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A B S T R A C T

Estimation and approximation are essential parts of the history of
electronic computing, especially in simulation and games. In this
work, we present two new approaches to problems that are not solv-
able in real-time by the methods normally used, and show how our
approaches achieve this in a scalable way with minimal constraints,
as well as incorporating GPUs for computation. First, we establish
a method that enables real-time volume scattering in multilayer ma-
terials for entertainment and medical applications. Second, one that
enables the computation of paths for a variety of agents with minimal
precomputation for entertainment technology and simulations, also in
real-time.

Z U S A M M E N FA S S U N G

Näherung und Schätzungen sind wesentliche Bestandteile der Ge-
schichte der elektronischen Datenverarbeitung, insbesondere im Be-
reich der Simulation und der Spiele. In dieser Arbeit stellen wir zwei
neue Ansätze für Probleme vor, die mit den normalerweise verwende-
ten Methoden nicht in Echtzeit lösbar sind, und zeigen, wie unsere
Ansätze dies auf skalierbare Weise mit minimalen Einschränkungen
erreicht sowie GPUs zur Berechnung einbezieht. Zum einen etablieren
wir ein Verfahren, das Volumenstreuung in mehrlagigen Materialien
für Unterhaltungstechnik und medizinische Anwendungen in Echtzeit
ermöglicht. Zum anderen eines, das die Berechnung von Pfaden für
eine Vielzahl von Agenten mit minimaler Vorberechnung für Unter-
haltungstechnik und Simulationen ebenfalls in Echtzeit ermöglicht.
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1
I N T R O D U C T I O N

Many successes in computer history can be attributed to approxima-
tions and estimates. The very basis of many calculations, the floating
point numbers, are inherently imprecise. The finite element method, to
name a well-known method that was developed long before the inven-
tion of the computer, made today’s means of transportation possible.
The field of computer games has greatly benefited from approxima-
tions. Inaccuracies were of little consequence on the way to today’s
photorealistic computer games, and a simplified representation did
not detract from the gaming experience. In turn, computer games have
contributed to the further development and widespread distribution
of computers. Contrary to earlier predictions, households now own
dozens of computers.

1.1 time critical components in computer games

Nowadays, there are usually three time-critical components in com-
puter games: Graphics, pathfinding and physics, where pathfinding
is usually grouped with behavior as AI. All of these components can
have a direct impact on the quality of gameplay. Like physics, graphics
performance is crucial for a realistic perception of the game world,
while pathfinding is crucial for the game characters’ ability to navigate
through complex game environments. The more complex and detailed
the game environments become, the more difficult it is to optimize
graphics and pathfinding.

1.1.1 Approximations in computer graphics

In addition to the fact that raster images are estimates due to their
resolution and meshes are approximations of objects, there are sev-
eral common techniques that have been essential to the rendering
pipeline for decades. One such technique is the Z-buffer, which has
led to several improved versions and adaptations, including shadow
mapping. Level-of-detail (LOD) rendering and mipmaps are other
commonly used optimization techniques in this area. Lighting is a
crucial element in graphics as it greatly impacts the perception, quality,
and realism of a scene. Various algorithms have been established to
handle dynamic lighting, refraction, and scattering, with some dating
back decades. These algorithms also consider human perception and
adjust the calculations accordingly, as the calculation effort required
for these tasks is significant. This is particularly relevant to shadow
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2 introduction

calculations and reflections, as well as to newer applications such as
the peripheral field of view in VR applications.

1.1.2 Approximations in pathfinding

While there are many greedy algorithms, such as the best known, A*,
but they only use heuristics to find the best path as quickly as possible
and not to estimate it. However, for games and many simulations
with large numbers of agents, it is not absolutely necessary to find
the optimal paths. The background is that minor detours may not be
noticeable or perceived as necessary here, but also that interaction
between agents may occur. Below, we will provide further details on
these methods.

1.1.3 Approximations in game physics

Game physics are not discussed in this section. However, for the sake
of completeness, we will briefly touch on them. Rigid bodies are
mostly used in games, and there are various numerical integration
methods for their simulation, each with its own characteristics and
limitations. Realistic simulation of physics is a crucial element in game
development, as many game mechanics rely on it, and players have
a natural understanding of how objects should move based on their
experiences.

1.2 gpgpu

While dedicated hardware for rasterization and partly also for ray
tracing already exists and is installed in almost every gaming PC,
there is no widespread hardware that supports the CPU in path
finding, since these are mainly sequential calculations task of the CPU.
Therefore, it is obvious to use the enormous capacities of the GPU for
pathfinding, but there are few algorithms that are designed for this.
However, with minimal restrictions, methods can be found that don’t
stand out negatively in the game despite non-optimal paths and are
even sufficient for simulations. On the other hand, the current graphics
hardware also reaches its limits, especially in the case of scattering
and multiple refraction in real time, so that estimates are also applied
here which the human eye can hardly perceive and which are very
close to reality.

Here we will present two algorithms that are excessively dedicated
to estimation and optimization to solve hard problems using the GPU
in such a way as to achieve real-world results in real time for both
games and simulations.
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1.3 related publications

Parts of the following publications have been integrated into this work:

• Physically Based Real-Time Rendering of Teeth and Partial
Restorations [29]

• Parallel Near-Optimal Pathfinding Based on Landmarks [30]

• Using Landmarks for Near-Optimal Pathfinding on the CPU
and GPU [31]





2
R E A LT I M E R E N D E R I N G O F T E E T H

2.1 motivation

Visually accurate real-time rendering of teeth has many applications
ranging from computer games to dental CAD. Similar to skin, the
realistic and physically correct appearance of teeth cannot be achieved
by simply using opaque diffuse textures, mainly because of the subsur-
face scattering behaviors of both. While both have a layered structure
in common, the scattering characteristics of the teeth layers are drasti-
cally different from those of the skin, making rendering much more
complicated.

We present an approach which uses the Henyey-Greenstein scatter-
ing to achieve a near realistic real-time rendering of human teeth. In
order to simulate the multi-layered geometry of teeth, we use stan-
dardized teeth models with dentin cores and fit them to real scanned
teeth or dental restorations. By using a proxy geometry to compute
the scattering, we can also render partial restorations as they would
look like when attached to the remaining teeth. Finally, we compare
our results to the VITA shade systems and human teeth to evaluate
the visual fidelity of our approach.

2.2 related work

Subsurface scattering is an important optical effect in most tissues
and gaseous phenomena. It has been investigated in different fields
of science, e.g. astrophysics [19]. In computer graphics, the diffuse
dipole approximation [22] is the most common approach for highly
scattering materials. For real-time rendering, this can be combined
with a specialized sampling pattern, like the 21-tap kernel of Dachs-
bacher and Stamminger [6]. Rendering of layered materials [16] is
especially important for human tissue like skin or teeth. In addition,
the reflection of the saliva – the thin water film on the teeth – has to
be considered, e.g. using the approach of Jensen et al. [21]. Highly
anisotropic materials exhibit strong directional scattering that can be
more faithfully rendered using the directional dipole model [11].

There have been multiple studies for the measurement of the optical
properties of teeth, beginning with monochromatic light [38]. More
recently, multiple wavelengths have been used in the visible [48, 49]
and near infrared spectrum [10]. Fernández-Oliveras et al. measured
the scattering anisotropy of enamel and dentin in comparison to
other biomaterials [9]. They approximated the measured scattering
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6 realtime rendering of teeth

profiles of dentin and enamel samples of two different thicknesses
using the Henyey-Greenstein phase function [19] yielding a good
approximation. These works have shown that scattering in enamel is
strongly directional with a reduced scattering coefficient of about 1.3
mm−1 at a thickness of up to 3 mm from top and 1 mm from the side
of a tooth. Single scattering is however not sufficient at this thickness
due to the scattering coefficient of about 4 mm−1. Dentin on the other
hand is very strongly scattering with a reduced scattering coefficient
of approximately 70 mm−1.

Figure 2.1: The results of Shetty and Bailey (top) and Larsen et al.(bottom).

Some other methods have been directly developed for realistic
rendering of human teeth. Shetty and Bailey [36] used the multi-
pole diffusion model to render the layered structure for their work.
The multi-pole model is however not suitable for such a large range
of scattering coefficients. The most recent technique in this area by
Larsen et al. [25, 26] also targets at real-time rendering of human
teeth for dentists or dental technicians. They used a 12-tap kernel
in connection with the diffuse dipole approximation for dentine and
single scattering for enamel. The dentin core is generated by shrinking
the tooth surface. This approach, however, causes problems for molar
teeth and sometimes even for the incisors or canine teeth. Due to
the simple space deformation, the enamel thickness is imprecise and
can sometimes even become less than zero, i.e. enamel and dentin
meshes intersect. For enamel, single scattering requires modification
to account for the 5 to 10 scattering events that occur on average, so
most of the scattered light is not considered. In addition, the 12-tap
kernel is designed for skin and not the highly scattering and thicker
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dentine. Finally, they used the wrong anisotropy for enamel, since
they did not take the isotropic scattering part into account when using
the values from Fried [10].

