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ABSTRACT This systematic literature review explores the potential of machine learning-based approaches
to detect and prevent bird collisions with wind turbines. It provides a comprehensive review of the current
approaches and identifies critical gaps in the literature, which may serve as the groundwork for future
research and development in this area. As a result, this work highlights the importance of inter- and
transdisciplinary cooperations.

INDEX TERMS Energy transition, environmental conservation, wind energy, machine learning.

I. INTRODUCTION
The climate change is one of the most pressing issues of
our time and is a complex and multifaceted issue that has
far-reaching impacts on our planet [1].

The burning of fossil fuels, deforestation, and other
human activities are releasing large amounts of greenhouse
gases into the atmosphere, causing global temperatures
to rise and leading to a wide range of negative effects,
including rising sea levels, more frequent and severe extreme
weather events, and changes in precipitation patterns [2].
The Intergovernmental Panel on Climate Change in its fourth
assessment report, stated that it is extremely likely that human
activities, particularly the burning of fossil fuels, are the
dominant cause of observed warming since the mid-20th
century [3].

The impacts of climate change are already being felt
around the world, with many regions experiencing more
severe droughts, floods, heatwaves and storms. These impacts
have significant economic and social costs, and threaten the
well-being of both people and ecosystems [4]. The United

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Shamim Kaiser .

Nations Framework Convention on Climate Change in the
Paris Agreement, aims to limit global warming to well
below 2 degrees Celsius above pre- industrial levels, and to
pursue efforts to limit the temperature increase to 1.5 degrees
Celsius [5].Therefore, it is important to reduce the emission
of climate-damaging greenhouse gases [6].

Since the energy sector is a major emitter of carbon
emissions in several countries, numerous nations have set
ambitious energy transition targets in order to mitigate
climate change and the impact on nature [5], [7], [8].
The expansion of renewable energies, as a replacement
for conventional energy production methods, is hereby
envisioned to cut emissions in the energy sector drasti-
cally [9]. Wind energy, in particular, has become increasingly
popular due to its ability to generate electricity without
producing greenhouse gas emissions. However it requires
a significant restructuring of the power sector, including
large-scale construction of new wind farms and power
lines [10]. The growth of wind energy development has
therefore raised concerns about its impact on wildlife,
particularly birds. While wind turbines offer significant
environmental benefits, the negative impact they can have
on bird populations cannot be ignored because the rotating
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blades of wind turbines can cause bird fatalities, and changes
in habitat and behavior [11]. Given the rapid expansion
of wind energy, this issue raises important questions about
the sustainability and ethical implications of wind energy
development [12].

Efforts to minimize the impact of wind turbines on bird
populations have included the use of radar systems to
detect bird movements [13], the modification of turbine
design to make them more visible to birds [14], and the
implementation of shutdown protocols during periods of high
bird activity [15]. However, prolonged shutdowns of wind
turbines lead to a loss of flexibility and productivity in power
generation, which has been themain goal of renewable energy
transition from the outset [16]. For instance, curtailing wind
turbines during night to protect endangered bats can lead up
to 10% loss of annual energy production [17]. Furthermore,
it often not possible to allow for the expansion of windfarms
into areas with high wind energy potentials as these are the
main routes of traveling birds and despite these efforts, bird
fatalities continue to occur [12].

Although solution approaches with human observers have
been so far an efficient way to reduce mortality rates of
certain species by 50% with a reduction of total energy
production by only 0.07%, they are rather expensive,
not available in remote areas, and less effective in bad
sight conditions, e.g., during the night [18]. Consequently,
‘‘Curtailing wind turbine operation is one of the only
mitigation approach proven effective at reducing wildlife
mortality’’ [19], implicating the need for an innovative and
cost-efficient way to combine ecological and zoological
objectives.

In this context, machine learning (ML) algorithms have
been of great interest in research for some time because
of their ability to autonomously process large amounts of
data quickly and efficiently [20]. Many works have already
proposed and demonstrated the value of ML algorithms
and artificial intelligence (AI) for managing the energy
transition. For example, these algorithms are commonly
used for monitoring smart grids [21], for energy produc-
tion predictability [22], for managing the energy supply
chain [23], and in many more applications across the energy
sector [24]. Yet, these applications aim at improving existing
infrastructures and do not help to minimize the trade off
between expansion of renewable energies and the synthetic
interventions into nature.

Yet, Fine-Grained Image Analysis is a widely studied
machine learning approach that enables algorithms to detect
objects and assign them to corresponding categories. This
approach performantly proves its strengths in generic image
recognition such as the differentiation between birds and
dogs, and the detection of birds in a wildlife landscape [25].
The ability of ML algorithms to process large amounts
of data quickly and accurately makes them a promising
technological advancement for identifying patterns of bird
activity around wind turbines and for developing real-time

solutions to mitigate bird collisions. By using ML algorithms
to automate the detection of bird activity and initialization of
counter-measures, it may be possible to reduce the need for
manual observation and human intervention, and to improve
the efficiency of wind energy production while minimizing
its impact on wildlife [26].

Inspired by these recent advancements in the field of
image- and video-based recognition algorithms for animal
identification and species classification [27], we hypothesize
that these ML algorithms may provide such way to manage
the conflict between the much-needed benefits of wind
energy and its drawbacks due to synthetic disturbance
of avifauna. Subsequently, this work aims to answer the
following research question:

What is the current state of research on machine learning
approaches for mitigating bird collisions with wind

turbines?

The research question seeks to understand the current state
of research on the use of machine learning approaches to
mitigate bird collisions with wind turbines. As previously
mentioned, this issue is critical as it represents a conflict
between the need for renewable energy and the conservation
of bird populations. Therefore, in this paper, we aim to
provide a comprehensive review of the existing literature on
the impact of wind turbines on birds and potential strategies
to mitigate this impact through ML techniques.

To achieve this goal, we will conduct a thorough examina-
tion of the current literature on ML algorithms for detecting
avifauna, focusing on common concepts and summarizing the
findings. We will then discuss the challenges that arise when
applying these algorithms to the energy sector. Lastly, we will
identify areas for further research aimed at addressing the
challenges identified in our literature review and at advancing
the application of machine learning for the greater good
in this sector. In doing so, we hope to contribute to the
ongoing debate about the role of wind energy in promoting
sustainability and the need to consider the impact on wildlife.

Furthermore, we believe that this paper offers a valuable
contribution to the field of renewable energy and machine
learning by providing insight into current applications of
ML in a relevant area of intersection. We also highlight
the importance of continued research in this area, as it is
crucial to identify innovative ways to address the challenges
posed by renewable energy sources and promote sustainable
practices. Ultimately, we hope that this paper will serve
as a valuable resource for researchers and practitioners
interested in exploring the intersection of renewable energy
and conservation efforts.

The remainder of this work is structured as follows:
section II provides the theoretical background on the
current state of machine learning and wildlife preservation
in the energy sector. Section III describes our research
methodology. In Section IV, we present our findings and
discuss them in Section V. Section VI concludes.

VOLUME 11, 2023 64027



M. Principato et al.: Unlocking the Potential of Wind Energy With ML-Based Avian Detection: A Call to Action

II. THEORETICAL BACKGROUND
A. TRADE OFF BETWEEN BIODIVERSITY PRESERVATION
AND THE ENERGY TRANSITION
The increasingly evident effects of the anthropogenic climate
change [28] are intensifying the pressure on policymakers
to take actions [29]. Some of the most detrimental conse-
quences include rising global surface temperatures, melting
of glaciers, rising sea levels [30], the loss of biodiversity
and the destruction of ecosystems [31]. Further stress is
placed on the resilience of existing habitats and ecosystems
through natural resource exploitation [29], excessive land use,
and human-induced fragmentation of natural habitats [28]
caused by synthetic interventions in the natural landscape.
Climate change was caused primarily by the excessive
use and combustion of fossil fuels, which resulted in the
emission of large quantities of carbon dioxide, a pollutant
gas that is harmful to the climate. Historically, energy
production and the implementation of fossil resources in
industrial processes have had a significant impact on the
magnitude of the consumption of fossil resources [30].
Consequently, the energy transition towards the dominant use
of carbon-neutral renewable energies is envisioned to be a
key policy tool to mitigate climate change and decrease the
carbon footprint [32].Wind energy is a decisive technology in
this context [33] and has been constantly expanded in Europe
since 1996. The amount of wind energy produced has more
than tripled in the interval from 2010 to 2020 from 154 TWh
to 513 TWh in Europe. By far the largest share of capacity
within Europe is installed in Germany, followed by Spain,
Great Britain and France [34]. The extent to which wind
capacities are expanded depends primarily on the political
and social willingness, subsidy systems and, above all,
the natural wind potential of the locations. The suitability
of terrestrial, mountainous and coastal regions can differ
greatly, making it imperative to assess each site individually
to determine whether the installation of wind power is
feasible from an economic perspective [35]. Consequently,
the sites for efficient implementation are limited, not easily
substitutable, and therefore create conflicts with other local
interests.

