
Simulating Interaction Movements via
Model Predictive Control and Deep

Reinforcement Learning

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Markus Jonathan Klar
aus Augsburg

1. Gutachter: Prof. Dr. Jörg Müller
2. Gutachter: Prof. Dr. Gilles Bailly

Tag der Einreichung: 16.01.2024
Tag des Kolloquiums: 21.02.2024

Acknowledgements

This dissertation is the product of extensive collaboration with colleagues from my department
and external collaborators. I would like to express my gratitude to my supervisor, Professor
Dr Jörg Müller, for his invaluable expertise and guidance as he spent countless hours
discussing, reading and revising my thesis. I would also like to thank Professor Dr Gilles
Bailly, Professor Dr Michel Beaudouin-Lafon, and Professor Dr Daniel Buschek for being
part of the examination committee. My heartfelt thanks go to Dr Florian Fischer, who has
always been a reliable partner in the office and in discussions, as well as a good friend.
Further appreciation goes to Dr Arthur Fleig, Professor Dr Miroslav Bachinski, and my
other former colleagues at the University of Bayreuth whose support has been of immense
value to my work. The members of the recently established User-in-the-Box projects also
deserve thanks for creating exciting new approaches to user simulation and for engaging in
rich discussions. I would also like to express my gratitude to Nadine Rexfort for her tireless
help in all organizational matters. I am grateful to Dr Tiffany Knearem, Anne Stellberger,
and Muhadj Adnan for proofreading my dissertation and providing helpful feedback. Last
but not least, I would like to address my friends and family, without whom I would not have
been able to get this far. Thank you.

Abstract

To evaluate the interaction between users and computers, user testing is the gold standard.
However, conducting user studies can be arduous and expensive, particularly for movement-
based applications in virtual or mixed reality. Additionally, their fast-paced development
requires quick and cheap evaluations of interaction techniques. This thesis examines how
user movements during interaction with computers can be simulated using optimal control
methods. The simulation of human movements enables the automatic evaluation of interaction
techniques for variables that are difficult to measure such as muscle activation, muscle fatigue
or ergonomics. To enable the simulation of the whole human-computer interaction loop,
this thesis presents a general framework for modeling interactions as an optimal control
problem. The approach accounts for the dynamics of the application, input devices, and
the human body. The latter can be exemplified through a biomechanical model of a user,
which is implemented in a physics simulation. The optimal control problem is formulated
as a closed control loop that translates the user’s actions into application updates that are
perceived by the user. The user’s control strategy is then adjusted based on this perception,
with the aim of achieving a pre-defined goal in the form of a cost or reward function. This
thesis explores diverse control methods for the simulated user via muscle signals across
various interaction scenarios. For instance, I show that the simulation of mouse-pointing
with a Linear-Quadratic Regulator outperforms previous approaches in explaining user data.
I demonstrate that Model Predictive Control can model 3D movement with biomechanical
models and predict joint movements of users during a mid-air pointing task. In addition
to classical control-theoretic approaches, I show how reinforcement learning methods can
be used to simulate user movements in different VR tasks and present a system that allows
developers to run simulations while working in a development environment. I conclude that
the presented movement simulation is a promising approach for the automated evaluation of
interactive systems and can help to improve the development of novel interaction techniques.

Zusammenfassung

Um die Interaktion zwischen Benutzern und Computern effizient zu bewerten, sind Benut-
zertests wichtig, aber oft aufwendig und teuer. Dies gilt besonders für bewegungsbasierte
Anwendungen in virtueller oder gemischter Realität. Darüber hinaus erfordert die rasante
Entwicklung dieser Anwendungen eine schnelle und kostengünstige Bewertung von Interak-
tionstechniken. Daher wird in dieser Abhandlung die Simulation von Benutzerbewegungen
mittels Optimalsteuerungsmethoden untersucht. Die Simulation menschlicher Bewegungen
ermöglicht die automatische Bewertung von Interaktionstechniken für schwer messbare
Variablen wie beispielsweise Muskelaktivierung, Muskelermüdung oder Ergonomie. Um
die Simulation der gesamten Mensch-Computer-Interaktionsschleife zu ermöglichen, wird
in dieser Arbeit eine allgemeine Rahmenstruktur für die Modellierung von Interaktionen
als Optimalsteuerungsproblem vorgestellt. Der Ansatz berücksichtigt dabei die Dynamik
der Anwendung, der Eingabegeräte und des menschlichen Körpers. Das Optimalsteue-
rungsproblem bildet einen geschlossenen Regelkreis, der die Anwendung auf Basis der
Aktionen des Benutzers aktualisiert, was wiederum vom Benutzer wahrgenommen werden
kann. Die Kontrollstrategie des Benutzers kann dann entsprechend dieser Wahrnehmung
angepasst werden, um ein vordefiniertes Ziel in Form einer Kosten- oder Belohnungsfunk-
tion zu erreichen. Es wird unter Anderem gezeigt, dass die Simulation des Mauszeigers
mit einem linear-quadratischen Regler Benutzerdaten besser erklären kann als vorherige
Ansätze. Des Weiteren wird demonstriert, dass modellprädiktive Regelung in der Lage ist,
3D-Bewegungen mit biomechanischen Modellen zu modellieren und Gelenkbewegungen von
Nutzern während einer Mid-Air-Pointing-Aufgabe vorherzusagen. Neben den klassischen
steuerungstheoretischen Ansätzen wird erläutert, wie verstärktes Lernen für die Simulation
von Benutzerbewegungen bei diversen VR-Aufgaben genutzt werden kann. Abschließend
wird ein System vorgestellt, das Entwicklern die Möglichkeit gibt, Benutzerbewegungen zu
simulieren, während sie mit einer Entwicklungsumgebung arbeiten. Zusammenfassend kann
festgestellt werden, dass die Bewegungssimulation mit Optimalsteuerungsmethoden einen
vielversprechenden Ansatz für die automatisierte Evaluierung interaktiver Systeme bietet
und dazu beitragen kann, die Entwicklung neuer Interaktionstechniken zu verbessern.

Contents

Nomenclature xi

1 Introduction 1
1.1 Movement Simulation in Human-Computer Interaction 1
1.2 Human-Computer Interaction as an Optimal Control Problem 3

2 Thesis Overview 9
2.1 Contributions . 9
2.2 Overview of the Presented Papers . 12

3 Simulating Interaction Movements via Model Predictive Control 19

4 An Optimal Control Model of Mouse Pointing Using the LQR 71

5 Optimal Feedback Control for Modeling Human-Computer Interaction 85

6 Reinforcement Learning Control of a Biomechanical Model of the Upper
Extremity 157

7 Breathing Life Into Biomechanical User Models 173

8 SIM2VR: Integrating Biomechanical Simulations in VR Development
Environments 189

9 Discussion and Future Work 217
9.1 Designing OCPs for Movement-Based Interaction 217
9.2 Technical Challenges of Movement Simulation 221
9.3 Combining and Extending Models for Interaction 225

10 Conclusion 227

Bibliography 229

Nomenclature

Acronyms / Abbreviations

AR Augmented Reality

CFAT Compute Feasible Applied Torques

DMPC Distributed MPC

DRL Deep Reinforcement Learning

E-LQG Extended Linear-Quadratic Gaussian

GPU Graphics Processing Unit

HCI Human Computer Interaction

IC Intermittent Control

ILQR Iterative LQR

LQG Linear-Quadratic Gaussian

LQR Linear-Quadratic Regulator

MOOP Multi-Objective Optimization

MPC Model Predictive Control

OCP Optimal Control Problem

OFC Optimal Feedback Control

PPO Proximal Policy Optimization

RGB-D Red Green Blue Depth

xii Nomenclature

RL Reinforcement Learning

RMSE Root Mean Squared Error

SAC Soft-Actor Critic

VR Virtual Reality

To do things right, first you need
love, then technique.

Antoni Gaudí

1
Introduction

1.1 Movement Simulation in Human-Computer Interaction

The objectives of Human-Computer Interaction (HCI) include many aspects such as en-
hancing usability, user experience, efficiency, or ergonomics. For evaluating interfaces and
interaction techniques in these regards, user testing is the gold standard. However, perform-
ing user studies is arduous and expensive. As a result, insufficient user studies are often
conducted, especially in the early stages of development. This can lead to flaws in the design
being discovered only later, resulting in high remediation costs. Additionally, when testing
new interaction techniques with experienced users is desired, training time is necessary. This
can be particularly challenging when development is under time constraints.

To enable faster and cheaper evaluation of interactive systems, models of user behavior
have been investigated in HCI. These include cognitive models that focus on the goals of a
user [51]. For instance, building on the understanding of human cognitive processes offered
by the Model Human Processor, GOMS (goals, operators, methods, and selection rules)
models provide practical tools used to predict and analyze human-computer interaction [6].

Despite being groundbreaking for modeling and simulation in HCI, these models do
not cover user movement, which is an integral part of many modern interactive systems
such as virtual reality (VR), augmented reality (AR), or ubiquitous computing (ubicomp)

2 Introduction

interfaces. This is problematic because studying movements and evaluating ergonomics with
user testing alone can be challenging. A thorough evaluation of movement-based interaction
techniques requires motion capturing, which is expensive due to the need for specialized
equipment and expertise in handling resulting data. Additionally, many essential variables are
intrinsic to the human body, making them challenging to quantify. These variables include
muscle activations or joint loads, which can aid assessing the ergonomics of a system. This is
particularly important when optimizing an interaction technique, as the result may be optimal
in one aspect but may have negative effects on others. For instance, optimizing solely for a
shorter movement time may result in faster muscle fatigue or muscle tension with frequent
use. Another challenge is posed by the physical abilities and surroundings of users. To
support inclusive applications in the future, it is essential to evaluate systems for humans with
different physiologies – beyond one-size-fits-all. For instance, applications should also be
evaluated and adapted for people who are confined to wheelchairs. Conducting user testing
can also be challenging when accounting for different environments. This is particularly true
for AR applications designed for constrained spaces, such as cubicles or airplane seats.

In silico testing might help to mitigate the need for user studies. It enables the integration
of movement-based testing into the early interface development process and tools, and
thus allows developers to catch issues related to ergonomics early in the design process.
This simulation-based evaluation of systems can assist HCI researchers in assessing their
prototypes more quickly, efficiently, and cost-effectively. Further, it will enable automatic
optimization of design parameters in the future [42]. All interaction techniques are subject
to such parameters, e.g., classic techniques using control-display gain [54] or arm-stretch
coefficients [46], or modern approaches using input amplification [69] or ray cursor gain [1].
Selecting the best parameters is challenging since there is often an infinite amount of possible
realizations and, in practice, only a limited number of design choices can be thoroughly
tested due to limited financial and time resources.

Existing models of movement in HCI often inform basic principles of design. For instance,
information-theoretic models such as Fitts’ law [18] enable the prediction of movement time
based on the size of targets. Recently, a model for the speed-accuracy trade-off for pointing
movements was introduced [22]. Other works describe end-effector movement based on
control-theoretic models of pointing [41] or intermittent control [39]. However, making
accurate predictions of user movement and evaluating ergonomics requires models at the
biological level of human action [44] and until now, models have not been able to fully
capture human movement while interacting with computers.

To address this matter, detailed forward biomechanical simulations are necessary, which
have not yet been established in HCI. These simulations enable the estimation of variables that

1.2 Human-Computer Interaction as an Optimal Control Problem 3

are hard to quantify through user studies, such as muscle activations or fatigue. Additionally,
evaluating interaction techniques with specialized biomechanical user models supports
people of all abilities to enjoy using modern interfaces. Furthermore, high-fidelity physics
simulations facilitate the prediction of user movements in specific interaction scenarios, such
as when interacting in confined spaces, e.g., while sitting on an airplane.

In this dissertation, I therefore investigate how methods from Optimal Feedback Control
(OFC) and Deep Reinforcement Learning (DRL) can be utilized to simulate human movement
during the interaction with computers. To this end, I first describe how movement-based
interactions can be modeled as an Optimal Control Problem (OCP) (Section 1.2). I propose
a framework of modeling movements in HCI with OFC and demonstrate, how well mid-air
pointing can be simulated using a state-of-the-art biomechanical model and Model Predictive
Control (MPC), comparing the resulting simulation movements to user data (Chapter 3). I
evaluate simpler linear-quadratic models in their ability to simulate 1D mouse movement and
show, that they outperform previous models in explaining user data (Chapters 4 and 5). Subse-
quently, I propose DRL approaches to simulate mid-air pointing and tracking (Chapter 6), as
well as different complex VR tasks using biomechanical and perception models (Chapter 7).
Finally, I introduce a system that allows developers to include simulations with biomechanical
models and DRL directly into their development environments (Chapter 8).

In the subsequent chapter, I provide an overview of the works consolidated in this
thesis (Chapter 2). The ensuing six chapters (Chapters 3 to 8) comprise the publications, each
with a contribution statement. Subsequently, I discuss the simulation of movements in HCI
and outline engaging ideas that merit further investigation (Chapter 9), before concluding the
thesis (Chapter 10).

1.2 Human-Computer Interaction as an Optimal Control
Problem

To enable the automatic evaluation of interactive systems with simulations, I consider the
interaction between a human and a computer as an OCP. Solving this OCP will result in a
simulation of user movement which can then be used to analyze and improve the system. In
particular, I describe a movement-based interaction as follows. The general objective of a
user is to control an application, e.g., to select an element on a display. To achieve this, the
user has to move their body by choosing muscle activations. The computer then senses this
movement through input devices. For example, when a controller’s accelerometer registers
an acceleration. This information is then processed and leads to an update of the application

4 Introduction

based on the interaction technique and application dynamics, e.g., the movement of a virtual
cursor based on transfer functions (Chapter 3). Ultimately, the new state of the application is
observed by the user through modalities such as visual, audio, or haptic feedback. In order to
create an OCP that resembles a movement-based interaction, I will first describe models for
the different parts of the system.

The user’s movement is subject to the constraints raised by their physical capabilities,
such as muscle strength or possible joint angles, and the physical world. To account for
this, I will use either simpler models such as a spring-damper system (Chapters 4 and 5) or
biomechanical models implemented in the sophisticated physics simulation MuJoCo [60]
(Chapters 3 and 6 to 8). I assume that different perturbations are present in this human
part of the model, such as signal dependent noise caused by the nervous system [13, 63].
Furthermore, it is important to note that humans cannot apply force directly. Instead, muscle
force must ramp up over a short period of time. To account for this, I employ muscle models
with delay, such as the model used by van der Helm et al. [64] (Chapters 3, 5, and 6), or
the complex muscle model implemented in MuJoCo (Chapters 7 and 8). The interaction
technique and application dynamics can also be modeled in various ways. They can be an
implicit part of the physical model such as a mouse cursor modeled as a spring-damper
system (Chapters 4 and 5). If physics simulations are used, they can be modeled as part of
the physics environment such as virtual targets (Chapters 3 and 6), cursor transfer functions
(Chapter 3), or buttons and joysticks (Chapter 7). Lastly, the interaction technique and
application dynamics can be directly given by the application itself such as game mechanics
(Chapter 8). To account for the impact of the user’s perception, I investigate saccade
models (Chapter 5), an RGB-D array based visual perception (Chapters 7 and 8), and haptic
perception (Chapter 7). However, these perception models significantly increase the system’s
complexity. Therefore, in some works, I assume total observation instead (Chapters 3, 4,
and 6). This means that the user knows the exact state of the application and their body, such
as the position of the cursor, a virtual target, or joint angles.

In mathematical terms, I therefore define system dynamics that consist of the biome-
chanical model of the user, the input and output devices, and the application. In contrast
to action-based models of interaction, movement-based interaction in the real world is con-
tinuous. This is because the real world is not divided into discrete actions, but rather is a
continuous flow of movement and perception. However, since humans change their muscle
control only intermittently [21] and computers technically also work on a discrete level1,
I use discrete-time models to describe the interaction. The length of a time step has to be

1Although faster than modeled, even the most basic operations take a non-infinitesimal time.

1.2 Human-Computer Interaction as an Optimal Control Problem 5

chosen such that a stable yet realistic simulation is possible2. For a given time step k ∈ N, I
define the current system state x(k) ∈ X as a combination of the biomechanical state of the
user, the state of the input and output devices (e.g., controller position), and the state of the
interface (e.g., cursor position). This state is constrained by the user’s physical capabilities
and environment (e.g., possible joint angles) and the interface (e.g., display borders), which
can be implemented by constraining the state space X.

The user chooses control signals u(k) ∈ U at each time step k ∈ N. The possible signals
are given by the control space U which is constrained by the physiological capabilities of the
human such as maximum possible muscle activation. In the case of a biomechanical user
model, this signal is then transferred to muscle activation, and, finally, to the joint torque that
moves the body. This force is contingent on the user’s muscle strength and typically requires
some time to take full effect, as mentioned above. The resulting movements thus obey the
rules defined by the biomechanical properties of the user (and of course, the laws of physics).
After applying the resulting force, an updated state of the biomechanical model is attained,
which is then measured by input devices. The interface state is subsequently altered based on
the interaction technique employed. For instance, the user can manipulate a VR controller
which is sensed by the computer and results in the corresponding movement of a virtual
cursor which is rendered on a head-mounted display. The system dynamics therefore result
from a combination of the biomechanical model and the physical and virtual dynamics of the
interactive system. Mathematically, this can be described as follows. By applying a control
u(k) to the current system state x(k), the system is advanced by one time step, resulting in a
new state x(k+1) ∈ X. The system dynamics can be written in general form as a function
f : X×U 7→ X, where

f (x(k),u(k)) = x(k+1). (1.1)

The updated interface state x(k+1) includes information such as a new cursor position. This
state is then relayed to the user through output devices. This feedback allows the user to
adjust their controls based on the difference between the desired and observed outcome of
their actions. For example, the user may notice that the cursor has gone beyond its intended
target, indicating an overshoot caused by excessive controller movement. As a result, they
could adjust their controls to move the cursor in the opposite direction as a corrective action.

Since the user chooses a control signal at each time step, I define a sequence of controls
u(·) that contains all control values u(k) for k ∈ N. By applying the system dynamics (1.1)
and starting from an initial state x0 ∈X, this results in a trajectory of system states x(·) which

2It can be useful to set a shorter time step for the actual simulation (e.g., 2 ms) than for the control (e.g.,
change every 40ms) to allow a stable physics simulation while still being feasible for the OCP solver. For
details, see Section 3.5 in Chapter 3.

6 Introduction

is given by
x(k+1) = f (x(k),u(k)) (1.2)

for each k ∈ N\{0} and x(0) = x0. The initial state includes an initial posture of the user as
well as a setting of the application, e.g., an initial target position in case of a pointing task.
The resulting state trajectory x(·) corresponds to the entire interaction movement of the user,
states the input device, and the associated updates of the interactive system.

Combining the theory of optimal human movement [61, 62] with the motivation of
a user to solve the given interaction task optimally, it is possible to define an objective
function that the user tries to minimize – subject to the constraints posed by their physiology,
the interaction technique, and application. Thus, the combination of the system dynamics
with this objective function defines an OCP that describes the complete movement-based
interaction. In contrast to previous models, which often only provide end-effector movement,
solving this OCP provides a forward simulation that can be used to predict human movement
in interaction, up to a muscular level. Since the resulting simulation is optimal in respect
to the objective function, e.g., as fast and accurate as humanly possible, it replicates the
movements of experienced users. This can be difficult to achieve through user testing without
time-consuming training. The user’s objective function, which is also known as cost function,
depends on the task and personal preferences. It commonly consists of terms that involve
effort, task completion time, or accuracy. In control theory, the cost function is often defined
using stage costs (or running costs), which only depend on the state of the system and the
action chosen by the user in one time step. This stage cost is therefore defined as a function
ℓ : X×U 7→ R, where l(x(k),u(k)) ∈ R describes the cost of stage k ∈ N, where the system
is in state x(k) and the control u(k) is applied. For example, in a pointing task aimed at
reaching a target with minimal effort, the stage cost may be the sum of the cursor’s remaining
distance to the target as obtained from the current system state and the norm of the control
value, since it describes the applied muscle activation.

Since the completion time of a task is unknown in general and the user chooses a sequence
of controls u(·) as mentioned above, the optimal actions are defined as a sequence of controls
u(·) that minimizes the sum of stage costs over all time steps.3 Beginning with an initial state
x0 ∈ X, the objective function is thus given by

J∞(x0,u(·)) =
∞

∑
k=0

ℓ(x(k),u(k)), (1.3)

3In practice, the stage cost has to be discounted since this approach will likely lead to an infinite objective
function value otherwise.

1.2 Human-Computer Interaction as an Optimal Control Problem 7

where x(·) is the state trajectory which arises when the control is applied consecutively,
following the system dynamics (1.2), i.e., x(k+1) = f (x(k),u(k)) for all k > 0 and x(0) = x0.
Thus, the combination of the system dynamics with the cost function defines the OCP, that
describes the complete interaction:

min
u(·)

J∞(x0,u(·)) = min
u(·)

∞

∑
k=0

ℓ(x(k),u(k))

such that x(k+1) = f (x(k),u(k)), x(0) = x0,

x(k) ∈ X,u(k) ∈ U, for all k ∈ N.

(1.4)

Through solving this OCP, a control sequence as well as a state trajectory are obtained. That
means that if the system dynamics and cost function match the interaction task and user, the
solution of the OCP provides a prediction of the interaction movement, starting at the initial
state of the user and the interface x0.

The methods that are available to solve the OCP (1.4) highly depend on the properties of
the system dynamics f and the form of the objective function J∞. The simplest case is linear
dynamics of the form

f (x,u) = Ax+Bu (1.5)

with matrices A and B of appropriate size. These dynamics are easy to handle but unfortu-
nately do not occur often in reality. Commonly, perturbations complicate the dynamics. For
example, human motion is known to be subject to signal-dependent noise [27], i.e.,

f (x,u) = Ax+(1+µ)Bu, (1.6)

where µ is a univariate Gaussian random variable. I investigate simulations with these system
dynamics combined with a quadratic objective function in Chapters 4 and 5.

In the context of nonlinear dynamics, the function f may have a variety of shapes, or can
even be an opaque box4. This means that it cannot be described as an analytical formula
and instead can only be sampled. To gain a comprehensive understanding of all aspects of
human-computer interactions, it is thus imperative to apply different methods. Therefore, I
also employ two alternative methods to solve the OCP: Model Predictive Control (MPC) and
Deep Reinforcement Learning (DRL) (see Chapters 3 and 6 to 8).

To summarize, modeling movement-based interaction as an OCP involves two tasks:
defining the system dynamics and the objective function. The system dynamics include
models of the user, the input and output devices, and the interactive system, enabling a

4I am aware that the commonly used term is “black box”, but I have refrained from using it in order to
emphasize the property of being “non-transparent” rather than relying on a black-white dichotomy.

8 Introduction

forward simulation by applying user controls. The objective function depends on the task
and user preferences, such as moving with low effort and quickly. It is defined as the sum
of stage costs, which includes the cost of a state and control in a time step. Depending on
the complexity of the system dynamics and objective function, different methods need to be
applied to solve the OCP. Solving the OCP leads to a full simulation of the user movements
during interaction, can provide insights into user behavior, and can be used to automatically
evaluate interaction techniques.

2
Thesis Overview

In the following section, I present how the works consolidated in this thesis contribute
towards the evaluation of movement-based interaction techniques. Subsequently, I provide
short summaries of the papers and explain how they are interrelated.

2.1 Contributions

I provide a general framework to model movement-based interactions with OFC. Further, I
apply this framework to different tasks, such as 1D mouse pointing and 3D mid-air pointing
in VR, and evaluate different methods to simulate movements such as MPC. Lastly, I
present systems and implementations that enable the application of the framework to further
interaction techniques.

Enabling Biomechanical User Simulation Through Optimal Feedback Control

I propose a framework that enables the modeling of movement in human-computer interaction
from an optimal control perspective. An interaction usually consists of an interactive system
with input and output devices (e.g., controller and display), virtual interface dynamics (e.g.,
the application), and the task itself (e.g., clicking at a button). This task is performed by a
human – the user – who aims to solve the task following some intrinsic or extrinsic motivation.

10 Thesis Overview

Therefore, the user takes actions that change their (physical) state (e.g., muscle activations
that change the posture). The resulting state is then transmitted to the interactive system (e.g.,
via motion sensors) and leads to a change in the virtual dynamics (e.g., cursor movement).
Subsequently, the user perceives updates of the interface through output devices (e.g., a
monitor) and may adjust their actions once again based on the provided feedback, creating
an interaction loop.

One substantial part of the system dynamics that describe the interaction is provided by
the physical and behavioral models of the users. These are implemented as simple parameter-
based models of pointing, such as the spring-damper system (Chapters 4 and 5). As an
alternative, state-of-the-art biomechanical models, adjusted to the properties of reference
users, are employed (Chapters 3 and 6). I incorporate complex muscle dynamics (Chapter 7)
and models of visual perception (Chapters 5, 7, and 8) to further increase the realism of the
simulation. These biomechanical models provide direct conclusions on variables that are
difficult to measure such as muscle activation and fatigue.

Following the concept of optimal human movement control [61, 62], I assume that the
user chooses their actions optimal in respect to an internalized cost function. Hence, an OCP
is formulated by defining the cost function that the user aims to minimize, including criteria
informed by the user’s motivation, such as moving with low effort or high accuracy. These
can be realized using the norm of the control vector and the distance to the target, respectively.
The minimization of this cost function has to take constraints into account which are posed
by the human biomechanical system, the dynamics of in- and output devices, and the virtual
dynamics of the interface. Since the OCP describes an interaction loop, it can be solved by
implementing methods from OFC. Solving the OCP ultimately provides a simulation of the
human-computer interaction that can be used to evaluate interaction techniques and gain
knowledge about user behavior. There are a number of ways of doing this, as detailed below.

Evaluating Different Simulation Methods with Human Data

Having defined the OCP that needs to be solved in order to simulate human-computer
interactions, I investigate how different OFC and DRL methods can be used to solve the OCP.
I compare various controllers for linear-quadratic systems, in particular the Linear Quadratic
Regulator (LQR) and variants of the Linear Quadratic Gaussian (LQG) (Chapters 4 and 5).
When using nonlinear models, such as complex biomechanical models, I implement and
investigate a Model Predictive Control (MPC) approach to simulate interaction movements.
More specifically, I collect joint movement data of humans performing a mid-air pointing
task and compare different cost functions in their ability to predict this data (Chapter 3).
I identify cost function parameters leading to movements that match those of real users

2.1 Contributions 11

and investigate, how changing the cost weights affects the resulting simulation movements.
Notably, when compared to the reference motion, the simulation shows a smooth, convex
dependence on the cost weights, which simplifies the search for suitable parameters. I also
evaluate DRL approaches (Chapters 6 to 8) in their ability to produce human-like movements
in different tasks, partly informed by human data.

Providing Systems for HCI Researchers and Practitioners

I present multiple systems and implementations to promote the utilization of the presented
framework of modeling user movement through OCPs. Each system enables different
simulations, ranging from OFC-based models of mouse pointing, over the simulation of
mid-air pointing with transfer functions to complex interactions in VR applications, using
biomechanical user models. The implementations provided via GitHub contain different
examples such as mid-air pointing using a Virtual Pad interaction technique (Chapter 3) or a
choice reaction task (Chapter 7). To evaluate resulting simulations, I provide user data of
mid-air pointing1 and tools to compare simulation trajectories with human movement2.

The SimMPC system3 (Chapter 3) facilitates the simulation of HCI tasks with MPC. It en-
ables the definition of VR/AR cursor interaction techniques via transfer functions, automatic
parameter identification of cost weights using a Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [26], and the simulation of user movement for mid-air pointing tasks
with state-of-the-art biomechanical models in MuJoCo [60]. The CFAT tool4 (Chapter 3)
can be used to calculate feasible applied torques from motion capturing data. In particular,
the tool can be used to define the maximum voluntary torques, i.e., control ranges, for the
biomechanical models used in Chapters 3 and 6. The OFC4HCI toolbox5 (Chapter 5) enables
modeling and simulation of linear-quadratic models of human-computer interaction. For
instance, it can be used to identify system parameters, simulate 1D pointing movements,
and compare different linear-quadratic models in their ability to describe human movement.
The User-in-the-Box (UITB) approach6 (Chapter 7) includes the training and simulation
of interactions with a reinforcement learning agent. The toolbox is modular and already
contains different modules for the biomechanical and perceptual models, and four interaction
tasks that can serve as building blocks for its application to novel applications. Lastly, the

1https://zenodo.org/records/7300062
2https://github.com/fl0fischer/uitb-tools
3https://github.com/mkl4r/sim-mpc
4https://github.com/fl0fischer/cfat
5https://github.com/fl0fischer/OFC4HCI
6https://github.com/aikkala/user-in-the-box

https://zenodo.org/records/7300062
https://github.com/fl0fischer/uitb-tools
https://github.com/mkl4r/sim-mpc
https://github.com/fl0fischer/cfat
https://github.com/fl0fischer/OFC4HCI
https://github.com/aikkala/user-in-the-box

12 Thesis Overview

SIM2VR package7 can be used to integrate biomechanical user simulations directly into VR
development environments (Chapter 8). It provides an implementation for the commonly
used IDE Unity8 that can be adjusted to the task, and an interface that allows the simulated
user (which is based on the UITB toolbox) to perceive the same environment as a human
user would. To further increase the accessibility of our tools, I provide guidelines on how
to adjust our approaches to different settings e.g, to different interaction techniques, tasks,
or user models. This includes tutorial-like sections on how to simulate user movement with
OFC and DRL (Chapters 3, 5, and 8).

2.2 Overview of the Presented Papers

This section provides brief introductions and contextualization of the works consolidated in
this thesis. The publications themselves and their corresponding contribution statements are
presented in Chapters 3 to 8. To acknowledge and value the collaborative effort that went
into the presented works, I will use the plural form “we” in the following.

Simulating Interaction Movements via Model Predictive Control (Chapter 3)

To be able to simulate movement-based interactions, we have to model the human-computer
interaction loop in its whole. Therefore, we build models of the interface, the input and output
devices, and the user. Although many previous models of interaction are linear [39, 41],
most interaction tasks already incorporate nonlinear dynamics through the interface itself
such as force-to-motion functions [52]. We additionally aim to use biomechanical models to
simulate user movements in a physiologically plausible and realistic way. These models also
involve nonlinear dynamics such as shoulder movements, which can be challenging for OCP
solvers to handle. Furthermore, our goal for modeling interaction is not only to be able to
predict human movements, but also to understand better how humans move to interact with a
computer. This is only possible if the results that our methods produce are comprehensible.

Therefore, we employ a method from mathematical control theory, namely Model Predic-
tive Control (MPC). MPC has been established as a standard method for solving linear and
nonlinear problems, often involving real physical environments such as the control of refining
and processing of (petro-)chemicals or polymers, power electronics, automated vehicles, or
aerial swarms [49, 56, 65, 70]. The general idea of MPC is the following: Instead of solving
the possibly large OCP (1.4) for which an end time is unknown, we consider only a simpler

7Soon to be released on GitHub.
8https://unity.com

https://unity.com

2.2 Overview of the Presented Papers 13

OCPN at each time step, which follows the same system dynamics but evolves only up to a
certain MPC horizon N ∈ N into the future:

min
u(·)∈UN

JN(x0,u(·)) = min
u(·)∈UN

N−1

∑
k=0

ℓ(x(k),u(k))

such that x(k+1) = f (x(k),u(k)) for all k ∈ {0, ...,N −1},
x(0) = x0,

x(k) ∈ X for all k ∈ {0, ...,N}.

(2.1)

This OCP is considerably easier to solve because it contains only a fraction of the control
variables, resulting in an optimal open-loop solution u⋆(·). Then only the first part u⋆(0) is
applied, resulting in a new system state. This state may differ from the expected state due
to disturbances such as control noise. Subsequently, the horizon is shifted by one time step,
i.e., a new OCP, whose initial state coincides with the new system state, is created and then
solved. This process is repeated until the task is completed or a time limit is reached.

From an HCI point of view, the open-loop solution u⋆(·) obtained by solving OCP (2.1)
creates a prediction of the state trajectory, e.g., body and cursor positions, based on the
user’s planned actions in the next N time steps. After a certain amount of time – which
depends on how quickly muscle activation can be adjusted – they perceive the new state of the
system. This state possibly varies from the user’s prediction, because of perturbations such
as the noise present in the nervous system [13]. Therefore, the user makes a new prediction
for the succeeding N time steps, allowing them to modify their previously planned muscle
activations to improve the value of the cost function.

A simulation of the movement-based interaction is then given by the closed-loop solution
which is defined as the formally applied controls u⋆(0) of each iteration. Recently, many
theorems provide mathematically proven guarantees that MPC leads to reasonable results
under certain, relatively weak conditions. Dissipativity is often considered the most important
factor and is usually given in physical environments [14, 23, 50].

Following the idea to consider interaction as an OCP, we define a general framework of
using OFC to simulate interaction movements and explain how MPC is used to solve the OCP
(1.4). Afterwards, we conduct a user study to obtain reference motion capturing data of users
in a Fitts’ Law-type mid-air pointing task. This data is then used to implement state-of-the-art
biomechanical models of the arm and shoulder in the fast physics simulation MuJoCo (Multi-
Joint dynamics with Contact) [60]. To reduce the complexity, we use a second-order muscle
model that produces torques at each joint instead of using direct muscle control [64]. We
create and implement the Compute Feasible Applied Torque (CFAT) tool to find appropriate

14 Thesis Overview

maximum applicable torques for each joint.9 After fitting the necessary parameters, we assess
the efficacy of three cost functions in simulating accurate pointing movements similar to
those of real users. Our analysis examines the distance cost [12, 17, 48, 59], which penalizes
the distance between the cursor and target, and the control or effort cost [24, 37, 61], which
quadratically penalizes the control vector’s norm. Moreover, we combine these costs with
either commanded torque change costs [32, 43, 67, 68] or joint acceleration costs [67]. Since
the latter manages to explain the user date from our study best, it is scrutinized further. We
also explain how the MPC horizon effects the simulation results and provide guidelines on
choosing the right horizon length. To further help HCI researchers and practitioners to apply
the simulation with MPC, we provide a step-by-step guide and give advice on adapting the
approach for other applications. Overall, our findings demonstrate that MPC can simulate
mid-air pointing movements that fall within the between-user variance. This shows, that
the simulation with MPC can provide reasonable insights in user movement during mid-air
pointing tasks. We propose that this approach has the potential to be applied to various HCI
tasks and input techniques, and allow an automatic evaluation of design parameters.

An Optimal Control Model of Mouse Pointing Using the LQR (Chapter 4)

Although most HCI tasks involve nonlinearities as in the models used in the work described
above, it is often possible to learn from and improve upon simplifications. In particular,
OCPs with linear system dynamics with quadratic costs can be easily solved (as already
explained in Section 1.2). Therefore, we also explore the abilities of the Linear-Quadratic
Regulator (LQR) for the prediction of interaction movements (see Chapter 4). LQR leads
to a linear, optimal solution for the closed loop system that can be computed offline. This
means that the optimal control at a time step k ∈N is simply of the form u(k) = Kx(k), where
x(k) ∈ X is the state of the system at time k and K is the solution matrix of the discrete-time
algebraic Ricatti equation of appropriate size [36]. Since it is not feasible to employ nonlinear
biomechanical models in this case, we choose to model 1D mouse pointing movements with
a second-order linear system (often referred to as a spring-damper system). The user chooses
a control signal u that acts directly on the acceleration of the mouse pointer. This simplifies
how the acceleration is produced in reality, but leads to a linear quadratic OCP that can be
solved with the LQR. More specifically, we identify system parameters based on the Pointing
Dynamics Dataset [41], using sum squared errors. To examine the LQR’s abilities to simulate
mouse movements, we utilize different variants of cost functions. In particular, we consider
combinations of the pointer’s distance to the target and the pointer’s jerk (the third derivative
of the position of the mouse pointer), as commonly used in human motor control [19]. While

9All created systems and tools are available on GitHub, as mentioned in 2.1

2.2 Overview of the Presented Papers 15

jerk is penalized during the whole movement, the distance is added either at each time step
or only at the time of the mouse click (taken from user data). Furthermore, premature action
is also penalized until a certain time has elapsed to simulate reaction time. A factor scaling
the jerk cost as well as the reaction time is also obtained by the parameter identification
described above. We additionally evaluate the LQR against direct second-order lag [41] and
minimum jerk models [19], showing that the LQR leads to pointing trajectories that fit best
to the observed human data.

Optimal Feedback Control for Modeling Human-Computer Interaction (Chapter 5)

Following the initial investigation and success of LQR for HCI tasks, we give a proper intro-
duction of OFC to the HCI-community and postulate a novel framework for the simulation
of interaction movements by solving OCPs. We further investigate how well different simple
linear models can produce one-dimensional mouse movements. First, we reevaluate the LQR,
adding the same second-order muscle model as in Chapter 3 to improve the realism of the
created movements. As the cost function we use the sum of distance, velocity, acceleration (or
force), and control costs throughout the movement. To increase the realism of the simulated
movements, we also apply the stochastic version of LQR, the Linear-Quadratic Gaussian
Regulator (LQG). The LQG is further extended by incorporating saccades, i.e., quick eye
movements between fixations, and an imperfect initial target estimation (E-LQG), based on
the work of Todorov [58]. Additionally, we implement Intermittent Control (IC) for the given
interaction task, as recently proposed by Martin et al. [39]. In Chapter 5, we use parameter
identification based on the sum squared errors (for deterministic models) and the Wasserstein
distance (for stochastic models), and fit the model parameters using the Pointing Dynamics
Dataset [41]. We then compare the simulated trajectories of LQR, LQG, E-LQG, IC, and the
previously used models of second-order lag and minimum jerk. The results show that the
E-LQG predicts human 1D mouse pointing movements best in regards to the sum squared
error between simulation and mean user trajectories. With the proposed framework, we can
also identify different characteristics of user movement. Depending on the complexity of the
chosen model, the identified model parameters can also be interpreted naturally and help to
understand how users vary in their way of solving the pointing task.

Reinforcement Learning Control of a Biomechanical Model of the Upper Extremity
(Chapter 6)

After exploring classic OFC methods, we investigate different Deep Reinforcement Learning
(DRL) methods in their ability to simulate interaction movements. It is important to note, that

16 Thesis Overview

even though OFC and DRL are different, they both aim to solve an OCP (1.4) that we use to
model the interaction. The idea of DRL is to find a policy that provides actions depending on
the current state such that they lead to the maximal accumulated reward. This is similar to the
methods used above, which aim to minimize accumulated stage costs10. The policy is based
on a deep neural network, that is updated in regular intervals during training by a so-called
agent, that learns to control the system to obtain higher rewards. When applied subsequently,
this policy produces a sequence of controls similar to the OFC methods (cf. Section 1.2). One
advantage of DRL over classic OFC methods is that the agent can learn even complex tasks
through exploration. Like MPC, DRL methods can work with nonlinear system dynamics
because the agent only needs to be able to sample the system, i.e., perform actions, observe
the new state, and receive rewards. Therefore, we use the same biomechanical and muscle
model as in Chapter 3. We train a Soft-Actor Critic (SAC) algorithm [25] on the pointing
at, and tracking of targets in front of the model. As actions, the SAC agent chooses muscle
activations for each time step and joint which are then transferred to joint torques through
the second-order muscle model. Instead of defining a cost function that is minimized, DRL
methods use reward functions that teach the agent which actions are best. To encourage
fast and accurate movements, we implement a combination of negative time and distance
as reward. We assume perfect observability, i.e., the agent knows the exact position of the
targets as well as his own body posture. Although human movements are straighter than
those generated by the simulation, the results still exhibit similar characteristics to human
motion. In particular, we show that Fitts’ Law [18] and the 2/3 Power Law [35] hold for the
simulated pointer trajectories. To summarize, we have shown that a DRL agent can learn to
control a biomechanical user model to perform mid-air interaction tasks, showing classic
characteristics that can also be observed in human movement.

Breathing Life Into Biomechanical User Models (Chapter 7)

Following our previous results with DRL methods, we aim to work on a more general ap-
proach (see Chapter 7). In this study, we expand upon the previous approach by incorporating
a visual perception model and utilizing a more complex muscle model that allows for the
control of individual simulated muscles instead of producing joint torques. Therefore, next
to the previously demonstrated tasks of pointing and tracking, we consider the more complex
tasks of choice reaction and remote car control. The choice reaction task requires the agent to
identify a color displayed on a screen and press the corresponding button. In the remote car
control tasks, the agent must locate the parking spot and use a joystick to control the speed
of the remote-controlled car. The example above illustrates a higher-order task compared to

10Mathematically, minimizing costs is the same as maximizing the negative costs.

2.2 Overview of the Presented Papers 17

the others. This is because the agent must first learn how to move the car with the joystick
before being able to steer it towards the target. Furthermore, it requires the agent to observe
additional haptic feedback when touching the joystick.

To also further improve the realism of the resulting movements, and in contrast to the
model in Chapter 6, we use a more sophisticated muscle model implemented in MuJoCo.
Instead of controlling the joints, the agent learns to choose relative muscle controls, i.e., the
change in controls of 26 muscles simultaneously. This approach was not possible with MPC
because the control space grows exponentially with the number of controls which greatly
slows down the solving of the OCP and leads to instabilities11. In contrast to the previous
DRL approach in Chapter 6, the observation consists of a combination of proprioceptive
feedback, tactile feedback, and visual feedback in form of a low resolution RGB-D array.
Furthermore, we replace the SAC with a Proximal Policy Optimization (PPO) algorithm [53]
which has been successfully applied in other HCI works [7, 30]. The agent gains discrete
rewards for fulfilling the interaction task (e.g., reaching a virtual target or parking the
remote controlled car in the correct spot), continuous negative distance rewards to encourage
the agent to move towards certain targets, and negative effort rewards to ensure efficient
movements. All four implemented interaction tasks are solved satisfactorily by our agent,
showing that DRL methods combined with sophisticated biomechanical models and realistic
perception can be used to simulate human movement even for complex interaction tasks.

SIM2VR: Integrating Biomechanical Simulations in VR Development Environments
(Chapter 8)

All of the above approaches demonstrate how simulations can be produced for movement-
based interactions. However, these simulations were done using specialized models of the
actual interaction environment that differ from the environment a human user experiences.
Although they can be used to evaluate and improve the considered interaction techniques,
such as the Virtual Cursor and Pad in Chapter 3, it is therefore difficult to compare them
directly to user data. Furthermore, these specialized models lack a way to easily transfer
to other scenarios such as different virtual environments or tasks. The primary rationale
for this is that the simulation must encompass not only the user’s biomechanics, but also
the interactive system itself. Since the simulated interactive system deviates from the real
system, a “reality-gap” between the environment that is used to train an agent (or to obtain a
feedback controller) and reality is introduced. To close this gap, we introduce SIM2VR – a
platform the enables the seamless integration of biomechanical user simulation directly into
the virtual reality development environment (see Chapter 8). More specifically, SIM2VR

11Often referred to as the Curse of Dimensionality [2] which is further discussed in Section 9.2.

18 Thesis Overview

provides an interface between the VR environment and the biomechanical user simulation.
The interface transmits the simulated user’s input movements, captured by virtual sensors,
to the VR environment as if a real user were involved. Additionally, it supplies the agent
with task-dependent rewards and the same visual feedback that a real user would perceive.
In other words, SIM2VR allows for the use of the identical environment when training
DRL agents and for the user. To demonstrate our approach on a common VR scenario, we
implement a whac-a-mole VR game. We train the agent to play the game and compare
the resulting simulation to data obtained via a user study in regards to performance, effort,
and strategy. Specifically, we show that the simulated user achieves similar performance
as the users in our study, allows prediction of effort differences in different game settings,
and can be used to learn about (possibly unintended) user strategies. This enables quick
evaluations and optimizations of various application settings, such as target placement or
interface dynamics. It can also assist designers in improving the user interface to help users
find the best strategies.

3
Simulating Interaction Movements via

Model Predictive Control

Authors: Markus Klar, Florian Fischer, Arthur Fleig, Miroslav Bachinski, Jörg Müller
Status: Published in ACM Transactions on Computer-Human Interaction, Volume 30, Issue
3 [33]

The concept and framework was developed by all authors. MK implemented the simulation
with MPC and the parameter fitting. FF implemented the CFAT tool. MK selected and
compared the cost functions. The study was designed by all authors. MK conducted the user
study. User data was preprocessed by MB, MK, and FF. MK and FF generated, processed
and analyzed the simulation data. Figures were created by FF and MK. The results were
interpreted and discussed by all authors. MK wrote the first draft of the manuscript. Revision
and rewriting of the manuscript was done by all authors. MK is the corresponding author.

20 Simulating Interaction Movements via Model Predictive Control

44

Simulating Interaction Movements via Model Predictive

Control

MARKUS KLAR , FLORIAN FISCHER , and ARTHUR FLEIG , University of Bayreuth

MIROSLAV BACHINSKI , University of Bergen

JÖRG MÜLLER , University of Bayreuth

We present a Model Predictive Control (MPC) framework to simulate movement in interaction with comput-
ers, focusing on mid-air pointing as an example. Starting from understanding interaction from an Optimal
Feedback Control (OFC) perspective, we assume that users aim at minimizing an internalized cost function,
subject to the constraints imposed by the human body and the interactive system. Unlike previous approaches
used in HCI, MPC can compute optimal controls for nonlinear systems. This allows to use state-of-the-art
biomechanical models and handle nonlinearities that occur in almost any interactive system. Instead of torque
actuation, our model employs second-order muscles acting directly at the joints. We compare three different
cost functions and evaluate the simulation against user movements in a pointing study. Our results show that
the combination of distance, control, and joint acceleration cost matches individual users’ movements best,
and predicts movements with an accuracy that is within the between-user variance. To aid HCI researchers
and designers in applying our approach for different users, interaction techniques, or tasks, we make our
SimMPC framework, including CFAT, a tool to identify maximum voluntary torques in joint-actuated mod-
els, publicly available, and give step-by-step instructions.

CCS Concepts: • Human-centered computing → HCI theory, concepts and models ;

Additional Key Words and Phrases: Simulation, model predictive control, optimal feedback control, biome-
chanics, interaction techniques, mid-air pointing, AR/VR environments, maximum voluntary torques

ACM Reference format:
Markus Klar, Florian Fischer, Arthur Fleig, Miroslav Bachinski, and Jörg Müller. 2023. Simulating Interaction

Movements via Model Predictive Control. ACM Trans. Comput.-Hum. Interact. 30, 3, Article 44 (June 2023),
pages 50.
https://doi.org/10.1145/3577016

1 INTRODUCTION

Movement during interaction can be understood from an Optimal Feedback Control (OFC)
perspective [18]: During interaction, users aim at computing muscle control signals, which control
the dynamical systems of the users’ bodies, which in turn control interactive systems. OFC states
that users aim at minimizing an internal cost function subject to the constraints imposed by the
users’ bodies and the interactive systems. They do so by observing the state of the interactive
system and continuously adjusting their controls to further their goals.

Authors’ addresses: M. Klar, F. Fischer, A. Fleig, and J. Müller, University of Bayreuth, Bayreuth, Universitätsstraße 30, 95440,
Germany; emails: {markus.klar, florian.j.fischer, arthur.fleig, joerg.mueller}@uni-bayreuth.de; M. Bachinski, University of
Bergen, Bergen, P.O. Box 7800, 5020, Norway; email: miroslav.bachinski@uib.no.

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

© 2023 Copyright held by the owner/author(s).
1073-0516/2023/06-ART44
https://doi.org/10.1145/3577016

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

44:2 M. Klar et al.

It is this observed continuity and the adjustment of controls that drives the desire to model inter-
action beyond summary statistics, in order to predict movement along the entire interaction loop

between human and computer, including, e.g., joint postures or cursor trajectories, on a moment-
by-moment basis . Taking the OFC perspective allows us to accomplish these things, by modeling

interaction as an optimization problem. Here, the optimization variable is a continuous muscle
signal, i.e., a function of time, that drives the user’s movement, which “controls” the system. Thus,
this optimization problem is usually referred to as an Optimal Control Problem (OCP) . The
feedback part of OFC is due to solving the OCP in a feedback manner to model the user’s abil-
ity to adjust their control during interaction, e.g., to react to unforeseen circumstances such as
perturbations in the cursor movement.

Previous approaches of modeling interaction from the OFC perspective have employed linear
optimal control theory, particularly the Linear Quadratic Regulator (LQR) [17], its stochastic
extension LQG [18], and intermittent control methods [44]. These approaches differ fundamentally

from our approach in that they considerably simplify the problem of computing the optimal con-
trol signals by using linear approximations to the human–computer system (e.g., a second-order
spring-damper model) and quadratic cost functions. However, these limitations lead to unrealistic
simplifications of the human–computer system. Typically, human movements are simulated only

with simple point-mass models, since modeling the kinematic chain already leads to nonlinear
dynamics. Other important nonlinear features, such as those of interactive systems (e.g., transfer
functions), similarly cannot be modeled by this linear approach. Furthermore, quadratic cost func-
tions cannot accurately reflect many tasks in Human–Computer Interaction, such as accurately

hitting a button with abrupt boundaries.
In this article, we extend the OFC approach to Human–Computer Interaction to nonlinear dy-

namics and non-quadratic cost functions by using Model Predictive Control (MPC) [23]. This
allows us to investigate the simulation of human movement during interaction with computers
using a state-of-the-art nonlinear biomechanical model of the human upper extremity in combi-
nation with nonlinear interaction dynamics such as pointer acceleration [46]. We evaluate our
approach by simulating an ISO mid-air pointing task with two different interaction techniques,
each in two different settings.

MPC as a method has various strengths, such as the easy inclusion of constraints and certain

theoretical functionality guarantees to provide trust and reliability, but the main idea behind MPC

is complexity reduction in time. It takes the above OCP, which can be computationally hard to solve
for the whole interaction/movement duration, and breaks it down into iterative sub-problems of
much smaller duration, which are thus considerably easier to solve. After solving a sub-problem,
only the first part of the resulting optimal control sequence is applied to the system, resulting in

a new system state. The horizon is then shifted by one step, i.e., the next sub-problem starts with

this new state. This makes the MPC a closed-loop feedback controller, which is inherently robust
against perturbations that may occur during the interaction.

In summary, the contribution of this work to the field of HCI is threefold:

(1) We propose a framework that combines nonlinear biomechanical modeling and MPC to

simulate human movement during interaction on a moment-by-moment basis (SimMPC),
and a method to infer the maximum voluntary torques used in an interaction task (CFAT).

(2) We evaluate our framework for the example use case of mid-air pointing, including

comparisons between three different cost functions in their ability to generate biome-
chanically plausible movements, as observed in a new user study.

(3) We make our approach accessible for HCI researchers by providing the sim-mpc and

cfat python packages as well as a step-by-step guide on how to apply our framework to

different tasks and interaction techniques.
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

21

Simulating Interaction Movements via Model Predictive Control 44:3

The article is structured as follows. Related work is discussed in Section 2 . The core of this article,
our simulation approach using MPC (and practical advice on its use), is presented in Section 3 . In

Section 4 , we introduce CFAT , a method to compute maximum voluntary torques for joint actuated

models such as the one used in this article. Then follows an evaluation of our approach, applied

to the use case of ISO pointing in VR, in Sections 5 and 6 , where we show that our simulation

is able to predict biomechanically plausible user movements. A discussion of the advantages and

limitations of MPC ensues in Section 7 . Section 8 explains step-by-step how to apply and extend

our framework to different tasks and interaction techniques, using tracking a moving target via
ray casting with a handheld VR controller as an example. Section 9 concludes the article.

The article is supplemented by our open-source project (https://github.com/mkl4r/sim-mpc),
which consists of several components. The sim-mpc python package includes scripts to simulate
mid-air interaction movements, compare simulation and user trajectories, generate plots, and op-
timize model parameters. The ISO- VR- Pointing Dataset contains marker, joint angle, and joint
torque data for all mid-air pointing movements from our user study, and the SIM-MPC Dataset
contains the corresponding simulation data produced for this work. The cfat python package pro-
vides an implementation of the CFAT method.

2 RELATED WORK

2.1 Forward Models of Interaction Movements
Forward models of movement during interaction with computers can predict variables such as
movement duration, joint angles, or muscle activations. Depending on what they predict, they

can be categorized as summary statistics (e.g., movement duration), end-effector models (e.g., end-
effector position), or kinematic chain models (e.g., body joint trajectories).

The most widely used summary statistics model of the end-effector is Fitts’ Law [19]. It allows
to predict the overall movement time MT from the distance D and width W of the target as MT =

a + b ∗ log 2 (D/W + 1) (in the Shannon formulation [43]). It is important to note that Fitts’ Law

has been developed to describe movement of the human hand. The fact that the same law can also

be used to describe the movement of a virtual end-effector such as the mouse pointer, mediated by

input devices and computer programs, is one of the great insights of HCI [8]. The parameters a and

b must be identified for each user and type of movement (e.g., interaction technique) separately.
Recently, more advanced models have been developed to predict, e.g., the failure rate and button

press timing in moving-target acquisition tasks [37 , 38].
End-effector models describe the entire trajectory of the end-effector during the movement. A

classical end-effector model of hand movement is the minimum jerk model [20]. In HCI, only few

works investigate the motion of the end-effector, although Bootsma et al. [6] demonstrate the im-
portance of understanding movement in HCI beyond summary statistics. Müller et al. [47] give
an introduction to end-effector models in HCI. They investigate the kinematics of mouse move-
ments and compare four models from manual control theory. Quinn and Zhai [53] demonstrate
how the minimum jerk model can be used to model finger movements during gesture typing.
Jokinen et al. [33] frame touchscreen typing as a visuomotor coordination task and show that
optimal super visor y control allows to generate human-like eye-hand movement patterns. Fis-
cher et al. [17 , 18] compared the applicability of different optimal control methods to simulate
and predict mouse pointing trajectories, and introduced a general optimal control framework for
Human–Computer Interaction. The focus there lies on controllers, such as the Linear-Quadratic
Gaussian (LQG) Regulator, which are able to describe mouse pointing while also incorporating

signal-dependent noise via a linear-quadratic OCP. The limitation to linear system dynamics rules
out its application to more complex models of human biomechanics. Moreover, all of the above
works have only analyzed motion in 1D or 2D, although they are in general not limited to 1D or

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

22 Simulating Interaction Movements via Model Predictive Control

44:4 M. Klar et al.

2D motion. The only end-effector model that is evaluated with 3D mid-air movements in HCI that
we are aware of is the recent work of Bachinski et al. [2], who investigate a 2nd and a 3rd order
lag for modeling mid-air movements.

In this work, we are aiming to model not only end-effector movements in 3D but using a biome-
chanical model of the human upper body. This allows us to obtain joint angles, velocities, and even

aggregated muscle activation, each observed during interaction. Therefore, we consider kinematic
chain models that, in contrast to pure end-effector models, also make predictions about the under-
lying causes of the movement by modeling the entire kinematic chain. In particular, this allows to

predict ergonomic variables such as joint angles and joint moments. Most of the previous work on

biomechanical models of human movement outside of HCI has concentrated on the substantially

simpler 2D case and simple linked-segment models [28 , 41 , 61 , 67]. Linked-segment models use
simplified bones as sticks and hinge joints, usually without movement constraints. In movement
science, the minimum torque change model [67] has been proposed, transferring the idea of the
minimum jerk model (i.e., maximization of “smoothness”) to a simple 2D linked-segment model.
This model requires the exact movement time as well as all joint angles, velocities, and torques
of the initial and final postures as input, and yields the kinematics and dynamics of the move-
ment between initial and final state as output. Li and Todorov [41] present a control method for a
2D linked-segment model using the iterative Linear Quadratic Regulator (iLQR) , which min-
imizes the difference between current and target posture plus quadratic control costs. However,
this assumes that the final body posture is known in advance, which is not necessarily the case
when the only goal is to move an end-effector (i.e., the fingertip or a virtual cursor) to a target.
Moreover, the model has not yet been extended to the 3D case.

2.2 Inverse Biomechanical Simulation in HCI
In contrast to forward models, inverse biomechanical simulation takes as input human movement
data and performs inverse estimations of how a specific movement was created. The method stems
from the fields of biomechanics and rehabilitation and allows to compute accurate physiological
indices of movements [10 , 54]. Given motion capture data, it allows to estimate multiple internal
variables such as joint angles, joint moments, muscle forces and activation, and neural excitation

signals. At the core of the biomechanical simulation is a musculoskeletal model, which represents
the kinematic, inertial, dynamic, force generation, and neural control properties of the human

body [56]. Biomechanical simulation has been introduced and validated for HCI tasks as a method

for ergonomic and fatigue evaluation of post-desktop user interfaces [3 , 4]. It has also been used as
a data generation method to develop summarization models of performance and ergonomics for
arm movements [5]. Simplified biomechanical models were adapted as components of simulations
for fatigue assessment tools [30 , 31]. Although one current weakness of biomechanical simulations
is its necessity for motion capture data collection in user experiments, these simulations have a
large potential in the field of HCI, in particular for the analysis and development of AR, VR, and

ubicomp user interfaces.

2.3 Deep Learning and Muscle Control
The above works from Sections 2.1 and 2.2 have investigated the control of the human body or
a virtual object using either outcome-specific relationships such as Fitts’ Law, or optimization

methods such as iLQR. Another approach incorporates recent tools and methods from the field of
Deep Learning. Most notably, Cheema et al. [9] recently presented a method to estimate cumulative
fatigue during mid-air interaction, in terms of Borg CR10 ratings. They use a 3D linked-segment
arm model and reinforcement learning (RL) to learn a control policy for a Fitts’ law type task.
They propose a novel reward function —the analogy of a cost function in OCPs, based on effort

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

23

Simulating Interaction Movements via Model Predictive Control 44:5

estimated through the Three Compartment Controller , and show that this generates faster and more
“ergonomic” movements compared to a baseline reward of summed normalized instantaneous
joint torques. Their model is shown to be able to predict the Borg CR10 ratings of the movements
performed in [31] with good accuracy. However, Cheema et al. [9] did not analyze the realism of
the movements generated by their approach in terms of end-effector trajectories or joint angles,
but rather in terms of predicted cumulative fatigue, averaged over 12 models.

Following the work of Cheema et al., in [16] a state-of-the-art RL algorithm was used to learn

to move the finger to arbitrary targets within reach. The resulting end-effector trajectories follow

both Fitts’ Law [19] and the 2 / 3 Power Law [36]. Lately, Hetzel et al. have extended the model
from [16] to simulate mid-air keyboard typing, using the same RL method [29].

Beside these works, the objective of many research works making use of Deep Learning meth-
ods is not to model or understand human motion, but rather to create interesting and realistic
animations for movies or computer games. We are not aware of any works from this research area
that compare the synthesized movements to actual human movements on a biomechanical level.
Similarly to the works from movement science, most works have controlled the torques at the
joints (e.g., [26 , 49]). Control on a muscle-level has traditionally been considered to be computa-
tionally infeasible. This is due to the fact that the computation time increases exponentially with

the dimensionality of the control problem, called the curse of dimensionality .
Recently, however, two approaches to create movements of muscle-actuated characters have

been presented. Lee et al. [39] propose a two-level imitation learning algorithm for musculoskeletal
models. A high-level controller follows a reference motion and generates target joint angles. A low-
level controller then controls the muscles to generate the appropriate forces. Imitation learning

assumes that reference motions from humans are available. Whether and how imitation learning

approaches can generate novel interaction movements that are not available as recordings will be
an important question for future research.

In contrast to imitation learning, reference-free approaches can synthesize novel movements
based only on the model description and reward function. Jiang et al. [32] present an approach

to circumvent the muscle control problem by controlling the character in joint space, while deter-
mining maximum joint torques and energy costs from a neural network, learned from a realistic
model in OpenSim [10]. Jiang et al. demonstrated their technique on a leg model. Whether and

how this approach can work for a significantly more complex arm model, especially taking the
shoulder into account, remains open.

Control of muscles is particularly necessary when the movements are big and cover very dif-
ferent joint angles, as moment arms change significantly during the movement in such cases. One
example used by Jiang et al. [32] is a jump for maximum height, where the joint torque network

prevents overbending of the knees as an optimal strategy. However, during most interactions, the
movements are small and the moment arms change only minimally during the execution. In this
case, actuating the joints either based on simplified muscle dynamics (as we do in this work) or
direct torque control can be a good approximation and is substantially simpler to use than complex

musculotendon models. For small movements, passive forces created by ligaments and musculo-
tendon units also play a smaller role.

3 MODELING INTERACTION AS MODEL PREDICTIVE CONTROL

In this section, we describe our approach to model and simulate human movement during inter-
action with the computer using MPC. We lay the theoretical foundation and provide concrete but
extensible models and practical advice. A concrete use case is described in detail in Section 5 .

The defining aspect of movement in Human–Computer Interaction is that users move their
bodies in order to change the state of an interactive system such that their virtual representation,

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

24 Simulating Interaction Movements via Model Predictive Control

44:6 M. Klar et al.

Fig. 1. Our proposed simulation framework. To run a simulation, one needs to specify the Target User Group,
Interaction Task, and Interaction Technique. Based on the Target User Group, a User Model that matches
one or more representative user(s) is chosen (or designed). Combined with the Input Device and Interface
Dynamics—both defined by the Interaction Technique—this results in the System Dynamics. Finally, the
Interaction Task imposes a specific Cost Function that the user is assumed to minimize. The resulting non-
linear OCP can then be solved with MPC, resulting in a simulation of the movement. From this, we can obtain

valuable data like movement duration, joint and cursor trajectories, or aggregated muscle recruitment.

(e.g., an avatar or a cursor), reaches a desired state, e.g., selecting a button or dragging a virtual
object.

When modeling this interaction, it is important to be able to deal with nonlinearities, as user
movement and interaction techniques are in general nonlinear. On top of that, for most interaction

techniques, there exists an infinite number of body movements that result in the same state-change
in the interactive system. For example, using the mouse as input device, movements to the left
result in the same cursor movement as movements to the top after a clockwise rotation of the
mouse by 90 degrees. This complicates the simulation of movements, as it is unclear how the
model should move in order to plausibly replicate human behavior during interaction. Therefore,
in order to understand the entire interaction loop on a moment-by-moment basis, the actual state
of the user’s body and the input device needs to be taken into account, which can be achieved by

utilizing a unifying and mathematically rigorous optimal control framework of interaction [18].
Our framework is depicted in Figure 1 . Our model takes into account the target user group , the

interaction technique , and the interaction task . The first influence is the User Model , see Section 3.1 ,
where we match the physical properties of the target users by using state-of-the-art biomechanical
models. The interaction technique consists of two parts in our framework. First, modeling of the
Input/Output device (e.g., motion capture tracking of the index finger, or the combined use of a
HTC Vive controller and head-mounted display (HMD)) is described in Section 3.2 . Second, we
define Interface Dynamics that determine how the user input is transferred to the virtual system

(e.g., to a virtual cursor) in Section 3.3 .
Readers that are already familiar with the above concepts and are mostly interested in the core

method used to simulate movements may directly skip to Section 3.4 . There we introduce the
notation of a nonlinear OCP , which augments the former discussed models of the human body

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

25

Simulating Interaction Movements via Model Predictive Control 44:7

and the interaction technique with a Cost Function that formalizes the user-specific objectives for
a given interaction task.

In Section 3.5 , we show how the OCP can be solved via MPC , resulting in a simulation of the
complete biomechanical chain during interaction. We thus obtain trajectories of joint angles, an-
gular velocities, and accelerations; trajectories of cursor positions, velocities, and accelerations;
and biomechanical data such as aggregated muscle recruitment.

3.1 User Model
The biomechanical properties of the user model should match those of the considered users, and

the range of possible movements must be sufficient to fulfill the task. To fit in our simulation

pipeline (Figure 1) and act as a part of the system dynamics, the user model should be able to be
forward-simulated, i.e., to map the current body state x user (including, e.g., joint angles and angular
velocities, and the internal state of the muscles), and the aggregated muscle control signals u to

the next (i.e., updated) body state x

+
user in a realistic way. 1 Formally, this mapping can be defined

via a function f user :
x

+
user = f user (x user , u). (1)

In this work, a biomechanical, joint-actuated model implemented in a physics engine, coupled with

second-order muscle dynamics, will take the role of f user . Of course, it is possible to exchange our
user model with other models of human motion.

3.1.1 Upper Extremity Model in MuJoCo. We make use of the fast physics simulation MuJoCo

[64] to handle the complex biomechanics of human motion. In [16], a MuJoCo model from the
state-of-the-art OpenSim [58] musculoskeletal model from Saul et al. [56] was derived. We use
this MuJoCo model for two reasons: (i) limitations in OpenSim’s ability to simulate contacts—it
is very difficult in OpenSim to allow a model to interact with input devices and environmental
objects such as a chair or table, while preventing the model from reaching through its torso or legs
–; and (ii) computation speed.

The biomechanical model has seven independent joints 2 (i.e., seven DOFs) 3 and 13 coupled

joints, representing a shoulder, an elbow, and a wrist. The shoulder is the centerpiece of the model
and is connected to a torso—which is made immovable during interaction for simplicity—through

a set of three independent and eleven coupled joints. The three independent joints set up the
angle and extent of the elevation, as well as the rotation of the upper arm. Ten of the eleven cou-
pled joints are used to accurately describe the motion of clavicle and scapula with respect to the
shoulder elevation. Since the joints build on each other, another coupled joint is used to revert the
elevation angle before applying rotation. The elbow is composed of two independent joints allow-
ing flexion-extension and pronation-supination movements. For the wrist, we use four joints, two

independent and two coupled, which allow accurate flexion-extension and abduction-adduction

movements of the hand. The finger joints are locked in a pointing posture, since they are less
important for our example tasks and omitting them considerably simplifies the user model. The
complete model is depicted in Figure 2 ; joint angle ranges can be found in Appendix B.1 .

To avoid the curse of dimensionality , i.e., the exponential growth of computation time with the
number of variables to be optimized, we refrain from including muscles in our MuJoCo model.
Instead, we implement simplified muscles that directly act on the joints as follows. We place a

1 Here and throughout this work, we denote states that contain a variety of different quantities in bold font, and the indi-
vidual quantities in regular font.
2 Some human joints are reflected by multiple model joints. Therefore, throughout the article, we use the term joint syn-
onymously for a hinge joint in our model.
3 degrees of freedom.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

26 Simulating Interaction Movements via Model Predictive Control

44:8 M. Klar et al.

Fig. 2. Visualization of our MuJoCo user model. The green sphere models the motion tracking marker for
the physical end-effector.

torque actuator that can produce positive and negative torque around the axis of each of the seven

independent joints. At any given time step n, for i ∈ { 1 , . . . , 7 } the applied torque τ i (n) of each

actuator depends on its current activation x i σ (n), scaled by the maximum voluntary torque д i for
the respective joint:

τ i (n) = д i x i σ (n). (2)

The current activation x i σ (n) of each torque actuator is obtained through a simplified second-order
muscle model, which is explained in detail below.

For practical applications, one challenge with this simplified muscle model is to determine the
maximum voluntary torques д = (д 1 , . . . , д 7) � ∈ R 7 for each independent joint, as to prevent un-
realistic movements. To this end, we propose CFAT , a tool described in Section 4 , to obtain better
matching torques.

3.1.2 Second-Order Muscle Dynamics. Modeling and simulating human muscles has proven to

be challenging. This is not only because of the sheer amount of muscles—in the original OpenSim

model [56], the shoulder and arm alone are moved by a total of 31 muscles—but also because of
the complex interaction of force generation, tendon lengths, tendon positioning, and so on. Opti-
mizing for each muscle activation simultaneously is a challenging problem, which so far has only

become feasible through techniques like hierarchical optimization [42] or through aggregation.
We follow the approach by van der Helm et al. [69], who aggregate muscles for each DOF using

second-order dynamics. We discretize these muscle dynamics using the forward Euler method [7].
The vector x σ = (x 1 σ , . . . , x

7
σ) � ∈ [−1 , 1] 7 contains the activation for all seven DOFs. The vector

of activation derivatives is denoted by x ˙ σ = (x
1
˙ σ , . . . , x

7
˙ σ) � ∈ R 7 , and is affected by the vector of

applied controls denoted by u = (u

1 , . . . , u

7) � . In formulas, the discrete-time dynamics for each

DOF i ∈ { 1 , . . . , 7 } can be described as follows, where n is the current time step and n + 1 the next
one: [

x i σ (n + 1)
x i ˙ σ (n + 1)

]
=

[
1 Δt
−Δt

(t e t a)
1 − Δt t e +t a

t e t a

] [
x i σ (n)
x i ˙ σ (n)

]
+

[
0
Δt

t e t a

]
u

i (n), (3)

with initial constraints
x σ (0) = σ0 , x ˙ σ (0) = ˙ σ0 . (4)

Here, Δt = 2 ms is the update interval, t e = 30 ms and t a = 40 ms are the fixed excitation and

activation time constants, respectively, which are taken from van der Helm et al. [69], and σ0 and

˙ σ0 are initial values for the activation and its derivative. 4

4 An idea about the magnitudes of these initial values is obtained through practical experiments, where these initial values
are obtained from data for each trial, see Section 5.4 .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

27

Simulating Interaction Movements via Model Predictive Control 44:9

3.1.3 Necessary Adjustments for Other Use Cases. Since we focus on the simulation of (right-
handed) mid-air pointing movements of adults, we only model the upper extremity of an adult,
i.e., the right arm and shoulder. However, by adjusting the MuJoCo model (which comes down to

editing an XML file), e.g., to size or physique, different target user groups can be considered.
We note that, although we use a state-of-the-art biomechanical model, we do not model the com-

plete human body. If more complex movements involving additional extremities are needed, the
model needs to be augmented, respectively. For example, another arm can be added by mirroring,
as has been done in [29].

Note that, in general, the interaction technique and interaction task have an influence on the
choice of the user model. For example, if the input device is a handheld controller, the hand must be
able to hold the controller. In particular, the (rigid) hand must be re-arranged to match the position

of holding the considered device. More extensive models may contain palm and finger joints to

enable fine movements. Similarly, changing the interaction task may require adjustments in the
user model. If, for example, the task is to grasp and move some virtual object, the MuJoCo model
would require a biomechanically more accurate model of the hand. For further details on how to

adjust the MuJoCo model, we refer to the documentation provided by MuJoCo. 5
Major changes to the user model may also affect the maximum voluntary torques, which is why,

in this case, we recommend reapplying the CFAT tool described in Section 4 .

3.2 Input/Output Device

In addition to biomechanics, we implement several mid-air interaction techniques. Following the
scheme from Figure 1 , we divide interaction techniques into their (physical) input devices (e.g., a
joystick, touch screen, or motion capture system) and output devices (e.g., a monitor or HMD), and

the mapping from the information that the computer receives to the virtual state that it displays.
The model of the input device should be able to realistically capture the same data from the user

model as the input device captures from the real user. If, for example, a joystick senses angular
movement in two axes, the model of the joystick should be able to obtain the same information.
Formally, we understand an input device as a function f dev that maps the user’s current state x user
(e.g., body posture) and the current device state x dev (e.g., joystick angle and/or motion capture
marker position) to the updated device state x

+
dev , i.e.,

x

+
dev = f dev (x dev , x user). (5)

In the considered use case of mid-air pointing without any handheld device, the input device
corresponds to the motion capture system PhaseSpace, 6 which allows to continuously track the
movement of the user. An LED marker is placed at the tip of the right index finger, whose position

is used to determine the motion of a virtual cursor. To model this input device, we use a virtual
marker on our MuJoCo user model’s index finger to track its position, which we denote as x ee . In

this particular use case, we thus have
x dev = x ee .

Since we can obtain this data directly from MuJoCo, we do not need to implement any additional
dynamics here, which would be necessary when modeling, e.g., a joystick. Therefore, the device
dynamics in our case are given by the very simple mapping

f dev (x dev , x user) = x ee . (6)

5 https://mujoco.readthedocs.io .
6 https://w w w.phasespace.com/x2e- motion- capture/ .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

28 Simulating Interaction Movements via Model Predictive Control

44:10 M. Klar et al.

Output modalities may also differ between interaction techniques. Most commonly, users get a
visual feedback via a screen that shows how the virtual environment reacts to their input. With

this information, users can evaluate their actions, e.g., through the position of a virtual cursor, and

possibly change their strategy to fulfill the given task, e.g., pointing towards a virtual target. In this
article, we demonstrate the simulation of mid-air pointing in VR by assuming perfect observation.
This particularly implies that users always see the exact cursor position.

3.2.1 Necessary Adjustments for Other Use Cases. The MuJoCo model can easily be extended to

other input devices, since many different sensors like gyroscopes as well as force, torque, or touch

sensors are directly available in MuJoCo. Visual input (to the computer) can be implemented with

cameras that can sense RGB pictures or just depth information. If the input device ought to be
directly manipulated by the user, one needs to adjust the user model such that it can actually

use the device as intended. For example, to grab and use a handheld controller, the posture of
the hand would have to be adjusted to fit a controller that needs to be implemented in the same
physics engine. Furthermore, for some input devices (e.g., a joystick or gamepad), fine motor finger
movements are necessary, which are currently not possible with our used MuJoCo model.

To implement output devices and perception, one would need to add another layer after the
System Dynamics in Figure 1 , which maps the “real” interface state to the one perceived by the
user. For example, if the output device was a 2D screen that does not allow to directly infer depth

information of the regarded scene, the output device model would need to take into account the
underlying projection.

3.3 Interface Dynamics
Once the human input is received, the user interface needs to be updated. For example, a change
in position of the input device should entail a movement of the controlled virtual object, e.g.,
the virtual cursor. Additionally, the virtual world itself may have virtual dynamics. For example,
throwing a virtual ball at a virtual pin may lead to that pin being knocked over.

To formalize the whole process, we use three functions. First, a transfer function f tf transfers
physical movement to virtual. As such, it depends on the current state of the input device, x dev .
Next, the virtual dynamics come into play via the function f vd , which takes as arguments the
current state of the interface x if (e.g., cursor or button position) and the output of the transfer
function. Finally, these two components are wrapped by the wrapper function f if into the Interface
Dynamics of the considered interaction technique, which yields the updated virtual state x

+
if , i.e.,

x

+
if = f if (x if , x dev) = f vd (x if , f tf (x dev)) . (7)

Since the Interaction Dynamics is part of a nonlinear OCP, it is possible to include arbitrary com-
plex virtual dynamics here (although continuity and smoothness of the functions are desirable).

The flip-side, i.e., if no explicit virtual dynamics are required, still fits in this framework. In this
case, f if simply is the transfer function:

f if (x if , x dev) = f tf (x dev). (8)

In our case of mid-air pointing, we do not need explicit virtual dynamics and as such use (8).
This is due to the fact that we only simulate single aimed movements to a static target, i.e., the
only change in the interface state concerns the position of the virtual cursor, which we denote by

x p . This position is updated based on the transfer function that maps the (physical) end-effector
position x ee , which is perceived by the computer through the input device and thus is part of the
input device state x dev , to the position of the virtual cursor x p , which is part of x if . This leads to

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

29

Simulating Interaction Movements via Model Predictive Control 44:11

simple transfer functions of the form:

f tf (x ee) = x p . (9)

But even without virtual dynamics, solely using f tf , we can encompass a variety of interaction

techniques.
First, we consider the class of virtual cursors in VR [50]. These simple interaction techniques

introduce a displacement between the physical and the virtual hand of the user. The transfer func-
tions for these techniques can be given in an Input-Output-Space formulation. In our case, the vir-
tual cursor is uniquely given by an input space origin ω I ∈ R 3 and an output space origin ω O

∈ R 3 .
The cursor position is obtained by transferring the fingertip position in input space coordinates to

the output space. The complete transfer function for Virtual Cursor is thus given by

f tf (x ee) = x ee − ω I + ω O

. (10)

In particular, placing the end-effector at the input origin, i.e., x ee = ω I , results in the cursor being

at the output origin. The choice of the input origin ω I influences task performance. For example, a
lower input origin allows to achieve the same cursor position with a lower end-effector position,
i.e., with a lowered arm, eventually resulting in more comfortable movements. To match horizontal
alignment, we define the output space such that it represents a virtual 3D space in front of the user
by setting ω O

= (−0 . 1 m , 0 . 0 m , 0 . 55 m) , i.e., 10 cm right and 55 cm in front of the user.
As a slightly more complex interaction technique, we select the group of Virtual Pad tech-

niques [1], which project the 3D fingertip position to a 2D cursor position. The technique can

be described as using a tablet placed on a table to move a cursor on a screen in front, with the
differences that the tablet is indefinitely large and that there is no need to touch it. The virtual
display, i.e., the output plane on which the cursor moves, is characterized by its origin ω O

∈ R 3
and normal vector n O

∈ R 3 . We set this output plane to be in front of and facing the user, i.e.,
ω O

= (−0 . 1 m , 0 . 0 m , 0 . 55 m) and n O

= (0 , 0 , −1) . An input plane is analogously defined by its ori-
gin ω I ∈ R 3 and normal vector n I ∈ R 3 . The cursor position is obtained in two steps: First, the
fingertip is projected onto the input plane by a function Proj I . Then, this point is rotated from in-
put to output plane orientation by a function Rot IO

. Finally, the cursor position is translated such

that it lies on the output plane. In total, the Virtual Pad transfer function is therefore given by

f tf (x ee) = Rot IO

(Proj I (x ee)) + ω O

. (11)

Exact formulas for Proj I and Rot IO

are given in Appendix A .

3.3.1 Necessary Adjustments for Other Use Cases. In the case of pointing, the presented trans-
fer functions can easily be modified to match different interaction techniques. Modeling different
pointing techniques such as ray casting [40] is also possible by adjusting the transfer function

accordingly. In this case, one must add additional information of the virtual environment to the
transfer function, e.g., the position and size of selectable objects. When creating new transfer func-
tions, it is a good practice to implement them based on parameters, such as the input origin for the
transfer functions used in this work. A parameter-based implementation allows for a quick adap-
tation and optimization of the interaction technique. Since the interface dynamics can incorporate
both transfer functions and virtual dynamics, one could also model techniques where the interface
has its own internal state, such as driving a virtual vehicle. In general, the virtual dynamics need to

formalize the internal and mutual state dependencies of all interface objects that are relevant for
the interaction, e.g., moving targets that need to be tracked by the virtual cursor, or interactable
objects that may change their color or size depending on the context.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

30 Simulating Interaction Movements via Model Predictive Control

44:12 M. Klar et al.

3.4 Modeling Interaction as Nonlinear Optimal Control Problem

Modeling human–computer interaction requires the use of dynamics that do not only change the
state of the interface based on human input, but also capture biomechanics. Due to the redundancy

of the human biomechanical system, there are infinitely many body movements that can be used

to execute a given interaction task.
Building on the idea of optimal human movement control [65 , 66], we assume that humans

aim at behaving optimally with respect to an internalized cost function, subject to the dynamics
of the human–computer-interaction system. This allows us to make use of the optimal control
framework and rephrase the considered human–computer-interaction as nonlinear OCP , using an

appropriate cost function as well as (discrete-time) system dynamics that describe the complete
interaction loop. Formally, this can be written as

min

u (·)
J ∞

(x 0 , u (·)) = min

u (·)

∞ ∑

k= 0
�(x (k), u (k))

such that x (k + 1) = f (x (k), u (k)) , x (0) = x 0 ,

x (k) ∈ X , u (k) ∈ U , for all k ∈ N .

(12)

Here, J ∞

is the cost to minimize, which is defined by the stage cost or running cost � : X × U → R
that we need to design, f : X × U → X is the nonlinear, continuous state transition map that takes
the current state and control and yields the subsequent state according to the system dynamics,
and x (·) denotes the overall state trajectory that results from the forward simulation of the system

with initial state x 0 and control sequence u (·). State and control constraints are incorporated in the
spaces X (e.g., biomechanically feasible joint angles) and U (e.g., maximum permissible aggregated

control signal strength for each joint), respectively.
The equation x (k + 1) = f (x (k), u (k)) can be written in a shorter form, analogous to the pre-

vious sections, as x

+ = f (x , u), but we kept the current time k explicitly because it occurs in �.
Subsequently, we show how to apply the abstract formulation of the OCP Equation (12) to our case.

3.4.1 System Dynamics. The complete discrete-time system dynamics are obtained by combin-
ing the user model, input device, and interface dynamics that we have described in Sections 3.1 , 3.2 ,
and 3.3 , respectively. These dynamics map the control signal u and the current state of the overall
system x = (x user , x dev , x if), consisting of user, device and interface states, to the next system state
x

+. Therefore, we can formalize the system dynamics as

x

+ = f (x , u) =
(
x

+
user , x

+
dev , x

+
if
)
, (13)

where the formulas for x

+
user , x

+
dev , and x

+
if are given by Equations (1), (5), and (7), respectively.

In particular, in our mid-air pointing use case, the state of the complete system consists of

x user =

{
x qpos , x qvel , x qacc : joint angles, angular velocities, and accelerations
x σ , x ˙ σ : aggregated muscle activation and their derivatives,

x dev =
{
x ee : physical end-effector position, and

x if =
{
x p : cursor position.

(14)

3.4.2 Cost Function. The cost function that is assumed to be minimized by a user during inter-
action needs to reflect the task requirements, goals, and intrinsically motivated objectives that can

represent specific user strategies. Using the notation of the OCP Equation (12), the cost function is
given by a stage cost function �(x , u), which maps the state of the system x and the control signal
u to the respective cost.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

31

Simulating Interaction Movements via Model Predictive Control 44:13

Considering mid-air pointing as an example, the task is to reach a given target with a virtual
cursor. Reaching the target is often modeled as a terminal constraint. For this, however, the du-
ration of the movement must be fixed beforehand. Since movement times vary from trial to trial
and are not known in advance, they must either be estimated or calculated from experiments.
However, we want to enable the simulation of human-like movements based on a model of the
interaction dynamics and the user only, without relying on experimentally observed or estimated

movement duration. Instead of using a terminal constraint, we thus follow a well-known approach

and mitigate this problem by penalizing the distance between the cursor position x p ∈ R 3 and the
target position p � ∈ R 3 at each time step [11 , 18 , 51 , 63]. This does not only incentivize moving

the cursor towards the target, but implicitly penalizes the movement duration as well, since slow

movements result in higher accumulated distance costs (note the sum in Equation (12)).
Furthermore, humans are known to prefer moving with low effort [25 , 41 , 65]. We implement

this concept by penalizing the aggregated muscle control signal, i.e., the control vector u. As it is
usually done in numerical optimization to improve the performance, we take the squared Euclidean

norm, denoted by ‖ ·‖ , in the following. If required, each element of the control vector can be
scaled individually before taking the norm to replicate different effort at different joints. Since this
approach would introduce additional parameters, we assume that effort is solely dependent on the
normalized muscle activations. In this way, we also reward the use of stronger muscles, since, for
example, the same activation in the shoulder instead of the wrist produces a higher torque with

the same cost.
In addition, we introduce two different cost terms that have previously been used to model opti-

mal human behavior. The first one corresponds to the well-established commanded torque change
[35 , 48 , 71 , 73], which penalizes the derivative of the commanded torques, that is, the torques that
directly result from the applied motor commands. In our case, this corresponds to the derivative 7
of the applied torque τ , which we denote by ˙ τ in the following. 8 The second, less frequently used

cost term corresponds to the joint acceleration, which leads to smooth movements towards the
target [71]. We denote the vector of (angular) joint accelerations by x qacc , which is part of x user ,
see Equation (14).

With these components, we propose three different stage costs:

—DC: Distance and Control Costs.
The distance between cursor and target as well as the aggregated muscle control are pe-
nalized at each time step:

�(x (k), u (k)) = ‖x p (k) − p � ‖ + r 1 ‖ u (k)‖ 2 (15)

—CTC: Commanded Torque Change Cost.
This cost function adds to Equation (15) a third cost term, penalizing the commanded torque
change:

�(x (k), u (k)) = ‖x p (k) − p � ‖ + r 1 ‖ u (k)‖ 2 + r 2 ‖ ̇ τ (k)‖ 2 (16)

—JAC: Joint Acceleration Costs.
This cost function adds to Equation (15) a third cost term, penalizing the squared joint
accelerations:

�(x (k), u (k)) = ‖x p (k) − p � ‖ + r 1 ‖ u (k)‖ 2 + r 2 ‖ x qacc (k)‖ 2 (17)

The cost weights r 1 , r 2 > 0 define the tradeoff between the different cost terms.

7 Due to the discrete-time setting, we take central/one-sided differences using numpy.gradient .
8 We obtain τ and ˙ τ from the activations via Equation (2).

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

32 Simulating Interaction Movements via Model Predictive Control

44:14 M. Klar et al.

3.4.3 Fitting Cost Weights. The choice of those cost weights has a significant impact on the
resulting simulation trajectories (an evaluation of the effect of cost weights can be found in

Section 6.3). To find the most appropriate weights for our cost functions, we need to evaluate
different weight pairs (r 1 , r 2). Since we aim at generating joint movements that are as close to hu-
man movements as possible, we evaluate a cost weight pair by comparing the resulting simulation

sequence of joint angles x qpos to that of a sequence of joint angles ˆ x qpos obtained through a user
study, considering independent joints only. More precisely, we compute the root mean squared

error (RMSE) between simulation and experimental data, i.e.,

RMSE

(
x qpos , ˆ x qpos

)
=

√ √ √

1
M

M−1 ∑

k= 0

���x qpos (k) − ˆ x qpos (k) ���2
, (18)

where M is the number of steps of the experimental data trajectory. To “rate” a weight pair, we
sum the RMSE values for a given number S of simulated trajectories, resulting in the following

loss function used for parameter optimization:

L param

(r 1 , r 2) =
S−1 ∑

s= 0
RMSE

(
x (s)

qpos , ˆ x
(s)
qpos
)
, (19)

where x (s)
qpos denotes the simulation trajectory obtained from the cost weights r 1 and r 2 , and ˆ x (s)

qpos
denotes the corresponding experimental trajectory, given a trial s ∈ { 0 , . . . , S − 1 } . Since each eval-
uation of the RMSE Equation (18) requires solving a single OCP Equation (12) and thus results in

large computation times, we decided to use a state-of-the-art derivative-free optimization algo-
rithm that works with a low number of function evaluations and non-convex problems, and is
easy to parallelize: the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [27].

For evaluation purposes, we additionally compute the RMSE on state components other than

joint angles, e.g., joint velocities or accelerations, as well as cursor positions, velocities, or accel-
erations. The respective metric is defined analogously to Equation (18), with x (s)

qpos and ˆ x (s)
qpos being

replaced by the respective quantity.

