.

We checked this property by scanning through all the T -values computed for each steady
state. The above observation shows that it is indeed unclear whether the assumption of
Corollary 5.4.3 holds for any steady state.

The second observation concerns the level sets of the period function on D0. We in-
vestigated these sets by analysing the plots of T on D0 from Figures 8.2.2, 8.2.5, 8.2.9,
and 8.2.10. The level sets of T

∣∣
D0

always seem to be a curve in the (E,L)-plane or a finite
union of such curves. In particular, we never saw any evidence that the period function is
constant on some non-empty open subset of D0. On this basis, we feel confident enough to
state the following observation, although it would of course be very difficult to numerically
verify it in detail.

Observation 8.2.10 (Level Sets of T ). For every steady state considered above, all level
sets of the period function T on the steady state support D0 are sets of measure zero.

By Lemma 4.3.22, this shows that the squared transport operator −T 2
∣∣
H : D(T 2)∩H →

H does not possess any eigenvalues for the steady states considered here.
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Kunze’s Criterion

As a prelude to the numerical analysis of the linearised Vlasov-Poisson system – which will
be the subject of the following section – we now examine the validity of Kunze’s criterion
from Lemma 4.5.19 numerically. To check the criterion, the maximum of the period func-
tion T on D0 must be compared with (the maximum of) a macroscopic function associated
to the steady state. If Kunze’s criterion was satisfied, we would conclude the presence of
an oscillatory mode around the steady state. Since we always computed the maximal value
of the period function on D0 anyway, we checked the validity of Kunze’s criterion for all
steady states encountered above.

The pleasing result is that for some isotropic steady states, Kunze’s criterion is indeed
satisfied. This is illustrated in Figure 8.2.11, where we depict the left-hand and right-
hand sides of Kunze’s criterion (4.5.53) for isotropic polytropes with different polytropic
exponents k ≥ 0 and Rmax = 1.

Figure 8.2.11: The left-hand (“LHS”: supr∈]0,1]
U ′0(r)
r = 4π

3 ρ0(0)) and right-hand (“RHS”:
4π2

sup2
D0

(T )
) sides of Kunze’s criterion (4.5.53) for the isotropic polytropes with different poly-

tropic exponents k and parameter κ > 0 chosen s.t. Rmax = 1. For better visibility, the left
panel shows the plot restricted to small values of k.

The criterion is satisfied if the left-hand side is smaller than the right-hand side, which
is evidently the case for very small polytropic exponents. By Appendix B, we can generalise
this finding to all values of κ > 0.

Observation 8.2.11 (Kunze’s Criterion for Isotropic Polytropes). For isotropic poly-
tropes (1.2.3) with very small polytropic exponents k > 0 (smaller than about 0.03), Kunze’s
criterion from Lemma 4.5.19 is satisfied.

We will later discuss how this important observation could be proven, cf. Chapter 9.
For the King models, Kunze’s criterion never seems to be satisfied.
For anisotropic polytropes (1.2.5), there are numerous examples of steady states satis-

fying Kunze’s criterion. A natural first class to check the criterion are the polytropes with
L0 > 0 and ` < 0 for which we have already shown the existence of oscillatory modes via
Theorem 5.4.1 and Observation 8.2.8. Indeed, if L0 > 0 is not too small, Kunze’s criterion
is satisfied for all of the steady states considered in Observation 8.2.8. For instance, for
the polytropic exponents k = 1

4 and ` = −1
4 as well as κ = 1, the resulting steady states

satisfy Kunze’s criterion for L0 ≥ 1
1000 . More surprisingly, the same behaviour also occurs

when choosing (k, `) = (1, 0) or (k, `) = (1, 1). For these exponents, Theorem 5.4.1 does
not apply, but Kunze’s criterion is nonetheless satisfied if L0 > 0 is not too small large.
More precisely, for both polytropic exponent pairs (k, `) ∈ {(1, 0), (1, 1)}, choosing L0 ≥ 1

100
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yields steady states satisfying Kunze’s criterion. These polytropic exponents (and κ = 1)
are not special but only used as examples. We expect that the same behaviour also occurs
for more general polytropes.

Observation 8.2.12 (Kunze’s Criterion for Anisotropic Polytropes). The poly-
tropic steady states with parameter κ = 1 and polytropic exponents (k, `) ∈
{(1, 0), (1, 1), ( 1

10 ,−
2
5), ( 1

10 ,−
1
4), ( 1

10 ,−
1
10), (1

4 ,−
2
5), (1

4 ,−
1
4), (2

5 ,−
2
5)} satisfy Kunze’s crite-

rion if L0 > 0 is not too small.

8.3 Numerics of the Linearised Vlasov-Poisson System

In this section we numerically analyse the linearised Vlasov-Poisson system. The underlying
steady states are the same as studied above, recall Sections 2.2 and 8.1. Let us emphasise
that we are not considering the linearised system because it is easier to simulate numerically
than the non-linearised system. Although one might hope so, it is not easier from a numerics
point of view; this has already been noted in [93, Sc. 3.4] and we will also see it here.
The reason for considering the linearised system is to align the observations made here
with the mathematical results of this thesis, which (only) concern the linearised system.
For instance, analysing solutions of the linearised Vlasov-Poisson system will allow us to
draw conclusions about the central object of this thesis: The spectrum of the linearised
operator L. The question of what effects occur when transitioning from the linearised to
the non-linearised system will be discussed in the next section.

The linearised Vlasov-Poisson system has rarely been investigated numerically in the lit-
erature before, with numerical analyses usually directly focused on the actual non-linearised
system. Previous numerical investigation of the linearised system will be referenced below.
Our numerical investigation is the first in spherical symmetry for the steady states from
Section 2.2. Moreover, it is more comprehensive than previous investigations due to the
availability of greater computational resources.

We will only consider here the Eulerian formulation of the linearised Vlasov-Poisson
system derived in Section 3.1 because it is the one most commonly used in the literature. A
numerical investigation of the linearised Vlasov-Poisson system in a Lagrangian formulation
is conducted in [173].

The Numerical Method

For a fixed steady state f0 as computed in Section 8.1, let us describe how to numerically
solve the associated linearised Vlasov-Poisson system. We have adapted the numerical
method from that used to simulate the non-linearised Vlasov-Poisson system, which we will
discuss in the next section. In particular, the code used for the simulation of the linearised
system is based on the ones used in [48, 50], although we have entirely rewritten the code in
an object-oriented way. Later we discovered that (essentially) the same method had already
been used in the astrophysics literature (albeit in different settings), cf. [93, 112].

In the Eulerian formulation, the linearised Vlasov-Poisson system is given by (3.1.1)–
(3.1.3). It is convenient to first rewrite this system, which we will do below through formal
calculations. The resulting reformulation will remain of first order, which is more practical
for the numerics than the second-order formulation (1.2.8) of the linearised Vlasov-Poisson
system.

As before, let (X,V ) denote the characteristic flow of the steady state f0, i.e.,
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(X,V ) : R× R3 × R3 → R3 × R3 solves

Ẋ = V, V̇ = −∂xU0(X), (X,V )(0, x, v) = (x, v). (8.3.1)

By (3.1.1), for every spherically symmetric solution f = f(t, x, v) of the linearised Vlasov-
Poisson system we obtain

∂s[f(s, (X,V )(s, x, v))] = ∂tf(s, (X,V )(s, x, v)) + T f(s, (X,V )(s, x, v)) =

= ϕ′(E(x, v), L(x, v))W (s, x, v)U ′f (s,R(s, x, v)), (8.3.2)

where we have rewritten the response term as in Section 3.1 and used that E and L are
constant along the characteristic flow, cf. Lemma 2.2.1. We also introduced the following
notations, which are natural in the light of Remark 2.1.2 (b):

R(s, x, v) := |X(s, x, v)|, W (s, x, v) :=
X(s, x, v) · V (s, x, v)

R(s, x, v)
. (8.3.3)

Integrating (8.3.2) w.r.t. the proper time s of the characteristic flow leads to

f(t, (X,V )(t, x, v)) = f(0, x, v) + ϕ′(E(x, v), L(x, v))

∫ t

0
W (s, x, v)U ′f (s,R(s, x, v)) ds

(8.3.4)
for (t, x, v) ∈ R × R3 × R3. This equation can be interpreted as a new formulation of the
linearised Vlasov-Poisson system. The existence theory for the system in this very form (for
isotropic steady states) is studied in [15], and the same formulation is also used in [93, 112].

In order to solve (8.3.4) numerically, we have to compute the steady state characteris-
tics (X,V ). We have discussed in the previous section how this can be done. In order to cope
with the second term on the right-hand side of (8.3.4), we use the following approximation
of (8.3.4) for 0 < t� 1:

f(t, (X,V )(t, x, v)) ≈ f(0, x, v) + ϕ′(E(x, v), L(x, v))

∫ t

0
W (s, x, v)U ′f (0, R(s, x, v)) ds.

(8.3.5)
Based on the steady state characteristics and f(0), this approximation allows us to compute
f(t) for small values of t. Iterating this process yields an approximation of f(T ) also for
larger T > 0.

We implement this procedure using a particle-in-cell scheme. As mentioned above and
as we shall see in the following section, this method is commonly used to simulate the
(non-linearised) Vlasov-Poisson system as well as related systems. The key idea is to split
the phase space support of the steady state f0 into finitely many distinct cells. We do
this by first setting up an equidistant radial grid of step size δr. At each fixed radius, the
momentum space is segmentated using an equidistant grid in each of the variables u and α,
recall Remark 2.1.2 (f). Using (r, u, α)-coordinates for the initial setup of the cells has proven
beneficial in previous numerical investigations.184 We then place a (numerical) particle into
the centre185 of each cell as a representative of the contributions of its cell. For each particle
we save its position in (r, w, L)-coordinates, the volume of its cell, and the value of the initial
distribution f(0, r, w, L). These particles represent the initial phase space density f(0); note
that supp (f(0)) ⊂ supp (f0). In order to compute the corresponding mass density ρf (0),

184More precisely, using an equidistant (r, u, α)-grid for setting up the cells seems to yield a better approx-
imation of a given initial distribution f(0) compared to using (r, w, L)-coordinates (or other coordinates).

185The centre of the cell is again taken in (r, u, α)-coordinates, in which each cell is just a cuboid.
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we sum over the contributions of all particles in the momentum variables and interpolate
linearly in the radius. The associated local mass mf (0) and gravitational potential Uf (0)
can then be obtained by radial integration according to (2.1.10). When computing the local
mass m(0, r) = 4π

∫ r
0 s

2ρ(0, s) ds, we use Simpson’s rule to take into account the order of
the integrand near the spatial origin r = 0. For these steps we use the same radial grid as
for setting up the cells. Once these macroscopic quantities are computed,186 we are ready to
propagate the particles so that they represent the phase space distribution f(δt) at the next
time step δt > 0. The new positions of the particles are given by evolving the old positions
via the characteristic flow of the steady state. The f -values are updated according to (8.3.5);
the integral on the right-hand side containing U ′f (0) is calculated during the computation of
the characteristic flow of the steady state. In fact, we do not use (8.3.5) as it stands which
would correspond to the Euler method – instead, we employ a suitable adaption of RK4
which is more accurate numerically. The volumes of the cells associated to the particles
remain constant during the particle evolution as the characteristic flow of the steady state is
measure preserving [143, Lemma 1.2]. Repeating this entire process results in a simulation
of the linearised Vlasov-Poisson system.

For our numerical simulations we choose the radial step size δr in the order of magnitude
10−3 to 10−4 in the case of a steady state with Rmax = 1. The precise choice of this
parameter depends on the underlying steady state; for instance, we use a finer grid for
steady states with steeper mass densities ρ0. The momentum step sizes for u and α are
chosen s.t. we arrive at a total of 107 to 108 numerical particles; we always make sure to
use at least 107 particles. Again, the suitable number of numerical particles depends on
the underlying steady state (and the computational resources available). The time step
size δt is chosen to be of a similar magnitude as δr. In total, simulating the linearised
Vlasov-Poisson system with such parameters to a terminal time of, say, t = 50 requires
more than a trillion individual particle propagation steps. To be able to perform such
simulations within a reasonable computation time, we parallelised the particle propagation
as well as various other parts of the algorithm like the computation of ρ. Fortunately, the
particle-in-cell scheme fits very well with parallel computing. We use the Pthreads API in
C++ to implement a shared-memory parallelisation on a CPU based on [81]; a GPU-based
parallelisation of a related particle-in-cell scheme was developed in [80].

In order to evaluate the accuracy of the simulation, we consider several conserved quan-
tities of the linearised Vlasov-Poisson system and monitor whether/the degree to which
they remain constant during the numerical simulation. The first conserved quantity is the
free energy. For suitable f : Ω0 → R, it is given by

Efree(f) := Efree
kin (f) + Efree

pot (f), (8.3.6)

where the kinetic and potential parts are defined as

Efree
kin (f) := −1

2

∫
Ω0

f(x, v)2

ϕ′(E,L)
d(x, v) =

1

2
‖f‖2H , (8.3.7)

Efree
pot (f) :=

1

2

∫
Ω0

Uf (x) f(x, v) d(x, v) = − 1

8π
‖∂xUf‖2L2(R3), (8.3.8)

respectively. We refer to [15, Sc. 4] for a proof that Efree is constant along solutions of the
linearised Vlasov-Poisson system. The second conserved quantity results from linearising

186We actually only need U ′f (0, r) =
mf (0,r)

r2
to evolve the particles; the potential Uf (0, r) =

−
∫∞
r
U ′f (0, s) ds is “only” computed to analyse the solution.
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the total energy – which is a conserved quantity of the non-linearised Vlasov-Poisson system,
cf. [143, Sc. 1.5] – in the same way as in (3.1.21)–(3.1.22). We refer to it as the linearised
energy. For f as above, it is of the form

Elin(f) := Elin
kin(f) + Elin

pot(f) =

∫
Ω0

E(x, v) f(x, v) d(x, v), (8.3.9)

with kinetic and potential parts given by

Elin
kin(f) :=

1

2

∫
Ω0

|v|2f(x, v) d(x, v), (8.3.10)

Elin
pot(f) :=

∫
Ω0

U0(x) f(x, v) d(x, v), (8.3.11)

respectively. The third conserved quantity is the total mass which is defined as usual:

M(f) :=

∫
Ω0

f(x, v) d(x, v). (8.3.12)

It is straight-forward to verify that Elin and M are indeed conserved along solutions of
the linearised Vlasov-Poisson system. To track the evolution of these quantities, the in-
tegrals (8.3.6)–(8.3.12) are computed numerically by adding up the contributions of all
particles with the respective weights.

To study and illustrate the behaviour of a solution t 7→ f(t) of the linearised Vlasov-
Poisson system, we track the evolution of each single energy component over time, i.e., we
analyse Efree

kin (f(t)), Efree
pot (f(t)), Elin

kin(f(t)), and Elin
pot(f(t)). We also track the value of the

gravitational potential at the spatial origin, i.e.,

Uf (t, 0) = −
∫ ∞

0
U ′f (t, r) dr = −

∫ ∞
0

mf (t, r)

r2
dr, (8.3.13)

as it is a physically motivated indicator for the overall behaviour of f . In addition, we will
analyse the values of the macroscopic functions ρf (t), mf (t), and Uf (t) on a fixed radial
grid at selected times t.

The Isotropic Polytropic Steady State k = 1 = Rmax

As in the previous sections, we start the numerical analysis with the isotropic polytropic
steady state with polytropic exponent k = 1 and parameter κ > 0 chosen s.t. Rmax = 1.

We first analyse the solution of the corresponding linearised Vlasov-Poisson system
launched by the initial condition f(0) = wϕ′(E). The evolution of the total linearised
energy Elin as well as Elin

kin and Elin
pot is depicted in Figure 8.3.1.

We clearly observe that the solution t 7→ f(t) exhibits an oscillatory behaviour. More
precisely, for a brief period at the beginning (i.e., at t = 0), the solution is partially damped
in the sense that the amplitude decreases during the initial oscillations. Afterwards, the
oscillation seems undamped. We will analyse quantitative aspects of this oscillation, like
its period, in the context of more general isotropic polytropes later. We first want to
illustrate that the oscillation is not only visible in the linearised energy components, but in
all macroscopic quantities associated to the solution. To see this, we plot the evolutions of
the kinetic and potential parts of the free energy as well as the value of the gravitational
potential at the spatial origin in Figure 8.3.2. The time evolutions of the mass density ρf
and the gravitational potential Uf are shown in Figure 8.3.3. In order to make clear that
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Figure 8.3.1: Evolution of the linearised energy Elin and its kinetic and potential parts Elin
kin

and Elin
pot (see (8.3.9)–(8.3.11) for the definitions of these quantities) for the solution of the

linearised Vlasov-Poisson system launched by the initial condition wϕ′(E). The underlying
steady state is the isotropic polytrope with k = 1 and Rmax = 1.

these two macroscopic functions are periodic in time (after the brief initial damping phase),
we use an additional visualisation method from [132, Figs. 2 and 4] and plot (t1, t2) 7→
‖ρf (t1) − ρf (t2)‖2 and (t1, t2) 7→ ‖Uf (t1) − Uf (t2)‖2 in Figure 8.3.4. We see that these
differences vanish periodically, meaning that ρf and Uf are indeed time-periodic as a whole.

Figure 8.3.2: Evolution of the free energy Efree and its kinetic and potential parts Efree
kin

and Efree
pot (top panel; see (8.3.6)–(8.3.8) for the definitions of these quantities) as well as

the evolution of Uf (·, 0) (bottom panel) for the solution of the linearised Vlasov-Poisson
system launched by the initial condition f(0) = wϕ′(E). The underlying steady state is
the isotropic polytrope with k = 1 and Rmax = 1.

All these visualisations of the solution show the same qualitative behaviour. In particu-
lar, the oscillation period of all quantities is consistent, except for the kinetic and potential
parts of the free energy which oscillate with twice the frequency as the other quantities.
This phenomenon can be explained by the following two observations: On the one hand,
it is suggested by Figure 8.3.3 that the solution changes its sign after half an oscillation
period. On the other hand, both components of the free energy are sign-invariant, i.e.,
Efree

kin (f) = Efree
kin (−f) and Efree

pot (f) = Efree
pot (−f), thus resulting in the doubled frequency
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Figure 8.3.3: Values of the mass density ρf = ρf (t, r) (left panel) and the gravitational
potential Uf = Uf (t, r) (right panel) at different time-radius pairs (t, r) for the solution f
of the linearised Vlasov-Poisson system launched by the initial condition f(0) = wϕ′(E).
The underlying steady state is the isotropic polytrope with k = 1 and Rmax = 1.

Figure 8.3.4: L2-differences of the mass density ρf (left panel) and the gravitational poten-
tial Uf (right panel) at different times, i.e., ‖ρf (t1) − ρf (t2)‖2 and ‖Uf (t1) − Uf (t2)‖2 for
different t1, t2 ≥ 0, for the solution f of the linearised Vlasov-Poisson system launched by
the initial condition f(0) = wϕ′(E). The underlying steady state is the isotropic polytrope
with k = 1 and Rmax = 1.

of Efree
kin and Efree

pot . We hence conclude the following.

Observation 8.3.1 (All Macroscopic Quantities Behave Equivalently). The qualitative
behaviour of a solution of the linearised Vlasov-Poisson system can be observed alike in the
evolutions of Elin

kin, Elin
pot, E

free
kin , Efree

pot , and Uf (·, 0), as well as in the evolution of macroscopic
functions like ρf and Uf .
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So far we have only discussed the fact that all quantities associated to a solution of the
linearised Vlasov-Poisson system are equivalent in the case of a single solution. We have,
however, consistently checked and confirmed this equivalency for all solutions considered
throughout this section.

Before considering more general solutions, let us briefly discuss the numerical accuracy
of the above simulation by analysing the degree to which the conserved quantities of the
linearised Vlasov-Poisson system introduced above are conserved. It is already visible from
Figures 8.3.1 and 8.3.2 that the linearised energy and the free energy remain rather un-
changed during the evolution. Concretely, until the final time T = 100, the absolute value
of Elin is always smaller than 2 · 10−4; notice that the linearised energy vanishes at t = 0
because f(0) is odd in w. The relative error of the free energy, i.e., the absolute value of
Efree(f(t))−Efree(f(0))

Efree(f(0))
, remains smaller than 1%. In addition, the absolute value of the total

mass, which also vanishes at t = 0, stays smaller than 10−3. We believe that these errors are
small enough to allow us to claim that our numerical simulations indeed accurately describe
the behaviour of the solutions of the linearised Vlasov-Poisson system. In the remainder
of this section, we will not discuss the errors of the conserved quantities in each case, but
have always ensured – by appropriately choosing the numerical parameters – that they are
of the same order of magnitude as the error values mentioned above.

Let us next analyse solutions launched by other initial conditions. We consider eight
different initial conditions which are stated in Table 8.3.1. For the sake of comparison, we
have also included the initial condition already used above (Number 5 in Table 8.3.1). The
behaviour of the solutions of the linearised Vlasov-Poisson system launched by these initial
conditions is depicted in Figure 8.3.5.

Nr. f(0) = f(0, r, w, L) Nr. f(0) = f(0, r, w, L)

1 ϕ(E) 5 wϕ′(E)
2 wϕ(E) 6 w2 ϕ′(E)

3 w2 ϕ(E) 7
√
r2 + w2 ϕ′(E)

4 ϕ′(E) 8 χ(E,L)
√
r2 + w2 ϕ′(E)

Table 8.3.1: Some initial conditions used for the linearised Vlasov-Poisson system. The
function χ = χ(E,L) contained in the eighth initial condition is a smooth cut-off function
which vanishes iff E − Emin

L ≤ κ
4 .

We can clearly see from Figure 8.3.5 that the qualitative behaviour of the solution
is independent of the initial data. If we compare some solutions in pairs (e.g., Numbers 1
and 5), we see that they are shifted in their “oscillatory phase”, i.e., after the initial damping
phase. These shiftings are due to different behaviours at the beginning of the evolution,
which are to be expected given the different initial conditions. Nonetheless, the oscillation
period is identical for all solutions. However, there are differences in the strength of the
initial damping phase, i.e., in the difference between the first local extremum of Elin

kin and the
extrema attained later. Let us try to make this behaviour plausible: From a spectral analysis
point of view, every initial condition f(0) should be thought of as a sum of the following two
parts: The first part is the orthogonal projection of f(0) onto the space of eigenfunctions of
the linearised operator, provided such eigenfunctions exist. As discussed earlier, this part
causes the undamped oscillations of the solution. The remaining part of f(0) is orthogonal
to all eigenfunctions and should hence get damped by the dynamics (on the macroscopic
level). How these two parts are weighted with respect to each other naturally depends on
the specific initial condition f(0). It should also be noted that, provided that eigenfunctions
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Figure 8.3.5: Evolutions of the kinetic parts of the linearised energy Elin
kin for the solutions

of the linearised Vlasov-Poisson system launched by the initial conditions from Table 8.3.1.
For better visibility, we have multiplied some of the initial conditions with a positive factor.
The underlying steady state is the isotropic polytrope with k = 1 and Rmax = 1.

exist, we can always expect that both parts – the one causing the oscillation and the one
getting damped – are present, in the sense that they have a non-zero weight. The reason
for this is that it is not to be expected that initial data like the ones from Table 8.3.1,
which we have chosen with total näıvety as simple examples, are a linear combination of,
or orthogonal to, the (unknown) eigenfunctions.

Observation 8.3.2 (All Initial Data Lead to Equivalent Behaviours). The qualitative be-
haviour of solutions of the linearised Vlasov-Poisson system (for some fixed steady state) is
qualitatively the same for all generic initial data. Here, an initial condition is referred to as
generic if it (is non-trivial and) has been selected “arbitrarily”, without specifically aiming
to cause exclusively oscillatory or exclusively damped behaviour in the resulting solution.
Explicit examples for such initial conditions are given in Table 8.3.1.

In further internal analyses, we have tested several other generic initial data besides
those from Table 8.3.1, but never found a qualitative difference in the behaviour of the
resulting solution. In particular, we verified all of the following observations regarding the
linearised Vlasov-Poisson system (with steady states different from the one considered so
far) with more initial data than the ones we will present below.

We refer to Chapter 9 for a further discussion of (a potential application of) the afore-
mentioned aspect that the damping phase of a solution varies in “strength” depending on
the initial data. In the present section, we will not further elaborate on this aspect.

Isotropic Polytropic Steady States

We next analyse the solutions of the linearised Vlasov-Poisson system for general isotropic
polytropes (1.2.3). As in Section 8.1, we consider the polytropic exponents 0 < k ≤ 3.2 and
always choose the parameter κ > 0 s.t. Rmax = 1. It follows by the analysis from Appendix B
that the solutions of the linearised Vlasov-Poisson system are simply rescaled when changing
the parameter κ of the underlying isotropic polytropic steady state. We now exclude the
case k = 0 because this steady state is not included in the mathematical analysis of the
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linearised system, recall Section 4.1.187 Moreover, in accordance with Observation 8.3.2,
we only present here solutions launched by the initial distribution f(0) = wϕ′(E). The
evolutions of the separate components of the linearised energy for these solutions are plotted
in Figure 8.3.6 for a few isotropic polytropes.

Figure 8.3.6: Evolution of the linearised energy Elin and its kinetic and potential parts Elin
kin

and Elin
pot for the solutions of the linearised Vlasov-Poisson systems for isotropic polytropes

with Rmax = 1 and polytropic exponents k ∈ {1
2 , 1,

3
2 , 2,

5
2 , 3}. The initial condition is

f(0) = wϕ′(E) in all cases.

It is evident from Figure 8.3.6 that the qualitative behaviour of the solution depends
on the polytropic exponent of the underlying steady state: As discussed above, in the case
k = 1 the solution exhibits a (partially) undamped oscillatory behaviour, i.e., it oscillates
undamped after a short initial damping period in which a part of the solution seems to
get damped. The same behaviour can also be observed in the case k = 1

2 as well as
for other polytropic exponents 0 < k < 1 which we have not included in this figure. In
particular, we observe that solutions of the linearised Vlasov-Poisson system for isotropic
polytropes with polytropic exponents 0 < k � 1 – e.g., k = 0.02 – exhibit an undamped
oscillatory behaviour, which is consistent with Observation 8.2.11. Furthermore, for smaller
polytropic exponents, the damping at the beginning seems to be weaker; this can be seen
in Figure 8.3.6 by comparing the solutions for k = 1

2 and k = 1. In contrast, for k ∈
{3

2 , 2,
5
2 , 3} (and for other polytropic exponents 3

2 ≤ k ≤ 3.2 which we have not included in
this figure), the solutions are (fully) damped, in the sense that Elin

kin(f(t)) and Elin
pot(f(t))

decay to zero as t gets larger. During this damping, the solutions nonetheless exhibit an
oscillatory behaviour. Moreover, the damping seems to be stronger, i.e., faster, for larger
polytropic exponents k. We will, however, not further investigate the damping rates here.
As indicated by Observation 8.3.1, the damping cannot only be observed in the different

187In the case k = 0, it is very challenging to simulate the linearised Vlasov-Poisson system numerically
due to the presence of the factor ∂vf0 in the response term of the linearised Vlasov equation (3.1.1). This
factor is a delta distribution concentrated at the boundary of the steady state support.
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components of the linearised energy, but also in all other macroscopic quantities. At this
point we should emphasise that damping can only be present at the macroscopic level, i.e.,
“global” quantities like Elin

kin(f(t)), Elin
pot(f(t)), Efree

kin (f(t)), or Efree
pot (f(t)) may converge to

fixed numbers or macroscopic functions like ρf (t), mf (t), or Uf (t) may converge to limiting
functions as t gets larger. The phase space configuration f(t) is not expected to approach a
limiting configuration as t → ∞ since the linearised Vlasov-Poisson system is conservative
(meaning that it possesses the conserved quantities introduced above), i.e., there is no
damping on the microscopic level. Anyway, to illustrate how the damping manifests itself
at the level of the macroscopic functions ρf and Uf , we visualise the evolutions of these
functions in Figures 8.3.7 and 8.3.8 in the case k = 3

2 . These figures should be compared
to Figures 8.3.3 and 8.3.4, where the same quantities (on a different time scale) are plotted
in the case k = 1. The qualitative differences between the fully damped behaviour (k = 3

2)
and the partially undamped oscillatory behaviour (k = 1) are clearly visible at the level of
these functions as well.

Figure 8.3.7: Values of the mass density ρf = ρf (t, r) (left panel) and the gravitational
potential Uf = Uf (t, r) (right panel) at different time-radius pairs (t, r) for the solution f of
the linearised Vlasov-Poisson system for the isotropic polytropic steady state with Rmax = 1
and k = 3

2 . The initial condition is f(0) = wϕ′(E).

To examine the transition from partially undamped to fully damped behaviour in more
detail, we show the evolutions of similar solutions as before for the polytropic exponents
k ∈ {1.2, 1.25, 1.3} in Figure 8.3.9. In the case k = 1.2, the oscillations are clearly partially
undamped. The slightly increasing amplitude of the oscillation for this solution – which
could be interpreted as a sign of instability of the underlying steady state – is due to
the numerics, which become slightly inaccurate after the large amount of oscillations. For
k = 1.3, it is evident that the solution is fully damped. We do not dare to assign the
case k = 1.25 clearly to one behaviour. The solution is probably fully damped in this case
too, but the damping is rather slow, which could also be due to an undamped part of the
solution.

Anyway, we feel confident to say that the transition from partially undamped oscillatory
to fully damped behaviour when increasing the polytropic exponent k occurs between k =
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Figure 8.3.8: L2-differences of the mass density ρf (left panel) and the gravitational poten-
tial Uf (right panel) at different time steps, i.e., ‖ρf (t1)−ρf (t2)‖2 and ‖Uf (t1)−Uf (t2)‖2 for
different t1, t2 ≥ 0, for the solution f of the linearised Vlasov-Poisson system for the isotropic
polytropic steady state with Rmax = 1 and k = 3

2 . The initial condition is f(0) = wϕ′(E).

Figure 8.3.9: Evolution of the linearised energy Elin and its kinetic and potential parts Elin
kin

and Elin
pot for the solutions of the linearised Vlasov-Poisson systems for isotropic polytropes

with Rmax = 1 and polytropic exponents k ∈ {1.2, 1.25, 1.3}. The initial condition is
f(0) = wϕ′(E) in all cases.

