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I1. Abstract

Our growing knowledge of the diverse ways in which proteins function has sparked the
interest to reshape the protein world early on. The emergence of advanced computational and
molecular biology techniques are catalysts for creative engineering of proteins - from building
macromolecular structures from first principles to optimizing functional sites. Despite powerful
methods to model and redesign proteins computationally, current methods struggle to reliably
predict mutations to alter highly influential regions of protein structures like ligand binding
sites. Nature has evolved robust binding sites on proteins in the course of millions of years of
evolution. A growing number of structures is available in protein structure databases, which
could be used to find, extract, and reuse highly evolved binding motifs in engineering

applications.

One such application is the establishment of a new peptide-binding reagent. Common
protein detection relies mainly on antibodies which are derived from costly and ethically
questionable immunization of mice. Moreover, it has been shown that commercially available
reagent antibodies lack specificity and reproducibility (Bradbury & Pliickthun, 2015; A. Gray et
al., 2020). Thus, there is a need for alternative detection reagents. With the regularization of
designed armadillo repeat proteins (dArmRP), a modular binding system was proposed to serve
this purpose. These dArmRPs have been designed to regularly bind peptides in an extended
fashion (Hansen et al., 2016). Each of the peptide side chains is detected by a specific binding
pocket on the dArmRP. With the design of new binding pockets for all canonical or even post-
translationally modified amino acids a pocket catalogue can be assembled. By recombining
binding pocket modules for the targeted peptide residues, this system could deliver reliable and

cheap alternative detection reagents (Gisdon et al., 2022).

This work introduces the software ATLIGATOR, ATLIGATOR web and PocketOptimizer
2.0, which all provide a significant support to the design of new binding modules for armadillo
repeat proteins, or even other protein systems. ATLIGATOR extracts frequent interactions found
in known protein structures which can be transferred to any protein scaffold. This transfer
process could yield new or improved binder proteins. Moreover, an itemset mining algorithm
detects frequent groups of interactions that can act as generalizable motifs. With a grafting
functionality such motifs can be directly introduced in the corresponding ligand-binding sites.
ATLIGATOR web extends this functionality with a user-friendly web interface to enhance the
analysis and design process. An advanced design tool provides immediate visual feedback of the

design process as well as features like manual mutations and Rosetta side chain repacking. Such
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designs can be fed directly into protein redesign software for additional optimization of the
binding capabilities. PocketOptimizer 2.0, as one example of such software, is the successor of
PocketOptimizer that introduces beneficial mutations on small molecule-bindings sites. With
this iteration, PocketOptimizer was modernized by removing deprecated dependencies and
rewriting the code base in developer-friendly Python programming language. Version 2.0 also
extends the functionality with a new user interface, more force fields and scoring functions as

well as an advanced rotamer library.

This set of programs not only provides critical support to start the design of new binding

pockets for the armadillo repeat system but is also applicable in other protein design approaches.
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II1. Zusammenfassung

Unser wachsendes Wissen iiber die vielfdltigen Funktionsweisen von Proteinen hat
schon frith das Interesse geweckt, die Proteinwelt selbst zu gestalten. Das Aufkommen
fortschrittlicher computergestiitzter und molekularbiologischer Techniken ist Antreiber fiir die
kreative Arbeit an Proteinen - vom Aufbau makromolekularer Strukturen basierend auf
grundlegenden Prinzipien bis hin zur Optimierung von funktionellen Regionen. Trotz
leistungsfahiger Methoden zur computergestiitzten Modellierung und Neugestaltung von
Proteinen ist es derzeit schwierig, Mutationen zuverldssig vorherzusagen, um einflussreiche
Regionen von Proteinstrukturen wie Ligandenbindungsstellen zu verandern. Die Natur hat im
Laufe von Millionen von Jahren Evolution robuste Bindungsstellen in Proteinen entwickelt. In
Proteinstrukturdatenbanken ist eine wachsende Anzahl von Strukturen verfiigbar, die
verwendet werden konnen, um gut angepasste Bindungsmotive zu finden, zu extrahieren und

in technischen Anwendungen wiederzuverwenden.

Eine solche Anwendung ist die Etablierung eines neuen Peptid-bindenden Reagenz. Der
gangige Proteinnachweis beruht hauptsachlich auf Antikorpern, die aus einer kostspieligen und
ethisch fragwiirdigen Immunisierung von Mausen stammen. Dartiber hinaus konnte gezeigt
werden, dass es kommerziell erhdltlichen Reagenzien-Antikérpern an Spezifitit und
Reproduzierbarkeit mangelt, was zu problematischen experimentellen Ergebnissen fiihrt
(Bradbury & Pliickthun, 2015; A. Gray et al., 2020). Daher besteht ein Bedarf an alternativen
Nachweisreagenzien. Mit der Regularisierung von designten Armadillo-Repeat-Proteinen
(dArmRP) wurde ein modulares Bindungssystem vorgeschlagen, um diesen Zweck zu erfiillen.
Diese dArmRPs wurden entwickelt, um Peptide in einer gestreckten Form zu binden (Hansen
et al.,, 2016). Jede der Peptidseitenketten wird durch eine spezifische Bindungstasche auf dem
dArmRP detektiert. Mit dem Design neuer Bindungstaschen fiir alle kanonischen oder auch
posttranslational modifizierten Aminosduren kann ein Katalog von Bindungsmodulen
zusammengestellt werden. Durch die Rekombination von Bindungstaschenmodulen fiir die
Seitenketten der Zielsequenz konnte dieses System zuverldssige und kostengiinstige alternative

Nachweisreagenzien liefern (Gisdon et al., 2022).

In der vorliegenden Arbeit werden die Software ATLIGATOR, ATLIGATOR web und
PocketOptimizer 2.0 vorgestellt, die alle eine wesentliche Unterstiitzung fiir das Design neuer
Bindungsmodule fiir Armadillo-Repeat-Proteine — oder sogar andere Proteinsysteme - bieten.
ATLIGATOR extrahiert haufige Wechselwirkungen, die in bekannten Proteinstrukturen zu

finden sind und auf Proteingeriiste ibertragen werden konnen. Dieser Transferprozess konnte



X

zu neuen oder verbesserten Bindeproteinen fithren. Dartiber hinaus erkennt ein Itemset-Mining-
Algorithmus haufige Gruppen von Interaktionen, die verallgemeinerbare Motive darstellen
konnen. Mit einer Transferfunktion konnen solche Motive direkt in die entsprechenden
Ligandenbindungsstellen eingebracht werden. ATLIGATOR web erweitert diese Funktionalitét
um eine benutzerfreundliche Weboberfliche, um den Analyse- und Designprozess zu
verbessern. Ein fortschrittliches Design-Werkzeug bietet sofortiges visuelles Feedback zum
Design-Prozess sowie Funktionen wie manuelle Mutationen und das Umpacken von Rosetta-
Seitenketten. Solche Designs konnten direkt in Protein-Anpassungs-Software eingespeist
werden, um die Bindungsfdhigkeiten weiter zu optimieren. PocketOptimizer 2.0, als ein Beispiel
fiir eine solche Software, ist der Nachfolger von PocketOptimizer, der in der Lage ist, vorteilhafte
Mutationen an Bindungsstellen fiir kleine Molekiile zu identifizieren. Mit dieser Iteration wurde
PocketOptimizer modernisiert, indem veraltete Abhangigkeiten entfernt und die Codebasis in
der entwicklerfreundlichen Programmiersprache Python neu geschrieben wurde. Die Version
2.0 erweitert den Funktionsumfang um eine neue Benutzeroberfliche, mehr Kraftfelder und

Scoring-Funktionen sowie eine erweiterte Rotamer-Bibliothek.

Diese Softwareanwendungen bieten nicht nur eine wichtige Unterstiitzung bei der
Entwicklung neuer Bindungstaschen fiir das Armadillo-Repeat-system, sondern sind auch in

anderen Proteindesignansdtzen anwendbar.
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IV. Introduction

Prologue: How to Tame a Protein

In times of global challenges, scientific progress can be a driver for innovative
approaches. Proteins have been proven to be versatile molecular machines that can even be
repurposed to tackle some of these challenges in medicine and biotechnology. To embrace this
approach of engineering proteins to serve our needs, we need to obtain a deep understanding of
what influences a protein to behave as we desire. In the following chapters, I will navigate
through what we know and do not know about proteins and how this knowledge can be utilized

to engineer a dedicated function into a protein.

1. Proteins Are Controlled by Their Sequence

Proteins are pivotal factors in life as they are employed in a myriad of cellular processes.
They can act as transporters and anchors, reporters and detectors, barriers and enclosures and
even molecular factories. This variety is defined by their modularity which is based on 20
canonical amino acids that share a primary amine and a carbon acid group. By forming amide
bonds - also referred to as peptide bonds in this context — they construct a linear polypeptide
chain. While the backbone of this chain is almost independent of the amino acid combination,
each amino acid harbours a different residual group called the side chain. The combination of
amino acids - and thus side chains - in the polypeptide chain defines the sequence of a protein.
Consequently, the immense variety of proteinogenic features is encoded in the protein sequence

(as depicted in Figure 1).
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From Sequence to Structure

Today, we can see proteins as three-dimensional arrangements of the linear amino acid
sequence they are composed of. With techniques like x-ray crystallography, nuclear magnetic
resonance (NMR) spectroscopy or cryo-electron microscopy, researchers have solved the
structures of hundreds of thousands of proteins or protein-ligand complexes (Berman et al.,
2000). Besides that, recent advances in computational methodologies for structure prediction
yielded hundreds of millions of protein structure models that add up to existing experimental
results (David et al., 2022; Lin et al., 2023; Varadi et al., 2022). What can be observed in the
corresponding protein structure databases is a gigantic variety of three-dimensionally folded
structures. Assuming the observed conformation is the native one, each of those structures is a

result of the protein sequence, as proposed by Anfinsen:

“the three-dimensional structure of a native protein in its normal physiological milieu [...] is
the one in which the Gibbs free energy of the whole system is the lowest; that is, that the
native conformation is determined by the totality of the inter-atomic interactions and hence

by the amino acid sequence” (Anfinsen, 1973)

Today, this native conformation could be described as a native ensemble of
conformations since proteins that are able to adopt multiple conformations have been described
(Cordes et al., 2000; Meier et al., 2007; Nowak et al., 2014; Van Dorn et al., 2006), but the general
idea is still valid: Despite the knowledge that other factors like post-translational modifications
or ligand binding events can impact the structural integrity of a protein, the linear amino acid

sequence alone is the single major factor deciding how a protein should look and act like.

Conformational Complexity

To realize that this sequence-structure relationship is not trivial, it is important to
understand how a protein can adopt a range of different conformations: The linear chain of
amino acid building blocks comprises several degrees of freedom allowing the molecule to alter
the shape. Without breaking any covalent bonds, there are two main contributors to this source

of flexibility:
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Figure 1: Visualization of the relationship between protein sequence, structure, and function. The sequence of amino acids
determines structural features by influencing secondary structure formation or forming internal interactions of residues that are
distant in sequence. Through forming the structural framework and providing distinct chemical properties at crucial positions, the
amino acid sequence also provides function. This function could be to bind small ligands and other proteins or form an active site

for a catalytic function.

First, the backbone of the chain is flexible. It harbours nitrogen, the carbon o atom linked
to the side chain and the carbonyl carbon in a repetitive manner for each residue of the
polypeptide. Thus, there are three dihedral angles — spanning a connection between four
backbone atoms - per residue alongside the polypeptide chain. Since the peptide bond is mostly
planar due to a double-bond character of the amide, we can find two variable angles per residue.
These angles are centred at the bonds between N-Co or Ca-CO and called phi (¢) and psi ().
The ¢--combination of a residue is restricted to allowed regions based on the amino acid type
and the secondary structure. These regions are often defined in a so-called Ramachandran plot

where both torsion angles are plotted against each other (Ramachandran et al., 1963).

Second, most amino acid side chains feature rotatable bonds. The associated torsion
angles are called chi () and incremented by their number of covalent bonds from the a-carbon.
Depending on the amino acid type this adds up to five x torsion angles per residue as additional

degrees of freedom.
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Even though not all combinations of torsion angles are biologically relevant or even
physically possible, the enormous number of possible torsion angle combinations is far from

human imagination - and grows exponentially with each additional protein residue.

According to Anfinsen, there is only one or few native structures of a polypeptide that
are formed as the needle in the haystack of all possible torsion angle combinations. Since the
folding of proteins usually falls in the time range of micro- or milliseconds nature cannot scan
through all conformational possibilities exhaustively. This mismatch is described as Levinthal’s
paradox of folding speeds and suggests the existence of specific folding pathways (Levinthal,
1969). While Anfinsen describes the thermodynamic element of the sequence-structure
relationship, Levinthal handles kinetic considerations of the same problem. This problem is also

referred to as the protein folding problem (Nassar et al., 2021).

Despite this conformational complexity, it is clear that intramolecular interactions and
interactions with the environment are the main contributions for the formation of protein
structures. Intramolecular interactions can be formed (1) between two or more amino acid side
chains, (2) between a side chain and the protein backbone, and (3) between different parts of
the protein backbone. An obvious example is based on backbone-backbone hydrogen bonds,
namely the formation of secondary structure elements - B-sheet and a-helix structures (reviewed
in Eisenberg, 2003). Turns and loop structures connect a-helices and -strands (Sun et al., 2004).
While these secondary structure elements are mostly formed between backbone atoms, their
appearance is defined by the amino acid sequence. For example, glycines and prolines are known
as helix breakers, a helix-induced dipole influences the frequency and positioning of charged
amino acids and loop structures are dominated by glycines (Argos & Palau, 1982; Aurora et al.,

1994; Kim & Kang, 1999).