The expansion of renewable resources is not just an indi-
vidual goal of single nations. Moreover, with the European
Green Deal the European Union has set itself the goal of
transforming its energy infrastructure to achieve the status
of a climate-neutral continent, relying largely on wind and
solar energies [36]. In addition, with the Biodiversity Strategy
for 2030, the EU has established a regulatory framework for
all member states on the overall objectives to be pursued
in order to protect the environment from the consequences
of climate change and to safeguard the functionality of
our ecosystem. The first two overall objectives focused on
the protection of species and habitats and the conservation
and restoration of ecosystems. To achieve this, the con-
servation status of protected species and habitats should
be improved and the performance of ecosystems enhanced
through renaturation, restoration of degraded ecosystems

and new green infrastructure. In order to address the goals
in a reasonable approach and to be able to control the
implementations, a high environmental assessment effort is
required [37]. It is also fundamental to enable a strategic
approach to the development of renewable resources such
as wind farms resulting from the implementation of the
European Green Deal and facilitating the conservation of
biodiversity. Especially wind power and the protection of
avifauna species are in constant tension and conflict with
each other. To meet the energy demand of our society and
industry, without compromising ecosystems by synthetic
interventions caused by the construction of generation
structures [11]. This field is aggravated by large research
gaps, uncertain predictions and insufficient knowledge about
complex interdependencies of consequences of the climate
change on the one hand [29], [30], and by uncertain effects
of wind turbines on the environment of avifauna on the other
hand [38], [39].

The world bird database avibase [40] reports 916 different
bird species for the European continent, 64 of these are listed
as globally endangered species. The population includes
numerous songbirds, water birds and birds of prey. Especially
the last class, hawks, eagles and vultures, are often the focus
of criticism against wind turbines. Due to low population size
and slow reproduction rates, they are particularly vulnerable
to habitat degradation [38]. Due to their physical structure,
rotor blades are often out of the visual range of birds of
prey when in flight, resulting in repeated bird strikes and
causalities around wind turbines [12]. As wind turbines
increase in height and rotor diameter due to technological
progress, the rotor blade tips rotate at a higher pace and the
risk of not being recognised by the birds at all or not being
detected as a danger increases [41]. Thus, the problem of
constructing wind turbines refers not only to the impact on
natural habitats that are valuable for breeding, but above all
to the problem of bird causalities [38].

The difficulty in detecting birds due to their elusive
attributes has led to the adoption of automated techniques
like machine learning to overcome traditional method
limitations [42]. However, for machine learning algorithms
to be effectively utilized in this context, they must have a
means of interaction with the environment, which requires
the provision of inputs collected from the environment in the
form of data and the realization of outputs in form of actions
to the environment [43].

B. APPLICATION-ORIENTED MACHINE LEARNING
Machine learning is a sub-field of artificial intelligence that
focuses on developing algorithms and models that can learn
from data and improve their predictions and decisions over
time [44]. With the increasing availability of large amounts
of data and computing power, machine learning is a rapidly
growing field that has made significant advances and has
become one of themost important and impactful technologies
of the 21st century [45].
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FIGURE 1. Reactive agent model in the context of machine learning.

However, one of the major challenges in this field is
to develop algorithms and models that can be applied
to real-world problems and deliver value to businesses,
organizations, and individuals. As a framework for
application-oriented machine learning, the reactive agent
model (RAM) has gained growing attention [46]. This
model provides a structured approach for developing and
exploring machine learning algorithms specifically tailored
to solve real-world problems [47]. In this context, the
reactive agent model provides a framework for practical
and application-oriented machine learning by facilitating
the translation of machine learning research into practical
solutions for various domains [44].

The RAM (see figure 1) is grounded in the concept of
agents, which are autonomous entities that interact with
their environment in order to achieve specific goals. Within
the context of machine learning, a reactive agent can be
viewed as a machine learning algorithm that interacts with
its environment in real-time and makes decisions based
on the information it receives [48]. The reactive agent
framework describes the design and implementation of
machine learning algorithms that are intended to address
real-world problems [49]. In this context, the machine
learning algorithm is considered as an autonomous entity,
an ‘‘agent’’, which interacts with its environment in real time
and makes decisions based on the information received from
the sensors [44]. Therefore, the RAM provides a structured
approach to the development and exploration of machine
learning algorithms that can handle the complexity of real-
world environments, while making decisions in real-time
based on the information received from sensors and actions
realized through actuators [50].

The agent’s ability to make decisions and take actions
in real-time, based on the information received from the
environment through sensors, enables the algorithm to adapt
to changing conditions in real-time and to make decisions in
dynamic and unpredictable environments [49]. This allows
the agent to develop a representation of the underlying
relationships and dynamics of the domain, which can be
difficult to represent through explicit rules. Additionally, the

learning process can be guided by reinforcement learning
algorithms, which allow the agent to learn from its own
experiences and improve its behavior over time [50]. This
adaptability is crucial for the success of machine learning
algorithms in real-world environments, where conditions can
change rapidly and unpredictably [44].

III. RESEARCH METHOD
For addressing our research question we require data that we
aim to extract from published and peer-reviewed literature in
this field.

Especially for exploring application potentials, systematic
literature reviews (SLR) enjoy popularity in the field of ML
and AI [51], [52], [53]. SLRs are a common methodological
approach for collecting, summarizing, synthesizing and
systematically structuring a body of knowledge in a field
of inquiry [54], [55], [56], [57], [58]. Therefore, a SLR
is the most suitable method approach for our research
endeavour. To ensure a highly qualitative SLR, we followed
the well-established SLR guidelines of Kitchenham and
Charters [57] and the search strategy of Zhang et al. [59].

A. LITERATURE COLLECTION
The search strategy consists of three phases: a preliminary
exploration of search string terms, the main search, and
backward/forward searches. Figure 2 comprehensively sum-
marizes our entire SLR process.

1) PRELIMINARY EXPLORATION
We conducted an initial search using GoogleScholar.com
and Elicit.org for the term ‘‘machine learning’’ AND
‘‘recognition’’ AND ‘‘avifauna’’ to get an initial overview
of the terms used in the literature on this topic. Based on
the existing literature, we composed our search term of three
parts: technology, purpose, and application domain (context).

• Technology: ‘‘machine learning’’ OR ‘‘deep learning’’
OR ‘‘artificial intelligence’’

• Purpose: ‘‘classification’’ OR ‘‘detection’’ OR ‘‘recog-
nition’’

• Context: ‘‘bird’’ OR ‘‘bat’’ OR ‘‘avifauna’’
Therefore, accounting for relevant synonyms, our search
string is the combination of these partial strings:
((‘‘machine learning’’ OR ‘‘deep learning’’ OR ‘‘artificial

intelligence’’) AND (‘‘classification’’ OR ‘‘detection’’ OR
‘‘recognition’’) AND (‘‘bird’’ OR ‘‘bat’’ OR ‘‘avifauna’’)).

2) MAIN SEARCH AND SELECTION
As it is advised to survey multiple sources of literature
to reduce bias [60], we applied this search string during
the main search phase (on the 10th of December 2022) in
the following most reputable databases for peer-reviewed
literature on information technology, information systems,
and cross-domain topics [61]:

Following the SLR guidelines [57], we defined inclusion
and exclusion criteria based on filter requirements (see
table 2). In the main search, we made use of the the
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FIGURE 2. Literature selection process.

TABLE 1. Electronic data sources (EDS) used in the main search.

TABLE 2. Filter criteria for identifying relevant items.

search engines’ filter settings for directly conforming to
our criteria of F3, F4, F6, and F7 and applied the search
string to title, abstract, and keywords. The EDS search
yielded a total of 217 publications across the databases. There
were no duplicates to exclude (criteria F5). Subsequently,
we performed three filtering steps based on criteria F1 and
F2 respectively in title, abstract, and full text of each item.

For increased inter-subjectivity, the main authors per-
formed these filtering steps independently of each other and
over the entire sample (i.e., redundantly instead of splitting
for increased efficiency).