1.2 and k = 1.3. In particular, the analysis of many more polytropic exponents 0 < k ≤ 3.2
than presented here has confirmed that there is only this one transition from undamped
oscillations to damping. Let us state this finding.

Observation 8.3.3 (Oscillations vs. Damping for Isotropic Polytropes at the Linear Level).
In the case of an isotropic polytrope with polytropic exponent 0 < k ≤ 1.2, any solution of the
linearised Vlasov-Poisson system (launched by “generic” initial data, cf. Observation 8.3.2)
exhibits a partially undamped oscillatory behaviour. In contrast, for polytropic exponents
1.3 ≤ k ≤ 3.2, every solution of the linearised Vlasov-Poisson system is fully damped (on
the macroscopic level).

This observation shows that polytropic exponents k ≈ 1.25 play a distinguished role
as the threshold between undamped oscillations and damping. Unfortunately, we have not
found any other specific features for such polytropic exponents. For instance, the isotropic
polytropes with Rmax = 1 attain their maximal total mass at the polytropic exponent
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k ≈ 1.65, cf. Figure 8.1.2, which is already in the fully damped regime.

The above observation indicates that more regular steady states, corresponding to a
larger value of k, lead to fully damped solutions, whilst less regular steady states, cor-
responding to smaller k, lead to undamped oscillations. This is consistent with the re-
sults derived in Chapter 6 – recall Remark 6.4.2 and Theorem 6.6.1 – and those from [61,
Thm. 1.2]. However, we will see below that, in general, the presence of oscillating modes
does not depend solely on the regularity of the steady state, cf. Observations 8.3.6 and 8.3.8.

The above observation is also consistent with Observation 8.2.11 which, together with
Lemma 4.5.19, showed the presence of linear oscillations for isotropic polytropes with very
small polytropic exponents 0 < k � 1.

We next aim to draw conclusions about spectral properties of the linearised operator L
by examining the (numerically computed) solutions of the linearised Vlasov-Poisson system.
The connection between the behaviour of solutions and the spectrum we will establish is,
however, purely formal and not based on rigorous arguments. This connection relies on
the fundamental oscillation period of the oscillatory motion of the solutions, i.e., the period
of the oscillation which is dominantly visible. We determine this period by analysing the
zeros of t 7→ Elin

kin(f(t)) for the solution launched by the initial condition f(0) = wϕ′(E).
More precisely, we take the average distance of all succeeding zeros of t 7→ Elin

kin(f(t)) and
multiply this value by 2 to arrive at the fundamental oscillation period p. In fact, we
omit the first few zeros for this computation as the solution’s behaviour can be somewhat
different at the beginning, e.g., as during the initial damping phase in the case k = 1. It
should, nonetheless, be noted that the distances between succeeding zeros remain rather
constant during the evolution. In the case k = 1, recall Figure 8.3.1, this method yields a
fundamental oscillation period of p ≈ 5.07. Let us mention that in some cases, e.g., k = 1

2
in Figure 8.3.6, there may be a superposition of multiple oscillations.188 We will, however,
ignore this here and only focus on the fundamental period.

In the situation where the solution contains an undamped oscillatory part, the funda-
mental oscillation period p should correspond to an eigenvalue λ of the linearised operator L;
the relation of p and λ is given by (1.2.12). Otherwise, in the case of full damping, the so-
lutions still exhibit periodic oscillations with a reasonably constant fundamental oscillating
period p.189 In this case, we also convert p into λ using (1.2.12); λ is still expected to be
an element of the spectrum of L, although it is not (expected to be) an eigenvalue. In both
cases, we refer to λ as the fundamental spectral element.

As an aside, let us note that we have checked and confirmed the validity of the
Eddington-Ritter type relation, cf. Appendix B, for the fundamental oscillation periods p
and the associated fundamental spectral elements λ for the isotropic polytropes. More pre-
cisely, for several polytropic exponents 0 < k ≤ 3.2, the values of p and λ associated to
steady states with different values of κ satisfy (B.0.22) and (B.0.23) to high accuracy. This
has been observed before in [132, Sc. 4] for suitable solutions of the non-linearised Vlasov-
Poisson system. On the linearised level, the validity of the Eddington-Ritter type relation is
to be expected since, by (B.0.21), choosing different values of κ just corresponds to rescaling
the linearised operator L appropriately. This can thus be interpreted as a further proof of

188We have implemented a discrete Fourier transform (henceforth abbreviated as “DFT”) to detect the
presence of multiple periodic motions in our data. In the case k = 1

2
in Figure 8.3.6, the DFT shows that

the fundamental oscillation period ≈ 8.84 is indeed more than four times stronger than the second strongest
period ≈ 10.66 detected in the data; the “strength” of a period refers to its amplitude in the Fourier space.

189For strongly damped solutions, which arise in the case of large polytropic exponents, determining the
fundamental oscillation period becomes inaccurate since it gets difficult to distinguish the oscillations from
numerical noise.
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the accuracy of the numerics.

It is now interesting to compare the fundamental spectral element λ to the essential
spectrum of L. The latter is determined by the minimum and maximum values of the
period function T on the steady state support, recall Remark 4.3.20 and Proposition 4.5.4.
For each (isotropic polytropic) steady state, the minimum and maximum value of T on the
steady state support can be calculated numerically using the methods from the previous
section; recall Figure 8.2.6 for a visualisation of these values for the isotropic polytropes. The
essential spectra of the linearised operators calculated in this way as well as the fundamental
spectral elements λ are shown in Figure 8.3.10 for various isotropic polytropes. What is
not visible from the figure is that, for all isotropic polytropes shown, the essential spectrum
of L has no further gaps besides the essential gap G.

Figure 8.3.10: The green bars illustrate the essential spectra of the linearised operators L
associated to isotropic polytropic steady states with Rmax = 1 and polytropic exponents
0.1 ≤ k ≤ 2. The purple dots depict the fundamental spectral elements λ which correspond
to the fundamental oscillation periods of the solutions of the linearised Vlasov-Poisson
system. The computation of λ and σess(L) is describe in more detail in the text above.

We see in Figure 8.3.10 that the fundamental spectral element λ is always smaller than
inf(σess(L)) for isotropic polytropes with polytropic exponents 0.25 ≤ k ≤ 1.2. In the
case k = 1.25, the bottom of the essential spectrum coincides with λ (within the range
of the numerical (in)accuracies), while for larger polytropic exponents, the fundamental
spectral element lies inside the essential spectrum of L. The same behaviour persists for
all polytropic exponents 0 < k ≤ 3.2 and is not restricted to the range we have selected in
the above figure for the sake of better visibility, i.e., λ < inf(σess(L)) for 0 < k ≤ 1.2 and
λ ∈ σess(L) for 1.3 ≤ k ≤ 3.2.

This is remarkably consistent with Observation 8.3.3. More specifically, as previously
discussed, the fundamental spectral element λ should be an eigenvalue of L in the case of
a steady state that causes (partially) undamped oscillations of solutions of the linearised
Vlasov-Poisson system. By Figure 8.3.10, these eigenvalues are always isolated and not em-
bedded into the essential spectrum of L. This fits to the result established in Theorem 6.5.5
which proves that no embedded eigenvalues can occur for steady states that are, admit-
tedly, very different from the ones we are considering here. In other words, the fundamental
oscillation period is larger than all individual (radial) particle periods within the steady
state. In the case k = 1

2 , this observation has previously been made in [159, Fig. 2] on the
non-linearised level. For larger polytropic exponents, all solutions of the linearised Vlasov-
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Poisson system are damped by Observation 8.3.3 and the fundamental spectral elements
always lie in the essential spectrum of the linearised operator. This means that, in every
case where the solution is damped, the fundamental oscillation period or an integer multiple
of it equals the (radial) periods of some particles within the steady state. It is argued in
the physics literature that such “resonance” necessarily leads to damping, see [19, Sc. 5.3].
Let us summarise these findings.

Observation 8.3.4 (No Embedded Eigenvalues for Isotropic Polytropes). For all isotropic
polytropes, there never seems to be an eigenvalue embedded into the essential spectrum of the
linearised operator L. More precisely, all eigenvalues seem to lie below the essential spec-
trum, i.e., inside the essential gap G. In the fully damped cases, the fundamental oscillation
periods correspond to elements of the essential spectrum of L.

As an aside, let us also mention that Observations 8.3.3 and 8.3.4 are remarkably con-
sistent with the numerical results obtained in [182, Sc. 8.5]. Among other things, this thesis
investigates the linearised Einstein-Vlasov system for isotropic polytropic steady states with
small redshift values. Such steady states are close to the respective isotropic polytropes for
the Vlasov-Poisson system, cf. [60], and it is to be expected that the solutions of the lin-
earised Einstein-Vlasov system behave similarly to the ones of the linearised Vlasov-Poisson
system. It is found in [182, Sc. 8.5] that the transition from oscillation to damping occurs
close to the polytropic exponent k = 1.2 for isotropic polytropes with small redshifts. This
is very close to the threshold value k ≈ 1.25 observed here, despite the analysis of a dif-
ferent system in [182] and also despite the fact that in [182, Ch. 8], the spectrum of the
linearised Einstein-Vlasov system is numerically studied using variational methods which
differs conceptually from the particle-in-cell method employed here.

The Pure Transport Equation

In the current context of examining the isotropic polytropes, let us now address another
aspect of the linearised Vlasov-Poisson system. It is sometimes argued that (in suitable
settings) the response term has negligible influence on the behaviour of solutions, cf., e.g.,
[103, p. 280]. This means that instead of the linearised Vlasov-Poisson system (3.1.1)–
(3.1.3), one considers the following simpler equation:

∂tf + T f = 0. (8.3.14)

This equation is commonly referred to as the pure transport equation. Solutions of this
equation for various steady states and general prescribed potentials U0 are, e.g., studied
in [27, 103, 116, 148].

Let us (numerically) analyse the solutions of (8.3.14) for isotropic polytropic steady
states and compare them to the solutions of the actual linearised Vlasov-Poisson system.
It is, in fact, quite easy to modify our numerical methods to simulate the pure transport
equation instead of the linearised Vlasov-Poisson system: On the right-hand side of (8.3.4),
we just drop the second term. As this term caused most of the difficulties in the numerical
implementation, it is conceptionally easier to simulate the pure transport equation than the
linearised Vlasov-Poisson system. This manifests itself in the fact that the errors of the
conserved quantities of (8.3.14) – which are given by Efree

kin , Elin, and M defined in (8.3.7),
(8.3.9), and (8.3.12), respectively – during a numerical simulation remain even smaller than
for the linearised Vlasov-Poisson system (with the same initial configuration and numerical
parameters). The evolution of the solution of the pure transport equation launched by the
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Figure 8.3.11: Evolution of the linearised energy Elin and its kinetic and potential parts Elin
kin

and Elin
pot (see (8.3.9)–(8.3.11) for the definitions of these quantities) for the solutions of the

pure transport equation (8.3.14) for isotropic polytropes with Rmax = 1 and polytropic
exponents k ∈ {1

2 , 1,
3
2 , 2,

5
2 , 3}. The initial condition is wϕ′(E) in all cases.

initial distribution wϕ′(E) is shown in Figure 8.3.11 for the same isotropic polytropes as
analysed above.

We clearly see that all the solutions of the pure transport equation shown in this figure
are fully damped. This is to be expected in the light of Remark 4.3.30 and Observation 8.2.10
which imply that the transport operator T does not possess eigenvalues for the steady states
considered here. Similar to Observation 8.3.1, the damping can be observed equivalently
in all other (macroscopic) quantities. It should, however, be pointed out that, due to
Proposition 4.3.23, all initial conditions depending only on E and L lead to constant-in-
time solutions. Besides this restriction, all generic initial data also lead to full damping,
e.g., the initial conditions 2, 3, 5, 6, 7, and 8 from Table 8.3.1. As an aside, we note that
the strength of the damping seems to depend on the initial distribution for solutions of the
pure transport equation. Nonetheless, the conclusions we draw below about the solutions
of the pure transport equation apply to all initial data.

The behaviour of the solutions of the pure transport equation depicted in Figure 8.3.11
should now be compared to Figure 8.3.6, where similar solutions of the linearised Vlasov-
Poisson system are shown. It becomes evident that the solutions of the pure transport
equation behave very differently than the ones of the linearised Vlasov-Poisson system.
The most striking difference is the absence of undamped oscillatory behaviour of solutions
of the pure transport equation for polytropic exponents k ≤ 1.2. For such steady states, the
fundamental oscillation period of the solutions of the linearised Vlasov-Poisson system is
always larger than the associated period for the pure transport equation. This is consistent
with Observation 8.3.4 since the fundamental oscillation periods of solutions of the pure
transport equation correspond to elements within the spectrum of the transport operator;
recall that the essential spectrum of the linearised operator equals the spectrum of the
transport part by Propositions 4.3.19 and 4.5.4.
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For larger polytropic exponents, where both the linearised Vlasov-Poisson system’s solu-
tions and the pure transport equation’s solutions are fully damped, the damping is stronger
for the pure transport equation. This can be seen most clearly by comparing the plots in
the case k = 3

2 in Figures 8.3.6 and 8.3.11.

Observation 8.3.5 (Differences Between Linearised Vlasov-Poisson System and Pure
Transport Equation). For an isotropic polytropic steady state, the behaviour of the solu-
tions of the linearised Vlasov-Poisson system is qualitatively different from the pure trans-
port equation (8.3.14). Concretely, the solutions of the pure transport equation are always
damped, even if the associated solutions of the linearised Vlasov-Poisson system partially
oscillate undamped. The periods of these oscillations are different from the fundamental os-
cillation periods observed for solutions of the pure transport equation. For the steady states
where all solutions of the linearised Vlasov-Poisson system are fully damped, the solutions
of the pure transport equation are damped more strongly.

We also observed similar differences between solutions of the pure transport equation and
the linearised Vlasov-Poisson system for different steady states than the isotropic polytropes.
We will, however, not further discuss the pure transport system in this section. We shall
reveal in the next section whether the solutions of the pure transport equation or the
linearised Vlasov-Poisson system actually reflect the behaviour of suitable solutions of the
(non-linearised) Vlasov-Poisson system, cf. Observation 8.4.4.

King Models

Let us now consider the linearised Vlasov-Poisson system with a King model (1.2.4) as the
underlying steady state. We keep this part shorter than the above analysis for the isotropic
polytropes since the occurring effects are somewhat similar.

The evolutions of the kinetic and potential parts of the linearised energy of solutions of
the linearised Vlasov-Poisson systems for King models with different values of κ are depicted
in Figure 8.3.12. In accordance with Observation 8.3.1, other (macroscopic) quantities
behave equivalently as Elin

kin and Elin
pot. As the initial condition we have again always chosen

f(0) = wϕ′(E), but point out that further testing suggests that different “generic” initial
data lead to qualitatively similar behaviour.

It is clearly visible from Figure 8.3.12 that King models with small values of κ lead to
partially undamped oscillatory solutions of the linearised Vlasov-Poisson system, while all
solutions are fully damped for larger values of κ.190 We have also tested and confirmed
this behaviour for further King models than the ones shown in the figure. Let us attempt
to explain, by means of (very) formal arguments, why we think that this is consistent
with the above observations for the isotropic polytropes: First notice that a steady state
with parameter κ > 0 is only affected by the values of the energy dependency function Φ
on ] −∞, κ]. We also observe that the energy dependency function of the King models is
linear to first order, more precisely, Φ(η) = (eη − 1)+ = η+ + Oη→0(η2). Hence, for small
values of κ, King models should be close to an isotropic polytrope with polytropic exponent
k = 1. Since we have observed partially undamped oscillatory solutions in the case of this
isotropic polytrope, cf. Observation 8.3.3, it is to be expected that solutions of the linearised
Vlasov-Poisson system also oscillate undamped for King models with 0 < κ� 1, as indeed
they do. For larger values of κ, the higher-order terms in the series expansion of the energy

dependency function Φ(η) =
∑

i∈N
ηi+
i! become more important. Hence, the corresponding

190As in Figure 8.3.9, the slightly increasing amplitudes of the oscillations in the cases κ = 1 and κ = 3
2

are due to numerical inaccuracies.



228 CHAPTER 8. NUMERICAL EXPERIMENTS

Figure 8.3.12: Evolution of the linearised energy Elin and its kinetic and potential parts Elin
kin

and Elin
pot for the solutions of the linearised Vlasov-Poisson systems for King models with

parameters κ ∈ {1, 3
2 , 2,

5
2 , 3, 4}. The initial condition is wϕ′(E) in all cases.

King models are somewhat closer to isotropic polytropes with larger polytropic exponents,
for which we have observed fully damped solutions. Notice, however, that all King models
are equally regular. In particular, the King models are all linear in (E − E0) close to the
vacuum boundary {E = E0} in phase space, even for large values of κ. Figure 8.3.12 hence
yields the following insight:

Observation 8.3.6 (Steady State Regularity is not the Only Decisive Factor). Whether the
solutions of the linearised Vlasov-Poisson system exhibit a partially undamped oscillatory
behaviour or whether they are fully damped is not solely determined by the regularity of the
underlying steady state.

For the King models, it is, however, difficult to determine the threshold value for κ > 0
at which the transition from partially undamped oscillatory behaviour to fully damped
behaviour occurs. Our impression is that this transition proceeds much more slowly for the
King models when increasing κ compared to when increasing the polytropic exponent k for
the isotropic polytropes. In fact, for a wide range of King models, the behaviour of the
solutions of the linearised Vlasov-Poisson system is somewhat similar to the polytropic case
k = 1.25, cf. Figure 8.3.9, which we cannot confidently classify as being fully damped or
not. We are, nonetheless, certain that all King models with 0 < κ ≤ 3

2 lead to partially
undamped oscillatory solutions of the linearised Vlasov-Poisson system, while all solutions
are fully damped for κ ≥ 5

2 .
Furthermore, in contrast to the isotropic polytropic case, comparing the fundamental

spectral element λ with the essential spectrum of the linearised operator L does not provide
any further insights into the onset of fully damped behaviour for the King models when
increasing κ. This is because, for all values of κ > 1 we analysed, the fundamental spectral
elements λ are in such close proximity to inf(σess(L)) that – given the inherent numerical
inaccuracies – it is not possible to clearly say whether λ lies in the essential spectrum of L
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or just below it. On the non-linearised level, this phenomenon for one fixed King model has
previously been observed in [159, Fig. 2]. For 0 < κ < 1, the fundamental spectral elements
always lie below inf(σess(L)). Let us emphasise that we have never clearly observed λ lying
inside σess(L) in a case where the solutions of the linearised Vlasov-Poisson system partially
oscillate undamped or where we are uncertain of the occurring behaviour. This is again
very similar to the isotropic polytropes, recall Observation 8.3.4.

Despite the uncertainties in the analysis of the linearised Vlasov-Poisson systems for the
King models, we feel confident enough to conclude the following.

Observation 8.3.7 (Linearised Dynamics for the King Models). For King models with
small values of the parameter κ (at least 0 < κ ≤ 3

2), the solutions of the linearised Vlasov-
Poisson system (launched by “generic” initial data, cf. Observation 8.3.2) all exhibit a
partially undamped oscillatory behaviour. In contrast, for King models with larger values
of κ (at least κ ≥ 5

2), all solutions of the linearised Vlasov-Poisson system are fully damped
(on the macroscopic level).

Moreover, we have never encountered an undamped oscillation clearly corresponding to
an embedded eigenvalue of the linearised operator for any King model. For all King models
with 1 ≤ κ ≤ 4, the fundamental spectral element is rather close to the bottom of the
essential spectrum of the linearised operator.

Anisotropic Polytropes with L0 = 0

We now return to the polytropic steady states and consider the case of an equation of state
of the form (2.2.17) with L0 = 0 < `. The resulting steady states are anisotropic and have
no inner radial vacuum region, i.e., Rmin = 0. Due to the assumption (ϕ4), such steady
states are not included in the analysis of Chapters 4 and 5 since their periods are unbounded,
cf. Remarks 4.1.1 (a) and A.4.5. Nonetheless, we numerically study the linearised Vlasov-
Poisson system here for such steady states in order to understand how the anisotropy of
the steady states affects the linearised dynamics.

For several different polytropic exponents k and `, Figure 8.3.13 displays whether the
numerics indicate the presence of partially undamped oscillatory solutions of the linearised
Vlasov-Poisson system or whether all solutions are fully damped. We have determined the
qualitative behaviour in the same way as above, i.e., by analysing the evolution of Elin

kin up
to a terminal time of about t = 50. In some cases, the behaviour is similar to the isotropic
polytropic case k = 1.25, recall Figure 8.3.9; we do not dare to assign such cases clearly to
one behaviour. For all steady states, we have chosen the parameter κ leading to Rmax = 1;
note that, by Appendix B, the qualitative behaviour of solutions of the linearised Vlasov-
Poisson system does not depend on κ. Furthermore, in accordance with Observations 8.3.1
and 8.3.2, the qualitative behaviour does not depend on the initial condition, nor on which
macroscopic quantity we analyse. Figure 8.3.13 can be seen as an extension of (and homage
to) [66, Fig. 5], where the stability of similar anisotropic polytropes is studied (on the
non-linearised level). However, in [66] the focus lies more on anisotropic polytropes with
non-positive polytropic exponents k and `, which we do not consider here.

We clearly see from Figure 8.3.13 that undamped oscillatory behaviour exists for smaller
values of the polytropic exponent k and for larger values of the polytropic exponent `. Just
like Observation 8.3.6, this shows that, in general, a less regular steady state does not lead to
an undamped oscillatory behaviour – as one may have believed after analysing the isotropic
polytropes – since a larger value of ` corresponds to a more regular steady state. Instead,
it appears that a greater degree of anisotropy of the steady state, corresponding to a larger
value of `, increases the likelihood of undamped oscillations. The fact that larger ` lead to
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Figure 8.3.13: The qualitative behaviour of solutions of the linearised Vlasov-Poisson system
for polytropes with L0 = 0 and different polytropic exponents k > 0 and ` ≥ 0 satisfying
k < 3`+ 7

2 . Either there are parts of the solutions which oscillate undamped (red circles),
or the solutions are fully damped (blue crosses), or we cannot say for sure which of these
two cases is present (black squares). The dashed purple line corresponds to polytropic

exponents satisfying π2

12k −
π
3 ` = 1.

undamped oscillatory behaviour has also been observed in [132] on the non-linearised level.
There it is argued that steady states with small ` are somewhat more homogeneous which,
in the light of the results known in the plasma physics case [120], ought to correspond to
more damping.

The most remarkable observation from Figure 8.3.13 is that the presence of an undamped
oscillation or damping seems to depend on the polytropic exponents k and ` in a linear way.
To our knowledge, such observation has not been made before, not even on the non-linearised
level. Concretely, the dashed line included into the figure seems to separate the two regimes
quite well, despite the inherent inaccuracies of the numerics. We have fitted this line by
manual trial and error and discovered, to our delight, that the coefficients can be expressed
in a rather simple form. In the isotropic case ` = 0, this line suggests that the transition
from undamped oscillations to damping occurs at the polytropic exponent k = 12

π2 ≈ 1.22,
which is consistent with Observation 8.3.3.

It should be also be noted that, given Observations 8.3.4 and 8.3.7, it is already surprising
that there exist polytropic steady states with L0 = 0 and positive ` leading to (partially)
undamped oscillations of the linearised Vlasov-Poisson system. As noted above, the period
function is unbounded on the support of such steady states. Although we have not proven
it here, it is plausible by Proposition 4.5.4 that the essential spectrum of the linearised
operator L is given by σess(L) = [0,∞[. Hence, any undamped oscillation corresponds to an
eigenvalue of L which is embedded into its essential spectrum. This shows that we cannot
expect the absence of embedded eigenvalues for anisotropic steady states.

Observation 8.3.8 (Linearised Dynamics for Anisotropic Polytropes with L0 = 0). An
anisotropic polytropic steady state with L0 = 0, i.e., an ansatz function of the form
ϕ(E,L) = (E0 − E)k+ L

` with ` ≥ 0 and 0 < k < 3` + 7
2 , leads to partially undamped

oscillatory solutions of the linearised Vlasov-Poisson system if k is small and ` is large.
More precisely, the following linear relation between the polytropic exponents k and ` of the
steady state and the qualitative behaviour of the solutions of the linearised Vlasov-Poisson
system applies to high accuracy: There exist partially undamped oscillatory solutions if and
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only if
π2

12
k − π

3
` < 1. (8.3.15)

For ` > 0, these oscillations correspond to eigenvalues which are embedded into the essential
spectrum of the linearised operator, i.e., the oscillation period of the whole solution is in
resonance with the periods of individual particles within the steady state.

Polytropic Shells

We next consider the case of a polytropic shell, i.e., a steady state with microscopic equation
of state of the form (2.2.17) with L0 > 0. We only consider the case κ = 1 here, but are
certain that a similar behaviour can also be observed for general values of κ.

Let us first analyse the alteration in the linearised Vlasov-Poisson system when slowly
increasing L0 from 0. As to be expected, for 0 < L0 � 1, the solutions of the linearised
system are somewhat close to the respective solutions in the case L0 = 0. For instance,
the solutions exhibit a partially undamped oscillatory behaviour for the polytrope with
k = 1 = ` = κ and L0 = 0, and a similar behaviour can also be observed for polytropes
with the same polytropic exponents and 0 < L0 � 1 = κ. In addition, the oscillation
periods in these cases are close to each other, as are the values of the period function. Since
supD0

(T ) = ∞ in the case L0 = 0, we also observe that for small values of L0 > 0, the
fundamental oscillation period of the entire solution is in resonance with the periods of
individual particles. Concretely, this is the case for 0 ≤ L0 ≤ 0.0003, while the fundamental
oscillation periods of the entire solutions are larger than supD0

(T ) for L0 ≥ 0.0005; in par-
ticular, we have observed a partially undamped oscillation for all polytropes we analysed
with L0 ≥ 0 and k = 1 = ` = κ. As explained before, the former corresponds to an eigen-
value that is embedded into the essential spectrum of the linearised operator. This shows
that the absence of embedded eigenvalues cannot be expected for polytropes with L0 > 0,
even though these steady states are admissible for the analysis in Chapters 4–5 provided
that k and ` are suitably chosen. Further recall that the absence of embedded eigenvalues
was proven in Section 6.5 for polytropic shells which are small and which surround a point
mass. The above discussion hence shows that the presence of the point mass is crucial for
the results in Section 6.5. We have only explicitly analysed this phenomenon for one choice
of polytropic exponents k, ` > 0, but consider it very plausible that there generally exists
an embedded eigenvalue for polytropes with 0 < L0 � 1 and polytropic exponents which
correspond to partially undamped oscillations in the case L0 = 0, cf. Figure 8.3.13.

For polytropic exponents corresponding to fully damped solutions in the case L0 = 0,
cf. Figure 8.3.13, we observe a similar behaviour for 0 < L0 � 1 as well. For instance, for
the polytropes with k = 2, ` = 1

4 , and κ = 1, we observe that all solutions of the linearised
Vlasov-Poisson system are fully damped for 0 ≤ L0 ≤ 0.01.

When increasing the parameter L0 > 0, we actually never observe such fully damped
solutions. For instance, for all polytropes with L0 = 1 = κ and polytropic exponents k
and ` contained in Figure 8.3.13, the solutions of the linearised Vlasov-Poisson system are
oscillating partially undamped. The associated oscillation periods are always smaller than
all particle periods, corresponding to an eigenvalue of the linearised operator in the essential
gap. This is consistent with Observation 8.2.12 which also indicated that polytropic shells
with not too small L0 > 0 possess an eigenvalue in the essential gap.

Lastly, let us discuss the behaviour of solutions of the linearised Vlasov-Poisson system
for polytropic shells with parameters satisfying the conditions (5.4.1) of Theorem 5.4.1.
Such solutions are, in fact, harder to study from a numerics point of view and we encounter
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larger numerical errors than for other steady states. This is due to the fact that all steady
states satisfying (5.4.1) are not smooth at the boundary of their support because of ` < 0.
Nonetheless, for all the steady states mentioned in Observation 8.2.8, we clearly found that
the solutions of the linearised Vlasov-Poisson system possess an undamped oscillatory part.
This is consistent with the statement from Theorem 5.4.1; recall that Observation 8.2.8
indicates that the assumption (5.4.2) is satisfied for these steady states.

Let us summarise our findings regarding the polytropic shells.

Observation 8.3.9 (Linearised Dynamics for Polytropic Shells). For all polytropic shells
with polytropic exponents k, ` > 0 and 0 < L0 � 1, the solutions of the linearised Vlasov-
Poisson system are similar to the respective solutions in the case L0 = 0. If the solutions
are partially oscillating undamped, the oscillation periods correspond to an eigenvalue which
is embedded into the essential spectrum of the linearised operator.

If L0 > 0 is not too small, the solutions of the linearised Vlasov-Poisson system always
seem to possess an undamped oscillatory part, regardless of the polytropic exponents k and `.

Undamped oscillatory behaviour can also be observed for all polytropic shells satisfying
the conditions (5.4.1) of Theorem 5.4.1.

8.4 Numerics of the (Non-Linearised) Vlasov-Poisson Sys-
tem

In this section we numerically analyse solutions of the (non-linearised) Vlasov-Poisson sys-
tem close to steady states. The main purpose is to investigate whether the behaviour of
such solutions can indeed be explained by the behaviour of suitable solutions of the lin-
earised Vlasov-Poisson system. Since the theoretical parts of this thesis have dealt solely
with the linearised Vlasov-Poisson system, we refrain here from studying the properties
of the non-linearised system itself in more detail. In addition, numerous works have al-
ready numerically investigated different aspects of the Vlasov-Poisson system. A (most
likely incomplete) list of previous numerical investigations that are not too far away from
the setting considered here – spherically symmetric solutions close to compactly supported
steady states – is [13, 66, 82, 93, 100, 115, 124, 127, 132, 159, 168, 177, 180]. However,
the transition from the linearised to the non-linearised Vlasov-Poisson system has, to our
knowledge, not yet been numerically analysed.