Amino acid side chain interactions are manyfold. Charge-charge interactions, hydrogen
bonds and m- m or ion- m interactions are crucial influences on stability of super-secondary
structures. Moreover, polar, and non-polar residues are unevenly distributed in surface and core
regions of protein structures due to the hydrophobic effect. This way hydrophobic side chains
are shielded from the polar aqueous solvent. In fact, there is evidence for a stabilizing effect of
expanded networks of hydrophobic residues in protein cores (Arunachalam & Gautham, 2008;
Kathuria et al., 2016; Romero-Romero et al., 2021). Finally, all these factors contribute to the

three-dimensionally folded structure (see Figure 1).
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From Sequence to Function

Since the sequence defines the protein structure, every function that is structurally
defined is induced by the sequence-to-structure relationship (see Figure 1). Functionality in the
protein space is highly diverse, ranging from purely structural modules to interactions with
ligands or even catalysis. Moreover, individual proteins or protein complexes often perform
multiple purposes: Microtubules for example not only maintain the cell shape as a major
component of the cytoskeleton, but are also involved in mitosis, cell motility and intracellular

transport (Akhmanova & Steinmetz, 2008).

In analogy to internal interactions that stabilise a protein fold, the amino acid sequence
is the main driver for these functions: On the one hand, the protein sequence defines the three-
dimensional structure, dynamics, and stability to form building blocks in living cells. On the
other hand, it dictates the placement of crucial amino acids for forming catalytically active sites
and binding sites. This relationship is evident in many mutation-derived diseases where single
amino acid mutations lead to severe health conditions (Veltman & Brunner, 2012).
Understanding the connection of sequence, structure and function helps to target these
diseases. Furthermore, it helps to modulate or generate a desired functionality by designing
proteins via adaptation or de novo design. In order to extend this understanding, a great source

of such knowledge can be found in nature.
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2. Protein Evolution as a Source of Inspiration

The variety of features in today’s proteins is based on constant adaptation as described
by Darwin’s theory of evolution. As a process of slight modifications while being influenced by
external factors this often leads to an improved fitness in even the smallest biological niche.
Thus, the variety of protein sequences and structures is a consequence of highly diverse
environments. As a result, each natural protein carries useful information about its origin or

function.

Evolution of Functionality

Proteins did not evolve in an isolated space but embedded in a heterogeneous
environment. Thus, their evolution was always in close coexistence with potential binding
partners, substrates, or even structural violators. Proteolytic activity, for example, needs to be
tuned down to a beneficial level and improved catalytic activity could be the existential feature
in competition with the environment (Attaix et al., 2001). In the case of ligand binding,
increasing affinity to the target might help to survive in the case of a shortage period. Equally
important, the specificity to distinguish binding partners from each other is an important part
of the overall effectivity of ligand binders. Over the course of evolution all this information was
accumulated in existing protein sequences and structures. Hence, known protein sequences or
structures are a fruitful source of inspiration when looking for new functionality in protein
design. Even though it is hidden, the vast amount of available data facilitates the identification

of frequently used and potentially valuable patterns.

To find similar functional features in different proteins, the protein sequences can be
aligned and compared. However, even very sensitive sequence comparisons using hidden
Markov models are less powerful than structural comparisons because structural features are
highly conserved. With the use of structural databases based on evolutionary relationships (Fox
et al., 2014), common structural features can be revealed and linked to specific functionality

(Bordin et al., 2021; Todd et al., 1999).
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3. Protein Engineering and Design

The more we understand the relationship between protein sequence and structure as
well as their implications on function, the better we can use this knowledge for our own
purposes. By applying alterations to a protein sequence, we can try to establish or modulate
binding capabilities, and change protein stability or enzymatic features. When it comes to
engineering a protein to exhibit a desired function, structure-based protein design with
computational guidance is certainly one of the most promising applications (Gainza et al., 2016).
It ranges from the exploration of new protein folds to repurposing known scaffolds to feature

new or improved capabilities (Pan & Kortemme, 2021).

The Inverse Folding Problem

While modern software sometimes still struggles to correctly predict the structure of a
known protein sequence - relating to the protein folding problem described earlier, the inverse
process is even more challenging. The definition of a sequence from a given structure - referred
to as the inverse folding problem - requires a reliable understanding of the sequence to structure
relationship. Additionally, this relationship must be assessed for every potential protein
sequence - in contrast to structure prediction from one protein sequence. About four decades
ago, the rational design of a protein with the aim to exhibit a certain fold and functionality
seemed almost impossible (Korendovych & DeGrado, 2020). This was of course due to the
combinatorial explosion of potential amino acid sequences even for a moderately long amino
acid sequence. Technology has however been developed even to design proteins from scratch

(Pan & Kortemme, 2021).

De Novo Protein Design

Today, there are numerous examples of proteins that have been designed based on
physical principles while the amino acid sequences are unrelated to known proteins (Huang,
Boyken, et al., 2016). These proteins are also called de novo designed proteins and they have been
a main driver for knowledge in protein design studies. In a review article by Korendovych and
DeGrado this progress in de novo design is divided into three waves which were each made
possible by technological leaps at their time: First, manual protein design using physical models
based on improvements in peptide synthesis starting in the late 1970s. Initiated by

groundbreaking advances in structure investigation with crystallographic and NMR techniques,
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computer graphics and processing as well as gene editing, the phase of computational design
guided by fundamental physicochemical principles dominated from the mid-1980s to the early
2000s. Within this era, computational modelling got more and more prominently used. The
third phase of fragment-based and bioinformatically informed computational protein design
combined earlier strategies with sequence and structure information from databases like the

Protein Data Bank (PDB) (Berman et al., 2000; Korendovych & DeGrado, 2020).

As described by Korendovych and DeGrado, the design of simple architectures based on
B-sheets (Dou et al., 2018; Lim et al., 1998; Quinn et al., 1994; Richardson & Richardson, 1989)
and a-helices (Beesley & Woolfson, 2019; DeGrado & Lear, 1985) got more advanced by providing
internal parameterization of the structural architecture (Betz & DeGrado, 1996; Emberly et al.,
2004; Grigoryan & DeGrado, 2011; Korendovych & DeGrado, 2020; Lasters et al., 1988; Lombardi
et al., 2000; North et al., 2001; Offer et al., 2002; Salemme, 1983). Repetitive modules that rely on
an internal symmetry reduced the sequence search space and allowed more complex structures
(Brunette et al., 2015; Harbury et al., 1998; Huang et al., 2014; Huang, Feldmeier, et al., 2016;
Nanda et al., 2005; Thomson et al., 2014; Voet et al., 2014). These and many other studies clearly
outlined the capability to design protein structures from physical principles. As a new contender
in the field, machine learning-based applications arrived just recently to incorporate the
accumulated knowledge for training new design algorithms in a promising manner
(Anishchenko et al., 2021; Dauparas et al., 2022; Ferruz et al., 2022; Watson et al., 2023). Time
will tell how far these methods can take us, but as for all machine learning applications the limit

is the availability and quality of training data.

Despite substantial success with rational design approaches in the last decades and the
rise of new machine-learning based software to automate such applications, those approaches
remain not trivial and exhibit a low hit rate on narrowly defined or uncommon design tasks

(Hocker et al., 2023).

Protein Engineering

In contrast to the de novo design of a structure with desired properties, existing proteins
can also be reused and adapted for a new goal. This strategy allows to attempt to delineate the
influences responsible for the pure target functionality (Regan, 1993). In such an engineering
approach, the design workflow is divided into finding suitable scaffold proteins for the desired
application and redesigning these scaffolds to exhibit the feature of interest. Depending on the

desired functionality, there are tools to select suitable scaffolds, like the software
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ScaffoldSelection (Stiel et al., 2014). Redesigning the chosen scaffolds can be approached with
either randomly or systematically applying mutations to find those with beneficial effects
towards the design goal. Both results in new variants that need to be evaluated against the wild
type. This can be relatively straightforward for a small number of variants and a visual read-out
of for example a fluorescent protein. However, since the number of variants that need to be
tested often exceeds expression and purification capabilities, an alternative approach is
necessary. In this case, directed evolution or library-based techniques can be applied to test a
large number of variants with a connected readout like fluorescence-based signal changes on
ligand binding. Another way to approach this is to use computational predictions of certain

features like thermodynamic stability or binding capability.

Computational Guidance in Protein Design

As outlined above, protein design has immensely profited from the vast development in
technologies for computational support. Besides the obvious improvement in raw computing
power and hardware acceleration, the implementation of advanced search algorithms and
efficient modelling of protein systems helped to lift computational protein design to the
fundamental unit of modern protein design. In this section, I will try to justify this argument on
the example of two software suites for protein design, namely Rosetta and OSPREY. Both
programs strive to accomplish the same goal of structural modelling and design but with two

fundamentally different approaches.

Rosetta

The heuristics-based Monte Carlo algorithms within the Rosetta software suite have
gained extreme popularity and made Rosetta one of the most prominent and most used software
for macromolecular modelling and design (Leaver-Fay, Tyka, et al., 2011). One core part of
Rosetta are the custom energy functions which have improved over the years. Since
macromolecular systems like protein structures or complexes consist of numerous atoms,
covalent bonds and non-covalent interactions, the fast and meanwhile accurate description of
all energetical effects is challenging. These energy functions consist of weighted energy terms
that have a physical or statistical origin. Physical phenomena like electrostatic interactions are
implemented as simplified versions of the Coulomb potential. For example, by limiting long
range-effects, the cubic scaling effect of three dimensions is pruned and the calculation is sped

up drastically. To make up for the lost accuracy of the simplified physical terms, statistical terms
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based on empiric observations of known protein structures are included. These include the
prevalence of rotational angles in preferred positions like the backbone torsion angles of the
protein backbone or preferred conformations of the side chains. While modern energy scoring
functions like ref2015 include many energy terms with full-atom resolution, coarse-grained
functions for broader energy search focus on effects of the whole structure like secondary

structure content (Park et al., 2016).

To improve the energy of a protein structure Rosetta incorporates libraries of low-energy
conformations of the side chains that have been shown to dominate the protein cores for tight
packing - also referred to as rotamers (Dunbrack & Cohen, 1997; Dunbrack & Karplus, 1993; Janin
etal., 1978; McGregor et al., 1987). By exchanging the present rotamers with new ones, the energy
difference of both structures can be compared, and a minimum energy structure can be
obtained. This is relatively simple for two protein conformations, but the exponential scaling of
conformations makes it hard - even for smaller proteins. In fact, even five available rotamers at
each position create more than 9-10" combinations for a protein with 20 amino acids - and at
this length, it might not even pass the stage of being a peptide. Rosetta facilitates a heuristic
algorithm - namely the Monte Carlo algorithm proposed in the 1950s - to find a balance between
computational cost and accuracy (Metropolis et al., 1953). Random exchanges of rotamers are
evaluated energetically, and if the total energy decreases, the steps are accepted. In the case of
increasing total energy, a random factor is introduced and compared to the energy difference to
decide if the step is reverted or not (Leaver-Fay et al., 2005; Leaver-Fay, Jacak, et al., 2011; Leaver-
Fay, Tyka, et al., 20o11). Due to this heuristic factor, Rosetta has the chance of escaping local
energy wells to sample broader regions of the folding energy landscape. Thus, this packing
method allows efficient rotamer assignment of protein structures with a fixed backbone
conformation (Kuhlman & Baker, 2000). To also sample and evaluate different backbone
conformations, Rosetta offers several minimization algorithms that define a vector as the
direction to lower the overall energy. While iteratively repeating the definition and application
of this vector on the overall structure the total energy decreases and we end up in a local energy
minimum deterministically. Both algorithms - heuristic repacking and deterministic
minimization - are connected in alternating cycles to compose the default algorithm for
energetic preparation of protein structures in Rosetta called relaxation. The iterative alternation
allows for finding local energy minima while retaining the possibility to escape higher energy
wells in favour of finding the global energy minimum or the native state of the protein (Leaver-

Fay, Tyka, et al., 20m).

While there are dozens of protein design protocols in Rosetta, relaxation is also capable

of finding lower energy sequences by applying mutations. The most basic design protocol - the

%
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FastDesign protocol - is based on this principle. In fact, the basic algorithm remains similar, but
instead of only allowing rotamers of the native amino acid type to be picked by the packing
algorithm, non-native amino acid types are randomly introduced. As a result, the decline in total
energy is not only due to a more favourable packing of amino acid side chains but also due to

their identity and their interactions with their environment (Maguire et al., 2021).

By applying heuristics and using a highly engineered energy function, the Rosetta suite
is capable of modelling even very complex macromolecular systems. It is potentially capable of
finding global energy minima while utilizing only a relatively small amount of computing power.
However, the stochastic approach in many Rosetta algorithms creates the need for a high
number of repetitions for complex systems to sample enough conformational space. In fact,
Rosetta is not guaranteed to find the global minimum at all. Furthermore, scoring of individual
conformations is limited by Rosetta energy functions which are focusing on fast calculations.
For example, these scoring functions also rely on empirical data for weighting energy terms or

the incorporation of statistically defined terms (Leman et al., 2020).

OSPREY

In contrast to heuristically sampling the conformational space, the search for a global
energy minimum or protein design has been extensively studied as an optimization problem for
deterministic, provable algorithms (Allouche et al., 2014). While their end goal is the same as for
Rosetta’s stochastic methodology, deterministic algorithms guarantee to find an optimal
solution. To not get overwhelmed by almost endless combinations, the search space is filtered
to remove unfavourable combinations. The software OSPREY makes use of different
deterministic algorithms to generate optimal solutions for protein design problems (Gainza et
al., 2013; Hallen et al., 2018): The search for the global minimum energy conformation (GMEC)
is performed by an adaptation of the A* algorithm - originally designed for pathfinding (Leach
& Lemon, 1998). Instead of detecting the optimal path between two points by selecting decent
travel nodes, this adaptation uses rotamers as nodes. By constructing a tree-like representation
of all rotamer combinations A* guarantees to find the optimal combination within its force field.
This derivative of the A* algorithm was further optimized for applications on protein structures.
For example, reordering the rotamer sequence helps to decrease the relevant search space by
pruning branches with failing rotamer combinations as early as possible (Roberts et al., 2015).
Usually, A* is performed in combination with dead-end elimination (DEE) as a preprocessing
step for the search for GMEC. DEE is an algorithm to efficiently prune those branches of the

search tree that can be proven to not be part of the GMEC (Desmet et al., 1992; Gordon et al.,
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2003; Lasters et al., 1995; Leach & Lemon, 1998). Traditional applications of DEE contain rigid
rotamers as possible side chain conformations. OSPREY implemented several iterations of DEE
to optimize the search performance and enable new functionality. While MinDEE takes into
account the minimized backbone structure, iMinDEE and CATS even enable continuous
rotation of side chain or backbones to overcome the gaps of rigid rotamers (Gainza et al., 2012;
Georgiev et al., 2008; Hallen & Donald, 2017). Furthermore, non-pairwise decomposable energy
terms can be included to account for effects like solvation or incorporate basic quantum
mechanics calculations (Hallen et al.,, 2015). Such effects in complex protein modelling and
design tasks are getting more and more accessible by OSPREY’s search algorithms in
combination with GPU-acceleration (Hallen et al., 2018). Protein redesign in OSPREY is
approached as in Rosetta by appending other amino acid rotamers at the desired positions and,

thus, expanding the search space.