The dental CAD system into which our algorithm is integrated is
based on a deformable model of teeth [1] – also called biogeneric
model – that represents a tooth by an “average” model and variations
encoded as principal components. For non-medical applications, we
could also use more recent methods that generate teeth models from
photographs like [46].

2.3 background

Before describing the details of the rendering algorithm, we first review
the background of light transport in the teeth.

2.3.1 Subsurface scattering

Figure 2.2: Raytraced examples for scattering in dentin (g = 0.44) and
enamel (g = 0.68) with 1mm thickness.

Scattering of light can occur when it travels through a participating
medium, where it can be either absorbed or change its direction at
each interaction. The angle by which it deviates, is called the scattering
angle (θ). While θ = 0 means that the direction stays the same, θ = π

results in a total reversed direction. Equation 2.1 shows the Henyey-
Greenstein phase function [19], which is widely used for the simulation
of scattering in computer graphics and describes the probability p(θ)
of light being scattered in the direction θ. By varying the scattering
anisotropy factor g, it ranges from complete backward scattering
(g = −1) through isotropic scattering (g = 0) to complete forward
scattering (g = 1).

p(θ) =
1

4π

1 − g2

(1 + g2 − 2g cos (θ))1.5 (2.1)
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The quantity of light being absorbed depends on the distance d the
light travels and the absorption coefficient σa. The reduced intensity Io

is:

Io = Iie−σad (2.2)

When the material also scatters light, the reduced intensity of light
that travels through the material without any interaction also depends
on the scattering coefficient σs:

Io = Iie−(σa+σs)d (2.3)

While it is simple to analytically compute absorption, scattering
can only be computed by sampling. The most simple, but also most
computationally expensive solution is to simulate the path of photons
through the material. If the material is homogeneous, the path length
l of a photon between two scattering events can be calculated from a
uniform random variable φ:

l = − ln
φ

σs + σa
(2.4)

If an interaction between photon and material occurs, the probability
of absorption pa is:

pa =
σa

σs + σa
(2.5)

Instead of discrete absorption, it is also possible to only simulate
scattering and use the analytic absorption (eq. 2.2). The random func-
tion for the path length then becomes:

l = − ln
φ

σs
(2.6)

For strongly scattering materials, the diffuse [22] or directional
dipole approximation [11] can be used to compute the scattering more
efficiently. Instead of simulating the photon paths, an integral over the
surface S is calculated:

Io(xo, ωo) =
∫

S

∫
Ω

ρ(xi, xi, ωi, ωi)Ii(xi, ωi), cos θidωidxi, (2.7)

where ρ is the BSSRDF computed from the (directional) dipole approx-
imation.

If the scattering radius is very small, we can assume that xi =

xo and use Kubelka-Munk theory [23] to calculate an ideal diffuse
appearance. Instead of integrating over the surface, the outgoing
radiance is calculated using the ideal diffuse albedo adi f f [49]:

adi f f = 1 +
K
S
−

√
K2

S2 + 2
K
S

(2.8)

K = 2σa (2.9)

S =
3
4
(1 − g)σs (2.10)
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2.3.2 Optical properties of teeth

Enamel is a highly translucent material due to its crystalline prismatic
structure and composition, with decreasing scattering coefficient at
longer wavelengths. Dentin on the other hand consists of dentinal
tubules, which are microscopic tubes that radiate outward from the
pulp to the enamel. As a result of this structure, dentin is highly
scattering, compared to the enamel. Finally, the pulp has very little
influence on the appearance of the tooth. This fact is also known
from root canal treatment, where replacing the necrotic tissue with
zirkonia ceramic (normally used to replace damaged dentin) does not
significantly change the color of the tooth.

The results of previous studies dealing with the optical properties
of teeth are varying due to the measurement methods, the condition
of the teeth and the used wavelengths. Furthermore, none of these
studies contain a reference to the color of the used teeth with respect
to a shade guide. We found the results of Zijp [49] most promising as
he determined all of the required parameters for different wavelengths
in the visible spectrum, where most others omitted blue in favor of
near infrared. Since the wavelengths he used were not those of the
sRGB primary colors, we had to interpolate/extrapolate some values.
Note that absorption was not directly measured, but only the diffuse
albedo, so scattering and absorption coefficients depend on each other.
The results are shown in Table 2.1.

Table 2.1: Approximate optical parameters of dental tissues in mm−1.

Dentin (g = 0.44)

σaR σaG σaB σsR σsG σsB η

0.65 0.60 0.75 120 125 130 1.63

Enamel (g = 0.68)

σaR σaG σaB σsR σsG σsB η

0.08 0.09 0.13 3.15 3.97 4.85 1.49

These values, however, are only taken from a single sample and do
not capture the variation in tooth color. For monochromatic light, Zijp
also measured the variation of scattering and albedo [49] showing
that there is up to one order of magnitude between minimum and
maximum. Due to the low absorption in the enamel, this parameter
does not significantly contribute to individual differences. The dentin
scattering only scales the albedo which can also be attributed to a
change in the absorption parameter.

Since living teeth are wet and covered with saliva, we also have to
take the refraction index of saliva (η = 1.33) in account. In addition,
the necks of teeth are often covered with dental calculus and there
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is some discoloring in fissures. These thin layers absorb a part of the
incident and outgoing light.

2.4 data preparation

The meshes of the restorations were generated by first fitting the
deformable tooth models into a jaw that was scanned by a camera. This
is done by first calculating a rigid transformation of a parametrized
“average” tooth using the iterative closest point (ICP) algorithm [32] to
calculate point correspondences. Then the deformable model of Blanz
et al. [1] – i.e. a statistical shape model – is used to fit the enamel
mesh to the tooth scanned before treatment. After this fitting process,
a model of a restoration can be generated from a second scan where
the carious material has been removed. This is done by clipping the
mesh at the remaining tooth and locally deforming it to produce a
smooth transition. Then the lower part of the restoration model, where
it touches the remaining tooth, is generated. Note that the enamel
mesh before clipping could also be used to render the original tooth
when the algorithm is used for other purposes than a dental CAD
system.

In addition to the restoration model we want to render, we use the
tooth number to select the corresponding “average” tooth for each
model. For each of these average teeth, we pre-generate a model of
the dentin core once and store these on disk. At runtime we can then
deform the average tooth and its dentin core to fit the tooth to be
rendered as closely as possible using a non-linear space deformation
(see Section 2.4.2 for details).

2.4.1 Dentin core generation

The distance between the tooth surface and the dentin core is up to 3

mm at the center of the cavity and linearly decreases to zero at the gum.
For incisors, the distance between incisal edge and dentin core is only
2 mm, while the horizontal distance between enamel and dentin is up
to 1 mm for both. This is due to the fact that the crown stage during
which dentin and enamel are built is longer for molars (7–9 years)
than for incisors (4–5 years). There is also a physiological reason since
only the occlusal surface of molars is subject to abrasion. To generate
the dentin model, we thus start with a model of the enamel surface
and shrink it until the distance constraint (up to 1 mm horizontal and
2 or 3 mm vertical) is fulfilled. In contrast to Larsen et al. [26], we are
however not limited to a simple deformation of the surrounding space
because we only need to generate the dentin models for the average
teeth once and then store them on disk.

For each vertex v of the dentin model, we gather all triangles T of
the enamel model for which the distance to v is less than the enamel
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V := set of all dentin vertices, V0 = V
foreach iteration i < imax:

foreach vertex v ∈ V:
T = {triangles t : d(v, t) < dmax(v)}
C = {p : ∀t ∈ T : d(p, t) ≥ dmax(v)}
v = i

imax
PC(v) + (1 − i

imax
)v

foreach vertex v ∈ V:

v1 =
∑w∈neigbors(v)

w
d(v0,w0)

∑w∈neigbors(v)
1

d(v0,w0)

V = V1

Figure 2.3: Dentin model generation: Pseudocode (left) and violated half
space constraints and closest valid vertex position (right)

thickness dmax(v). Each of these triangles defines a half space in which
the vertex can be positioned. From the current vertex position, we
calculate the closest point in the intersection of these half spaces and
move the vertex there (see Figure 2.3). To prevent flipped triangles, we
iterate this process several times and smooth the vertices between the
iterations. During smoothing, we weight each neighbor vertex with
the inverse of the original distance. In the first iteration we move the
vertices only a fraction of the distance to the target point and linearly
increase this factor to one.

This data generation stage needs about two to three minutes for
each of the 11 average teeth models. Note that while humans have
4 × 8 teeth, all incisors and the canine teeth share a single average
tooth model. In addition, only two pre-molars and three molars are
required for both the lower and the upper jaw due to symmetry.

2.4.2 Fitting of average teeth

Figure 2.4: Geometry Images: Model and textures with normals and ver-
tices from Gu et al. [15] and texture of tooth with vertices.

Since the average tooth and its dentin core have the same parametriza-
tion as the (partial) restoration (which originally comes from the de-
formable model), the corresponding vertices of the two models can be
found by simply generating geometry images [15] for both. To deform
the average tooth – and its dentin core – we compute tri-quadratic
Bézier space deformation [34]. For each vertex vrest

i of the restoration,
we compute the matching template position vtemp

i and describe the de-
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formation X(v) as an energy minimization problem that is regularized
using the second derivatives of the control mesh.

