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Abstract
Reducing waste through automated quality control (AQC) has both positive eco-
nomical and ecological effects. In order to incorporate AQC in packaging, multiple 
quality factor types (visual, informational, etc.) of a packaged artifact need to be 
evaluated. Thus, this work proposes an end-to-end quality control framework eval-
uating multiple quality control factors of packaged artifacts (visual, informational, 
etc.) to enable future industrial and scientific use cases. The framework includes 
an AQC architecture blueprint as well as a computer vision-based model training 
pipeline. The framework is designed generically, and then implemented based on a 
real use case from the packaging industry. As an innovate approach to quality con-
trol solution development, the data-centric artificial-intelligence (DCAI) paradigm 
is incorporated in the framework. The implemented use case solution is finally 
tested on actual data. As a result, it is shown that the framework’s implementation 
through a real industry use case works seamlessly and achieves superior results. The 
majority of packaged artifacts are correctly classified with rapid prediction speed. 
Deep-learning-based and traditional computer vision approaches are both integrated 
and benchmarked against each other. Through the measurement of a variety of per-
formance metrics, valuable insights and key learnings for future adoptions of the 
framework are derived.
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1 Introduction

Food production is based on long and complex supply chains (Serdarasan 2013; 
Gunasekaran 1996; Haji et al 2020). The inspection of food packaging is a main pro-
duction bottleneck (Nandakumar et al 2020) due to manual checks leading to inevitable 
human error and process inefficiencies (Kang et al 2018; Vergara-Villegas et al 2014). 
Following the Theory of Constraints, reducing or eliminating those bottlenecks strongly 
improves production productivity (Hoseinpour et al 2020, 2021). However, companies 
struggle to switch to automated quality checks (Razmjooy et al 2012), e.g. leveraging 
Artificial Intelligence (AI)-based technologies (Kühl et al 2022) such as deep learning-
based computer vision (CV) models (Zhu et al 2021). This work proposes a CV-based 
quality control framework including a solution blueprint and a training pipeline focused 
on adaptability—underlined through a use case implementation focused on food pack-
aging. Food packaging quality has a major impact on consumer buy-decisions (Ansari 
et al 2019; Popovic et al 2019), and defective packaging is a main cause for food waste 
(Williams et al 2012; Poyatos-Racionero et al 2018). In addition, wrong package infor-
mation may lead to fines, recalls, or even health risks for customers (Thota et al 2020). 
However, since packaging fulfills multiple purposes (marketing, protection, and infor-
mation display) (Ansari et al 2019), it needs to be assessed on multiple quality factor 
types (visual flawlessness, correct information, etc.).

Hence, beside it’s focus on adaptability, the framework also tackles the lack 
of quality control of multiple quality factor types in comparable works (Zhu et  al 
2021). Developing a (deep learning-based) CV quality control system evaluating 
surface as well as informational quality features of packaged artifacts has not been 
conducted on a scientific basis before. Without this ability, CV-based quality con-
trol systems cannot reflect, and therefore replace, thorough human quality inspec-
tion yet. In order to tackle the complexity of capturing multiple quality aspects, this 
work leverages the concept of Data-Centric AI (DCAI) (Jakubik et al 2024) to focus 
on data acquisition instead of model optimisation during development. So far, there 
have not been any DCAI focused approaches to the problem of multi-feature-based 
quality control yet. In a scenario with multiple regions of interest, a DCAI-focused 
approach allows to test different angles and recording parameters such as resolu-
tion, lightning and angle. Underlining the adaptability focus of this framework, these 
learnings can then be transferred into the deployment setup.

Overall, this work aims at answering the following research question:
How can an efficient multi-feature, end-to-end computer vision-based quality 

control system be designed?
Instead of just describing a problem-specific solution like other predecessors in 

the scientific field of CV-based quality control, this work proposes an end-to-end 
holistic architecture concept, the quality control framework, to be transferred onto 
other use cases. In this, end-to-end refers to the solution covering the whole pro-
cess from image acquisition to classification result and post-processing of predic-
tion data. The framework focuses on modularity and allows for the measurement of 
visual as well as informational quality features. It includes the blueprint of a poten-
tial solution architecture design as well as an exemplary training pipeline, describing 
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the acquisition of data and the subsequent DCAI-based data engineering. In order to 
prove the whole solution’s viability, an implementation of the proposed solution is 
developed based on a use case in the field of coffee packaging.

In the following, related work in the area of quality control in packaging with 
regard to multi-feature classification, architectural concept and data focus is pre-
sented (Sect.  2). To further explain the approach of this work of answering the 
above-stated research question, the methodology is discussed in more detail 
(Sect. 3). From there, the framework’s architecture design blueprint and the train-
ing pipeline for the integration of deep learning models into the solution architec-
ture is outlined (Sect. 4). Afterwards, an exemplary use case including the respective 
data (Sect.  5), as well as the actual use case-based implementation are described 
to prove the viability of the solution design (Sect. 6). This is followed by the test 
results of the implementation, an analysis of the results, and the evaluation of alter-
native design approaches (Sect. 7). In the end, derived learnings, contributions, and 
potential future extensions are summarized (Sect. 8).

2  Related work

Despite packaging being a crucial production step, scientific works researching the 
application of CV-based quality control for packaging are limited. A collection of 
related works is presented and compared in this chapter. Generally, CV-based qual-
ity control approaches examine extractable visual information of images such as 
pixel intensities. These can either be analyzed by leveraging traditional CV methods, 
e.g. edge detection algorithms, or by training deep neural networks (Mahony et al 
2020). For the latter, the detection and definition of image features relies predomi-
nantly on Convolutional Neural Networks (CNNs) (Biswas et al 2018).