3.4.4 Necessary Adjustments for Other Use Cases. The generalized formulation as an OCP is
valid for a wide range of interactions between humans and virtual objects. If the target user group

or the interaction technique is varied, one has to modify the relevant parts of the system dynamics
as described in Sections 3.1 , 3.2 , and 3.3 . If an interaction task different from pointing is consid-
ered, the cost function needs to be adjusted. For example, in the case of throwing in VR, a cost
penalizing the distance of a virtual ball to a target area could replace the distance cost term de-
scribed above. The presented method to obtain user specific cost weights can be used for a variety

of cost functions, but joint trajectories from user trials are necessary. If such data is not avail-
able, one can instead use, for example, cursor trajectories instead of joint trajectories in the loss
function Equation (19).

3.5 Simulating Movements with Model Predictive Control
Since the biomechanical simulation alone has highly nonlinear dynamics, we need to solve a non-
linear OCP. This renders it impossible to use solvers for linear OCPs recently introduced to the
HCI audience such as LQR [18 , Ch. 7] or LQG [18 , Ch. 8]. Solving nonlinear OCPs is generally

quite challenging, and on longer time horizons, they are often computationally intractable [24].
This problem can be tackled with a receding horizon approach, also known as MPC . Due to its
notable properties—easy to implement, handles nonlinear constraints in contrast to the LQR [12],
theorems guaranteeing that MPC produces sensible results [14 , 23 , 55]—MPC has matured into a

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

33

Simulating Interaction Movements via Model Predictive Control 44:15

Fig. 3. High-level view on the closed feedback loop . The MPC Controller generates an optimal control
signal u � (0) which is perturbed by both constant and signal-dependent noise and then send to the User
Model. The User Model updates the biomechanical simulation and yields a new user state x user . Based

on this new user state, the Input Device then updates the device state x dev and sends information to the
Interface Dynamics, yielding the new interface state x if . All state components are then combined in the
overall system state x . The MPC Controller receives this updated state (or parts thereof) from the Output
Device—closing the feedback loop.

standard control method for linear and nonlinear dynamical systems, both from the academic and

application [52 , 70] point of view.
The main idea of MPC is complexity reduction in time. The solution of the OCP Equation(12) is

approximated by iteratively solving sub-problems of Equation (12) on a much shorter time horizon.
The first control of the resulting optimal control sequence is then applied to the system. Iterating

this process results in a closed-loop system, which is able to react to perturbations that may occur
during execution (e.g., due to signal-dependent noise in the motor system [13]), without the need

to handle them explicitly within each optimization step [22]. The resulting closed feedback loop in

our framework is depicted in Figure 3 .
More formally, MPC computes a feedback law μ : X → U , which maps arbitrary states x ∈ X to

optimal controls u ∈ U , via the following MPC algorithm:

(0) Given the initial state x (0) ∈ X , choose the horizon length parameter N ≥ 2 and set n : = 0 .
(1) Initialize the state x 0 = x (n) and solve the following open-loop

9 OCP (we use the
scipy.optimize.minimize from the Python scipy module, 10 which implements the
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm [34 , 75]):

min

u (·)∈ U N

J N

(x 0 , u (·)) = min

u (·)∈ U N

N−1 ∑

k= 0
�(x (k), u (k))

such that x (k + 1) = f (x (k), u (k)) for all k ∈ { 0 , . . . , N − 1 } ,
x (0) = x 0 ,

x (k) ∈ X for all k ∈ { 0 , . . . , N } .

(20)

Use the first value of the resulting optimal control sequence denoted by u

� (·) ∈ U

N for
the feedback law, i.e., set μ (x (n)) : = u

� (0).
(2) Update the state via

x (n + 1) = f (x (n), μ (x (n))), (21)
set n : = n + 1 and go to step 1 .

We specifically differentiate between k and n to distinguish open-loop dynamics (k) from closed-
loop ones (n). Design parameters include, among others, the sampling times of the state and of

9 We call the OCP Equation (20) open-loop to emphasize that the solution of Equation (20) is not of feedback nature, i.e.,
cannot react to disturbances. This ability comes from the full MPC algorithm.
10 https://docs.scipy.org/doc/ .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

34 Simulating Interaction Movements via Model Predictive Control

44:16 M. Klar et al.

the control. These parameters are hidden in the definition of f , which corresponds to the system

dynamics (including the MuJoCo simulation in our case), and determine the resolution with which

the physics are simulated, and how frequently users are assumed to be able to change their control,
respectively. In order to achieve high physical accuracy, we set the sampling time of the state to

2 ms. To reflect the fact that humans are not able to adjust their behavior continuously, but only

intermittently [21], we set the sampling time of the control at 40 ms (i.e., the piecewise constant
control signal can be adjusted every 40 ms).

An additional design parameter introduced by the MPC algorithm is the horizon length N .
Deciding on the horizon means facing a tradeoff. A longer horizon increases computation time,
whereas a shorter horizon may lead to poor results. For example, if N is chosen too small, the cursor
cannot be moved towards the target far enough to effectively reduce the total costs in the truncated

horizon, i.e., the optimal control sequence u

� that minimizes the finite-horizon cost functional J N

does not result in the expected behavior. A more detailed analysis of the effect of N on the result-
ing closed-loop trajectories is presented in Section 6.4 . Unless stated otherwise, we set N = 8 (i.e.,
320 ms), as this value showed a good balance between performance and quality of simulation.

The L-BFGS-B algorithm was chosen as a solver for Equation (20) due to its computation and

memory efficiency and ability to include control constraints easily. The parameters of the L-BFGS-
B algorithm, which is used to solve the finite-horizon OCPs at each MPC step, are chosen as fol-
lows: objective function tolerance ftol = 10 −6 , gradient tolerance gtol = 10 −5 , step size for the
numerical approximation of the Jacobian eps = 10 −8 , the maximum number of objective function

evaluations maxfun = 10 , 000 , and maximum number of iterations maxiter = 1 , 000 .
Previous findings suggest that human motor control signals are affected by different noise

sources, e.g., sensory and motor noise [13 , 28 , 57 , 60 , 63 , 68]. In order to create realistic human

movements that also exhibit intraindividual variance similar to real users, perturbations can be
included in the state-transition-map f . Note that, as the MPC is a closed-loop controller, we do

not necessarily need to include the noise during optimization, i.e., the optimizer assumes that the
system is deterministic. Instead, we include noise to the applied control μ (x (n)) in step 1 of the
MPC algorithm, i.e., before applying the second-order muscle model and proceeding with the next
step. Applying the noise in the closed loop only considerably simplifies the OCPs and allows them

to be solved efficiently. As suggested by van Beers et al. [68], we add signal-dependent and con-
stant motor noise, i.e., two Gaussians with zero mean and a standard deviation of 0 . 103 · μ (x (n))
and 0.185, respectively, to the control μ (x (n)).

4 CFAT: A METHOD TO COMPUTE MAXIMUM VOLUNTARY TORQUES FOR

JOINT-ACTUATED MODELS

Omitting real muscles in biomechanical models and replacing them with simplified muscles acting

directly at the joints greatly simplifies computations, but it also creates another challenge. It is
unclear how strong these simplified muscles need to be. Since the relative strength of each actuator
has a large impact on how it needs to be actuated [32 , 74], an appropriate choice of the maximum

voluntary torques is crucial to generate biomechanically plausible movements. We, therefore, need

to define the torque ranges of all actuators, i.e., the maximal positive and negative torques that can

be applied at each DOF.
The natural approach to identify the torques humans apply during interaction would be to use

existing Inverse Dynamics tools, as implemented in OpenSim. However, such tools obtain the
complete inter-segmental torques acting on both independent and dependent joints, including

passive forces, e.g., due to spring-dampers. In addition, the dependent joints cannot be actively

actuated, but their torques emerge implicitly from the torques applied to the independent joints,
i.e., the results from Inverse Dynamics cannot be used to determine the maximum voluntary

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

35

Simulating Interaction Movements via Model Predictive Control 44:17

torques at the independent joints. 11 Instead of relying on Inverse Dynamics, we thus apply a
method similar to Computed Muscle Control (CMC) [62], which yields the sequence of muscle
excitations that accounts for experimentally observed movements, given a fully muscle-actuated

biomechanical model.
Starting with an initial posture from experimental data, the goal of our method to compute

feasible applied torques (CFAT) is to find the sequence of applied torques that best explains the
sequence of joint postures observed during an experiment. Due to the curse of dimensionality, we
solve a sequence of optimization problems, one for each time step, as opposed to an optimization

problem covering the entire motion, minimizing the following loss function:
L CFAT (τ) = αe qpos (τ) + βe qvel (τ) + γe qacc (τ). (22)

Here, the error terms e qpos (τ), e qvel (τ), and e qacc (τ) denote the Euclidean distance between the one-
step MuJoCo forward simulation with applied torques τ and the corresponding user data at this
time step, in terms of joint angles, velocities, and accelerations, respectively (only incorporating the
independent joints). According to our experience, penalizing an appropriate combination of joint
angles, velocities, and accelerations turned out to be necessary to guarantee stability—choosing the
weights α = 1 , 000 , β = 50 , and γ = 0 . 01 showed good results in our case. After each optimization,
one forward step is taken in the MuJoCo environment using the computed optimal torque. The
resulting joint angles and velocities in the next time step are then used as initial values for the
subsequent optimization, which returns the next optimal torques, and so on. Using this CFAT

tool, we thus obtain a sequence of applied torques that result in the original user trajectory when

sequentially applied at the DOFs of the biomechanical model. Additionally, for each trial, CFAT

yields the initial activations σ0 and their derivatives ˙ σ0 used in our muscle model described in

Section 3.1.2 .
We clean the obtained torques from outliers by removing those that deviate more than three

standard deviations from the respective mean. The vectors of maximum positive and negative
torques, τ+ and τ−, are then determined as the component-wise maximum and minimum of the
computed torques τ of all considered movements.

For technical reasons, the maximum and minimum torques are normalized such that the larger
of both equals one for each DOF, and the resulting values are used as boundaries for the control
u. 12 The positive scaling ratio vector д = max (��τ−�� , ��τ+��), with maximum taken component-wise,
is then used as a gain vector, mapping the normalized activations x σ to the applied torques τ as
in Equation (2).

It should be noted that the CFAT tool requires reference user data to measure how “human-
like” a simulated joint trajectory is. In this work, we used the data from our user study, which

was explicitly recorded for the considered interaction task. However, the obtained torque ranges
should be appropriate for related interaction techniques and tasks as well, as was recently shown

for the case of mid-air keyboard typing [29]. If major changes to the user model are made, such as
modifying the physiology, running CFAT on new reference data is recommended.

5 USE CASE: ISO POINTING IN VR

As a use case, we demonstrate the applicability of our simulation framework to mid-air pointing

in VR. In Section 5.1 , we describe the considered task and techniques. In Sections 5.2 and 5.3 ,

11 A comparison of applied torques obtained from Inverse Dynamics and CFAT can be found in the Appendix B.2 .
12 Note that, because we use the muscle model described in Section 3.1.2 , the applied controls u might differ from the
activation x σ . However, given that Δt <

√
t e t a holds for the second-order muscle dynamics Equation (3), the activation

x σ cannot exceed the applied controls u in absolute terms. It is thus reasonable to impose the normalized torque boundaries
on u instead of x σ .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

36 Simulating Interaction Movements via Model Predictive Control

44:18 M. Klar et al.

Table 1. Interaction Techniques Used in the User Study and Simulations

Technique Input Origin (relative to shoulder) Input Normal Vector
Virtual Cursor Identity (−0 . 1 m , 0 . 0 m , 0 . 55 m) –
Virtual Cursor Ergonomic (−0 . 1 m , −0 . 4 m , 0 . 45 m) –
Virtual Pad Identity (−0 . 1 m , 0 . 0 m , 0 . 55 m) (0 , 0 , −1)
Virtual Pad Ergonomic (−0 . 1 m , −0 . 3 m , 0 . 55 m) (0 , 0 , −1)

All parameters are given in coordinates with respect to the right shoulder. The output origin is fixed at
(−0 . 1 m , 0 . 0 m , 0 . 55 m) , and the output normal vector is given as n O = (0 , 0 , −1).

we proceed with a description of the user study that we conducted to collect data for the user
model generation and the evaluation of our simulation. Finally, in Section 5.4 , we explain how our
approach can be used to replicate individual trials of the user study.

5.1 Target User Group, Interaction Techniques, and Interaction Task

Our target user group includes healthy adults of average size and body shape. Therefore, we do not
need to make special adjustments to the biomechanical user model. Nonetheless, since we did not
have user models beforehand and aim at comparing our simulation trajectories to those obtained

from our user study, we derived user models that matched the biomechanical properties of the
participants in the user study, as described in Section 5.3 . Technically, our target user group thus
corresponds to those six participants (see Section 5.2.1).

We are interested in how well our model can synthesize human movement given different inter-
action techniques . As input device, we use a motion capturing system, which tracks the position of
an LED marker that is placed on the tip of the right index finger, modeled in MuJoCo as described in

Section 3.2 . Using the notation introduced in Section 3.3 , we investigate transfer functions without
any additional virtual dynamics.

For each of the two interaction technique classes Virtual Cursor (10) and Virtual Pad (11), we
define a basic variant in which the input space is at the same position as the output space, i.e.,
ω I = ω O

. For the virtual cursor, this means that the cursor always matches the position of the
fingertip (i.e., the transfer function is the identity function), and for the virtual pad, the cursor is
the orthogonal projection of the fingertip onto the input/output plane. Therefore, we refer to these
techniques as Virtual Cursor Identity/ID and Virtual Pad Identity/ID , respectively. For both classes,
we also consider an “ergonomic” condition, where the input space is at a lower, more comfortable
height, 13 denoted as Virtual Cursor Ergonomic and Virtual Pad Ergonomic in the following. The
input and output normal vectors n I and n O

, respectively, are selected in such a way that the planes
face the user and coincide for both interaction techniques. Hence, for the Virtual Pad ID technique,
the fingertip is orthogonally projected onto a “virtual display” that is 55 cm in front of the user and

on which the targets are also displayed. The Virtual Pad Ergonomic technique adds an additional
30 cm shift upward after the projection. Details on the input and output spaces of all considered

techniques are given in Table 1 .
Our interaction task is mid-air pointing in VR. Following the ISO 9241-9 standard, 13 targets with

a diameter of 5 cm were placed on a circle of 30 cm diameter, resulting in an index of difficulty

of 2.8 bits (cf. Figure 4). The center of the circle is placed 55 cm in front and 10 cm to the right
of the right shoulder. We chose this placement, since most interactions with the right hand take
place on the right side of the body. In each trial, the task is to move the virtual cursor as quickly

13 In a small preliminary study, we tried different input options for both techniques, and the variants we consider here
proved suitable to reach all targets comfortably.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

37

Simulating Interaction Movements via Model Predictive Control 44:19

Fig. 4. The 13 targets of the ISO 9241-9 standard pointing task, which are displayed separately in ascending
order. The task is to move the cursor towards the active target and keep it inside until the next target is
shown.

Fig. 5. (a) Image showing the user study. Motion is captured by tracking the movements of the LEDs. (b)
The VR scene, which is perceived via a HMD, shows the target spheres (active: yellow; inactive: gray). (c) The
MuJoCo simulation of the Virtual Cursor Ergonomic technique. The xyz-axes are colored in red, green, and

blue, respectively. Important objects are displayed as follows. Green sphere: The virtual marker placed at the
(physical) end-effector, i.e., the tip of the right index finger. Purple sphere: The virtual cursor (after applying
the considered transfer function). Yellow sphere: active target. Gray spheres: inactive targets. The shadows
show the orthogonal projections of the model for each dimension.

and accurately as possible toward the active target, which is represented as a yellow sphere with

a diameter of 5 cm (cf. Figure 5 (b)), and then hold within the target. As soon as the cursor reaches
the target (with a velocity lower than 0.5 m/s to avoid early termination in case of overshoot), the
next target according to the ISO 9241-9 standard is displayed after 500 ms.

5.2 User Study

We ran a user study for several reasons. First, the obtained experimental data can be used to create
user-specific variants of the default biomechanical model introduced in Section 3.1 . For example,

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

38 Simulating Interaction Movements via Model Predictive Control

44:20 M. Klar et al.

in Section 4 , we introduce CFAT as a tool to identify the maximum voluntary torques at each

DOF, given experimentally observed user trajectories. Second, having user data allows to evaluate
the quality and realism of simulated movements against observed human motion. In particular,
it can be used as reference data to compare simulations for different cost functions and weights,
which allows to identify the cost function parameters that best replicate observed behavior (see
Section 3.4.3).

We, therefore, asked participants to perform the task described above, using the presented in-
teraction techniques.

5.2.1 Participants. We recruited six participants (Mean Age = 28.8, SD = 6.6, 4 Male, all right-
handed) from our local university campus for the study. Half of the participants had previous ex-
perience of interaction in VR, and no participants suffered from perceptual or neuromotor impair-
ments. In the following, we refer to the different users as U1, ..., U6. All four interaction techniques
are varied within subjects.

5.2.2 Apparatus and Procedure. We used a Phasespace X2E

14 motion capture system with a full-
body suit to track the participants’ movements at 240 Hz. The movements of the upper extremity

and torso were continuously tracked by 14 optical markers placed at anatomical landmarks. Partic-
ipants were immersed in Virtual Reality using a HTC Vive Pro VR headset. 15 The setup is shown

in Figure 5 (a). The VR scene and experimental setup were implemented in Unity3D

16 using the
SteamVR plugin

17 (cf. Figure 5 (b)). We aligned the coordinate systems of Phasespace and Unity

as follows. We placed a Phasespace marker at the origin of a HTC Vive Pro VR controller. We
then performed wanding of the interaction space using this controller, creating a set of 3D point
pairs in both coordinate systems. We calculated a rigid transform between both coordinate systems
using translation between the centroids to compute the translation component of the transforma-
tion, and the singular value decomposition to compute the rotation between the Phasespace and

SteamVR coordinates [59].
Participants interacted with the VR scene using an end-effector marker placed at the tip of

their right index finger. The movements are tracked in the Phasespace coordinate system. The
cursor and target positions were only converted to the VR coordinate system right before the
visualization. During the experiment, we logged the motion capture data and the experimental
meta-data, as well as the timestamps at which the targets were hit.

Participants were informed about the ISO pointing task described in Section 5.1 . Since we were
interested in arm-only movements, participants were also instructed to only move their arm, while
keeping the rest of the body as still as possible. This is important because the torso in our biome-
chanical model cannot move. Substantial torso movements would therefore distort the comparison

between user and simulation. Nonetheless, we observed some slight torso movement in our mo-
tion capture data. For future user studies, it might therefore be helpful to use some kind of brace
to keep the participant’s torso stable during the task.

Since the main objective of the user study was to collect movement data for different interaction

techniques, we only tested a single index of difficulty to limit the impact of fatigue. After recording

a T-pose for model scaling, participants put on the HMD and performed several movements for
each interaction technique. During a warm-up phase, each interaction technique was trained for
at least 30 movements. Afterward, all participants performed the complete ISO task consisting of

14 https://w w w.phasespace.com/x2e- motion- capture/ .
15 https://w w w.vive.com/de/product/vive-pro/ .
16 https://unity.com .
17 https://valvesoftware.github.io/steamvr _ unity _ plugin/ .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

39

Simulating Interaction Movements via Model Predictive Control 44:21

13 subsequently shown targets 5 times per interaction technique, resulting in 65 movements per
interaction technique and user, or 1,560 movements in total. In order to reduce fatigue, participants
were asked to take a break of one minute between interaction techniques.

5.2.3 Processing Data and Inverse Kinematics. The raw motion capture data is preprocessed

according to the common conventions for biomechanical analyses [3]. The marker data is first
cleaned from artifacts caused by marker occlusions and reflections based on the condition values
delivered by the motion capture system, and then by filtering out outliers (i.e., segments with a
difference of more than four standard deviations from the mean). The resulting gaps in the data
are linearly interpolated, while keeping track of the gaps. Afterward, the data is smoothed using

a Kalman filter [72], and divided into individual aimed movements using the target switch times
from the experiment.

We then run the OpenSim Inverse Kinematics (IK) tool for each movement of any considered

participant and interaction technique individually. This tool computes the joint angles for each

frame of motion capture data through solving an optimization problem. To this end, it applies
the kinematic constraints and freely modifies the independent joint coordinates of the model to

minimize the IK loss function, which is the weighted sum of squared distances between all virtual
and the corresponding experimental markers. We use a larger weight for the end-effector marker
than for the other markers, as it is critical to the considered pointing task to track the end-effector
as accurately as possible.

In the experimental data, the time spans between target switch and movement onset differ sub-
stantially between trials. Since we are not interested in modeling reaction times, we decided to

remove these frames from user data. To this end, we determine movement onset as the time at
which the acceleration of the cursor reaches 1 m / s 2 for the first time. We also removed trials that
started too early (i.e., the cursor left the previous target before the new target appeared), and

movements of exceptional length (i.e., the movement duration deviated more than three standard

deviations from the average duration for the considered participant and interaction technique)
from the dataset. In total, 158 out of 1560 recorded trials were removed, which is equivalent to

10 . 1% . 18

Note that we have different time scales in simulation (2 ms) and data (1 / 240 s ≈ 4 . 17 ms). To

be able to compare user and simulation trajectories on a moment-by-moment basis, we therefore
align the two time series by applying linear interpolation on the user data.

5.3 Customized Models
In the following, we explain how the generic user model described in Section 3.1 is adjusted, both

in terms of its biomechanical properties and in terms of the cost weights, which determine the
tradeoff between the constituents of the cost functions introduced in Section 3.4.2 .

First, we scale the models to match the kinematic and inertial properties of each participant of
our user study using the OpenSim scaling tool. This tool computes ratios between pairs of markers
recorded for a static posture in the experiment and the corresponding virtual markers attached to

the model, only using the markers attached at the anatomical landmarks. These ratios are then

used to scale the respective body segments. We ensure good quality of model scaling and marker
adjustment by visually inspecting the resulting models with respect to experimental data. The
scaling is then transferred from the OpenSim model to the MuJoCo model.

In addition, we adjust the joint limits to include all joint angles corresponding to the move-
ment data of the respective participant. This is necessary because joint ranges are enforced in

18 114 of these trials are due to participants 2 and 5 occasionally starting their movements before the target switch.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

40 Simulating Interaction Movements via Model Predictive Control

44:22 M. Klar et al.

Table 2. Joint Torque Ranges Obtained through CFAT

Joint Torque Ranges (Nm)
U1 U2 U3 U4 U5 U6

τ − τ + τ − τ + τ − τ + τ − τ + τ − τ + τ − τ +

EA −12 .74 16 .12 −22 .08 26 .12 −14 .92 19 .20 −14 .33 18 .38 −10 .99 15 .16 −21 .64 26 .73
SE −8 .61 20 .43 −6 .91 18 .36 −9 .19 20 .92 −7 .07 15 .49 −4 .66 17 .08 −10 .05 17 .82
SR −3 .35 0.70 −4 .28 1.00 −3 .88 0.71 −4 .03 0.98 −3 .54 1.37 −5 .11 2.41
EF 0.25 5 .08 −0 .17 5 .36 0.21 5 .88 0.48 5 .54 0.42 4 .81 −0 .92 6 .42
PS −1 .82 1.71 −1 .36 1.15 −3 .06 2.73 −0 .81 0.58 −4 .01 3.68 −1 .42 1.14

WD −2 .11 2.00 −1 .60 1.35 −1 .98 1.72 −0 .95 0.57 −1 .87 1.64 −1 .36 1.07
WF −1 .86 0.78 −1 .52 0.72 −1 .76 0.71 −1 .24 0.41 −1 .77 1.02 −1 .36 0.43

The unsigned bold values are used as respective scaling ratios д. (EA: Shoulder elevation angle; SE: Shoulder elevation;
SR: Shoulder rotation; EF: Elbow flexion; PS: Pronation/Supination; WD: Wrist deviation; WF: Wrist flexion).

MuJoCo only via “soft” constraints, that is, high opponent forces are applied to postures outside
the permissible region, which would reduce the reliability of the CFAT tool described in Section 4 .
However, it is important to note that the joint angles obtained from IK (see Section 5.2.3) are in-
herently dependent on the joint boundaries from the original OpenSim model (which can be found

in Appendix B.1). This makes large deviations very unlikely. 19

After scaling, we obtain the maximum voluntary torques for each user by running CFAT for all
available movements. An overview of the computed maximum and minimum torques are given in

Table 2 . We use the initial activations σ0 and their derivatives ˙ σ0 also obtained by CFAT as valid

initial values for the muscle dynamics used in our simulations as described in Section 3.1.2 .
To obtain reasonable cost weights, we perform parameter fitting as described in Section 3.4.3 for

each user and interaction technique. That is, we identify cost weights, i.e., user strategies, that best
explain observed user behavior, both in terms of general behavior and intraindividual variance.
This is in contrast to previous approaches, where parameters were fitted to replicate a single user
trajectory [18 , 47]. To ensure computational efficiency, we create simulation trajectories for five
different movement directions from the ISO task, and compute the RMSE in terms of joint angles
(cf. Equation (18)) between each simulation trajectory and the respective reference user trajectory.
The loss function used for the cost weight fitting is thus given by Equation (19) with S = 5 . As
described in Section 3.4.3 , we use CMA-ES as a derivative-free solver. We omit motor noise during

the parameter fitting, since the resulting stochastic outcome for a given set of parameters would

considerably complicate the parameter search.
In cases where the optimization did not converge, we ran CMA-ES for 24 hours for each setup

and took the parameter set with the lowest RMSE. The resulting cost weights for each user and

interaction technique are listed in Table B.2 in the Appendix.

5.4 Simulation

Our method cannot only be used to replicate existing movements, but also to predict movements
in arbitrary conditions (i.e., for different interaction techniques, tasks, and user models). To

evaluate the performance of our approach, however, we need to simulate movements with the
same “prerequisites” as the users in the study we are comparing to. This includes the kinematic

19 Indeed, all user-specific joint limits were within a range of ±5 degrees around the default model values.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

41

Simulating Interaction Movements via Model Predictive Control 44:23

and inertial properties of the body as well as its initial joint configuration, which should coincide
between simulation and user study.

Each aimed movement that was carried out in the user study is simulated separately. That is, for
a given reference user trajectory (also referred to as Baseline U1/.../U6), we generate a corresponding

simulation trajectory using the corresponding user model as described in Section 5.3 and the same
interaction technique that was used in the study, i.e., we used the user-specifically scaled MuJoCo

model and relevant cost weights. The simulation is shown in Figure 5 (c), where our model performs
a task with the Virtual Cursor Ergonomic interaction technique.

To ensure a fair comparison, we then set the torso position and orientation to that of the par-
ticipant at movement onset. As mentioned above, the torso is fixed during simulation. Next, we
set the initial state (including joint angles and velocities, aggregated muscle activations and their
derivatives, and the virtual state of the interface, i.e., the cursor position), to the initial values of
the reference user trajectory. We then synthesize the aimed movement using our MPC method.
We want to emphasize that the optimization problem does not explicitly depend on the duration

of the corresponding user movement. Instead, the receding time horizon approach allows to sim-
ulate arbitrarily long movements. Since comparing the resulting trajectories to that of the user
study requires them to have equal length, we need to adjust the simulation trajectory to match the
movement time of the participant in the particular trial. Therefore, the simulation stops when the
movement time of the respective trial is reached.

This simulation is performed for all trials that passed the preprocessing, resulting in a total of
1,402 simulation trajectories.

6 RESULTS

In the following, we compare the ISO task trajectories resulting from our simulation to those
observed during the user study described in Section 5.2 . We recall from Section 5.3 that five trials
from the dataset were used to fit the cost weights of the considered user and condition. In all
evaluations, we exclude these five trials.

In Section 6.1 , we first compare the three proposed cost functions regarding their ability to

replicate and predict human movement trajectories. Using the Joint Acceleration Costs (JAC) ,
which turn out to be most suitable for simulating human pointing movements, we show in Sec-
tion 6.2 that our simulation predicts user trajectories with an accuracy that is comparable to or
even better than between-user comparisons, while making use of biomechanically plausible joint
postures. In Section 6.3 , we show that the predicted trajectories continuously depend on the choice
of the cost weights r 1 and r 2 , aiding the parameter optimization and paving the road to simulating

new user strategies, “tailored” to some desired movement characteristics such as speed. Finally, in

Section 6.4 , we discuss the effect of the MPC horizon N and provide some general thumb rule on

how to choose this hyperparameter.
For qualitative evaluation, we mainly focus on the following six quantities: cursor position and

velocity time series, which are orthogonally projected onto the direct path between the initial and

target position, as well as joint angles and velocities for both shoulder rotation and elbow flexion,
as these are two of the most impactful joints for the considered mid-air movements. The angle and

velocity plots of the five remaining joints are shown in Appendix B .

6.1 Comparison of Cost Functions: Joint Acceleration Costs Best Predict Human

Motion

As described in Section 3.4.2 , we use the following stage costs to simulate human movement in

the ISO pointing task:

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

42 Simulating Interaction Movements via Model Predictive Control

44:24 M. Klar et al.

Fig. 6. Projected cursor and joint trajectories for one trial of U4 for the Virtual Pad Identity technique. The
Joint Acceleration Costs (JAC; orange dashdotted lines) qualitatively explain observed user behavior best.

—DC: Distance and Control Costs (15),
—CTC: Distance, Control, and Commanded Torque Change Cost (16),
—JAC: Distance, Control, and Joint Acceleration Costs (17).

For each cost function, participant, and interaction technique, the respective cost weights r 1
(weight for control costs) and r 2 (weight for commanded torque change or JAC) are optimized to

match joint angles between simulation and user data, as described in Section 5.3 . The resulting

parameter values are shown in Table B.2 in the Appendix. We evaluate the accuracy of our simu-
lations in terms of predicted cursor and joint trajectories, both qualitatively and quantitatively.

There are clear qualitative differences between the three cost functions, as shown in Figure 6
for an example user study trial (black dashed lines; U4, Virtual Pad Identity, first movement from

targets 7 to 8).
DC (blue solid lines) exhibits the highest velocities both in joint and cursor space, resulting in

movements that are slightly faster than humans. The peak velocity tends to be too large, and for
some trials, corrective submovements are required toward the end of the movement.

With CTC (green dashed lines), there is a considerable undershoot of the aimed target, with the
cursor often not reaching the target at all within simulation time. As can be seen in the bottom

left and right plots of Figure 6 , penalization of commanded torque change seems to impose too

restrictive constraints on the underlying joint dynamics, resulting in velocity time series of both

elbow flexion and cursor that differ considerably from the typical bell-shaped velocity profiles
observed in the user data.

In contrast, the simulation trajectories obtained from JAC (orange dash-dotted lines) match the
human trajectories better: there are only slight differences between simulation and study in the
projected cursor position and velocity profiles; it outperforms the other variants in terms of elbow

flexion, and outperforms DC in shoulder rotation. Similar results can be obtained for the elevation

angle, while pronation/supination as well as wrist deviation and flexion are predicted well by any

of the considered cost functions (see Figure B.2 in the Appendix).
For quantitative comparison, boxplots containing the RMSEs of all ISO pointing movements for

each considered cost function are shown in Figure 7 , considering both cursor (top row) and joint

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

43

Simulating Interaction Movements via Model Predictive Control 44:25

Fig. 7. Comparison of the different cost functions. The boxplots show the RMSE of all trials.

Table 3. Z -scores and p-values of the Comparisons between the Three Considered Cost Functions, Using
Wilcoxon Signed Rank Tests with Bonferroni Corrections

Cursor Z -scores Joint Z -scores
position velocity acceleration angle velocity acceleration

JAC vs. DC (p < 0 .0001) −22 .6 −24 .5 −24 .9 −23 .8 −26 .1 −27 .7
JAC vs. CTC (p < 0 .0001) −19 .8 −21 .7 −20 .6 −21 .4 −25 .0 −25 .4

CTC vs. DC −10 .8 −8 .5 −8 .4 −6 .1 −1 .4 −3 .7
p < 0 .0001 p < 0 .0001 p < 0 .0001 p < 0 .0001 p = 0 .17 0 .0001 < p < 0 .001

space (bottom row). A breakdown of the cursor position and joint angle boxplots by individual
users can be found in Figure B.3 in the Appendix. Kolmogorov–Smirnov tests showed that for
each of the three cost functions, none of the considered RMSE distributions fits the assumption of
normality (all values p < 0 . 0001). Thus, we carried out the non-parametric Wilcoxon Signed Rank

tests with Bonferroni corrections.
For the following statements, details on the results of the statistical tests are provided in Table 3 .

The simulation trajectories generated with JAC Equation (17) replicate the respective user study

trajectories significantly better than those generated with DC. The JAC trajectories also signifi-
cantly outperform the CTC trajectories in terms of RMSE. Comparing CTC to DC, some RMSE

quantities yield significant differences in favor of CTC, while for others, the cost function has no

or only a small significant effect.
We thus conclude that, although both CTC Equation (16) and JAC Equation (17) open the door

to a better fit through an additional weight parameter r 2 , by far the best results in terms of repli-
cating observed human trajectories is obtained by JAC Equation (17), which we focus on in the
following.

6.2 Simulation vs. Users: MPC is Able to Simulate User Movement in Mid-Air Pointing

We compare the movements generated by our simulation with JAC to those from the user study

in terms of both projected cursor trajectories and joint postures. In particular, we show that

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

44 Simulating Interaction Movements via Model Predictive Control

44:26 M. Klar et al.

Fig. 8. a. The joint angle ranges predicted by our simulation for different movements in the ISO task (or-
ange solid lines) match those observed in our user study (black dashed lines) fairly well. The mean of all
movements of a single participant/user model (U2) is shown together with the entire value ranges. b. In the
ISO task, the Virtual Cursor Identity technique (black dashed lines in left plot) requires considerably higher
shoulder elevation angles than the Virtual Cursor Ergonomic technique (black dashed lines in right plot).
This characteristic difference is captured well by our simulation (orange solid lines).

(1) our simulated movements exhibit biomechanically plausible joint movements,
(2) the produced cursor and joint trajectories predict human movements within between-user

variability, and

(3) the method can predict motion of individual users.

(1) Our simulated movements exhibit biomechanically plausible joint movements. Figure 8 shows
the shoulder rotation, shoulder elevation, and elbow flexion angles for one example user along

with the corresponding simulation data. The user’s mean angles over time (black dashed lines) are
captured well by our simulation (orange solid lines) for each joint. In addition, the range of joint
angles applied during any of the considered movements (black area) exhibits the same structure
as in our simulation (orange area). It should be noted that these ranges only make up a relatively

small portion of the admissible model joint ranges (see Table B.1). The plots for the remaining four
joints are shown in Figure B.4 in the Appendix. In addition, Figure B.5 in the Appendix depicts
an example simulation and user trajectories for three different movement directions showing that
direction-dependent differences in the joint kinematics are also captured by our model.

There are also characteristic differences in the joint ranges when simulating different interac-
tion techniques. Due to its shifted input space, the Virtual Cursor Ergonomic technique allows

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

45

Simulating Interaction Movements via Model Predictive Control 44:27

Fig. 9. RMSE between our simulation and U1 (orange whiskers), as well as between the remaining partici-
pants U2–U6 and U1 (blue whiskers), for cursor positions, velocities, and accelerations, as well as (aggregated)
joint angles, velocities, and accelerations. Each whisker includes RMSE values for all interaction techniques
and trials.

the participant to perform movements to arbitrary directions using considerably lower shoulder
elevation angles than needed for the Virtual Cursor Identity technique, as can be inferred from the
bottom plots in Figure 8 (black dashed lines, black areas). These technique-dependent movement
characteristics are captured by our simulation, which predicts comparable joint ranges for both

techniques (orange solid lines, orange areas).
In summary, our proposed MPC simulation is capable of generating motions that are plausible

from a biomechanical perspective.

(2) The produced cursor and joint trajectories predict human movements within between-user vari-
ability. We argue that the movements JAC generates are within between-user variability. To this
end, we first predict the movements of U1 with JAC, for all trials and interaction techniques, and

compare the similarity in terms of RMSE with how well the trajectories from the remaining partici-
pants U2–U6 match those of U1. The results are displayed in Figure 9 . Comparing the orange “JAC”
whisker to the blue U2–U6 whiskers, Figure 9 shows that the movement trajectories generated by

JAC are well within the RMSE ranges of other users, i.e., within the between-user variability. What
stands out are the low RMSE values of JAC in the joint angles. It should be noted that this compar-
ison is slightly biased because our simulation is necessarily initialized with the same joint angles
as U1, while the other users might have started in slightly different postures. We extend this pro-
cedure, i.e., to infer the movements of one participant from JAC and from the respective remaining

participants, to all participants, and combine the participants’ RMSE values in the blue “User vs.
User” whiskers in Figure 10 . The plots in Figure 10 show that the results for the special case of
inferring U1’s movement can be extended to all participants.

We, therefore, conclude that our simulation predicts the movements of a given user not worse
than other users on average, i.e., our simulation trajectories are within the between-user variability

our dataset exhibits.

(3) We can predict movement of individual users. Besides these quantitative comparisons, we
analyze how well we can predict the movement characteristics of individual users. In Figure 11 ,
both the simulation (orange solid lines) and the corresponding reference user trajectories (black

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

46 Simulating Interaction Movements via Model Predictive Control

44:28 M. Klar et al.

Fig. 10. RMSE comparisons, where all user study trials of a single participant (e.g., U1) are compared to
either movements predicted by our simulation (Simulation vs. User , orange whiskers) or by the remaining five
participants (e.g., U2–U6) (User vs. User ; blue whiskers). In contrast to Figure 9, the trials of all six participants
are once used as baseline.

Fig. 11. Given an interaction technique (here: Virtual Pad Ergonomic) and a movement direction (here: move-
ments from targets 1 to 2), the characteristic cursor and joint trajectories of an individual user (here: U4,
black dashed lines; trajectories of the remaining users are shown as blue dotted lines for comparison) can be
predicted by our simulation (orange solid lines).

dashed lines; for details, see Section 5.4) are shown for an example trial from the user study (U4,
Virtual Pad Ergonomic, third movement from targets 1 to 2). We also show the respective trajecto-
ries of the remaining users for this trial (blue dotted lines). Figure 11 (left column) shows that we
can match the characteristic projected position and velocity time series of a specific user. More-
over, the target is reached within a single ballistic movement, and the velocity time series exhibit

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

47

Simulating Interaction Movements via Model Predictive Control 44:29

Fig. 12. Trajectories of the simulation for different cost weights r 1 . It is clearly visible that an increase of
r 1 results in slower, delayed movements toward the targets. Joint patterns are also (slightly) affected by the
choice of r 1 .

the bell-shaped velocity profile typically observed in aimed movements [45]. Figure 11 (middle
and right columns) illustrates how the simulation is able to distinguish the baseline user from

the remaining participants in terms of shoulder rotation and elbow flexion angles and velocities.
Similar results can be observed for the remaining joints and interaction techniques, as shown in

Appendix B.4 .
In summary, these findings show that our simulation generates biomechanically plausible joint

postures, it is capable of predicting human trajectories that are within the between-user variability

of the respective interaction technique, and it allows to replicate characteristic movement patterns
of individual users.

6.3 Effects of the Cost Weights
To be able to replicate characteristic movement patterns of individual users, we need to deter-
mine the cost weights r 1 and r 2 in JAC (cf. Equation (17)). To understand how much the sim-
ulation results depend on these weights, we show in this section how the trajectories change
when we alter the weights, and argue that these insights can be used to generate new user
strategies .

The most important insight is that the movement trajectories exhibit a continuous dependence
on r 1 and r 2 , i.e., if r 1 and/or r 2 change only slightly, the movement trajectories (of cursor and

joints) also change only slightly. With this, we provide indicators how the cost weights should be
changed in order to generate, e.g., slower movements. To this end, we start by analyzing the effects
of r 1 and r 2 on the movement trajectories.

To avoid distorting the effects, we omit the motor noise from all simulations in this section.
In Figure 12 , projected cursor and joint trajectories are shown for 10 different values of the

control cost weight r 1 , with constant joint acceleration cost weight r 2 = 0 . 00012 (U4, Virtual Cursor
Ergonomic, first movement between targets 4 and 5). There is a clear decrease in peak velocity,
as r 1 increases, resulting in considerably slower movements with target reached later. Moreover,
the projected cursor velocity profile becomes more right-skewed, which can be explained by the

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

48 Simulating Interaction Movements via Model Predictive Control

44:30 M. Klar et al.

Fig. 13. Trajectories of the simulation for different cost weights r 2 . The clear cursor and joint profiles that
can be observed for r 2 = 0 (black lines) become more and more smooth as r 2 increases, resulting in a similar
effect as observed for r 1 .

increased incentive to apply lower torques per time step (note that the penalization of squared

control signals incentives the use of multiple small control signals instead of one large control
signal). This suppressive effect of increased control costs can also be observed in the shoulder
rotation plots, where larger r 1 values result in considerably less negative joint velocities at the
beginning of the movement, which need to be compensated later in order to reach the target. The
elbow flexion is also affected by changes in the control costs weight, however, with comparably

small impact (note the considerably smaller joint angle range). Note that for very large r 1 values,
the only relevant objective is to reduce the control cost, i.e., it is optimal to apply no controls during

the entire movement, which causes the arm to fall.
In Figure 13 , the effects of the JAC weight r 2 are shown for the same participant, interaction tech-

nique, and trial, using a fixed intermediate control costs weight r 1 = 0 . 016 . The effect on projected

cursor trajectories is qualitatively comparable to that of r 1 , albeit considerably more pronounced.
Without JAC, i.e., r 2 = 0 (black lines), the projected velocity time series exhibits a very high peak

velocity that is compensated by a corrective submovement starting after ∼ 450 milliseconds, re-
sulting in a very fast movement towards the target. For shoulder rotation and elbow flexion, the
changes in both joint angles and velocities strongly decrease as r 2 increases. In particular, the
characteristic joint patterns that can be observed for r 2 = 0 (black lines) become more and more
flattened as joint accelerations are more penalized.

The effects of the two cost weights on the remaining joints are depicted in Figures B.11 and B.12
in the Appendix, respectively.

To examine how well a certain cost weight pair fits one specific user, the surface plot in Figure 14
shows a simulation vs. user comparison (U4, Virtual Cursor Ergonomic) for different combinations
of cost weights. Here, the z -axis shows the mean RMSE used to measure the similarity between

simulation and user data trajectories (see Section 3.4.3) with respect to cursor position across all
trials of U4 using the Virtual Cursor Ergonomic technique. As can be seen, the surface is clearly

convex. While convexity of the RMSE with respect to the cost weights can neither be guaranteed

nor expected in general, it ensures that there exists a unique global optimum, towards which most

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

49

Simulating Interaction Movements via Model Predictive Control 44:31

Fig. 14. Surface plot showing the performance of the simulation with different cost weights r 1 and r 2 . The
z -axis corresponds to the mean RMSE on cursor positions across all trials of U4 using the Virtual Cursor
Ergonomic technique.

OCP solvers (including the one we use) are guided. In the considered case, the global optimum is
located at r 1 = 0 and r 2 ≈ 1 . 1 e − 4 (black colored valley). 20

In summary, our analysis of cost weight effects shows that both the cursor and joint trajectories
predicted by the closed MPC loop continuously depend on the cost weight parameters. This has
two major advantages:

First, the parameter fitting process in finding cost weights that best reflect specific user behavior
exhibits a certain robustness. This facilitates computing optimal weights and ensures that cost
weights close to the optimum will already provide good results. Second, it allows to generate new

user strategies by tweaking the cost weight parameters.

6.4 Effects of the MPC Horizon

To better understand the impact of the MPC horizon N , which may need manual adjustments
depending on the task under consideration, in the following, we analyze how the simulated move-
ments change with increasing horizon.

We also omit the motor noise from all simulations done in this section to avoid distorting the
effect of N .

As depicted in the top left plot of Figure 15 for the same trial as used in Section 6.3 , the MPC

horizon N, which determines how many future steps are taken into account to select the control at
a certain time step, has a considerable effect on the resulting closed-loop trajectories. Choosing N

too small results in movements that are either too slow to reach the target at all (N = 2 , black line),
cross the target but do not return within a reasonable time (N = 3 , 4 , blue lines), or exhibit some
considerable overshoot (N = 5 , grass green line). Starting from N = 8 , the differences in cursor
and joint trajectories are quite small and hardly visible anymore. This suggests that a prediction

horizon of 8 · 40 ms = 320 ms is sufficient to adequately solve our OCP via MPC.
This is also confirmed by the quantitative comparison of MPC horizons shown in Figure 16 ,

where we again computed the mean RMSE on cursor positions, considering all trials of U4 using

20 Note, that this does not exactly coincide with the cost weight pair found by our fitting process. This is due to the facts,
that during the fitting, we use RMSE based on joint angles, and that out of computational reasons, we only considered five
movements to evaluate a cost weight pair.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

50 Simulating Interaction Movements via Model Predictive Control

44:32 M. Klar et al.

Fig. 15. Projected cursor and joint trajectories of one trial for varying MPC horizon N , using the JAC, without
control noise.

Fig. 16. Effect of the MPC horizon N on the mean RMSE between JAC and user data in terms of cursor
positions, considering all trials of U4 with the Virtual Cursor Ergonomic technique. The performance clearly
deteriorates when the MPC horizon N is set too low (i.e., below N = 8).

the Virtual Cursor Ergonomic technique, for different MPC horizons. The performance of our
simulation clearly deteriorates when the MPC horizon N is set too low, i.e., N ≤ 6 . Interestingly,
user trajectories are best explained by an intermediate MPC horizon of N = 13 , while a too large
horizon (N ≥ 16) results in slightly worse mean RMSE for this interaction technique. Since the
computational time exponentially increases with N , we decided to use the lowest MPC horizon

replicating human behavior sufficiently well for our simulations, that is, N = 8 .

7 DISCUSSION AND LIMITATIONS

Our framework allows to simulate interaction movements with optimal control (cf. Figure 1). It
is applicable to a wide range of interaction techniques and can be adjusted to simulate different
individual users. In order to help the HCI community to explore the simulation of interaction

with MPC, we provide our Python code as open source at https://github.com/mkl4r/sim-mpc . In

this section, we discuss how our framework can be applied, what issues should be paid particular
attention to, and interesting ideas for future work.
ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

51

Simulating Interaction Movements via Model Predictive Control 44:33

In order to help using the framework, Section 3 discusses possible adjustments of the individual
parts of the framework, and gives some ideas on how to tailor these to specific interaction tech-
niques, users, and conditions. Moreover, we provide an example-based step-by-step guide on how

to apply our framework to novel tasks in Section 8 .
One point to consider is that in our simulations, the torso is fixed in space. This is obviously

only a reasonable assumption when simulating interaction techniques that do not require substan-
tial torso movement. Enabling natural torso movement is less trivial than one might think. One
solution is to provide multiple “virtual” joints for the added six degrees of freedom of the torso.
However, according to our experience, such virtual joints can easily lead to unnatural movements.
Alternatively, the lower body can be integrated in the biomechanical simulation, leading to the
added task for the controller of balancing the body.

Our presented framework assumes complete observation, i.e., complete knowledge of the system

state (e.g., joint angle and cursor position). In reality, humans observe their environment, e.g.,
through proprioception or visual perception, and have to deal with limited information, e.g., they

have to estimate the target position from an image on a screen. To control such a system with

imperfect observation, it would be an interesting future task to add an observer .
Another aspect is that we only investigated movements to a single, relatively big, target size,

which do not require extensive corrective submovements. If one is interested in submovements and

movement times for different target sizes, MPC is certainly an interesting way to model these. Our
model exhibits some submovements due to the interplay of a limited MPC horizon and movement
noise. A promising direction to increase the realism of submovements, and model the change of
movement times in response to different target sizes would be the introduction of an observation

delay, an observer to account for both motor and sensory noise, and including perception of the
target size. All of these are compatible with and can be integrated in the MPC framework.

While introduced in general terms, we apply our SimMPC framework to the use case of mid-air
pointing throughout the article. In the future, it would be interesting to evaluate movements that
our framework predicts for different interaction techniques and tasks. Similarly, our analysis of
between-user variability was based on data from a relatively homogeneous user group (all right-
handed adults without impairments and with similar backgrounds). However, since our approach

explicitly provides the possibility to capture user-specific characteristics (e.g., using scaled MuJoCo

bodies or maximum voluntary torques obtained by CFAT), comparable fits between given user data
and our simulation can be expected for rather diverse target groups.

7.1 Why MPC?
We have seen in Section 6.4 that, once a cost function has been chosen (in our case, JAC), the choice
of the MPC horizon N is the key governing factor. In practice, some trial and error is needed, but
also possible here, to control the tradeoff between computation time and quality of the movement
trajectory. To this end, we have provided practical guidance in Section 6.4 . Once we have such

an N , then MPC “works” for this application.
In comparison to some other models of interaction, MPC is particularly interesting, because it

allows for an analytical understanding of the dynamics of the interaction loop. MPC has been used

successfully for other applications; it is no coincidence that it is performing well in this particular
setting. In this article, we have relied on user data and performed an extensive analysis on the
performance of MPC. However, if one wants to very quickly check whether the effort of using

MPC will be worthwhile in their application, a good indicator is the so-called turnpike property .
It states that the computed optimal trajectories remain close to the so-called optimal steady-state ,
most of the time. As the name suggests, it is the optimal state to remain in with respect to stage
costs �. In our JAC case, it is determined by the state costs (e.g., keeping the cursor near the target)

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

52 Simulating Interaction Movements via Model Predictive Control

44:34 M. Klar et al.

Fig. 17. Euclidean norm between the cursor position (left) and the aggregated joint angles (right) of open-
loop trajectories with different MPC horizons N and a reference open-loop trajectory for N = 16 . The Turn-
pike property is reflected in the fact that the trajectories stay longer in the vicinity of the reference as the
horizon N increases. All simulations use the same trial of U4 and the Virtual Cursor Identity technique
(defined in Section 5.1).

and control or effort costs (e.g., using a joint posture in the process that is not strenuous or tiring).
Usually, this optimal steady-state is not known analytically, so the first step is to approximate it
numerically. This can be done by solving the OCP Equation (20) over the time frame of interest.
Then, instead of only applying the first value of the resulting optimal control sequence as in the
MPC algorithm (Section 3.5), we compute the so-called open-loop optimal trajectory by simply

applying the full optimal control sequence. For this purpose, the parameter N should be chosen

as large as possible—in our following example, we have chosen N = 16 . Then we compare this
result to open-loop optimal trajectories for smaller N , by plotting their difference to the reference
trajectory (large N). This is visualized in Figure 17 .

Figure 17 shows the typical turnpike behavior: First, for all N the corresponding open-loop

trajectories at some point start deviating more and more from the reference trajectory. Second,
this happens later and less pronounced the higher N is. The turnpike property is an essential part
in theorems that guarantee that MPC produces “sensible” results, i.e., MPC “works” [15]. This
assurance provides trust and reliability, is one of the great strengths of MPC, and is the reason

why it is used, e.g., in industry applications [52].
Similar guarantees exist for other controllers, such as LQR or LQG used, for example, in Refer-

ence [18]. However, unlike MPC, these cannot handle nonlinear system dynamics, which regularly

occur in HCI due to nonlinear. Possibly even more important for HCI, they cannot directly handle
state and control constraints, but have to resort to soft constraints via penalty terms in the cost
function. These constraints include joint angle and/or torque limits imposed by human biomechan-
ics, body position constraints when interfered by or interacting with physical objects and devices
(e.g., desk, gamepad, or monitor), and boundaries on the location of the virtual objects (e.g., due
to fixed bounding boxes of application windows or limited screen size).

If, on the other hand, guarantees take a back seat, RL most certainly enters the picture. RL is
very powerful, can handle nonlinearities and even state and control constraints, and thus is used

in many applications. In particular, RL can be used to control a biomechanical model as well [16].
However, computationally it can be very demanding to compute a single optimal movement. This
is because RL learns a policy to then sample movements. 21 This policy may have to be completely

21 We note that getting the policy can be advantageous depending on the use case.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

53

Simulating Interaction Movements via Model Predictive Control 44:35

retrained if the interaction technique is changed, e.g., a different input origin for the Virtual Pad

is used. In contrast, MPC acts as a complexity reducer in time: instead of directly solving an opti-
mization problem for the full movement time, in MPC, we consider subproblems on smaller time
horizons, which are much easier to solve due to exponentially increasing complexity the longer
the movement lasts.

From our point of view, it is therefore promising to combine the respective strengths of MPC

and RL (or, more generally, Machine Learning techniques) in future applications. Following the
current trend, MPC is more and more augmented by data-driven techniques (especially from the
control theory community). To put it in the words of Benjamin Recht (UC Berkeley, “Reflections
on the Learning-to-Control Renaissance” Keynote at the 2020 IFAC World Congress): I still remain

baffled by how Model Predictive Control is consistently underappreciated. [...] there are really very

few people, especially in the Machine Learning community, who are trying to analyze why MPC is so
successful, especially when it’s coupled with Machine Learning.

8 APPLYING THE SIMMPC FRAMEWORK STEP-BY-STEP

This section gives a step-by-step guide on how to use our framework for other interaction tasks
or techniques. In the following, we show how to simulate the task of tracking a moving target
using ray casting with a handheld VR controller. In our example, the task is to track a sphere that
is constantly moving in a circle in front of the user. The approach consists of the following steps:

(1) Define user (group) and model,
(2) implement the input/output device in MuJoCo,
(3) define and implement the interface dynamics,
(4) choose the objective function (and optimize cost weights),
(5) run simulations, and,
(6) obtain trajectory data and summary statistics.

(1) We start by defining the user group and model, see Section 3.1 . Formally, the model corre-
sponds to f user in Equation (1). If the goal is to generally evaluate an interaction task/technique,
using one (or several) of the six provided user models of healthy humans is sufficient. If one aims
to build an interaction technique for a more specific user (group), we recommend to first collect
some movement data in a preliminary study, and use this data to adjust the model scaling and

maximum voluntary torques as described in Section 5.3 . This data does not have to stem from the
task under consideration, but should contain similar movements.

(2) Next, we need to implement the input/output devices in MuJoCo, see Section 3.2 . Formally,
this step corresponds to defining f dev and x dev in Equation (5). In our case, we add a body to

the MuJoCo model (more specifically, to the hand of the model) that corresponds to a handheld

controller, with appropriate mass and inertial properties. Next, we attach a marker to the controller,
which is used to infer its position and orientation (i.e., we define the physical end-effector x ee). The
marker should be placed such that this information match those provided by the real controller.
Adding a 3D mesh and adjusting the rigid finger positions such that the hand is actually holding

the device is optional but can help to place this marker correctly, improves visualization, and is
recommended when collisions are expected, e.g., if the interaction space is physically limited. We
define the state of the input device x dev as the position of the (physical) end-effector x ee and its
orientation using a direction vector n ee . The function f dev defines how we obtain those values
from the MuJoCo simulation, i.e., using the position of the marker as x ee and calculate n ee using

the marker’s orientation. Note that any physical action that is to have an effect on the virtual
environment must be modeled in the state of the input device (e.g., button press events could be
modeled using a boolean entry in the state).

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

54 Simulating Interaction Movements via Model Predictive Control

44:36 M. Klar et al.

(3) In the third step, we implement the interface dynamics, see Section 3.3 . One part of the
interface state x if is the current position of the sphere x s . The movement of the sphere is defined by

the interface dynamics f if . Using the position and orientation of the controller given by x dev from

the previous step, we can calculate the distance x d between the ray that is cast from the controller
and the center of the sphere. Note that we do not explicitly need a transfer function f tf here, since
we can use the position and orientation of the controller directly. The complete interface state is
then given by x if = (x s , x d). This concludes the system dynamics of the OCP in Equation (13) that
we want to solve.

(4) Next, we define the stage costs for each time step that depends on the state of our system

and the control. For pointing, we suggest using a combination of distance, control, and JAC (JAC,
see Equation (17)). While the distance costs reflect the actual task objective, adding control costs is
generally recommended for two reasons. First, these costs create an incentive to execute the move-
ment with as little effort as possible, and second, they regularize the optimization procedure from

a mathematical point of view. When designing stage costs for tasks other than pointing, we recom-
mend using continuous and convex functions as they lead to a better optimization performance.

In the considered case of tracking with ray casting, we decide for a combination of the squared

norm of both the control and the joint acceleration vectors plus the norm of x d since the goal is to

keep the ray inside the sphere. 22 The stage cost is therefore given by

�(x (k), u (k)) = ‖x d (k)‖ + r 1 ‖u (k)‖ 2 + r 2 ‖x qacc (k)‖ 2 ,
with cost weights r 1 , r 2 > 0 .

Since we use a weighted combination of different cost terms, we need to find suitable cost
weights. In the considered case of tracking, we expect scaling both r 1 and r 2 relative to the modified

distance costs to be sufficient to achieve reasonable results. For more severe changes to the task,
or if reference user data is already available (e.g., from a preliminary study), running a parameter
optimization as described in Section 3.4.3 is recommended to improve the simulation results.

(5) Before running the simulation, the MPC horizon should be chosen long enough for the con-
sidered task (see discussion in Section 6.4). Additionally, a termination criterion should be defined,
which determines when to stop the simulation. Here, this can be directly inferred from the instruc-
tions, i.e., the task is to stay inside the target sphere for a certain amount of time. Alternatively, the
simulation can also be run for a certain time, independent of the completion of the task. Finally,
to be able to run a simulation, we need to define the initial state of the system. This consists of
an initial posture of the biomechanical model (i.e., joint angles and velocities), initial activations
of the muscles and their derivatives and the initial state of the input device and interface. This
initial state can either be obtained from a user study or by running preliminary simulations with

arbitrary initial states.
(6) The output of the simulation includes trajectories for all state variables such as joint angles,

angular velocities, or position of virtual objects. In particular, all quantities obtained by a typical
motion-capture based user study are easily available. To obtain summary statistics, we can include
noise and run multiple simulations to collect an entire set of trajectories reflecting the predicted

trial-to-trial variability for the task under consideration.

9 CONCLUSION

We have presented SimMPC, a framework to simulate movements during interaction with com-
puters, combining biomechanical modeling with MPC. It allows to predict kinematic and dynamic
quantities of both physical and virtual objects, including cursor positions, joint angles and ve-
locities, and aggregated muscle recruitments, on a moment-by-moment basis, providing richer

22 While we do not explicitly include the size of the sphere in the cost function, it can be used in the later evaluation.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

55

Simulating Interaction Movements via Model Predictive Control 44:37

information than summary statistics. Our framework allows easy combination of biomechanical
models of the human body with arbitrary interaction techniques and tasks, which was not pos-
sible with existing approaches that relied on linear optimal control methods. As a use case, we
have applied our approach to a joint-actuated state-of-the-art model of the upper extremity, and

considered four mid-air interaction techniques for the task of ISO pointing in VR. We have shown

that MPC is able to simulate user movement in mid-air pointing both in terms of cursor and joint
trajectories, with an accuracy within observed between-user variability. Comparing three differ-
ent cost functions, the combination of distance, control, and JAC was shown to best explain the
movements observed in our user study.

In a practical sense, our approach allows to predict movement of a given individual user, and

can be used to generate new user strategies. Moreover, we provide advice on how to apply our
framework to simulate interactions for different target user groups, interaction techniques, or in-
teraction tasks. We have also introduced CFAT , a novel tool to compute the applied torques under-
lying a given joint angle sequence, which we have used to infer the maximum voluntary torques
that were applied in the considered ISO pointing task. We have made our code and data publicly

available (https://github.com/mkl4r/sim-mpc).
The combination of biomechanical simulations with MPC could open the door for online opti-

mization and customization of user interfaces and interaction techniques, based on the predictions
of a “digital twin” simulation running in the background. The ability to evaluate the entire inter-
action loop between humans and computers in terms of efficiency or ergonomics with the help of
realistic simulations could allow for partial replacement of costly and time-consuming user studies
in the future. We, therefore, believe that the optimal control perspective on interaction and its sim-
ulation via MPC provide an interesting interpretation of and useful tools for Human–Computer
Interaction.

APPENDICES

A VIRTUAL PAD TRANSFER FUNCTION

To obtain the cursor position of the Virtual Pad, we have to project the end-effector position x ee
onto the input plane and transfer it onto the output plane. The projection onto the input plane is
given by

Proj I (x ee) = x ee − ((x ee − ω I) · n I) n I , (A.1)
where the operator · denotes the inner product, ω I is the input space origin, and n I is the input
space normal. Note that, while the projected position could be denoted in 2D coordinates of the
input plane, the projection maps onto the position in global 3D coordinates to be able to transfer
this point correctly onto the output plane. To rotate this new point correctly, we compute the
rotation matrix R that rotates the input normal vector n I such that it equals the output normal
vector n O

:

R = (1 −C)aa � +
�		

C −a 3 C a 2 C

a 3 C C −a 1 C

−a 2 C a 1 C C

���

, (A.2)

where a is the rotation axis, i.e.,

a = (a 1 , a 2 , a 3)
� =

n I × n O

‖ n I × n O

‖ , (A.3)

aa � is the outer product of a with itself, and C and C are the cosine and sine of the angle between

the normals, i.e.,
C =

n I · n O

‖ n I ‖ ‖ n O

‖ , C =
√

1 −C

2 . (A.4)

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

56 Simulating Interaction Movements via Model Predictive Control

44:38 M. Klar et al.

Since rotation is defined around the global origin, we subtract ω I before rotating, i.e., for some
point y ∈ R 3 :

Rot IO

(y) = R (y − ω I). (A.5)
As the last step, we need to translate back onto the output plane by adding the output origin ω O

.
The overall transfer function is thus given by

f tf (x ee) = Rot IO

(Proj I (x ee)) + ω O

= R (x ee − ((x ee − ω I) · n I) n I − ω I) + ω O

. (A.6)

B SUPPLEMENTARY FIGURES AND TABLES

B.1 MuJoCo Model

Table B.1. Default Joint Angle Ranges of the
Upper Extremity Model [16]

Joint Angle Ranges (deg/rad)
Min. Max.

E levation A ngle −90 − 1
2 π 130 13

18 π

S houlder E levation 0 0 180 π
S houlder R otation −90 − 1

2 π 20 1
9 π

E lbow F lexion 0 0 130 13
18 π

P ronation/ S upination −90 − 1
2 π 90 1

2 π

W rist D eviation −10 − 1
18 π 25 5

36 π

W rist F lexion −70 − 7
18 π 70 7

18 π

B.2 CFAT

Figure B.1. Joint torques of all participants and interaction techniques, both computed using OpenSim In-
verse Dynamics (ID, green) and our proposed CFAT tool (yellow). For each DOF, the colored boxes show

the respective interquartile ranges (25% to 75% quantiles) and the whiskers correspond to the minimum and

maximum torques after removing some outliers (see Section 4).

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

57

Simulating Interaction Movements via Model Predictive Control 44:39

B.3 Comparison of Cost Functions

Table B.2. The Cost Weights Obtained by the CMA-ES Parameter Optimization for Each Participant,
Condition, and Cost Function

Figure B.2. Projected joint trajectories for one trial of U4 for the Virtual Pad Identity technique. The Joint
Acceleration Costs (JAC; orange dashdotted lines) qualitatively explain observed user behavior best. For
pronation/supination, deviation, and flexion, all considered cost function show a good fit to observed user
behavior (note the small angle ranges for these joints). Remaining joints are shown in Figure 6 .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

58 Simulating Interaction Movements via Model Predictive Control

44:40 M. Klar et al.

Figure B.3. Comparison of the different cost functions in terms of cursor positions and joint angles, separated

by user. The boxplots show the RMSE of all trials.

B.4 MPC can Simulate User Movements

Figure B.4. The joint angle ranges predicted by our simulation for different movements in the ISO task
(orange solid lines) match those observed in our user study (black dashed lines) fairly well. The mean of all
movements of a single participant/user model (U2) is shown together with the entire value ranges. Remaining
joints are shown in Figure 8 .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

59

Simulating Interaction Movements via Model Predictive Control 44:41

Figure B.5. U4 and simulation trajectories for different directions in the Virtual Pad Ergonomic condition. In

the user study (dashed lines), the joint angle trajectories differ significantly between movement directions
(the target configuration is depicted in Figure 4). These characteristic differences are captured well by our
simulation (solid lines).

Figure B.6. Given an interaction technique (here: Virtual Pad Ergonomic) and a movement direction (here:
movements from targets 1 to 2), the characteristic cursor and joint trajectories of an individual user (here:
U4, black dashed lines; trajectories of the remaining users are shown as blue dotted lines for comparison)
can be predicted by our simulation (orange solid lines). Remaining joints are shown in Figure 11 .

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

60 Simulating Interaction Movements via Model Predictive Control

44:42 M. Klar et al.

Figure B.7. Given an interaction technique (here: Virtual Cursor ID) and a movement direction (here: move-
ments from targets 8 to 9), the characteristic cursor and joint trajectories of an individual user (here: U2,
black dashed lines; trajectories of the remaining users are shown as blue dotted lines for comparison) can be
predicted by our simulation (orange solid lines).

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

61

Simulating Interaction Movements via Model Predictive Control 44:43

Figure B.8. Given an interaction technique (here: Virtual Cursor Ergonomic) and a movement direction

(here: movements from targets 8 to 9), the characteristic cursor and joint trajectories of an individual user
(here: U3, black dashed lines; trajectories of the remaining users are shown as blue dotted lines for compar-
ison) can be predicted by our simulation (orange solid lines).

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

62 Simulating Interaction Movements via Model Predictive Control

44:44 M. Klar et al.

Figure B.9. Given an interaction technique (here: Virtual Pad ID) and a movement direction (here: move-
ments from targets 8 to 9), the characteristic cursor and joint trajectories of an individual user (here: U4,
black dashed lines; trajectories of the remaining users are shown as blue dotted lines for comparison) can be
predicted by our simulation (orange solid lines).

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

63

Simulating Interaction Movements via Model Predictive Control 44:45

Figure B.10. Given an interaction technique (here: Virtual Pad Ergonomic) and a movement direction

(here: movements from targets 8 to 9), the characteristic cursor and joint trajectories of an individual user
(here: U6, black dashed lines; trajectories of the remaining users are shown as blue dotted lines for compar-
ison) can be predicted by our simulation (orange solid lines).

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

64 Simulating Interaction Movements via Model Predictive Control

44:46 M. Klar et al.

B.5 Effects of the Cost Weights

Figure B.11. Trajectories of the JAC simulation for different cost weights r 1 . Remaining joints and cursor
trajectories are shown in Figure 12 . Shown are simulated movements for U4 in the Virtual Cursor Ergonomic
condition.

Figure B.12. Trajectories of the JAC simulation for different cost weights r 2 . Remaining joints and cursor
trajectories are shown in Figure 13 . Shown are simulated movements for U4 in the Virtual Cursor Ergonomic
condition.

B.6 Effects of the MPC Horizon

Figure B.13. Joint trajectories of one trial for varying MPC horizon N , using the JAC, without control noise.
Remaining joints and cursor trajectories are shown in Figure 15 . Shown are simulated movements for U4 in

the Virtual Cursor Ergonomic condition.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

65

Simulating Interaction Movements via Model Predictive Control 44:47

REFERENCES

[1] Carlos Andujar and Ferran Argelaguet. 2007. Virtual pads: Decoupling motor space and visual space for flexible
manipulation of 2d windows within ves. In Proceedings of the 2007 IEEE Symposium on 3D User Interfaces . IEEE.

[2] Myroslav Bachynskyi and Jörg Müller. 2020. Dynamics of Aimed Mid-Air movements. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (CHI’20) . Association for Computing Machinery, New York, NY,
1–12. DOI: https://doi.org/10.1145/3313831.3376194

[3] Myroslav Bachynskyi, Antti Oulasvirta, Gregorio Palmas, and Tino Weinkauf. 2014. Is motion capture-based biome-
chanical simulation valid for HIC studies? Study and implications. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems . 3215–3224.

[4] Myroslav Bachynskyi, Gregorio Palmas, Antti Oulasvirta, Jürgen Steimle, and Tino Weinkauf. 2015. Performance
and ergonomics of touch surfaces: A comparative study using biomechanical simulation. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (CHI’15) . ACM, New York, NY, 1817–1826. DOI: http:
//doi.acm.org/10.1145/2702123.2702607

[5] Myroslav Bachynskyi, Gregorio Palmas, Antti Oulasvirta, and Tino Weinkauf. 2015. Informing the design of novel
input methods with muscle coactivation clustering. ACM Transactions on Computer–Human Interaction (TOCHI) 21,
6, Article 30 (Jan. 2015), 25 pages.

[6] Reinoud J. Bootsma, Laure Fernandez, and Denis Mottet. 2004. Behind Fitts’ law: Kinematic patterns in goal-directed
movements. International Journal of Human–Computer Studies 61, 6 (2004), 811–821.

[7] John Charles Butcher. 2016. Numerical Methods for Ordinary Differential Equations . John Wiley & Sons.
[8] Stuart K. Card, William K. English, and Betty J. Burr. 1978. Evaluation of mouse, rate-controlled isometric joystick,

step keys, and text keys for text selection on a CRT. Ergonomics 21, 8 (1978), 601–613.
[9] Noshaba Cheema, Laura A. Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp Slusallek, and Perttu Hämäläinen.

2020. Predicting Mid-Air interaction movements and fatigue using deep reinforcement learning. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (CHI’20) . Association for Computing Machinery, New

York, NY, 1–13. DOI: https://doi.org/10.1145/3313831.3376701
[10] Scott L. Delp, Frank C. Anderson, Allison S. Arnold, Peter Loan, Ayman Habib, Chand T. John, Eran Guendelman, and

Darryl G. Thelen. 2007. OpenSim: Open-source software to create and analyze dynamic simulations of movement.
IEEE Transactions on Biomedical Engineering 54, 11 (2007), 1940–1950.

[11] Jörn Diedrichsen, Reza Shadmehr, and Richard B Ivry. 2010. The coordination of movement: Optimal feedback control
and beyond. Trends in Cognitive Sciences 14, 1 (2010), 31–39.

[12] Peter Dorato and Alexander Levis. 1971. Optimal linear regulators: The discrete-time case. IEEE Transactions on Au-
tomatic Control 16, 6 (1971), 613–620.

[13] A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert. 2008. Noise in the nervous system. Nature Reviews Neuroscience
9, 4 (2008), 292–303.

[14] Faulwasser Timm, Grüne Lars, and Müller Matthias A. 2018. Economic Nonlinear Model Predictive Control. https:
//ieeexplore.ieee.org/document/8277242 .

[15] Timm Faulwasser, Milan Korda, Colin N. Jones, and Dominique Bonvin. 2014. Turnpike and dissipativity properties
in dynamic real-time optimization and economic MPC. In Proceedings of the 53rd IEEE Conference on Decision and
Control . IEEE, 2734–2739.

[16] Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, and Jörg Müller. 2021. Reinforcement learning control
of a biomechanical model of the upper extremity. Scientific Reports 11, 1 (2021), 1–15.

[17] Florian Fischer, Arthur Fleig, Markus Klar, Lars Grüne, and Jörg Müller. 2020. An optimal control model of mouse
pointing using the LQR. https://arxiv.org/abs/2002.11596 .

[18] Florian Fischer, Arthur Fleig, Markus Klar, and Jörg Müller. 2022. Optimal feedback control for modeling human–
computer interaction. ACM Transactions on Computer–Human Interaction 29, 6, Article 51 (November 2022), 70 pages.
DOI: https://doi.org/10.1145/3524122

[19] Paul M. Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of move-
ment. Journal of Experimental Psychology 47, 6 (1954), 381.

[20] Tamar Flash and Neville Hogan. 1985. The coordination of arm movements: An experimentally confirmed mathe-
matical model. Journal of Neuroscience 5, 7 (1985), 1688–1703.

[21] Peter Gawthrop, Ian Loram, Martin Lakie, and Henrik Gollee. 2011. Intermittent control: A computational theory of
human control. Biological Cybernetics 104, 1-2 (2011), 31–51.

[22] Lars Grüne and Vryan Gil Palma. 2014. On the benefit of re-optimization in optimal control under perturbations.
In Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems MTNS 2014.
University of Groningen, Groningen, 439–446. Retrieved from https://eref.uni-bayreuth.de/11269/ .

[23] Lars Grüne and Jürgen Pannek. 2017. Nonlinear Model Predictive Control . Springer International Publishing, Cham,
45–69. DOI: https://doi.org/10.1007/978- 3- 319- 46024- 6 _ 3

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

66 Simulating Interaction Movements via Model Predictive Control

44:48 M. Klar et al.

[24] Lars Grüne and Anders Rantzer. 2008. On the infinite horizon performance of receding horizon controllers. IEEE
Transactions on Automatic Control 53, 9 (2008), 2100–2111.

[25] Emmanuel Guigon, Pierre Baraduc, and Michel Desmurget. 2007. Computational motor control: Redundancy and
invariance. Journal of Neurophysiology 97, 1 (2007), 331–347. DOI: https://doi.org/10.1152/jn.00290.2006

[26] Perttu Hämäläinen, Sebastian Eriksson, Esa Tanskanen, Ville Kyrki, and Jaakko Lehtinen. 2014. Online motion syn-
thesis using sequential Monte Carlo. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–12.

[27] Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI’18) , Association for Computing Machinery, New York, NY, 1–12. https://doi.org/
10.1145/3173574.3173804 arXiv:1604.00772. Retrieved from https://arxiv.org/abs/1604.00772 .

[28] Christopher M. Harris and Daniel M. Wolpert. 1998. Signal-dependent noise determines motor planning. Nature 394,
6695 (1998), 780–784.

[29] Lorenz Hetzel, John Dudley, Anna Maria Feit, and Per Ola Kristensson. 2021. Complex interaction as emergent be-
haviour: Simulating Mid-Air virtual keyboard typing using reinforcement learning. IEEE Transactions on Visualization
and Computer Graphics 27, 11 (2021), 4140–4149. DOI: https://doi.org/10.1109/TVCG.2021.3106494

[30] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang Irani. 2014. Consumed endurance: A

metric to quantify arm fatigue of Mid-Air interactions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI’14) . Association for Computing Machinery, New York, NY, 1063–1072. DOI: https://doi.org/
10.1145/2556288.2557130

[31] Sujin Jang, Wolfgang Stuerzlinger, Satyajit Ambike, and Karthik Ramani. 2017. Modeling cumulative arm fatigue in
Mid-Air interaction based on perceived exertion and kinetics of arm motion. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI’17) . Association for Computing Machinery, New York, NY, 3328–3339.
DOI: https://doi.org/10.1145/3025453.3025523

[32] Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. 2019. Synthesis of biologically realistic human
motion using joint torque actuation. ACM Transactions On Graphics (TOG) 38, 4 (2019), 1–12.

[33] Jussi Jokinen, Aditya Acharya, Mohammad Uzair, Xinhui Jiang, and Antti Oulasvirta. 2021. Touchscreen Typing As
Optimal Super visor y Control . Association for Computing Machiner y, New York, NY. DOI: https://doi.org/10.1145/
3411764.3445483

[34] Nocedal Jorge and J. Wright Stephen. 2006. Numerical Optimization . Spinger.
[35] Mitsuo Kawato. 1993. Optimization and learning in neural networks for formation and control of coordinated move-

ment. In Proceedings of the Attention and Performance XIV (Silver Jubilee Volume) Synergies in Experimental Psychology,
Artificial Intelligence, and Cognitive Neuroscience . 821–849.

[36] Francesco Lacquaniti, Carlo Terzuolo, and Paolo Viviani. 1983. The law relating the kinematic and figural aspects of
drawing movements. Acta Psychologica 54, 1 (1983), 115–130.

[37] Byungjoo Lee, Sunjun Kim, Antti Oulasvirta, Jong-In Lee, and Eunji Park. 2018. Moving target selection: A cue inte-
gration model. 1–12. DOI: https://doi.org/10.1145/3173574.3173804

[38] Injung Lee, Hyunchul Kim, and Byungjoo Lee. 2021. Automated playtesting with a cognitive model of sensorimo-
tor coordination. In Proceedings of the 29th ACM International Conference on Multimedia (MM’21) . Association for
Computing Machinery, New York, NY, 4920–4929. DOI: https://doi.org/10.1145/3474085.3475429

[39] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable muscle-actuated human simulation
and control. ACM Transactions On Graphics (TOG) 38, 4, Article 73 (July 2019), 13 pages. DOI: https://doi.org/10.1145/
3306346.3322972

[40] Sangyoon Lee, Jinseok Seo, Gerard Jounghyun Kim, and Chan-Mo Park. 2003. Evaluation of pointing techniques for
ray casting selection in virtual environments. In Proceedings of the Third International Conference on Virtual Reality
and Its Application in Industry , Vol. 4756. SPIE, 38–44.

[41] Weiwei Li and Emanuel Todorov. 2004. Iterative linear quadratic regulator design for nonlinear biological move-
ment systems.. In Proceedings of the 1st International Conference on Informatics in Control, Automation and Robotics,
(ICINCO’04) , Vol. 1. 222–229.

[42] Dan Liu and Emanuel Todorov. 2009. Hierarchical optimal control of a 7-DOF arm model. In Proceedings of the 2009
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning . IEEE, 50–57.

[43] I. Scott MacKenzie. 1992. Fitts’ law as a research and design tool in human–computer interaction. Human–Computer
Interaction 7, 1 (1992), 91–139.

[44] J. Alberto Álvarez Martín, Henrik Gollee, Jörg Müller, and Roderick Murray-Smith. 2021. Intermittent control as a
model of mouse movements. ACM Transactions on Computer–Human Interaction (TOCHI) 28, 5, Article 35 (Aug 2021),
46 pages. DOI: https://doi.org/10.1145/3461836

[45] Pietro Morasso. 1981. Spatial control of arm movements. Experimental Brain Research 42, 2 (1981), 223–227.
[46] Jörg Müller. 2017. Dynamics of pointing with pointer acceleration. In Human–Computer Interaction—INTERACT 2017 .

Regina Bernhaupt, Girish Dalvi, Anirudha Joshi, Devanuj K. Balkrishan, Jacki O’Neill, and Marco Winckler (Eds.),
Springer International Publishing, Cham, 475–495.

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

67

Simulating Interaction Movements via Model Predictive Control 44:49

[47] Jörg Müller, Antti Oulasvirta, and Roderick Murray-Smith. 2017. Control theoretic models of pointing. ACM Trans-
actions on Computer–Human Interaction (TOCHI) 24, 4 (2017), 1–36.

[48] Eri Nakano, Hiroshi Imamizu, Rieko Osu, Yoji Uno, Hiroaki Gomi, Toshinori Yoshioka, and Mitsuo Kawato. 1999.
Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque
change model. Journal of Neurophysiology 81, 5 (1999), 2140–2155.

[49] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. DeepMimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG) 37, 4, Article 143
(July 2018), 14 pages. DOI: https://doi.org/10.1145/3197517.3201311

[50] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. 1996. The go-go interaction technique:
Non-linear mapping for direct manipulation in VR. In Proceedings of the 9th Annual ACM Symposium on User Interface
Software and Technology . 79–80.

[51] Ning Qian, Yu Jiang, Zhong-Ping Jiang, and Pietro Mazzoni. 2013. Movement duration, Fitts’s law, and an infinite-
horizon optimal feedback control model for biological motor systems. Neural Computation 25, 3 (2013), 697–724.

[52] S. Joe Qin and Thomas A. Badgwell. 2003. A survey of industrial model predictive control technology. Control Engi-
neering Practice 11, 7 (2003), 733–764.

[53] Philip Quinn and Shumin Zhai. 2018. Modeling gesture-typing movements. Human–Computer Interaction 33, 3 (2018),
234–280. DOI: https://doi.org/10.1080/07370024.2016.1215922

[54] John Rasmussen, Michael Damsgaard, Egidijus Surma, Søren T. Christensen, Mark de Zee, and Vit Vondrak. 2003.
Anybody-a software system for ergonomic optimization. In Proceedings of the Fifth World Congress on Structural and
Multidisciplinary Optimization , Vol. 4. Citeseer, 6.

[55] James B. Rawlings, David Q. Mayne, and Moritz M. Diehl. 2017. Model Predictive Control: Theory, Computation, and
Design (2nd ed.) . Nob Hill Publishing.

[56] Katherine R Saul, Xiao Hu, Craig M. Goehler, Meghan E. Vidt, Melissa Daly, Anca Velisar, and Wendy M. Murray. 2014.
Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal
model. Computer Methods in Biomechanics and Biomedical Engineering 5842, May 2016 (2014), 1–14. DOI: https://doi.
org/10.1080/10255842.2014.916698

[57] Richard A. Schmidt, Howard Zelaznik, Brian Hawkins, James S. Frank, and John T. Quinn Jr. 1979. Motor-output
variability: A theory for the accuracy of rapid motor acts. Psychological Review 86, 5 (1979), 415.

[58] Ajay Seth, Jennifer L. Hicks, Thomas K. Uchida, Ayman Habib, Christopher L. Dembia, James J. Dunne, Carmichael
F. Ong, Matthew S. DeMers, Apoorva Rajagopal, Matthew Millard, et al. 2018. OpenSim: Simulating musculoskeletal
dynamics and neuromuscular control to study human and animal movement. PLoS Computational Biology 14, 7 (2018),
e1006223.

[59] Olga Sorkine-Hornung and Michael Rabinovich. 2017. Least-squares rigid motion using svd. Computing 1, 1 (2017),
1–5.

[60] G. G. Sutton and K. Sykes. 1967. The variation of hand tremor with force in healthy subjects. The Journal of Physiology
191, 3 (1967), 699–711.

[61] Misaki Takeda, Takanori Sato, Hisashi Saito, Hiroshi Iwasaki, Isao Nambu, and Yasuhiro Wada. 2019. Explanation
of fitts’ law in reaching movement based on human arm dynamics. Scientific Reports 9, 1 (2019), 1–12. DOI: https:
//doi.org/10.1038/s41598- 019- 56016- 7

[62] Darryl G. Thelen and Frank C. Anderson. 2006. Using computed muscle control to generate forward dynamic sim-
ulations of human walking from experimental data. Journal of Biomechanics 39, 6 (2006), 1107–1115. DOI: https:
//doi.org/10.1016/j.jbiomech.2005.02.010

[63] Emanuel Todorov. 2005. Stochastic optimal control and estimation methods adapted to the noise characteristics of
the sensorimotor system. Neural Computation 17, 5 (2005), 1084–1108.

[64] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine for model-based control. In Proceedings
of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems . IEEE, 5026–5033.

[65] Emanuel Todorov and Michael I. Jordan. 2002. Optimal feedback control as a theory of motor coordination. Nature
Neuroscience 5, 11 (2002), 1226–1235. DOI: https://doi.org/10.1038/nn963

[66] Brian R. Umberger and Ross H. Miller. 2017. Optimal control modeling of human movement. Handbook of Human
Motion , Müller Bertram, Wolf Sebastian I., Brueggemann Gert-Peter, Deng Zhigang, McIntosh Andrew, Miller Free-
man, and Selbie William Scott (Eds.). Springer International Publishing, Cham, 1–22. https://doi.org/10.1007/978-3-
319- 30808- 1 _ 177- 1

[67] Yoji Uno, Mitsuo Kawato, and Rika Suzuki. 1989. Formation and control of optimal trajectory in human multijoint
arm movement. Biological Cybernetics 61, 2 (1989), 89–101.

[68] Robert J. van Beers, Patrick Haggard, and Daniel M. Wolpert. 2004. The role of execution noise in movement vari-
ability. Journal of Neurophysiology 91, 2 (2004), 1050–1063. DOI: https://doi.org/10.1152/jn.00652.2003

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

68 Simulating Interaction Movements via Model Predictive Control

44:50 M. Klar et al.

[69] Frans C. T. Van der Helm and Leonard A. Rozendaal. 2000. Musculoskeletal systems with intrinsic and proprioceptive
feedback. In Proceedings of the Biomechanics and Neural Control of Posture and Movement . Springer, 164–174.

[70] Sergio Vazquez, Jose Rodriguez, Marco Rivera, Leopoldo G. Franquelo, and Margarita Norambuena. 2017. Model
predictive control for power converters and drives: Advances and trends. IEEE Transactions on Industrial Electronics
64, 2 (2017), 935–947. DOI: https://doi.org/10.1109/TIE.2016.2625238

[71] Yasuhiro Wada, Yuichi Kaneko, Eri Nakano, Rieko Osu, and Mitsuo Kawato. 2001. Quantitative examinations for
multi joint arm trajectory planning–using a robust calculation algorithm of the minimum commanded torque change
trajectory. Neural Networks 14, 4-5 (2001), 381–393.

[72] Eric A. Wan and Rudolph Van Der Merwe. 2000. The unscented Kalman filter for nonlinear estimation. In Proceedings
of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373) .
153–158.

[73] Jiaole Wang and Masazumi Katayama. 2011. Optimal model for selecting human arm posture during reaching move-
ment. In Proceedings of the Advances in Cognitive Neurodynamics (II) . Springer, 453–458.

[74] Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning symmetric and low-energy locomotion. ACM Transactions
on Graphics (TOG) 37, 4 (2018), 1–12.

[75] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997. Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software (TOMS) 23, 4 (December
1997), 550–560. DOI: https://doi.org/10.1145/279232.279236

Received 19 April 2022; revised 11 November 2022; accepted 21 November 2022

ACM Transactions on Computer-Human Interaction, Vol. 30, No. 3, Article 44. Publication date: June 2023.

69

4
An Optimal Control Model of Mouse

Pointing Using the LQR

Authors: Florian Fischer, Arthur Fleig, Markus Klar, Lars Grüne, Jörg Müller
Status: Pre-Print (arXiv) [16]

The models were selected by FF and JM. FF implemented the models and the parameter
fitting in Matlab and visualized the model predictions. All authors analyzed and evaluated
the simulation results. Figures were created by FF and MK. The results were discussed by
FF, AF, MK, and JM. FF wrote the first draft of the manuscript. Revision and rewriting of
the manuscript was done by all authors. FF is the corresponding author.

ar
X

iv
:2

00
2.

11
59

6v
1

 [
cs

.H
C

]
 2

6
Fe

b
20

20

An Optimal Control Model of Mouse Pointing Using the LQR

Florian Fischer, Arthur Fleig, Markus Klar, Lars Grüne, Jörg Müller
University of Bayreuth, Germany

ABSTRACT
In this paper we explore the Linear-Quadratic Regulator
(LQR) to model movement of the mouse pointer. We pro-
pose a model in which users are assumed to behave optimally
with respect to a certain cost function. Users try to minimize
the distance of the mouse pointer to the target smoothly and
with minimal effort, by simultaneously minimizing the jerk
of the movement. We identify parameters of our model from
a dataset of reciprocal pointing with the mouse. We compare
our model to the classical minimum-jerk and second-order
lag models on data from 12 users with a total of 7702 move-
ments. Our results show that our approach explains the data
significantly better than either of these previous models.