E =
1√
N

N

∑
i=1

∥∥∥X(vtemp
i )− vrest

i

∥∥∥+ λEreg (2.11)

Ereg = ∑
i,j,k

c∂2x2

ijk + ∑
i,j,k

c∂x∂y
ijk + . . . + ∑

i,j,k
c∂2z2

ijk , (2.12)

where c∂a∂b
ijk are the control points of the Bézier volume describing

the second derivative with respect to a and b, e.g. c∂2x2

000 = 6(c000 −
2c100 + c200). This way, the deformed average tooth fits the restoration
as closely as possible and is reasonably completed such that the
scattering can be computed for a whole tooth. Figure 2.5 shows the
fitted average tooth with its dentin core for an incisor crown. We chose
λ = 0.01 for the regularization but it could be much lower if only
complete restorations (or teeth) were rendered.

Figure 2.5: From left to right: Incisor, canine and molar restorations (top)
with fitted corresponding average tooth and dentin core (bot-
tom).

2.5 runtime algorithm

We use 5 render passes to render each tooth, plus additional passes
for mipmap generation. Instead of using the model of the restoration
to compute the subsurface scattering, we use the corresponding fitted
average tooth and its pre-generated dentin core. The model of the
restoration itself is only used in the last step. This way, we avoid
artifacts when rendering only partial restorations like veneers or inlays.

In the intermediate steps, we do not render the models themselves,
but only into their geometry image parameterization. The surface
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mesh and normals are stored in a texture. For rendering, a regu-
larly tessellated mesh is used and the position can be fetched from
the texture per vertex. Levels of detail can be generated by simple
mipmapping. This allows us not only to vary the quality and speed of
the rendering, but also to compute the in- and out-scattering over the
whole mesh.

2.5.1 Rendering steps

Our algorithm performs the following rendering steps:

1. Render gum and scanned jaw

2. For each restoration:

a) Render the in-scattering in enamel from light source using
the fitted average tooth.

b) Compute scattering through enamel to dentin into geome-
try image of the dentin core.
For each pixel: Sample in-scattering and position texture
from a and calculate scattering through enamel.

c) Scale dentin in-scattering by diffuse albedo and remap to
out-scattering image.
For each pixel: Store position, normal and outgoing radi-
ance (scaled by local surface).

d) Scattering through enamel and from dentin through enamel
into geometry image of fitted average teeth.
For each pixel: Sample in-scattering and position textures
from a and c and calculate scattering through enamel.

e) Render restoration with out-scattering – attenuated by fis-
sures and dental calculus – and surface reflection from
saliva.

In the first step, we render the tooth as seen from the light source
into a texture map that stores the position, normal and texture coordi-
nate of the enamel mesh. From these we can also calculate the incident
light at each point in cd/m2.

Similar to Fernández-Oliveras et al. [9], we approximate the distance
dependent scattering profile due to multiple scattering using the
effective anisotropy gdist. This depends on the anisotropy constant g,
the scattering coefficient σs and the material thickness d. We use a
data driven approach in order to come up with a simple equation
for the effective anisotropy. First, we have performed path tracing
simulations (eqs. 2.1, 2.4 and 2.5) for enamel slabs with a thickness
ranging from 0.1σsr to 100σsr, where σsr = (1 − g)σs is the reduced
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scattering coefficient. Then we calculate a least squares fit to the
following equation:

gdist(d) =
2

1 + a1dsr + a2
√

dsr + a3d
1
3
sr

− 1, (2.13)

where dsr = dσsr is the thickness scaled by the reduced scattering
coefficient. The fitting produced the following coefficients: a1 = 0.18,
a2 = 0.92 and a3 = −0.52. The effective anisotropy is shown in Fig-
ure 2.6 for enamel (red, green and blue light) and dentin. The maxi-
mum fitting error is below 0.01.
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σsEnamel,r = 3.15 mm−1

σsEnamel,g = 3.97 mm−1

σsEnamel,b = 4.85 mm−1

Figure 2.6: gdist as a function of thickness in mm for average human
enamel.

To approximate the scattering equation, we can now simplify the
absorbing and scattering material as a single scattering sheet between
two absorbing but non-scattering layers (see Figure 2.7). In contrast
to previous work that only considers single scattering, we approx-
imate multiple scattering events with this layer. The final diffuse
out-scattering at xo, when the surface is orthogonally lit at xi then
becomes:

Io(xo) = Ii(xi)Ft pdist(θ)e−σa(∥ps−xi∥+∥xo−ps∥) cos θo

∥xo − ps∥2 , (2.14)

where ps is the scatter point at depth ds, Ft the Fresnel transmittance,
θ the scattering angle and θo the angle between surface normal and
the vector ps − xo.

Figure 2.7: Geometric configuration for light scattering through the enamel
layer.
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We also need to determine the effective scattering depth ds in addi-
tion to the effective anisotropy. To guarantee symmetry of the geomet-
ric configuration for in- and out-scattering through enamel, we use
ds = 0.5d. In the general case, where the incident light direction is not
tangential to the surface, we have:

ps = xi +
ds

cos θi
Li, (2.15)

where Li is the refracted incident light direction. Note this means that
we only consider either the incident or outgoing light direction, if
we swap xi and xo. Figure 2.8 shows the resulting scattering profiles
compared to path tracing for the range of up to a few millimeters.
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Figure 2.8: Enamel scattering profiles for 0.5, 1, 2, and 5 mm (from left
to right and top to bottom), for red light (633 nm). For other
wavelengths, all distances are scaled accordingly.

We store the in-scattering through the enamel onto the dentin sur-
face by integrating the incident light from the dentin using equation 2.2
with the Henyey-Greenstein phase function (eq. 2.1) and our modified
scattering coefficient (eq. 2.13):

Io(xo) =
∫

S
Ii(xi)p(θ)e−σa∥xi−ps∥ cos θ

∥xi − ps∥2 dxi (2.16)

p(θ) =
1

4π

1 − g2
dist

(1 + g2
dist − 2gdist cos (θ))1.5

(2.17)

gdist =
2

1 + 0.18ds + 0.92
√

ds − 0.52d
1
3
s

− 1 (2.18)

ds = dσs(1 − g), (2.19)
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where xi is the sample point on the enamel surface, xo the point on
the dentin surface and θ the angle between the incident light direction
– calculated using the law of refraction and the vector from the light
source to xi – and the outgoing light direction, i.e. xo − xi.

To sample the incident light on the enamel, we use the pattern
shown in Figure 2.9 (left). Compared to the 21-tap [6] or 12-tap
sampling, used in other approaches [25, 26, 36], it covers a wider area
and takes a total of 64 instead of 21 or 12 samples. This is necessary
since the absorption in enamel is almost zero and scattering varies
strongly with distance. The smallest samples cover a single pixel for
both sampling patterns, so we cover 64 × 64 pixels while the 21-tap
kernel only covers 15× 15 pixels. Again, we store the incident radiance.
Storing the direction is not necessary due to the strong scattering in the
dentin core. The sampling kernel is centered at the point on the enamel
surface from which the incident light is directly refracted into the
shaded point on the dentin core. This point is found by projecting the
shaded point on the enamel surface and then performing an iterative
search using steepest decent. The derivative of the distance between
the refracted ray and the shaded point is analytically calculated from
the normal at the enamel surface point. We also tested using the point
on the enamel surface with the same parameters as starting point but
this did not reduce the required number of iterations. In both cases, a
sufficient accuracy is reached after 20 iterations.

Figure 2.9: Our enamel sampling pattern (left) compared to the 21-tap (top
right) and 12-tap (bottom right) kernel. The size of squares
indicates the used mipmap level.

Due to the high scattering coefficient of dentin, the dentin core
appears almost ideally diffuse. Even with the lowest scattering and
absorption parameters measured in human dentine, the scattering
radius is less than 0.1 mm. This effect is increased by the fact that
incident and outgoing radiance are smoothed by the scattering inside
the enamel. As both incident and outgoing light are very smooth
over the dentin surface, we can use low resolution textures, i.e. up
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to at most 64 × 64 pixels for both. Again, we store the incident light
(now into the enamel layer) in the out-scattering texture. Storing the
direction is again not necessary since the out-scattering is diffuse.
The scattering could be calculated using the classical dipole diffusion
model [22] together with the 21-tap kernel of Dachsbacher et al. [6]
because of the high scattering and absorption coefficients. Due to the
almost diffuse appearance, we can however also use Kubelka-Munk
theory [23] to calculate an ideal diffuse appearance and calculate the
outgoing radiance using ideal diffuse albedo adi f f instead (eq. 2.8).