The Numerical Method

Let us describe how we simulate the radial Vlasov-Poisson system (2.1.9)–(2.1.11). Similar
as for the linearised Vlasov-Poisson system, cf. Section 8.3, we simulate the Vlasov-Poisson
system using a particle-in-cell scheme. The same method has also been used in [132] to
numerically analyse the presence of undamped oscillations or damping close to similar steady
states as the ones considered here. Furthermore, the particle-in-cell method is commonly
used to simulate the Vlasov-Poisson system in a plasma physics context [20] as well as to
simulate the Einstein-Vlasov system in spherical symmetry [5, 48, 50, 182] and in other
symmetries [2, 3]. The code we use here is based on the ones used in [5, 48, 50, 132],
although we have entirely rewritten the code in an object-oriented way. Compared to the
code used in [132], we have included some improvements which we will describe below. For
instance, the spatial origin r = 0 is handled more carefully and we employ an RK4 scheme
instead of a Euler scheme for evolving the particles. In the astrophysics literature – see the
references above – the Vlasov-Poisson system has also been analysed numerically, but with
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different numerical methods. In fact, most of these numerical investigations are based on N -
body simulations in one form or another. The particle-in-cell scheme is more adapted to the
Vlasov-Poisson system. In particular, it is proven in [153] that a particle-in-cell simulation
actually converges to the true solution of the Vlasov-Poisson system when increasing the
accuracy of the discretisation. Furthermore, in the context of plasma physics, numerous
techniques have been developed to further improve the numerical methods presented here,
see [122, 123] and the references therein.

The key idea of the particle-in-cell scheme is to split the phase space support of the initial
distribution f(0) into finitely many distinct cells. This phase space separation proceeds in
the same way as in the linearised case, cf. above. In particular, we again use the (r, u, α)-
coordinates from Remark 2.1.2 (f) for this step; note that these coordinates are also used
in [153]. Each of the resulting cells is represented by a (numerical) particle placed into
its centre. Again, each particle stores its position in phase space in (r, w, L)-coordinates,
the volume of its cell, and the value of the initial distribution f(0, r, w, L). These particles
represent the initial phase space distribution f(0), and the evolution of f governed by
the Vlasov-Poisson system is given through the evolution of the particles. The particle
trajectories are governed by the ODE

ẋ = v, v̇ = −∂xUf (t, x), (8.4.1)

where Uf (t) is the gravitational potential generated by f at time t. However, since f is only
(yet) known at time t = 0, we use the following approximation of (8.4.1):

ẋ = v, v̇ = −∂xUf (0, x). (8.4.2)

The right-hand side of this ODE is computed using the formula ∂xUf (0, x) = mf (0, |x|) x
|x|3 ,

where mf (0, r) is obtained from the particles as described in the context of the linearised
system. In particular, we again take into account the order of the integrand of m(0, r) close
to the radial origin r = 0 by employing Simpson’s rule to compute the integral. Note that
the assumption of spherical symmetry significantly simplifies this step since we only have
to compute a one-dimensional integral to compute the right-hand side of (8.4.2) instead of
solving the three-dimensional Poisson equation. When evolving the particles, we deliber-
ately avoid using radial coordinates and instead change to Cartesian (x, v)-coordinates when
solving the characteristic system. This prevents numerical errors arising from the (artificial)
singularity at r = 0 in radial coordinates and has been developed in [48, 132]. Evolving the
particles via (8.4.2) gives a good approximation of their position at time δt > 0 provided
that the time step size δt is sufficiently small. In fact, for the particle propagation, we do
not use (8.4.2) directly, which would correspond to the Euler method, but instead employ
a suitable adaptation of RK4 similar to [50]. Also note that the value of f and the cell size
associated to each numerical particle remain constant during the particle evolution since
the phase space density f is constant along the characteristic flow of the Vlasov equation
and this flow is measure-preserving, cf. [143, Lemmas 1.2 and 1.3]. Hence, the particles
represent the phase space distribution f(δt) at the next time step δt after updating their
positions. Iterating this entire process results in a simulation of the Vlasov-Poisson system.

We choose similar numerical parameters as for the simulation of the linearised Vlasov-
Poisson system. In particular, we always use a total of 107–108 numerical particles. To be
able to run the program within reasonable time, we employ a shared-memory parallelisation
similar to [48, 50, 81, 132], which is again implement using the Pthreads API in C++. We
refer to [80] for a GPU-based parallelisation scheme in a related context.
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Similar to the linearised case, we evaluate the accuracy of the simulation by monitoring
the conserved quantities of the Vlasov-Poisson system, see [143, Sc. 1.5] for an overview
over such conserved quantities. The first one is the total energy

Etot(f) := Ekin(f) + Epot(f), (8.4.3)

with kinetic and potential parts given by (3.1.19) and (3.1.20), respectively. The other
conserved quantity we consider here is the total mass of f given by (8.3.12). It is straight-
forward to numerically compute these quantities by adding up the contributions of all
particles with suitable weights.

In order to analyse the solution f = f(t), we consider the evolutions of Ekin(f(t)),
Epot(f(t)), and Uf (t, 0); the latter quantity can be computed from the local mass mf (t, r)
via (8.3.13). Furthermore, we analyse the evolution of the support of the solution by
considering the minimal and maximal radius of the solution given by

Rmin(t) := inf{r > 0 | ∃(w,L) : f(t, r, w, L) > 0}, (8.4.4)

Rmax(t) := sup{r > 0 | ∃(w,L) : f(t, r, w, L) > 0}, (8.4.5)

as well as the minimal and maximal w-values of the solution which are defined similarly. In
addition, we study the behaviour of the macroscopic functions ρf (t), mf (t), and Uf (t).

In order to analyse the dynamics of the Vlasov-Poisson system close to a fixed steady
state f0, we consider solutions launched by initial data of the form

f(0) = α f0, (8.4.6)

which should be viewed as a perturbation of the steady state. The strength of the pertur-
bation is determined by the difference of the perturbation amplitude α and 1. We choose
this type of perturbation here for the sake of simplicity and because its strength is directly
determined by the parameter α. It should, however, be emphasised that it was found
in [132] that different perturbations, including dynamically accessible ones, always lead to
qualitatively similar behaviour of the resulting solutions.

The Isotropic Polytropic Steady State k = 1 = Rmax

We again start by considering the isotropic polytrope (1.2.3) with polytropic exponent k = 1
and parameter κ > 0 chosen s.t. Rmax = 1; such κ exists by Appendix B.

We first analyse the solution of the Vlasov-Poisson system launched by the initial condi-
tion (8.4.6) with perturbation amplitude α = 1.01. The evolutions of the kinetic, potential,
and total energy for this solution are shown in Figure 8.4.1.

We clearly see that the solution exhibits an undamped oscillatory behaviour. More
precisely, it seems like the solution travels to a state close to the original equilibrium at
the beginning (i.e., for small t) and then oscillates around this new state undamped. Given
the oscillatory behaviour of the solutions of the linearised Vlasov-Poisson system for this
steady state and the arguments from Section 3.1, such oscillations are to be expected.
We will analyse this oscillation, and how similar it is to the oscillations observed on the
linearised level, below in more detail in the context of general isotropic polytropes. Before
doing so, we want to discuss further aspects of the above solution.

Firstly, we note that the oscillatory behaviour is visible in all macroscopic quantities
associated to the solution. Figure 8.4.2 shows the behaviour of the value of the gravitational
potential at the spatial origin – recall (8.3.13) for a formula for this quantity – as well as
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Figure 8.4.1: Evolution of the total energy Etot and its kinetic and potential parts Ekin

and Epot (see (3.1.19), (3.1.20), and (8.4.3) for the definitions of these quantities) for the
solution of the Vlasov-Poisson system launched by the initial condition 1.01 f0, where f0 is
the isotropic polytrope with k = 1 and Rmax = 1.

the behaviour of the maximal radius Rmax(t).191 The former evidently behaves similarly
to the kinetic and potential energies. The time evolution of the maximal radius looks
significantly more chaotic than the other plots. This is because this quantity can be affected
by the behaviour of a small number of numerical particles (out of the ≈ 4 · 107 numerical
particles used for the simulation) and is hence vulnerable to even the slightest numerical
inaccuracies. Nonetheless, we see that the maximal radius also exhibits an undamped
oscillatory behaviour. This is consistent with the pulsation motivated by Sections 3.2–3.3
in the case of an eigenvalue of the linearised operator.

Figure 8.4.2: Evolutions of the maximal radius Rmax(t) (top panel, recall (8.4.5) for the
definition of this quantity) and Uf (t, 0) (bottom panel) for the solution of the Vlasov-Poisson
system launched by the initial condition 1.01 f0, where f0 is the isotropic polytrope with
k = 1 and Rmax = 1.

The pulsating nature is even better visible in the macroscopic functions associated to
the solution. In Figure 8.4.3, the time evolutions of several such functions are shown. Recall

191The minimal radius Rmin(t) always remains (very close to) 0. This means that the solution preserves
the ball-like structure of the steady state.
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Figure 8.1.1 for plots of the same macroscopic functions for the unperturbed steady state.

Figure 8.4.3: Values of the mass density ρf = ρf (t, r) (top left panel), gravitational potential
Uf = Uf (t, r) (top right panel), radial mass density 4πr2ρf (t, r) (bottom left panel), and
local mass mf = mf (t, r) (bottom right panel) at different time-radius pairs (t, r) for the
solution f of the Vlasov-Poisson system launched by the initial condition 1.01 f0, where f0

is the isotropic polytrope with k = 1 and Rmax = 1.

To see that these functions as a whole are indeed time-periodic, we plot (t1, t2) 7→
‖ρf (t1) − ρf (t2)‖2 and (t1, t2) 7→ ‖Uf (t1) − Uf (t2)‖2 in Figure 8.4.4. The behaviour of
these differences is very similar to [132, Figs. 2 and 4]. These figures were the inspiration
for Figure 8.4.4, although different solutions are considered there. In the left panel of
Figure 8.4.4, we see that ‖ρf (t1)− ρf (t2)‖2 does not become zero (black colour) for t1 6= t2,
but at most close to zero (violet colour). This is due to numerical noise in the mass
density ρf . The figure nonetheless clearly shows that t 7→ ρf (t) is time periodic. In the
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right panel of Figure 8.4.4, we see that ‖Uf (t1)− Uf (t2)‖2 indeed vanishes periodically for
t1, t2 > 0. This is because the numerical noise contained in the mass density ρf cancels out
during the two radial integrations in the computation of the gravitational potential Uf .

Figure 8.4.4: L2-differences of the mass density ρf (left panel) and the gravitational poten-
tial Uf (right panel) at different time steps, i.e., ‖ρf (t1)− ρf (t2)‖2 and ‖Uf (t1)− Uf (t2)‖2
for different t1, t2 ≥ 0, for the solution f of the Vlasov-Poisson system launched by the
initial condition 1.01 f0, where f0 is the isotropic polytrope with k = 1 and Rmax = 1.

Although we will not further illustrate this here, we note that the minimal and maximal
values of the radial velocity w in the support of the solution exhibit a similar evolution as the
maximal radius Rmax(t), see Figure 8.4.2: These quantities also behave quite chaotic, but
an oscillatory motion is nonetheless clearly visible. This is consistent with the arguments
from Section 3.3 which explain that the whole phase space support of the solution oscillates
in the case of an oscillation on the linearised level.

Altogether, we conclude that the oscillation is indeed visible in all macroscopic quantities
associated to the solution. The same is also true for other solutions which we will analyse
below. This is similar to the linearised level, recall Observation 8.3.1.

Observation 8.4.1 (All Macroscopic Quantities Behave Equivalently). The qualitative
behaviour of a solution of the Vlasov-Poisson system can be observed alike in the evolutions
of Ekin, Epot, Rmax(t), and Uf (t, 0), as well as in macroscopic functions like ρf and Uf . In
particular, an oscillatory behaviour indeed occurs as a pulsation, i.e., the spatial support of
the solution expands and contracts in a time-periodic way.

Secondly, let us briefly discuss the numerical accuracy of the simulation. As already
visible in Figure 8.4.1, the total energy is preserved to high accuracy during the evolution.
Concretely, until the final time T = 100, the relative error of the total energy, i.e., the
absolute value of Etot(f(t))−Etot(f(0))

Etot(f(0)) , remains smaller than 0.01%. The relative error of the

total mass even remains smaller than 0.002%.192 Comparing these errors to the ones which
occurred for the simulations of the linearised Vlasov-Poisson system, we come to the (sur-
prising) conclusion that we can, in fact, simulate the non-linearised Vlasov-Poisson more

192It is to be expected that the error of the total mass is smaller than the errors of other conserved quantities,
like the total energy, because the conservation of the total mass is somewhat build into the particle-in-cell
scheme, cf. [153].
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accurately than the linearised system. The reason for this is probably that the particle-in-
cell method which we use to simulate both systems is more adapted to the non-linearised
system. Anyway, the small error values give us great confidence that our numerical sim-
ulations of the Vlasov-Poisson system are indeed accurate. In the remaining parts of this
section we will not further discuss the numerical accuracy, but note that the errors are
always of a similar order of magnitude as those of the above simulation.

Thirdly, as already mentioned above, the oscillation takes place around a state which is
different from the original steady state. This is, for instance, well visible in Figure 8.4.1: The
oscillation of the kinetic energy takes place around a value which is larger than the initial
value, which is in turn larger than the kinetic energy of the steady state. This phenomenon
is also visible in Figures 8.4.2– 8.4.4. Given that the steady state is (non-linearly) stable, this
behaviour might be surprising. However, it is only due to the strength of the perturbation
used above. If one decreases the strength of the perturbation by choosing the perturbation
amplitude α closer to 1, the oscillation of the solution takes place closer to the original
steady state. This is well visible in Figure 8.4.5, where solutions launched by different
perturbation amplitudes are depicted. Let us note that the same effect – i.e., oscillations
taking place around a state different from the original equilibrium – has also been observed
in [132] for different perturbations, including dynamically accessible ones. This shows that
this effect is not only due to the näıve perturbation type chosen here.

Figure 8.4.5: Evolution of the kinetic energy Ekin for the solutions of the Vlasov-
Poisson system launched by the initial conditions α f0 with perturbation amplitudes
α ∈ {1.1, 1.01, 1.001, 1.0001, 1, 0.9999, 0.999, 0.99, 0.9}, where f0 is the isotropic polytrope
with k = 1 and Rmax = 1.

Let us further analyse Figure 8.4.5. We see that stronger perturbations not only lead
to the oscillations to take place further away from the original steady state, but also to
different oscillation periods. For instance, the (fundamental) oscillation periods of the
solutions launched by the perturbation amplitudes α = 1.1, α = 1.01, and α = 1.001
are all different from one another. In the cases α = 1.001, α = 1.0001, and α = 1, the
oscillation periods seem quite identical to one another. Notice that in the case α = 1, the
slight oscillation of the solution is due to numerical errors acting in the same way as a
perturbation. The same effects are also visible for perturbation amplitudes α ≤ 1, more
precisely, the (fundamental) oscillation periods are different for α = 0.9, α = 0.99 and
α ∈ {0.999, 0.9999, 1}. This behaviour also occurs for all other steady state which we will
investigate throughout this section.
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Observation 8.4.2 (Oscillations for Different Perturbations). Consider a steady state for
which the solutions of the Vlasov-Poisson system close to it exhibit an undamped oscillatory
behaviour. Such oscillations take place closer to the steady state if the strength of the
perturbation is reduced. In addition, the fundamental oscillation periods converge to a fixed
value as the strengths of the perturbations tend to zero.

A similar observation has previously been made in [132, Fig. 5]. There, it is further
concluded that the limiting oscillation period is independent of the perturbation type.

As an aside, let us briefly discuss another aspect of the solutions shown in Figure 8.4.5.
In the case of a stronger perturbation, the solutions exhibit a second oscillatory motion in
addition to the fundamental oscillation. Concretely, the solution launched by the pertur-
bation amplitude α = 1.1 has a fundamental oscillation period of ≈ 4.2 and shows another
oscillation with a larger period of ≈ 35.4.193 An explanation for this behaviour may be
that the strong perturbation carries parts of the solution to different steady states, around
which they oscillate with different periods. The presence of multiple oscillations for solu-
tions which are perturbed rather strongly has also been observed in [132, Figs. 7 and 8].
Here, we will not discuss this phenomenon further and instead focus on solutions which
are closer to a steady state, as only such solutions are related to suitable solutions of the
linearised Vlasov-Poisson system.

Isotropic Polytropic Steady States

We next consider solutions of the Vlasov-Poisson system close to general isotropic poly-
tropes (1.2.3). As before, we always choose the parameter κ > 0 s.t. Rmax = 1 for the
resulting steady states, cf. Appendix B. The evolutions of the kinetic energies for different
such solutions are shown in Figure 8.4.6.

We see that the solutions close to isotropic polytropes with polytropic exponents k ∈
{1

2 , 1} exhibit an undamped oscillatory behaviour. As stated in Observation 8.4.1, these
oscillations are of pulsating nature. For larger polytropic exponents k ∈ {3

2 , 2,
5
2 , 3}, the

solutions also exhibit an oscillatory behaviour, but the oscillation fully damps out over
time. This damping seems to be stronger, i.e., faster, for larger polytropic exponents.
Similar to the oscillatory case, cf. Observation 8.4.2, the solutions do not converge to the
original steady state, but to a state close by. Reducing the perturbation strength again leads
to the limiting configuration to be closer to the original equilibrium. Let us also note that
the “noise” which is visible in the cases k ∈ {5

2 , 3} seems to be of pure numerical nature;
increasing the numerical accuracy reduces it. Furthermore, the damping is also visible in
the evolution of other macroscopic quantities associated to the solution. In Figures 8.4.7
and 8.4.8, the evolutions of several macroscopic functions of a solution close to the isotropic
polytrope k = 3

2 are visualised. These figures should be compared to Figures 8.4.3 and 8.4.4,
where the same quantities of a similar solution in the case k = 1 are plotted. Let us note that,
despite the damping, the differences ‖ρf (t1)−ρf (t2)‖2 in the left panel of Figure 8.4.8 do not
seem to become zero (black colour) for large t1 6= t2, but only close to zero (violet colour).
This is again due to numerical noise being present on the level of the mass density ρf . In
the right panel of Figure 8.4.8, we see that ‖Uf (t1) − Uf (t2)‖2 indeed becomes zero for
sufficiently large t1, t2 > 0, which illustrates the damping quite nicely.

To study where the transition from undamped oscillatory behaviour to full damping
takes place, we depict the behaviour of solutions close to the isotropic polytropes with

193These oscillation periods have been determined by applying the discrete Fourier transform to Ekin(f(t)).
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Figure 8.4.6: Evolution of the kinetic energy Ekin for the solutions of the Vlasov-Poisson
system launched by the initial conditions 1.01 f0 for the isotropic polytropes f0 with k ∈
{1

2 , 1,
3
2 , 2,

5
2 , 3} and Rmax = 1.

polytropic exponents k ∈ {1.2, 1.25, 1.3} in Figure 8.4.9. We use a weaker perturbation
than above to be sure that the effects are indeed determined by the respective steady state.

In Figure 8.4.9, the solution close to the isotropic polytrope with polytropic exponent
k = 1.2 oscillates and the oscillation does not seem to fully damp out, i.e., a part of the
solution oscillates undamped. In contrast, in the case k = 1.3, the oscillation gets fully
damped. For the polytropic exponent k = 1.25, we are not quite sure which of these
two behaviours is present – the solution might be fully damped as well, but the damping
proceeds too slowly to be certain. Anyway, we have observed only this one transition
from undamped oscillatory to fully damped behaviour. More precisely, considering further
solutions has shown that solutions close to isotropic polytropes with polytropic exponents
0 < k ≤ 1.2 exhibit an undamped oscillatory behaviour, while the solutions close isotropic
polytropes with 1.2 ≤ k ≤ 3.2 are fully damped; for the same reasons as in Section 8.1,
we do not choose k > 3.2 here. In particular, Figure 1.1.1 shows the time evolutions of
solutions close to the isotropic polytropes with k = 1

2 (left panel) and k = 7
4 (right panel).

We have chosen a rather strong perturbation (α = 1.1) there so that the qualitatively
different behaviours of the solutions are clearly visible.

Observation 8.4.3 (Oscillations vs. Damping for Isotropic Polytropes at the Non–
Linearised Level). The solutions of the (non-linearised) Vlasov-Poisson system close to
isotropic polytropes with polytropic exponents 0 < k ≤ 1.2 exhibit a partially undamped os-
cillatory behaviour. In contrast, any solution close to an isotropic polytrope with polytropic
exponent 1.3 ≤ k ≤ 3.2 is fully damped (on the macroscopic level), in the sense that its
macroscopic quantities are convergent.

This observation is consistent with previous numerical investigations of the isotropic
polytropes, which we review now: In [115], it was observed that the kinetic and potential
energies of solutions close to the isotropic polytrope k = 3

2 exhibit an oscillatory behaviour.
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Figure 8.4.7: Values of the mass density ρf = ρf (t, r) (top left panel), gravitational potential
Uf = Uf (t, r) (top right panel), radial mass density 4πr2ρf (t, r) (bottom left panel), and
local mass mf = mf (t, r) (bottom right panel) at different time-radius pairs (t, r) for the
solution f of the Vlasov-Poisson system launched by the initial condition 1.01 f0, where f0

is the isotropic polytrope with k = 3
2 and Rmax = 1.

In accordance with Observation 8.4.3, these oscillations seem to be damped. These findings
were verified in [176] with a different numerical method which is more adapted to the
Vlasov-Poisson system than the N -body code used in [115]. In [168], somewhat damped
pulsations were observed for solutions close to the Plummer sphere which corresponds to
the polytropic exponent k = 7

2 . In [159], it was found that perturbing an isotropic polytrope
with polytropic exponent k ≤ 1 leads to “very weakly decaying modes”; we even go so far
here as to call these modes undamped. Again, these oscillations were also observed for
the supports of the solutions. It is also stated in [159] that the oscillations are “strongly
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Figure 8.4.8: L2-differences of the mass density ρf (left panel) and the gravitational poten-
tial Uf (right panel) at different time steps, i.e., ‖ρf (t1)− ρf (t2)‖2 and ‖Uf (t1)− Uf (t2)‖2
for different t1, t2 ≥ 0, for the solution f of the Vlasov-Poisson system launched by the
initial condition 1.01 f0, where f0 is the isotropic polytrope with k = 3

2 and Rmax = 1.

Figure 8.4.9: Evolution of the kinetic energy Ekin for the solutions of the Vlasov-Poisson
system launched by the initial conditions 1.001 f0 for the isotropic polytropes f0 with k ∈
{1.2, 1.25, 1.3} and Rmax = 1.

damped” for the isotropic polytropes with polytropic exponents k ≥ 1.2. Given that the
findings from [159] are based on N -body simulations (which were probably not as accurate
as the simulations here due to the lower availability of computational resources 25 years
ago), this is nonetheless quite consistent with Observation 8.4.3. In [124], solutions close to
isotropic polytropes with polytropic exponents k ∈ {1

2 ,
3
2 ,

5
2 ,

7
2} (as well as k ∈ {−3

2 ,−
1
2})

were studied. It was found that the kinetic energy oscillates undamped in the cases k ≤ 1
2 ,

and that the behaviour is qualitatively different for k ≥ 3
2 . The most recent numerical study

of the isotropic polytropes was conducted in [132]. It is clearly visible in [132, Fig. 6] that
perturbing the isotropic polytrope with k = 1

2 leads to an undamped oscillatory behaviour,
while perturbing the isotropic polytrope with k = 1.6 leads to a fully damped solution. For
the solution close to the isotropic polytrope k = 1.2 shown in [132, Fig. 6], it is unclear
whether the oscillation damps out entirely; the behaviour of this solution is very much
similar to the one shown in the left panel of Figure 8.4.9.

Let us now turn to the primary aspect of this section: Comparing the solutions of
the non-linearised Vlasov-Poisson system to the solutions of the linearised system. The
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reader has probably already noticed that the solutions discussed in this section behave
very similarly to the ones discussed in the previous section. Concretely, the partially un-
damped oscillatory behaviour of the solution of the non-linearised Vlasov-Poisson close to
the isotropic polytrope with polytropic exponent k = 1 visualised in Figures 8.4.1–8.4.4 is
similar to the behaviour of the solutions of the linearised Vlasov-Poisson for the same steady
state, recall Figures 8.3.1–8.3.5. Likewise, the fully damped behaviour close to the isotropic
polytrope k = 3

2 is similar to the behaviour of the solutions of the respective linearised
Vlasov-Poisson system, cf. Figures 8.4.6–8.4.8 and Figures 8.3.6–8.3.8. To further illustrate
these similarities, the solutions on the linearised and non-linearised levels for these steady
states are shown together in Figure 8.4.10.

Figure 8.4.10: The top panels show the evolutions of the kinetic energy Ekin for the solutions
of the Vlasov-Poisson system launched by the initial conditions 1.001 f0 for the isotropic
polytropes f0 with polytropic exponents k ∈ {1, 3

2} and Rmax = 1. Below are the evolutions
of the linearised kinetic energy (8.3.10) of the solutions of the linearised Vlasov-Poisson
system (middle) and the pure transport equation (8.3.14) (bottom) launched by the initial
condition w |ϕ′(E)| for the same two steady states.

We can see in Figure 8.4.10 that the oscillations in the case k = 1 on the non-linearised
and linearised level are both partially undamped and have the same oscillation period. The
oscillations are, however, slightly shifted due to the different behaviours at the beginning
of the simulations; this is to be expected in the light of Figure 8.3.5. Further note that
we have chosen a rather weak perturbation for the solution of the non-linearised system;
if we would have chosen a stronger perturbation, the oscillation period would be sightly
different from the one on the linearised level, recall Observation 8.4.2. For the polytropic
exponent k = 3

2 , we can also see that the fundamental oscillation periods are identical on
the non-linearised and on the linearised levels, and that the damping seems to be equally
strong, i.e., fast, on both levels.

In Figure 8.4.10, we also depicted the behaviour of the respective solutions of the pure
transport equation. As noted in Observation 8.3.5, these solutions behave in a qualitatively
different way to the ones of the linearised Vlasov-Poisson system. We can now conclude
that the solutions of the pure transport equation behave in a qualitatively different way
to the solutions of the actual non-linearised system: In the case k = 1, the solution of the
pure transport equation is fully damped, while there is an undamped oscillation on the
non-linearised level. Moreover, the fundamental oscillation periods are different from one
another. In the case k = 3

2 , the solution is damped on the non-linearised and on the pure
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transport level, but the damping is significantly stronger, i.e., faster, on the latter.

The same relations between the solutions of the non-linearised and linearised Vlasov-
Poisson system (as well as the pure transport equation) are also present for general isotropic
polytropes. This can be seen by comparing Figures 8.3.6, 8.3.11, and 8.4.6 to one another; we
have also verified these relations for further polytropic exponents than the ones considered
in these figures. Furthermore, by Observations 8.3.3 and 8.4.3, the solutions of the non-
linearised Vlasov-Poisson system close to an isotropic polytrope are fully damped if, and
only if, the solutions of the respective linearised system are fully damped.

Even though we only discussed the isotropic polytropes with κ-values s.t. Rmax = 1
thus far, further testing showed that the same relations also hold true for general κ > 0.
In particular, this shows that the Eddington-Ritter type relation (B.0.23) between the
parameter κ and the (fundamental) oscillation period p also holds on the non-linearised
level. This was previously observed in [132, Sc. 4].

In addition, we will see below that the same relations also hold for all steady states we
consider. Let us summarise these illuminating findings.

Observation 8.4.4 (Linearised and Non-Linearised Dynamics). The solutions of the non-
linearised Vlasov-Poisson system close to a steady state behave similarly to the solutions of
the respective linearised system. More precisely, if the solutions of the linearised Vlasov-
Poisson system oscillate partially undamped for some steady state, the solutions of the non-
linearised system close to the same steady state do so as well, and the oscillation periods
are similar. If the solutions of the linearised system are fully damped, so are the solutions
of the non-linearised Vlasov-Poisson system close to the respective steady state, and the
damping seems to be equally strong. All these statements require that the solution of the
non-linearised system is sufficiently close to the respective steady state, i.e., the perturbation
is sufficiently weak.

In contrast, the solutions of the pure transport equation (8.3.14) behave in a qualitatively
different way to the solutions of the non-linearised Vlasov-Poisson system.

Although the arguments from Chapter 3 make it quite plausible that the behaviour
of solutions of the non-linearised Vlasov-Poisson system close to a steady state can be
described qualitatively by the linearised system, this should not be taken for granted. For
other systems, there are time-periodic solutions on the linearised level, but the solutions on
the non-linearised level are nonetheless damped, cf. [164].

King Models

Let us next consider the solutions of the Vlasov-Poisson system close to King models (1.2.4)
with different values of κ > 0. As for the isotropic polytropes, we again observed that
such solutions behave qualitatively similar to the solutions of the linearised Vlasov-Poisson
system, i.e., Observation 8.4.4 also holds for the King models. Concretely, as summarised
in Observation 8.3.7, solutions close to King models with small κ-values exhibit a partially
undamped oscillatory behaviour, while the solutions are fully damped for larger values
of κ. These two qualitatively different behaviours were also observed in previous numerical
investigations, although the explicit dependence on the parameter κ found here is, to the
author’s knowledge, new. More precisely, it was observed in [132] that perturbing a King
model may lead to undamped oscillations similar to the isotropic polytropic case. In [159,
Sc. 2], it was found that the solution close to a (different) King model is fully damped.
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Anisotropic Polytropes

Lastly, we consider the solutions of the Vlasov-Poisson system close to general poly-
tropes (1.2.5). As in Section 8.3, we study polytropes with L0 = 0 as well as the polytropic
shells corresponding to L0 > 0. For both of these types of steady states, the solutions close
to them behave in a qualitatively similar way as the solutions of the respective linearised
Vlasov-Poisson system, i.e., Observation 8.4.4 also holds for the anisotropic polytropes.
Concretely, as stated in Observation 8.3.8, whether solutions close to a polytropic steady
state with L0 = 0 are damped depends linearly on the polytropic exponents k and `. This is
consistent with [132, Fig. 6 (d)], where it was observed that a solution close to a polytrope

with k = 3, ` = 5, L0 = 0 oscillates undamped; notice that π2

12 3 − π
3 5 < 1. In addition,

it was observed in [132, Sc. 4] that the Eddington-Ritter relation (B.0.23) also holds for
the (fundamental) oscillation periods of the solutions of the non-linearised system close to
polytropes with L0 = 0. Our simulations verify this finding. Similar to Observation 8.3.9,
the behaviour of solutions of the non-linearised system close to polytropes with k, ` > 0 and
0 < L0 � 1 is similar to the case L0 = 0. When choosing L0 > 0 not too small, the solutions
close to the resulting polytrope oscillate undamped. The latter is in agreement with [132,
Sc. 5], where it is stated that solutions of the non-linearised Vlasov-Poisson system close
to all polytropic shells are undamped – probably only not too small values of L0 > 0 were
considered there. Any such oscillation is again of pulsating nature which can now also be
observed in the oscillation of the inner radius Rmin(t) > 0. A similar behaviour was also
observed in [132, Fig. 4].

