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II. Abstract

Our growing knowledge of the diverse ways in which proteins function has sparked the

interest to reshape the protein world early on. The emergence of advanced computational and

molecular biology techniques are catalysts for creative engineering of proteins - from building

macromolecular structures from first principles to optimizing functional sites. Despite powerful

methods to model and redesign proteins computationally, current methods struggle to reliably

predict mutations to alter highly influential regions of protein structures like ligand binding

sites. Nature has evolved robust binding sites on proteins in the course of millions of years of

evolution. A growing number of structures is available in protein structure databases, which

could be used to find, extract, and reuse highly evolved binding motifs in engineering

applications.

One such application is the establishment of a new peptide-binding reagent. Common

protein detection relies mainly on antibodies which are derived from costly and ethically

questionable immunization of mice. Moreover, it has been shown that commercially available

reagent antibodies lack specificity and reproducibility (Bradbury & Plückthun, 2015; A. Gray et

al., 2020). Thus, there is a need for alternative detection reagents. With the regularization of

designed armadillo repeat proteins (dArmRP), a modular binding system was proposed to serve

this purpose. These dArmRPs have been designed to regularly bind peptides in an extended

fashion (Hansen et al., 2016). Each of the peptide side chains is detected by a specific binding

pocket on the dArmRP. With the design of new binding pockets for all canonical or even post-

translationally modified amino acids a pocket catalogue can be assembled. By recombining

binding pocket modules for the targeted peptide residues, this system could deliver reliable and

cheap alternative detection reagents (Gisdon et al., 2022).

This work introduces the software ATLIGATOR, ATLIGATOR web and PocketOptimizer

2.0, which all provide a significant support to the design of new binding modules for armadillo

repeat proteins, or even other protein systems. ATLIGATOR extracts frequent interactions found

in known protein structures which can be transferred to any protein scaffold. This transfer

process could yield new or improved binder proteins. Moreover, an itemset mining algorithm

detects frequent groups of interactions that can act as generalizable motifs. With a grafting

functionality such motifs can be directly introduced in the corresponding ligand-binding sites.

ATLIGATOR web extends this functionality with a user-friendly web interface to enhance the

analysis and design process. An advanced design tool provides immediate visual feedback of the

design process as well as features like manual mutations and Rosetta side chain repacking. Such
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designs can be fed directly into protein redesign software for additional optimization of the

binding capabilities. PocketOptimizer 2.0, as one example of such software, is the successor of

PocketOptimizer that introduces beneficial mutations on small molecule-bindings sites. With

this iteration, PocketOptimizer was modernized by removing deprecated dependencies and

rewriting the code base in developer-friendly Python programming language. Version 2.0 also

extends the functionality with a new user interface, more force fields and scoring functions as

well as an advanced rotamer library.

This set of programs not only provides critical support to start the design of new binding

pockets for the armadillo repeat system but is also applicable in other protein design approaches.



IX

III. Zusammenfassung

Unser wachsendes Wissen über die vielfältigen Funktionsweisen von Proteinen hat

schon früh das Interesse geweckt, die Proteinwelt selbst zu gestalten. Das Au�ommen

fortschrittlicher computergestützter und molekularbiologischer Techniken ist Antreiber für die

kreative Arbeit an Proteinen - vom Au�au makromolekularer Strukturen basierend auf

grundlegenden Prinzipien bis hin zur Optimierung von funktionellen Regionen. Trotz

leistungsfähiger Methoden zur computergestützten Modellierung und Neugestaltung von

Proteinen ist es derzeit schwierig, Mutationen zuverlässig vorherzusagen, um einflussreiche

Regionen von Proteinstrukturen wie Ligandenbindungsstellen zu verändern. Die Natur hat im

Laufe von Millionen von Jahren Evolution robuste Bindungsstellen in Proteinen entwickelt. In

Proteinstrukturdatenbanken ist eine wachsende Anzahl von Strukturen verfügbar, die

verwendet werden können, um gut angepasste Bindungsmotive zu finden, zu extrahieren und

in technischen Anwendungen wiederzuverwenden.

Eine solche Anwendung ist die Etablierung eines neuen Peptid-bindenden Reagenz. Der

gängige Proteinnachweis beruht hauptsächlich auf Antikörpern, die aus einer kostspieligen und

ethisch fragwürdigen Immunisierung von Mäusen stammen. Darüber hinaus konnte gezeigt

werden, dass es kommerziell erhältlichen Reagenzien-Antikörpern an Spezifität und

Reproduzierbarkeit mangelt, was zu problematischen experimentellen Ergebnissen führt

(Bradbury & Plückthun, 2015; A. Gray et al., 2020). Daher besteht ein Bedarf an alternativen

Nachweisreagenzien. Mit der Regularisierung von designten Armadillo-Repeat-Proteinen

(dArmRP) wurde ein modulares Bindungssystem vorgeschlagen, um diesen Zweck zu erfüllen.

Diese dArmRPs wurden entwickelt, um Peptide in einer gestreckten Form zu binden (Hansen

et al., 2016). Jede der Peptidseitenketten wird durch eine spezifische Bindungstasche auf dem

dArmRP detektiert. Mit dem Design neuer Bindungstaschen für alle kanonischen oder auch

posttranslational modifizierten Aminosäuren kann ein Katalog von Bindungsmodulen

zusammengestellt werden. Durch die Rekombination von Bindungstaschenmodulen für die

Seitenketten der Zielsequenz könnte dieses System zuverlässige und kostengünstige alternative

Nachweisreagenzien liefern (Gisdon et al., 2022).

In der vorliegenden Arbeit werden die Software ATLIGATOR, ATLIGATOR web und

PocketOptimizer 2.0 vorgestellt, die alle eine wesentliche Unterstützung für das Design neuer

Bindungsmodule für Armadillo-Repeat-Proteine – oder sogar andere Proteinsysteme - bieten.

ATLIGATOR extrahiert häufige Wechselwirkungen, die in bekannten Proteinstrukturen zu

finden sind und auf Proteingerüste übertragen werden können. Dieser Transferprozess könnte
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zu neuen oder verbesserten Bindeproteinen führen. Darüber hinaus erkennt ein Itemset-Mining-

Algorithmus häufige Gruppen von Interaktionen, die verallgemeinerbare Motive darstellen

können. Mit einer Transferfunktion können solche Motive direkt in die entsprechenden

Ligandenbindungsstellen eingebracht werden. ATLIGATOR web erweitert diese Funktionalität

um eine benutzerfreundliche Weboberfläche, um den Analyse- und Designprozess zu

verbessern. Ein fortschrittliches Design-Werkzeug bietet sofortiges visuelles Feedback zum

Design-Prozess sowie Funktionen wie manuelle Mutationen und das Umpacken von Rosetta-

Seitenketten. Solche Designs könnten direkt in Protein-Anpassungs-Software eingespeist

werden, um die Bindungsfähigkeiten weiter zu optimieren. PocketOptimizer 2.0, als ein Beispiel

für eine solche Software, ist der Nachfolger von PocketOptimizer, der in der Lage ist, vorteilhafte

Mutationen an Bindungsstellen für kleine Moleküle zu identifizieren. Mit dieser Iteration wurde

PocketOptimizer modernisiert, indem veraltete Abhängigkeiten entfernt und die Codebasis in

der entwicklerfreundlichen Programmiersprache Python neu geschrieben wurde. Die Version

2.0 erweitert den Funktionsumfang um eine neue Benutzeroberfläche, mehr Kraftfelder und

Scoring-Funktionen sowie eine erweiterte Rotamer-Bibliothek.

Diese Softwareanwendungen bieten nicht nur eine wichtige Unterstützung bei der

Entwicklung neuer Bindungstaschen für das Armadillo-Repeat-system, sondern sind auch in

anderen Proteindesignansätzen anwendbar.
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IV. Introduction

Prologue: How to Tame a Protein

In times of global challenges, scientific progress can be a driver for innovative

approaches. Proteins have been proven to be versatile molecular machines that can even be

repurposed to tackle some of these challenges in medicine and biotechnology. To embrace this

approach of engineering proteins to serve our needs, we need to obtain a deep understanding of

what influences a protein to behave as we desire. In the following chapters, I will navigate

through what we know and do not know about proteins and how this knowledge can be utilized

to engineer a dedicated function into a protein.

1. Proteins Are Controlled by Their Sequence

Proteins are pivotal factors in life as they are employed in a myriad of cellular processes.

They can act as transporters and anchors, reporters and detectors, barriers and enclosures and

even molecular factories. This variety is defined by their modularity which is based on 20

canonical amino acids that share a primary amine and a carbon acid group. By forming amide

bonds – also referred to as peptide bonds in this context – they construct a linear polypeptide

chain. While the backbone of this chain is almost independent of the amino acid combination,

each amino acid harbours a different residual group called the side chain. The combination of

amino acids - and thus side chains - in the polypeptide chain defines the sequence of a protein.

Consequently, the immense variety of proteinogenic features is encoded in the protein sequence

(as depicted in Figure 1).
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From Sequence to Structure

Today, we can see proteins as three-dimensional arrangements of the linear amino acid

sequence they are composed of. With techniques like x-ray crystallography, nuclear magnetic

resonance (NMR) spectroscopy or cryo-electron microscopy, researchers have solved the

structures of hundreds of thousands of proteins or protein-ligand complexes (Berman et al.,

2000). Besides that, recent advances in computational methodologies for structure prediction

yielded hundreds of millions of protein structure models that add up to existing experimental

results (David et al., 2022; Lin et al., 2023; Varadi et al., 2022). What can be observed in the

corresponding protein structure databases is a gigantic variety of three-dimensionally folded

structures. Assuming the observed conformation is the native one, each of those structures is a

result of the protein sequence, as proposed by Anfinsen:

“the three-dimensional structure of a native protein in its normal physiological milieu […] is

the one in which the Gibbs free energy of the whole system is the lowest; that is, that the

native conformation is determined by the totality of the inter-atomic interactions and hence

by the amino acid sequence” (Anfinsen, 1973)

Today, this native conformation could be described as a native ensemble of

conformations sinceproteins that are able to adopt multiple conformations have been described

(Cordes et al., 2000; Meier et al., 2007; Nowak et al., 2014; Van Dorn et al., 2006), but the general

idea is still valid: Despite the knowledge that other factors like post-translational modifications

or ligand binding events can impact the structural integrity of a protein, the linear amino acid

sequence alone is the single major factor deciding how a protein should look and act like.

Conformational Complexity

To realize that this sequence-structure relationship is not trivial, it is important to

understand how a protein can adopt a range of different conformations: The linear chain of

amino acid building blocks comprises several degrees of freedom allowing the molecule to alter

the shape. Without breaking any covalent bonds, there are two main contributors to this source

of flexibility:
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First, the backbone of the chain is flexible. It harbours nitrogen, the carbonα atom linked

to the side chain and the carbonyl carbon in a repetitive manner for each residue of the

polypeptide. Thus, there are three dihedral angles – spanning a connection between four

backbone atoms - per residue alongside the polypeptide chain. Since the peptide bond is mostly

planar due to a double-bond character of the amide, we can find two variable angles per residue.

These angles are centred at the bonds between N-Cα or Cα-CO and called phi (φ) and psi (ψ).

The φ-ψ-combination of a residue is restricted to allowed regions based on the amino acid type

and the secondary structure. These regions are often defined in a so-called Ramachandran plot

where both torsion angles are plotted against each other (Ramachandran et al., 1963).

Second, most amino acid side chains feature rotatable bonds. The associated torsion

angles are called chi (χ) and incremented by their number of covalent bonds from the α-carbon.

Depending on the amino acid type this adds up to five χ torsion angles per residue as additional

degrees of freedom.

Figure 1: Visualization of the relationship between protein sequence, structure, and function. The sequence of amino acids

determines structural features by influencing secondary structure formation or forming internal interactions of residues that are

distant in sequence. Through forming the structural framework and providing distinct chemical properties at crucial positions, the

amino acid sequence also provides function. This function could be to bind small ligands and other proteins or form an active site

for a catalytic function.
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Even though not all combinations of torsion angles are biologically relevant or even

physically possible, the enormous number of possible torsion angle combinations is far from

human imagination – and grows exponentially with each additional protein residue.