For packaging, both approaches are leveraged in scientific works. Depending on 
the use case, traditional CV-based algorithms work very well, e.g., through color 
normalization to count the amount of canules in a package (Erwanto et al 2017), 
or by analyzing pixel histograms to compare images in order to detect outliers (Sa 
et al 2020). Still, traditional CV-based algorithms have their limitations in terms 
of flexibility and feature complexity (Mahony et al 2020). Hence, applying CNN-
based architectures became increasingly popular for quality control use cases 
(Voulodimos et al 2018). In the packaging industry, application cases include pat-
tern recognition (Sa et al 2020), area segmentation (Ribeiro et al 2018), and opti-
cal character recognition (Thota et  al 2020). CV tasks can be accomplished on 
different wavelengths of light, called spectrums. Quality assessment can be done 
in the visible spectrum but also in the spectrum of infrared or X-ray with either a 
mono spectrum—i.e. grayscale images—or a multi-spectral approach. Recently, 
also hyperspectral imaging sensors are tested on quality control tasks (Medus 
et  al 2021). Other approaches include the usage of out-of-the-box, proprietary 
software tools which come with various downsides, especially from a customiza-
tion perspective (Huaiyuan et al 2013). However, all these approaches are fixed to 
their domain and not extendable by potential adopting users. On top of that, the 
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solutions developed in these approaches exclusively detect surface errors based 
on single quality features.

More advanced approaches conduct automated quality control based on not 
one, but multiple features. Nandi et  al (2014) and Blasco et  al (2009a) classi-
fiy fruits based on shape, surface defects, and maturity defects using a weighted 
score aggregation. Alternatively to that, Blasco et  al (2009b) shift away from 
extracting multiple features from one image, and instead use a multi-spectral 
approach analyzing fluorescence, near-infrared (NIR), and RGB images of citrus 
fruits respectively. In the packaging domain, Banús et al (2021) look at the dif-
ferent surface inconsistencies of thermoforming food packages and classify the 
packages according to different regions of interest (ROIs), using three cameras 
to analyze the packages from different camera angles with respect to the indi-
vidual ROIs. Benouis et  al (2020) scan food trays  using object detection algo-
rithms  to  detect 11 different classes of foreign materials. Another example is 
Wang et al (2012)’s approach in classifying cheese packages based on their defor-
mation, as well as on potential cheese leakage. However, even if multiple errors 
are checked, all approaches are solely focused on multiple errors of similar types, 
e.g. based on visual appearance. Although there are attempts to include contex-
tual information, e.g. by leveraging optical character recognition (OCR) to iden-
tify and extract expiry dates of packaged food (Ribeiro et  al 2018; Thota et  al 
2020), these attempts do not take visual appearance factors into account.

Another distinctive factor throughout scientific works in this domain is the acqui-
sition of data and—closely tied to that—the hardware used. Some approaches record 
their own data either through static images (Erwanto et  al 2017), or by recording 
videos leveraging a conveyor belt. While requiring additional initial effort, the data 
acquired using video cameras in combination with conveyor belts depicts produc-
tion scenarios more accurately. Data extraction techniques are either continuously 
filming one area and extracting frames (Banús et al 2021), or by using line scanning 
technologies (Benouis et al 2020). Alternatively, developers may reuse already exist-
ing data. This can be derived by leveraging publicly available data sets (Thota et al 
2020), or by acquiring proprietary data (Ribeiro et al 2018).

While all previously mentioned approaches present high performance scores, 
most of them are tested on data similar to the development data. Some researchers 
attempt to include flexibility in their solutions to provide for changing conditions 
by increasing the variety of packaged artifact shapes and types (Ribeiro et al 2018; 
Benouis et al 2020), or by using different recording parameters for the test set Banús 
et al (2021). Thota et al (2020) propose a solution that allows including additional 
datasets in the context of expiry-date detection of food packages—although without 
explicitely describing how to integrate the additional data.

In order to underline the generalizability of the developed solutions, describ-
ing the developed software architectures is common in most of the mentioned 
works (Banús et al 2021; Thota et al 2020; Ribeiro et al 2018; Benouis et al 2020; 
Banus et al 2021). However, the focus lies on the description of use case-specific 
applied solutions rather than on an architectural blueprint. Also, the develop-
ment process and data processing steps are only described on a very high level. In 
addition, some works list the integration of additional quality control metrics in 
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their outlook but do not describe how to extend the respective evaluation systems. 
Thus, the integration and adaption of the proposed solutions onto new use cases 
is hardly possible.

The above mentioned works and their different approaches to CV-based qual-
ity control of packaged artifacts are listed in the table below (Table  1). In the 
next chapter, this work’s approach to fill the existent research gap of multi-feature 
quality control through leveraging the DCAI paradigm is explained.

Table 1  Related packaging focused CV-based quality control approaches

a Sa et al (2020)
b Banús et al (2021)
c Thota et al (2020)
d Ribeiro et al (2018)
e Erwanto et al (2017)
f  ang et al (2012)
g Benouis et al (2020)
h Banus et al (2021)
i Data-Centric AI
j End-to-End - The whole classification process is displayed from data acquisition, processing and clas-
sification to the finalized result with respective output
k Scale Invariant Feature Transform
l Optical Character Recognition/Verification

Saa Banusb Thotac Ribeirod Erwantoe Wangf Benouisg Banus  Bh This work

Data Acquisition x x x x x
Product Varience x x x x
Conveyor Belt x x x x x
DCAIi x
Architecture x x x x x x
E2Ej x x x x x
Modularity x x x
Surface-based x x x x x x x
Information-

based
x x x

Multiple Cam-
eras

x x

Runtime Meas-
uring

x x x x

Deep Learning x x x x x x x
SIFTk x
OCR/OCVl x x x
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3  Methodology

As previously mentioned, conveyor belt and assembly line production processes 
are homogeneous in their nature. Thus, the framework of this work is applicable to 
all  industries leveraging conveyor belts in their processes. Generally, artifacts are 
quality checked on a variety of quality factor categories. Therefore, the framework 
focuses on flexibility in terms of seamlessly adding or removing quality factors and 
their respective classification logic. In this, the framework must not be limited to one 
quality factor category. Instead, it should be feasible to perform quality checks on 
multiple error categories such as visual or informational errors. In order to be able to 
record their own training data, the authors of this work have collaborated with a big 
European food producer. This allows evaluating the viability of this framework by 
applying it onto a use case of the food producer—following the DCAI paradigm. The 
data is initially recorded with pre-defined parameters in terms of recording tools, 
camera settings, and facilitating environment. Throughout the development process, 
this data as well as the framework is then continuously re-evaluated. If development 
bottlenecks occur due to insufficient training data, parameters are adjusted and new 
data acquired. For a high-level overview of the development process of both the 
framework as well as the following use case implementation see Fig. 1.