Overall, we hence conclude that the behaviour of solutions of the Vlasov-Poisson system
close to all the steady states we considered here are indeed accurately described by the
linearised Vlasov-Poisson system.
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Chapter 9

Outlook

As our joint journey comes to its close, let us recall the metaphor from the end of the
introduction. Our odyssey through the mathematical landscape has often taken us down
thorny paths – think of the 118 lemmas we have overcome in this thesis. Nevertheless, we
hope that our faithful reader will remember the journey as a rewarding one, and has found
pleasure in the 15 propositions and eight theorems that we have encountered. But on the
distant horizon, veiled in the mist of the yet unproven, we have caught glimpses of even
more beautiful results: Some of them are mentioned in the 58 remarks in this thesis, but
mainly they are found in the 25 numerical observations in Chapter 8. We wish to gather
here our thoughts on some of these results, in the deep hope that future endeavours will
reveal the paths to their proofs.

Thus, let us now leave the metaphors behind and turn to the discussion of some open
questions and approaches for proving them. The presented topics are of course subjectively
chosen; the list could be much longer and completely different. For instance, a similar
list with (partly) different topics can be found in [86, Sc. 11]. Our focus is on the issues
we consider particularly important and enlightening, while it also seems realistic that they
are solvable. More general issues like extending the analysis to a larger class of steady
states, dropping the assumption of spherical symmetry, or transferring the results to the
non-linearised regime are left for another day.

I. Properties of the Period Function

Despite the extensive analysis of the (radial) period function T in Appendix A, we saw at
several places in this thesis that certain aspects of the linearised system depend on properties
of T that we cannot rigorously prove (yet). For instance, if we knew which particles within
the steady state support correspond to the largest periods, we could deduce the existence
of an oscillatory mode in some situations, cf. Theorem 5.4.1 and Corollary 5.4.3. For this
purpose, it would be beneficial if T were monotonic. Such monotonicity would also be
crucial to show statements towards damping with the methods from Chapter 6 in further
situations.

The numerical analysis from Section 8.2 shows that, for certain equilibria, the period
function T is indeed monotonic on the steady state support. In particular, T always seems
to be increasing in the particle energy E for isotropic steady states, cf. Observations 8.2.5
and 8.2.6. We discussed several possible approaches towards proving such monotonicity in
Section A.3.3. We believe that the most promising one is to prove that Gref

L (and/or Href
L )

is positive on a suitable radial domain, cf. Lemma A.3.22. Notice that the numerics even
indicate that Gref

L is monotonic in the case of an isotropic steady state, cf. Figures 8.2.4

247
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and 8.2.8, which would simplify proving its positivity.

In any case, any further knowledge of the properties of the radial period function would
certainly expand our understanding of the linearised Vlasov-Poisson system.

II. Pulsations Around Isotropic Polytropes with Exponents 0 < k � 1

Of all isotropic steady states which we considered here, it seems most promising to prove the
presence of oscillatory modes for isotropic polytropes (1.2.3) with very small polytropic ex-
ponents k > 0. The reason for this is that the numerics indicate the applicability of Kunze’s
criterion for the existence of eigenvalues of L only for these isotropic steady states, i.e., the
inequality (4.5.53) from Lemma 4.5.19 holds for these steady states, cf. Observation 8.2.11.
In addition, the numerical simulations from Sections 8.3 and 8.4 show the occurrence of
pulsating behaviour around these steady states on the linearised and non-linearised level.

One strategy to rigorously establish the existence of an eigenvalue of the linearised
operator L for these steady states is to first verify Kunze’s criterion in the case k = 0.
Although isotropic polytropes with k = 0 are not permitted for the analysis of the linearised
operator in Chapters 4 and 5 due to the assumption (ϕ5), the simple form of their energy
profile function Φ = 1]0,∞[ makes them likely easier to be studied compared to isotropic
polytropes with positive polytropic exponents k. If the inequality (4.5.53) holds for the
polytropic exponent k = 0, continuity arguments show that it also holds for 0 < k �
1. Indeed, the continuous dependence of the left-hand side of (4.5.53) on the polytropic
exponent k (for some fixed κ > 0) follows trivially by (2.2.29), (2.2.48), and (4.5.54). The
continuity of the right-hand side of (4.5.53) can be established with similar techniques as
in Section 6.2.1, see [16, Sc. 7] for related arguments.

Concretely, for the isotropic polytrope with polytropic exponent k = 0 and parameter
κ = 1, the left-hand side of Kunze’s criterion (4.5.53) is approximately 49.63. This value
can be computed explicitly using (2.2.29), (2.2.48), and (4.5.54). The right-hand side of
Kunze’s criterion is approximately 51.24 for this steady state; this value is based on a
numerical computation of the maximum of the period function on the steady state support
as described in Section 8.2. For a rigorous proof, all that remains to show is that the latter
value is indeed larger than the former one. This requires establishing an upper bound on
the values of the period function T on the steady state support which is as sharp as possible.
As an alternative or as a tool for this, the use of interval arithmetic could be helpful.

III. Pulsations Around Polytropic Shells with L0 � 1

Another class of steady states for which we consider the derivation of a rigorous proof of
the existence of pulsating modes to be particularly promising are polytropes (1.2.5) with
not too small values of L0 > 0. For instance, the numerical analyses in Sections 8.2–8.4
indicate the presence of pulsating behaviour close to polytropes with L0 = 1 = κ and all
polytropic exponents k and ` we considered.

In the case k + ` ≤ 0, Theorem 5.4.1 gives a criterion for the presence of pulsating
modes which only requires knowledge of the period function T and works for all L0, κ > 0.
For general polytropic exponents, considering the limit L0 → ∞ could be helpful. More
precisely, for fixed k, `, and κ, one could study the limiting behaviour of both sides of
Kunze’s criterion (4.5.53) from Lemma 4.5.19 as L0 →∞; recall that the numerics indicate
that the criterion is satisfied for the polytropes considered here, cf. Observation 8.2.12. To
determine the limit of the left-hand side of (4.5.53), it could be helpful to observe that
Rmin → ∞ as L0 → ∞ by (2.2.42). A lower bound on the limit of the right-hand side
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of (4.5.53) could be established by using the estimate from Lemma A.1.1. An alternative
approach would be to analyse the limit of the number M from Theorem 5.3.1 as L0 →∞.

IV. Eigenfunctions of L

Although we have put a lot of effort into characterising the presence of eigenvalues of the
linearised operator, our knowledge of the properties of the associated eigenfunctions is still
rather limited. Obviously, by the definition of D(L) and Lemma 4.3.10, every eigenfunction
is continuously differentiable w.r.t. the angle variable θ. The structure of the Fourier series
w.r.t. θ of an eigenfunction is analysed in Remark 5.3.2. Further knowledge of the properties
of eigenfunctions – e.g., their regularity w.r.t. (E,L) – is likely necessary in order to be able
to prove the presence of pulsating behaviour at the non-linearised level. Furthermore, recall
that the discussion in Chapter 3 shows that the properties of the eigenfunction determine
the qualitative aspects of the oscillatory behaviour on the non-linearised level, e.g., which
portions of the solution take part in the pulsation.

As demonstrated in Chapter 5, it can be helpful for our purposes to adopt certain
techniques from quantum mechanics, more precisely, from the theory regarding the solutions
of the (time-independent) Schrödinger equation. In this context, the regularity of solutions
is, e.g., studied in [98, Thm. 11.7].

Unfortunately, the numerical methods from Chapter 8 are not particularly well suited
for determining the eigenfunctions of L. Nonetheless, one method to do so is outlined in
Section 8.3: In the case of an oscillatory solution of the linearised Vlasov-Poisson system,
we always observed that one part of the solution is damped. If one chooses an eigenfunction
(or a linear combination of them) as the initial distribution, such damping cannot occur.
Hence, by analysing whether this partial damping is present, one can test whether a given
function is a linear combination of eigenfunctions. Alternatively, one can try to construct
initial distributions which get fully damped to determine the orthogonal complement of the
eigenfunctions.

In order to numerically study the properties of eigenfunctions, it would probably be
more convenient to search for eigenvalues/eigenfunctions of the linearised operator via vari-
ational methods. Concretely, one could numerically determine the function(s) f ∈ D(L)
with ‖f‖H = 1 which minimise(s) 〈Lf, f〉H . By the usual variational principles (recall
Lemma 4.5.16), these minimisers are eigenfunctions of L if the quadratic form gets smaller
than the bottom of the essential spectrum. Such variational methods are implemented
numerically in [161, 162] and, in context of the Einstein-Vlasov system, in [70] and [182,
Ch. 8].

V. Further Techniques from Quantum Mechanics

The analysis of the eigenvalues of the linearised operator in Chapter 5 was based on the
well-developed eigenvalue theory for Schrödinger operators. To gain further insights into
our problem, it would certainly be helpful to study and transfer further results from this
context. For instance, it seems possible to derive bounds on the sum of eigenvalues of L in
the essential gap G similar to the Lieb-Thirring Inequalities [99, Ch. 4].

One step in this direction is taken in [117], where a bound on the number of eigenvalues
of L in G is derived in a way qualitatively different to Theorem 5.3.3, recall Remark 5.3.4.
Furthermore, the methods and results from [85, Ch. 4] – in particular, the statements
regarding the dependence of the Mathur operator Mλ on λ, recall Remark 5.2.16 – could
be valuable for deriving further results in this direction.
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VI. Further Applications of the Criteria

One aim for future research is to develop applications of the criteria for the existence of
oscillatory modes from Lemma 4.5.19 and Section 5.3 in addition to those already presented
in Sections 5.4 and 6.4. For instance, being able to prove that the number M from The-
orem 5.3.1 is greater than one for steady states where M is not infinite would expand the
applications of Theorem 5.3.1.

Another application of Theorem 5.3.1 could be to prove that the presence of an os-
cillatory mode (in the essential gap) is “monotonic” along certain steady state families.
For instance, Observation 8.3.3 indicates that all isotropic polytropic steady states with
polytropic exponent k > 0 below some threshold exponent k∗ ≈ 1.25 possess an oscillatory
mode, while no such oscillatory mode exists for k > k∗. It is hence possible that the num-
ber M is non-increasing w.r.t. the polytropic exponent k along the isotropic polytropes (for
a fixed value of κ or Rmax). By Observation 8.3.7, M could also be monotonic w.r.t. the
parameter κ in the case of the King models. Proving such monotonicity could be easier
than actually determining whether M is > 1 or ≤ 1 for a fixed steady state.

VII. Numerical Analysis of the Mathur Operator

To identify further applications of the criteria from Section 5.3, it would certainly be helpful
to be able to numerically analyse the Mathur operator Mλ and the number M.

VIII. Existence of Pulsations for Small Shells Around a Point Mass

As discussed in Remark 6.4.2, it seems promising to prove the existence of oscillatory
modes for polytropic steady states surrounding a point mass which are sufficiently small
– i.e., 0 < ε � 1 for a steady state as constructed in Proposition 6.2.2 – with polytropic
exponents k and ` satisfying k+` ≤ 0. The only statement that is left to be proven for this is
that the period function T of a steady state with 0 < ε� 1 is non-increasing w.r.t. L on D0.
By Lemma 6.2.5, the period function is constant in L in the limiting case ε = 0, which is
why the L-monotonicity of T for steady states with 0 < ε � 1 cannot be established with
the methods from Section 6.2.1. Instead, one would have to analyse the limit ε → 0 to
higher order. More precisely, the desired L-monotonicity would follow if ∂ε

∣∣
ε=0

∂LT
ε ≤ 0 on

a suitable domain.194 Given that the proofs of the limiting statements in Section 6.2.1 were
already a bit technical, it is to be expected that computing the derivative ∂ε

∣∣
ε=0

∂LT
ε will

also be technically quite involved. Nonetheless, ∂ε
∣∣
ε=0

∂LT
ε should just be an expression

containing the parameters M , L0, k, `, and κ, whose sign one can analyse.

IX. Damping in a Non-Perturbative Regime

So far, Theorem 6.6.1 is the only statement – besides [61, Thm. 1.2 (b)], on which it is based
– showing damping around/towards a non-trivial steady state of the Vlasov-Poisson system
(in the gravitational case). For the proof of Theorem 6.6.1, it is, however, essential to be in
the perturbative regime of a small steady state surrounding a point mass. A natural aim is
to establish a damping result in a non-perturbative regime too.

The numerics from Sections 8.3–8.4 indicate that there occurs damping for a large
class of the steady states considered here, including the isotropic polytropes (1.2.3) with
polytropic exponents k ≥ 1.3. Hence, a natural steady state for proving damping is the

194It would, in fact, suffice to show ∂ε
∣∣
ε=0

∂LT
ε ≤ 0 on a neighbourhood of {E = κ} since, by Proposi-

tion 6.2.6, ∂ET
ε < 0 on Dε0 for 0 < ε� 1 and Eε0 → κ as ε→ 0.



251

Plummer sphere, cf. [19, Scs. 2.2.2(c) and 4.3.3(a)], which is just an isotropic polytrope
with polytropic exponent k = 7

2 . This steady state is commonly studied in the astrophysics
literature; see, e.g., [124, 168] for numerical investigations of solutions of the Vlasov-Poisson
system close to the Plummer sphere. The potential of the Plummer sphere is explicitly
known and thus all other quantities associated to the steady state are explicitly computable
as well. However, the Plummer sphere is not compactly supported, which is why many
of our arguments cannot be directly applied to it. In particular, the particle periods are
unbounded within the Plummer sphere, which ought to result in the essential spectrum
of the linearised operator to cover all non-negative numbers, i.e., σess(L) = [0,∞[. The
linearised operator is again expected to be non-negative, which is why it remains to show
the absence of embedded eigenvalues in order to arrive at a damping result similar to
Theorem 6.6.1. It is an interesting open problem whether the strategies from the proof of
Theorem 6.5.5 can be adapted to the situation of the Plummer sphere.

Another class of steady states for which one could try to establish damping are the
isochrone models, cf. [64, 65] and [19, Scs. 2.2.2(d), 3.1(c), and 4.3.1(a)]. In particular,
as reviewed in [18], (astro)physical considerations suggest that configurations close to an
ischrone model evolve towards this steady state. Like the Plummer sphere, the isochrone
models are explicitly computable, but have an unbounded supported. The mathemati-
cal basis for studying the linearised Vlasov-Poisson system around an isochrone model is
established in [7].

X. Quantitative Damping

In the case where the linearised operator L of a steady state possesses no eigenvalues,
we have proven in Lemma C.0.7 that the linearised dynamics are damped via the RAGE
theorem. This is, however, a rather weak form of damping. It is hence desirable to prove
stronger types of damping, for instance, the decay of suitable norms of macroscopic functions
like ∂xUT f . The numerics in Section 8.3 clearly indicate that such behaviour indeed holds.
The numerics further indicate that the strength of the damping depends on the steady
state, which is why it would also be interesting to study the decay rates. These issues will
be addressed in future work.

The End.
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Appendix A

The Period Function

This appendix is devoted to the analysis of the (radial) period function T : A0 → R associ-
ated to a steady state. Recall Definition 2.2.16 for the definition of this function:

T (E,L) = 2

∫ r+(E,L)

r−(E,L)

dr√
2E − 2ΨL(r)

, (E,L) ∈ A0, (A.0.1)

where the effective potential ΨL is defined in Definition 2.2.11, while the radii r± and the
set of all admissible (E,L)-pairs A0 are introduced in Lemma 2.2.12 (b).

Throughout Appendix A, we consider the situation where the underlying steady state f0

is given by Proposition 2.2.9. In addition to the conditions (ϕ1)–(ϕ3) imposed in Section 2.2,
we further assume that the conditions (ϕ4)–(ϕ5) from Section 4.1 are satisfied.

In this setting, we prove the following properties of T .

Proposition A.0.1 (Main Properties of the Period Function). (a) The period func-
tion T is bounded and bounded away from zero on the (E,L)-support D0 of the steady
state; recall (2.2.88) and Lemma 4.1.5 for the structure of this set. More precisely,

inf
D0

T > 0 and sup
D0

T <∞. (A.0.2)

(b) The period function is continuously differentiable on A0.

Proof. Part (a) is proven in Sections A.1 and A.2, while part (b) is due to Lemma A.3.3 or
Proposition A.3.17. In particular, note that A0 is open by Lemma 2.2.14 (b).

Apart from proving this crucial result, we also study further properties of the period
function in this appendix, e.g., several formulae for the partial derivatives of T , cf. Sec-
tion A.3, and the behaviour of the period function at a certain part of the boundary of A0,
cf. Section A.4. A numerical study of the properties of T is the subject of Section 8.2. In
particular, see Figures 8.2.2, 8.2.5, 8.2.9, and 8.2.10 for numerical plots of the values of the
period function on the (E,L)-triangle D0 for different steady states.

Most parts of this appendix originate from [62, App. B]. Another detailed analysis of
the period function is conducted in [85, Ch. 3], from which we also adopt some results
and techniques. Related analyses in different settings can be found in [49, Sc. 3.2], [61,
App. A.2], and [148, Apps. B and C].
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A.1 An Upper Bound on the Period Function

The aim of this section is to show that the period function T is bounded from above on the
(E,L)-support D0, i.e.,

sup
D0

T <∞. (A.1.1)

We mainly follow the arguments from [62, App. B.1] to establish this result.

The first upper bound on the period function is based on the concavity estimate (2.2.73)
on the effective potential. The result originates from [147, Eqn. (16)] and [165, Rem. 3.19],
see also [62, Eqn. (2.12)]. A similar bound is also proven in [57, Lemma 3.2].

Lemma A.1.1. For (E,L) ∈ A0 there holds the estimate

T (E,L) ≤ 2π
M2

0√
LE2

, (A.1.2)

where M0 ∈ ]0,∞[ is the total mass of the steady state defined in (2.2.11).

Proof. The concavity estimate from Lemma 2.2.14 (f) yields

T (E,L) ≤ 2

∫ r+(E,L)

r−(E,L)

r
√
r−(E,L) r+(E,L)√

L
√

(r+(E,L)− r) (r − r−(E,L))
dr ≤

≤ 2
r2

+(E,L)
√
L

∫ 1

0

ds√
s (1− s)

= 2π
r2

+(E,L)
√
L

≤ 2π
M2

0√
LE2

, (A.1.3)

where we changed variables via r = r−(E,L)+s (r+(E,L)−r−(E,L)), inserted the integral
identity (2.2.23), and used Lemma 2.2.14 (e) to estimate r+(E,L).

In the case of an anisotropic steady state, there holds L0 > 0 by (ϕ4). Hence, in this
situation the desired estimate (A.1.1) is an immediate consequence of Lemma A.1.1; recall
that the (E,L)-triangle D0 contains only energy values below the cut-off energy E0 < 0 and
L-values larger than L0.

In the remainder of this section it thus remains to analyse the boundedness of the period
function in the case of an isotropic steady state, i.e., L0 = 0 = `. One way of showing the
boundedness of the period function in this situation is given by Lemma 4.5.13. However,
we prefer to present the proof of this result based on [62, App. B.1] here, since it can be
generalised more directly to related systems – see, e.g., [49, Lemma 3.7].

Recall that the radial support of the steady state is of the form supp (ρ0) = [0, Rmax]
by Proposition 2.2.9 (c) in the isotropic situation. Furthermore, Remark 2.2.10 (a) implies
ρ0(0) > 0 and that ρ0 is radially non-increasing. For (E,L)-pairs corresponding to a radial
range where ρ0 is bounded away from 0, the maximum principle can be applied to establish
an upper bound on T . This result originates from [62, Lemma B.2].

Lemma A.1.2. Consider an isotropic steady state, i.e., L0 = 0 = `, and suppose that
(E,L) ∈ A0 and c > 0 satisfy

ρ0 ≥ c on [r−(E,L), r+(E,L)]. (A.1.4)

Then there holds the estimate

T (E,L) ≤
√

3π

c
. (A.1.5)
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Proof. For fixed (E,L) ∈ A0 and c > 0 as in the statement of the lemma let
Uc : [r−(E,L), r+(E,L)]→ R be defined by

Uc(r) :=− 2π

3
c
(r+ − r)(r − r−)(r + r+ + r−)

r

=
2π

3
c

(
r2 − (r+ + r−)2 + r−r+ +

1

r
r−r+(r+ + r−)

)
(A.1.6)

for r ∈ [r−, r+], where we use the abbreviations r± = r±(E,L). Obviously, Uc(r±) = 0 =
E −ΨL(r±). Applying the (radial) Laplacian ∆ =

(
∂2
r + 2

r ∂r
)

yields

∆Uc(r) = 4πc, (A.1.7)

∆ΨL(r) = ∆U0(r) +
L

r4
= 4πρ0(r) +

L

r4
(A.1.8)

for r ∈ [r−, r+]. Thus, (A.1.4) and the positivity of L imply

∆(Uc + E −ΨL) < 0 on [r−, r+]. (A.1.9)

By the maximum principle195 we therefore conclude

Uc + E −ΨL > 0 on ]r−, r+[. (A.1.10)

Inserting this estimate into the definition of the period function (2.2.97) and using the
integral identity (2.2.23) then yields

T (E,L) =
√

2

∫ r+

r−

dr√
E −ΨL(r)

≤
√

3

cπ

∫ r+

r−

dr√
(r+ − r)(r − r−)

=

√
3π

c
. (A.1.11)

Let us recapitulate the implications of the above two lemmas in the case of an isotropic
steady state. The bound (A.1.2) from Lemma A.1.1 implies that for any choice of L1 >
0 = L0 the period function T is bounded (from above) on {(E,L) ∈ D0 | L ≥ L1}; recall
E < E0 < 0 for (E,L) ∈ D0. Furthermore, for any choice of E1 ∈ ]U0(0), E0[, orbits
corresponding to (E,L) ∈ A0 with E ≤ E1 are radially restricted to a compact subset of
{ρ0 > 0}, more precisely, [r−(E,L), r+(E,L)] ⊂ ]0, r+(E1, 0)] ⊂ ]0, Rmax[ by Lemma 2.2.14
and (2.2.82). Due to the properties of ρ0 discussed above, ρ0 is bounded away from zero on
the interval [0, r+(E1, 0)]. Thus, Lemma A.1.2 shows that the period function T is bounded
on {(E,L) ∈ D0 | E ≤ E1} = {(E,L) ∈ A0 | E ≤ E1}. The next lemma – which originates
from [62, Lemma B.3] – closes the remaining gap.

Lemma A.1.3. Consider an isotropic steady state, i.e., L0 = 0 = `. Then there exist
E1 ∈ ]U0(0), E0[ and L1 > 0 as well as a constant C > 0 s.t.

[E1, E0]× ]0, L1] ⊂ A0 (A.1.12)

and

T ≤ C on [E1, E0]× ]0, L1]. (A.1.13)

195More precisely, we apply the strong maximum principle for elliptic operators as, e.g., stated in [41,
Sc. 6.4, Thm. 3] for the domain Br+ \ B̄r−(0).
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Proof. We consider fixed L > 0, E ∈ ]Emin
L , E0], and ε > 0 s.t. E − ε > Emin

L ; ε will be
specified more precisely below. By Lemma 2.2.14 (c),

r−(E,L) < r−(E − ε, L) < r+(E − ε, L) < r+(E,L). (A.1.14)

Our strategy is to separately estimate the times required for a particle with energy E and
squared modulus of angular momentum L to travel between these radii, where the particle
movement is determined by the steady state flow. Mathematically, this means that we split
the integral (2.2.97) into the three parts

T (E,L) = 2

(∫ r−(E−ε,L)

r−(E,L)
+

∫ r+(E−ε,L)

r−(E−ε,L)
+

∫ r+(E,L)

r+(E−ε,L)

)
dr√

2E − 2ΨL(r)
(A.1.15)

and estimate each term separately in the following steps:

1) We first estimate the time a particle takes to travel from r−(E,L) to r−(E − ε, L).
To do so, recall

Ψ′L(r) = U ′0(r)− L

r3
≤ 0, r ∈ ]0, rL], (A.1.16)

by the definition of rL, cf. Lemma 2.2.12. Together with the (radial) Poisson equation
U ′′0 + 2

rU
′
0 = 4πρ0 we thus obtain

Ψ′′L(r) = U ′′0 (r) +
3L

r4
= 4πρ0(r)− 2

r
U ′0(r) +

3L

r4
≥ 4πρ0(r) +

L

r4
> 0 (A.1.17)

for r ∈ ]0, rL]. Hence, the effective potential ΨL is convex on the interval ]0, rL],
which contains the radii r−(E,L) and r−(E − ε, L). For r ∈ [r−(E,L), r−(E − ε, L)]
we introduce the shorthand

α(r) :=
r − r−(E,L)

r−(E − ε, L)− r−(E,L)
∈ [0, 1] (A.1.18)

and deduce

ΨL(r) ≤ (1− α(r))ΨL(r−(E,L)) + α(r)ΨL(r−(E − ε, L)) = E − α(r)ε (A.1.19)

by the convexity of ΨL. Inserting this bound into the first term on the right-hand
side of (A.1.15) then shows∫ r−(E−ε,L)

r−(E,L)

dr√
2E − 2ΨL(r)

≤

≤
√
r−(E − ε, L)− r−(E,L)√

2ε

∫ r−(E−ε,L)

r−(E,L)

dr√
r − r−(E,L)

=

=

√
2

ε
(r−(E − ε, L)− r−(E,L)). (A.1.20)

2) We next estimate the time a particle takes to travel from r−(E−ε, L) to r+(E−ε, L).
On this interval, ΨL ≤ E − ε by Lemma 2.2.12, and hence∫ r+(E−ε,L)

r−(E−ε,L)

dr√
2E − 2ΨL(r)

≤ r+(E − ε, L)− r−(E − ε, L)√
2ε

. (A.1.21)
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3) Lastly, we estimate the time a particle takes to travel from r+(E − ε, L) to r+(E,L),
which turns out to be the crucial part. Let

µ := min{Ψ′L(r) | r ∈ [r+(E − ε, L), r+(E,L)]}. (A.1.22)

Obviously, µ > 0 by Lemma 2.2.12 since r+(E − ε, L) > rL, but µ depends on (E,L).
Anyway, the mean value theorem implies ΨL(r) ≤ E − µ (r+(E,L) − r) for r ∈
[r+(E − ε, L), r+(E,L)], from which we deduce the inequality

∫ r+(E,L)

r+(E−ε,L)

dr√
2E − 2ΨL(r)

≤
∫ r+(E,L)

r+(E−ε,L)

dr√
2µ (r+(E,L)− r)

=

=
√

2

√
r+(E,L)− r+(E − ε, L)

√
µ

. (A.1.23)

It thus remains to bound µ away from 0 independently of E and L for (E,L) ∈
[E1, E0]× ]0, L1] by choosing E1 and L1 suitably.

We recall Emin
L → U0(0) and rL → Rmin = 0 as L → 0 and r+(E,L) → r+(E0, 0) =

Rmax as (E,L)→ (E0, 0) in the present, isotropic case by Lemma 2.2.14 and (2.2.82).
Hence, there exist Ẽ1 ∈ ]U0(0), E0[ and L1 > 0 s.t. Emin

L < Ẽ1 as well as

r+(E,L) > r2L1 > rL1 ≥ rL (A.1.24)

for Ẽ1 ≤ E ≤ E0 and 0 < L ≤ L1. In particular, [Ẽ1, E0] × ]0, L1] ⊂ A0. We now
define

ε :=
E0 − Ẽ1

2
, E1 :=

E0 + Ẽ1

2
. (A.1.25)

For any E ∈ [E1, E0] and L ∈ ]0, L1] we then obtain E − ε ≥ Ẽ1 > Emin
L , and hence

r+(E − ε, L) > r2L1 . For r ∈ [r+(E − ε, L), r+(E,L)] ⊂ [r2L1 , Rmax] we thus conclude

Ψ′L(r) = U ′0(r)− L

r3
≥ U ′0(r)− L1

r3
= Ψ′L1

(r) ≥ min{Ψ′L1
(s) | s ∈ [r2L1 , Rmax]} > 0;

(A.1.26)
note that the latter quantity does not depend on (E,L). Minimising over all such
radii r provides the desired bound on µ.

We then deduce the claimed statement by combining the three steps from above as follows:
First, choose E1 ∈ ]U0(0), E0[, L1 > 0, and ε > 0 as described in Step 3). Then split
the integral T (E,L) for (E,L) ∈ [E1, E0] × ]0, L1] as in (A.1.15) and use the bounds from
Steps 1), 2), and 3) to estimate the three integrals independently of (E,L); note 0 <
r±(E,L) ≤ Rmax.

Combining Lemmas A.1.1, A.1.2, and A.1.3 as described above then shows the desired
upper boundedness (A.1.1) of the period function on D0.

Alternative arguments to bound the period function on D0 in the case of an isotropic
steady state196 are presented in [85, Sc. 3.1]. However, we feel that these arguments are not
significantly simpler than the ones shown above.

196The assumptions on the underlying steady state imposed in [85, Sc. 1.3] slightly differ from our con-
ditions (ϕ1)–(ϕ5); most notably, the analysis in [85] is restricted to isotropic steady states. However, the
arguments presented in [85, Ch. 3] regarding the properties of the period function can be carried over to all
isotropic steady states considered in the present thesis.
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Another way of establishing an upper bound on the period function T on the (E,L)-
triangle D0 is to extend T continuously onto the boundary of D0. This approach is pursued
in [85, Thm. 3.13] and is also mentioned in [62, Rem. B.6]. We will discuss this approach
in more detail in Remark A.4.4, but already note that the arguments are also not simpler
than the ones presented above, in particular, in the case of an isotropic steady state.