According to Anfinsen, there is only one or few native structures of a polypeptide that

are formed as the needle in the haystack of all possible torsion angle combinations. Since the

folding of proteins usually falls in the time range of micro- or milliseconds nature cannot scan

through all conformational possibilities exhaustively. This mismatch is described as Levinthal’s

paradox of folding speeds and suggests the existence of specific folding pathways (Levinthal,

1969). While Anfinsen describes the thermodynamic element of the sequence-structure

relationship, Levinthal handles kinetic considerations of the same problem. This problem is also

referred to as the protein folding problem (Nassar et al., 2021).

Despite this conformational complexity, it is clear that intramolecular interactions and

interactions with the environment are the main contributions for the formation of protein

structures. Intramolecular interactions can be formed (1) between two or more amino acid side

chains, (2) between a side chain and the protein backbone, and (3) between different parts of

the protein backbone. An obvious example is based on backbone-backbone hydrogen bonds,

namely the formationof secondary structure elements - β-sheet and α-helix structures (reviewed

in Eisenberg, 2003). Turns and loop structures connect α-helices and β-strands (Sun et al., 2004).

While these secondary structure elements are mostly formed between backbone atoms, their

appearance is defined by the amino acid sequence. For example, glycines and prolines are known

as helix breakers, a helix-induced dipole influences the frequency and positioning of charged

amino acids and loop structures are dominated by glycines (Argos & Palau, 1982; Aurora et al.,

1994; Kim & Kang, 1999).

Amino acid side chain interactions are manyfold. Charge-charge interactions, hydrogen

bonds and π- π or ion- π interactions are crucial influences on stability of super-secondary

structures. Moreover, polar, and non-polar residues are unevenly distributed in surface and core

regions of protein structures due to the hydrophobic effect. This way hydrophobic side chains

are shielded from the polar aqueous solvent. In fact, there is evidence for a stabilizing effect of

expanded networks of hydrophobic residues in protein cores (Arunachalam & Gautham, 2008;

Kathuria et al., 2016; Romero-Romero et al., 2021). Finally, all these factors contribute to the

three-dimensionally folded structure (see Figure 1).
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From Sequence to Function

Since the sequence defines the protein structure, every function that is structurally

defined is induced by the sequence-to-structure relationship (see Figure 1). Functionality in the

protein space is highly diverse, ranging from purely structural modules to interactions with

ligands or even catalysis. Moreover, individual proteins or protein complexes often perform

multiple purposes: Microtubules for example not only maintain the cell shape as a major

component of the cytoskeleton, but are also involved in mitosis, cell motility and intracellular

transport (Akhmanova & Steinmetz, 2008).

In analogy to internal interactions that stabilise a protein fold, the amino acid sequence

is the main driver for these functions: On the one hand, the protein sequence defines the three-

dimensional structure, dynamics, and stability to form building blocks in living cells. On the

other hand, it dictates the placement of crucial amino acids for forming catalytically active sites

and binding sites. This relationship is evident in many mutation-derived diseases where single

amino acid mutations lead to severe health conditions (Veltman & Brunner, 2012).

Understanding the connection of sequence, structure and function helps to target these

diseases. Furthermore, it helps to modulate or generate a desired functionality by designing

proteins via adaptation or de novo design. In order to extend this understanding, a great source

of such knowledge can be found in nature.
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2. Protein Evolution as a Source of Inspiration

The variety of features in today’s proteins is based on constant adaptation as described

by Darwin’s theory of evolution. As a process of slight modifications while being influenced by

external factors this often leads to an improved fitness in even the smallest biological niche.

Thus, the variety of protein sequences and structures is a consequence of highly diverse

environments. As a result, each natural protein carries useful information about its origin or

function.

Evolution of Functionality

Proteins did not evolve in an isolated space but embedded in a heterogeneous

environment. Thus, their evolution was always in close coexistence with potential binding

partners, substrates, or even structural violators. Proteolytic activity, for example, needs to be

tuned down to a beneficial level and improved catalytic activity could be the existential feature

in competition with the environment (Attaix et al., 2001). In the case of ligand binding,

increasing affinity to the target might help to survive in the case of a shortage period. Equally

important, the specificity to distinguish binding partners from each other is an important part

of the overall effectivity of ligand binders. Over the course of evolution all this information was

accumulated in existing protein sequences and structures. Hence, known protein sequences or

structures are a fruitful source of inspiration when looking for new functionality in protein

design. Even though it is hidden, the vast amount of available data facilitates the identification

of frequently used and potentially valuable patterns.

To find similar functional features in different proteins, the protein sequences can be

aligned and compared. However, even very sensitive sequence comparisons using hidden

Markov models are less powerful than structural comparisons because structural features are

highly conserved. With the use of structural databases based on evolutionary relationships (Fox

et al., 2014), common structural features can be revealed and linked to specific functionality

(Bordin et al., 2021; Todd et al., 1999).
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3. Protein Engineering and Design

The more we understand the relationship between protein sequence and structure as

well as their implications on function, the better we can use this knowledge for our own

purposes. By applying alterations to a protein sequence, we can try to establish or modulate

binding capabilities, and change protein stability or enzymatic features. When it comes to

engineering a protein to exhibit a desired function, structure-based protein design with

computational guidance is certainly one of the most promising applications (Gainza et al., 2016).

It ranges from the exploration of new protein folds to repurposing known scaffolds to feature

new or improved capabilities (Pan & Kortemme, 2021).

The Inverse Folding Problem

While modern software sometimes still struggles to correctly predict the structure of a

known protein sequence – relating to the protein folding problem described earlier, the inverse

process is even more challenging. The definition of a sequence from a given structure – referred

to as the inverse folding problem – requires a reliable understanding of the sequence to structure

relationship. Additionally, this relationship must be assessed for every potential protein

sequence – in contrast to structure prediction from one protein sequence. About four decades

ago, the rational design of a protein with the aim to exhibit a certain fold and functionality

seemed almost impossible (Korendovych & DeGrado, 2020). This was of course due to the

combinatorial explosion of potential amino acid sequences even for a moderately long amino

acid sequence. Technology has however been developed even to design proteins from scratch

(Pan & Kortemme, 2021).

De Novo Protein Design

Today, there are numerous examples of proteins that have been designed based on

physical principles while the amino acid sequences are unrelated to known proteins (Huang,

Boyken, et al., 2016). These proteins are also called de novodesigned proteins and they have been

a main driver for knowledge in protein design studies. In a review article by Korendovych and

DeGrado this progress in de novo design is divided into three waves which were each made

possible by technological leaps at their time: First, manual protein design using physical models

based on improvements in peptide synthesis starting in the late 1970s. Initiated by

groundbreaking advances in structure investigation with crystallographic and NMR techniques,
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computer graphics and processing as well as gene editing, the phase of computational design

guided by fundamental physicochemical principles dominated from the mid-1980s to the early

2000s. Within this era, computational modelling got more and more prominently used. The

third phase of fragment-based and bioinformatically informed computational protein design

combined earlier strategies with sequence and structure information from databases like the

Protein Data Bank (PDB) (Berman et al., 2000; Korendovych & DeGrado, 2020).

As described by Korendovych and DeGrado, the design of simple architectures based on

β-sheets (Dou et al., 2018; Lim et al., 1998; Quinn et al., 1994; Richardson & Richardson, 1989)

and α-helices (Beesley & Woolfson, 2019; DeGrado& Lear, 1985) got more advanced by providing

internal parameterization of the structural architecture (Betz & DeGrado, 1996; Emberly et al.,

2004; Grigoryan & DeGrado, 2011; Korendovych & DeGrado, 2020; Lasters et al., 1988; Lombardi

et al., 2000; North et al., 2001; Offer et al., 2002; Salemme, 1983). Repetitive modules that rely on

an internal symmetry reduced the sequence search space and allowed more complex structures

(Brunette et al., 2015; Harbury et al., 1998; Huang et al., 2014; Huang, Feldmeier, et al., 2016;

Nanda et al., 2005; Thomson et al., 2014; Voet et al., 2014). These and many other studies clearly

outlined the capability to design protein structures from physical principles. As a new contender

in the field, machine learning-based applications arrived just recently to incorporate the

accumulated knowledge for training new design algorithms in a promising manner

(Anishchenko et al., 2021; Dauparas et al., 2022; Ferruz et al., 2022; Watson et al., 2023). Time

will tell how far these methods can take us, but as for all machine learning applications the limit

is the availability and quality of training data.

Despite substantial success with rational design approaches in the last decades and the

rise of new machine-learning based software to automate such applications, those approaches

remain not trivial and exhibit a low hit rate on narrowly defined or uncommon design tasks

(Höcker et al., 2023).

Protein Engineering

In contrast to the de novo design of a structure with desired properties, existing proteins

can also be reused and adapted for a new goal. This strategy allows to attempt to delineate the

influences responsible for the pure target functionality (Regan, 1993). In such an engineering

approach, the design workflow is divided into finding suitable scaffold proteins for the desired

application and redesigning these scaffolds to exhibit the feature of interest. Depending on the

desired functionality, there are tools to select suitable scaffolds, like the software
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ScaffoldSelection (Stiel et al., 2014). Redesigning the chosen scaffolds can be approached with

either randomly or systematically applying mutations to find those with beneficial effects

towards the design goal. Both results in new variants that need to be evaluated against the wild

type. This can be relatively straightforward for a small number of variants and a visual read-out

of for example a fluorescent protein. However, since the number of variants that need to be

tested often exceeds expression and purification capabilities, an alternative approach is

necessary. In this case, directed evolution or library-based techniques can be applied to test a

large number of variants with a connected readout like fluorescence-based signal changes on

ligand binding. Another way to approach this is to use computational predictions of certain

features like thermodynamic stability or binding capability.

Computational Guidance in Protein Design

As outlined above, protein design has immensely profited from the vast development in

technologies for computational support. Besides the obvious improvement in raw computing

power and hardware acceleration, the implementation of advanced search algorithms and

efficient modelling of protein systems helped to lift computational protein design to the

fundamental unit of modern protein design. In this section, I will try to justify this argument on

the example of two software suites for protein design, namely Rosetta and OSPREY. Both

programs strive to accomplish the same goal of structural modelling and design but with two

fundamentally different approaches.

Rosetta

The heuristics-based Monte Carlo algorithms within the Rosetta software suite have

gained extremepopularity and made Rosetta one of the most prominent and most used software

for macromolecular modelling and design (Leaver-Fay, Tyka, et al., 2011). One core part of

Rosetta are the custom energy functions which have improved over the years. Since

macromolecular systems like protein structures or complexes consist of numerous atoms,

covalent bonds and non-covalent interactions, the fast and meanwhile accurate description of

all energetical effects is challenging. These energy functions consist of weighted energy terms

that have a physical or statistical origin. Physical phenomena like electrostatic interactions are

implemented as simplified versions of the Coulomb potential. For example, by limiting long

range-effects, the cubic scaling effect of three dimensions is pruned and the calculation is sped

up drastically. To make up for the lost accuracy of the simplified physical terms, statistical terms
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based on empiric observations of known protein structures are included. These include the

prevalence of rotational angles in preferred positions like the backbone torsion angles of the

protein backbone or preferred conformations of the side chains. While modern energy scoring

functions like ref2015 include many energy terms with full-atom resolution, coarse-grained

functions for broader energy search focus on effects of the whole structure like secondary

structure content (Park et al., 2016).

To improve the energy of a protein structure Rosetta incorporates libraries of low-energy

conformations of the side chains that have been shown to dominate the protein cores for tight

packing – also referred to as rotamers (Dunbrack & Cohen, 1997; Dunbrack & Karplus, 1993; Janin

et al., 1978; McGregor et al., 1987). By exchanging the present rotamers with new ones, the energy

difference of both structures can be compared, and a minimum energy structure can be

obtained. This is relatively simple for two protein conformations, but the exponential scaling of

conformations makes it hard – even for smaller proteins. In fact, even five available rotamers at

each position create more than 9·1011 combinations for a protein with 20 amino acids – and at

this length, it might not even pass the stage of being a peptide. Rosetta facilitates a heuristic

algorithm – namely the Monte Carlo algorithm proposed in the 1950s – to find a balance between

computational cost and accuracy (Metropolis et al., 1953). Random exchanges of rotamers are

evaluated energetically, and if the total energy decreases, the steps are accepted. In the case of

increasing total energy, a random factor is introduced and compared to the energy difference to

decide if the step is reverted or not (Leaver-Fay et al., 2005; Leaver-Fay, Jacak, et al., 2011; Leaver-

Fay, Tyka, et al., 2011). Due to this heuristic factor, Rosetta has the chance of escaping local

energy wells to sample broader regions of the folding energy landscape. Thus, this packing

method allows efficient rotamer assignment of protein structures with a fixed backbone

conformation (Kuhlman & Baker, 2000). To also sample and evaluate different backbone

conformations, Rosetta offers several minimization algorithms that define a vector as the

direction to lower the overall energy. While iteratively repeating the definition and application

of this vector on the overall structure the total energy decreases and we end up in a local energy

minimum deterministically. Both algorithms – heuristic repacking and deterministic

minimization – are connected in alternating cycles to compose the default algorithm for

energetic preparation of protein structures in Rosetta called relaxation. The iterative alternation

allows for finding local energy minima while retaining the possibility to escape higher energy

wells in favour of finding the global energy minimum or the native state of the protein (Leaver-

Fay, Tyka, et al., 2011).

