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4 Zusammenfassung

Zusammenfassung

Cytochrom bc1 ist eine Coenzym Q-Cytochrom c-Oxidoreduktase. Es fungiert als Kom-

plex III der mitochondrialen Atmungskette, deren Komponenten in die innere Mito-

chondrienmembran eingebettet sind. Cytochrom bc1 koppelt die Elektronentransferreak-

tion zwischen Coenzym Q (CoQ) und Cytochrom c an die gerichtete Bewegung von

Protonen über die Membran, und wandelt so die chemische Energie des reduzierten

CoQ in eine protonenmotorische Kraft um. Die Kopplung der beiden Prozesse in Cy-

tochrom bc1 beruht auf dem sogenannten Q-Zyklus. Grundlage dieses Mechanismus

sind zwei aktive Zentren, die auf entgegengesetzten Seiten der Membran die Oxida-

tion/Deprotonierung beziehungsweise die Reduktion/Protonierung von CoQ katalysieren.

Die genaue Mechanismus dieser katalytischen Reaktionen ist nicht verstanden. Die vor-

liegende Arbeit stellt daher einen strukturbasierten theoretischen Ansatz vor, mit dem

redoxabhängige Protonierungszustandsänderungen in Cytochrom bc1 identifiziert wer-

den können. Cytochrom bc1 stellt wegen seiner Membranumgebung, seiner zahlreichen

titrierbaren Gruppen, ihrer Wechselwirkungen untereinander und mit redoxaktiven Ko-

faktoren, sowie wegen seiner konformationellen Variabilität ein kompliziertes System dar.

In einer Reihe von vier Arbeiten an einfacheren Systemen wurden zunächst Lösungen für

diese Probleme entwickelt. Die erste Arbeit charakterisiert den Einfluss von elektrostati-

scher Wechselwirkung und konformationeller Variabilität auf das Protonierungsverhalten

von fiktiven Modellsystemen (Manuskript A). Die Kopplung von Konformations- und

Protonierungszustandsänderungen wurde dann in einem relativ einfachen Protein unter-

sucht (Manuskript B). Die pH-Abhängigkeit der Bindungsstelle von CoQ im aktiven Zen-

trum eines CoQ-reduzierenden Transmembranproteins wird in Manuskript C beschrieben.

Manuskript D charakterisiert die Redox- und Protonierungsreaktionen des Rieske Eisen-

Schwefel-Zentrums, das eine der prosthetischen Gruppen von Cytochrom bc1 darstellt.

Auf der Grundlage von Kristallstrukturen von Cytochrom bc1 aus Saccharomyces cere-

visiae wurden schließlich die Protonierungswahrscheinlichkeiten aller titrierbaren Gruppen

im vollständig oxidierten und vollständig reduzierten Protein berechnet. Dadurch lassen

sich einzelne Gruppen identifizieren, deren Protonierungszustand sich in Abhängigkeit

vom Redoxzustand des Systems verändert. Die Ergebnisse zeigen Übereinstimmung mit

experimentellen Daten und helfen bei der Interpretation redoxinduzierter Veränderungen

in komplizierten Infrarot-Spektren. In Manuskript E wird ein neuer Weg der Proto-

nenaufnahme während der CoQ-Reduktion vorgeschlagen. Die Ergebnisse für das CoQ-

oxidierende Zentrum (Manuskript F) sind vereinbar mit einem viel diskutierten Mecha-

nismus, der die Reaktion nur dann zulässt, wenn schädliche Nebenreaktionen nicht statt-

finden können. Eine Kopplung von Reduktion und Protonierung des Rieske-Zentrums

sowie des Häm bL unterstreicht die Bedeutung dieser Gruppen in der konzertierten Oxi-

dation/Deprotonierung von CoQ.
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Abstract

Cytochrome bc1 is a coenzyme Q-cytochrome c-oxidoreductase that represents complex III

of the mitochondrial respiratory chain. It spans the inner mitochondrial membrane and

uses the free energy of electron transfer from coenzyme Q (CoQ) to cytochrome c to shift

protons across the membrane. The chemical energy of reduced CoQ is thus converted into

the energy of a proton motive force. The coupling between electron transfer and proton

translocation is based on the Q-cycle mechanism. This mechanism comprises two CoQ-

binding active sites, that catalyse the oxidation/deprotonation and reduction/protonation

of CoQ, respectively. The two sites are located at opposite sides of the membrane. Their

intricate chemistry is a matter of ongoing debate. This thesis describes a structure-based

theoretical approach to characterise redox-linked protonation state changes in cytochrome

bc1, that are at the heart of its catalytic mechanism. The analysis of the titration be-

haviour of cytochrome bc1 is however complicated by its membrane environment, its high

number of titratable sites, their interaction with each other and with redox-active groups,

and the conformational variability of the CoQ oxidation site. A series of four studies

has prepared the grounds to approach this challenging system. The first article analy-

ses the effect of conformational variability and electrostatic interaction on the titration

behaviour of simple model systems (Manuscript A). Based on this study, the coupling

between conformational and protonation state changes has been analysed in a relatively

simple soluble protein (Manuscript B). The effect of pH on the position of CoQ in a

CoQ-reducing transmembrane protein has been quantified as described in Manuscript C.

Manuscript D presents a study of the coupling between redox and protonation reactions

of the Rieske iron-sulphur cluster, that is one of the prosthetic groups of cytochrome bc1.

Based on crystal structures of cytochrome bc1 from Saccharomyces cerevisiae, the proto-

nation probabilities of all titratable groups in the protein have then been calculated, once

for its completely oxidised state and once for its completely reduced state. The results

allow to identify individual residues that undergo redox-linked protonation state changes.

They are consistent with the results of Fourier transform infra-red spectroscopy, and aid

in the often complicated interpretation of these experimental data. The calculation results

reveal a modified path for proton uptake to the CoQ reduction site (Manuscript E). In

the CoQ oxidation site (Manuscript F), the population of protonation and conformational

states is consistent with a previously proposed gating mechanism of the catalytic reaction,

that may help to prevent harmful bypass reactions. Coupling between the reduction and

protonation of both the Rieske cluster and haem bL highlight the importance of these

cofactors in the combined oxidation and deprotonation of CoQ.
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1 Function, structure and mechanism of cytochrome bc1

Cytochrome bc1 in mitochondrial respiration. Cytochrome bc1 is a multi-subunit

transmembrane protein complex, that transfers electrons from a lipophilic quinol com-

pound to a small haem protein, and simultaneously translocates protons across the mem-

brane [1]. This process is central to the electron transfer chains of mitochondrial and

prokaryotic respiration, as well as of bacterial photosynthesis.