3.1  Data acquisition

The data acquisition is conducted by setting up a lab environment simulating real 
use cases. The lab environment consists of a conveyor belt and multiple cameras 
recording the artifacts on the belt from multiple angles. The cameras have different 
recording parameters, e.g., resolution or sensor. As output, the cameras record video 
material, which is split into single frames. These frames are sorted, segmented, and 
partially labelled, so that they can be used as training input. Videos are thus recorded 
with respect to different regions of interest (ROIs) of the artifacts. These are deter-
mined by the respective quality control types and their position on the package. 
The underlying use case is focused on the quality classification of coffee packages 
(Sect. 5). These have multiple ROIs with respect to multiple quality factors—the lot 
number, the expiry date, the barcode, and the sticker on top of the package. Thus, 

Fig. 1  The methodology of this work with the goal of deriving the quality control framework by develop-
ing it in DCAI-focused feedback cycles
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videos are recorded with focus on these ROIs. Each ROI has different requirements 
as they vary strongly in classification logic. The lot number and expiry date have to 
be read out and evaluated logically. As a result, recordings of these ROIs require a 
high resolution to enable the extraction algorithms to work properly. The top sticker 
on the other hand merely needs to be identified, so it does not require as strong of 
a camera focus as the other ROIs. Following the DCAI paradigm allows trying dif-
ferent recording settings and testing the acquired data during development for the 
respective quality factor classification—and potentially re-recording data with new 
settings.

3.2  Quality control framework

Concurrently with the data acquisition, a framework for the development of an 
automated CV-based quality control system is designed. The framework includes 
a proposal for a solution architecture following a pipeline shape in order to mir-
ror the linear process of manual quality control. In addition, it describes a training 
process to train the leveraged deep learning models in this architecture. The solu-
tion architecture is designed as a collection of microservices (Dmitry and Manfred 
2014) with a facilitating process logic to connect them. This allows easy adoption 
and tailoring for other use cases. The training pipeline is designed to automate the 
training process, making it scalable and minimizing the need for manual labeling. In 
enables users to obtain and integrate sufficient training data with little manual work. 
Through that, it is enabling the DCAI-focused development. Overall, the goal of this 
framework is to support the development and implementation of an automated qual-
ity control system by providing a blueprint for a solution architecture and a stream-
lined training process.

3.3  Use case implementation

The overall framework is not only described theoretically, but also implemented 
based on the use case described in Sect. 5. In the use case, various computer vision 
techniques are compared, and the finalized solution trained and tested on the use-
case-related, self-acquired data. Based on input of subject matter experts, the solu-
tion’s requirements (e.g., detection speed, most common error types,...) are elicited 
and continuously adjusted throughout the development process. During develop-
ment, the proposed solution architecture blueprint is used as foundation for the 
developed solution. This not only includes the classification solution itself, but also 
data acquisition, model training, and testing. The training pipeline of the framework 
is leveraged during the model training phase as it enables following the DCAI para-
digm without the task of manual relabelling. By testing the example solution after 
development and training, performance results of the solution are obtained and eval-
uated. In order to identify performance factors of the proposed solution, additional 
alternative implementation choices, both deep learning model as well as traditional 
CV approachesare developed and compared against each other.
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3.4  Benchmarking

Common CV metrics are used as benchmarking metrics for a comparison between 
the alternative approaches. The accuracy of the object detection of the packaged 
artifact as well as the classification ROIs is measured by using the Intersection over 
Union (IoU) (Rezatofighi et al 2019). This metric essentially calculates the percent-
age of overlap between both bounding boxes—the predicted and the actual one.

To measure classification accuracy, confusion matrices (Ting 2017) are the foun-
dation for more complex metrics. Thus, the confusion matrices for the overall and 
ROI classifications are calculated during the tests. From there, accuracy, precision 
and recall (Vakili et al 2020) can be derived.

Based on confusion matrices and IoU, the most common metric for object detec-
tion and classification is the Mean Average Precision (mAP) (Henderson and Ferrari 
2016). This metric calculates the mean of all interpolated average precisions (APs) 
per recall values for each class with respect to a certain IoU threshold. Here, inter-
polated precisions are the local maxima of the precisions per recall.

The mAP is calculated for the packaged artifacts and the classification ROIs 
extraction. Additionally, the average classification time (t) for the overall pipeline is 
measured to also compare the alternative approaches with the current classification 
speed.

The results of benchmarking are then analyzed, discussed and further potential 
improvements are proposed. The overall goal of the benchmarking process is to 
underline the viability of the developed framework and its implementation. In addi-
tion, insights regarding edge cases and potential problem sources can be identified. 
These learnings are then used to re-evaluate and propose future improvements to the 
overall framework and the developed solution. In the next chapter, the generalized, 
CV-based quality control framework is described in more detail.

4  Quality control framework

The quality control framework consists of two parts—a potential solution architec-
ture design concept and a training process logic. The latter enables the solution’s 
development to follow the DCAI paradigm with large amounts of data. The solution 
architecture design is strongly focused on modularity. It allows users to apply their 
use cases seamlessly. It is hence to be understood as a blueprint which can modified 
for use case-specific adjustments. The training pipeline enables users to integrate 
object detection models in this architecture concept. The models are used for the 
package and the ROI detection during the quality control process. In the following, 
the architecture concept and its services are presented. Afterwards, the training pipe-
line is described.
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4.1  Architecture

The solution architecture design follows a pipeline shape due to the linear process 
of quality control checks. With focus on modularity, it follows a service oriented 
architecture concept (Fig.  2). This means the individual steps of the pipeline are 
segmented into single microservices (Perrey and Lycett 2003). Each microservice 
has its own purpose and can be seen as an independent development entity block. 
The independence of the blocks allows use-case specific modifications. This can be 
derived both on service internal level, as well as the addition or removal of existing 
services. Only the input and output requirements of the existing services needs to be 
considered.