While there are dozens of protein design protocols in Rosetta, relaxation is also capable

of finding lower energy sequences by applying mutations. The most basic design protocol – the
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FastDesign protocol – is based on this principle. In fact, the basic algorithm remains similar, but

instead of only allowing rotamers of the native amino acid type to be picked by the packing

algorithm, non-native amino acid types are randomly introduced. As a result, the decline in total

energy is not only due to a more favourable packing of amino acid side chains but also due to

their identity and their interactions with their environment (Maguire et al., 2021).

By applying heuristics and using a highly engineered energy function, the Rosetta suite

is capable of modelling even very complex macromolecular systems. It is potentially capable of

finding global energy minima while utilizing only a relatively small amount of computing power.

However, the stochastic approach in many Rosetta algorithms creates the need for a high

number of repetitions for complex systems to sample enough conformational space. In fact,

Rosetta is not guaranteed to find the global minimum at all. Furthermore, scoring of individual

conformations is limited by Rosetta energy functions which are focusing on fast calculations.

For example, these scoring functions also rely on empirical data for weighting energy terms or

the incorporation of statistically defined terms (Leman et al., 2020).

OSPREY

In contrast to heuristically sampling the conformational space, the search for a global

energy minimum or protein design has been extensively studied as an optimization problem for

deterministic, provable algorithms (Allouche et al., 2014). While their end goal is the same as for

Rosetta’s stochastic methodology, deterministic algorithms guarantee to find an optimal

solution. To not get overwhelmed by almost endless combinations, the search space is filtered

to remove unfavourable combinations. The software OSPREY makes use of different

deterministic algorithms to generate optimal solutions for protein design problems (Gainza et

al., 2013; Hallen et al., 2018): The search for the global minimum energy conformation (GMEC)

is performed by an adaptation of the A* algorithm – originally designed for pathfinding (Leach

& Lemon, 1998). Instead of detecting the optimal path between two points by selecting decent

travel nodes, this adaptation uses rotamers as nodes. By constructing a tree-like representation

of all rotamer combinations A* guarantees to find the optimal combination within its force field.

This derivative of the A* algorithm was further optimized for applications on protein structures.

For example, reordering the rotamer sequence helps to decrease the relevant search space by

pruning branches with failing rotamer combinations as early as possible (Roberts et al., 2015).

Usually, A* is performed in combination with dead-end elimination (DEE) as a preprocessing

step for the search for GMEC. DEE is an algorithm to efficiently prune those branches of the

search tree that can be proven to not be part of the GMEC (Desmet et al., 1992; Gordon et al.,
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2003; Lasters et al., 1995; Leach & Lemon, 1998). Traditional applications of DEE contain rigid

rotamers as possible side chain conformations. OSPREY implemented several iterations of DEE

to optimize the search performance and enable new functionality. While MinDEE takes into

account the minimized backbone structure, iMinDEE and CATS even enable continuous

rotation of side chain or backbones to overcome the gaps of rigid rotamers (Gainza et al., 2012;

Georgiev et al., 2008; Hallen & Donald, 2017). Furthermore, non-pairwise decomposable energy

terms can be included to account for effects like solvation or incorporate basic quantum

mechanics calculations (Hallen et al., 2015). Such effects in complex protein modelling and

design tasks are getting more and more accessible by OSPREY’s search algorithms in

combination with GPU-acceleration (Hallen et al., 2018). Protein redesign in OSPREY is

approached as in Rosetta by appending other amino acid rotamers at the desired positions and,

thus, expanding the search space.

In comparison to heuristic algorithms implemented in Rosetta, deterministic algorithms

with provable guarantees to find the global minimum tend to be more computationally

expensive. This expense, however, is justified in cases where the exact solution is desired, or

repeatability of the calculations matters. The additional options introduced by recent algorithms

to include continuous flexibility or even quantum mechanics-based calculations set another

unique advantage for OSPREY (Hallen et al., 2018).

Overall, both, stochastic sampling and energetic abstraction of Rosetta as well as the

deterministic approach of OSPREY were proven to provide powerful frameworks for modelling

and design in protein-based systems. The individual advantages and disadvantages of both

software suites lead to diverse applications and a large number of specialized subprotocols as a

shared effort of the protein design community (Du et al., 2021; Guerin et al., 2022; Ollikainen et

al., 2015; Raveh et al., 2010; Traoré et al., 2013).

Protein Design
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4. Engineering Function: Ligand Binding

As outlined in the last chapter, modern protein design software is able to model and

redesign proteins or protein complexes to find structural energy minima and improve the total

energy of such proteins. While there has long been a desire to utilize proteins to perform a

function with biomolecular techniques (Craik et al., 1985; Knowles, 1987), software has quickly

become a useful tool to guide these engineering approaches. This section will summarize

relevant developments and potential targets for computer-aided engineering of proteins for a

target function.

Besides the catalysis of enzymatic reactions, binding other proteins or small molecule

ligands is the most prominent goal in engineering protein functionality. Enzymatic activity,

protein-protein interactions, and ligand binding rely on matching the protein surface with the

target – be it a peptide, protein, small molecule ligand, or substrate. This was described in

Hellinga’s and Richards’ work back in 1991 in order to announce their molecular modelling

program DEZYMER (Hellinga et al., 1991). Like other early approaches to create new binding

functionality, their work aimed at the introduction of metal-binding sites. This early focus on

metal-binding can be explained by the diverse functions that can be performed by metals and

their well-characterized geometries based on X-ray structures of natural metalloproteins (Regan,

1993). In the following years, designs for binding sites for organic small molecule ligands have

been attempted, too (Allert et al., 2004; Looger et al., 2003). Even though these early designs

were proven wrong (Schreier et al., 2009), the understanding about the design process got more

advanced in general and successful designs were published (Tinberg et al., 2013). As a result, in

combination with directed evolution and high-throughput screening, ligand binding design

became a crucial tool in molecular biology. Despite numerous success stories, it is clear that

engineering molecular binding is far from being a solved problem (Höcker et al., 2023).

Computational guidance suffers from additional degrees of freedom by orientation, translation,

and conformation of the target ligand. On top, selectivity over antagonist ligands is crucial. For

sensors, for example, selectivity for the target keeps noise levels low and guarantees significant

detection results.

To limit this complexity of designing a ligand-binding protein, existing features can be

reused. To do so, two methods are available: One effective way to approach ligand binding is

altering specificity by changing the affinity of involved ligands in an existing binder protein

(Yang & Lai, 2017). There are several examples how this can be conducted rationally (Kröger,

Shanmugaratnam, Ferruz, et al., 2021; Kröger, Shanmugaratnam, Scheib, et al., 2021), but also
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computational tools have emerged to support this task. One such tool is the software called

PocketOptimizer which predicts the most promising mutations to stabilize the interaction

within a protein-small molecule complex (Malisi et al., 2012; Stiel et al., 2016). This is particularly

useful for existing protein scaffolds, since known structures can serve as starting points for this

design. It is important to know, however, that PocketOptimizer – like other programs – relies

on the ligand being positioned in or close to the binding pocket. This creates a need for

supporting software that helps to dock ligands on the protein’s surface. Docking software has

been developed for drug design, but also for testing binder designs like the software HADDOCK

and AutoDock (Goodsell & Olson, 1990; Morris et al., 2009; van Zundert et al., 2016).

A secondmethod for providing a starting point for design is to reuse pre-existing binding

interfaces from known protein-ligand complexes in a new context. The iterative improvement

of protein-ligand interaction in the course of evolution yielded copious amounts of highly

optimized binding interfaces. By extracting the essential features of known binding pockets

these pockets can be abstracted to a binding motif. If a suitable scaffold can be found, the motif

can be introduced to a new protein. This transfer process is also referred to as grafting and was

applied in tools like Optgraft for finding metal binding sites (Fazelinia et al., 2008). One

successful example was extracting and planting such a binding motif on a regularly designed

armadillo repeat protein (Ernst et al., 2020).

Newly designed binders can also be tested computationally. The software suites Rosetta

and OSPREY, for example, include specialized protocols for redesign or pure testing of ligand

binding capabilities. This is useful, especially in the case of a comparison of one target ligand

and several non-desired ligands. Rosetta implements the flex ddG protocol which calculates the

Rosetta energies of protein, ligand, and the protein-ligand complex to obtain a relative energy

difference (Barlow et al., 2018). OSPREY approximates the partition functions of bound and

unbound states with the algorithm K* as an additional layer over the A* search (Lilien et al.,

2005). This algorithm was refined further, for example with a branch and bound over K* (BBK*)

and with a combination of minimization-aware enumeration and recursive K* (MARK*) for

ensemble-based protein binder design. While BBK* allows to efficiently remove high-energy

sequences from the sequence space, MARK* is able to outperform its predecessors by setting

tighter energy bounds and a different prioritization in the energy landscape (Jou et al., 2020;

Ojewole et al., 2018). Thus, both software suites offer efficient protocols for testing and

optimizing designed binders. Another helpful way of investigating binding is to use molecular

dynamics (MD) simulations. With innovative approaches, MD simulations are getting faster or

enable to estimate binding energies to get a better understanding of the protein-ligand

interaction (Doerr et al., 2016; Fu et al., 2022; Jespers et al., 2021). However, it must be mentioned
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that most of those techniques still require heavy resources and their ability for a generalized

approach has yet to be proven (Mobley & Klimovich, 2012; Sheng et al., 2021).

Design of a Modular Binding Reagent

Despite recent improvements in engineering ligand binding to create new binding

reagents, such a process is costly, time-intensive, and is not always successful. Hence, many

binding reagents are not designed individually, but antibodies are produced in an established

system. Here, mice are introduced to the target ligand to produce antibodies as an immune

response. The corresponding b-cells are extracted from the mice after an incubation time and

fused to myeloma cells to generate a hybrid cell line called hybridoma (Bradbury & Plückthun,

2015). While this process is well established and more cost-effective than designing individual

binders computationally with subsequent experiment testing, it has several downsides. First, it

requires a whole immunization and extraction cycle for each target. Thus, it is time- and cost-

intensive compared to purely computational work. Second, for most reagent antibodies the

sequence is not determined and thus reproducibility is not given. Third, the generated

antibodies often exhibit lower specificity than desired leading to wrong detection in subsequent

experiments (A. C. Gray et al., 2020). On top of that, there is an urgent desire to reduce animal

testing in the scientific community (Bradbury & Plückthun, 2015; A. Gray et al., 2020).

To address these issues, it would be ideal to find a non-animal derived binder system

that needs minimal cost and preparation for each new target. There are attempts to use repeat

protein binders which are selected by screening massive DNA libraries and produced

recombinantly (Binz et al., 2004; Forrer et al., 2003; Plückthun, 2015). Even though this can limit

the necessary time and cost of selection and production, the resource-intensive selection step is

still required for every new target. In contrast, the Plückthun lab proposed a modular binding

system based on the armadillo repeat protein scaffold which is a natural peptide binder (Gisdon

et al., 2022; Parmeggiani et al., 2008). By optimizing the armadillo repeat protein scaffold to form

a regular binding groove for stretched peptides, they separated each bound amino acid (see

Figure 2 and Hansen et al., 2016, 2018). On this basis, the interacting residues of the armadillo

repeat binder can be optimized to specifically detect one amino acid side chain at one position,

leading to a strong detection of small polypeptide stretches. If a library of exchangeable modules

is designed, it can be reused for each sequential stretch of unfolded protein or peptide. The

arrangement of binding modules can be executed in silico and, thus, the resulting binder

sequence only needs to be expressed in a bacterial expression system. To establish this system,

the project Predictive reagent antibody replacement technology (Pre-ART)was formed as a shared
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effort that combines computational and experimental methods. For a detailed perspective on

this approach, I like to refer to the review article in the attached articles (Gisdon et al., 2022).