Mitochondrial cytochrome bc1 represents complex III of the respiratory chain. In eu-

karyotic cells it is located in the inner mitochondrial membrane and transfers electrons

from reduced coenzyme Q (CoQ) to cytochrome c (Fig. 1). CoQ is a lipophilic compound

that moves within the membrane, it delivers electrons from complexes I and II to cyto-

chrome bc1. Cytochrome c is a hydrophilic protein located in the intermembrane space.

It carries electrons from cytochrome bc1 to complex IV, where electrons are transferred

to the final electron acceptor oxygen.

The overall electron transfer from NADH and succinate to molecular oxygen through

CoQ, cytochrome c and the complexes of the respiratory chain is an energetically favourable

process. Complex I, III and IV couple electron transfer to the translocation of protons

from the mitochondrial matrix into the intermembrane space. The energy of electron

transfer is thus converted into the energy of a proton motive force. ATP-synthase ex-

ploits this proton motive force: protons move back into the the mitochondrial matrix

along their concentration gradient and thereby drive ATP-synthesis. The overall process

of electron transfer and ATP-synthesis, coupled via generation and utilisation of a proton

motive force, is known as oxidative phosphorylation [2, 3]. Ref. 4 provides a historical

outline of the discovery of the mitochondrial cytochromes by Keilin, their identification
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Figure 1. Cytochrome bc1 is complex III of the mitochondrial respiratory chain. Electrons enter the

chain via oxidation of NADH and succinate by complex I and II, respectively. CoQ and cytochrome c

are the mobile components that transfer electrons between the large transmembrane complexes. Oxygen

is the final electron acceptor. Complex I, III and IV use the energy of electron transfer to translocate

protons across the membrane. ATP-synthase exploits the resulting proton motive force to produce ATP

from ADP and inorganic phosphate.
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A B C

Figure 2. Chemical structure of the redox-active cofactors of cytochrome bc1. A) b-type haem where

axial iron ligands would be two histidines [1]. B) c-type haem where axial iron ligands would be one

histidine and one methionine [1]. C) The Rieske iron-sulphur cluster.

with Warburg’s “Atmungsferment” and their separation into the components of complex

III and IV of the respiratory chain.

Subunit composition and mechanism of cytochrome bc1. Cytochrome bc1 con-

sists of three essential catalytic subunits. Cytochrome b is the largest of the three, it con-

sists of eight transmembrane helices and binds two b-type haem groups (Fig. 2A), named

haem bL and bH . Cytochrome c1 is anchored to the membrane by a single transmembrane

helix. Its hydrophilic head domain, located in the intermembrane space, contains a c-type

haem group (Fig. 2B) called haem c1. The Rieske iron-sulphur protein (ISP) also consists

of a single transmembrane helix and a hydrophilic head domain in the intermembrane

space. The ISP head domain binds a Rieske Fe2S2 iron-sulphur cluster (Fig. 2C). In addi-

tion to the catalytic core of cytochrome b, cytochrome c1 and the Rieske ISP, cytochrome

bc1 complexes from different organisms contain up to eight additional subunits.

The three essential subunits of cytochrome bc1 catalyse electron transfer from reduced

CoQ to cytochrome c. While cytochrome c is a haem protein and undergoes relatively

simple one-electron redox transitions, CoQ exists in many different redox and protonation
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Figure 3. Interconversion between the quinol (QH2) and quinone (Q) forms of mitochondrial CoQ. The

singly protonated semiquinone radical (QH·) is one of the possible intermediates. CoQ can in principle

exist in nine different combinations of redox and protonation forms. The hydrophobic tail contains a

varying number of isoprenoid units.
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Figure 4. The Q-cycle mechanism of cytochrome bc1. A) During the first half of the cycle, an electron

from the oxidation of quinol (QH2) in the Qo-site is transferred via haem bL and bH to the the Qi-site,

where quinone (Q) is reduced to form a stable semiquinone intermediate (QH·). B) In the second half of

the cycle, the semiquinone in the Qi-site gets reduced to quinol. In both halves of the cycles, one electron

from the oxidation of CoQ is transferred to cytochrome c via the Rieske iron-sulphur cluster (FeS) and

haem c1. Release of the products of the first half of the cycle (oxidised CoQ and reduced cytochrome c)

is indicated by black dashed arrows.

states. Upon complete oxidation of CoQ, two electrons and two protons are set free

(Fig. 3). The singly protonated semiquinone radical is one of the possible intermediates

of this reaction.

The coupling between electron transfer and proton translocation in cytochrome bc1

is described by the so-called modified Q-cycle mechanism (Fig. 4). Cytochrome bc1 has

two CoQ binding sites: the Qo-site catalyses CoQ oxidation, the Qi-site catalyses CoQ

reduction. When reduced CoQ gets oxidised in the the Qo-site, two electrons are set

free that are transferred to two different electron acceptors: one electron is transferred

to the Rieske cluster, the other one to haem bL. This unusual process is referred to

as bifurcation of electron transfer pathways in the Qo-site. From the Rieske cluster, the

electron is transferred via haem c1 to the substrate and final electron acceptor cytochrome

c. In order to transfer the electron from CoQ to haem c1, the ISP subunit undergoes

a conformational change with its head domain moving from the Qo-site interface with

cytochrome b to an interface with cytochrome c1.

From haem bL, electrons are transferred via haem bH towards the Qi-site. In the

Qi-site, CoQ is reduced by two electrons arriving sequentially from the Qo-site. The

semiquinone radical is a stable intermediate in this two electron reduction reaction in the

Qi-site [5, 6].

Since the Qo-site has to turn over twice in order to fully reduce CoQ in the Qi-site,
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the overall reaction catalysed by cytochrome bc1 is

QH2 + 2 cyt coxidised + 2 H+
matrix −→ Q + 2 cyt creduced + 4 H+

intermembrane space.

The strict coupling between the reduction/protonation and oxidation/deprotonation of

CoQ, together with the location of the sites of CoQ oxidation and reduction at differ-

ent sides of the membrane, leads to the coupling between electron transfer and proton

translocation in cytochrome bc1. In total, half of the electrons from CoQ oxidation in the

Qo-site are transferred back into the pool of reduced CoQ via transfer to the Qi-site. Un-

like cytochrome c oxidase, cytochrome bc1 is not a true proton pump, it rather functions

by a mechanism similar to the vectorial redox-loop mechanism proposed by Mitchell [7]:

electron transfer from the Qo-site to the Qi-site is the main electrogenic process while

reduced CoQ serves as hydrogen carrier between the two active sites. Ref. 8 gives an

account of the historical development of the Q-cycle concept. Ref. 9 reviews the Q-cycle

basics as they are generally accepted today.