Instead of having a simple binary choice of includ-
ing/excluding an item, we opted to include an option for
indecisiveness. This allows for a more accurate process of
selecting literature by using a more detailed rating of the
individual items. Concretely, this was implemented by the
three researchers giving a rating of either 0, 0.5, or 1 to each
item in each filtering step, whereby 0 corresponds to exclude,
0.5 to indecisive and 1 to include. The sum of votes (i.e.,
maximum 3 and minimum 0) of each item was then divided
by 3 to obtain the mean rating. Generally, if the mean rating
was above 0.5 the item was included and if it was below the
threshold of 0.5 it was excluded. The list of items which had a
rating of exactly 0.5were taken into a conflict resolution (CR)
round, where the authors discussed these items. Furthermore,
the CR was used to discuss heavily differing votes on items
and their subsequent inclusion/exclusion.

Popular approaches to calculate a measure of inter-rater
reliability for multiple raters and ordinal scale are Cohen’s
Kappa [62] and Cronbach’s Alpha [63]. However, both
have been criticized in past analyses of measurements for
drawbacks, such as only considering agreement, and thus
not accurately reflecting the degree of reliability in cases
where there is significant disagreement between raters [64]
or for standardizing rater values and only measuring covari-
ance [65]. Krippendorff’s Alpha [66], on the other hand,
emerges from the comparisons as a conservative, versatile and
comprehensive measure [65], [66], [67].

Therefore, we make use of Krippendorff’s Alpha for
calculating our inter-rater reliability of the three filtering
steps. In specific, we make use of the improved calculation
method for a weighted Krippendorff’s Alpha proposed by
Gwet [68], which results in the following values:

The alpha coefficient can be interpreted similarly to other
inter-rater measures, ranging from 0 (no agreement) to 1
(maximum agreement). It is customary to view an α ≥ 0.8 as
good agreement between the raters, 0.8 > α ≥ 0.667 as
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TABLE 3. Inter-rater reliability for the filtering steps.

fair agreement, and α < 0.667 as bad agreement [64].
Our results show a confident level of agreement among the
authors in the selection of literature items, suggesting a shared
understanding of the specified filter criteria.

3) BACKWARD/FORWARD SEARCHES
In the last phase, we conducted backward and forward
searches, for items that might be relevant but were not
yet included with our search string [58]. Newly obtained
literature was then assessed against the aforementioned
inclusion and exclusion criteria. We thus obtained 7 new
items, resulting in 32 overall items. These thirty-two items
constitute the identified and relevant literature for the body of
knowledge that we aimed to review, synthesize, and structure
for addressing our research question [57].

B. INFORMATION EXTRACTION
For extracting the needed information from the obtained
literature items, we performed structured extraction based on
filling out extraction cards [69]. The extraction comprises
the following 13 fields about the literature items: Authors,
year, country, publication channel, publication type, research
aim, research question, research approach, covered machine
learning approaches, type of detection/classification system,
study findings, challenges, and opportunities for future
work. To reduce bias, three authors independently and
redundantly extracted this information and then participated
in a conflict resolution round, where discussions were held
about potential conflicts on the extracted information. The
extracted information was then synthesized on the basis of
a comparative analysis between items in accordance with the
SLR guidelines [57].

IV. RESULTS
A. DESCRIPTIVE OVERVIEW
Figure 3 and figure 4 descriptively illustrate the final
literature selection.

First works on bird identification via machine learning
techniques have been published in 2011 and 2012. However,
publications before 2019 remained sporadic; being two
items per year at maximum. From 2019 on, literature
on this topic saw a sharp increase with publications per
year rising to four in 2019, six in 2020, and finally
reaching its peak with 7 in 2022. There is already one
item in our literature selection that is set to be published
in 2023.

Most of the academic and peer-reviewed literature is
published in conference proceedings (twenty items) while the
rest was published in journals (twelve items). Considering the

FIGURE 3. Type and origin of selected publications.

FIGURE 4. Yearly publications of bird identification approaches.

nature of academic publishing (i.e., conferences being more
practice oriented with papers for concrete use-cases while
journals often prefer theory-building papers and emphasize
theoretical contributions), this distribution indicates that most
of the research might be more practice-oriented.

The distribution of items to their country of origin seems to
be dominated by Asian countries (17 items). The country of
origin is hereby determined by the majority of authors and in
case of tie, by the main author. The leading Asian country
is India (6 items), closely followed by China (4 items).
The remaining items originating from Asian countries are
distributed over Japan, Taiwan, Malaysia, and Bangladesh.
European countries amount to 7 publications in our final
selection which are almost evenly distributed on the countries
of England, Germany, France, Netherlands, Poland and
Romania. American countries also amount to 7 publications
in the selection which are further comprised of four items
from North America (United States) and three from South
America (Brazil & Argentina). Lastly, one item originated in
Australia.

Concluding, annual publication numbers demonstrate that
the utilization of machine learning for identifying birds
and classifying bird species has gained significance as a
research topic in recent years and is continuing to grow in
relevance (Fig. 4). The topic enjoys considerable attention
in research across the globe, however, there is a slight
backlog regarding works from European and American
countries.
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TABLE 4. Literature items per category of the RAM framework.

B. CONTENT ANALYSIS
The reactive agent model can serve as an effective framework
for synthesizing and organizing findings in a literature
review about applied machine learning. By using this
model, researchers can gain a clearer understanding of how
machine learning models have been applied to solve specific
problems and the conditions under which they are effective.
Additionally, the reactive agent model provides a consistent
approach for analyzing and comparing different machine
learning models, allowing for improved understanding and
the identification of similarities and differences between
them. This in turn can lead to the development of more
effective models and the identification of new areas of
research.

To aggregate, structure and analyze our findings, we there-
fore make use of this framework and present our findings
following the information flow in the RAM from percepts and
sensors to actuators and actions.

1) PERCEPTS AND SENSORS
Following the reactive agent model, sensors play a pivotal
role in the field of bird detection for this provision of
inputs collected from the environment. These sensors are
physical devices designed to detect and respond to physical
changes or stimuli in the environment [86]. A sensor operates

by converting a physical quantity, such as temperature,
light, sound, pressure, or electromagnetic radiation, into
a signal that then can be interpreted by a machine (i.e.,
a computer) [43]. In the case of ML bird identification, this
means that it provides crucial data inputs to the algorithms,
which then can facilitate the accurate identification and
tracking of birds in their natural habitats. Furthermore,
it allows for the automated collection of large data sets
which is especially important for training machine learning
models [42].

Sensors for bird detection and recognition mentioned in
the literature can be categorized into active sensors (e.g.,
radars and sonars) and passive sensors (e.g., visual or
acoustic sensors) [86]. The differentiation between active and
passive sensors is that active sensors send out energy (e.g.,
radio waves for a radar) to perform measurements, while
passive sensors only receive energy which they measure (e.g.,
sound waves for acoustic sensors). Although it is argued
that active sensors are more robust against environmental
conditions such as background noises [86], we do not find
any approaches using active monitoring (besides mentioning
them as alternatives). Passive monitoring on the other hand,
is the preferred approach due to their simpler, less expensive,
and more energy efficient design [42]. Passive monitoring,
however, relies on bird vocalizations (acoustic sensors) or
on bird images (visual sensors), which results in the sensors
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TABLE 5. Type of applied sensors.

TABLE 6. Initial input data.

needing to pick up these signals from the environment and
thus including extraneous noise in the collected data. While
a higher quantity and more expensive sensors can improve
data quality, it often introduces a higher cost of setup due to
higher sensor costs, data storage costs, and data processing
costs [43], [84].

Visual sensors are often preferred because they can include
a variety of information in a single image [86]. However,
in circumstances where visual sensors cannot be employed
due to obstruction or insufficient resolution to locate a desired
object, audio-based scene analysis is a viable alternative
besides using audio sensors directly [89]. The following table
maps the approaches that employed sensors to their sensor
types:

Most papers make use of microphone arrays for directional
recordings. Chandu et al. [72] hereby recommend a micro-
phone sampling rate of 44100Hz and a bit rate of either
128kbps or 320kbps. Directional recordings are important for
estimating the location of the bird [89], [96]. While acoustic
sensors such as microphones produce sound data, visual
sensors like cameras produce image or video data for the ML
model [42].

Other than the aforementioned items, none consider setting
up sensors for their identification approaches but rather make
use of data bases with pre-recorded audio, image, and video
data sets for training their models [42]. Still, the type of
sensor determines the initial data type before pre-processing,
even when using databases as source for input data. Table 6
illustrates the input data types and their popularity amongst
the approaches.

Sensors, therefore, are a gateway from the physical to
the digital world by collecting various signals from the
environment and transforming them into input data for the
ML agent.