For the final out-scattering from the enamel, we again use the
parameterization of the enamel mesh to store the emitted radiance into
view direction. Again, we compute the scattering integral (eq. 2.16)
and store the outgoing radiance in cd/m2 using our 64-tap kernel.
For this pass we swap xi and xo to calculate ps because the dentin
out-scattering is almost diffuse but the out-scattering from enamel
depends on the view direction. This means that ps actually depends
on xi and is not constant for the whole integral any more. To compute
the integral, we first remap the dentin out-scattering texture to an
image similar to the enamel light map. Since surfaces facing slightly
away from the viewer can also contribute to the scattering, we use
an inverted view frustum and an inverted depth test. The field of
view is 90 degrees and the distance of the camera to the center of the
dentin mesh is the mesh diagonal. Figure 2.10 shows the geometric
configuration.

Figure 2.10: Geometric construction of the inverted view frustum (solid
blue) used to generate the remapping texture for the dentin
out-scattering.

In contrast to the in-scattering through the enamel layer, searching
for the center point of the sampling pattern can be performed using
a simple bisection search along the refracted eye ray. Here we only
use 10 iterations and set the initial search interval to the diameter of a
tooth, i.e. [0..1] cm, leading to an accuracy of 0.01 mm.
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Figure 2.11 shows the intermediate textures generated by our ren-
dering algorithm and the final result with out-scattering mapped to
the tooth and additional highlights. Note the smooth appearance of
the two dentin textures.

Figure 2.11: The results of the rendering passes b-d: In scattering into
dentin (top left), out-scattering from dentin (top right), out-
scattering from surface (bottom left) and final result (bottom
right). The light map (step a) was omitted.

2.5.2 Surface structure

Finally, we add the remaining details to the surface after mapping
the out-scattering to the model of the restoration. To simulate the wet
saliva, we add a specular highlight using a cosine lobe with an expo-
nent of 50. The amount of reflected light is calculated from the index
of refraction n = 1.33 scaled by the Fresnel factor estimated using the
approximation of Schlick [33]. In addition, we use procedural bump
mapping to simulate the perikymata by perturbing the surface normal
for the specular reflection with Perlin noise [28]. Furthermore, we
estimate the position of fissures by calculating the maximum negative
curvature of the mesh in the region of the tooth crown. The fissure
intensity is then computed by simply scaling this value and using it
to attenuate the out-scattering. The parameters, e.g. frequencies and
amplitude of the noise and minimal negative curvature and inten-
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sity of fissures, can be modified at runtime and default values were
determined by a dental technician.

Figure 2.12: Results of the different surface structure effects on a molar
partial crown (shade: 2M2): Without surface effect (top left),
saliva only (top right), saliva and perikymata (bottom left) and
all inluding fissure (bottom right).

Figure 2.12 shows the different effects of the surface structure. Note
that the effects of saliva and perikymata are also present in the shade
guides (cf. the jittered reflections in Figure ??), but fissures of course
not as they only appear on molars.

2.6 scattering parameters

As mentioned above, the scattering parameters of teeth vary strongly
between humans leading to different tooth colors. This fact has been
considered in restorative dentistry for several decades. Special “shade
guides” are used to determine the color of the tooth to be treated or
replaced (see Figure 2.18 in the results section).

Only few measurements of the scattering parameters have been
made in literature and none of them were related to tooth shades. As
the tooth shade has subtle effects on the appearance of a tooth, it is
however an important factor when modeling the shape of a restoration.
To reproduce the exact tooth shade, we need to estimate the scattering
parameters for each of them in the used shade guide.
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2.6.1 Appearance capturing

The exact color of the shade guide samples is also required to build
automatic color identification tools. These combine controlled illumi-
nation with a photo sensor to measure the reflectivity of the sample.
For such tools, the colors of the shade guide samples were measured,
e.g. by Kuo [24]. These measurement however only consist of a single
CIE-Lab color value sampled at the center of the tooth.

To reproduce the overall appearance of a tooth, we first observe that
there is a typical color gradient from the incisal edge over the center
to the neck of the tooth. We therefore took images of the two VITA
shade guides (Figure 2.18) under sunlight at a clear sky and measured
the color at the incisal edge and the tooth center by averaging an area
of 5 × 5 pixel in the image. To measure the scattering only, we avoid
the reflection by using a slight offset between the sun and the camera.
Using the data from Kuo [24], we corrected the color of the central
point and applied the same scaling in RGB to the incisal edge as well.

2.6.2 Parameter fitting

Although the two important tooth layers enamel and dentin have
four scattering parameters in total, the appearance of the tooth is
mainly determined by only two of them. Most of the color variation
at the incisal edge comes from the enamel scattering constant which
in general decreases with age, i.e. demineralization of the tooth. The
second important constant is the light absorption in the dentin layer
that mainly determines the color of the tooth center. Varying the light
absorption in enamel within the range of values found in human teeth
does not produce any significant visual differences. Due to the high
scattering coefficient in dentin, it appears almost diffuse and therefore
the appearance depends on the ratio of absorption to scattering. We
therefore can fix one – i.e. the scattering coefficient – and only estimate
the other one.

Starting with the color of the two sample points on the tooth, we use
the Levenberg-Marquard algorithm [27] to determine the parameters
mentioned above. The cost function is the L2 difference of the colors
at the two sample points in the CIE-Lab color space. The function is
computed by rendering an incisor model – lit and viewed from the
front – and again averaging the color of a 5 × 5 pixel block at the
center of the incisal edge, where the material is solely enamel, and a
block close to the neck of the tooth, where only a thin enamel layer
is in front of the dentin core. During the fitting procedure, we switch
off rendering of the saliva reflection to only account for the scattering
as mentioned above for the photographs. The optimization requires
approximately 100 iterations and needs less than one second for each
shade.
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Note that we currently do not directly consider back lighting in
the fitting procedure, although this could simply be integrated by
capturing and rendering a second view. Since teeth are however almost
always lit and seen from the front, this does not impair rendering
quality in typical applications. In the area of dental CAD, the light
source is even always at the view position since this is a “natural”
setup for dentists and dental technicians.

2.7 results

As we made several assumptions and simplifications in the rendering
process, we first visually compare the generated images with a path
traced solution. Figure 2.13 shows a comparison to an image generated
using a volumetric path tracer. We again simulate the photon paths
using eqs. 2.1, 2.4 and 2.5. We have removed the surface effects for
both images as these are identical anyways. Beside the slight color
shift and the stronger blurring of the dentine at the incisal edge,
the scattering looks similar. While the color shift is compensated by
our parameter fitting procedure, this might lead to slightly incorrect
scattering parameters when used for other rendering methods. The
blurring of the incisal edge is mainly due to low resolution of the
out-scattering texture.

Figure 2.13: Incisor out-scattering rendered with our method (left) com-
pared to a path traced image (middle) and difference between
them (scaled by 4, right). Both use the same scattering parame-
ters from Zijp [Zij01].

Figure 2.14 shows a comparison to the approach of Larsen et al. [26].
While their renderings also reproduce some color variation compared
to a diffuse BRDF due to subsurface structures, the overall appear-
ance is rather diffuse and the translucency of the enamel layer is too
little because of neglecting multiple scattering. Our algorithm more
faithfully reproduces the shade and appearance of a real tooth in
real-time.

The main goal of our approach was to develop a real-time rendering
algorithm for teeth that is able to reproduce the different shades of
human teeth and scales to the power of the graphics hardware. We
therefore evaluate the frame rate with respect to different texture
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Figure 2.14: From left to right: Incisor rendered with diffuse BRDF, with
the approach of Larsen et al. [LFJB12] and our proposed
method. The rightmost image is photo of a veneer shown
for reference.

resolutions. Table 2.2 shows the frame rate for up to 14 teeth on a
Geforce GTX 1080 graphics card. For resolutions up to 32 × 32, the
algorithm is purely limited by the number of transformed vertices and
rendering passes. It becomes pixel shader limited at a resolution of
64 × 64 pixel for the in- and out-scattering textures. For a full set of
32 teeth, we would achieve approximately 40 frames per second at a
resolution of 32 × 32 pixel. Note that these timings are for a dynamic
scene, i.e. in- and out-scattering are calculated for every frame.

Table 2.2: Frame rate and timings measured with Geforce GTX 1080.

texture res. 16 × 16 32 × 32 64 × 64

Incisor 800(1.2ms) 761(1.3ms) 571(1.8ms)

Veneer (2 teeth) 523(1.9ms) 500(2.0ms) 380(2.6ms)

Bridge (6 teeth) 222(4.5ms) 200(5.0ms) 150(6.6ms)

upper jaw (14 teeth) 95(10.5ms) 91(11.0ms) 66(15.2ms)

Each average tooth and corresponding dentin core is composed of
5k to 10k triangles and the restorations contain up to 50k triangles.
Since the restorations and other models like gum are rendered only
once with simple texture lookups and low complexity shaders, our
approach scales mostly with the texture resolution, as can be also seen
in Table 2.2. As a lower texture resolution reduces the accuracy of
the scattering within the dentin core, we visually compare the result
for different resolutions in Figure 2.15. While the difference between
32 × 32 and 64 × 64 is almost negligible, the visual quality degrades
when reducing the resolution to 16 × 16 mainly due to detail loss in
the enamel out-scattering.