To approach this idea of a modular binding system based on designed armadillo repeat

proteins a variety of binding modules need to be generated. To target every possible peptide

sequence, a counterpart for all 20 of the canonical amino acids is needed. Thus, in an ideal case

only 20 binding modules would be enough to build a universal tool kit. Since there is a significant

difference between both sides of the stretched peptide, each side would need its own set of 20

modules. However, neighbouring binding pockets are tightly connected, and the choice of

overlapping pocket residues needs to be flexible, which may compromise specificity. Therefore,

alternative pockets or even double pockets are needed for certain combinations of pockets.

Additionally, it is possible that suitable pockets cannot be found for the discrimination of all

individual amino acid types in singularity, but in a group of two or few amino acids. Having

pockets for targeting certain subsets of those groups will be crucial for targeting most peptide

Figure 2: Armadillo repeat protein binding a KR5 peptide illustrates the regularity of its binding mode. The designed

armadillo repeat protein consisting of repeats of three α helices binds a stretched peptide with alternating arginine and lysine

residues. A and C compare the protein-peptide complex in cartoon and sticks representation of the crystal structure (PDB: 5AEI)

to a schematic representation. The interaction mode consists of interactions of asparagine 37 to the peptide backbone and specific

interactions to the peptide side chains – as shown in detail by B and D. By focusing on one of the peptide amino acids potentially

interacting binder residues can be identified in the protein. The PRe-ART project aims to design modules that can specifically

target individual peptide amino acids. Those modules are combined by mutating the corresponding residues of helix three (H3) of

the designed armadillo repeat protein (D).
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sequences. To account for those factors, the identification of binding pockets is a major limiting

factor for building an assorted catalogue to choose from.

As outlined in the last chapters, computational support can guide the design of new

binding pockets. In combination with information from known protein structures or protein-

peptide complexes and a diversity of tools for the prediction of binding specificity, the design

capabilities of existing software might be improved even further.
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V. Aim

The aim of this thesis is to provide new methods for the design of peptide-binding

pockets. The new techniques focus on the identification, design, and computational

characterization of new binding pockets for the armadillo repeat protein scaffold. These

methods are crucial for the construction of a catalogue of binding pockets that function as

recognition modules. Thus, this work supports the establishment of a predictive modular

binding system as an alternative for reagent antibodies.
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VI. Synopsis

List of publications in this synopsis:
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The design of specific binding pockets can be approached with traditional computational

redesign tools like Rosetta Design, OSPREY, or PocketOptimizer (Hallen et al., 2018; Leaver-Fay,

Tyka, et al., 2011; Malisi et al., 2012). However, these programs were originally built to design or

redesign single-chain protein structures and only have a limited ability to accurately predict

protein-protein or protein-peptide complexes. Despite recent advances in scoring binding

energy or sampling flexibility, they are limited by the exponentially growing complexity for

design tasks and fast – but less accurate – energy scoring. This task is particularly intricate in

systems where the difference in ligand agonist and antagonist is small. Thus, even scoring

functions that perform well on big interaction surfaces tend to struggle capturing the small
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details within these test cases. With an iterative algorithm like Rosetta FastDesign known biases

and shortcomings will be accumulated. Moreover, it does not cover a parallel negative design

route for unwanted antagonist-binding designs (Leaver-Fay, Tyka, et al., 2011).

Learning from Nature

Modern protein redesign tools advanced significantly in recent years, but it is still

challenging to create binding pockets directly considering the challenges mentioned above. To

circumvent these inabilities of those tools for the creation of pockets directly, we turned around

and watched out for already known binding sites. Inspired by the pioneering work of Singh and

Thornton (Singh & Thornton, 1992), we searched through structures with a similar structural

background to find common interactions in existing protein structures with peptide or protein

ligands. With this approach, finding patterns in the interaction partners or geometry in a

reoccurring manner would hint at general binding motifs. Those motifs can potentially be reused

by transferring them to the armadillo repeat protein binding site. Based on this idea we created

ATLIGATOR which is a software package written in the programming language Python.

ATLIGATOR is short for ATlas-based LIGAnd-binding ediTOR. It can collect protein structures

based on fold classifications and extract pairwise interactions from these structures. These

interactions are defined by having a binder residue and a ligand residue. While the binder

residue typically belongs to the polypeptide chain of the targeted fold classification, the ligand

residue is coming from a bound peptide or protein. The pairwise interactions are grouped by

ligand and binder residue type and aligned on the position of the ligand residue as the central

point spatially. Thus, all pairwise interactions are formed from the viewpoint of the ligand and

thus the spatial orientation of the binder residues can be retrieved independently of the original

structure. It also contains information about their origin, like PDB code, chain, or residue

identifier, which corresponds to a detailed description of the data source. This extraction

procedure generates a data structure called an atlas where pairwise interactions are contained

(Figure 3).

This collection of interaction data points now creates an intrinsic value on top of the

individual data points information. Since all interaction pairs are centred at the ligand residue,

they are aligned by definition and can be overlayed with each other in three-dimensional space.

Thus, frequent patterns like residue type pairs in a distinct mutual orientation can be observed

and described. To account for this potential knowledge gain, ATLIGATOR incorporates several

ways to visualize atlases three-dimensionally. Atlases are collections of pairwise interactions of

all ligand amino acid types against all binder amino acid types. However, for the design of a
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binder of a certain amino acid type only one ligand amino acid type is important. Thus,

ATLIGATOR congregates all interactions based on the amino acid type of the ligand residue.

The resulting collections are called atlas maps, and their focus on one amino type makes them

the largest naturally connected source of information for design purposes. One atlas map is

divided in atlas pages which correspond to one-to-one connections between two amino acid

types. The visualization of both atlas representations can lead to valuable insights about which

interactions are found in nature and can be repurposed for own design ideas.

A specific interaction pattern which recognizes individual polypeptide residues is likely

to be formed from several residues on the binder side. An atlas contains the information about

hot spots of binder residue type positions – usually visualized as clouds of pairwise interaction

Figure 3: Schematic overview of the ATLIGATOR components. The ATLIGATOR python package is based on the data

structures Atlas and Pockets which consist of pairwise interactions extracted from existing protein structures. While Atlases are

structured based on the amino acid identity of both interacting residues, Pockets extend this structure with a one-to-many

relationship. ATLIGATOR allows to visualize statistics, but also three-dimensional datapoints. Pockets can be grafted to own

proteins by providing prepared scaffold structures and selecting the desired pockets. (Figure taken from Kynast et al., 2022)
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points. The combination of several of those interaction clouds could match and construct a

potential binding pocket. Nevertheless, it is not guaranteed to find those combinations in known

protein structures even once. In fact, two strongly preferred binder residue suggestions might

be mutually exclusive in a new binder design. To compensate for this lack of combinatorial

information ATLIGATOR offers a functionality to extract frequent groups of interactions. It

works similar to what online sellers do when suggesting products to buy as a supplement to what

customers are actually aiming for. By watching combinations of products in recent orders one

can calculate the best matching additions to targeted goods. In the case of ATLIGATOR this is

done with the a priori algorithm: Sets containing all residue types around a ligand residue are

extracted and matched with all other sets (Agrawal et al., 1993). Only those subsets that are

reasonably sized and occur frequently, are highlighted as plausible patterns for binding. We call

those subsets pockets as they potentially define the crucial parts of a binding pocket.

The combination of atlases and pockets can give useful insights in which interactions are

favoured in nature. These insights can be extracted and transferred to the design of new protein

binders. ATLIGATOR even includes a matching algorithm to transfer interaction motifs from

pockets directly. This combination of analysis and design make ATLIGATOR a helpful assistant

for a diverse audience and requires only moderate coding experience. To share this software with

the community, ATLIGATOR is available as a python package at the Python packaging index

(https://pypi.org/project/atligator/) and published as free open-source software on GitHub

(https://github.com/Hoecker-Lab/atligator).

ATLIGATORWeb Server Enables Easy Usage

ATLIGATOR is a useful tool in gaining an understanding about binding motifs and how

they can be used on new scaffolds. However, a programmatic interface is a significant

steppingstone for users without coding experience. A graphical user interface would make up

for this, and it also improves understanding by connecting visualized data. For this reason, we

created ATLIGATOR web – a web server to showcase and extend ATLIGATOR functionality.

ATLIGATOR web contains the sections Structures, Atlases, Pockets, Scaffolds and

Designs (Figure 4). Structures contains the input complex structures which are used in the other

sections and can be inspected three-dimensionally or downloaded. Atlases and Pockets contain

the data structures known from ATLIGATOR which incorporate pairwise interactions and

frequent groups of interactions, respectively. The graphical interface enables linking connected

data structures or browsing through different levels of hierarchy. For example, a pocket
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collection is linked to its underlying atlas, and in an atlas one can browse through atlas maps or

atlas pages to visualize the contained data. Atlas and pocket visualization also allows to click on

data points to find their origin or detailed full-atom representations. This contributes to a more

seamless experience in inspecting ATLIGATOR data.

The sections Scaffolds and Designs offer functions to upload user-defined scaffolds and

graft pockets or introduce manual mutations with a visualization of the resulting protein. For a

more native representation of the introduced mutations, a repacking function is implemented

based on the Rosetta fixbb protocol (Leaver-Fay et al., 2005). Thus, ATLIGATOR web does not

only help to understand ATLIGATOR better, but also speeds up designing new binding pockets

based on known interaction motifs.

Even though ATLIGATOR and ATLIGATOR web were developed with the intention to design

binding pockets for the armadillo repeat protein scaffold both tools are not limited to this

application. Every potential interaction between two or more amino acids can be extracted with

Figure 4: Screenshot of the ATLIGATOR web landing page at https://atligator.uni-bayreuth.de/. The sections Structures,

Atlases, Pockets, Scaffolds and Designs offer functions to browse interactions or design new binders. A search and a login function

are provided in the header. For extended guidance, a tutorial mode can be activated in the footer, besides the options to change

and observe the current colour scheme for individual amino acids.
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ATLIGATOR. Hence, every design approach that aims at protein-protein or protein-peptide

interactions can benefit from this functionality.

Prediction of Binder Specificity

While the detection and the placement of potential binding motifs on the armadillo

repeat protein can be done with ATLIGATOR, we do not know if our designed binder is

preferring one ligand amino acid over all others. As reviewed by Gisdon et al., the heavy lifting

of finding the exact binder sequence can be outsourced to directed evolution by screening a

focussed DNA library (Gisdon et al., 2022). However, to match ATLIGATOR designs with a

suggestion of a focussed library it is useful to test a set of designed binders computationally to

finalize the content of the focussed library. For this application, perfect accuracy in the

prediction of specificity is not necessary. Rather, finding a trend with several, orthogonal

programs with imperfect prediction capabilities provides a reasonable guideline for library

design. Protocols like Rosetta flex ddG or OSPREY’s BBK* seem to be promising candidates for

providing such distinctions within a timeframe of hours to days for single binders (Gisdon et al.

unpublished - compare with chapter 4 of the introduction). In fact, our lab developed a software

program called PocketOptimizer that serves a very similar purpose (Malisi et al., 2012; Stiel et

al., 2016). It can find optimal solutions for mutating the binding pocket of a small molecule

ligand with a linear programming solving algorithm. It features ligand and side chain flexibility

of the binding pocket as well as a modular pipeline for exchanging force fields, scoring functions

and more. However, PocketOptimizer depends on the software libraries tinker and BALL as

outdated dependencies and does not feature a modern user interface (Hildebrandt et al., 2010;

Rackers et al., 2018). This complicates the handling of PocketOptimizer and inhibits the

implementation of modern force fields, scoring functions or algorithms. To address these

shortcomings, we created PocketOptimizer 2.0 that offers a cleaner python user interface, even

more supported modules for its architecture, such as force fields and scoring functions, a

backbone-dependent rotamer library, and optimizations of the underlying algorithms. The

general way how PocketOptimizer works and improvements of version 2.0 are described below.