2) INPUT DATA
The use of Artificial Intelligence in various application areas
has increased substantially in the last decade, accelerated by
advances in Machine Learning techniques. Through exten-
sive training processes that require considerable amounts
of training data, machine learning algorithms can be suc-
cessfully applied to complex issues, achieving high quality

predictions and precise classifications [100]. The amount
of data needed to train a model sufficiently, increases
exponentially with the complexity of the model. In order
to be able to use the trained model outside of laboratory
conditions with high accuracy rates, the training set needs
to cover the full range of possible variations of features.
Song and call variations of bird species may differ greatly
for some individual bird species [42] and therefore will
increase the demanded sample size. In the vocal analysis,
it is also essential to take into account that there may be
geographical variations in bird calls, and regional dialects
may occur. This can lead to classification distortions [101],
[102], [103], [104] in the application of the trained systems,
if training and validation data sets do not originate from
the same geographical region. For visual detection of birds
and bats, the classification challenges vary. The image
quality for detection depends largely on external parameters
like the resolution due to motion blur and noise, lighting
conditions [86], distance of the object and the background,
as well as the environment [16], [76]. With changing weather
conditions and times of the day, the individual avifauna
species may appear rather heterogen [77], [86]. In addition,
Boudaoud et al. [86] indicate significant variations of the
flight posture and angle and differences in appearance.
Disparities occur in colour or plumage, depending on the sex
of the individual, the age and the season. Marini et al. [76]
state that the beak is an important indicator and that the
silhouette same as the posture are themost vital joint semantic
components to classify birds. Once birds are fully grown,
these attributes do not really change any more and are
therefore reliable features for identification. The size or
wingspan of many birds is sufficient to be able to assign
them to species. Nevertheless, avifauna is often categorised
visually according to a number of other features, such as
feather plumage colour. Since the training of classification
algorithms relies on existing labelled data collections [76],
which might not be available or only to a small extent with
regard to certain attributes.

For both detection approaches, visual and acoustic, the
difficulty increases with the number of objects, classes or
species to distinguish between [100]. How to differenti-
ate between birds and non-birds, birds and other flying
objects [16], and exactly how the classification process
is performed: how finely the avifauna is categorized into
classes, grouped by wingspan, species, subspecies, or even
individuals [16], [86], [88]. With increasing complexity, the
required size of the labelled data collections increases in order
for the classification algorithm to achieve a high degree of
accuracy.

While large data collections have emerged in many
scientific fields [100], the freely accessible data sets
for ornithological settings are still small in number and
scope [42]. Neglecting the sources that did not specify the
size of their utilized data set, 85 percent of the remaining
27 experiments had smaller sample sizes than 35,000, see
Table 7. In the acoustic detection method, only datasets with
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TABLE 7. Total size of the data set.

FIGURE 5. Augmentation of imbalanced data sets (image source [105]).

less samples than 5,000 were used. However, this is not
justified in a lower data demand, instead it is due to the lack
of large amounts of voice samples [74], [80], [83]. While
larger data sets could be accessed in visual processing, see
Table 7, only 3 approaches acquired data sets larger than
100,000 samples. In order to increase the data set size and
to be able to achieve a better training basis for the machine
learning model, it is a common approach to artificially
enlarge data sets. Single images or sound recordings of a
certain length are divided into smaller images or sequences.
Alternatively, Huang and Basanta [88] have augmented
images 10-fold by using diverse augmentation techniques
such as rotating and flipping images in different directions,
contrast enhancement, sharpening of images and utilizing
techniques like the Gaussian noise, affine transformations
or changes in the zoom range [0.7, 1.3]. Augmentation is
also a suitable approach to adjust skewed data. In contrast,
Aggarwal and Sehgal [80] deliberately reduced the number
of their recordings to 11 percent of the original data set.
Within the set was a strong imbalance between divers
bird classes, leading the authors to use the minimum
equal number of all classes in their approach to avoid
overfitting.

Through a pre-processing procedure, data collections are
partially converted into other file formats before being
further processed and analyzed by the machine learning
structure [73], [81]. For example, sound sequences from
audio files might be transformed into Mel Spectrograms and
therefore, will be further processed as an image file [43],
[71], [82], [85]. The procedure and specific pre-processing
methods will be discussed in the next subsection. Yet,
in Table 7, the second column displays the final file format
utilized. Evidently, particularly the audio data processing
approaches have relied on smaller data sets. However, this
might be explained by the scarcity of data [42]. Especially
for species that are rare or whose habitat is mainly isolated
from civilization in remote areas, it can be very difficult to

obtain sufficient voice samples [70] categorized or confirmed
by ornithologists.

Pretrained convolutional neural networks by leveraging
existing architectures such as VGG16 have been successfully
implemented in classification usecases. They present the
advantages of reduced training demand, reduced compu-
tational time but still high accuracy achievements [106].
Therefore, they are also used to compensate for the deficit
of training data. Table 8 shows that pretrained models are
also applied in the classification of avifauna, VGG16 was
utilized by Li et al. [91], Choudhary et al. [99], Gupta [97]
and Islam et al. [77]. The pretrained ResNet architecture
was applied by Sharma et al. [73], Li et al. [91], Huang
and Basanta [88], Choudhary et al. [99], Lebien et al. [71]
and Ragib et al. [87]. Li et al. [91] same as Huang and
Basanta [88] adopted the Inception architecture in their
models. In additon, Li et al. [91] and Chandu et al. [72]
implemented AlexNet. MobileNet was deploeyed by
Yang et al. [94], Choudhary et al. [99], Bhusal et al. [84].
In several approaches multiple architectures were tested and
compared in the reviewed articles. Irrespective of whether
pretrained architectures are used or not, large training data
sets are required. These must reflect the natural diversity of
attributes of the species being classified, as the performance
of classification algorithms is restricted by the the tendency
of the machine learning model to overfit the training
data [42]. In the reviewed articles, commonly between 60 and
80 percent of the data is used for training the model and 10 to
20 percent for validation, see Table 8. In these processes, the
parameters and hyperparameters are adjusted and the model
is adapted and fitted [72], [88]. The amount of data used
to test the model also differs between the articles. Test data
(Column 6, Table 8) marked with an * are not part of the
total data set (Column 3) and were reported separately by
the authors. The test data set is unknown to the model or is
unseen. It is used to evaluate a final model and its fit to a
training data set in an unbiased approach [92].

3) PRE-PROCESSING
The main data input of the analyzed works is based on audio
data. In total, 22 papers considered Passive AudioMonitoring
(PAM) as a suitable method for data collection (Tab. 9),
although not every approach actually followed a realistic
recording approach in the wild. Similarly, with nine papers
not even half as large, image input has partially initiated
through realistic contexts but also via pre-annotated data sets.
Only two paper considered a combined approach of collecting
both, audio and image data, while one paper recorded video
data which is then converted to imagery input.

However, most papers share the same pre-processing
approach of collected data to gain comparable visual features.
Regarding the corresponding audio data this is mainly done
by converting the collected audio input into visual spectro-
grams, hence, using spectral data of which visualizations are
easier to interpret. Thus, in total 23 papers rather consider
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TABLE 8. Summary of the ML data samples by approaches.

FIGURE 6. Data input source and further (pre-)processing.

visual elements for bird identification which in fact means
that only eight of 22 papers considered a further audio
processing of already collected audio data (or combined
data), which is mostly done with a further processing of
the mel spectrum to corresponding Mel-Frequency Cepstral
Coeffcients (MFCC) (Fig. 6). Both pre-emphases enable
the researchers for the amplitude calibration of audio

TABLE 9. Transformation of input data for further (pre-)processing.

signals according to different frequency bands and thus to
standardize and prepare the data for further processing.

A common issue of audio recordings in the field is the
differentiation of requested bird sounds with environmental
signals or overlapping sounds of other animals and birds.
Some analyzed papers only used high quality input data
with a high Signal-to-Noise ratio (SNR) [73], [79], yet,
this is usually not the case when relying solely on field
data. Hence, there is the need to first standardize the
collected data to equal file parameters (e.g. WAV format),
and subsequently discriminate noise from bird syllables. This
is commonly handled with a de-noising process to reduce
background information to a minimum (Fig. 7). In detail,
there are approaches that focus on the filtering of given audio
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FIGURE 7. Processing of raw audio data.

signals, e.g. by setting frequency thresholds that exclude
usual background noises [70], [74], [75], or by determining
frequency ranges or other specific features that approximate
to corresponding bird features [93], [96]. Another de-noising
approach is the use of a spectral representation of the
environmental noise, which is then subtracted from the audio
signal to get an adjusted and de-noised presentation of
corresponding bird syllables [71], [81]. Both approaches then
further allow for the segmentation of relevant amplitudes
by extracting these bird syllables from irrelevant sound
elements that have the potential to positively influence
misinterpretations (Fig. 7).