Table 2.3 shows the range of absorption and scattering values de-
termined by our fitting algorithm. The values are within the range
determined by previous work on measuring the optical parameters of
teeth. The only exception is σaDentin where we have determined higher
values for blue. The main reason is that we combine dentine and
pulp, where the hemoglobin in the pulp exhibits strong absorption
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(a) Resolution 16 × 16 (b) Resolution 32 × 32 (c) Resolution 64 × 64

Figure 2.15: Quality of enamel out-scattering for different texture resolu-
tions (shade 3R2.5).

at short wavelengths. So the absorption parameters can be seen as a
combination of dentin and hemoglobin.

Figures 2.16 and 2.17 show how well our method works for par-
tial restorations. Although only parts of the teeth are rendered, the
scattering is computed for the complete teeth. This allows generating
renderings that show how a restoration will look when it is attached
to the tooth. Actual restorations are often layered onto an opaque base
that is rendered diffuse gray in our system.

Figure 2.16: Rendering results of veneer restorations (shade 0M1).

As shown in Figure ?? we can accurately reproduce the shade guide
samples after parameter matching. Figure 2.19 shows all shades of the
two evaluated shade guides, cf. Figure 2.18. Note that our renderings
show a slightly stronger “opalescence” at the incisal edge (blueish tint)
than the shade guides but this is also stronger in real teeth than in the
shade guides.

Table 2.3: Range of scattering and absorption values determined by our
fitting procedure.

R G B

σsEnamel 7.463 – 16.14 7.731 – 17.09 7.141 – 22.43

σsDentin 30.00 – 170.5 31.25 – 177.5 32.50 – 184.6

σaDentin 0.425 – 1.734 0.800 – 10.61 5.607 – 50.00
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Figure 2.17: Rendering results of an inlay restoration (shade 2L2.5).

Figure 2.18: VITA classical (top) and 3D-Master (bottom) shade guides to
determine tooth color.

Figure 2.19: Rendered incisors showing all colors of the two evaluated
shade guides: VITA classical (top) and 3D-Master (bottom).

Finally, we visually compare our rendered teeth to photographs
with the same tooth shades (see Figure 2.20). Note that the mouth and
gum are not rendered but copied from the photographs since this is
not the scope of this work.

2.8 precomputed texture atlas

In order to reduce the rendering times, we generated a texture atlas for
the out-scattering from surface (rendering step d) by calculating the re-
sults for multiple uniformly distributed positions on a sphere around
the restoration for both camera and light. As tests showed, 92 (geodesic
subdivided icosahedron) positions are sufficient for generating inter-
polated textures that resemble the correct result. A 64 × 64 texture
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Figure 2.20: Rendered teeth (left) compared to actual photographs (right);
mouth and gum are taken from the photos. Note that the
geometry of the teeth does not match those of the subjects.
The tooth shades are 2M3 (top) and 4L2.5 (bottom). Artifacts
on the rightmost molar are due to broken texture coordinates
at seams.

resolution therefore results in a 5888 × 5888 texture atlas. Assuming
realistic use cases, the possible positions can by greatly reduced.

2.9 conclusion and prospects

The proposed technique is able to render dental restorations and
whole human teeth in real-time with varying positions of light and
viewer. By fitting the scattering parameters to different shade guides,
we can also reproduce the correct tooth color.

The main limitation is that we can only render dental restorations
or sound teeth. This is due to the fact that we compute in- and out-
scattering for a complete (sound) tooth and use a fixed dual-layer
structure. Thus, we are especially not able to render broken teeth
with dentin or pulp at the surface. Another limitation is that we
assume the background to be black or at least sufficiently dark to
neglect translucency. This is, however, a reasonable assumption for
teeth inside the mouth.

Due to the limited size of the out-scattering texture and the missing
peak of the scattering profiles for very thin enamel layers, shadows
are also blurred slightly too much close to the neck of the tooth.
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PAT H F I N D I N G B A S E D O N L A N D M A R K S

3.1 motivation

In the last decades, there have been multiple approaches to reduce
the complexity of path finding algorithms like Dijkstra and A⋆ [18],
either by exploiting the structure of the graph, by pre-computing
results or by accepting non-optimal results. The most commonly used
algorithms for uniform grids in this area are Hierarchical Path-Finding
A⋆ (HPA⋆) [2] alongside with Subgoal Graphs [42] and jump point
search (JPS) [17] with its optimized variants. For more generalized
graphs, the popular choices are hierarchical approaches or methods
based on pre-computed minimal distance fields with multiple notation
like landmarks [13] as well as differential heuristics [8]. Landmarks are
randomly or intentionally chosen nodes of a graph. In a distance field
associated with a landmark, each node contains the minimal distance
to that landmark. Other approaches try to use the GPU for path
finding in order to capitalize on the parallel processing capabilities
of its architecture. Among these are either completely new parallel
algorithms, beginning with March of the Froblins [37], adaptions of
originally sequential algorithms, for example iterative deepening A⋆

(IDA⋆) [20] or GPU implementations of A⋆ itself, like GPU-A⋆ [47].
In contrast to most other approaches, we use the distance fields

directly for path finding instead of only as a heuristic for A⋆ or other
algorithms. Therefore, only two stacks containing the paths to the
current search states are required for our bidirectional search. No
open list or sorting is needed, making the runtime always linear in the
number of visited nodes for which examples are shown in Figure 3.1.
Additionally, we kept our algorithm as generic as possible so that it is
not limited to grids or planar graphs but can also handle 3D structures
like meshes. For simple structures like grids, it can be optimized
to further reduce the non-optimality. Finally, dynamic environments
are supported as well as disjoint graphs. Only directed graphs must
be treated differently due to the traversal algorithm being tailored
towards their undirected counterparts.

3.2 related work

Apart from our previous work [30] which we extend here, there have
been multiple approaches using distance fields for path finding. How-
ever, to our knowledge, they either use the fields for direct routing over
landmarks [4] or as heuristic [13] for A⋆ variants. While landmarks as

27
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Figure 3.1: A⋆ and its expanded nodes (blue) compared to our method
(green). Using the euclidean distance as heuristic, A⋆ visits a
substantial percentage of nodes, while our approach directly
finds a path.
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Figure 3.2: Example for landmarks (orange) and their distance fields. The
lower bound for the highlighted nodes (red and green) is 7 (left
field), the upper bound is 13 (right field).

heuristic can greatly reduce the number of visited nodes for A⋆, the
main issue is still the requirement of a sorted list for traversal. The
most closely related approach to our algorithm is LPI [14], which also
routes over landmarks, but tries to combine the path over the nearest
landmark to the start location with the path over the nearest landmark
to the destination by finding an intersection. This leads to paths that
are far longer than the optimal solution and requires smoothing to
produce reasonable paths. Other approaches, mainly in the area of
street navigation, use hierarchies [12] to compress the graph but they
cannot be generalized easily.

3.3 background

Given a set of landmarks L = {l1 . . . ln} with their distance fields
F = { f1 . . . fn} and let fi(w) be the distance value of the field i for the
node w, then the lower bound dmin for distance d(u, v) between two
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nodes u and v can be calculated as follows according to Goldberg and
Harrelson [13]:

dmin(u, v) ≥ max1≤i≤n | fi(v)− fi(u)| (3.1)

Similarly, an upper bound dmax can also be calculated from fi(u) and
fi(v) by

dmax(u, v) ≤ min1≤i≤n | fi(v) + fi(u)| (3.2)

since both u and v can be reached from a landmark l if they are both
defined in f . If either entry in f for u or v is undefined, there is no
path between the two nodes. Figure 3.2 shows examples for landmarks
and their distance fields including dmin and dmax.

Let ε(u, v) be the maximum difference to the optimal solution that
can occur while calculating the path from u to v then the following
holds:

ε(u, v) ≤ 2min1≤i≤n(min( fi(v), fi(u))) (3.3)

This is due to the fact that in the worst case with respect to Equation
(3.2) a path from u to v going through f is constructed, which contains
the complete path and reverse path to either u or v respectively.

This property can also be used as a quality criterion for the distribu-
tion of the landmarks L. Since the maximum path length depends on
the largest distance to a landmark, it is reasonable to place additional
landmarks at maximum distance to existing ones.

3.4 algorithm

3.4.1 Pre-processing

At least one distance field needs to be constructed in the pre-processing
stage for initialization. Additional fields can be generated later during
run time if required. For directed graphs, we require twice the number
of fields as a second field must be generated in the reverse direction
of the graph. Details are described in Section 3.4.5.

The first landmark can be placed randomly, but we chose to select
one outer node of the graph as our tests have shown that this results
in a favorable distribution. This has also been pointed out by Gold-
berg and Harrelson [13] for street networks. In the case of unknown
topologies, we cannot use this heuristic and simply choose a random
node.

For disjoint graphs, we enumerate each graph with an index and
store it in a separate index map. If there is a set of nodes that was not
visited during the generation process of the distance field and therefore
belongs to other graphs, we choose the node with the nearest euclidean
distance to the current landmark and generate a distance field starting
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Figure 3.3: Voronoi like map, showing the landmarks in red and their
nearest nodes.

from that node. Again, in case of graphs with unknown topologies we
resort to choosing a random one. This process is repeated until each
node was visited.