Author Keywords
Pointing; Aimed Movements; Fitts’ Law; Control Theory;
LQR; Modeling; Second-order Lag; Minimum Jerk

CCS Concepts
•Human-centered computing → HCI theory, concepts and
models;

INTRODUCTION
Interaction with computers is almost always achieved through
movement of the user, measured via input devices. In the field
of human motor control, there has been tremendous progress
in the understanding of human movement since the 1950’s
and 60’s, when Fitts’ law [11, 12] was published. Arguably
the most important modern theory of human motor control is
optimal feedback control (OFC) [34, 8]. Its main strengths
are versatility (applicable to many movement tasks) and the
ability to predict the entire movement (including position, ve-
locity, and acceleration of the end-effector over time, not just
movement time) without relying on Machine Learning tech-
niques, thus retaining comprehensibility. Despite its advan-
tages, OFC models are not very well known in the field of
Human-Computer Interaction (HCI), yet. The objective of
this paper is to introduce optimal feedback control to HCI.

OFC is a family of computational models of (human) move-
ment. These models assume that people behave rationally,
i.e., optimally with respect to some cost function. In addi-
tion, people observe the state of the environment and adjust
their movement in order to accomplish a given task, in a feed-
back manner. The interplay of the three main constituents of
OFC, i.e., optimality, feedback, and control, is displayed in
Figure 1.

As the figure suggests, the OFC framework is very versatile:
Various movements such as hand or eye movements or bal-
ancing, can be explained by adjusting the System block (and

Task

(Human)
Controller

Computation:
min JN(x,u)

System
u x

Figure 1. In our model, the user is assumed to control the state x of the
interactive system (e.g., the mouse pointer position and velocity). We
assume that the user computes the control u through optimization, i.e.,
by minimizing a cost function JN . In this calculation the current state is
taken into account through feedback.

the Controller block, if necessary). Various instructions, such
as emphasizing speed vs. comfort, can be incorporated by
adapting the cost function. Due to their feedback structure
(also called closed-loop), OFC models provide intuitive in-
sight in how humans react to disturbances during the move-
ment, changing targets, etc.

Through OFC, we aim at connecting the field of HCI bet-
ter with recent advances in neighboring scientific disciplines,
such as the study of human movement in motor control [29,
13] and neuroscience [31].

From a scientific perspective, this would strengthen the field
of HCI through a deeper insight into the basic constituents of
interaction. We start from one of the simplest and most ubiq-
uitous ways we interact with Personal Computers: pointing
with a mouse. However, as stated above, OFC could provide
a unifying framework for understanding movement in many
different interactive tasks, including pointing, steering, track-
ing of moving targets, scrolling and zooming, with PCs, mo-
bile devices, in AR/VR, etc.

From an engineering perspective, OFC would enable a deeper
understanding of the impact of interface design parameters
on the process of interaction. In the long term, these models
could be used for automated optimization of the parameters
of interaction techniques. Models of the dynamics of inter-
action would help in the design of input devices, from mice
to VR controllers. Models that work in real-time could be
used in predictive interfaces, which anticipate what the user
wants to do and respond accordingly, such as pointing target
prediction [1].

To achieve our goals, we start from a well-known model from
OFC theory, presented by Todorov [32]. We believe that the
best way to introduce modern motor control theory to HCI is
to provide a simple model that is adapted to the above men-
tioned HCI purposes. Thus, we make several model simpli-
fications, which we discuss below. These allow us to use
the so-called Linear-Quadratic Regulator (LQR) as the Con-

1

72 An Optimal Control Model of Mouse Pointing Using the LQR

troller in Figure 1, to calculate the optimal feedback control
law. We explore cost functions that combine the objectives
of minimizing jerk, which is the derivative of acceleration,
and minimizing the distance to the target. We identify pa-
rameters of these cost functions and the underlying pointer
dynamics from a dataset of reciprocal pointing [25]. We com-
pare the ability of our model to replicate pointer movement to
two other models based on the second-order lag [7, 21] and
jerk minimization [13]. Both are suitable comparison candi-
dates: the former model has been evaluated with the same
dataset [25]; the latter is an established model in motor con-
trol, which has been applied in HCI context [28]. We com-
pare the models on data from 12 users, with 7702 movements
overall.

Our results show that our model is able to fit the data signifi-
cantly better than the other two models. Compared to the for-
mer, our approach can generate more symmetric and plausi-
ble velocity and acceleration profiles. Compared to the latter,
our approach allows to simultaneously model the movement
well and reach the target. Our model can predict the entire
movement with only three, intuitively interpretable parame-
ters.

RELATED WORK
In HCI, movement, e.g., of the mouse pointer, is often re-
duced to summary statistics such as movement time. The
dependency of movement time MT from distance D and
width W of targets is usually described by Fitts’ law [11,
12] as MT = a+ b ID with Index of Difficulty (ID) defined
as ID = log2(D/W + 1) [23], although alternatives such as
Meyer’s law exist [24]. In HCI, Fitts’ law is usually inter-
preted from an information theoretic perspective. A very
good explanation of this interpretation of Fitts’ law has been
provided by Gori et al. [15].

The kinematics and dynamics of movement are studied more
rarely in HCI. However, in the studies of human motor con-
trol, various models describing kinematics and dynamics of
human movement have been developed.

Feedback control models (also called closed-loop models) of
movement assume that people monitor and adjust their mo-
tion on a moment-to-moment basis. These models are able to
explain how users repeatedly correct errors and handle distur-
bances. An early closed-loop model (without optimization)
has been provided by Crossman and Goodeve [7]. They as-
sume that users observe hand and target and adjust their ve-
locity as a linear function of the distance, as a first-order lag.

A simple, physically more plausible extension of the first-
order lag is the second-order lag [7, 21]. These dynamics can
be interpreted as a spring-mass-damper system similar to that
implied by the equilibrium-point theory of motor control [29].
A constant force is applied to the mass, such that the system
moves to and remains at the target equilibrium. This is one of
the comparison models; hence, we call this approach 2OL-Eq.
Other models of human movement include VITE [4] and the
models of Plamondon [26].

A fundamentally different approach to using such fixed-
control models is to assume that humans try to behave opti-

mally, according to a certain internalized cost function. Flash
and Hogan [13] propose that humans aim to generate smooth
movements by minimizing the jerk of the end effector. We
call this model MinJerk in the following. Although the hy-
pothesis that people aim to minimize jerk has been ques-
tioned, see, e.g., Harris and Wolpert [17], it is an established
model and has been successfully used by Quinn and Zhai [28]
to model the shape of gestures on a word-gesture keyboard.
The minimum-jerk model predicts a scale-invariant trajectory
(as a 5th-degree polynomial), if the exact position and time of
beginning and end of the movement are known. It can be in-
terpreted as a trajectory planning step [34] and is thus particu-
larly appropriate for modeling movements that do not involve
so-called corrective submovements. These have first been pro-
posed by Woodsworth [36, 10] and typically occur after the
first large movement, also called the “surge”, towards the tar-
get [24]. Hence, while applicable for gestures, it remains to
be seen whether this model can replicate mouse pointer data
accurately. Moreover, it does not explain how people execute
that trajectory, or if and how they react to disturbances, such
as muscle fatigue, external perturbations, changes of the tar-
get, etc.

The theory of OFC allows to resolve the separation between
trajectory planning and execution. Excellent overviews of
recent progress in OFC theory are provided by Crevecoeur
et al. [6] and Diedrichsen [8]. An early approach that
models perturbed reach and grasp movements by using the
minimum-jerk trajectory on a moment-to-moment basis was
presented by Hoff and Arbib [19]. A more general, more re-
cent and better known OFC model is proposed by Todorov
and Jordan [34]. This non-deterministic model is based on
an extension of the Linear-Quadratic-Gaussian Regulator (E-
LQG) [32]. It assumes that users try to reach a target at a
certain time while minimizing jerk. The biomechanical ap-
paratus is modeled by second-order lag dynamics. In via-
point tasks, this model qualitatively replicates movement seg-
mentation, eye-hand coordination, visual perturbations, and
other characteristics of human movement. A discussion about
how this model, including state- and control-dependent noise,
can be extended to more general reaching movements can be
found in [33].

A fundamental limitation of the E-LQG model (and many
other optimal control models, e.g., [13, 35, 17]) is that the ex-
act movement time needs to be known in advance. One way
to circumvent this issue is to use infinite-horizon OFC [20,
27, 22], i.e., to formulate the optimal control problem on an
infinite time horizon. In these references, this approach, in
conjunction with a cost function that includes (quadratic) dis-
tance and effort costs, was used to model end-effector move-
ment towards a target. The movement time then emerges
from the optimal control problem.

Another strand of literature that specifically deals with the
duration of movement has produced the Cost of Time theory
[18, 30, 2]. This theory assumes that humans value time with
a certain (e.g., hyperbolic or sigmoidal) cost function. Thus,
movement time is explicitly included in the cost function.

2

73

In summary, the fundamental question of human movement
coordination has produced a substantial literature and deep
understanding regarding the nature of human movement.
Given that almost all interaction of humans with computers
involves movement, it is surprising that this knowledge is lit-
tle known in HCI. It is important to bear in mind, however,
that the purposes of these models are very different from HCI.
They intend to model movement of the human body per se.
In contrast, in HCI we are less interested in how the body
moves, and more interested in how virtual objects in the com-
puter, such as mouse pointers, move. Movement in HCI is
mediated by input devices, operating systems, and programs,
requires high precision, and is often learnt very well. There-
fore, these models need to be adapted and validated regard-
ing their ability to model movement of virtual objects such as
mouse pointers in interaction.

In the field of HCI, there are few publications with control
models of mouse pointer movement. Müller et al. [25] com-
pare three feedback control models (without optimization)
regarding their ability to model mouse pointer movements.
Ziebart et al. [37] explore the use of optimal control models
for pointing target prediction. They do not make particular
a priori assumptions about the structure of the cost function.
Instead, they use a machine learning approach to fit a generic
function with a large number of parameters (36) to a dataset
of mouse pointer movements. While suitable for their pur-
poses, we are interested in gaining more insight into the struc-
ture of the cost function. Furthermore, we believe that reduc-
ing the number of parameters (to three in our main model)
reduces the risk of overfitting.

MODEL SIMPLIFICATIONS
Our approach to introducing OFC theory to HCI is by provid-
ing a model that is applicable to HCI, easy enough to under-
stand, while still showing the benefits and strengths of OFC
theory. To this end, we start with a simple model for mouse
pointer movements that we validate on an HCI dataset. Based
on this initial introduction of OFC to HCI, in the future we
plan to incorporate extensions proposed in the motor control
literature, such as sensorimotor noise and Cost of Time the-
ory.

Our model is inspired by Todorov’s E-LQG model [32]. To
apply it to our HCI purposes, the following three main dif-
ficulties need to be dealt with: First, Todorov’s model repli-
cates many phenomena observed in human movement only
qualitatively; there is no known method for adjusting the
model to replicate specific experimental data. Second, the
exact movement time needs to be known in advance, which
is rarely the case in HCI. Third, motor control models usu-
ally model movement of the human body per se, e.g., move-
ment of the hand as measured through motion capture or a sty-
lus tablet, while the mouse has been avoided. Mouse pointer
movements, however, are modified by sensor characteristics
such as mouse sensor rotation and calculations on the micro-
controller and in the operating system. It is unclear whether
models that have been developed for understanding natural
human (hand) movements are also good models for mouse
pointer movements.

In this paper we present an OFC model that addresses all
these points. Based on OFC theory (see Figure 1), our two
key assumptions are first that control of the system is cal-
culated via optimization, i.e., by minimizing a certain cost
function. Second, the control is obtained in a feedback man-
ner, i.e., it depends on the system state. To provide a simple
model to introduce OFC to HCI and the modeling of mouse
pointer movements, we make four key simplifications.

First, following existing literature, we require the cost func-
tion that users are assumed to minimize to be quadratic. In
pointing tasks, people aim at bringing the end-effector to the
target. For various settings, this has been modeled in OFC
literature through quadratic distance costs that penalize the
distance of the end-effector to the target center [32, 8, 27],
see also [14]. At the same time, people aim at minimizing
their effort and moving smoothly. The common model for
the latter is that users aim to minimize the jerk of the move-
ment [13]. Thus, similar to Todorov [32], we assume the cost
function to include terms for penalizing the distance between
pointer and target as well as terms to penalize the jerk.

Second, we assume linear dynamics of the mouse pointer (the
System block in Figure 1). More precisely, as in Todorov [32],
our system dynamics are described by a second-order lag.

With the third and fourth simplification, we deviate from
Todorov [32]: We assume that there are no internal delays
in the model. Moreover, we do not model noise and thus
have a deterministic model. As a result, our approach quan-
titatively predicts position and velocity of the mouse pointer
over time. In this deterministic setting, fitting the model pa-
rameters to the behavior of particular users in a specific task
becomes easier.

To summarize, we assume optimal closed-loop behavior with
respect to a quadratic cost function (that penalizes the jerk as
well as the distance to the target) and subject to linear sys-
tem dynamics (second-order lag) with no delay and no noise.
These simplifications allow us to solve the optimal control
problem using a simple optimal feedback controller, LQR, as
explained in the next section.

THE MODEL
Since mouse sensor data are available in discrete time, we
use discrete-time dynamics. The state of the system is given
by a vector xn that includes the position and velocity of the
virtual mouse pointer. The user controls the mouse pointer by
a force un, which influences the state xn. Both are given at
the discrete time steps n ∈ {1, . . . ,N} up to some final N ∈N.
The next state xn+1 depends on the current state xn and control
un, as described by

xn+1 = Axn +Bun, (1)

where the initial state x1 is given. In this, the matrix A de-
scribes how the system, e.g., the mouse pointer dynamics de-
scribed by a second-order lag, evolves when no control is ex-
erted. The matrix B describes how the control influences the
system. In this paper we look at 1D pointing tasks, in which
the mouse can only be moved horizontally. Thus, in our case,
the state xn encodes the horizontal position and velocity of the

3

74 An Optimal Control Model of Mouse Pointing Using the LQR

pointer, denoted by pn ∈ R and vn ∈ R, respectively, as well
as a target position T ∈ R for technical reasons (in order to
later be able to compute the distance to the target), i.e.,

xn := (pn,vn,T)
⊤ . (2)

This model can easily be extended to 2D or 3D pointing tasks
by augmenting xn and un with the respective components for
the additional dimensions.

As a model for the mouse pointer dynamics we use the
second-order lag, as depicted in Figure 2(a). The parameters
of the model are the stiffness of the spring k > 0 and the damp-
ing factor d > 0. The mass is a redundant parameter and does
not change the qualitative behavior of the model. We there-
fore set it to 1. In continuous time, we denote the position of
the mouse pointer as y(t), and its first and second derivatives
with respect to time (i.e., velocity and acceleration) as ẏ(t)
and ÿ(t), respectively. The behavior is then described by the
second-order lag equation

ÿ(t) = u(t)− ky(t)− dẏ(t), (2OL)

cf. Figure 2(b). We derive a discrete-time version of (2OL)
via the forward Euler method, with a step size of h = 2ms,
where the two milliseconds correspond to the mouse sensor
sampling rate. From this, we obtain the matrices A and B
for (1) as

A :=

(1 h 0
−hk 1 − hd 0

0 0 1

)
, B :=

(0
h
0

)
. (3)

This process is similar to the one used by Todorov [32].

Next, we design the cost function JN that we assume the user
to minimize, based on our modeling assumptions. We want
to penalize the jerk and the distance to the target. Ideally,
no distance costs should occur within the target, which is a
box with target width W . Unfortunately, this is infeasible in
our LQR setting, where we need cost terms to be quadratic.
To circumvent this limitation, we construct the distance costs
such that we have lower costs inside the target and higher
costs outside. At time step n, the remaining distance to the
target is given by Dn := |pn − T |, and we define the resulting
distance costs as the square of that:

D2
n = (pn − T)2. (4)

As in Todorov [32], the jerk in our case corresponds to the
derivative of the control u. We call jn the approximation of
the jerk at time step n obtained by backward differences, i.e.,
jn := (un − un−1)/h ≈ u̇n. We square this term to get positive
values only. A weight factor r > 0 describes how important
the jerk is compared to the positional error (4). Thus, our jerk
costs are

r j2
n = r

(
un − un−1

h

)2

. (5)

Formally, this approach requires a value u0 to be chosen,
which we will explain later.

Our overall cost function JN will depend on different sum-
mations of the distance costs (4) and the jerk costs (5) over

(a) Mouse pointer model with spring and damper

∫ ∫

d
k

u(t) + ÿ(t) ẏ(t) y(t)

−−

(b) Control-flow diagram
Figure 2. Illustrations of the second-order lag (2OL).

multiple time steps. In order to design a cost function JN that
explains user behavior best, we explore three different cost
functions of this type later in the paper.

In conclusion, we model the process of pointing through the
following optimal control problem:

min
x,u

JN(x,u) subject to xn+1 = Axn +Bun, (OCP)

for a given initial control u0 and initial state x1, and where the
matrices A and B are given by (3) and the function JN is some
summation of (4) and (5) over multiple time steps.

We assume that the user computes the optimal control un,
which we denote by u∗

n, in a feedback manner. It has been
proven that for these kinds of problems the optimal control
u∗

n depends linearly on the state [9]. In our case, the optimal
control u∗

n can be calculated simply by multiplying a matrix
−Kn with the state xn, extended1 by the previous control u∗

n−1:

u∗
n = −Kn

(
xn

u∗
n−1

)
. (6)

The matrix Kn is called the feedback gain at time step n. It
can be computed directly, given the matrices A, describing
the mouse pointer dynamics, and B, describing how control
influences the mouse pointer, and the cost function JN . This
is done by solving the appropriate Discrete Riccati Equation,
see [32, Theorem 7].

The main question now is whether this optimal feedback cor-
responds to users’ behavior, i.e., if our approach is suitable to
describe pointing tasks. For this purpose, we note that there
are several free parameters that we can choose: the spring
stiffness k, the damping d, and the jerk weight r. The goal
is to choose these parameters such that users’ behavior is ap-
proximated best.

PARAMETER FITTING
In contrast to the non-deterministic E-LQG model of
Todorov [32], one main strength of our deterministic model
is that we can imitate user data without information about the
end time of the movement. In addition, the calculation of opti-
mal parameters is simplified by eliminating uncertainties. In
1This extension is required in order to penalize the jerk as in (5).

4

75

LSQ

LQRΛ

JN

SSE

Λ0 Λ∗

Λ

pΛ

SSE(Λ)

Kn

Figure 3. Starting with an initial parameter set Λ = Λ0, the least squares
(LSQ) algorithm obtains the sum squared error value (SSE) for the cur-
rently considered parameter set Λ. To do this, it calls LQRΛ, which
sets up the respective optimal control problem (OCP) and obtains the
corresponding optimal feedback gain Kn. The resulting position time se-
ries pΛ is used to compute SSE(Λ), which is transmitted back to LSQ.
As an LSQ algorithm, we use MATLAB’s nonlinear least squares algo-
rithm lsqnonlin, which uses a gradient-based search method to obtain
the next set of parameters Λ until it convergences to an optimal param-
eter set Λ∗ with minimal SSE. Finally, Λ∗ is returned along with the
respective optimal feedback gain matrices Kn .

this way, our model can replicate the behavior of a particu-
lar user in a particular task. To this end, we need to fit the
free parameters k, d, and r, to the data. We denote the set
of these parameters by Λ = {k,d,r}. The goal is to find the
optimal set, Λ∗, in the sense that our model, with parameters
Λ∗, yields a pointer trajectory that is as similar as possible to
that of the user. To achieve this, we measure the difference be-
tween the model trajectory pΛ and the user trajectory pUSER

using the sum squared error (SSE):

SSE(Λ) =
N

∑
n=1

(
pΛ

n − pUSER
n

)2
. (7)

We then apply the least squares (LSQ) algorithm depicted in
Figure 3 to find the optimal parameter set Λ∗ minimizing (7).

Least-squares-based algorithms may converge to local min-
ima and not find a global minimum. Therefore, we execute
the whole fitting process several times for randomly chosen
starting parameter sets Λ0. According to our simulations, 100
of such sets sufficed to provide results that would not improve
further by iterating on more starting parameter sets.

POINTING TASK AND DATASET
To evaluate our model, we use the Pointing Dynamics Dataset.
Task, apparatus, and experiment are described in detail in
[25]. The dataset contains the mouse trajectory for a recip-
rocal pointing task in 1D for ID 2, 4, 6, and 8.

Pointing movements almost always start with a reaction time,
in which velocity and acceleration of the pointer are close to
zero. In real computer usage, the user usually takes some
time to decide whether to move the mouse and to locate the
target before initiating the movement. Therefore, one could
speak of the movement beginning once the acceleration of the
pointer reaches a certain threshold.

In the Pointing Dynamics Dataset we use, the trial started
immediately when the previous trial was finished, i.e., after
the mouse click, not when the user initiated the next move-
ment. This results in a considerable variation in reaction

times. Since some variants of our approach as well as the
methods from the literature we use for comparison cannot
properly handle reaction times, in each trial we ignore the
data before the user starts moving. To be exact, we drop
all frames before the acceleration reaches 0.5% of its maxi-
mum/minimum value (depending on the movement direction)
for the first time in each trial.

Moreover, we ignore user mistakes by dropping the failed and
the following trial. From all other trials of all participants and
all tasks – 7732 trajectories in total – we have removed an-
other 30 for which the optimally fitted damping parameter d
was an outlier (more than three standard deviations from the
mean). This was necessary due to numerical instabilities that
occurred for these parameters, leading to erroneous calcula-
tions of the optimal control. All remaining 7702 trajectories
are used in the later evaluation.

We use the raw, unfiltered position data in our parameter
fitting process to avoid artifacts. The dataset also contains
derivatives of user trajectories, which were computed by dif-
ferentiating the polynomials of a Savitzky-Golay filter of de-
gree 4 and frame size 101 [25]. We use this (filtered) data
only for the computation of the reference control u0 (see the
next chapter) and for illustration purposes.

For the following plots, unless stated otherwise, we display
one certain representative user trajectory, namely the 21st

movement to the right of participant 1 for the ID 8 task with
765px distance and 3px target width. For comparison and val-
idation, the plots of all 7702 trajectories are provided in the
supplementary material.

ITERATIVE DESIGN OF THE COST FUNCTION
In this section we describe the iterative design of our cost
function JN that is utilized in the algorithm depicted in
Figure 3. The three resulting approaches are denoted by
2OL-LQR with the corresponding numbering.

First Iteration: Distance Costs at Endpoint (2OL-LQR1)
In our first iteration we use a cost function similar to the one
used by Todorov [32] for the E-LQG model. In this function,
jerk costs occur at every step. Distance costs, however, only
occur in the time step in which the mouse is clicked (time
step N). In particular, no distance costs occur at other time
steps. Thus, the cost function is given by

JN(x,u) = D2
N + r

N−1

∑
n=1

j2
n , (8)

where DN = |pN − T | is the remaining distance to the target
center at the end of the movement, r is the weight of the jerk,
and jn = (un − un−1)/h is the jerk at time step n.

The initial pointer position and velocity are set from the data,
i.e., x1 = (pUSER

1 ,vUSER
1 ,T)⊤. Although the choice of u0 does

not have a direct impact on the system dynamics, the trajec-
tory heavily depends on its value. This is due to j1 penalizing
the deviation of u1 from u0, which carries over to j2, and so

5

76 An Optimal Control Model of Mouse Pointing Using the LQR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Po
si

tio
n

(m
)

Simulation
Data
Initial point, target

Figure 4. First iteration (2OL-LQR1): Using a cost function similar to
the one proposed by Todorov results in the model (blue) not replicating
the data (green) well.

on.2 We define u0 such that if the first control u1 coincides
with u0, the model will replicate the initial acceleration from
the data aUSER

1 , i.e., u0 = kpUSER
1 + dvUSER

1 + aUSER
1 .

The approach of using cost function (8) suffers from two ma-
jor problems. First, as illustrated in Figure 4, the generated
trajectories do not fit our data. In particular, the target is
reached only at exactly the time of the mouse click. In con-
trast, our data shows that for high IDs, the users reach the
vicinity of the target much earlier and then spend consider-
able time with small corrective submovements close to the
target. The reason for this different behavior is that the cost
function (8) sets the incentive to settle at the target only at
the final time step N, while the jerk is penalized in every time
step.

The second problem is that the cost function must include
the exact time of the mouse click a priori. This makes the
cost function very difficult to use for the simulation of human
behavior in pointing tasks, if we cannot or do not want to
prescribe a specific clicking time.

Hence, we propose a slightly modified cost structure in the
LQR algorithm to take these considerations into account.

Second Iteration: Summed Distance Costs (2OL-LQR2)
Both issues of the first iteration can be attributed to the fact
that the remaining distance to target is only penalized at the
time of the mouse click. Hence, we now penalize both the jerk
and the distance between pointer position and target during
the whole movement. Having summed costs over the entire
movement is a standard approach in optimal control for such
tracking tasks [5]. Our new cost function is

JN(x,u) = D2
N +

N−1

∑
n=1

(
D2

n + r j2
n
)
, (9)

where Dn = |pn − T | is the remaining distance to the target
center after time step n. This changes the meaning of N: In-
stead of being the exact clicking time, it can now be inter-
preted as the maximum time allowed for the task. Thus, it is
now much less important to set N accurately.

Optimal solutions of this approach with respect to the new
cost function (9) approximate most of the considered user tra-
jectories well, and much better than 2OL-LQR1, cf. Figure 7.
2For example, setting u0 = 0 might result in an implausibly high
acceleration at the start of the movement, similar to 2OL-Eq.

Third Iteration: Reaction Time (2OL-LQR3)
As explained in the dataset section, we prefer to model only
the movement itself, excluding the reaction time. Thus, our
second iteration does not model reaction time. In some cases,
however, it is desirable to model it explicitly. In this section
we present an objective function that achieves this.

To this end, we add a parameter δ > 0 that should describe the
reaction time. Due to our discrete time setting, we introduce
nδ ∈{1, . . . ,N} as the discrete time step closest to δ . The idea
is to adjust the cost function such that it incentivizes standing
still until nδ , to take reaction time into account.

We achieve this by splitting the cost function in two parts, be-
fore and after nδ . In the first part, we assume that users are not
aware of the target position or have at least not processed all
required information for initiating the motion. In both cases,
users should have no interest in changing their control. There-
fore, we do not penalize the distance to the desired position
in that time frame and employ a much higher jerk penaliza-
tion compared to the main movement phase. More precisely,
r is replaced by f (n) · r, where f (n) is, for the most part, an
approximation of a very large constant c, e.g., c = 100000.3
In the second part, i.e., starting from time step nδ , we use the
cost function (9) from 2OL-LQR2.

In total, the cost function of 2OL-LQR3 is

JN(x,u) = D2
N +

nδ −1

∑
n=1

f (n)r j2
n +

N−1

∑
n=nδ

(
D2

n + r j2
n
)
. (10)

There are several ways to obtain the reaction time δ and
thus nδ . One way is to determine it directly from the data,
e.g., as the time when the acceleration passes a certain thresh-
old. Another approach is to include it as an additional param-
eter to be optimized by the LSQ algorithm. We have chosen
the latter approach and it works well according to our results.

RESULTS
In this section we evaluate our main model, 2OL-LQR2, by
comparing it to the minimum-jerk model from [13] (MinJerk)
and the second-order lag with equilibrium control from [25]
(2OL-Eq). We also investigate how the parameters of our
model change for different tasks (IDs) and different users.
Finally, we demonstrate the ability of 2OL-LQR3 to model
movements including a reaction time.

Minimum-Jerk Model by Flash and Hogan (MinJerk)
Flash and Hogan [13] show that the minimum-jerk trajectory
between two points is a fifth-degree polynomial. They as-
sume that velocity and acceleration are zero at the start and
at the end of the movement, and explain how the parame-
ters of this polynomial can be computed under these condi-
tions. However, in our dataset, velocity and acceleration are
not necessarily zero, neither at the beginning nor at the end
of the movement. Therefore, before we delve into the results,
we present the following technique to derive the parameters
3To aid the LSQ optimization process, we use a smoothed version
of the piecewise constant sequence of jerk weights c · r and r, i.e.,
f (n) := (c−1)exp(1

nδ −1 − 1
nδ −n)+1 for n ∈ {1, . . . ,nδ −1}.

6

77

of the minimum-jerk polynomial under these different condi-
tions.

Deriving the MinJerk Polynomial
In [13], the minimum-jerk polynomial is given by

pMinJerk(t) =
5

∑
i=0

ci

(
t
t f

)i

, (11)

with coefficients c0, . . . ,c5 and where t f is the final time of
the movement. In our discrete-time setting, we evaluate the
polynomial only at times tn = (n−1)h, n ≥ 1. In this case, the
final time is given by t f = (Ñ − 1)h, where Ñ is the last time
step4 and h is the same step size as before. Thus, the position
at time step n is given by

pMinJerk
n =

5

∑
i=0

ci

(
n − 1
Ñ − 1

)i

. (12)

The coefficients c0, . . . ,c5 are computed from the data: c0
is the initial position, i.e., c0 = pUSER

1 . The coefficients c1
and c2 are computed from initial velocity vUSER

1 and accel-
eration aUSER

1 . Since we have to take into account factors
arising from differentiation, we arrive at c1 = vUSER

1 t f and
c2 = aUSER

1 t2
f /2. The remaining coefficients c3,c4,c5 can be

computed by solving the system of linear equations

(1 1 1
3 4 5
6 12 20

)(c3
c4
c5

)
=




pUSER
t f

− c0 − c1 − c2

vUSER
t f

t f − c1 − 2c2

aUSER
t f

t2
f − 2c2


 , (13)

where pUSER
t f

, vUSER
t f

, and aUSER
t f

are, respectively, the pointer
position, velocity, and acceleration at the final time.

Results for MinJerk
The MinJerk model has been derived from data of an experi-
ment that did not involve any corrective submovements [13].
This leaves two possibilities to fit the model to our data, which
does show extensive corrective submovements. If MinJerk is
used for modeling the entire movement, i.e., until time step N,
the fit is very poor (see Figure 5; dotted line). Instead of
a quick movement towards the target with extensive correc-
tive submovements, as in our data, the model predicts a slow,
smooth movement, reaching the target only at the time of the
mouse click.

Therefore, we use MinJerk for only the first, rapid movement
towards the target (the “surge”). Similar to [25], we deter-
mine the end of the surge (t f in Figure 5) from the data as
the first zero-crossing in the acceleration time series after the
deceleration (for movements to the left: acceleration) phase.
After that, we assume that the pointer does not move. As il-
lustrated in Figure 5 (blue solid line), this results in a good
fit of the surge phase, at least for movements that exhibit a
clear surge phase. However, the target is not reached, causing
a poor overall fit.

4We specifically do not use N for reasons elaborated below.

0 t
f 0.5 1 1.5

Time (s)

-0.1

-0.05

0

0.05

0.1

Po
si

tio
n

(m
)

(a) Position Time Series

0 t
f
0.5 1 1.5

Time (s)

0

0.5

1

V
el

oc
ity

 (
m

/s
)

(b) Velocity Time Series

0 t
f
0.5 1 1.5

Time (s)

-5

0

5

10

A
cc

el
er

at
io

n
(m

/s
2)

(c) Acceleration Time Series
Figure 5. For the MinJerk model, we have to decide whether we want
to model the surge well, but not reach the target (blue solid line with
constant continuation after t f), or reach the target, but not model the
entire movement well (blue dotted line). In this paper we have chosen
the former option. In this case t f is the final time of the surge.

In conclusion, MinJerk is a good model for the surge phase
but not suitable for describing motions that contain extensive
corrective submovements.

Second-order Lag Equilibrium Control (2OL-Eq)
The 2OL-Eq model is a discrete version of (2OL) with u ≡
kT . It is given by the system dynamics xn+1 = Axn + Bun
with matrices A and B from (3) and initial condition
x1 = (pUSER

1 ,vUSER
1 ,T)⊤. With this particular choice of con-

trol, the pointer moves towards the target T and stays there.
The target position T , together with zero velocity and acceler-
ation, constitutes an equilibrium in this case; hence the name
“equilibrium control”. This constant control is the main dif-
ference to our approach, in which the control values un are
optimized with respect to some cost function JN .

For the 2OL-Eq model, we optimize the spring stiffness k
and the damping d with the same parameter fitting process
and the same SSE objective function (7) that we use for our
2OL-LQR approach.

The behavior of the 2OL-Eq is shown in Figure 6. Visually,
the model captures user behavior well in terms of pointer posi-
tion, cf. Figure 6(a). The velocity time series depicted in Fig-
ure 6(b), however, is asymmetric in the 2OL-Eq case, while
the user shows a more symmetric, bell-shaped velocity profile.
The biggest difference appears in the acceleration time series.
The user performs a symmetric and smooth N-shaped accel-
eration. In contrast, the acceleration of the 2OL-Eq jumps
instantaneously at the start of the movement, and then rapidly
declines. This can be explained with the physical interpreta-
tion of the 2OL-Eq as a spring-mass-damper system: Since u
is constant in this model, as the system is released, the spring
instantaneously accelerates the system with a force that is pro-
portional to the extension of the spring. Because human mus-

7

78 An Optimal Control Model of Mouse Pointing Using the LQR

0 0.5 1 1.5 2

Time (s)

-0.1

-0.05

0

0.05

0.1

Po
si

tio
n

(m
)

Simulation
Data
Initial point, target

(a) Position Time Series

0 0.5 1 1.5 2

Time (s)

0

0.5

1

V
el

oc
ity

 (
m

/s
)

(b) Velocity Time Series

0 0.5 1 1.5 2

Time (s)

-5

0

5

10

A
cc

el
er

at
io

n
(m

/s
2)

(c) Acceleration Time Series

0 0.5 1 1.5 2

Time (s)

4

4.5

5

5.5

6

C
on

tr
ol

 u

(d) Control Time Series
Figure 6. Due to the constant control, 2OL-Eq yields a much less sym-
metric velocity and acceleration profile during the surge than the user
data.

0 0.5 1 1.5

Time (s)

-0.1

-0.05

0

0.05

0.1

Po
si

tio
n

(m
)

Simulation
Data
Initial point, target

(a) Position Time Series

0 0.5 1 1.5

Time (s)

0

0.5

1

V
el

oc
ity

 (
m

/s
)

(b) Velocity Time Series

0 0.5 1 1.5

Time (s)

-5

0

5

10

A
cc

el
er

at
io

n
(m

/s
2)

(c) Acceleration Time Series

0 0.5 1 1.5

Time (s)

-20

-10

0

10

20

C
on

tr
ol

 u

(d) Control Time Series
Figure 7. Our second iteration model 2OL-LQR2 models the entire
movement well. However, the acceleration in the surge phase is slightly
less symmetric than the one of the user.

cles cannot build up force instantaneously [29], this behavior
is not physically plausible.

Our Model 2OL-LQR2 vs. MinJerk and 2OL-Eq
Qualitative Comparison
For the qualitative comparison, we performed a visual analy-
sis of model behavior on the entire dataset. Although in the
figures we illustrate a particular movement of a specific par-
ticipant, we recall that the behavior is representative and the
plots of all 12 participants and all 4 IDs are provided as sup-
plementary material.

The behavior of our model 2OL-LQR2 is shown in Figure 7.
Overall, the model approximates the position rather well over
the entire movement, cf. Figure 7(a). Corrective submove-
ments, which start at around t = 0.4s, are not replicated well
by any of the three models (see Figures 5, 6, and 7). Our
model slightly underestimates the maximum velocity and the
velocity profile is less symmetric than the data. Similar ef-
fects can be observed in the acceleration, see Figure 7(c).

0 0.1 0.2 0.3 0.4
Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Po
si

tio
n

(m
)

(a) Position Time Series

0 0.1 0.2 0.3 0.4
Time (s)

-0.5

0

0.5

1

1.5

2

V
el

oc
ity

 (
m

/s
)

(b) Velocity Time Series

0 0.1 0.2 0.3 0.4
Time (s)

-10

-5

0

5

10

A
cc

el
er

at
io

n
(m

/s
2)

(c) Acceleration Time Series
Figure 8. ID 2 tasks without a correction phase are well approximated
by each of the three considered models (here: Participant 1, 1275px dis-
tance, 425px target width, 35th movement to the right).

Compared to MinJerk, our model 2OL-LQR2 explains the
surge phase similarly well, while not quite capturing the sym-
metry observed in many acceleration time series as the one
depicted in Figures 5, 6, and 7.5 However, as a major im-
provement compared to MinJerk, 2OL-LQR2 captures the en-
tire movement, not just the surge phase. We emphasize that
MinJerk is given the end point of the surge, as well as posi-
tion, velocity and acceleration at that point, while our model
is not given that information.

Compared to 2OL-Eq, our model captures position, veloc-
ity, and acceleration much better. The reason for this is that,
in contrast to 2OL-Eq, the control time series shown in Fig-
ure 7(d) is not constant but changes over time. This often
leads to a more N-shaped acceleration time series and a more
bell-shaped velocity time series, as predicted by Flash and
Hogan [13] and in many cases confirmed by our data.

ID 2 tasks play a special role, as they (usually) do not involve
corrective submovements, see Figure 8. In this case, all three
models match the position data. Visible differences in the fit
appear in the velocity and acceleration data.

Quantitative Comparison
In the following, we provide a quantitative comparison across
all 7702 trajectories. The resulting SSE values of all three
models are shown in Figure 9(a), on a logarithmic scale. In
addition, we measure the Maximum Error between model and
user trajectories, i.e.,

max
n=1,...,N

|pΛ
n − pUSER

n |, (14)

which is depicted in Figure 9(b). As can be seen from both
Figures, our model 2OL-LQR2 is able to capture human be-
havior substantially better in terms of SSE and in terms of
Maximum Error than both the 2OL-Eq and MinJerk models.

5There are some cases in which asymmetric acceleration time se-
ries do occur. Our model 2OL-LQR2 is able to approximate these
profiles reasonably well and is not limited to, e.g., an N-shaped ac-
celeration profile, as is the case with MinJerk.

8

79

2OL-LQR
2

2OL-Eq MinJerk

10
-4

10
-2

10
0

S
S
E

(a) SSE

2OL-LQR
2

2OL-Eq MinJerk

10
-3

10
-2

10
-1

M
a
x
 E

rr
o
r

(b) Maximum Error
Figure 9. SSE and Maximum Error values of our model 2OL-LQR2
compared to 2OL-Eq and MinJerk for the user trajectories of all partic-
ipants and all tasks (logarithmic scale).

Model SSE Maximum Error
Mean SE SD Mean SE SD

2OL-LQR2 0.03 0.001 0.10 0.014 0.0001 0.009
2OL-Eq 0.11 0.002 0.16 0.03 0.0001 0.013
MinJerk 0.21 0.006 0.56 0.035 0.0025 0.022

Table 1. Mean value, standard error (SE), and standard deviation (SD)
of the SSE and Maximum Error values of each model applied to the 7702
user trajectories.

Kolmogorov-Smirnov tests showed that the distributions of
SSE for the three models do not fit the assumption of nor-
mality (all values p < 0.0001). Thus, we carried out a Fried-
man Test (i.e., a non-parametric test equivalent to a repeated
measures one-way ANOVA). The main factor included in the
analysis was which model was used: 2OL-LQR2, 2OL-Eq, or
MinJerk. The significance level was set to 0.05. The test indi-
cated that the SSE between the three models was significantly
different (χ2(2) = 8492.78, p < 0.001, n = 7702).

Additional Wilcoxon Signed Rank tests with Bonferroni
corrections showed that the SSE was significantly lower
in the 2OL-LQR2 model when compared to the 2OL-Eq
model (Z = −74.87, p < 0.001), or to the MinJerk model
(Z = −68.49, p < 0.001). The findings are analogous for the
maximum deviations of the simulated trajectories from the
data (Friedman Test, χ2(2) = 9106.12, p < 0.001, n = 7702),
with Wilcoxon Signed Rank tests (p < 0.001) showing that
2OL-LQR2 approximates user trajectories significantly better
than both 2OL-Eq and MinJerk. Summary statistics of both
measures for all three models can be found in Table 1.

Parameter Distribution of 2OL-LQR2
Figures 10(a)-(c) (left) show the ranges of the three 2OL-
LQR2 parameters k, d, and r, optimized for the user trajecto-
ries of all tasks with ID > 2, grouped by participants.6 As can
be seen, different participants are characterized by differing
parameter sets. For example, participant 2 is characterized by
a high spring stiffness k, an above-average damping d, and a
very low jerk weight r. In contrast, participant 9 is character-
ized by a very low spring stiffness k, a very low damping d,
6 The parameters for ID 2 tasks differ from those of ID > 2 tasks.
Due to limited space, we focus on the latter in these plots. For the
sake of completeness, the figures including ID 2 tasks can be found
in the supplementary material.

1 2 3 4 5 6 7 8 9 10 11 12

User

0

100

200

300

400

500

k

2 4 6 8

ID

0

100

200

300

400

500

k

(a) Parameter k

1 2 3 4 5 6 7 8 9 10 11 12

User

0

10

20

30

40

50

d
2 4 6 8

ID

0

10

20

30

40

50

d

(b) Parameter d

1 2 3 4 5 6 7 8 9 10 11 12

User

10-6

10-4

10-2

100

r

2 4 6 8

ID

10-6

10-4

10-2

100

r

(c) Parameter r (logarithmic scale)
Figure 10. Parameters of our model 2OL-LQR2 , optimized for all con-
sidered trajectories of all participants and all tasks, grouped by partici-
pants (left, only ID 4, 6, 8 tasks) and by ID (right). For reasons of clarity,
both plots for parameter d do not include the five biggest outliers rang-
ing between 58 and 181.

and a very high jerk weight r. Since in our case higher jerk
penalization enforces less rapid changes in control, from the
jerk weight r it can be inferred how much effort the user is
willing to put into the task: a higher r can be interpreted as
less effort.

Figures 10(a)-(c) (right) illustrate the ranges of the parame-
ters k, d, and r, optimized for the user trajectories of all par-
ticipants, grouped by ID of the task. All three parameters
show characteristic variations by ID. The spring stiffness k in-
creases noticeably from ID 4 to ID 6. The damping parameter
d is considerably lower for ID 2 tasks. This confirms the ob-
servation that participants show oscillatory behavior in tasks
with low IDs, as reported before in [16, 3, 25]. These oscilla-
tions also play a role in the large variance of r for ID 2. For
the other IDs, r declines only slightly with ID, i.e., the effort
is almost independent of the task difficulty.

The impact of the parameters on model behavior is however
not straightforward, because a change in one of the parame-

9

80 An Optimal Control Model of Mouse Pointing Using the LQR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (s)

-0.1

-0.05

0

0.05

0.1

Po
si

tio
n

(m
)

Simulation
Data
Initial point, target

(a) Position Time Series

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (s)

0

0.5

1

V
el

oc
ity

 (
m

/s
)

(b) Velocity Time Series

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (s)

-10

-5

0

5

10

A
cc

el
er

at
io

n
(m

/s
2)

(c) Acceleration Time Series

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (s)

-50

0

50

C
on

tr
ol

 u

(d) Control Time Series
Figure 11. Our third iteration model 2OL-LQR3 allows to model indi-
vidual movements by including reaction time.

ters does not only influence the movement directly, but also
results in a different optimal control sequence, which likewise
affects the solution trajectory.

Modeling Individual Movements Including Reaction Time
Our model 2OL-LQR2 does not take reaction time into ac-
count. However, this is possible with our third iteration, 2OL-
LQR3. Only in this section, we thus explicitly do not drop
any frames at the beginning of the trials. Results for the same
representative trial as before are shown in Figure 11. Clearly,
there is no change in control and thus in acceleration before
time δ , which can loosely be interpreted as a reaction time.
Looking closely at the initiation of the acceleration, we ob-
serve that our model initiates the movement later than the user
but with a higher acceleration. The reason is that the opti-
mizer treats δ as a free parameter to minimize the SSE of the
entire position time series. Thus, while movements including
reaction time can be approximated by 2OL-LQR3 quite well,
the parameter δ itself does not necessarily resemble the true
reaction time.

DISCUSSION AND FUTURE WORK
In this paper we have explored a simple OFC model for
mouse pointer movements. We assumed optimal closed-loop
behavior with respect to a quadratic cost function (penalizing
jerk and distance) and subject to linear system dynamics with
no delay and no noise. These simplifications lead to a number
of limitations of our model.

First, all models that we compared do not model corrective
submovements well. Although our models can recreate cor-
rective submovements (e.g., in Figure 11), they are smaller in
amplitude than those of the users. Future research should put
more emphasis on replicating these submovements in more
detail by extending the model.

Second, due to its deterministic nature, our model cannot
replicate the variability of human movements. It produces
a typical movement of a specific user, but it produces the
same movement every time. In future work we plan to ex-
plore stochastic models to better capture human variability.

Third, we note that although our cost function (9) of our main
model, 2OL-LQR2, incentivizes a short(er) movement time
due to summed distance costs, it does not explicitly model
minimizing the total movement time. If the latter is desired
(e.g., as part of the experimental design), then in future work
the model can be extended by modifying the cost function
using the Cost of Time theory.

Despite these limitations, our 2OL-LQR2 model matches
our data well, and significantly better than 2OL-Eq or Min-
Jerk. We achieve this with only three parameters, which have
an easily understandable interpretation as spring stiffness k,
damping d, and effort, related to r. We only need these pa-
rameters, the target position, and initial conditions. In con-
trast to MinJerk, our model does not need to know the point
in time and space where the surge movement ends. Most im-
portantly, our model does not require knowledge about the
exact time when the target is reached. Compared to 2OL-Eq,
our model yields a more bell-shaped velocity time series and
a more N-shaped acceleration time series, without implausi-
bly high acceleration at the start of the movement. In addition,
our model explains how users differ from each other in prop-
erties (stiffness, damping) and effort.

The biggest strength is that the OFC perspective makes our
model very flexible and easily extensible. In particular, it can
readily be extended to other instructions, such as emphasizing
speed vs. comfort. It can also be extended to different tasks,
such as 2D or 3D pointing, 6 DoF docking tasks, etc.

It is important to highlight that our model is a pure end-
effector model of the movement of the mouse pointer. We
do not explicitly model biomechanics, sensor characteristics,
or transfer functions in the operating system. Incorporating
these is possible, albeit yielding nonlinear system dynam-
ics, and therefore making the model more complex. Our
simple model already works quite well for modeling mouse
pointer movements. This reinforces our argument that OFC
is a promising theory to better understand movement, such
as movement of the mouse pointer, during interaction and is
thus a valuable addition to the HCI community.

CONCLUSION
In this paper, we have modeled mouse pointer movements
from an optimal control perspective. More precisely, we
have investigated the Linear-Quadratic Regulator with vari-
ous objective functions. We found that our model 2OL-LQR2
fits our data significantly better than either 2OL-Eq [25] or
MinJerk [13]. We require a number of simplifying assump-
tions (linear dynamics, quadratic costs). Despite these, mouse
pointer movements of real users can be explained well. More-
over, this is achieved with only three, intuitively interpretable,
parameters, which allow to characterize users by properties
(stiffness, damping) and effort. In conclusion, we believe that
the optimal feedback control perspective is a strong, flexible,
and very promising direction for HCI, which should be fur-
ther explored in the future.

REFERENCES
[1] Takeshi Asano, Ehud Sharlin, Yoshifumi Kitamura,

Kazuki Takashima, and Fumio Kishino. 2005.

10

81

Predictive interaction using the delphian desktop. In
Proceedings of the 18th annual ACM symposium on
User interface software and technology. ACM,
133–141.

[2] Bastien Berret and Frédéric Jean. 2016. Why Don’t We
Move Slower? The Value of Time in the Neural
Control of Action. Journal of Neuroscience 36, 4
(2016), 1056–1070. DOI:
http://dx.doi.org/10.1523/JNEUROSCI.1921-15.2016

[3] Reinoud J. Bootsma, Laure Fernandez, and Denis
Mottet. 2004. Behind Fitts’ law: kinematic patterns in
goal-directed movements. International Journal of
Human-Computer Studies 61, 6 (2004), 811–821.

[4] Daniel Bullock and Stephen Grossberg. 1988. Neural
Networks and Natural Intelligence. Massachusetts
Institute of Technology, Cambridge, MA, USA,
Chapter Neural Dynamics of Planned Arm Movements:
Emergent Invariants and Speed-accuracy Properties
During Trajectory Formation, 553–622.
http://dl.acm.org/citation.cfm?id=61339.61351

[5] Y. Chan and J.-P. Maille. 1975. Extension of a linear
quadratic tracking algorithm include control constraints.
IEEE Trans. Automat. Control 20, 6 (December 1975),
801–803. DOI:
http://dx.doi.org/10.1109/TAC.1975.1101101

[6] Frederic Crevecoeur, Tyler Cluff, and Stephen H. Scott.
2014. The Cognitive Neurosciences, 5th ed. MIT Press,
Cambridge, MA, USA, Chapter Computational
Approaches for Goal-Directed Movement Planning and
Execution, 461–477.

[7] E. R. F. W. Crossman and P. J. Goodeve. 1983.
Feedback control of hand-movement and Fitts’ law.
The Quarterly Journal of Experimental Psychology 35,
2 (1983), 251–278.

[8] Jörn Diedrichsen, Reza Shadmehr, and Richard B. Ivry.
2010. The coordination of movement: optimal
feedback control and beyond. Trends in Cognitive
Sciences 14, 1 (2010), 31 – 39. DOI:
http://dx.doi.org/10.1016/j.tics.2009.11.004

[9] P. Dorato and A. Levis. 1971. Optimal linear regulators:
The discrete-time case. IEEE Trans. Automat. Control
16, 6 (December 1971), 613–620. DOI:
http://dx.doi.org/10.1109/TAC.1971.1099832

[10] Digby Elliott, Werner Helsen, and Romeo Chua. 2001.
A century later: Woodworth’s (1899) two-component
model of goal-directed aiming. Psychological bulletin
127 (06 2001), 342–57. DOI:
http://dx.doi.org/10.1037//0033-2909.127.3.342

[11] Paul M. Fitts. 1954. The information capacity of the
human motor system in controlling the amplitude of
movement. Journal of Experimental Psychology 47, 6
(1954), 381–391.

[12] Paul M. Fitts and James R. Peterson. 1964. Information
capacity of discrete motor responses. Journal of
experimental psychology 67, 2 (1964), 103.

[13] Tamar Flash and Neville Hogan. 1985. The
Coordination of Arm Movements: An Experimentally
Confirmed Mathematical Model. Journal of
neuroscience 5 (1985), 1688–1703.

[14] J. Gori and O. Rioul. 2018. Information-Theoretic
Analysis of the Speed-Accuracy Tradeoff with
Feedback. In 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 3452–3457.
DOI:http://dx.doi.org/10.1109/SMC.2018.00585

[15] Julien Gori, Olivier Rioul, and Yves Guiard. 2018.
Speed-Accuracy Tradeoff: A Formal
Information-Theoretic Transmission Scheme (FITTS).
ACM Trans. Comput.-Hum. Interact. 25, 5, Article 27
(Sept. 2018), 33 pages. DOI:
http://dx.doi.org/10.1145/3231595

[16] Yves Guiard. 1993. On Fitts’s and Hooke’s laws:
Simple harmonic movement in upper-limb cyclical
aiming. Acta psychologica 82, 1 (1993), 139–159.

[17] Christopher M. Harris and Daniel M. Wolpert. 1998.
Signal-dependent noise determines motor planning.
Nature 394, 6695 (1998), 780–784. DOI:
http://dx.doi.org/10.1038/29528

[18] Bruce Hoff. 1994. A model of duration in normal and
perturbed reaching movement. Biological Cybernetics
71, 6 (01 Oct 1994), 481–488. DOI:
http://dx.doi.org/10.1007/BF00198466

[19] Bruce Hoff and Michael A. Arbib. 1993. Models of
Trajectory Formation and Temporal Interaction of
Reach and Grasp. Journal of Motor Behavior 25, 3
(1993), 175–192. DOI:
http://dx.doi.org/10.1080/00222895.1993.9942048

PMID: 12581988.

[20] Y. Jiang, Z. Jiang, and N. Qian. 2011. Optimal control
mechanisms in human arm reaching movements. In
Proceedings of the 30th Chinese Control Conference.
1377–1382.

[21] Gary D. Langolf, Don B. Chaffin, and James A. Foulke.
1976. An Investigation of Fitts’ Law Using a Wide
Range of Movement Amplitudes. Journal of Motor
Behavior 8, 2 (1976), 113–128. DOI:
http://dx.doi.org/10.1080/00222895.1976.10735061

PMID: 23965141.

[22] Zhe Li, Pietro Mazzoni, Sen Song, and Ning Qian.
2018. A Single, Continuously Applied Control Policy
for Modeling Reaching Movements with and without
Perturbation. Neural Computation 30, 2 (2018),
397–427. DOI:http://dx.doi.org/10.1162/neco_a_01040
PMID: 29162001.

[23] I. Scott MacKenzie. 1992. Fitts’ Law as a Research and
Design Tool in Human-Computer Interaction.
Human–Computer Interaction 7, 1 (1992), 91–139.
DOI:http://dx.doi.org/10.1207/s15327051hci0701_3

11

82 An Optimal Control Model of Mouse Pointing Using the LQR

[24] David E. Meyer, Richard A. Abrams, Sylvan
Kornblum, Charles E. Wright, and J. E. Keith Smith.
1988. Optimality in human motor performance: Ideal
control of rapid aimed movements. Psychological
review 95, 3 (1988), 340.

[25] Jörg Müller, Antti Oulasvirta, and Roderick
Murray-Smith. 2017. Control Theoretic Models of
Pointing. ACM Trans. Comput.-Hum. Interact. 24, 4,
Article 27 (Aug. 2017), 36 pages. DOI:
http://dx.doi.org/10.1145/3121431

[26] Réjean Plamondon and Adel M. Alimi. 1997.
Speed/accuracy trade-offs in target-directed
movements. Behavioral and brain sciences 20, 02
(1997), 279–303.

[27] Ning Qian, Yu Jiang, Zhong-Ping Jiang, and Pietro
Mazzoni. 2013. Movement Duration, Fitts’s Law, and
an Infinite-Horizon Optimal Feedback Control Model
for Biological Motor Systems. Neural Computation 25,
3 (2013), 697–724. DOI:
http://dx.doi.org/10.1162/NECO_a_00410 PMID:
23272916.

[28] Philip Quinn and Shumin Zhai. 2016. Modeling
Gesture-Typing Movements. Human–Computer
Interaction (2016), 1–47. DOI:
http://dx.doi.org/10.1080/07370024.2016.1215922

[29] Richard A. Schmidt and Timothy D. Lee. 2005. Motor
Control and Learning. Human Kinetics.

[30] Reza Shadmehr. 2010. Control of movements and
temporal discounting of reward. Current Opinion in
Neurobiology 20, 6 (2010), 726 – 730. DOI:
http://dx.doi.org/10.1016/j.conb.2010.08.017 Motor
systems, Neurobiology of behaviour.

[31] Reza Shadmehr and Steven P. Wise. 2005. The
Computational Neurobiology of Reaching and Pointing.
MIT Press.

[32] Emanuel Todorov. 1998. Studies of goal-directed
movements. Massachusetts Institute of Technology.
(1998).

[33] Emanuel Todorov. 2005. Stochastic Optimal Control
and Estimation Methods Adapted to the Noise
Characteristics of the Sensorimotor System. Neural
Computation 17 (2005), 1084–1108.

[34] Emanuel Todorov and Michael I. Jordan. 2002. Optimal
feedback control as a theory of motor coordination.
Nature neuroscience 5, 11 (2002), 1226–1235.

[35] Y. Uno, M. Kawato, and R. Suzuki. 1989. Formation
and control of optimal trajectory in human multijoint
arm movement. Biological Cybernetics 61, 2 (01 Jun
1989), 89–101. DOI:
http://dx.doi.org/10.1007/BF00204593

[36] Robert Sessions Woodworth. 1899. Accuracy of
voluntary movement. The Psychological Review:
Monograph Supplements 3, 3 (1899), i.

[37] Brian Ziebart, Anind Dey, and J. Andrew Bagnell.
2012. Probabilistic Pointing Target Prediction via
Inverse Optimal Control. In Proceedings of the 2012
ACM International Conference on Intelligent User
Interfaces (IUI ’12). ACM, New York, NY, USA, 1–10.
DOI:http://dx.doi.org/10.1145/2166966.2166968

APPENDIX

2OL-LQR EQUATIONS
The 2OL-LQR model can be described as the time-discrete
linear-quadratic optimal control problem with finite horizon
N ∈N

Minimize JN (x,u) =
N

∑
n=1

x⊤
n Qnxn +

N−1

∑
n=1

(un −un−1)
⊤Rn(un −un−1)

with respect to u = (un)n∈{1,...,N−1} ⊂ R given x̄1 ∈ R3, ū0 ∈ R
(15a)

where x = (xn)n∈{1,...,N} ⊂R3 with xn = (pn,vn,T)
⊤ satisfies

xn+1 = Axn +Bun, n ∈ {1, . . . ,N − 1},
x1 = x̄1,

(15b)

with sampling time h > 0 and system dynamics matrices

A =

(1 h 0
−hk 1 − hd 0

0 0 1

)
, B =

(0
h
0

)
(15c)

based on the (approximated) second-order lag.
The state cost matrices are defined by

Qn =

(1 0 −1
0 0 0

−1 0 1

)
∈ R3×3, n ∈ {1, . . . ,N}, (16)

which implies

x⊤
n Qnxn = (T − pn)

2 = D2
n, (17)

i.e., the distance Dn = |T − pn| between mouse and target
position is quadratically penalized at every time step n ∈
{1, . . . ,N}. In our case of one-dimensional pointing tasks,
the control cost matrices are scalar and given by

Rn =
r

h2 ∈ R, r > 0, n ∈ {1, . . . ,N − 1}, (18)

which yields

(un − un−1)
⊤Rn(un − un−1) = rn

(
un − un−1

h

)2

, (19)

i.e., the squares of the “jerk” terms jn =
un−un−1

h are penalized
with some jerk weight r at every time step n ∈ {1, . . . ,N −1}.
Because of the penalization of the differences in control, each
control value u∗

n of the optimal control sequence u∗ minimiz-
ing JN(x,u) given some initial state x̄1 and some initial con-
trol ū0 explicitly depends on the preceding control value u∗

n−1.
For this reason, we need to introduce information vectors

In =

(
xn

un−1

)
∈ R4, n ∈ {1, . . . ,N}. (20)

Furthermore, we expand the system matrices A and Qn by an
additional zero row and column and add an additional one to

12

83

the control matrix B in order to propagate the previous control
un−1:

A =

(
A 0
0 0

)
=




1 h 0 0
−hk 1 − hd 0 0

0 0 1 0
0 0 0 0


 ∈ R4×4,

B =

(
B
1

)
=




0
h
0
1


 ∈ R4×1,

Qn =

(
Qn 0
0 0

)
=




1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0


 ∈ R4×4,

n ∈ {1, . . . ,N}. (21)

Using this notion, (15) is equivalent to the following optimal
control problem:

Minimize JN(I,u) =
N

∑
n=1

I⊤
n QnIn +

N−1

∑
n=1

(un −un−1)
⊤Rn(un −un−1)

with respect to u = (un)n∈{1,...,N−1} ⊂ R given x̄1 ∈ R3, ū0 ∈ R
(22a)

where I = (In)n∈{1,...,N} ⊂R4 with In = (xn,un−1)
⊤ satisfies

In+1 = AIn +Bun, n ∈ {1, . . . ,N − 1},

I1 = Ī1 =

(
x̄1
ū0

)
,

(22b)

with sampling time h > 0 and where u0 = ū0 applies.
Moreover, we define

Ix =

(1 0 0 0
0 1 0 0
0 0 1 0

)
∈ R3×4, Iu = (0 0 0 1) ∈ R1×4,

(23)

which implies

IxIn = xn ∈ R3, IuIn = un−1 ∈ R, n ∈ {1, . . . ,N}, (24)

i.e., Ix respective Iu are the matrices that extract the state xn
respective the control un−1 from the information vector In for
any n ∈ {1, . . . ,N}.

It can be shown that the unique solution u∗ = (u∗
n)n∈{1,...,N} to

the optimization problem (22) (and thus to the original opti-
mization problem (15) as well) is given by

u∗
n = −KnI∗

n , n ∈ {1, . . . ,N − 1},
Kn = (Rn +B⊤Sn+1B)−1(B⊤Sn+1A− RnIu),

n ∈ {1, . . . ,N − 1}, (25)

where the symmetric matrices Sn ∈ R4×4 can be determined
by solving the Modified Discrete Riccati Equations

Sn = Qn + I⊤u RnIu +A⊤Sn+1A−
−(A⊤Sn+1B − I⊤u Rn)(Rn +B⊤Sn+1B)−1(B⊤Sn+1A− RnIu)

(26a)

for n ∈ {1, . . . ,N − 1} backwards in time with initial value

SN = QN . (26b)

13

84 An Optimal Control Model of Mouse Pointing Using the LQR

5
Optimal Feedback Control for Modeling

Human-Computer Interaction

Authors: Florian Fischer, Arthur Fleig, Markus Klar, Jörg Müller
Status: Published in ACM Transactions on Computer-Human Interaction, Volume 29, Issue
6 [17]

The Optimal Control Framework of HCI was developed by all authors. The models were
selected and adapted by FF and JM. FF implemented the models, the parameter fitting,
and the evaluation tools. User data was preprocessed by FF, with help of MK. All authors
analyzed and evaluated the simulation results. Figures were mainly created by FF, with help
of MK. The results were interpreted and discussed by all authors. FF wrote the first draft of
the manuscript. Revision and rewriting of the manuscript was done by all authors. FF is the
corresponding author.

86 Optimal Feedback Control for Modeling Human-Computer Interaction

51

Optimal Feedback Control for Modeling Human–Computer
Interaction

FLORIAN FISCHER, ARTHUR FLEIG, MARKUS KLAR, and JÖRG MÜLLER,
University of Bayreuth

Optimal feedback control (OFC) is a theory from the motor control literature that explains how humans move
their body to achieve a certain goal, e.g., pointing with the finger. OFC is based on the assumption that humans
aim at controlling their body optimally, within the constraints imposed by body, environment, and task. In
this article, we explain how this theory can be applied to understanding Human-Computer Interaction (HCI)
in the case of pointing. We propose that the human body and computer dynamics can be interpreted as a
single dynamical system. The system state is controlled by the user via muscle control signals, and estimated
from observations. Between-trial variability arises from signal-dependent control noise and observation noise.
We compare four different models from optimal control theory and evaluate to what degree these models can
replicate movements in the case of mouse pointing. We introduce a procedure to identify parameters that
best explain observed user behavior. To support HCI researchers in simulating, analyzing, and optimizing
interaction movements, we provide the Python toolbox OFC4HCI. We conclude that OFC presents a powerful
framework for HCI to understand and simulate motion of the human body and of the interface on a moment-
by-moment basis.

CCS Concepts: • Human-centered computing→ HCI theory, concepts and models;

Additional Key Words and Phrases: Optimal control, OFC, Human-Computer Interaction, modeling, param-
eter fitting, aimed movements, mouse pointing, LQR, LQG, second-order lag, minimum jerk, Intermittent
Control

ACM Reference format:
Florian Fischer, Arthur Fleig, Markus Klar, and Jörg Müller. 2022. Optimal Feedback Control for Model-
ing Human–Computer Interaction. ACM Trans. Comput.-Hum. Interact. 29, 6, Article 51 (November 2022),
70 pages.
https://doi.org/10.1145/3524122

1 INTRODUCTION
We address the problem of understanding, and modeling, how users control a virtual end-effector
when interacting with computers. Traditionally, the field of Human–Computer Interaction
(HCI) has concentrated on models such as Fitts’ Law [39, 40], predicting summary statistics
of the movement such as movement time. Recently, more attention has been paid to modeling
the underlying process by which the end-effector is controlled, predicting not only movement
time, but end-effector position, velocity, and acceleration sequences, as well as applied forces
(e.g., [34, 38, 98, 160]).

Authors’ address: F. Fischer, A. Fleig, M. Klar, and J. Müller, University of Bayreuth, Bayreuth 95440, Germany; emails:
{florian.j.fischer, arthur.fleig, markus.klar, joerg.mueller}@uni-bayreuth.de.

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1073-0516/2022/11-ART51
https://doi.org/10.1145/3524122

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

51:2 F. Fischer et al.

We argue that, in order to understand how users control user representations (e.g., mouse
pointer) [120], or virtual objects, the field of HCI needs to learn more from human motor control.
While human motor control mainly addresses the question of how humans control the movement
of their body, the theories developed there also apply to and can be adapted to the question of how
humans control the state of a computer, e.g., movement of the mouse pointer.

In the field of human motor control, modern understanding of human movement is based on
the theory of optimal feedback control (OFC) [33, 142]. This theory understands the human
body, and possibly the environment the body is interacting with, as a dynamical system that can
be controlled, e.g., via muscle control signals. Body and environment put constraints on this con-
trol, e.g., via the system dynamics and constant and signal-dependent motor noise. The theory
assumes that humans continuously observe the state of their own body and the environment they
are interacting with, e.g., by processing visual and proprioceptive signals. Humans are assumed
to control their body optimally with respect to an internalized cost function, while respecting the
constraints given by the system dynamics and motor noise.

We believe that the OFC framework enables a better connection between the field of HCI and
recent advances in neighboring scientific disciplines, such as the study of human movement in
motor control [42, 117] and neuroscience [123]. However, OFC models are not very well known in
the field of HCI, yet. In particular, it has not yet been shown whether these models, developed to
model how humans control their body, can be used to model how users behave during interaction.

The objective of this work is to examine the applicability of OFC to HCI, using the example of
mouse pointing. The contribution of this article is fourfold:

First, we propose a unifying optimal control framework for understanding movement in interac-
tion with computers. This framework allows to predict the kinematics and dynamics of the entire
movement trajectory, including, e.g., end-effector position, or muscle excitation.

Second, we present the first qualitative and quantitative evaluation to what degree different
optimal control models (either open- or closed-loop, deterministic or stochastic) can replicate
movements of the mouse pointer. To the best of our knowledge, these models have not yet been
evaluated quantitatively regarding their ability to predict movement trajectories during interac-
tion. We also discuss the possibilities and limitations of the presented models regarding their suit-
ability for other HCI tasks such as target tracking, path-following, or handwriting.

Third, we propose a generic parameter fitting process, which can be used to identify the compo-
nents of both the system dynamics and the cost function that best explains observed user behavior,
using any desired optimal control model. For each of the presented models, we systematically an-
alyze the individual effects of the parameters and show how the proposed parameter fitting can
be used to explain typical differences between users and/or task conditions, which would remain
hidden when using summary statistics only.

Fourth, we provide OFC4HCI, an open-source toolbox accessible from our GitHub repository1

that contains the underlying Python code of this article. This toolbox includes easy-to-use scripts
for three main use cases: running simulations of human pointing movements using any of the pre-
sented control methods, comparing the resulting trajectories to data from the Pointing Dynamics
Dataset, and optimizing the parameters of a given control model. While the focus of this toolkit
currently is on (one- or multidimensional) pointing tasks, using the toolkit, extensions to other
HCI tasks such as target tracking, keyboard typing, or gesture-based input methods are possible.

Our results suggest that stochastic OFC models are able to explain average user behavior
significantly better than models that only account for simplified movement dynamics (second-
order lag) or pure kinematic models (jerk minimization). In addition, stochastic models such as

1https://github.com/fl0fischer/OFC4HCI.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

87

Optimal Feedback Control for Modeling Human–Computer Interaction 51:3

Linear-Quadratic Gaussian Regulator (LQG) are able to fit the distribution of entire trajec-
tories, given a specific user and task condition. Moreover, the fitting is significantly better than
using the recently proposed Intermittent Control (IC) model [160] with respect to both KL di-
vergence [76] and the 2−Wasserstein distance [104] serving as evaluation metrics. The considered
deterministic OFC model, which does not take into account any noise terms, is able to predict
average user behavior, given a slightly modified cost function.

We strongly believe that a proper modeling of the underlying control process can provide intu-
ition to interface designers as to why users move the way they do during interaction, and enables
a deeper understanding of the impact of parameters of the interface and input device on the pro-
cess of interaction. In the long term, such models could be used for automated optimization of
the parameters of interaction techniques and input devices. Models that work in real-time could
further be used in predictive interfaces, which anticipate what the user wants to do and respond
accordingly, such as pointing target prediction [4]. While we will focus on the example of mouse
pointing throughout this article, the framework we present is generic and suitable for a wide range
of pointing devices, using, e.g., joysticks, keyboards, pens, touch-based input, mid-air gestures, and
so on.

The article is structured as follows:
In Section 2, we start with a short overview of existing models and methods from the fields of

HCI, Human Motor Control, and Optimal Control Theory. The proposed optimal control framework
for HCI is then introduced in Section 3. The models presented in this article are evaluated against
an existing dataset of one-dimensional pointing movements, which is described in Section 4.1.
The generic parameter fitting process we use to identify the model parameters that best explain
observed user behavior is described in Section 4.2.

In Sections 5–10, different optimal control models are presented, analyzed, and adapted to the
case of mouse pointing. Moreover, the predicted movements are compared against user data. Since
this article is also supposed to serve as a tutorial to OFC for HCI researchers and interaction de-
signers, we start with an analysis of the individual components of the OFC framework before
combining them into a final model. In Section 5, we start with a basic model of movement dynam-
ics, the second-order lag, which has been used to describe the overall human–computer system
dynamics [98] and serves as a baseline for the presented optimal control models. The idea of (open-
loop) optimal control is introduced in Section 6, using the minimum jerk model [42]. In Section 7,
both movement dynamics and the assumption of optimality are integrated into one closed-loop
OFC model, the Linear-Quadratic Regulator, which is based on the assumptions of linear dynam-
ics and quadratic costs [141]. From a didactic point of view, it is important to develop a thorough
understanding of deterministic OFC before progressing to stochastic OFC (SOFC) models. For
this reason, we first start with the (substantially simpler) deterministic case, which can be used to
predict average human movement. In Sections 8 and 9, we extend this framework to the general
stochastic case by adding different sensory-input models along with Gaussian motor and sensory
noise (thus denoted as Linear-Quadratic Gaussian Regulator). We compare the SOFC models to a
recently proposed IC model [160], which is briefly described in Section 10.

Finally, both qualitative and quantitative comparisons between all considered models are given
in Section 11. Difficulties and limitations of the proposed framework with regard to its applica-
bility to other HCI tasks are discussed in Section 12, together with some practical advice for HCI
researchers, and conclusions are drawn in Section 13.

2 RELATED WORK
In the field of HCI, interaction is most commonly understood as a sequence of discrete actions,
which is reflected in the classification of tasks, such as command selection or target acquisition [19].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

88 Optimal Feedback Control for Modeling Human-Computer Interaction

51:4 F. Fischer et al.

In particular, movement, e.g., of the mouse pointer, is often reduced to summary statistics. The
most prominent example is the dependency of movement time MT from distance D and widthW
of targets, which is described by Fitts’ Law [39, 40] as MT = a + b ID, with Index of Difficulty (ID)
usually defined as ID = log2 (D/W + 1) [89]. This affine relationship has shown to apply for a va-
riety of tasks, including reciprocal tapping [39], mouse pointing and dragging [21, 48], eye-gazing
[64, 151], reaching with a joystick [21, 64], and ellipse drawing [96]. A very good explanation of
the information theoretic interpretation of Fitts’ Law has been provided by Gori et al. [51].

While aggregated metrics of movement trajectories, e.g., movement variability or movement off-
set [88], have been used to evaluate task accuracy since the early days of HCI [63], predictive
models of movement kinematics and dynamics are less common. Exceptions include the works
of Williamson [152, 153], which introduce an information-theoretic model of interaction with a
focus on the amount of uncertainty that is apparent in different sensor and control channels, and
Müller et al. [98], in which three feedback control models (without optimization) are compared re-
garding their ability to model mouse pointer movements. However, the former model is originally
designed for the specific needs of brain-computer interfaces, particularly inference of the user’s
intention based on noisy signal channels, whereas the latter models only describe the biomechan-
ical apparatus, while high-level factors affecting the movement trajectory such as concrete task
requirements or intrinsic motivations are neglected. Ziebart et al. [159] explore the use of inverse
optimal control models for pointing target prediction. They do not make particular a priori as-
sumptions about the structure of the cost function. Instead, they use an inverse optimal control
approach to fit a generic function with a large number of parameters (36) to a dataset of mouse
pointer movements. While Ziebart et al. [159] focus on the application of inverse optimal control
to pointing target prediction; in this article, we investigate the ability of OFC models to model
movement of the mouse pointer more quantitatively. From an engineering perspective, several
interaction techniques that take into account the underlying end-effector kinematics have been
proposed, including cursor jumping [4, 99], target expansion [90], and increased cursor activa-
tion areas [24, 95]. These approaches are either based on target likelihood estimates [99, 159] or
extrapolate sensor data measured during runtime [4, 90, 95]. Other methods compare observed
trajectories to a set of pre-defined templates in order to predict the desired end-point (“kinematic
template matching”) [106]. In general, these methods are restricted to the kinematic end-effector
level, i.e., they ignore the movement dynamics of the human body (which play a crucial role for
non-standard interaction techniques such as gesture-based input) and cannot be used to model
interaction with dynamic objects.

In addition to their functional use in HCI, movement dynamics have been a research focus
within the field of Motor Control for a long time. Various models have been developed, all of
which predict complete trajectories, e.g., end-effector position, velocity, and acceleration profiles
over the entire movement (e.g., [17, 18, 42, 43, 53, 65, 77, 97, 109]). Biomechanical and neural models,
in addition, explain how these trajectories are dynamically generated. This can be either done on
the joint-, muscle-, or neuronal level, incorporating quantities internal to the human body such as
joint angles, joint moments, muscle forces and activations, or neural excitation signals [8, 69, 70,
101, 114, 144].

Many models of motor control are also capable of modeling the characteristic between-trial
variability that is typically observed in human movements. This variability is mainly attributed to
multiple sources of noise within the human biomechanical and neural system, most of which can
be modeled as additive or multiplicative Gaussian random variables [68, 118, 125, 129, 138, 141].
Signal-dependent noise terms, e.g., Gaussians with zero mean and with a standard deviation that
linearly depends on the magnitude of the muscle control signal, are also considered responsible for
the well-known speed-accuracy tradeoff in goal-directed human movements [58, 118, 129]. These

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

89

Optimal Feedback Control for Modeling Human–Computer Interaction 51:5

noise terms have the effect that larger control signals, which might increase the speed of the end-
effector, also result in larger deviations from the desired end-effector position. Users thus face a
tradeoff between accurate achievement of the desired goal and fast, but noisy movements.

Another well-established finding from human motor control refers to the amount of information
that is used when selecting a specific control signal. Several experiments suggest that information
that becomes available to the controller during the movement, e.g., proprioceptive and/or visual
signals regarding the end-effector, are utilized to adjust control signals online and to account for
unexpected perturbations [93, 136, 142, 149, 154]. This is reflected by feedback control models of
movement, which are able to explain how users correct errors and handle disturbances during the
movement. An early closed-loop model has been provided by Crossman and Goodeve [29]. They
assume that users observe hand and target and adjust their velocity as a linear function of the
distance, as a first-order lag. A physically more plausible extension of the first-order lag is the
second-order lag [29, 79]. These dynamics can be interpreted as a spring-mass-damper system,
where a constant force is applied to the mass, such that the system moves to and remains at the
target equilibrium. Because of its simplicity and widespread use, we use this model as a baseline,
called 2OL-Eq. Other models of human movement include VITE [18] and the models of Plamondon
[110].

The desired trajectory hypothesis [71] assumes that whenever disturbances occur (e.g., due to
internal control noise or external perturbations), feedback is used to push the end-effector toward
a predetermined, deterministic trajectory that results from a separated planning phase. In con-
trast, Todorov and Jordan [142] have demonstrated that deviations are corrected only if they in-
terfere with the task performance, i.e., deviations that are irrelevant for achieving the desired goal
remain ignored. This minimum intervention principle particularly implies that all task-specific re-
quirements (end-point position, movement time, accuracy, etc.) need to be reflected by an internal
formulation that the controller has access to.

Optimal control models provide exactly this internal representation by assuming that humans
try to behave optimally with respect to a certain internalized cost function. Flash and Hogan [42]
proposed that humans aim at generating smooth movements by minimizing the jerk of the end-
effector. We call this model MinJerk in the following. Although the hypothesis that people aim to
minimize jerk has been questioned, see, e.g., Harris and Wolpert [58], the minimum jerk model
is one of the most established models. For example, it has been successfully used by Quinn and
Zhai [112] to model the shape of gestures on a word-gesture keyboard.

Most modern theories of motor control are based on OFC, i.e., they combine the assumptions
of optimality and continuously perceived feedback for closed-loop control. Excellent overviews of
recent progress in OFC theory are provided by Crevecoeur et al. [28] and Diedrichsen [33]. An
early approach that models perturbed reach and grasp movements by using the minimum-jerk
trajectory on a moment by moment basis was presented by Hoff and Arbib [61]. A more general,
more recent, and better known OFC model is the LQG [62, 87], which was mainly used by Todorov
to model human movement from a sensorimotor perspective [138, 141, 142]. In this work, we will
present and discuss the assumptions and limitations of this model, and analyze its applicability to
standard HCI tasks such as mouse pointing.

An important limitation of the LQG model (and many other optimal control models, e.g., [42, 58,
144]) is that the exact movement time needs to be known in advance. One way to circumvent this
issue is to use infinite-horizon OFC [66, 85, 111], i.e., to formulate the optimal control problem
(OCP) on an infinite-time horizon. With such models, (quadratic) distance and effort costs are
usually applied continuously, resulting in an optimal trajectory that consists of both a transient
phase (where the end-effector is moved toward the target) and a steady-state equilibrium (where
the end-effector is kept at the target). The movement time thus emerges implicitly from the OCP.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

90 Optimal Feedback Control for Modeling Human-Computer Interaction

51:6 F. Fischer et al.

Another strand of literature that specifically deals with the duration of movement has produced
the Cost of Time theory [10, 60, 122]. To account for the fact that humans value earlier achievement
more than later achievement, this theory assumes that time is explicitly penalized with a certain
cost function (usually hyperbolic or sigmoidal).

Recently, methods from the field of Reinforcement Learning (RL) have gained increased
attention. These methods are also based on the principles of optimal control theory; however, they
do not require the system dynamics to be known in terms of equations and formulas, but solely rely
on sampling from an environment that is usually assumed a black-box to the controller. For this
reason, they are generally applicable to arbitrarily complex systems including highly non-linear
dynamics and discontinuous cost functions [130].

Cheema et al. [25] have applied recent RL methods to predict fatigue during mid-air movements,
using a torque-actuated linked-segment model of the upper limb. Building on this work, it has
recently been shown that RL applied to a more realistic upper-limb model allows to synthesize
human arm movements that follow both Fitts’ Law and the 2/3 Power Law and can predict human
behavior in mid-air pointing and path following tasks [38]. Moreover, an extension to mid-air
keyboard typing has been proposed [59].

In theory, policy-gradient RL methods can also be applied to model interaction on a muscular
level, using state-of-the-art biomechanical models of the human body [72, 81, 100, 137]. However,
the high complexity of the neuromuscular system has so far imposed considerable restrictions to
each of these approaches, including the reduction of degrees of freedom [72, 100, 137] and the
omission of muscle activation dynamics [81, 100]. Most importantly, for most RL algorithms no
theoretical convergence guarantees exist, which complicates a profound interpretation or repli-
cation of the resulting simulation results [130]. For this reason, in this article we focus on the
well-understood theory of optimal control, as this allows us to use convergence guarantees more
often, which makes us less reliant on intuition and experience. For example, the Linear-Quadratic
Regulator (LQR) introduced in Section 7 is guaranteed to converge to the optimal movement tra-
jectory, given a fixed set of parameters. This is a decisive advantage compared to pure RL-based
methods, as it allows to compare optimal trajectories for different task conditions, cost functions,
and user models.

In summary, the fundamental question of human movement coordination has produced a vast
literature and a deep understanding of the nature of human movement. Given that almost every
interaction of humans with computers involves movement of the body, it is surprising that this
field is little known, and applied, in HCI. It is important to bear in mind; however, that most of
these theories intend to model movement of the human body per se. In HCI, it is also relevant how
users control the movement of user representations (e.g., mouse pointers) [120] and virtual objects
in the computer. Since the control of user representations and virtual objects is mediated by input
devices, operating systems, and programs, requires high precision, and is often learnt very well,
it is unclear how the theory of human motor control can be applied to the HCI context. To our
knowledge, it has not yet been investigated whether the above optimal motor control models can
be applied to HCI tasks such as mouse movements. Adapting and validating such models regarding
their ability to model HCI tasks such as pointing thus remains an open research question for
HCI.

In order to leverage the strengths of recent motor control theory in the field of HCI, we believe
that a general optimal control framework for HCI is necessary, which can explain both how and
why humans behave in interaction with arbitrary interfaces on a continuous level. Such a frame-
work constitutes a natural extension of the principle of “designing interaction, not interfaces” [7]
by conceptualizing interaction based on neuroscientific, psychological, and biomechanical insights
within one coherent and mathematically profound framework.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

91

Optimal Feedback Control for Modeling Human–Computer Interaction 51:7

In the following section, we will introduce the optimal control framework for HCI and explain
its main constituents using the example of mouse pointing.

3 INTRODUCING THE FRAMEWORK
Modern motor control theory assumes that humans aim at controlling their movements optimally,
given the constraints imposed by the body and environment. Important constraints are imposed
by physics, e.g., via Newton’s second law, i.e., force equals mass times acceleration, and by the
muscles, which cannot create forces instantaneously, but need to build up muscle activation (and
thus force) over time. In the case of HCI, constraints are imposed not only by the human body,
but also by the input device, sensor, and processing within the computer. Furthermore, the human
perceptual system does not have direct access to the state of the world, but can only observe certain
variables that depend on the state and needs to build up an internal estimate of the true world state
over time.

Since these properties are characteristic for almost any HCI task, we propose a generic optimal
control framework for HCI, which consists of four submodels that continuously interact with each
other:

— The Human–Computer System Dynamics, which describe the biomechanics of the con-
sidered body parts as well as the dynamics of the resulting interaction with the application
interface via an input device;

— The Human Controller, i.e., the decisive part of the brain, which selects the new muscle
control signals;

— The Feedback, which models how environmental information is sensed by the human; and
— The Human Observer, a cognitive model for how perceived sensory signals from the Feed-

back are processed and evaluated.
Since the computer operates in discrete time, we use discrete-time dynamics, i.e., we consider

timesteps n ∈ {0, . . . ,N } up to a final step N ∈ N, with each time step corresponding to h sec-
onds. However, the proposed framework is designed to be as general as possible and the following
explanation also applies to the continuous-time case.

Figure 1 illustrates the relationship between the four components of the HCI loop, specifically
distinguishing between open-loop and closed-loop optimal control models. In the following, we will
give a brief description of the proposed framework, with focus on the differences between both
variants. Subsequently, the four submodels are explained in detail in separate subsections, intro-
ducing a more technical and mathematically rigorous notation. Readers who are already familiar
with the differences between open- and closed-loop models can proceed directly to Section 3.2.

3.1 Open-Loop vs. Closed-Loop Models
Open-loop models, as depicted in Figure 1(a), cannot infer any information from the System
Dynamics after applying muscle control signals u. For this reason, the Human Controller block in
Figure 1(a) does not depend on the output of the System Dynamics block, but depends only on an
internal Forward Model. In particular, the Feedback and Human Observer blocks are not part of the
generic open-loop framework at all. For this reason, open-loop models allow for a strict separation
between planning and execution phase of a movement, i.e., trajectories x∗ that are optimal with
respect to the objective function JN can be obtained in a two-step process. First, an (open-loop)
OCP is solved (Computation block), i.e., a sequence of controls u∗ = (u∗n)n∈{0, ...,N−1} is found such
that JN (x ,u) becomes minimal among all permissible control sequences u, given an initial state
(see Section 3.3 for more details). Second, the resulting optimal control sequence is applied in a

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

92 Optimal Feedback Control for Modeling Human-Computer Interaction

51:8 F. Fischer et al.

Fig. 1. In our optimal control framework for HCI, the user is assumed to control the state x of the in-
teractive system, which incorporates both the body state (e.g., arm and finger position) and the interface
state (e.g., mouse pointer position and velocity), and which evolves according to the Body and Interface Dy-
namics. We assume that the user computes the controls u through optimization, i.e., by minimizing a cost
function JN (e.g., incorporating time or effort costs) that depends on the task. (a) In an open-loop model, this
calculation is only based on an internal Forward Model of the Human-Computer System Dynamics. The
optimal state trajectory x∗ is obtained by applying the resulting muscle control signals u∗ in one forward
pass. The Forward Model does not have to coincide with the System Dynamics. (b) A closed-loop model
takes into account effects that appear only after execution. The key difference in the Computation block is
that, instead of optimal control signals u∗, it yields an optimal Control Strategy π that is computed before
movement onset. At each time step n, this Control Strategy is used to map an arbitrary (estimated) state x̂n
to the corresponding optimal control un . Based on the resulting state xn+1, an observation yn+1 is obtained
via Feedback, which incorporates descriptions of both the Display and the Human Perception. The Human
Observer then compares this observed state to an expected state it computes using an efference copy of the
current control signal un and the Forward Model. Based on the resulting difference between expected and
observed signals, an internal state estimate x̂n+1 is computed and used to select the next control un+1, and
so on.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

93

Optimal Feedback Control for Modeling Human–Computer Interaction 51:9

forward pass, i.e., the system dynamics are evaluated at each timestep n ∈ {0, . . . ,N − 1} to obtain
the subsequent optimal state x∗n+1.

Note that if the system dynamics are deterministic and the forward model internally used to
compute u∗ matches these dynamics, there is no advantage in computing the optimal controls
online, that is, only at the time they are executed during the forward pass. However, there are few
scenarios where the internal forward model used for optimization cannot fully predict the actual
behavior of the human body and interface dynamics, i.e., the outcome of the Human-Computer
System Dynamics block in Figure 1. This is particularly the case

— if the OCP is stochastic, e.g., in the case of motor noise,
— if there is a mismatch between internal model and actual system dynamics, or
— if unexpected disturbances occur that the internal model did not account for.