Acquistion service. When the solution is ran, the acquisition service first sets all 
camera parameters according to pre-defined values. From there, the acquisition ser-
vice iteratively pulls frames from the camera on a pre-defined time interval. Each 
frame is then checked on the appearance of the artifact, and wether all ROIs are 
detectable. If not, the next frame is pulled. If an artifact and it’s ROIs are detectable, 
the acquired raw frame is converted to the required image format and sent to the 
processing service.

Processing service. The processing service is responsible for the pre-processing 
of the image, preparing it for the succeeding classification service. Its task is to 
extract the classification ROIs from the raw frame. As a first step, the raw frame is 
pre-processed in multiple steps including pixel format transformation, size adjust-
ments, or noise reduction among others. Then, the packaged item is identified, 
extracted, and labeled. All these steps are then repeated to extract the ROIs from the 
cut out frame. These are forwarded as input parameters to the classification service.

Classification service. To perform the quality control of all factors, multiple 
evaluations based on the extracted ROIs are performed in the classification service. 
Each evaluation is performed individually in parallel, so quality factors can be eas-
ily added or removed. Thus, each quality factor also requires its own classification 
logic. The applied logic depends on the detectable error types (e.g. textual syntax). 
All individual classification model output scores are aggregated based on a use-case 

Fig. 2  The quality control pipeline solution architecture
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dependent aggregation logic. Examples of aggregation logic are Boolean-like logic, 
weighted sums, or an average over all classification scores. Through the aggregation 
logic, various error types of different error categories can be jointly evaluated.

Output relay service. In the last step, the use case requirements decide which out-
put channels to use. It is possible to simply store classification data in raw form, 
to calculate metrics and store the results in databases, or to have follow up actions 
defined, e.g., a flashing LED or the interruption of the packaging process.

After describing the architecture on a high level, the proposed solution design 
architecture is implemented based upon an industry use case in Sect. 6.

4.2  Multi‑source approach

The above described architecture classifies a package based on a single frame. This 
might not always be feasible. To be able to capture all ROIs of an artifact’s pack-
age—even if they are positioned on opposite sides of the package—the framework 
allows classification based on multiple camera sources. The classification logic fun-
damentally stays the same. Solely the acquisition and processing of multiple frames 
is conducted differently through multiple, parallel processes Fig. 3. Profiting from 
the framework’s modularity, the acquistion and processing service can be tailored 
for each camera source individually. The architecture enables users to seamlessly 
add or remove sources.

4.3  Training pipeline

To enable data-centric development, iteratively recorded training data for models 
used in the classification and processing service can be seamlessly integrated. The 
presented training pipeline focuses on deep learning-based object detection models 
leveraged in the processing service (Fig. 4). Focusing on flexibility, the architecture 
allows users to test and integrate different object detection models based on on their 
respective requirements.

Fig. 3  The multi-source approach of the solution architecture
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Recorded video data is cut into frames by a script, and stored as training and test 
data. A subset of frames per sorting category (artifact types, fraudulent or flawless, 
input source, etc.) needs to be manually labelled. After training an object detection 
model with this subset, the remaining unlabeled images are automatically labelled as 
well by leveraging this pre-trained helper model. Through that, the labeling process 
is semi-automated. The same process can now be repeated for the ROI extraction 
model. Following this training scheme, users can  operationalize huge amounts of 
training data.

Ultimately, the training pipeline enables developers to follow the DCAI para-
digm. Existing models are reused for the automated labeling of new training data 
in scale. By making the object detection models as robust as possible, they can be 
reused in every new iteration of data acquisition as displayed in Fig. 5. The figure 
shows the process of automated labeling in the case of newly captured training data. 
The video data is segmented into images which are then labelled by the previously 
trained models. This labeled data is then re-used to further solidify the robustness 

Fig. 4  The framework’s training pipeline for semi-automatic labeling

Fig. 5  Process of re-using the pre-trained models for automatic labeling
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of these models through retraining—allowing even more precise automated labeling 
for future data acquisition iterations.

5  Case description

Quality control in packaging processes are generally very similar. Unpackaged arti-
facts enter the process, packaging applied, and the evaluation result then monitored 
(Poyatos-Racionero et al 2018). Hence, this work considers an example use case to 
be very expressive for the general applicability of the proposed framework. In this 
specific use case, the framework is tested on the automated quality control of cof-
fee packages. The coffee packages contain 500 g vacuumed coffee each and have 
a rectangular shape. The vacuum packaging is aluminum-based with a paper cover 
wrapped around. The cover is held together through a paper sticker glued on pack-
age’s top side. The use case evaluates the packaging of five different types of cof-
fee beans. Each type has a different design in terms of paper cover and top sticker. 
However, they are all similar in shape. An illustration of the coffee packages can be 
found in Fig. 6.

First, a list of relevant errors of coffee packages is created and discussed with 
experts working at production site. The most important errors in terms of error fre-
quency and impact are identified:

In terms of visual features, the top sticker needs to be evaluated. The top sticker 
being incorrect would make the package unsaleable in stores. Regarding informa-
tional features, the expiry date needs to be accurate due to potential implications 
of faulty dates (Zielińska et al 2020). Also, the lot code as well as the barcode are 
controlled since they are crucial elements of the packages logistic processes. An 
overview of potential errors and their categories can be found in Table 2  (the errors 
checked in this work in bold). Coffee packages may be classified as bad because of 
a single, (Fig.  9) or multiple (Figs.  7 and 8) fraudulent quality factors. The three 

Fig. 6  The coffee packages are filmed from the side (2). Depending on their position on the belt, the 
front (1) and back (3) are visible as well. However, the ROIs are all positioned on the side (and top) view
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resulting ROIs are shown in Fig. 6. Each ROI and its possible errors are listed in 
Table 3.