Additional landmarks for each graph can be placed either randomly
or successively at the node with the highest distance to all previous
landmarks. These nodes can be found using an additional map that
stores the minimal distance to the closest landmark, which results in a
Voronoi-like distance map as shown in Figure 3.3.

Using this approach, we construct a set of distance fields for a set
of graphs, together with two additional maps, one for the minimal
distance and one to specify the graph the node belongs to. For j
nodes and n distance fields this results in O((j + 2) ∗ n) memory
consumption.

3.4.2 Field selection heuristic

A critical step of the algorithm is choosing the most suitable field.
Therefore we use the following heuristics. For the start and target
nodes s and t we select the field fi that maximizes | fi(s)− fi(t)|,
which means that we favor the one resulting in the tightest lower
bound dmin(s, t). If that fails because fi(s) = fi(t) for all i we choose
the field that minimizes min( fi(s), fi(t)), i.e. the one that belongs to
the landmark closest to s and t.

3.4.3 Pathfinding

The basic idea of our approach as described in Algorithm 1 is to follow
a distance field to its origin or landmark beginning at the given start
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Figure 3.4: Examples for artifacts: on the left the previously found path
(blue) at the current state (magenta) that requires a field change.
On the right two probable paths, resulting in either a path that
is too long (top cyan) or a loop back down(bottom cyan).

node, ideally finding the target node along the way. Therefore we
have to select an appropriate field using our heuristic as proposed in
Section 3.4.2, which hereinafter we refer to as the “best” distance field.
Depending on the selected field, we either walk from the original start
to the target or have to swap them if the field value of the start node
is less than the value of the target node. Therefore we have two stacks,
path and reversepath, which contain the path found so far from the
original start and target to the current states as shown in Figure 3.5.

s s1 s2 ... scurr tcurr ... t2 t1 t

Figure 3.5: Illustration of the two node stacks path and reversepath, starting
at s and t and resulting in a full path when scurr = tcurr.

In order to follow the distance field, we search for a potential parent
of each node by iterating over all neighbors. From these we pick a
node that satisfies the condition that its field value is equal to the
current field value minus the edge cost. Then the current (start) node
scurr is pushed on the active stack, the edge cost is added to the current
path cost and the parent replaces the current node. If the current start
and target nodes match, a path was found otherwise, the algorithm
continues.

Since the original chosen field is not necessarily the best field, we
check several times if a better field can be found. There are two trig-
gers for swapping the field: either the nearest landmark has changed
according to the minimal distance map as illustrated in Figure 3.3 or
the field value of the current start node is equal or smaller than the
value of the target node. If no usable field is found, the algorithm
returns false as it cannot find a path between the nodes.

Due to the field changes, artifacts may occur as shown in Figure 3.4.
Simpler artifacts can be found and removed by checking if the current
node is already on the stack and removing the loop. Since this also
consumes memory bandwidth, we only check the two previous nodes.
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If the path cost is higher than the upper bound dmax(s, t) the algorithm
also returns false since routing over the landmark would result in a
shorter path.

Algorithm 1 Descent algorithm

1: function findPath( )
2: if f ield(tcurr)− f ield(scurr) > 0 then
3: swap path and reversepath
4: swap scurr and tcurr

5: while cost < dmax(s, t) do
6: for all neighbors of scurr do
7: find parent

8: if loop found then
9: remove loop nodes

10: else
11: add parent to path
12: replace scurr with parent
13: add edge cost to cost

14: if scurr = tcurr then
15: return true
16: if field change needed then
17: find better f ield
18: if f ield(tcurr)− f ield(scurr) > 0 then
19: swap path and reversepath
20: swap scurr and tcurr

21: if no suitable field found then
22: return false
23: return false

The complete approach consisting of several steps is shown in
Algorithm 2.

These are mainly for preparation, merging and handling cases in
which the base approach fails. Therefore we check at the beginning
via the graph map if the target node is reachable from the start node.
Then the best field mentioned above is chosen.

In order to speed up the process, the algorithm checks if it is possible
and efficient to reach the target node by iteratively choosing the
neighbor node that is closest in respect of the direction of the target
node. This is essential for grid maps with large open areas or areas
with only few connections, because the field values do not differ
significantly in this case. It is also tried if Algorithm 1 failed. During
the next step we search for a new valid field to retry Algorithm 1 with
the current start and target nodes. This is repeated until the cost is
higher than the upper bound dmax(s, t) or a path is found. If no valid
path can be found or the path costs exceed the upper bound dmax(s, t),
we fall back to the field that minimizes dmax(s, t) and use the paths
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that lead from the start and target nodes to the landmark of the field.
The final step is to merge both stacks, removing all duplicate nodes
that may be present on top of the stacks because of field changes or
the dmax(s, t) method that routes over the landmark.

Algorithm 2 Pathfinding algorithm

1: function getPath(s, t)
2: new variables scurr = s and tcurr = t
3: if t not reachable from s then
4: return emptypath

5: new stacks path and reversepath
6: find best field f ield and dmax(s, t)
7: if found direct path and pathlength < dmax(s, t) then
8: return path

9: while cost < dmax(s, t) and not findPath( ) do
10: if direct path found between tcurr and scurr then
11: break
12: try to find new f ield
13: if no f ield found then
14: break
15: if cost > dmax(s, t) or the ends of the do not match then
16: return dmax(s, t) based path

17: merge path and reversepath
18: return path

3.4.4 Dynamic environments

For dynamic environments, partial recalculation of the distance fields
is required. The worst case is splitting or joining graphs, where the
least optimal time is O(n/2) based on the distribution of the fields.
Since our solution provides already reasonable results for a small
number of fields, the recalculation can be done on a field by field basis,
reducing the required update time.

3.4.5 Directed graphs

Directed graphs must be treated separately, since path finding is based
on backtracking and the construction of distance fields proceeds along
the directed edges. For this reason, only distance fields where the start
node u has a lower distance field value than the end node v can be
used. Furthermore, it is not possible to determine the upper bound
dmax(u, v) this way, since it is not guaranteed that a path from u to the
landmark and thus to v is found.
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In order to solve these problems, the inverse of the graph is used
to generate an inverse field for each distance field beginning at the
same landmark. For finv,i, the field inverse to field fi, the upper bound
dmax(s, t) is given by:

dmax(s, t) ≤ min1≤i≤n | finv,i(s) + fi(t)| (3.4)

The path finding is illustrated in Figure 3.6. The general algorithm
dmin(u, v) is used for field selection but it is necessary to distinguish
between normal and inverse fields: if a normal field is selected, the
reversepath is filled and accordingly for an inverse field the path.

landmark

targetstart
intersection

Figure 3.6: Direction of backtracking and real direction for directed graphs.
The snake arrow denotes a permissible path, the straight red
arrow the backtracking direction. The intersection node can be
identical with the landmark.

3.5 results

Figure 3.7: Used structures: Thai Statue, West Coast, New York and the
random512-35 map (from top left to bottom right).
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For the benchmarks we used 100 landmarks and distance fields
on average. Our experiments have shown that this number yields
good results while using reasonable amounts of memory, making it a
good tradeoff between performance and accuracy. The landmarks are
placed at the nodes with the highest distance to all other landmarks
for reproducibility. Random placement is also discussed at the end of
the section.

3.5.1 Hardware and software

Unless otherwise denoted, we use an Intel i7-6700K with 16GB DDR3

RAM and as GPUs the Radeon RX480 and RX5700. For the implemen-
tation we use C++ and OpenGL for the compute shaders in order to
achieve platform independence. The GPU implementation is similar to
the CPU implementation apart from transferring the path data to the
client. For the distance field generation on the GPU we use OpenCL
1.2 as a common basis, although OpenCL 2.0 or CUDA could possibly
improve the pre-processing performance.

3.5.2 Suboptimality and length ratio

As quality criterion, we use the length ratio which is the mean length of
our approach divided by the mean optimal path length. Suboptimality
is defined as the average length ratio of all separate paths. According to
the GPPC definition [41] high suboptimality is the result of optimality
on long paths and highly suboptimal short paths. Since the length ratio
depends mainly on long paths, a low ratio is also a sign of optimality
on long paths and suboptimal short paths. Benchmarks with single
maps from the GPPC shown in Section 3.5.3 demonstrate that our
approach excels at more linear graphs like mazes and road networks
(suboptimality of 1.0021 and length ratio of 1.00118 in maze-1550-15

with 2.25m nodes) while the suboptimality increases in maps with
many large separated areas (maximum suboptimality of 1.0138 and
length ratio of 1.0044 in room-800-80 with 0.625m nodes).

3.5.3 Comparison to GPPC

The Grid-Based Path Planning competition [41] provides a set of
benchmarks [40] and hardware in order to compare grid based path
finding algorithms. It consists of several grid based game maps and
synthetic maps and has a total of 347,868 problems which are repeated
five times resulting in 1.74 million searches. Since there is no current
competition, and not all implementations and optimizations are acces-
sible, we compare our approach with similar hardware and existing
competition results (Intel E3-1220 DDR3 RAM (2011) vs. Intel E5620
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DDR3 RAM (2010)). The relevant results from GPPC 2014 can be found
in Table 3.1 including our approach with 25 and 100 fields.