In a following step, the audio signals are commonly
converted to spectrograms (Fig. 10), usually with the use
of Fourier Transformations (Fig. 8). The most common
algorithm within the analyzed papers is the Fast-Fourier
Transformation (FFT), but also other variations such as
Short-Time Fourier Transformation (STFT), Discrete-Fourier
Transformation (DFT), and Discrete-Time Fourier Trans-
formation (DTFT) have been used (Tab. 10). All have in
common the transformation of large amplitude and and time
dimensions of wave forms to its frequency components in
Hertz (Hz) across time. While wave-visualizations depict
the development of amplitudes (Y-axis) over time (X-axis),
Fourier Transformations are capable of expressing the total
magnitude (Y-axis) across the frequencies (X-axis) (Fig. 8).
The higher the magnitude, the higher the relevance of this
tone being a relevant pattern in bird detection.

In contrast to wave forms, frequency spectrograms then
express the frequency at specific time points instead of
the amplitude. Displayed colors, which in fact are spectral
expressions of the audio signals, visualize with the level
of brightness the availability and intensity of specific
frequencies (Fig. 10). The advantage of these representations
is the superior ability to detect and analyze varying patterns
such as timbre and pitch of the bird syllables and thus its

TABLE 10. Used Fourier Transformations.

FIGURE 8. From Wave-forms to Fourier Transformations.

FIGURE 9. Mel Scale.

suitability for the classification of birds with an enriched
visualization of the sound’s structure.

A following procedure in our reviewed literature is then the
use of Mel-Spectrograms (Tab. 11), which is the depiction
of the time opposed to mel, instead of the frequency. Mel
(m) is characterized as a logarithmic transformation of the
frequency (f) in Hz:

m = 2595 · log10 (1 + f /700)

⇐⇒ m = 1127 · ln(1 + f /700) (1)

The mel scale expresses the human perception of tone,
which deviates from linear spectrograms as seen before. The
higher the frequency in Hz, the worse the human capability
to acknowledge this difference in frequency (Fig. 9).

Thus, the difference between a linear spectrogram and
a mel spectrogram is the logarithmic transformation of
the linear frequency, making the latter better suitable
for comprehending and analyzing changes in frequency,
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FIGURE 10. Processing of audio data to Mel-Spectrograms (source [42]).

due to the integrated colors visualizing the intensity of
tone depending on the human’s ability of acknowledging
frequencies (Fig. 10), which explains its common use within
our analyzed papers.

A further Discrete Cosine Transform (DCT) is then applied
to obtain the Mel-Frequency Cepstrum, which is built of
Mel-Frequency Cepstral Coeffcients (MFCC). This approach
has been been a standard in speech and audio processing
for some time [107], and is also the dominant described
procedure in our analyzed literature (Tab. 11). In contrast to
a mel spectrogram, the mel cepstrum is a compromised and
less complex depiction of the audio signals, which allows for
a streamlined analysis of underlying vectorized numeric data.
This enables to finally detect distinguishable sound patterns
out of the feature vectors. The corresponding visualization
shows accordingly a reduced heatmap containing only the
audio’s main components such as pitch, timbre and sound
energy (Fig. 11). De-Noising and Segmentation procedures
can be also applied to (Mel-) spectrograms and MFCC.

On the other hand, image data is usually pre-processed by
scaling the images to identical dimensions, hence ensuring
a better comparability and thus a better performance of
the learning processes. Moreover, visual features have been

TABLE 11. Described Mel Approaches.

FIGURE 11. From Mel-spectrograms to MFCC (source [81]).

selected on basis of color specifications (e.g. RGB, HSV,
YUV) and/or on dimensions of semantic bird elements, such
as head, body, tail, beak and eye, as well as the distances
between these elements. Similar to the processing of audio
data, deviating color segments can be extracted from the
image background to analyze distinguishable visual features.
This is done by removing small stripes from the border of
the images, in case the bird is captured in the center of the
picture [76]. These outer stripes, which make roughly 2 to
10 per cent of the picture, are being analyzed with color
histograms for each base color (e.g. RGB: Red, Green, and
Blue). Also other specifications such as density and saturation
can be taken into account. This allows for detecting the
color intensity within each pixel. The counting of pixels with
specific color intensities then enables to describe the color
distribution of the total image. Hence, the cropped outer
stripes with their specific color distributions can be labelled
as background, which allows to detect other background
parts with similar pixel intensities and color distributions
in the remaining image. Thus, other distinguishable parts
can be labelled as bird, which then can be cropped from
the unnecessary background and used for feature extraction
(Fig. 12).
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FIGURE 12. Processing of image data (image source [105]).

The features themselves can be based again, either on
color distributions, on distinguishable parts of the bird, or a
combination of both (Fig. 12). The color histograms of the
bird itself can serve as feature vectors in a binning process
that categorizes specific color distributions, hence to detect
whether the bird contains rather red, green or blue pixels.
Pre-annotations of these categorizations than help to classify
birds with similar colors accordingly [76], [98]. Another
feature extraction method is the selection of key parts of
the bird. This can be done as a solitary feature extraction
process [91] or in combination with a color detection process,
for instance to approximate the correct classification with
the use of diverse features in a decision tree [98]. Especially
head, beacon, eye, trunk and tail are often claimed as decisive
parts of birds that are suitable in a classification process.
Dimensions of these parts, such as length, height and weight,
are considered as unique elements of specific birds species
and thus taken into account when categorizing detected birds.
The distances between these elements are further detected to
draw conclusions on body shape and total dimensions of the
bird, enabling to classify the correct species.

4) MACHINE LEARNING MODELS
The data that has been pre-processed needs to be fed into a
machine learning model in order to train classifiers that allow
for the later identification of birds and other flying animals of
the avifauna. Table 12 summarizes the analyzed approaches
and their selected machine learning models for training these
detection classifiers.

It becomes apparent that the most popular model by
far is the Convolutional Neural Network (CNN) with

TABLE 12. Used Machine Learning models.

23 applications out of thirty-two possible approaches. It is
followed by the traditional Support Vector Machine (SVM)
which only is used by 7 approaches, the k-nearest Neighbour
(kNN) algorithm with 4 uses, and the Random Forest (RF)
approach with 3 overall uses. Although, there are approaches
that also use other machine learning models, these methods
are not often used overall (two applications at most). Further,
it seems that the majority of the literature only considers one
machine learning model for their solution. However, some
papers survey multiple approaches such as [85] and [83].

In the following we will elaborate based on the most
common four models, how the analyzed works deal with bird
detection classifier training.

a: CONVOLUTIONAL NEURAL NETWORKS
A convolutional neural network (CNN) is a type of deep
learning neural network that is commonly used for image
classification tasks because of its specialization in processing
data that has a grid-like structure [42]. The basic building
block of a CNN is the convolutional layer. The convolutional
layers are made up of a number of neurons, which are
connected to small regions of the input image in a way that
allows them to detect specific features. Each convolutional
layer contains a number of kernels, which are used to scan
the image and detect features. These filters are used to
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extract features from the image, such as edges, textures, and
patterns. The output of the convolutional layer is then passed
through a non-linear activation function (e.g., a ReLU), which
introduces non-linearity to the network and allows it to learn
more complex features [77]. The output of the activation
function is then typically passed through a pooling layer,
which reduces the spatial dimensions of the feature maps
(i.e., reducing the image resolution), making the network
more computationally efficient and allowing the network
to identify more abstract features in the data, rather than
just the individual pixels [85]. Once the convolutional and
pooling layers have been applied, the resulting feature maps
are then passed through fully connected layers, which use
the extracted features to make a prediction about the class
of the input image. In the case of bird classification, the
CNN is typically trained on a dataset of images of birds
or spectrograms of their vocalizations, with each image
being labeled with the specific species of the bird that
is depicted [82]. During training, the CNN thus learns to
recognize the features that are unique to each species of bird,
such as the shape and color of the beak or unique peaks in
frequencies of their calls, and so on [97]. Once the CNN has
been trained on its training dataset, it can then be used in
the field to classify birds, by comparing the features that it
extracts from the field data to the features which it has learned
during training [84].

b: SUPPORT VECTOR MACHINES
Support Vector Machines (SVMs) are a type of supervised
learning algorithm that can be used for classification and
regression tasks. It is an algorithm designed to find the
maximum margin hyperplane which best separates classes
of data [77]. Hereby, the hyperplane is a decision boundary
that separates the different classes of data by finding the
maximum margin (i.e., distance) between the closest data
points from either class. During the training phase, the SVM
algorithm finds the hyperplane that maximally separates the
data points of different classes (i.e., the maximum margin
hyperplane) by maximizing the margin between the closest
data points of different classes, known as support vectors [76].