In order to capture all error types, different requirements are necessary. To record 
training and test data, a laboratory setup including conveyer belt and multiple cam-
eras is constructed. This allows the re-recording of coffee packages with respect to 
different camera types, angles, and parameters.

Video data is recorded with two different cameras from horizontal (Fig. 7), diago-
nal, i.e. 30 and 60 degrees to the horizontal axis (Fig. 8), and vertical (Fig. 9) angles. 

Table 2  Potential error 
types with their respective 
category (error types checked in 
thus work displayed as bold)

a Errors which occur but are not covered in this work

Quality factor Quality factor category

Top Sticker Missing Visual
Top Sticker  positiona Visual
Top Sticker  rotationa Visual
Expiry-by-date not readable Visual
LOT not readable Visual
Barcode not readable Visual
Paper cover incorrectly  foldeda Visual
Outside  damagea Visual
Back seam of package  crookeda Informational
Expiry-by-date semantically incorrect Informational
Wrong Paper cover  languagea Informational
Barcode semantically incorrect Informational

Table 3  Checked potential errors per quality factor

Expiry date Lot number Barcode Top sticker

Not readable Not readable Not readable Missing
Wrong format Wrong format Wrong Barcode Wrong Top Sticker
In the past Wrong Lot
Below threshold

Fig. 7  Expiry date, lot number 
and barcode defect
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Videos are iteratively recorded with different cameras, processing hardware, camera 
settings, and light adjustments.

In total, 1.7 Terabyte of video data is recorded in avi format. In every iteration, 
packages of each coffee type are recorded separately without any modifications, 
flipped vertically and horizontally to extend the training base, mixed together for test 
data, and a sample of packages per type is recorded with simulated quality flaws on 
the packages. The videos are split into single frames and semi-automatically labeled 
leveraging the framework’s training pipeline concept. It hence follows the concept 
of semi-supervised deep learning—i.e. using a small set of labeled data and a large 
set of unlabeled data (Zhu and Goldberg 2009)— for the labeling process. This con-
cept is widely applied in recent years targeting efficient training processes with large 
amounts of data (van Engelen and Hoos 2020). In the first iteration, videos of the 
packages on the conveyer belt are recorded from four different angles. In the second 
iteration, the frames per second are reduced and the resolution is increased. In the 
last iteration of recordings, the illumination is adjusted to particularly improve the 
top sticker classification. Therefore, videos are only recorded from a 60 and a 90 
degrees angles. All numbers regarding data acquisition can be observed in Table 4. 
Here, videos are being recorded in different camera angles (Camera Degrees), and 
with approximately the same amount of flawless packages (Non-Error Images) of 
each of the five coffee package types (N-E Images per Type). Overall (Total Images), 

Fig. 8  Expiry date and lot 
number wrong

Fig. 9  Top sticker missing
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around 80,000 images of flawless as well as deliberately damaged (Error Images) 
packages are extracted from the video recordings.

6  Implementation

Leveraging the acquired data, the quality control framework proposed in Sect. 4 is 
used as foundation for an exemplary use case implementation. The applied quality 
control pipeline is developed using the PyTorch (Paszke et al 2019) framework with 
use case specific design decisions for each of the individual services.

Processing service As the first prototypical solution, a YOLOv5s (Jocher et  al 
2022) model is used in order to detect and classify the coffee packages as well as the 
ROIs. Models from the YOLO family (Redmon et al 2016) are single stage detectors, 
hence faster compared to two-stage detectors. In addition to that, Meta Detection 
Transformer (DE:TR) (Carion et  al 2020) as a transformer-based approach, and a 
traditional CV algorithm in scale invariant feature transform (SIFT) (Lowe 1999) 
are used to compare between different object detection algorithmsto compare deep 
learning-based and traditional CV approaches at the coffee package and ROI detec-
tion step (Fig. 10).

Fig. 10  Data Acquisition Setup from side (left) and front (right) view of the conveyor belt

Table 4  Acquired images 
extracted from recorded videos

1st Iteration 2nd Iteration 3rd Iteration

Camera degrees 4 3 2
Non-Error (N-E) images ≈ #5400/deg ≈ #3500/deg ≈ #1200/deg
N-E Images per type ≈ #1100/deg ≈ #700/deg ≈ #600/deg
Error Images ≈ #3500/deg ≈ #3600/deg ≈ #600/deg
Total Images ≈ #35, 600 ≈ #21, 300 ≈ #3600
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Classification models For the purpose of this use case, no manual training of 
the classification models is required. Instead, pre-defined algorithms and pre-
trained models are leveraged.

The Expiry Date and Lot Number Classification Model requires syntactical and 
semantical checks based on optical character recognition (OCR). For this work, 
Google’s pre-trained Tesseract engine (Smith 2007) for image character recogni-
tion is leveraged. To enable the OCR process, the frame is put through multiple 
pre-processing steps, e.g., grayscaling, Gaussian blurring (Gedraite and Hadad 
2011), binarization (Palumbo et al 1986), dilating (Soille 2004), binning, (Jin and 
Hirakawa 2012) and smoothing (Lee 1983). The process is visualized in Fig. 11. 
The extracted information is both checked syntactically and semantically.

In the case of the Barcode Classification Model, we are able to use existing 
models by including the Python distribution of zBar (Sourceforge 2011) called 
pyzbar. Pyzbar enabbles the implementation of a pre-trained CNN focused on 
decoding barcodes. As the barcode needs to be horizontal, multiple pre-process-
ing steps including Hough’s line transformation (Illingworth and Kittler 1988) are 
applied. The barcode content is then checked on readability and information.