A.2 A Lower Bound on the Period Function

The aim of this section is to show that the period function T is bounded away from 0 on
the (E,L)-support D0, i.e.,

inf
D0

T > 0. (A.2.1)

We mainly follow the arguments from [62, App. B.2] but also include some improvements
which have been developed in [49, Lemma 3.7] in a different context.

The main observation is that suitable applications of Taylor expansions and the mean
value theorem yield a lower bound on T . The result originates from [62, Lemma B.4].

Lemma A.2.1. For (E,L) ∈ A0, the inequality

T (E,L) ≥ 2

(
4π‖ρ0‖∞ +

3L

r4
L

)− 1
2

(A.2.2)

holds; recall that ρ0 is bounded as a compactly supported and continuous function, cf. Propo-
sition 2.2.9.197,198

Proof. Näıvely estimating the integral (2.2.97) gives the inequality

T (E,L) ≥
√

2
r+(E,L)− r−(E,L)√

E −ΨL(rL)
≥
√

2
r+(E,L)− rL√
E −ΨL(rL)

. (A.2.3)

A second-order Taylor expansion yields

E = ΨL(r+(E,L)) = ΨL(rL) +
1

2
Ψ′′L(s) (r+(E,L)− rL)2 (A.2.4)

for some s ∈ [rL, r+(E,L)] because Ψ′L(rL) = 0, recall Lemma 2.2.12. In particular, note
Ψ′′L(s) > 0 since E −ΨL(rL) > 0. Inserting this Taylor expansion into (A.2.3) implies199

T (E,L) ≥ 2√
Ψ′′L(s)

. (A.2.5)

Using the radial Poisson equation U ′′0 + 2
rU
′
0 = 4πρ0 and U ′0(r) = m0(r)

r2 ≥ 0 further shows

Ψ′′L(s) = 4πρ0(s)− 2

s
U ′0(s) +

3L

s4
≤ 4π‖ρ0‖∞ +

3L

r4
L

, (A.2.6)

which concludes the proof of the lemma.

197Note that the condition (ϕ4) implies that the regularity properties of ρ0 on R3 stated in Proposi-
tion 2.2.9 (e) hold true for the present steady state.

198Here it is important that ρ0 is bounded, in particular, ρ0(0) <∞. Physically speaking, the latter means
that the steady state has a smooth core, and we note that it is explicitly stated in [19, Sc. 5.5.3] that this
property corresponds to 1

T
being bounded on the steady state support.

199In the proof of [62, Lemma B.4], the expression E−ΨL(rL) is estimated by applying the (extended) mean

value theorem twice. In this way, one obtains the estimate T (E,L) ≥ (Ψ′′L(s̃))−
1
2 for some s̃ ∈ [rL, r+(E,L)].

Hence, applying a Taylor expansion instead not only clarifies the proof, but also results in the superior
estimate (A.2.5). This leads to the additional factor 2 on the right-hand side of the lower bound (A.2.2)
compared to [62, Lemma B.4].
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In the case of an anisotropic steady state, we have L0 > 0 by (ϕ4). Inserting the bounds
L ≤ Lmax <∞ and rL ≥ rL0 > 0 for (E,L) ∈ D0, cf. (2.2.90) and Lemmas 2.2.14 and 2.2.15,
into the estimate (A.2.2) thus shows the desired bound (A.2.1).

In the case of isotropic steady states we cannot directly infer (A.2.1) because arbitrary
small L-values are contained in D0 and rL → Rmin = 0 as L → 0 by Lemma 2.2.14. We
thus have to analyse the behaviour of L

r4
L

in more detail, in particular as L → 0. In [62,

Lemma B.5], this is done by applying l’Hospital’s rule and using the formula (2.2.61) for
the derivative of rL. We instead present a simpler argument which originates from [49,
Eqn. (3.11)] (where it is used in a different context).

Lemma A.2.2. For L > 0 there holds the estimate

L

r4
L

≤ 4π

3
‖ρ0‖∞. (A.2.7)

Proof. For L > 0 the definition of rL implies 0 = Ψ′L(rL) = U ′0(rL)− L
r3
L

, cf. Lemma 2.2.12.

Together with (2.2.32) we thus obtain

L

r4
L

=
U ′0(rL)

rL
=

4π

r3
L

∫ rL

0
s2ρ0(s) ds ≤ 4π

r3
L

‖ρ0‖∞
∫ rL

0
s2 ds =

4π

3
‖ρ0‖∞. (A.2.8)

Obviously, Lemmas A.2.1 and A.2.2 conclude the proof of the desired lower
bound (A.2.1) on T .

In the case of an isotropic steady state, an alternative way of showing that the period
function is bounded away from 0 on D0 can be found in [85, Sc. 3.2]. The main idea of that
proof is to re-express the integral (2.2.97) by defining T as an integral with fixed limits of
integration.

Furthermore, as noted in Section A.1, another way of obtaining a positive, lower bound
on the period function T on the (E,L)-triangle D0 is to extend T continuously onto the
boundary of D0 and verify that this extension is positive. We will comment on this approach
in more detail in Remark A.4.4.

A.3 Regularity & Derivatives of the Period Function

In this section we discuss the regularity properties of the period function T on the set of
admissible (E,L)-pairs A0, recall (2.2.55) for the definition of this set. We shall see that
the period function is differentiable. As it is of interest to understand whether the period
function is monotone w.r.t. to one of its variables, we further derive explicit formulae for
the partial derivatives of T . We mainly follow [62, App. B.3] and [85, Sc. 3.3] in this section;
similar arguments are also used in [61, App. A.2] in a different context.

The first result shows the continuity of integrals of the form (2.2.97). In particular, it
implies that the period function T is continuous on A0, but we provide a more general result
which will be useful later. The proof is based on the concavity bound from Lemma 2.2.14 (f)
on the effective potential and originates from [62, Lemma B.7]; a variation of it can also be
found in [61, Lemma A.7].

Lemma A.3.1. Let m > 0 and ]0,∞[23 (L, r) 7→ FL(r) ∈ R be continuous. Then the
mapping

J : A0 → R, J(E,L) :=

∫ r+(E,L)

r−(E,L)

FL(r)

(E −ΨL(r))1−m dr (A.3.1)

is continuous.



260 APPENDIX A. THE PERIOD FUNCTION

Proof. First note that similar arguments as in the proof of Lemma 2.2.16 show that the
integral J(E,L) exists for (E,L) ∈ A0. The affine change of variables r = r−(E,L) +
(r+(E,L)− r−(E,L))s leads to

J(E,L) = (r+(E,L)− r−(E,L))

∫ 1

0

FL(r−(E,L) + (r+(E,L)− r−(E,L))s)

(E −ΨL(r−(E,L) + (r+(E,L)− r−(E,L))s))1−m ds.

(A.3.2)
For fixed s ∈ ]0, 1[, the integrand of the integral on the right-hand side of (A.3.2) is con-
tinuous in (E,L) since r± is continuous on A0 by Lemma 2.2.14. Moreover, in the case
0 < m < 1 the concavity bound (2.2.73) yields

r+(E,L)− r−(E,L)

(E −ΨL(r))1−m ≤ (r+(E,L)− r−(E,L)) (2r2 r−(E,L) r+(E,L))1−m

L1−m ((r+(E,L)− r)(r − r−(E,L)))1−m =

=
(r+(E,L)− r−(E,L))2m−1

L1−m
(2r2 r−(E,L) r+(E,L))1−m

(s(1− s))1−m ≤

≤ (r+(E,L)− r−(E,L))2m−1

(
2M4

0

E4L

)1−m
1

(s(1− s))1−m (A.3.3)

for s ∈ ]0, 1[ and r = r−(E,L) + (r+(E,L)− r−(E,L))s, where we have estimated r+(E,L)
in the last step using Lemma 2.2.14 (e). Since

∫ 1
0 (s(1− s))m−1 ds < ∞,200 we have thus

bounded the integrand of the integral on the right-hand side of (A.3.2) by an integrable
function which can be chosen locally uniformly in (E,L) ∈ A0. In the case m ≥ 1 there
holds the estimate

r+(E,L)− r−(E,L)

(E −ΨL(r))1−m ≤ (r+(E,L)− r−(E,L)) (E − Emin
L )m−1 (A.3.4)

for r as above. For all m > 0, Lebesgue’s dominated convergence theorem hence implies
the desired continuity statement.

Obviously, setting m = 1
2 and FL(r) ≡ 1 in the above lemma implies that T : A0 → ]0,∞[

is continuous.

In order to show that the period function is (continuously) differentiable, there are two
qualitatively different approaches:

The first one uses that T is the period of solutions of the characteristic system associated
to the steady state. Differentiating these solutions w.r.t. suitable parameters or initial
conditions then shows that T is differentiable. This – quite elegant – approach is pursued
in [85, Sc. 3.3 & App. A.3].

The second way just uses the integral representation (2.2.97) of the period function.
Differentiating such integrals is a somewhat technical task, but provides explicit integral
formulae for the partial derivatives of the period function. Such integral representations
then provide simple criteria for the monotonicity of the period function w.r.t. one of its
variables. This approach is inspired by [31, Thm. 2.1] and has been used in the context of
the Vlasov-Poisson system in [62, App. B.3], [148, App. C], and [61, App. A.2].

As both approaches have their advantages and provide different ways to analyse the
partial derivatives of the period function, we present both of them in the succeeding sections.

200The (finite) value of the integral
∫ 1

0
(s(1− s))m−1 ds can be computed explicitly using the integral iden-

tity (2.2.23).
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A.3.1 Derivatives via Characteristics

In this section – which is based201 on [85, Sc. 3.3 & App. A.3] – we relate the regularity
and the derivatives of the period function to the ones of the solutions of the characteristic
system associated to the steady state. To this end, let (R,W ) : R× A0 → ]0,∞[× R be as
in Definition 2.2.16, i.e., for (E,L) ∈ A0, (R,W )(·, E, L) : R → ]0,∞[ × R is the maximal
solution of202

Ṙ = W, Ẇ = −Ψ′L(R), (R,W )(0, E, L) = (r−(E,L), 0). (A.3.5)

We first analyse the regularity of (R,W ) similar to [85, Lemma A.11] and [61, Lemma 3.4].

Lemma A.3.2 (Regularity of Characteristics). It holds that (R,W ) ∈ C2(R×A0). More-
over, for fixed (E,L) ∈ A0, α := ∂ER(·, E, L) is given as the (unique) solution of

α̈ = −Ψ′′L(R(s, E, L))α, α(0) = ∂Er−(E,L), α̇(0) = 0, (A.3.6)

while β := ∂LR(·, E, L) is the solution of

β̈ = −Ψ′′L(R(s, E, L))β +
1

R(s, E, L)3
, β(0) = ∂Lr−(E,L), β̇(0) = 0; (A.3.7)

in particular, the derivatives ∂ER̈ and ∂LR̈ exist on R × A0 and are continuous. Recall
Lemma 2.2.14 (c) for explicit formulae for ∂Er− and ∂Lr−.

Proof. First observe that (L, r) 7→ ΨL(r) defines a C3(]0,∞[2)-function by Proposi-
tion 2.2.9 (e). Thus, further differentiating (2.2.65) shows r± ∈ C3(A0). The claimed
regularity of the characteristics (R,W ) together with (A.3.6) and (A.3.7) then follows by
basic ODE theory, see, e.g., [12, Sc. 32.6].

Because T (E,L) is the period of (R,W )(·, E, L) for (E,L) ∈ A0, one can deduce the
regularity of T from the regularity of the characteristics by applying the implicit function
theorem suitably. This method is due to203 [85, Thm. 3.6, Rem. 3.7, and Lemma A.12] and
it is also used in [61, Lemma 3.4].

Lemma A.3.3 (Regularity of the Period Function). It holds that T ∈ C2(A0) with

∂ET (E,L) =
∂EW (T (E,L), E, L)

Ψ′L(r−(E,L))
= 2

∂EW
(

1
2T (E,L), E, L

)
Ψ′L(r+(E,L))

, (A.3.8)

∂LT (E,L) =
∂LW (T (E,L), E, L)

Ψ′L(r−(E,L))
= 2

∂LW
(

1
2T (E,L), E, L

)
Ψ′L(r+(E,L))

, (A.3.9)

for (E,L) ∈ A0.

Proof. We follow [85, Proof of Thm. 3.6] and first recall that for any fixed (E∗, L∗) ∈ A0, by
the discussion from Section 2.2.2, (R,W )(·, E∗, L∗) is time-periodic with period T (E∗, L∗).
Moreover, for s ∈ R there holds

W (s, E∗, L∗) = 0 ⇔ s ∈ Z
2
T (E∗, L∗). (A.3.10)

201We again note that the assumptions imposed on the steady state here differ from the ones in [85], where
only isotropic steady states are considered. Nonetheless, all arguments from [85] regarding the regularity of
the period function also work for our class of equilibria.

202As before, a dot denotes the derivative w.r.t. to the proper time variable s of (R,W ) = (R,W )(s, E, L).
203It is, however, stated in [85, Proof of Thm. 3.6] that such methods were already known before.
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Now set s∗ := T (E∗, L∗), so that W (s∗, E∗, L∗) = 0 with

Ẇ (s∗, E∗, L∗) = −Ψ′L∗(R(s∗, E∗, L∗)) = −Ψ′L∗(r−(E∗, L∗)) > 0. (A.3.11)

Together with the regularity of W derived in Lemma A.3.2, the implicit function theorem
yields the existence of a continuously differentiable mapping s : U → R defined on an
open neighbourhood U ⊂ A0 of (E∗, L∗) s.t. W (s(E,L), E, L) = 0 for (E,L) ∈ U and
s(E∗, L∗) = s∗ = T (E∗, L∗); recall that A0 is open by Lemma 2.2.14 (b). The smoothness
of s together with (A.3.10) and the continuity of T > 0 established in Lemma A.3.1 then
imply s(E,L) = T (E,L) for (E,L) ∈ U , in particular, T ∈ C1(U). As (E∗, L∗) ∈ A0 is
arbitrary, we conclude T ∈ C1(A0).

Similar to [85, Lemma A.12], differentiating the identities

0 = W (T (E,L), E, L) = W

(
1

2
T (E,L), E, L

)
, (E,L) ∈ A0, (A.3.12)

w.r.t. E and L then yields (A.3.8) and (A.3.9); recall R(T (E,L), E, L) = r−(E,L) and
R
(

1
2T (E,L), E, L

)
= r+(E,L). Lastly, Lemma A.3.2 shows that the right-hand sides

of (A.3.8) and (A.3.9) are again continuously differentiable on A0, which implies that T
is indeed twice continuously differentiable.

The identities (A.3.8) and (A.3.9) show that we can not only conclude the regularity
of T from the regularities of the characteristics, but we can also relate the values of the
partial derivatives ∂ET and ∂LT to the behaviour of ∂EW = ∂EṘ and ∂LW = ∂LṘ. Let us
thus briefly discuss the properties of the ODEs determining ∂ER and ∂LR.

Remark A.3.4. Let (E,L) ∈ A0 be fixed. By Lemma A.3.2, ∂ER(·, E, L) is a solution of

α̈ = −Ψ′′L(R(s, E, L))α. (A.3.13)

If we consider R(·, E, L) as given, this equation is a linear, homogeneous, non-autonomous,
second-order ODE. Moreover, the coefficient of this linear equation is T (E,L)-periodic. An
ODE of the specific structure (A.3.13) is known as Hill’s equation, see [106] and [183] for
thorough analyses of its solutions. The study of (more general) linear ODEs with periodic
coefficients is the subject of Floquet theory, cf. [29, Sc. 2.4] or [170, Sc. 3.6] and see
also [12, Sc. 28] for a related discussion.

A further observation, which is due to [85, Lemma A.12 (a)], is that W (·, E, L) also
solves (A.3.13). However, ∂ER(·, E, L) and W (·, E, L) satisfy different initial conditions:

∂ER(0, E, L) =
1

Ψ′L(r−(E,L))
, ∂EṘ(0, E, L) = 0, (A.3.14)

W (0, E, L) = 0, Ẇ (0, E, L) = −Ψ′L(r−(E,L)) (A.3.15)

by (A.3.6) and (2.2.65). In fact, the two solutions W (·, E, L) and ∂ER(·, E, L) form a
fundamental system of the linear ODE (A.3.13) because (A.3.14) and (A.3.15) imply that
the Wronskian determinant of these solutions equals 1, cf. [85, Lemma A.12 (a)].

In order to see another difference of these solutions, we differentiate the identity

R(s, E, L) = R(s+ jT (E,L), E, L) (A.3.16)

for fixed s ∈ R and j ∈ Z w.r.t. E to deduce

∂ER(s, E, L) = W (s, E, L) j ∂ET (E,L) + ∂ER(s+ jT (E,L), E, L) (A.3.17)
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by the T (E,L)-periodicity of W (·, E, L). Recalling (A.3.10), we thus see that ∂ER(·, E, L)
is periodic iff ∂ET (E,L) = 0, which will not be the case in general. Nonetheless, inserting
s = 0 and s = 1

2T (E,L) into (A.3.17) shows

1

Ψ′L(r−(E,L))
= ∂ER(0, E, L) = ∂ER(jT (E,L), E, L), (A.3.18)

1

Ψ′L(r+(E,L))
= ∂ER

(
1

2
T (E,L), E, L

)
= ∂ER

((1

2
+ j
)
T (E,L), E, L

)
, (A.3.19)

for j ∈ Z. Most of these observations are also stated in [85, Lemma A.11 (b)].

Furthermore, Lemma A.3.2 implies that ∂LR(·, E, L) solves

β̈ = −Ψ′′L(R(s, E, L))β +
1

R(s, E, L)3
. (A.3.20)

Compared to (A.3.13), this ODE contains an inhomogeneous term which is again T (E,L)-
periodic.

The techniques of the present section can also be used to study how a more regular
steady state translates into higher-order regularity of the associated period function. This
is based on [85, Rem. 3.17].

Remark A.3.5 (Higher-Order Regularities). Let us assume ρ0 ∈ Cj(]0,∞[) for some j ∈
N; up to now, this was satisfied with j = 1, recall Proposition 2.2.9 (e). For instance, this
is the case if g ∈ Cj(R), where g is the function relating ρ0 and U0 via (2.2.27).204 This
regularity of g is in turn present if, e.g., the steady state is polytropic (1.2.5) with exponents k
and ` satisfying k + `+ 3

2 > j, recall Remark 2.2.7. If the steady is non-polytropic, similar
conditions on the energy dependency function Φ also ensure the regularity of g.205

In this situation, the radial Poisson equation (2.2.32) yields U0 ∈ Cj+2(]0,∞[), which
then implies that (L, r) 7→ ΨL(r) defines a Cj+2(]0,∞[2) function. Further differentiat-
ing (2.2.65) thus shows r± ∈ Cj+2(A0). Hence, applying the same arguments as in the proof
of Lemma A.3.2 yields (R,W ) ∈ Cj+1(R× A0). Due to the identities (A.3.8) and (A.3.9),
we thus conclude T ∈ Cj+1(A0).

A.3.2 Derivatives via the Integral Representation

In this section we differentiate the integral representation of the period function T . Alterna-
tive integral expressions of T are derived in [85, Lemmas 3.3 and 3.10] and [148, Eqn. (B3)]
among others, but we prefer to stick to the classical formula (2.2.97).

In order to differentiate (2.2.97), we first introduce a new function which is useful when
studying T .

Definition A.3.6 (The Area Function). For (E,L) ∈ A0 let

A(E,L) := 2

∫ r+(E,L)

r−(E,L)

√
2E − 2ΨL(r) dr. (A.3.21)

The induced function A : A0 → ]0,∞[ is called the area function of the steady state.206

204This can be verified by iteratively differentiating the relations (2.2.27) and (2.2.32) between U0 and ρ0.
205For instance, similar arguments as in Lemma 2.2.6 show g ∈ Cj(R) if Φ ∈ Cj−1(R).
206The name area function is due to [148].
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The area function occurs naturally in the context of planar Hamiltonian systems like the
characteristic system (2.2.93), cf. [11, Sc. 50.B] and see also Remark 4.3.2. In the context
of the Vlasov-Poisson system this function appears in [85, Eqn. (A.11)], [96, Eqn. (1.27)],
and [148, Eqn. (18)] among others. Let us add some comments on the physical interpretation
of the area function, which will explain its name.

Remark A.3.7. For (E,L) ∈ A0 let (R,W )(·, E, L) be as specified in Section A.3.1. As
discussed in Section 2.2.2, the solution is time-periodic and its orbit (in the (r, w)-plane) is
closed, see Figure 2.2.3. The area enclosed by this solution, i.e., the area of207

{(r, w) ∈ ]0,∞[× R | E(r, w, L) < E}, (A.3.22)

is given by A(E,L).

The following result establishes a connection between the area function and the period
function.

Lemma A.3.8. Let m > 0 and F : ]0,∞[→ R be continuous. Then the function

I : A0 → R, I(E,L) :=

∫ r+(E,L)

r−(E,L)
F (r) (2E − 2ΨL(r))m dr (A.3.23)

is partially differentiable w.r.t. E with

∂EI(E,L) = 2m

∫ r+(E,L)

r−(E,L)
F (r) (2E − 2ΨL(r))m−1 dr (A.3.24)

for (E,L) ∈ A0.208

Proof. The proof is inspired by the proof of Lemma 2.2.6 (which we have not presented
here). First observe that the integrals in (A.3.23) and (A.3.24) exist since F is locally
bounded, Ψ′L(r±(E,L)) 6= 0, and m > 0. In order to verify that I(·, L) : ]Emin

L , 0[ → R is
differentiable for fixed L > 0, we start by computing the right-derivative ∂+

E I(·, L). Let
E ∈ ]Emin

L , 0[ and η > 0 be s.t. E + 2η < 0. Then there holds the estimate∣∣∣∣∣I(E + η, L)− I(E,L)

η
− 2m

∫ r+(E,L)

r−(E,L)
F (r) (2E − 2ΨL(r))m−1 dr

∣∣∣∣∣ ≤
≤ 2m

∫ r+(E,L)

r−(E,L)
|F (r)|

∣∣∣∣(E + η −ΨL(r))m − (E −ΨL(r))m

η
−m (E −ΨL(r))m−1

∣∣∣∣dr+
+

1

η

(∫ r−(E,L)

r−(E+η,L)
+

∫ r+(E+η,L)

r+(E,L)

)
|F (r)| (2E + 2η − 2ΨL(r))m dr, (A.3.25)

recall r−(E + η, L) < r−(E,L) < r+(E,L) < r+(E + η, L) by Lemma 2.2.14 (c). For fixed
r ∈ ]r−(E,L), r+(E,L)[, the integrand of the first term on the right-rand side of (A.3.25)
tends to 0 as η ↘ 0. In addition, by the mean value theorem there exists η̃ ∈ ]0, η[ s.t.∣∣∣∣(E + η −ΨL(r))m − (E −ΨL(r))m

mη
− (E −ΨL(r))m−1

∣∣∣∣ =

=
∣∣∣(E + η̃ −ΨL(r))m−1 − (E −ΨL(r))m−1

∣∣∣, (A.3.26)

207Recall that the orbit (R,W )(R, E, L) equals the energy level set {(r, w) ∈ ]0,∞[×R | E(r, w, L) = E} and
that smaller energy values correspond to “inner” orbits since r−(E,L) < r−(Ẽ, L) < rL for Emin

L < Ẽ < E
by Lemma 2.2.14 (c).

208Obviously, the same result holds if the function F also depends on L because all statements in this
lemma only concern I(·, L) for a fixed value of L.
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and the latter expression can be bounded independently of η by a function which is inte-
grable in r ∈ ]r−(E,L), r+(E,L)[. As F is bounded on [r−(E,L), r+(E,L)], we thus obtain
that the first integral on the right-rand side of (A.3.25) tends to 0 as η ↘ 0 by Lebesgue’s
dominated convergence theorem. In order to see that the remaining integrals on the right-
rand side of (A.3.25) exhibit the same limiting behaviour as η ↘ 0, we use the structure
of ΨL, recall Lemma 2.2.12, to infer the estimate

(2E + 2η − 2ΨL(r))m ≤ (2η)m, r ∈ ]r−(E + η, L), r+(E + η, L)[ \ ]r−(E,L), r+(E,L)[,
(A.3.27)

which yields

1

η

(∫ r−(E,L)

r−(E+η,L)
+

∫ r+(E+η,L)

r+(E,L)

)
|F (r)| (2E + 2η − 2ΨL(r))m dr ≤

≤ r−(E,L)− r−(E + η, L) + r+(E + η, L)− r+(E,L)

η
C (2η)m, (A.3.28)

where

C := max

{
|F (r)| | r ∈ [r−(

1

2
E,L), r+(

1

2
E,L)]

}
; (A.3.29)

recall η < −1
2E. Because r± are differentiable by Lemma 2.2.14 (c), the right-hand side

of (A.3.28) indeed converges to 0 as η ↘ 0. We thus conclude that I(·, L) is right-
differentiable with

∂+
E I(E,L) = 2m

∫ r+(E,L)

r−(E,L)
F (r) (2E − 2ΨL(r))m−1 dr, Emin

L < E < 0. (A.3.30)

By Lemma A.3.1, this right-derivative ∂+
E I(·, L) : ]Emin

L , 0[ → R is continuous. We hence
conclude that I(·, L) is indeed differentiable with ∂EI = ∂+

E I, see, e.g., [68, Ex. (17.24)].

Obviously, setting m = 1
2 and F ≡ 1 in the above lemma yields209

∂EA = T on A0. (A.3.31)

We note that this connection between the area function and the period function is known for
general (planar) Hamiltonian systems, cf. [11, p. 20]. In the context of the Vlasov-Poisson
system it is, e.g., stated in [148, Eqn. (33)].

Unfortunately, the energy derivative of the period function cannot be computed as
in Lemma A.3.8 because differentiating the integrand of T (E,L) w.r.t. E results in the

non-integrable term (2E − 2ΨL(r))−
3
2 . However, we can get around this problem with

a clever calculation due to [31, Thm. 2.1], which has been applied in the context of the
Vlasov-Poisson system in [62, Lemma 2.6] and [61, Lemma A.10]. An alternative method
of differentiating (2.2.97) is presented in [148, App. B].

Lemma A.3.9 (The Energy Derivative of the Period Function). The period func-
tion T : A0 → ]0,∞[ defined by (2.2.97) is partially differentiable w.r.t. E with

∂ET (E,L) =
1

E − Emin
L

∫ r+(E,L)

r−(E,L)
GL(r)

dr√
2E − 2ΨL(r)

, (E,L) ∈ A0, (A.3.32)

209We cannot help but notice the following pun: The area function A not only gives the area enclosed by
solutions of the characteristic system, cf. Remark A.3.7, but can also be used to compute the area under the
graph of T (·, L) by (A.3.31) and the main theorem of calculus.
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where

GL : ]0,∞[→ R, GL(r) :=

{
Ψ′L(r)2−2(ΨL(r)−Emin

L )Ψ′′L(r)

Ψ′L(r)2 , r 6= rL,

0, r = rL,
(A.3.33)

for L > 0. The function GL is continuous on ]0,∞[ for L > 0 and thus the integral on the
right-hand side of (A.3.32) exists.

Proof. The continuity of GL follows by a more general result which we will show below, cf.
Lemma A.3.10. Given this continuity, the existence of the integral on the right-hand side
of (A.3.32) is evident from the structure of the effective potential ΨL.

In order to establish the relation (A.3.32), we follow [31, Proof of Thm. 2.1] and define

I(E,L) :=

∫ r+(E,L)

r−(E,L)

(
2Emin

L − 2ΨL(r)
)√

2E − 2ΨL(r) dr, (E,L) ∈ A0. (A.3.34)

Lemma A.3.8 implies that I : A0 → R is partially differentiable w.r.t. E with

∂EI(E,L) =

∫ r+(E,L)

r−(E,L)

2Emin
L − 2ΨL(r)√
2E − 2ΨL(r)

dr =
1

2
A(E,L)−

(
E − Emin

L

)
T (E,L) (A.3.35)

for (E,L) ∈ A0. On the other hand,

I(E,L) =
2

3

∫ r+(E,L)

r−(E,L)

ΨL(r)− Emin
L

Ψ′L(r)
∂r

[
(2E − 2ΨL(r))

3
2

]
dr. (A.3.36)

Evidently, it is our intention to integrate by parts in (A.3.36). To see that the necessary
conditions for this step are satisfied, first observe210

ΨL(r)− Emin
L =

1

2
Ψ′′L(rL) (r − rL)2 + o((r − rL)2), (A.3.37)

Ψ′L(r) = Ψ′′L(rL) (r − rL) + o(r − rL), (A.3.38)

Ψ′′L(r) = Ψ′′L(rL) + o(1), (A.3.39)

for r, L > 0 by Taylor’s theorem; recall ΨL ∈ C3(]0,∞[) with Ψ′L(rL) = 0. Hence, for any

L > 0, the mapping ]0,∞[ 3 r 7→ ΨL(r)−Emin
L

Ψ′L(r)
is continuous with

ΨL(r)− Emin
L

Ψ′L(r)

∣∣
r=rL

=: lim
r→rL

ΨL(r)− Emin
L

Ψ′L(r)
= 0. (A.3.40)

Moreover,

∂r

[
ΨL(r)− Emin

L

Ψ′L(r)

]
=

Ψ′L(r)2 − (ΨL(r)− Emin
L ) Ψ′′L(r)

Ψ′L(r)2
(A.3.41)

for r ∈ ]0,∞[ \ {rL}, and (A.3.37)–(A.3.39) show that defining

Ψ′L(r)2 − (ΨL(r)− Emin
L ) Ψ′′L(r)

Ψ′L(r)2

∣∣
r=rL

:=
1

2
(A.3.42)

210Here we employ the standard Landau notation, i.e., for n ∈ N0, the expression o((r − rL)n) represents

a continuous function α : ]0,∞[→ R s.t. limr→rL
α(r)

(r−rL)n
= 0.
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extends ∂r

[
ΨL(r)−Emin

L
Ψ′L(r)

]
continuously onto ]0,∞[; note that Ψ′′L(rL) = 4πρ0(rL) + L

r4
L
> 0

by (2.2.32). Hence, we can indeed integrate by parts in (A.3.36), which yields

I(E,L) = −2

3

∫ r+(E,L)

r−(E,L)

Ψ′L(r)2 − (ΨL(r)− Emin
L ) Ψ′′L(r)

Ψ′L(r)2
(2E − 2ΨL(r))

3
2 dr (A.3.43)

for (E,L) ∈ A0. Applying Lemma A.3.8 twice then implies that I is twice partially differ-
entiable w.r.t. E with

∂2
EI(E,L) = −2

∫ r+(E,L)

r−(E,L)

Ψ′L(r)2 − (ΨL(r)− Emin
L ) Ψ′′L(r)

Ψ′L(r)2

dr√
2E − 2ΨL(r)

(A.3.44)

for (E,L) ∈ A0. By (A.3.31) and (A.3.35), T is thus partially differentiable w.r.t. E with

∂2
EI =

1

2
∂EA− T −

(
E − Emin

L

)
∂ET (A.3.45)

on A0. Inserting (2.2.97), (A.3.31), and (A.3.44) into this identity and solving for ∂ET then
yields (A.3.32).