The structure of cytochrome bc1 from Saccharomyces cerevisiae. The struc-

ture of cytochrome bc1 from the yeast Saccharomyces cerevisiae has been solved by X-

ray crystallography (Fig. 5A). The complex was crystallised with the Qo-site inhibitor

stigmatellin (2.3 Å resolution, PDB-code 1KB9) [10, 11] and with the Qo-site inhibitor

hydroxydioxobenzothiazole (HDBT, 2.5 Å resolution, PDB-code 1P84) [12, 13]. In both

structures, the Qi-site contains the substrate CoQ and the Rieske head domain is located

at its Qo-site interface with cytochrome b. Crystallisation of the complex was brought

about by binding of an antibody fragment to the Rieske head domain [14]. The complex

has a molecular weight of about 470 kDa.

Cytochrome bc1 is a dimer, meaning that it contains two copies of each of the dif-

ferent subunits. The subunits of each half of the complex are arranged in two bundles

of transmembrane helices. The functionality of the dimeric state of the complex is most

obvious from the positioning of the Rieske subunit: the head domain forms the Qo-site

at an interface with cytochrome b from one monomer, but its transmembrane anchor is

part of the helix bundle of the other monomer. In addition, the dimeric structure may

allow for mechanistically relevant inter-monomer electron transfer or a half-of-the-sites

regulation of activity [15–19].

Besides the three catalytic subunits, cytochrome bc1 from S. cerevisiae contains seven

additional subunits. These non-catalytic subunits are not involved in electron transfer

but they contribute to the stability of the complex. The two so-called core subunits [20]

make up for the large part of the complex located in the mitochondrial matrix (Fig. 5A).

They bear homology to soluble heterodimeric zinc-dependent metalloproteases [21]. The

small and loosely bound subunit 10 is missing in the structures of cytochrome bc1 from
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Figure 5. A) The structure of cytochrome bc1 from S. cerevisiae as solved by X-ray crystallography [12].

Cytochrome b (green) makes up for most of the transmembrane part of the complex. The hydrophilic

head domains of cytochrome c1 (turquoise) and the ISP (yellow) are located in the intermembrane space.

The redox cofactors are depicted in green (haem bL and bH), blue (haem c1) and yellow spheres (iron-

sulphur cluster). The substrate CoQ in the Qi-site is coloured in magenta, the inhibitor HDBT in the

Qo-site is coloured in red. The non-catalytic subunits are shown in grey. B) The Qi-site. Sidechains and

a water molecule that coordinate CoQ are highlighted. Hydrogen bond interactions are shown as dashed

lines. Non-carbon atoms are shown in standard colours. A cardiolipin molecule (CDL) is bound close to

the Qi-site. Its chemical structure is shown as inlay.

S. cerevisiae, since it is lost during the purification procedure. In the following, specific

residues in cytochrome bc1 from S. cerevisiae are denoted by their single letter amino

acid code, their residue number, and a subunit identifier (CYB – cytochrome b; CYC1

– cytochrome c1; ISP – Rieske iron-sulphur subunit; SU1, SU2, SU6, SU7, SU8, SU9 –

non-catalytic subunits 1, 2 and 6 to 9).

The Qi-site. The Qi-site catalyses the reduction of CoQ (Fig. 3, right to left). This

two-electron reaction proceeds in two steps because the electrons arrive sequentially from

two separate CoQ oxidation reactions in the Qo-site (Fig. 4). The semiquinone form of

CoQ is a stable intermediate of the Qi-site reaction [5, 6].

The crystal structures of cytochrome bc1 from S. cerevisiae contain CoQ in the Qi-site

and reveal its binding mode in the active site (Fig. 5B). D229CYB is a direct ligand of CoQ

and has been proposed to be a primary proton donor group during the CoQ reduction

reaction [10, 14, 22]. The interaction between H202CYB and CoQ is mediated by a water

molecule. Different patterns of water molecules interacting with CoQ have been observed
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in the Qi-sites of yeast, bovine and chicken cytochrome bc1 [10, 22–24]. It is a matter of

ongoing debate, whether the presence and absence of water between H202CYB, D229CYB

and CoQ represent different mechanistically relevant states of the Qi-site [10,14,22,25,26].

The preparations of cytochrome bc1 from different organisms all contain tightly bound

lipids [11, 13]. Cardiolipin (CDL) in particular has been shown to be essential for the

function of cytochrome bc1 [27]. CDL is a dianionic lipid (Fig. 5B, inlay) that is exclusively

found in the inner mitochondrial membrane and in evolutionary related bacterial plasma

membranes [28]. In the structures of cytochrome bc1 from S. cerevisiae, two CDL molecules

have been cocrystallised, one of them is located close to the Qi-site (Fig. 5B). It has been

proposed that CDL may play a role in proton uptake to the Qi-site [10, 11, 29].

The Qo-site. The Qo-site is the primary site of energy conversion of cytochrome bc1.

The rather complicated chemistry of CoQ oxidation in this site is poorly understood

and has been a matter of debate for decades [30–32]. Ongoing discussion deals with the

position of CoQ in the active site, the nature of proton acceptor groups, the timing of

the individual electron and proton transfer steps, and the conformational change of the

Rieske subunit.

In all known structures of cytochrome bc1, the Qo-site is either empty or occupied by

different inhibitors [10, 12, 22–24, 33–37]. The inhibitors can be classified as “distal” or

“proximal” depending on their binding position relative to haem bL. Both stigmatellin

and HDBT, the inhibitors cocrystallised with cytochrome bc1 from S. cerevisiae, bind

distally to haem bL and interact directly with the Rieske cluster (Fig. 6). Stigmatellin and

HDBT apparently represent analogues of the neutral and negatively charged semiquinone

form of CoQ, respectively. The substrate CoQ most likely binds in the same position

as stigmatellin and HDBT at least until transfer of the first electron towards the Rieske

cluster is accomplished [38]. Based on the observation of a different binding position for

the proximal inhibitors, it has been proposed that CoQ may move from a distal towards

a proximal position during the catalytic reaction in the Qo-site [39, 40]. Alternatively,

the two binding positions may be occupied simultaneously by two different molecules of

CoQ [41–44]. Evidence for the functional significance of both the moving semiquinone

and the double occupancy model have however remained sparse.

The tight interaction of the Rieske cluster with the Qo-site inhibitors apparently seals

the site from the aqueous phase of the intermembrane space. The protons dissociating

from CoQ upon its oxidation therefore have to be transferred to proton acceptor groups

in the site and can only later be set free to the intermembrane space, most likely after

the conformational change of the ISP. The hydrogen bond between the inhibitors and

H181ISP observed in the crystal structures (Fig. 6) supports the previously proposed idea,

that CoQ may transfer a proton to this ligand histidine upon electron transfer to the
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Figure 6. The Qo-site of cytochrome bc1 from S. cerevisiae with A) stigmatellin [11] and B) HDBT [12].