To verify the existence and correctness in the Top Sticker Classfication Model, 
the SIFT algorithm is used. It extracts keypoints (Fig. 12) of an image, compares 
it with the keypoints of a reference image, and counts the matches. In this case, 
extracted package frames are compared with standalone cutouts of each type’s top 
sticker text. By matching the cutout and the text, top sticker existence and coffee 
type are determined using a certain threshold of keypoints. If enough keypoints 

Table 5  Technologies used in the use case implementation of the quality control framework

Coffee extraction ROI extraction Barcode class OCR class Top sticker class

YOLOv5 YOLOv5 Pyzbar Pytesseract SIFT
DE:TR DE:TR YOLOv5 YOLOv5
SIFT SIFT CED

Fig. 11  OCR extraction process for expiry date and lot number classification from the extracted ROI (1), 
over pre-processing incl. binarization (2), resizing and dilation (3) to the contour extraction and separa-
tion of the individual text lines (4)
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are detected, the top sticker is classified as being flawless, and it is tested if the 
detected top sticker matches the rest of the package.

An overview of technologies and approaches included in the implementation can 
be found in Table 5.

For the Aggregation and Output step, the use case demands a Boolean-like clas-
sification. This means, if one of the quality factors is classified as insufficient, the 
whole package is classified as faulty. The outputs are stored in a local database, 
including information about which quality factor is responsible for the negative 
classifications. On top of that, performance metrics are continuously calculated and 
stored in the database as well.

For the models used in the processing service, the proposed training pipeline 
is leveraged. During training, emphasis is being put on the variety of training data 
with regard to position, recording angle, and lightning among other factors, to reach 
robust models. Continuously feeding more images into the training process during 
the DCAI-based re-recordings of training data further improves the models robust-
ness. For every new iteration of data acquisition, the new images are labeled using 
the already-trained models. Through that, little to no manual label efforts are neces-
sary with the labeling process quasi-automated. Consequently, even if new record-
ings with new parameters would be required, labeling them, training the models, and 
testing the pipeline with the new data foundation is easily possible. This streamlines 
the development process significantly and shows the advantages of DCAI.

7  Evaluation

For the quantification of results, the performance of the framework’s implementation 
is evaluated. To test the processing service, the YOLOv5s, the DE:TR, and the SIFT 
object detection algorithm are ran against each other on a subset of data under equal 

Fig. 12  SIFT-based top sticker classification showing how many matches a long coffee bean type name 
(1) has in comparison to a short coffee bean type name (2). In addition, a wrong top sticker classification 
based on too few matches is shown (3). Note: The coffee bean type Fein & Mild is referred in this work 
as Light and Kräftig as Strong 
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Fig. 13  Confusion matrix of 
YOLO + YOLO model com-
bination

Fig. 14  Confusion matrix of 
SIFT + SIFT model combina-
tion

Fig. 15  Confusion matrix of 
DE:TR + DE:TR model com-
bination
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setup conditions. The subset consists of 50 image pairs from different angles, 30 of 
them being flawless packages. Regarding the other 20, certain quality factors are 
fraudulent—either one, multiple, or all of them. For the overall classification perfor-
mance, common prediction metrics are used to test different algorithm combinations.

7.1  Results

Exemplary confusion matrices (Figs.  13, 14, 15) of all three object detection 
approaches show that the solution framework classifies the 50 image pairs mostly 
correct. However, false positive and false negative classifications occur as well. Pos-
sible explanations for these are discussed in Sect. 7.2.

During benchmarking, the Intersection over Union (IoU) is calculated for the cof-
fee package and ROI detection respectively. Regarding coffee package detection, 
the SIFT algorithm outperforms the deep learning-based CV algorithms for both 
degrees. The YOLO and the DE:TR approach derive very similar scores.

The same phenomena can be observed when calculating the mean average pre-
cision (mAP) based on an IoU of 0.5 for the coffee package detection (Table 6). 
Again, the YOLO and DE:TR models achieve very similar results. However, this 
time they outperform the SIFT algorithm on both camera angles. Especially for 
the 90 degrees camera angle, their respective mAPs are significantly higher than 
the SIFT’s mAP. Generally, some package designs are detected with better mAP 
scores than others. For the 0 degree camera angle, Decaf and Light have lower 
mAP scores than the other three types for all object detection approaches. Also, 
the two coffee been types with golden packaging—Biogold and Gold—achieve 
lower mAP scores compared to the other three types from the 90 degrees camera 
angle. Another takeaway from the data is that the 0 degree camera angle is very 
accurate for all three models, while for 90 degrees scores are lower.

The overall solution classifies the coffee packages very fast (Table  7). The 
quickest classifications are achieved when the package detector is a neural net-
work, either DE:TR or YOLO, combined with the SIFT algorithm as the ROI 
extractor. However, all model combinations classify within less than 0.6  s per 
package in average. Next, the findings are analyzed, interpreted and discussed.

Table 6  Mean average precision for package extraction with an IoU of 0.5 (mean Average Precision of 
individual package types in bold)

Average 
Preci-
sion

DETR 0◦ (%) SIFT 0◦ (%) YOLO 0◦ (%) DETR 90◦ (%) SIFT 90◦(%) YOLO 90◦ (%)

Biogold 100 100.00 100 76.56 65.00 68.06
Decaf 91.67 91.67 91.67 98.18 90.00 86.00
Light 93.75 81.54 96.67 90.00 73.64 86.00
Gold 100 100.00 100 77.78 39.68 77.78
Strong 100 91.67 100 92.31 76.92 84.62
mAP 97.08 92.97 97.67 86.97 69.05 80.49
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7.2  Discussion

In this work, the use case implementation including the DCAI-focused approach of 
semi-automated object detection model training shows the general adaptability of 
the proposed framework. The overall performance of the continuously re-trained 
object detection models can be extracted from the derived mAP values for each 
model combination. Also, with regard to the derived confusion matrices, it is shown 
that most coffee packages are correctly classified as positive or negative. Further-
more, the overall prediction time is close to matching industrial conveyer belt speeds 
according to experts at this work’s industry partners’ production site. This is particu-
larly interesting considering the limited amount of actions taken to increase the clas-
sification speed. However, while showing the feasibility of the implemented solution 
and thus of the framework, further improvements and learnings based on the bench-
marking results are discussed in the following.