In order to show that ∂ET is continuous, we further analyse GL.

Lemma A.3.10. The function ]0,∞[23 (L, r) 7→ GL(r) defined by (A.3.33) is continuous.

Proof. The continuity on the set {(L, r) ∈ ]0,∞[2 | r 6= rL} follows by the regularity of U0

established in Proposition 2.2.9 (e); note that this set is open by Lemma 2.2.14 (a).
It thus remains to show the continuity in (L∗, rL∗) for L∗ > 0. To do so, we apply

Taylor’s theorem to infer that for any L > 0 and r > 0 there exist ξ1, ξ2, ξ3, ξ4 > 0 with
|ξi − rL| ≤ |r − rL| for i ∈ {1, 2, 3, 4} s.t.

ΨL(r)− Emin
L =

1

2
Ψ′′L(rL) (r − rL)2 +

1

6
Ψ′′′L (ξ1) (r − rL)3, (A.3.46)

Ψ′L(r) = Ψ′′L(ξ2) (r − rL) = Ψ′′L(rL) (r − rL) +
1

2
Ψ′′′L (ξ3) (r − rL)2, (A.3.47)

Ψ′′L(r) = Ψ′′L(rL) + Ψ′′′L (ξ4) (r − rL). (A.3.48)

Inserting these expansions into the definition of GL yields

GL(r) =
r − rL

Ψ′′L(ξ2)2

(
Ψ′′L(rL)

(
Ψ′′′L (ξ3)−Ψ′′′L (ξ4)− 1

3
Ψ′′′L (ξ1)

)
+

+
r − rL

4
Ψ′′′L (ξ3)2 − r − rL

3
Ψ′′′L (ξ1) Ψ′′′L (ξ4)

)
(A.3.49)

for L > 0 and r > 0 with r 6= rL. Because ]0,∞[23 (L, r) 7→ Ψ
(j)
L (r) is continuous for

j ∈ {0, 1, 2, 3} by Proposition 2.2.9 (e), all terms containing some ξi are locally bounded
in (L, r). Moreover, since Ψ′′L∗(rL∗) > 0, the expression Ψ′′L(ξ2) is bounded away from
zero for all (L, r) in a sufficiently small neighbourhood of (L∗, rL∗); notice that ξi depends
on (L, r). Hence, (A.3.49) shows that GL(r)→ 0 as (L, r)→ (L∗, rL∗).

The above lemma now allows us to conclude that the energy derivative of the period
function is continuous.

Corollary A.3.11. The function ∂ET : A0 → R is continuous.
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Proof. Combine Lemmas A.3.1, A.3.9, and A.3.10.

Our next aim is to compute the L-derivative of the period function T . We shall not do
this by directly differentiating (2.2.97) w.r.t. L, as this would require somewhat new (and
technical) arguments. Instead, we follow a different strategy in which we can recycle the
above arguments used to compute ∂ET : We first differentiate the area function A w.r.t. L,
which is rather straight-forward. The resulting expression ∂LA is qualitatively similar to T .
We can therefore differentiate it w.r.t. E using the same methods as in Lemma A.3.9, and
obtain a representation for ∂LT = ∂L∂EA by commuting the partial derivatives. Let us
proceed with the first step of this strategy.

Lemma A.3.12. The area function A : A0 → R introduced in Definition A.3.6 is partially
differentiable w.r.t. L with

∂LA(E,L) = −
∫ r+(E,L)

r−(E,L)

dr

r2
√

2E − 2ΨL(r)
, (E,L) ∈ A0. (A.3.50)

Proof. The statement can be shown similarly to Lemma A.3.8. More precisely, we first show
that (A.3.50) holds if one replaces the partial derivative ∂L with the left-derivative ∂−L . We
then conclude the claimed statement because the integral on the right-hand side of (A.3.50)
is continuous as a function of (E,L) ∈ A0 by Lemma A.3.1.

Except for the 1
r2 -weight, the integral representation (A.3.50) of ∂LA looks similar to the

one of the period function T . In fact, it is possible to interpret ∂LA as the period function
associated to another, suitably chosen potential. This observation is due to [85, Rem. 3.17].

Lemma A.3.13. For L > 0 let

Ψ̃L : ]0,∞[→ R, Ψ̃L(σ) := ΨL

(√L
σ

)
= U0

(√L
σ

)
+
σ2

2
. (A.3.51)

Then the function Ψ̃L has similar properties as the ones stated in Lemma 2.2.12 for the
effective potential ΨL.211 Concretely,

min
]0,∞[

Ψ̃L = min
]0,∞[

ΨL = Emin
L , (A.3.52)

and the unique minimiser of Ψ̃L is

σL :=

√
L

rL
. (A.3.53)

In addition, for every E ∈ ]Emin
L , 0[, the unique values 0 < σ−(E,L) < σ+(E,L) < ∞

satisfying
Ψ̃L(σ±(E,L)) = E (A.3.54)

are given by

σ±(E,L) :=

√
L

r∓(E,L)
. (A.3.55)

Furthermore, solutions of the system

σ̇ = w, (A.3.56a)

ẇ = −Ψ̃′L(σ), (A.3.56b)

211One difference to the effective potential is the limiting behaviour of Ψ̃L(σ) as σ → 0 and as σ → ∞
because limσ→0 Ψ̃L(σ) = 0 = limr→∞ΨL(r) and limσ→∞ Ψ̃L(σ) =∞ = limr→0 ΨL(r).
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behave similarly to the ones of (2.2.93). In particular, the energy defined by

Ẽ(σ,w, L) :=
1

2
w2 + Ψ̃L(σ), (σ,w, L) ∈ ]0,∞[× R× ]0,∞[, (A.3.57)

is a conserved quantity of (A.3.56), and every solution of (A.3.56) with parameter L > 0
and conserved energy value E = Ẽ ∈ ]Emin

L , 0[ is time-periodic with period

T̃ (E,L) := 2

∫ σ+(E,L)

σ−(E,L)

dσ√
2E − 2Ψ̃L(σ)

. (A.3.58)

There holds the relation

∂LA(E,L) = − 1

2
√
L
T̃ (E,L), (E,L) ∈ A0. (A.3.59)

Proof. The properties of the function Ψ̃L easily follow by the ones of the effective poten-
tial ΨL derived in Lemma 2.2.12. Similar as in Section 2.2.2, one can then verify the claimed
behaviour of the solutions of (A.3.56).

In order to establish (A.3.59), we change variables via σ =
√
L
r in (A.3.50) to conclude

∂LA(E,L) = − 1√
L

∫ σ+(E,L)

σ−(E,L)

dσ√
2E − 2Ψ̃L(σ)

= − 1

2
√
L
T̃ (E,L) (A.3.60)

for (E,L) ∈ A0.

Let us briefly discuss the physical meaning of T̃ .

Remark A.3.14. As shown above, applying the change of variables σ =
√
L
r to (A.3.58)

yields

T̃ (E,L) = 2
√
L

∫ r+(E,L)

r−(E,L)

dr

r2
√

2E − 2ΨL(r)
(A.3.61)

for (E,L) ∈ A0. Following [19, Sc. 3.1], this quantity is related to the particle motions
as follows: Consider a solution of the characteristic system (2.2.2) of the steady state in
Cartesian (x, v)-coordinates with conserved quantities (E,L) ∈ A0. The solution moves
in the orbital plane, i.e., the plane perpendicular to the (conserved) angular momentum
vector, around the centre of symmetry r = 0. As discussed in Section 2.2.2, the radial
period of this solution, i.e., the time needed for the spatial radius of the solution to move
from its minimal value r−(E,L) to its maximal value r+(E,L) and back to r−(E,L), is
given by T (E,L). During one such radial period, the azimuthal angle of the solution in the
orbital plane increases by T̃ (E,L), cf. [19, Eqn. (3.18b)]. The mean angular speed of the
solution in the orbital plane is thus given by the ratio

T̃ (E,L)

T (E,L)
. (A.3.62)

Using the relation (A.3.59) from Lemma A.3.13 and applying the techniques from
Lemma A.3.9 allows us to compute the energy derivative of ∂LA.
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Lemma A.3.15. The function ∂LA : A0 → R is partially differentiable w.r.t. E with

∂E∂LA(E,L) = − 1

2(E − Emin
L )

∫ r+(E,L)

r−(E,L)
HL(r)

dr

r2
√

2E − 2ΨL(r)
, (E,L) ∈ A0,

(A.3.63)
where

HL : ]0,∞[→ R, HL(r) :=


Ψ′L(r)2−2(ΨL(r)−Emin

L ) (Ψ′′L(r)+ 2
r

Ψ′L(r))

Ψ′L(r)2 , r 6= rL,

0, r = rL.
(A.3.64)

The function ]0,∞[23 (L, r) 7→ HL(r) is continuous and the integral on the right-hand side
of (A.3.63) exists.

Proof. Mimicking the proof of Lemma A.3.9 shows that T̃ : A0 → R defined in
Lemma A.3.13 is partially differentiable w.r.t. E with

∂ET̃ (E,L) =
1

E − Emin
L

∫ σ+(E,L)

σ−(E,L)
G̃L(σ)

dσ√
2E − 2Ψ̃L(σ)

, (A.3.65)

where

G̃L : ]0,∞[→ R, G̃L(σ) :=


Ψ̃′L(σ)2−2(Ψ̃L(σ)−Emin

L )Ψ̃′′L(σ)

Ψ̃′L(σ)2
, σ 6= σL,

0, σ = σL.
(A.3.66)

Similar arguments as in the proof of Lemma A.3.10 yield that ]0,∞[23 (L, σ) 7→ G̃L(σ) is
continuous because Ψ̃L has the same properties as the effective potential ΨL; in particular,
the calculation (A.3.68) below will show Ψ̃′′L(σL) > 0.

In order to change to the variable r =
√
L
σ in the integral on the right-hand side

of (A.3.65), first observe that differentiating (A.3.51) and using the radial Poisson equa-
tion (2.2.32) yields

Ψ̃′L(σ) = − r2

√
L

Ψ′L(r), (A.3.67)

Ψ̃′′L(σ) =
r4

L
Ψ′′L(r) + 2

r3

L
Ψ′L(r) =

r4

L
∆ΨL(r) =

r4

L

(
4πρ0(r) +

L

r4

)
, (A.3.68)

for L > 0, σ > 0, and r =
√
L
σ . Hence,

G̃L

(√L
r

)
=

Ψ′L(r)2 − 2(ΨL(r)− Emin
L ) (Ψ′′L(r) + 2

r Ψ′L(r))

Ψ′L(r)2
= HL(r) (A.3.69)

for L, r > 0 with r 6= rL, and the continuity of ]0,∞[23 (L, σ) 7→ G̃L(σ) implies the claimed

continuity of ]0,∞[23 (L, r) 7→ HL(r). Changing variables via r =
√
L
σ in (A.3.65) thus

yields

∂ET̃ (E,L) =

√
L

E − Emin
L

∫ r+(E,L)

r−(E,L)
HL(r)

dr

r2
√

2E − 2ΨL(r)
, (E,L) ∈ A0. (A.3.70)

Inserting this identity into (A.3.59) concludes the proof of (A.3.63).
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Lemmas A.3.12 and A.3.15 now allow us to compute the L-derivative of the period
function by commuting derivatives w.r.t. E and L.

Lemma A.3.16 (The L-Derivative of the Period Function). The period function T : A0 →
]0,∞[ defined by (2.2.97) is partially differentiable w.r.t. L with

∂LT (E,L) = ∂E∂LA(E,L) = − 1

2(E − Emin
L )

∫ r+(E,L)

r−(E,L)
HL(r)

dr

r2
√

2E − 2ΨL(r)
(A.3.71)

for (E,L) ∈ A0, where HL is defined in (A.3.64).

Proof. Lemmas A.3.8 and A.3.12 imply that ∂EA and ∂LA exist on A0. In addition, ∂E∂LA
exists by Lemma A.3.15 and applying Lemma A.3.1 to (A.3.63) shows that ∂E∂LA is con-
tinuous on A0. Hence, ∂EA is partially differentiable w.r.t. L with

∂L∂EA = ∂E∂LA on A0 (A.3.72)

by Schwarz’s theorem. Recalling (A.3.31), we conclude that T is partially differentiable
w.r.t. L and that (A.3.71) holds.

Let us summarise the findings of the present section so far.

Proposition A.3.17. The period function T : A0 → ]0,∞[ defined by (2.2.97) is continu-
ously differentiable and its partial derivatives are given by (A.3.32) and (A.3.71). Moreover,

∂LT (E,L) = − 1

2
√
L
∂ET̃ (E,L), (E,L) ∈ A0, (A.3.73)

where T̃ is defined in Lemma A.3.13.

We (again) note that an alternative way of computing the second-order derivatives of
the area function A is presented in [148, App. C]. In particular, the integral representations
of ∂2

EA and ∂E∂LA = ∂L∂EA from [148, Eqns. (C.11) and (C.12)] are identical to the
expressions derived above.

Although it is not necessary for the proof of Proposition A.0.1, it is useful (for the anal-
ysis in Chapter 6) to derive integral representations for the higher-order partial derivatives
of T as well; recall T ∈ C2(A0) by Lemma A.3.3. We illustrate how this works for ∂2

ET .
Other second-order partial derivates can be computed in the same way using (A.3.73). In
order to differentiate the integral representation of ∂ET derived in Lemma A.3.9 by apply-
ing the general result from Lemma A.3.8, we first rewrite (A.3.32). This is based on [61,
Eqn. (A.21)].

Lemma A.3.18. For L > 0 let

G1,L : ]0,∞[→ R, G1,L(r) :=


GL(r)
Ψ′L(r)

, r 6= rL,

−1
3

Ψ′′′L (rL)

Ψ′′L(rL)2 , r = rL,
(A.3.74)

where GL is defined in (A.3.33). Assume that the underlying steady state satisfies U0 ∈
C4(I) for some open interval I.212 For L > 0 with rL ∈ I, G1,L is differentiable on ]0,∞[
with

G′1,L(r) =


6(ΨL(r)−Emin

L ) Ψ′′L(r)2−3Ψ′L(r)2 Ψ′′L(r)−2(ΨL(r)−Emin
L ) Ψ′L(r) Ψ′′′L (r)

Ψ′L(r)4 , r 6= rL,

5
12

Ψ′′′L (rL)2

Ψ′′L(rL)3 − 1
4

Ψ
(4)
L (rL)

Ψ′′L(rL)2 , r = rL,
(A.3.75)

212We will comment on this regularity assumption in Remark A.4.7.
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for r > 0. The functions ]0,∞[23 (L, r) 7→ G1,L(r) and {L̃ > 0 | rL̃ ∈ I}× ]0,∞[ 3 (L, r) 7→
G′1,L(r) are both continuous. Furthermore, for all (E,L) ∈ A0 with rL ∈ I there holds the
identity ∫ r+(E,L)

r−(E,L)

GL(r)√
2E − 2ΨL(r)

dr =

∫ r+(E,L)

r−(E,L)
G′1,L(r)

√
2E − 2ΨL(r) dr. (A.3.76)

Proof. We first verify the claimed properties ofG1,L. Taylor expandingGL with quantitative
control of the rest terms, see (A.3.49) in the proof of Lemma A.3.10, shows that ]0,∞[23
(L, r) 7→ G1,L(r) is continuous. The formula (A.3.75) for G′1,L(r) in the case r 6= rL follows
by direct computation. In order to analyse G′1,L(r) at r = rL, we Taylor expand all terms
to fourth order, i.e., we write

ΨL(r) = Emin
L +

Ψ′′L(rL)

2
(r − rL)2 +

Ψ′′′L (rL)

6
(r − rL)3 +

Ψ
(4)
L (ξ1)

24
(r − rL)4, (A.3.77)

Ψ′L(r) = Ψ′′L(ξ2) (r − rL) = Ψ′′L(rL) (r − rL) +
Ψ′′′L (rL)

2
(r − rL)2 +

Ψ
(4)
L (ξ3)

6
(r − rL)3,

(A.3.78)

Ψ′′L(r) = Ψ′′L(rL) + Ψ′′′L (rL) (r − rL) +
Ψ

(4)
L (ξ4)

2
(r − rL)2, (A.3.79)

Ψ′′′L (r) = Ψ′′′L (rL) + Ψ
(4)
L (ξ5) (r − rL), (A.3.80)

for r ∈ I and L > 0 with r 6= rL ∈ I and some ξ1, ξ2, ξ3, ξ4, ξ5 ∈ I with |ξi − rL| ≤ |r − rL|
for i ∈ {1, 2, 3, 4, 5}. Recall that we assume that U0 is four times continuously differentiable
on I. Inserting these expansions into the numerator of G′1,L(r) yields

Ψ′L(r)4G′1,L(r)

(r − rL)4
=

1

4
Ψ′′L(rL)2 Ψ

(4)
L (ξ1)−Ψ′′L(rL)2 Ψ

(4)
L (ξ3)+

+
3

2
Ψ′′L(rL)2 Ψ

(4)
L (ξ4)−Ψ′′L(rL)2 Ψ

(4)
L (ξ5) +

5

12
Ψ′′L(rL) Ψ′′′L (rL)2 + o(1), (A.3.81)

while the denominator can be written as

Ψ′L(r)4

(r − rL)4
= Ψ′′L(ξ2)4. (A.3.82)

Here, the o(1)-terms are sums of products of the expansion terms from the right-hand
sides of (A.3.77)–(A.3.80) containing some positive power of (r − rL). Since ]0,∞[ × I 3
(L, r) 7→ Ψ

(j)
L (r) is continuous for 0 ≤ j ≤ 4, the o(1)-terms converge to 0 as r → rL

locally uniformly in L. Considering the limit r → rL in (A.3.81) and (A.3.82) hence shows
that G1,L is indeed differentiable with (A.3.75) and that (L, r) 7→ G′1,L(r) is continuous on
{(L, rL) | L > 0 with rL ∈ I}; recall Ψ′′L(rL) > 0.

The identity (A.3.76) is then obtained by integrating by parts:∫ r+(E,L)

r−(E,L)

GL(r)√
2E − 2ΨL(r)

dr = −
∫ r+(E,L)

r−(E,L)
G1,L(r) ∂r

[√
2E − 2ΨL(r)

]
dr =

=

∫ r+(E,L)

r−(E,L)
G′1,L(r)

√
2E − 2ΨL(r) dr (A.3.83)

for (E,L) ∈ A0 as specified in the statement of the lemma.
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We can now directly apply Lemma A.3.8 to the right-hand side of (A.3.76) to obtain an
integral representation of ∂2

ET . This is based on [61, Eqn. (A.28)].

Lemma A.3.19 (The Second-Order Energy Derivative of the Period Function). Assume
U0 ∈ C4(I) for some open interval I, and consider (E,L) ∈ A0 with rL ∈ I. Then ∂ET is
partially differentiable in (E,L) w.r.t. E with

∂2
ET (E,L) =

1

(E − Emin
L )2

∫ r+(E,L)

r−(E,L)
G′1,L(r)

(
ΨL(r)− Emin

L√
2E − 2ΨL(r)

− 1

2

√
2E − 2ΨL(r)

)
dr;

(A.3.84)
recall that G′1,L is given by (A.3.75).

Proof. Combining (A.3.32) and (A.3.76) shows

∂ET (E,L) =
1

E − Emin
L

∫ r+(E,L)

r−(E,L)
G′1,L(r)

√
2E − 2ΨL(r) dr. (A.3.85)

Differentiating this expression w.r.t. E using Lemma A.3.8 yields

∂2
ET (E,L) =

1

(E − Emin
L )2

∫ r+(E,L)

r−(E,L)
G′1,L(r)

(
E − Emin

L√
2E − 2ΨL(r)

−
√

2E − 2ΨL(r)

)
dr.

(A.3.86)
We then conclude (A.3.84) by rewriting the integrand.

A.3.3 Monotonicity of the Period Function ?

When studying the presence of oscillatory modes, we see that it is crucial to understand
where the period function T attains its maximal and minimal values on the (closure of the)
(E,L)-triangle D0. In fact, the numerical simulations indicate that T is monotonic in at
least one of its variables for many steady states, cf. Section 8.2. In this section, we thus use
the identities for the partial derivatives of T derived above to investigate the monotonicity
of the period function w.r.t. one of its variables. As a caveat, however, we shall say in
advance that we are not able to prove the monotonicity of the period function for any
steady state from Section 2.2 mathematically. We rather limit ourselves here to collecting
criteria for the monotonicity of T , which can then be checked numerically – and hopefully
also mathematically in future work.

Further criteria for the monotonicity of a period function, as well as examples where
they are satisfied, are, e.g., derived in [23, 28, 30, 31, 45, 125, 148, 152]. We present some
of the ideas from these references below, but also admit that we may not have understood
well enough some arguments from the rich literature leading to the monotonicity of T w.r.t.
one of its variables.
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Monotonicity via Characteristics ?

Lemma A.3.3 shows213

sign(∂ET (E,L)) = − sign(∂EW (T (E,L), E, L)) = sign

(
∂EW

(1

2
T (E,L), E, L

))
,

(A.3.87)

sign(∂LT (E,L)) = − sign(∂LW (T (E,L), E, L)) = sign

(
∂LW

(1

2
T (E,L), E, L

))
,

(A.3.88)

for (E,L) ∈ A0, where (R,W ) is the characteristic flow of the steady state as specified in
Section A.3.1. For instance, in order to understand whether T is monotonic in E, one has to
analyse the sign of ∂EW (1

2T (E,L), E, L) for (E,L) ∈ A0. Recall ∂EW = ∂EṘ = ∂s∂ER and
that ∂ER(·, E, L) is the unique solution of the linear second-order ODE (A.3.13) satisfying
the initial condition

∂ER(0, E, L) =
1

Ψ′L(r−(E,L))
< 0, ∂EṘ(0, E, L) = 0, (A.3.89)

cf. Remark A.3.4. Another solution of the ODE (A.3.13) is given by W (·, E, L), and the
latter solution is T (E,L)-periodic with

W (0, E, L) = 0 = W
(1

2
T (E,L), E, L)

)
, (A.3.90)

Ẇ (0, E, L) = −Ψ′L(r−(E,L)) > 0 > −Ψ′L(r+(E,L)) = Ẇ
(1

2
T (E,L), E, L)

)
. (A.3.91)

If we imagine this solution in the (α, α̇)-plane, W (·, E, L) completes “half a round” at time
s = 1

2T (E,L). The sign of ∂EW (1
2T (E,L), E, L) is determined by whether ∂ER(·, E, L) is

faster than W (·, E, L), more precisely, whether it has already completed half a round after
the same time (∂EṘ(1

2T (E,L), E, L) < 0 = ∂EṘ(0, E, L)), or not (∂EṘ(1
2T (E,L), E, L) >

0).214 A suitable comparison statement could provide insight into issues of this type.
Another observation from Remark A.3.4 is that ∂ET (E,L) = 0 is equivalent to

∂ER(·, E, L) being periodic; this is due to (A.3.17). In this case, the period of ∂ER(·, E, L) is
T (E,L), i.e., the period equals the one of W (·, E, L). Hence, as ∂ER(·, E, L) and W (·, E, L)
form a fundamental system of (A.3.13), every solution of this ODE is T (E,L)-periodic. This
is referred to as an instance of coexistence, and in the context of a Hill equation like (A.3.13)
its presence is analysed in [106, Ch. 7] for some special cases. Moreover, by (A.3.17),
∂ET (E,L) = 0 is equivalent to 0 being a stable equilibrium of (A.3.13). Relations between
this stability and properties of the coefficient Ψ′′L(R(·, E, L)) of the equation (A.3.13) are,
e.g., studied in [106, Sc. 2.6 & Ch. 5] and [183, Sc. II.4].

Similar characterisations can also be derived for the L-derivative of T . Recall that
∂LR(·, E, L) solves the ODE (A.3.20), which arises from (A.3.13) by adding an inhomoge-
neous term.

Monotonicity via the Integral Representations ?

Another way of checking whether the period function is monotonic w.r.t. one of its variables
is provided by the integral representations of the partial derivatives ∂ET and ∂LT , recall

213Here we employ the convention sign(0) := 0.
214One should, however, be careful with this description as the angle of the solution ∂ER(·, E, L) in the

(α, α̇)-plane need not be monotonic in general.
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Lemmas A.3.9 and A.3.16. A particularly näıve approach is to deduce the sign of ∂ET
or ∂LT by showing that the integrand of the respective integral only attains one sign on the
whole domain of integration. Unfortunately, the following lemma shows that this is not to
be expected in general.

Lemma A.3.20. Assume that the underlying steady state is isotropic, i.e., L0 = 0 = `.
Then, for any fixed L > 0, the function GL : ]0,∞[ → R defined in (A.3.33) switches its
sign at r = rL. More precisely, for any L > 0 there exists some δ > 0 s.t.

GL < 0 on ]rL − δ, rL[, GL > 0 on ]rL, rL + δ[. (A.3.92)

Proof. The continuity of G1,L shown in Lemma A.3.18 implies

lim
r→rL

GL(r)

Ψ′L(r)
= −1

3

Ψ′′′L (rL)

Ψ′′L(rL)2
. (A.3.93)

By the radial Poisson equation (2.2.32) we obtain

Ψ′′′L (r) = 4πρ′0(r)− 8π

r
ρ0(r) +

6

r4
m0(r)− 12

L

r5
, r > 0. (A.3.94)

Inserting 0 = Ψ′L(rL) = m0(rL)
r2
L
− L

r3
L

into (A.3.94) thus yields

Ψ′′′L (rL) = 4πρ′0(rL)− 8π

rL
ρ0(rL)− 6

L

r5
L

. (A.3.95)

Now recall that ρ0 is non-increasing in the case of an isotropic steady state by Re-
mark 2.2.10 (a). Hence,

Ψ′′′L (rL) < 0 (A.3.96)

in the present, isotropic situation. Together with (A.3.93) we thus conclude that there exists
some δ > 0 s.t.

GL
Ψ′L

> 0 on ]rL − δ, rL + δ[, (A.3.97)

which implies (A.3.92) by recalling the structure of the effective potential ΨL derived in
Lemma 2.2.12.

Because the sign of the integrand in the integral representation (A.3.32) of ∂ET (E,L)
is determined by the sign of GL, the above lemma shows that we cannot hope to prove the
energy monotonicity of T by the näıve approach described above,215 at least in the case of
an isotropic equilibrium. In the situation of a general steady state, the above arguments
show that GL switches its sign at rL as long as Ψ′′′L (rL) does not vanish, which is expected
to be the case in general.216

Similar statements also hold for the L-derivative of the period function. In fact, Taylor
expanding the numerator of the function HL defined in (A.3.64) shows

lim
r→rL

HL(r)

Ψ′L(r)
= lim

r→rL

GL(r)

Ψ′L(r)
(A.3.98)

215In particular, note that the radius rL, where the integrand switches its sign, is always contained in the
domain of integration.

216Using the same techniques as above, one can, e.g., show that GL always switches its sign at r = rL
provided that rL > Rmax. However, as L-values satisfying this condition cannot be found inside the support
of the steady state, this observation is not too enlightening.
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for fixed L > 0, i.e., HL behaves similarly to GL at r = rL.
One possibility to get around this issue is to suitably reflect the integrand at r = rL in

order to compare radii to the left and to the right of rL with one another. We discuss this
idea next; a similar approach is pursued in [23, Sc. 2].

Definition A.3.21 (A Radial Reflection Mapping). For L > 0 let

ζL : {r > 0 | r < rL & ΨL(r) < 0} → ]rL,∞[, ζL(r) := r+(ΨL(r), L). (A.3.99)

We call ζL a radial reflection mapping.

The mapping ζL operates as follows: Each radius r > 0 to the left of rL is mapped to
the right of rL s.t. the value of the effective potential ΨL is preserved, i.e.,

ΨL(r) = ΨL(ζL(r)), r ∈ ]0, rL[ with ΨL(r) < 0. (A.3.100)

For this to be possible, we have to assume ΨL(r) < 0; recall the structure of the effective
potential derived in Lemma 2.2.12, in particular, limr→0 ΨL(r) =∞ and limr→∞ΨL(r) = 0.
Further note that Lemma 2.2.14 (c) implies that ζL is differentiable with

ζ ′L(r) =
Ψ′L(r)

Ψ′L(ζL(r))
(A.3.101)

for 0 < r < rL with ΨL(r) < 0. An illustration of the reflection mapping is provided in
Figure A.3.1.

r

ΨL(r) rLr1 ζL(r1)r2 ζL(r2)

ΨL(r1)

ΨL(r2)

Figure A.3.1: A schematic visualisation of the radial reflection mapping ζL for L > 0.

We can use the radial reflection mapping ζL to rewrite the integral representations
of ∂ET and ∂LT .