If one of these assumptions holds (which usually is the case in practice), the controller will benefit
from any information it receives during execution, as this allows to condition the choice of an indi-
vidual controlun on the true state in a closed-loop manner, instead of using a prior state estimate.
Note that the feedback loop immediately eliminates the strict separation between planning and
execution phase, which is prevalent for open-loop models. Instead, the optimal control sequence
u∗ needs to be computed online in an iterative manner. In particular, all information available to
the controller at a timestep n ∈ {0, . . . ,N − 1} is used to compute the muscle control signal u∗n at
this timestep, which is applied to the Human Body Dynamics. In combination with the Interface
Dynamics, this results in a new system state xn+1. The state (or partial information thereof, see
Section 3.4) is then fed back into the controller, which again selects the next control u∗n+1 based
on this information, i.e., a sensorimotor control loop between Human and Computer is established
(see Figure 1(b)). In particular, the optimal state trajectory x∗ does not only depend on the control
sequence u, but also vice versa. Since in such models, feedback is given to the controller during
execution, these models are often denoted as OFC models [28, 33].

It is important to note that with many OCP solution methods that take into account feedback
during execution (including the ones presented in this article), the actual optimization can be
performed offline, i.e., before the controls are applied to the actual system dynamics. Instead of a
single optimal control sequence u∗, such methods usually yield an optimal Control Strategy, that
is, a function π : X → U that maps an arbitrary state x ∈ X to a corresponding control u ∈ U that
is optimal starting from this state.

In the later sections, we will present both an open-loop model (Section 6) as well as different
variants of one of the most widely used OFC models (Sections 7–9).

3.2 Human–Computer System Dynamics
The Human–Computer System Dynamics form the basis of each optimal control model of HCI and
consist of two parts: the Human Body Dynamics and the Interface Dynamics.

Human Body Dynamics. Given a vector of neural muscle control signals u, the Human Body
Dynamics describe how these signals are transformed into joint torques and accelerations. The
corresponding joint postures are obtained via integration. If required, kinematic models that map
joint postures to world-centered positions of arbitrary body parts can be included as well, e.g., to
get more realistic movement of the wrist or the index finger based on the computed joint angles.

Interface Dynamics. In interaction with computers, the forces and accelerations resulting from
body dynamics are applied to the physical input device, e.g., the mouse device. Inertial properties of
this physical end-effector determine the input device motion, which is sensed, filtered, and mapped
to a motion of the corresponding virtual end-effector. For example, in the case of mouse pointing,
the mouse pointer position might result from the application of a pointing transfer function to the

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

94 Optimal Feedback Control for Modeling Human-Computer Interaction

51:10 F. Fischer et al.

mouse device velocity measured via optical sensors [22, 23]. The virtual end-effector is then used
for interaction with graphical user interfaces. These dynamics of the computer part, including
physical properties of the input device as well as visualizations and animations that appear from
interaction with buttons, sliders, and so on, are summarized within the Interface Dynamics block
in Figure 1.

Combined, the Human–Computer System Dynamics yield the new state vector x , which incor-
porates all relevant information about the current state of the human body, of the physical and/or
the virtual end-effector, and of the applications. In the discrete-time formulation used in this arti-
cle, both the state and control vectors xn and un are given at timesteps n ∈ {0, . . . ,N } up to a final
step N ∈ N, with each timestep corresponding to h seconds. The next state xn+1 depends on the
current state xn and control un , which in most cases can be formalized as

xn+1 = f (xn ,un), (1)
where x0 is a given initial state.2

This system dynamics function f can be either deterministic or stochastic. In the deterministic
case, starting from the current state xn ∈ Rk (k ∈ N) and applying a control un ∈ Rm (m ∈ N),
the subsequent state xn+1 ∈ Rk is uniquely determined by the function f : Rk × Rm → Rk . In
the stochastic case, xn+1 randomly emerges from a set of possible successor states, according to a
conditional probability distribution p, i.e., xn+1 = f (xn ,un) ∼ p (· | xn ,un). Examples of stochastic
systems include, e.g., Body Dynamics with internal motor noise or Interface Dynamics with noisy
input signals.

It is important to note that the controller, which is described in Section 3.3, is agnostic to the
partitioning of the system dynamics into effects attributed to the Body Dynamics and effects at-
tributed to the Interface Dynamics. All the controller need to know is the overall system dynamics
f (or an internal approximation of it), which maps an arbitrary state-control pair (xn ,un) to the
subsequent state xn+1 reached after h seconds. Thus, an optimal control model of HCI can be in-
stantiated in two ways. The first one is to include accurate submodels of arbitrary granularity (e.g.,
a separate model for each muscle activation, arm and hand dynamics, input device dynamics, and
application dynamics), and combine them along the interaction loop into one aggregated system
dynamics function f . However, the framework also allows to test whether some generic dynam-
ics, such as a spring-mass-damper system or simplified muscle activation dynamics, are suitable
to model the overall Human–Computer System Dynamics for a given task setting. The focus of this
article will be on the latter approach, since we aim at starting with an easily understandable and
well-established model from the field of Human Motor Control, and test whether these dynamics
are applicable to the context of mouse pointing. We believe that this approach is well suited for
introducing optimal control methods to HCI without going too much into (biomechanical) detail.

The system dynamics of all models considered in this article are linear in both the state and the
control, i.e.,

xn+1 = f (xn ,un) = Axn + Bun . (2)
Here, the matrix A describes how the dynamics evolve when no control is exerted. The matrix

B describes how the control influences the system.
At first glance, this assumption seems to be very limiting, especially with regards to the com-

plexity of the human neuro- and biomechanical system, as well as of most interaction methods and
application GUIs, However, the tools and methods proposed in this article for the case of linear
dynamics are also beneficial for more complex models of interaction, which, for example, include

2This is closely related to a continuous-time formulation based on differential equations, where the control is assumed to
be piecewise constant (i.e., it only changes once every h seconds).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

95

Optimal Feedback Control for Modeling Human–Computer Interaction 51:11

muscle-driven models of the human body or non-linear pointer acceleration functions. Using a
reference trajectory, it is always possible to linearize a non-linear system around this particular
trajectory in order to obtain a linear system of the form Equation (2), which locally approximates
the non-linear one. While linearization-based extensions of the considered optimal control models
to the non-linear case have been proposed [83, 132, 143], an application of these methods to typical
HCI tasks would be an interesting area for future work.

The main advantage of using linear dynamics is that, when combined with quadratic costs and
Gaussian noise, the resulting OCP (see Section 3.3) can be solved analytically and thus quickly and
exactly. Finally, the linear case is easier to understand and formalize and thus well suited for the
explanatory purposes of this article.

In the case of mouse pointing, which usually requires only small movements of the arm, the
hand, and the input device, linearization around a single trajectory, i.e., using constant system
matrices A and B as in (2), is a reasonable initial approach to model (moderate) mouse movements.
Indeed, we will show that linear system dynamics can account for many phenomena that are
characteristic in mouse pointing.

3.3 Human Controller
In general, various control sequences can produce the same movement trajectory. For example, the
arm can rest on the table or stay in the air, as long as the mouse device is controlled appropriately.
This is referred to as the joint-redundancy problem [18]. For a large number of degrees of freedom,
e.g., motor signals that are applied to individual muscles, the same goal can be achieved with dif-
ferent controls, raising the question of which control is actually chosen by the central nervous
system (CNS) and why.3 This fundamental question, however, cannot be answered using move-
ment dynamics alone. Instead, the optimal control framework has been proposed to address this
question [44, 73, 142].

Optimal Control Problems (OCPs). Optimal control methods make use of a specific cost func-
tion, which is to be minimized. Previous approaches include minimization of either jerk [42, 61],
peak acceleration [103], end-point variance [58], duration [3, 131], or torque-change [144], among
others. Different objectives can be combined in one cost function to model tradeoffs, e.g., between
accuracy and effort [83, 138], accuracy and stability [86], or jerk and movement time [60]. Recently,
it has been argued that several abilities associated with intelligence such as knowledge, perception,
or imitation naturally emerge from behaving optimally with respect to an ultimate goal [124]. For
goals that can be expressed by an adequate cost function, this particularly suggests that the optimal
control framework is able to explain intelligent behavior.

In general, the (finite-horizon) discrete-time OCP is given by

Minimize JN (x ,u) = дN (xN) +
N−1∑

n=0
д(xn ,un),

with respect to u = (un)n∈{0, ...,N−1} ⊂ U ⊂ Rm ,

(3a)

where x = (xn)n∈{0, ...,N } ⊂ X ⊂ Rk satisfies
xn+1 = fint (xn ,un), n ∈ {0, . . . ,N − 1},

x0 = x̄0
(3b)

for some given initial state x̄0 ∈ X ⊂ Rk .

3Moreover, in the case of muscle-driven simulations, the set of feasible controls is relatively small compared to the total
decision space, which makes it even less clear how appropriate controls are internally found [145].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

96 Optimal Feedback Control for Modeling Human-Computer Interaction

51:12 F. Fischer et al.

Here, fint denotes the dynamics of the internal model used for optimization. In Figure 1, this
corresponds to the Forward Model block within the Human Controller. In most optimal control
models, including those considered in this work, the internal model is assumed to be exact, i.e.,
it matches the actual system dynamics (corresponding to the Human–Computer System Dynamics
block in Figure 1), which are analogously described by some function f . The objective function
JN (x ,u) that we want to minimize consists of some terminal cost function дN : Rk → [0,∞[and
the sum of running costs д : Rk × Rm → [0,∞[accumulated over N timesteps. These might be
chosen dependent on the task under consideration. For example, in a tracking task, the distance
between end-effector and target could be penalized in each step, whereas in a steering task, large
costs might be applied whenever one of the bounds is reached. The sets X and U can be used to
restrict the states and controls that are permissible at each timestep. In the following, however, we
will set X = Rk and U = Rm , i.e., we do not impose any restrictions. The initial state x0 = x̄0 is
assumed to be given, and the (unique) optimal solution (x ,u) to an OCP (assuming that it exists)
is denoted by (x∗,u∗) in the following.

For deterministic OCPs, both the internal model and the actual system dynamics are given by
deterministic functions fint : Rk × Rm → Rk and f : Rk × Rm → Rk , respectively. For stochastic
OCPs, these dynamics are replaced by conditional probability distributions (see Section 3.2). It
is important to note that albeit in stochastic OCPs, the concrete successor state xn+1 resulting
from the application of a hypothetical control un in the state xn is not available to the controller
during optimization, the underlying transition probability density functionp (· | xn ,un) usually is.4
Stochastic OCPs are thus capable of modeling the between-trial variability that typically occurs in
human movement.

The methods to find the optimal solution of an OCP depend on its problem structure, i.e., the
properties of the cost function (e.g., differentiability, convexity), the system dynamics (e.g., lin-
earity, stochasticity), and the permissible state space X and control space U . Often, the optimal
solution can only be determined approximately, using numerical methods such as Multiple Shoot-
ing [15], Direct Collocation [11], or RL [130]. However, in some cases an explicit solution formula
exists that yields the exact (and unique) optimal control sequence u∗. In this article, we will focus
on the most widely known class of OCPs that allows for such an analytical solution scheme: those
with linear system dynamics and convex, quadratic costs.

3.4 Feedback & Human Observer
In the closed-loop case of the optimal control framework for HCI (Figure 1(b)), the Feedback block
accounts for the fact that usually not all information included in the state x are (immediately)
available to the user. First, the visual output, which is shown on the Display, is created based on
the respective state components. This information is then sensed and processed by the Human
Perception, which describes how visual, proprioceptive, and/or auditive signals are perceived and
integrated into the stream of observationsy = (yn)n∈{0, ...,N−1} the controller can condition on. The
same holds for information on the own body state, which is directly obtained from the Human Body
Dynamics, e.g., via proprioceptive input signals.

In general, these observations might be delayed, noisy, or incomplete. To decide for an appropri-
ate control un+1 at timestep n + 1, thus an estimate x̂n+1 of the true current state xn+1 is required.
This estimate is computed by the Human Observer, which compares the observed state yn+1 to an
expected state it computes using an efference copy of the most recent control signal un and the

4In the case of unknown transition dynamics p (or f , in the deterministic case), the controller would need to rely on
sampling transitions from the environment in order to be able to estimate the expected future costs of different controls.
This problem is addressed in Model-Free RL.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

97

Optimal Feedback Control for Modeling Human–Computer Interaction 51:13

Forward Model.5 Based on the resulting difference between expected and observed signals, an in-
ternal state estimate x̂n+1 is computed, which is then used by the Human Controller to select the
next muscle control signal un+1, resulting in the above discussed closed interaction loop.

3.5 Applications of the Proposed Framework
In this article, we analyze and compare several optimal control models of interaction. It is impor-
tant to note that not all of the considered models exploit the complexity of the generic models
depicted in Figure 1. For example, the closed-loop LQR model includes a trivial perceptual model
in that it assumes that the controller has complete access to the true system state x immediately.
Another example is the open-loop MinJerk model, which does not include task-specific system
dynamics.

Each optimal control model, however, yields a continuous representation of all relevant quanti-
ties of the interactive system. In contrast to summary statistics such as Fitts’ Law, this allows to
simulate and predict complete movement trajectories on both the kinematic and the dynamic level.
It also allows to analyze the effects of the control u and of different cost terms incorporated in the
objective function JN , on the human body and the interface (e.g., user representations, buttons, or
sliders).

Most importantly, the modularity of the proposed framework enables high flexibility and gener-
alizability. For example, it is possible to analyze the effects of different input devices and/or GUIs
on movement trajectories and control sequences, using the same description of the human biome-
chanical and perceptual system. Additionally, a given interface can be evaluated for different tasks
such as pointing, dragging, steering, and so on, by modulating the internal objective function ac-
cordingly. The resulting continuous representations can then be evaluated with respect to different
metrics, e.g., remaining distance to target [33], effort [121], fatigue [25], movement time [131], and
so on.

Finally, the framework can be used to reverse-engineer the internal objective function (inverse
optimal control) as well as properties of the human biomechanical system (system identification),
such that the resulting trajectories best fit some experimentally observed user trajectories. Before
we explain how to identify such model-specific parameters using a data-driven parameter fitting
procedure (see Section 4.2), we give a brief overview of the experimental data we use to evaluate
the presented models in this article.

4 USER TRAJECTORIES AND PARAMETER FITTING
4.1 The Pointing Dynamics Dataset
For the evaluations in this article, we use the Pointing Dynamics Dataset. Task, apparatus, and
experiment are described in detail in [98]. The dataset contains the mouse trajectories for a recip-
rocal mouse pointing task in 1D for ID 2, 4, 6, and 8 (12 participants, 8 task conditions, and 7732
trajectories in total). We use the raw, unfiltered position data in our parameter fitting process to
avoid artifacts from the filtering process. In this section, we explain how we pre-process this data
for the purposes of this article.

Pointing experiments both in the reciprocal and discrete Fitts’ paradigm introduce reaction
times as experimental artifacts. In real mouse usage, users first decide on a pointing target them-
selves, and then start moving the mouse. In this sense, the pointing process can be considered
initiated as soon as the pointer begins to move. In contrast, in the experimental paradigm used in
[98], the next trial started as soon as the user clicked the mouse in the previous trial. The target

5In this article, we assume perfect system knowledge, i.e., the forward model consists of the same system dynamics and
perception functions as used in the actual interaction loop.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

98 Optimal Feedback Control for Modeling Human-Computer Interaction

51:14 F. Fischer et al.

given to the user appeared at that instant. This introduces a potential confound in the starting
time of each trial. The beginning of each trial can be partly attributed to belong to the end of the
previous trial, and partly to a reaction time adjusting to the new target. During this time, velocity
and acceleration of the pointer are close to 0. This reaction time shows considerable variation both
within and between participants.

Because the focus of this article is not on modeling reaction times, we remove them from each
mouse movement. To this end, we drop all frames before the velocity reaches 1% of its maxi-
mum/minimum value (depending on the movement direction) for the first time in each trial.6

Since the deterministic optimal control models considered in this article can only predict average
user behavior, we compute mean trajectories for each user, task condition, and direction from the
raw data, resulting in 192 mean trajectories. This is done as follows.

First, we remove outlier trials, where at any timestep the position was more than three standard
deviations from the respective mean. This was the case for 397 trajectories in total, i.e., 5.1% of
all trials. We found this to be necessary as the averaging process is highly sensitive to outliers. In
particular, delayed movement onsets, which, e.g., might have occurred due to a lack of attention
of the participant, would inject a high bias into the computed statistics.

Second, in order to make trials of different length comparable, we assume that the pointer would
not move after the mouse click. Given a set of trials to be averaged (with reaction times removed
as described above), movements shorter than the longest one are extended by their last position,
zero velocity, and zero acceleration to achieve the same length. To avoid unnecessarily long trajec-
tories for conditions where a few of the recorded trials were of exceptional length, we additionally
remove trials with duration longer than three standard deviations from the mean duration of the
respective condition, before extending the remaining trajectories to maximum length. This was
the case for 87 trajectories in total (i.e., 1.1% of all trials), with a maximum of two trials removed
per user, task condition, and direction. Finally, we average the resulting trajectories on a frame
by frame basis. We also compute the respective sample covariance matrices at each timestep to
capture the between-trial-variability observed from user data.

4.2 Parameter Identification
In this section, we present a method to identify the parameters of a given instantiation of the op-
timal control framework introduced in Section 3 that best explain experimentally observed user
behavior. More specifically, for a given interaction model and a given dataset of user trajectories,
we aim at finding the model-specific parameter values such that the resulting trajectories approxi-
mate a subset of user trajectories (e.g., all trajectories of a specific user for some task condition) as
closely as possible. In the following, we will apply this procedure to each of the presented models,
using the Pointing Dynamics Dataset as reference data. Since only stochastic models can account
for the between-trial variability typically observed in human movements, we need to distinguish
between the deterministic and the stochastic case in the following.

In the deterministic case, we use the squared error between predicted and observed mouse
pointer position, summed over time (sum squared error (SSE)) as a measure of distance between
simulation and mean user trajectories. Given a model with parameter vector Λ, where pΛ

n denotes
the position time series of the resulting simulation trajectory, and given a mean user position time
series pUSER

n , the goal is to find the parameter vector Λ∗ such that the loss function of the parameter

6For improved temporal alignment of the individual trajectories and to remove outliers that sometimes occur at the begin-
ning of a movement, we additionally assume that the acceleration remains positive/negative (depending on the movement
direction) for at least 40 ms after the initial time. If no timestep is found that satisfies both criteria, we discard the entire
movement. This was the case only for a single movement (ID 2, participant 5).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

99

Optimal Feedback Control for Modeling Human–Computer Interaction 51:15

fitting process

L(Λ) = SSE(Λ) =
N∑

n=0

(
pΛ

n − pUSER
n

)2
, (4)

takes its minimum in Λ∗. This is done for each mean trajectory, resulting in 192 optimal parameter
vectors.

Minimizing Equation (4) with respect to Λ can be considered a least-squares problem [14], where
each function evaluation of L(Λ) requires computation of the respective model simulation trajec-
tory to obtain pΛ

n . In the case of optimal control models, this particularly implies that an OCP must
be solved to obtain pΛ

n for a given Λ, that is, the complete parameter fitting process consists of two
nested optimizations.

Stochastic models, in contrast, yield a sequence of distributions of the state, such as the dis-
tributions of pointer position and velocity, over multiple trials. These distributions can be used
to sample individual trajectories. We measure the “similarity” between two distributions using
the 2−Wasserstein distance (often denoted as Earth mover’s distance) [104]. Given two normal dis-
tributions ρ1 and ρ2 with means μ1 and μ2 and covariance matrices Σ1 and Σ2, respectively, the
2−Wasserstein distance can be written as

W2 (ρ1, ρ2) =
(
‖μ1 − μ2‖22 + tr(Σ1) + tr(Σ2) − 2tr

(
(Σ1Σ2)

1
2
)) 1

2
, (5)

and can be interpreted as the amount of work required to transform the probability distribution ρ1
into the probability distribution ρ2 (and vice versa). In the following, we will use this formula to
measure the distance between the simulation state distribution of a model with parameter vector Λ,
ρΛ, and the empirically observed state distribution, ρUSER, at some timestep n ∈ {0, . . . ,N }, i.e.,
ρ1 = ρΛ

n and ρ2 = ρUSER
n .

One advantage of this measure is that it is only based on the relative distance between the
two means and covariance matrices of the two distributions, independent of the magnitude of
these quantities. This is in contrast to the KL divergence [76], which increases as the variance of
the reference distribution decreases. In the special case where both distributions have the same,
diagonal covariance matrix, the 2−Wasserstein distance corresponds to the Euclidean distance
between the means of both distributions.

As a measure for the similarity between complete sequences of distributions (e.g., of mouse
pointer positions and velocities), we use the mean Wasserstein distance (MWD) over time:

L(Λ) = MWD(Λ) =
1

N + 1

N∑

n=0
W2
(
ρΛ

n , ρ
USER
n

)
. (6)

In both the deterministic and the stochastic case, we solve the (outer) optimization problem of
minimizing L(Λ) with respect to Λ using differential evolution [127], which is a simple, gradient-
free global optimization algorithm suitable for continuous parameter spaces. This algorithm has
proven to yield robust and reliable results even for ill-conditioned problems [5]. Of course, more
efficient optimization methods, e.g., gradient-based ones, are always desirable, and algorithmic
differentiation is a promising step forward in that regard. The main question here is the appli-
cability of algorithmic differentiation in the case of iteratively alternating between control and
estimation problems, as is required for the considered case of LQG with signal-dependent noise
(see Section 8.1). Pursuing this endeavor, however, might very well enable real-time predictions of
parameter effects on the entire interaction loop.

Figure 2 gives an overview of our parameter identification process for both the deterministic
and the stochastic case. The parameter boundaries for all models introduced below are given in

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

100 Optimal Feedback Control for Modeling Human-Computer Interaction

51:16 F. Fischer et al.

Fig. 2. Starting with an initial parameter vector Λ = Λ0, the differential evolution (DE) algorithm obtains
the loss L(Λ) (SSE value in the deterministic and MWD in the stochastic case) for the currently considered
parameter vector Λ. To do this, it calls MODELΛ, which computes the resulting model trajectory sequence xΛ

(or a sequence of state distributions χΛ). In case of optimal control models, this requires an inner optimization
with respect to a model-specific objective function JN . The resulting position time series pΛ included in xΛ

(or the sequence of position-velocity distributions ρΛ included in χΛ) is used to compute the loss L(Λ) of
the current parameter vector Λ, which, in turn, is used by the DE algorithm. After obtaining the loss for a
few requested parameter vectors Λ, the DE algorithm chooses the next parameter vectors Λ until Λ∗ with
minimum loss is found. Finally, Λ∗ is returned along with the respective optimal trajectoryxΛ∗ (or the optimal
sequence of state distributions χΛ∗).

Fig. 3. Mouse pointer model with spring and damper.

Table B.1 in the Appendix. Descriptions of how discrete parameters are relaxed in order to optimize
them using standard continuous optimization methods are given in the respective model sections.

5 POINTING AS A DYNAMICAL SYSTEM: THE SECOND-ORDER LAG
One of the basic models of mouse pointer dynamics is the second-order lag, which has been used
as a baseline in several papers, including [98, 160]. We therefore also include it as a baseline. The
parameters Λ of the model are the stiffness of the spring k > 0 and the damping factor d > 0. In the
setting described below, the mass is a redundant parameter, and we thus set it to 1. In continuous
time, we denote the position of the mouse pointer as y (t), and its first and second derivatives with
respect to time (i.e., velocity and acceleration) as ẏ (t) and ÿ (t), respectively. The behavior is then
described by the second-order lag equation:

ÿ (t) = u (t) − ky (t) − dẏ (t). (2OL)

An intuitive illustration of these dynamics is given in Figure 3: Assuming that the mouse pointer
is fixed at one edge of the screen via a spring, the parameters k and d correspond to the stiffness
and the damping of this spring, respectively, and the control valueu can be interpreted as the force
acting on the mouse pointer. In particular, the pointer acceleration ÿ is assumed to be directly pro-
portional to the control u (apart from the damping and stiffness terms), i.e., (2OL) defines a (linear)
dynamical system of second order. A control flow diagram of the model is shown in Figure B.1 in
the Appendix.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

101

Optimal Feedback Control for Modeling Human–Computer Interaction 51:17

Given a target position T ∈ R, it can be shown that for the particular choice u ≡ kT , with
k,d > 0, the position y (t) approaches T for large enough t , independent of the initial position
y (0) = y0 and initial velocity ẏ (0) = ẏ0 [57]. More precisely, the state (y, ẏ) = (T , 0), i.e., the
desired targetT is reached and the velocity is 0, is an equilibrium, meaning that once reached, that
state will forever be maintained. The resulting trajectory, which is uniquely determined giveny0, k ,
d , andT , is often referred to as second-order lag trajectory, and can be used to model mouse pointing
movements toward a given targetT . Since the controlu (t) is constant in time and converges toward
the equilibrium state, we denote this variant of (2OL) as 2OL-Eq in the following.

Following the general notation of (2), we derive a discrete-time version of (2OL), with a step size
of two milliseconds, i.e., h = 0.002, which corresponds to the mouse sensor sampling rate. Consid-
ering our example case of 1D pointing tasks, in which the mouse can only be moved horizontally,
the state xn encodes the horizontal position and velocity of the pointer, denoted by pn ∈ R and
vn ∈ R, respectively, i.e.,

xn = (pn ,vn)
 ∈ R2. (7)
Using the forward Euler method,7 we obtain the matrices A and B for (2) as

A =

(
1 h
−hk 1 − hd

)
, B =

(
0
h

)
. (8)

This model can easily be extended to 2D or 3D pointing tasks by augmenting xn and un with
the respective components for the additional dimensions.

5.1 Analysis of Parameters
Since the 2OL model is an important baseline for mouse pointing dynamics, in this section, we
provide an analysis and intuitive understanding of influence of the model parameters on model
behavior.

While the convergence of 2OL-Eq toward a target T of fixed widthW > 0 can be easily shown
under the assumptions described above, both the time until this target is reached first (i.e., the
time at which the remaining distance to target is smaller thanW) and the transient behavior (i.e.,
specific characteristics of the trajectory until this time) largely depend on the parameters k and d .
In the following, we analyze the effects of the stiffness k and the damping ratio ζ , which is defined
as

ζ =
d

2
√
k
, (9)

as this is easier to interpret than the actual damping parameter d . Note that given two of the three
parameters k , d , and ζ , the remaining one (in this case d) is uniquely determined by the others and
can be easily computed.

The position, velocity, and acceleration time series of typical 2OL-Eq trajectories are shown in
Figure 4. The initial and target values stem from an ID 4 task condition from the Pointing Dy-
namics Dataset. The most characteristic feature of 2OL-Eq trajectories is the large positive accel-
eration at the beginning of the movement. This is due to the model being second-order, i.e., the
control u is proportional to the acceleration ÿ (apart from the damping and stiffness terms). The
velocity profile is typically left-skewed, since the deceleration phase is considerably longer than
the acceleration phase. As a consequence, the peak velocity is reached relatively early during the
movement.

7While we could also use the exact solution here, the (fairly good) approximation via forward Euler yields matrices that
are more suitable for our explanatory purposes.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

102 Optimal Feedback Control for Modeling Human-Computer Interaction

51:18 F. Fischer et al.

Fig. 4. Position, velocity, and acceleration time series of typical 2OL-Eq trajectories with target shown as
the orange box. Top: Effect of stiffness parameter k with fixed damping ratio ζ = 1 (red dashed: k = 15,
green dash-dotted: k = 25, and blue dotted: k = 60). Bottom: Effect of damping ratio ζ with fixed stiffness
parameter k = 40 (red dashed: ζ = 0.5, green dash-dotted: ζ = 1, and blue dotted: ζ = 2). The stiffness
parameter k mainly affects the instantaneous initial acceleration and thus the speed at which the target
is approached. The parameter ζ determines the relative amount of damping, with ζ < 1 (underdamped)
resulting in oscillations around the target and ζ > 1 (overdamped) leading to trajectories that reach the
target later.

Given a constant damping ratio ζ , the stiffness parameterk mainly affects the initial acceleration,
and consequently the peak velocity and the time at which the target is reached first. As can be seen
in the top row of Figure 4, a large stiffness (blue dotted line) leads to a high initial acceleration and
peak velocity, and thus the target is reached earlier than with lower stiffness values (red dashed
line). For damping ratios ζ < 1 (red dashed line in the bottom row of Figure 4), i.e., the damping
d is small compared to the stiffness k , oscillations occur in the trajectories, leading to multiple
peaks in velocity and acceleration time series and to overshooting in the position time series (the
so-called underdamped case). For ζ = 0, the pointer does not even converge toward the target, but
oscillates indefinitely (not shown). If ζ > 1 (the so-called overdamped case, blue dotted line in the
bottom row of Figure 4), the pointer converges toward the target slowly, without oscillations. If
ζ = 1, the trajectory is critically damped, which means that the pointer reaches (and stays at) the
equilibrium (i.e., the target T) in minimum time.

5.2 Results of Parameter Fitting
For each combination of participant, task, and direction, we identify the parameters Λ = (k, ζ)
that best explain the corresponding mean trajectory from the Pointing Dynamics Dataset, using
the deterministic parameter fitting process described in Section 3. The loss function is the SSE on
position, see Equation (4). Note that the results obtained from our parameter fitting do not exactly
match those presented in [98], since we apply a different pre-processing to the experimental user
trajectories and optimize the parameters with respect to the positional error only.

The fitted trajectory for a representative ID 4 task condition is shown in Figure 5. As discussed
in [98], the main differences between model and human behavior are the less symmetric velocity
profile and the large initial accelerations produced by the 2OL-Eq model. In particular, the user

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

103

Optimal Feedback Control for Modeling Human–Computer Interaction 51:19

Fig. 5. While the position time series visually matches the observed user data quite well, 2OL-Eq yields a
much less symmetric velocity and acceleration profile during the surge (here: up to 0.36 s). This is due to the
assumption of constant equilibrium control, which results in a physically implausible instantaneous peak
acceleration.

trajectories exhibit velocity profiles that are close-to-symmetric and bell-shaped, at least for the
initial ballistic movement toward the target (the “surge” [98]), which is consistent with previous
findings [94]. The differences can be explained with the physical interpretation of the 2OL-Eq as
a spring-mass-damper system: Since u is constant in this model, as the system is released, the
spring instantaneously accelerates the system with a force that is proportional to the extension of
the spring. Because human muscles cannot build up force instantaneously [117], this behavior is
not physically plausible.

In Figure 6, the optimal values of k and ζ are given for all participants, tasks, and movement
directions, both grouped by participants (left) and by ID (right). Interestingly, different behav-
ior between individual users is mainly captured by different stiffness values k . Participant 2, for
instance, seems to be characterized best by a large stiffness (between 46.8 and 107.6, with mean
78.3), while the trajectories of participant 9 are best explained by a considerably lower stiffness
(between 10.3 and 18.3, with mean 14.4) in the 2OL-Eq model. In contrast, the damping ratio ζ
seems to center around 0.7–0.76, independent of the participant. Instead, it is mainly influenced
by the ID of the task. Lower IDs tend to result in a lower damping ratio, with trajectories of ID
2 tasks being considerably more underdamped than others. This is consistent with previous find-
ings [17, 53, 98] and might be explained by the reciprocal nature of the considered pointing task,
where participants alternately moved between two given targets (which we denote as initial and
target position for a given movement direction) without dwell time.

In summary, the stiffness k mostly seems to account for movement strategies that are character-
istic of specific users, whereas the damping ratio ζ mainly differs between indices of task difficulty.

5.3 Discussion
The main shortcomings of the 2OL-Eq as a model of mouse pointer movements are the unrealisti-
cally high initial acceleration and the resulting skewed velocity profile. This is mainly due to the
assumption of equilibrium control, while the literature suggests that the motor control signals are
actively changed during the movement [13, 47, 138]. From a conceptual standpoint, the 2OL-Eq
only describes the passive dynamics of the mouse pointer as a differential equation. It does not sep-
arately model the user’s “brain” or intention in controlling these dynamics. In particular, it does
not describe what the user is trying to achieve. This can be explained by optimal control models.

6 POINTING AS OPTIMAL OPEN-LOOP CONTROL: THE MINIMUM JERK MODEL
An elementary model of aimed movements that assumes that users behave optimally according to
an internal cost function is the minimum jerk model by Flash and Hogan [42]. This model, which

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

104 Optimal Feedback Control for Modeling Human-Computer Interaction

51:20 F. Fischer et al.

Fig. 6. Parameters of 2OL-Eq, optimized for the mean trajectories of all participants, tasks, and directions,
grouped by participants (left) and by ID (middle), and as overall distribution (right). While the optimal stiff-
ness parameter k considerably differs between participants, the damping ratio ζ is mainly affected by the
task ID. Interestingly, all resulting simulation trajectories are underdamped (mean ζ = 0.71), with ζ increas-
ing as ID increases.

we will refer to as MinJerk in the following, assumes that the objective of users is to generate
smooth movements by minimizing the jerk of the end-effector, i.e., the time derivative of the end-
effector’s acceleration, while reaching the target exactly at a prescribed movement time with zero
final velocity and acceleration. Within HCI, this model has been successfully used by Quinn and
Zhai [112] to model the shape of gestures on a word-gesture keyboard.

The model assumes that the movement is controlled open-loop, and thus cannot explain how
users would correct for disturbances or inaccurate execution. Similar to 2OL-Eq, the choice of
parameters and boundary values already determines the complete trajectory. However, there are
a few important differences to 2OL-Eq. First, MinJerk does not only require information about the
initial, but also about the final state (as a third-order model, initial and final position, velocity, and
acceleration need to be specified). Second, the overall movement time, which is denoted by NM J in
the following, needs to be known in advance. This is in contrast to the discrete-time formulation
of 2OL-Eq.

In discrete time, minimizing jerk corresponds to minimizing the differences between subse-
quent accelerations. While in principle, the MinJerk OCP could be transformed into a closed-
loop discrete-time system similar to Equation (2) (but with time-dependent matrices An and Bn ,
see [61]); here, we make use of the analytical solution of the original continuous-time problem,
and afterwards discretize the resulting 5th-degree polynomial with respect to time. For arbitrary
initial state x0 = (p̄0, v̄0, ā0) and final state xNM J = (p̄NM J , v̄NM J , āNM J), where the third component
is the respective end-effector acceleration, the (discrete-time) MinJerk trajectory is given by

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

105

Optimal Feedback Control for Modeling Human–Computer Interaction 51:21

Fig. 7. Visually, MinJerk trajectories show a relatively good fit to observed user data, as long as the dura-
tion parameter NM J is chosen to cover only the surge (black solid line; here, NM J = 223 corresponds to
0.446s). However, the MinJerk model predicts zero velocity at the end of the surge, which results in a consid-
erably worse overall fit of user trajectories that exhibit clear submovements. If NM J is set as total movement
duration N , the resulting simulation trajectory (dash-dotted blue line) does not fit the data at all.

xn =

5∑

i=0
ci

(
n

NM J

) i
, (10a)

����������

c0
c1
c2
c3
c4
c5

����������
=

������������

1 0 0 0 0 0
0 tf 0 0 0 0
0 0 0.5t2

f 0 0 0
−10 −6tf −1.5t2

f 10 −4tf 0.5t2
f

15 8tf 1.5t2
f −15 7tf −t2

f
−6 −3tf −0.5t2

f 6 −3tf 0.5t2
f

������������

����������

p̄0
v̄0
ā0

p̄NM J

v̄NM J

āNM J

����������
, (10b)

where tf = NM Jh denotes the final time, and h is the fixed time interval between two consecutive
timesteps.

6.1 Extension to Complete Trajectories
The MinJerk model has been derived from data of an experiment that did not involve any correc-
tive submovements [42]. However, in mouse pointing tasks with large ID, submovements occur
regularly. If MinJerk is used for modeling of the entire movement, i.e., until the final timestep N ,
the fit is thus very poor (see blue dash-dotted lines in Figure 7). Instead of a quick movement to-
ward the target with corrective submovements, as in our data, the model predicts a slow, smooth
movement, and reaching the target only at the final time.

A much better fit is obtained by using MinJerk only for the first, rapid movement toward the
target (the “surge”), and assuming that the pointer does not move afterwards. To this end, we define
the (extended) MinJerk trajectory as follows. For n ≤ NM J , xn corresponds to the minimum jerk
polynomial Equation (10) with p̄0, v̄0, and ā0 taken from user data, p̄NM J = T , and v̄NM J = āNM J = 0.
For n > NM J , the trajectory is constantly extended by the final state of the MinJerk polynomial,
i.e., xn = xNM J = (T , 0, 0)
.

The effect of the parameter NM J in our MinJerk model is shown in Figure 8. Varying this param-
eter allows to model variable peak velocities and accelerations. However, with NM J being a pure
scaling parameter of the trajectory, the velocity profile is always bell-shaped and the acceleration
profile N-shaped. Moreover, the target center is reached at timestep n = NM J by definition, i.e., the
model naturally cannot account for corrections that typically occur after the surge. As illustrated
in Figure 7 for the same ID 4 task as above (black solid lines), this can result in a considerably
worse overall fit of the trajectory, at least for movements that consist of several submovements.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

106 Optimal Feedback Control for Modeling Human-Computer Interaction

51:22 F. Fischer et al.

Fig. 8. Position, velocity, and acceleration time series of different MinJerk trajectories with target shown as
the orange box. The parameter NM J determines the end time of the symmetric and smooth jerk-minimizing
movement, after which the trajectory is constantly extended by its final position value and zero velocity and
acceleration (red dashed: NM J = 50, green dash-dotted: NM J = 75, blue dotted: NM J = N = 100).

Fig. 9. Duration parameter NM J of MinJerk, optimized for the mean trajectories of all participants, tasks,
and directions. Left: Absolute parameter values, grouped by participants. Middle: Parameter values relative
to the total movement duration N , grouped by target width. Right: Parameter values relative to the total
movement duration N , grouped by distance to target.

6.2 Results of Parameter Fitting
Similar to the parameter fitting process for 2OL-Eq, we identify the optimal duration parameter
NM J with respect to positional SSE for each participant, task, and movement direction, using the
respective mean trajectory as our reference. To improve convergence of the used optimization
algorithm, we relax this parameter by allowing for continuous values of NM J in Equation (10) and
compute the discrete-time MinJerk states xn for n ≤ ⌈NM J

⌉.
The optimal values of NM J grouped by participants are shown in the left plot of Figure 9. Differ-

ent users can be characterized by different values for NM J . Interestingly, the user-specific effects
match those observed for the stiffness parameter k in the 2OL-Eq model fairly well. Indeed, there
is an inverse-linear relationship between k and NM J , as illustrated in Figure B.2 in the Appendix.
Comparing the effects of k (Figure 4, top row) and NM J (Figure 8) on the respective model trajec-
tories; however, this is not very surprising. Both a higher stiffness k and a lower surge duration
NM J lead to a faster movement that reaches the target earlier (note that participant 9 moved con-
siderably slower (average duration: 1.7s) than the rest of the participants (average duration: 0.95s)).
Differences between the effects of these two parameters are mainly related to the initial acceler-
ation, which scales with k in 2OL-Eq, but is always fixed in MinJerk, and to the skewness of the
velocity profile, which is only affected by k .

In contrast, the average surge duration does not differ much between different task IDs (not
shown). However, the relative time spent in the surge, i.e., NM J/N , clearly increases as the target
width increases, while it is unaffected by the distance between initial and target center (see mid-
dle and right plot of Figure 9). This is consistent with previous findings, which suggest that the

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

107

Optimal Feedback Control for Modeling Human–Computer Interaction 51:23

skewness of the velocity profile and thus the duration of corrective submovements is mainly de-
termined by the target size, while the distance to target has a much smaller effect on the relative
duration of the initial ballistic movement [16, 98, 135].

6.3 Discussion
The minimum jerk model can explain the shape of the initial ballistic movement (the surge) toward
the target very well. However, both initial and terminal conditions need to be known in advance.
The same holds for the overall movement time, unless it is identified through a parameter fitting
process, using experimentally observed user data. It should also be noted that it is difficult to
explain conceptually why users should aim at minimizing the jerk of the movement (see, e.g.,
Harris and Wolpert [58]).

The main limitation of the model is that it is a pure kinematic model. That is, the trajectory of
the mouse pointer is uniquely defined given the initial and terminal conditions. The underlying
reasons for the movement, such as the acting forces, are not explained. In particular, the model
does not involve any explanation of the underlying biomechanics of the user, not even as a point-
mass model such as 2OL-Eq. Due to its deterministic nature, it cannot account for the between-trial
variability typically observed in user movements (see red dashed lines in Figure 7). Furthermore,
as an open-loop model, the movement trajectory is completely specified at the beginning of the
movement, and in its standard form, the model cannot react to perturbations or inaccuracies in
the movement. In order to explain how users react to visual or proprioceptive feedback, models
based on OFC are required.

7 POINTING AS OPTIMAL FEEDBACK CONTROL: THE LQR
In general, the OCP given by Equation (3) is very difficult to solve, since no solution method is
known that guarantees convergence toward the global optimum without imposing (fairly strong)
assumptions on the costs and system dynamics (e.g., convexity, continuous differentiability, etc.).
One important subclass of problems where an analytic solution method exists is the case of linear
dynamics and quadratic costs. The solution in this case is given by the LQR.

These OCPs usually are of the following form:

Minimize JN (x ,u) =
N∑

n=0
x
nQnxn +

N−1∑

n=0
u
nRnun ,

with respect to u = (un)n∈{0, ...,N−1} ⊂ Rm ,

(11a)

where x = (xn)n∈{0, ...,N } ⊂ Rk satisfies
xn+1 = Axn + Bun , n ∈ {0, . . . ,N − 1},

x0 = x̄0
(11b)

for some given initial state x̄0 ∈ Rk .
As before, xn is the state of the human–computer system, un is the control (e.g., muscle excita-

tion), the matrix A describes the dynamics of the human–computer system if no control is applied,
i.e., u ≡ 0, and B describes how the control influences the system (e.g., the force generated by
muscles). The matrices Qn and Rn can be interpreted as coefficients or weights for the state and
control costs, respectively, where, e.g., the former formalizes that users aim to reach the target
and the latter formalizes that they aim at doing so with minimal effort. Note that in our case, the
controls un are one-dimensional (m = 1), i.e., the matrix Rn only consists of a single entry.

Regarding the optimal control framework for HCI, the minimization in Equation (11a) cor-
responds to the Human Controller block in Figure 1(b), and Equation (11b) corresponds to the

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

108 Optimal Feedback Control for Modeling Human-Computer Interaction

51:24 F. Fischer et al.

Human–Computer System Dynamics block. The Feedback and Human Observer blocks in Figure 1(b)
are assumed trivial, i.e., observation and internal state estimate both equal the actual state of
the system (yn+1 = x̂n+1 = xn+1). This is clearly different from the open-loop case depicted in
Figure 1(a), where the controls are independent from the state estimates.

In the following, we use the muscle model and the cost function that have been used by
Todorov [141] in the case of the (stochastic, and therefore significantly more complex) Linear-
Quadratic Gaussian regulator, which we discuss in Section 8. To understand the stochastic case, it
is useful to first consider the deterministic case, which we introduce in this section. The simplified
second-order muscle model that we use has been proposed by van der Helm [147], and obtains
control signals as input u (t) and yields the forces applied to the end-effector F (t) as output

F (t) = u (t) − τ1τ2F̈ (t) − (τ1 + τ2)Ḟ (t), (12)

with time constants τ1, τ2 > 0. Throughout this section, we use τ1 = τ2 = 0.04.
A discrete-time approximation of these dynamics is obtained by the Forward Euler method with

time interval h > 0,

fn+1 = fn +
h

τ2
(дn − fn) ,

дn+1 = дn +
h

τ1
(un − дn) ,

(13)

where fn and дn denote the muscle activation (corresponding to force) and excitation at timestep
n, respectively. Recall that h = 0.002 corresponds to the 2 ms sampling rate of the mouse sensor.
Following Todorov [141], we assume a unit mass of 1 kg of the hand-mouse system.

Combining these muscle dynamics with a second-order integrator, this leads to the following
system dynamics matrices:

A =

���������

1 h 0 0 0
0 1 h 0 0
0 0 1 − h

τ2
h
τ2

0
0 0 0 1 − h

τ1
0

0 0 0 0 1

���������
, B =

��������

0
0
0
h
τ1
0

��������
. (14)

Here, the state xn = (pn ,vn , fn ,дn ,T)
 ∈ R5 (i.e., k = 5 in Equation (11b)) consists of the
pointer position pn and velocityvn , as well as muscle force fn and muscle excitation дn . Moreover,
the fixed targetT is included in the state for technical reasons. Note that, in contrast to the 2OL-Eq
model, the controls un do not equal a fixed, target-dependent value (that is, we do not prescribe
pure equilibrium control), but are chosen to minimize the cost JN .

In principle, the cost matrices Qn and Rn can be chosen freely. Based on [141], we derive them
from the following assumptions:

— Users aim at minimizing the distance between pointer and target.
— Users aim at staying inside the target after reaching it.
— Users aim at minimizing the effort required to fulfill the task.

Ideally, no distance costs should occur within the target, which is assumed to be a box of width
W . However, a fundamental limitation of the LQR setting is that cost terms need to be quadratic in
the states and controls. Therefore, costs that are 0 everywhere within the target are unfortunately
infeasible within the LQR setting. To approximate such costs, we construct the distance costs such
that we have lower costs inside the target and higher costs outside. In particular, we penalize the
squared remaining Euclidean distance between the end-effector position pn and the desired target

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

109

Optimal Feedback Control for Modeling Human–Computer Interaction 51:25

Fig. 10. If state costs are only applied at the final timestep N (blue dashed line), the LQR cannot capture
the correction phase, which is highly pronounced for tasks with sufficiently small target. With continuous
state costs (black solid line), LQR trajectories visually exhibit a good fit, although the peak acceleration is
slightly higher. In contrast to MinJerk, the end of the surge phase does not need to be prescribed, but emerges
implicitly from the model.

position T , which is given as
D2

n = |pn −T |2. (15)
To create an incentive to keep the end-effector inside the target once it is reached, the squared

velocity v2
n and the squared force f 2

n (which can be interpreted as acceleration, since unit mass is
assumed) are penalized as well, weighted with ωv ,ωf ≥ 0. All these cost terms are quadratic with
respect to the state xn , i.e., a positive semi-definite matrix Qn can be found such that

x
nQnxn = D2
n + ωvv

2
n + ωf f

2
n . (16)

At the same time as minimizing the distance to the target, we assume that users aim at minimiz-
ing their effort. This assumption is well-established in motor control theory, motivated by both
neuroscientific findings and mathematical requirements [54, 83, 142].8 Moreover, we assume that
the effort cost matrices are constant in time, i.e., Rn = R holds for all n ∈ {0, . . . ,N − 1}, and nor-
malized with respect to the duration of the movement for better comparability between conditions.
In particular, we choose

R =
ωr

N − 1 , (17)

where the weight parameter ωr > 0 determines how much effort the user is willing to invest to
reduce the distance to the target more quickly.

While in [141], the state costs Equation (16) were only applied at the final time n = N , which
must be known in advance, in the deterministic LQR case without neuromotor noise, this does
not work. As can be seen in Figure 10, for tasks with fairly small targets that require a consid-
erable correction phase, the resulting LQR trajectory (dashed blue lines) does not resemble the
observed user behavior at all. The main reason for this is that distance costs that only occur at a
single timestep do not create an incentive to reach this state earlier than necessary. The constant

8In OCPs, penalizing the controls u acts as a regularizer, i.e., it constrains the subspace of optimal solutions, which often
results in a unique optimal solution.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

110 Optimal Feedback Control for Modeling Human-Computer Interaction

51:26 F. Fischer et al.

incurrence of control costs adds to this, resulting in an optimal policy that chooses relatively small
controls during most of the movement, while shortly before the final timestep N , larger controls
are applied to reach the target “just in time” with low velocity and acceleration.

This problem can be addressed in two ways. Either neuromotor noise can be included, as it
is done in [141] and in the next section. Or, in the deterministic case, behavior more similar to
humans can be achieved by assuming that the state costs from Equation (16) are applied during
the entire movement. This clearly creates an incentive to move the pointer toward the target from
the start, in order to reduce the sum of the distance costs.

In summary, the objective function of our LQR model is given by

J
(LQR)
N (x ,u) =

N∑

n=0

(
D2

n + ωvv
2
n + ωf f

2
n

)
+

ωr

N − 1

N−1∑

n=0
u2

n . (18)

We assume that the user computes the optimal control, denoted by u∗n , in a feedback manner,
based on the current state (i.e., the model is closed-loop). It has been proven that for these kinds of
problems, the optimal control u∗n depends linearly on the state [35], i.e.,

u∗n = π (xn) = −Lnxn , (19)
holds for some uniquely determined feedback gain matrices Ln . Recall that in our case, the control
un is one-dimensional. Since the state xn is a vector in R5, Ln is thus a 1 × 5 matrix.

Given the matrices A and B as well as the cost function J
(LQR)
N , these feedback gain matrices can

be computed once before movement onset (i.e., at the planning stage) by iteratively solving the
corresponding Discrete Riccati Equation (see Appendix; details are given in [138, Theorem 7]). This
results in a very fast on-line computation of the optimal controls, yet taking into account the most
recent state observations.

7.1 Analysis of Parameters
In Figure 11, the individual effects of the cost function weightsωv ,ωf , andωr are shown. A higher
velocity cost weight ωv (top plots, blue dashed lines) results in a lower peak velocity, as expected,
since velocity is penalized quadratically. Keeping the remaining parameters constant, this leads to a
less symmetric velocity profile, as higher velocities toward the end of the movement are necessary
to compensate for the lower peak. Moreover, the target is reached later. Note that this only occurs
as long as the velocity cost weight is not dominant. Otherwise, for large enough ωv , there is no
incentive to reach the target at all.

Similar effects (peak values, symmetry) can be observed in the acceleration profile for the force
cost weight ωf (since the forces are applied to a unit mass and thus can be interpreted as acceler-
ation) and in the control profile for the effort cost weight ωr . Moreover, large force cost weights
lead to a constant, positive velocity at the end of the movement (middle plots, velocity profile),
i.e., the pointer moves across the target instead of staying inside (middle plots, position profile).
In contrast, the magnitude of the effort cost weight ωr mainly affects the duration of the surge
(bottom plots, position profile), while the target is still reached with relatively low velocity and
acceleration for moderate values of ωr .

7.2 Results of Parameter Fitting
Analogously to the parameter fitting process for the 2OL-Eq and MinJerk models, we identify
optimal values for the cost weights ωv , ωf , and ωr collected in the paramter vector Λ for each
mean trajectory. Since these parameters only define the objective function J

(LQR)
N of the OCP, and

the system matrices A and B are uniquely determined given the above fixed values ofm, τ1, and τ2,

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

111

Optimal Feedback Control for Modeling Human–Computer Interaction 51:27

Fig. 11. Position, velocity, acceleration, and control time series of typical LQR trajectories with target shown
as the orange box. Top: Effect of velocity cost weight ωv with fixed cost weights ωf = 0, ωr = 5e-3 (red
dashed: ωv = 0.01, green dash-dotted: ωv = 0.05, and blue dotted: ωv = 0.1). Middle: Effect of force cost
weight ωf with fixed cost weights ωv = 0, ωr = 5e-3 (red dashed: ωf = 1e-4, green dash-dotted: ωf = 1e-3,
and blue dotted: ωf = 1e-2). Bottom: Effect of effort cost weight ωr with fixed cost weights ωv = 0.01,
ωf = 1e-4 (red dashed: ωr = 5e-4, green dash-dotted: ωr = 5e-3, and ωr = 0.05).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

112 Optimal Feedback Control for Modeling Human-Computer Interaction

51:28 F. Fischer et al.

the parameter fitting for the LQR can be regarded as an inverse OCP [67].9 As usual, we use the
bi-level approach described in Section 4.2, i.e., at each iteration of the parameter fitting method,
the OCP subject to the parameter vector Λ is solved as described above.

7.2.1 Qualitative Results. The resulting optimal LQR trajectory (for the same ID 4 task con-
sidered for the previous models) is shown as the black solid line in Figure 10. The position time
series is approximated fairly well at first glance, even better than by the MinJerk trajectory (see
Figure 20; quantitative comparisons between all models are given in Section 11.2). Peak velocity
and acceleration are also very close to the values of the respective user trajectory, albeit the max-
imum acceleration is higher and the timing of the minimum and maximum acceleration does not
match exactly. However, it is important to note that the duration of the surge phase was not explic-
itly built into the LQR model,10 but emerges naturally from the interplay of the optimal parameters
ωv ,ωf , andωr . In contrast, in the MinJerk model, the duration of the surge phase needs to be either
known in advance or determined using the parameter fitting process.

7.2.2 Quantitative Results. All optimal parameter values, grouped by both user and task ID, are
shown in Figure 12 (note the logarithmic scale for ωf and ωr).

Each of the three parameters exhibits a large between-user variability. Interestingly, the
between-user effects show similar trends and characteristics for all cost weights. For example,
trajectories of participant 9 are characterized by very large weights (i.e., relatively small distance
costs, since the weights affect every term in the cost function but the distance costs), while the be-
havior of participant 2 is explained best by considerably lower weights (i.e., relatively high distance
costs). Moreover, these characteristic differences in the behavior of individual users are similar to
those identified for the surge duration NM J in MinJerk (see Figure 9 (left)). In contrast, the task
difficulty does not seem to have a clear effect on the optimal values of the cost weights. Hence, our
findings suggest that the identified optimal parameters rather encode user-specific characteristics
than the task under consideration.

7.3 Discussion
The LQR combines beneficial features of both 2OL-Eq (movement duration emerges from the
model) and MinJerk (smooth movements with “close-to-bell-shaped” velocity profiles, as observed
in many user studies). With a continuous penalization of remaining distance to target, velocity, and
force during the entire movement, the LQR model is able to explain average user behavior in terms
of position, velocity, and acceleration profiles. However, whether the modified cost terms are plau-
sible from a biomechanical and neuroscientific perspective is debatable [8, 113]. Moreover, as the
MinJerk model, due to its deterministic nature, the LQR model cannot account for the considerable
between-trial variability, which is typically observed in user movements.

In the next section, we will thus introduce signal-dependent control noise, which in combination
with continuous effort costs and only terminal distance, velocity, and force costs, allows to replicate
user behavior similarly well as the proposed LQR variant, with the additional benefit of obtaining
a distribution of optimal trajectories.

9Including the system dynamics parameters m, τ1, and τ2 in the parameter fitting process did not improve the fit to observed
user behavior.
10In theory, it would be possible to include prior knowledge about submovements and thus induce time-dependent behavior
by choosing the time-dependent cost matrices Qn and Rn appropriately.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

113

Optimal Feedback Control for Modeling Human–Computer Interaction 51:29

Fig. 12. Parameters of the LQR model, optimized for the mean trajectories of all participants, tasks, and
directions, grouped by participants (left) and by ID (right). For better visibility, the optimal values of ωf and
ωr are plotted on a logarithmic scale.

8 POINTING AS OPTIMAL FEEDBACK CONTROL SUBJECT TO
SIGNAL-DEPENDENT MOTOR NOISE: THE LQG

While the LQR model visually captures typical average user behavior relatively well (see Figure 10;
for a quantitative comparison between different models, see Section 11), it has one major drawback:
The proposed optimal trajectory is necessarily deterministic and thus cannot account for the large
variability observed among multiple trials of the same participant for the same task [32, 142].

An extension that allows to consider different sources of variability, which might occur dur-
ing the sensorimotor control loop, is the LQG [62, 87, 141]. It belongs to the class of Stochastic

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

114 Optimal Feedback Control for Modeling Human-Computer Interaction

51:30 F. Fischer et al.

Optimal Feedback Control (SOFC) models, as it takes into account the variance resulting from
various noise terms.

In the following, we will present and analyze the LQG model introduced by Todorov for reach-
ing movements [141]. In comparison to the LQR model from Section 7, this model includes
signal-dependent Gaussian control noise and an observation model with additive Gaussian noise.
Moreover, all state costs (i.e., distance, velocity, and force costs) are only applied at the final
timestep N .

8.1 Linear-Quadratic Gaussian Regulator (LQG)
Starting from the linear-quadratic control problem (11), we extend the deterministic LQR model
presented in the previous section with stochastic noise terms. In principle, there are two main
types of noise terms that can be included in the system dynamics: additive noise and multiplicative
noise.11 While the former introduces the same level, or variability, to the system at each timestep,
the variance of multiplicative noise depends on the system variables themselves. In the considered
case of signal-dependent (multiplicative) control noise, a larger magnitude of the applied control
un thus results in a higher uncertainty about the subsequent state xn+1. From a neuroscientific
perspective, this dependency can be justified by the empirically observed effect of neural motor
commands on the variance of the resulting motor-neuronal firing [26, 68, 118, 129]. In particular,
signal-dependent noise can account for well-established phenomena such as cosine tuning, muscle
synergies, smooth movements, and the tradeoff between speed (or duration) and the end-point
accuracy of a movement [58, 139, 140].

Introducing the control noise level σu > 0 and the sequence (ηn)n∈{0, ...,N−1} of (univariate) Gauss-
ian random variables ηn ∼ N (0; 1), the resulting discrete-time system dynamics can be written
as

xn+1 = Axn + (1 + σuηn)Bun , n ∈ {0, . . . ,N − 1},
x0 ∼ N (x̄0, Σ0),

(20)

where the initial state x0 is drawn from a multivariate Gaussian distribution with given mean
x̄0 and covariance matrix Σ0. The specific values for x̄0 and Σ0 can be extracted from data, see
Section 8.2. Following [141], we do not include additive control noise, albeit this would be easily
possible in the proposed framework.

As in the previous section, the state xn ∈ R5 contains pointer position, velocity, force, and
muscle excitation, as well as the target position. We assume that the controller, which needs to
decide for a control un ∈ R at each timestep n ∈ {0, . . . ,N − 1}, does not have complete access
to the current state of the system xn . The main reason is that usually, not all information stored
in xn is observable. This means that the control un at timestep n ∈ {0, . . . ,N − 1} may depend
only on some observation yn ∈ Rl (l ∈ N), but not on the true state xn . Moreover, the observation
can be noisy, i.e., errors during observation may occur. More specifically, to maintain linear model
dynamics, we assume that the (noisy) observation yn is linear in xn , i.e.,

yn = Hnxn +Gξn . (21)

11In this article, we only consider white noise, i.e., the noise terms that occur at different timesteps are assumed to be
independent. However, the LQG model could be extended to incorporate temporarily correlated noise by augmenting the
state space accordingly (for details, see [138, Section 3.4.3]).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

115

Optimal Feedback Control for Modeling Human–Computer Interaction 51:31

For simplicity, we assume that position, velocity, and force values can be observed immediately
in global coordinates, while muscle excitation and target position cannot be directly observed, i.e.,

Hn =
���
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

��� , (22)

which results in
Hnxn = (pn ,vn , fn)
 . (23)

The error that occurs during observation is modeled by the additive noise term Gξn . The 3 × 3
matrix G determines the individual noise levels. As in [141], it is given by

G = σs diaд(0.02, 0.2, 1), (24)
where σs > 0 is a scaling parameter and the constants were chosen in order to reflect the differ-
ent magnitudes between position, velocity, and force (i.e., acceleration). The vector ξn is a three-
dimensional Gaussian random variable, i.e., ξn ∼ N (0; I3), where I3 denotes the 3 × 3 identity
matrix. In particular, the observation yn is a three-dimensional vector.

The objective function is related to the one used in the LQR model, Equation (18), i.e., a weighted
combination of distance, velocity, and force costs, plus effort costs. The two differences are:
(i) distance, velocity, and force costs incur only at the final timestep N , while only the effort costs
incur continuously throughout the movement, and (ii) since state and control are not deterministic
due to noise, we use the expected value of these terms, denoted by E[·]. The objective function is
thus given by

J
(LQG)
N (x ,u) = E

⎡⎢⎢⎢⎢⎣D
2
N + ωvv

2
N + ωf f

2
n +

ωr

N − 1
��

N−1∑

n=0
u2

n
��
⎤⎥⎥⎥⎥⎦ . (25)

In total, this results in the following stochastic OCP:

Minimize J
(LQG)
N (x ,u),

with respect to u = (un)n∈{0, ...,N−1} ⊂ Rm ,
(26a)

where y = (yn)n∈{0, ...,N−1} ⊂ Rl satisfies
yn = Hnxn +Gξn , n ∈ {0, . . . ,N − 1}, (26b)

and x = (xn)n∈{0, ...,N } ⊂ Rk satisfies
xn+1 = Axn + (1 + σuηn)Bun , n ∈ {0, . . . ,N − 1},

x0 ∼ N (x̄0, Σ0).
(26c)

We specifically use the dimensions m, l , and k throughout to underline the generality and easy
expandability of the LQG model. In our case, we recall thatm = 1, l = 3, and k = 5.

Since the true state xn at timestep n is not available to the controller, it needs to compute in-
ternal state estimates x̂n based on the information available. Under the LQG assumptions (linear
dynamics, quadratic costs, Gaussian noise), the state estimates x̂n can be computed using a linear
estimator:

x̂n+1 = Ax̂n + Bun + Kn (yn − Hnx̂n), n ∈ {0, . . . ,N − 1}. (27)
Here, yn and Hnx̂n denote the obtained and the expected sensory input at time step n, respec-

tively (recall the Human Observer block in Figure 1(b)), where initially, at n = 0, we set x̂0 = x̄0.
The matrix Kn , which is to be determined, specifies to which degree the observed differences be-
tween these quantities should be taken into account for the computation of the subsequent state
estimate x̂n+1. As a trivial example, consider Kn = 0, which corresponds to the open-loop case, i.e.,

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

116 Optimal Feedback Control for Modeling Human-Computer Interaction

51:32 F. Fischer et al.

no sensory information is used by the controller. When it comes to choosing a “good” matrix Kn ,
the above LQG assumptions allow to analytically derive the matrix that is optimal in the sense
that it minimizes the objective function J

(LQG)
N . The resulting optimal estimator is known as the

Kalman Filter.12

Moreover, it can be shown that, similar to the LQR case, the optimal closed-loop solution u∗ =
(u∗n)n∈{0, ...,N−1} is linear in the state estimate x̂n , i.e., there exist unique feedback gain matrices Ln ,
n ∈ {0, . . . ,N − 1} such that

u∗n = π (x̂n) = −Lnx̂n , (28)
holds. As in the previous section, Ln is a 1 × 5 matrix. For more details, we refer to [141].

It is important to note that in the considered case of signal-dependent control noise, the feed-
back gain matrices Ln and the Kalman gain matrices Kn non-trivially depend on each other.
More precisely, each feedback gain matrix Ln depends on the subsequent Kalman filter matrices
(Ki)i ∈{n+1, ...,N−1} , and each Kalman filter matrix Kn depends on the previous feedback gain matri-
ces (Li)i ∈{0, ...,n−1} . Thus, the feedback gain matrices Ln can only be computed backward in time,
starting at the final timestep n = N , whereas the Kalman filter matrices Kn can only be computed
forward in time, starting at the first timestep n = 0. In particular, one must be given in order to
optimally determine the other. Fortunately, iterating alternately between the two optimizations
results in a coordinate descent algorithm, which can be shown to converge toward a (local) mini-
mum [141].13 This iterative computation of the matrices Kn and Ln can be done offline, i.e., before
movement onset.

As suggested by Todorov [141], we therefore initialize the Kalman gain matrices to 0, i.e., we
first compute the optimal open-loop control strategy matrices Ln , and iteratively compute Kn and
Ln until the resulting objective function value converges toward its optimum. In particular, we
terminate the iterative optimization procedure in the ith step if the relative improvement of J (LQG)

N
falls below a predefined threshold ϵ J > 0, i.e.,�������

(
J

(LQG)
N

)
i+1
−
(
J

(LQG)
N

)
i(

J
(LQG)
N

)
i

������� ≤ ϵ J , (29)

or after a maximum number of iterations (set to 20; we found that this value sufficed to obtain
parameters that did not change considerably afterwards). In our implementation, we use ϵ J =

1e-3.
We do not make use of the adaptive Kalman filter, as it was proposed for an LQG model designed

for via-point movements [138]. The adaptive Kalman filter computes Kalman gain matricesKn that
explicitly depend on the observations (yi)i ∈{0, ...,n−1} received so far, i.e., this needs to be done on-
line. Moreover, since these observations are stochastic, the matrices Kn (and thus the expected
behavior) differ between several runs. In addition, it was empirically observed that the adaptive
Kalman filter might be unstable [141]. In contrast, the non-adaptive Kalman filter from [141] com-
putes matrices Kn that only depend on information available before movement onset. The resulting
a priori expectations over the state sequences can be directly used in the loss function of the pa-
rameter fitting process to compare the expected outcome of different parameter vectors.

In principle, using an adaptive filter only during runtime (with Ln optimized with respect to the
non-adaptive filter) could further reduce the expected total costs. However, this effect has shown
to be minor [141], which is why we refrain from using an adaptive filter at all.

12In the case of state-dependent observation noise, i.e., if G is replaced by Gn (xn), the Kalman Filter is still optimal among
all linear estimators [138].
13Numerically, it has been shown that this algorithm even converges toward the global minimum [141].

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

117

Optimal Feedback Control for Modeling Human–Computer Interaction 51:33

8.2 Analysis of Parameters
The above mentioned a priori expectations over state trajectories, which are used to compute the
non-adaptive Kalman filter, allow to compare the stochastic results of the LQG controller between
different sets of parameters. In total, there are five parameters we aim at optimizing:

— the (terminal) velocity cost weight ωv ,
— the (terminal) force cost weight ωf ,
— the effort cost weight ωr ,
— the signal-dependent control noise level σu , and
— the observation noise level σs .

The first three parameters correspond to those from Section 7.1. In particular, setting all other
parameters as well as the initial variance to 0 and using exact initial state estimates x̂0 = x̄0 = x0
and Σ̂0 = Σ0 = 0, the stochastic OCP Equation (26) equals the deterministic OCP (11), i.e., the
LQR is a special case of the LQG. However, in contrast to the LQR model from Section 7, distance,
velocity, and force costs are only applied at the final timestep N . The effect of the individual cost
weight parameters is thus much smaller.

In principle, the same fixed noise level parameters σu and σs could be used for all participants
and task conditions. However, choosing them from literature is difficult since their effects strongly
depend on the assumptions and system dynamics of the considered model.

As shown in Figure 13 (top plots), an increase in the velocity cost weight ωv results in a higher
peak velocity, which is attained earlier. This can be explained by the corresponding decrease of the
end-point velocity, which effectively reduces the total costs. This is also visible from the entries
of the optimal feedback gain matrices Ln , which are depicted in Figure 13 as well. The magnitude
of the position component14 of Ln determines the importance of correcting the error between
end-effector and target at timestep n, whereas the magnitude of the velocity component of Ln
determines the importance of adjusting the end-effector velocity. For the LQG model, an increase
in the velocity cost weight ωv results in a later peak of the velocity component, i.e., the controller
would correct for a large velocity that occurs very shortly before the end of the movement, in order
to reduce the terminal velocity costs. In the position component of the feedback gain matrices,
a second, earlier peak occurs for moderate values (ωv = 1, green dash-dotted line). This suggests
that it is particularly important to the controller to eliminate deviations from the target both at
the end of the surge phase (peak at 0.212 s for the considered case) and at the end of the movement
(peak at 0.68 s). For large velocity cost weights (ωv = 20, blue dotted line), the earlier peak be-
comes more dominant and remains the only peak, i.e., end-point errors that occur shortly before
the end of the movement are not corrected anymore, as this would result in a larger end-point
velocity and thus a higher total expected cost. In addition, the (relative) length of the correction
phase increases as the terminal velocity cost weight increases. It is important to note that these
effects only occur under both observation noise and signal-dependent control noise, i.e., for σu ,
σs > 0.

Terminal force costs only, i.e., without terminal velocity costs, cannot account for the typically
observed corrective movements following the surge (see Figure 13, middle plots). In particular,
there is no incentive to reduce the velocity toward the end of the movement. Instead, the accelera-
tion is reduced, which is visible from the constant velocity at the end of the movement for largeωf

14We recall that to compute the resulting control un , each entry of the matrix Ln is multiplied by the corresponding entry
of the state xn , see Equation (28). In our case, Ln is a 1×5 matrix, which allows for easy interpretation of the matrix entries.
For example, the first entry of Ln is multiplied by the first entry of xn , which is the position, and hence referred to as the
position component of Ln .

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

118 Optimal Feedback Control for Modeling Human-Computer Interaction

51:34 F. Fischer et al.

Fig. 13. Typical LQG trajectories with target shown as the orange box, as well as selected entries of the
corresponding feedback gain matrices, and control time series, with noise levels σu = 0.2, σs = 0.5. Top:
Effect of velocity cost weight ωv with fixed cost weights ωf = 0, ωr = 1e-7 (red dashed: ωv = 0, green
dash-dotted: ωv = 1, and blue dotted: ωv = 20). Middle: Effect of force cost weight ωf with fixed cost
weights ωv = 0, ωr = 1e-7 (red dashed: ωf = 0, green dash-dotted: ωf = 1, and blue dotted: ωf = 100).
Bottom: Effect of effort cost weight ωr with fixed cost weights ωv = ωf = 2 (red dashed: ωv = 5e-8, green
dash-dotted: ωv = 5e-7, and blue dotted: ωv = 5e-6).

(green dash-dotted and blue dotted lines). Similarly to the velocity cost weight ωv , the force cost
weight ωf also affects the time period at which deviations from the desired terminal position and
velocity are corrected. As ωf increases, this period shifts forward, i.e., late-occurring deviations
are not corrected anymore.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

119

Optimal Feedback Control for Modeling Human–Computer Interaction 51:35

Fig. 14. Top: Effect of the signal-dependent noise level σu on the variance time series of the LQG position
and velocity profiles (red dashed: σu = 3, green dash-dotted: σu = 4, and blue dotted: σu = 5) and on the
time until the target is reached; all simulations with observation noise level σs = 0.5. Bottom: Effect of the
observation noise level σs on the variance time series of the LQG position and velocity profiles (red dashed:
σs = 0.02, green dash-dotted: σs = 0.2, and blue dotted: σs = 2) and on the time until the target is reached;
all simulations with signal-dependent noise level σu = 4.

For positive velocity and force cost weights ωv and ωf , an increase of the effort cost weight
ωr leads to a trajectory that reaches the target later, with lower peak velocity (see Figure 13, bot-
tom plots). This is intuitive, since higher effort costs reduce the magnitude of the optimal control
signals, resulting in lower accelerations and velocities. The terminal velocity is close to 0 for any
moderate ωr .

Note that the shape of the optimal control sequences differs considerably from the deterministic
LQR model (see Figure 11). In the LQG model, the control usually attains its maximum at the be-
ginning, then linearly decreases toward its minimum, and increases again toward 0. This is mainly
due to the velocity and the acceleration being penalized only at the final timestep N , which allows
to reach a higher peak velocity and acceleration (achieved through larger control signals at the
beginning of the movement; also note the large (non-normalized) positional feedback gain values
in bottom left plot). Under the assumption of signal-dependent control and constant observation
noise, the control is very close to 0 during the correction phase (which, for ID ≥ 4, makes up a
considerable part of the movement). In Figure 13 (bottom right plot), this is shown for moderate
control and observation noise levels σu = 0.2, σs = 0.5.

If the control noise σu is set large enough, similar effects can be observed without any observa-
tion noise, i.e.,σs = 0 (not shown). In contrast, large observation noise levels σs cannot compensate
a missing control noise. This is intuitively plausible—since the controller is aware that there is no
control noise, the deterministic system states resulting from the closed-loop system become per-
fectly predictable through the internal (correct) forward model, i.e., there is no need to rely on
noisy observations at all.

The effects of the control noise level σu (with σs = 0.5) and the observation noise level σs
(with σu = 4) are shown in Figure 14. In the left and in the middle plots, the variance of the
resulting LQG position and velocity profiles is plotted against time. The black solid lines show
a representative variance profile from the Pointing Dynamics Dataset. Visually, the combination
of signal-dependent control noise and constant observation noise can explain the characteristic

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

120 Optimal Feedback Control for Modeling Human-Computer Interaction

51:36 F. Fischer et al.

Fig. 15. Under signal-dependent noise and given a fixed movement duration (here: 0.97s), the end-point
standard deviation of the LQG linearly increases with distance. Given a fixed distance (here: 0.21m), the
end-point standard deviation inverse-quadratically decreases with movement duration.

variance profiles relatively well. Under signal-dependent noise, the application of smaller controls
in the second half of the movement (during the correction phase, which follows the surge) results in
a decreasing movement variability toward the end of the movement. This is in accordance with the
two-phase positional variance profiles that are typically observed in aimed movements [50, 55, 78].
From an information-theoretic perspective, the decaying rate of these profiles can be explained by
a user-specific channel capacity [50]. In the considered LQG model, the idea of user-specific control
and observation noise levels affecting the (expected) end-effector variability provides a different
interpretation. However, very large and physically implausible noise levels (σu ≈ 1−4) are required
to account for the substantial variance observed in the position and velocity profiles of mouse
pointing movements. The velocity variance profiles, which are typically bimodal [30, 55], can also
be replicated by the noise model of the LQG, albeit the second peak is usually less pronounced in
the simulation.

The effect of the signal-dependent noise level σu on the (average) time until the target is reached
is depicted in the top right plot of Figure 14, with total movement duration N corresponding to
0.97s. Note that the time a target is reached does not have to coincide with the total movement
duration. This is because the movement does not end upon reaching the target, but instead is
the experimentally observed time between two mouse clicks. To distinguish these two, we will
abbreviate the average time until the target is reached by time to target in the following.

Without signal-dependent noise, i.e., σu = 0, there is little incentive to reach the target much
earlier than at timestep N , which is the only timestep at which the positional error, velocity, and
acceleration are penalized. As σu increases, the movement duration rapidly decreases. This can be
again explained by the need to apply lower controls toward the end, in order to reduce the un-
certainty regarding the final end-effector position. Signal-dependent noise thus induces a strategy
that could be described as “doing most of the work at the beginning to be on the safe side”. How-
ever, if σu becomes too large, its effect on the movement time reverses: The more signal-dependent
noise, the more time is required to reach the target. This is intuitive, since higher control noise lev-
els result in a larger positional variance of the end-effector, which, in turn, forces the controller to
more rely on the received observations when updating the internal state estimate. In combination
with a positive observation noise level σs , an increase in σu thus results in a larger uncertainty
regarding the own position, which makes it difficult to reach the target at the same time. Such
an increase of the time to target with σu cannot be observed if observation noise is omitted (not
shown).

The assumption of signal-dependent control noise is also in accordance with the well-known
speed-accuracy tradeoff, which suggests that faster movements result in a larger end-point vari-
ance [58, 142, 154]. As can be seen in Figure 15 (left), for a fixed movement duration N , the

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

121

Optimal Feedback Control for Modeling Human–Computer Interaction 51:37

positional end-point accuracy (i.e., the standard deviation of the terminal end-effector position)
linearly increases with the initial distance to target. This is plausible, as larger movements require
higher controls un , and is consistent with empirical findings [49, 138, 141, 155]. Similarly, an in-
verse relationship between movement duration and end-point standard deviation can be observed
(see Figure 15 (right)).

For the observation noise level σs , similar effects on the variance profiles and the time to target
can be observed, given a fixed control noise level σu (bottom row of Figure 14). The increasing
variance in position and velocity as σs increases can also be explained by the increasing uncer-
tainty regarding the own end-effector position as σs increases, as this uncertainty in turn affects
the variance of the applied muscle control. For moderate observation noise levels σs , this effect
decreases toward the end of the movement, since smaller controls are applied then, i.e., the future
system states become less dependent on the internal state estimates. However, if σs becomes too
large, the internal state estimates are not precise enough to reliably move the end-effector toward
the target. In this case, the positional variance remains constant or even increases toward the end
of the movement (blue dotted line in the bottom left of Figure 14). Note, however, that on average,
the target is still reached early during the simulation (after 0.46 s for σs = 2, which is even slightly
faster than the representative user trajectory for the considered task shown as black line in the
bottom right plot of Figure 14).

In summary, the mutual dependency between observations and applied controls, i.e., between
the Kalman gains Kn and the feedback gains Ln , implies a positive effect of both signal-dependent
control noise and constant observation noise on the movement variability, whereas the effect on
the time to target depends on the absolute value of both noise levels. However, the effects of σs
are considerably smaller than the effects of σu (note the logarithmic scale of σs for both variance
profiles, and the smaller linear scale in the time to target). In particular, observation noise only has
an effect in combination with control noise, because otherwise the system is deterministic, i.e., the
controller does not need to rely on sensory input at all.

8.3 Results of Parameter Fitting
Using our parameter fitting process, we identify the optimal values of all five parameters for each
combination of participant, task condition, and direction within the Pointing Dynamics Dataset.
Since the LQG model yields a sequence of state distributions, we use the stochastic parameter fit-
ting variant described in Section 4.2, with 2−Wasserstein distance applied to the position-velocity
components of the respective state distributions as the loss function.

The parameters of the initial distribution, x̄0 and Σ0, from Equation (26c) are specified as follows.
We choose x̄0 = (pUSER

0 ,vUSER
0 , 0, 0,T)
, where pUSER

0 and vUSER
0 denote the average initial position

and velocity, respectively, of all trials for the considered combination of participant, task condition,
and direction. The covariance Σ0 of the initial state is defined as follows. The components for
position and velocity correspond to the sample covariance matrix empirically observed from these
user trajectories, as described in Section 4.1. All other components are set to 0.

8.3.1 Qualitative Results. The optimal LQG solution for the same representative ID 4 task as
used for the previous models is shown in Figure 16, where both the mean trajectories and the 95%
point-wise confidence bands are plotted. The mean position and velocity profiles (green solid lines)
visually match those from user data (red solid lines) very well. The same holds for the acceleration
time series, apart from the second submovement (starting around 0.3 s), which is slightly less
pronounced in the simulation. The most notable differences are that in the LQG model, there is a
slightly larger positional variance at the transition from the ballistic to the corrective phase of the

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

122 Optimal Feedback Control for Modeling Human-Computer Interaction

51:38 F. Fischer et al.

Fig. 16. Visually, LQG trajectories show a good fit to typical user trajectories. The mean trajectories (solid
lines) as well as the 95% point-wise confidence bands match very well at first glance. Some simulation move-
ments exhibit a slightly too low velocity at the beginning of the movement. The LQG acceleration profiles are
obtained by applying a Savitzky–Golay filter of degree 3 and frame size 15 to the respective velocity profile
and differentiating the corresponding polynomials.

Fig. 17. Parameters of the LQG model, optimized for the trajectory sets of all participants, tasks, and direc-
tions, grouped by participants (left) and by ID (right). Note that the optimal values of ωf and ωr are plotted
on a logarithmic scale.

movement (see also Figure 20), and a larger variance in velocity and acceleration at the beginning
of the movement.

8.3.2 Quantitative Results. In Figure 17, optimal parameter values of the LQG are shown,
grouped by both user and task ID. For better visibility, the values of ωf and ωr are plotted on
a logarithmic scale.

In contrast to the LQR model, the optimal cost weights are more affected by the task ID than
by the individual participants. Since in the LQG model, distance, velocity, and force costs are only
applied in the final timestep N , the corresponding weights can be interpreted as importance of the
endpoint accuracy constraint relative to keeping the required effort low.

The force cost weightωf monotonously increases with task ID, whereas the velocity cost weight
ωv takes similar values for ID 2, 4, and 6 tasks, and is considerably larger for ID 8 tasks. Since the
velocity cost weight ωv mainly affects the relative time spent in the surge phase (see Figure 13,
top plots), the latter finding suggests that movements for very difficult tasks (ID 8) exhibit a con-
siderably longer correction phase. Similarly, the force cost weight ωf determines the time period
at which positional errors and large velocities are corrected (see Figure 13, middle plots). The

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

123

Optimal Feedback Control for Modeling Human–Computer Interaction 51:39

monotonous increase of ωf with task ID thus implies that the more difficult the task, the less
attention is paid to deviations near the end of the movement.

The effort cost weightωr exponentially decreases as the task ID increases. This is not surprising,
since the controller does not have explicit knowledge on the target width W , but only on the
distance to target D (via the initial end-effector and the target position, which are both included
in x̄0). Instead, the desired increase of end-point accuracy asW decreases needs to be implemented
via the cost weights. The observed decrease of the effort cost weight ωr as the task becomes more
difficult, which is equivalent to a relative increase of the terminal costs, can thus be interpreted
as a higher importance of keeping the end-effector inside the target (higher accuracy) with small
velocity and force at the final time step N (higher stability).

The task ID also has an effect on the two noise level parameters σu and σs . The signal-dependent
control noise level σu takes considerably lower values for ID 2 tasks, while the observation noise
level σs decreases as the task becomes more difficult.

While in contrast to the LQR model, the effect of the participants on the optimal cost weights
is less pronounced (see Figure B.3 in the Appendix), different users are clearly characterized by
different noise levels. For example, the trajectories of participant 8 can be explained by a small
control noise level σu (and a rather large observation noise level σs), whereas participant 9 is best
explained by a larger control noise level σu (and a small observation noise level σs).

8.4 Discussion
The LQG model assumes that users behave optimally with respect to a combination of terminal
distance, velocity, and force costs, as well as continuous effort costs, within the constraints im-
posed by the human–computer system dynamics, and subject to signal-dependent motor noise
and constant observation noise. Using the presented stochastic parameter fitting, this allows for
an excellent replication of user trajectories.

As shown in Figure 16, trajectories resulting from the presented parameter fitting process cap-
ture both the average behavior and between-trial variability that is typically observed in mouse
pointing movements.

However, the observation model from [141] has some shortcomings, as it assumes that all rel-
evant quantities are perceived instantaneously in global coordinates and perturbed by additive
Gaussian noise only. Moreover, the target position is assumed to be perfectly known during the
entire movement. Thus, online comparisons between the target signals obtained from an appropri-
ate observation model (i.e., Hn such that Hnxn includes T , see Equation (23)) and those predicted
by the internal model would not yield any additional benefit. This, however, is in contradiction
to many empirical observations, which suggest that visual stimuli are internally used whenever
available, even in the considered case of serial movements between the same two targets [116, 138].

In the following section, we thus extend the LQG model by considering both fixation-centered
and world-centered sensory input signals, inspired by [138].

9 POINTING AS OPTIMAL FEEDBACK CONTROL SUBJECT TO
SIGNAL-DEPENDENT NOISE AND SACCADES: THE E-LQG

The observation model of the LQG model in Section 8, which was taken from [141], has some
major drawbacks. In particular, it assumes that the position, velocity, and force of the end-effector
can be directly observed in world-centered coordinates, only perturbed by additive Gaussian noise
whose magnitude is also known to the controller.

In the following, we will thus present an extension of this LQG model, denoted by E-LQG, which
includes a more complex and physiologically plausible human observation model. The main con-
cepts are taken from [138], with an adaption to the considered case of mouse pointing. In contrast

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

124 Optimal Feedback Control for Modeling Human-Computer Interaction

51:40 F. Fischer et al.

to [138], we assume that the end-effector position cannot be observed via proprioception (i.e., in
world-centered coordinates), but only from visual input (i.e., relative to the current eye fixation
position), since it corresponds to the mouse cursor position in our case.

Compared to the LQG model from Section 8, the E-LQG model
— models eye movement based on accurate saccades between the initial and the target position,
— distinguishes between visual input (in fixation-centered coordinates) and observations of

the eye fixation position (in world-centered coordinates), and
— works with an imperfect initial target estimate, which is updated during the movement based

on sensory input.
In the following, these differences are described in more detail.

Eye Saccades. For the considered goal-directed movements, sensory input can be assumed to be
based on eye saccades, i.e., fast movements of the fovea between two fixation points [74, 75, 157].
The number and choice of fixation points usually depends on the complexity of the observed
scene, the underlying goal (i.e., which information should be extracted from visually input), and
the salience of individual objects, among others [46, 119, 133]. However, previous experiments
on via-point tasks suggest that a single and precise movement of the fovea toward the aimed
target is sufficient for the considered case of reciprocal pointing toward clearly delimited target
areas [138]. Following [138], we thus can assume that at the beginning of the movement, the eye
fixation corresponds to the initial position (regarding the repetitive movements from the Pointing
Dynamics Dataset, this is equivalent to the target position of the previous movement). At a certain
time during the arm movement, the gaze is assumed to move toward the target, which is then
fixated until the end of the trial.

However, the eye saccades are decoupled from the rest of the movement in the sense that the
controller can neither modify the time of the saccade nor the fixation points. Instead, we assume
that both fixations are accurate (which can be argued by combining “possible corrective saccades
in one “saccade” moving the eyes from one target to another” [138]), and optimize the saccade
time within the outer parameter fitting process.15

Visual Input. We assume that visual input signals yield information regarding the position of
the end-effector (i.e., the mouse pointer), the target, and the initial position, each relative to the eye
fixation position (i.e., in fixation-centered coordinates).16

Based on the principles of foveal and peripheral vision [82, 128], these observations are as-
sumed to be disturbed by noise that linearly increases in the distance between the respective object
(pointer, initial/target box) and the eye fixation point. This is a major difference to the LQG model
from Section 8.1, which included additive observation noise only. In addition, both the end-effector
velocity and acceleration (which corresponds to force due to the assumption of unit mass) are per-
ceived from visual input channels with additive noise, i.e., the magnitude of the observation noise
is assumed independent of the distance to the eye fixation. The rationale for using additive noise
here is that the minimum detectable difference between velocities is known to hardly differ be-
tween the peripheral and the foveal field. This particularly implies that useful observations of the
end-effector velocity can be obtained independent of whether the end-effector moves close to the
fixation point [91].

15In the future, it will be interesting to include the eye position in state space and make it controllable via some (simplified)
eye dynamics, similar to the simplified muscle dynamics that are used to control the end-effector.
16Note that depending on whether the saccade has already taken place, the relative initial position (before the saccade) or
the relative target position (after the saccade) equals 0 and thus can be discarded from the observation space.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

125

Optimal Feedback Control for Modeling Human–Computer Interaction 51:41

Proprioceptive and Eye Fixation Input. Proprioceptive signals are signals that refer to the own
body position and movement. While the visual input channel yields fixation-centered observations
of the end-effector and the target position, proprioception could be used to obtain world-centered
estimates of the own body position and orientation, e.g., of the arm, hand, or head. The used
Human–Computer System Dynamics, however, do not explicitly distinguish between quantities
corresponding to the human body and quantities corresponding to the input device or interface.
Instead, it gives the overall dynamics that are directly applied to the virtual end-effector (see the
discussion in Section 3.2). In the considered case of mouse pointing, the end-effector corresponds
to the mouse cursor shown on the display, which cannot be perceived proprioceptively. In contrast
to [138], we thus do not include world-centered observations of the end-effector position in the
proposed model.