In comparison to heuristic algorithms implemented in Rosetta, deterministic algorithms
with provable guarantees to find the global minimum tend to be more computationally
expensive. This expense, however, is justified in cases where the exact solution is desired, or
repeatability of the calculations matters. The additional options introduced by recent algorithms
to include continuous flexibility or even quantum mechanics-based calculations set another

unique advantage for OSPREY (Hallen et al., 2018).

Overall, both, stochastic sampling and energetic abstraction of Rosetta as well as the
deterministic approach of OSPREY were proven to provide powerful frameworks for modelling
and design in protein-based systems. The individual advantages and disadvantages of both
software suites lead to diverse applications and a large number of specialized subprotocols as a
shared effort of the protein design community (Du et al., 2021; Guerin et al., 2022; Ollikainen et

al., 2015; Raveh et al., 2010; Traoré et al., 2013).
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4. Engineering Function: Ligand Binding

As outlined in the last chapter, modern protein design software is able to model and
redesign proteins or protein complexes to find structural energy minima and improve the total
energy of such proteins. While there has long been a desire to utilize proteins to perform a
function with biomolecular techniques (Craik et al., 1985; Knowles, 1987), software has quickly
become a useful tool to guide these engineering approaches. This section will summarize
relevant developments and potential targets for computer-aided engineering of proteins for a

target function.

Besides the catalysis of enzymatic reactions, binding other proteins or small molecule
ligands is the most prominent goal in engineering protein functionality. Enzymatic activity,
protein-protein interactions, and ligand binding rely on matching the protein surface with the
target — be it a peptide, protein, small molecule ligand, or substrate. This was described in
Hellinga’s and Richards’ work back in 1991 in order to announce their molecular modelling
program DEZYMER (Hellinga et al., 1991). Like other early approaches to create new binding
functionality, their work aimed at the introduction of metal-binding sites. This early focus on
metal-binding can be explained by the diverse functions that can be performed by metals and
their well-characterized geometries based on X-ray structures of natural metalloproteins (Regan,
1993). In the following years, designs for binding sites for organic small molecule ligands have
been attempted, too (Allert et al., 2004; Looger et al., 2003). Even though these early designs
were proven wrong (Schreier et al., 2009), the understanding about the design process got more
advanced in general and successful designs were published (Tinberg et al., 2013). As a result, in
combination with directed evolution and high-throughput screening, ligand binding design
became a crucial tool in molecular biology. Despite numerous success stories, it is clear that
engineering molecular binding is far from being a solved problem (Hocker et al., 2023).
Computational guidance suffers from additional degrees of freedom by orientation, translation,
and conformation of the target ligand. On top, selectivity over antagonist ligands is crucial. For
sensors, for example, selectivity for the target keeps noise levels low and guarantees significant

detection results.

To limit this complexity of designing a ligand-binding protein, existing features can be
reused. To do so, two methods are available: One effective way to approach ligand binding is
altering specificity by changing the affinity of involved ligands in an existing binder protein
(Yang & Lai, 2017). There are several examples how this can be conducted rationally (Kroger,

Shanmugaratnam, Ferruz, et al., 2021; Kroger, Shanmugaratnam, Scheib, et al., 2021), but also
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computational tools have emerged to support this task. One such tool is the software called
PocketOptimizer which predicts the most promising mutations to stabilize the interaction
within a protein-small molecule complex (Malisi et al., 2012; Stiel et al., 2016). This is particularly
useful for existing protein scaffolds, since known structures can serve as starting points for this
design. It is important to know, however, that PocketOptimizer - like other programs - relies
on the ligand being positioned in or close to the binding pocket. This creates a need for
supporting software that helps to dock ligands on the protein’s surface. Docking software has
been developed for drug design, but also for testing binder designs like the software HADDOCK

and AutoDock (Goodsell & Olson, 1990; Morris et al., 2009; van Zundert et al., 2016).

A second method for providing a starting point for design is to reuse pre-existing binding
interfaces from known protein-ligand complexes in a new context. The iterative improvement
of protein-ligand interaction in the course of evolution yielded copious amounts of highly
optimized binding interfaces. By extracting the essential features of known binding pockets
these pockets can be abstracted to a binding motif. If a suitable scaffold can be found, the motif
can be introduced to a new protein. This transfer process is also referred to as grafting and was
applied in tools like Optgraft for finding metal binding sites (Fazelinia et al., 2008). One
successful example was extracting and planting such a binding motif on a regularly designed

armadillo repeat protein (Ernst et al., 2020).

Newly designed binders can also be tested computationally. The software suites Rosetta
and OSPREY, for example, include specialized protocols for redesign or pure testing of ligand
binding capabilities. This is useful, especially in the case of a comparison of one target ligand
and several non-desired ligands. Rosetta implements the flex ddG protocol which calculates the
Rosetta energies of protein, ligand, and the protein-ligand complex to obtain a relative energy
difference (Barlow et al., 2018). OSPREY approximates the partition functions of bound and
unbound states with the algorithm K* as an additional layer over the A* search (Lilien et al.,
2005). This algorithm was refined further, for example with a branch and bound over K* (BBK*)
and with a combination of minimization-aware enumeration and recursive K* (MARK*) for
ensemble-based protein binder design. While BBK* allows to efficiently remove high-energy
sequences from the sequence space, MARK* is able to outperform its predecessors by setting
tighter energy bounds and a different prioritization in the energy landscape (Jou et al., 2020;
Ojewole et al., 2018). Thus, both software suites offer efficient protocols for testing and
optimizing designed binders. Another helpful way of investigating binding is to use molecular
dynamics (MD) simulations. With innovative approaches, MD simulations are getting faster or
enable to estimate binding energies to get a better understanding of the protein-ligand

interaction (Doerr et al., 2016; Fu et al., 2022; Jespers et al., 2021). However, it must be mentioned
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that most of those techniques still require heavy resources and their ability for a generalized

approach has yet to be proven (Mobley & Klimovich, 2012; Sheng et al., 2021).

Design of a Modular Binding Reagent

Despite recent improvements in engineering ligand binding to create new binding
reagents, such a process is costly, time-intensive, and is not always successful. Hence, many
binding reagents are not designed individually, but antibodies are produced in an established
system. Here, mice are introduced to the target ligand to produce antibodies as an immune
response. The corresponding b-cells are extracted from the mice after an incubation time and
fused to myeloma cells to generate a hybrid cell line called hybridoma (Bradbury & Pliickthun,
2015). While this process is well established and more cost-effective than designing individual
binders computationally with subsequent experiment testing, it has several downsides. First, it
requires a whole immunization and extraction cycle for each target. Thus, it is time- and cost-
intensive compared to purely computational work. Second, for most reagent antibodies the
sequence is not determined and thus reproducibility is not given. Third, the generated
antibodies often exhibit lower specificity than desired leading to wrong detection in subsequent
experiments (A. C. Gray et al., 2020). On top of that, there is an urgent desire to reduce animal

testing in the scientific community (Bradbury & Pliickthun, 2015; A. Gray et al., 2020).

To address these issues, it would be ideal to find a non-animal derived binder system
that needs minimal cost and preparation for each new target. There are attempts to use repeat
protein binders which are selected by screening massive DNA libraries and produced
recombinantly (Binz et al., 2004; Forrer et al., 2003; Plickthun, 2015). Even though this can limit
the necessary time and cost of selection and production, the resource-intensive selection step is
still required for every new target. In contrast, the Pliickthun lab proposed a modular binding
system based on the armadillo repeat protein scaffold which is a natural peptide binder (Gisdon
et al,, 2022; Parmeggiani et al., 2008). By optimizing the armadillo repeat protein scaffold to form
a regular binding groove for stretched peptides, they separated each bound amino acid (see
Figure 2 and Hansen et al., 2016, 2018). On this basis, the interacting residues of the armadillo
repeat binder can be optimized to specifically detect one amino acid side chain at one position,
leading to a strong detection of small polypeptide stretches. If a library of exchangeable modules
is designed, it can be reused for each sequential stretch of unfolded protein or peptide. The
arrangement of binding modules can be executed in silico and, thus, the resulting binder
sequence only needs to be expressed in a bacterial expression system. To establish this system,

the project Predictive reagent antibody replacement technology (Pre-ART) was formed as a shared
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Figure 2: Armadillo repeat protein binding a KR; peptide illustrates the regularity of its binding mode. The designed
armadillo repeat protein consisting of repeats of three o helices binds a stretched peptide with alternating arginine and lysine
residues. A and C compare the protein-peptide complex in cartoon and sticks representation of the crystal structure (PDB: 5AEI)
to a schematic representation. The interaction mode consists of interactions of asparagine 37 to the peptide backbone and specific
interactions to the peptide side chains - as shown in detail by B and D. By focusing on one of the peptide amino acids potentially
interacting binder residues can be identified in the protein. The PRe-ART project aims to design modules that can specifically
target individual peptide amino acids. Those modules are combined by mutating the corresponding residues of helix three (H3) of

the designed armadillo repeat protein (D).

effort that combines computational and experimental methods. For a detailed perspective on

this approach, I like to refer to the review article in the attached articles (Gisdon et al., 2022).

To approach this idea of a modular binding system based on designed armadillo repeat
proteins a variety of binding modules need to be generated. To target every possible peptide
sequence, a counterpart for all 20 of the canonical amino acids is needed. Thus, in an ideal case
only 20 binding modules would be enough to build a universal tool kit. Since there is a significant
difference between both sides of the stretched peptide, each side would need its own set of 20
modules. However, neighbouring binding pockets are tightly connected, and the choice of
overlapping pocket residues needs to be flexible, which may compromise specificity. Therefore,
alternative pockets or even double pockets are needed for certain combinations of pockets.
Additionally, it is possible that suitable pockets cannot be found for the discrimination of all
individual amino acid types in singularity, but in a group of two or few amino acids. Having

pockets for targeting certain subsets of those groups will be crucial for targeting most peptide

#
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sequences. To account for those factors, the identification of binding pockets is a major limiting

factor for building an assorted catalogue to choose from.

As outlined in the last chapters, computational support can guide the design of new
binding pockets. In combination with information from known protein structures or protein-
peptide complexes and a diversity of tools for the prediction of binding specificity, the design

capabilities of existing software might be improved even further.
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V. Aim

The aim of this thesis is to provide new methods for the design of peptide-binding
pockets. The new techniques focus on the identification, design, and computational
characterization of new binding pockets for the armadillo repeat protein scaffold. These
methods are crucial for the construction of a catalogue of binding pockets that function as
recognition modules. Thus, this work supports the establishment of a predictive modular

binding system as an alternative for reagent antibodies.
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The design of specific binding pockets can be approached with traditional computational
redesign tools like Rosetta Design, OSPREY, or PocketOptimizer (Hallen et al., 2018; Leaver-Fay,
Tyka, et al., 20o11; Malisi et al., 2012). However, these programs were originally built to design or
redesign single-chain protein structures and only have a limited ability to accurately predict
protein-protein or protein-peptide complexes. Despite recent advances in scoring binding
energy or sampling flexibility, they are limited by the exponentially growing complexity for
design tasks and fast — but less accurate - energy scoring. This task is particularly intricate in
systems where the difference in ligand agonist and antagonist is small. Thus, even scoring

functions that perform well on big interaction surfaces tend to struggle capturing the small
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details within these test cases. With an iterative algorithm like Rosetta FastDesign known biases
and shortcomings will be accumulated. Moreover, it does not cover a parallel negative design

route for unwanted antagonist-binding designs (Leaver-Fay, Tyka, et al., 20n).

Learning from Nature

Modern protein redesign tools advanced significantly in recent years, but it is still
challenging to create binding pockets directly considering the challenges mentioned above. To
circumvent these inabilities of those tools for the creation of pockets directly, we turned around
and watched out for already known binding sites. Inspired by the pioneering work of Singh and
Thornton (Singh & Thornton, 1992), we searched through structures with a similar structural
background to find common interactions in existing protein structures with peptide or protein
ligands. With this approach, finding patterns in the interaction partners or geometry in a
reoccurring manner would hint at general binding motifs. Those motifs can potentially be reused
by transferring them to the armadillo repeat protein binding site. Based on this idea we created
ATLIGATOR which is a software package written in the programming language Python.
ATLIGATOR is short for ATlas-based LIGAnd-binding ediTOR. It can collect protein structures
based on fold classifications and extract pairwise interactions from these structures. These
interactions are defined by having a binder residue and a ligand residue. While the binder
residue typically belongs to the polypeptide chain of the targeted fold classification, the ligand
residue is coming from a bound peptide or protein. The pairwise interactions are grouped by
ligand and binder residue type and aligned on the position of the ligand residue as the central
point spatially. Thus, all pairwise interactions are formed from the viewpoint of the ligand and
thus the spatial orientation of the binder residues can be retrieved independently of the original
structure. It also contains information about their origin, like PDB code, chain, or residue
identifier, which corresponds to a detailed description of the data source. This extraction
procedure generates a data structure called an atlas where pairwise interactions are contained

(Figure 3).