In the case of bird classification, the SVM algorithm of
the analyzed approaches is usually trained on a dataset of
images of birds or their vocalization spectrograms, being
labeled for the species that is represented by it. During
the training phase, the SVM algorithm finds the hyperplane
that best separates the different classes of birds based on
their features [42]. Analyzed approaches hereby use the so
called ‘‘kernel method’’: The algorithm transforms the input
data into a higher-dimensional space where a linear decision
boundary can be found [77]. This transformation is done by
using kernel functions that help classifying data that is not
linearly separable by taking the input data and mapping it
into a higher dimensional space where it becomes linearly
separable [42]. The kernel method therefore allows the SVM
to separate the data even if it can’t be separated by a straight
line or a plane in the original input space. Commonly used

kernel functions by our approaches are linear, polynomial and
radial basis function [42], [76], [77], [85].

After finding the optimal decision boundary in training,
this boundary can then be used to classify new data
points in the categories (usually for a binary classification
task) [42]. In the bird detection task, the trained decision
boundary hereby is used to classify images of birds or their
vocalizations that were obtained in field recordings (and
not used for training) by determining which side of the
hyperplane the new data falls on.

c: K-NEAREST NEIGHBOUR
The K-Nearest Neighbors (kNN) machine learning algorithm
is a type of supervised learning algorithm that can similarly be
of use for classification and regression tasks. The basic idea
behind kNN is that an object can be classified by a ‘‘majority
vote’’ of its k nearest neighbors, where k is a pre-specified
parameter by the user which set up the model [77]. The
algorithm works by storing all the training data, and when
a new object needs to be classified, the algorithm finds the
k training objects that are closest to the new object, and the
new object is assigned the class that is most common among
those k nearest neighbors [83].

Training a kNN algorithm is done by storing the training
data and its corresponding labels (i.e., classes like the
different bird species) in the memory [95]. This means that
in comparison to the previously mentioned models, the kNN
algorithm does not learn a model; Instead, it simply stores
the training examples in memory, along with their features
and corresponding labels. The algorithm learns the features
of each class by analyzing the characteristics of the training
examples that belong to that class (e.g., the vocalization
features of bird species or their colour and beak) [95].

When new birds (i.e., field data) need to be classified, the
kNN algorithm then compares the features of the new data to
the features of the data in the training set. Subsequently, the
algorithm then finds the k training data entries that are closest
to the new image based on a distance metric and the new
entry is then assigned the class that is most common among
those k nearest neighbors [42]. In our analyzed approaches
common metrics for the distance were the Euclidean distance
or Manhattan distance [77], [95].

It is worth emphasizing again, that since a kNN is a simple,
memory-based algorithm, it does not make any assumptions
about the underlying probability distribution of the data (i.e.,
builds a model). In essence, this means that it does not make
any assumptions about the functional form of the relationship
between the input and output variable as other machine
learning algorithms tend to do (e.g., neural networks).

d: RANDOM FOREST
Random Forests are ensemble machine learning algorithms
that can, as the previous three algorithms, be used for
both classification and regression tasks. Ensemble machine
learning algorithms work by combining the predictions of
so called ‘‘base models’’ (in the case of Random Forests:
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multiple decision trees) to improve the accuracy and stability
of the overall model [70].

In the Random Forest model, a decision tree algorithm is
used to split the data into smaller subsets based on a set of
rules. Each split is based on a specific feature of the data, and
the goal is to create a tree structure that separates the data
into different classes as accurately as possible [93]. However,
decision trees have the tendency to overfit the data, meaning
that they can perform well on the training data but perform
poorly on new, unseen data.

Random Forest address the problem of over-fitting in
individual Decision Tree classifiers by creating multiple
decision trees and combining their predictions, whereby each
tree is created using a different subset of the training data
(chosen at random from the superset of total data) [93]. The
final prediction is made by averaging the predictions of all the
trees, which reduces the variance of the model and improves
the stability and generalization of the model.

In the analyzed approaches Random Forest algorithms are
trained on a labeled dataset of bird data, with each labeled
corresponding to the specific species of the bird which is
represented in the dataset [85]. As previously explained,
the Random Forest algorithm creates multiple decision trees
during the training phase. Each decision tree hereby using a
different subset of the training data superset.

The algorithm learns the features of each species of bird
and once the Random Forest algorithm has been trained, its
splitting rules can then be used as classifier to categorize
new bird data by averaging the predictions of all the decision
trees [42].

5) OUTPUT DATA
To evaluate the performance of different recognitionmethods,
it is necessary to define uniform evaluation metrics. The
most commonly used evaluation metrics were assembled by
Xie et al. [42] and are presented in this section.

The prediction results from a binary classification model
for a specific class or species can be divided into four
categories: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). These categories are
the numerical basis for the calculation of several evaluation
metrics. A TP result means, that the classification of
the species or class was performed correctly. A TN case
identified an other class as an other class accurately. In FP
or FN cases the classified object and prediction do not align.
A falsely classified other species for the species indicates a
FP event. In a FN case the species is mistakenly categorized
for another one [42].

The accuracy of a model is the ratio of TP results and the
total sample size, therefore the accuracy refers to the correctly
identified cases ([TP+TN]/[TP+TN+FN+FP) [42]. The
precision incorporates all predictions which are correct
(TP/[TP+FP]). The ratio of the number of samples correctly
predicted by the algorithm as the species to the sum of
samples of the species [71]. The metric evaluates the models
ability to correctly predict a class [42]. How accurate a

model can categorise a class is described by the recall
measurement (TP/[TP+FN]). It is calculated as the ratio
of samples correctly predicted as a class to all samples
recognized as this class [88]. However, the precision and
recall are mutually exclusive, meaning that when one value
increases, the complementary value decreases. Therefore
the Fn Score (2*[[Recall*Precision]/[Recall+Precision]])
merges the summed average of precision and recall to
evaluate the performance of the model conjointly [88].
A larger Fn Score implies greater performance, whereas
n indicates the weighted ratio of recall and precision,
calculating the bias towards the recall value [42].

In multi-class classification, common metrics us the
average or sum of calculated values. The average precision is
adapted from the prediction-recall-curve-integral, measuring
the weighted sum of precisions. While the mean average
pecision (MAP) averages the recognition accuracy of all
target classes or species divided by the number of them,
to evaluate the overall accuracy of a classification model [71].
Another performance evaluation measurement is the integral
of the Receiver operating characteristic graph (AUC). When
the horizontal axsis is defined by the FP rate and the vertical
axis by the TP rate of the model, a value closer to 1 or 100%
depicts a better recognition performance. Values below 0.5 or
respectively 50% represent no classification abilities [42].

The most widely reported measurement in the reviewed
articles is the overall accuracy of the model or for specific
classified species. Table 13 shows the classes or number
of species (Column 2) of the reviewed article, as well as
the achieved accuracy (Column 3), precision (Column4)
and other performance metrics of the different approaches,
if provided by the authors.

Table 13 demonstrates varying performances among the
reviewed models. In some cases, very robust models were
developed which achieved a high level of accuracy even
with a large number of different species or classes to
be distinguished of, see Sharma et al. [73], Li et al. [91],
Yang et al. [82] and Choudhary et al. [99]. Strikingly, the
classification accuracy of a model can vary greatly
between different avifauna species to be categorised.
Particularly high precision rates were achieved by the
models from Hidayat et al. [81], Huang and Basanta [88],
LeBien et al. [71], Tivarekar and Virani [90].

Different evaluation metrics, suitable for the individual
recognition scenarios of avifauna, depending on the chosen
machine learning algorithm and the complexity of the input,
are inevitable [42]. However, the absence of result standards
and performance evaluation makes it difficult to compare
different recognition machine learning approaches.

6) ACTUATORS AND ACTIONS
Most papers position their work by emphasizing the impor-
tance of avian bio diversity. Accordingly, several papers
justify their research goal as the need for a solution for
avian surveillance, and, respectively, opportunities to count
and track bird populations that are threatened by extinction.
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TABLE 13. Performance metrics.

With this goal in mind, there is great agreement as regards
the benefits for ornithologists, however, although possible
mobile or other front-end solutions are often claimed as
future opportunities, there are only few papers that propose
a manifest solution.

A basic solution was presented by Ruff et al. [92], who
created an R-based graphical interface that allows biologists
and managers to independently generate spectrograms from
audio data and thus classify the species of interest in
combination with the locality of the recording. This system is
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able to process 100h of audio data within one hour, enabling
biologists via portable solutions or desktop applications to
track birds with usual-performing personal computers and
minimal delays.