The ISP subunit is shown in ochre, the iron-sulphur cluster with its ligand cysteine and histidine residues

is highlighted. In the cytochrome b subunit (green), sidechains that adopt different conformations in

presence of the different inhibitors are highlighted. The interaction between the backbone of E272CYB

and HDBT is mediated by a water molecule. Hydrogen bond interactions are shown as dashed lines.

Non-carbon atoms are shown in their standard colour code. The chemical structures of the inhibitors are

shown as inlays.

iron-sulphur cluster [45–48]. E272CYB, which forms a hydrogen bond towards stigmatellin

(Fig. 6A), has been discussed as possible second proton acceptor group [29, 32, 49, 50].

Although stigmatellin and HDBT bind in very similar positions in cytochrome bc1

from S. cerevisiae, they introduce different conformations of a limited number of Qo-

site residues. Stigmatellin interacts closely with the sidechain of E272CYB, whereas this

sidechain is rotated out of the binding pocket in cytochrome bc1 crystallised with HDBT

(Fig. 6). This conformational variability of E272CYB has been proposed to have functional

relevance and has been included into different detailed mechanistic schemes of Qo-site

catalysis [29, 32, 49, 50]. However, recent mutational studies have questioned the role of

this residue in redox-linked proton transfer in the Qo-site [51,52] . Instead, E272CYB may

be involved in gating of the CoQ oxidation reaction, that has been postulated to prevent

harmful bypass reactions [52–54]. Such bypass reactions must be efficiently controlled,

because they can lead to the production of oxygen radicals that can seriously damage vital

cellular structures [55–60]. While research on cytochrome bc1 has for long been directed

towards elucidating the timing of electron and proton transfer events in the Qo-site the

focus has during the last two years slightly shifted towards identifying a mechanism that

accounts for the reversibility of the Qo-site reactions while simultaneously explaining the

control of bypass reactions. The precise design of the postulated gating of CoQ oxidation

in cytochrome bc1 is a matter of ongoing debate [50, 52–54,61].

A key factor in all prevailing formulations of the Qo-site mechanism is the conforma-

tional change of the ISP. In the crystal structures of cytochrome bc1 from chicken, the
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Rieske head domain was found to populate two different positions: a b-position forming

the Qo-site together with cytochrome b, and a c1-position with the Rieske cluster close to

haem c1 [23]. During turnover of cytochrome bc1, the Rieske head domain moves between

its b and c1 position to accomplish electron transfer from the Qo-site to haem c1 [62, 63].

The domain movement can be described as a 56◦ rotation of the relatively inflexible head

domain relative to the transmembrane helix of the ISP subunit [64]. The same region

of the Rieske head domain surrounding the exposed iron-sulphur cluster interacts with

both cytochrome b and cytochrome c1. In mutational studies, the flexibility of a linker

region between transmembrane helix and head domain has been shown to be essential for

the conformational change [65–68]. The redox state of the iron-sulphur cluster [69–72],

binding of inhibitors [36,73] and shape complementarity of cytochrome b and the ISP [74]

have been shown to control the position of the ISP head domain.
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2 Theoretical investigation of the titration behaviour of proteins

Proteins contain many titratable sites that can bind or release protons in dependence of the

proton concentration in the surrounding medium. Such titratable sites are for instance the

sidechains of amino acids such as – amongst others – glutamate, histidine and lysine, but

also the carboxy- and amino-termini of the polypeptide chains, and protonatable groups

of certain cofactors. Changes in the protonation state of proteins affect their charge

distribution: for example, protonation of a titratable site can introduce a positive charge,

or it can neutralise an existing negative charge. Since electrostatics are an important

physical basis of enzymatic catalysis [75], it is essential to understand the protonation

behaviour of proteins in order to infer how enzymes work. The importance of electrostatics

is particularly evident for enzymes that catalyse the charge transfer reactions involved in

cellular energy conversion.

Protonation state changes of complex systems such as proteins are difficult to quantify

experimentally. Calorimetric experiments assess only the macroscopic protonation state

of a protein: they detect the release or uptake of a proton at a certain pH but can not

identify the individual titratable sites that are responsible for the change in protonation.

Nuclear magnetic resonance (NMR) experiments can detect changes in the protonation

form of individual residues but are applicable only to systems that are much smaller than

the charge-transferring transmembrane complexes of cellular energy conversion. Fourier

transform infra-red (FTIR) spectroscopy can detect changes in the protonation form of a

certain type of titratable sites as for instance carboxylic sidechains, but the assignment

to an individual residue is often difficult. In the following, a theoretical framework will

be described that allows to precisely quantify the protonation behaviour of proteins and

their individual sites, and can thus provide an important complement to experimental

assays.

Poisson-Boltzmann electrostatics. In the framework of Poisson-Boltzmann electro-

statics (PBE), a semi-macroscopic picture is used to describe the system of interest.

Atomic partial charges located at the position of each individual atom are used to de-

scribe the charge distribution ρprotein(~r). ~r describes a point in space. The effect of mobile

charges around the protein is accounted for by assuming a Boltzmann distribution of these

ions in the potential of the protein. Polarisation effects are accounted for by the assign-

ment of different dielectric constants ε. The dielectric constant of a medium quantifies

the electrostatic screening of a charge in this medium. Typically, a dielectric constant of

80 is used for aqueous media, while a value of 4 is used for proteins [76], reflecting the

lower degree of polarisability for the protein compared to water. The spatial distribution

of dielectric media ε(~r) is commonly determined from the coordinates and radii of the
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protein atoms: the volume that is occupied by the protein is assigned εprotein, while ev-

erything else is assigned εwater. A method to treat a membrane environment within this

framework is described in Ref. 77.

For a system characterised by a distribution of different dielectric media ε(~r) and

charges ρprotein(~r), the electrostatic potential φ(~r) can be obtained from the solution of

the linearised Poisson-Boltzmann equation

~∇[ε(~r)~∇φ(~r)] =
1

ε0

(

ρprotein(~r) +
I
∑

i

(

ciz
2
i e

2

RT
φ(~r)

)

)

, (1)

where ci is the concentration of ions of type i, zi is their unitless formal charge and

e = 1.602 · 10−19 As is the elementary charge. The summation runs over I different types

of ions. R is the universal gas constant and T the temperature. The formulation of Eq. 1

is valid if the sum of the charges of all ions is zero and if the energy of the ions in the

protein’s electrostatic potential is small compared to RT .