The program PocketOptimizer contains four software components that are executed

sequentially (compare with Figure 5):

First, ligand and protein structures are prepared in order to generate a correctly

protonated and minimized protein-ligand complex. For this complex a binding pocket is defined

to direct PocketOptimizer in generating a diverse representation of the interaction.
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Second, flexibility of the interaction is sampled by introducing side chain conformers –

also known as rotamers – for the binding pocket residues. While PocketOptimizer extracted

these rotamers from a hand-crafted rotamer library, PocketOptimizer 2.0 additionally offers to

use the backbone-dependent Dunbrack rotamer library (Dunbrack & Karplus, 1993; Shapovalov

& Dunbrack, 2011). Version 2.0 also accelerates the rotamer sampling by replacing tinker with a

faster program called FFEvaluate as part of the high-throughput molecular dynamics (HTMD)

software (Doerr et al., 2016). To introduce ligand flexibility, ligand conformers are generated

which are further rotated and translated in the binding pocket. PocketOptimizer 2.0 also offers

a new method for the generation of ligand conformers. Conformers and positional variants are

bundled up as ligand poses.

Third, the energy of the protein-ligand complex is calculated in the context of previously

sampled flexibility. The total energy contains four parts where non-covalent interactions are

calculated (Figure 6). To compute those parts, the side chain rotamers are matched with the

fixed protein scaffold (1), other side chain rotamers (2) and the ligand poses (3). Beyond that,

ligand poses are also matched with the fixed scaffold (4). Those components can be grouped

into binding (3 and 4) and packing energies (1 and 2) on the basis of the ligand binding being

part of it or not. If the interaction partner is the fixed scaffold, they are also defined as self-

interaction energies (1 and 4). Pairwise-interaction energies are those components that include

another rotamer or a ligand pose as the interaction partner (2 and 3). PocketOptimizer 2.0 offers

more scoring functions for ligand binding than the original version to enable a more tailored

usage for specific types of interaction.

Figure 5:Workflow of the design ofa ligand-bindingpocket withPocketOptimizer consistingof four steps. After the prepa-

ration of a protein-ligand complex, the individualflexibility of the bindingpocket andthe ligandis sampled.Energies ofnon-covalent

interactions between flexible and fixed parts are calculated and fed into a linear solving algorithm. This results in one or more design

solutions which represent the lowest energy complex of ligand and optimized binder. This image is edited from Noske et al., 2023.
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Fourth, all the sampled interaction energies are passed into a solving algorithm that

efficiently alters flexible parts to identify the combination with the lowest total energy.

Overall, PocketOptimizer 2.0 is an improvement over PocketOptimizer in several ways.

It is not only faster and easier to use and develop, but it also incorporates more force fields,

scoring functions and rotamer libraries which makes it more robust. Its source code is available

at https://github.com/Hoecker-Lab/pocketoptimizer.

Pipeline for Design of Binding Modules

With the development of ATLIGATOR and ATLIGATOR web, the design of initial

binding pockets for modular binders can be done more efficiently. Even though these designs

might not be highly specific as they are, computational redesign methods like Rosetta flex ddG

or OSPREY BBK* can be used to improve specificity later. The development of PocketOptimizer

2.0 also makes it more attractive for this task. In combination with experimental testing this

setup seems promising for challenges like creating new binder modules for the modular system

proposed with PRe-ART.

Figure 6: Energetical components of the ligand binding pocket in PocketOptimizer. PocketOptimizer aggregates four types

of pairwise energy calculations. Flexible side chains are matched with the ligandposes, other flexible positions and the fixed scaffold,

while the ligand poses are also matched with the fixed scaffold. This image is edited from Noske et al., 2023.
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In the attached review article, we discussed the approach of creating such a modular

binding reagent based on the armadillo repeat protein scaffold. We came up with a strategy to

identify, test and implement new binder modules: Based on such computational predictions

DNA library compositions have been proposed which are generated non-degenerately with the

MAX-strategies (Chembath et al., 2022) by our collaboration partners in the PRe-ART project.

These libraries can be screened for promising binder candidates that are characterized and

complement the set of known binding modules.



Synopsis | 28



29 | Author Contributions

VII. Author Contributions

Gisdon FJ*, Kynast JP*, Ayyildiz M*, Hine AV, Plückthun A and Höcker B.

Modular peptide binders – development of a predictive technology as alternative for

reagent antibodies.

Biol. Chem. 2022; 403(5-6): 535-543

* equal contribution

For this review I participated in the concept design with F.J.G., M.A. and B.H.. I wrote parts of

the manuscript, especially the section about complementarity of computational and

experimental work. F.J.G. and M.A. wrote the initial draft other parts of the manuscript. All

authors contributed to the discussion about the work as well as editing and completion of the

manuscript.

Kynast JP, Schwägerl F, Höcker B.

ATLIGATOR: editing protein interactions with an atlas-based approach.

Bioinformatics 2022 Nov 30; 38(23): 5199-5205

In this work F.S, B.H. and I worked on the concept. F.S. and I developed and implemented the

methodology. I published the software package. I did the analysis and wrote the initial draft of

the manuscript. B.H. edited the manuscript and provided financial support and supervision.

Noske J, Kynast JP, Lemm D, Schmidt S, Höcker B.

PocketOptimizer 2.0: A modular framework for computer-aided ligand-binding design.

Protein Sci. 2023 Jan; 32(1): e4516

In this work J.N., myself, D.L., and S.S. implemented the methodology and did the validation.

J.N. did the major work on implementation and validation. J.N., S.S., and B.H. did the formal

analysis. J.N. and B.H. did the writing. All authors contributed in review and editing of the

manuscript. B.H. provided the concept, financial support, and supervision.



Author Contributions | 30

Kynast JP, Höcker B.

Atligator Web: A Graphical User Interface for Analysis and Design of Protein–Peptide

Interactions.

BioDesign Research 2023; 5; 0011

In this work B.H. and I did the conceptualization. I designed and implemented the methodology

and the web server. I did the analysis wrote the initial draft of the manuscript. B.H. contributed

in review and editing of the manuscript, provided administrative and financial support, as well

as supervision.



31 | Bibliography

VIII. Bibliography

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining Association Rules between Sets of Items in Large Databases.
SIGMOD Rec., 22(2), 207–216. https://doi.org/10.1145/170036.170072

Akhmanova, A., & Steinmetz, M. O. (2008). Tracking the ends: a dynamic protein network controls the fate of
microtubule tips. Nature Reviews Molecular Cell Biology, 9(4), 309–322. https://doi.org/10.1038/nrm2369

Allert, M., Rizk, S. S., Looger, L. L., & Hellinga, H. W. (2004). Computational design of receptors for an
organophosphate surrogate of the nerve agent soman. Proceedings of the National Academy of Sciences, 101(21),
7907–7912. https://doi.org/10.1073/pnas.0401309101

Allouche, D., André, I., Barbe, S., Davies, J., de Givry, S., Katsirelos, G., O’Sullivan, B., Prestwich, S., Schiex, T., &
Traoré, S. (2014). Computational protein design as an optimization problem. Artificial Intelligence, 212, 59–79.
https://doi.org/10.1016/j.artint.2014.03.005

Anfinsen, C. B. (1973). Principles that Govern the Folding of Protein Chains. Science, 181(4096), 223–230.
https://doi.org/10.1126/science.181.4096.223

Anishchenko, I., Pellock, S. J., Chidyausiku, T. M., Ramelot, T. A., Ovchinnikov, S., Hao, J., Bafna, K., Norn, C., Kang,
A., Bera, A. K., DiMaio, F., Carter, L., Chow, C. M., Montelione, G. T., & Baker, D. (2021). De novo protein design
by deep network hallucination. Nature, 600(7889), 547–552. https://doi.org/10.1038/s41586-021-04184-w

Argos, P., & Palau, J. (1982). Amino acid distribution in protein secondary structures. International Journal of Peptide
and Protein Research, 19(4), 380–393. https://doi.org/10.1111/j.1399-3011.1982.tb02619.x

Arunachalam, J., & Gautham, N. (2008). Hydrophobic clusters in protein structures. Proteins: Structure, Function and
Genetics, 71(4), 2012–2025. https://doi.org/10.1002/prot.21881

Attaix, D., Combaret, L., Pouch, M.-N., & Taillandier, D. (2001). Regulation of proteolysis. Current Opinion in Clinical
Nutrition and Metabolic Care, 4(1), 45–49. https://doi.org/10.1097/00075197-200101000-00009

Aurora, R., Srinivasan, R., & Rose, G. D. (1994). Rules for α-Helix Termination by Glycine. Science, 264(5162), 1126–
1130. https://doi.org/10.1126/science.8178170

Barlow, K. A., Ó Conchúir, S., Thompson, S., Suresh, P., Lucas, J. E., Heinonen, M., & Kortemme, T. (2018). Flex ddG:
Rosetta Ensemble-BasedEstimation of Changes in Protein–Protein Binding Affinityupon Mutation.The Journal
of Physical Chemistry B, 122(21), 5389–5399. https://doi.org/10.1021/acs.jpcb.7b11367

Beesley, J. L., & Woolfson, D. N. (2019). The de novo design of α-helical peptides for supramolecular self-assembly.
Current Opinion in Biotechnology, 58, 175–182. https://doi.org/10.1016/j.copbio.2019.03.017

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000).
The Protein Data Bank. In Nucleic Acids Research (Vol. 28, Issue 1). http://www.rcsb.org/pdb/status.html

Betz, S. F., & DeGrado, W. F. (1996). Controlling Topology and Native-like Behavior of de Novo-Designed
Peptides: Design and Characterization of Antiparallel Four-Stranded Coiled Coils. Biochemistry, 35(21), 6955–
6962. https://doi.org/10.1021/bi960095a



Bibliography | 32

Binz, H. K., Amstutz, P., Kohl, A., Stumpp, M. T., Briand, C., Forrer, P., Grütter, M. G., & Plückthun, A. (2004). High-
affinity binders selected from designed ankyrin repeat protein libraries. Nature Biotechnology, 22(5), 575–582.
https://doi.org/10.1038/nbt962

Bordin, N., Sillitoe, I., Lees, J. G., & Orengo, C. (2021). Tracing Evolution Through Protein Structures: Nature Captured
in a Few Thousand Folds. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.668184

Bradbury, A., & Plückthun, A. (2015). Reproducibility: Standardize antibodies used in research. Nature, 518(7537), 27–
29. https://doi.org/10.1038/518027a

Brunette, T., Parmeggiani, F., Huang, P.-S., Bhabha, G., Ekiert, D. C., Tsutakawa, S. E., Hura, G. L., Tainer, J. A., &
Baker, D. (2015). Exploring the repeat protein universe through computational protein design. Nature,
528(7583), 580–584. https://doi.org/10.1038/nature16162

Chembath, A., Wagstaffe, B. P. G., Ashraf, M., Amaral, M. M. F., Frigotto, L., & Hine, A. V. (2022). Nondegenerate
Saturation Mutagenesis: Library Construction and Analysis via MAX and ProxiMAX Randomization (pp. 19–41).
https://doi.org/10.1007/978-1-0716-2152-3_3

Cordes, M. H. J., Burton, R. E., Walsh, N. P., McKnight, C. J., & Sauer, R. T. (2000). An evolutionary bridge to a new
protein fold. Nature Structural Biology, 7(12), 1129–1132. https://doi.org/10.1038/81985

Craik, C. S., Largman, C., Fletcher, T., Roczniak, S., Barr, P. J., Fletterick, R., & Rutter, W. J. (1985). Redesigning Trypsin:
Alteration of Substrate Specificity. Science, 228(4697), 291–297. https://doi.org/10.1126/science.3838593

Dauparas, J., Anishchenko, I., Bennett, N., Bai, H., Ragotte, R. J., Milles, L. F., Wicky, B. I. M., Courbet, A., de Haas, R.
J., Bethel, N., Leung, P. J. Y., Huddy, T. F., Pellock, S., Tischer, D., Chan, F., Koepnick, B., Nguyen, H., Kang, A.,
Sankaran, B., … Baker, D. (2022). Robust deep learning–based protein sequence design using ProteinMPNN.
Science, 378(6615), 49–56. https://doi.org/10.1126/science.add2187

David, A., Islam, S., Tankhilevich, E., & Sternberg, M. J. E. (2022). The AlphaFold Database of Protein Structures: A
Biologist’s Guide. In Journal of Molecular Biology (Vol. 434, Issue 2). Academic Press.
https://doi.org/10.1016/j.jmb.2021.167336

DeGrado, W. F., & Lear, J. D. (1985). Induction of peptide conformation at apolar water interfaces. 1. A study with
model peptides of defined hydrophobic periodicity. Journal of the American Chemical Society, 107(25), 7684–
7689. https://doi.org/10.1021/ja00311a076