As shown by the confusion matrices (Figs. 13, 14 and 15), the prototypical imple-
mentation classifies most coffee packages correctly. However, there are still false 
positive (FP) and false negative (FN) classified coffee packages. Some of these 
errors are very hard to erase. E.g., the expiry date of a sample package (Fig.  16) 
looks fraudulent to the human eye. However, the OCR algorithm classifies the 
ripped part as the digit four due to its shape and the backside of the paper having the 
same color as the font—the result is a false positive classification. Another example 
is the top sticker model, which classifies the correctness based on the amount of 
related key points. However, even if the top sticker is damaged, the algorithm still 
detects key points and might classify it as positive, as can be seen in Fig. 17. But 
not only the FPs, also the FNs are often based on problems during OCR extraction. 
Especially the digits 1, 7 and 4 are mixed up by the OCR engine due to their similar-
ity in this specific font.

The co-operating company’s production benchmark of 0.5  seconds per cof-
fee packages is nearly matched with the first use case implementation—without 
any  focus on runtime reduction. Interestingly, although it does not have multiple 

Table 7  Average classification 
time per model combination

Model combination Overall 
classifica-
tion

($Package_$ROIs) Time

DETR_DETR 0.5788s
DETR_SIFT 0.3961s
DETR_YOLO 0.4485s
SIFT_DETR 0.5385s
SIFT_SIFT 0.5549s
SIFT_YOLO 0.5078s
YOLO_DETR 0.5739s
YOLO_SIFT 0.3655s
YOLO_YOLO 0.5960s
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hidden layers, the SIFT algorithm is not the fastest in the package extraction step. 
The keypoint calculations and comparing with 5 reference images is computation-
ally intense. However, the ROI extraction with only two loops (two ROIs on hori-
zontal level) is quicker than YOLOv5 and DE:TR. The major reason for that is the 
image size as for SIFT, the input image size is the decisive factor in terms of detec-
tion speed. Hence, in both detection steps, the query image can be drastically resized 
due to the relative size of the objects compared to image size to increase processing 
speed.

Another benchmarking observation are the IoU results of the coffee package 
extraction. In order to always include the whole coffee package in the cutout frame, 
the YOLO and the DE:TR models learn to create a padding around the coffee pack-
ages. Therefore, the IoU scores are lower than the SIFT scores, since the ground 
truth bounding boxes are smaller. However, this generally helps the following object 
detector to detect the ROIs. This is underlined through the necessity of manually 
adding a padding to the very precise SIFT cutout frames. Otherwise, details on the 
borders of the package such as the barcode may be partially missing. However, the 
IoU score of the SIFT algorithm indicates that it is performing very well solely 
based on this specific metric.

Another takeaway during ROI detection is the importance of training data. The 
DE:TR does not always detect the best-by date and lot number ROI for two specific 
package designs. These are colored golden with a white font—hence offer relatively 

Fig. 16  False positive due to 
wrong OCR recognition by 
mistaking the ripped part for the 
digit 4

Fig. 17  False Positive due 
to SIFT algorithm detecting 
enough key points
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little contrast. The YOLOv5 model does not seem to have any difficulty with that. 
This could be due to the YOLOv5 including multiple data augmentation steps at 
training, including advanced augmentation techniques such as mosaic augmenta-
tion. This makes it very suitable for cases with smaller amounts of training data. 
The DE:TR developers, on the other hand, propose a larger amount of training data 
for their models than it is available for each ROI model with respect to each coffee 
package type.

Since the SIFT algorithm is not a deep learning-based CV algorithm, it does not 
require any training which minimizes the initial efforts. Also, if a deep learning-
based CV model has extracted the coffee packages first, the following detection of 
the ROIs is quicker using SIFT than with the YOLO or DE:TR models. However, 
no required training and this increase of detection speed is a trade-off with accuracy. 
Table 8 shows how the mAP decreases as soon as the SIFT algorithm is used for 
ROI detection. This is also highlighted in the respective confusion matrices, Table 9  
displays that exemplarily. The high numbers in false negatives (FN) and small num-
ber in false positives (FP) indicate that the error is not due to the OCR algorithm, 
but because the respective ROIs could not be identified correctly by SIFT. Hence, 
SIFT performs very well on clearly segmented areas (Top Sticker and Barcode), but 
should be used more carefully for areas with less contrast.

Table 8  mAP of SIFT ROI detection in comparison to exclusively deep learning-based-CV extrac-
tion (mean Average Precision of individual package types in bold)

Average Preci-
sion

DETR_DETR (%) DETR_SIFT (%) YOLO_SIFT (%) YOLO_DETR (%)

Expiry Date 98.04 61.04 79.43 96.00
Barcode 95.29 95.58 89.60 96.37
mAP 96.67 78.31 84.52 96.19

Table 9  Examplary confusion matrices including SIFT-based ROI extraction show that the SIFT model 
has difficulties extracting all Expiry Date/Lot Number-ROI areas based on the False Negative values

YOLO_SIFT TP FP FN TN

Expiry Date 30 0 5 5
Lot Number 31 0 6 3
Barcode 37 2 1 5
Top Sticker 38 2 0 10
Overall 25 2 5 18

 DETR_SIFT TP FP FN TN

Expiry Date 30 0 5 5
Lot Number 31 0 6 3
Barcode 38 1 0 5
Top Sticker 38 2 0 10
Overall 26 2 4 18
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Initially, two different approaches for ROI extractions were compared. First, 
a single overall ROI extraction model including images of all package vari-
ations was trained. As comparison, multiple individual models per coffee bean 
type were trained to be more accurate depending on the identified type. How-
ever, when observing the data, it became obvious that training multiple models 
per type does not increase the metrics significantly, and is hence not worth the 
additional effort. An exemplary comparison is listed in Table 10.