Table 3.1: Timings, length ratio, suboptimality, storage and pre-
computation time of the GPPC 2014 benchmark compared to our
results on similar hardware. † denotes parallel computation.

Algorithm Total Length Sub Storage PreCmpt.

(s) Ratio Opt (min)

RA* 492224 1.073 1.0580 0MB 0.0

JPS 108750 1.000 1.0000 0MB 0.0

BLJPS 25139 1.000 1.0000 20MB 0.2

BLJPS2 12947 1.000 1.0000 47MB 0.2

RASubgoal 2937 1.022 1.0651 264MB 0.2

NSubgoal 1345 1.000 1.0000 293MB 2.6

CH 630 1.000 1.0000 2.4GB 968.8

SRC-dfs-i 330 1.000 1.0000 28GB †11650

Ours 100 fields 326 1.001 1.0043 11.8GB 15.0

Ours 25 fields 280 1.003 1.0110 3.2GB 3.7

PDH 256 1.078 1.1379 649MB 13.0

SRC-dfs 252 1.000 1.0000 28GB †11650

Tree 50.9 1.135 2.1657 568MB 0.5

Table 3.2 displays the results for different numbers of distance fields.
With an increasing number of fields, the search time increases due to
the higher number of fields lookups. This is both due to the number
of pre-computed fields itself and the more frequent field swaps. Note,
that the GPPC benchmark contains a large amount of mazes and wide
open rooms, which results in good suboptimality since our algorithm
only requires a small amount of fields for these kinds of problems.

Table 3.2: Results of our approach for the GPPC benchmark with multiple
numbers of fields on current hardware for 1.7 million search
paths.

Fields Total Length Sub Storage PreCmpt.

(s) Ratio Opt (s)

4 819 1.0110 1.0409 0.80GB 19

5 464 1.0074 1.0314 0.91GB 24

10 262 1.0041 1.0197 1.48GB 45

25 239 1.0025 1.0110 3.20GB 111

50 232 1.0014 1.0066 6.05GB 218

100 280 1.0013 1.0043 11.76GB 433

200 328 1.0005 1.0024 23.19GB 871
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3.5.4 Comparison to A∗

We use an optimized version of A∗ with a field containing flags instead
of a closed list in order to test different settings of our approach and
to validate its performance in other structures. For comparison, we
pick random pairs of nodes and calculate the path length, skipping
unconnected pairs. As benchmarks we use various structures as shown
in Figure 3.7: road networks from the 9th DIMACS challenge [7],
a mesh from the Stanford 3D Scanning Repository and several 2D
Pathfinding Benchmarks [40]. Table 3.7 contains the results including
timings, the percentage of suboptimal paths, the mean error of these
paths, the total length ratio and the worst case ratio found during
the benchmark. In the case of the Thai Statue, it is obvious that A∗

is much slower compared to the planar scenario. The reason for this
is the fact that we use the euclidean distance as heuristic which is
worse in 3D than in 2D. The same is true for the maze, where A∗

explores a large part of the graph in each iteration, again due to the
inefficiency of the heuristic. While 69% of our paths are suboptimal in
the case of the Thai Statue, their mean length error is only 1.11% and
the total length ratio is below 1%. The reason for this high amount of
suboptimal paths lies in the high branching of the mesh which makes
the detection of artifacts difficult. The worst cases are all paths that
are smaller than the width of the landmark areas and therefore have a
significantly high upper bound compared to their actual length.

3.5.4.1 Path quality improvements

An effective approach to improving path quality is to take the center
node of the calculated path as new node and to calculate the paths
from the original start and target node to this center node. These
can be joined and then compared to the original result, returning the
shorter solution. Recursion can be achieved by splitting the sub-paths
at their center nodes as well. This process can be repeated until the
joined sub-paths are longer than the initial path or sub-path. Since the
run time of our approach is linear in the path length, every split takes
a similar amount of time as the original path calculation. Table 3.7
shows several results how this improves the quality of the solutions.

3.5.5 Comparison to Contraction Hierarchies and Subgoal Graphs

Contraction Hierarchies (CH) and Subgoal Graphs (SG) are the most
promising algorithms from [41] with respect to both total time and pre-
processing time. While SG is limited to grids, CH and its successors
are widely used for navigation on street maps. In Table 3.3 we compare
our approach to these methods using the GPPC benchmark set. We
have split the data sets in categories in order to show in which cases
any of the algorithms excel. This analysis shows that our approach and
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CH are very slow for the maze-like maps, mainly for maze-1550-15,
while SG has problems with the random maps.

Table 3.4 shows the comparison to CH on non-grid graphs, where
it benefits from low branching while slowing down on graphs with
higher branching like the Thai Statue mesh.

Table 3.3: Comparison of our approach to Contraction Hierarchies and
Subgoal for the GPPC benchmark.

Preprocessing in s Pathfinding in s

Ours CH SG Ours CH SG

Starcraft 33 5372 31 7 39 8

Dragon Age 15 456 2 7 13 4

Dragon Age 2 12 627 2 12 19 7

Maze 68 2894 1 230 190 52

Random 194 714 23 11 25 720

Room 112 20368 7 13 83 10

Total 434 30432 66 280 368 802

Table 3.4: Comparison of our approach to Contraction Hierarchies for mul-
tiple structures and 10000 random paths. More details for these
graphs can be found in Table 3.7.

Preprocessing in s Pathfinding in s

Ours CH Ours CH

New York 4 8 0.5 0.8

Western USA 128 86 5.2 1.2

Central USA 403 418 8.2 4.6

Thai Statue 134 81268 1.8 4.7

3.5.6 Random placement of landmarks

While the fixed placement of landmarks at largest distance to all
others provides a well defined upper bound for errors and a uniform
distribution with lower landmark to size ratios, it is sequential and the
later landmarks happen to be placed in dead ends instead of highly
frequented areas. Therefore random distribution simplifies parallel
processing and can outperform the fixed placement at higher number
of landmarks in both speed and overall quality, although there might
be a minimal effect on the upper bound for errors. Table 3.8 shows the
results of the fixed iterative placement in comparison with random
placement. Most notable is that the quality of the maze-1550-15 map
decreases for fixed placement from 10 to 25 fields while it increases
steadily for the randomly placed landmarks. This is most likely due
to distortions of the path caused by landmarks in corners and dead
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ends. The GPPC benchmark benefits most from the random placement,
while for the Thai Statue, the quality slightly decreases. This is a result
of to the more uniform distribution over the mesh when using iterative
placement and the fact that there are no dead ends on the mesh. It is
also evident that the fifth field in the grid maps greatly increases the
quality which also shows the importance of central landmarks.

3.5.7 GPU implementation

Table 3.6 shows the results of our GPU implementation in relation
to the CPU equivalent. A portion of the time is consumed by the
transfer of the full paths back to the host system, which is just an
array of indices with fixed size. This could be further optimized by
either persisting just the directions or by transferring only a partial
path for online path finding. The graph including the connectivity
and cost is simplified to a list of arrays. Due to high branching and
collisions, for the larger graphs the GPU based pre-computation is not
significantly faster than the CPU implementation, while the transfer
time is negligible. The timings are shown in Table 3.5.

Table 3.5: Timings including transfer time for the GPU based distance field
generation and speedup compared to the CPU counterpart.

Radeon RX480 Radeon RX5700

Time(ms) Speedup Time(ms) Speedup

New York 238 17 117 35

Western USA 38842 3 29716 4

Central USA 77012 5 59992 6

Thai Statue 22511 6 18763 7

GPPC 65059 7 15005 27

Table 3.6: Timings (including transfer time) for the GPU based pathfinding
and speedup compared to the CPU variant. More details can be
found in Table 3.7.

Radeon RX480 Radeon RX5700

Time(ms) Speedup Time(ms) Speedup

New York 47 (72) 7 29 (70) 7

Western USA 233 (266) 20 133 (184) 29

Central USA 329 (355) 23 251 (306) 27

Thai Statue 128 (158) 12 84 (136) 14

GPPC 8171 (10565) 27 5750 (9176) 31
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Table 3.7: For multiple structures: timings, percentage of suboptimal paths,
mean error of these paths and total length ratio. Recursion refers
to splitting the path in subpaths and repeating the calculation
as explained in Section 3.5.4.1.