This collection of interaction data points now creates an intrinsic value on top of the
individual data points information. Since all interaction pairs are centred at the ligand residue,
they are aligned by definition and can be overlayed with each other in three-dimensional space.
Thus, frequent patterns like residue type pairs in a distinct mutual orientation can be observed
and described. To account for this potential knowledge gain, ATLIGATOR incorporates several
ways to visualize atlases three-dimensionally. Atlases are collections of pairwise interactions of

all ligand amino acid types against all binder amino acid types. However, for the design of a
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Figure 3: Schematic overview of the ATLIGATOR components. The ATLIGATOR python package is based on the data
structures Atlas and Pockets which consist of pairwise interactions extracted from existing protein structures. While Atlases are
structured based on the amino acid identity of both interacting residues, Pockets extend this structure with a one-to-many
relationship. ATLIGATOR allows to visualize statistics, but also three-dimensional datapoints. Pockets can be grafted to own

proteins by providing prepared scaffold structures and selecting the desired pockets. (Figure taken from Kynast et al., 2022)

binder of a certain amino acid type only one ligand amino acid type is important. Thus,
ATLIGATOR congregates all interactions based on the amino acid type of the ligand residue.
The resulting collections are called atlas maps, and their focus on one amino type makes them
the largest naturally connected source of information for design purposes. One atlas map is
divided in atlas pages which correspond to one-to-one connections between two amino acid
types. The visualization of both atlas representations can lead to valuable insights about which

interactions are found in nature and can be repurposed for own design ideas.

A specific interaction pattern which recognizes individual polypeptide residues is likely
to be formed from several residues on the binder side. An atlas contains the information about

hot spots of binder residue type positions — usually visualized as clouds of pairwise interaction
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points. The combination of several of those interaction clouds could match and construct a
potential binding pocket. Nevertheless, it is not guaranteed to find those combinations in known
protein structures even once. In fact, two strongly preferred binder residue suggestions might
be mutually exclusive in a new binder design. To compensate for this lack of combinatorial
information ATLIGATOR offers a functionality to extract frequent groups of interactions. It
works similar to what online sellers do when suggesting products to buy as a supplement to what
customers are actually aiming for. By watching combinations of products in recent orders one
can calculate the best matching additions to targeted goods. In the case of ATLIGATOR this is
done with the a priori algorithm: Sets containing all residue types around a ligand residue are
extracted and matched with all other sets (Agrawal et al., 1993). Only those subsets that are
reasonably sized and occur frequently, are highlighted as plausible patterns for binding. We call

those subsets pockets as they potentially define the crucial parts of a binding pocket.

The combination of atlases and pockets can give useful insights in which interactions are
favoured in nature. These insights can be extracted and transferred to the design of new protein
binders. ATLIGATOR even includes a matching algorithm to transfer interaction motifs from
pockets directly. This combination of analysis and design make ATLIGATOR a helpful assistant
for a diverse audience and requires only moderate coding experience. To share this software with
the community, ATLIGATOR is available as a python package at the Python packaging index
(https://pypi.org/project/atligator/) and published as free open-source software on GitHub
(https://github.com/Hoecker-Lab/atligator).

ATLIGATOR Web Server Enables Easy Usage

ATLIGATOR is a useful tool in gaining an understanding about binding motifs and how
they can be used on new scaffolds. However, a programmatic interface is a significant
steppingstone for users without coding experience. A graphical user interface would make up
for this, and it also improves understanding by connecting visualized data. For this reason, we

created ATLIGATOR web - a web server to showcase and extend ATLIGATOR functionality.

ATLIGATOR web contains the sections Structures, Atlases, Pockets, Scaffolds and
Designs (Figure 4). Structures contains the input complex structures which are used in the other
sections and can be inspected three-dimensionally or downloaded. Atlases and Pockets contain
the data structures known from ATLIGATOR which incorporate pairwise interactions and
frequent groups of interactions, respectively. The graphical interface enables linking connected

data structures or browsing through different levels of hierarchy. For example, a pocket

22
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Figure 4: Screenshot of the ATLIGATOR web landing page at https://atligator.uni-bayreuth.de/. The sections Structures,
Atlases, Pockets, Scaffolds and Designs offer functions to browse interactions or design new binders. A search and a login function
are provided in the header. For extended guidance, a tutorial mode can be activated in the footer, besides the options to change

and observe the current colour scheme for individual amino acids.

collection is linked to its underlying atlas, and in an atlas one can browse through atlas maps or
atlas pages to visualize the contained data. Atlas and pocket visualization also allows to click on
data points to find their origin or detailed full-atom representations. This contributes to a more

seamless experience in inspecting ATLIGATOR data.

The sections Scaffolds and Designs offer functions to upload user-defined scaffolds and
graft pockets or introduce manual mutations with a visualization of the resulting protein. For a
more native representation of the introduced mutations, a repacking function is implemented
based on the Rosetta fixbb protocol (Leaver-Fay et al., 2005). Thus, ATLIGATOR web does not
only help to understand ATLIGATOR better, but also speeds up designing new binding pockets

based on known interaction motifs.

Even though ATLIGATOR and ATLIGATOR web were developed with the intention to design
binding pockets for the armadillo repeat protein scaffold both tools are not limited to this

application. Every potential interaction between two or more amino acids can be extracted with
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ATLIGATOR. Hence, every design approach that aims at protein-protein or protein-peptide

interactions can benefit from this functionality.

Prediction of Binder Specificity

While the detection and the placement of potential binding motifs on the armadillo
repeat protein can be done with ATLIGATOR, we do not know if our designed binder is
preferring one ligand amino acid over all others. As reviewed by Gisdon et al., the heavy lifting
of finding the exact binder sequence can be outsourced to directed evolution by screening a
focussed DNA library (Gisdon et al., 2022). However, to match ATLIGATOR designs with a
suggestion of a focussed library it is useful to test a set of designed binders computationally to
finalize the content of the focussed library. For this application, perfect accuracy in the
prediction of specificity is not necessary. Rather, finding a trend with several, orthogonal
programs with imperfect prediction capabilities provides a reasonable guideline for library
design. Protocols like Rosetta flex ddG or OSPREY’s BBK* seem to be promising candidates for
providing such distinctions within a timeframe of hours to days for single binders (Gisdon et al.
unpublished - compare with chapter 4 of the introduction). In fact, our lab developed a software
program called PocketOptimizer that serves a very similar purpose (Malisi et al., 2012; Stiel et
al., 2016). It can find optimal solutions for mutating the binding pocket of a small molecule
ligand with a linear programming solving algorithm. It features ligand and side chain flexibility
of the binding pocket as well as a modular pipeline for exchanging force fields, scoring functions
and more. However, PocketOptimizer depends on the software libraries tinker and BALL as
outdated dependencies and does not feature a modern user interface (Hildebrandt et al., 2010;
Rackers et al., 2018). This complicates the handling of PocketOptimizer and inhibits the
implementation of modern force fields, scoring functions or algorithms. To address these
shortcomings, we created PocketOptimizer 2.0 that offers a cleaner python user interface, even
more supported modules for its architecture, such as force fields and scoring functions, a
backbone-dependent rotamer library, and optimizations of the underlying algorithms. The

general way how PocketOptimizer works and improvements of version 2.0 are described below.

The program PocketOptimizer contains four software components that are executed

sequentially (compare with Figure 5):

First, ligand and protein structures are prepared in order to generate a correctly
protonated and minimized protein-ligand complex. For this complex a binding pocket is defined

to direct PocketOptimizer in generating a diverse representation of the interaction.
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Figure 5: Workflow of the design of a ligand-binding pocket with PocketOptimizer consisting of four steps. After the prepa-
ration of a protein-ligand complex, the individual flexibility of the binding pocket and the ligand is sampled. Energies of non-covalent
interactions between flexible and fixed parts are calculated and fed into a linear solving algorithm. This results in one or more design

solutions which represent the lowest energy complex of ligand and optimized binder. This image is edited from Noske et al., 2023.

Second, flexibility of the interaction is sampled by introducing side chain conformers -
also known as rotamers - for the binding pocket residues. While PocketOptimizer extracted
these rotamers from a hand-crafted rotamer library, PocketOptimizer 2.0 additionally offers to
use the backbone-dependent Dunbrack rotamer library (Dunbrack & Karplus, 1993; Shapovalov
& Dunbrack, 2011). Version 2.0 also accelerates the rotamer sampling by replacing tinker with a
faster program called FFEvaluate as part of the high-throughput molecular dynamics (HTMD)
software (Doerr et al., 2016). To introduce ligand flexibility, ligand conformers are generated
which are further rotated and translated in the binding pocket. PocketOptimizer 2.0 also offers
a new method for the generation of ligand conformers. Conformers and positional variants are

bundled up as ligand poses.

Third, the energy of the protein-ligand complex is calculated in the context of previously
sampled flexibility. The total energy contains four parts where non-covalent interactions are
calculated (Figure 6). To compute those parts, the side chain rotamers are matched with the
fixed protein scaffold (1), other side chain rotamers (2) and the ligand poses (3). Beyond that,
ligand poses are also matched with the fixed scaffold (4). Those components can be grouped
into binding (3 and 4) and packing energies (1 and 2) on the basis of the ligand binding being
part of it or not. If the interaction partner is the fixed scaffold, they are also defined as self-
interaction energies (1 and 4). Pairwise-interaction energies are those components that include
another rotamer or a ligand pose as the interaction partner (2 and 3). PocketOptimizer 2.0 offers
more scoring functions for ligand binding than the original version to enable a more tailored

usage for specific types of interaction.
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Figure 6: Energetical components of the ligand binding pocket in PocketOptimizer. PocketOptimizer aggregates four types
of pairwise energy calculations. Flexible side chains are matched with the ligand poses, other flexible positionsand the fixed scaffold,

while the ligand poses are also matched with the fixed scaffold. This image is edited from Noske et al., 2023.

Fourth, all the sampled interaction energies are passed into a solving algorithm that

efficiently alters flexible parts to identify the combination with the lowest total energy.

Overall, PocketOptimizer 2.0 is an improvement over PocketOptimizer in several ways.
It is not only faster and easier to use and develop, but it also incorporates more force fields,
scoring functions and rotamer libraries which makes it more robust. Its source code is available

at https://github.com/Hoecker-Lab/pocketoptimizer.

Pipeline for Design of Binding Modules

With the development of ATLIGATOR and ATLIGATOR web, the design of initial
binding pockets for modular binders can be done more efficiently. Even though these designs
might not be highly specific as they are, computational redesign methods like Rosetta flex ddG
or OSPREY BBK* can be used to improve specificity later. The development of PocketOptimizer
2.0 also makes it more attractive for this task. In combination with experimental testing this

setup seems promising for challenges like creating new binder modules for the modular system

proposed with PRe-ART.
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In the attached review article, we discussed the approach of creating such a modular
binding reagent based on the armadillo repeat protein scaffold. We came up with a strategy to
identify, test and implement new binder modules: Based on such computational predictions
DNA library compositions have been proposed which are generated non-degenerately with the
MAX-strategies (Chembath et al., 2022) by our collaboration partners in the PRe-ART project.
These libraries can be screened for promising binder candidates that are characterized and

complement the set of known binding modules.
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Abstract: Current biomedical research and diagnostics
critically depend on detection agents for specific recogni-
tion and quantification of protein molecules. Monoclonal
antibodies have been used for this purpose over decades
and facilitated numerous biological and biomedical in-
vestigations. Recently, however, it has become apparent
that many commercial reagent antibodies lack specificity or
do not recognize their target at all. Thus, synthetic alter-
natives are needed whose complex designs are facilitated
by multidisciplinary approaches incorporating experi-
mental protein engineering with computational modeling.
Here, we review the status of such an engineering endeavor
based on the modular armadillo repeat protein scaffold and
discuss challenges in its implementation.
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Introduction

Current biomedical research relies on the use of reagent
antibodies to detect biomolecules in medical diagnostics
and basic life science research. The development of a
chimeric antibody in 1984 (Morrison et al. 1984; Neuberger
et al. 1984) as a first recombinant antibody opened new
possibilities for the development of therapeutics and
applications as affinity reagents. Recombinant production
allows one to define the sequence, which is important as it
ensures the reproducibility of experiments and reliability of
results. In contrast, the sequence of monoclonal antibodies
is not directly known, but can be obtained via protein
sequencing, though it is time-consuming and costly. The
efficient production and sophisticated technology of
monoclonal antibodies that are derived by immunization is
certainly a reason for their prevalence as specific binders
in biological sciences. But the use of animal-derived anti-
bodies has been more and more brought into question. On
the one hand information about monoclonal antibodies,
which are derived from hybridoma cell lines, can get lost
due to cell line death or gene loss (Bradbury and Pliickthun
2015). But apart from that, increasing awareness arose from
the observation that animal-derived antibodies are varying
between separate batches and often lack distinct specificity,
which affects experimental reproducibility (Baker 2015). To
address this issue, DNA sequencing can be applied and in
fact, a recombinant production should then be possible.
While this is technologically feasible, it is unfortunately
not routinely done for commercially available reagent
antibodies, which is likely due to commercial reasons
(Bradbury and Pliickthun 2015).

Consequently, in an interdisciplinary meeting in 2019,
35 years after the first recombinant antibody had been
engineered, the development and use of animal-free re-
combinant antibodies were discussed with the objective to
foster their increased use in basic research (Groff et al. 2020).
Still, conventional antibodies are widely used in research
applications, but antibodies with poor specificities or the
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lack of reproducibility led to the development of alternative
affinity reagents, which can be produced recombinantly and
hence ensure their reliability (Groff et al. 2015). Recombinant
production requires one to know the sequence of the re-
agent, and thus makes experimental results transparent
and reproducible. Furthermore, recombinantly produced
affinity reagents are truly monoclonal but can also be made
polyclonal by using exactly defined pools. This procedure
even provides knowledge about the full composition of the
reagent mixture.