During implementation, the development of the acquisition and processing 
services was replicable and intuitive. However, developing the classification ser-
vice and the classification models themselves proved to be the most complex task. 
As an example, difficulties came up for the OCR process with respect to detecting 
different fonts and resolution requirements. The pre-processing of the ROI cutouts 
appeared to be the decisive factor. As a solution, parameterizing the pre-process-
ing steps allows testing different combinations. Also, it enables tailoring the con-
figurations to different designs, while maintaining generalizability. The remaining 
parts of the pipeline, however, can be taken as-is and may be transferred to other 
use cases without major modifications—hence underlining the goal of this work.

The test results underline that it is possible to design an efficient multi-feature, 
end-to-end CV-based quality control based on the quality control framework. 
This is shown with the implementation of this framework for the use case of cof-
fee packaging. Following the DCAI paradigm allowed for the classification of 
a variety of quality factors. It has been a substantial factor for the execution of 
this work, and one main reason that the achieved results have been as successful. 
Referencing works have already highlighted the value of data-centric focus dur-
ing development (Lee et al 2021; Beyer et al 2020; Yun et al 2021). Without the 
re-recording and adjustments in pre-processing, the OCR extraction as well as 
the barcode decoding would have hardly been possible due to the initially chosen 
camera angles and resolution. The low initial resolution in combination with a 
diagonal camera degree does not allow both models to extract the information 
properly. Furthermore, erasing the illumination for the top sticker classification 
during post-processing is very tedious and would have likely resulted in a non-
robust model. Therefore, the research question regarding how to develop such a 
system is successfully answered by underlining the functionality of the developed 
framework through the described use case implementation. This prototypical 

Table 10  Exemplary mAP 
comparison of single and multi 
ROI model approaches (mean 
Average Precision of individual 
package types in bold)

1One single coffee bean type-independent ROI extraction model
2 Multiple coffee bean type-specific ROI extraction models

Average 
Precision

DETR_
DETR S 1 
(%)

DETR_
DETR M 2 
(%)

YOLO_
DETR S 1 
(%)

YOLO_
DETR M 2 
(%)

Expiry date 98.04 94.00 100.00 96.00
Barcode 95.29 97.62 96.85 96.37
mAP 96.67 95.81 98,43 96.19
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implementation can be considered a starting point for further development and 
allows for many insights to consider for future adoptions of this framework.

7.3  Re‑recording of training data

As this work follows the DCAI paradigm, strong focus is put on the data acquisition 
itself, with the data being captured iteratively (Whang et al 2021). After recording 
data with the default parameters, these were adjusted based on development difficul-
ties. First, the initially chosen resolution made it difficult to extract expiry date and 
lot number through the OCR process. As the underlying OCR technology is consid-
ered state-of-the-art in the non-proprietary OCR domain, the difficulties are most 
likely based in the training material itself. Consequently, the camera’s frames per 
second (FPS) parameter is reduced and the resolution increased. In the actual pro-
duction scenario, frames are pulled every 0.5 seconds, so lower FPS and higher res-
olution are feasible. These new frames increase the accuracy of the results derived 
from the OCR process, as well as the barcode extraction, tremendously.

Another iteration of data recording was conducted due to illumination prob-
lems with the top sticker classification during the second iteration. Edge detection 
algorithms such as SIFT were found to be vulnerable to reflections caused by light 
illuminations. Despite various pre-processing attempts, a robust solution could not 
be obtained. Hence, following the DCAI paradigm the recording parameters were 
adjusted. To minimize illumination-triggered reflections, light sources were placed 
to hit the packages from different angles. This improved the quality of frame cut 
outs and overcame modeling problems. The insights from these re-recordings can be 
applied in the actual usage of the developed solution in production.

8  Conclusion and outlook

This work presents an innovative computer vision-based framework for automated 
quality control in production and manufacturing. It allows examining multiple qual-
ity factor categories simultaneously, underlined through an real-life industry use 
case. As the packaging of artifacts generally fulfills a variety of purposes, multi-
ple quality factor categories (visual, informational, etc.) need to be evaluated. After 
designing the framework, the exemplary integration of the theoretical framework is 
implemented into practice based on DCAI development practices.

Through this work, multi-feature quality control of (packaged) artifacts in the 
production area with respect to multiple error categories in packaging is conducted 
on a scientific basis for the first time. A generalized and extendable framework with 
a modular architecture was proposed which is able to aggregate defect classifica-
tions of a variety of error categories. As a result, manual human-conducted qual-
ity control processes can be represented even more realistically. This allows for 
advanced research in the field of computer vision-based quality control. On top of 
that, the framework allows companies to integrate automated quality control using 
(deep learning-based) computer vision—hence reducing economic inefficiencies. 
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Future adopters of this framework will profit from its focus on flexible customiza-
tion to seamlessly integrate their existing solutions. In addition, the straight forward 
adoption and the benchmarking results are potential starting points for innovations 
regarding waste reduction. Thus, in combination with the overall societal shift 
towards ecological awareness, this framework supports the push of increased regula-
tions towards sustainable production processes.

As the scope of this work had only been a prototypical implementation, a lot of 
improvement potential is given. E.g., additional quality factors such as deformation 
could be added. Also, the detection speed could be increased even further through 
additional pre-processing improvements such as image scaling (Růžička and Fran-
chetti 2018), the modification of models through, e.g., layer reduction (van Rij-
thoven et al 2018) or the usage of even more lightweight models (Adarsh et al 2020; 
Womg et al 2018). On top of that, additional models, both traditional, such as back-
ground reduction focused (Haque et al 2008), as well as deep learning-based ones, 
e.g. Single Shot Multibox Detector (Liu et al 2016), could be included as well.

This implementation already proves the validity of this work’s vision of deriving 
a generalized, adaptable framework for the automated quality control of packaged 
artifacts with the help of computer vision. It underlines how this framework can 
be applied to any computer vision-based quality control approach in the context of 
conveyor belt production processes—for both packaging as well as other production 
steps. Ultimately, this framework serves as a catalyst for future approaches and sci-
entific works to further reduce material (and food) waste. Through this framework 
production companies, the consumers and the environment overall can profit—eco-
nomically and ecologically.
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