DIMACS New York (264.346 nodes)

10000 random paths

time for A∗ : 71s, for field generation: 4.2s

Time(s) Suboptimal Mean Ratio Worst

Normal 0.5 11% 7.21% 1.0083 3.36

Recursion 1 0.8 8% 5.79% 1.0052 2.97

Recursion 2 1.1 8% 4.86% 1.0040 2.41

Recursion 3 1.4 7% 4.56% 1.0036 2.41

DIMACS Western USA (6.262.104 nodes)

10000 random paths

time for A∗ : 2618s, for field generation: 128s

Time(s) Suboptimal Mean Ratio Worst

Normal 5.3 12% 5.77% 1.0071 3.39

Recursion 1 9.6 8% 4.94% 1.0043 2.37

Recursion 2 12.8 7% 4.33% 1.0032 2.37

Recursion 3 16.1 7% 3.90% 1.0028 2.37

DIMACS Central USA (14.081.816 nodes)

10000 random paths

time for A∗ : 4944s, for field generation: 403s

Time(s) Suboptimal Mean Ratio Worst

Normal 8.2 15% 3.41% 1.0054 2.31

Recursion 1 15.1 10% 3.10% 1.0033 1.96

Recursion 2 19.3 8% 2.60% 1.0023 1.58

Recursion 3 23.2 8% 2.34% 1.0020 1.58

Stanford Thai Statue (4.999.993 nodes)

10000 random paths

time for A∗ : 3383s, for field generation: 134s

Time(s) Suboptimal Mean Ratio Worst

Normal 1.9 69% 1.11% 1.0077 1.74

Recursion 1 3.4 66% 0.93% 1.0062 1.47

Recursion 2 4.9 64% 0.87% 1.0056 1.45

Recursion 3 6.2 64% 0.85% 1.0055 1.45

GPPC random512-35-0 map (161.552 nodes)

10000 random paths

time for A∗ : 54s, for field generation: 2.3s

Time(s) Suboptimal Mean Ratio Worst

Normal 0.4 27% 2.51% 1.0069 2.61

Recursion 1 0.6 21% 1.97% 1.0042 2.61

Recursion 2 0.9 16% 1.80% 1.0030 1.46

Recursion 3 1.2 15% 1.79% 1.0027 1.46

GPPC maze-1550-15 map (2.252.039 nodes)

10000 random paths

time for A∗ : 2015s, for field generation: 19s

Time(s) Suboptimal Mean Ratio Worst

Normal 6.3 48% 0.21% 1.00118 1.37

Recursion 1 11.2 46% 0.17% 1.00111 1.17

Recursion 2 15.2 45% 0.14% 1.00105 1.06

Recursion 3 19.0 43% 0.12% 1.00099 1.05
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3.6 discussion

As shown our approach is a serious competitor to current search algo-
rithms when the computations are performed on the CPU. It is able to
bridge the gap between optimal algorithms with high run time or high
pre-computation time and suboptimal algorithms, while being easy to
implement and very scalable with respect to memory consumption,
run time and sub-optimality. The performance mainly depends on
the memory latency and bandwidth, which are the bottlenecks in
combination with branching and cache misses.

It is also usable for GPU path finding and profits from the fast
graphics memory and bandwidth, though the memory might not
suffice for the current high resolution textures coupled with many
distance fields for large sized maps in games. The memory cost for
all paths and the bus transfer time have to be taken into account.
However, it is unlikely for current games to have this high amount of
units being processed at the same second and requiring the complete
path information.

While short paths are more prone to errors since the maximum error
is bound by the distance to landmarks, a fallback to an A∗ algorithm
could also be considered in this case.

3.6.1 Path planning by minimal distance map

In order to reduce the memory consumption, it is possible to fall back
to the minimal distance map shown in Figure 3.3 for search. Through
this map it is known which landmark is the closest to each node and
the shortest path to it. In order to find a path from one node to another,
it is only necessary to find a path between the two landmarks to which
they belong. One solution is to store all paths between the landmarks,
where the paths are given by the distance fields. So the distance fields
are not more needed to be kept in storage, but the paths are.

An other solution is to generate a graph based on the minimal
distance map with the landmarks as nodes. Edges between these
nodes exist where a minimal distance field is neighbor to an other.
The shortest paths and costs between the landmarks can be calculated
using the minimal distance map. For this method it is not necessary
to fully calculate the distance fields but just until there is no more
change in the minimal distance map. Based on the graph a path can
be searched, either by other algorithms or by an hierarchical approach.

Both approaches showed reasonable results but must be further
looked into and optimized.
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3.7 prospects

In a future work we want to look into suitable compression of the
distance fields and measurements to classify problems in order to
develop a heuristic to suggest or choose the most favorable settings.
Furthermore, we plan to increase optimization of the GPU usage and
reduce branching and cache misses. We also want to consider multi-
agent scenarios with the combination of potential fields and different
agent sizes. In connection with this we will evaluate potential fields
in combination with our approach and how to handle local minima
introduced by this method. A further step towards realistic path
planning could be by introducing boundary conditions as suggested
by Crane et al. [5]. Another interesting approach would be a mix of
GPU and CPU computation, probably using OpenCL by computing an
admissible graph on the GPU first and passing it for further processing
to the CPU like in the split approach.
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Table 3.8: Comparison of random selection of landmarks with selection
by highest distance to all others. The results of the random
selection are given in a 95% confidence interval. Better results
are highlighted.

Fields GPPC

Length Ratio Suboptimality

Normal Random Normal Random

4 1.0110 1.0093-1.0106 1.0409 1.0400-1.0451

5 1.0074 1.0069-1.0077 1.0314 1.0318-1.0345

10 1.0041 1.0036-1.0038 1.0197 1.0188-1.0198

25 1.0025 1.0015-1.0018 1.0110 1.0105-1.0107

50 1.0014 1.0008-1.0009 1.0066 1.0069-1.0071

100 1.0013 1.0004-1.0004 1.0043 1.0044-1.0045

Fields DIMACS New York (264.346 nodes)

Length Ratio Suboptimality

Normal Random Normal Random

4 1.1212 1.0987-1.1750 1.1583 1.1462-1.2423

5 1.1004 1.0769-1.1056 1.1378 1.1141-1.1490

10 1.0340 1.0304-1.0461 1.0621 1.0538-1.0734

25 1.0131 1.0095-1.0110 1.0277 1.0223-1.0247

50 1.0052 1.0039-1.0047 1.0142 1.0110-1.0129

100 1.0025 1.0015-1.0018 1.0083 1.0055-1.0063

Fields DIMACS Central USA (14.081.816 nodes)

Length Ratio Suboptimality

Normal Random Normal Random

4 1.1546 1.0998-1.1622 1.2169 1.1506-1.2479

5 1.1186 1.0866-1.1226 1.1575 1.1338-1.1855

10 1.0348 1.0350-1.0403 1.0585 1.0601-1.0688

25 1.0107 1.0105-1.0127 1.0229 1.0227-1.0263

50 1.0040 1.0041-1.0047 1.0108 1.0109-1.0124

100 1.0016 1.0014-1.0016 1.0054 1.0049-1.0056

Fields Stanford Thai Statue (4.999.993 nodes)

Length Ratio Suboptimality

Normal Random Normal Random

4 1.1699 1.1310-1.1524 1.2499 1.2001-1.2282

5 1.1194 1.1121-1.1359 1.1799 1.1754-1.2019

10 1.0430 1.0546-1.0644 1.0744 1.0890-1.1043

25 1.0150 1.0197-1.0225 1.0300 1.0368-1.0411

50 1.0063 1.0083-1.0087 1.0144 1.0178-1.0186

100 1.0031 1.0037-1.0040 1.0079 1.0090-1.0096

Fields GPPC random512-35-0 map (161.552 nodes)

Length Ratio Suboptimality

Normal Random Normal Random

4 1.1521 1.1057-1.1411 1.1778 1.1448-1.1881

5 1.0918 1.0875-1.1078 1.1202 1.1169-1.1457

10 1.0409 1.0415-1.045 1.0642 1.0621-1.0671

25 1.0106 1.0129-1.0157 1.0196 1.0240-1.0275

50 1.0057 1.0050-1.0055 1.0110 1.0107-1.0118

100 1.0034 1.0022-1.0026 1.0065 1.0056-1.0062

Fields GPPC maze-1550-15 map (2.252.039 nodes)

Length Ratio Suboptimality

Normal Random Normal Random

4 1.0023 1.0011-1.0019 1.0034 1.0025-1.0035

5 1.0008 1.0012-1.0017 1.0017 1.0026-1.0033

10 1.0005 1.0010-1.0017 1.0012 1.0019-1.0027

25 1.0028 1.0007-1.0012 1.0031 1.0016-1.0021

50 1.0010 1.0003-1.0007 1.0020 1.0011-1.0015

100 1.0017 1.0002-1.0004 1.0023 1.0008-1.0011





4
C O N C L U S I O N

It has been shown that it is possible to achieve scalable, realistic-
looking solutions to hard problems, which can be used for games and
simulations that are not vital, by reducing the problems to multiple
exact solutions. In the case of the teeth, the computationally intensive
subsurface scattering is broken down to a low resolution texture and
scaled up, which is possible due to the scattering properties of the
materials. And in the case of pathfinding, the number of landmarks
and distance fields define the computational time and accuracy based
on graph theory. The results are so close to the real solutions that it is
difficult for the average observer to notice any anomalies.

4.1 prospects

Emerging artificial neural networks hold great promise for future
developments in terms of realistic representations with minimal effort.
However, they deliver approximations by design, are still very compu-
tationally intensive and only as good as their training data. While it is
foreseeable that human teeth will soon be represented correctly and ac-
cording to tooth color using these methods, however, not to the extent
and in the form that would be necessary for dentists and the presen-
tation of restorations. While there are neural network approaches to
pathfinding, they also require pre-computation, i.e. learning, and are
highly dependent on training data.
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