The first recombinant affinity reagents have been
immunoglobulin derivatives. Immunoglobulins consist of
a tail region, the Fc fragment, which interacts with cellular
receptors, and a Fab fragment, which binds to antigens. In
1989 the first Fc-fusion protein was described, a fusion of
the Fc fragment with the cell-surface glycoprotein CD4
(Capon et al. 1989). In the meantime, Fc-fusion proteins
have been used as reagents for immunotherapy (to harvest
their long half-lives) and laboratory research (to exploit
detection reagents against the Fc part) (Duivelshof et al.
2021; Flanagan et al. 2007; Liu and Yu 2016), and the Fab
regions have been utilized as recombinant affinity reagents
(Conroy et al. 2017; Shih et al. 2012). However, the structure
of antibodies entails technical challenges such as pro-
duction in eukaryotic cells to obtain the required disulfide
pattern and/or glycosylation (Gebauer and Skerra 2020).
Such considerations have supported the development of
alternative binding reagents which are not based on the
immunoglobulin fold. First alternatives were e.g., based on
natural folds such as fibronectin (Koide et al. 1998) or lip-
ocalin (Beste et al. 1999), leading to monobodies or anticalins
as designed affinity reagents. For both affinity reagents loop
regions can be randomized to generate different variants,
which can be selected for specific targets. However, a change
of the scaffold has just been the first step. The mentioned
affinity reagents are restricted by their size and variability in
their binding mode. For a better adjustability and for control
of the binding properties designed repeat proteins have been
considered as scaffolds. Designed ankyrin repeat proteins
(DARPins), for example, have the advantage to be fully
characterized, and their size can be adapted by addition of
further repeats (Binz et al. 2004; Forrer et al. 2003; Pliickthun
2015). The repeats can also be easily randomized, which al-
lows for a great variability that can be screened (see below)
to find good binding reagents. Further, the binding site is
slightly concave, which is favorable for binding large epi-
topes. However, DARPins have to be devel-oped anew for
every target, nevertheless, they are used as innovative af-
finity reagents (Schilling et al. 2021).

A fundamentally different concept, which is also based
on a repeat protein scaffold, is currently investigated
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within the collaborative ‘Predictive Reagent Antibody
Replacement Technology’ (for PRe-ART) project. Here, the
alternative affinity reagent is a designed armadillo repeat
protein (dArmRP, see Figure 1), which can be varied in
length of the concave binding surface, analogous to DAR-
Pins. However, the modularity of dArmRPs gives them an
additional unique feature, as each internal repeat harbors
binding capabilities for exactly two adjacent amino acid
residues of a target. Furthermore, the distance between
the repeats is optimized to match the periodicity of a
peptide chain, so that the dArmRP can be applied to bind
linear epitopes (Reichen et al. 2014). By designing
different repeat modules, with specificities for all indi-
vidual amino acids, a universal toolkit will be created
from which desired binders can easily be assembled. This
idea radically rethinks the established concept of affinity
reagents and will affect a broad user base, as the recog-
nition of linear epitopes is fundamental in many research
applications, for instance protein purification with affin-
ity tags or the recognition of unstructured regions such as
found on western blots or intrinsically disordered pro-
teins. Further, such unstructured regions are often targets
for post-translational modifications such as phosphory-
lation and play an important role in the function of pro-
teins (Dyson and Wright 2005; Liu et al. 2020).

This growing number of applications strengthens the
need for robust and well-defined affinity reagents, which
are less cost- and time-consuming in their production
compared to commonly used reagent antibodies. This is
especially important since many commercial reagent an-
tibodies lack specificity or do not recognize their target at
all. The modular dArmRPs define an innovative technology
that fully reexamines the concept of existing affinity
reagents and promises to revolutionize their applications.

Armadillo repeat proteins are
modular scaffolds for peptide
recognition

The natural armadillo repeat protein (ArmRP) scaffold
harbors unique and useful features necessary for its devel-
opment into recombinant affinity reagents. It is comprised
of homologous structural units that stack to form an elon-
gated, rigid structure. Crystal structures show that natural
ArmRPs bind stretched peptides of up to six amino acids
(Conti and Kuriyan 2000; Conti et al. 1998; Graham et al.
2000). This binding of peptides in extended conformation
reveals a conserved modular recognition mechanism which
is a key feature of the ArmRP scaffold. Every second main
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chain peptide bond of the target is held in place by a
conserved asparagine residue on every ArmRP repeat.
These interactions provide a general affinity and secure the
regularity of the binding interactions. Each ArmRP repeat
unit further binds two adjacent amino acid side chains in
the target sequence in a specific manner (Figure 1).

These features were enhanced and regularized in iter-
ative rounds of engineering. Using a consensus approach
followed by computational and structural engineering for
stability yielded a highly stable dArmRP, which consists of
perfectly stackable repeats and optimized cap structures
(Alfarano et al. 2012; Madhurantakam et al. 2012; Parmeg-
giani et al. 2008). Each repeat is 42 amino acids long and
forms three alpha-helices. The assembled repeats again
form an extended superhelical structure. Reichen et al.
(2016) analyzed the variation in curvature of natural ArmRPs
and identified a repeat pair in yeast importin-alpha with the
ideal curvature geometry for optimal binding of an extended
peptide. Based on binding pockets from importin-alpha, a
dArmRP could be built that has picomolar affinity to its
target peptide of alternating lysine and arginine residues

Designed armadillo
repeat protein

Figure 1: The modular nature of designed
armadillo repeat proteins (dArmRPs).

(A) Dipeptide units of a linear peptide
stretch are bound in a modular fashion by
dArmRPs. (B) The crystal structure of a
dArmRP in complex with its target (PDB-ID:
5AEl) shows the modularity of binding of the
extended peptide (magenta, as sticks) to
the repeat modules of the protein (green, as
cartoon). The residues of one arginine
binding pocket are highlighted (orange, as
sticks).

Protein
C-terminus

(Hansen et al. 2016). The crystal structure of this protein,
built from five identical repeats and N- and C-terminal caps
in complex with a (KR); peptide, confirmed the regular
binding mode (Figure 1B). It lays the groundwork for the
design of tailored binders with specific affinities by the as-
sembly of dipeptide-specific dArmRP modules.

For the development of a diverse set of binding mod-
ules for different amino acids, a consistent design and
testing approach is crucial for success as we discuss below.
Furthermore, it is important that other binding modes are
eliminated as it had been observed that repetitive se-
quences lead to register shifts and flipping of peptides
during selections from libraries, which affects the investi-
gation of binding specificities (Ernst et al. 2020). To prevent
the peptide from binding in undesired orientations, a lock
was incorporated into the dArmRP by grafting a hydro-
phobic binding site observed in beta-catenin onto the
dArmRP, thereby locking the peptide with the comple-
mentary sequence in place. The interaction of the lock was
improved by mutual optimization of the pocket and the
bound peptide, which were then confirmed by X-ray
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crystallography. The lock could further be moved from the
N-terminus of the dArmRP to its middle nicely highlighting
the modularity of the system (Ernst et al. 2020).

With stability and modular binding of dArmRPs
established and with an efficient locking system in place,
the main goal is now to develop modules that can bind any
other amino acid including negatively charged or even
phosphorylated ones. Clearly, further adjustments of the
dArmRP scaffold will also be necessary as neighboring
binding pockets and combination of modules might have
effects on the overall binder. However, the current chal-
lenge is to identify sequences that form binding pockets for
other amino acids and thereby design new binding mod-
ules. Here, a consistent strategy to reduce the number of
theoretical binding pocket sequences to an experimentally
testable level is the key to success.

Experimental strategies in the
design of specific dArmRP modules

The repeat units of dArmRPs bind two adjacent amino acids
in an alternating orientation (Figure 1). Originating from the
importin-alpha framework one binding pocket is specific for
arginine and the other one is specific for lysine (Hansen et al.
2016). The specificity of each pocket has to be adjusted to
recognize other amino acids by mutating binding pocket
residues. For an efficient search of specific binding pockets,
DNA library selection technologies play a major role. These
techniques allow to rapidly screen large numbers of DNA
sequences encoding for the target protein that are ran-
domized in regions responsible for the desired interaction.
A complete randomization of a dArmRP module, however,
is not useful. First, only a small fraction of residues is in
direct contact with the ligand side chain of the target peptide.
Second, uncontrolled randomization will incorporate un-
wanted termination codons. And third, due to the assign-
ment of 64 codons to 20 canonical amino acids and
termination codons, the distribution of amino acids will
heavily differ at each position of randomization. Hence, the
probability for certain amino acids to occur will be drastically
reduced and create a bias. Additionally, the total number of
sequences necessary to exhaustively screen a library will
exponentially increase per randomized amino acid position.

A solution to these difficulties and to reduce the num-
ber of DNA sequences necessary for exhaustive screening is
the use of MAX randomization as a non-degenerate satu-
ration mutagenesis technology (Hughes et al. 2003). This
technology allows one to build libraries with exactly 20
codons (one for each amino acid) or a desired subset of
those for the randomized position. As a related technique
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ProxiMAX even allows to saturate multiple contiguous co-
dons in a non-degenerate manner (Ashraf et al. 2013). Both
methods require no specialized chemistry, reagents, or
equipment. Ultimately, the use of the MAX techniques al-
lows to generate DNA libraries without amino acid bias,
termination codons, and degeneracy. Limiting both library
size and degeneracy is critical to maximizing the output
from the applied screening technology.

Three main selection technologies exist that could be
used for the selection of dArmRP libraries: phage display,
ribosome display, and yeast display. Because of the starting
consensus scaffold being dominated by importin-alpha,
the libraries are heavily biased to bind positively charged
peptides, which creates difficulties during panning. As
ribosome display uses highly negatively charged mRNA
molecules and filamentous phages are equally negatively
charged, it is not possible to select specific binding to the
positively charged peptides. In contrast, selections by yeast
display can be successfully performed, as the yeast surface
is apparently not as negatively charged.

During selections of pockets for individual amino acids
itis key that the peptides bind specifically and efficiently to
the dArmRPs. Due to the repetitive nature of the dArmRP
binding pockets the target peptide can bind in different
registers. To avoid flipping or sliding of the peptide it is
important to provide a binding pocket that locks the pep-
tide into place. This was achieved by grafting a binding site
from B-catenin into the dArmRP as described above (Ernst
et al. 2020). The lock allows that selections can now be
focused onto the binding pocket residues to the new target
side chain to which specificity should be achieved.

Selection by yeast display is a very powerful tech-
nique and many different variants can be sorted in a high-
throughput manner. Nonetheless, even with this technique
only a library of a certain size can be screened. While li-
brary design by MAX randomization is a huge advantage as
it allows particular residue types in predefined positions,
screening of these libraries is still time-consuming.
Therefore, it is useful to focus the libraries further to the
most likely variants. Here, computational techniques can
help to predict precise mixtures of amino acids for each
position of randomization.

Computational strategies in the
design of specific dArmRP modules

The modularity of the dArmRP scaffold allows for the in-
dividual design of a single pocket at a time. However, there
is still an enormous number of residue combinations and
degrees of freedom that need to be sampled. Therefore, a
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computational pre-selection of possible binding modes is
useful and necessary to enable efficient experimental
screening as described above.

The computational sampling of a very large number
of combinations and degrees of freedom is challenging
as well, though the past decade has seen significant im-
provements in the development and application of compu-
tational methods for protein design (Lechner et al. 2018).
With algorithmic improvements and technological progress
in computer hardware, new protein design approaches
yielded increased accuracy and efficiency by allowing more
flexibility and by applying simultaneous sampling of mul-
tiple sequences (Friedland et al. 2008; Murphy et al. 2012;
Saunders and Baker 2005; Yin et al. 2007). In addition to the
applied flexibility, different design objectives like creating
single-state, multi-state, or ensemble-based designs influ-
ence the quality of the computational predictions.

One powerful method for sampling flexibility in
computational protein design is Molecular Dynamics (MD)
that has proven to provide valuable insights on protein
stability, dynamics, and macromolecular interactions
(Simonson et al. 2020). Technological advances such as
parallelization on graphics processing units (GPU) have
significantly accelerated MD calculations. Although the
high computational cost is still a limiting factor, MD sim-
ulations of microseconds on a single GPU for protein sys-
tems such as dArmRPs are achievable within several days
(Lazim et al. 2020). However, the design of binding pockets
requires to sample many different combinations of amino
acids, which spans an enormous combinatorial search
space. For the evaluation of such a large amount of
different variants, provable algorithms, including Branch
and Bound, Dead-End Elimination, and Dynamic Pro-
gramming, that have been successfully applied to protein
design problems with backbone flexibility are promising
developments for efficient calculations (Desmet et al. 1992;
Gordon and Mayo 1999; Jou et al. 2016; Leaver-Fay et al.
2005; Ojewole et al. 2018). Also, deep learning techniques
have experienced a large gain in interest in protein rede-
sign since novel deep learning architectures achieve
extraordinary prediction results in various fields due to
clever model design and effective pattern recognition
(Jumper et al. 2021; Krizhevsky et al. 2017). Thus, predic-
tion of protein design features might be applicable on
multiple sequences in a drastically smaller timescale.
However, many state-of-the-art machine learning models,
especially deep learning models, have not been exten-
sively explored for protein design applications so far
(Gao et al. 2020; Wang et al. 2018; Xu et al. 2020).

Nonetheless, computational strategies are often used
as a complementary approach to experimental methods
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since experimental work is time-consuming and expensive
(Chen and Keating 2012; Ernst et al. 2020; Liang et al. 2021).
Within the multidisciplinary approach of PRe-ART,
computational tools with diverse features help to charac-
terize existing and to design new binding modules. For the
characterization of new or existing binding pockets,
different computational options are available. Tools can be
used to screen the possible sequence space with methods
such as the non-exhaustive screening and scoring pro-
tocols FastDesign (Loshbaugh and Kortemme 2020;
Maguire et al. 2021) and coupled moves (Ollikainen et al.
2015) included in the software suite Rosetta. FastDesign
performs iterations of side chain repacking and global
minimization to find energy minima while exchanging
predefined residues within the sequence. Coupled moves,
however, alters backbone and sidechain conformations as
well as the sequence at a time, to allow for more effective
sampling. Further, several well-established computational
methods, including flex ddG and Branch and Bound Over K*
(BBK*) algorithms implemented in the Rosetta and Osprey
protein design suites, respectively, allow to specifically
target single binder sequences with exchanges in one res-
idue position (Barlow et al. 2018; Ojewole et al. 2018). The
flex ddG protocol incorporates backrub motion to accu-
rately calculate binding affinity changes upon mutation.
The BBK* algorithm efficiently evaluates the partition
function to calculate the binding affinity, while addition-
ally allowing for continuous flexibility. Complementing
these algorithms, MD simulations can support the analysis
of the influence of mutations on the dynamics and the
protein-ligand interactions of the system.