Lemma A.3.22. For L > 0 let

Gref
L : {r > 0 | r < rL & ΨL(r) < 0} → R, Gref

L (r) := GL(r)−GL(ζL(r)) ζ ′L(r), (A.3.102)

Href
L : {r > 0 | r < rL & ΨL(r) < 0} → R, Href

L (r) :=
HL(r)

r2
− HL(ζL(r))

ζL(r)2
ζ ′L(r),

(A.3.103)

where GL and HL are defined in (A.3.33) and (A.3.64), respectively. Then, for (E,L) ∈ A0,

∂ET (E,L) =
1

E − Emin
L

∫ rL

r−(E,L)

Gref
L (r)√

2E − 2ΨL(r)
dr, (A.3.104)

∂LT (E,L) = − 1

2(E − Emin
L )

∫ rL

r−(E,L)

Href
L (r)√

2E − 2ΨL(r)
dr. (A.3.105)
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Proof. We first rewrite the formula for ∂ET from Lemma A.3.9 as follows:(
E − Emin

L

)
∂ET (E,L) =

∫ rL

r−(E,L)

GL(r)√
2E − 2ΨL(r)

dr +

∫ r+(E,L)

rL

GL(r)√
2E − 2ΨL(r)

dr

(A.3.106)
for (E,L) ∈ A0. Changing variables via r = ζL(r̃) in the second integral on the right-
hand side of (A.3.106) – observe that ζL : [r−(E,L), rL[ → ]rL, r+(E,L)] is one-to-one –
and using (A.3.100) then yields (A.3.104). The identity (A.3.105) follows similarly using
Lemma A.3.16.

Showing that the integrands on the right-hand sides of (A.3.104) and (A.3.105) take only
one sign is more likely to succeed. Concretely, if Gref

L > 0 and Href
L > 0 on ]r−(E,L), rL[ for

some (E,L) ∈ A0, we obtain ∂ET (E,L) > 0 and ∂LT (E,L) > 0. We analyse this criterion
for the monotonicity of T numerically in Section 8.2. As a slight preview, we note that
the numerics indicate that Gref

L and Href
L are indeed positive on suitable radial domains

for certain steady states, cf. Observations 8.2.3, 8.2.5, and 8.2.6. Hence, the above lemma
might be helpful to rigorously prove the monotonicity of T in future work.

Monotonicity at the Boundary

The above discussion is only concerned with the monotonicity of the period function in-
side A0. In order to understand where T attains its maximal/minimal values on the (E,L)-
support D0 = A0 ∩ {E < E0 & L > L0} of the steady state, it is also useful to analyse the
monotonicity of (a suitable extension of) T on the boundary of A0. Of particular interest
is the behaviour of T on the following two parts of the boundary of A0:217

{(EL, L) | L > 0} ⊂ ∂A0, (A.3.107)

{(E, 0) | U0(0) ≤ E < 0} ⊂ ∂A0; (A.3.108)

it follows by Lemma 2.2.14 that these two sets are indeed part of the boundary of A0.
We will not yet study the behaviour of T on (A.3.107), but will analyse it in Section A.4.

In particular, a monotonicity statement of the period function on this part of the boundary
will be proven in Lemma A.4.3.

As to the second part (A.3.108) of the boundary, recall Remark 2.2.17 (a), where it
is argued that (2.2.99) defines a natural extension of the period function onto {(E, 0) |
U0(0) < E < 0}. A detailed proof that this extension is indeed continuous is provided
in [85, Lemma 3.12]. Moreover, the behaviour of T (E,L) in the limit (E,L) → (U0(0), 0)
will be briefly discussed in Remark A.4.4.

It is observed in [85, Lemma 3.15] that the (extension of the) period function is indeed
monotonic on {(E, 0) | U0(0) < E < 0} under suitable assumptions on the steady state.
Since the proof of this statement could be helpful for further monotonicity proofs, we include
it here.

Lemma A.3.23. Assume that the underlying steady state is isotropic, i.e., L0 = 0 = `.
Then the function

T (·, 0) : ]U0(0), 0[→ ]0,∞[, T (E, 0) := 2

∫ r+(E,0)

0

dr√
2E − 2U0(r)

(A.3.109)

is strictly increasing.
217The remaining part of ∂A0 is {(0, L) | L ≥ 0}. However, this set is not of interest when studying the

behaviour of T on D0, because the energy values inside D0 are bounded from above by E0 < 0.
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Proof. We follow the proof from [85, Lemma 3.15], which is in turn based on [125]. Consider
the mapping

T̂ : ]0,∞[→ ]0,∞[, T̂ (r̂) := 2

∫ r̂

0

dr√
2U0(r̂)− 2U0(r)

, (A.3.110)

which is well-defined since U ′0 < 0 on ]0,∞[ by the radial Poisson equation (2.2.32) and
Proposition 2.2.9 (c). Recalling the definition of r+(·, 0) from Lemma 2.2.14 (c), there
obviously holds

T (E, 0) = T̂ (r+(E, 0)), E ∈ ]U0(0), 0[. (A.3.111)

Moreover, since r+(·, 0) : ]U0(0), 0[→ ]0,∞[ is strictly increasing, the claimed monotonicity
of T (·, 0) is equivalent to T̂ being strictly increasing on ]0,∞[.

To prove the latter, we first use the radial Poisson equation (2.2.32) together with the
fact that, in the case of an isotropic steady state, ρ0 is strictly decreasing on [0, Rmax] by
Remark 2.2.10 (a) to infer

U ′′0 (r)−U
′
0(r)

r
= 4πρ0(r)−12π

r3

∫ r

0
s2ρ0(s) ds < 4πρ0(r)−12π

r3
ρ0(r)

∫ r

0
s2 ds = 0 (A.3.112)

for r > 0. Hence, ]0,∞[ 3 r 7→ U ′0(r)
r is strictly decreasing, which implies

U ′0(p r)

p
< U ′0(r), r > 0, p > 1. (A.3.113)

Coming back to T̂ , we change variables via r = p s to deduce

T̂ (p r̂) = 2

∫ p r̂

0

dr√
2U0(p r̂)− 2U0(r)

= 2p

∫ r̂

0

ds√
2U0(p r̂)− 2U0(p s)

(A.3.114)

for r̂ > 0 and p > 1. Applying the main theorem of calculus and (A.3.113) shows that for
any s ∈ ]0, r̂[ there holds

U0(p r̂)− U0(p s) = p

∫ r̂

s
U ′0(p σ) dσ < p2

∫ r̂

s
U ′0(σ) dσ = p2(U0(r̂)− U0(s)). (A.3.115)

Inserting this estimate into (A.3.114) then yields

T̂ (p r̂) > 2

∫ r̂

0

ds√
2U0(r̂)− 2U0(s)

= T̂ (r̂) (A.3.116)

for r̂ > 0 and p > 1, which concludes the proof.

The above arguments crucially rely on the fact that the domain of integration for the
integral T (E, 0) starts at r = 0. All attempts of the author to show the monotonicity
of T (·, L) for L > 0 with the above ideas have failed so far. Furthermore, using Lem-
mas A.3.13, A.3.15, and A.3.16 allows us to relate the L-monotonicity of the function T to
the E-monotonicity of T̃ from Lemma A.3.13. However, using the above ideas to show that
T̃ (·, L) is monotonic has not succeeded so far either. Nonetheless, we refer to the discussion
in [85, Rem. 3.17] for some evidence why proving the L-monotonicity of T in this way seems
rather promising.
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A.4 Extending the Period Function to Minimal Energies

In this section we analyse the behaviour of the period function close to the minimal energy
curve

{(Emin
L , L) | L > 0}. (A.4.1)

In [61], this region is called the near circular regime because solutions of the characteristic
system with squared modulus of angular momentum L > 0 and energy E = Emin

L are
radially constant, i.e., r ≡ rL, which corresponds to a circular motion in Cartesian (x, v)-
coordinates.

More precisely, we study the limiting behaviour of T (E,L) and of its partial derivatives
∂ET (E,L) and ∂LT (E,L) as (E,L) → (Emin

L∗ , L
∗) for L∗ > 0; note that the set (A.4.1)

is contained in ∂A0. We shall solely work with the integral representations of T and its
partial derivatives. For this, we first prove the following general result which is based on [61,
Lemmas A.11 and A.12].

Lemma A.4.1. Let ]0,∞[23 (L, r) 7→ FL(r) ∈ R be continuous.218 Then, for L∗ > 0,

lim
A03(E,L)→(Emin

L∗ ,L
∗)

∫ r+(E,L)

r−(E,L)
FL(r)

√
2E − 2ΨL(r) dr = 0, (A.4.2)

lim
A03(E,L)→(Emin

L∗ ,L
∗)

∫ r+(E,L)

r−(E,L)

FL(r)√
2E − 2ΨL(r)

dr = π
FL∗(rL∗)√
Ψ′′L∗(rL∗)

, (A.4.3)

where we recall

Ψ′′L∗(rL∗) = 4πρ0(rL∗) +
L∗

r4
L∗

= 4πρ0(rL∗) +
U ′0(rL∗)

rL∗
> 0. (A.4.4)

Proof. By Lemma 2.2.14 (c) we have r±(E,L)→ rL∗ as (E,L)→ (Emin
L∗ , L

∗). Since FL(r)
is locally bounded, we thus trivially conclude (A.4.2).

Showing (A.4.3) is harder due to the singular integrand. For fixed (E,L) ∈ A0 we obtain∫ r+(E,L)

r−(E,L)

FL(r)√
2E − 2ΨL(r)

dr =

(∫ rL

r−(E,L)
+

∫ r+(E,L)

rL

)
FL(r)√

2E − 2ΨL(r)
dr =

=

∫ E

Emin
L

FL(r−(η, L))√
2(E − η) Ψ′L(r−(η, L))2

dη +

∫ E

Emin
L

FL(r+(η, L))√
2(E − η) Ψ′L(r+(η, L))2

dη (A.4.5)

by changing variables via η = ΨL(r), r = r±(η, L) in both integrals; note the different signs
of the Ψ′L-terms. We focus on the first integral on the right-hand side of this calculation;
the arguments for the second integral are similar.

The extended mean value theorem yields that for every η ∈ ]Emin
L , E[ there exists some

s ∈ ]r−(η, L), rL[⊂ ]r−(E,L), rL[ s.t.

Ψ′L(r−(η, L))2

η − Emin
L

=
Ψ′L(r−(η, L))2

η −ΨL(rL)
=

2Ψ′L(s) Ψ′′L(s)

Ψ′L(s)
= 2Ψ′′L(s); (A.4.6)

recall Ψ′L(rL) = 0. Hence, the integrand of the integral under consideration can be rewritten
as

FL(r−(η, L))√
2(E − η) Ψ′L(r−(η, L))2

=
FL(r−(η, L))

2
√

(E − η)(η − Emin
L ) Ψ′′L(s)

. (A.4.7)

218Obviously, the continuity of (L, r) 7→ FL(r) is only necessary in a neighbourhood of (L∗, rL∗) for the
statements of Lemma A.4.1 to hold.
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Next observe that (A.4.4), which is due to the radial Poisson equation (2.2.32) and
Ψ′L∗(rL∗) = 0, combined with the limiting behaviour of r± from Lemma 2.2.14 (c) and
the continuities of (L, r) 7→ FL(r) and (L, r) 7→ Ψ′′L(r) imply

∀ε > 0∃δ > 0∀(E,L) ∈ A0 with |(E,L)− (Emin
L∗ , L

∗)| < δ :∣∣∣∣∣ FL(r)√
Ψ′′L(s)

− FL∗(rL∗)√
Ψ′′L∗(rL∗)

∣∣∣∣∣ < 2ε

π
for r, s ∈ [r−(E,L), r+(E,L)]. (A.4.8)

For arbitrary ε > 0, choosing δ > 0 as above and inserting (A.4.7) hence yields∣∣∣∣∣
∫ E

Emin
L

FL(r−(η, L))√
2(E − η) Ψ′L(r−(η, L))2

dη − π

2

FL∗(rL∗)√
Ψ′′L∗(rL∗)

∣∣∣∣∣ =

=

∣∣∣∣∣
∫ E

Emin
L

FL(r−(η, L))√
2(E − η) Ψ′L(r−(η, L))2

dη − FL∗(rL∗)

2
√

Ψ′′L∗(rL∗)

∫ E

Emin
L

dη√
(E − η)(η − Emin

L )

∣∣∣∣∣ <
<
ε

π

∫ E

Emin
L

dη√
(E − η)(η − Emin

L )
= ε, (A.4.9)

for (E,L) ∈ A0 with |(E,L) − (Emin
L∗ , L

∗)| < δ, where we again used the integral iden-
tity (2.2.23). This shows the desired convergence for the integral under consideration.

As a direct consequence of the above lemma we obtain the following limiting behaviour
of the period function T and the area function A defined in Definitions 2.2.16 and A.3.6,
respectively.

Corollary A.4.2. For L∗ > 0 it holds that

lim
A03(E,L)→(Emin

L∗ ,L
∗)
A(E,L) = 0, (A.4.10)

lim
A03(E,L)→(Emin

L∗ ,L
∗)
T (E,L) =

2π√
Ψ′′L∗(rL∗)

=: T (Emin
L∗ , L

∗). (A.4.11)

Proof. Apply Lemma A.4.1 with FL(r) ≡ 1.

Similar limiting properties of a period function also hold in a more general setting,
cf. [11, p. 20]. In the context of the Vlasov-Poisson system, (A.4.11) is also proven in [85,
Lemma 3.8] and [148, Eqn. (B4)] (in ways different from the above).

In the light of Section A.3.3, it is interesting to analyse the monotonicity of the contin-
uous extension (A.4.11) of the period function. We do this next for suitable steady states;
the same result is also contained in [85, Lemma 3.14].

Lemma A.4.3. Assume that the underlying steady state is isotropic, i.e., L0 = 0 = `.
Then the function ]0,∞[ 3 L 7→ T (Emin

L , L) defined by (A.4.11) is strictly increasing.

Proof. The isotropy of the steady state implies that ρ0 is non-increasing, cf. Re-

mark 2.2.10 (a), which yields that ]0,∞[ 3 r 7→ U ′0(r)
r is strictly decreasing by a straight-

forward calculation; recall (A.3.112). Hence, the mapping ]0,∞[ 3 L 7→ Ψ′′L(rL) given
by (A.4.4) is strictly decreasing; recall that ]0,∞[ 3 L 7→ rL is strictly increasing by
Lemma 2.2.14 (a).
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Analysing the limiting behaviour of the period function T at the boundary of its domain
of definition particularly yields an alternative way of showing that T is bounded on the
(E,L)-support D0 defined in (2.2.88). Let us briefly discuss this approach next.

Remark A.4.4. The boundary of the (E,L)-support D0 is of the form

∂D0 = {(Emin
L , L) | L0 < L < Lmax} ∪ ({E0} × [L0, Lmax]) ∪

(
[Emin

L0
, E0]× {L0}

)
, (A.4.12)

where Lmax is defined in Lemma 2.2.15 and we set Emin
L

∣∣
L=0

:= U0(0); the latter is in
accordance with Lemma 2.2.14 (b).

In the case of an anisotropic steady state we have L0 > 0 by (ϕ4). Hence, (A.4.11)
fully shows how to continuously extend the period function T onto D0. Since T (Emin

L , L)
is bounded and bounded away from zero for L ∈ [L0, Lmax], we have thus discovered an
alternative proof of Proposition A.0.1 (a).

In the case of an isotropic steady state L0 = 0 = `, we further have to suitably extend
the period function to L = 0. It is discussed in Remark 2.2.17 (a) how to continuously
extend T onto ]U0(0), E0]× {0}. Moreover, since

U ′0(r)

r
=

4π

r3

∫ r

0
s2ρ0(s) ds→ 4π

3
ρ0(0) as r → 0 (A.4.13)

and rL → 0 as L→ 0 by Lemma 2.2.14 (a), (A.4.4) and (A.4.11) indicate

lim
A03(E,L)→(U0(0),0)

T (E,L) =

√
3π

2
√
ρ0(0)

; (A.4.14)

recall ρ0(0) > 0 by Remark 2.2.10 (a). Proving this limit requires particularly careful and
technical arguments, which is why we omit a proof here and instead refer the interested reader
to [85, Lemma 3.11]. Hence, also in the isotropic case, the continuous extension of T onto
∂D0 is positive and finite, which provides an alternative proof of Proposition A.0.1 (a).

For a much more thorough analysis of the limiting behaviour of the period function
at ∂D0 see [85, Thm. 3.13].

The identity (A.4.14) indicates that the period function T (E,L) is unbounded as
(E,L) → (U0(0), 0) if ρ0(0) = 0. Indeed, it is. We comment on this phenomenon in
the following remark.

Remark A.4.5 (Compactly Supported Equilibria with Unbounded Periods). The
limit (A.4.11) holds for all steady states from Section 2.2, i.e., the conditions (ϕ4) and (ϕ5)
have not been used in its proof. In particular, we can choose L0 = 0 < ` in (2.2.12), i.e.,
we consider a steady state of the form

f0(x, v) = Φ(E0 − E(x, v))L(x, v)`, (x, v) ∈ R3 × R3, with ` > 0. (A.4.15)

In this case, ρ0(0) = 0 by (2.2.27), but still 0 = Rmin ∈ supp (ρ0) by Proposition 2.2.9 (c)
as well as (U0(0), 0) ∈ ∂D0. Similar arguments as in Remark A.4.4 hence show Ψ′′L(rL)→ 0
as L→ 0, which implies

sup
D0

T =∞ (A.4.16)

by (A.4.11) for such steady states. In particular, since T tends to infinity at the minimal
energy value U0(0) = limL↘0E

min
L , the period function cannot be energy-increasing on D0

in this case.
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It is, in fact, the main purpose of the assumption (ϕ4) to exclude steady states with the
property (A.4.16) from our analysis. Recall that the period function T is bounded on D0 for
all steady states satisfying (ϕ1)–(ϕ5) by Proposition A.0.1 (a), and this property enters our
analysis crucially.

Let us note that this finding contradicts a statement in [19, Sc. 5.5.3], where it is claimed
that the particle periods within a spherically symmetric equilibrium with finite extent are
bounded.

Our next goal is to determine the limiting behaviour of the partial derivatives ∂ET
and ∂LT of the period function as well. We start with the energy derivative of T ; the
arguments for the L-derivative are similar due to the relation (A.3.73).

Considering the integral representation (A.3.32) of ∂ET from Lemma A.3.9, we see
that it contains an integral which behaves similarly to the integral (2.2.97) defining the
period function. However, there is the additional factor (E − Emin

L )−1 on the right-hand
side of (A.3.32), which becomes singular in the near circular regime. To deal with this
factor, we proceed as in [61, Eqn. (A.21) and (A.24)] and rewrite the integral using the
identity (A.3.76). This will allow us to explicitly compute the limit of ∂ET (E,L) as (E,L)→
(Emin

L∗ , L
∗). A similar result is also stated in [61, Rem. A.18] in a slightly different context.

Lemma A.4.6. Let L∗ > 0 and assume that U0 is four times continuously differentiable in
a neighbourhood of rL∗. Then there holds

lim
A03(E,L)→(Emin

L∗ ,L
∗)
∂ET (E,L) = π

G′1,L∗(rL∗)√
Ψ′′L∗(rL∗)

=
5π

12

Ψ′′′L∗(rL∗)
2

Ψ′′L∗(rL∗)
7
2

− π

4

Ψ
(4)
L∗ (rL∗)

Ψ′′L∗(rL∗)
5
2

; (A.4.17)

recall that G′1,L is given by (A.3.75) and Ψ′′L∗(rL∗) > 0 by (A.4.4).

Proof. We follow the strategy from [61, Eqn. (A.24)] and define

J(E,L) :=

∫ r+(E,L)

r−(E,L)

GL(r)√
2E − 2ΨL(r)

dr =

∫ r+(E,L)

r−(E,L)
G′1,L(r)

√
2E − 2ΨL(r) dr (A.4.18)

for (E,L) ∈ A0 close to (Emin
L∗ , L

∗). The second identity is due to (A.3.76); notice that,
for L close to L∗, the assumptions for (A.3.76) are satisfied by Lemma 2.2.14 (a). By
Lemma A.3.9,

∂ET (E,L) =
J(E,L)

E − Emin
L

(A.4.19)

for such (E,L). The regularity of G′1,L established in Lemma A.3.18 implies that J is

partially differentiable w.r.t. E in (E,L) ∈ A0 close to (Emin
L∗ , L

∗) with

∂EJ(E,L) =

∫ r+(E,L)

r−(E,L)

G′1,L(r)√
2E − 2ΨL(r)

dr (A.4.20)

by Lemma A.3.8. Furthermore, Lemma A.4.1 shows that J(Emin
L , L) := 0 for L close to L∗

defines a continuous extension of J . Hence, by applying the mean value theorem in the
energy variable, we obtain that for any (E,L) ∈ A0 close to (Emin

L∗ , L
∗) there exists some

η ∈ ]Emin
L , E[ s.t.

∂ET (E,L) =
J(E,L)

E − Emin
L

= ∂EJ(η, L) =

∫ r+(η,L)

r−(η,L)

G′1,L(r)√
2η − 2ΨL(r)

dr. (A.4.21)
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Together with (A.4.3) we thus conclude

lim
A03(E,L)→(Emin

L∗ ,L
∗)
∂ET (E,L) = lim

A03(E,L)→(Emin
L∗ ,L

∗)
∂EJ(E,L) = π

G′1,L∗(rL∗)√
Ψ′′L∗(rL∗)

. (A.4.22)

In order to establish this limiting behaviour of ∂ET , we had to impose an additional
regularity assumption on the steady state. It is evident that such an assumption is manda-
tory because the fourth-order derivative of the effective potential appears on the right-hand
side of (A.4.17). Let us briefly comment on this regularity assumption.

Remark A.4.7. As discussed in Remark A.3.5, U0 is four times continuously differentiable
on ]0,∞[ if ρ0 ∈ C2(]0,∞[), which is in turn the case if the microscopic equation of state ϕ
is sufficiently smooth.

If one is only interested in the limiting behaviour of ∂ET at {(Emin
L , L) | L > 0} ∩

∂D0, which is the relevant part of the minimal energy curve, it suffices to assume U0 ∈
C4(]Rmin, Rmax[) because rL ∈ ]Rmin, Rmax[ for L ∈ L0 \{0}; recall (2.2.90). This regularity
of U0 on ]Rmin, Rmax[ holds, e.g., if the function g relating U0 and ρ0 via (2.2.27) satisfies
g ∈ C2(]0,∞[). The latter is, e.g., the case for the King models (2.2.19) and for every
polytropic ansatz (2.2.17), independent of the polytropic exponents. In the polytropic case
there even holds ρ0, U0 ∈ C∞(]0,∞[\{Rmin, Rmax}).

Using the relation (A.3.73) between the L-derivative of the period function T and the
energy derivative of T̃ allows us to conclude the limiting behaviour of ∂LT (E,L) as (E,L)
approaches the minimal energy curve.

Lemma A.4.8. Let L∗ > 0 and assume that U0 is four times continuously differentiable in
a neighbourhood of rL∗. Then

lim
A03(E,L)→(Emin

L∗ ,L
∗)
∂LT (E,L) = − π

r4
L∗ Ψ′′L∗(rL∗)

7
2

(
3Ψ′′L∗(rL∗)

2+

+ rL∗ Ψ′′L∗(rL∗) Ψ′′′L∗(rL∗)−
r2
L∗

8
Ψ′′L∗(rL∗) Ψ

(4)
L∗ (rL∗) +

5

24
r2
L∗ Ψ′′′L∗(rL∗)

2

)
(A.4.23)

holds for L∗ > 0.

Proof. As discussed in Lemma A.3.13, the potential Ψ̃L associated to T̃ has the same
properties as ΨL. Hence, the same arguments as in Lemma A.4.6 yield

lim
A03(E,L)→(Emin

L∗ ,L
∗)
∂ET̃ (E,L) =

5π

12

Ψ̃′′′L∗(σL∗)
2

Ψ̃′′L∗(σL∗)
7
2

− π

4

Ψ̃
(4)
L∗ (σL∗)

Ψ̃′′L∗(σL∗)
5
2

. (A.4.24)

Differentiating the relation (A.3.51) between Ψ̃L and ΨL and inserting σL =
√
L
rL

implies

Ψ̃′′L(σL) =
r4
L

L
Ψ′′L(rL), (A.4.25)

Ψ̃′′′L (σL) = −6
r5
L

L
3
2

Ψ′′L(rL)−
r6
L

L
3
2

Ψ′′′L (rL), (A.4.26)

Ψ̃
(4)
L (σL) = 36

r6
L

L2
Ψ′′L(rL) + 12

r7
L

L2
Ψ′′′L (rL) +

r8
L

L2
Ψ

(4)
L (rL). (A.4.27)

Inserting these formulae into (A.4.24) and using (A.3.73) then shows (A.4.23).
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In the light of Section A.3.3, it would of course be interesting to analyse the signs of
the limits (A.4.17) and (A.4.23), as this would imply monotonicity properties of the period
function in the near circular regime. However, both of these expressions contain a fourth-
order derivative of the effective potential evaluated at r = rL, which is of the form

Ψ
(4)
L (rL) = 4πρ′′0(rL)− 8π

rL
ρ′0(rL) +

32π

r2
L

ρ0(rL) +
36L

r6
L

, L > 0. (A.4.28)

Since the sign of ρ′′0 is unclear – even in the case of an isotropic steady state – we refrain
from analysing the signs of (A.4.17) and (A.4.23) mathematically. In Section 8.2, we briefly
study these expressions numerically.

The arguments above can also be extended to compute the limiting behaviour of higher-
order partial derivatives of the period function in the near circular regime. To conclude this
section, let us show how this works for ∂2

ET . Also, this limiting behaviour of ∂2
ET is useful

for the analysis in Chapter 6. The lemma is based on [61, Lemma A.15].

Lemma A.4.9. Let L∗ > 0 and assume that U0 is six times continuously differentiable in
a neighbourhood of rL∗. Then there holds

lim
A03(E,L)→(Emin

L∗ ,L
∗)
∂2
ET (E,L) = − π

24

Ψ
(6)
L∗ (rL∗)

Ψ′′L∗(rL∗)
7
2

+
7π

24

Ψ′′′L∗(rL∗) Ψ
(5)
L∗ (rL∗)

Ψ′′L∗(rL∗)
9
2

+

+
35π

192

Ψ
(4)
L∗ (rL∗)

2

Ψ′′L∗(rL∗)
9
2

− 35π

32

Ψ′′′L∗(rL∗)
2 Ψ

(4)
L∗ (rL∗)

Ψ′′L∗(rL∗)
11
2

+
385π

576

Ψ′′′L∗(rL∗)
4

Ψ′′L∗(rL∗)
13
2

. (A.4.29)

Proof. First recall the integral representation (A.3.84) of ∂2
ET (E,L), which, by

Lemma 2.2.14 (a), holds for (E,L) ∈ A0 close to (Emin
L∗ , L

∗). In order to take the limit
(E,L)→ (Emin

L∗ , L
∗) in this identity, we have to get rid of the (E − Emin

L )−2 factor in front
of the integral. This is achieved similarly to the proof of Lemma A.4.6: Let I be an open
interval containing rL∗ s.t. U0 ∈ C6(I). For L > 0 define

G2,L : I → R, G2,L(r) :=

G′1,L(r)
ΨL(r)−Emin

L
Ψ′L(r)

− 1
2G1,L(r), r 6= rL,

1
6

Ψ′′′L (rL)

Ψ′′L(rL)2 , r = rL;
(A.4.30)

recall that G1,L and G′1,L are given by (A.3.74) and (A.3.75), respectively. For L > 0 and
r ∈ I \ {rL}, direct computation yields

G′2,L(r) =
1

Ψ′L(r)6

(
− 3

2
Ψ′L(r)4 Ψ′′L(r)− 2(ΨL(r)− Emin

L )2 Ψ′L(r)2 Ψ
(4)
L (r)+

+ 20(ΨL(r)− Emin
L )2 Ψ′L(r) Ψ′′L(r) Ψ′′′L (r)− 30(ΨL(r)− Emin

L )2 Ψ′′L(r)3+

− 6(ΨL(r)− Emin
L ) Ψ′L(r)3 Ψ′′′L (r) + 18(ΨL(r)− Emin

L ) Ψ′L(r)2 Ψ′′L(r)2
)
.

(A.4.31)

Taylor expanding ΨL and its derivatives to fifth order similarly to the proof of Lemma A.3.18
shows that ]0,∞[ × I 3 (L, r) 7→ G′2,L(r) is continuous with G′2,L(rL) = 0.219 In addition,

219We have verified the continuity of G′2,L with the aid of a computer algebra software, and highly recom-
mend doing so.
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for fixed L > 0, G2,L is continuous on I. Radially integrating by parts then allows us to
rewrite (A.3.84) as follows:

∂2
ET (E,L) =

1

(E − Emin
L )2

∫ r+(E,L)

r−(E,L)
G′2,L(r)

√
2E − 2ΨL(r) dr =:

J1(E,L)

(E − Emin
L )2

(A.4.32)

for (E,L) ∈ A0 close to (Emin
L∗ , L

∗). By Lemma A.3.8, J1 is partially differentiable w.r.t. E
in such (E,L) with

∂EJ1(E,L) =

∫ r+(E,L)

r−(E,L)

G′2,L(r)√
2E − 2ΨL(r)

dr. (A.4.33)

Furthermore, Lemma A.4.1 shows that J1(Emin
L , L) := 0 for L close to L∗ defines a continu-

ous extension of J1. Hence, by the extended mean value theorem, for any (E,L) ∈ A0 close
to (Emin

L∗ , L
∗) there exists some η̃ ∈ ]Emin

L , E[ s.t.

∂2
ET (E,L) =

1

2(η̃ − Emin
L )

∫ r+(η̃,L)

r−(η̃,L)

G′2,L(r)√
2η̃ − 2ΨL(r)

dr. (A.4.34)

In order to analyse the limit (E,L) → (Emin
L∗ , L

∗) in this expression, we analyse the limit
(η̃, L) → (Emin

L∗ , L
∗) of the right-hand side by applying the same methods again to get rid

of the (η̃ − Emin
L )−1 factor in front of the integral.