Calculation of protonation state energies. Proteins commonly contain many titrat-

able sites that can be either protonated or deprotonated. Such a system with N titratable

sites can adopt a total of 2N different microscopic protonation states n. These protonation

states are characterised by a protonation state vector ~x(n) where the components xi are 1

or 0, depending on whether site i = 1, . . . , N is protonated or deprotonated, respectively.

At a given pH = − lg [H+], each of the protonation states has a different protonation state

energy G(n):

G(n)(pH) =
N
∑

i

(x
(n)
i − x

(0)
i )(pH − pK intr

i )

+
1

2

N
∑

i

N
∑

j

(x
(n)
i − x

(0)
i )(x

(n)
j − x

(0)
j )Wi,j . (2)

Here, G(n) is the energy of protonation state n = 0, . . . , 2N − 1 relative to the energy of

a reference protonation state G(0). x
(0)
i stands for the protonation form of site i in the

reference protonation state. pK intr
i is the intrinsic pK of site i, that is the pK that site i

would have if all other sites were in their reference protonation form. Wi,j is the interaction

energy between two sites i and j. In the formulation of all equations in this section it is

assumed that all energies are in pK-units, which convert to kcal/mol by multiplication with
1/RT ln 10.

The intrinsic pK is calculated as shift relative to a model compound pK value upon

transfer of an appropriate model compound from aqueous solution to the protein envi-

ronment (Fig. 7A):

pK intr = pKmodel + ∆Gtrans(A
−) − ∆Gtrans(AH) . (3)
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Figure 7. A) Thermodynamic cycle that links the intrinsic pK-value (Eq. 3) to the model compound

pK-value (Eq. 7) via the energies associated with the transfer of the protonated (AH) and deprotonated

(A−) form of the model compound from aqueous solution to the protein, in which all other titratable

sites are in their reference protonation form. B) The interaction energy Wi,j is the difference in pK of

site i depending on whether site j is in its reference protonation form (Eq. 8). Indices prot and deprot

denote the protonated and deprotonated form of site i, respectively. Indices ref and nonref denote the

reference and non-reference protonation form of site j, respectively.

∆Gtrans(A
−) and ∆Gtrans(AH) are the energies to transfer the model compound in its

deprotonated and protonated form, respectively, from aqueous solution into the protein

environment in its reference protonation state. These transfer energies have two contri-

butions:

∆Gtrans = ∆GBorn + ∆Gback . (4)

The Born energy contribution ∆GBorn is due to the change in the dielectric environment

between aqueous solution and the protein: the change of ε(~r) corresponds to a change of

the screening of the charges as described above. The Born energy is calculated as

∆GBorn =
1

2

K
∑

k

qkφ
protein(~rk, ρ) −

1

2

K
∑

k

qkφ
aq(~rk, ρ) , (5)

where φprotein(~rk, ρ) and φaq(~rk, ρ) are the potentials evoked by the charge distribution ρ

of the model compound at the position ~rk of the point charge charge qk in the dielectric

environments of the protein and aqueous solution, respectively. The sums run over the K

point charges that form the charge distribution ρ of the model compound. The potentials

are obtained as solutions of Eq. 1.

The background energy contribution to the transfer energy accounts for the interaction

of the charges of the model compound with the so-called background charges in the

protein:

∆Gback =

M
∑

m

qmφprotein(~rm, ρ) . (6)

The background charges qm are the partial charges of atoms for instance in the protein

backbone or non-titratable sidechains and the charges of the other titratable sites j 6= i
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in their reference protonation form x
(0)
j . φprotein(~rm, ρ) is the electrostatic potential at the

position ~rm of the background charge qm due to the charge distribution ρ of the model

compound of site i in the dielectric environment of the protein. It can be obtained as

solution of Eq. 1. The sum runs over all M background charges m.

The model compound pK-value characterises the energetics of the protonation equi-

librium of the model compound in aqueous solution:

pKmodel = − lg Kmodel = ∆Gaq
deprot(AH) , (7)

where Kmodel is the equilibrium constant of the protonation equilibrium AH ⇀↽ A− +

H+. The model compound pK-value can be determined experimentally or from quantum

chemical calculations.

The pairwise interaction between two sites i and j is assumed to be purely electrostatic

and is quantified as the energy of the charge distribution of i in the potential of j. It

is calculated as the shift in the intrinsic pK of site i that is induced by a change in the

protonation form of site j from the reference to the non-reference form (Fig. 7B):

Wi,j =

K
∑

k=1

(

qprot
k,i − qdeprot

k,i

)

(

φ(~rk, ρ
ref
j ) − φ(~rk, ρ

nonref
j )

)

, (8)

with qprot
k,i and qdeprot

k,i as the partial charges of site i in protonated and deprotonated form,

respectively, and ρref
j and ρnonref

j as the charge distributions of site j in its reference and

non-reference form, respectively. The summation runs over the K partial charges of site

i. φ(~rk, ρj) is the potential of the given charge distribution in the protein environment at

position ~rk of partial charge qk. The electrostatic potentials are again derived from Eq. 1.

Wi,j is set to zero for i = j.

Metropolis Monte Carlo sampling of protonation state energies. From the pro-

tonation state energies G(n) in Eq. 2 it is possible to calculate the protonation probability

〈xi〉 of a site i at a certain pH:

〈xi〉(pH) =

2N
−1
∑

n=0

x
(n)
i exp

(

−
G(n)(pH)

RT

)

2N
−1
∑

n=0

exp

(

−
G(n)(pH)

RT

)

. (9)

In order to evaluate this expression, all 2N protonation state energies G(n) have to be

calculated, which is however not feasible in the study of the titration behaviour of proteins

with their large number of titratable sites N . Instead, a Metropolis Monte Carlo (MC)

approach can be used to sample the protonation state energies. In these simulations, an
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initial protonation state vector is randomly chosen and its energy is calculated. Each MC

step then consists in randomly changing the protonation form of a single site, that means

changing a single component of the protonation state vector ~x(old) from 1 to 0 or from 0

to 1. The energy of the new state ~x(new) is then evaluated and compared to the energy of

the old state. Depending on the difference in energy ∆G = G(new) − G(old) the new state

is accepted with a certain probability p according to the Metropolis criterion

p =







1 if ∆G ≤ 0 ,

exp (−∆G/RT) if ∆G > 0 .
(10)

During the equilibration phase of an MC simulation, an accepted state is only used as

new starting state for the next MC step. During the production phase, protonation states

that are accepted are in addition added to an MC output ensemble of protonation states.