Desmet, J., Maeyer, M. De, Hazes, B., & Lasters, I. (1992). The dead-end elimination theorem and its use in protein
side-chain positioning. Nature, 356(6369), 539–542. https://doi.org/10.1038/356539a0

Doerr, S., Harvey, M. J., Noé, F., &De Fabritiis, G. (2016). HTMD: High-Throughput Molecular Dynamics for Molecular
Discovery. Journal of Chemical Theory and Computation, 12(4), 1845–1852.
https://doi.org/10.1021/acs.jctc.6b00049

Dou, J., Vorobieva, A. A., Sheffler, W., Doyle, L. A., Park, H., Bick, M. J., Mao, B., Foight, G. W., Lee, M. Y., Gagnon, L.
A., Carter, L., Sankaran, B., Ovchinnikov, S., Marcos, E., Huang, P.-S., Vaughan, J. C., Stoddard, B. L., & Baker,
D. (2018). De novo design of a fluorescence-activating β-barrel. Nature, 561(7724), 485–491.
https://doi.org/10.1038/s41586-018-0509-0

Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., & Yang, J. (2021). The trRosetta server
for fast and accurate protein structure prediction. Nature Protocols, 16(12), 5634–5651.
https://doi.org/10.1038/s41596-021-00628-9



33 | Bibliography

Dunbrack, R. L., & Cohen, F. E. (1997). Bayesian statistical analysis of protein side-chain rotamer preferences. Protein
Science, 6(8), 1661–1681. https://doi.org/10.1002/pro.5560060807

Dunbrack, R. L., & Karplus, M. (1993). Backbone-dependent Rotamer Library for Proteins Application to Side-chain
Prediction. Journal of Molecular Biology, 230(2), 543–574. https://doi.org/10.1006/jmbi.1993.1170

Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal structural features of proteins.
Proceedings of the National Academy of Sciences, 100(20), 11207–11210. https://doi.org/10.1073/pnas.2034522100

Emberly, E. G., Mukhopadhyay, R., Tang, C., & Wingreen, N. S. (2004). Flexibility of β-sheets: Principal component
analysis of database protein structures. Proteins: Structure, Function, and Bioinformatics, 55(1), 91–98.
https://doi.org/10.1002/prot.10618

Ernst, P., Zosel, F., Reichen, C., Nettels, D., Schuler, B., & Plückthun, A. (2020). Structure-Guided Design of a Peptide
Lock for Modular Peptide Binders. ACS Chemical Biology, 15(2), 457–468.
https://doi.org/10.1021/acschembio.9b00928

Fazelinia, H., Cirino, P. C., & Maranas, C. D. (2008). OptGraft: A computational procedure for transferring a binding
site onto an existing protein scaffold. Protein Science, NA-NA. https://doi.org/10.1002/pro.2

Ferruz, N., Schmidt, S., & Höcker, B. (2022). ProtGPT2 is a deep unsupervised language model for protein design.
Nature Communications, 13(1), 4348. https://doi.org/10.1038/s41467-022-32007-7

Forrer, P., Stumpp, M. T., Binz, H. K., & Plückthun, A. (2003). A novel strategy to design binding molecules harnessing
the modular nature of repeat proteins. FEBSLetters, 539(1–3), 2–6. https://doi.org/10.1016/S0014-5793(03)00177-
7

Fox, N. K., Brenner, S. E., & Chandonia, J.-M. (2014). SCOPe: Structural Classification of Proteins—extended,
integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Research, 42(D1), D304–
D309. https://doi.org/10.1093/nar/gkt1240

Fu, H., Chen, H., Blazhynska, M., Goulard Coderc de Lacam, E., Szczepaniak, F., Pavlova, A., Shao, X., Gumbart, J. C.,
Dehez, F., Roux, B., Cai, W., & Chipot, C. (2022). Accurate determination of protein:ligand standard binding
free energies from molecular dynamics simulations. Nature Protocols, 17(4), 1114–1141.
https://doi.org/10.1038/s41596-021-00676-1

Gainza, P., Nisonoff, H. M., & Donald, B. R. (2016). Algorithms for protein design. Current Opinion in Structural
Biology, 39, 16–26. https://doi.org/10.1016/j.sbi.2016.03.006

Gainza, P., Roberts, K. E., & Donald, B. R. (2012). Protein Design Using Continuous Rotamers. PLoS Computational
Biology, 8(1), e1002335. https://doi.org/10.1371/journal.pcbi.1002335

Gainza, P., Roberts, K. E., Georgiev, I., Lilien, R. H., Keedy, D. A., Chen, C.-Y., Reza, F., Anderson, A. C., Richardson,
D. C., Richardson, J. S., & Donald, B. R. (2013). OSPREY: protein design with ensembles, flexibility, and provable
algorithms.Methods in Enzymology, 523, 87–107. https://doi.org/10.1016/B978-0-12-394292-0.00005-9

Georgiev, I., Lilien, R. H., & Donald, B. R. (2008). The minimized dead-end elimination criterion and its application
to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular
ensembles. Journal of Computational Chemistry, 29(10), 1527–1542. https://doi.org/10.1002/jcc.20909

Gisdon, F. J., Kynast, J. P., Ayyildiz, M., Hine, A. V., Plückthun, A., & Höcker, B. (2022). Modular peptide binders-
development of a predictive technology as alternative for reagent antibodies. In Biological Chemistry (Vol. 403,
Issues 5–6, pp. 535–543). De Gruyter Open Ltd. https://doi.org/10.1515/hsz-2021-0384



Bibliography | 34

Goodsell, D. S., & Olson, A. J. (1990). Automated docking of substrates to proteins by simulated annealing. Proteins:
Structure, Function, and Genetics, 8(3), 195–202. https://doi.org/10.1002/prot.340080302

Gordon, D. B., Hom, G. K., Mayo, S. L., & Pierce, N. A. (2003). Exact rotamer optimization for protein design. Journal
of Computational Chemistry, 24(2), 232–243. https://doi.org/10.1002/jcc.10121

Gray, A., Bradbury, A. R. M., Knappik, A., Plückthun, A., Borrebaeck, C. A. K., & Dübel, S. (2020). Animal-free
alternatives and the antibody iceberg. Nature Biotechnology, 38(11), 1234–1239. https://doi.org/10.1038/s41587-
020-0687-9

Gray, A. C., Bradbury, A., Dübel, S., Knappik, A., Plückthun, A., & Borrebaeck, C. A. K. (2020). Reproducibility: bypass
animals for antibody production. Nature, 581(7808), 262–262. https://doi.org/10.1038/d41586-020-01474-7

Grigoryan, G., & DeGrado, W. F. (2011). Probing Designability via a Generalized Model of Helical Bundle Geometry.
Journal of Molecular Biology, 405(4), 1079–1100. https://doi.org/10.1016/j.jmb.2010.08.058

Guerin, N., Kaserer, T., & Donald, B. R. (2022). RESISTOR: A New OSPREY Module to Predict Resistance Mutations.
Journal of Computational Biology, 29(12), 1346–1352. https://doi.org/10.1089/cmb.2022.0254

Hallen, M. A., & Donald, B. R. (2017). CATS (Coordinates of Atoms by Taylor Series): protein design with backbone
flexibility in all locally feasible directions. Bioinformatics, 33(14), i5–i12.
https://doi.org/10.1093/bioinformatics/btx277

Hallen, M. A., Gainza, P., & Donald, B. R. (2015). Compact Representation of Continuous Energy Surfaces for More
Efficient Protein Design. Journal of Chemical Theory and Computation, 11(5), 2292–2306.
https://doi.org/10.1021/ct501031m

Hallen, M. A., Martin, J. W., Ojewole, A., Jou, J. D., Lowegard, A. U., Frenkel, M. S., Gainza, P., Nisonoff, H. M.,
Mukund, A., Wang, S., Holt, G. T., Zhou, D., Dowd, E., & Donald, B. R. (2018). OSPREY 3.0: Open-source protein
redesign for you, with powerful new features. Journal of Computational Chemistry, 39(30), 2494–2507.
https://doi.org/10.1002/jcc.25522

Hansen, S., Ernst, P., König, S. L. B., Reichen, C., Ewald, C., Nettels, D., Mittl, P. R. E., Schuler, B., & Plückthun, A.
(2018). Curvature of designed armadillo repeat proteins allows modular peptide binding. Journal of Structural
Biology, 201(2), 108–117. https://doi.org/10.1016/j.jsb.2017.08.009

Hansen, S., Tremmel, D., Madhurantakam, C., Reichen, C., Mittl, P. R. E., & Plückthun, A. (2016). Structure and
Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity. Journal of the
American Chemical Society, 138(10), 3526–3532. https://doi.org/10.1021/jacs.6b00099

Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T., & Kim, P. S. (1998). High-Resolution Protein Design with Backbone
Freedom. Science, 282(5393), 1462–1467. https://doi.org/10.1126/science.282.5393.1462

Hellinga, H. W., Caradonna, J. P., & Richards, F. M. (1991). Construction of new ligand binding sites in proteins of
known structure. Journal of Molecular Biology, 222(3), 787–803. https://doi.org/10.1016/0022-2836(91)90511-4

Hildebrandt, A., Dehof, A. K., Rurainski, A., Bertsch, A., Schumann, M., Toussaint, N. C., Moll, A., Stöckel, D., Nickels,
S., Mueller, S. C., Lenhof, H.-P., & Kohlbacher, O. (2010). BALL - biochemical algorithms library 1.3. BMC
Bioinformatics, 11(1), 531. https://doi.org/10.1186/1471-2105-11-531

Höcker, B., Lu, P., Glasgow, A., Marks, D. S., Chatterjee, P., Slusky, J. S. G., Schueler-Furman, O., & Huang, P. (2023).
How can the protein design community best support biologists who want to harness AI tools for protein
structure prediction and design? Cell Systems, 14(8), 629–632. https://doi.org/10.1016/j.cels.2023.07.005



35 | Bibliography

Huang, P.-S., Boyken, S. E., & Baker, D. (2016). The coming of age of de novo protein design. Nature, 537(7620), 320–
327. https://doi.org/10.1038/nature19946

Huang, P.-S., Feldmeier, K., Parmeggiani, F., Fernandez Velasco, D. A., Höcker, B., & Baker, D. (2016). De novo design
of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nature Chemical Biology, 12(1), 29–34.
https://doi.org/10.1038/nchembio.1966

Huang, P.-S., Oberdorfer, G., Xu, C., Pei, X. Y., Nannenga, B. L., Rogers, J. M., DiMaio, F., Gonen, T., Luisi, B., & Baker,
D. (2014). High thermodynamic stability of parametrically designed helical bundles. Science, 346(6208), 481–
485. https://doi.org/10.1126/science.1257481

Janin, J., Wodak, S., Levitt, M., & Maigret, B. (1978). Conformation of amino acid side-chains in proteins. Journal of
Molecular Biology, 125(3), 357–386. https://doi.org/10.1016/0022-2836(78)90408-4

Jespers, W., Åqvist, J., & Gutiérrez-de-Terán, H. (2021). Free Energy Calculations for Protein–Ligand Binding Prediction
(pp. 203–226). https://doi.org/10.1007/978-1-0716-1209-5_12

Jou, J. D., Holt, G. T., Lowegard, A. U., & Donald, B. R. (2020). Minimization-Aware Recursive K*: A Novel, Provable
Algorithm that Accelerates Ensemble-Based Protein Design and Provably Approximates the Energy Landscape.
Journal of Computational Biology, 27(4), 550–564. https://doi.org/10.1089/cmb.2019.0315

Kathuria, S. V., Chan, Y. H., Nobrega, R. P., Özen, A., & Matthews, C. R. (2016). Clusters of isoleucine, leucine, and
valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of
structure and stability. Protein Science, 25(3), 662–675. https://doi.org/10.1002/pro.2860

Kim, M. K., & Kang, Y. K. (1999). Positional preference of proline in alpha-helices. Protein Science : A Publication of
the Protein Society, 8(7), 1492–1499. https://doi.org/10.1110/ps.8.7.1492

Knowles, J. R. (1987). Tinkering with Enzymes: What Are We Learning? Science, 236(4806), 1252–1258.
https://doi.org/10.1126/science.3296192

Korendovych, I. V., & DeGrado,W. F. (2020). De novo proteindesign, a retrospective. Quarterly Reviews of Biophysics,
53, e3. https://doi.org/10.1017/S0033583519000131