To predict promising mutations in a binding pocket in
the first place that potentially develops a specific binding
ability for the desired peptide, the software suite
ATLIGATOR has been developed (Kynast et al. 2022). It is
based on a knowledge-based approach that extracts
pairwise interactions from existing structures to be used
in the design of new binding pockets. Furthermore, it
incorporates the detection of frequent interaction groups
for specific amino acid side chains. Subsequent evalua-
tion of the suggested binding pockets from ATLIGATOR
can be performed by algorithms such as flex ddG or BBK*,
which can be complemented with MD simulations.
The combination of the described methods results in a
detailed understanding of the new binding pocket can-
didates. Hence, even if the computational prediction of
exact binder sequences is not entirely possible, the
multidisciplinary PRe-ART approach established a feed-
back loop to use the findings from computational
modeling for the design of focused libraries for experi-
mental screening (Figure 2).
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Figure 2: Workflow in the engineering of binding modules.
Libraries are designed, synthesized, screened, and evaluated,
providing feedback to the input techniques. The overall loop creates
an ensemble of binding modules that can later be assembled to
recognize predefined target peptides.

Complementarity of experimental
and computational design

The design of specific protein-protein or protein-peptide
interactions with experimental screening and selection
methods as well as computational modeling and predic-
tion tools has progressed significantly. Experimental
screening of DNA libraries with molecular display tech-
nologies (Levin and Weiss 2006) allows one to sample
millions of sequences at once. When combining fluores-
cence activated cell sorting (FACS) with bacterial or yeast
display approaches, cells can be sorted according to
desired features. However, experimental screening
methods suffer from exponentially growing complexity,
the more residue positions are randomized. The use of
techniques such as MAX randomization optimizes the
codon selection to the minimum required and allows to
define limited sets of amino acids for randomized positions
(Hughes et al. 2003). Thus, the total number of sequences
to screen for a complete coverage of desired amino acid
sequences is minimized and the effective screening ca-
pacity is drastically increased.

Still, a theoretical library for complete randomization
of a binding pocket quickly exceeds screening capacities.
Thus, sequence space has to be reduced to a relevant set of
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sequences in the randomization. To screen only the relevant
sequence space computational modeling can be used to
exclude noninvolved positions and unfavorable mutations.
An early attempt was by Voigt et al. (2001) who computa-
tionally focused a library and successfully selected proteins
with increased stability. Also, in protein-protein interaction
engineering, several groups have used computational
design to focus libraries to select sequences compatible
with the target fold that were screened for function later-on
(Guntas et al. 2010; Hayes et al. 2002; Treynor et al. 2007).
With increasing computational power and new protein
modeling and design algorithms in the fields of determin-
istic (reviewed in Gainza et al. [2016]) or heuristic solving
(reviewed for the Rosetta Suite in Kuhlman [2019]) as well as
machine learning (reviewed in AlQuraishi [2021]) the po-
tential to computationally focus libraries increased heavily.

The prediction of protein structures and stability are
used successfully as a less cost- and labor-intense alter-
native to experimental methods. Even though the predic-
tion of protein complex structures and their binding free
energy is still not feasible for “bigger systems” in many
cases, current software protocols can give crucial insights
into those events (Barlow et al. 2018; Ojewole et al. 2018).
Thus, functionally important positions can be identified or
amino acid properties with potentially positive effects can
be defined to reduce the size of the relevant search space.
An incorporation of this knowledge into a designed library
for experimental screening allows one to screen a bigger
part of potentially advantageous sequences and to sort out
disfavored sequences with a higher probability. Hence, the
interplay of computational and experimental techniques
leads to a higher likelihood to find variants with an
improvement of the desired functionality. In the case of the
PRe-ART project individual binding pockets are designed
in dArmRPs, which detect and discriminate single amino
acid side chains with high specificity. Randomization of all
possible interacting positions would lead to a search space
that largely exceeds screening capacities, which is why
complementation with computational methods to design
focused libraries is highly beneficial.

The precise objective of such a library design process
for subsequent experimental screening is not immediately
obvious. Possible priorities in creating such a library can
be the inclusion of the best predicted sequences, the most
frequently predicted sequences or a preferably high
sequence diversity (Chen and Keating 2012), as well as
sequences with highest affinity versus specificity. A
reasonable choice would be to focus on affinity with
computational selection and on specificity with subse-
quent experimental screening. Additionally, a library can
be designed by scanning and scoring relevant shares of
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the sequence space (Barlow et al. 2018; Gainza et al. 2013)
or by considering interaction motifs found in natural
proteins (Kynast et al. 2022). The results of screening such
a focused library will potentially detect more desired
binder sequences.

These variants of the binder sequences can be further
characterized for their binding specificity as well as the
structure of the protein-peptide complex. Such specific
binding affinity information is crucial for the establish-
ment and improvement of computational prediction tools
(as seen in Barlow et al. [2018], Kadukova et al. [2021], and
Spiliotopoulos et al. [2016]) to enable effective evaluation
of methodological parameters. Furthermore, computa-
tional approaches can complement or explain experi-
mental findings by simulations of the dynamic behavior of
the dArmRP-peptide complex. Additionally, the selection
rounds during experimental screening can be sequenced
with next-generation sequencing techniques. By that
strategy, a gigantic amount of sequencing data is gener-
ated whose analysis can lead to an even more sophisti-
cated design of focused libraries or selection methods.

Conclusions

Most affinity reagents for scientific research applications
are still monoclonal antibodies derived from immuniza-
tion, which either already exist and thus can be ordered
from a supplier (catalog antibody), or they do not exist
and have to be produced by immunization of animals
(custom antibody). In fact, for most targets, epitopes and
applications no suitable catalog antibody exists. And
even if they exist, catalog antibodies frequently do not
perform for reasons of cross-reactivity or low affinity, and
the production of custom antibodies is costly in terms of
time and money.

A major issue for common catalog or custom anti-
bodies is that their genetic information is not available
unless the antibody is sequenced in a labor-intensive step.
However, applications with fusion proteins or the expres-
sion on cell or virus surfaces require the knowledge of the
protein sequence to produce the binder recombinantly.
Therefore, many catalog or custom antibodies are not
suitable for such applications (Bradbury and Pliickthun
2015). Additionally, common recombinant antibodies also
have to be created anew for every new target sequence.

The collaborative PRe-ART project addresses these is-
sues. A modular affinity reagent has been built based on
the Armadillo repeat scaffold, where the modularity of the
binder matches the target peptide architecture. Now, in-
dividual binding pockets are being designed to be specific
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for individual amino acids on the target that can later be
combined. Thus, with an existing set of binding pockets in
place it will be possible to assemble an affinity reagent for a
specific target sequence in a very short time. Apart from
slight adaptations at the pocket interfaces no further
experimental selections and computational optimizations
will be necessary during the assembly of new sequence-
specific binding proteins.

This fundamentally new concept allows one to bind
linear target sequences in an unfolded state. Such
stretches are often available at the termini of proteins orin
linker regions, or they can be obtained by denaturation of
the target protein as in SDS-PAGE or western blots. Un-
structured targets of great interest are also the tails of
receptors or regions of signal transduction molecules
which are phosphorylated, or intrinsically disordered.
Since unstructured regions are often post-translationally
modified, these modular affinity reagents could be used to
specifically target and investigate post-translational
modifications. It would also be highly interesting to
build pairs of binders for phosphorylated and unphos-
phorylated targets to visualize effects of candidate drugs
on signaling pathways. Such an approach could accel-
erate mass spectrometry detection by orders of magni-
tude, circumvent labeling and thus permit to incorporate
such a workflow into drug discovery. Because of the
modular nature, “calibration” binders could be added that
detect constant parts of the proteins in question, which
would further add to the robustness of the concept.

Overall, the application of modular affinity reagents
that can be assembled from predefined binding pockets
has enormous potential for a wide range of applications.
Because of the sequence-specific binding nature, these
applications are completely out of reach of monoclonal
antibodies or other conventional affinity reagent scaffolds.
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Abstract

Motivation: Recognition of specific molecules by proteins is a fundamental cellular mechanism and relevant for
many applications. Being able to modify binding is a key interest and can be achieved by repurposing established
interaction motifs. We were specifically interested in a methodology for the design of peptide binding modules. By
leveraging interaction data from known protein structures, we plan to accelerate the design of novel protein or
peptide binders.

Results: We developed ATLIGATOR—a computational method to support the analysis and design of a protein’s
interaction with a single side chain. Our program enables the building of interaction atlases based on structures
from the PDB. From these atlases pocket definitions are extracted that can be searched for frequent interactions.
These searches can reveal similarities in unrelated proteins as we show here for one example. Such frequent
interactions can then be grafted onto a new protein scaffold as a starting point of the design process. The
ATLIGATOR tool is made accessible through a python API as well as a CLI with python scripts.

Availability and implementation: Source code can be downloaded at github (https://www.github.com/Hoecker-Lab/

atligator), installed from PyPI (‘atligator’) and is implemented in Python 3.

Contact: birte.hoecker@uni-bayreuth.de

1 Introduction

For protein design it is crucial to understand how proteins form
interactions. Interactions can be formed intramolecularly to define
stability or function as well as intermolecularly with various inter-
action partners such as solvent, small molecules, peptides or full pro-
teins. Thus, the choice of a particular amino acid at a certain
position in a protein is crucial to establish such favorable interac-
tions between two or more amino acid residues. Hence, understand-
ing how specific residue types interact with each other is of
particular interest when creating newly designed proteins.

A description of the conformational space that is occupied by
interacting amino acid side chains in known protein structures as
well as relative positioning of both interaction partners can provide
powerful information for protein design. Singh and Thornton (Singh
and Thornton, 1992) already classified interactions between pairs of
distinct residue types. Moreover, they described clusters of orienta-
tion and position combinations within these pairs of amino acids. In
a similar approach, Vondrasek and colleagues investigated inter-
action energies of amino acid combinations calculated in gas-phase
(Berka et al., 2009, 2010; Galgonek et al., 2017). For the analysis of
enzymatic active sites, groups of amino acid residues from three-
dimensional structures were categorized, based on sequence align-
ments (Porter et al., 2004). While these studies led to a better

©The Author(s) 2022. Published by Oxford University Press.

understanding of amino acid interactions, their focus was more on
analysis rather than design applications.

Recent developments, clearly moved toward designing protein
structures as well as interaction surfaces. By extending amino acid
pairs with information about their structural environment, two inde-
pendent approaches successfully improved the quality of interaction
data extracted from existing protein structures (Holland and
Grigoryan, 2022; Jha et al., 2010). In particular, the software
dTERMen incorporates structural elements called tertiary structural
motifs (TERMs) into the redesign of protein structures (MacKenzie
et al., 2016; Zhou et al., 2020). TERMs were also recently used as
surface-complementary fragments during protein design for peptide-
binding (Swanson et al., 2022).

Another important point was investigated by focusing next on
positional and orientational information within amino acid-based
interactions. For example, Polizzi and DeGrado generalized pairwise
interactions by describing connections between amino acids and
functional groups in so-called van der Mers (Polizzi and Degrado,
2020), while Liu et al developed the neighborhood-sensitive pro-
gram NEPRE which is able to assess the quality of protein structures
based on amino acid identities (Liu et al., 2020).

We started looking into similar amino acid interaction groups
for a specific design problem, namely the construction of custom-
made modular peptide-binders based on armadillo repeat proteins.
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Armadillo repeat proteins comprise a natural binding interface for
elongated peptide stretches which was further refined to exhibit pep-
tide binding in a regularized fashion (Hansen et al., 2018, 2016).
Thus, the transfer of existing motifs of known structures on the
binding interface of a single repeat—also referred to as grafting—
would be a crucial step to design new modules that can be assembled
or incorporated in an existing peptide binder (Gisdon et al., 2022).

So, we extended the atlas idea of Singh and Thornton to be ap-
plicable for design. By now, much more structural data is available
that can be leveraged and made searchable for specific design appli-
cations. Some interaction modes can be found more frequently in
nature and thus appear more favorable than others. Our aim was to
make such natural interaction motifs explorable so that they can be
searched and incorporated into the context of a protein scaffold.
Such information allows to modify not only internal interactions
within a protein, but also interactions with a different peptide or
protein binding partner. Furthermore, the identification of frequent-
ly interacting residue groups plus their favored conformations opens
the possibility to graft specialized binding pockets to specifically
bind peptide or protein targets of interest.

To enable such rational design, we now present the software tool
ATLIGATOR, short for ATlas-based LIGAnd binding site ediTOR.
It allows the user to analyze frequent interaction modes of two or
more amino acids and to directly apply this information to rational
design approaches (Fig. 1). The program relies on data structures
called atlases that contain descriptions of pairwise interactions from
protein structures. A collection of structures that builds up such an
atlas is a subgroup of all structures in the Protein Data Bank
(Berman et al., 2000) and can for example represent a certain type
of fold based on classifiers of the SCOPe database (Fox et al., 2014).
Moreover, the ATLIGATOR tool also incorporates association rule
learning in the form of frequent itemset mining to extract frequent
groups of pairwise interactions based on single ligand residues from
the atlas. These groups are called pockets and represent starting
points for protein interface design tasks. This representation is based
on the assumption that favorable interaction groups have been
established during the evolution of the proteins of choice and are
thus detected as pockets. A major key functionality of ATLIGATOR
is the ability to visualize each individual step of the ATLIGATOR
toolchain interactively. Furthermore, ATLIGATOR atlas and pocket
datapoints can not only be browsed for individual amino acid com-
binations but can additionally be used in an integrated tool called
Manual Design. Manual Design allows to use a protein—peptide
complex structure of choice and alter the interaction surface by
binding pocket grafting or manual mutations with recommendations
based on pocket data. Hence, ATLIGATOR acts as a framework
that offers a multitude of possible workflows. Besides the use of sin-
gle parts for analysis or design, the setup offers a complete workflow
from the analysis of interaction modes in protein structures all the
way to the interactive application of protein interface design by lev-
eraging previously accumulated knowledge.