For this sake let

G3,L : I → R, G3,L(r) :=


G′2,L(r)

Ψ′L(r)
, r 6= rL,

− 1
10

Ψ
(5)
L (rL)

Ψ′′L(rL)3 + 1
2

Ψ′′′L (rL) Ψ
(4)
L (rL)

Ψ′′L(rL)4 − 4
9

Ψ′′′L (rL)3

Ψ′′L(rL)5 , r = rL,
(A.4.35)

for L > 0. The same Taylor expansion as above shows that ]0,∞[× I 3 (L, r) 7→ G3,L(r) is
continuous. Obviously, G3,L is continuously differentiable on I\{rL}, and a straight-forward
computation based on (A.4.31) shows

G′3,L(r) =
1

Ψ′L(r)8

(
− 2(ΨL(r)− Emin

L )2 Ψ′L(r)3 Ψ
(5)
L (r)+

+ 30(ΨL(r)− Emin
L )2 Ψ′L(r)2 Ψ′′L(r) Ψ

(4)
L (r) + 20(ΨL(r)− Emin

L )2 Ψ′L(r)2 Ψ′′′L (r)2+

− 210(ΨL(r)− Emin
L )2 Ψ′L(r) Ψ′′L(r)2 Ψ′′′L (r) + 210(ΨL(r)− Emin

L )2 Ψ′′L(r)4+

− 10(ΨL(r)− Emin
L ) Ψ′L(r)4 Ψ

(4)
L (r) + 100(ΨL(r)− Emin

L ) Ψ′L(r)3 Ψ′′L(r) Ψ′′′L (r)+

− 150(ΨL(r)− Emin
L ) Ψ′L(r)2 Ψ′′L(r)3 − 15

2
Ψ′L(r)5 Ψ′′′L (r) +

45

2
Ψ′L(r)4 Ψ′′L(r)2

)
(A.4.36)

for L > 0 and r ∈ I \ {rL}. With the extension

G′3,L(rL) = − 1

12

Ψ
(6)
L (rL)

Ψ′′L(rL)3
+

7

12

Ψ′′′L (rL) Ψ
(5)
L (rL)

Ψ′′L(rL)4
+

35

96

Ψ
(4)
L (rL)2

Ψ′′L(rL)4
+

− 35

16

Ψ′′′L (rL)2 Ψ
(4)
L (rL)

Ψ′′L(rL)5
+

385

288

Ψ′′′L (rL)4

Ψ′′L(rL)6
(A.4.37)

for L > 0 with rL ∈ I, the mapping ]0,∞[× I 3 (L, r) 7→ G′3,L(r) becomes continuous. This
can be verified by a Taylor expansion similar to the one above; here, the effective potential
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has to be expanded to sixth order.220 For (E,L) ∈ A0 close to (Emin
L∗ , L

∗), we radially
integrate by parts to rewrite the integral on the right-hand side of (A.4.34) as follows:∫ r+(E,L)

r−(E,L)

G′2,L(r)√
2E − 2ΨL(r)

dr = −
∫ r+(E,L)

r−(E,L)
G3,L(r) ∂r

[√
2E − 2ΨL(r)

]
dr =

=

∫ r+(E,L)

r−(E,L)
G′3,L(r)

√
2E − 2ΨL(r) dr =: J2(E,L). (A.4.38)

The properties of G3,L established above imply that J2(Emin
L , L) := 0 for L close to L∗

defines a continuous extension of J2, cf. Lemma A.4.1, and that J2 is partially differentiable
w.r.t. E in (E,L) ∈ A0 close to (Emin

L∗ , L
∗) with

∂EJ2(E,L) =

∫ r+(E,L)

r−(E,L)

G′3,L(r)√
2E − 2ΨL(r)

dr. (A.4.39)

Hence, continuing the calculation (A.4.34) by applying the mean value theorem shows that
for any (E,L) ∈ A0 close to (Emin

L∗ , L
∗) there exists some η ∈ ]Emin

L , E[ s.t.

∂2
ET (E,L) =

1

2

∫ r+(η,L)

r−(η,L)

G′3,L(r)√
2η − 2ΨL(r)

dr. (A.4.40)

By Lemma A.4.1, we thus conclude

lim
A03(E,L)→(Emin

L∗ ,L
∗)
∂2
ET (E,L) = lim

A03(E,L)→(Emin
L∗ ,L

∗)

1

2

∫ r+(E,L)

r−(E,L)

G′3,L(r)√
2E − 2ΨL(r)

dr =

=
π

2

G′3,L∗(rL∗)√
Ψ′′L∗(rL∗)

, (A.4.41)

which, by (A.4.37), is precisely the claimed identity (A.4.29).

Let us briefly present an alternative way of determining the limits of T and its partial
derivatives in the near circular regime. This approach was recently pointed out to the
author by Thomas Kriecherbauer, and it is also pursued in [148, App. C].

Remark A.4.10. In the integral representation (2.2.97) of T , we change variables via

z = sign(r − rL)
√

ΨL(r)− Emin
L . (A.4.42)

In other words, we set z2 = ΨL(r) − Emin
L , which illustrates that we are essentially trans-

forming the effective potential into the potential associated to the harmonic oscillator. On
the relevant domain of integration, (A.4.42) is invertible. Let hL = hL(z) denote the inverse
of (A.4.42). The change of variables then leads to

T (E,L) =
√

2

∫ √E−Emin
L

−
√
E−Emin

L

h′L(z)√
E − Emin

L − z2
dz =

√
2

∫ 1

−1

h′L(y
√
E − Emin

L )√
1− y2

dy. (A.4.43)

220We again recommend using a computer algebra software for this calculation. If the reader chooses not
to do so, we are either honoured to be trusted with (A.4.37) or wish the reader the best of luck in verifying
this identity purely by hand.



A.4. EXTENDING THE PERIOD FUNCTION TO MINIMAL ENERGIES 287

The E-dependency of the latter integral is easier than that of the original integral (2.2.97),
allowing us to determine the near circular limits more directly. More precisely, it is straight-
forward to verify that

lim
A03(E,L)→(Emin

L∗ ,L
∗)
T (E,L) =

√
2π h′L∗(0) =

2π√
Ψ′′L∗(rL∗)

; (A.4.44)

the value of h′L∗(0) can, e.g., be computed by Taylor expanding ΨL and hL in the identity
z2 = ΨL(hL(z)) − Emin

L and equating the coefficients of different powers of z. In the same
way, one can compute higher order derivatives of hL∗ in z = 0 as well, provided that ΨL is
sufficiently smooth. After differentiating (A.4.43) w.r.t. E, this leads to

lim
A03(E,L)→(Emin

L∗ ,L
∗)
∂ET (E,L) =

π

2
√

2
h′′′L∗(0) =

5π

12

Ψ′′′L∗(rL∗)
2

Ψ′′L∗(rL∗)
7
2

− π

4

Ψ
(4)
L∗ (rL∗)

Ψ′′L∗(rL∗)
5
2

. (A.4.45)

Notice that (A.4.44) and (A.4.45) are consistent with (A.4.11) and (A.4.17), respectively.
Further differentiating (A.4.43) provides an alternative way of establishing (A.4.29).
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Appendix B

An Eddington-Ritter Type
Relation

In this chapter we consider a polytropic steady state with L0 = 0, i.e., the microscopic
equation of state ϕ is of the form

ϕ(E,L) = (E0 − E)k+ L
`, E ∈ R, L ≥ 0, (B.0.1)

with polytropic exponents ` ≥ 0 and k ∈ ]0, 3` + 7
2 [. In particular, choosing ` = 0 leads to

the isotropic polytropic ansatz (2.2.18). The ansatz function (B.0.1) obviously satisfies the
conditions (ϕ1)–(ϕ3) (and also (ϕ5)). Let fκ0 be the steady state associated to this ansatz
given by Proposition 2.2.9 with parameter κ > 0. The subject of this chapter is to study
how fκ0 depends on κ (for a fixed ansatz of the form (B.0.1)). More precisely, we consider
the period function T κ, the linearised operator Lκ, and other quantities associated to the
steady state; we add a superscript κ to all quantities here to highlight the κ-dependency.
The primary goal of this analysis is to derive a relation between the parameter κ > 0 and
the periods of (possible) linear oscillations around fκ0 . In the context of isotropic equilibria
of the Euler-Poisson system, such a relation is known as the Eddington-Ritter relation, see,
e.g., [39, Sc. 8], [107, p. 555], or [149, p. 235].221 For the Vlasov-Poisson system, such a
relation was first stated (and numerically checked) in [132, Sc. 4].222 The first rigorous
derivations were then given in [62, Sc. 3.3] and, in the isotropic case ` = 0, in [85, Ch. 6].
For general scaling properties of solutions of the Vlasov-Poisson system we refer to [35].

We use the quantities introduced in Chapters 2, 4, and 5 here without further reference.
Moreover, we will refrain here from presenting lengthy calculations, but only present their
results. We follow [62, Sc. 3.3].

Let y∗ := y1 ∈ C2([0,∞[) be the unique solution of (2.2.35) satisfying the bound-
ary/initial conditions (2.2.36) with κ = 1, i.e.,

y∗(0) = 1, (y∗)′(0) = 0. (B.0.2)

All quantities associated to y∗ will be denoted by a superscript ∗. Due to the specific
ansatz (B.0.1) chosen here and Remark 2.2.7, the integro-differential equation (2.2.35) can

221More precisely, the Eddington-Ritter relation states a connection between the linear oscillation period(s)
and the central density ρ0(0) of the steady state. By Remark 2.2.10 (a), the central density ρ0(0) is in one-
to-one correspondence with the parameter κ used here.

222It should be noted that the numerics in [132] analyse the oscillation period(s) of solutions close to steady
states of the form (B.0.1) on the non-linearised level.
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be written as

y′(r) = −
4πck,`
r2

∫ r

0
s2`+2 y(s)

k+`+ 3
2

+ ds, r > 0, (B.0.3)

where ck,` is some constant depending on the polytropic exponents via (2.2.30). Hence, y∗

is related to the solution yκ ∈ C2([0,∞[) of (2.2.35)–(2.2.36) for general κ > 0 as follows:

yκ(r) = κ y∗(κ
2k+2`+1

4`+4 r), r > 0. (B.0.4)

For the associated mass densities, cut-off energies, and gravitational potentials, we thus
obtain

ρκ0(r) = κ
2k+4`+3

2`+2 ρ∗0(κ
2k+2`+1

4`+4 r), Eκ0 = κE∗0 , Uκ0 (r) = κU∗0 (κ
2k+2`+1

4`+4 r), r > 0.
(B.0.5)

The steady state induced by yκ is hence given by

fκ0 (r, w, L) = κ
2k+`
2`+2 f∗0 (κ

2k+2`+1
4`+4 r, κ−

1
2w, κ

2k−1
2`+2 L), (B.0.6)

where we used that for the particle energy there holds

Eκ(r, w, L) = κE∗(κ
2k+2`+1

4`+4 r, κ−
1
2w, κ

2k−1
2`+2 L) (B.0.7)

for r > 0, w ∈ R, and L ≥ 0. Furthermore, Rκmin = 0 = R∗min since L0 = 0, and

Rκmax = κ−
2k+2`+1

4`+4 R∗max. (B.0.8)

Moreover, for the local mass there holds

mκ(r) = κ
−2k+2`+3

4`+4 m∗(κ
2k+2`+1

4`+4 r), r > 0. (B.0.9)

In particular, for the total mass we thus obtain

Mκ
0 = κ

−2k+2`+3
4`+4 M∗0 . (B.0.10)

The identities (B.0.8) and (B.0.10) are also established in [129, Satz 3.2]. In particular,
(B.0.8) and (B.0.10) show that the (R,M)-diagram of the steady state family (fκ0 )κ>0 equals

the graph of ]0,∞[ 3 σ 7→ σ
2k−2`+3
2k+2`+1 up to the multiplication by some positive constant, more

precisely,

{(Rκmax,M
κ
0 ) | κ > 0} =

{
(σ,M∗0

(
σ

R∗max

) 2k−2`−3
2k+2`+1

) | σ > 0

}
. (B.0.11)

Visualisations of this set for several choices of the polytropic exponents k and ` are contained
in Section 8.1, see Figures 8.1.4 and 8.1.9, as well as in [129, p. 41]. In contrast, we note that
the analogous (R,M)-diagram for the steady state family associated to the King ansatz
function (2.2.19) is a spiral, cf. [131]. This shows that the specific form of the ansatz
function (B.0.1) is crucial for the arguments in this chapter.

For the (E,L)-support of the steady state there holds

(E,L) ∈ Dκ0 ⇔ (κ−1E, κ
2k−1
2`+2 L) ∈ D∗0; (B.0.12)
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the analogous relation also holds for the set of admissible (E,L)-pairs Aκ0 . Moreover, if
x∗ : I → R3 is a solution of ẍ = −∂xU∗0 (x),

xκ(s) := κ−
2k+2`+1

4`+4 x∗(κ
2k+4`+3

4`+4 s) (B.0.13)

defines a solution of ẍ = −∂xUκ0 (x). The conserved quantities (Eκ, Lκ) associated to xκ are
related to the respective quantities (E∗, L∗) of x∗ as follows:

Eκ = κE∗, Lκ = κ−
2k−1
2`+2 L∗. (B.0.14)

For the radial periods we thus obtain

T κ(E,L) = κ−
2k+4`+3

4`+4 T ∗(κ−1E, κ
2k−1
2`+2 L), (E,L) ∈ Aκ0 . (B.0.15)

Together with (B.0.12) this shows

T κ(Dκ0) = κ−
2k+4`+3

4`+4 T ∗(D∗0), sup
Dκ0

T κ = κ−
2k+4`+3

4`+4 sup
D∗0

T ∗. (B.0.16)

Next, we study the κ-dependency of the operators defined in Section 4.2. It should
be noted that in the case ` > 0, the ansatz (B.0.1) does not satisfy the condition (ϕ4).
However, for the definitions of the operators and the succeeding arguments, this condition
is not needed. Let the spherically symmetric functions fκ : Ωκ

0 → R and f∗ : Ω∗0 → R be
related via

fκ(r, w, L) = f∗(κ
2k+2`+1

4`+4 r, κ−
1
2w, κ

2k−1
2`+2 L). (B.0.17)

Then fκ ∈ Hκ is equivalent to f∗ ∈ H∗. For the transport operator and its square there
hold the relations

T κfκ(r, w, L) = κ
2k+4`+3

4`+4 T ∗f∗(κ
2k+2`+1

4`+4 r, κ−
1
2w, κ

2k−1
2`+2 L), (B.0.18)

(T κ)2fκ(r, w, L) = κ
2k+4`+3

2`+2 (T ∗)2f∗(κ
2k+2`+1

4`+4 r, κ−
1
2w, κ

2k−1
2`+2 L); (B.0.19)

in particular, fκ ∈ D(T κ) or fκ ∈ D((T κ)2) is equivalent to f∗ ∈ D(T ∗) or f∗ ∈ D((T ∗)2),
respectively. Recalling the connection between T κ(Dκ0) and the spectrum of −(T κ)2

∣∣
Hκ

established in Proposition 4.3.19, we see that (B.0.16) and (B.0.19) are consistent. For the
response operator there holds

Rκfκ(r, w, L) = κ
2k+4`+3

2`+2 R∗f∗(κ
2k+2`+1

4`+4 r, κ−
1
2w, κ

2k−1
2`+2 L), (B.0.20)

i.e., the scaling behaviour of Rκ is similar to the one of (T κ)2. For the linearised operator
we thus deduce

Lκfκ(r, w, L) = κ
2k+4`+3

2`+2 L∗f∗(κ
2k+2`+1

4`+4 r, κ−
1
2w, κ

2k−1
2`+2 L). (B.0.21)

Hence, if L∗ possesses some eigenvalue λ∗ > 0,

λκ := κ
2k+4`+3

2`+2 λ∗ (B.0.22)

is an eigenvalue of Lκ and vice versa. The associated eigenfunctions are related via (B.0.17).
A similar scaling also applies to the essential spectrum and to the infimum of the whole
spectrum of the linearised operator. Furthermore, the periods pκ, p∗ of the linear oscilla-
tions/pulsations associated to the eigenvalues λκ, λ∗ via (1.2.12) satisfy

pκ = κ−
2k+4`+3

4`+4 p∗. (B.0.23)
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In other words,

pκ κ
2k+4`+3

4`+4 ≡ const., (B.0.24)

i.e., the quantity on the left-hand side is independent of κ > 0. This is the desired relation
between κ and the linear oscillation period pκ. We refer to the identity (B.0.24) as an
Eddington-Ritter type relation. In the isotropic polytropic case ` = 0, (B.0.5) implies

ρκ0(0) = κk+ 3
2 ρ∗0(0), and hence

pκ
√
ρκ0(0) ≡ const. (B.0.25)

This is precisely the Eddington-Ritter relation known from the Euler-Poisson system.
Similar calculations as the ones above further yield the following scaling properties for

the operators from Chapter 5: If λ∗ < inf(σ(−(T ∗)2
∣∣
H∗)) and λκ is given by (B.0.22),

Qκλκf
κ(r, w, L) = Q∗λ∗f

∗(κ
2k+2`+1

4`+4 r, κ−
1
2w, κ

2k−1
2`+2 L), (B.0.26)

where f∗ and fκ are again related via (B.0.17). The same scaling identity also holds for the
Mathur operator. In particular, the number M introduced in Theorem 5.3.1 is independent
of κ.



Appendix C

The Evolution of the Linearised
Vlasov-Poisson System

The aim of this appendix is to establish a rigorous well-posedness theory for the linearised
Vlasov-Poisson system (in second-order formulation). We do this by applying the general
results from semigroup theory [40] to our specific setting. We follow [61, Sc. 6] here, where
the same is done in a slightly different setting. A more direct approach is pursued in [15]. In
addition, we relate the (long-term) behaviour of solutions of the linearised Vlasov-Poisson
system to the spectral properties of the linearised operator L.

Throughout this appendix, let f0 be a fixed steady state satisfying the conditions (ϕ1)–
(ϕ5) stated in Sections 2.2 and 4.1. As derived in Chapter 3, the linearised Vlasov-Poisson
system around this steady state in second-order formulation is

∂2
t f + Lf = 0, (C.0.1)

where L is the linearised operator defined in Definition 4.2.9. In the following discussion we
will use the quantities introduced in Chapter 4 without giving a reference each time; the
reader is advised to familiarise him or herself with Chapter 4 first. The above equation can
be rewritten into the following two-dimensional system of first order:

∂tψ = Aψ, (C.0.2)

where ψ = (ψ1(t), ψ2(t)) and223

A :=

(
0 id
−L 0

)
. (C.0.3)

The equivalence of (C.0.1) and (C.0.2) is straight-forward to see via the identifications

ψ = (f, ∂tf), f = ψ1. (C.0.4)

It should be noted that the first-order system (C.0.2) is conceptionally different from –
but still equivalent to – the linearised Vlasov-Poisson in the first-order formulation (3.1.1)–
(3.1.3) since (C.0.2) contains the second-order derivative operator L. To apply the meth-
ods from semigroup theory, it is more convenient to work with the system (C.0.2) rather
than (C.0.1). Nevertheless, all results regarding (the solutions of) (C.0.2) carry over
to (C.0.1).

223The “matrix representation” (C.0.3) of the operator A means A(ψ1, ψ2) = (ψ2,−Lψ1). By slight abuse
of notation, we identify a vector (ψ1, ψ2) with its transpose (ψ1, ψ2)T .

293
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Following [40, Sc. VI.3], we consider the system (C.0.2) on the space

X := (D(T ) ∩H)×H (C.0.5)

with
〈(f, F ), (g,G)〉X := 〈Lf, g〉H + 〈F,G〉H (C.0.6)

for (f, F ), (g,G) ∈ X . The first term on the right-hand side of (C.0.6) is to be understood
as a generalisation of Definition 4.5.7, i.e.,

〈Lf, g〉H := 〈T f, T g〉H − 〈Rf, g〉H = 〈T f, T g〉H −
1

4π
〈∂xUT f , ∂xUT g〉2, f, g ∈ D(T ) ∩H.

(C.0.7)
Again, this definition is consistent with the usual definition of the scalar product if f ∈ D(L)
or g ∈ D(L). In the latter case, 〈Lf, g〉H = 〈f,Lg〉H ; recall that L is symmetric. In the
definition (C.0.5) of X , we do include complex-valued functions, cf. Remark 4.2.4 (f), in
order to be able to apply the results from the general semigroup theory. Before applying
these results, let us first analyse the basic structure of the space (X , 〈·, ·〉X ).

Lemma C.0.1. (X , 〈·, ·〉X ) is a Hilbert space.

Proof. The positivity of L established in Proposition 4.5.11 shows that 〈·, ·〉X defines a
positive definite inner product on X . In order to verify that (X , 〈·, ·〉X ) is complete, let
(fj , Fj)j∈N ⊂ X be a Cauchy sequence. Since L ≥ 0, the sequence (Fj)j∈N is obviously
(strongly) convergent in H. Moreover, by Lemma 4.5.14 and Proposition 4.5.11, there exist
f ∈ H and g ∈ H s.t. fj → f and T fj → g in H as j → ∞. By the weak definition
of the transport operator, it is then easy to verify that f ∈ D(T ) with T f = g. Thus,
(f, F ) ∈ X , and since the response operator is bounded there holds (fj , Fj) → (f, F ) in X
as j →∞.

The natural domain of definition for the operator A is given by

D(A) := D(L)× (D(T ) ∩H). (C.0.8)

With this domain of definition, the key functional analytic and spectral properties of L
carry over to A.

Lemma C.0.2. The operator A : D(A)→ X is skew-adjoint as a densely defined operator
on X , i.e., A∗ = −A. Furthermore, any λ ∈ C is an eigenvalue of A if and only if −λ2 is
an eigenvalue of L.

Proof. First note that D(A) is a dense subspace of X since
(
C∞c,r(Ω0) ∩H

)2
is densely

contained in X by Lemma 4.3.31.
To verify the skew-adjointness of A, consider (f, F ) ∈ D(A∗) and let (h,H) :=

A∗(f, F ) ∈ X . By the definition of A∗, see [136, Sc. VIII.1], this means that for every
(g,G) ∈ D(A) there holds

〈LG, f〉H − 〈Lg, F 〉H = 〈A(g,G), (f, F )〉X = 〈(g,G), (h,H)〉X = 〈Lg, h〉H + 〈G,H〉H .
(C.0.9)

Inserting (g, 0) and (0, G) for g ∈ D(L) and G ∈ D(T )∩H into this equation yields the two
identities

−〈Lg, F 〉H = 〈Lg, h〉H , (C.0.10)

〈LG, f〉H = 〈G,H〉H . (C.0.11)
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Inserting g = L−1ξ for arbitrary ξ ∈ H into (C.0.10) yields −F = h ∈ D(T ) ∩ H; recall
that L : D(L)→ H is invertible by Proposition 4.5.11. The equation (C.0.11) holds for any
G ∈ D(L), which means f ∈ D(L∗) with L∗f = H. Since L is self-adjoint by Lemma 4.5.2,
we hence deduce f ∈ D(L) with Lf = H. Overall, (f, F ) ∈ D(A) with A(f, F ) = −(h,H) =
−A∗(f, F ).

To conclude the skew-adjointness of A, it remains to show that A is skew-symmetric.
This follows by the symmetry of L since, for every (f, F ), (g,G) ∈ D(A),

〈A(f, F ), (g,G)〉X = 〈LF, g〉H − 〈Lf,G〉H =

= −〈Lf,G〉H + 〈F,Lg〉H = −〈(f, F ),A(g,G)〉X . (C.0.12)

For the relation between the eigenvalues of A and L let λ ∈ C be an eigenvalue of A with
eigenvector (f, F ) ∈ D(A). Then Lf = −λF = −λ2f . Conversely, if −λ2 is an eigenvalue
of L with eigenfunction f ∈ D(L), there holds A(f, λf) = λ(f, λf).

By Stone’s theorem [40, Thm. II.3.24], A thus generates the unitary C0-group (etA)t∈R
on X . The unique solution of (C.0.2) satisfying the initial condition

ψ(0) = (f̊ , F̊ ) (C.0.13)

for (f̊ , F̊ ) ∈ D(A) is hence given by R 3 t 7→ ψ(t) := etA(f̊ , F̊ ). More precisely, the
initial value problem (C.0.2) & (C.0.13) is solved in the sense that ψ ∈ C1(R;X ) with
ψ(t) ∈ D(A) for t ∈ R and the equations (C.0.2) and (C.0.13) hold. In particular, the
initial value problem (C.0.2) & (C.0.13) is well-posed, see the discussion in [40, Sc. II.6].
From this solution of (C.0.2), a solution of (C.0.1) can then be obtained via (C.0.4) which
solves (C.0.1) in a similar way, see [40, Sc. VI.3].

Let us now analyse the long-term behaviour of solutions of (C.0.2). The first simple
observation is the stability of the stationary point (0, 0).

Lemma C.0.3. The norm ‖ · ‖X is conserved along solutions of (C.0.2), i.e., for any
(f̊ , F̊ ) ∈ D(A) and t ∈ R there holds ‖etA(f̊ , F̊ )‖X = ‖(f̊ , F̊ )‖X . Hence, the stationary
point (0, 0) of (C.0.2) is stable w.r.t. the norm ‖ · ‖X .

Proof. The statements follow by the fact that the group (etA)t∈R is unitary.

Remark C.0.4. We have claimed several times that the positivity of L corresponds to
the linear stability of the underlying steady state. In order to prove the above stability
statement, the positivity of L was, in fact, necessary for various arguments – most notably
to show that 〈·, ·〉X is positive definite.

The further qualitative behaviour of the solutions of (C.0.2) depends on the spectrum
of L. Let us first formalise the statement that (positive) eigenvalues of L yield time-periodic
solutions of the linearised system.

Lemma C.0.5. Suppose that L possesses the eigenvalue λ > 0 with eigenfunction f ∈ D(L).
Then

R 3 t 7→ ei
√
λ t(f, i

√
λ f) (C.0.14)

solves (C.0.2). Obviously, this solution is time-periodic with period 2π√
λ

.

Proof. Lemma C.0.2 (and its proof) show that i
√
λ is an eigenvalue of A with eigenfunction

(f, i
√
λf). Thus, (C.0.14) solves (C.0.2).
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Remark C.0.6. If the eigenfunction f ∈ D(L) of L in Lemma C.0.5 is real-valued, the
real and imaginary parts of (C.0.14) are

R 3 t 7→(cos(
√
λ t)f,−

√
λ sin(

√
λ t)f), (C.0.15)

R 3 t 7→(sin(
√
λ t)f,

√
λ cos(

√
λ t)f). (C.0.16)

Obviously, these two functions and any linear combinations of them are real-valued solutions
of (C.0.2), which are again time-periodic.

We next consider the converse situation where L does not possess an eigenvalue.

Lemma C.0.7. Suppose that L does not possess an eigenvalue. Then for any solution
R 3 t 7→ ψ(t) = (f(t), F (t)) of (C.0.2) with (f(0), F (0)) ∈ D(A) there holds

lim
T→∞

1

T

∫ T

0
‖∂xUT f(t)‖2L2(R3) dt = 0. (C.0.17)

Proof. We follow [61, Sc. 6] and first consider the operator

K : X → X , K(f, F ) := (0, |ϕ′(E,L)|UT f ). (C.0.18)

This operator is well-defined and bounded by Lemmas 4.1.3, 4.4.6, and 4.5.14 since

‖K(f, F )‖X = ‖|ϕ′(E,L)|UT f‖H ≤ C‖UT f‖2 ≤ C‖T f‖H ≤ C〈Lf, f〉H ≤ C‖(f, F )‖X
(C.0.19)

for (f, F ) ∈ X . Similar arguments as in the proof of Lemma 4.5.3 further show that K is
compact. More precisely, let (fj , Fj)j∈N ⊂ X be bounded. By Lemma 4.5.14, (T fj)j∈N ⊂ H
is bounded, which, by Lemma 4.4.6, implies that (UT fj )j∈N is bounded in H2(R3). In ad-

dition, U ′T fj is given by (4.4.16). Since
∫ Rmax

0 s2ρT fj (s) ds = 0 by the arguments from

the proof of Lemma 4.4.6, there holds supp (∂xUT fj ) ⊂ BRmax(0), from which we conclude

supp (UT fj ) ⊂ BRmax(0) because of limr→∞ UT fj (r) = 0 for j ∈ N. Thus, by the compact
embedding H2(BRmax(0)) b L2(BRmax(0)), a subsequence of (UT fj )j∈N is (strongly) conver-
gent in L2(R3). By the estimate (C.0.19), there hence exists a subsequence of (K(fj , Fj))j∈N
which is (strongly) convergent in X .

Because we assume that L has no eigenvalues, Lemma C.0.2 implies that A has no
eigenvalues. By the RAGE theorem [135, Thm. XI.115], we thus obtain

0 = lim
T→∞

1

T

∫ T

0
‖K(f(t), F (t))‖2X dt = lim

T→∞

1

T

∫ T

0
‖|ϕ′(E,L)|UT f(t)‖2H dt; (C.0.20)

note that (f(t), F (t)) = etA(f(0), F (0)) for t ∈ R by the above uniqueness statement for
the initial value problem (C.0.2) & (C.0.13). Furthermore, for t ∈ R, integrating by parts
and applying the Cauchy-Schwarz inequality yields

1

4π
‖∂xUT f(t)‖22 = −

∫
Ω0

UT f(t)(x) T f(t, x, v) d(x, v) ≤ ‖|ϕ′(E,L)|UT f(t)‖H ‖T f(t)‖H ,

(C.0.21)
and Lemmas 4.5.14 and C.0.3 imply

‖T f(t)‖2H ≤ C〈Lf(t), f(t)〉H ≤ C‖(f(t), F (t))‖2X = C‖(f(0), F (0))‖2X = C; (C.0.22)
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the constants C > 0 are always t-independent. Thus, by applying the Cauchy-Schwarz
inequality once again we arrive at

1

T

∫ T

0
‖∂xUT f(t)‖22 dt ≤ C

T

∫ T

0
‖|ϕ′(E,L)|UT f(t)‖H dt ≤

≤ C
(

1

T

∫ T

0
‖|ϕ′(E,L)|UT f(t)‖2H dt

) 1
2

(C.0.23)

for T > 0, from which we conclude (C.0.17) via (C.0.20).

It should be noted, however, that (C.0.17) is a rather weak form of damping, because
it merely states that the mean of the norm of the macroscopic quantity ∂xUT f decays as
the time interval gets larger. In order to show the actual decay of suitable norms of this
macroscopic quantity (or related ones), one has to refine the above arguments. This can
hopefully be achieved in future work.
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