Besides feedback on the end-effector position and orientation, the human body usually also
provides information about the eye position. In recent years, a large debate has evolved about
whether the cortical eye position is rather obtained via proprioception or using internal efference
copies of “outflow” signals [92, 150]. For details on the neurophysiological mechanisms underly-
ing coordinated eye-hand movements, we refer the interested reader to the excellent overview
given in [123]. Regarding the observation model used for the E-LQG model, we assume that the
eye fixation point (perturbed by additive noise) can be perceived in world-centered coordinates.
Note that the eye fixation dynamics are not part of the Human–Computer System Dynamics, but
are implicitly modeled via the following workaround. Th e two attainable values are included in
the state, and the time of the instantaneous switch is determined via some parameter (more details
are given in Section 9.1).

In summary, the eye fixation is assumed to take only two different values during an aimed
movement: the initial position (before the saccade) and the target position (after the saccade). In
particular, the (perturbed) target position can be observed in world-centered coordinates, as soon
as the saccade has taken place.

Internal Target Estimate. We assume that at the beginning of the movement, the controller is
not aware of the exact target position. This is intuitively plausible, since even in the considered
case of reciprocal tasks, where the users know that the two same targets will appear alternately,
visual input signals are known to be used to improve the (rough) prior target estimates during the
movement [116, 138].

In both the LQG and the E-LQG models, the internal state estimates x̂n include an estimate of the
desired target. However, the controller in the LQG model is given an exact initial estimate x̂0, i.e., x̂0
includes the correct (mean) initial position, velocity, force, muscle excitation, and target position.
Since the target is known to be constant during the movement, this immediately implies a correct
target estimation during the complete movement. In contrast, in the E-LQG model, we assume that
the target component of the initial estimate differs from the actual target positionT . For simplicity,
we assume that this initial target estimate corresponds to the initial position T0 (see Section 9.1),
that is, the center of the target box of the previous movement in the Pointing Dynamics Dataset;
note that both initial and target box were permanently displayed in the experiment [98]. This is
in agreement with the reciprocal nature of the movements from the Pointing Dynamics Dataset,
where the initial position should in turn equal the target position of the preceding movement.
During the mouse movement, the internal target estimate, i.e., the target component of x̂n , is then
updated based on the perceived sensory input signals yn .

9.1 LQG with Extended Observation Model (E-LQG)
Based on the above assumptions, we modify the LQG model presented in Section 8 as follows.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

126 Optimal Feedback Control for Modeling Human-Computer Interaction

51:42 F. Fischer et al.

In order to model eye fixation of the initial position T0, we first need to include T0 in the state
space. We thus define xn = (pn ,vn , fn ,дn ,T0,T)
 ∈ R6, i.e., the state vector now consists of the
end-effector position, velocity, force, muscle excitation, the (fixed) initial position, and the (fixed)
target position. Moreover, we introduce the saccade timestep ns , which defines the time at which
the eye fixation switches from initial to target position. In order to be able to optimize this saccade
timestep within the stochastic parameter fitting process from Section 4.2, we relax this parameter
by allowing continuous values, i.e., ns ∈ [0,N].

The observationsyn are more complex than in the LQG model, see Equation (21). They are given
by the following observation model17:

yn = Hnxn +Gn (xn)ξn , (30)
where the observation matrix Hn depends on whether the saccade has taken place or not. Before
the saccade has taken place, the unperturbed observations Hnxn include the end-effector velocity,
the end-effector acceleration (corresponding to muscle activation and force), the initial position
(i.e., the center position of the initial boundary box, which corresponds to the eye fixation position),
as well as the end-effector and target position, both relative to the the initial position. After the
saccade has taken place, the unperturbed observations Hnxn include velocity, acceleration, the
target position (which now corresponds to the eye fixation position), as well as the end-effector
and initial position, both relative to the the target position. At saccade timestep n = �ns �, we use
a convex combination of the two observations.18 To this end, we formally define the two matrices,

H (T0) =

��������

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 −1 0
0 0 0 0 −1 1

��������
, and H (T) =

��������

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 −1
0 0 0 0 1 −1

��������
, (31)

and introduce {ns }, which denotes the fraction part of ns , i.e., {ns } = ns − �ns �. Then, we can define
the observation matrix Hn as

Hn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H (T0), if n < �ns �,
H (T), if n > �ns �,
{ns }H (T0) + (1 − {ns })H (T), if n = �ns � .

(32)

The signal-dependent observation noise is introduced by the second term on the right-hand
side of Equation (30). Here, the vector ξn is a five-dimensional Gaussian random variable, i.e.,
ξn ∼ N (0; I5), where I5 denotes the 5 × 5 identity matrix. The observation noise matrix Gn is
defined by

Gn (xn) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

diaд(σv ,σf ,σe ,γ |pn −T0 |,γ |T −T0 |), if n < �ns �
diaд(σv ,σf ,σe ,γ ({ns } (|pn −T0 |) + (1 − {ns }) (|pn −T |)) ,

γ ({ns } (|T −T0 |) + (1 − {ns }) (|T0 −T |))), if n = �ns �
diaд(σv ,σf ,σe ,γ |pn −T |,γ |T0 −T |), if n > �ns �

. (33)

The end-effector velocity and force are perturbed by visual noise levels σv and σf , respectively.
Similarly, the eye fixation position is perturbed by the gaze noise level σe . The magnitude of the

17Note that the generality and flexibility of the proposed framework in principle allows to incorporate multiple and impre-
cise saccades, as well as more sophisticated approaches to model visual input [37]. However, this is beyond the scope of
this work.
18This relaxation ensures that the gradient of the state sequence x with respect to ns becomes non-zero, which is necessary
to apply standard continuous optimization methods within the parameter fitting process.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

127

Optimal Feedback Control for Modeling Human–Computer Interaction 51:43

Fig. 18. Internal estimates of the target position in the E-LQG model, as well the resulting (expected) position
profile of the end-effector. In (A)–(C), darker lines correspond to larger parameter values. We set ωv = 2,
ωf = 0.02, ωr = 1e-7, σv = 5, σf = 1, σu = σc = 0, h = 0.002, and performed at least three iterations
to compute the Kalman and feedback gain matrices Kn and Ln , see Equation (29). (A): Effect of position
perception noise weight γ (between 0 and 5) with fixed gaze noise level σe = 0.1 and saccade timestep
ns = 50, i.e., at 0.1 s. (B): Effect of gaze noise level σe (between 1e-10 and 0.1) with fixed position perception
noise weight γ = 10 and saccade timestep ns = 50. (C): Effect of saccade timestep ns (between 0 and 100)
with fixed position perception noise weight γ = 10 and gaze noise level σe = 0.1. (D): Development of the
internal target estimate probability density function over time, with position perception noise weight γ = 10,
gaze noise level σe = 0.1, and the saccade occurring after 0.05 s.

visual position observations depends on the respective distance to the eye fixation point, scaled
by the parameter γ . This is consistent with Weber’s Law [27], which claims that the minimum
required stimulus changes that lead to a considerable change in the visual perception (that is,
changes that are larger than the perceptual noise) are linear in the absolute value of the respective
signal, suggesting that the perceptual noise linearly depends on this absolute value as well [85].

9.2 Analysis of Parameters
The effect of the parameters γ , σe , and ns on both the internal target estimate and the resulting
(expected) end-effector position time series is shown in Figure 18(A)–(C), with darker lines corre-
sponding to larger parameter values. The parameter γ denotes the scaling weight of the Gaussian
noise term added to the visually observed positions, which is multiplied by the respective distance
to the eye fixation point. The constant magnitude of the Gaussian noise added to the eye fixation
position is denoted by σe , and ns denotes the timestep at which the saccade occurs.

Starting with an eye fixation of the initial position (which is known at the beginning of the move-
ment and thus correctly estimated), a higher position perception noise weight γ leads to a slower

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

128 Optimal Feedback Control for Modeling Human-Computer Interaction

51:44 F. Fischer et al.

update of the internal target estimate from initial position to true target position (red dash-dotted
lines in plot A). Interestingly, this does not delay the end-effector movement, but rather results in
a faster movement toward the target (green dotted lines in plot A). A possible explanation for this
phenomenon could be the that moving the end-effector early after the saccade toward the internal
target estimate can improve the internal estimate of the end-effector position, since the eyes fixate
the target center after the saccade. This means that the variance of the end-effector position ob-
servations linearly decreases as the distance between end-effector and target decreases. Since the
terminal costs create an incentive to keep the end-effector at the target center with zero velocity
and acceleration in the final timestep N , it is thus important to obtain reliable estimates of both
the target position (which is quite accurate after the saccade has taken place, see next paragraph)
and the own end-effector position early in time, to avoid expensive last millisecond corrections.
A large scaling parameter γ intensifies this problem, as a smaller distance between end-effector
and target is necessary to achieve the same amount of visual observation noise. Thus, a larger po-
sition perception noise weight γ results in an earlier movement toward the target. However, this
effect only holds for moderate values (γ ≤ 5); if the visual observation noise γ becomes too large,
more time is required to obtain a reliable internal target estimate, resulting in a more tentative (i.e.,
slower) movement toward the estimated target position (not shown).

Similar effects can be observed for the gaze noise level σe , that is, the (constant) magnitude of
Gaussian noise that is added to the observation of the eye fixation. As soon as the saccade toward
the target has taken place (after 0.1s in the shown example), the target estimate is significantly
improved, as it can be estimated from both visual input and the eye fixation observation. Thus,
σe mainly determines the convergence rate of the internal target estimate after the saccade (red
dash-dotted lines in plot B). Moreover, a larger σe incentivizes a (slightly) faster movement toward
the internal target estimate, in order to further improve this estimate and thus reliably keep the
end-effector inside the actual target at the end of the movement, when terminal costs incur.

The effect of the saccade timestep ns on both the target estimate and the end-effector position
profile is shown in plot C. An increase in ns delays the movement toward the target, as world-
centered information on the target position, which become available to the controller at time ns
via observation of the eye fixation point, considerably improve the internal target estimate, i.e., it
is worth waiting a little longer.

In plot D, the development of the internal target estimate over time is depicted. Starting with the
prior target estimate T0 (dashed line), the mean of the normal distributions shifts toward the true
targetT (solid line) as more sensory input becomes available. Note that the largest improvements
occur at the beginning and after the saccade, i.e., after 0.05 s. The variance first increases19 and
then slowly decreases toward 0.

9.3 Results of Parameter Fitting
The E-LQG model uses the following nine parameters:

— the (terminal) velocity cost weight ωv ,
— the (terminal) force cost weight ωf ,
— the effort cost weight ωr ,
— the signal-dependent control noise level σu ,
— the velocity perception noise level σv and the force20 perception noise level σf ,

19Note that the initial variance estimate of the target component equals 0, i.e., the LQG model initially assumes that the
target is at the initial position T0 with probability 1, which is why we skip the density function at time 0 and plot the
density function starting at the second timestep, i.e., after 0.002 s.
20Recall that the controlled system is assumed to have unit mass, i.e., the applied force is equivalent to the acceleration.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

129

Optimal Feedback Control for Modeling Human–Computer Interaction 51:45

Fig. 19. Control noise parameter σu of the E-LQG, optimized for the mean trajectories of all participants,
tasks, and directions, grouped by participants (left) and by ID (right).

— the gaze noise level σe ,
— the position perception noise weight γ , and
— the saccade timestep ns .

We again identify the optimal parameter vector for each combination of participant, task condi-
tion, and movement direction, using the stochastic parameter fitting procedure from Section 4.2.
Qualitatively and quantitatively, the results do not change much from the LQG model. We thus
focus only on parameters which exhibit noticeable differences.

As shown in Figure 19, the optimal control noise level σu exhibits clear differences between
individual users and task IDs, similar to the LQG case. However, the optimal values are consider-
ably lower (the mean value amounts to 1.18 (E-LQG) and 2.52 (LQG)). In Section 11, we show that
the E-LQG model replicates the observed user trajectories similarly well compared to the LQG
model. This suggests that the extended observation model of E-LQG allows to replicate the typical
variance profiles with lower (i.e., more plausible) signal-dependent control noise levels.

The decrease of observation noise with higher ID, which was clearly noticeable for the single
observation noise parameter σs in the LQG model, occurs only for the velocity perception noise
level σv (see Figure B.4 in the Appendix; note the logarithmic scale in both plots). Instead, the
magnitude of the noises σf and γ do not exhibit a clear dependency on the ID, and vary between
individual participants. This suggests that the observation model of E-LQG makes it more mean-
ingful than the LQG model. The optimal parameter values of σe and ns increase with ID (at least
for ID ≥ 4), and also exhibit characteristic differences between individual users (see Figure B.5 in
the Appendix).

10 THE INTERMITTENT CONTROL MODEL (IC)
In the remaining part of this article, we will compare the presented models against each other, both
qualitatively and quantitatively. In particular, we analyze and discuss the ability of the stochastic
models LQG and E-LQG to predict not only individual trajectories, but entire trajectory distribu-
tions. Since 2OL-Eq, which we use as a baseline for the deterministic optimal control models, is
not capable of predicting movement variability, we need another, stochastic baseline model. We
decided to use a model from IC theory, which recently has been proposed by Martin et al. [160].
In the following, we will give a short overview of the similarities and differences between IC and
OFC.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

130 Optimal Feedback Control for Modeling Human-Computer Interaction

51:46 F. Fischer et al.

In both IC and classical OFC models, internal models of the interaction loop are used to find
controls that are optimal with respect to a certain cost function. As a major difference, OFC
continuously integrates the stream of obtained sensory input signals to account for unexpected
disturbances and correct internal state estimates accordingly, whereas IC only intermittently
makes use of these observations [34, 45, 105, 160]. In particular, IC allows to include a mini-
mum open-loop interval between two successive events, in which no feedback is available to
the controller [160]. From a neuroscientific perspective, this is consistent with the theory of
psychological refractory periods, which assumes the existence of short periods of time after a vi-
sual stimulus has been processed, in which the controller cannot react to further changes in the
environment [45, 134].

More precisely, in IC, an open-loop control based on an internal representation of the system
dynamics (the so-called hold) is applied until the difference between predicted and observed state
exceeds some predefined threshold, i.e., until the unaccounted disturbances become too large. In
this case, an event is triggered, which updates the internal model based on a new sample from
the continuously perceived stream of observations. Afterwards, the open-loop control that is
optimal for the updated internal model is applied until the next event is triggered, and so on,
resulting in an IC. IC models can thus be regarded as a hybrid of open-loop and closed-loop
models.

We decided to use the IC model from [160], since it is based on similar assumptions (optimal
control with respect to accuracy, stability, and effort costs, subject to the constraints imposed by
the system dynamics), and also has been applied to mouse movements, using the same Pointing
Dynamics Dataset and a parameter identification process similar to ours. Moreover, the IC model is
also able to replicate movement variability in terms of phase space probability distributions [160].
It thus constitutes a suitable baseline for the considered stochastic OFC models.

However, the variability is generated completely differently in the two approaches. In LQG/E-
LQG, between-trial variability arises from noise terms that are explicitly modeled in the Human–
Computer System Dynamics (e.g., signal-dependent control noise, or observation noise), which
allows to analytically compute the expected mean and covariance matrices (see Section 8.1). In
contrast, both the control and observations dynamics of the IC model from [160] are assumed
deterministic. While motor and/or observation noise could be included in principle, the IC model
is based on the LQR, i.e., it is not capable of taking into account the expected variance due to such
noise terms when computing the optimal control strategy.

In contrast, in the IC model, motor variability is only due to a multiple-model approach, i.e., mul-
tiple movements are generated by using different parameter vectors, which are randomly drawn
from a bank of identified parameter vectors. This is a major difference from the presented SOFC
models, where we have identified only one parameter vector for each user, task condition, and di-
rection, such that the resulting trajectory distribution captures both average user behavior and
between-trial variability.

Further differences between the IC model and the LQG/E-LQG include the system dynamics (in
the IC model, the same fourth-order dynamics are used, but with slightly different time constants
τ1 = τ2 = 0.05), and the observation model, which for the IC only yields (unperturbed) positional
information.

10.1 Technical Details
The IC simulation trajectories, which we will use as a baseline for the LQG and the E-LQG models
in the following, were generated by Martin et al. [160]. For each combination of participant and
task condition, they performed 200 simulations of 20 subsequent “slices” (i.e., combinations of

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

131

Optimal Feedback Control for Modeling Human–Computer Interaction 51:47

rightward and leftward movements), by randomly drawing from a bank of 20 identified parameter
vectors. Since we analyze unidirectional movements in this article, we split each of these slices at
the respective target switch time, resulting in a total of 4,000 simulated IC movements for each
participant, task condition, and direction.

For the comparison between the IC simulation data and observed user data, we then clip the
trajectories of both datasets to some N ∈ N, since the lengths of the IC trajectories were chosen
to match the lengths of the respective dataset slices (in contrast to LQG/E-LQG, where the opti-
mal trajectory distribution sequence necessarily yields sample trajectories of pre-defined, equal
length). We define the maximum IC trajectory length NIC using the same outlier criteria (both
with respect to trajectory length and position values at each timestep) as for the maximum user
data trajectory length NUSER (see Section 4.1), and then cut both distribution sequences to length
N = min(NIC,NUSER).21 We also remove the reaction times from all IC simulation trajectories,
using the same procedure as for the Pointing Dynamics Dataset (see Section 4.1).

Finally, we compute the sample mean and covariance matrices of the resulting set of IC tra-
jectories on a frame by frame basis, resulting in one trajectory distribution sequence for each
participant, task condition, and direction.

11 COMPARISON BETWEEN MODELS
In the following, we provide a detailed comparison of the six presented models, both qualitatively
and quantitatively.

11.1 Qualitative Comparison
A comparison of all simulation trajectories for the regarded user and task condition can be found
in Figure 20, where the mean position and velocity is shown for all considered models, and the
variance in position and velocity is shown for all stochastic models.

Deterministic Models. The deterministic models can only predict average behavior (top row).
The 2OL-Eq trajectory (blue lines) has a too large velocity at the beginning of the movement,
which is a direct consequence of the high initial acceleration, as discussed in Section 5. The tra-
jectory of the MinJerk model (orange lines) exhibits a perfectly bell-shaped velocity profile, with
peak velocity very close to that observed in the user trajectory (black lines). However, MinJerk
cannot explain the required corrective submovements toward the end of the movement. Instead,
it assumes that the target is reached after the first ballistic movement, i.e., the surge. For trajecto-
ries with clearly visible submovements, this results in a considerable worse overall fit of both the
position and the velocity time series. In addition, the duration of this surge does not emerge from
MinJerk, but needs to be explicitly fitted to the desired user trajectory. In contrast, the LQR model
(green lines) approximates the mean trajectory well in terms of position and velocity, although the
corrective movement is not pronounced.

Stochastic Models. Both the LQG and the E-LQG models do not only model average behavior
well (top row), but also account for the between-trial variance observed in both position and veloc-
ity profiles (bottom row). The variance profiles of the LQG model (red lines) are similar to those
of the user data (black lines). For some trials (as the one shown in Figure 20), the E-LQG trajectory
distribution sequence (purple lines) fits slightly worse in terms of positional and velocity variance;
in particular, the peaks of both variance profiles are considerably lower for the E-LQG compared

21Note that, given a participant, task condition, and direction, the length N used to compute a measure of similarity between
simulation and user trajectories, such as MWD, might thus be slightly lower for IC than for the other models, where N
was set to NUSER.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

132 Optimal Feedback Control for Modeling Human-Computer Interaction

51:48 F. Fischer et al.

Fig. 20. Comparison between all considered models in terms of mean and variance of both position and
velocity, using the same task condition (participant 3, ID 4 (765px distance, and 51px width), rightward
movement) as in the previous sections.

to user data. The IC simulation trajectories (brown lines) exhibit an even lower variance in terms
of both position and velocity. Moreover, the peak velocity of IC is lower compared to user data and
all other considered models (except for 2OL-Eq).

Corrective Submovements. Corrective submovements are not replicated well by any of the six
models. MinJerk is extended by a constant position value after the surge and thus naturally cannot
account for granular corrections of the end-effector position, which are visible in the velocity time
series of the user data, starting around 0.36 s. The remaining models slowly reduce the velocity
toward the end of a movement. However, clear submovements, i.e., additional peaks in the velocity
profile (around 0.42 s in the user data), are not visible.

11.2 Quantitative Comparison
We start with a comparison of how well each model is able to predict average user behavior, i.e.,
how close their simulated trajectories resemble the mean trajectories computed from the Pointing
Dynamics Dataset. Although the parameter fitting of the deterministic models (2OL-Eq, MinJerk,
and LQR) was performed with respect to positional SSE only, we also evaluate the SSE with respect
to mean velocity and acceleration. In addition, we measure the positional Maximum Error between
model and user trajectories, i.e.,

max
n=0, ...,N

���pΛ
n − pUSER

n
��� , (34)

and analogously the Maximum Error in velocity and acceleration.
In addition to the 2−Wasserstein distance, we also consider the mean KL divergence (MKL) [76]

over time to further evaluate the performance of the stochastic models (LQG, E-LQG, and IC).
Moreover, we compare the mean trajectories of the stochastic models with respect to SSE and

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

133

Optimal Feedback Control for Modeling Human–Computer Interaction 51:49

Fig. 21. (a)–(f): SSE and Maximum Error values of all considered models, regarding the mean position, ve-
locity, and acceleration time series of all participants and all tasks. (g)–(h): Mean Wasserstein distance and
mean KL divergence of LQG, E-LQG, and IC, using sequences of Gaussian distributions over end-effector po-
sition and velocity, for all participants and all tasks. The asterisks indicate whether the difference between
two bars is significant according to Wilcoxon Signed Rank tests with Bonferroni corrections (*: p ≤ 0.05,
: p ≤ 0.01, *: p ≤ 0.001, ****: p ≤ 0.0001; n.s.: p > 0.05). Note the logarithmic scale in each plot.

Maximum Error, albeit these models were optimized to resemble the entire variability of observed
user behavior.

Figure 21 displays the quality of the fit for all six models on a logarithmic scale.
Kolmogorov–Smirnov tests showed that the distributions of positional SSE for all six models

do not fit the assumption of normality (all values p < 0.0001; the same holds for all other consid-
ered measures). Thus, we carried out a Friedman Test (i.e., a non-parametric test equivalent to a
repeated measures one-way ANOVA), using Bonferroni corrections. The main factor included in
the analysis was which model was used: 2OL-Eq, MinJerk, LQR, LQG, E-LQG, and IC. The test
indicated that the SSE between the six models was significantly different (χ 2 (2) = 638, p < 0.0001,
n = 192).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

134 Optimal Feedback Control for Modeling Human-Computer Interaction

51:50 F. Fischer et al.

Additional Wilcoxon Signed Rank tests with Bonferroni corrections showed that the positional
SSE of the E-LQG is significantly smaller than that of both LQG and LQR (E-LQG vs. LQG: Z =
−4.9; E-LQG vs. LQR: Z = −5.4; p < 0.0001), while there were no significant differences between
the latter two. However, the positional SSE of both LQG and LQR is significantly lower when
compared to the MinJerk model (LQG vs. MinJerk: Z = −9.9; LQR vs. MinJerk: Z = −8.4; p <
0.0001), which, in turn, shows smaller values than 2OL-Eq (Z = −9,p < 0.0001). The fit of the mean
IC trajectories with respect to positional SSE is comparable to 2OL-Eq (non-significant differences),
with MinJerk (Z = −9, p < 0.0001) fitting the mean position profiles significantly better.

The findings are analogous for the maximum deviations of the simulated position time series
from the data (Friedman Test, χ 2 (2) = 685.4,p < 0.0001,n = 192), with Wilcoxon Signed Rank tests
showing that the E-LQG model approximates user trajectories significantly better than both the
LQR (Z = −6.9, p < 0.0001) and the LQG (Z = −5.4, p < 0.0001) models. Moreover, they showed
that the LQR model approximates user trajectories significantly better than MinJerk (Z = −9.3,
p < 0.0001), and that MinJerk approximates user trajectories significantly better than both the
2OL-Eq (Z = −10.5, p < 0.0001) and IC (Z = −8.9, p < 0.0001) models.

Regarding velocity, a Friedman Test indicated that SSE (χ 2 (2) = 794.4, p < 0.0001, n = 192)
and Maximum Error (χ 2 (2) = 761.9, p < 0.0001, n = 192) were significantly different between
the six models, with Wilcoxon Signed Rank tests showing that E-LQG approximates velocities
significantly better than LQG (Z = −4.3, p < 0.001 for SSE and Z = −3.1, p < 0.05 for Maximum
Error), LQG better than LQR (SSE: Z = −11.7, Maximum Error: Z = −11.3; p < 0.0001), LQR
comparable to MinJerk (LQR is slightly better in terms of Maximum Error, with Z = −2.7 and
p < 0.05, while the differences in SSE are non-significant), MinJerk better than IC (SSE: Z = −8.4,
Maximum Error: Z = −7.7; p < 0.0001), and IC better than 2OL-Eq (SSE: Z = −9.7, Maximum
Error: Z = −9.9; p < 0.0001). The clear lead of LQG and E-LQG over LQR in this respect was to be
expected, as LQG and E-LQG were optimized to minimize the Wasserstein distance with respect
to both position and velocity.

Regarding acceleration, a Friedman Test indicated that SSE (χ 2 (2) = 723.6, p < 0.0001, n = 192)
and Maximum Error (χ 2 (2) = 539.5, p < 0.0001, n = 192) were also significantly different between
the six models, with Wilcoxon Signed Rank tests showing that acceleration is approximated signif-
icantly better by both LQG and E-LQG than by LQR or MinJerk (E-LQG vs. LQR – SSE: Z = −12,
Maximum Error: Z = −10; LQG vs. LQR – SSE: Z = −12, Maximum Error: Z = −11.6; E-LQG vs.
MinJerk – SSE: Z = −8.4, Maximum Error: Z = −4.7; LQG vs. MinJerk – SSE: Z = −8, Maximum
Error: Z = −4.7; p < 0.0001), MinJerk and LQR show no significant differences in acceleration,
both LQR and MinJerk approximate acceleration significantly better than IC (LQR vs. IC – SSE:
Z = −11.6, Maximum Error: Z = −11.2; MinJerk vs. IC – SSE: Z = −8, Maximum Error: Z = −8.9;
p < 0.0001), and IC approximates acceleration significantly better than 2OL-Eq (SSE: Z = −8.1,
Maximum Error: Z = −9.3; p < 0.0001). In terms of SSE, no significant differences between LQG
and E-LQG were found, whereas in terms of Maximum Error, LQG approximates user acceleration
profiles significantly better than E-LQG (Z = −7.1, p < 0.0001).

In summary, the OFC model LQR achieves similar or better fits than both the dynamics model
2OL-Eq and the open-loop model MinJerk on all accounts, while being able to incorporate both
control dynamics and objectives that are assumed to be optimized, given a specific interaction
task. In addition, the duration of the initial ballistic movement (i.e., the surge), emerges naturally
from the model and does not need be known in advance (in contrast to MinJerk). The mean tra-
jectories predicted by the stochastic extensions LQG and E-LQG approximate average user behav-
ior significantly better than the LQR model in terms of velocity and acceleration, which could
also result from taking the velocity explicitly into account in the LQG/E-LQG parameter optimiza-
tion. IC strategies on the other hand show a sub-optimal fit of mean user trajectories. A probable

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

135

Optimal Feedback Control for Modeling Human–Computer Interaction 51:51

reason is that parameters were fitted to match particular user trajectories instead of trial-
independent trajectory distributions [160].

Regarding the MWD and the MKL (see Figure 21(g)–(h)), both the LQG and the E-LQG trajec-
tories show a significantly better approximation of user behavior than the IC trajectories accord-
ing to Wilcoxon Signed Rank tests (LQG vs. IC – MWD: Z = −12, MKL: Z = −7.9; E-LQG vs.
IC – MWD: Z = −12, MKL: Z = −5.3; p < 0.0001). Between the LQG model and its extension
E-LQG, significant differences in favor of the E-LQG were only found in terms of MWD (Z = −10.1,
p < 0.0001).

These results suggest that the LQG and its extension E-LQG capture both average user behavior
and the specific variance profiles observed in position and velocity time series better than all other
considered models.

12 DISCUSSION AND FUTURE WORK
In the following, we provide a discussion of the above results. We also discuss the applicability of
the proposed framework to HCI tasks other than mouse pointing.

12.1 Deterministic Models
As shown in Section 5, the optimal damping ratio ζ of 2OL-Eq is always lower than 1 and exhibits
a relatively small between-user variance. This implies that 2OL-Eq considers all regarded user
movements as underdamped, which, to the best of our knowledge, has not yet been shown. While
this could provide an indication that users rather tend to over— than undershoot for spatially-
constrained 1D mouse movement, this is not consistent with our findings from all considered opti-
mal control models. We thus conclude that the second-order dynamics of 2OL-Eq are not sufficient
to capture the complex human behavior that is already apparent in 1D end-effector trajectories.
In other words, interpreting the mouse cursor as a mass attached to one edge of the screen via a
spring and a damper might suggest an underdamped system; however, it is the interpretation itself
that seems to be inappropriate. This can also be seen from the left-skewed velocity profiles caused
by (unrealistic) instantaneous peak acceleration, whereas typical user trajectories rather exhibit
bell-shaped velocity profiles, as it is captured by the remaining models.

The user-specific values of the stiffness k in 2OL-Eq, which indicates how fast the end-effector
is moved toward the target, are closely related to those identified for the surge duration parameter
NM J from MinJerk. This indicates that different parameters in different models can play a similar
role in explaining user behavior when fit through our parameter fitting process, even for dynamics-
only (2OL-Eq) and kinematics-only (MinJerk) models.

The MinJerk model is able to predict typical velocity and acceleration profiles. However, in its
standard form, it only covers the first ballistic movement and does not account for any corrective
movements. Our proposed variant, which is constantly extended by its last position, thus faces a
tradeoff between (i) fitting the perfectly bell-shaped velocity profile to that observed in user trajec-
tories during the surge (which, however, is often truncated), and (ii) exhibiting a non-zero velocity
during the subsequent correction phase. A tempting approach to resolve this issue is an iterative-
submovement version of MinJerk, which is composed of the minimum jerk trajectories for a num-
ber of identified path segments [148]. Indeed, such a concatenation has been shown to account
for the characteristics of typically observed trajectories, e.g., in case of handwriting [36], gesture
typing [112], or arm movements [41, 80]. At its core, however, it requires the manual definition of
when a submovement starts and terminates. Even more critically, the kinematic properties of the
end-effector (i.e., the position, velocity, and acceleration) need to be known at the beginning and
at the end of each path segment. Thus, several via-points need to be placed along the path, none
of which can be inferred from the task description. This contradicts the minimum intervention

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

136 Optimal Feedback Control for Modeling Human-Computer Interaction

51:52 F. Fischer et al.

principle [142], which suggests that only the “deviations” that interfere with task performance are
being corrected. Moreover, several user studies have shown that there is no fixed via-point users
aim at when being asked to repetitively navigate around a setup of obstacles [86]. In summary, such
an extension might be appropriate to replicate kinematic characteristics of human movements to
a certain extent. However, it cannot resolve the fundamental unsuitability of the MinJerk model
for explaining how and why motion is generated, as the underlying movement dynamics are not
modeled at all.

Instead, we propose to follow the argumentation of Liu and Todorov [86], which have empiri-
cally shown that (apart from the physical constraints induced by the environment, i.e., the Human–
Computer System Dynamics in Figure 1) there are no internalized “hard” constraints users would
comply at any cost, but only a (non-trivial) tradeoff between several objectives. or example, users
asked to reach a small target as accurate as possible and within a certain time limit, which might
be very difficult to achieve together, were shown to relax both requirements to some extent [86],
rather than trying to keep exactly on schedule. This is consistent with the cost combination hypoth-
esis [8], which argues that the flexibility in coordinating motor behavior is due to the optimization
with respect to a combined objective function, e.g., including both accuracy and effort costs. An
extension of these theories is the “reward is enough” hypothesis [124], which claims that different
forms of intelligent behavior (e.g., learning, social intelligence, or generalization) can be directly
deduced from maximizing an internalized reward function (which can be considered equivalent to
minimizing a cost function). All of these findings support the idea that human movement arises as
the result of an internal optimization, with objectives that can be directly deduced from the cog-
nitive system and the task-specific instructions, and are thus fully compatible with the proposed
optimal control framework for Human–Computer Interaction.

Combining the assumption of such a task-dependent optimal control with a simplified muscle
model that yields overall fourth-order system dynamics, as we have done with LQR,22 allows to
replicate average mouse pointing trajectories both qualitatively and quantitatively. In particular,
the LQR model yields a significantly better fit of average user trajectories than both 2OL-Eq and
MinJerk (in terms of velocity and acceleration, LQR and MinJerk show comparable fits). However,
we found it necessary to penalize both the remaining distance to target as well as its time deriva-
tives (velocity and acceleration, which equals to applied force under the assumption of unit mass)
in every time step. In contrast, the LQR model with state costs only applied at the final timestep
does not replicate typical mouse pointing movements (for ID ≥ 4), as it predicts a smooth move-
ment toward the target with symmetric, bell-shaped velocity profile and thus cannot account for
the large correction phase typically observed toward the end of the movement (see Figure 10).

12.2 Stochastic Models
The stochastic extension of the LQR model—the LQG model—is naturally capable of modeling
and explaining between-trial variability observed from experimental data. It includes both signal-
dependent control noise and constant observation noise. In contrast to the LQR model, the state
cost does not need to incur in every timestep, but only at the final time. We also introduced an
extension of the LQG model, called E-LQG, which incorporates both visual input and observations
of the eye fixation point, assuming accurate saccades between the initial and the target position,
thus being more plausible from a visuomotor perspective.

22Note that the LQR model (as well as all other presented models) depends on the task under consideration, since the target
position needs to be included in state space, and the several objectives (accuracy, stability, and effort costs) were derived
from the task description.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

137

Optimal Feedback Control for Modeling Human–Computer Interaction 51:53

Both mean and variance of typical mouse trajectories can be replicated fairly well by the pro-
posed LQG and E-LQG models. In terms of SSE, E-LQG approximates mean user trajectories as
good as or significantly better than all other models, including LQR. In terms of the mean Wasser-
stein distance, E-LQG shows significant improvements over LQG, suggesting that the extended
observation model indeed captures characteristic end-effector variance profiles of mouse pointing
tasks considerably better than the saccade-free observation model proposed by Todorov [141].

For the considered 1D reciprocal mouse pointing movements, we found that the assigned noise
levels considerably vary between individual participants, with some of the variability better ex-
plained by large signal-dependent control noise and some better explained by higher observation
noise. In contrast, the identified optimal cost weights depend on task ID rather than the user. We
hypothesize that the tradeoff between end-point accuracy (determined by a large distance weight)
and stability (determined by large velocity and force weights) explicitly given by the experimen-
tal instructions was interpreted differently for each task condition, leading to different optimal
control strategies depending on the task difficulty.

The good fit of the LQG and the E-LQG models in terms of variance is partially attributed to
relatively high signal-dependent noise levels. For the LQG model, the average optimal value of σu
amounts to 2.52, that is, an (unbiased) deviation from the desired control valueun with a magnitude
of 252% of this value can be expected at each timestep 1n ∈ {0, . . . ,N }. For the E-LQG model,
the fitted signal-dependent control noise levels are reduced by approximately 50% compared to
the LQG model, i.e., more of the variability that is observed from user data can be explained by
the extended observation model instead of attributing it to large control noise. The control noise
levels are still relatively high (1.18 on average, i.e., the desired control and the effectively applied
control differ by 118% of the desired control value on average).

In contrast, the literature suggests signal-dependent control noise levels between 10% and 25%,
based on several empirical findings [26, 58, 146]. We believe that this mismatch does not render
the LQG inappropriate in explaining human movements during interaction on a continuous level.
Instead, the large amount of variability observed in the Pointing Dynamics Dataset can at least
partially be attributed to temporal noise, i.e., different cognitive reaction and/or motor activation
times between individual trials. This is consistent with previous findings, which suggest that both
signal-dependent and temporal noise (as well as constant noise) are required to explain the char-
acteristic variance profiles observed in two-dimensional goal-directed arm movements [146]. In
this article, we have cut off the reaction times of each trial as accurately as possible. However, it is
difficult to reliably identify reaction times using properties of the (one-dimensional) end-effector
trajectories only. Moreover, the reciprocal nature of the considered bi-directional movements fur-
ther enhances the variance of the movement onset times, as these become susceptible to learning
effects as well as fatigue and a temporary lack of attention (among others), whose overall effect
is unclear. These effects are not accounted for in the assumption that the internal forward model
is identical to the actual Human–Computer System Dynamics. In particular, when using more
complex dynamics, it might be too restrictive. Using an inaccurate internal model might act as an
additional source of variability (often referred to as dynamic uncertainty [12]). In the future, it will
be interesting to consider different internal models, extend the LQG model by temporal delays of
uncertain length (preliminary attempts to include fixed reaction times can, e.g., be found in [138]),
and to combine it with RL-based methods that allow to model optimal learning behavior [12].

Another point that requires a more thorough discussion is the choice of parameters that are
included in the parameter fitting process. For each considered model, we decided to optimize all
parameters that we suspected to differ between users or task conditions, and which could not be
directly inferred from literature (in contrast to, e.g., the time constants in LQR, LQG, and E-LQG).
However, for some parameters (e.g., the force perception noise level σf) the identified values for

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

138 Optimal Feedback Control for Modeling Human-Computer Interaction

51:54 F. Fischer et al.

each participant span several magnitudes, suggesting rather minor effects on the resulting move-
ment trajectories. In this case, it might be reasonable to conduct a second parameter identification,
where these parameters are set constant. Similarly, parameters corresponding to task-independent
user strategies or inherent body characteristics could be identified once per user instead of differ-
entiating between task conditions.

It is also important to note that the fit of a given model can be expected to improve with the
number of optimized parameters (i.e., degrees of freedom of the model). This implies a tradeoff
between model simplicity (low number of interpretable parameters) and goodness of fit (ability
to “explain” observed data), which can be captured by several measures, including the Akaike in-
formation criterion and the Bayesian information criterion [126]. However, these criteria are not
directly applicable to our model comparison, since the considered models not only differ in terms
of parameters, but most importantly with respect to their scope, which is also reflected in the
used reward function, system dynamics, and observation model. For example, LQG can account
for movement variability even with fixed (non-zero) noise levels, while LQR naturally cannot. In-
stead of comparing the proposed models only based on a single quantitative value, their scope and
the phenomena that can be predicted should also be taken into account (also see the three-stage
process proposed at the end of Section 12.4).

Compared to a recently proposed IC [160], simulation trajectories of the LQG and the E-LQG
models exhibit a considerably better fit in terms of all considered metrics (SSE, Maximum Error,
MWD, and MKL). Qualitatively, both OFC models predict the positional variance at the begin-
ning of the movement and during the correction phase, as well as the velocity variance profiles,
more accurate than the IC. However, it is important to note that the IC simulations are based on a
multiple-model approach, i.e., an individual parameter vector is identified for every single trial. In
particular, the variability of the IC only results from random sampling from this set of identified pa-
rameter vectors during run-time. In contrast, the LQG/E-LQG parameters were explicitly fitted to
match the user position and velocity distributions, incorporating all trials of a given user, direction,
and task condition. In other words, the variability of LQG/E-LQG is intrinsic to the considered sto-
chastic OCP. While the between-trial variability of IC has shown to match the trajectory variance
of the Pointing Dynamics Dataset relatively well in terms of phase plane densities [160]; it seems
that the time sequences of state distributions are replicated considerably better by both the LQG
and the E-LQG models. This suggests that a well-defined model of the sources of variability, such
as the signal-dependent control noise and observation noise in the (E-)LQG models, is necessary
to replicate the characteristic development of position and velocity variance over time.

A promising next step would thus be to develop an IC model that includes both signal-dependent
control noise and observation noise, and investigate its ability to account for the characteristic
variance profiles observed for mouse pointing. A rigorous analysis of the individual components
of the new IC model, as we have done for several OFC models in this article, would allow to
examine whether a combination of OFC and IC theory (i.e., continuously perceived observations,
motor and observation noise, and intermittency of control) may account for typical phenomena
such as reaction times, bell-shaped velocity profiles, and characteristic variance profiles.

One major limitation of the presented OFC models that has not yet been discussed is the
need to determine the total movement duration in advance. While this is true for most optimal
motor control models, including the minimum torque-change [144] and the minimum end-point
variance [58] models, a few attempts have been made toward a model that predicts movement
time instead of requiring it. These approaches include the open-loop constrained minimum-
time model [131], which can be solved analytically in case of linear dynamics, Markov decision
processes using state- and action-space discretizations and being solved via dynamic program-
ming [86], as well as models that explicitly assign an optimal “cost of time”, either based on prior

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

139

Optimal Feedback Control for Modeling Human–Computer Interaction 51:55

assumptions on the human sensorimotor system [122] or computed via an inverse optimal control
approach [10].

Another promising framework is infinite-horizon OFC [108, 111], which is based on the same as-
sumptions as the finite-horizon framework presented in this article, the main difference being that
the total movement duration does not need to be specified in advance. Instead, the controller is
assumed to apply the optimal, time-independent steady-state strategy for both the transient move-
ment and the subsequent posture maintenance phase (the so-called steady-state-control hypothesis).
While infinite-horizon OFC constitutes an interesting alternative that allows for a more in-depth
analysis of the speed-accuracy tradeoff using Fitts’ Law type studies, it might be inappropriate
for tasks without a clear posture maintenance phase, or where it is unclear whether the controller
should consider such a phase during planning, e.g., in fast, repetitive movements as those from the
dataset considered in this article [111]. Its applicability to HCI thus needs to be explored in future
work, possibly using a similar approach as in this work.

12.3 Application to Other HCI Tasks
In this article, we analyzed the applicability of optimal feedback control models to 1D pointing
tasks. In this section, we discuss how these models can be applied to other common tasks in
HCI, to highlight the generalizability and limitations of these models. The main limitations of
the LQR/LQG approach are their restriction to linear dynamical systems and quadratic costs. If
one of these properties does not hold for a particular task, nonlinear OFC approaches need to be
applied.

While the extension of LQR/LQG to via-point tasks23 with fixed passage times is straightforward
(see [138]), tasks where only the order of targets is specified, but not the specific times they are
reached, cannot be directly covered by the proposed models. This is mainly due to the assumption
of quadratic state costs, which, in combination with linear dynamics, does not allow to penalize the
distance to the next via-point depending on the already reached via-points. One possible way to
model via-point tasks with free timing is to integrate the LQR/LQG models into an outer optimiza-
tion loop (similar to the parameter fitting process introduced in this article), which, e.g., identifies
the minimum passage times such that every via-point is reached [138].

Following moving targets is commonly called pursuit tracking. Moving targets occur, e.g., in
computer games. If the movement of the target can be modeled by a linear differential equation
(which includes straight lines, curves, and ellipses), including moving targets in the LQR/LQG
models is straightforward. Simply add the state of the target(s) (e.g., position) to the state space, and
extend the system dynamics matrix A to model the dynamics of the target movement. The target
dynamics can even depend on the end-effector trajectory. For example, it is possible to model
a target that tries to evade the pointer. The main restriction is imposed by the linear dynamics,
requiring that the target position also evolves linearly. Pre-defined target trajectories that cannot
be described by a linear differential equation are more difficult to implement (in fact, they either
need to be “hard-coded”, i.e., each state needs to be augmented by the complete discrete-time
sequence of target positions, which significantly increases the computational effort due to the
curse of dimensionality, or approximated by linear dynamics).

Path following, or tracing or drawing tasks, are considerably harder to model, as they usually
impose spatial-only constraints and leave the temporal profile, i.e., the movement kinematics, up

23In via-point tasks, multiple targets (the via-points) need to be reached in a pre-defined order. Usually, no timing of when
each via-point needs to be reached is prescribed. Via-point tasks can be used to model pointing to several targets in a row.
They have been used to model handwriting or drawing, where the via-points are chosen such that a certain letter or shape
is created.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

140 Optimal Feedback Control for Modeling Human-Computer Interaction

51:56 F. Fischer et al.

to the user. In particular, tracing can be considered the limiting case of via-point tasks (with non-
determined passage times) with the distance between two via-points approaching 0. For this rea-
son, the same issues as for via-point tasks occur. More precisely, since the cost matrices need to be
specified before movement onset, the timesteps at which the end-effector should reach the desired
path/via-point positions need to be known in advance. Thus, it is currently unclear whether and
how LQG could be used to model path following.

The same holds for steering tasks (i.e., tasks with constrained motion), where the end-effector
needs to be moved from an initial position to an end-point as quickly as possible, while keeping
it inside a tunnel of possibly varying width. The most prominent examples include command
selection via a hierarchical drop-down menu, parameter sliders, and scroll-bars [1, 2, 158]. While
in the LQR/LQG models, a composite cost function that penalizes both the distance to target and
the distance to the center of the tunnel perpendicular to the movement direction would create
an incentive to move the end-effector toward the target while keeping it inside the tunnel, this
intuitive approach has two major limitations.

First, the boundary constraints are implemented “softly” in the sense that the costs for being
shortly outside the tunnel are only infinitesimally larger than the costs for being shortly inside.
This follows directly from the LQR/LQG assumption of costs that are quadratic in the system state
and thus necessarily continuous.24

Second, to account for the tunnel constraint, the quadratic costs require some reference position
that exhibits minimum costs along the direction perpendicular to the movement direction. The
most obvious choice for this minimum would be the center of the tunnel, as this corresponds to
an unbiased penalization of deviations in either direction. However, empirical user studies suggest
that users do not necessarily aim to follow the central path within the tunnel [6, 102]. Instead, they
deliberately make use of the respective tunnel widths by adjusting their movements, e.g., to achieve
higher speeds by “cutting of the corner” [107]. Regardless of the specific reference trajectory, the
usage of costs that penalize the distance to any fixed movement trajectory that is not explicitly
apparent from the task description (as it is the case for steering tasks) contradicts the minimum
intervention principle [142], which suggests that only task-relevant deviations are being corrected.

The first issue does not necessarily impose a severe restriction to modeling plausible user behav-
ior, since users also tend to associate a certain internal cost to fulfilling the boundary constraints,
i.e., they consider staying inside the tunnel boundaries as one goal among many, rather than view-
ing it as an inevitable “hard” constraint [86]. The second issue, however, might constitute a serious
limitation and possibly prevent a reasonable application of LQR/LQG to constrained movement
tasks.

Regarding free-hand inking tasks (e.g., to write a certain word or draw a specific sketch), it is
not clear how an appropriate cost function that includes all relevant information from the task
description should look like. In addition, capturing high-level characteristics such as user-specific
stroke styles or connections between individual characters might be difficult to model. However,
the case of gesture-based keyboard typing has recently been successfully modeled as a via-point
task with minimum jerk trajectories between two subsequent via-points [112]. It is important to
keep in mind that the scope of the proposed methods clearly is to model pointing movements,
while more creative tasks would require some high-level cognition process that instantiates and
coordinates multiple subprocesses [156]. While we do not want to rule out the possibility that
LQG can be adapted to the modeling of handwriting or drawing, further research in this regard is
certainly needed.

24For the same reason, in the considered pointing task, it is not possible to only apply costs when being outside the target,
as such costs would necessarily be discontinuous at the target boundary.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

141

Optimal Feedback Control for Modeling Human–Computer Interaction 51:57

Note that each of the tasks discussed above can be solved using several input methods, e.g.,
mouse-, pen-, or touch-based input. Accurate modeling of the complete interaction loop, as de-
picted in Figure 1, thus requires to take into account device-specific properties such as a pointing
transfer function or internal dynamics [22, 23]. Similarly, the Human Body Dynamics can be mod-
eled with arbitrary granularity. For example, the fourth-order dynamics with simplified muscle
activations used in this article could be replaced by complex (non-linear) biomechanical models,
e.g., those implemented in state-of-the-art physics engines such as MuJoCo or OpenSim [31, 38, 59].

In general, non-linearities in the body dynamics, input devices, or interface dynamics cannot
be modeled accurately using LQR/LQG. However, as long as the movements are not too big, a
small signals approach can be applied and a linear approximation around an operating point can
be found. To take several operating points into account, it is possible to iteratively linearize non-
linear dynamics [83, 84, 143]. Further investigation into the suitability of this approach for the
different dynamics of HCI is definitely needed and constitutes a promising direction for future
research.

Finally, the above discussed limitations regarding the applicability to general HCI tasks only re-
fer to the linear finite-horizon LQR/LQG case. The infinite-horizon LQR/LQG formulation [111] is
less suitable for many HCI tasks, as it does not allow to take into account multiple, time-dependent
objectives during optimization, which, e.g., is inevitable for via-point tasks that need to be reached
in a given order, or moving targets. However, the general class of optimal control models of HCI,
as discussed in Section 3, is much larger and consists of a variety of modeling approaches and
solution methods, including Direct and Indirect Collocation [11], Model-Free and Model-Based
RL [56, 130], (Semi-)Supervised Learning [100, 115], Model-Predictive Control [20], and mixtures
of these [9, 12, 81], each of which has its own requirements on the problem, advantages, and disad-
vantages. While some HCI tasks might be too complex to solve using the linear methods presented
in this article, the general OFC framework offers exciting opportunities to model, simulate, explore,
and eventually improve the interaction between humans and computers, using a mathematically
profound description.

12.4 Practical Benefits and Advice for HCI Researchers
Building on the above discussion on the applicability and generalization in the context of HCI, we
clarify the concrete benefits of our proposed framework and methods to HCI researchers, using
the example of the so-called Bubble Lens.

Previously, the Bubble Lens method [95] has been proposed as one of the few target acquisition
techniques that explicitly takes into account kinematic movement profiles. The main idea of this
method is to automatically magnify the desired target area as soon as the first corrective submove-
ment has been detected (“kinematic triggering”). While this technique has shown to significantly
outperform the standard Bubble Cursor [52] (the fastest pointing method at this time), the authors
did not account for the fact that users might adapt their behavior once the magnification has been
observed. Moreover, the criteria of when to trigger the magnification have been chosen manually,
based on effectiveness and practicability. Using our proposed optimal control framework of in-
teraction, it would be possible to analyze the effects of temporary magnification on visual input,
internal estimates, predictions and subgoals, and the resulting movement trajectory (including er-
gonomic quantities such as muscle energy consumption or fatigue). This allows to gain a deeper
understanding of why this technique outperforms existing methods. Finally, our unifying frame-
work can be used to optimize the technique’s remaining parameters (e.g., trigger time and duration
of the lens, or visual properties such as smooth transitions), consider specific body characteristics
of individual user groups, and perform simulation-based comparisons with existing methods, thus
considerably improving comparability between different approaches.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

142 Optimal Feedback Control for Modeling Human-Computer Interaction

51:58 F. Fischer et al.

As a general advice for HCI researchers, we recommend the following procedure when using
our proposed optimal control framework of HCI:

(1) Make a preliminary selection of model(s) based on the phenomena of interest.
Not every model is suitable for every purpose. For example, the deterministic models 2OL-

Eq, MinJerk, and LQR can only predict (optimal) average movement behavior, while the
stochastic models LQG, E-LQG, and IC predict entire trajectory distributions. Closed-loop
models can explain how humans respond to unexpected perturbations during movement. If
modeling muscle activations and fatigue is of interest, then torque- or muscle-driven models
of the human arm and hand are much more appropriate than kinematic models such as 2OL-
Eq and MinJerk. Finally, the extended observation model included in E-LQG provides an
opportunity to analyze gaze using the saccade timestep parameter.

(2) Select a specific model based on qualitative and quantitative criteria.
The used metrics and decision criteria crucially depend on the overarching goal of the

analysis. For example, replication of user data requires a more quantitative evaluation based
on some metric that incorporates all relevant aspects of the observed trajectories, whereas
a comparison of models regarding their explanatory and predictive power should rather be
based on qualitative results, e.g., whether well-established phenomena such as bell-shaped
velocity profiles, corrective submovements, or specific eye-movement coordination patterns
can be inferred. In either case, the evaluation and visualization tools from our OFC4HCI
toolbox may be helpful.

Note that this stage requires choosing one (or multiple) reasonable parameter sets for each
model to be compared, e.g., from the literature. Alternatively, the model parameters that
“best explain” observed user data can be identified within an (outer) optimization loop, using
the method presented in Section 4.2. In general, we suggest to include all parameters that
are suspected to differ between independent variables (e.g., the user ID or the task condition)
or which cannot be reasonably inferred from literature in the parameter fitting process.

(3) (Optional:) Fine-tune the specific model parameters.
If the analysis of parameters from stage 2 suggests that some parameters could be set con-

stant, as they do not depend considerably on the user ID or task condition, another iteration
of the parameter identification process could be performed. In this case, information criteria
such as the Akaike information criterion [126], which account for the tradeoff between the
goodness of fit and the simplicity of a model, might be considered.

13 CONCLUSION
In this article, we have provided an introduction to the concepts of OFC for an HCI audience
and have presented a generic parameter fitting process that can be used to identify system and
strategy parameters of any given control model. Using the example of mouse pointing, we have
shown that both a non-trivial dynamic model of the HCI loop, which includes signal-dependent
control noise, and continuously perceived noisy feedback are necessary to explain user behavior
both qualitatively and quantitatively. These optimal control models show a significantly better fit
to the considered user trajectories than pure dynamics models such as 2OL-Eq or pure kinematic
models such as MinJerk.

The optimal control framework for HCI that we have proposed is versatile, as it can be used to
model interaction with different interfaces using various input devices, and comprehensive, as it al-
lows to model the complete interaction loop, including body, input device, and interface dynamics,
as well as feedback properties, each depending on the task and/or the user under consideration.
While the basic assumptions of LQG (linear dynamics, quadratic costs, and Gaussian noise) are

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

143

Optimal Feedback Control for Modeling Human–Computer Interaction 51:59

relatively restrictive, we have shown its ability to replicate typical mouse movements both in terms
of average behavior and between-trial variability. More importantly, we have demonstrated how
the proposed framework can be used to identify characteristic differences in movement behavior
between participants or task conditions. The degree to which these differences can be interpreted
naturally depends on the model complexity. In particular, aggregated Human–Computer System
Dynamics as used in the presented case of one-dimensional mouse pointing do not allow to simu-
late motion of the human body per se, but only predict movement in end-effector space (i.e., mouse
cursor trajectories). For an in-depth analysis of the intrinsic characteristics and strategies of the
human biomechanical and cognitive system, independent of the used interaction technique, more
detailed and separate submodels of both the Human Body Dynamics and the Interface Dynamics
would be required. We have also discussed the applicability of the framework to several other HCI
tasks, as well as possible extensions (e.g., regarding non-linear body and interface dynamics) that
remain as future work. As a more general advice for HCI researchers, we recommend first making
a preliminary selection of models based on the phenomena of interest, then selecting a specific
model based on qualitative and quantitative criteria, and finally fine-tuning the model parameters.

We hope that this article, along with our OFC4HCI toolbox, provides an easy-to-understand
overview of how recent methods and concepts from optimal control theory can be applied to
HCI using the example of mouse pointing, and encourages HCI researchers to use them in their
own studies and simulations. OFC provides a concise and mathematically exact explanation of
movement in interaction with computers that we hope will be useful not only for HCI research,
but also for teaching HCI and ultimately for interface design.

APPENDICES
A LQR EQUATIONS
The proposed LQR model can be described as the discrete-time linear-quadratic OCP with finite
horizon N ∈ N

Minimize J
(LQR)
N (x ,u) =

N∑

n=0
x
n Qnxn +

N−1∑

n=0
u
n Rnun,

with respect to u = (un)n∈{0, ...,N−1} ⊂ R,
(35a)

where x = (xn)n∈{0, ...,N } ⊂ R5 with xn = (pn ,vn , fn ,дn ,T)
 satisfies

xn+1 = Axn + Bun , n ∈ {0, . . . ,N − 1},
x0 = x̄0,

(35b)

given some x̄0 ∈ R5, with sampling time h > 0 and system dynamics matrices

A =

���������

1 h 0 0 0
0 1 h 0 0
0 0 1 − h

τ2
h
τ2

0
0 0 0 1 − h

τ1
0

0 0 0 0 1

���������
, B =

��������

0
0
0
h
τ1
0

��������
, (35c)

corresponding to the combination of a simplified second-order muscle model with time constants
τ1, τ2 > 0 and a double integrator.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

144 Optimal Feedback Control for Modeling Human-Computer Interaction

51:60 F. Fischer et al.

The state cost matrices are defined by

Qn =

��������

1 0 0 0 −1
0 ωv 0 0 0
0 0 ωf 0 0
0 0 0 0 0
−1 0 0 0 1

��������
∈ R5×5, n ∈ {0, . . . ,N }, (36)

which implies
x
nQnxn = D2

n + ωvv
2
n + ωf f

2
n , (37)

i.e., the distance Dn = |T − pn | between mouse and target position as well as the end-effector
velocity vn and force fn are quadratically penalized at every timestep n ∈ {0, . . . ,N }. In our case
of one-dimensional pointing tasks, the control cost matrices are scalar and given by

Rn =
ωr

N − 1 ∈ R, ωr > 0, n ∈ {0, . . . ,N − 1}, (38)

which yields the quadratic cost terms

u
nRnun =
ωr

N − 1u
2
n . (39)

It can be shown that the unique solution u∗ = (u∗n)n∈{0, ...,N−1} to the optimization problem (35) is
given by

u∗n = π (xn) = −Lnxn , n ∈ {0, . . . ,N − 1},
Ln = (Rn + B

Sn+1B)−1B
Sn+1A,

n ∈ {0, . . . ,N − 1}, (40)

where the symmetric matrices Sn ∈ R5×5 can be determined by solving the Discrete Riccati
Equations

Sn = Qn +A

Sn+1A −A
Sn+1B (Rn + B

Sn+1B)−1B
Sn+1A, (41a)
for n ∈ {0, . . . ,N − 1} backward in time with initial value

SN = QN . (41b)

B SUPPLEMENTARY MATERIAL

Fig. B.1. Control-flow diagram of the second-order lag (2OL).

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

145

Optimal Feedback Control for Modeling Human–Computer Interaction 51:61

Table B.1. Boundaries of all Model Parameters Used for Parameter fitting

Model Parameter Minimum Maximum Type

2OL-Eq k 0 500 Continuous
d 0 500 Continuous

MinJerk NM J 0 N Continuous (Relaxed)

LQR
ωr 2e-9 20 Continuous
ωv 0 10e-2 Continuous
ωf 0 10e-4 Continuous

LQG / E-LQG
ωr 4e-18 7e-3 Continuous
ωv 0 10 Continuous
ωf 0 10 Continuous

LQG σu 10e-10 5 Continuous
σs 0 5 Continuous

E-LQG

σu 10e-10 5 Continuous
σv 0 10 Continuous
σf 0 50 Continuous
σe 0 5 Continuous
γ 4e-18 100 Continuous
ns 0 N Continuous (Relaxed)

Fig. B.2. The relationship between the inverse of the stiffness parameter k in 2OL-Eq and the surge duration
parameter NM J in MinJerk is captured well by a linear function.

Fig. B.3. Cost weight parameters of the LQG, optimized for the trajectory sets of all participants, tasks, and
directions, grouped by participants. Note that the optimal values of ωf and ωr are plotted on a logarithmic
scale.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

146 Optimal Feedback Control for Modeling Human-Computer Interaction

51:62 F. Fischer et al.

Fig. B.4. Visual observation noise parameters of the E-LQG, optimized for the mean trajectories of all partic-
ipants, tasks, and directions, grouped by participants (left) and by ID (right). For better visibility, both plots
for the position perception noise weight γ do not include the 2 largest outliers with values 19.7 and 55.4.
Note that the optimal values of σv are plotted on a logarithmic scale.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

147

Optimal Feedback Control for Modeling Human–Computer Interaction 51:63

Fig. B.5. The gaze noise level σe and the saccade timestep ns of the E-LQG, optimized for the mean trajec-
tories of all participants, tasks, and directions, grouped by participants (left) and by ID (right).

ACKNOWLEDGMENTS
We would like to thank Lars Grüne for his very helpful advice and comments on a preliminary
version of this article.

REFERENCES
[1] Johnny Accot and S. Zhai. 1997. Beyond fitts’ law: Models for trajectory-based HCI tasks. In Proceedings of the ACM

SIGCHI Conference on Human factors in computing systems. 295–301. DOI:https://doi.org/10.1145/258549.258760
[2] Johnny Accot and Shumin Zhai. 1999. Performance evaluation of input devices in trajectory-based tasks: An appli-

cation of the steering law. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (1999),
466–472. DOI:https://doi.org/10.1145/302979.303133

[3] Zvi Artstein. 1980. Discrete and continuous bang-bang and facial spaces or: Look for the extreme points. Siam Review
22, 2 (1980), 172–185.

[4] Takeshi Asano, Ehud Sharlin, Yoshifumi Kitamura, Kazuki Takashima, and Fumio Kishino. 2005. Predictive interac-
tion using the delphian desktop. In Proceedings of the 18th Annual ACM Symposium on User Interface Software and
Technology. ACM, New York, NY, 133–141.

[5] Anne Auger, Nikolaus Hansen, J. M. Perez Zerpa, Raymond Ros, and Marc Schoenauer. 2009. Experimental com-
parisons of derivative free optimization algorithms. In Proceedings of the International Symposium on Experimental
Algorithms. Springer, 3–15.

[6] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. 2016. Visual menu techniques. ACM Computing Surveys 49, 4, Article
60 (Dec. 2016), 41 pages. DOI:https://doi.org/10.1145/3002171

[7] Michel Beaudouin-Lafon. 2004. Designing interaction, not interfaces. In Proceedings of the Working Conference on
Advanced Visual Interfaces. Association for Computing Machinery, New York, NY, 15–22. DOI:https://doi.org/10.
1145/989863.989865

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

148 Optimal Feedback Control for Modeling Human-Computer Interaction

51:64 F. Fischer et al.

[8] Bastien Berret, Enrico Chiovetto, Francesco Nori, and Thierry Pozzo. 2011. Evidence for composite cost functions in
arm movement planning: An inverse optimal control approach. PLOS Computational Biology 7, 10 (10 2011), 1–18.
DOI:https://doi.org/10.1371/journal.pcbi.1002183

[9] Bastien Berret, Adrien Conessa, Nicolas Schweighofer, and Etienne Burdet. 2021. Stochastic optimal feedforward-
feedback control determines timing and variability of arm movements with or without vision. PLOS Computational
Biology 17, 6 (06 2021), 1–24. DOI:https://doi.org/10.1371/journal.pcbi.1009047

[10] Bastien Berret and Frédéric Jean. 2016. Why Don’t we move slower? The value of time in the neural control of action.
Journal of Neuroscience 36, 4 (2016), 1056–1070. DOI:https://doi.org/10.1523/JNEUROSCI.1921-15.2016

[11] John T. Betts. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM.
[12] Tao Bian, Daniel Wolpert, and Zhong-Ping Jiang. 2020. Model-free robust optimal feedback mechanisms of biological

motor control. Neural Computation 32, 3 (01 2020), 562–595. DOI:https://doi.org/10.1162/neco_a_01260
[13] Emilio Bizzi, Neville Hogan, F. Mussa-Ivaldi, and Simon Giszter. 1992. Does the nervous system use equilibrium point

control to guide single and multiple joint movements? Behav Brain Sci. The Behavioral and Brain Sciences 15, 4 (12
1992), 603–13. DOI:https://doi.org/10.1017/S0140525X00072538

[14] Åke Björck. 1996. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics.
DOI:https://doi.org/10.1137/1.9781611971484

[15] Hans Georg Bock and Karl-Josef Plitt. 1984. A multiple shooting algorithm for direct solution of optimal control
problems. IFAC Proceedings Volumes 17, 2 (1984), 1603–1608.

[16] Michael Bohan, Shelby G. Thompson, and Peter J. Samuelson. 2003. Kinematic analysis of mouse cursor positioning
as a function of movement scale and joint set. In Proceedings of the International Conference on Industrial Engineering–
Theory, Applications and Practice. Wichita State University Wichita, KS, 442–447.

[17] Reinoud J. Bootsma, Laure Fernandez, and Denis Mottet. 2004. Behind Fitts’ law: Kinematic patterns in goal-directed
movements. International Journal of Human-Computer Studies 61, 6 (2004), 811–821.

[18] Daniel Bullock and Stephen Grossberg. 1988. Neural dynamics of planned arm movements: Emergent invariants
and speed-accuracy properties during trajectory formation. Psychological Review 95, 1 (02 1988), 49–90. DOI:https:
//doi.org/10.1037//0033-295X.95.1.49

[19] Ronald M. Baecker and William A. S. Buxton. 1987. Readings in human-computer interaction: A multidisciplinary
approach. M. Kaufmann.

[20] Eduardo F. Camacho and Carlos Bordons Alba. 2013. Model Predictive Control. Springer Science & Business Media.
[21] Stuart K. Card, William K. English, and Betty J. Burr. 1978. Evaluation of mouse, rate-controlled isometric joystick,

step keys, and text keys for text selection on a CRT. Ergonomics 21, 8 (1978), 601–613. DOI:https://doi.org/10.1080/
00140137808931762

[22] Géry Casiez and Nicolas Roussel. 2011. No more bricolage!: Methods and tools to characterize, replicate and com-
pare pointing transfer functions. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology. ACM, New York, NY, 603–614. DOI:https://doi.org/10.1145/2047196.2047276

[23] Géry Casiez, Daniel Vogel, Ravin Balakrishnan, and Andy Cockburn. 2008. The impact of control-display gain on
user performance in pointing tasks. Human–Computer Interaction 23, 3 (2008), 215–250.

[24] Olivier Chapuis, Jean-Baptiste Labrune, and Emmanuel Pietriga. 2009. DynaSpot: Speed-dependent area cursor. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1391–1400.

[25] Noshaba Cheema, Laura A. Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp Slusallek, and Perttu Hämäläinen.
2020. Predicting mid-air interaction movements and fatigue using deep reinforcement learning. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY,
1–13. DOI:https://doi.org/10.1145/3313831.3376701

[26] H. Peter Clamann. 1969. Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophysical
journal 9, 10 (1969), 1233–1251.

[27] H. Cooper, P. Camic, D. Long, A. Panter, D. Rindskopf, and K. Sher. 2012. APA handbook of research methods in
psychology, Vol 1: Foundations, planning, measures, and psychometrics.

[28] Frederic Crevecoeur, Tyler Cluff, and Stephen H. Scott. 2014. Computational approaches for goal-directed move-
ment planning and execution. In Proceedings of the Cognitive Neurosciences, 5th ed., Michael Gazzaninga and George
Mangun (Eds.). MIT Press, Cambridge, MA, 461–477.

[29] E. R. F. W. Crossman and P. J. Goodeve. 1983. Feedback control of hand-movement and Fitts’ law. The Quarterly
Journal of Experimental Psychology 35, 2 (1983), 251–278.

[30] W. G. Darling, K. J. Cole, and J. H. Abbs. 1988. Kinematic variability of grasp movements as a function of practice
and movement speed. Experimental Brain Research 73, 2 (1988), 225–235.

[31] Christopher L. Dembia, Nicholas A. Bianco, Antoine Falisse, Jennifer L. Hicks, and Scott L. Delp. 2021. OpenSim
Moco: Musculoskeletal optimal control. PLOS Computational Biology 16, 12 (12 2021), 1–21. DOI:https://doi.org/10.
1371/journal.pcbi.1008493

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

149

Optimal Feedback Control for Modeling Human–Computer Interaction 51:65

[32] Ashesh K. Dhawale, Maurice A. Smith, and Bence P. Ölveczky. 2017. The role of variability in motor learning. Annual
Review of Neuroscience 40 (2017), 479–498.

[33] Jörn Diedrichsen, Reza Shadmehr, and Richard B. Ivry. 2010. The coordination of movement: Optimal feedback con-
trol and beyond. Trends in Cognitive Sciences 14, 1 (2010), 31–39. DOI:https://doi.org/10.1016/j.tics.2009.11.004

[34] Seungwon Do, Minsuk Chang, and Byungjoo Lee. 2021. A Simulation Model of Intermittently Controlled Point-and-
Click Behaviour. Association for Computing Machinery, New York, NY. DOI:https://doi.org/10.1145/3411764.3445514

[35] P. Dorato and A. Levis. 1971. Optimal linear regulators: The discrete-time case. IEEE Transactions on Automatic
Control 16, 6 (December 1971), 613–620. DOI:https://doi.org/10.1109/TAC.1971.1099832

[36] S. Edelman and T. Flash. 2004. A model of handwriting. Biological Cybernetics 57, 1—2 (2004), 25–36.
[37] J. D. Enderle and W. Zhou. 2010. Models of Horizontal Eye Movements: A 3rd Order Linear Saccade Model. Part II.

Morgan & Claypool. Retrieved from https://books.google.de/books?id=XDGGBNk0e2oC.
[38] Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, and Jörg Müller. 2021. Reinforcement learning control

of a biomechanical model of the upper extremity. Scientific Reports 11, 1 (2021), 1–15.
[39] Paul M. Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of movement.

Journal of Experimental Psychology 47, 6 (1954), 381–391.
[40] Paul M. Fitts and James R. Peterson. 1964. Information capacity of discrete motor responses. Journal of Experimental

Psychology 67, 2 (1964), 103.
[41] Tamar Flash and Ealan Henis. 1991. Arm trajectory modifications during reaching towards visual targets. Journal of

Cognitive Neuroscience 3, 3 (07 1991), 220–230. DOI:https://doi.org/10.1162/jocn.1991.3.3.220
[42] Tamar Flash and Neville Hogan. 1985. The coordination of arm movements: An experimentally confirmed mathe-

matical model. Journal of Neuroscience 5, 7 (1985), 1688–1703.
[43] Tamar Flash, Yaron Meirovitch, and Avi Barliya. 2013. Models of human movement: Trajectory planning and inverse

kinematics studies. Robotics and Autonomous Systems 61, 4 (2013), 330–339.
[44] Karl Friston. 2011. What is optimal about motor control? Neuron 72, 3 (2011), 488–498. DOI:https://doi.org/10.1016/

j.neuron.2011.10.018
[45] Peter Gawthrop, Ian Loram, Martin Lakie, and Henrik Gollee. 2011. Intermittent control: A computational theory of

human control. Biological Cybernetics 104, 1–2 (2011), 31–51. DOI:https://doi.org/10.1007/s00422-010-0416-4
[46] Karl R. Gegenfurtner. 2016. The interaction between vision and eye movements. Perception 45, 12 (2016), 1333–1357.
[47] A. P. Georgopoulos, J. F. Kalaska, R. Caminiti, and J. T. Massey. 1982. On the relations between the direction of

two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience 2, 11 (1982),
1527–1537. DOI:https://doi.org/10.1523/JNEUROSCI.02-11-01527.1982

[48] Douglas J. Gillan, Kritina Holden, Susan Adam, Marianne Rudisill, and Laura Magee. 1990. How does fitts’ law fit
pointing and dragging? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, 227–234. DOI:https://doi.org/10.1145/97243.97278

[49] J. Gordon, M. Ghilardi, and Claude Ghez. 1994. Accuracy of planar reaching movements. I. Independence of direction
and extent variability. Experimental brain research. Experimentelle Hirnforschung. Expérimentation Cérébrale 99, 1 (02
1994), 97–111. DOI:https://doi.org/10.1007/BF00241415

[50] Julien Gori and Olivier Rioul. 2020. A feedback information-theoretic transmission scheme (FITTS) for modeling
trajectory variability in aimed movements. Biological Cybernetics 114, 6 (Dec 2020), 621–641. DOI:https://doi.org/10.
1007/s00422-020-00853-7

[51] Julien Gori, Olivier Rioul, Yves Guiard, and Michel Beaudouin-Lafon. 2018. The perils of confounding factors: How
fitts’ law experiments can lead to false conclusions. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. Association for Computing Machinery, New York, NY, 1–10. DOI:https://doi.org/10.1145/
3173574.3173770

[52] Tovi Grossman and Ravin Balakrishnan. 2005. The bubble cursor: Enhancing target acquisition by dynamic resizing
of the cursor’s activation area. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
New York, NY, 281–290. DOI:https://doi.org/10.1145/1054972.1055012

[53] Yves Guiard. 1993. On fitts’s and hooke’s laws: Simple harmonic movement in upper-limb cyclical aiming. Acta
Psychologica 82, 1 (1993), 139–159.

[54] Emmanuel Guigon, Pierre Baraduc, and Michel Desmurget. 2007. Computational motor control: Redundancy and
invariance. Journal of Neurophysiology 97, 1 (02 2007), 331–47. DOI:https://doi.org/10.1152/jn.00290.2006

[55] Simon R. Gutman and Gerald L. Gottlieb. 1992. Basic functions of variability of simple pre-planned movements.
Biological Cybernetics 68, 1 (1992), 63–73.

[56] Adrian M. Haith and John W. Krakauer. 2013. Model-based and model-free mechanisms of human motor learning.
In Proceedings of the Progress in Motor Control. Springer, 1–21.

[57] Kenneth B. Hannsgen. 1987. Stability and periodic solutions of ordinary and functional differential equations (T. A.
Burton). SIAM Review 29, 4 (1987), 652–654. DOI:https://doi.org/10.1137/1029135

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

150 Optimal Feedback Control for Modeling Human-Computer Interaction

51:66 F. Fischer et al.

[58] Christopher M. Harris and Daniel M. Wolpert. 1998. Signal-dependent noise determines motor planning. Nature 394,
6695 (1998), 780–784. DOI:https://doi.org/10.1038/29528

[59] Lorenz Hetzel, John Dudley, Anna Maria Feit, and Per Ola Kristensson. 2021. Complex interaction as emergent be-
haviour: Simulating mid-air virtual keyboard typing using reinforcement learning. IEEE Transactions on Visualization
and Computer Graphics 27, 11 (2021), 1–1. DOI:https://doi.org/10.1109/TVCG.2021.3106494

[60] Bruce Hoff. 1994. A model of duration in normal and perturbed reaching movement. Biological Cybernetics 71, 6 (Oct.
1994), 481–488. DOI:https://doi.org/10.1007/BF00198466

[61] Bruce Hoff and Michael A. Arbib. 1993. Models of trajectory formation and temporal interaction of reach and grasp.
Journal of Motor Behavior 25, 3 (1993), 175–192. DOI:https://doi.org/10.1080/00222895.1993.9942048

[62] Bruce Richard Hoff. 1992. A Computational Description of the Organization of Human Reaching and Prehension. Ph. D.
Dissertation. Not available from Univ. Microfilms Int.

[63] Robert J. K. Jacob, Linda E. Sibert, Daniel C. McFarlane, and M. Preston Mullen Jr. 1994. Integrality and separability
of input devices. ACM Transactions on Computer-Human Interaction 1, 1 (1994), 3–26.

[64] R. Jagacinski and D. Monk. 1985. Fitts’ law in two dimensions with hand and head movements. Journal of Motor
Behavior 17, 1 (1985), 77–95.

[65] Richard J. Jagacinski and John M. Flach. 2003. Control Theory for Humans: Quantitative Approaches to Modeling Per-
formance. Lawrence Erlbaum, Mahwah, New Jersey.

[66] Y. Jiang, Z. Jiang, and N. Qian. 2011. Optimal control mechanisms in human arm reaching movements. In Proceedings
of the 30th Chinese Control Conference. 1377–1382.

[67] Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. 2020. Pontryagin differentiable programming: An
end-to-end learning and control framework. Advances in Neural Information Processing Systems 33 (2020), 7979–7992.

[68] Kelvin E. Jones, Antonia F. de C. Hamilton, and Daniel M. Wolpert. 2002. Sources of signal-dependent noise during
isometric force production. Journal of Neurophysiology 88, 3 (2002), 1533–1544. DOI:https://doi.org/10.1152/jn.2002.
88.3.1533

[69] M. Kawato. 1993. Optimization and learning in neural networks for formation and control of coordinated movement.
In Proceedings of the Attention and Performance XIV (Silver Jubilee Volume) Synergies in Experimental Psychology,
Artificial Intelligence, and Cognitive Neuroscience. 821–849.

[70] Mitsuo Kawato. 1996. Trajectory formation in arm movements: Minimization principles and procedures. Advances
in Motor Learning and Control (1996), 225–259.

[71] Mitsuo Kawato. 1999. Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9,
6 (1999), 718–727.

[72] Łukasz Kidziński, Sharada Prasanna Mohanty, Carmichael F. Ong, Zhewei Huang, Shuchang Zhou, Anton Pechenko,
Adam Stelmaszczyk, Piotr Jarosik, Mikhail Pavlov, Sergey Kolesnikov, Sergey Plis, Zhibo Chen, Zhizheng Zhang, Jiale
Chen, Jun Shi, Zhuobin Zheng, Chun Yuan, Zhihui Lin, Henryk Michalewski, Piotr Milos, Blazej Osinski, Andrew
Melnik, Malte Schilling, Helge Ritter, Sean F. Carroll, Jennifer Hicks, Sergey Levine, Marcel Salathé, and Scott Delp.
2018. Learning to run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal envi-
ronments. In Proceedings of the NIPS ’17 Competition: Building Intelligent Systems, Sergio Escalera and Markus Weimer
(Eds.). Springer International Publishing, Cham, 121–153.

[73] Konrad Kording. 2007. Decision theory: What “Should” the nervous system do? Science 318, 5850 (2007), 606–610.
https://doi.org/10.1126/science.1142998

[74] Eileen Kowler. 2011. Eye movements: The past 25years. Vision Research 51, 13 (2011), 1457–1483. DOI:https://doi.org/
10.1016/j.visres.2010.12.014. Vision Research 50th Anniversary Issue: Part 2.

[75] Richard Krauzlis, Laurent Goffart, and Ziad Hafed. 2017. Neuronal control of fixation and fixational eye movements.
Philosophical Transactions of the Royal Society B: Biological Sciences 372, 1718 (04 2017), 20160205. DOI:https://doi.
org/10.1098/rstb.2016.0205

[76] Solomon Kullback and Richard A. Leibler. 1951. On information and sufficiency. The Annals of Mathematical Statistics
22, 1 (1951), 79–86.

[77] Francesco Lacquaniti, Carlo Terzuolo, and Paolo Viviani. 1983. The law relating the kinematic and figural aspects of
drawing movements. Acta Psychologica 54, 1 (1983), 115–130.

[78] Shih-Chiung Lai, Gottfried Mayer-Kress, Jacob J. Sosnoff, and Karl M. Newell. 2005. Information entropy analysis
of discrete aiming movements. Acta Psychologica 119, 3 (2005), 283–304. DOI:https://doi.org/10.1016/j.actpsy.2005.02.
005

[79] Gary D. Langolf, Don B. Chaffin, and James A. Foulke. 1976. An investigation of fitts’ law using a wide range of
movement amplitudes. Journal of Motor Behavior 8, 2 (1976), 113–128. DOI:https://doi.org/10.1080/00222895.1976.
10735061

[80] Daeyeol Lee, Nicholas L. Port, and Apostolos P. Georgopoulos. 1997. Manual interception of moving targets II. On-
line control of overlapping submovements. Experimental Brain Research 116, 3 (1997), 421–433.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

151

Optimal Feedback Control for Modeling Human–Computer Interaction 51:67

[81] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable muscle-actuated human simulation
and control. ACM Transactions on Graphics 38, 4, Article 73 (July 2019), 13 pages. DOI:https://doi.org/10.1145/3306346.
3322972

[82] Kaccie Y. Li, Pavan Tiruveedhula, and Austin Roorda. 2010. Intersubject variability of foveal cone photoreceptor
density in relation to eye length. Investigative Ophthalmology & Visual Science 51, 12 (2010), 6858–6867.

[83] Weiwei Li and Emanuel Todorov. 2004. Iterative linear quadratic regulator design for nonlinear biological movement
systems. In Proceedings of the ICINCO (1). Citeseer, 222–229.

[84] Weiwei Li and Emanuel Todorov. 2007. Iterative linearization methods for approximately optimal control and esti-
mation of non-linear stochastic system. International Journal of Control 80, 9 (2007), 1439–1453.

[85] Zhe Li, Pietro Mazzoni, Sen Song, and Ning Qian. 2018. A single, continuously applied control policy for modeling
reaching movements with and without perturbation. Neural Computation 30, 2 (2018), 397–427. DOI:https://doi.org/
10.1162/neco_a_01040. PMID: 29162001.

[86] Dan Liu and Emanuel Todorov. 2007. Evidence for the flexible sensorimotor strategies predicted by optimal feedback
control. Journal of Neuroscience 27, 35 (2007), 9354–9368. DOI:https://doi.org/10.1523/JNEUROSCI.1110-06.2007

[87] Gerald Loeb, W. Levine, and Jiping He. 1990. Understanding sensorimotor feedback through optimal control. Cold
Spring Harbor Symposia on Quantitative Biology 55 (02 1990), 791–803. DOI:https://doi.org/10.1101/SQB.1990.055.01.
074

[88] I. MacKenzie, Tatu Kauppinen, and Miika Silfverberg. 2001. Accuracy measures for evaluating computer pointing
devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 9–16. DOI:https://doi.org/
10.1145/365024.365028

[89] I. Scott MacKenzie. 1992. Fitts’ law as a research and design tool in human-computer interaction. Human-Computer
Interaction 7, 1 (1992), 91–139. DOI:https://doi.org/10.1207/s15327051hci0701_3

[90] Michael J. McGuffin and Ravin Balakrishnan. 2005. Fitts’ law and expanding targets: Experimental studies and designs
for user interfaces. ACM Transactions on Computer-Human Interaction 12, 4 (2005), 388–422.

[91] Suzanne P. Mckee and Ken Nakayama. 1984. The detection of motion in the peripheral visual field. Vision Research
24, 1 (1984), 25–32. DOI:https://doi.org/10.1016/0042-6989(84)90140-8

[92] W. Pieter Medendorp. 2011. Spatial constancy mechanisms in motor control. Philosophical Transactions of the Royal
Society B: Biological Sciences 366, 1564 (2011), 476–491.

[93] David E. Meyer, Richard A. Abrams, Sylvan Kornblum, Charles E. Wright, and J. E. Keith Smith. 1988. Optimality in
human motor performance: Ideal control of rapid aimed movements. Psychological Review 95, 3 (1988), 340.

[94] Pietro Morasso. 1981. Spatial control of arm movements. Experimental Brain Research 42, 2 (1981), 223–227.
[95] Martez E. Mott and Jacob O. Wobbrock. 2014. Beating the bubble: Using kinematic triggering in the bubble lens

for acquiring small, dense targets. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
733–742.

[96] Denis Mottet, Reinoud Bootsma, Yves Guiard, and Michel Laurent. 1994. Fitts’ law in two-dimensional task space.
Experimental Brain Research 100, 1 (02 1994), 144–8. DOI:https://doi.org/10.1007/BF00227286

[97] Denis Mottet and Reinoud J. Bootsma. 1999. The dynamics of goal-directed rhythmical aiming. Biological Cybernetics
80, 4 (1999), 235–245.

[98] Jörg Müller, Antti Oulasvirta, and Roderick Murray-Smith. 2017. Control theoretic models of pointing. ACM Trans-
actions on Computer-Human Interaction 24, 4, Article 27 (Aug. 2017), 36 pages. DOI:https://doi.org/10.1145/3121431

[99] Atsuo Murata. 1998. Improvement of pointing time by predicting targets in pointing with a PC mouse. International
Journal of Human-Computer Interaction 10, 1 (1998), 23–32.

[100] Masaki Nakada, Tao Zhou, Honglin Chen, Tomer Weiss, and Demetri Terzopoulos. 2018. Deep learning of biomimetic
sensorimotor control for biomechanical human animation. ACM Transactions on Graphics 37, 4, Article 56 (July 2018),
15 pages. DOI:https://doi.org/10.1145/3197517.3201305

[101] Eri Nakano, Hiroshi Imamizu, Rieko Osu, Yoji Uno, Hiroaki Gomi, Toshinori Yoshioka, and Mitsuo Kawato. 1999.
Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque
change model. Journal of Neurophysiology 81, 5 (1999), 2140–2155. DOI:https://doi.org/10.1152/jn.1999.81.5.2140

[102] Mathieu Nancel and Edward Lank. 2017. Modeling User Performance on Curved Constrained Paths. Association for
Computing Machinery, New York, NY, 244–254. DOI:https://doi.org/10.1145/3025453.3025951

[103] W. L. Nelson. 1983. Physical principles for economies of skilled movements. Biological Cybernetics 46, 2 (Feb. 1983),
135–147. DOI:https://doi.org/10.1007/BF00339982

[104] Ingram Olkin and Friedrich Pukelsheim. 1982. The distance between two random vectors with given dispersion
matrices. Linear Algebra and its Applications 48 (1982), 257–263.

[105] Eunji Park and Byungjoo Lee. 2020. An intermittent click planning model. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. 1–13.

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

152 Optimal Feedback Control for Modeling Human-Computer Interaction

51:68 F. Fischer et al.

[106] Phillip T. Pasqual and Jacob O. Wobbrock. 2014. Mouse pointing endpoint prediction using kinematic template match-
ing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 743–752.

[107] Robert Pastel. 2006. Measuring the difficulty of steering through corners. Proceedings of ACM CHI 2006 Conference
on Human Factors in Computing Systems 1, 2 (2006), 1087–1096. https://doi.org/10.1145/1124772.1124934

[108] Y. Phillis. 1985. Controller design of systems with multiplicative noise. IEEE Transactions on Automatic Control 30,
10 (1985), 1017–1019. DOI:https://doi.org/10.1109/TAC.1985.1103828

[109] Rejean Plamondon. 1998. A kinematic theory of rapid human movements: Part III. Kinetic outcomes. Biological Cy-
bernetics 78, 2 (1998), 133–145. DOI:https://doi.org/10.1007/s004220050420

[110] Réjean Plamondon and Adel M. Alimi. 1997. Speed/accuracy trade-offs in target-directed movements. Behavioral and
Brain Sciences 20, 02 (1997), 279–303.

[111] Ning Qian, Yu Jiang, Zhong-Ping Jiang, and Pietro Mazzoni. 2013. Movement duration, fitts’s law, and an infinite-
horizon optimal feedback control model for biological motor systems. Neural Computation 25, 3 (2013), 697–724.
DOI:https://doi.org/10.1162/NECO_a_00410

[112] Philip Quinn and Shumin Zhai. 2018. Modeling gesture-typing movements. Human–Computer Interaction 33, 3 (2018),
234–280. DOI:https://doi.org/10.1080/07370024.2016.1215922

[113] M. J. Richardson and T. Flash. 2002. Comparing smooth arm movements with the two-thirds power law and the
related segmented-control hypothesis. The Journal of Neuroscience 22, 18 (2002), 8201–8211.