The probability of a certain protonation state can then be calculated as the probability to

find it in the output ensemble of states, and the protonation probability of a certain site

〈xi〉 corresponds to the probability to find it to be protonated in the MC output ensemble.

An additional feature enables the MC algorithm to effectively sample the protonation

states of strongly interacting sites. Consider a pair of sites i and j for which states (0,1)

and (1,0) are low in energy, but states (1,1) and (0,0) have high energies. In this case,

starting from state (1,0), state (0,1) can only be reached via two MC steps of which one

would cause an increase in energy and would therefore be improbable to be accepted.

State (0,1) might therefore never be added to the output ensemble although it is low in

energy. To solve this sampling problem, so-called double and triple moves are introduced

which simultaneously change the protonation states of two or three sites in one MC step.

Double moves are only applied to pairs of sites i and j that have an interaction energy Wi,j

(Eq. 8) above a certain threshold value Wdouble. Triple moves will be applied to residues

i, j and k if Wi,j ≥ Wtriple and Wi,k ≥ Wtriple. Normally Wtriple > Wdouble is set.

To obtain a titration curve 〈xi〉(pH), a separate MC simulation has to be run for

each pH. Since the resulting curve represents the protonation probability of a site in a

multiprotic acid with many interacting titratable sites, it can not be characterised by a

single pK-value [78].

Monte Carlo titration calculations with conformational variability. Most ob-

viously, the Metropolis MC sampling approach is not limited to the protonation state

energies given in Eq. 2. If the state energy is formulated to include an energy contri-

bution attributable to different conformational states of the system, MC sampling of the

state energies can be used to introduce conformational variability into the otherwise static

picture of PBE calculations. For instance, if C different conformations c of the system



20 Theoretical investigation of the titration behaviour of proteins

are considered, the energy of protonation state n in conformation c can be written as

G(n,c) =
N
∑

i

(x
(n)
i − x

(0)
i )(pH − pK

intr(c)
i )

+
1

2

N
∑

i

N
∑

j

(x
(n)
i − x

(0)
i )(x

(n)
j − x

(0)
j )W

(c)
i,j

+G
(c)
conf , (11)

where G
(c)
conf accounts for the relative energies of the different conformations considered.

These conformational energies are calculated for the system in its reference protonation

state ~x(0). For MC sampling of the state energy in Eq. 11, not only the components of

the protonation state vector xi but also the conformation needs to be randomly changed

in order to sample all important states (n, c).

Molecular mechanics calculations [79] represent one way to obtain the conformational

energy differences G
(c)
conf . In this approach, an empirically parametrised energy function

is used to evaluate the energy of a multi-atomic system, depending on the Cartesian

coordinates ~x = x1, y1, z1, . . . xA, yA, zA of all A atoms in the system. The energy function

U(~x) is a sum of the potential energies due to the deformation of bonds, angles, dihedral

angles or torsion angles, and due to pairwise electrostatic and van der Waals interaction

of the atoms:

U = Ubond + Uangle + Udihedral + Utorsion + Uelec + UvdW (12)

Udihedral represents the energy due to rotation of groups around a single bond, and Utorsion

represents the energy due to out-of-plane positioning of atoms at a double bond. All

contributions in Eq. 12 depend on the conformation ~x of the system. For example, the

contribution from the covalent bonds is commonly written as

Ubond(~x) =
B
∑

b

kb(d − d0)
2 . (13)

Here, d is the distance between two covalently bound atoms, it is defined by the set

of atom coordinates ~x. d0 is the optimal distance between the two atoms, that is the

distance at which the potential energy of this bond becomes minimal. kb is the force

constant for the respective bond, which like a spring constant defines the energetic cost

of bond deformation. d0 and kb are specific for a certain bond as for example a peptide

bond between a carbon and a nitrogen atom, and belong to the set of parameters that

are empirically determined. The sum runs over all B covalent bonds b in the system. All

other terms contributing to the potential energy in Eq. 12 depend in a similar way on the

atomic coordinates ~x and a set of empirically determined parameters.
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Quantum chemical characterisation of protonation equilibria in vacuum. As

outlined above, a protonation equilibrium in a protein environment can be characterised

from the shift in the pK-value of an appropriate model compound upon its transfer from

aqueous solution into the protein. The model compound pK-values are most commonly

derived from experiment. In some cases, however, experimental data are not available,

for instance because no suitable model compound can be synthesised. Alternatively,

the protonation equilibrium in the protein can in these cases be characterised from a

combination of quantum chemical and PBE calculations.

From the quantum chemical calculations described below one can obtain the ground

state energies of the protonated model compound Gvac(AH), the deprotonated model

compound Gvac(A−) and the proton Gvac(H+) in vacuum. These quantities enter into the

calculation of the deprotonation energy in vacuum according to

∆Gvac
deprot = Gvac(A−) + Gvac(H+) − Gvac(AH) + Gvib(A−) + Gvib(AH)

+Gtranslation(H+) + p∆V − T · S(H+) . (14)

The vibrational energies Gvib can be estimated from normal mode analysis [79] of the

model compound. Gtranslation(H+) = 3
2
RT is the translational energy of a proton, the

pressure-volume term is estimated to be p∆V = RT . The entropic contribution T ·S(H+)

is derived from the Sackur-Tetrode equation [80]. From the deprotonation energy in

vacuum ∆Gvac
deprot, the deprotonation energy in the protein environment ∆Gprotein

deprot can be

obtained from a thermodynamic cycle similar to that of Fig. 7A. The energies ∆Gtrans to

transfer the protonated and deprotonated species from vacuum to the protein environ-

ment are obtained from Poisson-Boltzmann calculations. The charge distributions ρ(~r)

of the model compound in its two protonation forms are derived from quantum chemi-

cal calculations by fitting the potential due to the calculated distribution of nuclei and

electrons with atom centred partial charges [81, 82]. The transfer energy of the proton

from vacuum to the protein is determined from the potential of the standard hydrogen

electrode to be Gtrans(H
+) = 260.5 kcal/mol [83].

The energies Gvac can for example been obtained from density functional theory

(DFT) calculations [84]. DFT represents an approximation to the solution of the time-

independent, non-relativistic Schrödinger equation

HΨi = EiΨi (15)

of a given system. The Hamiltonian H is a differential operator that represents the total

energy Ei of a given electronic wave function Ψi. Within the framework of the Born-

Oppenheimer approximation, which assumes that electrons move in the field of spatially

fixed nuclei, the so-called electronic Hamiltonian can be written as

H = T + Vee + Vne , (16)
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where T represents the kinetic energy of the electrons, Vee represents the potential en-

ergy due to electron-electron interaction, and Vne represents the potential energy due to

electron-nuclei interaction. The solutions of the Schrödinger equation are the electronic

wave functions Ψi. Of these, the wave function Ψ0 with the lowest energy E0 represents

the ground state of the system, which is the state of interest in this work. Since is is how-

ever impossible to search all possible N -electron wave functions Ψi for the ground state

wave function Ψ0, different approaches have been developed to circumvent this problem.