Kröger, P., Shanmugaratnam, S., Ferruz, N., Schweimer, K., & Höcker, B. (2021). A comprehensive binding study
illustrates ligand recognition in the periplasmic binding protein PotF. Structure, 29(5), 433-443.e4.
https://doi.org/10.1016/j.str.2020.12.005

Kröger, P., Shanmugaratnam, S., Scheib, U., & Höcker, B. (2021). Fine-tuning spermidine binding modes in the
putrescine binding protein PotF. Journal of Biological Chemistry, 297(6), 101419.
https://doi.org/10.1016/j.jbc.2021.101419

Kuhlman, B., & Baker, D. (2000). Native protein sequences are close to optimal for their structures. Proceedings of the
National Academy of Sciences, 97(19), 10383–10388. https://doi.org/10.1073/pnas.97.19.10383

Kynast, J. P., Schwägerl, F., & Höcker, B. (2022). ATLIGATOR: Editing protein interactions with an atlas-based
approach. Bioinformatics. https://doi.org/10.1093/bioinformatics/btac685

Lasters, I., Maeyer, M. De, & Desmet, J. (1995). Enhanced dead-end elimination in the search for the global minimum
energy conformation of a collection of protein side chains. ‘Protein Engineering,Design andSelection’, 8(8), 815–
822. https://doi.org/10.1093/protein/8.8.815



Bibliography | 36

Lasters, I., Wodak, S. J., Alard, P., & van Cutsem, E. (1988). Structural principles of parallel beta-barrels in proteins.
Proceedings of the National Academy of Sciences, 85(10), 3338–3342. https://doi.org/10.1073/pnas.85.10.3338

Leach, A. R., & Lemon, A. P. (1998). Exploring the conformational space of protein side chains using dead-end
elimination and the A* algorithm. Proteins, 33(2), 227–239. https://doi.org/10.1002/(sici)1097-
0134(19981101)33:2<227::aid-prot7>3.0.co;2-f

Leaver-Fay, A., Jacak, R., Stranges, P. B., & Kuhlman, B. (2011). A Generic Program for Multistate Protein Design. PLoS
ONE, 6(7), e20937. https://doi.org/10.1371/journal.pone.0020937

Leaver-Fay, A., Kuhlman, B., & Snoeyink, J. (2005). An adaptive dynamic programming algorithm for the side chain
placement problem. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 16–27.

Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., Kaufman, K. W., Renfrew, P. D., Smith,
C. A., Sheffler, W., Davis, I. W., Cooper, S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y.-E. A., Fleishman, S.
J., Corn, J. E., Kim, D. E., … Bradley, P. (2011). Rosetta 3: An Object-Oriented Software Suite for the Simulation
and Design of Macromolecules. In M. L. Johnson & L. Brand (Eds.), Methods in Enzymology (Vol. 487, pp. 545–
574). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-381270-4.00019-6

Leman, J. K., Weitzner, B. D., Lewis, S. M., Adolf-Bryfogle, J., Alam, N., Alford, R. F., Aprahamian, M., Baker, D.,
Barlow, K. A., Barth, P., Basanta, B., Bender, B. J., Blacklock, K., Bonet, J., Boyken, S. E., Bradley, P., Bystroff, C.,
Conway, P., Cooper, S., … Bonneau, R. (2020). Macromolecular modeling and design in Rosetta: recent methods
and frameworks. Nature Methods, 17(7), 665–680. https://doi.org/10.1038/s41592-020-0848-2

Levinthal, C. (1969). How to fold graciously.Mossbauer Spectrosc. Biol. Syst, 67, 22–24.

Lilien, R. H., Stevens, B. W., Anderson, A. C., & Donald, B. R. (2005). A Novel Ensemble-Based Scoring and Search
Algorithm for Protein Redesign and Its Application to Modify the Substrate Specificity of the Gramicidin
Synthetase A Phenylalanine Adenylation Enzyme. Journal of Computational Biology, 12(6), 740–761.
https://doi.org/10.1089/cmb.2005.12.740

Lim, A., Saderholm, M. J., Kroll, M., Yan, Y., Perera, L., Erickson, B. W., Makhov, A. M., & Griffith, J. D. (1998).
Engineering of betabellin-15d:A 64 residue beta sheet protein that forms long narrow multimeric fibrils. Protein
Science, 7(7), 1545–1554. https://doi.org/10.1002/pro.5560070708

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos Santos Costa,
A., Fazel-Zarandi, M., Sercu, T., Candido, S., & Rives, A. (2023). Evolutionary-scale prediction of atomic-level
protein structure with a language model. In Science (Vol. 379). https://www.science.org

Lombardi, A., Summa, C. M., Geremia, S., Randaccio, L., Pavone, V., & DeGrado, W. F. (2000). Retrostructural analysis
of metalloproteins:Application to the design of a minimal model for diiron proteins.Proceedings of the National
Academy of Sciences, 97(12), 6298–6305. https://doi.org/10.1073/pnas.97.12.6298

Looger, L. L., Dwyer, M. A., Smith, J. J., & Hellinga, H. W. (2003). Computational design of receptor and sensor proteins
with novel functions. Nature, 423(6936), 185–190. https://doi.org/10.1038/nature01556

Maguire, J. B., Haddox, H. K., Strickland, D., Halabiya, S. F., Coventry, B., Griffin, J. R., Pulavarti, S. V. S. R. K.,
Cummins, M., Thieker, D. F., Klavins, E., Szyperski, T., DiMaio, F., Baker, D., & Kuhlman, B. (2021). Perturbing
the energy landscape for improved packing during computational protein design. Proteins: Structure, Function,
and Bioinformatics, 89(4), 436–449. https://doi.org/10.1002/prot.26030



37 | Bibliography

Malisi, C., Schumann, M., Toussaint, N. C., Kageyama, J., Kohlbacher, O., & Höcker, B. (2012). Binding Pocket
Optimization by Computational Protein Design. PLoS ONE, 7(12), e52505.
https://doi.org/10.1371/journal.pone.0052505

McGregor, M. J., Islam, S. A., &Sternberg, M. J. E. (1987). Analysis of the relationship between side-chain conformation
and secondary structure in globular proteins. Journal of Molecular Biology, 198(2), 295–310.
https://doi.org/10.1016/0022-2836(87)90314-7

Meier, S., Jensen, P. R., David, C. N., Chapman, J., Holstein, T. W., Grzesiek, S., & Özbek, S. (2007). Continuous
Molecular Evolution of Protein-Domain Structures by Single Amino Acid Changes. Current Biology, 17(2), 173–
178. https://doi.org/10.1016/j.cub.2006.10.063

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State Calculations
by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087–1092.
https://doi.org/10.1063/1.1699114

Mobley, D. L., & Klimovich, P. V. (2012). Perspective: Alchemical free energy calculations for drug discovery. The
Journal of Chemical Physics, 137(23). https://doi.org/10.1063/1.4769292

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4
and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational
Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256

Nanda, V., Rosenblatt, M. M., Osyczka, A., Kono, H., Getahun, Z., Dutton, P. L., Saven, J. G., & DeGrado, W. F. (2005).
De Novo Design of a Redox-Active Minimal Rubredoxin Mimic. Journal of the American Chemical Society,
127(16), 5804–5805. https://doi.org/10.1021/ja050553f

Nassar, R., Dignon, G. L., Razban, R. M., & Dill, K. A. (2021). The Protein Folding Problem: The Role of Theory. Journal
of Molecular Biology, 433(20), 167126. https://doi.org/https://doi.org/10.1016/j.jmb.2021.167126

North, B., Summa, C. M., Ghirlanda, G., & DeGrado, W. F. (2001). D(n)-symmetrical tertiary templates for the design
of tubular proteins. Journal of Molecular Biology, 311(5), 1081–1090. https://doi.org/10.1006/jmbi.2001.4900

Noske, J., Kynast, J. P., Lemm, D., Schmidt, S., & Höcker, B. (2023). PocketOptimizer 2.0: A modular framework for
computer-aided ligand-binding design. Protein Science, 32(1). https://doi.org/10.1002/pro.4516

Nowak, E., Miller, J. T., Bona, M. K., Studnicka, J., Szczepanowski, R. H., Jurkowski, J., Le Grice, S. F. J., & Nowotny,
M. (2014). Ty3 reverse transcriptase complexed with an RNA-DNA hybrid shows structural and functional
asymmetry. Nature Structural & Molecular Biology, 21(4), 389–396. https://doi.org/10.1038/nsmb.2785

Offer, G., Hicks, M. R., & Woolfson, D. N. (2002). Generalized Crick Equations for Modeling Noncanonical Coiled
Coils. Journal of Structural Biology, 137(1–2), 41–53. https://doi.org/10.1006/jsbi.2002.4448

Ojewole, A. A., Jou, J. D., Fowler, V. G., & Donald, B. R. (2018). BBK* (Branch and Bound Over K*): A Provable and
Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and Binding Affinity Over Large
Sequence Spaces. Journal of Computational Biology, 25(7), 726–739. https://doi.org/10.1089/cmb.2017.0267

Ollikainen, N., de Jong, R. M., & Kortemme, T. (2015). CouplingProtein Side-Chain and Backbone Flexibility Improves
the Re-design of Protein-Ligand Specificity. PLOS Computational Biology, 11(9), e1004335.
https://doi.org/10.1371/journal.pcbi.1004335

Pan, X., & Kortemme, T. (2021). Recent advances in de novo protein design: Principles, methods, and applications.
Journal of Biological Chemistry, 296, 100558. https://doi.org/10.1016/j.jbc.2021.100558



Bibliography | 38

Park, H., Bradley, P., Greisen, P., Liu, Y., Mulligan, V. K., Kim, D. E., Baker, D., & DiMaio, F. (2016). Simultaneous
Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules.
Journal of Chemical Theory and Computation, 12(12), 6201–6212. https://doi.org/10.1021/acs.jctc.6b00819

Parmeggiani, F., Pellarin, R., Larsen, A. P., Varadamsetty, G., Stumpp, M. T., Zerbe, O., Caflisch, A., & Plückthun, A.
(2008). Designed Armadillo Repeat Proteins as General Peptide-Binding Scaffolds: Consensus Design and
Computational Optimization of the Hydrophobic Core. Journal of Molecular Biology, 376(5), 1282–1304.
https://doi.org/10.1016/j.jmb.2007.12.014

Plückthun, A. (2015). Designed Ankyrin Repeat Proteins (DARPins): Binding Proteins for Research, Diagnostics, and
Therapy. Annual Review of Pharmacology and Toxicology, 55(1), 489–511. https://doi.org/10.1146/annurev-
pharmtox-010611-134654

Quinn, T. P., Tweedy, N. B., Williams, R. W., Richardson, J. S., & Richardson, D. C. (1994). Betadoublet: de novo
design, synthesis, and characterization of a beta-sandwich protein. Proceedings of the National Academy of
Sciences, 91(19), 8747–8751. https://doi.org/10.1073/pnas.91.19.8747

Rackers, J. A., Wang, Z., Lu, C., Laury, M. L., Lagardère, L., Schnieders, M. J., Piquemal, J.-P., Ren, P., & Ponder, J. W.
(2018). Tinker 8: Software Tools for Molecular Design. Journal of Chemical Theory and Computation, 14(10),
5273–5289. https://doi.org/10.1021/acs.jctc.8b00529

Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain
configurations. Journal of Molecular Biology, 7, 95–99. https://doi.org/10.1016/s0022-2836(63)80023-6

Raveh, B., London, N., & Schueler-Furman, O. (2010). Sub-angstrom modeling of complexes between flexible peptides
and globular proteins. Proteins: Structure, Function, and Bioinformatics, 78(9), 2029–2040.
https://doi.org/10.1002/prot.22716

Regan, L. (1993). The Design of Metal-Binding Sites in Proteins. Annual Review of Biophysics and Biomolecular
Structure, 22(1), 257–281. https://doi.org/10.1146/annurev.bb.22.060193.001353

Richardson, J. S., & Richardson, D. C. (1989). The de novo design of protein structures. Trends inBiochemical Sciences,
14(7), 304–309. https://doi.org/10.1016/0968-0004(89)90070-4

Roberts, K. E., Gainza, P., Hallen, M. A., & Donald, B. R. (2015). Fast gap-free enumeration of conformations and
sequences for protein design. Proteins: Structure, Function, and Bioinformatics, 83(10), 1859–1877.
https://doi.org/10.1002/prot.24870

Romero-Romero, S., Costas, M., Silva Manzano, D.-A., Kordes, S., Rojas-Ortega, E., Tapia, C., Guerra, Y.,
Shanmugaratnam, S., Rodríguez-Romero, A., Baker, D., Höcker, B., & Fernández-Velasco, D. A. (2021). The
Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. Journal of Molecular
Biology, 433(18), 167153. https://doi.org/10.1016/j.jmb.2021.167153

Salemme, F. R. (1983). Structural properties of protein β-sheets. Progress in Biophysics and Molecular Biology, 42, 95–
133. https://doi.org/10.1016/0079-6107(83)90005-6

Schreier, B., Stumpp, C., Wiesner, S., & Höcker, B. (2009). Computational design of ligand binding is not a solved
problem. Proceedings of the National Academy of Sciences, 106(44), 18491–18496.
https://doi.org/10.1073/pnas.0907950106

Shapovalov, M. V., & Dunbrack, R. L. (2011). A Smoothed Backbone-Dependent Rotamer Library for Proteins Derived
from Adaptive Kernel Density Estimates and Regressions. Structure, 19(6), 844–858.
https://doi.org/10.1016/j.str.2011.03.019



39 | Bibliography

Sheng, Y., Yin, Y., Ma, Y., & Ding, H. (2021). Improving the Performance of MM/PBSA in Protein–Protein Interactions
via the Screening Electrostatic Energy. Journal of Chemical Information and Modeling, 61(5), 2454–2462.
https://doi.org/10.1021/acs.jcim.1c00410

Singh, J., & Thornton, J. M. (1992). Atlas of Protein Side-Chain Interactions. IRL Press at Oxford University Press.