[114] D. A. Rosenbaum, L. D. Loukopoulos, R. G. Meulenbroek, J. Vaughan, and S. E. Engelbrecht. 1995. Planning reaches
by evaluating stored postures. Psychological review 102, 1 (01 1995), 28–67. DOI:https://doi.org/10.1037/0033-295x.
102.1.28

[115] Stuart J. Russell and Peter Norvig. 2002. Artificial intelligence - a modern approach, 2nd Edition. Prentice Hall.
[116] Fabrice R. Sarlegna and Pratik K. Mutha. 2015. The influence of visual target information on the online control of

movements. Vision Research 110, (Part B) (2015), 144–154. DOI:https://doi.org/10.1016/j.visres.2014.07.001. On-line
Visual Control of Action.

[117] Richard A. Schmidt, Timothy D. Lee, Carolee Winstein, Gabriele Wulf, and Howard N. Zelaznik. 2018. Motor Control
and Learning: A Behavioral Emphasis. Human kinetics, Champaign, IL.

[118] Richard A. Schmidt, Howard Zelaznik, Brian Hawkins, James S. Frank, and John T. Quinn Jr. 1979. Motor-output
variability: A theory for the accuracy of rapid motor acts. Psychological Review 86, 5 (1979), 415.

[119] Alexander C. Schütz, Doris I. Braun, and Karl R. Gegenfurtner. 2011. Eye movements and perception: A selective
review. Journal of Vision 11, 5 (2011), 9–9.

[120] Sofia Seinfeld, Tiare Feuchtner, Antonella Maselli, and Jörg Müller. 2020. User representations in human-computer
interaction. Human–Computer Interaction 0, 0 (2020), 1–39. DOI:https://doi.org/10.1080/07370024.2020.1724790

[121] Reza Shadmehr, Helen J. Huang, and Alaa A. Ahmed. 2016. A representation of effort in decision-making and motor
control. Current Biology 26, 14 (2016), 1929–1934. DOI:https://doi.org/10.1016/j.cub.2016.05.065

[122] Reza Shadmehr, Jean Jacques Orban de Xivry, Minnan Xu-Wilson, and Ting-Yu Shih. 2010. Temporal discounting of
reward and the cost of time in motor control. Journal of Neuroscience 30, 31 (2010), 10507–10516. DOI:https://doi.org/
10.1523/JNEUROSCI.1343-10.2010

[123] Reza Shadmehr and Steven P. Wise. 2005. The Computational Neurobiology of Reaching and Pointing. MIT Press,
Cambridge, MA.

[124] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. 2021. Reward is enough. Artificial Intelligence 299
(2021), 103535. DOI:https://doi.org/10.1016/j.artint.2021.103535

[125] Andrew Slifkin and Karl Newell. 1999. Noise, information transmission, and force variability. Journal of Experimental
Psychology. Human Perception and Performance 25, 3 (07 1999), 837–51. DOI:https://doi.org/10.1037/0096-1523.25.3.
837

[126] P. Stoica and Y. Selen. 2004. Model-order selection: A review of information criterion rules. IEEE Signal Processing
Magazine 21, 4 (2004), 36–47. DOI:https://doi.org/10.1109/MSP.2004.1311138

[127] R. Storn and K. Price. 1997. Differential evolution - A simple and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization 11, 4 (1997), 341–359.

[128] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. 2011. Peripheral vision and pattern recognition: A review.
Journal of Vision 11, 5 (12 2011), 13–13. DOI:https://doi.org/10.1167/11.5.13

[129] G. G. Sutton and K. Sykes. 1967. The variation of hand tremor with force in healthy subjects. The Journal of Physiology
191, 3 (1967), 699–711.

[130] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. A Bradford Book, Cambridge,
MA.

[131] Hirokazu Tanaka, John W. Krakauer, and Ning Qian. 2006. An optimization principle for determining movement
duration. Journal of Neurophysiology 95, 6 (2006), 3875–3886. DOI:https://doi.org/10.1152/jn.00751.2005

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

153

Optimal Feedback Control for Modeling Human–Computer Interaction 51:69

[132] Yuval Tassa, Nicolas Mansard, and Emo Todorov. 2014. Control-limited differential dynamic programming. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation. DOI:https://doi.org/10.1109/ICRA.2014.
6907001

[133] Benjamin W. Tatler, Mary M. Hayhoe, Michael F. Land, and Dana H. Ballard. 2011. Eye guidance in natural vision:
Reinterpreting salience. Journal of Vision 11, 5 (2011), 5–5.

[134] C. W. Telford. 1931. The refractory phase of voluntary and associative responses. Journal of Experimental Psychology
14, 1 (1931), 1–36.

[135] Shelby G. Thompson, Daniel S. McConnell, Jeremy S. Slocum, and Michael Bohan. 2007. Kinematic analysis of multi-
ple constraints on a pointing task. Human Movement Science 26, 1 (2007), 11–26. DOI:https://doi.org/10.1016/j.humov.
2006.09.001

[136] Kurt Thoroughman and Reza Shadmehr. 2000. Learning of action through adaptive combination of motor primitives.
Nature 407, 6805 (11 2000), 742–7. DOI:https://doi.org/10.1038/35037588

[137] Juan Camilo Vasquez Tieck, Marin Vlastelica Pogančić, Jacques Kaiser, Arne Roennau, Marc-Oliver Gewaltig, and
Rüdiger Dillmann. 2018. Learning continuous muscle control for a multi-joint arm by extending proximal policy
optimization with a liquid state machine. In Proceedings of the International Conference on Artificial Neural Networks.
Springer, 211–221.

[138] Emanuel Todorov. 1998. Studies of Goal-directed Movements. Massachusetts Institute of Technology.
[139] Emanuel Todorov. 2002. Cosine tuning minimizes motor errors. Neural Computation 14, 6 (June 2002), 1233–1260.

DOI:https://doi.org/10.1162/089976602753712918
[140] Emanuel Todorov. 2004. Optimality principles in sensorimotor control. Nature Neuroscience 7, 9 (10 2004), 907–915.

DOI:https://doi.org/10.1038/nn1309
[141] Emanuel Todorov. 2005. Stochastic optimal control and estimation methods adapted to the noise characteristics of

the sensorimotor system. Neural Computation 17, 5 (2005), 1084–1108.
[142] Emanuel Todorov and Michael I. Jordan. 2002. Optimal feedback control as a theory of motor coordination. Nature

Neuroscience 5, 11 (2002), 1226–1235. DOI:https://doi.org/10.1038/nn963
[143] Emanuel Todorov and Weiwei Li. 2005. A generalized iterative LQG method for locally-optimal feedback control

of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control Conference, 2005. IEEE,
300–306.

[144] Y. Uno, M. Kawato, and R. Suzuki. 1989. Formation and control of optimal trajectory in human multijoint arm move-
ment. Biological Cybernetics 61, 2 (01 Jun 1989), 89–101. DOI:https://doi.org/10.1007/BF00204593

[145] Francisco Valero-Cuevas. 2015. Fundamentals of Neuromechanics, Vol. 8. 1–194 pages. DOI:https://doi.org/10.1007/
978-1-4471-6747-1

[146] Robert J. van Beers, Patrick Haggard, and Daniel M. Wolpert. 2004. The role of execution noise in movement vari-
ability. Journal of Neurophysiology 91, 2 (2004), 1050–1063. DOI:https://doi.org/10.1152/jn.00652.2003

[147] Frans C. T. van der Helm and Leonard A. Rozendaal. 2000. Musculoskeletal Systems with Intrinsic and Proprioceptive
Feedback. Springer, New York, New York, NY, Chapter 11, 164–174. DOI:https://doi.org/10.1007/978-1-4612-2104-
3_11

[148] Paolo Viviani and Tamar Flash. 1995. Minimum-jerk, two-thirds power law, and isochrony: Converging approaches
to movement planning. Journal of Experimental Psychology: Human Perception and Performance 21, 1 (1995), 32.

[149] Tie Wang, Goran S. Dordevic, and Reza Shadmehr. 2001. Learning the dynamics of reaching movements results in the
modification of arm impedance and long-latency perturbation responses. Biological Cybernetics 85, 6 (2001), 437–448.

[150] Xiaolan Wang, Mingsha Zhang, Ian S. Cohen, and Michael E. Goldberg. 2007. The proprioceptive representation of
eye position in monkey primary somatosensory cortex. Nature Neuroscience 10, 5 (2007), 640–646.

[151] Colin Ware and Harutune H. Mikaelian. 1986. An evaluation of an eye tracker as a device for computer input. In
Proceedings of the SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Interface. Association
for Computing Machinery, New York, NY, 183–188. DOI:https://doi.org/10.1145/29933.275627

[152] John Williamson. 2006. Continuous Uncertain Action. Ph. D. Dissertation. Dept. of Computing Science, University of
Glasgow.

[153] John Williamson, Roderick Murray-Smith, Benjamin Blankertz, Matthias Krauledat, and K.-R. Müller. 2009. Design-
ing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. International Journal of
Human-Computer Studies 67, 10 (2009), 827–841.

[154] Robert Sessions Woodworth. 1899. Accuracy of voluntary movement. The Psychological Review: Monograph Supple-
ments 3, 3 (1899), i.

[155] Charles E. Wright and David E. Meyer. 1983. Conditions for a linear speed-accuracy trade-off in aimed move-
ments. The Quarterly Journal of Experimental Psychology Section A 35, 2 (1983), 279–296. DOI:https://doi.org/10.1080/
14640748308402134

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

154 Optimal Feedback Control for Modeling Human-Computer Interaction

51:70 F. Fischer et al.

[156] Peter G. Yule, John Fox, David W. Glasspool, and Richard P. Cooper. 2013. Modelling High-level Cognitive Processes.
Psychology Press.

[157] Gregory J. Zelinsky. 2008. A theory of eye movements during target acquisition. Psychological Review 115, 4 (2008),
787.

[158] Shumin Zhai, Johnny Accot, and Rogier Woltjer. 2004. Human action laws in electronic virtual worlds: An em-
pirical study of path steering performance in VR. Presence 13, 2 (04 2004), 113–127. DOI:https://doi.org/10.1162/
1054746041382393

[159] Brian Ziebart, Anind Dey, and J. Andrew Bagnell. 2012. Probabilistic pointing target prediction via inverse optimal
control. In Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces. ACM, New York, NY,
1–10. DOI:https://doi.org/10.1145/2166966.2166968

[160] J. Alberto Álvarez Martín, Henrik Gollee, Jörg Müller, and Roderick Murray-Smith. 2021. Intermittent control as a
model of mouse movements. ACM Transactions on Computer-Human Interaction (TOCHI) 28, 5 (2021), 1–46.

Received 1 October 2021; revised 24 February 2022; accepted 4 March 2022

ACM Transactions on Computer-Human Interaction, Vol. 29, No. 6, Article 51. Publication date: November 2022.

155

6
Reinforcement Learning Control of a

Biomechanical Model of the Upper
Extremity

Authors: Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, Jörg Müller
Status: Published in Sci Rep 11 (Scientific Reports 2021) [15]

FF conducted and JM supervised the research process. MB adjusted the biomechanical
model. FF, MB, and MK worked on the MuJoCo implementation and collected simulation
data. FF, MK, and AF analyzed and validated the results. FF created the plots. FF and JM
wrote the main manuscript text. All authors reviewed the manuscript. FF is the corresponding
author.

1

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports

Reinforcement learning control
of a biomechanical model
of the upper extremity
Florian Fischer*, Miroslav Bachinski, Markus Klar, Arthur Fleig & Jörg Müller

Among the infinite number of possible movements that can be produced, humans are commonly
assumed to choose those that optimize criteria such as minimizing movement time, subject to
certain movement constraints like signal-dependent and constant motor noise. While so far these
assumptions have only been evaluated for simplified point-mass or planar models, we address the
question of whether they can predict reaching movements in a full skeletal model of the human
upper extremity. We learn a control policy using a motor babbling approach as implemented in
reinforcement learning, using aimed movements of the tip of the right index finger towards randomly
placed 3D targets of varying size. We use a state-of-the-art biomechanical model, which includes
seven actuated degrees of freedom. To deal with the curse of dimensionality, we use a simplified
second-order muscle model, acting at each degree of freedom instead of individual muscles. The
results confirm that the assumptions of signal-dependent and constant motor noise, together with
the objective of movement time minimization, are sufficient for a state-of-the-art skeletal model of
the human upper extremity to reproduce complex phenomena of human movement, in particular
Fitts’ Law and the 2

3

 Power Law. This result supports the notion that control of the complex human
biomechanical system can plausibly be determined by a set of simple assumptions and can easily be
learned.

In the case of simple end-effector models, both Fitts’ Law and the 23 Power Law have been shown to constitute a
direct consequence of minimizing movement time, under signal-dependent and constant motor noise1,2. Here,
we aim to confirm that these simple assumptions are also sufficient for a full skeletal upper extremity model to
reproduce these phenomena of human movement. As a biomechanical model of the human upper extremity, we
use the skeletal structure of the Upper Extremity Dynamic Model by Saul et al.3, including thorax, right clavicle,
scapula, shoulder, arm, and hand. The model has seven actuated degrees of freedom (DOFs): shoulder rotation,
elevation and elevation plane, elbow flexion, forearm rotation, and wrist flexion and deviation. While the thorax
is fixed in space, the right upper extremity can move freely by actuating these DOFs. To deal with the curse of
dimensionality and make the control problem tractable, following van Beers et al.4, we use a simplified second-
order muscle model acting at each DOF instead of individual muscles. These second-order dynamics map an
action vector obtained from the learned policy to the resulting activations for each DOF. Following van Beers
et al.4, we assume both signal-dependent and constant motor noise in the control, with noise levels 0.103 and
0.185, respectively. Multiplying these activations with constant moment arm scaling factors, which represent the
strength of the muscle groups at the respective DOFs, yields the torques that are applied at each DOF indepen-
dently. Further details on the biomechanical model are provided in the Methods section below.

The Upper Extremity Dynamic Model is significantly more complex than standard point-mass or linked-
segment models. In particular, there is no explicit formula for the non-linear and non-deterministic system
dynamics. Together with the objective of movement time minimization, these properties make it difficult to use
classical optimal control approaches. Instead, in this paper we learn a control policy using deep reinforcement
learning (RL). RL algorithms, just like the optimal control methods discussed below, aim to find a policy that
maximizes a given reward function. Moreover, they do not require any explicit knowledge about the underlying
model. Instead, the optimal value of a certain state is estimated from sampling different actions in the environ-
ment and observing the subsequent state and obtained reward5.

In our approach, a control policy initially generates random movements, which are rewarded with the negative
time to reach randomly placed 3D targets of varying size, with the right index finger (see Fig. 1). This reward sig-
nal implies movement time minimization for aimed movements. The policy is updated using the soft-actor-critic
algorithm (SAC)6. The actor and critic networks both consist of two fully connected layers with 256 neurons each,

OPEN

University of Bayreuth, Bayreuth, Germany. *email: florian.j.fischer@uni-bayreuth.de

158
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

followed by the output layer, which either returns the means and standard deviations of the action distributions
(for the actor network) or the state-action value (for the critic network). Further information about the network
architecture and a detailed description of all state components can be found in the Methods section below. To
make reinforcement learning computationally feasible within a reasonable time period, a fast physics simulation
is advantageous. Accordingly, we implemented the biomechanical model in MuJoCo7.

It is important to note in this context that the assumption of minimizing total movement time does not
provide any gradient information to the reinforcement learner. In particular, it is not possible to distinguish
beneficial states and actions from inappropriate ones before the target has been reached, which terminates the
episode and thus increases the total return. This, together with the fairly small subspace of appropriate actions
relative to the number of possible control vectors, makes it very difficult to obtain a reasonable policy without
additional aid. For this reason, we created an adaptive curriculum, which dynamically decreases the target diam-
eter from 60 cm to less than 2 cm during training. This has proven to be both effective (targets with diameter
around 2 cm are consistently reached by the final policy) and efficient (this minimum width was reached after
1.2M steps, while various predetermined curricula required more than 3M steps).

Related work
The question of how human arm movements are internally planned and controlled has received significant
attention in the literature. Important phenomena that emerge from human arm movements include Fitts’ Law
and the 23 Power Law. In this section we review related work in these areas.

Motor control. Many models of human motor control assume that some objective function is optimized
during the planning of the movement. A variety of objective functions have been proposed, including mini-
mization of either jerk8,9, peak acceleration10, end-point variance1, duration2,11, or torque-change12. Moreover,
combined objective functions have been used to model a trade-off between different objectives, e.g., between
accuracy and effort13,14, or jerk and movement time15. Extensions have been proposed that, e.g., focus on initial
gating mechanisms16 or motor synergies representing agonist and antagonist muscle groups17.

While most of these models imply a separation between the planning and the execution stage, the optimal
feedback control theory18–22 assumes that sensory signals about the controlled quantity are fed back to the con-
troller. These observations are then directly used to compute the remaining optimal control signals, resulting in
a feedback loop. Extensions to infinite-horizon problems23, which yield the optimal steady-state solution at the
expense of neglecting transient behavior, and explicit non-linear time costs24,25 have been proposed.

While many early works in motor control have modeled the biomechanics as point-mass models with linear
 dynamics1,13 or linked-segment models1, there is a growing interest in biomechanical models of increasing real-
ism and fidelity. This is spurred by advances in biomechanical modeling3,26,27 and simulation28,29. Biomechanical
models allow control beyond the end-effector, for example on the level of joints12,30–35, or muscles36–39.

Joint-actuated models apply different optimality criteria for movement generation and coordination, mini-
mizing, e.g., the angular accelerations with constraints40, angular jerk30, torque-change12,31, mechanical energy
 expenditure41, a combination of absolute work and angular acceleration35, or some combination of accuracy
and effort costs in the context of optimal feedback control14. The biomechanical plant in these works is usually
represented as a linked-segment model, with simplified kinematic properties. In particular, the shoulder joint is
commonly described as a rotation-only joint, ignoring the translatory part as well as complex movements related
to the scapula and clavicle. Some of these models also include simplified muscles with simplified biomechanical
 attachment14.

More recently, more complex, high-fidelity biomechanical musculoskeletal models have been
 introduced36,37,42,43, where the control is muscle-based. In these models, the computation of the control val-
ues is commonly based on neural networks, particularly on deep learning and reinforcement learning. These
methods have been applied successfully to predict coordinated muscle activations for multi-joint arm42, lower
 body43, and full body36 movements. Moreover, a combination of 20 neural networks, each designed to imitate
some specific part of the sensorimotor system, has recently been used to synthesize movements for such diverse
sensorimotor tasks as reaching, writing, and drawing37. To make the control of muscle-based models feasible,
these works apply multiple simplifications to the full biomechanical model, such as reducing or immobilis-
ing degrees of freedom37,42 or even completely locking the movement to two dimensions43, ignoring tendon’s

Figure 1. Synthesized reaching movement. A policy implemented as a neural network computes motor control
signals of simplified muscles at the joints of a biomechanical upper extremity model from observations of the
current state of the upper body. We use Deep Reinforcement Learning to learn a policy that reaches random
targets in minimal time, given signal-dependent and constant motor noise.

159

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

 elasticity36,37, limiting maximum passive forces36, ignoring the muscle activation dynamics36,37 or significantly
reducing the number of independently controlled muscles42,43. Also, the control learning strategies differ from
the pure reinforcement learning approach by applying imitation learning36,37, or using artificial training data
with simplified dynamics37.

Up to now, these models have not been evaluated regarding the realism of the movements generated, in
particular whether they exhibit features characteristic of human movements, such as Fitts’ Law and the 23 Power
Law34,36,37.

Fitts’ law. Fitts’ Law44 describes the speed-accuracy trade-off of aimed movements towards a spatially
defined target. Given the distance D between the initial position of the controlled end-effector (e.g., the hand
or the finger) and the desired target position, and given the width W of the target, this law claims a logarithmic
relationship between the distance-width ratio DW and the resulting movement time MT:

where we used the Shannon formulation45. Most works that explored possible explanations for the emergence
of Fitts’ Law have postulated that it results from noise in motor control. Crossman and Goodeve46 showed that
Fitts’ Law emerges from the assumptions of isochronal submovements towards the target and constant error-
velocity ratio. Meyer et al.47 demonstrated that a power form of Fitts’ Law emerges from the optimization of the
relative duration of two submovements in order to achieve minimal movement time, assuming that the standard
deviation of submovement endpoints increases proportionally with movement velocity. Fitts’ Law has also been
derived within the infinite-horizon optimal control framework, assuming that the target is reached as soon as
the positional end-effector variance relative to the target center falls below the desired target accuracy23.

Harris and Wolpert1 proposed that the central nervous system (CNS) aims to minimize movement end-point
variance given a fixed movement time, under the constraint of signal-dependent noise. This signal-dependent
noise is assumed to be the main factor determining the end-point accuracy: Faster movements can be achieved
through applying larger control signals (in the extreme, this leads to the time-minimizing Bang-bang control),
but only at the costs of larger deviations, which in turn induce a larger end-point variance and thus a greater
risk of missing the target. This trade-off has a strong neuroscientific evidence48 and is consistent with the speed-
accuracy trade-off proposed by Fitts’ Law1,2. Moreover, in the case of arm-reaching movements, it has been shown
recently that the assumptions of feed-forward control and signal-dependent noise (using dynamics of a two-link
planar arm model) directly imply Fitts’ Law, with coefficients a and b related to the level of signal-dependent
 noise49 . Both coefficients were also shown to depend on the dynamics and kinematics, e.g., on the viscosity, or
the Jacobian matrix relating the joint space and the end-effector space.

2

3

 Power law. Continuous, rhythmic movements such as drawing or hand-writing, exhibit a speed-curvature
trade-off described by the 23 Power Law50. This law proposes a non-linear relationship between the radius of cur-
vature ρn and the corresponding tangential velocity vn,

where the parameter k determines the velocity gain. This particularly implies that higher curvature leads to lower
velocity. It has also been demonstrated that the 23 Power Law is equivalent to constant affine velocity51.

The 23 Power Law has been confirmed to hold for a variety of task conditions, including hand movement52,
eye movement53, perceptuomotor tasks54,55, and locomotion56. Moreover, it has been shown to apply under the
assumption of signal-dependent noise1. Schaal and Sternad57 observed that the perimeter of the ellipse has a large
impact on the validity of this law, with β obtained from a non-linear regression showing deviations in the order
of 30–40% for large ellipses (or, alternatively, with decreasing coefficient of determination R2 , i.e., decreasing
reliability of the parameter fitting). Based on these observations, Schaal and Sternad argue that the 23 Power Law
cannot be an intrinsic part of the movement planning procedure, but rather occurs as a “by-product” from the
generation of smooth trajectories in intrinsic joint space57 Following this argumentation, the non-linearities aris-
ing from the transformation from joint space to end-effector space, i.e., from a non-trivial kinematic chain, may
account for scale- and direction-dependent results. Other theories see the cause of the wide applicability of the
2
3 Power Law either in trajectory planning processes such as motor imagery58 or jerk minimization59, or directly
emerging from muscle properties60 or population vectors in motor cortical areas in the CNS61,62.

Results
Fitts’ law. In order to evaluate the trajectories resulting from our final policy for different target conditions,
we designed a discrete Fitts’ Law type task. The task follows the ISO 9241-9 ergonomics standard and incorpo-
rates 13 equidistant targets arranged in a circle at 50 cm distance in front of the body and placed 10 cm to the
right of the right shoulder (Fig. 2). The objective is for the end-effector to reach each target and to remain inside
the target for 100 ms. In this case we deem the movement successful. Although not included in the training
phase, remaining inside the target seemed to be unproblematic during evaluation. If either the movement was
successful, or 1.5 s have passed, the next target is given to the learned policy.

(1)MT = a+ b log2

(
D

W
+ 1

)
,

(2)vn = kρ1−β
n ,

(3)β ≈
2

3
,

160
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

The Index of Difficulty (ID) of the tasks ranges from 1 to 4, where ID is computed as log2(D/W + 1) . D
denotes the distance between the initial and target position, and W is the target size. We execute 50 movements
for each task condition and each direction, i.e., 6500 movements in total—all were successful.

Using the trajectories from this discrete pointing task, we evaluate whether the synthesized movements follow
Fitts’ Law44, i.e., whether there is a linear relationship between task difficulty (ID) and the required movement
time. Figure 2c shows the total duration for each movement sorted by ID. The median movement times for each
ID (green lines) are approximated by a linear function (red line, with coefficient of determination R2 = 0.9986).

2

3

 Power law. We evaluate whether our model exhibits the 23 Power Law using an elliptic via-point task. To
this end, we define an ellipse in 2D space (55 cm in front, 10 cm above, and 10 cm to the right of the shoulder)
that lies completely within the area used for target sampling during training (ellipse radii are 7.5 cm (horizontal)
and 3 cm (vertical)). Using the via-point method described in the Methods section below, our learned policy
needs to trace the ellipse for 60 s as fast as possible . As shown in Fig. 3a, the simulation trajectories deviate from
the desired ellipse, with the lower-right segment being flattened. Using these trajectories, we compute ρn and vn
for all time steps sampled at a rate of 100 Hz and then perform a log-log regression on the resulting values. This
yields the optimal parameter values β = 0.65 and k = 0.54 (with correlation coefficient R = 0.84). Thus, the 23
Power Law accounts for 71% of the variance observed in elliptic movements (R2 = 0.71). Both the data points
and the linear approximation in log-log space are shown in Fig. 3b.

Movement trajectories. In addition to Fitts’ Law and the 23 Power Law, we qualitatively analyze the move-
ment trajectories generated by the model. Figures 4 and 5 show the position, velocity, and acceleration time
series, as well as 3D movement path, Phasespace, and Hooke plots for multiple movements from the Fitts’ Law
type task for two representative task conditions (ID 4 respective ID 2, each with a 35 cm distance between tar-
gets) and one representative movement direction (between targets 7 and 8 shown in Fig. 2a). Apart from the
3D movement path, all plots show centroid projections of the respective trajectory onto the vector between the
initial and target positions.

The movements exhibit typical features of human aimed movements, such as symmetric bell-shaped velocity
 profiles63. Movements are smooth, and gently accelerate and decelerate, as evident in the acceleration profiles
and Hooke plots in Figs. 4 and 5. For high ID (Fig. 4), movements exhibit an initial rapid movement towards
the target, followed by an extended phase of corrective movements. For low ID (Fig. 5), the phase of corrective
movements is generally shorter.

Figure 2. Fitts’ Law type task. (a) The target setup in the discrete Fitts’ Law type task follows the ISO
9241-9 ergonomics standard. Different circles correspond to different IDs and distances between targets. (b)
Visualization of our biomechanical model performing aimed movements. Note that for each time step, only
the current target (position and radius) is given to the learned policy. (c) The movements generated by our
learned policy conform to Fitts’ Law. Here, movement time is plotted against ID for all distances and IDs in the
considered ISO task (6500 movements in total).

161

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

Movement trajectories towards the target are slightly curved and some of them exhibit pronounced correc-
tional submovements at the end (see, e.g., Supplementary Fig. S1 and S2 online). The between-movement vari-
ability within one movement direction and task condition decreases with increasing ID. In particular, very simple
ID 1 movements exhibit a large variability and are most prone to outliers (see, e.g., Supplementary Fig. S3 online).

For a few movement directions (mostly in ID 2 tasks), the corresponding plots seem to incorporate two dif-
ferent trajectory types (see, e.g., Supplementary Fig. S6 online): While some movements start with zero or even
a negative acceleration and show a typical N-shaped acceleration profile, others exhibit a positive acceleration at
the beginning, and their first peak is less pronounced. The reason for this behavior is corrective submovements
at the end of the previous movement (see, e.g., Supplementary Fig. S4 and S5 online), leading to a different
initial acceleration at the beginning of the subsequent movement. Apart from these notable features, almost all
movements exhibit bell-shaped velocity and N-shaped acceleration profiles, as is typical for pointing tasks63,64.

Discussion
Our results indicate that, under the assumption of movement time minimization given signal-dependent and
constant motor noise, movement of the human upper extremity model produced by reinforcement learning
follows both Fitts’ Law and the 23 Power Law. The movement times of aimed movements produced by the model
depend linearly on the Index of Difficulty of the movement. For elliptic movements, the logarithm of the velocity

Figure 3. Elliptic via-point task. Elliptic movements generated by our learned policy conform to the 2
3
 Power

Law. (a) End-effector positions projected onto the 2D space (blue dots), where targets were subsequently placed
along an ellipse of 15 cm width and 6 cm height (red curve). (b) Log-log regression of velocity against radius of
curvature for end-effector positions sampled with 100 Hz when tracing the ellipse for 60 s.

Figure 4. End-effector trajectories (ID 4). 3D path, projected position, velocity, acceleration, phasespace, and
Hooke plots of 50 aimed movements (between targets 7 and 8 shown in Fig. 2a) with ID 4 and a target distance
of 35 cm.

162
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

of the end-effector correlates with the logarithm of the radius of curvature65 The optimal β = 0.65 obtained
from log-log regression matches the proposed value of 23 , with a correlation coefficient of R = 0.84 , which is
consistent with previous observations, as the required ellipse has moderate size57. Finally, the generated trajec-
tories exhibit features that are typical for human arm movements, such as bell-shaped velocity and N-shaped
acceleration profiles.

The results confirm previous findings that demonstrated these phenomena in simpler models of the human
biomechanics. In particular, the emergence of Fitts’ Law and the 23 Power Law from the assumption of signal-
dependent noise has been demonstrated in the case of point-mass and linked-segment models of the human
 arm1,2,49. Our results support that insight by showing that Fitts’ Law and the 23 Power Law also emerge from those
normative principles in a state-of-the-art biomechanical model of the human arm with simplified actuation.

In addition, we want to emphasize that the control signals that drive this model were obtained from RL
methods. The fact that Fitts’ Law and the 23 Power Law hold for the generated trajectories provides evidence that
behavior abiding these established laws of human motion can be generated using joint-actuated biomechanical
models controlled by reinforcement learning algorithms. To the best of our knowledge, this has not yet been
shown for state-of-the-art biomechanical models.

One limitation of our approach is the implicit assumption of perfect observability, as all state information
(joint angles, end-effector position, etc.) are immediately available to the controller, without any disturbing noise.
In the future, it will be interesting to combine state-of-the art models of sensory perception with the presented
RL-based motor control approach. Promising approaches to address this problem include the usage of recurrent
 networks66,67 and the internal formation of “beliefs”, given the latest (imperfect) observations68.

Another limitation is the usage of simplified muscle dynamics due to the curse of dimensionality. However,
recent applications of deep learning methods, which approximate complex state-dependent torque limits69 or
muscle activation signals37 using synthesized training data, raise hope for future approaches that efficiently
combine RL or optimal control methods with state-of-the-art muscle models. It will be interesting to see whether
well-established regularities such as Fitts’ Law or the 23 Power Law also emerge from such models.

Methods
Below, we first provide details on our biomechanical model. After discussing our general reinforcement learning
approach, we focus on the individual components of our method, namely states, actions, scaling factors, rewards,
and an adaptive target-selection mechanism. We also provide details on the implementation of our algorithm.
Finally, we discuss the methods used for evaluation.

Biomechanical model of the human upper extremity. Our biomechanical model of the human
upper extremity is based on the Upper Extremity Dynamic model3, which was originally implemented in Open-
Sim28. Kinematically, the model represents the human shoulder and arm, using seven physical bodies and five
”phantom” bodies to model the complex movement of the shoulder. This corresponds to three joints (shoulder,
elbow, and wrist) with seven DOFs and five additional joints with thirteen associated components coupled by

Figure 5. End-effector trajectories (ID 2). 3D path, projected position, velocity, acceleration, phasespace, and
Hooke plots of 50 aimed movements (between targets 7 and 8 shown in Fig. 2a) with ID 2 and a target distance
of 35 cm.

163

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

thirteen constraints with the DOFs. Each DOF has constrained joint ranges (see Table 1), which limits the pos-
sible movements. In contrast to linked-segment models, the Upper Extremity Dynamic model represents both
translational and rotatory components of the movement within shoulder, clavicle, and scapula, and also within
the wrist. It also contains physiological joint axis orientations instead of the perpendicular orientations in linked-
segment models. The dynamics components of the musculoskeletal model are represented by the weight and
inertia matrix of each non-phantom body and the default negligible masses and inertia of all phantom bodies.
The dynamics properties of the model were extracted from various previously published works on human and
cadaveric studies. The active components of the Upper Extremity Dynamic Model consist of thirty-one Hill-type
muscles as well as of fourteen coordinate limit forces softly generated by the ligaments when a DOF approaches
the angle range limit. Further details of this model are given in Saul et al.3

In order to make reinforcement learning feasible, we manually implement the Upper Extremity Dynamic
Model in the fast MuJoCo physics simulation7. With respect to kinematics, the MuJoCo implementation of the
model is equivalent to the original OpenSim model and contains physiologically accurate degrees of freedom,
as well as corresponding constraints. We assume the same physiological masses and inertial properties of indi-
vidual segments as in the OpenSim model. We do not implement muscles in the MuJoCo model, as this would
significantly slow down the simulation and make reinforcement learning computationally infeasible due to the
exponential growth of decision variables in the (discretized) action space when increasing the number of DOFs
– the curse of dimensionality. In particular, computing dynamic actuator lengths (which significantly affect the
forces produced by muscle activation patterns) has proven challenging in MuJoCo70. Instead, we implement
simplified actuators, representing aggregated muscle actions on each individual DOF, which are controlled
using the second-order dynamics introduced by van der Helm et al.71 with fixed excitation and activation time
constants te = 30 ms and ta = 40 ms, respectively. We discretize the continuous state space system using the
forward Euler method, which yields the following dynamics:

where c(q)n is the applied control and σ (q)
n the resulting activation for each DOF q ∈ Q , and Q is the set that con-

tains all DOFs. The controls are updated every �t=10 ms, at time steps n ∈ {0, . . . ,N − 1} . To get more accurate
results, at each time step n, we compute five sub-steps (during which the control c(q)n is constant) with a sampling
time of 2 ms to arrive at time step n+ 1.

We assume both signal-dependent and constant noise in the control, i.e.,

where an = (a
(q)
n)q∈Q denotes the action vector obtained from the learned policy, and ηn and ǫn are Gaussian

random variables with zero mean and standard deviations of 0.103 and 0.185, respectively, as described by van
Beers et al.4 The torques, which are applied at each DOF independently, are obtained by multiplying the respec-
tive activation σ (q)

n with a constant scaling factor g (q) , which represents the strength of the muscle groups at the
this DOF, i.e.,

 We select the scaling factors, and respectively the maximum voluntary torques for the actuators given in Table 1,
based on experimental data as described below. We currently do not model the soft joint ranges in MuJoCo, as
the movements the model produces do not usually reach joint limits.

The used biomechanical model provides the following advantages over simple linked-segment models:

• Phantom bodies and joints allow for more realistic movements, including both translation and rotation
components within an individual joint,

• Individual joint angle and torque limits are set for each and every DOF,
• Axes between joints are chosen specifically and not just perpendicular between two segments,
• The model includes physiological body segment masses, and yields better options for scaling individual body

parts, e.g., based on particular individuals.

Reinforcement learning. We define the task of controlling the biomechanical model of the human upper
extremity through motor control signals applied at the joints as a reinforcement learning problem, similar to
recent work from Cheema et al.34 In this formulation, a policy πθ (a|s) models the conditional distribution over
actions a ∈ A (motor control signals applied at the individual DOFs) given the state s ∈ S (the pose, velocities,
distance to target, etc.). The subindex θ denotes the parameters of the neural networks introduced below. At each
timestep n ∈ {0, . . . ,N} , we observe the current state sn , and sample a new action an from the current policy πθ .
The physical effects of that action, i.e., the application of these motor control signals, constitute the new state
sn+1 , which we obtain from our biomechanical simulation. In our model, given sn and an , the next state sn+1 is not
deterministic, since both signal-dependent and constant noise are included. Hence, we denote the probability
of reaching some subsequent state sn+1 given sn and an by p(sn+1|sn, an) , while p(s0) denotes the probability of
starting in s0 . Given some policy πθ and a trajectory T = (s0, a0, . . . , aN−1, sN),

(4)

[

σ
(q)
n+1

σ̇
(q)
n+1

]

=

[

1 �t
−�t
(teta)

1−�t te+ta
teta

]

[

σ
(q)
n

σ̇
(q)
n

]

+

[

0
�t
teta

]

c
(q)
n ,

(5)c
(q)
n = (1+ ηn)a

(q)
n + ǫn,

(6)τ
(q)
n = g (q)σ

(q)
n .

164
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

describes the probability of realizing that trajectory. Evaluating/Sampling equation (7) for all possible trajectories
T ∈ T then yields the distribution over all possible trajectories, ̺ T

θ , induced by a policy πθ.
We compute a reward rn at each time step n, which allows us to penalize the total time needed to reach a given

target. The total return of a trajectory is given by the sum of the (discounted) rewards
∑N

n=0 γ
nrn , where γ ∈]0, 1]

is a discount factor that causes the learner to prefer earlier rewards to later ones. Incorporating the entropy term,

yields the expected (soft) return

 which we want to maximize with respect to the parameters θ , i.e., the goal is to identify the optimal parameters
θ∗ that maximize J(θ) . Here, the temperature parameter α > 0 determines the importance of assigning the same
probability to all actions that yield the same return (enforced by maximizing the entropy H), i.e., increasing the
“stochasticity” of the policy πθ , relative to maximizing the expected total return. It thus significantly affects the
optimal policy, and finding an “appropriate” value is non-trivial and heavily depends on the magnitude of the
rewards rn . For this reason, we decided to adjust it automatically during training together with the parameters
θ , using dual gradient descent as implemented in the soft-actor critic algorithm (see below)6.

It is important to note that the soft return in Equation (9) is different from the objective function used in
standard reinforcement learning. The MaxEnt RL formulation, which incorporates an additional entropy maxi-
mization term, provides several technical advantages. These include the natural state-space exploration72,73, a
smoother optimization landscape that eases convergence towards the global optimum74–76, and increased robust-
ness to changes in the reward function77,78. In practice, many RL algorithms have gained increased stability from
the additional entropy maximization79–81. Conceptually, MaxEnt RL can be considered equivalent to probabilistic
matching, which has been used to explain human decision making82,83. Existing evidence indicates that human
adults tend to apply probabilistic matching methods rather than pure maximization strategies82,84,85. However,
these observations still lack conclusive neuroscientific explanation80.

In order to approximate the optimal parameters θ∗ , we use a policy-gradient approach, which iteratively
refines the parameters θ in the direction of increasing rewards. Reinforcement learning methods that are based
on fully sampled trajectories usually suffer from updates with high variance. To reduce this variance and thus
accelerate the learning process, we choose an approach that includes two approximators: an actor network and a
critic network. These work as follows. Given some state s0 as input, the actor network outputs the (standardized)
mean and standard deviation of as many normal distributions as dimensions of the action space. The individual
action components are then sampled from these distributions. To update the actor network weights, we must
measure the “desirability” of some action a, given some state s, i.e., how much reward can be expected when
starting in this state with this action and subsequently following the current policy. These values are approxi-
mated by the critic network.

The architecture of both networks is depicted in Fig. 6. For the sake of a simpler notation, the parameter
vector θ contains the weights of both networks, however these weights are not shared between the two. These
two networks are then coupled with the soft actor-critic (SAC) algorithm6, which has been used successfully in
physics-based character motion86: As a policy-gradient method, it can be easily used with a continuous action
space such as continuous motor signals – something that is not directly possible with value function methods
like DQN5. As an off-policy method that makes use of a replay buffer, it is quite sample-efficient. This is impor-
tant, since running forward physics simulations in MuJoCo constitutes the major part of the training duration.
Moreover, it has been shown that SAC outperforms other state-of-the-art algorithms such as PPO87 or TD388.
Supporting the observations in Haarnoja et al.6, we also found our training process to be faster and more robust
when using SAC rather than PPO. Moreover, SAC incorporates an automatic adaption of the temperature α using
dual gradient descent, which eliminates the need for manual, task-dependent fine-tuning. In order to obtain
an unbiased estimate of the optimal value function, we use Double Q-Learning89, using a separate target critic
network. The neural network parameters are optimized with the Adam optimizer90.

States, actions, and scaling factors. Using the MuJoCo implementation of the biomechanical model
described above, the states s ∈ S ⊆ R48 in our RL approach include the following information:

• Joint angle for each DOF q ∈ Q in radians (7 values),
• Joint velocity for each DOF q ∈ Q in radians/s (7 values),
• Activations σ (q) and excitations σ̇ (q) for each DOF q ∈ Q (2× 7 values),
• Positions of the end-effector and target sphere (2× 3 values),
• (positional) Velocities of the end-effector and target sphere (2× 3 values),
• (positional) Acceleration of the end-effector (3 values),
• Difference vector: vector between the end-effector attached to the index finger and the target, pointing towards

the target (3 values),
• Projection of the end-effector velocity towards the target (1 value),

(7)pθ (T) = p(s0)

N−1
∏

n=0

πθ (an|sn)p(sn+1|sn, an)

(8)H(πθ (· | s)) = Ea∼πθ (·|s)[− log(πθ (a | s))],

(9)J(θ) = ET∼̺T
θ

[(

N−1
∑

n=0

γ n
(

rn − α log(πθ (an | sn))
)

)

+ γNrN

]

,

165

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

• Radius of the target sphere (1 value).

We found that in our case, the target velocity (which always equals zero for the considered tasks), the end-effector
acceleration, the difference vector, and the projection of the end-effector velocity can be omitted from state space
without reducing the quality of the resulting policy. However, we decided to incorporate these observations, as
they did not considerably slow down training and might be beneficial for more complex tasks such as target
tracking or via-point tasks.

Each component a(q) ∈ [−1, 1] of the action vector a = (a(q))q∈Q ∈ A ⊆ R7 is used to actuate some DOF
q ∈ Q by applying the torque τ (q) resulting from Eqs. (4)–(6). Note that in addition to these actuated forces,
additional active forces (e.g., torques applied to parent joints) and passive forces (e.g., gravitational and contact
forces) act on the joints in each time step.

We determine experimentally the maximum torque a human would exert at each DOF in this task as follows.
We implemented the Fitts’ Law task described above in a VR environment displayed via the HTC Vive Pro VR
headset. We recorded the movements of a single participant performing the task, using the Phasespace X2E
motion capture system with a full-body suit provided with 14 optical markers. This study was granted ethical
approval by the ethics committee of the University of Bayreuth and followed ethical standards according to the
Helsinki Declaration. Written informed consent was received from the participant, which received an economic
compensation for participating in the study. Using OpenSim, we scaled the Upper Extremity Dynamic Model
to this particular person. We then used OpenSim to perform Inverse Dynamics to obtain the torque sequences
that are most likely to produce the recorded marker trajectories. For each DOF q ∈ Q , we set the corresponding
scaling factor g (q) to the absolute maximum torque applied at this DOF during the experiment, omitting a small
number of outliers from the set of torques, i.e., values with a distance to mean larger than 20 times the standard
deviation. The resulting values are shown in Table 1.

Reward function and curriculum learning. The behavior of the policy is determined largely by the
reward rn that appears in Eq. (9). We designed the reward following Harris and Wolpert1, who argue that there

Figure 6. Neuronal network architectures. (a) The actor network takes a state s as input and returns the policy
πθ in terms of mean and standard deviation of the seven normal distributions, from which the components of
the action vector are drawn. (b) The critic network takes both state s and action vector a as input and returns the
estimated state-action value. Two critic networks are trained simultaneously to improve the speed and stability
of learning (Double Q-Learning). Detailed information about the input state components are given in the
Methods section.

166
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

is no rational explanation as to why the central nervous system (CNS) should explicitly try to minimize previ-
ously proposed metrics such as the change in torque applied at the joints12, or the acceleration (or jerk) of the
end-effector8. They argue that it is not even clear whether the CNS is able to compute, store, and integrate these
quantities while executing motions.

Instead, they argue that the CNS aims to minimize movement end-point variance given a fixed movement
time, under the constraint of signal-dependent noise. Following Harris and Wolpert1, t his is equivalent to mini-
mizing movement time when the permissible end-point variance is given by the size of the target. This objective
is simple and intuitively plausible, since achieving accurate aimed movements in minimal time is critical for the
success of many movement tasks. Moreover, it has already been applied to linear dynamics2.

Therefore, the objective of our model is to minimize movement time while reaching a target of given width.
More precisely, our reward function consists only of a time reward, which penalizes every time step of an

episode equally:

This term provides incentives to terminate the episode (which can only be achieved by reaching the target) as
early as possible. Since we apply each control an for 10 ms, �t amounts to 0.01 in our case, i.e., rn = −1 in each
time step n ∈ {0, . . . ,N}.

According to our experience, it is possible to learn aimed movements despite the lack of gradient provided
by the reward function, provided the following requirements are met. The initial posture needs to be sampled
randomly, and the targets need to be large enough at the beginning of the training to ensure that the target is
reached by exploration sufficiently often in early training steps to guide the reinforcement learner. However,
creating a predetermined curriculum that gradually decreases the target width during training appropriately has
proved very difficult. In most cases, the task difficulty either increased too fast, leading to unnatural movements
that do not reach the target directly (and often not at all), or progress was slow, resulting in a time-consuming
training phase.

For this reason, we decided to use an adaptive curriculum, which adjusts the target width dynamically,
depending on the recent success rate. Specifically, we define a curriculum state, which is initialized with an initial
target diameter of 60 cm. Every 10K update steps, the current policy is evaluated on 30 complete episodes, for
which target diameters are chosen, depending on the current state of the curriculum. Based on the percentage
of targets reached within the permitted 1.5 s (success rate), the curriculum state is updated. If the success rate
falls below 70% , it is increased by 1 cm; if the success rate exceeds 90% , it is decreased by 1 cm. To avoid target
sizes that are larger than the initial width or are too close to zero, we clipped the resulting value to the interval
[0.1 cm, 60 cm].

At the beginning of each episode, the target diameter is set to the current curriculum state with probability
1− ε , and sampled uniformly randomly between 0.1 cm and 60 cm with probability ε = 0.1 , which has proven
to be a reasonable choice. This ensures in particular that all required target sizes occur throughout the training
phase, and thus prevents forgetting how to solve “simpler” tasks (in literature, often referred to as catastrophic
forgetting; see, e.g., McCloskey et al.91).

Implementation of the reinforcement learning algorithm. The actor and critic networks described
in the Reinforcement Learning section consist of two fully connected layers with 256 neurons each, followed by
the output layer, which either returns the means and standard deviations of the action distributions (for the
actor network) or the state-action value (for the critic network). To improve the speed and stability of learning,
we train two separate, but same-structuredidentically structured critic networks and use the minimum of both
outputs as the teaching signal for all networks (Double Q-Learning)6,89. In all networks, ReLU92 is used as non-
linearity for both hidden layers. The network architectures are depicted in Fig. 6.

The reinforcement learning methods of our implementation are based on the TF-Agents library93. The learning
phase consists of two parts, which are repeated alternately: trajectory sampling and policy updating.

In the trajectory sampling part, the target position is sampled from the uniform distribution on a cuboid of 70
cm height, 40 cm width, and 30 cm depth, whose center is placed 50 cm in front of the human body, and 10 cm
to the right of the shoulder. The width of the target is controlled by the adaptive curriculum described above. The
biomechanical model is initialized with some random posture, for which the joint angles are uniformly sampled
from the convex hull of static postures that enables keeping the end-effector in one of 12 targets placed along
the vertices of the cuboid described above. The initial joint velocities are uniformly sampled from the interval
[−0.005 radians/s, 0.005 radians/s].

In each step n ∈ {0, . . . ,N − 1} , given the current state vector sn ∈ S (see description above), an action is
sampled from the current policy πθ (· | sn) . Next, the MuJoCo simulation uses this action to actuate the model
joints. It also updates the body posture, and returns both the reward rn and the subsequent state vector sn+1 . In
our implementation, each episode in the learning process contains at most N = 150 of such steps, with each
step corresponding to 10 ms (allowing movements to be longer than one and a half seconds did not improve the
training procedure significantly). If the target is reached earlier, i.e., the distance between end-effector and target
center is lower than the radius of the target sphere, and the end-effector remained inside the target for 100 ms,
the current episode terminates and the next episode begins with a new target position and width. At the begin-
ning of the training, 10K steps are taken and the corresponding transitions stored in a replay buffer, which has
a capacity of 1M steps. During training, only one step is taken and stored per sampling phase.

In the policy updating part, 256 previously sampled transitions (sn, an, rn, sn+1) are randomly chosen from
the replay buffer to update both the actor network and the critic network weights. We use a discount factor of

(10)rn = −100�t.

167

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

γ =0.99 in the critic loss function of SAC. All other parameters are set to the default values of the TF-Agents
SAC implementation93.

Both parts of our learning algorithm, the trajectory sampling and the policy update, are executed alternately
until the curriculum state, i.e., the current suggested target diameter, falls below 1 cm. With our implementa-
tion, this was the case after 1.2M steps, corresponding to about four hours of training time. To evaluate a policy
πθ , we apply the action a∗n with the highest probability under this policy for each time step (i.e., we use the
corresponding greedy policy) and evaluate the resulting trajectory. Such an evaluation is done every 10K steps,
for which 30 complete episodes are generated using this deterministic policy, and the resulting performance
indicators are stored. After the training phase, θ∗ is set to the latest parameter set θ , i.e., the final policy πθ∗ is
chosen as the latest policy πθ.

An overview of the complete training procedure is given in Fig. 7.

Evaluation. For an evaluation of the trajectories resulting from the learned policy for different target con-
ditions, we designed a discrete Fitts’ Law type task. This task follows the ISO 9241-9 ergonomics standard and
incorporates 13 equidistant targets arranged in a circle 50 cm in front of the body and placed 10 cm right of the
right shoulder (Fig. 2). As soon as a target is reached and the end-effector remains inside for 100 ms, the next
target is given to the learned policy. This also happens after 1.5 s, regardless of whether or not the episode was
successful.

Based on the recommendations from Guiard et al.94, we determine different task difficulty conditions by sam-
pling “form and scale”, i.e., the Index of Difficulty (ID) and the distance D between the target centers are sampled

Figure 7. Reinforcement learning procedure. Before training, the networks are initialized with random
weights θ , and 10 K transitions are generated using the resulting initial policy. These are stored in the replay
buffer (blue dashed arrows). During training (red dotted box), trajectory sampling and policy update steps
are executed alternately in each step. The targets used in the trajectory sampling part are generated by the
curriculum learner, which is updated every 10K steps, based on an evaluation of the most recent (greedy)
policy. As soon as the target width suggested by the curriculum learner falls below 1 cm, the training phase is
completed and the final policy πθ∗ is returned (teal dash-dotted arrow).

Table 1. Joint ranges of individual DOFs. Angle and torque ranges of all joint DOFs, which are actuated via
second-order muscle dynamics [Eq. (4)]. Moment arm scaling factors are defined as the magnitude of the
torque range limits.

Joint DOF

Joint angle ranges (deg) Joint torque ranges (Nm)

Minimum Maximum Minimum Maximum

Elevation angle − 90 130 − 36.01 36.01

Shoulder elevation 0 180 − 60.97 60.97

Shoulder rotation − 90 20 − 19.37 19.37

Elbow flexion 0 130 − 12.57 12.57

Pronation/supination − 90 90 − 1.03 1.03

Wrist deviation − 10 25 − 2.14 2.14

Wrist flexion − 70 70 − 1.53 1.53

168
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

12

Vol:.(1234567890)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

independently, instead of using a distance-width grid. We use the Shannon Formulation45 of Fitts’ Law [Eq. (1)]
to compute the resulting distance between the initial and target point D, given the target width W and the ID:

The used combinations of distance, width, and ID can be found as Supplementary Table S1 online, and the
resulting target setup is shown in Fig. 2a.

The model executes 50 movements for each task condition and each direction, i.e., 6500 movements in total.
All movements reached the target and remained inside for 100 ms within the given maximum movement time
of 1.5 s. Plots for all task conditions and movement directions, together with their underlying data, can be found
in a public repository95.

In addition, an adaptive “moving target” mechanism is applied to generate elliptic movements from our
learned policy. During training, the policy only learned to reach a given target as fast and accurate as possible—
it was never asked to follow a specific path accurately. For this reason, we make use of the following method.

Initially, we place the first target on the ellipse such that 10% of the complete curve needs to be covered
clockwise within the first movement, starting at a fixed initial position (leftmost point on the ellipse). In con-
trast to regular pointing tasks, the target already switches as soon as the movement (or rather the projection of
the movement path onto the ellipse) covers more than half of this distance. The next target is then chosen so as
to again create an incentive to cover the next 10% of the elliptic curve. Thus, roughly 20 via-points in total are
subsequently placed on the ellipse. As shown in Fig. 3a, this indeed leads to fairly elliptic movements.

For our evaluation, we use an ellipse with horizontal and vertical diameters of 15 cm and 6 cm (similar to the
ellipse used by Harris and Wolpert1), with its center placed 55 cm in front, 10 cm above, and 10 cm to the right
of the shoulder. The task was performed for one minute, with end-effector position, velocity, and acceleration
stored every 10 ms.

Comprehensive data for all of these movements can also be found in a public repository95.

Data availability
The datasets generated during and/or analysed during the current study are available in a public repository,
https:// doi. org/ 10. 5281/ zenodo. 42682 30.

Received: 27 November 2020; Accepted: 29 June 2021

References
 1. Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature 394, 780–784. https:// doi. org/ 10. 1038/

29528 (1998).
 2. Tanaka, H., Krakauer, J. W. & Qian, N. An optimization principle for determining movement duration. J. Neurophysiol. 95,

3875–3886. https:// doi. org/ 10. 1152/ jn. 00751. 2005 (2006).
 3. Saul, K. R. et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal

model. Comput. Methods Biomech. Biomed. Eng. 5842, 1–14. https:// doi. org/ 10. 1080/ 10255 842. 2014. 916698 (2014).
 4. van Beers, R. J., Haggard, P. & Wolpert, D. M. The role of execution noise in movement variability. J. Neurophysiol. 91, 1050–1063.

https:// doi. org/ 10. 1152/ jn. 00652. 2003 (2004).
 5. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (A Bradford Book, 2018).
 6. Haarnoja, T. et al. Soft actor-critic algorithms and applications. arXiv: 1801. 01290 (2018).
 7. Todorov, E., Erez, T. & Tassa, Y. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 5026–5033, https:// doi. org/ 10. 1109/ IROS. 2012. 63861 09 (2012).
 8. Flash, T. & Hogan, N. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5,

1688–1703 (1985).
 9. Hoff, B. & Arbib, M. A. Models of trajectory formation and temporal interaction of reach and grasp. J. Mot. Behav. 25, 175–192,

https:// doi. org/ 10. 1080/ 00222 895. 1993. 99420 48 (1993).
 10. Nelson, W. L. Physical principles for economies of skilled movements. Biol. Cybern. 46, 135–147. https:// doi. org/ 10. 1007/ BF003

39982 (1983).
 11. Artstein, Z. Discrete and continuous bang-bang and facial spaces or: Look for the extreme points. SIAM Rev. 22, 172–185 (1980).
 12. Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movement—Minimum

torque-change model. Biol. Cybern. 61, 89–101. https:// doi. org/ 10. 1007/ BF002 04593 (1989).
 13. Todorov, E. Studies of Goal-Directed Movements (Massachusetts Institute of Technology, 1998).
 14. Li, W. & Todorov, E. Iterative linear quadratic regulator design for nonlinear biological movement systems. In Proceedings of the

1st International Conference on Informatics in Control, Automation and Robotics, (ICINCO 2004), vol. 1, 222–229 (2004).
 15. Hoff, B. A model of duration in normal and perturbed reaching movement. Biol. Cybern. 71, 481–488. https:// doi. org/ 10. 1007/

BF001 98466 (1994).
 16. Bullock, D. & Grossberg, S. Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties

during trajectory formation. Psychol. Rev. 95, 49 (1988).
 17. Plamondon, R. A kinematic theory of rapid human movements: Part iii. Kinetic outcomes. Biol. Cybern. 78, 133–145. https:// doi.

org/ 10. 1007/ s0042 20050 420 (1998).
 18. Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235. https:// doi.

org/ 10. 1038/ nn963 (2002).
 19. Scott, S. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5, 532–46. https:// doi. org/

10. 1038/ nrn14 27 (2004).
 20. Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907–915. https:// doi. org/ 10. 1038/ nn1309 (2004).
 21. Shadmehr, R. & Krakauer, J. A computational neuroanatomy for motor control. Exp. Brain Res. 185, 359–381 (2008).
 22. Diedrichsen, J., Shadmehr, R. & Ivry, R. B. The coordination of movement: Optimal feedback control and beyond. Trends Cognit.

Sci. 14, 31–39. https:// doi. org/ 10. 1016/j. tics. 2009. 11. 004 (2010).
 23. Qian, N., Jiang, Y., Jiang, Z.-P. & Mazzoni, P. Movement duration, fitts’s law, and an infinite-horizon optimal feedback control

model for biological motor systems. Neural Comput.https:// doi. org/ 10. 1162/ NECO_a_ 00410 (2012).

(11)ID = log2

(
D

W
+ 1

)
.

169

13

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

 24. Shadmehr, R., De Xivry, J. J. O., Xu-Wilson, M. & Shih, T.-Y. Temporal discounting of reward and the cost of time in motor control.
J. Neurosci. 30, 10507–10516 (2010).

 25. Berret, B. & Jean, F. Why don’t we move slower? The value of time in the neural control of action. J. Neurosci. 36, 1056–1070.
https:// doi. org/ 10. 1523/ JNEUR OSCI. 1921- 15. 2016 (2016).

 26. Holzbaur, K. R., Murray, W. M. & Delp, S. L. A model of the upper extremity for simulating musculoskeletal surgery and analyzing
neuromuscular control. Ann. Biomed. Eng. 33, 829–840 (2005).

 27. Seth, A., Dong, M., Matias, R. & Delp, S. Muscle contributions to upper-extremity movement and work from a musculoskeletal
model of the human shoulder. Front. Neurorobot. 13, 90. https:// doi. org/ 10. 3389/ fnbot. 2019. 00090 (2019).

 28. Delp, S. L. et al. Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed.
Eng. 54, 1940–1950 (2007).

 29. Seth, A. et al. Opensim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
PLoS Comput. Biol. 14, 1–20. https:// doi. org/ 10. 1371/ journ al. pcbi. 10062 23 (2018).

 30. Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. G., Vaughan, J. & Engelbrecht, S. E. Planning reaches by evaluating stored
postures. Psychol. Rev. 102, 28–67. https:// doi. org/ 10. 1037/ 0033- 295x. 102.1. 28 (1995).

 31. Nakano, E. et al. Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque
change model. J. Neurophysiol. 81, 2140–2155, https:// doi. org/ 10. 1152/ jn. 1999. 81.5. 2140 (1999).

 32. Kawato, M. Optimization and learning in neural networks for formation and control of coordinated movement. Attent. Perform.
821–849 (1993).

 33. Kawato, M. Trajectory formation in arm movements: Minimization principles and procedures. Adv. Motor Learn. Control. 225–259
(1996).

 34. Cheema, N. et al. Predicting mid-air interaction movements and fatigue using deep reinforcement learning. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, 1–13, https:// doi. org/ 10. 1145/ 33138 31. 33767 01 (Associa-
tion for Computing Machinery, New York, NY, USA, 2020).

 35. Berret, B., Chiovetto, E., Nori, F. & Pozzo, T. Evidence for composite cost functions in arm movement planning: An inverse optimal
control approach. PLoS Comput. Biol. 7, 1–18. https:// doi. org/ 10. 1371/ journ al. pcbi. 10021 83 (2011).

 36. Lee, S., Park, M., Lee, K. & Lee, J. Scalable muscle-actuated human simulation and control. ACM Trans. Graph.https:// doi. org/ 10.
1145/ 33063 46. 33229 72 (2019).

 37. Nakada, M., Zhou, T., Chen, H., Weiss, T. & Terzopoulos, D. Deep learning of biomimetic sensorimotor control for biomechanical
human animation. ACM Trans. Graph.https:// doi. org/ 10. 1145/ 31975 17. 32013 05 (2018).

 38. Si, W., Lee, S.-H., Sifakis, E. & Terzopoulos, D. Realistic biomechanical simulation and control of human swimming. ACM Trans.
Graph.https:// doi. org/ 10. 1145/ 26263 46 (2015).

 39. Fan, J., Jin, J. & Wang, Q. Humanoid muscle-skeleton robot arm design and control based on reinforcement learning. In 2020 15th
IEEE Conference on Industrial Electronics and Applications (ICIEA), 541–546, https:// doi. org/ 10. 1109/ ICIEA 48937. 2020. 92483 50
(2020).

 40. Ben-Itzhak, S. & Karniel, A. Minimum acceleration criterion with constraints implies bang–bang control as an underlying principle
for optimal trajectories of arm reaching movements. Neural Comput. 20, 779–812. https:// doi. org/ 10. 1162/ neco. 2007. 12- 05- 077
(2008).

 41. Berret, B. et al. The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for
the planning of arm movements. PLoS Comput. Biol. 4, 1–25. https:// doi. org/ 10. 1371/ journ al. pcbi. 10001 94 (2008).

 42. Tieck, J. C. V. et al. Learning continuous muscle control for a multi-joint arm by extending proximal policy optimization with a
liquid state machine. In International Conference on Artificial Neural Networks, 211–221 (Springer, 2018).

 43. Kidziński, Ł. et al. Learning to run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal
environments. In Escalera, S. & Weimer, M. (eds.) The NIPS ’17 Competition: Building Intelligent Systems, 121–153 (Springer
International Publishing, Cham, 2018).

 44. Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47,
381–391 (1954).

 45. MacKenzie, I. S. A note on the information-theoretic basis for Fitts’ law. J. Mot. Behav. 21, 323–330. https:// doi. org/ 10. 1080/ 00222
895. 1989. 10735 486 (1989).

 46. Crossman, E. R. F. W. & Goodeve, P. J. Feedback control of hand-movement and Fitts’ law. Q. J. Exp. Psychol. 35, 251–278 (1983).
 47. Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E. & Keith Smith, J. Optimality in human motor performance: Ideal control

of rapid aimed movements. Psychol. Rev. 95, 340 (1988).
 48. Matthews, P. Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and

synaptic noise. J. Physiol. 492, 597–628 (1996).
 49. Takeda, M. et al. Explanation of Fitts-law in reaching movement based on human arm dynamics. Sci. Rep. 9, 19804. https:// doi.

org/ 10. 1038/ s41598- 019- 56016-7 (2019).
 50. Lacquaniti, F., Terzuolo, C. & Viviani, P. The law relating the kinematic and figural aspects of drawing movements. Acta Psychol.

54, 115–130 (1983).
 51. Pollick, F. E. & Sapiro, G. Constant affine velocity predicts the 13 power law of planar motion perception and generation. Vis. Res.

37, 347–353. https:// doi. org/ 10. 1016/ S0042- 6989(96) 00116-2 (1997).
 52. Viviani, P. & Schneider, R. A developmental study of the relationship between geometry and kinematics in drawing movements.

J. Exp. Psychol. Hum. Percept. Perform. 17(1), 198–218 (1991).
 53. de’Sperati, C. & Viviani, P. The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements.

J. Neurosci. 17, 3932–3945 (1997).
 54. Viviani, P. & Mounoud, P. Perceptuomotor compatibility in pursuit tracking of two-dimensional movements. J. Mot. Behav. 22,

407–443. https:// doi. org/ 10. 1080/ 00222 895. 1990. 10735 521 (1990).
 55. Viviani, P., Baud-Bovy, G. & Redolfi, M. Perceiving and tracking kinesthetic stimuli: Further evidence of motor-perceptual interac-

tions. J. Exp. Psychol. Hum. Percept. Perform. 23, 1232–1252. https:// doi. org/ 10. 1037// 0096- 1523. 23.4. 1232 (1997).
 56. Hicheur, H., Vieilledent, S., Richardson, M., Flash, T. & Berthoz, A. Velocity and curvature in human locomotion along complex

curved paths: A comparison with hand movements. Exp. Brain Res. 162, 145–54. https:// doi. org/ 10. 1007/ s00221- 004- 2122-8
(2005).

 57. Schaal, S. & Sternad, D. Origins and violations of the 2/3 power law in rhythmic 3d movements. Exp. Brain Res. 136, 60–72 (2001).
 58. Karklinsky, M. & Flash, T. Timing of continuous motor imagery: The two-thirds power law originates in trajectory planning. J.

Neurophysiol. 113, 2490–2499. https:// doi. org/ 10. 1152/ jn. 00421. 2014 (2015).
 59. Todorov, E. & Jordan, M. I. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex

arm movements. J. Neurophysiol. 80, 696–714 (1998).
 60. Gribble, P. & Ostry, D. Origins of the power law relation between movement velocity and curvature: Modeling the effects of muscle

mechanics and limb dynamics. J. Neurophysiol. 76, 2853–2860. https:// doi. org/ 10. 1152/ jn. 1996. 76.5. 2853 (1996).
 61. Schwartz, A. Direct cortical representation of drawing. Science 265, 540–542. https:// doi. org/ 10. 1126/ scien ce. 80364 99 (1994).
 62. Flash, T. & Handzel, A. Affine differential geometry analysis of human arm movements. Biol. Cybern. 96, 577–601. https:// doi. org/

10. 1007/ s00422- 007- 0145-5 (2007).
 63. Morasso, P. Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981).

170
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

14

Vol:.(1234567890)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

 64. Abend, W., Bizzi, E. & Morasso, P. Human arm trajectory formation. Brain J. Neurol. 105, 331–348 (1982).
 65. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).
 66. Hausknecht, M. & Stone, P. Deep Recurrent q-learning for Partially Observable MDPS. arXiv: 1507. 06527 (2015).
 67. Liu, J., Gu, X. & Liu, S. Reinforcement learning with world model. Adapt. Learn. Optim. 1908, 11494 (2020).
 68. Igl, M., Zintgraf, L., Le, T. A., Wood, F. & Whiteson, S. Deep variational reinforcement learning for pomdps. In International

Conference on Machine Learning, 2117–2126 (PMLR, 2018).
 69. Jiang, Y., Van Wouwe, T., De Groote, F. & Liu, C. K. Synthesis of biologically realistic human motion using joint torque actuation.

ACM Trans Graph (TOG) 38, 1–12 (2019).
 70. Ikkala, A. & Hämäläinen, P. Converting biomechanical models from opensim to Mujoco. arXiv: 2006. 10618 (2020).
 71. van der Helm, F. C. T. & Rozendaal, L. A. Musculoskeletal systems with intrinsic and proprioceptive feedback. in Biomechanics

and Neural Control of Posture and Movement (eds Winters, J. M. & Crago, P. E.) 164–174 (Springer New York, NY, 2000).
 72. Mnih, V. et al. Asynchronous methods for deep reinforcement learning. arXiv: 1602. 01783 (2016).
 73. Eysenbach, B., Gupta, A., Ibarz, J. & Levine, S. Diversity is all you need: learning skills without a reward function. arXiv: 1802.

06070 (2018).
 74. Ahmed, Z., Le Roux, N., Norouzi, M. & Schuurmans, D. Understanding the impact of entropy on policy optimization. In Chaud-

huri, K. & Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, vol. 97 of Proceedings of
Machine Learning Research, 151–160 (PMLR, 2019).

 75. Fox, R., Pakman, A. & Tishby, N. Taming the noise in reinforcement learning via soft updates. arXiv: 1512. 08562 (2017).
 76. Vieillard, N. et al. Leverage the average: an analysis of KL regularization in RL. arXiv: 2003. 14089 (2021).
 77. Eysenbach, B. & Levine, S. If maxent RL is the answer, what is the question? arXiv: 1910. 01913 (2019).
 78. Eysenbach, B. & Levine, S. Maximum entropy RL (provably) solves some robust RL problems. arXiv: 2103. 06257 (2021).
 79. Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with

a stochastic actor. In Dy, J. & Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, vol. 80 of
Proceedings of Machine Learning Research, 1861–1870 (PMLR, 2018).

 80. Abdolmaleki, A. et al. Maximum a posteriori policy optimisation. arXiv: 1806. 06920 (2018).
 81. Levine, S. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv: 1805. 00909 (2018).
 82. Vulkan, N. An economist’s perspective on probability matching. J. Econ. Surv. 14, 101–118. https:// doi. org/ 10. 1111/ 1467- 6419.

00106 (2000).
 83. Grünwald, P. D. & Dawid, A. P. Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory.

Ann. Stat. 32, 1367–1433. https:// doi. org/ 10. 1214/ 00905 36040 00000 553 (2004).
 84. Weir, M. W. Developmental changes in problem-solving strategies. Psychol. Rev. 71, 473 (1964).
 85. Gallistel, C. R. The Organization of Learning (The MIT Press, 1990).
 86. Peng, X. B., Abbeel, P., Levine, S. & van de Panne, M. Deepmimic: Example-guided deep reinforcement learning of physics-based

character skills. ACM Trans. Graph 37, 1–14. https:// doi. org/ 10. 1145/ 31975 17. 32013 11 (2018).
 87. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. arXiv: 1707. 06347 (2017).
 88. Fujimoto, S., van Hoof, H. & Meger, D. Addressing function approximation error in Actor-critic methods. arXiv: 1802. 09477 (2018).
 89. Hasselt, H. V. Double q-learning. In Lafferty, J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S. & Culotta, A. (eds.) Advances

in Neural Information Processing Systems 23, 2613–2621 (Curran Associates, Inc., 2010).
 90. Kingma, D. P. & Ba, J. A. A method for stochastic optimization. arXiv: 1412. 6980 (2014).
 91. McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: The sequential learning problem. In Bower,

G. H. (ed.) Psychology of Learning and Motivation, vol. 24, 109 – 165, https:// doi. org/ 10. 1016/ S0079- 7421(08) 60536-8 (Academic
Press, 1989).

 92. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10, 807–814 (Omnipress, Madison, WI, USA, 2010).

 93. Guadarrama, S. et al. TF-Agents: A library for reinforcement learning in tensorflow. https:// github. com/ tenso rflow/ agents (2018).
 94. Guiard, Y. The problem of consistency in the design of Fitts’ law experiments: Consider either target distance and width or move-

ment form and scale. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, 1809–1818,
https:// doi. org/ 10. 1145/ 15187 01. 15189 80 (Association for Computing Machinery, New York, NY, USA, 2009).

 95. Fischer, F., Bachinski, M., Klar, M., Fleig, A. & Müller, J. Reinforcement learning control of a biomechanical model of the upper
extremity (dataset). Zenodo. https:// doi. org/ 10. 5281/ zenodo.

Acknowledgements
We would like to thank Aldo A. Faisal (Imperial College London) for his very helpful advice and comments on
the manuscript.

Author contributions
F.F. and J.M. wrote the main manuscript text; M.B. adjusted the biomechanical model; F.F., M.B., and M.K. worked
on the MuJoCo implementation and collected simulation data; F.F., M.K., and A.F. analyzed and validated the
results; F.F. created the plots; F.F. conducted and J.M. supervised the research process. All authors reviewed the
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 021- 93760-1.

Correspondence and requests for materials should be addressed to F.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

171

15

Vol.:(0123456789)

Scientific Reports | (2021) 11:14445 | https://doi.org/10.1038/s41598-021-93760-1

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

172
Reinforcement Learning Control of a Biomechanical Model of the Upper

Extremity

7
Breathing Life Into Biomechanical User

Models

Authors: Aleksi Ikkala, Florian Fischer, Markus Klar, Miroslav Bachinski, Arthur Fleig,
Andrew Howes, Perttu Hämäläinen, Jörg Müller, Roderick Murray-Smith, Antti Oulasvirta
Status: Published in UIST ’22: Proceedings of the 35th Annual ACM Symposium on User
Interface Software and Technology [29]

AI conducted and AO supervised the research process, with guidance from AF, AH, PH, JM,
RMS. The concept and framework was developed by all authors. AI implemented the toolkit,
with help from FF and MK. The biomechanical model was transferred from OpenSim to
MuJoCo by AI, with improvements made by MB, FF, and MK. The RL agents were trained
by AI and evaluated by AI, FF, MK, and AF. Figures were created by FF, AI, and MB. The
results were discussed by all authors. All authors wrote and revised the manuscript. AI is the
corresponding author.

Breathing Life Into Biomechanical User Models
Aleksi Ikkala Florian Fischer Markus Klar Miroslav Arthur Fleig
Aalto University University of University of Bachinski∗ University of

Finland Bayreuth Bayreuth University of Bayreuth
Germany Germany Bayreuth Germany

Germany

Andrew Howes Perttu Jörg Müller Roderick Antti Oulasvirta
University of Hämäläinen University of Murray-Smith Aalto University
Birmingham Aalto University Bayreuth University of Finland

United Kingdom Finland Germany Glasgow
Scotland

Figure 1: We present an approach for generative simulation of interaction with perceptually controlled biomechanical models
interacting with physical devices. The users are modelled with a combination of muscle-actuated biomechanical models and
perception models, and we use deep reinforcement learning to learn control policies by maximizing task-specifc rewards. As
a showcase, we apply a state-of-the-art upper body model to four HCI tasks of increasing difculty: pointing, tracking, choice
reaction, and parking a remote control car via joystick.

ABSTRACT
Forward biomechanical simulation in HCI holds great promise as
a tool for evaluation, design, and engineering of user interfaces.
Although reinforcement learning (RL) has been used to simulate
biomechanics in interaction, prior work has relied on unrealistic
assumptions about the control problem involved, which limits the

∗Also with University of Bergen.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545689

plausibility of emerging policies. These assumptions include di-
rect torque actuation as opposed to muscle-based control; direct,
privileged access to the external environment, instead of imper-
fect sensory observations; and lack of interaction with physical
input devices. In this paper, we present a new approach for learning
muscle-actuated control policies based on perceptual feedback in
interaction tasks with physical input devices. This allows modelling
of more realistic interaction tasks with cognitively plausible visuo-
motor control. We show that our simulated user model successfully
learns a variety of tasks representing diferent interaction methods,
and that the model exhibits characteristic movement regularities
observed in studies of pointing. We provide an open-source im-
plementation which can be extended with further biomechanical
models, perception models, and interactive environments.

174 Breathing Life Into Biomechanical User Models

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ikkala et al.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); User models; Pointing; Systems and tools for in-
teraction design.

KEYWORDS
biomechanical models, simulation models, deep reinforcement learn-
ing

ACM Reference Format:
Aleksi Ikkala, Florian Fischer, Markus Klar, Miroslav Bachinski, Arthur
Fleig, Andrew Howes, Perttu Hämäläinen, Jörg Müller, Roderick Murray-
Smith, and Antti Oulasvirta. 2022. Breathing Life Into Biomechanical User
Models. In The 35th Annual ACM Symposium on User Interface Software and
Technology (UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3526113.3545689

1 INTRODUCTION
Biomechanical models studied in HCI can be compared to “crash
test dummies” [4, 5]. They are inactive agents, with each move-
ment following a predefned motion plan; they do not have agency,
and they cannot close the loop and explore their environments
themselves. To simulate an interaction, a researcher may either
manually defne a set of actions, or collect motion capture data that
is ft to the model using inverse simulation. What is missing is a
generative form of simulation that would learn realistic interaction
policies on its own through forward simulations in a given interac-
tive task and without requiring prespecifed motions. The ability to
build a generative model that matches user behaviour is a strong
test of whether we understand an interactive system. “Breathing
life” into crash test dummies would open the door to wider use of
these models, such as quickly evaluating prototypes before com-
mitting to an expensive experimental study. It would permit us to
rapidly explore a more diverse set of user behaviours than would
be feasible in experimental studies on humans, and such models
could also enable parametric optimization of user interfaces. Biome-
chanical modeling is highly relevant for HCI research, because,
with the exception of BCIs, all interfaces require physical efort
from the user. Among others, physical efort is a critical consider-
ation in the design of AR/VR interfaces, interactive surfaces, and
haptic and tangible interfaces. Until recently, evaluating physical
efort required running an empirical study (e.g., using NASA-TLX).
However, with the advent of open access models, HCI research
has recently turned to biomechanical simulations for studying and
modeling interfaces as well as for developing novel interaction
techniques (e.g., [4, 5, 10, 17, 29, 48]).

What has been missing is an integrative approach that would
allow using reinforcement learning (RL) to learn human-like in-
teraction policies in a designer-specifed interactive task, where
the task components (goals, user model, physical environment) can
by fexibly changed (Figure 1). Instead, the approaches developed
so far in HCI have been limited to a particular task (e.g., pointing)
or a discrete combination of primitive tasks, to a particular model
(e.g., upper body model), or to a particular physical environment.
Moreover, with the exceptions that we discuss below, all biome-
chanical user models prior to this work have relied on unrealistic
assumptions regarding their force actuation, ability to observe their

environment, and interaction with input devices, all of which limit
the realism of emerging motion patterns. First, those models op-
erate with torque actuated joints, second, they operate without
adequately perceiving their surroundings, and third, they avoid
simulation of physical interaction with input devices by investi-
gating contact-free interfaces, such as mid-air pointing (e.g., [10]).
Torque actuation can be problematic because it allows for move-
ments that are not achievable with muscles, and RL approaches
will exploit these more efcient, but unrealistic, movements. Lack
of visual perception can be problematic as it allows agents to, e.g.,
exactly know the position of a target even if it is occluded or outside
the feld of view. Without simulating physical interactions with
input devices, the majority of interactions with computers cannot
be simulated, as pure mid-air pointing is still a niche interaction
technique. What is needed is a muscle-actuated user model that is
able to receive and process perceptual observations of its surround-
ings – including vision, audition, haptics, proprioception, and so on
– and physically interact with input devices. This coincides with
the emerging RL challenge of learning control policies via percep-
tual inputs [43]. By combining perception models, musculoskeletal
models, and physically simulated input devices, we can train agents
to model and simulate intricate interaction tasks, such as those
requiring visuomotor control. A good example of such control is
presented in [51], where Nakada et al. introduced a virtual human
model and used deep learning to learn reaching and tracking tasks.
However, with more powerful physical simulation software, such
as MuJoCo [73], we can simulate interaction steps quickly enough
to use RL for more fexible problem formalisation and to allow a
researcher to guide an agent’s learning through reward functions.

The main contribution of this paper is twofold: 1) We integrate
perception-based control and muscle-actuated biomechanical mod-
els that interact with physical input devices, and 2) we show how
our RL-based approach can be leveraged to increase the scope of
interactive tasks that can be simulated. The tasks present a vari-
ety of diferent user interfaces that require visuomotor movement
control, and a user model is trained to interact with the environ-
ment through RL by rewarding desired behaviour. We show that
the simulated user successfully learns to complete these interaction
tasks, and the simulated movements exhibit human-like movement
regularities such as Fitts’ Law. This work is publicly available at
https://github.com/aikkala/user-in-the-box as an extendable code-
base. This implementation allows researchers to model interactive
settings fexibly by changing assumptions about the musculoskele-
tal model, the user’s task, and the perception models. It could be
used in the future to e.g. aid in developing and evaluating user
interfaces.

2 RELATED WORK

2.1 Biomechanical Modelling and Simulation
Biomechanical models and computer-based simulations were intro-
duced more than four decades ago [2]. However, for a long time
they were oversimplifed and limited to computation of mechanical
loads in static postures or using simple link-segment models [76]. In-
creases in computational power in the last two decades have enabled
more physiologically-accurate musculoskeletal models [14, 15]. A
sizable collection of such models exists now, many of which are

175

Breathing Life Into Biomechanical User Models UIST ’22, October 29-November 2, 2022, Bend, OR, USA

publicly available.1 Depending on the use case, one might opt for
a model that describes the functionality of a single limb [55, 63],
or go for a more comprehensive full-body model [22, 59, 74]. In
these models, the force generation mechanism may rely on mo-
tors actuating individual joints, or in a more realistic use case, on
muscle-tendon units [23, 45].

The main use of biomechanical models at the moment is via in-
verse biomechanical simulation using the OpenSim ecosystem [65].
The inverse simulation methods, namely inverse kinematics, in-
verse dynamics, and static optimisation or computed muscle control,
allow the estimation of mechanical loads within the human muscu-
loskeletal system, and neural controls of the muscles given motion
tracking data of a given user’s movement as input [15]. Such esti-
mated variables are increasingly valuable and important in the areas
of medicine, rehabilitation, and sports. On the other hand, there
exists a stream of computer graphics research on biomechanical
simulation and control that emphasizes visual fdelity and simu-
lation speed rather than validation for purposes such as medical
or ergonomics research [37, 38, 51, 62, 67, 69]. Forward simulation
methods were also developed within the OpenSim software, how-
ever, besides their use as a component of computed muscle control,
they were rarely used as standalone. They require muscle controls
as inputs, which are extremely complex to measure experimen-
tally for all required muscles, and are typically used with controls
computed by inverse simulation. Standalone forward simulation
has only become more useful when applied in combination with
computational controllers [16, 36].

Controlling the force output of a model’s actuators in forward
simulations to perform a desired movement is a difcult optimisa-
tion problem. In order to fnd the appropriate control signals one
must be able to run simulations quickly — which is often infeasible
for complex models with possibly dozens of degrees-of-freedoms
and a high number of (muscle) actuators. This is especially prob-
lematic for RL approaches, where fnding good solutions often
require millions of simulation steps. This introduces a challenge
for biomechanical simulation software, which typically has not
been designed for such use cases. In our work, we convert mod-
els validated by biomechanics researchers into a faster simulator
[28]. An alternative would be to use a simplifed simulation model
and apply machine learning to predict the omitted details such
as state-dependent joint actuation torque limits and muscle-based
energy expenditure [30]; however, this requires generating training
data using a realistic simulator, and the learned prediction model is
inherently less accurate and general than the simulator itself. Pre-
vious work has also built models themselves for a faster simulator
[37]. The approaches to solve this optimisation problem range from
well-understood classical optimal control methods (see Section 2.2)
to cutting-edge methods such as deep RL (see Section 2.3).

2.2 Classical Optimal Control Methods for HCI
Mathematically, reinforcement learning (RL) can be interpreted as
a method to solve optimal control problems. Optimal control is the
optimization of a cost or objective function subject to some system

1For instance, OpenSim models https://simtk-confuence.stanford.edu:8443/display/
OpenSim/Musculoskeletal+Models

dynamics, such as the biomechanical model of a human and the dy-
namics of an interactive system. The parameter to optimize is called
the control or input signal and is usually a function of time, such as
muscle excitations [68]. In addition to RL, human-computer interac-
tion has also been interpreted and simulated with classical (optimal)
control methods [50]. If the cost function is quadratic and the sys-
tem dynamics are linear, e.g., as in [19, Ch. 7], then the go-to method
to compute the optimal control is via the linear-quadratic regulator
(LQR). (Gaussian) noise, e.g., in the observation or control of the
system [19, Ch. 8], can be handled by the linear-quadratic-Gaussian
(LQG) regulator, an extension of LQR. More recently, event-driven
Intermittent Control (IC) has been introduced as a framework to
better explain relevant aspects of human movement [44]. For other
cost functions and nonlinear system dynamics in particular (e.g.,
a state-of-the-art biomechanical model), a viable approach is to
use Model Predictive Control (MPC) [33, 58]. A major diference of
these approaches to the RL-based approach of our paper is that RL
computes an entire policy, which maps arbitrary observations to
actions and can be used to generate approximately optimal move-
ments quickly, while classical optimal control methods compute
individual optimal movements.

2.3 Reinforcement Learning -Based User
Modelling

RL algorithms solve sequential decision making problems where
at every timestep, an agent observes the current state, takes an
action, and receives an action- and state-dependent scalar reward.
The goal is to select actions that maximize expected utility defned
as the sum of future rewards. RL provides a suitable framework
for modelling human behaviour in a fexible way: one only needs
to defne the states, actions, and rewards and then RL computes
the optimal policy [12, 13]. In some cases, the reward function and
other parameters can be inferred from human data [6, 32]. A more
detailed RL problem formulation along with our defnitions for
states, actions, and rewards are discussed in Section 3.1. When the
reward function and state–action space, including their key limita-
tions, are similar to a human’s, increasingly human-like behavior
has been shown to emerge through learning [52]. Applications in
HCI include models of typing, menu selection, multitasking, and
visual decision-making [52]. However, no application in HCI so far
has looked at perceptual control of a biomechanical model.

Using the assumptions of signal-dependent control noise and
movement time minimization, Fischer et al. [18] have shown that
an RL agent can learn to generate human-like movements with a
torque-actuated state-of-the-art model of the upper extremity. The
generated movements were in accordance with well-established
phenomena such as Fitts’ Law [20] and the Two-Thirds Power
Law [35]. RL-based simulation may also provide valuable informa-
tion for predicting usability- and ergonomics-related criteria and
to aid in interface design. For instance, Cheema et al. trained a
(simplifed) torque-actuated biomechanical arm model in a mid-air
pointing task, and used the model to predict fatigue of real hu-
man subjects performing the task [10]. Leino et al. [39] used RL
to learn policies for keystroke-level models, and used this to opti-
mize button arrangements. In addition to learning control policies
for embodied agents, RL can be used to model users performing

176 Breathing Life Into Biomechanical User Models

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ikkala et al.

Figure 2: Our approach: The researcher specifes properties
of an interactivate task (green box), including the reward
function that guides the simulated user’s learning process,
the interaction environment, and the physical devices the
user interacts with. The simulated user is defned through
biomechanical and perception models, and is controlled by
an RL policy based on observations from the perception
models.

interactive tasks with symbolic actions. For instance, in [40, 66] RL
agents interact with websites using vision and low-level mouse and
keyboard actions. However, these methods rely on human demon-
strations to learn policies. Recently, game companies have started
applying RL-based user modelling in simulation-based game testing
[34, 60, 61].

Advances in deep learning during the past decade have made it
possible to scale up RL-based models. Deep RL has been used to
learn control policies in increasingly complex state–action spaces
— such as torque-actuated humanoids [7, 18, 53, 77] and muscu-
loskeletal systems [37, 51], as well as eye-hand coordination in
typing [31]. Hetzel et al. [25] presented an RL agent for simulating
joint-controlled movement of hands in typing, however lamenting
that while muscle control would have been preferable, they were
not able to train a model that had muscles. Moveover, their control
problem was not perceptual like ours; their agent state was a vec-
tor describing joint kinematics and the position of next target key.
Nakada et al. [51] demonstrated how deep artifcial neural networks
(ANNs) can be leveraged to enable visuomotor control of biome-
chanical simulation for tasks like target tracking. However, rather
than RL, they used a supervised learning approach that utilised a
task- and stimuli-specifc training process that is not suitable for
fexibly modelling a variety of interaction tasks.