The basis of DFT are the Hohenberg-Kohn theorems [85], which proof that the ground

state electron density does in principle determine all ground-state properties of interest.

In analogy to Eq. 16, the ground state energy can be written as a functional of the ground

state electron density ρ0(~r):

E0[ρ0] = T [ρ0] + Vee[ρ0] + Vne[ρ0]

= FHK[ρ0] + Vne[ρ0] . (17)

In this formulation, the Hohenberg-Kohn functional FHK represents the kinetic energy

and electron-electron interaction energy that contribute to the total ground-state energy

E0 of the system. The explicit form of this functional is not known, but approximations

have been developed. They are based on the Kohn-Sham approach [86], that introduces a

model system which is constructed of N non-interacting electrons and is characterised by

the same electron density ρ0 as the real system. Each of these non-interacting one-electron

systems n = 1, . . . N is characterised by a Schödinger equation

HnΨn = EnΨn . (18)

The Hamiltonians of Eq. 18 are written as

Hn = Tn + Veff , (19)

where Tn represent the kinetic energies of the non-interacting electrons, while Veff needs to

be chosen to reproduce ρ0 of the real system by means of the N non-interacting electrons.

The effective energy Veff [ρ0] contains the potential energy due to nuclei-electron interaction

Vne[ρ0] , the potential energy due to classical electrostatic interaction of the electrons J [ρ0]

and a so-called exchange-correlation energy Vxc[ρ0] of the electrons:

Veff [ρ0] = Vne[ρ0] + J [ρ0] + Vxc[ρ0] . (20)

Vne[ρ0] and J [ρ0] can be calculated exactly. Approximations remain thus limited to Vxc[ρ0],

that represents the remainder of the kinetic energy of the real system that is not ac-

counted for by Tn, and contributions from the non-classical self-interaction, correlation

and exchange energies of the electrons. Established approximations to Vxc[ρ0] include the

VWN [87] and the PW91 [88] functionals.
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3 Synopsis of published and submitted manuscripts

The analysis of the redox-dependent titration behaviour of cytochrome bc1 is the central

issue of this work. However, as outlined in the introduction, cytochrome bc1 is a com-

plicated system. It has a high number of titratable groups that interact electrostatically

with each other and with the redox-active cofactors. The natural environment of the

inner mitochondrial membrane needs to be accounted for in the PBE calculations. The

Qo-site shows conformational variability that needs to be considered in the MC titration

calculations. In a series of studies, these challenges have been met in simpler systems,

and the resulting solutions have then been combined to approach the titration behaviour

of cytochrome bc1.

As a first approach, the theoretical basis of protonation reactions in mono-, di- and

multiprotic acids has been reviewed, and the effect of electrostatic interaction and con-

formational variability on the titration behaviour of two minimalistic model systems has

been carefully characterised. The titration behaviour of a relatively simple soluble protein

has then been characterised, taking into account two conformations of a covalently bound

chromophore that is itself a titratable group. Calculations on a relatively small CoQ-

reducing transmembrane protein, the bacterial photosynthetic reaction centre, support a

crystallographically observed pH-dependence of the position of CoQ in the protein’s active

site. A study of the coupling between protonation and redox reactions in soluble Rieske

proteins reveals the structural basis of this catalytically important property of the iron-

sulphur cluster. In this way, the work described in Manuscript A to D eventually prepared

the grounds for the study of the redox-dependent titration behaviour of cytochrome bc1.

Irregular titration behaviour of individual sites in proteins. The highly irregular

titration behaviour of several mechanistically important residues in cytochrome bc1 has

motivated a thorough theoretical study about the basis of irregular titration behaviour in

proteins (Manuscript A). The article gives an overview of the theory of multi-site titration,

including the definition and discussion of microscopic and macroscopic pK-values and the

decoupled sites representation of multiprotic acids. It is shown that conformational vari-

ability alone can not lead to irregular titration behaviour. In contrast, strong electrostatic

interaction between two groups can result in irregular titration behaviour, but only if the

two groups titrate in a similar pH-range. This connection is demonstrated using a model

system of two titratable sites, where the interaction energies and the difference between

the intrinsic pK-values were varied systematically.

A model system consisting of four titratable sites with similar intrinsic pK-values

and moderately strong pairwise interaction energies was used to show the effect of muta-

tions in networks of interacting residues. All four residues were consecutively mutated to
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non-titratable residues. Some of these mutations had a strong influence on the titration

behaviour of the remaining three residues. The effect can be precisely quantified from the

calculations but is not intuitively predictable. This result underlines the importance of a

thorough theoretical analysis of the titration behaviour of both wildtype and mutant pro-

teins if titratable sites are subject to experimental mutational analysis or even mutational

design (Manuscript B).

Coupling between conformational and protonation state changes in asFP.

Manuscript B presents a case where the theoretical characterisation of protonation states

in a wildtype protein has been used to prepare the grounds for mutational design. asFP is

a fluorescent protein from Anemonia sulcata that is of enormous interest for cell biology

since it is reversibly photoswitchable and can therefore be used in stimulated emission

depletion (STED) microscopy. STED microscopy represents a breakthrough in raster

fluorescence microscopy since it allows to locate a fluorescent molecule within a volume

element smaller than what would be allowed by the laws of light diffraction. The concept

of STED relies on the use of dyes from which fluorescence can be excited by light of

wavelength λx, and can be depleted by light of wavelength λd 6= λx. A clever spatial ar-

rangement of excitation and depletion allows to excite the sample in a spot that is smaller

than the size dictated by diffraction of the excitatory beam of light.

asFP does in principle represent such a reversibly photoswitchable dye. However, since

photoswitching is slow and ineffective, its properties call for improvement by mutational

design. A first step in this direction is the characterisation of the switching process at

atomic detail. Upon absorption of λx, a covalently bound chromophore undergoes a trans-

to-cis transition of a double bond. Since protonation state changes of the chromophore

pocket have been proposed to accompany the switching event, the protonation probabil-

ities have been calculated for the wildtype and a mutant of asFP with the chromophore

in its trans and cis configuration. The chromophore itself has two titratable sites and

can adopt an anionic, zwitterionic or neutral form. It could be shown that the chro-

mophore in its trans configuration is zwitterionic while it is predominantly neutral when

it is in the cis configuration. The calculated protonation probabilities of the system agree

well with an assignment of protonation states based on the comparison of calculated and

experimentally determined absorption spectra of the protein.