Stiel, A. C., Feldmeier, K., & Höcker, B. (2014). Identification of Protein Scaffolds for Enzyme Design Using Scaffold
Selection (pp. 183–196). https://doi.org/10.1007/978-1-4939-1486-9_9

Stiel, A. C., Nellen, M., & Höcker, B. (2016). PocketOptimizer and the Design of Ligand Binding Sites (pp. 63–75).
https://doi.org/10.1007/978-1-4939-3569-7_5

Sun, P. D., Foster, C. E., & Boyington, J. C. (2004). Overview of protein structural and functional folds. Current
Protocols in Protein Science, Chapter 17(1), Unit 17.1. https://doi.org/10.1002/0471140864.ps1701s35

Thomson, A. R., Wood, C. W., Burton, A. J., Bartlett, G. J., Sessions, R. B., Brady, R. L., & Woolfson, D. N. (2014).
Computational design of water-soluble α-helical barrels. Science, 346(6208), 485–488.
https://doi.org/10.1126/science.1257452

Tinberg, C. E., Khare, S. D., Dou, J., Doyle, L., Nelson, J. W., Schena, A., Jankowski, W., Kalodimos, C. G., Johnsson,
K., Stoddard, B. L., & Baker, D. (2013). Computational design of ligand-binding proteins with high affinity and
selectivity. Nature, 501(7466), 212–216. https://doi.org/10.1038/nature12443

Todd, A. E., Orengo, C. A., & Thornton, J. M. (1999). Evolution of protein function, from a structural perspective.
Current Opinion in Chemical Biology, 3(5), 548–556. https://doi.org/10.1016/S1367-5931(99)00007-1

Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., & Barbe, S. (2013). A new framework for
computational protein design through cost function network optimization. Bioinformatics, 29(17), 2129–2136.
https://doi.org/10.1093/bioinformatics/btt374

Van Dorn, L. O., Newlove, T., Chang, S., Ingram, W. M., & Cordes, M. H. J. (2006). Relationship between Sequence
Determinants of Stability for Two Natural Homologous Proteins with Different Folds. Biochemistry, 45(35),
10542–10553. https://doi.org/10.1021/bi060853p

van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J.,
van Dijk,M., de Vries, S. J., &Bonvin, A.M. J. J. (2016). TheHADDOCK2.2 Web Server: User-Friendly Integrative
Modeling of Biomolecular Complexes. Journal of Molecular Biology, 428(4), 720–725.
https://doi.org/10.1016/j.jmb.2015.09.014

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon,
A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M.,
… Velankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of
protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444.
https://doi.org/10.1093/nar/gkab1061

Veltman, J. A., & Brunner, H. G. (2012). De novo mutations in human genetic disease. Nature Reviews Genetics, 13(8),
565–575. https://doi.org/10.1038/nrg3241

Voet, A. R. D., Noguchi, H., Addy, C., Simoncini, D., Terada, D., Unzai, S., Park, S.-Y., Zhang, K. Y. J., & Tame, J. R. H.
(2014). Computational design of a self-assembling symmetrical β-propeller protein. Proceedings of the National
Academy of Sciences, 111(42), 15102–15107. https://doi.org/10.1073/pnas.1412768111



Bibliography | 40

Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L., Yim, J., Eisenach, H. E., Ahern, W., Borst, A. J., Ragotte, R. J.,
Milles, L. F., Wicky, B. I. M., Hanikel, N., Pellock, S. J., Courbet, A., Sheffler, W., Wang, J., Venkatesh, P.,
Sappington, I., Torres, S. V., … Baker, D. (2023). De novo design of protein structure and function with
RFdiffusion. Nature, 620(7976), 1089–1100. https://doi.org/10.1038/s41586-023-06415-8

Yang, W., & Lai, L. (2017). Computational design of ligand-binding proteins. Current Opinion in Structural Biology,
45, 67–73. https://doi.org/10.1016/j.sbi.2016.11.021



41 | Research Articles PRe-ART

IX. Research Articles

1. Modular Peptide Binders:
Development of a Predictive Technology as Alternative for Reagent
Antibodies

Florian J. Gisdon*, Josef P. Kynast*, Merve Ayyildiz*, Anna V. Hine,
Andreas Plückthun and Birte Höcker

Biological Chemistry. 2022; 403(5-6): 535-543

* equal contribution



PRe-ART Research Articles | 42



43 | Research Articles PRe-ART



PRe-ART Research Articles | 44



45 | Research Articles PRe-ART



PRe-ART Research Articles | 46



47 | Research Articles PRe-ART



PRe-ART Research Articles | 48



49 | Research Articles PRe-ART



PRe-ART Research Articles | 50



51 | Research Articles ATLIGATOR

2. ATLIGATOR:
Editing Protein Interactions with an Atlas-Based Approach

Josef P. Kynast, Felix Schwägerl and Birte Höcker

Bioinformatics 2022 Nov 30; 38(23): 5199-5205



ATLIGATOR Research Articles | 52



53 | Research Articles ATLIGATOR



ATLIGATOR Research Articles | 54



55 | Research Articles ATLIGATOR



ATLIGATOR Research Articles | 56



57 | Research Articles ATLIGATOR



ATLIGATOR Research Articles | 58



59 | Research Articles ATLIGATOR Web

3. Atligator Web:
A Graphical User Interface for Analysis and Design of Protein–
Peptide Interactions

Josef P. Kynast and Birte Höcker

BioDesign Research 2023; 5; 0011



ATLIGATOR Web Research Articles | 60



61 | Research Articles ATLIGATOR Web



ATLIGATOR Web Research Articles | 62



63 | Research Articles ATLIGATOR Web



ATLIGATOR Web Research Articles | 64



65 | Research Articles ATLIGATOR Web



PocketOptimizer Research Articles | 66

4. PocketOptimizer 2.0:
A modular framework for computer-aided ligand-binding design

Jakob Noske, Josef P. Kynast, Dominik Lemm, Steffen Schmidt and
Birte Höcker

Protein Science 2023 Jan; 32(1): e4516



67 | Research Articles PocketOptimizer



PocketOptimizer Research Articles | 68



69 | Research Articles PocketOptimizer



PocketOptimizer Research Articles | 70



71 | Research Articles PocketOptimizer



PocketOptimizer Research Articles | 72



73 | Research Articles PocketOptimizer



PocketOptimizer Research Articles | 74



75 | Research Articles PocketOptimizer



PocketOptimizer Research Articles | 76



77 | Research Articles PocketOptimizer



PocketOptimizer Research Articles | 78



79 | List of Publications

X. List of Publications

** Elings W*, Tassoni R*, van der Schoot SA, Luu W, Kynast JP, Dai L, Blok AJ, Timmer M,

Florea BI, Pannu NS, Ubbink M.

Phosphate Promotes the Recovery of Mycobacterium tuberculosis β-Lactamase from

Clavulanic Acid Inhibition

Biochemistry 2017, 56, 47, 6257–6267

** Kynast JP, Schwägerl F, Höcker B.

ATLIGATOR: editing protein interactions with an atlas-based approach.

bioRxiv 2022, https://doi.org/10.1101/2022.01.19.476980

Gisdon FJ*, Kynast JP*, Ayyildiz M*, Hine AV, Plückthun A, Höcker B.

Modular peptide binders – development of a predictive technology as alternative for

reagent antibodies.

Biol. Chem. 2022; 403(5-6): 535-543

Kynast JP, Schwägerl F, Höcker B.

ATLIGATOR: editing protein interactions with an atlas-based approach.

Bioinformatics 2022 Nov 30; 38(23): 5199-5205

Noske J, Kynast JP, Lemm D, Schmidt S, Höcker B.

PocketOptimizer 2.0: A modular framework for computer-aided ligand-binding design.

Protein Sci. 2023 Jan; 32(1): e4516

Kynast JP, Höcker B.

Atligator Web: A Graphical User Interface for Analysis and Design of Protein–Peptide

Interactions.

BioDesign Research 2023; 5; 0011

* equal contribution

** not part of this thesis



List of Publications | 80



81 | Acknowledgements

Acknowledgements

This work would not be possible without the support of many special people.

Thank you.

# Armadillo repeat protein progress bar
import pathlib
from pymol import cmd

def armadillo_progress_bar(fraction, bar_width=315, bar_height=189, file="progress_bar.png"):
n_chain_a = 286
offset_a = 7
n_chain_d = 10
threshold_only_a = n_chain_a / (n_chain_a + n_chain_d)

cmd.hide("all")
cmd.show("cartoon", "chain A")
cmd.show("sticks", "chain D")

if fraction <= threshold_only_a:
cmd.hide("sticks", "chain D")
cmd.hide(f"cartoon",

f"chain A and resi {int(fraction*(n_chain_a + n_chain_d) + offset_a)}" \
"-{n_chain_a + offset_a}")

else:
hidden_fraction_of_d = (1-fraction)/(1-threshold_only_a)
cmd.hide("sticks",

f"chain D and resi {n_chain_d - round(hidden_fraction_of_d*n_chain_d) + 1}-{n_chain_d}")
cmd.select("n_cap", "resi 8-41 and chain A")
cmd.select("c_cap", "resi 252-293 and chain A")
cmd.select("r1", "resi 42-83 and chain A")
cmd.select("r2", "resi 84-125 and chain A")
cmd.select("r3", "resi 126-167 and chain A")
cmd.select("r4", "resi 168-209 and chain A")
cmd.select("r5", "resi 210-251 and chain A")
if fraction == 1.0:

cmd.select("pocket", "resi 155,159,162,194,197,198,201")
cmd.show("sticks", "pocket")

cmd.select("peptide", "chain D")
cmd.color("0x335FFF", "n_cap")
cmd.color("0x707AB3", "r1")
cmd.color("0x88769E", "r2")
cmd.color("0xA07188", "r3")
cmd.color("0xB86D73", "r4")
cmd.color("0xD0685E", "r5")
cmd.color("0xFF5F33", "c_cap")
cmd.color("lime", "peptide")
cmd.color("atomic", "(not elem C)")
cmd.bg_color("white")
cmd.set("stick_radius", "0.5")

cmd.set_view("-0.283387840, -0.611639082, -0.738634765, 0.378934324, 0.636115015, -0.672128260," \
"0.880965889, -0.470369905, 0.051503245, 0.000000000, 0.000000000, -122.575881958," \
"8.341945648, 53.976295471, -13.899051666, 55.680236816, 189.471694946, -20.000000000")

cmd.png(file, width=bar_width, height=bar_height, dpi=300)

# Fetch the PDB structure 5AEI
cmd.fetch("5AEI")
# Remove unnecessary atoms
cmd.remove("resn HOH or (not chain A and not chain D)")
pages = 93
dir = pathlib.Path("progress_bar")
dir.mkdir(exist_ok=True)
for page in range(1, pages + 1):

armadillo_progress_bar(
page/pages, file=str(dir/f"progress_{str(page).zfill(len(str(pages)))}.png")

)
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