3 OVERVIEW OF APPROACH
We present User-in-the-Box (UitB), an extendable open-source
implementation for biomechanical user modelling in interactive
tasks in the MuJoCo [73] simulator.2 UitB enables fexible mod-
elling of muscle-actuated, perceptually controlled biomechanical
2available at https://github.com/aikkala/user-in-the-box

user models with deep RL. It allows fexibly changing the physical
model of the interactive device via 3D models that can be imple-
mented in MuJoCo, or imported from another modelling software,
e.g. Unity (Figure 2). The implementation can be extended with
additional biomechanical models, for instance, by converting them
from OpenSim [28], perception models, and interactive tasks. The
user model learns to interact with the environment through a task-
specifc reward function.

To use UitB, one begins by defning an interactive task. This
includes defning the reward function, which guides the agent’s
learning process, the interaction environment, and the physical
devices that the user interacts with. Then, one creates the user
model by choosing existing biomechanics and perception models,
or implementing new ones. Models of perception can be formed by
defning transducing functions from e.g. the output of an egocen-
trically placed camera, or other sensors available in the MuJoCo
simulator. Once the interactive task and the user model are defned,
the RL agent is trained using deep RL, and the simulated user’s
performance can be evaluated.3 This approach forces the simulated
user to adhere to important assumptions about low-level percep-
tion and movement characteristics inherent in human physiology
while retaining enough fexibility to adapt the user model, through
learning, to diferent interactive tasks. Learning control policies
with RL requires an efcient forward physics simulator; in this
work we use MuJoCo as a simulation environment, but ultimately
this approach is simulator-agnostic.

In this section, we will frst frame the problem of user modelling
in interactive tasks as an RL problem and then discuss what aspects
one should consider when creating an interactive task or a user
model.

3.1 Modelling an Interactive Task with RL
The computational core of our framework is reinforcement learn-
ing. To utilize RL, an interactive task needs to be modelled as a
Markov decision process (MDP) [70], or more generally, a partially
observable MDP (POMDP). As illustrated in Figure 2, this means
that at every timestep t , the agent takes an action at based on a state
observation ot . This results in receiving a scalar reward rt and a
new observation ot +1, from which a new action at +1 is performed.

We utilize a discounted RL objective with a stochastic policy and
episodic learning. This means that we optimize a policy π (at |ot)�ÍT �
to maximize the expected return E =0 γ t rt , where the actions t
are sampled from the policy, at ∼ π (at |ot). The discount factor
γ ∈ [0, 1) controls how much earlier rewards are preferred to dis-
tant rewards. Learning progresses through episodes, where the
simulation is returned to an initial state at t = 0 and actions are
simulated up to the time limit T .

3.1.1 Reward Function. In UitB, a key modelling aim is to select a
reward function that represents whatever the user tries to achieve
and values in interaction. For instance, in a pointing task, human
subjects would be asked to point to a target; in an RL setting, this
can be implemented by rewarding behaviour where the fngertip is
brought on top of the target in minimum time and with minimum

3We use term simulated user to refer to the performance of the user model during
simulation, and term agent — originating from the AI and RL literature — when
referring to RL training or evaluation.

177

Breathing Life Into Biomechanical User Models UIST ’22, October 29-November 2, 2022, Bend, OR, USA

efort. The efort term is denoted as δt , and it is assumed to be a part
of the reward rt the user receives. UitB allows fexibly defning
the reward function by reference to measures available in the simu-
lation. The reward function is task-specifc, and while designing
it can be non-trivial, the reward functions of our four simulation
tasks presented in Section 4 should provide a useful starting point.

3.1.2 Observations. To allow multisensory perception, we defne
our observations as a tuple ot = (Ωt , ξt), where Ωt = (ωt 1 , ωt

2 , ...)
is a tuple of outputs from diferent perception models, such as
vision or proprioception, with ωi being the output of i:th percep-t
tion model. For the sake of clarity, we will refer to the outputs
of proprioception and vision models, which are used in all of the
tasks, as ωP and ωV , respectively. In some of the tasks we alsot t
model tactile feedback through force sensors: this tactile percep-
tion is denoted by ωTt . Furthermore, we introduce a stateful infor-
mation observation ξt as a part of ot . This quantity may contain
information related to the task, e.g., how much time is left until
an episode terminates. In tasks where the agent needs to, for in-
stance, infer movement direction we may also include perception
model outputs from previous timesteps in the observation, such
that ot = (Ωt , ξt , Ωt −1, ξt −1, ..., Ωt −k , ξt −k), where k denotes how
many previous observations are included.

3.1.3 Actions. Our neural network policy does not directly output
a vector of muscle controls at . Instead, we use relative muscle control,

′sampling relative action vectors a from a Gaussian policy as t
′ ′ a ∼ π (at |ot) = N(µθ (ot), diag(σ 2)), (1)t

where θ are the parameters of the policy neural network, and µ and
σ 2 are mean and variance vectors, respectively. The σ 2 controls the
exploration/exploitation tradeof.4 The fnal muscle controls are
computed as

1 1 ′ at = clip0(mt −1 + clip−1(at)), (2)
where mt −1 are the model’s internal muscle activation states for
the previous step, which are included in the proprioceptive obser-

yvations ωP , and clip denotes a clipping operation to range [x ,y].x
Essentially, the policy is controlling whether muscle excitation for
the next step should be higher or lower than internal muscle acti-
vation in the previous step, i.e., whether the agent should increase
or decrease force output of a specifc muscle actuator. In particular,
applying zero control results in constant internal muscle activation,
which lets the body converge towards a "steady-state" posture. Ac-
cording to our experience, this type of control leads to a signifcant
speed-up in the training of policies for muscle-actuated models.
This is in contrast to using an absolute muscle control, where a policy
would output the muscle excitation signals directly in range [0, 1].

3.1.4 Algorithm Choice. Depending on the POMDP formulation,
one typically has multiple alternative RL algorithms to choose
from. In this paper, we utilize the Stable Baselines 3 library’s [57]
implementation of Proximal Policy Optimization (PPO [64]), which
works for both discrete and continuous states and actions, and is
the most popular RL algorithm in both recent HCI works [10, 31]
and high-quality human movement control papers in the computer
animation literature [7, 53, 77]. Note that as per Stable Baselines 3

4In the future, it would be interesting to add signal-dependent control noise [24] as an
additional source of variance.

defaults, our standard deviations σ are optimized together with the
policy network parameters θ , starting from a high value to allow
thorough initial exploration of the state and action spaces.

The majority of RL algorithms, including PPO, are designed for
fully observable MDPs, where the observations ot are replaced by
states st . The assumption is that st contains all the information for
choosing the optimal actions. In many real-world tasks, this is not
the case, but standard RL methods can still be applied, either by
using a recurrent policy network [75] that can learn to infer the
true state from a sequence of observations, or engineering each
observation to include enough information for the inference. For
instance, if a game-playing agent only observes a single frame
of pixels at a time, the observation is only informative of object
positions; inferring velocities can be enabled by concatenating two
or more consecutive frames as the observation [47].

3.2 Interactive Task Defnition
The interactive task defnition includes the reward function, and
models of the environment and related interaction devices.

Even when not modeling a human, the reward function is often
the most difcult part of an RL problem to specify. When model-
ing a human, the reward function must not only be cognitively
plausible but it must also facilitate efcient learning. In general
interaction tasks are easier to formulate with sparse rewards, but
this makes it more difcult to solve the RL optimisation problem.
For instance, one could give reward only when an interaction is
completed satisfactorily, like once an agent has put its fngertip
inside a target in a pointing task. In practice, however, the RL prob-
lem is often made easier by using reward shaping (e.g. reward is
a function of distance between fngertip and target in a pointing
task), early termination (terminate an episode early if the agent is
in some sense moving further from a goal), or curriculum learning
(start the learning process with a simplifed version of the problem).

The interaction environment is defned as a MuJoCo model that
contains one or multiple interactive devices. The physical devices
can be modelled as a set of MuJoCo primitives, or one could im-
port a 3D model of a device into MuJoCo as a triangulated mesh.
The device may contain physically moving parts, which need to be
modelled with joints, or it may include dynamically changing con-
tent, like the color or size of an interaction device. However, some
aspects of interaction may be difcult — though not impossible —
to model in MuJoCo, such as the exact type of friction between
contacts, or a touch screen with dynamic content.

3.3 User Model
With user model we refer to the combination of a biomechanical
model, any set of perception models, and a control policy; all the
components that are required to model and simulate a user.

The user model can be fexibly defned based on how the sim-
ulated user needs to interact with its environment. For instance,
when simulating a mid-air pointing task, one mainly needs to model
the movement of arm and shoulder, and vision system. The percep-
tion models can be implemented depending on the level of realism
required in the modelling. For instance, the vision system could
be modelled with one RGB-D camera, or two RGB cameras with
overlapping felds of view. The RL policy represents a cognitive

178 Breathing Life Into Biomechanical User Models

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ikkala et al.

model that receives perceptions from the environment, and decides
how to control the muscle actuators of the biomechanical model.

The perception models receive full and perfect knowledge of the
simulation’s physical state, biomechanical state included. The role
of these models is to bound information that cannot be expected to
be available to a user, and hence the user receives a transformed
observation of the environment. For example, in a pointing task the
user would not know the exact coordinates where a target is located,
but instead has to infer the target location from visual observations.
Furthermore, humans’ perceptions of the world are rarely perfect;
this noise modelling could be included in the perception models.
However, the perception models used in our simulations are rela-
tively simple and noise-free. One could extend the user model with
more intricate perception models, for instance, e.g., by implement-
ing foveal and peripheral vision and adding eye movements.

The user model may also include an efort term or other types of
fatigue modelling to drive the agent behave in a more human-like
fashion. As mentioned in Section 3.1.1, the efort term is a part of
the reward the agent receives by interacting with the environment.
The exact form of a suitable efort term is not known, and, as Berret
et al. [8] showed in an arm movement modelling setting, the most
appropriate cost function may be a combination of several diferent
functions. In our simulations we use a neural efort term [8], which
we introduce in Section 4.1. However, the UitB implementation al-
lows these to be easily changed to investigate the efects of diferent
efort terms.

4 SIMULATION STUDIES
In the following subsections, we show applications in a diverse
and challenging set of interaction tasks (Figure 3). We frst provide
details of the biomechanical model used to simulate movement
dynamics, and the perception models that allow the simulated
user to observe its environment. Then we describe the interaction
environment for the standard HCI task of mid-air pointing and
analyse the simulated movements. We show that the simulated
pointing movement complies with predictive models of human
movement such as Fitts’ Law and the Minimum Jerk model to a
sufcient degree for this approach to be a valuable tool in evaluating
behaviour in interactive tasks. Finally, we show that our simulated
user successfully learns to perform three additional HCI tasks of
varying difculty: target tracking, choice reaction, and parking a
remote control car via joystick.

4.1 Model Implementation and Training
We use MoBL ARMS model [63], a state-of-the-art muscle-actuated
upper extremity model, originally created in OpenSim [15], to model
arm movements in a set of interaction tasks. This model includes
seven degrees-of-freedom (DoF) to represent the movements of
shoulder, elbow, and wrist. In contrast to point-mass or linked-
segment models, which are widely used to simulate user behav-
ior [24, 71, 72], the MoBL ARMS model includes translational and
rotational coupling between body segments, physiological joint
axis orientations, and joint angle limits. The model is actuated by
50 Hill-type muscle-tendon actuators [45].

We converted the model to MuJoCo using the O2MConverter [28],
which creates an approximate replica of the original OpenSim model

in MuJoCo. MuJoCo allows for much faster forward simulations of
the interactive environment, while including more sophisticated
contact dynamics. Some of the limitations of the converted model
are that MuJoCo tendons are inelastic, and tendon paths are limited
to fxed sites as opposed to having dynamically moving and con-
ditional pathpoints or wrapping objects as in OpenSim. Excluding
these limitations, the MuJoCo model is anatomically as accurate;
and MuJoCo and OpenSim use the same muscle activation dynamics
and exhibit comparable force-length-velocity-curves.

In order to decrease the state and action space dimensionality of
the RL optimisation problems, we disabled two wrist DoFs (wrist
fexion and deviation), which were not instrumental in the inter-
action tasks. Furthermore, we disabled 24 muscle actuators that
mainly actuated fnger movements, which were deemed unneces-
sary, as there were no DoFs in the model’s fngers. Therefore, 5
DoFs and 26 muscle actuators remained to represent the kinematics
and dynamics of the arm. In order to ensure that our simulation can
only achieve reasonable body postures, we modifed the equality
constraint that couples elevation angle and shoulder rotation in the
MuJoCo model by adding an additional dependency on shoulder
elevation (details are given in Suppl. Mat. S2). The fngers of the
model were modifed such that index fnger is extended, while the
rest are fexed.

The proprioceptive observations ωP contain joint angles, ve-
locities, and accelerations for the fve DoFs, and muscle internal
activation states m for the 26 muscle actuators. As all considered
tasks require precise movement of the end-efector, we also in-
cluded Cartesian coordinates of the tip of the index fnger in the
proprioceptive observations. The joint angles and muscle internal
activations are normalised to range [-1, 1].

The visual observation ωV is rendered from an RGB-D camera
with a resolution of 120 × 80 pixels (Figure 4 shows an example of
a visual observation). The “eye camera” was placed 20 cm above
the torso, approximately where one’s head would be located. For
simplicity, we decided to fxate the camera position, resulting in a
constant feld of view in the same direction. In each of the tasks
we use either one or multiple color channels with or without depth
channel, depending on what kind of information the agent requires
to successfully learn the task. In some tasks we also include prior
visual observations to allow the agent to infer movement velocity.
The image data is normalised to range [-1, 1] for each channel.

Furthermore, in choice reaction and parking tasks we have in-
cluded tactile observation ωT of the fngertip. This force sensor lets
the simulated user know how much force it is exerting through
contacts. The force value is a non-negative scalar.

The policy network π contains a convolutional neural network
to encode the high-dimensional visual observations into lower
dimensional representations. The other observations are vectors
which are concatenated and passed through a separate encoder,
before being concatenated with the encoded visual observations.
This representation is then passed through two fully connected
layers to produce the mean vectors µθ , which are then used to

′sample relative action vectors a cf. (1). Network architecture details t
are given in Suppl. Mat. S1.

We chose to use a neural efort term [8] to constrain unnecessary
movements, as a similar term is often used in RL when learning

179

Breathing Life Into Biomechanical User Models UIST ’22, October 29-November 2, 2022, Bend, OR, USA

(a) Pointing (b) Tracking (c) Choice Reaction (d) Parking a Remote Control Car

Figure 3: Four interactive tasks with difering perceptual-motor requirements. The fgures show the MoBL ARMS model, and
the RGB-D camera that serves as a visual system.

control policies. At each timestep t we compute the efort term

NÕ
δt = at

2
,i , (3)

i=1

which represents neural strain from controlling motor neurons
of the N = 26 muscle actuators, cf. (2). As mentioned earlier, the
efort term δt is part of the reward rt , i.e. it is subtracted from the
proposed reward functions.

The simulation timestep in MuJoCo is set to 2 milliseconds, and
actions are sampled from the policy with a frequency of 20 Hz
during training, and 100 Hz during evaluation. According to our
observations, this mismatch of action frequency sampling between
training and evaluation has minimal efect on the results. Training
with lower sampling frequency makes the training faster and mit-
igates the credit assignment problem [46], while evaluation with
higher action frequency is required for some of the movement
analysis.

4.2 Case Study: Pointing
Pointing is one of the most intensely studied interactive tasks in
HCI. In a pointing task, users are asked to move a physical or virtual
end-efector towards some object, e.g., a target sphere of given size.
In this case study we demonstrate perception-based muscle control

(a) (b)

Figure 4: (a) A scene during a pointing task from an external
camera. (b) The same scene rendered from the RGB-D cam-
era, RGB image on top and depth image on bottom. Both
images are 120x80 pixels.

in a setup that corresponds to the well-known ISO pointing task
variants.

In our model of this task, the end-efector corresponds to the tip
of the index fnger and the target is a penetrable sphere of varying
radius located in front of the simulated user. The radius and location
of the target are sampled randomly during training: radius from a
continuous interval [5, 15] cm, and location from a 2D plane of size
60 cm × 60 cm. The origin of the plane is located 55 cm in front
of the agent’s shoulder and 10 cm to the right, in order to make
targets easily reachable in all areas of the plane. The agent must
keep its fngertip inside a target for 500 milliseconds to successfully
“hit” the target. A new target location is sampled when a target is
hit, or after four seconds if the agent fails to hit the target. The new
target location is sampled with rejection sampling such that the
distance between two consecutive targets is typically more than 30
cm. However, a new tentative location is sampled maximum ten
times, so in rare cases the distance may be less than 30 cm. A total
of fourteen targets are spawned during one episode of training. The
location of the target plane and dwell time of 500 milliseconds were
chosen to try and match the experimental conditions of a reciprocal
ISO pointing task presented in [33], which allows us to compare our
simulations to their human data, specifcally to user U1. In order
to make the comparisons more fair, the MoBL ARMS model was
anatomically scaled to better match the anatomical dimensions of
user U1 (only in this task).

At time t , the simulated user observes ot = (ωtP , ωV , ξt). Thet
visual observation ωV contains only depth information, as color t
information is not necessary for completing this task. The stateful
information ξt comprises of two quantities: how many targets are
left in the episode, and how many milliseconds the fngertip has
been inside a target. Both quantities are normalised to range [-1,
1], and either is not necessary to learn the task, but do speed up
the training process. Following the same rationale as for typical
experimental instructions, we want the simulated user to complete
the task of hitting 14 targets as quickly as possible. Thus, the reward
function is a mixture of two components: a negative reward, shaped
by the distance between the agent’s fngertip and target, issued as
long as the target has not been reached, and a positive bonus for
hitting the target. The reward function is

180 Breathing Life Into Biomechanical User Models

 8  − δ t if target is hit 
rt = 0 − δt if fngertip is inside target (4) (e−dt ∗10 − 1)/10 − δt otherwise,

where dt is the distance between fngertip and target surface and
δt is the efort term (3) at time t .

4.2.1 Performance metrics. We collected a dataset of movements
by running the policy for 100 episodes with randomly sampled
target radii and locations. We denote the time between two sampled
targets as one trial. During one episode the agent is presented with
14 targets, therefore we have a total of 1,400 trials in the dataset.
The simulated user hit 1,395 targets (a success rate of 99.64%), and
on average it took the agent 690 ms to fnish one trial.

4.2.2 Fits’ Law and speed-accuracy trade-of. Fitts’ Law is a well-
established regularity for pointing and target acquisition tasks,
claiming a linear relationship between the difculty and the average
movement time required to reach a given target [20, 42]: � �

MT D
 = a + bID = a + b log2 + 1 . (5)

W

Here, D and W are the initial distance to target and the size (di-
ameter) of the target sphere, respectively, ID denotes the Index of
Difculty in bits (using the Shannon Formulation [41]), and MT is
the predicted movement time. In order to verify whether the end-
efector trajectories produced by our simulated user follow Fitts’
Law, we binned the 1,395 evaluation trials described in Section 4.2.1
into 25 groups, using 5 quantile-based partitions of each distance

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ikkala et al.

Pointing Task
Fitts’ Law

Effect of target size on end-effector movement

Figure 5: Simulated end-efector trajectories reproduce the
Fitts’ Law. That is, there is a clear efect of target size W on
average peak velocity and total movement duration. Over-
shoot (i.e., projected position > 1) increases with target size.

Target Setup

ISO Pointing Task
End-effector trajectories vs. MinJerk

Joint patterns vs. human data

Figure 6: In our simulation of the ISO cyclical pointing task,
targets are reached with a single ballistic movement (solid
lines; upper plots). The projected position and velocity time
series are close to the Minimum Jerk trajectories (dashed
lines; upper plots). The joint angles of both shoulder and el-
bow resulting from our simulation (solid lines; lower plots)
exhibit the same patterns as observed in the user study
(dashed lines; lower plots). As expected, movement direction
has a strong efect on qualitative behavior (representative
movements to targets 1, 2, and 3 are shown, respectively).

and target width. For each group, we computed the average move-
ment time per trial, and used the resulting combinations of ID and
MT to identify the model parameters a = −0.003 and b = 0.12 via
linear regression. As can be seen in the upper plot of Figure 5, our
simulation trajectories (blue dots) are consistent with the linear
relationship predicted by Fitts’ Law (red line), explaining more than
95% of the between-group variance (R2 = 0.9512).

To analyze the specifc efect of target size on the simulation
trajectories, we simulated fve movements between the same two
target locations for fve diferent target sizes W . This was repeated
for eight pairs of targets, resulting in a total of 40 movements
per target size. To isolate the efect of target size from those of
confounding variables such as movement direction or diferent
trials, we projected each end-efector trajectory onto the respective
direct path between initial and target position and then computed
the mean projection for each target size. This was done by computing
the average projected position and velocity of all 40 movements at

181

Breathing Life Into Biomechanical User Models UIST ’22, October 29-November 2, 2022, Bend, OR, USA

each timestep, and concatenating the resulting position and velocity
time series. As shown in the lower plots of Figure 5, there is a clear
efect of target size on the mean projections, both in terms of end-
efector position and velocity. As target size decreases, movements
become slower, resulting in both a lower average peak velocity and
a larger average movement time (9.31 m/s and 660 ms for 30 cm
width vs. 6.12 m/s and 900 ms for 10 cm width). Also note that
there is a clear tendency to overshoot for large target sizes. This
shows that the speed-accuracy trade-of typically observed in aimed
movements towards spatially constrained targets (and which is also
consistent with Fitts’ Law) is inherent to our simulation. Albeit
the confdence intervals of these mean projections overlap (not
shown in the fgure), the efect is consistently seen across diferent
movements.

4.2.3 Minimum Jerk. One of the best-known models to describe
the kinematics of human aimed movements is the Minimum Jerk
(MinJerk) model proposed by Flash and Hogan [21]. This model
assumes that humans aim to generate smooth end-efector trajecto-
ries, which is equivalent to minimizing the change in end-efector
acceleration over time, denoted as jerk. While the MinJerk model
does not make any predictions of the underlying human body and
interaction dynamics, cannot account for corrective submovements,
and requires movement duration as well as initial and terminal po-
sitions, velocities, and accelerations to be known in advance, it has
been successfully used for modelling perturbed reaching [26] and
word-gesture keyboard typing [56].

We replicated the experimental setup of a previous user study [33],
where 13 target spheres were equidistantly arranged according to
the ISO 9241-9 ergonomics standard (see target setup in Figure 6). In
the original experiment, all ISO targets were always visible with the
active target highlighted, whereas in our version of the task only
the active target was visible. As opposed to the previous task where
targets were randomly sampled, now the target radius was fxed to
5 cm, and the target location was chosen according to the ISO pro-
tocol. We used the same policy as previously (trained with random
targets) to control the agent in this task, as ISO pointing efectively
is a subset of the more general pointing task. In Figure 6, projected
simulation trajectories for three representative movements – from
T0 to T1, T1 to T2, and T2 to T3 – are shown for the surge phase,
i.e., since the former target was hit and until the latter target was
frst reached. Both the projected position and velocity time series
(solid lines in upper plots) match the corresponding minimum jerk
trajectories (dotted lines in upper plots) visually well, suggesting
that the targets are reached with a single ballistic movement. The
simulation trajectories exhibit the symmetric, bell-shaped velocity
profles during the surge phase that are characteristic of mid-air
pointing [49]. More quantitative comparisons between our method
and MinJerk would not be particularly meaningful due to the dif-
ferent assumptions and goals described above.

4.2.4 Comparison to Human Data. To identify whether body pos-
tures of our simulations are comparable to those of humans, we
computed the joint angles that best explain the movements of user
U1 observed in the ISO task user study in [33] via Inverse Kinematics,
and compared them to the joint angles inferred from our simulation.
Note that the trajectories which we compare, e.g. starting from T0
and ending in T1, begin when the simulated agent (or user U1) has

hit T0, that is, the agent’s (user U1’s) fngertip is inside said target.
Similarly the trajectory ends when the agent’s (user U1’s) fngertip
is inside T1, and hence the maximum distance between the agent’s
and the user’s initial and fnal fngertip positions is less than 10 cm
(twice the target radius). These comparisons aim to provide quali-
tative evidence of the simulated agent’s movements with respect
to actual human movements. As can be seen in the lower plots of
Figure 6, the general patterns of each shoulder elevation, shoulder
rotation, and elbow fexion match considerably well between our
simulation (solid lines) and the human reference (dashed lines). In
particular, the body postures required to reach high targets (T1, T3;
blue and red lines) are clearly diferent from those required for low
targets (T2; green lines), which our simulation captures well. The
largest diferences between simulation and human data occur in
terms of used joint ranges and movement duration. Both of these
were expected, as we did not explicitly set our simulation to the
initial body posture of the respective user, and we did not optimize
the neural efort cost such that the absolute movement times would
match human data.

4.3 Demonstrations: Tracking, Choice
Reaction, and Parking a Remote Control
Car

Here we further demonstrate that our approach is suitable to mod-
elling and simulating a wide range of interactions that include
perception and physical contact. We provide a description of each
task, followed by relevant performance metrics to show that the
simulated user learns

• complex muscle-actuated visuomotor control in an emergent
fashion, simply based on task-specifc rewards,

• to utilize prior observations to anticipate movement (track-
ing and parking tasks),

• to discriminate between diferent responses, and choose a
correct response based on observed stimuli (choice reaction
task),

• to control objects that have non-trivial (sixth order) dynamics
(parking task using a joystick).

4.3.1 Tracking. In the tracking task the agent’s objective is to
follow a moving target with its fngertip as closely as possible.
The environment here is very similar to the one used in pointing
task: the target is confned to a 2D plane of size 60 cm × 60 cm in
front of the agent, but the target is not static and target radius is
fxed to 5 cm. The target follows a trajectory that is a mixture of
fve sine waves with varying amplitudes, frequencies, and phases.
The amplitudes are uniformly sampled from interval [1, 5], and
frequencies from [0, 0.5], and episode length is fxed to 10 seconds.
We used a curriculum learning approach for this task, where the
targets are initially fxed for the frst 15 million training steps, and
between 15 million and 40 million training steps the frequencies
are sampled from range [0, fmax], where fmax linearly increases
from 0 to 0.5.

To allow the simulated user to anticipate the target’s movements,
we included a past visual observation as input to the policy. The
observation is then ot = (ωtP , ωV , ωV), where k is chosen such t t −k
that the past observation is 100 milliseconds prior to the current

182 Breathing Life Into Biomechanical User Models

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ikkala et al.

Figure 7: Distance between the agent’s fngertip and target
center as a function of time. After a fast initial movement
towards the target, the agent is able to keep track of the tar-
get, even if the fngertip is temporarily outside the target
(values above the horizontal dashed line). Each of the con-
sidered frequencies that defne the movement pattern of the
target is given in a diferent color.

one. As in the pointing task, the visual observation ωV contains
only depth information. The reward function for this task is simply

rt = −dt − δt , (6)

where dt is the distance between fngertip and the target surface at
time t , and δt is the efort term (3).

Figure 7 shows the distance between fngertip and target origin
as a function of time on a logarithmic scale. Initially the average
distance is large, as the agent’s arm is besides its torso in the starting
position. The distance drops quickly as the agent starts to track the
target, and stays close to the target for the rest of the episode. To
analyze the efect of the target speed, we considered four diferent
frequencies fmax (0.05, 0.25, 0.5, and 1 Hz), with 10 episodes created
for each frequency. The solid lines in Figure 7 correspond to the
respective average values, the flled areas to the complete ranges.
While slower targets are clearly easier to track, the agent is able
to keep the fngertip mainly inside the target up to frequencies of
0.5 Hz. For 1 Hz movements, which the agent has not seen during
training, the fngertip is short behind the target most of the time,
resulting in a consistently small ofset.

4.3.2 Choice Reaction. In a choice reaction task a participant is
presented with several responses, and is required to choose be-
tween those responses when observing a stimulus. In our simulated
version of this task (see Figure 3(c)), the agent is presented with
four diferent colored buttons, and a screen to show the stimulus –
all in feld of view of the agent. The training procedure is similar
to the pointing task: the agent has four seconds to press a button
and receive a positive reward. When a button has been pressed
with suitable force, or four seconds have passed, the screen changes
color and indicates which button should be pressed next. The agent

Figure 8: Distance between the agent’s fngertip and the joy-
stick (teal), as well as distance between the controlled car
and target (red) as a function of time. After moving the hand
towards the joystick, which takes approx. 800 milliseconds,
the joystick is used to steer the car inside the target box (val-
ues below the horizontal dashed line, showing the 30 cm tar-
get size constantly used during evaluation).

is presented with a stimulus and expected to choose a response ten
times in one episode.

In this task the simulated user receives an observation ot =
(ωtP , ωVt , ω

T
t , ξt). The stateful information ξt contains one quantity:

the number of targets left in the episode, normalised to range [−1, 1].
The reward function is akin to (4) used in the pointing task:

(
8 − δt if target button is pressed

rt = (7)(e−dt ∗10 − 1)/10 − δt otherwise,

where dt is the distance between the fngertip and the center of the
target button at time t , and δt is the efort term (3).

While the simulated user learns to press the appropriate buttons
successfully, it does so in a rather quick manner. The average time
to fnish the episode is 3.94 seconds with a standard deviation of 0.91
seconds (averaged over 100 episodes). Only in four trials out of 1000
the agent was unable to respond within four seconds of observing
the stimulus. While this behaviour is in the realm of possibilities for
a human, it is likely faster than an average human subject would
perform. One explanation for this could be the somewhat unrealistic
visual model that neither models selective attention nor peripheral
vision. Instead of having to alternate focus between a button and the
screen, the simulated user is able to perceive all objects at the same
time. It is also possible that, since the simulated user and the buttons
are fxed in space, the user learns the locations of the buttons based
on proprioceptive observations instead of visual observations.

4.3.3 Parking a Remote Control Car. As another interaction task,
we trained the agent to steer a remote control car using a joystick
(see Figure 3(d)). The goal of this interaction task is to park the
car inside the green box. The initial positions of the car and the
target are sampled from a green line in front of, and fully visible to,

183

Breathing Life Into Biomechanical User Models UIST ’22, October 29-November 2, 2022, Bend, OR, USA

the agent. The car moves only in one dimension, along the green
line, and its acceleration/deceleration is controlled by tilting the
left joystick of the gamepad forward or backward. The length of
an episode is fxed to ten seconds. Note that this task difers from
previous tasks in terms of difculty twofold. First, it requires fne
muscle control since the joystick and required movements are rela-
tively small. Second, in addition to controlling the biomechanical
model, the agent has to learn the second-order dynamics of the car
resulting in a higher complexity (sixth-order in total).

The observation for this task is ot = (ωtP , ωt
V , ωt

V
−k , ω

T
t), where

k is chosen such that the past visual observation ωV is 100 mil-t −k
liseconds prior to the current one. To speed up the training, the
visual observation contains only the red color channel. The tactile
perception ωT contains force reading of contact between fnger-t
tip and the joystick to aid the agent in estimating how much the
joystick needs to be tilted to move the car.

The reward function is
rt = D(f inдertip, joystick) + D(car , tarдet)/10

(8)
+ Bjoyst ick,f inдer t ip + Bcar,tar дet − δt ,

where D(x ,y) = e−dt (x,y)∗3 − 1 is a function of distance dt between
x and y at time t , Bx,y are bonus terms, and δt is the efort term (3).
The bonus Bf inдer t ip, joyst ick = 0.8 is given only once per episode,
for the frst time when the fngertip touches the joystick. The bonus
Bcar,tar дet = 8 is granted if the car is inside the target with a
velocity less than 0.1 m/s.

We evaluated the agent’s performance over 50 episodes. Figure 8
shows the distances between agent’s fngertip and joystick, and car
and target, as functions of time.5 The fgure shows that it takes less
than three seconds, on average, to move the car inside the target
(values below red dashed line), and in all 50 episodes the car is
successfully parked inside the target by the end of the episode.

5 SUMMARY AND DISCUSSION
We implemented perception-based muscle-actuated biomechanical
models in MuJoCo, and demonstrated how an RL approach can be
leveraged to simulate human-like behaviour in diferent interaction
tasks with physically simulated input devices. The user model suc-
cessfully learned to complete a variety of interaction tasks, while
also producing movements that comply with predictive models of
human movement, such as Fitts’ Law. Such models could be used
to evaluate user interfaces in silico, before or instead of, running
evaluation studies with human subjects. Also, use of simulation
may enable a more rigorous way to ensure diversity is taken into
account during design. The models are available in the release of
the User-in-the-Box open-source implementation, available at
https://github.com/aikkala/user-in-the-box.

5.1 Reward–Model Interactions
RL provides fexibility in formulating an interaction task as an
optimisation problem, but it does require experience with RL to
develop an appropriate reward function, and its formulation will
afect the fnal model outcome. As this is a new approach to gener-
ating representative models of human behaviour for HCI, there is

5Note that the distance between car and target center cannot fall below a certain
threshold, as it is always measured from the most distant wheel.

not yet a mature workfow for refning the reward function design
for a given task. Our open-source implementation introduces a new
problem domain for researching the efect of a utility function, i.e.,
the reward function, on model behaviour. For instance, based on
our observations, the scaling of a reward (not including the efort
term) did not often incur major diferences in the simulated user’s
behaviour, while e.g. the (non-)linearity of a reward function did.

In our simulation studies we employed well-known strategies
for making the optimisation problem easier: early termination,
reward shaping, and curriculum learning. We used a form of early
termination in pointing and choice reaction tasks, where a new
target was spawned every 4 seconds; reward shaping in all of the
reward functions to guide the agent towards desired behaviour;
and curriculum learning in the tracking task, where the agent frst
learns to point towards a fxed target, and eventually the target
begins to move. Arzate Cruz and Igarashi’s survey [1] reviews
reward function design for interactive applications.

Our primary concern in this paper was to defne reward functions
for which policies could be learned efciently. The reward functions
in our tasks consisted of two components, a distance component
and an efort component. The former guided the agent towards
desired body postures and is task-specifc, although the idea of using
some sort of distance reward can be applied to many tasks. The
efort term included in the reward, on the other hand, is a task-
agnostic component that served to steer the agent to interact with
the environment in a specifc way, i.e., with minimum efort. A third
component, time, comes into play implicitly via negative rewards.
With negative rewards the agent is incentivized to fnish a task
quickly, if the episode length is not fxed (for example, the pointing
and choice reaction tasks). If one uses only positive rewards the
task completion may be unnecessarily prolonged, as there is no
incentive to fnish the episode promptly, especially if rewards far in
the future are not heavily discounted using a low discount factor γ .
To reiterate, all our reward functions share negative distance and
efort components, while the positive bonus terms are connected
to milestones or completion of the task.

The complexity of the task being modelled plays a signifcant
role in fnding an efcient reward function. In the pointing, tracking,
and choice reaction tasks the agent learned a good control policy
robustly without search for an exact scaling or parameterisation of
the reward function. However, in the parking task it took us multiple
iterations to fnd a reward function that produced a successful policy.
Further study is required to fnd best practices for efcient reward
function design.

Further, although the learned policy captures human behaviour
in a number of ways (see Section 4), it is not known how well these
reward functions model human subjective utility functions. Indeed,
we have not tried to ’ft’ the parameters of the reward function to
human data. We anticipate that future work will need to take on this
challenge. Future work should be inspired by what is known about
human subjective utility. For example, it is known that people are
sensitive to externally imposed speed/accuracy trade-ofs [27, 78]
but that people vary in how sensitive they are, with some preferring
to be more accurate and others preferring to be fast.

184 Breathing Life Into Biomechanical User Models

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ikkala et al.

5.2 Hierarchical Controllers
Another frontier concerns computational efciency. The required
number of training steps until convergence in the frst three tasks
was typically 40-80 million steps, which required 24-48 hours to
train with 10 parallel workers and a GPU. The agent in the last
task (parking a remote control car) was trained for 130 million
steps, which required 94 hours. In each of the simulation tasks we
train the agent from scratch, which means that the agent must
always learn again how to move its arm. We believe that training
time could be signifcantly decreased by using a hierarchical RL
approach, where the optimisation problem is made easier by frst
training a separate task-agnostic low-level controller to control
movements of the agent, and then training task-specifc higher
level policies to solve the actual RL problem [3, 37, 54].

5.3 Increasing Realism
We see multiple ways to increase the realism of biomechanical and
perception models for HCI research. While advancing signifcantly
in the last decade, modern biomechanical models are developed as
mechanical systems involving multiple assumptions and simplif-
cations in comparison to the natural human body: e.g. (in order
of decreasing severity) an activation optimality assumption that
excludes muscle co-contraction, static muscle states that ignore
fatigue efects, solid movement mechanics ignoring soft tissues,
generic weight distribution based solely on rigid segment proper-
ties, continuous excitation signal instead of motor unit size-based
control, or simplifed hinge-based joint mechanics instead of slide &
roll movement with complex 3D transformation. These simplifca-
tions can lead to the unnaturalness of generated movements, partic-
ularly ones involving fne motor control or under fatigued muscles,
and deviations in predicting injury risks or fatigue. Considering the
above simplifcations, the modern models can simulate with rea-
sonable accuracy most movements, except fne motorics involving
co-contraction of opposite muscles, such as writing. Our biomechan-
ical model, although more sophisticated than previous HCI models,
is only a representation of the upper torso with shoulder and arm
movement. There are no wrist or fnger movements included. The
perceptual observations were based on rather rudimentary models:
the visual system was represented by a low-resolution RGB-D cam-
era with a constant feld of view, tactile perception was based on
a single force sensor, and none of the perception models included
noise modelling. Furthermore, MuJoCo as the chosen physics simu-
lator might not be suitable to model some interaction devices, such
as a touch screen with dynamic content. However, model develop-
ment is typically allocated limited resources, and it is necessary to
stop development once one has a model that works well enough
for a given task. In this situation, it is important to document the
qualities of the model for others to build on in future. A practical
challenge is that a biomechanical model which initially appears
to predict the human data well may have inaccuracies which frst
become apparent when used for optimisation in the RL process, as
the inaccuracies are ‘exploited’, leading to unnatural behaviour.

While movements simulated in the pointing task shared many
characteristics found in human data, the simulated movement dif-
fered in some aspects. For instance, the joint ranges of our simulated

user were diferent from the joint ranges obtained with inverse kine-
matics of a human user, and the movement speed of the simulated
user was slightly faster. However, it is unclear what the best choice
of distance measure is between simulation states and observations
of human poses, and how accurate replications of human data need
to be for practical applications such as user interface evaluations.
This is likely to vary based on use case.

6 CONCLUSION
We believe that perceptual control of biomechanically plausible
human models is the key to more extensive use of simulations in the
feld of HCI. Perception has such a signifcant role in interaction that
oversimplifying it in models may have stalled progress in studies
of motor control in HCI. Linking perception and muscle-based
control is necessary for understanding both low-level phenomena
in HCI, such as bimanual control and eye-hand coordination when
using input devices, but also higher-level phenomena, such as the
emergence of fatigue-avoiding strategies in AR/VR applications.

While cognitive models have been at the heart of HCI since its
inception [9] and signifcant progress has been made [11–13, 31, 52],
one enduring limitation has been the lack of an end-to-end frame-
work for predicting and explaining interaction. In these cognitive
approaches, perception and biomechanics are modelled either as
black box symbolic input/output functions or with mathematical
laws (e.g. Fitts’ Law) that do not simulate the processes of embodi-
ment and as a consequence much of real-world interaction is left
unexplained. In contrast, the approach to modelling that we have
proposed in the current paper embraces perception and biomechan-
ics as a key locus of explanation but, arguably, neglects the role
of cognition. Future work should seek to combine the strengths of
both approaches. For example, one could seek to explain not only
how people use perception and biomechanics to point-and-click,
but also how they use such skills to navigate, browse, acquire in-
formation, make decisions, and collaborate. RL, and particularly
hierarchical RL, ofers a framework for such an extension.

Finally, we believe that simulations of the kind discussed in this
paper can help the scientifc process in HCI research. The formal
rigour required in creation of a simulation model, and controlling
and documenting the provenance of knowledge and data used to
calibrate it, makes clear the importance of many of the often poorly
described aspects of context in HCI experiments. A simulation
package is also easily shared with other researchers, improving
reproducibility via an unambiguous implementation of the current
scientifc theory, the predictions of which can be validated with
observed real-world data. We have made some efort to describe
the weaknesses of our model, because aspects of models which at
any given stage are poorly justifed theoretically, are a poor ft to
experimental data, or which are highly sensitive to context can be
viewed as prompts to the research community about where they
need better theories, more complex models, or more data. This
can create improved clarity, and a shared awareness of the open
problems and challenges, and can help document progress.

185

Breathing Life Into Biomechanical User Models UIST ’22, October 29-November 2, 2022, Bend, OR, USA

ACKNOWLEDGMENTS
A.I. is funded by the Academy of Finland Flagship programme
“Finnish Center for Artifcial Intelligence” (FCAI). R.M-S. acknowl-
edges funding support from EPSRC grant EP/R018634/1, Closed-loop
Data Science and the Academy of Finland via FCAI. A.O. is sup-
ported by Academy of Finland project Human Automata.

REFERENCES
[1] Christian Arzate Cruz and Takeo Igarashi. 2020. A Survey on Interactive Reinforce-

ment Learning: Design Principles and Open Challenges. Association for Computing
Machinery, New York, NY, USA, 1195–1209. https://doi.org/10.1145/3357236.
3395525

[2] M. A. Ayoub, M. M. Ayoub, and A. G. Walvekar. 1974. A Biomechanical
Model for the Upper Extremity using Optimization Techniques. Human
Factors 16, 6 (1974), 585–594. https://doi.org/10.1177/001872087401600603
arXiv:https://doi.org/10.1177/001872087401600603 PMID: 4442903.

[3] Amin Babadi, Michiel Van de Panne, Caren Liu, and Perttu Hämäläinen. 2021.
Learning Task-Agnostic Action Spaces for Movement Optimization. IEEE Trans-
actions on Visualization and Computer Graphics (2021), 1–1. https://doi.org/10.
1109/TVCG.2021.3100095

[4] Myroslav Bachynskyi, Antti Oulasvirta, Gregorio Palmas, and Tino Weinkauf.
2014. Is Motion Capture-Based Biomechanical Simulation Valid for HCI Studies?
Study and Implications. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association for
Computing Machinery, New York, NY, USA, 3215–3224. https://doi.org/10.1145/
2556288.2557027

[5] Myroslav Bachynskyi, Gregorio Palmas, Antti Oulasvirta, Jürgen Steimle, and
Tino Weinkauf. 2015. Performance and Ergonomics of Touch Surfaces: A Com-
parative Study Using Biomechanical Simulation. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
1817–1826. https://doi.org/10.1145/2702123.2702607

[6] Nikola Banovic, Tof Buzali, Fanny Chevalier, Jennifer Mankof, and Anind K.
Dey. 2016. Modeling and Understanding Human Routine Behavior. Association for
Computing Machinery, New York, NY, USA, 248–260. https://doi.org/10.1145/
2858036.2858557

[7] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.
DReCon: Data-Driven Responsive Control of Physics-Based Characters. ACM
Trans. Graph. 38, 6, Article 206 (nov 2019), 11 pages. https://doi.org/10.1145/
3355089.3356536

[8] Bastien Berret, Enrico Chiovetto, Francesco Nori, and Thierry Pozzo. 2011. Evi-
dence for Composite Cost Functions in Arm Movement Planning: An Inverse
Optimal Control Approach. PLOS Computational Biology 7, 10 (10 2011), 1–18.
https://doi.org/10.1371/journal.pcbi.1002183

[9] Stuart K. Card, Thomas P. Moran, and Allen Newell. 1983. The psychology of
human-computer interaction. Crc Press.

[10] Noshaba Cheema, Laura A. Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp
Slusallek, and Perttu Hämäläinen. 2020. Predicting Mid-Air Interaction Movements
and Fatigue Using Deep Reinforcement Learning. Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376701

[11] Xiuli Chen, Aditya Acharya, Antti Oulasvirta, and Andrew Howes. 2021. An
adaptive model of gaze-based selection. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–11.

[12] Xiuli Chen, Gilles Bailly, Duncan P Brumby, Antti Oulasvirta, and Andrew Howes.
2015. The Emergence of Interactive Behaviour: A Model of Rational Menu Search.
(2015).

[13] Xiuli Chen, Sandra Dorothee Starke, Chris Baber, and Andrew Howes. 2017. A
cognitive model of how people make decisions through interaction with visual
displays. In Proceedings of the 2017 CHI conference on human factors in computing
systems. 1205–1216.

[14] Michael Damsgaard, John Rasmussen, Søren Tørholm Christensen, Egidijus
Surma, and Mark de Zee. 2006. Analysis of musculoskeletal systems in the
AnyBody Modeling System. Simulation Modelling Practice and Theory 14, 8
(2006), 1100–1111. https://doi.org/10.1016/j.simpat.2006.09.001 SIMS 2004.

[15] Scott Delp, Frank Anderson, Allison Arnold, Peter Loan, A. Habib, Chand John,
Eran Guendelman, and Darryl Thelen. 2007. OpenSim: Open-Source Software to
Create and Analyze Dynamic Simulations of Movement. Biomedical Engineering,
IEEE Transactions on 54 (12 2007), 1940 – 1950. https://doi.org/10.1109/TBME.
2007.901024

[16] Christopher L. Dembia, Nicholas A. Bianco, Antoine Falisse, Jennifer L. Hicks,
and Scott L. Delp. 2021. OpenSim Moco: Musculoskeletal optimal control. PLOS
Computational Biology 16, 12 (12 2021), 1–21. https://doi.org/10.1371/journal.
pcbi.1008493

[17] João Marcelo Evangelista Belo, Anna Maria Feit, Tiare Feuchtner, and Kaj Grøn-
bæk. 2021. XRgonomics: Facilitating the Creation of Ergonomic 3D Interfaces. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 290, 11 pages. https://doi.org/10.1145/3411764.3445349

[18] Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, and Jörg Müller.
2021. Reinforcement learning control of a biomechanical model of the upper
extremity. Scientifc Reports 11, 1 (2021), 1–15.

[19] Florian Fischer, Arthur Fleig, Markus Klar, and Jörg Müller. 2022. Optimal
Feedback Control for Modeling Human-Computer Interaction. ACM Trans.
Comput.-Hum. Interact. (2022). https://doi.org/10.1145/3524122

[20] Paul M Fitts. 1954. The information capacity of the human motor system in
controlling the amplitude of movement. Journal of experimental psychology 47, 6
(1954), 381.

[21] Tamar Flash and Neville Hogan. 1985. The coordination of arm movements:
an experimentally confrmed mathematical model. Journal of neuroscience 5, 7
(1985), 1688–1703.

[22] Sam Hamner, Ajay Seth, and Scott Delp. 2010. Muscle contribution to propulsion
and support during running. Journal of biomechanics 43 (10 2010), 2709–16.
https://doi.org/10.1016/j.jbiomech.2010.06.025

[23] Blake Hannaford and Jack Winters. 1990. Actuator Properties and Movement
Control: Biological and Technological Models. Springer New York, New York, NY,
101–120. https://doi.org/10.1007/978-1-4613-9030-5_7

[24] C. M. Harris and D. M. Wolpert. 1998. Signal-dependent noise determines motor
planning. Nature 394 (09 1998), 780–4. https://doi.org/10.1038/29528

[25] Lorenz Hetzel, John Dudley, Anna Maria Feit, and Per Ola Kristensson. 2021.
Complex Interaction as Emergent Behaviour: Simulating Mid-Air Virtual Key-
board Typing using Reinforcement Learning. IEEE Transactions on Visualization
and Computer Graphics 27, 11 (2021), 4140–4149. https://doi.org/10.1109/TVCG.
2021.3106494

[26] Bruce Hof and Michael A. Arbib. 1993. Models of Trajectory Formation
and Temporal Interaction of Reach and Grasp. Journal of Motor Behav-
ior 25, 3 (1993), 175–192. https://doi.org/10.1080/00222895.1993.9942048
arXiv:https://doi.org/10.1080/00222895.1993.9942048 PMID: 12581988.

[27] Andrew Howes, Richard L Lewis, and Alonso Vera. 2009. Rational adaptation un-
der task and processing constraints: implications for testing theories of cognition
and action. Psychological review 116, 4 (2009), 717.

[28] Aleksi Ikkala and Perttu Hämäläinen. 2022. Converting Biomechanical Models
from OpenSim to MuJoCo. In Converging Clinical and Engineering Research on
Neurorehabilitation IV, Diego Torricelli, Metin Akay, and Jose L. Pons (Eds.).
Springer International Publishing, Cham, 277–281.

[29] Hasan Iqbal, Seemab Latif, Yukang Yan, Chun Yu, and Yuanchun Shi. 2021. Re-
ducing arm fatigue in virtual reality by introducing 3D-spatial ofset. IEEE Access
9 (2021), 64085–64104.

[30] Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C Karen Liu. 2019. Syn-
thesis of biologically realistic human motion using joint torque actuation. ACM
Transactions On Graphics (TOG) 38, 4 (2019), 1–12.

[31] Jussi Jokinen, Aditya Acharya, Mohammad Uzair, Xinhui Jiang, and Antti
Oulasvirta. 2021. Touchscreen typing as optimal supervisory control. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–14.

[32] Antti Kangasrääsiö, Kumaripaba Athukorala, Andrew Howes, Jukka Corander,
Samuel Kaski, and Antti Oulasvirta. 2017. Inferring Cognitive Models from
Data Using Approximate Bayesian Computation. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (Denver, Colorado, USA)
(CHI ’17). Association for Computing Machinery, New York, NY, USA, 1295–1306.
https://doi.org/10.1145/3025453.3025576

[33] Markus Klar, Florian Fischer, Arthur Fleig, Miroslav Bachinski, and Jörg Müller.
2022. Simulating Interaction Movements via Model Predictive Control. https:
//doi.org/10.48550/ARXIV.2204.09115

[34] Jeppe Theiss Kristensen, Arturo Valdivia, and Paolo Burelli. 2020. Estimating
player completion rate in mobile puzzle games using reinforcement learning. In
2020 IEEE Conference on Games (CoG). IEEE, 636–639.

[35] Francesco Lacquaniti, Carlo Terzuolo, and Paolo Viviani. 1983. The law relating
the kinematic and fgural aspects of drawing movements. Acta Psychologica 54, 1
(1983), 115 – 130.

[36] Leng-Feng Lee and Brian R Umberger. 2016. Generating optimal control simula-
tions of musculoskeletal movement using OpenSim and MATLAB. PeerJ 4 (2016),
e1638.

[37] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable
Muscle-Actuated Human Simulation and Control. ACM Trans. Graph. 38, 4,
Article 73 (July 2019), 13 pages. https://doi.org/10.1145/3306346.3322972

[38] Sung-Hee Lee and Demetri Terzopoulos. 2006. Heads up! Biomechanical modeling
and neuromuscular control of the neck. In ACM SIGGRAPH 2006 Papers. 1188–
1198.

[39] Katri Leino, Antti Oulasvirta, and Mikko Kurimo. 2019. RL-KLM: Automating
keystroke-level modeling with reinforcement learning. In Proceedings of the 24th
International Conference on Intelligent User Interfaces. 476–480.

186 Breathing Life Into Biomechanical User Models

UIST ’22, October 29-November 2, 2022, Bend, OR, USA

[40] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang.
2018. Reinforcement Learning on Web Interfaces using Workfow-Guided Ex-
ploration. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=ryTp3f-0-

[41] I. Scott MacKenzie. 1989. A Note on the Information-Theoretic Basis for Fitts’
Law. Journal of Motor Behavior 21, 3 (1989), 323–330. https://doi.org/10.1080/
00222895.1989.10735486 arXiv:https://doi.org/10.1080/00222895.1989.10735486
PMID: 15136269.

[42] I. Scott MacKenzie. 1992. Fitts’ law as a research and design tool in human-
computer interaction. Human-computer interaction 7, 1 (1992), 91–139.

[43] Richard S Marken and Warren Mansell. 2013. Perceptual control as a unifying
concept in psychology. Review of General Psychology 17, 2 (2013), 190–195.

[44] J. Alberto Álvarez Martín, Henrik Gollee, Jörg Müller, and Roderick Murray-Smith.
2021. Intermittent control as a model of mouse movements. ACM Transactions
on Computer-Human Interaction (TOCHI) 28, 5 (2021), 1–46.

[45] Matthew Millard, Thomas Uchida, Ajay Seth, and Scott L Delp. 2013. Flexing
computational muscle: modeling and simulation of musculotendon dynamics.
Journal of biomechanical engineering 135, 2 (2013).

[46] Marvin Minsky. 1961. Steps toward artifcial intelligence. Proceedings of the IRE
49, 1 (1961), 8–30.

[47] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. (12 2013).

[48] Roberto A Montano Murillo, Sriram Subramanian, and Diego Martinez Plasencia.
2017. Erg-O: Ergonomic optimization of immersive virtual environments. In
Proceedings of the 30th annual ACM symposium on user interface software and
technology. 759–771.

[49] Pietro Morasso. 1981. Spatial control of arm movements. Experimental brain
research 42, 2 (1981), 223–227.

[50] Jörg Müller, Antti Oulasvirta, and Roderick Murray-Smith. 2017. Control theoretic
models of pointing. ACM Transactions on Computer-Human Interaction (TOCHI)
24, 4 (2017), 1–36.

[51] Masaki Nakada, Tao Zhou, Honglin Chen, Tomer Weiss, and Demetri Terzopoulos.
2018. Deep Learning of Biomimetic Sensorimotor Control for Biomechanical
Human Animation. ACM Trans. Graph. 37, 4, Article 56 (jul 2018), 15 pages.
https://doi.org/10.1145/3197517.3201305

[52] Antti Oulasvirta, Jussi Jokinen, and Andrew Howes. 2022. Computational Ratio-
nality as a Theory of Interaction. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. 1–14.

[53] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018.
DeepMimic: Example-guided Deep Reinforcement Learning of Physics-based
Character Skills. ACM Trans. Graph. 37, 4, Article 143 (July 2018), 14 pages.
https://doi.org/10.1145/3197517.3201311

[54] Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne. 2017.
DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement
Learning. ACM Trans. Graph. 36, 4, Article 41 (July 2017), 13 pages. https:
//doi.org/10.1145/3072959.3073602

[55] E Pennestri, R Stefanelli, PP Valentini, and L Vita. 2007. Virtual musculo-skeletal
model for the biomechanical analysis of the upper limb. Journal of biomechanics
40, 6 (2007), 1350–1361.

[56] Philip Quinn and Shumin Zhai. 2018. Modeling Gesture-Typing Movements.
Human–Computer Interaction 33, 3 (2018), 234–280. https://doi.org/10.1080/
07370024.2016.1215922 arXiv:https://doi.org/10.1080/07370024.2016.1215922

[57] Antonin Rafn, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. 2021. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. Journal of Machine Learning Research 22, 268 (2021), 1–8.
http://jmlr.org/papers/v22/20-1364.html

[58] J.B. Rawlings, D.Q. Mayne, and M.M. Diehl. 2017. Model Predictive Control: Theory
and Design (2nd ed.). Nob Hill Publishing.

[59] Lei Ren, Richard K Jones, and David Howard. 2007. Predictive modelling of
human walking over a complete gait cycle. Journal of biomechanics 40, 7 (2007),
1567–1574.

[60] Shaghayegh Roohi, Christian Guckelsberger, Asko Relas, Henri Heiskanen, Jari
Takatalo, and Perttu Hämäläinen. 2021. Predicting Game Difculty and Engage-
ment Using AI Players. Proceedings of the ACM on Human-Computer Interaction
5, CHI PLAY (2021), 1–17.

[61] Shaghayegh Roohi, Asko Relas, Jari Takatalo, Henri Heiskanen, and Perttu
Hämäläinen. 2020. Predicting game difculty and churn without players. In
Proceedings of the Annual Symposium on Computer-Human Interaction in Play.
585–593.

[62] Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K
Pai. 2015. Biomechanical simulation and control of hands and tendinous systems.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–10.

[63] Katherine R. Saul, Xiao Hu, Craig M. Goehler, Meghan E. Vidt, Melissa Daly,
Anca Velisar, and Wendy M. Murray. 2014. Benchmarking of dynamic simulation
predictions in two software platforms using an upper limb musculoskeletal model.

Ikkala et al.

Computer methods in biomechanics and biomedical engineering 5842, May 2016
(2014), 1–14. https://doi.org/10.1080/10255842.2014.916698

[64] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17

[65] Ajay Seth, Michael Sherman, Jefrey A. Reinbolt, and Scott L. Delp. 2011. OpenSim:
a musculoskeletal modeling and simulation framework for in silico investigations
and exchange. Procedia IUTAM 2 (2011), 212–232. https://doi.org/10.1016/j.
piutam.2011.04.021 IUTAM Symposium on Human Body Dynamics.

[66] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang.
2017. World of Bits: An Open-Domain Platform for Web-Based Agents. In
Proceedings of the 34th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.).
PMLR, 3135–3144. https://proceedings.mlr.press/v70/shi17a.html

[67] Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2014.
Realistic biomechanical simulation and control of human swimming. ACM
Transactions on Graphics (TOG) 34, 1 (2014), 1–15.

[68] Eduardo D Sontag. 2013. Mathematical control theory: deterministic fnite dimen-
sional systems. Vol. 6. Springer Science & Business Media.

[69] Shinjiro Sueda, Andrew Kaufman, and Dinesh K Pai. 2008. Musculotendon
simulation for hand animation. In ACM SIGGRAPH 2008 papers. 1–8.

[70] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press. http://incompleteideas.net/book/the-book-
2nd.html

[71] Misaki Takeda, Takanori Sato, Hisashi Saito, Hiroshi Iwasaki, Isao Nambu, and
Yasuhiro Wada. 2019. Explanation of Fitts’ law in Reaching Movement based on
Human Arm Dynamics. Scientifc Reports 9 (12 2019), 19804. https://doi.org/10.
1038/s41598-019-56016-7

[72] Hirokazu Tanaka, John W. Krakauer, and Ning Qian. 2006. An Optimiza-
tion Principle for Determining Movement Duration. Journal of Neuro-
physiology 95, 6 (2006), 3875–3886. https://doi.org/10.1152/jn.00751.2005
arXiv:https://doi.org/10.1152/jn.00751.2005 PMID: 16571740.

[73] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 5026–5033. https://doi.org/10.1109/IROS.2012.6386109

[74] Jack M Wang, Samuel R Hamner, Scott L Delp, and Vladlen Koltun. 2012. Opti-
mizing locomotion controllers using biologically-based actuators and objectives.
ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–11.

[75] Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. 2007.
Solving deep memory POMDPs with recurrent policy gradients. In International
conference on artifcial neural networks. Springer, 697–706.

[76] DA Winter. 1984. Biomechanics of human movement with applications to the
study of human locomotion. Critical reviews in biomedical engineering 9, 4 (1984),
287—314. http://europepmc.org/abstract/MED/6368126

[77] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach
to Control Diverse Behaviors for Physically Simulated Characters. ACM Trans.
Graph. 39, 4, Article 33 (2020). https://doi.org/10.1145/3386569.3392381

[78] Mingrui Ray Zhang, Shumin Zhai, and Jacob O Wobbrock. 2019. Text entry
throughput: Towards unifying speed and accuracy in a single performance metric.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–13.

187

8
SIM2VR: Integrating Biomechanical

Simulations in VR Development
Environments

Authors: Florian Fischer1, Aleksi Ikkala1, Markus Klar, Arthur Fleig, Miroslav Bachinski,
Roderick Murray-Smith, Perttu Hämäläinen, Antti Oulasvirta, Jörg Müller
Status: Submitted

FF and AI conducted and JM and AO supervised the research process, with guidance from
MK, AF, MB, PH, and RMS. The idea and concept were developed by all authors. With
guidance from PH, AI implemented the SIM2VR Asset, the Unity-compatible UitB extension,
and the Whac-a-mole game, which were further improved by FF and MK. AI conducted
the user study, and FF modeled and trained the simulated users. FF and MK conducted the
evaluation and created the figures and check tools. MK and FF originated the guidelines and
the walkthrough. FF and AI are the corresponding authors.

1Shared first authorship

SIM2VR: Integrating Biomechanical Simulations in VR
Development Environments
FLORIAN FISCHER∗, University of Bayreuth, Germany
ALEKSI IKKALA∗, Aalto University, Finland
MARKUS KLAR, University of Bayreuth, Germany
ARTHUR FLEIG, University of Bayreuth, Germany
MIROSLAV BACHINSKI, University of Bergen, Norway
RODERICK MURRAY-SMITH, University of Glasgow, Scotland
PERTTU HÄMÄLÄINEN, Aalto University, Finland
ANTTI OULASVIRTA, Aalto University, Finland
JÖRG MÜLLER, University of Bayreuth, Germany

Fig. 1. SIM2VR closes the "reality gap" in computational models of user interaction. Its Perceptual-Motor
Interface enables running high-fidelity biomechanical simulations directly in VR development environments,
which can now be used to provide insight into users’ performance, ergonomics, and movement strategies prior
to user testing. Thanks to SIM2VR, the sensorimotor environments of a trained model better match those
of the users, improving the accuracy of predictions. By lowering the barrier to biomechanical simulation,
SIM2VR promotes the adoption of user models in VR design.

Designing VR interactions requires careful consideration of the effects of design choices on usability and
ergonomics. Model-based evaluations have been shown to provide valuable insights prior to user testing.
However, these models suffer from a "reality gap", meaning they are trained in simulated environments
that differ from what users actually experience, which limits their accuracy and transferability. To close
this gap, we introduce SIM2VR, an open-source platform for integrating biomechanical user simulations
directly into VR development environments. Its key component is its Perceptual-Motor Interface, which
allows models to "see" and "control" the exact same environment as humans. With two VR games, we provide
recommendations for designing and selecting an appropriate biomechanical model, reward function, and
curriculum for reinforcement learning, and demonstrate that SIM2VR can predict users’ performance, effort,
and strategy. We conclude that by lowering the barrier to biomechanical simulation, SIM2VR promotes the
adoption of user models in VR design.

∗Both authors contributed equally to this research.

1

190
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI); Systems and
tools for interaction design; Virtual reality; User models.

Additional Key Words and Phrases: biomechanical simulation, perceptual-motor interface, interaction design,
reality gap, automated testing, virtual reality, VR development environment, deep reinforcement learning

1 INTRODUCTION
Computational user models could assist in the design of VR interactions by providing insights into
users’ performance and experience before empirical evaluations. Recent advances in biomechanical
models and deep reinforcement learning (RL) have enabled high-fidelity simulations that can be
used to predict key indices of usability and ergonomics. These models include biologically plausible
musculoskeletal models that are trained in physics simulators (e.g., MuJoCo [53]) to maximize
a given reward function [7, 23]. In comparison to prior user models, the integration of RL and
physics simulation has enabled working with more complex phenomena with fewer hand-crafted
inputs. Yet, applications have been limited to relatively simple VR tasks, such as locomotion and
aimed movement tasks like pointing, choice reaction, and vehicle control [8, 17, 23, 27]. We posit
that, if developed further, such simulations could boost efforts in user-centered design in VR. They
could allow to spot fundamental ergonomics issues such as "gorilla arm" early, even before user
testing, freeing precious user testing time to evaluate the higher-level experience. This could drive
the design of VR applications that explicitly minimize effort, reduce long-term fatigue, or prevent
repetitive stress injuries. Simulations could also promote ability-based design in VR, because users
with different physical and cognitive properties can be simulated without the risk of physical harm.

This paper attacks a critical obstacle to the wider adoption of simulation models in this space: the
"reality gap". The reality gap is a known challenge in the field of robotics (e.g., [15]), where robots
trained in simulations often struggle to perform well in the real world, and where several "Sim2Real"
methods have been developed to address the issue. A similar issue arises in computational user
modelling, where the simulation can predict how users would interact with the model of the user
interface, but not the real user interface itself. To the best of our knowledge, this reality gap is not
yet discussed in HCI. Currently, the environments in which user models are trained are different
from the environments in which they ought to be deployed. These differences can be dramatic.
Ikkala et al. [23], for example, trained their biomechanical simulations in a simulated environment
that contained only the target of the aimed movement and very few or no other objects. Presently,
the reality gap plagues practically every aspect of the simulation: the task environments, the
rewards, the input device, the display, the feedback, the perceptual inputs of the model (what the
model senses), and the control problems (what the model controls) can all be different. This is a
problem, because deep RL solutions are sensitive to the state spaces they are trained in. A model
trained in a contrived environment is unlikely to behave equally to users interacting in a real-world
VR environment.

We present SIM2VR, which aims to close the gap by allowing training models directly in the
same VR environment that users experience. It leverages the fact that VR environments already
are simulations and there is no need to create a replica of them; rather, we should directly run
our models in them. The key enabler in SIM2VR is the Perceptual-Motor Interface, a software
component that allows simulation models to access the same camera view and control input as
humans (see Figure 1). By creating a platform that can host both real users and simulated users,
SIM2VR enables real and simulated users to observe and interact with exactly the same virtual
environment. Compared to a user simulation interacting with a simplified low-fidelity version of
the interface provided to humans, this makes the simulation more valid and directly comparable. By
allowing biomechanical details of user movements to be simulated and predicted in silico, SIM2VR

2

191

SIM2VR

also alleviates the long-standing problem of automated testing of VR interaction, which has so far
mainly focused on higher-level interaction events such as "the user pushed a UI button" [5, 20, 29, 44].
While the available biomechanical models and RL methods currently limit simulations to relatively
simple sensorimotor tasks in VR, as these technologies advance, the modular nature of SIM2VR
will immediately enable the direct use of such advances in computational user simulation in VR
development.

In summary, we contribute the design and evaluation of a software platform that enables training
biomechanical simulations directly in VR environments, providing a way to integrate user models
into the real-world development workflow. We test and demonstrate our system by providing
predictions of performance, ergonomics, and user strategies in a VR game with several variations,
and contribute a ground truth human dataset of 18 users playing the game.

2 RELATED WORK
Below, we situate our work in relation to previous efforts in both automated testing in VR devel-
opment and computational user modeling and simulation, with particular focus on simulation
suites.

2.1 Automated Testing in VR Development
The academic literature on VR development tools covers a diversity of topics such as input and
output technologies [11, 26, 50, 57], software toolkits providing abstractions and support for
handling diverse hardware [25, 52], and interaction techniques for contexts such as expressive
hand interaction [43] and VR games [16].

What has received relatively little attention is a basic problem of VR development: Compared
to developing desktop and mobile applications, iterative testing and development can be slow and
cumbersome. A VR developer typically needs to put on a VR headset and stand up and move around
in space to test their work, which causes an overhead compared to testing desktop or mobile
software. Because of this, one would ideally want to use automatic testing whenever possible.
Furthermore, a particular problem VR designers face is the difficulty of predicting the end users’
movements and designing for minimal fatigue and simulator sickness [1]. These are issues that
traditional software testing automation does not address.

Although the need for automated testing of VR interaction was already identified in the early
2000’s [5], a recent study of over 300 VR projects found that 79% of the projects did not utilize any
automatic tests [44]. Test automation also followed common software testing practices without
considering the user’s body movements, focusing on aspects such as evaluating the correctness of
a response after an event was triggered [44]. So far, even automated testing approaches designed
specifically for VR do not emulate or simulate the user’s moving body. Instead, they focus on
moving and rotating the viewpoint to inspect VR scenes [56], or operate on higher-level action
events such as "click UI button" or "grab object" which abstract away the details of the user’s
movements [5, 20, 29].

To the best of our knowledge, our work is the first to extend automatic testing of VR applications
with a computational user model utilizing biomechanical simulation. This allows automatic testing
to shed light on new aspects of user behavior and experience such as which movements a particular
VR design might elicit or how difficult a movement task might be. In the domain of Natural User
Interfaces (NUIs), a generative motion model has been proposed for automatic testing of gestural
interaction [22], but compared to our work, the model was not embedded in a learning loop; instead,
it generated random movement sequences without the capability of adapting to the tested interface.

3

192
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

2.2 Computational User Modelling and Simulation
Biomechanical models and computer-based simulations are well-established [2]. Increases in com-
putational power have enabled them to evolve from simple models limited to computation of
mechanical loads in static postures [59] to more physiologically-accurate musculoskeletal mod-
els [12, 13]. Biomechanical models were typically used for inverse biomechanical simulation, e.g.
using the OpenSim ecosystem [48]. Such inverse simulation methods, namely inverse kinematics,
inverse dynamics, and static optimisation or computed muscle control, allow the estimation of
mechanical loads within the human musculoskeletal system, and neural controls of the muscles
given motion tracking data of a given user’s movement as input [13], and are typically applied in
the areas of medicine, rehabilitation, and sports. Computer graphics research on biomechanical
simulation and control tends to emphasize visual fidelity and simulation speed rather than scien-
tific insight [33, 34, 41, 45, 49, 51]. Forward simulation methods used to be less frequently used in
standalone situations, as they require muscle controls as inputs, which are extremely complex to
measure experimentally. These have, however, become more useful when applied in combination
with computational controllers [14, 32] and efficient physics engines [30], as we will demonstrate
in this paper.

RL provides a suitable framework for modelling human behaviour in a flexible way: one only
needs to define the states, actions, and rewards and then RL computes the optimal policy [9, 10]. In
some cases, the reward function and other parameters can be inferred from human data [3, 28].
When the reward function and state-action space, including their key limitations, are similar to
a human’s, increasingly human-like behavior has been shown to emerge through learning [42].
Applications in HCI include models of typing, menu selection, multitasking, and visual decision-
making [42], and the broader arguments for expanding the use of computational user simulation
in HCI are presented in [18, 39]. Using the assumptions of signal-dependent control noise and
movement time minimization, Fischer et al. [17] have shown that an RL agent can learn to generate
human-like movements with a torque-actuated state-of-the-art model of the upper extremity. The
generated movements were in accordance with well-established phenomena such as Fitts’ Law [19]
and the Two-Thirds Power Law [31]. RL-based simulation may also provide valuable information
for predicting usability- and ergonomics-related criteria and to aid in interface design. For instance,
Cheema et al. trained a (simplified) torque-actuated biomechanical arm model in a mid-air pointing
task, and used the model to predict fatigue of real human subjects performing the task [8]. Leino
et al. [35] used RL to learn policies for keystroke-level models, and used this to optimize button
arrangements.

By combining perception models, musculoskeletal models, and physically simulated input devices,
we can train agents to model and simulate intricate interaction tasks, such as those requiring
visuomotor control. A good example of such control is presented in [41], where Nakada et al.
introduced a virtual human model and used deep learning to learn reaching and tracking tasks.

2.3 Simulation Suites
A significant step has been the development of computationally efficient, real-time physical simula-
tion software, such as MuJoCo [53]. With this, we can simulate interaction steps quickly enough
to use RL for more flexible problem formalisations. This allows a researcher to guide an agent’s
learning through reward functions, as was demonstrated in [23]. With their User-in-the-Box ap-
proach, they provide a novel combination of visuomotor user models, movement-based interaction
tasks, and powerful learning methods such as PPO. MyoSuite has a similar approach with a focus
on dexterous hand movements, which recently added biomechanical models of hand, neck, and leg

4

193

SIM2VR

models, as well as a conversion tool for OpenSim models (MyoConverter1) [7, 55]. As we outline
below, these recent advances in the quality, scope, and trainability of biomechanical user models
can be directly leveraged by our SIM2VR platform.

3 CHALLENGES IN CLOSING THE REALITY GAP
Integrating user simulations into the VR development process is challenging, for reasons we lay
out in this section.

First, simulating the user with the physics engine included in a VR development environment
(e.g., the Nvidia PhysX engine implemented in Unity) is generally not feasible. This is because
game engines are primarily designed to produce visually appealing rather than biomechanically
plausible animations, and are thus typically limited to joint-actuated rigid body models that ignore
much of the complexity of the human visuomotor system [58]. Second, reimplementing the VR
interaction dynamics in the physics engine used for biomechanical modeling is tedious, highly
technical, and time-consuming. In addition, such replicas are often subject to severe simplifications
and (unintentional) changes of the actual application (including different game dynamics, different
meshes and renderings, missing game objects, deviating movement, positions, orientations, and
scalings of virtual objects, and more), which limits the validity of user simulations and increases
the reality gap.

To ensure both accuracy and validity, two engines thus need to be run in parallel: The user
is simulated within a physics engine that allows for biomechanically plausible motion such as
MuJoCo [53] or OpenSim [47], while the VR application is running within a VR development
environment such as Unity2 or Unreal3 or as a standalone application.

Crucially, these engines must be able to interact with each other, which requires a perceptual-
motor interface that sends control input from the user simulation to the VR application and rendered
images in the opposite direction. The goal in designing such an interface is to provide the model
with exactly the same stimuli that a real user experiences and to provide the same control space to
it, thereby closing the reality gap.

The construction of such a perceptual-motor interface poses a number of challenges:
• Efficient transfer of input and output signals:

(1) "Virtual" sensor data, e.g. the position and orientation of the controller and the HMD,
need to be calculated based on the current user simulation state and sent to the VR
environment, as if a real user were interacting with the application.

(2) Conversely, any feedback provided by the VR environment needs to be passed to
the simulated user in order to model the user’s sensations and perceptions during
interaction.

• Closed-loop coupling: Updates of the VR environment (changing the state of the virtual game
objects and providing a new rendered view of the scene) and the biomechanical simulation
(moving the user and the input/output devices) must be coordinated.

• Spatial alignment: The initial pose of the simulated user needs to match that of a real user
to ensure that game objects can be reached in a similar way and tasks are comparable.

• Temporal alignment: The frame rates of both the user simulation and the VR environment
need to be aligned appropriately. Time-varying VR application frame rates (e.g., due to
computational overhead) must be addressed, as well as the need for faster-than-real-time
simulations (e.g., during training of an RL agent to learn interactive user behavior).

1https://github.com/MyoHub/myoconverter
2https://unity.com/
3https://www.unrealengine.com/

5

194
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

To be of practical use, the interface must be embedded in an accessible open source platform that
additionally satisfies the following criteria:

• Modifiability and evaluability: The platform needs to support arbitrary modifications of both
the VR environment and the simulated user. In addition, it should be possible to analyze
and evaluate the impact of both system design choices as well as assumptions about the
user’s rationale and capabilities on the entire interaction loop (e.g., in terms of performance
or comfort).

• Embeddability and generalizability: The platform needs to be easily integrable into existing
workflows of VR designers and generalizable to different user models and VR interaction
environments.

4 SIM2VR: A PLATFORM TO SIMULATE USER INTERACTION IN VR ENVIRONMENTS

Fig. 2. The Perceptual-Motor Interface establishes a continuous closed loop between the Simulated User and
the VR Interaction Environment. Since simulated users see and control the exact same environment as humans,
the Perceptual-Motor Interface allows to predict how users interact with a given VR application.

SIM2VR is an open-source platform for integrating biomechanical user simulations into the
development process of VR interaction environments. It consists of three main components: 1) The
Simulated User, which is a biomechanical user model capable of learning interaction tasks; 2) The
VR Interaction Environment, which defines the virtual environment, and; 3) The Perceptual-Motor
Interface that connects these two components.

The Simulated User controls the VR Interaction Environment in a closed-loop fashion, as depicted
in Figure 2. First, the Simulated User generates muscle control signals based on its visual perception
of the VR scene and proprioceptive information of the current body posture. Then, the biomechanical
simulation is "forwarded" in the sense that the muscle forces are generated that drive movement of
the body and, consequently, the hardware devices. The position and rotation of the VR controllers
and HMD is then measured by virtual sensors and sent to the VR Interaction Environment using
the Perceptual-Motor Interface. The VR Interaction Environment processes this input, computes a
game reward based on the updated application state (e.g., the current game score), and then renders
the new scene as perceived by the virtual HMD. Finally, the Perceptual-Motor Interface sends the
rendered image, the reward, and optional "stateful" information (such as time remaining in a round)
to the Simulated User, thus closing the interaction loop.

6

195

SIM2VR

While the concept of the Perceptual-Motor Interface is agnostic to which physics engine and VR
development environment are used, the implementation within the SIM2VR platform is tailored to
user simulations running in MuJoCo and VR applications implemented with the Unity engine.

4.1 SIM2VR Components

Fig. 3. The Perceptual-Motor Interface provided by the SIM2VR platform allows to efficiently transfer data
between the Simulated User implemeted in the UitB framework and the VR Interaction Environment imple-
mented in Unity. The components of the interface are displayed in green.

Simulated User. The Simulated User is based on the UitB framework, which offers a highly modular
approach to modeling user biomechanics and interaction. More precisely, each user model consists
of a biomechanical model (e.g., implemented in MuJoCo), which is augmented with one or multiple
perception modules implemented in Python (see Figure 3). These perception modules define
how the Simulated User perceives its surroundings, e.g., via visual or proprioceptive signals. The
framework also requires choosing a task module, which sets up the interaction environment and is
responsible for providing a task-dependent reward signal (i.e., information about how beneficial a
given simulation state is for fulfilling the defined task). During training, this information is then
used by the RL Agent to learn how to optimally control the biomechanical user model for the given
interaction task and environment.

VR Interaction Environment. The VR Interaction Environment can be any existing Unity VR ap-
plication or a prototype thereof, either built as a standalone app or run within the Unity Editor.
However, it must be compatible with and connected to the Perceptual-Motor Interface in order
to run simulations within this environment. This can be achieved by adding our SIM2VR Asset, as
described below.

Perceptual-Motor Interface. The Perceptual-Motor Interface enables communication between the
simulated user and the VR application. It consists of the UitB Unity Task class, a UitB vision module
called Unity Headset, and a Unity asset called SIM2VR Asset. For an illustration of how these
components relate to each other, see Figure 3.

Exploiting the modularity of UitB, the Perceptual-Motor Interface uses the concept of a task class
to augment the simulated user with VR controllers and an HMD,4 regardless of which biomechanical
user model and which perception modules are otherwise used. The new Unity Task added to UitB
4Our platform currently comes with mesh files of the Meta Quest 1 & 2 (https://www.meta.com/quest/) however, these can
be easily replaced by models of other controllers and display.

7

196
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

Fig. 4. With SIM2VR, simulated users for the first time perceive exactly the same visual input as humans. In
practice, the only difference between the two rendered images displayed on the HMD (left) and the RGB-D
image provided to the simulated user (right) is that we found it practical to reduce image size and resolution
to speed up RL training.

ensures that the VR controllers and HMD are rigidly attached to the hands and head of the
biomechanical model. In addition, it sends the current position and orientation of the VR controllers
and the HMD to the VR Interaction environment and, conversely, makes the information received
(i.e., rendered image, game reward, and other "stateful" information) available to the respective
UitB modules. The Unity Headset class, which is used as default vision module, models how the
rendered image is perceived from the virtual HMD. Since the VR application is agnostic to whether
a virtual or "real" HMD is used, the only difference in the visual perception can be introduced by
the perception module. For example, it has proven useful to reduce the image size and resolution
(see Figure 4) to speed up RL training.

On the other side, the SIM2VR Asset ensures that the VR application is compatible with the
simulation, i.e., it is capable of receiving virtual sensor input data and, in turn, sends its output
signals back to the user simulation. The SIM2VR Asset also provides RLEnv, a Unity script that
defines the task-specific rewards, which are then sent to the Simulated User. This RLEnv needs to be
modified by the VR delevoper to adapt to the specific game dynamics and tasks under consideration
(practical advice on how to define these game rewards is given in Section 5).

To model how users decide for a specific sequence of muscle control signals during interaction, a
policy mapping perceptions to muscle control signals needs to be learned by the RL Agent. As reward
signal, we use a combination of the task-specific rewards provided by the RLEnv and effort costs
defined by the biomechanical model. This ensures that the Simulated User learns to reduce muscle
exertion whenever possible, e.g., by avoiding arm movements that do not contribute to the task, and
thus increases biomechanical plausibility. During the training, checkpoints that are automatically
stored at a desired frequency can be used to evaluate to which extent the Simulated User has
learned to interact with the given VR application, e.g., assessing its performance, ergonomics, and
strategies (see Section 6).

4.2 Technical Implementation
In the following, we describe how the Perceptual-Motor Interface was implemented to address the
challenges identified in Section 3.

Efficient transfer of input and output signals. We use ZeroMQ5 to transfer data between the Simulated
User implemented in UitB and the VR Interaction Environment implemented in Unity, which are
5https://zeromq.org/. We use Python bindings for UitB, .NET implementation for Unity.

8

197

SIM2VR

running as separate processes, via TCP. These processes send and receive data reciprocally in turns:
Unity sends the visual observation as RGB-D array along with other possible stateful information
and the reward to UitB, whereas UitB computes and sends the input and output devices’ position
and rotation, as well as timestamps for synchronising the simulators temporally. For logging and
debugging purposes, we also add the option to send any additional data from the VR application to
UitB (see Section 5).

Closed-loop coupling. Updates of the Simulated User and the VR environment are synchronized by
the Unity Task class, which waits for data from the VR environment before the MuJoCo update step
is triggered, and the Simulated User script included in the SIM2VR Asset, which ensures that Unity
frames are aligned in time (see below). The user simulation can also call the reset function of the
VR application and vice versa, ensuring that both simulators are reset together when necessary.

Spatial alignment. To ensure that input and output devices are correctly aligned between the two
simulators, the positions and rotations of the respective MuJoCo objects are transformed to Unity
coordinates (which includes switching from a right-hand to a left-hand coordinate system) by the
Unity Task class before being sent to the VR Interaction Environment. Constant offsets between
the controller mesh files can also be accounted for.

Temporal alignment. While UitB runs at a constant frame rate,6 Unity’s frame rate is non-constant
and typically varies with computational load. To ensure temporal alignment between the two
simulators, the Unity application is restricted from sending data until the next timestamp required
by the Simulated User (which is sent to Unity via the ZMQ server in advance) has passed.

To enable faster-than-real-time simulations, the Unity timescale parameter is set to a value
greater than one (in our experience, running Unity at 5x real time has proven to be a good
compromise between simulation speed and robustness). To avoid computational overhead, we also
make sure that the scene is only rendered when required by the Simulated User.

Modifiability and evaluability. As SIM2VR directly integrates biomechanical user simulations into
Unity, the target VR application can be edited as usual. The highly modular UitB framework allows
most simulation parameters (e.g., the effort cost weight, which perceptual modules to be used, or
hyperparameters of the RL agent) to be easily set from the config file. Due to being fully open-source,
the SIM2VR platform can also be supplemented by new biomechanical, perceptual, or cognitive
models, additional RL methods, or other features. We also provide evaluation scripts which allow
to validate user models and analyze the predicted interaction behavior (see Section 5).

Embeddability and generalizability. With Unity as VR development environment, our platform can
be directly integrated into existing workflows of VR designers. In addition, it can be used with
arbitrary Unity applications7 and biomechanical models implemented in MuJoCo.8

5 CREATING USER SIMULATIONS IN VR: DESIGN RECOMMENDATIONS
Training an RL agent to generate interactive movement in a biomechanically plausible way is gen-
erally very difficult, mainly because of the high-dimensional state-action space, which is generally
prone to the Curse of Dimensionality, and a lot of complex computations and approximations being
lumped together in the simulation process, making it difficult to identify potential flaws and errors.
6Note that MuJoCo is typically updated at a higher, constant frame rate to increase simulation accuracy and avoid instabili-
ties [17, 30].
7The only requirement of the Unity application is that OpenXR plugin (min. version 1.5.3) is used to handle VR device
interaction.
8Thanks to conversion tools such as the O2MConverter [24] or MyoConverter [7, 55], our platform can also be used with
biomechanical models originally built in OpenSim.

9

198
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

To remedy this, we propose a three-step process that can be performed either prior to the training
process, thus serving as design guidelines for selecting an appropriate simulation model, or when
problems are observed during training that require further analysis. An overview of the different
design choices VR developers face is provided in Table 1.

As an example, we consider the Beat Saber9-style game implemented in the VR Beats Kit, which
is freely available on the Unity Asset Store.10 A step-by-step guide on how to add SIM2VR to this
(or other) existing VR applications can be found in Section A in the Appendix.

5.1 Biomechanical Model
First, we suggest choosing a biomechanical user model with appropriate scope. In principle, any
biomechanical model implemented in MuJoCo is conceivable. Currently, this mainly includes
models of the arm, elbow, hand, finger, neck, and legs [7, 24, 55]. Most of them make use of
musculotendon actuators, however, torque-actuated variants of these models [17] may also be of
interest, e.g. when training needs to be fast and ergonomic predictions are of minor importance. As
our Beat Saber game requires movements of the VR controller, we decided for the (muscle-actuated)
MoblArmsWrist model included in UitB. For perception, we use the basic UitB proprioception
module, which allows the Simulated User to infer its joint angles, velocities, and accelerations, as
well as muscle activations and index finger position, in addition to the standard Unity Headset
vision module.

In the context of VR interaction, it is particularly important that the selected biomechanical user
model is fundamentally capable of performing each of the movements required for the task under
consideration. To achieve this, we provide BioCheck, a tool that visualizes the reach envelope of the
selected biomechanical model along with the target positions of the VR environment. This is done
the following steps. First, the position of the VR controller attached to the biomechanical user model
is computed for arbitrary body postures with maximum extended arm. Second, these controller
positions are transformed into Unity coordinates, using exactly the same method provided by the
Perceptual-Motor Interface that is also applied during simulation. Third, the positions of the targets
shown in the VR application are identified and plotted together with the reach envelope. We use
BioCheck in Section 6.1 to verify the reachability of the static targets in the Whac-a-mole game
(see also Figure 6 for an example plot).

Effort Costs Task Rewards Learning Curriculum
Neural [4] Sparse Uniformly Random

3CC-r [8, 37] Dense Manual Curriculum
Consumed Endurance [21] Adaptive Automated Curriculum

None
Table 1. Design choices for the Simulated User relate to task rewards (sparse, extrinsic rewards as provided by
the game dynamics/task instructions, or adding continuous distance terms to ensure a dense reward function),
effort costs (Neural costs, effort costs as predicted by the 3CC-r fatigue model, Consumed Endurance costs,
or no effort costs at all), and learning curricula (sample all game levels or tasks with same probability, or
define a curriculum either manually or using our Adaptive Automated Curriculum.

9https://beatsaber.com/
10https://assetstore.unity.com/packages/templates/systems/vr-beats-kit-168243

10

199

SIM2VR

5.2 Reward Function
Second, a suitable reward function needs to be designed. Following the UitB framework, the reward
function consists of an effort term related to the body movement and a task-specific reward term
related to the interaction environment.