2 System and methods

2.1 Algorithms

ATLIGATOR is a versatile toolkit for the analysis and the design of
protein interactions. It focusses on single side chains of one interact-
ing partner (the ligand) and its relation with multiple residues at the
surface of the other interacting partner (the binder) that form a bind-
ing pocket for the single residue. Atlases are generated for all of
these interactions within a user-specified set of complex structures.
Through this focus on the single residue interaction level, the tool
allows to detect promising interaction features. This knowledge can
directly be applied to specific design problems of protein complex
interfaces. The toolkit contains the following parts.

2.1.1 Structure selection and preprocessing

The information gathered by ATLIGATOR is extracted from exist-
ing protein structures derived from the Protein Data Bank (PDB).
The PDB contains an abundant collection of protein structures,

Algorithm 1: Atlas Datapoint Extraction as Simplified Python
Code.

for structure in all_structures:
ligands = find_ligands(structure)
for ligand_residue in ligands:
for binder_residue in residues_within_radius(ligand, structure):
icoor = get_internal_coordinates_from(ligand_residue)
for atom in ligand_residue:
atom = icoor.external_to_internal(atom)
for atom in binder_residue:
atom = icoor.external_to_internal(atom)
yield AtlasDatapoint(ligand_residue, binder_residue.re-
sidue_type, ligand_residue.origin, binder_residue.origin, ligan-
d_residue.atoms, binder_residue.atoms)

which have been derived mainly from experimental methods. It is
useful to be able to select the qualitatively best structures as well as
the most fitting structures, e.g. from the same protein family, fold or
class. Therefore, we provide the option to select structures based on
one’s own rationale or on identifiers of the SCOPe database, thereby
creating sets of structures with shared structural or evolutionary
background.

Furthermore, we allow to additionally filter structures for certain
properties and quality criteria using a pre-selection and processing
utility. This utility within ATLIGATOR is capable of applying the
following filter criteria:

Specific protein families (e.g. by SCOPe query).
Minimum/maximum length of binder and ligand sequences.
Maximum distance between ligand and any binder residue.
Secondary structure content.

o

The underlying routine produces a directory of pre-processed
pdb files, each containing one ligand-binding complex where ligand
and binder are located in individual chains, removing unnecessary
parts of ligand chains. These files are then used for atlas generation
after an optional filtering step.

2.1.2  Atlas generation

The pre-selected input structures contain external coordinates for
the atoms of different ligand residues and binder proteins, respect-
ively. An atlas is a collection of filtered and transformed datapoints,
each describing an interaction between one residue of the ligand and
one residue of a binder. The following algorithm describes on a
coarse level how atlas datapoints are obtained from the input struc-
tures: For determining whether any pair of ligand and binder atoms
are considered as interacting, we define specific interaction distan-
ces. These distances depend on the type of interactions between lig-
and and binder atom:

* Jonic: interactions between positively and negatively charged
atoms (default: 8.0 A).

* Aromatic: interactions between carbon atoms of aromatic rings
(default: 6.0 A).

* Hydrogen bonds: interactions between donor and acceptor
atoms (default: 6.0 A).

*  All other interactions, e.g. hydrophobic (default: 4.0 A).

The interacting residues are transformed into an internal
coordinate system, which allows to detect patterns in pairwise inter-
actions, seen from the perspective of ligand residues. It is defined
similarly to Liu et al as follows (Liu et al., 2020):
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Fig. 1. Overview of the ATLIGATOR toolchain. The python-based tools of ATLIGATOR include the extraction of pairwise interactions from a structure collection as well as
mining of frequent groups of interactions. Those tools as well as the input and output data can be accessed via a python API, meaning the source code as well as predefined
scripts. Both types of interfaces can be used to analyze extracted interactions to find patterns which can be employed for new designs. This can be achieved by visualizing atlas
statistics or 3D plotting of atlas and pockets. Moreover, ATLIGATOR includes the option to design new interaction sites based on binding pocket grafting

* The ligand residue’s C, atom is the origin.

¢ The ligand residue’s Cg atom is located on the x-axis of the in-
ternal coordinate system. (For glycine, we simulate a virtual Cg
atom for this purpose.)

¢ The ligand residue’s C atom (carbonyl carbon) lies within the
xy-plane.

* The ligand residue’s N atom is defined with a negative z-value.

Every atlas is composed of datapoints storing individual interac-
tions between two residues—a ligand and a binder residue. This col-
lection of datapoints is grouped into atlas pages including all
datapoints of a certain ligand residue type. Atlas pages are parti-
tioned further into atlas maps including all datapoints of a combin-
ation of one ligand residue amino acid type interacting with one
binder residue amino acid type (Fig. 2).

2.1.3 Spatial similarity function

To compare atlas datapoints with each other or with designable
binder residues we created a distance-orientation function to de-
scribe the spatial similarity of two residues Ry and R,. Assuming
that they are both represented in the same, internal or external, co-
ordinate system, their distance |Ry — R3] is defined as follows:

—_— — 7 — 7 —
R~ Rol = fi[ G - G|+ £, (0 -G cf - &)
= — = —
+he(cP-E g - ) 1)

The equation considers positions of Co atoms of both interacting
residues (where C} denotes the C, atom of Ry, etc.). Furthermore,
the angles between two characteristic orientation vectors, namely
those between C, and Cy (referred to as primary orientation below)
as well as C, and the carbonyl C (secondary orientation) of the
residues are compared. The weight factors fy, f, and f; can be
adjusted by the user; the default values are 1.0A" " for fa and 2.0 for
both £, and f;.

2.1.4 Pocket mining
Ligand-binder interactions as shown in the atlas do not have a pure-
ly pairwise nature. Several binder residues can instead contribute to
binding one ligand residue. If similar binder residue groups form
interactions to ligand residues in various structures, interaction pat-
terns can be extracted and generalized. We call such a frequently
occurring interaction pattern a pocket. Such pockets can be detected
and extracted from an atlas database which is described below.
Itemset extraction. In its first step, the algorithm exploits the fact
that datapoints of the atlas include their origin. Hence, we group all
datapoints originating from the same ligand residue and call this a
natural pocket. To detect which pockets are frequent, we reduce the
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assignment problem, which can be solved using the Hungarian
Atlas Algorithm (Kuhn, 1955).
g 5 / j l 2.1.5 Pocket grafting
Ligand: AA AA AA Atlas maps Pocket grafting is a simple method that directly exploits the informa-
tion available from the pockets for the creation of designed ligand—
binder complexes based on a scaffold. It takes the best-matching
Binder: AA Atlas pages pocket residues of a selected pocket according to the spatial similar-
ity function (see Section 2.1.3) and applies corresponding mutations
to binder residues. The details of the procedure are described by the
mine() following algorithm:The algorithm contains an additional adjustable
parameter, the distance threshold 0d (default: 12.0), which prevents
the alignment of bad-matching pocket residues.
Pockets DB
/ l \ Algorithm 2: Pocket Grafting as Simplified Python Code.
X : icoor = get_internal_coordinates_from(ligand_residue)
ngand' AA AA AA AA for atom in mutable_binder_residues:
atom = icoor.external_to_internal(atom)
for mutable_positions in mutable_binder_residues:
for pocket_residue in pocket.binder_residues:
Binder: Pocket, Pocket, Pocket, Pocket, Pocket, score = calc_spatial_similarity(mutable_position, pocket_

Fig. 2. Structure of atlas and pocket database. An atlas consists of atlas maps defin-
ing the ligand residue types that can be further subdivided into atlas pages. Atlas
pages are defined by a specific ligand-binder residue type combination. Pockets are
subgroups of the underlying atlas and can be structured by their ligand residue type
as well. One pocket is defined by the ligand residue type in combination with a
group of binder residue types. Both, atlas pages and pockets contain several data-
points that store exactly one pairwise interaction between two residues

information stored in these groups into natural itemsets, which are
mere enumerations of binder residues that interact with the same lig-
and residue.

Frequent itemset mining. Depending on the size of the atlas, we ob-
tain a large number of itemsets for every specific ligand residue type in
this way. In the field of business intelligence, the so-called a-priori algo-
rithm (Agrawal et al., 1993) has been established. It guides customers
to products frequently bought in combination with their product of
interest by finding representative subsets of products in previous pur-
chases. We apply this procedure in order to find representative subsets
that are contained in a relevant share of natural itemsets extracted
from the atlas. As a result, these subsets are groups of binder residue
types that are found to interact frequently with a ligand residue type.

Pocket extraction. Frequent itemsets indicate which residues are
part of a pocket, but ignore their structure. This information in turn is
added during pocket extraction where the coordinates of the underly-
ing atlas datapoints play a major role. In this step, natural pockets of
the atlas are matched with frequent itemsets to identify and extract
those pockets that represent the itemset (i.e. they include the same col-
lection of residues or more). This adds the structural component of
each pairwise interaction from the atlas datapoint to the group of
amino acid types within the itemset. The resulting pocket stores the
datapoints of the natural pockets in a superimposed way; technically,
every superimposed pocket is a subset of the original atlas.

Clustering, noise reduction and selection of representative. Last, the
information stored in every superimposed pocket is clustered. To this
end, we employ a modified variant of the k-means algorithm (Chen
et al., 2004), utilizing the spatial similarity function shown in Section
2.1.3 for the calculation of cluster centroids and variances (i.e. the
mean deviation of clustered pocket residues from the cluster centroid).

In order to reduce noise, the specific algorithm utilized here
additionally ensures that the variance of a cluster is kept below a
user-defined threshold (default value: 5.0 A). By removing the most
distant members from the cluster until the threshold is met, the noise
present in superimposed pockets is reduced.

For every cluster, we ultimately select as the most representative
element (also called medioid) the natural pocket with the least dis-
tance from the cluster centroid. This is an instance of the so-called

residue)
scores[mutable_residue, pocket_residue] = score
occupied_positions = []
occupied_residues = []
for mutable_position, pocket_residue, score in sorted(scores):
if score > threshold:
break
if mutable_position not in occupied_positions:
if pocket residue not in occupied_residues:
mutable_position.mutate_to(pocket_residue)
occupied_positions.append(mutable_position)
occupied_residues.append(pocket_residue)

The algorithm contains an additional adjustable parameter, the
distance threshold 0d (default: 12.0), which prevents the alignment
of badmatching pocket residues.

2.1.6 Quick graft

Pocket mining usually results in several pockets for each ligand resi-
due type. To overcome the need to graft each pocket onto the scaf-
fold individually and to select the best graft manually the quick graft
protocol includes automatic grafting of the best matching pocket.
To select the best pocket quick graft picks the pocket graft resulting
in the best cumulative spatial similarity (see 2.1.3).

In the process of redesigning an interaction interface more than
one ligand residue might be mutated. In this case, the grafted bind-
ing pockets need to complement each other to create the best fit for
all exchanged ligand side chains. As a solution, quick graft detects
conflicting grafts and finds the optimal set of pocket grafts with mu-
tually exclusive positions to mutate. In addition, the best n grafted
designs can be generated to give the user the option to compare and
select the best grafts.

2.2 Implementation

The algorithms discussed in Section 2.1 are implemented in Python
3. To access the functionality, we deliver scripts with user argument
parsing as well as a raw python API (see Fig. 1).

2.2.1 Python API and CLI

The API as well as the supplemented python CLI (command-line inter-
face) allow to generate and access all parts of the ATLIGATOR tool-
chain, visualize atlases, pockets and additional statistics and follow
preprocessing steps. Furthermore, within the API the visualization of
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Fig. 3. Essential steps during design process with ATLIGATOR. (A) Three-dimensional visualization of Atlas datapoints for an Arg ligand residue. For reasons of visibility all
datapoints with a positive z-value were discarded and only Asp (D), Glu (E) and Trp (W) binder residues are shown with full opacity. (B) All datapoints of the DEW pocket of
an Arg ligand residue derived by mining (A). (C) Detailed view on a single instance of the DEW pocket including all side chain atoms. (D) DEW pocket grafted onto an arma-
dillo repeat protein scaffold. The mutated residues are highlighted by coloring their carbon atoms according to the ATLIGATOR scheme. In A, B and C the axes are defined
using the standard x, y and z coordinate definitions. The Co atom of the Arg ligand residue is highlighted by a bigger radius as the center of view. In A and B every binder resi-
due as well as the ligand residue consists of a Cx atom (stronger color, big radius) and a C atom (lighter color, small radius) colored according to the ATLIGATOR color

scheme

single pockets and pocket grafting functions are available. The following
paragraphs will guide through a typical workflow of the different tools.

Structure selection. The PDB is a rich resource for protein struc-
tures. Due to the large amount of data, but also due to biases in
structures, scanning the whole PDB for ligand-binder interaction in-
formation is not recommended. Rather, the user can select structures
from the PDB based on own rationale or on identifiers of the SCOPe
database, creating sets of structures with shared structural or evolu-
tionary background. Furthermore, we allow to use preprocessing
and filtering structure files (see Section 2.1.1). Those sets of struc-
tures are called structure collections.

Atlas visualization and usage. Atlases can be obtained with the
atlas generation algorithm (see Section 2.1.2) from structure collec-
tions. Atlases do not only serve as input for further analysis and design
but visualizing them directly also provides insights into the collected
data. Of particular interest are the 20 different atlas maps encoded in
every atlas, which show frequent interactions for given ligand residue
types. ATLIGATOR offers a three-dimensional visualization of single
ligand amino acid types against one or all other binder amino acid
types, corresponding to atlas maps or pages. These plots contain Cu
and Cp atoms of the centered ligand residue as well as Cx and Cf
atoms of the binder residues of each included datapoint. Thus, infor-
mation about the relative position as well as orientation of both inter-
action partners is provided. Furthermore, it provides statistical
insights into the composition of the atlas in terms of pair-wise interac-
tions such as frequency of detected interaction pairs.