Similarly, Chandu et al. [72] have designed a graphical
user interface (GUI) to operate in real-time the underly-
ing processes from recording in real environments over
ML procedures and data processing to the displaying of
results, especially for ornithology purposes. Further mobile
solutions as well as their usage combination in ecological
park and bird sanctuaries have been proposed as future
work.

Ragib et al. [87] also have developed a web-based API
service website that enables users to upload bird images.
Hence, the underlying deep leaning model predicts and
classifies the bird species, which is subsequently presented
to the user again. Yet, the purpose of this web deployment
was still focused on testing the robustness and compatibility
of underlying model and not to serve as an action-oriented
and problem-solving tool.

In contrast, Nagy et al. [43] have implemented a Power
Bi dasbhoard that enables the user to finetune parameters,
monitor the system and analyze or download resulting
data. In addition, this approach includes the possibility of
automatic responses via SMS or e-mail. Thus, this is the only
paper that has shown the capability of an automatic reaction
based on an event that has been determined as significant in
advance.

Next to general bio diversity purposes, only few papers
meet the goal of this review to present the tension between
the energy transition and the protection of avifauna. And
if they do, they barely go into detail. For instance,
Boudaoud et al. [86] have claimed the need to protect marine
birds due to the increased amount of wind energy plants.
Others have also mentioned similar situations in which birds
are endangered, such as in the vicinity of airports [74],
[90]. However, although there are approaches to detect and
measure bird populations, none of these provide an action-
oriented, specific solution that contains an approach to avoid
corresponding damages.

V. DISCUSSION
A. USING MACHINE LEARNING FOR BIRD DETECTION IN
WINDFARMS
Birds are an important but vulnerable component of ecosys-
tems and are subject to protection underpinned by European
conservation law [37]. Due to the increased development
of renewable energies, specifically wind energy in many
regions, the habitats of birds are increasingly influenced
by the synthetic generation structure. While many causal
connections are still uncertain, it is important to leverage the
existing technological possibilities to minimise the impact on
the environment and the causalities of avifauna. As a result,
the energy transition can be accelerated if the approval of
wind turbines can be facilitated in the future through accurate
protection options for birds and bats. This makes it feasible

to interlink climate mitigation strategies with biodiversity
conservation [16], [38], [41].

However, the issue of balancing the protection of avifauna
with the expansion of wind power in highwind potential areas
remains unresolved due to the lack of reliable and automatic
methods to prevent birds from flying into the dangerous
area of the rotor blades, respectively collusions of avifauna
and wind turbines [16], [41]. The use of a reactive agent in
the form of a machine learning approach that performs bird
detection, recognition and initiation of countermeasures (if
necessary), offers a first, potentially effective and efficient
solution to address this problem.

Our findings suggest that the required main components
for such a systems are sensors, pre-processing techniques,
a machine learning algorithm, and actuators. Theworkflow of
such systems follow the reactive agent model, where informa-
tion about the environment is extracted and transformed into
data by sensors, processed into input data for the machine
learning algorithm, and then analyzed by the ML model. The
outputs of the ML model which are realized by actuators and
passed on as actions influence the environment.

The first step in setting up such a system should be
considering in what environment this systemwill be deployed
and the pre-requisites that the ML algorithm will need to
account for when making its prediction. The environment
heavily influences the choice of a suitable approach. There
are mainly two approaches that can be followed: passive
acoustic monitoring and passive visual monitoring. Usually
visual sensors are preferred because they can concentrate
various information in a single image and are thus very
efficient. However, if there is the possibility that the image
quality may be too low for the task at hand or that other
environmental influences such as obstructions prevent images
from being useful data [16], audio-based detection might be
a suitable solution in individual use cases. Although, there
are approaches that employ both techniques simultaneously,
their results generally do not yield significantly better
performances [73].

The sensor data type (i.e., audio or visual), however, does
not influence the choice of machine learning algorithm.
It is customary to transform every input data type into a
visual representation via Mel spectrograms, followed by
the application of an image detection ML algorithm on
the processed data. The most preferred choice due to high
performance is to use a pre-trained CNN model (such as
VGG-16, VGG-18, and ResNet-50) via transfer learning,
instead of building a custom model from scratch. However,
the input data type influences on what type of data the ML
model needs to be trained (i.e., does it need to recognize
pictures of birds or frequency spectrograms). The data
which is used for this training is usually pre-processed
according to its signal-to-noise ration to obtain ‘‘clean’’ data
which the algorithm can process. Some approaches consider
training the algorithm also with noise data so that it can
later differentiate between object and noise which improves
results.
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If the model has been trained sufficiently, its generated
classifier rules can then be used to detect and classify birds
in the real environment with a confident to high accuracy
(approx. 80% − 90%), see Table 13.

This general workflow represents a simple but yet powerful
application of machine learning when combined with actions
that are derived from the output of the model. Once the
algorithms have been trained, they can then be used to
monitor the surrounding area for bird activity. If birds are
detected in the vicinity of a wind turbine, the machine
learning system can then trigger countermeasures, such as
stopping the turbine within a short amount of time or
redirecting the birds away from the blades through the use
of deterrent mechanisms such as noise or light pulses [38],
[39]. The key advantages of using machine learning for this
use-case is that it can be performed in real-time, meaning that
countermeasures can be activated before the birds reaches
the dangerous area of the blades. This significantly increases
the chances of avoiding collisions and reduces the risk to
avifauna [16], [41].

The countermeasures could incorporate

• Turbine shutdown: The machine learning system can
trigger the shutdown of a wind turbine when birds are
detected in its vicinity. This prevents the birds from
flying into the blades, getting hit by them and therefore
eliminates the risk of collision.

• Acoustic deterrents: Acoustic deterrents are devices that
emit high-pitched sounds that are designed to scare away
birds. These deterrents can be triggered by the machine
learning system when birds are detected in the vicinity
of the wind turbines.

• Visual deterrents: Visual deterrents are devices that use
flashing lights or bright colors to scare away birds. These
deterrents can also be triggered by the machine learning
system when birds are detected in the vicinity of the
wind turbines [16].

In summary, machine learning models for bird detection
paired with countermeasures provide a way to balance
the tradeoff between expansion of wind farms and the
preservation of avifauna by detecting birds and flying
animals before they reach the danger zone of rotor blades
and initiating counter measures to prevent collisions. This
application of machine learning, therefore, may offer a way to
contribute to the energy transition, prevent deadly interven-
tions into the nature. In contrast to nuclear and coal power
generation, the impact of wind energy is disproportionate,
despite the high level of criticism. Regardless of whether
total fatalities or mortalities relative to the power produced
are compared, over 14 times as many avian individuals
are killed through fossil fueled power generation, without
exploitation of bird detection systems. The integration of
such systems should further increase the difference and
highlight the environmental compatibility of wind energy
in contrast to previous fossil-fuel dominated generation
portfolios [108].

B. CHALLENGES AND LIMITATIONS
As regards the completeness of analyzed papers it is
striking that the use of sensors is a scarcely presented
information. Often, the input data is based on given data sets
recorded in the past, which lacks comparability regarding
the performance of different sensors and neglects technical
sensor improvements over time. Additionally, several works
reduce their analysis on high-quality data which prevents
an interpretation of the sensor’s performance within realistic
use cases. Hence, in combination with used input data it
remains unclear, whether an environmental recording of
audio is suitable to combine with high-volume sounds that are
usually emitted by wind turbines and air planes. Therefore,
a remaining question is as to whether technical noises
would disturb the collection of data and thus the acoustic
classification of birds in the specific use case, for instance
within wind parks.

Another aspect that must be considered in the compatibility
of acoustic detection in the wind energy sector use case is
whether this approach can be implemented at wind turbines
at all. The articles reviewed are largely related to habitat
assessment, including ground-level fields or forests, for
example, with good opportunities for sensor placement in a
task-appropriate manner. However, wind turbines are usually
located in a dispositional manner, birds that reach the height
of the rotor blades and enter the flapping zone of wind
turbines often have a different behaviour. The avifauna often
does not stay stationary in this area, but rather crosses it
when hunting or flying a longer distance [39]. It is unknown
whether the birds emit enough vocalisations (songs, calls)
during flight to be able detect a signal. In addition, there
might exist strong variations between species if and when
they sing or emit a warning call [90]. For example songbirds
emit significantly more vocalisations than other species like
birds of prey. Whose population is more sensible to fatalities
due to smaller reproduction rates [38]. Thus, possibly only
very inefficient acoustic approaches could be implemented
in the wind sector, with high accuracy variability between
classes. Moreover, birds must be detected in sufficient time,
i.e. from a certain distance, to be able to activate the deterrent
measurements safely [16]. In addition, acoustic systems have
a weaker scalability compared to visual systems. Due to
regional dialects, models may have to be adapted to the
region of operation and trained in order to function efficiently,
as realitymay deviate from the trained laboratory condition of
the algorithm [101], [102], [103]. In contrast, visual semantic
components vary with season, gender and age, but usually
remain the same within a class [76].