Effort costs are supposed to incentivise the reduction of muscle exertion to the extent allowed by
the task. From a mathematical point of view, these effort costs should penalize a quantity directly
related to the muscle control signal to act as a regularization term in the optimization problem
(approximately) solved by the RL Agent. In practice, however, any effort-, energy-, exertion-, or
fatigue-related cost term is conceivable, as well as a zero effort term incentivising maximum
performance regardless of the effort involved. The left column of Table 1 gives an overview of the
most relevant effort costs models, all of which are implemented in SIM2VR.11

For setting the task-specific rewards in the RLEnv class of the Unity application, an obvious first
approach is to simply use the latest change in the game score, if available. While such rewards
arguably incentivise the "right" goal, i.e., maximizing the number of points earned in the VR game,
they are sparse in the sense that the rewards are provided only after the simulated user has already
learned how to perform the task correctly (or has accidentally reached the goal, which usually
does not happen often enough to learn a reasonable strategy from random exploration alone). To
mitigate this issue often referred to as the temporal credit assignment problem [6, 38], dense rewards
need to be added that guide the RL agent to learn how to achieve these goals. We anticipate that for
many VR applications, distance rewards that incentivise movement of the VR controller toward the
desired target object(s) will be beneficial, e.g., when game objects need to be hit within a certain
amount of time or map positions must be reached. To this end, we also provide RewardCheck, a
tool that allows to analyze how different distance reward functions develop over the course of a
game round in different scenarios (worst case, best case, linear/quadratic interpolation between
initial distance and zero distance, etc.). As a main benefit, this tool allows to predict and visualize the
cumulative sum of each reward component, which helps in scaling these components appropriately.
For example, a one-time reward (e.g., provided when successfully hitting a target) should be chosen
large enough to compensate for the potentially lower reward achieved afterwards (e.g., because the
distance to the next target is much larger and the agent has not learned to yet to move to this target
as well). Similarly, the effort costs need to be scaled appropriately in order to effectively reduce
muscle exertion whenever possible, while still being motivated to achieve the actual task encoded
by the task-specific reward term. As a general rule of thumb, a ratio of 1:10 between effort costs
and task-specific rewards (when fully achieved) has proven reasonable in our experience.

For Beat Saber, we use the default Neural effort costs from [23], which penalize the sum of the
squared muscle control signals at each time step. As task-specific rewards we use the default sparse
rewards obtained from the game scores, because they are easy to implement and not prone to
unwanted biases. The effort costs are scaled accordingly.

5.3 Learning Curriculum
Third, many VR environments contain numerous tasks, variations, or game levels. Given that
training a biomechanical model to perform a single, clearly defined interaction task is already
quite challenging, this poses great challenges for the application to "real-world" applications. This
issue can be addressed by defining a learning curriculum that determines how and when different
conditions are sampled during the training. Two standard options are the uniformly random task
selection (i.e., all conditions are sampled with the same probability at the beginning of each round)

11In contrast to [8], our variant of the 3CC-r model [37] is implemented on a muscle level, i.e., the three compartments
(active, resting, and fatigued motor units) are defined and updated for each muscle individually.

11

200
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

and the manual curriculum (i.e., conditions are trained in a specific order, with some tasks being
authorised only after a fixed number of training steps, or after a certain sub-goal has been achieved).
However, it is also possible to define an Adaptive Automated Curriculum, where the performance
on each task is measured during training, and tasks with a lower success rate are subsequently
selected with a higher probability. This variant can be thought of as a "personal trainer" that creates
a customized training plan for the Simulated User based on its current strengths and weaknesses.

If a Simulated User persistently fails to perform a given task, but the biomechanical model has
shown to be principally able to, and the reward function was carefully and properly designed, it
is reasonable conclude that the RL agent failed to learn the optimal policy. This can be caused
by many factors, including underspecification of network capacity, an inappropriate observation
or control space, bugs in the reset or update functions of either the Simulated User or the VR
interaction environment, too few training steps, inappropriate hyperparameters of the chosen RL
method, or an overly complex learning curriculum.

To help VR designers investigate these issues, we provide a means to easily log arbitrary variables
from the Unity application during simulation. This simply requires referencing the desired variable
name in the configuration file and storing the respective values in a predefined dictionary at each
time frame from anywhere in the RLEnv script. The logged variables can then be inferred from
the Weights and Biases dashboard12, along with other standard metrics such as mean accumulated
reward and mean length per round. For example, it is possible to observe in real time how the
target hit rate evolves during training for each rail of the Beat Saber game separately. This can be
used to identify errors and learning difficulties early on in training.

In addition, SIM2VR comes with several plotting and visualization tools to evaluate and compare
different user simulations.

6 CASE STUDY: "WHAC-A-MOLE" VR GAME
In order to evaluate the ability of a Simulated User trained with our SIM2VR platform to behave
similar to users, we developed the VR arcade game Whac-a-mole. Whac-a-mole is well-suited for
the evaluation, as it requires non-trivial visuomotor coordination, while using a simple but widely
used game logic. We implemented different game levels that allow to infer the performance, effort,
and strategies of different user models. Thanks to the Perceptual-Motor Interface, it was easily
possible to collect additional data from real users performing the same tasks in exactly the same
VR environment.

The goal of the Whac-a-mole game is to hit targets (the "moles") with a hammer to score points.
Those targets appear randomly on a 3 × 3 grid as can be seen in Figure 5a. If a target is successfully
hit within one second, it explodes and disappears (see Figure 2), and the game score is increased by
one. Otherwise, the target collapses and no points are given. The game has three difficulty levels
which differ in the number of simultaneously displayed targets (easy: 1, medium: 3, hard: 5). A
second attribute, target area placement, defines the position and orientation of the target area with
respect to the HMD (low, mid, high), as shown in Figure 5b.

We create two variants of the game: In the constrained variant, a velocity threshold needs to
be exceeded in order to successfully hit a target, whereas in the unconstrained variant, no such
threshold exists. Further details on the game design are provided in Section B.1 in the Appendix.

6.1 Training and Evaluating the Simulated Users
The Simulated User models trained on the Whac-a-mole game are defined as follows.

12https://wandb.ai/

12

201

SIM2VR

(a) Front View with Target Grid (b) Target Area Placement Conditions

Fig. 5. (a) In Whac-a-Mole, targets appear randomly for a short time at one of 9 fixed positions and must be
hit with a hammer within one second to score a point. The gray targets are shown for visualization purposes
only and are not visible during the game. (b) The game allows for three different placements of the target
area (low, mid, and high).

Fig. 6. For Whac-a-mole, the BioCheck tool provided by SIM2VR shows that all target positions can be
reached by the MoblArmsWrist model, although some targets in the low condition may be difficult to reach.
The orange lines show the hammer position for arbitrary postures with the arm fully extended, and the black
cross indicates the shoulder origin. The plot shows the scene from a bird’s eye view, with the user facing in
the 𝑧-axis direction.

As biomechanical model, we use MoblArmsWrist, a MuJoCo version of the MoBL ARMS model [46]
that includes wrist joints and muscles, resulting in a total of 7 DOFs and 32 muscles. This is a
reasonable choice, given that Whac-A-Mole mainly involves movements of the right arm and
wrist.13 Using the BioCheck tool included in SIM2VR, we made sure that the model is able to reach
all the target positions implemented in our VR game (see Figure 6). Note that performing such
checks before starting training can be essential in practice, as problems with reaching certain
targets could otherwise easily be (mis)attributed to poor reward design or convergence issues.
13Since the model does not actively model neck and head movements, the position and orientation of the HMD were kept
constant throughout the simulation.

13

202
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

For the task rewards, we use a dense reward function which adds two terms to the game scores
provided by the game logics. First, unsuccessful target contacts are rewarded with a score linearly
dependent on the hitting speed (thus encouraging faster hitting speeds). Second, the distances
between the hammer and each of the currently active targets are penalized (thus incentivising
movement toward any target). As effort costs, we use the muscle-level version of the 3CC-r fatigue
model. Using the RewardCheck tool included in SIM2VR, we decided to scale the sparse game score
obtained from the game dynamics with a factor of 10, leave the dense distance reward and contact
terms as they are, and use an effort cost weights of 0.1.

As a task selection method, we decided to sample between the low, mid, and high levels uniformly
random, while the game difficulty and strategy were consistently set to medium and constrained,
respectively, during training (i.e., the maximum number of simultaneous targets was always 3, and
the velocity threshold was enabled). While it may be reasonable to continue training the final user
models on either the Easy or Hard conditions, thereby defining a manual curriculum, we observed
that the models trained solely on the Medium condition already generalize well to the remaining
difficulties.14 This Simulated User is denoted as SIM𝑢 in the following.

In addition, we created a second Simulated User SIM𝑎 , with the only difference that an Adaptive
Automated Curriculum is used instead of sampling all target positions with equal probability. In
particular, with a probability of 50%, target positions are either sampled with equal probability or
depending on the fail rates in the previous round (i.e., target positions that were not or hardly hit
previously have a higher probability).15

Finally, we trained a separate instance of the SIM𝑢 model on the unconstrained version of the
game, which is only used in the latter part of the evaluation.

All models were trained for 100M training steps to ensure comparability. Each of the resulting
policies was then evaluated for 12 rounds in each of the three difficulty and each of the three target
area placement conditions, resulting in a total of 12*6=72 rounds per Simulated User. Performance
measurements for both training and evaluation can be found in Section B.2 in the Appendix.

6.2 User Study
In the user study we collected data from 18 right-handed participants; 12 participants played
the constrained variant of the game, while 6 participants played the unconstrained variant. The
participants were mostly local graduate or post-graduate students, or faculty members (at [redacted
for submission: name of a university]). The average age of these participants was 28.8 years, with a
standard deviation of 6.2 years; eight of the participants identified as female, nine as male, and one
as non-binary. Prior to the experiment, the participants were presented with a study information
sheet, a privacy notice explaining data processing and storing procedures, and all signed a consent
form to agree to participate in the experiment (with the option to terminate the experiment at any
time). The experiment length was approximately 30 minutes, and participants were rewarded with
a [redacted for submission: amount of money and currency] gift card to a local restaurant.

The independent variables of the study coincide with the difficulty, target area placement, and
game strategy attributes of the game described above. We estimate the effect of difficulty with
the hit rate, i.e., the ratio of targets that were successfully hit before they disappeared to the total
number of targets spawned. The effect of target area placement is estimated with the Borg Rating
of Perceived Effort (RPE) scores reported by the participants. Finally, the effect of game strategy is
estimated by qualitative movement analysis of the controller movements. In particular, we presume
14As described in Section 6.2, the participants of our user study were also only allowed to "train" on the Medium condition,
before the experiment started.
15In this case, the probability of a given target position is defined as its fail rate, i.e., the percentage of missed targets that
appeared in this position in the previous round, divided by the sum of all fail rates.

14

203

SIM2VR

Independent variable Operationalisation Conditions Dependent variable
Difficulty Max. number of simult. targets (easy, medium, hard) Hit rate
Target area placement Position and orientation of target area (low, mid, high) Borg RPE
Game strategy Velocity threshold enabled (true, false) Hammer mov. traj.

Table 2. Summary of the operationalisations and conditions of the independent variables along with the
dependent variables in the user study.
Abbreviations: Simult. stands for simultaneous and mov. traj. for movement trajectory.

that participants may discover a "cheat" strategy in the unconstrained version, where the hammer
is kept close to the target area throughout the round, as the targets can be hit with arbitrarily low
velocity.

The experiment procedure was as follows. The experiments were conducted in an office room.
The participants were seated, but not restricted to the chair. Participants were asked to try to avoid
bending and rotation movements of their torso (as the simulated user model has a fixed torso), and
focus on their arm movements. Participants were allowed to train with the Medium/mid level. This
was to reduce learning effects, and to provide the participants a chance to familiarise themselves
with the notion of hitting non-physical floating targets.

In the first part of the experiment, participants performed the three difficulty conditions in
counterbalanced order. After completing the first part, participants were given a rest period of
at least 5 minutes and were instructed to take as long a break as necessary to ensure that their
right arm was not fatigued for the second part of the experiment. During this time, they were also
introduced to the Borg RPE score and completed a questionnaire. In the second part, participants
performed the three target area placement conditions in counterbalanced order and reported the
Borg RPE score after each condition.

For evaluation, only the data from the 12 participants interacting with the constrained variant of
the game is used, unless otherwise stated.

6.3 Results
In the following, we analyze and compare how the simulated and real users from Sections 6.1
and 6.2 interact with the Whac-a-mole game in terms of performance and effort. We also discuss
specific behaviors observed from both the user study and our simulations, and demonstrate that
the simulated user is capable of predicting specific strategies that users may exploit when game
dynamics allow.

6.3.1 Performance. To assess the performance of each user, we measure the number of target hits
and misses for each of the three difficulty conditions. In Figure 7, the mean number of hits and
misses from 12 rounds is shown for both simulated users SIM𝑢 and SIM𝑎 for each condition, along
with the means of the 12 real users per condition. In the user study (solid, right bars), both the
numbers of target hits and misses increase from the easy to the medium condition. However, this
trend does not continue when proceeding to the hard condition. Instead, the number of target hits
remains approximately constant (green), while the number of target misses (orange) increases. A
similar trend can be observed for both SIM𝑢 and SIM𝑎 (shown as left and mid bars, respectively). In
addition, the total number of hits and misses predicted by the simulated users (which can be inferred
as the height of the respective bars) for each difficulty condition is well in line with the average
performance of the real users, although small underestimations are visible. Here, the simulated
user SIM𝑎 matches the real user data slightly better than SIM𝑢 .

Thus, when used in the process of developing the Whac-a-mole VR game, the simulations
provided by our platform could have suggested that increasing the task difficulty beyond the

15

204
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

Fig. 7. The simulated users SIM𝑢 and SIM𝑎 (left and mid bars) show similar numbers of target hits and misses
in the Whac-a-mole game as the 12 real users from our study on average (right bars). In particular, differences
between the three difficulty conditions are predicted well.

medium condition (i.e., allowing more than three targets to appear simultaneously) would not lead
to higher game scores for average users, but only to more target misses, possibly overwhelming
users.

Fig. 8. Both simulated users SIM𝑢 and SIM𝑎 predict target hit rates that are within the between-user
variability observed from the user study. In addition, the simulations show a similar decrease in hit rate as
the game difficulty increases as most real users.

In Figure 8, the target hit rate, i.e., the percentage of spawned targets that are successfully
hit within a round, is plotted separately for each of the three difficulty conditions and for all
users. While there is a considerable variability in the performance of real users, both simulations
consistently predict target hit rates that lie within this range. Also, a decrease in the hit rate as

16

205

SIM2VR

game difficulty increases can be observed for (almost) all real users as well as the two simulated
users. Exceptions are Users 9 and 11, who achieved a higher hit rate on the hard condition than on
the medium condition. Interestingly, SIM𝑢 also predicts higher hit rates for some rounds with the
hard condition.

User Variable Condition Mean/
Median†

Std./
IQR†

Alternative
Hypothesis

Wilcoxon Signed Rank
Z-score p-value

SIM𝑢 Max. Fatig. MUs
Low 0.232342 0.001100 Low < Mid 3.059 1.0 (n.s.)
Mid 0.203537 0.001641 Mid < High -3.059 0.0002 (***)
High 0.238448 0.001772 Low < High -3.059 0.0002 (***)

SIM𝑎 Max. Fatig. MUs
Low 0.265645 0.002151 Low < Mid -2.51 0.0046 (**)
Mid 0.269120 0.002360 Mid < High 3.059 1.0 (n.s.)
High 0.229852 0.001937 Low < High 3.059 1.0 (n.s.)

User
Study Borg RPE

Low 9† 1.25† Low < Mid -1.508 0.0658 (n.s.)
Mid 9† 3† Mid < High -2.414 0.0079 (**)
High 9.5† 4.25† Low < High -2.213 0.0134 (*)

Table 3. Overview of both descriptive and inferential statistics for efforts in the Whac-a-mole game. Descriptive
statistics include the mean and standard deviation for the maximum fatigued motor units per round (averaged
over all muscles), as predicted by the simulation, and the median and interquartile range (IQR) for the Borg
RPE as reported in the user study (†)). Kolmogorov-Smirnov tests showed that none of the considered variables
are normally distributed (all p-values < 0.001), so we used one-sided Wilcoxon Signed rank tests to infer
significant differences between the three target area placement conditions.
Abbreviations: Std. for standard deviation, IQR for interquartile range, Max. Fatig. MUs for maximum fatigued
motor units, and n.s. for not significant.

6.3.2 Effort. To assess the impact of placement of the target area on effort, we implemented three
different positions (and orientations) of the target area (details are given in Section B.1). For each
of these conditions, the participants in the user study were asked to report their perceived exertion
after playing a 1-minute round in terms of the Borg RPE scale. The Borg RPE reported for the high
condition was significantly higher than for both the low and mid conditions, while no significant
difference could be found between low and mid condition (summary statistics as well as details on
the statistical testing conducted for this part of the evaluation are given in Table 3). This also agrees
well with qualitative remarks of some of the participants, stating that the arm felt considerably more
fatigued after playing the high condition as compared to the low and mid conditions. To estimate
the level of exertion from our simulation, we measured the percentage of fatigued motor units as
predicted by the 3CC-r fatigue model for each simulation time frame, calculated the maximum
value per round for each muscle separately, and then took the average over all 32 muscles.

As shown in Table 3, SIM𝑢 predicts a significant increase in fatigue between the mid and high as
well as between the low and high conditions, showing the same trend as observed for the Borg RPE
scale in the user study. Interestingly, the fatigue predicted for the low condition is considerably
higher than in mid condition. Comparing the simulation videos for these conditions, it can be seen
that in the low condition, SIM𝑢 follows a strategy that hardly flexes the elbow, but rather keeps the
arm extended for almost the entire movement, which may lead to higher muscle fatigue over time.

For the simulated user with adaptive automated curriculum, SIM𝑎 , the mid condition exhibits
significantly higher fatigue values than the low condition (𝑝 = 0.006), whereas no significant
increase from mid to high or from low to high could be found. We found that this is mainly due to
different strategies for each of the three different conditions, despite being trained together and
sharing the same network weights. In particular, SIM𝑎 has learned to efficiently reduce unnecessary

17

206
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

Fig. 9. Left: The speed, with which a target was (successfully) hit, greatly varies between users. The hitting
speed predicted by the simulation is within this between-user variability. Right: The hammer depth during
the movement show comparable values between simulated and real users. This indicates that the simulation
has learned to retract the arm to a similar extent as the users in our study.

shoulder movements mainly in the high condition, resulting in a lower number of fatigued motor
units than in the low and mid condition.

Our findings can be seen as an example of how small changes in the task curriculum and training
process may have a considerable impact on which strategies are learned and predicted by the user
simulation. Also, while the results show that characteristic differences in subjective levels of muscle
exertion can be predicted in principle by our simulation-based approach, effort-related predictions
must currently be treated with caution, as the effort can vary with small changes in the movement
strategy.

6.3.3 Strategy. Besides predicting differences in performance and effort between different game
levels, SIM2VR can also be used to infer characteristics of the movement trajectories as well as
non-obvious "strategies" that users may exploit when the game dynamics allow to.

In Figure 9 (left), the speed of the hammer when hitting a target is shown for all simulated and
real users. The hitting speeds predicted by the simulated users SIM𝑢 and SIM𝑎 are within the range
of the real users, both in terms of mean and variance. While the predictions of SIM𝑢 are at the
upper end of this range, those of SIM𝑎 are closer to the average hitting speed. This shows that
both simulations generally predict reasonable hitting speeds rather than exhibiting superhuman
(or subhuman) behavior.

We also found the "hammer depth", i.e. the position of the hammer in the forward-backward
direction, relative to the target plane, to be a key factor for assessing the quality of a learned
simulation. As shown in Figure 9 (right), all 12 real users exhibit similar depths offsets in terms of
range and mean when playing the Whac-a-mole game. The hammer depths of the two simulation
models SIM𝑢 and SIM𝑎 also show comparable values, indicating that the simulations retract the
arm to a similar extent as real users. On the other hand, too large negative offsets can be taken
as an indicator of a different, often undesired movement strategy. For example, we have found
that an inappropriate dense game reward (e.g., when multiple contacts of the same target with too
low a speed are rewarded more than successfully hitting the target once) or too low an effort cost
often incentivise additional and/or more extensive arm movements than necessary. Similarly, a
hammer depth that is consistently well below zero may signal difficulties in learning to move the
controller toward the targets at all. If real user data is available (e.g., recorded by the developers

18

207

SIM2VR

Fig. 10. The hitting rates crucially differ depending on where targets are located relative to the shoulder. In
the user study (right), low targets were hit less often than mid and high targets on average. This is captured
well by the simulations (left and mid), which, however, also exhibit lower hitting rates for left targets. This
could indicate areas that are more difficult for the biomechanical model to reach, or that the policies did not
converge to the (global) optimum.

Fig. 11. While SIM𝑢 does not reach the left targets in the high condition at all (left), the simulated user
trained with adaptive automated curriculum, SIM𝑎 , shows a plausible average target hit rate for any target
location (cf. mid and right plot).

themselves using a previous version of an application), we recommend using this data as a baseline
for inferring the general plausibility of learned simulation strategies.

The Whac-a-mole game was also designed to test whether certain target positions are preferred
by users. Especially in levels with more than one target displayed simultaneously, hitting all targets
in time is often not possible, i.e., users are typically required to decide which targets are worth
aiming at and which should be omitted in case of doubt. As shown in Figure 10 (right) for real users
and all task conditions, the three lower targets exhibit a lower average hit rate than the remaining
target positions. This trend is also visible from the evaluation of SIM𝑢 (left) and SIM𝑎 (mid). In
addition, both simulated users show a clear preference towards targets in the mid and right column,
whereas targets on the left are more frequently ignored. This strategy was not observed in the
user study, but instead may be partially attributed to well-known difficulties of the biomechanical
model in reaching targets on the left-front half-sphere (however, note that the preliminary reach
envelope analysis in Section 6.1 as well as hit rates larger than zero suggest that all target positions
are reachable in principle). Also, positional differences in the target hit rates may be attributed to

19

208
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

Fig. 12. In the unconstrained part of our user study, i.e., without minimum hitting velocity, our simulation
predicts a different strategy, where the hammer is kept close to the target plane during the entire movement
(orange line in left plot). This strategy was also observed in the user study (orange line in right plot). The
hammer depth trajectories of both simulated and real users in the constrained variant are shown for com-
parison (blue lines). All movements are in the hard condition, but similar results were also observed for the
medium condition.

policies getting stuck in local minima during training. For example, SIM𝑢 is not able to reach the
left targets in the high condition at all, while SIM𝑎 , which was trained with adaptive automated
curriculum, has learned to do so (cf. Figure 11). Again, this highlights the importance of properly
designing the simulated user with an appropriate biomechanical model, reward function, and
learning curriculum, following the guidelines and tools from Section 5.

To further investigate how well simulations trained via SIM2VR can anticipate the effect of a
simple game design choice on the strategies employed by users, we implemented an unconstrained
variant of all five game levels in which no minimum velocity was required to successfully hit
the targets (for details, see Section B.1 in the Appendix). As shown in Figure 12 (left), for the
unconstrained variant, an entirely different strategy is predicted by our simulation; in particular,
the unconstrained policy retracts the arm considerably less, but rather keeps the hammer relatively
close to the target area during movements, which indeed allows to hit many more targets in the
same time.16 Interestingly, one of the six users from the unconstrained part of the user study
exploited the same strategy, as shown in Figure 12 (right, orange line) along with a reference
trajectory from the constrained part of the user study (blue line).17

This demonstrates the capability of SIM2VR to discover special strategies that users may exploit
for a given game design. By making such insights available early in the VR development process,
our platform can help find game dynamics that meet the designers’ requirements for performance,
effort, comfort, predictability, space limitations, and more.

7 OPEN SOURCE
In order to provide developers and researchers with a highly flexible and easily extensible platform,
we release all SIM2VR code as open source. The SIM2VR Asset along with its source code can be
found at [redacted for submission: link to repository], which also serves as the landing page of the
SIM2VR platform. The Simulated User module, which extends the UitB framework to interaction
16Applying the two simulation strategies to the hard condition, 195 target hits were observed in the unconstrained variant,
and 102 target hits and 35 target contacts were observed in the constrained variant.
17Another user pursued a similar strategy but hit the targets more from above, while the remaining four users followed
essentially the same strategy as the users in the constrained task.

20

209

SIM2VR

with Unity environments, is available at [redacted for submission: link to repository]. The BioCheck
and RewardCheck tools can be found along with scripts to evaluate and plot (biomechanical)
simulation trajectories at [redacted for submission: link to repository].

We also release the source code of the Whac-a-mole application at [redacted for submission: link
to repository]. Finally, the data of the user study as well as the simulations and plots of this paper
are publicly available at [redacted for submission: link to dataset].

8 DISCUSSION
So far, user simulations have been trained in special-purpose simulation environments with simpli-
fied and at-times contrived scenes, dynamics, and graphics. To close the "reality gap", and enable
training models in more ecologically valid conditions, we presented SIM2VR, an open-source
platform that grants biomechanical models direct access to the actual target VR environment. The
Perceptual-Motor Interface enables training models in state-action spaces that can be virtually
identical to what real users experience as they interact in VR. As we have demonstrated in the
Whac-a-Mole study, human-like policies can be learned in Sim2VR – despite the fact that the stimuli
the agent receives from the game is more realistic and therefore more complex than in previous
work. The policies replicated some key facets of empirically observed behavior. The average number
of target hits per round was predicted within a small error (5% with the closest model variant).
Remarkably, the models also closely anticipated specific movement strategies of some individuals
in the study, without having data from those users.

We expect SIM2VR to open exciting opportunities in the development of VR interactions. In
particular, the ability to perform biomechanical user simulations at an early design stage can
lead to more comfortable and health-promoting VR interactions, as well as VR environments that
specifically consider the abilities of individual user groups. We also see great potential for the direct
integration of user models in related domains, such as mobile applications, augmented reality, or
mixed reality.

However, three technical challenges remain. First, more comprehensive biomechanical models
are needed. The arm model we use has been developed with inverse biomechanical simulation
in mind, and, e.g., can not reach all reachable areas with the same ease. Bespoke biomechanical
models for forward simulation will remedy this situation. We also need to cover the full range of
VR interaction methods, especially including gesture-based input and head movements. Recently
released models covering finger, hand, leg, and neck movements, as well as conversion tools [24, 55]
and competition tracks [54], raise hopes that a momentum is building that may also expand the range
of VR applications that can be simulated in the near future. Second, modeling how users behave
in higher-level interaction tasks and more complex VR applications requires more sophisticated
RL models. Related concepts and frameworks from RL research such as Hierarchical RL [36, 40]
or Transfer Learning [60] certainly offer a promising direction in this regard. Third, even more
practical guidelines, evaluation tools, and debugging methods are needed to support VR designers
without any experience in user simulations or RL to apply SIM2VR to non-standard problems. Our
tools BioCheck and RewardCheck clearly provide good starting points, but much more practical
knowledge needs to be gained, which can only be achieved by trying out biomechanical user
simulations and subsequently sharing experiences.

9 CONCLUSION
This paper has enabled the training of RL-based user simulations in the same VR environment as
users, and shown that realistic policies can be learned like this. By lowering the barrier to the use
of biomechanical simulation, we hope that SIM2VR increases the adoption of automatic testing
methods in VR development. Given that biomechanical user models can help identify bugs, safety

21

210
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

risks, and health issues prior to user testing, we expect user modeling to assume a position as an
indispensable part of the VR development process in the future.

REFERENCES
[1] Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Parmit K Chilana. 2020. Creating augmented

and virtual reality applications: Current practices, challenges, and opportunities. In [Proceedings of the 2020 CHI
conference on human factors in computing systems]. 1–13.

[2] M. A. Ayoub, M. M. Ayoub, and A. G. Walvekar. 1974. A Biomechanical Model for the Upper Extremity using
Optimization Techniques. [Human Factors] 16, 6 (1974), 585–594. https://doi.org/10.1177/001872087401600603
arXiv:https://doi.org/10.1177/001872087401600603 PMID: 4442903.

[3] Nikola Banovic, Tofi Buzali, Fanny Chevalier, Jennifer Mankoff, and Anind K. Dey. 2016. [Modeling and Understanding
Human Routine Behavior]. Association for Computing Machinery, New York, NY, USA, 248–260. https://doi.org/10.
1145/2858036.2858557

[4] Bastien Berret, Enrico Chiovetto, Francesco Nori, and Thierry Pozzo. 2011. Evidence for Composite Cost Functions in
Arm Movement Planning: An Inverse Optimal Control Approach. [PLOS Computational Biology] 7, 10 (10 2011), 1–18.
https://doi.org/10.1371/journal.pcbi.1002183

[5] Allen Bierbaum, Patrick Hartling, and Carolina Cruz-Neira. 2003. Automated testing of virtual reality application
interfaces. In [Proceedings of the workshop on Virtual Environments 2003]. 107–114.

[6] Alexander Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. 2015. Frame Skip Is a Powerful
Parameter for Learning to Play Atari. In [AAAI Workshop: Learning for General Competency in Video Games]. https:
//api.semanticscholar.org/CorpusID:194604

[7] Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Kumar. 2022. MyoSuite–A
contact-rich simulation suite for musculoskeletal motor control. [arXiv preprint arXiv:2205.13600] (2022).

[8] Noshaba Cheema, Laura A. Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp Slusallek, and Perttu Hämäläinen.
2020. Predicting Mid-Air Interaction Movements and Fatigue Using Deep Reinforcement Learning. In [Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems] (Honolulu, HI, USA) [(CHI ’20)]. Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376701

[9] Xiuli Chen, Gilles Bailly, Duncan P Brumby, Antti Oulasvirta, and Andrew Howes. 2015. The Emergence of Interactive
Behaviour: A Model of Rational Menu Search. (2015).

[10] Xiuli Chen, Sandra Dorothee Starke, Chris Baber, and Andrew Howes. 2017. A cognitive model of how people make
decisions through interaction with visual displays. In [Proceedings of the 2017 CHI conference on human factors in
computing systems]. 1205–1216.

[11] Carolina Cruz-Neira, Daniel J Sandin, Thomas A DeFanti, Robert V Kenyon, and John C Hart. 1992. The CAVE: audio
visual experience automatic virtual environment. [Commun. ACM] 35, 6 (1992), 64–73.

[12] Michael Damsgaard, John Rasmussen, Søren Tørholm Christensen, Egidijus Surma, and Mark de Zee. 2006. Analysis
of musculoskeletal systems in the AnyBody Modeling System. [Simulation Modelling Practice and Theory] 14, 8 (2006),
1100–1111. https://doi.org/10.1016/j.simpat.2006.09.001 SIMS 2004.

[13] Scott Delp, Frank Anderson, Allison Arnold, Peter Loan, A. Habib, Chand John, Eran Guendelman, and Darryl Thelen.
2007. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. [Biomedical
Engineering, IEEE Transactions on] 54 (12 2007), 1940 – 1950. https://doi.org/10.1109/TBME.2007.901024

[14] Christopher L. Dembia, Nicholas A. Bianco, Antoine Falisse, Jennifer L. Hicks, and Scott L. Delp. 2021. OpenSim Moco:
Musculoskeletal optimal control. [PLOS Computational Biology] 16, 12 (12 2021), 1–21. https://doi.org/10.1371/journal.
pcbi.1008493

[15] Konstantinos Dimitropoulos, Ioannis Hatzilygeroudis, and Konstantinos Chatzilygeroudis. 2022. A Brief Survey
of Sim2Real Methods for Robot Learning. In [Advances in Service and Industrial Robotics], Andreas Müller and Mathias
Brandstötter (Eds.). Springer International Publishing, Cham, 133–140.

[16] Inan Evin, Toni Pesola, Maximus D Kaos, Tuukka M Takala, and Perttu Hämäläinen. 2020. 3pp-r: Enabling natural
movement in 3rd person virtual reality. In [Proceedings of the annual symposium on computer-human interaction in
play]. 438–449.

[17] Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, and Jörg Müller. 2021. Reinforcement Learning Control
of a Biomechanical Model of the Upper Extremity. [Scientific Reports] 11, 1 (2021), 1–15.

[18] Florian Fischer, Arthur Fleig, Markus Klar, and Jörg Müller. 2022. Optimal Feedback Control for Modeling Human-
Computer Interaction. [ACM Trans. Comput.-Hum. Interact.] 29, 6, Article 51 (april 2022), 70 pages. https://doi.org/10.
1145/3524122

[19] Paul M Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of movement.
[Journal of experimental psychology] 47, 6 (1954), 381.

22

211

SIM2VR

[20] Patrick Harms. 2019. Automated usability evaluation of virtual reality applications. [ACM Transactions on Computer-
Human Interaction (TOCHI)] 26, 3 (2019), 1–36.

[21] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang Irani. 2014. Consumed Endurance: A
Metric to Quantify Arm Fatigue of Mid-Air Interactions. In [Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems] (Toronto, Ontario, Canada) [(CHI ’14)]. Association for Computing Machinery, New York, NY,
USA, 1063–1072. https://doi.org/10.1145/2556288.2557130

[22] Chris J Hunt, Guy Brown, and Gordon Fraser. 2014. Automatic testing of natural user interfaces. In [2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation]. IEEE, 123–132.

[23] Aleksi Ikkala, Florian Fischer, Markus Klar, Miroslav Bachinski, Arthur Fleig, Andrew Howes, Perttu Hämäläinen,
Jörg Müller, Roderick Murray-Smith, and Antti Oulasvirta. 2022. Breathing Life Into Biomechanical User Models. In
[Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology] (Bend, OR, USA) [(UIST
’22)]. Association for Computing Machinery, New York, NY, USA, Article 90, 14 pages. https://doi.org/10.1145/3526113.
3545689

[24] Aleksi Ikkala and Perttu Hämäläinen. 2020. Converting Biomechanical Models from OpenSim to MuJoCo. , 277–
281 pages. arXiv:2006.10618 [q-bio.QM] https://arxiv.org/abs/2006.10618

[25] Tommi Ilmonen and Janne Kontkanen. 2002. Software architecture for multimodal user input-FLUID. In [ERCIM
Workshop on User Interfaces for All]. Springer, 319–338.

[26] Kazuyo Iwamoto, Satoshi Katsumata, and Kazuo Tanie. 1994. An eye movement tracking type head mounted display for
virtual reality system: evaluation experiments of a prototype system. In [Proceedings of IEEE International Conference
on Systems, Man and Cybernetics], Vol. 1. IEEE, 13–18.

[27] Jussi Jokinen, Aditya Acharya, Mohammad Uzair, Xinhui Jiang, and Antti Oulasvirta. 2021. Touchscreen typing as
optimal supervisory control. In [Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems].
1–14.

[28] Antti Kangasrääsiö, Kumaripaba Athukorala, Andrew Howes, Jukka Corander, Samuel Kaski, and Antti Oulasvirta.
2017. Inferring Cognitive Models from Data Using Approximate Bayesian Computation. In [Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems] (Denver, Colorado, USA) [(CHI ’17)]. Association for Computing
Machinery, New York, NY, USA, 1295–1306. https://doi.org/10.1145/3025453.3025576

[29] Kadiray Karakaya, Enes Yigitbas, and Gregor Engels. 2022. Automated UX Evaluation for User-Centered Design of VR
Interfaces. In [International Conference on Human-Centred Software Engineering]. Springer, 140–149.

[30] Markus Klar, Florian Fischer, Arthur Fleig, Miroslav Bachinski, and Jörg Müller. 2023. Simulating Interaction Movements
via Model Predictive Control. [ACM Trans. Comput.-Hum. Interact.] 30, 3, Article 44 (jun 2023), 50 pages. https:
//doi.org/10.1145/3577016

[31] Francesco Lacquaniti, Carlo Terzuolo, and Paolo Viviani. 1983. The law relating the kinematic and figural aspects of
drawing movements. [Acta Psychologica] 54, 1 (1983), 115 – 130.

[32] Leng-Feng Lee and Brian R Umberger. 2016. Generating optimal control simulations of musculoskeletal movement
using OpenSim and MATLAB. [PeerJ] 4 (2016), e1638.

[33] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. 2019. Scalable Muscle-Actuated Human Simulation
and Control. [ACM Trans. Graph.] 38, 4, Article 73 (July 2019), 13 pages. https://doi.org/10.1145/3306346.3322972

[34] Sung-Hee Lee and Demetri Terzopoulos. 2006. Heads up! Biomechanical modeling and neuromuscular control of the
neck. In [ACM SIGGRAPH 2006 Papers]. 1188–1198.

[35] Katri Leino, Antti Oulasvirta, and Mikko Kurimo. 2019. RL-KLM: Automating keystroke-level modeling with rein-
forcement learning. In [Proceedings of the 24th International Conference on Intelligent User Interfaces]. 476–480.

[36] Alexander C Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. 2019. Sub-policy adaptation for hierarchical
reinforcement learning. [arXiv preprint arXiv:1906.05862] (2019).

[37] John M Looft, Nicole Herkert, and Laura Frey-Law. 2018. Modification of a three-compartment muscle fatigue model
to predict peak torque decline during intermittent tasks. [Journal of biomechanics] 77 (2018), 16–25.

[38] Marvin Minsky. 1961. Steps toward Artificial Intelligence. [Proceedings of the IRE] 49, 1 (1961), 8–30. https:
//doi.org/10.1109/JRPROC.1961.287775

[39] Roderick Murray-Smith, Antti Oulasvirta, Andrew Howes, Jörg Müller, Aleksi Ikkala, Miroslav Bachinski, Arthur Fleig,
Florian Fischer, and Markus Klar. 2022. What simulation can do for HCI research. [Interactions] 29, 6 (2022), 48–53.

[40] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-efficient hierarchical reinforcement
learning. [Advances in neural information processing systems] 31 (2018).

[41] Masaki Nakada, Tao Zhou, Honglin Chen, Tomer Weiss, and Demetri Terzopoulos. 2018. Deep Learning of Biomimetic
Sensorimotor Control for Biomechanical Human Animation. [ACM Trans. Graph.] 37, 4, Article 56 (jul 2018), 15 pages.
https://doi.org/10.1145/3197517.3201305

[42] Antti Oulasvirta, Jussi Jokinen, and Andrew Howes. 2022. Computational Rationality as a Theory of Interaction. In
[Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems]. 1–14.

23

212
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

[43] Siyou Pei, Alexander Chen, Jaewook Lee, and Yang Zhang. 2022. Hand interfaces: Using hands to imitate objects in
AR/VR for expressive interactions. In [Proceedings of the 2022 CHI conference on human factors in computing systems].
1–16.

[44] Dhia Elhaq Rzig, Nafees Iqbal, Isabella Attisano, Xue Qin, and Foyzul Hassan. 2023. Virtual Reality (VR) Automated
Testing in the Wild: A Case Study on Unity-Based VR Applications. In [Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis] (Seattle, WA, USA) [(ISSTA 2023)]. Association for Computing
Machinery, New York, NY, USA, 1269–1281. https://doi.org/10.1145/3597926.3598134

[45] Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, and Dinesh K Pai. 2015. Biomechanical simulation
and control of hands and tendinous systems. [ACM Transactions on Graphics (TOG)] 34, 4 (2015), 1–10.

[46] Katherine R. Saul, Xiao Hu, Craig M. Goehler, Meghan E. Vidt, Melissa Daly, Anca Velisar, and Wendy M. Murray. 2014.
Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal
model. [Computer methods in biomechanics and biomedical engineering] 5842, May 2016 (2014), 1–14. https://doi.org/
10.1080/10255842.2014.916698

[47] Ajay Seth, Jennifer L. Hicks, Thomas K. Uchida, Ayman Habib, Christopher L. Dembia, James J. Dunne, Carmichael F.
Ong, Matthew S. DeMers, Apoorva Rajagopal, Matthew Millard, Samuel R. Hamner, Edith M. Arnold, Jennifer R.
Yong, Shrinidhi K. Lakshmikanth, Michael A. Sherman, Joy P. Ku, and Scott L. Delp. 2018. OpenSim: Simulating
musculoskeletal dynamics and neuromuscular control to study human and animal movement. [PLOS Computational
Biology] 14, 7 (07 2018), 1–20. https://doi.org/10.1371/journal.pcbi.1006223

[48] Ajay Seth, Michael Sherman, Jeffrey A. Reinbolt, and Scott L. Delp. 2011. OpenSim: a musculoskeletal modeling
and simulation framework for in silico investigations and exchange. [Procedia IUTAM] 2 (2011), 212–232. https:
//doi.org/10.1016/j.piutam.2011.04.021 IUTAM Symposium on Human Body Dynamics.

[49] Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2014. Realistic biomechanical simulation and
control of human swimming. [ACM Transactions on Graphics (TOG)] 34, 1 (2014), 1–15.

[50] David J Sturman and David Zeltzer. 1994. A survey of glove-based input. [IEEE Computer graphics and Applications]
14, 1 (1994), 30–39.

[51] Shinjiro Sueda, Andrew Kaufman, and Dinesh K Pai. 2008. Musculotendon simulation for hand animation. In [ACM
SIGGRAPH 2008 papers]. 1–8.

[52] Tuukka M Takala. 2014. RUIS: A toolkit for developing virtual reality applications with spatial interaction. In
[Proceedings of the 2nd ACM symposium on Spatial user interaction]. 94–103.

[53] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine for model-based control. In [2012
IEEE/RSJ International Conference on Intelligent Robots and Systems]. 5026–5033. https://doi.org/10.1109/IROS.2012.
6386109

[54] Guillaume Durandau Seungmoon Song Chun Kwang Tan Cameron Berg Pierre Schumacher Massimo Sartori Vikash Ku-
mar Vittorio Caggiano, Huawei Wang. 2023. MyoChallenge 23: Towards Human-Level Dexterity and Agility.
https://sites.google.com/view/myosuite/myochallenge/myochallenge-2023.

[55] Huawei Wang, Vittorio Caggiano, Guillaume Durandau, Massimo Sartori, and Vikash Kumar. 2022. MyoSim: Fast and
physiologically realistic MuJoCo models for musculoskeletal and exoskeletal studies. In [2022 International Conference
on Robotics and Automation (ICRA)]. IEEE, 8104–8111.

[56] Xiaoyin Wang. 2022. VRTest: an extensible framework for automatic testing of virtual reality scenes. In [Proceedings
of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings]. 232–236.

[57] Colin Ware, Kevin Arthur, and Kellogg S Booth. 1993. Fish tank virtual reality. In [Proceedings of the INTERACT’93 and
CHI’93 conference on Human factors in computing systems]. 37–42.

[58] Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. 2021. Fast and feature-complete
differentiable physics for articulated rigid bodies with contact. [arXiv preprint arXiv:2103.16021] (2021).

[59] DA Winter. 1984. Biomechanics of human movement with applications to the study of human locomotion. [Critical
reviews in biomedical engineering] 9, 4 (1984), 287—314. http://europepmc.org/abstract/MED/6368126

[60] Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. 2020. Transfer learning in deep reinforcement learning: A
survey. [arXiv preprint arXiv:2009.07888] (2020).

24

213

SIM2VR

A CREATING USER SIMULATIONS IN VR: A STEP-BY-STEP GUIDE
In the following, we demonstrate how SIM2VR can be used to generate user simulations for an
existing VR application. As an example, we consider the Beat Saber18-style game implemented in
the VR Beats Kit, which is freely available on the Unity Asset Store.19

A.1 Initial Steps
First, the SIM2VR Asset must be imported into the Unity project. After adding the sim2vr prefab as
a game object to the desired scene, the SimulatedUser game object needs to be connected to the VR
Controllers and Main Camera provided by OpenXR.

A.2 Defining the Game Reward and Reset
To run user simulations with the Unity application, appropriate reward and reset methods need to
be defined. For this purpose, an application-specific class must be inherited from the RLEnv class
provided by the SIM2VR asset. Of course, all game objects and variables relevant for the reward
calculation must be accessible from this class.

The task-specific reward needs to be computed by the method CalculateReward and stored in
the variable _reward. In the case of VR games that provide a game score, this can be used directly
to define the reward.20 If necessary, this "sparse" game reward can be augmented by additional,
more sophisticated terms, as described in Section 5. In the Beat Saber game, we set the reward to
the increase in the game score since the last frame.

The method Reset is called at the end of each round and therefore needs to ensure that the entire
scene is reset to a (reproducible) initial state. This usually includes the destruction of game objects
created during runtime and resetting private variables required to compute the game reward.21

Preparations for the next round, such as choosing a game level or defining variables required for
the reward calculations, can also be defined here or, if only need to be called once at the beginning
of the game, in the method InitialiseApplication. For our Beat Saber game, it is sufficient to
simply invoke the existing onRestart game event and initialise the reward to the current game
score in the method Reset.

Finally, the Simulated User needs to be informed about whether the current round has ended. To
this end, the variable _isFinished needs to be updated accordingly within the method UpdateIsFinished.
For Beat Saber, we can make use of method getIsGameRunning of the VR_BeatManager instance.

A.3 Further Adjustments
Since including an application- and task-dependent time feature in the observation provided to the
RL agent can be very helpful for learning interactive user behavior, the RLEnv class provides the
method GetTimeFeature, where such a time feature can be defined. For Beat Saber, we set this to
the relative in-game time22 normalized to values between -1 and 1, as this might help the RL Agent
anticipating the deterministic target sequence for a given song.

Generally, a Unity application will commence with an initial scene, such as a menu, rather than
directly starting the game. As SIM2VR does not provide a generic method to switch scenes, this
needs to implemented manually. In our example, we simply added a game object containing a script
that selects the appropriate level and transitions to the SaberStyle scene.
18https://beatsaber.com/
19https://assetstore.unity.com/packages/templates/systems/vr-beats-kit-168243
20Note that game scores typically accumulate points throughout the round, so the reward signal should be set to the increase
in that score since the last frame.
21All code related to resetting the game reward can be summarised in the method InitialiseReward.
22Note that this requires access to the maximum duration of the round.

25

214
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

Fischer and Ikkala, et al.

Since the MoblArmsWrist model is limited to movements of the right arm, we modify the game
to only spawn targets for the right saber. Also, since the Simulated User is unable to duck, we
removed the walls moving towards the player because they would lead to a game over if touched
with the HMD.

A.4 Defining the Simulated User
After preparing the VR Interaction environment for running user simulations, an appropriate
Simulated User instance needs to be built.

This mainly involves the selection of a biomechanical user model (including effort costs) and
perception modules other than the default Unity Headset vision module, both of which can be
easily defined in the config file. Additional parameters to be (optionally) defined in the config file
include, among others, the position and orientation of the HMD relative to a body part included in
the biomechanical user model, arguments to be passed to the VR application (e.g., setting game
level/difficulty), and RL hyperparameters (e.g., network size, time steps, batch size, etc.). For our
Beat Saber example, the parameters are chosen as described in Section 5.

B DETAILS OF THE "WHAC-A-MOLE" CASE STUDY
B.1 Game Design
In our Whac-a-mole game, targets (the "moles") appear randomly for a short time at fixed positions
on a plane (the "molehills") and must be hit with a hammer to score points. As shown in Figure 5a,
the targets correspond to three-dimensional buttons and are spawned on a 3 × 3 grid, referred to as
the "target area" in the following, and the hammer is controlled by the right-hand VR controller.
Each target has a life span of one second, during which it linearly changes its colour from green to
red. If a target is successfully hit, it explodes and disappears (see Figure 2), and the game score is
increased by one. Otherwise, the target collapses after one second and no points are given. During
each episode, targets are randomly spawned at variable time intervals between 0 and 0.5 seconds,
unless the maximum number of simultaneous targets (which depends on the game level, see below)
has already been reached. Also, if there are zero targets in the area (i.e., all targets have been hit), a
new target will be spawned instantaneously.

The game levels vary in three different attributes: difficulty, target area placement, and game
dynamics. The first attribute, difficulty, determines how many targets can appear simultaneously,
and can have a value of 1, 3, or 5. We call these difficulty levels Easy, Medium, and Hard, respectively.
The second attribute, target area placement, defines the position and orientation of the target area
with respect to the HMD. All areas are positioned 15cm to the right of the HMD, to ensure better
reachability for the right arm. We use three different settings for this attribute: in Low placement
the area is located 30cm below and 35cm in front of the HMD, tilted 45°; in Mid placement the
area is located 10cm below and 40cm in front of the HMD, facing the user; and in High placement,
the area is located 20cm above and 30cm in front of the HMD, tilted -45°. The different target area
placements are depicted in Figure 5b. Additionally, the third attribute, game dynamics, defines a
velocity constraint for hitting the targets. In the constrained variant a velocity threshold needs to
be exceeded in order to successfully hit a target,23 while in the unconstrained variant all contacts
with targets count as hits. Based on the above-mentioned attributes, we defined five different game
levels for both the constrained and unconstrained variant. These levels are defined in Table 4.

Additional game parameters that were set constant for all levels include the target radius (2.5
cm), the life span of a target (one second), and the episode duration (one minute).

23In the constrained variant, targets need to be hit with a minimum speed of 0.8 m s−1 in downward direction for the Low
placement and in forward direction for the Mid and the High placements.

26

215

SIM2VR

Level Name Difficulty Target area Placement
Easy easy mid
Medium/Mid medium mid
Hard hard mid
Low medium low
High medium high

Table 4. Game levels implemented in Whac-a-mole.

B.2 Performance Measurements
Using a workstation with a AMD Ryzen Threadripper 3970X 32-core processor24, and setting the
number of parallel workers to 10, training a simulated model for 100M steps from the scratch took
approximately 48-72 hours and required 3.2GB memory on the GPU (NVIDIA GeForce RTX 309025).
Most modern GPUs should thus be capable of 3-10 training runs in parallel, which, e.g., can be used
to obtain a more robust measure of the quality of a given simulated user model by running the
same training with different seeds. Evaluating a learned policy took 30-40 seconds for a one-minute
round, depending on whether a video was to be created in addition to the .pickle- and .csv-log files.

24https://www.amd.com/
25https://www.nvidia.com/

27

216
SIM2VR: Integrating Biomechanical Simulations in VR Development

Environments

9
Discussion and Future Work

This section provides a synthesis of the body of works presented in the previous chapters. I
will discuss different topics therein, such as modeling (e.g., selecting the appropriate objective
function) and technical challenges (e.g., computational limitations when solving the OCP for
movement-based interaction). In addition to describing these obstacles, I offer several ideas
for overcoming them.

9.1 Designing OCPs for Movement-Based Interaction

I proposed a generic framework for the simulation of movement-based interaction with OFC
(see Chapters 3 and 5). The core of this framework lies in describing the interaction as an
OCP which is then solved to create a movement simulation (as described in Section 1.2).
This OCP consists of two parts: the system dynamics and the objective function.

Modeling the System Dynamics of Movement-Based Interaction

The system dynamics for modeling a movement-based interaction, in turn, can be split into
three main components: 1) the human, 2) the in- and output devices, and 3) the virtual
dynamics (see Fig. 1 in Chapter 3).

218 Discussion and Future Work

First, for the human aspect of the dynamics, current state-of-the-art biomechanical models
serve as reference point. Using the proposed framework, I simulated human movements in
various tasks, with a focus on those that require movement of only one arm, such as mid-air
pointing. To achieve this, a biomechanical model of the right arm and shoulder was utilized.
To account for individual users’ arm lengths or determine maximum voluntary torques, I
collected user data and applied the CFAT tool (refer to section 5.3 in Chapter 3 for further
explanation). One benefit of this approach is that there is no necessity to gather information
from a user study every time; instead, the modified biomechanical model can be utilized
repeatedly for any comparable interaction simulations.

However, to be able to model other tasks, in the future, different and possibly larger
biomechanical models are needed. For instance, grabbing a virtual object in VR using
a hand tracking technique requires a detailed biomechanical hand model. Although new
biomechanical models such as those found in MyoSuite [66] are becoming available, they
include numerous additional decision variables and therefore raise the question of whether
obtaining optimal control is feasible (this is further discussed in Section 9.2).

Second, input and output devices can be modeled in a simple way and eventually directly
incorporated into the physics simulation. For example, instead of actually modeling a motion
capturing system, I added a virtual marker to the biomechanical model simulated in MuJoCo.
This virtual marker serves as the end-effector which is then fed into the transfer function to
obtain the cursor position (see Section 5.1 of Chapter 3). MuJoCo can also model physical
devices, such as the VR controller used in Chapter 8. However, to simplify the model, the
sensor dynamics of the real controller are neglected, and instead, the position of the VR
controller model in the physics simulation is used. Arguably, this approach reduces the
realism of the simulation since it does not account for the processes within the controller’s
electronics that can alter the sensed controller position. Same goes for the model of output
devices. Since they are interconnected with the perception abilities of the model, e.g., a
perceived image depends on the quality of the screen and the eyesight of the user, they are
often modeled together. For instance, in Chapter 7, the agent perceives a RGB-D array with
a resolution of 120× 80 pixels. Although the low resolution was chosen due to the high
computation time of larger inputs, it can be interpreted as using a very low resolution display.

To enhance the realism of simulations, it is possible to incorporate a more realistic con-
troller model. However, this requires knowledge of the physical and sensory characteristics
of the device, such as weight, dimensions, or installed micro controllers. Similarly, the
output device could be modeled in greater detail, including features such as display refresh
rates. Additionally, new models for other input and output devices must be created, such as
controllers with triggers or vibration feedback.

9.1 Designing OCPs for Movement-Based Interaction 219

Third, to evaluate an interface with simulation, the virtual dynamics have to be known.
In the works presented in this thesis, I modeled the virtual dynamics either analytically,
(Chapters 3 to 5), inside of a physics simulation that can be forwarded (Chapters 6 and 7), or
as an application that is controllable (Chapter 8). All of these representations can take user
input and return the change of the interface.

To apply the presented approach to different interactive systems, therefore, the virtual
dynamics of the interaction technique either have to be directly accessible or, at least, have
to be an opaque box which provides all necessary information. This is usually the case,
but can involve some work especially if the application is not available to the researcher as
open-source, since additional information, such as positions of interface elements, has to
be extracted. In summary, the components of the system dynamics can be modeled based
on data from the literature, implementations, or preliminary studies. However, simulating
various interaction techniques may still require new models of biomechanics or devices.

Incorporating User Goals into the Objective Function

Defining the correct objective function is reasonably more difficult. The objective function,
when minimized (or as in DRL, maximized), should cause the model to perform a human-like
movement. This means that it has to incorporate the internal goals of the user and therefore,
can involve different objectives such as performance, accuracy, or ergonomics. One part of
the objective function that is present in any interaction is given by the interaction task. For
example, if the task is to reach an user interface element with a cursor, reaching this element
should be rewarded. I have done this by adding explicit and discrete reward (e.g., by giving
a single bonus upon target reach, see Chapters 7 and 8) or implicit and continuous reward
(e.g., by penalizing the distance to a target in each time step, see Chapter 3). I included
task completion time implicitly, by penalizing each time step before the task is solved.
Additionally, I include effort terms that increase with higher control or muscle activation.
These do not only depend on the task, but also on individual user preferences. Since users
possibly also include internalized objective functions, I also added different cost terms that
are known to lead to human-like movements such as minimizing jerk or commanded torque
change.

One challenge is to balance the different components against each other. Some users
may prefer less strenuous movements to faster movements, i.e., the weight for the effort
term needs to be higher than for the term penalizing slow movement. To address this, I
implemented inverse optimal control approaches, as explained in section 4.2 of Chapter 5 and
section 3.4.3 of Chapter 3, to find weights that scale the individual cost terms. In a nutshell,
inverse optimal control calculates cost weights that produce a simulation which matches

220 Discussion and Future Work

given user data best. For instance, in Chapter 3, cost weights for individual user models are
obtained that produce the lowest root mean squared error (RMSE) in terms of joint angles
for pointing movements in five different directions (see Section 5.3 in Chapter 3).

To further understand the importance of the choice of cost weights I investigated, what
influence changing the cost function weights has on the resulting simulation trajectories (see
section 6.3 of Chapter 3). It is affirmed that the simulation results continuously depend on the
cost weights, which raises the hope that even if these cannot be obtained perfectly through
inverse optimal control, the resulting simulations are still close to the optimal result.

Although I have compared different combinations of cost terms, there are many more
candidates that seem promising in the HCI context and have to be further investigated,
such as cost of time [55], endpoint variance [40], or fatigue [7, 28, 38]. Moreover, when
altering the objective function (e.g., when modeling a completely different task), it might be
necessary to re-scale the weight parameters, which in turn requires data from a user study (if
inverse optimal control is employed). This dependence on user data limits the framework’s
application possibilities. It is therefore crucial to find ways to generate objective functions
that work for a wide range of tasks without further fine tuning.

Another way to work around the necessity of finding the perfect objective function and
fitting cost weights is Multi-Objective Optimization (MOOP). In MOOP, each term of the
objective function is considered equally important. Solving a multi-objective optimization
problem leads to a whole set of Pareto-optimal solutions, also called a Pareto-front, instead
of a single optimal solution [71]. A solution of a MOOP is called Pareto-optimal if changing
the control in any direction would increase at least one of the objective functions. MOOP is
often a good solution when one does not want to or cannot decide on a weight for different
objectives. Classic examples include deciding for comfort vs. price when buying a car [11]
or mass vs. time of flight in space mission optimization [8]. Applied to the HCI problem of
mid-air pointing, for instance, the objectives could be minimizing the distance of the cursor
to the target and minimizing the effort. If enough Pareto-optimal solutions have been created,
a slider that controls the weight between the objectives could be used to easily compare
different simulations – ranging from slow and low effort to fast but strenuous movements.

In summary, selecting the appropriate objective function when designing the OCP is
critical yet challenging. Inverse optimal control methods can aid in determining the correct
cost weights, but they necessitate human data. Alternatively, MOOP is a promising approach
for future research as it considers all aspects of the objective function equally.

9.2 Technical Challenges of Movement Simulation 221

9.2 Technical Challenges of Movement Simulation

When working with the simulation of human movements with nonlinear biomechanical
models and interaction techniques, there are several technical challenges involved. First, I
discuss the most crucial challenge which is given by the complexity of human motor control.
Second, this section addresses the formulation of the OCP using single or multiple shot
methods. Third, I describe which implications choosing the objective function has on solving
the OCP. Lastly, I elaborate on the evaluation of simulations with user data.

The Complexity of High-Dimensional Muscle Control

When working with biomechanical models, it is important to consider the complexity of the
human body. The model of the upper extremity I used in Chapters 7 and 8 contained a total
amount of 26 controllable muscles which have to be controlled individually. In addition,
many joints can be moved by different muscles which leads to considerable redundancy in
the creation of movements. For instance, the biceps and brachialis both work on the flexion
of the elbow. As a result, similar movements can be produced with different sets of controls,
and possibly with similar cost function values. This can result in local optima, in which an
optimization algorithm can get stuck.

Another challenge when using optimal control problems is the curse of dimensionality.
This means that the size of the control space grows exponentially with the number of decision
variables [2]. Imagine a system, that only has one decision variable and accepts the controls
−1, 0, and 1, i.e., there are three different controls. When another decision variable with the
same constraint is added, the control space will now include all possible combinations of the
two variables, such as (−1,−1) and (1,0). This results in a total of nine different controls.
The curse of dimensionality becomes increasingly severe as decision variables are added due
to its exponential nature. For instance, using 26 decision variables in this simple example
would result in over 2.5 trillion possible controls. In the case of using muscle activations as
controls, these variables are float values which further aggravates this effect.

The computational effort is further exacerbated by the absence of derivative information,
which is the case when using physics simulations such as MuJoCo. These derivative informa-
tion are required for Newton-Like methods such as the BFGS1 [20] used in Chapter 3. Most
optimization algorithms use the derivative to find better controls by following the steepest
descent. In the absence of this information, finite differences are commonly used to estimate
the gradient. This means that each decision variable is varied slightly before the objective

1BFGS is a so-called Quasi-Newton method which construct second-order derivative information, i.e., the
Hessian, recursively [3]. Still, first-order derivatives or approximations of these are necessary.

222 Discussion and Future Work

function is evaluated again to calculate the derivative. Increasing the number of decision
variables, e.g., by adding more muscles to the biomechanical model, slows down this process.
Using gradient-free algorithms like CMA-ES [26] or BOBYQA [47] does not help either
because they require many evaluations of the system dynamics, and each evaluation requires
expensive forward simulations. Similarly, DRL agents with complex biomechanical models
take days to learn even simple interactions (the agents in Chapters 7 and 8 took up to three
days on a regular machine2). Beyond that, to model more complex interactions that involve
finger or body movements, many more muscles need to be considered (as there are over 30
muscles moving the wrist, hand and fingers).

In many cases, nonlinear problems such as the one introduced here can be locally modeled
by linear dynamics. For example, the iterative LQR (ILQR) method can be used for nonlinear
biomechanical models [37]. The concept of this approach is to linearize the system around
each new state and control vector in each iteration. However, using this technique requires
an analytical description of the system dynamics, which is not available when using complex
biomechanical models like the ones used in this thesis. In addition, linearizations become
less precise when nonlinearities have a large impact on a system.

Another solution for this challenge could be using hierarchical control or DRL methods.
One promising approach to solve this challenge is (hierarchical) distributed MPC (DMPC)
which has been successfully implemented for the control of micro grids [5, 34]. The idea of
distributed MPC is to split the OCP into many smaller sub-problems that can be computed in
parallel by several sub-unit. Each sub-unit subsequently computes their own optimal control,
considering the currently planned controls of all other units as fixed. The local optimal
controls are then sent to a central unit which computes a global strategy and communicates
the resulting controls back to the sub-units. After a few rounds of re-optimization, the
process converges to an optimal strategy for the whole system. In the case of simulating
interaction movements, sub-units could be considered which control only those muscles that
work on similar joints. Neurologically, DMPC is related to the theory of muscle synergies,
as investigated by d’Avella et al. [9, 10]. By doing so, the computation of the optimal control
can be accelerated, allowing for the use of biomechanical models with a large number of
muscles. However, the actions of one muscle group are not completely independent of the
actions of others. For instance, accelerating the upper arm will also apply force on the lower
arm. Therefore, it remains to be shown whether this approach will converge to a sufficient
solution in a reasonable time.

There also have been various advances in the research of hierarchical reinforcement
learning agents [45]. The idea is to use low-level agents that learn sub-tasks and are in

2Such as the NVIDIA GeForce RTX 3090.

9.2 Technical Challenges of Movement Simulation 223

turn controlled by high-level agents to fulfill the given main goal. Training the low-level
agents is faster than learning the complete control, and they can further be used for different
high-level agents, depending on the task. In case of the simulation of interaction movements,
a low-level agent could learn to produce postures by actuating muscles, while a high-level
agent would then dictate which sequence of postures would be needed to fulfill the interaction
task. The low-level agent could then also be reused for different conditions without the need
of extensive retraining.

In the future, technical advances in processor performance will help mitigate these
challenges. Currently, the use of more powerful GPUs can already accelerate the training
process of DRL agents. However, discovering more efficient methods for solving the OCP
will enable faster and more energy-efficient computation of simulations.

Single-Shooting vs. Multiple Shooting

Another technical challenge is the formulation of the OCP, i.e., how it is presented to the
solving algorithm. This formulation determines the decision variables, i.e., the variables that
the solver can adjust to find the best solution. In Chapter 3, the decision variables are the
activation values, e.g., the muscle activations (see OCP (1.4)). From an HCI perspective, this
is reasonable since the user controls these activations. This approach is also called single-
shooting because to evaluate one possible realization of the decision variables, the whole
state-trajectory has to be evaluated while technically ensuring that the system dynamics
are maintained. In this case, the system dynamics are not defined as actual constraints
during the optimization but rather result implicitly. In case of MPC, each evaluation of a
control trajectory u(·) thus requires the simulation of the entire movement up to the MPC
horizon N ∈ N, i.e., evaluating xu(k+ 1,x0) = f (xu(k,x0),u(k)) for k = 0, ...,N − 1. This
results in a state trajectory xu(·,x0) which is then used to calculate the cost function value.
Single-shooting is easy to implement and keeps the number of decision variables manageable.
However, one technical downside of this approach is that the optimizer cannot use the
structural information of the problem, e.g., that each control value only directly affects the
next state.

This property can be exploited for faster computations using multiple shooting [4] or
collocation [57] methods, where the OCP is discretized in the activation and state variables,

224 Discussion and Future Work

i.e.,

min
u(·), x(·)

N−1

∑
k=0

ℓ(x(k),u(k)) (9.1)

such that x(k+1) = f (x(k),u(k)), x(0) = x0, (9.2)

x(k) ∈ X,u(k) ∈ U, for all k ∈ N. (9.3)

The system dynamics are then included in actual constraints that define how the state variables
depend on the prior state and the corresponding control values, given in (9.2). A solver
may decide to violate these constraints during optimization in order to find a solution more
quickly, e.g., by solving for the end of the movement first. Additionally, because of the shape
of the constraints (9.2), their Jacobian and Hessian are (block) sparse, which make them
easier to compute. On the downside, formulating the OCP in this way significantly increases
the number of decision variables which, as mentioned above, slows down the optimization -
especially when no derivative information is available.

Implications of Choosing the Objective Function

From a technical perspective, some objective functions are beneficial for methods that can
solve OCPs. For example, including a term that directly penalizes the control variables
quadratically usually helps to improve the convergence of optimization algorithms since
convexity guarantees that any local minimum is also a global minimum. In all of the presented
works, such a regularization term is used. In general, optimization algorithms work better
with smooth objective functions that are, optimally, of a convex shape. In particular, from an
optimal control perspective, using discrete rewards as mentioned above is not recommended
since they do not exhibit a gradient that leads towards the goal. Nonetheless, a reinforcement
learning agent may still be able to learn reasonable movements, as I have shown in Chapters 6
to 8. Furthermore, discrete rewards make fewer assumptions about the user’s intention. For
instance, employing distance costs implies that the user prefers being in close proximity to a
target at all times which may not be the case. Such costs represent a more restrictive rule
than a one-time reward that is given upon reaching the target – regardless of the movement
made. In addition, interactive systems often directly provide discrete rewards, such as scores
in video games. Therefore, it is still appropriate to use discrete rewards, even though they
may have negative mathematical implications. By enabling the direct integration of user
simulation into VR development environments in Chapter 8, I simplify using such discrete
rewards.

9.3 Combining and Extending Models for Interaction 225

Challenges in Comparing Simulations to User Data

To evaluate whether simulations produce movements that are similar to that of humans,the
resulting motion has to be compared to observed data from user studies. However, the
acquisition of user data is cumbersome for several reasons. First, since interaction movements
can be very small and fast, a motion capturing system is required that is able to record accurate
high frequency motion. Second, the study participants need to wear trackers or special suits.
Third, the logging of the motion capturing data and data from the experiment application
(e.g., Unity3) have to be spatially and temporally aligned. Further, to be able to compare
simulation and human data, the initial conditions must be aligned. It is especially important
to align initial postures and muscle activation when comparing single movements.

Another challenge is modeling the process of users learning a new interaction technique.
So far, our simulations assume that the user is an expert for the considered system. However,
if a more complex interaction technique, such as the Virtual Pad from Chapter 3, is used,
mastering it may require extensive training. Additionally, humans may be biased towards
familiar interaction techniques, which could make learning a new system difficult. For
instance, the user may be accustomed to using a tablet on a table and therefore feel more
comfortable with a horizontally placed Virtual Pad. However, after some training, a tilted
Virtual Pad may result in less strenuous movements. Including the learning process in
simulations can aid in introducing new interaction techniques and provide insight into how
new users interact with a system. However, this requires a sophisticated cognitive model of
the user – in addition to the already complex biomechanical model.

9.3 Combining and Extending Models for Interaction

Combining MPC and DRL

The studies in this dissertation have investigated both DRL and OFC methods to simulate
movement in HCI. DRL requires many evaluations of the system dynamics during training
and thus needs long to learn, especially when using complex physics simulations as part of
the system dynamics. As a benefit, once a certain task is learned, it can be sampled very
quickly. MPC in contrast, does no require prior training, but needs evaluations of the system
dynamics in each time step of a simulated movement.

A promising future research direction lies therefore in combining these two approaches.
This approach combines the strength of the fast sampling of DRL with the explainability and
optimality guarantees gained by MPC. A DRL agent could be trained to learn the underlying

3https://unity.com/

https://unity.com/

226 Discussion and Future Work

system dynamics, while the MPC is used to find optimal controls, using the estimation of the
system dynamics [31].

Adding Improved Perception Models

The model used for the simulation with MPC in Chapter 3 assumes total observability, i.e.,
the simulated user knows the exact position of the cursor and the state of their body (or
biomechanical system) at any time. In reality, humans perceive their environment via various
senses. In our case, this perception is mostly visual and proprioceptive. However, haptic
perception also plays an important role in many interaction techniques. I have investigated
visual perception models for mouse pointing simulated with LQG (see Chapter 5), as well as
visual and haptic perception for more complex tasks using DRL (see Chapters 7 and 8).

Augmenting also the MPC with perceptual models will increase the realism of generated
movements and allow for the modeling of occlusion that can occur during interaction, as
well as perceptual delays. Technically, this will require the implementation of an observer
and, depending on the model, of probabilistic MPC [31]. The results could then be compared
to DRL approaches that use similar perception models.

Utilizing Contact Force Models

The physics engine I used to model the biomechanics, MuJoCo [60], has a sophisticated
model to calculate contact forces. Although I have used this in controlling a joystick
in Chapter 7, I have not fully exploited its capabilities. Not only can it model the interaction
with complex input devices like triggers or touchscreens, it can also model interactions
with spatial constraints, such as mid-air interactions while sitting on an airplane. Future
applications may also include devices that are capable of producing force feedback like
haptic gloves or full body exoskeletons.

Creating Adaptive Interaction Techniques

It is quite possible that future advances in computing combined with improved methods will
enable accurate (faster than) real-time simulation of human motion during interaction. This
will allow us to create a digital twin for instant motion prediction of individual users which
will be the basis for developing predictive interaction techniques for faster and more intuitive
interactions. Those techniques could adapt online to changed user intentions or, in case of
mixed reality applications, changed environments.

10
Conclusion

User studies are considered the gold standard for evaluating interactive systems. However, in-
vestigating movement-based interactions, which are included in most VR or AR applications,
can be particularly cumbersome and costly. Instead, in silico testing provides an alternative,
but previous models fail to capture user movements on a level that allows for proper evalua-
tion of quantities such as ergonomics or effort. As a solution, I presented a framework for
modeling HCI tasks that is based on OFC theory. This framework enables biomechanical
simulation of interaction movements using methods from OFC and DRL. Consequently,
this facilitates the automated evaluation of the ergonomics of interactive systems already at
early stages of prototyping, reducing the risk of expensive fixes later on. By incorporating a
model of the user’s body into simulations, it becomes possible to predict difficult-to-measure
quantities such as muscle activation or fatigue. This provides insight into user strategies and
can help achieve a more inclusive view of HCI by enabling the evaluation of interfaces for
users with different physiologies, rather than relying on a one-size-fits-all approach. Since the
simulation is created by optimizing an objective function, the resulting movements resemble
those of experienced users. This saves necessary training time compared to classical user
testing.

I have demonstrated, how this framework can be applied to different interaction tasks
such as pointing, tracking, or choice reaction, using the mouse or mid-air techniques in VR.

228 Conclusion

I have shown that OFC and DRL methods can simulate human movements in interaction
scenarios in a way that provides insight into ergonomics of a system and user behavior, using
state-of-the-art biomechanical models. For instance, I demonstrate that utilizing a Linear-
Quadratic Regulator for simulating mouse-pointing is more effective than previous methods
in interpreting user data. Using Model Predictive Control and biomechanical user models,
I can predict joint movements of users during a mid-air pointing tasks. The trajectories
resulting from the simulations fall within the range of between-user variance, indicating that
simulations could be used as a partial replacement for user studies in this particular case.
In addition to classical control-theoretic approaches, I show how reinforcement learning
methods can be used to simulate user movements in different VR tasks and present a system
that allows developers to run simulations while working with a development environment.

Ultimately, I aim to make my work usable for HCI researchers and practitioners. For
instance, the SIM2VR platform simplifies the utilization of simulations by providing an
integration of user simulations directly into the development environment. To ease the
application of the proposed OFC framework, several open-source toolboxes, as well as
guidelines and tutorials are provided in the corresponding works. These help to model and
simulate any movement-based interactions and can be used to evaluate existing or novel
interaction techniques.

In the future, the proposed approaches can be further improved by implementing larger
biomechanical models or by addressing the technical challenges, as discussed in Section 9.1.
In addition, the physics simulations MuJoCo includes a high-fidelity contact model that
allows to simulate particular interaction scenarios, such as interaction in constrained space.
If simulations are sufficiently fast, they can be used to automatically optimize interaction
techniques for performance, ergonomics, or effort. Running these optimizations online could
assist the interactive system in adapting to changes in the environment during interaction,
which is common in mixed reality situations. For these reasons I am certain that simulating
user movements will play a crucial role in the future of HCI. Leveraging these findings
can support the evaluation of existing as well as novel interaction techniques and lays the
foundation for automatic optimization of interactions in regards to any quantity such as
performance, effort, or ergonomics.

Bibliography

[1] Baloup, M., Pietrzak, T., and Casiez, G. (2019). Raycursor: A 3d pointing facilitation
technique based on raycasting. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19, page 1–12, New York, NY, USA. Association for
Computing Machinery.

[2] Bellman, R. (1957). Dynamic programming.

[3] Betts, J. T. (2020). Practical Methods for Optimal Control Using Nonlinear Program-
ming, chapter 1, pages 1–46. siam.

[4] Bock, H. G., Diehl, M. M., Leineweber, D. B., and Schlöder, J. P. (2000). A direct
multiple shooting method for real-time optimization of nonlinear dae processes. In
Allgöwer, F. and Zheng, A., editors, Nonlinear Model Predictive Control, pages 245–267,
Basel. Birkhäuser Basel.

[5] Braun, P., Grüne, L., Kellett, C. M., Weller, S. R., and Worthmann, K. (2016). A
distributed optimization algorithm for the predictive control of smart grids. IEEE Transac-
tions on Automatic Control, 61(12):3898–3911.

[6] Card, S. K. E. (1983). The Psychology of Human-Computer Interaction (1st ed.). CRC
Press.

[7] Cheema, N., Frey-Law, L. A., Naderi, K., Lehtinen, J., Slusallek, P., and Hämäläinen, P.
(2020). Predicting mid-air interaction movements and fatigue using deep reinforcement
learning. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI ’20, page 1–13, New York, NY, USA. Association for Computing Machinery.

[8] Coverstone-Carroll, V., Hartmann, J., and Mason, W. (2000). Optimal multi-objective
low-thrust spacecraft trajectories. Computer Methods in Applied Mechanics and Engi-
neering, 186(2):387–402.

[9] d’Avella, A. and Lacquaniti, F. (2013). Control of reaching movements by muscle
synergy combinations. Frontiers in computational neuroscience, 7:42.

[10] d’Avella, A., Saltiel, P., and Bizzi, E. (2003). Combinations of muscle synergies in the
construction of a natural motor behavior. Nature Neuroscience, 6(3):300–308.

[11] Deb, K. and Deb, K. (2014). Multi-objective Optimization, pages 403–449. Springer
US, Boston, MA.

[12] Diedrichsen, J., Shadmehr, R., and Ivry, R. B. (2010). The coordination of movement:
optimal feedback control and beyond. Trends in cognitive sciences, 14(1):31–39.

230 Bibliography

[13] Faisal, A. A., Selen, L. P., and Wolpert, D. M. (2008). Noise in the nervous system.
Nature reviews neuroscience, 9(4):292–303.

[14] Faulwasser, T., Grüne, L., and Müller, M. A. (2018). Economic nonlinear model
predictive control. Foundations and Trends® in Systems and Control, 5(1):1–98.

[15] Fischer, F., Bachinski, M., Klar, M., Fleig, A., and Müller, J. (2021). Reinforcement
learning control of a biomechanical model of the upper extremity. Scientific Reports,
11(1):1–15.

[16] Fischer, F., Fleig, A., Klar, M., Gruene, L., and Mueller, J. (2020). An optimal control
model of mouse pointing using the lqr.

[17] Fischer, F., Fleig, A., Klar, M., and Müller, J. (2022). Optimal feedback control for
modeling human-computer interaction. ACM Trans. Comput.-Hum. Interact. In Press.

[18] Fitts, P. M. (1954). The information capacity of the human motor system in controlling
the amplitude of movement. Journal of experimental psychology, 47(6):381.

[19] Flash, T. and Hogan, N. (1985). The coordination of arm movements: an experimentally
confirmed mathematical model. Journal of neuroscience, 5(7):1688–1703.

[20] Fletcher, R. (2000). Newton-Like Methods, chapter 3, pages 44–79. John Wiley & Sons,
Ltd.

[21] Gawthrop, P., Loram, I., Lakie, M., and Gollee, H. (2011). Intermittent control: A
computational theory of human control. Biological Cybernetics, 104(1-2):31–51.

[22] Gori, J., Rioul, O., and Guiard, Y. (2018). Speed-accuracy tradeoff: A formal
information-theoretic transmission scheme (fitts). ACM Trans. Comput.-Hum. Interact.,
25(5).

[23] Grüne, L. and Pannek, J. (2017). Nonlinear Model Predictive Control. Theory and
Algorithms. Springer, London, 2nd edition.

[24] Guigon, E., Baraduc, P., and Desmurget, M. (2007). Computational motor control: Re-
dundancy and invariance. Journal of Neurophysiology, 97(1):331–347. PMID: 17005621.

[25] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor.

[26] Hansen, N. (2016). The cma evolution strategy: A tutorial.

[27] Harris, C. M. and Wolpert, D. M. (1998). Signal-dependent noise determines motor
planning. Nature, 394(6695):780–784.

[28] Hetzel, L., Dudley, J., Feit, A. M., and Kristensson, P. O. (2021). Complex interaction
as emergent behaviour: Simulating mid-air virtual keyboard typing using reinforcement
learning. IEEE Transactions on Visualization and Computer Graphics, 27(11):4140–4149.

Bibliography 231

[29] Ikkala, A., Fischer, F., Klar, M., Bachinski, M., Fleig, A., Howes, A., Hämäläinen, P.,
Müller, J., Murray-Smith, R., and Oulasvirta, A. (2022). Breathing life into biomechanical
user models. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology, UIST ’22, New York, NY, USA. Association for Computing
Machinery.

[30] Jokinen, J., Acharya, A., Uzair, M., Jiang, X., and Oulasvirta, A. (2021). Touchscreen
Typing As Optimal Supervisory Control. Association for Computing Machinery, New
York, NY, USA.

[31] Kamthe, S. and Deisenroth, M. (2018). Data-efficient reinforcement learning with
probabilistic model predictive control. In International conference on artificial intelligence
and statistics, pages 1701–1710. PMLR.

[32] Kawato, M. (1993). Optimization and learning in neural networks for formation and con-
trol of coordinated movement. In Attention and performance XIV (silver jubilee volume)
synergies in experimental psychology, artificial intelligence, and cognitive neuroscience,
pages 821–849.

[33] Klar, M., Fischer, F., Fleig, A., Bachinski, M., and Müller, J. (2023). Simulating
interaction movements via model predictive control. ACM Trans. Comput.-Hum. Interact.,
30(3).

[34] Kong, X., Liu, X., Ma, L., and Lee, K. Y. (2019). Hierarchical distributed model
predictive control of standalone wind/solar/battery power system. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 49(8):1570–1581.

[35] Lacquaniti, F., Terzuolo, C., and Viviani, P. (1983). The law relating the kinematic and
figural aspects of drawing movements. Acta Psychologica, 54(1):115 – 130.

[36] Lewis, F. L., Vrabie, D., and Syrmos, V. L. (2012). Optimal control. John Wiley &
Sons.

[37] Li, W. and Todorov, E. (2004). Iterative linear quadratic regulator design for nonlinear
biological movement systems. In Proceedings of the 1st International Conference on
Informatics in Control, Automation and Robotics, (ICINCO 2004), volume 1, pages
222–229.

[38] Looft, J. M., Herkert, N., and Frey-Law, L. (2018). Modification of a three-compartment
muscle fatigue model to predict peak torque decline during intermittent tasks. Journal of
biomechanics, 77:16–25.

[39] Martín, J. A. A., Gollee, H., Müller, J., and Murray-Smith, R. (2021). Intermittent
control as a model of mouse movements. ACM Trans. Comput.-Hum. Interact., 28(5).

[40] Messier, J. and Kalaska, J. F. (1999). Comparison of variability of initial kinematics
and endpoints of reaching movements. Experimental brain research, 125:139–152.

[41] Müller, J., Oulasvirta, A., and Murray-Smith, R. (2017). Control theoretic models of
pointing. ACM Transactions on Computer-Human Interaction (TOCHI), 24(4):1–36.

232 Bibliography

[42] Murray-Smith, R., Oulasvirta, A., Howes, A., Müller, J., Ikkala, A., Bachinski, M.,
Fleig, A., Fischer, F., and Klar, M. (2022). What simulation can do for hci research.
Interactions, 29(6):48–53.

[43] Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., and Kawato, M.
(1999). Quantitative examinations of internal representations for arm trajectory planning:
minimum commanded torque change model. Journal of Neurophysiology, 81(5):2140–
2155.

[44] Newell, A. (1994). Unified theories of cognition. Harvard University Press.

[45] Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. (2021). Hierarchical reinforcement
learning: A comprehensive survey. ACM Comput. Surv., 54(5).

[46] Poupyrev, I., Billinghurst, M., Weghorst, S., and Ichikawa, T. (1996). The go-go
interaction technique: Non-linear mapping for direct manipulation in vr. In Proceedings
of the 9th Annual ACM Symposium on User Interface Software and Technology, UIST
’96, page 79–80, New York, NY, USA. Association for Computing Machinery.

[47] Powell, M. J. et al. (2009). The bobyqa algorithm for bound constrained optimiza-
tion without derivatives. Cambridge NA Report NA2009/06, University of Cambridge,
Cambridge, 26.

[48] Qian, N., Jiang, Y., Jiang, Z.-P., and Mazzoni, P. (2013). Movement duration, fitts’s
law, and an infinite-horizon optimal feedback control model for biological motor systems.
Neural computation, 25(3):697–724.

[49] Qin, S. and Badgwell, T. A. (2003). A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7):733–764.

[50] Rawlings, J., Mayne, D., and Diehl, M. (2017). Model Predictive Control: Theory and
Design. Nob Hill Publishing, 2nd edition.

[51] Rogers, Y. (2004). New theoretical approaches for hci. Annual review of information
science and technology, 38(1):87–143.

[52] Rutledge, J. D. and Selker, T. (1990). Force-to-motion functions for pointing. In Pro-
ceedings of the IFIP TC13 3rd International Conference on Human-Computer Interaction.

[53] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. CoRR, abs/1707.06347.

[54] Scott MacKenzie, I. and Riddersma, S. (1994). Effects of output display and con-
trol—display gain on human performance in interactive systems. Behaviour & Information
Technology, 13(5):328–337.

[55] Shadmehr, R., de Xivry, J. J. O., Xu-Wilson, M., and Shih, T.-Y. (2010). Temporal
discounting of reward and the cost of time in motor control. Journal of Neuroscience,
30(31):10507–10516.

[56] Soria, E., Schiano, F., and Floreano, D. (2021). Predictive control of aerial swarms in
cluttered environments. Nature Machine Intelligence, 3(6):545–554.

Bibliography 233

[57] Tamimi, J. and Li, P. (2009). Nonlinear model predictive control using multiple shooting
combined with collocation on finite elements. IFAC Proceedings Volumes, 42(11):703–708.
7th IFAC Symposium on Advanced Control of Chemical Processes.

[58] Todorov, E. (1998). Studies of goal-directed movements. Massachusetts Institute of
Technology.

[59] Todorov, E. (2005). Stochastic optimal control and estimation methods adapted to the
noise characteristics of the sensorimotor system. Neural computation, 17(5):1084–1108.

[60] Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033.

[61] Todorov, E. and Jordan, M. I. (2002). Optimal feedback control as a theory of motor
coordination. Nature Neuroscience, 5(11):1226–1235.

[62] Umberger, B. R. and Miller, R. H. (2018). Optimal control modeling of human
movement. Handbook of human motion, pages 327–348.

[63] van Beers, R. J., Haggard, P., and Wolpert, D. M. (2004). The role of execution noise in
movement variability. Journal of Neurophysiology, 91(2):1050–1063. PMID: 14561687.

[64] Van der Helm, F. C. and Rozendaal, L. A. (2000). Musculoskeletal systems with
intrinsic and proprioceptive feedback. In Biomechanics and neural control of posture and
movement, pages 164–174. Springer.

[65] Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L. G., and Norambuena, M. (2017).
Model predictive control for power converters and drives: Advances and trends. IEEE
Transactions on Industrial Electronics, 64(2):935–947.

[66] Vittorio, C., Huawei, W., Guillaume, D., Massimo, S., and Vikash, K. (2022). Myosuite
– a contact-rich simulation suite for musculoskeletal motor control. https://github.com/
myohub/myosuite.

[67] Wada, Y., Kaneko, Y., Nakano, E., Osu, R., and Kawato, M. (2001). Quantitative
examinations for multi joint arm trajectory planning—using a robust calculation algorithm
of the minimum commanded torque change trajectory. Neural networks, 14(4-5):381–393.

[68] Wang, J. and Katayama, M. (2011). Optimal model for selecting human arm posture
during reaching movement. In Advances in Cognitive Neurodynamics (II), pages 453–458.
Springer.

[69] Wentzel, J., d’Eon, G., and Vogel, D. (2020). Improving virtual reality ergonomics
through reach-bounded non-linear input amplification. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, CHI ’20, page 1–12, New York,
NY, USA. Association for Computing Machinery.

[70] Zhou, Y., Wang, M., and Ahn, S. (2019). Distributed model predictive control approach
for cooperative car-following with guaranteed local and string stability. Transportation
Research Part B: Methodological, 128:69–86.

https://github.com/myohub/myosuite
https://github.com/myohub/myosuite

234 Bibliography

[71] Zitzler, E., Laumanns, M., and Bleuler, S. (2004). A tutorial on evolutionary multi-
objective optimization. In Gandibleux, X., Sevaux, M., Sörensen, K., and T’kindt, V.,
editors, Metaheuristics for Multiobjective Optimisation, pages 3–37, Berlin, Heidelberg.
Springer Berlin Heidelberg.

	Nomenclature
	1 Introduction
	1.1 Movement Simulation in Human-Computer Interaction
	1.2 Human-Computer Interaction as an Optimal Control Problem

	2 Thesis Overview
	2.1 Contributions
	2.2 Overview of the Presented Papers

	3 Simulating Interaction Movements via Model Predictive Control
	4 An Optimal Control Model of Mouse Pointing Using the LQR
	5 Optimal Feedback Control for Modeling Human-Computer Interaction
	6 Reinforcement Learning Control of a Biomechanical Model of the UpperExtremity
	7 Breathing Life Into Biomechanical User Models
	8 SIM2VR: Integrating Biomechanical Simulations in VR DevelopmentEnvironments
	9 Discussion and Future Work
	9.1 Designing OCPs for Movement-Based Interaction
	9.2 Technical Challenges of Movement Simulation
	9.3 Combining and Extending Models for Interaction

	10 Conclusion
	Bibliography