pH-dependence of the position of CoQ in the the QB-site of the photosynthetic

reaction centre. The photosynthetic reaction centre is a transmembrane protein that

converts light energy into the chemical energy of reduced CoQ. In the QB-site, CoQ gets

reduced and is subsequently released in its ubiquinol form. From structural characteri-

sation of the protein it has previously been proposed that the QB-pocket comprises two
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CoQ binding sites, and that CoQ adopts different conformations depending on the site

of binding. The structures of the reaction centre from the purple bacterium Rhodobacter

sphaeroides reported in Manuscript C show that the position of CoQ in the site depends

on pH but that CoQ has the same conformation in both positions. Based on the new

structures, we could show from quantum chemical calculations that the energetic barrier

between the two positions of CoQ must be small. From PBE/MC titration calculations,

the populations of the two positions were quantified as a function of pH yielding results

that are consistent with the experimental data. Based on additional new structures ob-

tained for different redox states of the system, the proton uptake upon formation of the

semiquinone state of CoQB has been determined as a function of pH. Individual residues

could be identified that are responsible for the proton uptake.

Coupling between the redox and protonation reactions of the Rieske iron-

sulphur cluster. In order to assess the mechanism of CoQ oxidation in the Qo-site of

cytochrome bc1, the protonation and redox reactions of the Rieske iron-sulphur cluster

have been characterised (Manuscript D). Two different Rieske proteins have been studied:

the soluble fragment of the Rieske subunit of bovine cytochrome bc1 and the Rieske

subunit of the biphenyl dioxygenase system from Burkholderia sp. The first protein

has a high reduction potential, and a redox-dependent protonation state change of its

ligand histidines can be observed in the physiological pH-range. The latter protein has a

low reduction potential, and its ligand histidines remain protonated at physiological pH

regardless of the redox state of the cluster.

A first set of calculations showed that the experimentally determined macroscopic

pK-values of the Rieske cluster in the two proteins can be accurately reproduced from

a combination of PBE and DFT calculations. This agreement demonstrates the power

of the combined PBE/DFT approach in characterising the intricate properties of Rieske

proteins.

In order to identify the structural basis of the remarkably different properties of the

Rieske cluster in the two different proteins, I have performed PBE calculations on a set of

mutants of the two proteins. The mutations were chosen such that they remove differences

between the two proteins and render them more similar. Taken together, the quantitative

analysis of the effect of the studied mutations yields two important results. The removal

of hydrogen bonds towards the cluster in the Rieske protein from cytochrome bc1 leads to

an increase of its pK-values. The effect is however small compared to the difference in pK-

values of the two wildtype proteins. In contrast, the removal of four negatively charged

residues in the Rieske subunit of the bacterial oxygenase system leads to a pronounced

decrease of the pK-values, yielding an effect that is in total larger than that of the removal

of the hydrogen bonds. Since the negative charges are not even in closest proximity to
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the cluster, this result demonstrates that long range electrostatic interactions must not

be neglected in computational approaches to enzyme mechanisms. The effect of hydrogen

bonds in the high-potential Rieske protein and of the negative charges in the low-potential

Rieske protein taken together account fully for the difference in macroscopic pK-values

of the cluster in the two proteins.

Redox-linked protonation state changes in cytochrome bc1. In its two CoQ

binding active sites, cytochrome bc1 catalyses the combined oxidation/deprotonation and

reduction/protonation of CoQ. Redox-linked protonation state changes of the protein

must thus be an essential element of the catalytic mechanism. Within the last couple of

years, several studies have been published that use redox-induced FTIR difference spec-

troscopy to characterise such redox-linked protonation state changes. While protonation

state changes could indeed be observed, their assignment to specific residues is compli-

cated or impossible. By performing PBE calculations, the protonation probabilities of

all titratable sites in completely reduced and completely oxidised cytochrome bc1 from

S. cerevisiae have been quantified (Manuscript E and F). Redox-linked protonation state

changes of individual residues could be identified from comparison of the results for the

two redox states. These results could be linked to data obtained from FTIR experiments.

Two crystallographically observed conformations of the Qo-site have been included in the

MC titration calculations. MC sampling of the protonation and conformational states

allows to identify possible redox-linked conformational changes of the system.

In the Qi-site, the direct ligands of CoQ could be shown to have a higher protonation

probability in the reduced than in the oxidised state. The proposed function of these

residues as proton donor groups in the CoQ reduction reaction could thus be confirmed.

A cluster of lysine residues with redox-dependent and strongly correlated protonation

probabilities could be identified. This lysine cluster has been proposed to be responsible

for proton uptake to the Qi-site. The strong interaction between the residues in this

cluster is the reason for the partly highly unusual shape of their protonation probability

curves (Manuscript A). A cardiolipin molecule that is bound close to the Qi-site could

be shown to be doubly deprotonated and negatively charged over the whole pH-range

studied in both redox states of the system. In contrast to previously proposed ideas, the

cardiolipin molecule is thus most likely not involved in proton uptake to the site but helps

to increase the protonation probability in the lysine cluster.

In the Qo-site, a probable position of CoQ in the site has been determined from the

position of stigmatellin in the site, and from structural information about the relative ori-

entation of CoQ and stigmatellin in the structurally similar QB-site of the photosynthetic

reaction centre (Manuscript C). This protein has been crystallised once with the inhibitor

and once with CoQ. The population of the two conformations of E272CYB in the Qo-site is
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redox-dependent. However, since one and the same conformation is predominantly pop-

ulated in the two studied redox states (to 100 % in the oxidised state and to about 60 %

in the reduced state), the results do not allow to decide whether a conformational change

of the site occurs during turnover. The observed protonation pattern of E272CYB in the

different conformations is consistent with a previously proposed role of this residue in

the gating of CoQ oxidation. The Rieske cluster could be shown to undergo redox-linked

protonation state changes in the physiological pH-range also in the context of the Qo-site

with CoQ bound. A redox-linked protonation state change of one of the propionate moi-

eties of haem bL supports the previously proposed idea that electron transfer from CoQ to

haem bL is accompanied by transfer of a proton from the Qo-site to one of the propionate

groups of haem bL. A similar but weaker redox-linked protonation state change could be

observed for one of the propionate moieties of haem c1.

Taken together, the identified redox-linked protonation state changes are in agreement

with the available FTIR data. Only the puzzling coupling between the oxidation of

haem bL and protonation of a carboxylic sidechain observed in one of the FTIR studies

is not consistent with the calculation results. The theoretical study helps to assign the

observed redox-linked changes in the FTIR spectra to individual titratable sites in the

large protein complex.
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