Therefore, although audio detection is on of the most
prominent approaches of bird classification and may have
proved its performance, this might be nevertheless an
unsuitable approach for the targeted protection of many
bird species in areal zones around wind rotor blade zones.
In addition, bird species usually are located to their specific
home habitats, which raises doubts whether acoustic learning
allows for the global scaling for diverse species [101]. Thus,
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it is unclear, whether a visual approach might be better
suitable for the detection of a bird in general (e.g. due to
its wingspan), without the limitation of the detection of
an unknown bird sound that prevents the assignment to its
correct cause. Also, seasonal habits of specific birds, such
as migrating species, are not specifically considered in the
analyzed papers [39].

Another issue is the compilation of different performance
indicators across all papers. Although there are several
papers that have selected similar approaches to measure the
accuracy of bird classification, many have chose distinct
metrics [42]. The lack of comparability prevents an per-
formance analysis across papers and thus the identification
of the most promising bird detection systems within wind
parks. Thus, an important question is, on what performance
indicators researchers and practitioners want to agree on.
Also other indicators as computational times are neglected
so far. The needed time to classify an object is crucial to
activate the deterrent measurements to prevent a collision
accordingly. This question becomes even more relevant when
considering political gatekeepers for the implementation
of corresponding ML approaches. Only commonly defined
performance indicators enable a goal-oriented work on
specific thresholds and accumulate academic potentials
for the improvement of accuracy rates and computational
times [12], [16].

Although many approaches do not yet produce sufficiently
robust classification results, the majority of the reviewed
papers addresses the complex application of classifying
avifauna explicitly into species. The sole detection of
avifauna to activate deterrent mechanisms is less complex
and already achieves accuracies of up to 100% [88]. A less
advanced stage would be the categorisation of different birds
according to their size. Though a consensus would have
to be established on which birds are worthy of protection
and to what extent, and which deterrent mechanisms are
the most efficient for them. It would furthermore make the
development and implementation of such systems easier if
standards would be achieved of which mechanisms may be
implemented under what conditions [12], [16], [38].

Similarly to the little content provided about sensors,
the depth of actuators and actions as regards this review’s
aim is barely given. Within the analyzed papers there
are few proposed systems to measure the evolution of
bio diversity and perhaps even the contradictory effects
of wind turbines, but solutions are still lacking to avoid
corresponding damage on avifauna, thus combining the
interests of ornithology and the energy transition. Although
the risks and dangers are known and mentioned partially,
there is no approach providing specific actions such as
shutting down and restarting wind turbines, or the emission of
acoustic deflection signals. Hence, a usable implementation
in areas where birds are endangered is still not provided.
Nevertheless, the measure of the evolution of bio diversity
needs to be expanded since there is still no common data base
regarding real impacts of wind turbines on avifauna [12].

Other issues are completely neglected such as the invasive
influence of wind turbines in general. Wind turbines change
environmental landscapes and therefore habitats. Some
predators in particular utilize the area around wind turbines.
The surfaces around hubs is usually flat and trimmed,
therefore prey is nicely visible for the predators and might
form a great hunting opportunity. In the past, it has been
observed that birds of prey in particular can learn to
recognise, circumvent and exploit wind turbines which might
lead to a increased accurance of some birds around wind
parks [39]. In contrast, birds of prey in particular may be
caught by wind turbines [38], as their natural head shape
means that they do not look forwards when flying, but
downwards and therefore do not see the turbines [12], [16].

C. FUTURE RESEARCH OPPORTUNITIES
Based on the challenges and limitations there are several
opportunities for future research:

• Realistic field studies: Studies so far limit their research
mostly to pure machine learning processes. Realistic
settings, including the test of different sensors and
considering the disturbing noise influence of wind
turbines are needed to allow interpretations regarding
the suitability of a holistic system. Specific use cases,
such as the attachment of sensors on wind turbines
further allow to derive conclusions on different system
ingredients, such as the used input data, pre-processing
methods and ML approaches.

• Commonly accepted performance indicators:Diverse
performance indicators prevent the possibility to
compare different studies so far. Researchers and
practitioners need to agree on the most suitable
performance indicators in combination with wind parks
accordingly. In a transit phase, this possibly raises
the need to contrast different approaches and debate
about benefits and disadvantages of these indicators.
Other indicators then need to be implemented, such
as computational times, that not only measure the
pure accuracy, but further influence real collision
outcomes. Strong performance indicators as well as the
presentation of a working, holistic system are crucial to
persuade political gatekeepers.

• Academic collaboration with biology sciences: Many
biologic questions are still unclear, such as when and
why specific bird species communicate, the conse-
quences of migrating birds and the behavior of birds
in the vicinity of wind parks. A deep knowledge of
biologic and anatomic states is needed to understand
bird behavior and derive countermeasures of endangered
birds in the vicinity of wind turbines. Hence, biologic
know-know should be integrated to discuss avoidance
strategies that are both, technically effective and biolog-
ically appropriate.

• Practical cooperations: Although there are many
approaches that are able to assess the evolution of
avifauna as an outcome of possible collisions, avoidance
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strategies are not tested so far. In combination with a
common approach tomeasure bird populations, different
opportunities such as the shut-down of wind turbines,
acoustic and visual deterrents need to be tested in
corporation with wind turbine managers to measure
real-setting effects of these avoidance strategies. Possi-
ble unknown (and maybe invasive) side effects of those
strategies as well as economic and biological outcomes
then can be estimated.

VI. CONCLUSION
In light of the increasing global impacts of climate change,
it is necessary to keep up with the energy transition and its
goals to move towards more emission-neutral and renewable
energies. Thereby, it is imperative to make use of all types
of green energy sources that are available in order to keep
up with the growing demand for energy from industries and
private households.

Wind energy is a rapidly growing source of energy, and
next to hydropower and solar energy, the most commonly
used form of renewable and sustainable energy generation.
Nonetheless, the expansion of wind farms in regions with
significant wind energy potential has stalled due to rightful
concerns about adverse impacts on the avifauna. For instance,
birds are impacted by the rapidly rotating blades of wind
turbines. This circumstance leads to a paradoxical trade-off
between facilitating the energy transition, whose goal is to
preserve our environment, and the detrimental effects on the
same environment it seeks to preserve.

This trade-off between the expansion of renewable ener-
gies and adverse effects on the environment necessitates
a way to detect flying animals before they reach the
danger zone of the rotor blades and to develop appropriate
measures to deter them from flying into this area and,
subsequently, prevent collisions. Such approaches should
work automatically and with high reliability, which implies
the use of automated machines that can recognize birds and
initiate countermeasures in parallel. In this regard, machine
learning applications might constitute a viable way to resolve
this problem. However, no work has systematically analyzed
this solution approach yet. Thus, knowledge and insights
about design choices, advantages, and limitations are scarce.

Consequently, our research objective was to analyze
the body of informatics-related literature in this area of
research. We found various works that cover machine
learning algorithms for detecting and classifying birds and
bats. Although some papers consider the possibility of using
these technical artifacts in an application, such as detecting
and preventing bird collusion in wind parks, none implement
and test such an application. Nevertheless, machine learning
algorithms offer the desired properties of high automation in
combination with high accuracy, leaving plenty of room for
further work to design systems around these artifacts.

While the algorithms are essential for the solution
approach, more components need to be considered for a
working system that enables this approach. The reactive agent

model provides a common framework for components that
machines need to interact with the environment in which they
have been deployed and in which they should perform their
task. Besides the machine learning algorithms, such a system
needs sensors and actuators to receive perceptions from
the environment and execute follow-up actions. These two
system components are currently significantly understudied
and require more attention from scholars and practitioners
alike.

We, therefore, conclude this work with a call for action.
In order to facilitate the energy transition effectively, we need
to make the most of the renewable energy sources available
to our society while still preserving the environment, which is
the foundation of our very existence. Machine learning-based
approaches can help to achieve this goal; however, further
work and insights from the surrounding components (i.e.,
sensors and actuators) are needed in this context. The research
gaps that have been revealed demand collaboration between
specialists in sensors, actuators, and machine learning
algorithms, as well as wind turbine operators, policymakers,
ornithologists, and other stakeholders in a trans-disciplinary
manner to shed light on the journey from our current fossil
fuel-dependent society to a future that is more sustainable.
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