Pocket visualization and general usage. Pockets can be mined
directly from atlases. ATLIGATOR can visualize and export into
pdb format both superimposed and representative pockets (see

Section 2.1.4). To present a more detailed point of view pockets can
also be plotted as a collection of all included datapoints, represent-
ing the pocket atlas as a filtered instance of the corresponding atlas
page (see Fig. 3A and B). Also, single pocket instances can be visual-
ized, they contain exactly one ligand rotamer as well as all binder
residue rotamers interacting with this exact ligand in the source
structure as a part of this pocket. Thus, only those residues included
in the pocket itemset that were not filtered during pocket generation
will be present (see Fig. 3C). Pockets constitute a useful information
per se, but they are also utilized in an automated grafting algorithm.

Pocket grafting and quick graft. Gathered insights and ideas
from atlas and pockets can be applied to a protein of interest to craft
designs with new binding features. Pocket grafting and the quick
graft protocol can help fulfill this task. By supplying a structure of
the protein—protein or protein—peptide complex of interest as a scaf-
fold and selecting a previously mined collection of pockets such a
task can be started. After defining mutable groups of peptide or pro-
tein ligand and binder within the scaffold this can be fed into a new
design. Here, pockets of the assigned pocket collection can be
selected and grafted automatically onto the binder protein (see
Sections 2.1.5 and 2.1.6). If pockets are chosen for neighboring lig-
and residues and the same binder residue is mutated multiple times
conflicts may occur. Such conflicts are internally solved based on cu-
mulative similarity scoring (see Sections 2.1.5 and 2.1.6) and pro-
vide the optimal grafting solutions. Nevertheless, the mutations are
based on natural pockets in the input structures and the side-chain
rotamers will not fit perfectly into the new backbone. Thus, we rec-
ommend minimizing these rotamers subsequently, e.g. with the
Rosetta fixbb side-chain packing protocol (Leaver-Fay et al., 2011),
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Table 1. Parameters for preprocessing, atlas generation and pocket
mining

Preprocessing parameter Value
Distance 8A
Threshold binder 40 aa
Min ligand 3aa
Hydrogen interactions No
Atlas generation parameter Value
Min length ligand 3aa
Max length ligand 20 aa
Interaction radius (default) 4.0
Interaction radius (h-bond) 6.0
Interaction radius (aromatic) 6.0
Interaction radius (Ionic) 8.0
Skip backbone atoms True
Allow intramolecular interactions False
Pocket mining parameter Value
Max p per Lig Res 10 aa
Minimum pocket size 3aa
Confidence threshold 0.02
Support threshold 0.01
Cardinality base 1.21
Distance factor 2.0
Orientation factor 1.0
Secondary orientation factor 1.0
Variance threshold 9999

to receive a self-consistent representation of all mutable residues.
Designs can be written into a pdb file.

3 Results and discussion

There has always been an interest in computational structural biol-
ogy to describe and classify protein side-chain interactions. The
introduction of such descriptions established by Singh & Thornton
(Singh and Thornton, 1992) led to improved understanding, but so
far, the utilization of this data did not combine individual explor-
ation as well as higher order interactions with a focus on protein de-
sign approaches. To do so, we created ATLIGATOR to more
automatically detect naturally occurring interaction patterns and
feed them into the design of protein—protein and protein—peptide
interactions.

Now that atlases can be generated and designs can be created
based on this data, it is interesting to look at the main functions of
ATLIGATOR in the context of a typical workflow e.g. when design-
ing a peptide binding interface. As an example, we chose the re-
design of the binding interface of a designed armadillo repeat
protein (dArmRP) that binds a peptide with the sequence [KR]s
(Hansen et al., 2016). We will focus on the third arginine in the pep-
tide. On the one hand we aim to improve binding to arginine by
pocket grafting and on the other hand we would like to alter the
binding preference to isoleucine.

For redesigning the dArmRP binding site we decided to use struc-
tures assigned to SCOPe identifier a.118 (alpha—alpha superhelix) as
our data source based on their structural similarity to our target pro-
tein. We processed all corresponding structures (parameters shown
in Table 1). Hereby, we selected 907 structure files from the Protein
Data Bank, leading to 2584 processed substructure complexes.

The atlas was generated from all structures obtained in the last
step using parameters shown in Table 1. The atlas includes 20 pages
containing 400 maps (see Fig. 2) in total—respective to every com-
bination of canonical amino acids—comprising 43 752 datapoints.
Of these, 4869 datapoints contain Arg as ligand residue (Fig. 3A),
with the most frequent interaction partners of Arg being Asp (1055),
Glu (998) and Thr (482). To get a better understanding of these
interactions we analyzed frequent groups of interactions by pocket

Fig. 4. lle—RDFY pocket in comparison to a natural binding pocket found in an un-
related peptide-binding protein. (A) Cx and Cf data points of Ile-binding pocket con-
taining Arg, Asp, Phe and Tyr (see Fig. 3B). This pocket is based on an atlas of struc-
tures assigned to SCOPe classification a.118 (alpha-alpha superhelix). (B) Single
RDFY pocket with complete side-chain configuration, originating from pdb structure
2ein. (C) Overlay of pocket in B (same coloring as before) and an Ile—RDFY inter-
action (Cu trace and side chains) found in an ankyrin repeat protein (d.211.1.0)

mining using the parameters shown in Table 1. One prevalent motif
is the DEW pocket, which contains the residues Asp, Glu and Trp
(see Fig. 3B). An example single pocket instance is shown in
Figure 3C. These pockets are then used for grafting onto the scaffold
of choice as shown exemplarily in Figure 3D for a DEW pocket
grafted on the dArmRP scaffold. Such designs can now serve as
starting points for further calculations or experimental testing.

For our second objective of altering the binding preference to iso-
leucine, we used the same atlas and pockets as above. Here, 1447
datapoints contained Ile as the ligand residue. The most frequent
interaction partners of Ile were Tyr (157), Asp (150) and Met (148).
For the transfer of an Ile binding pocket, we want to highlight an
[le—RDFY pocket, which was found in 8% of all Ile ligand residues.
The RDFY interaction groups that were extracted from proteins
that contain the alpha-alpha superhelix fold (a.118) are shown in
Figure 4A. The single pocket instance shown in Figure 4B visualizes
the interactions of isoleucine with the members of this pocket. Apart
from using this pocket for grafting, it can also be used to search for
similar binding pockets present in different folds. In fact, when we
did this, we found a motif with remarkable similarity in the ankyrin
repeat cluster domain 4 of human Tankyrase 2 (Guettler et al.,
2011), which is unrelated to our input structure collection.
Interestingly, this motif is interacting with an Ile side chain of a
bound peptide in a similar way (see Fig. 4C), supporting the idea
that general descriptions of binding pockets can exist in different
folds. This encourages potential transferability of pockets from one
protein to another.

Surprisingly, the individual pocket instance in Figure 4B does
not originate from the alpha-alpha superhelix (a.118) domain, but
other parts within the larger multidomain protein. In fact, this bind-
ing pocket is formed by three subsections of two polypeptide chains,
classified as £.17.2.1, b.6.1.2 and £.23.3.1. This is due to the fact
that the original polyprotein complex contains just one a.118 sub-
unit and no additional filtering was applied to input structures for
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atlas generation. Even though the pocket’s origin is not the same
fold as our scaffold protein, this is a very strong hint that interaction
motifs found with ATLIGATOR can be generalized to other folds—
even if more than one chain is forming such a binding pocket. Thus,
analyzing atlases or pockets from different origins will help under-
stand relationships of yet uncovered binding motifs.

In fact, ATLIGATOR is a versatile, data-driven methodology to
analyze protein—protein and protein—peptide interactions in a variety
of protein folds. In contrast to other tools, it focusses on local inter-
actions, basically focusing the problem onto the side-chain level
while incorporating higher-order interactions and intuitive design
options. Moreover, it opens the opportunity to compare binding
motifs from different sources to answer questions about generaliz-
ability of such motifs. Hence, fold-specific motifs can be detected
and compared. ATLIGATOR also features statistical tools which
can be utilized for analyzing interactions within the context of an
atlas, atlas map, atlas page or pockets.

Despite these possible applications of ATLIGATOR, the main
focus is to analyze the interaction in atlas and pockets for further
use in a specific design task. To this end, it includes multiple ways to
visualize and use data stored in the atlas and pockets and provides
pocket grafting and quick graft options enabling a unique use of the
interactions leveraged from the input structures.
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Akey functionality of proteins is based on their ability to form interactions with other proteins or peptides.
These interactions are neither easily described nor fully understood, which is why the design of specific
protein—protein interaction interfaces remains a challenge for protein engineering. We recently developed
the software ATLIGATOR to extract common interaction patterns between different types of amino acids
and store them in a database. The tool enables the user to better understand frequent interaction patterns
and find groups of interactions. Furthermore, frequent motifs can be directly transferred from the database
to a user-defined scaffold as a starting point for the engineering of new binding capabilities. Since
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three-dimensional visualization is a crucial part of ATLIGATOR, we created ATLIGATOR web—a web server
offering an intuitive graphical user interface (GUI) available at https://atligator.uni-bayreuth.de. This new
interface empowers users to apply ATLIGATOR by providing easy access with having all parts directly
connected. Moreover, we extended the web by a design functionality so that, overall, ATLIGATOR web
facilitates the use of ATLIGATOR with a more intuitive Ul and advanced design options.

Introduction

The specific recognition of binding partners in protein—protein
or protein-peptide interactions is established by mutual inter-
actions of amino acid residues. While each residue’s contribu-
tion shapes the binding affinity and specificity to agonist or
antagonist binders, certain residue-residue interactions are
more crucial than others. With this in mind, it is likely that in
the context of optimized binding partners, pairwise interactions
with a higher influence will be found more often than others.
Following this hypothesis, Singh and Thornton [1] already iden-
tified some frequent interaction residue pairs and defined their
spatial arrangement. Amino acid pairs have also been investi-
gated energetically [2-4] or in a generalized form with focus
on functional groups [5]. Within densely packed interaction
surfaces, however, a pairwise residue-residue interaction is
affected by its context. This structural context and identities of
neighboring residues were successfully incorporated in recent
analyses [6-9].

Another idea is to investigate groups of residues that act as
a binding partner for single residues. For this approach, we
created the software package ATLIGATOR [10]. It extracts pair-
wise interactions from protein structures to find patterns in
frequent residue-residue pairs and stores these in a data struc-
ture called atlas. By varying the input structures, the structural
and evolutionary context of underlying data can be modulated
and compared. Moreover, by mining the atlas for frequent inter-
action groups, interaction motifs can be extracted, visualized,
and analyzed. Additionally, ATLIGATOR enables direct graft-
ing of frequent interaction motifs (pockets) onto a user-defined

Kynast and Hocker 2023 | https://doi.org/10.34133/bdr.0011

scaffold protein. Since working with three-dimensional inter-
action motifs or designing binding pockets is a highly visually
demanding task, it also allows to plot atlas or pocket data.

To enable everyone to try and use ATLIGATOR instantly
without installation, we developed a web interface. This graph-
ical interface connects all data structures visually and even
extends the design options of ATLIGATOR. It is freely acces-
sible at https://atligator.uni-bayreuth.de and creates an intuitive
starting point for working with the software.

Results and Discussion

ATLIGATOR web expands the functionality of the ATLIGATOR
python package by a user-friendly interface, thereby providing
easy access and supporting users to utilize its features instantly.
For the analysis of pairwise interactions, we provide a list of
pre-generated atlases and pocket collections that can be explored
in detail. All data can be visualized similarly to the python APL
However, a unique aspect of the web interface is the connection
between the different sections, i.e., an atlas to its input struc-
tures, pockets to its underlying atlas, etc. This connection is
accomplished mainly by hyperlinks to superior data structures.
Additionally, the representation of the plotted data points
clearly highlights these connections in several ways: The orig-
inal structural environment of data points is directly displayed
by clicking on data points and, in this visualization, all atoms
are labeled with their origin.

While the focus of ATLIGATOR web is the representation
of data structures in a more intuitive way, we additionally pro-
vide the opportunity to design protein interaction sites. This is
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useful, because ATLIGATOR data can comprise potential start-
ing points for shaping binding surfaces. Hence, by supplying a
protein—protein or protein-peptide complex and defining ligand
and binder chains, pockets can be grafted directly onto the binder
chain. Additionally, manual mutations can be applied to extend
or fine-tune grafts with new mutations.

Analysis of binding interfaces

Below, we will elaborate the web interface and each section in
more detail to showcase potential usage and highlight special
features. To do so, we will guide through the data structures of
ATLIGATOR web with the same example as examined before
[10]. Namely, we will look for interaction motifs to use in a
designed armadillo repeat protein to change specificity from
an arginine to a leucine as a residue of the native peptide bind-
ing partner [11,12].

The interface

The ATLIGATOR web interface is built around five main sections,
namely, Structures, Atlases, Pockets, Scaffolds, and Designs (see
Fig. 1). The landing page gives access to all sections as well as
frequently asked questions (FAQ) and an example page. The
footer of each web page includes the current color scheme and
a switch to activate the tutorial mode. If activated, info boxes
that explain function and handling of applications are shown.

TLIGATOR

Web interface of the ATLas based LIGAnd binding ediTOR

Structures

- 1'
Manage collections of PDB structures providing the input
for the generation of atlases and the discovery of pockets.

binder design.

Scaffolds Designs

\

manual design of novel binders for given ligands.

design of novel binders.

Toggle Color Scheme

Discover pair-wise interaction patterns between amino
acid residues, forming the basis for pocket discovery and

We could start our redesign example in the section Atlases, but
to understand where the atlas data originate, we will visit the
section Structures first.

Structure collections

Interaction data stored in atlases or pockets originate from pro-
tein structures. In contrast to the ATLIGATOR python package,
ATLIGATOR web integrates these structures as an explorable
section. Within this section, input structures are grouped in
collections that typically consist of all structures assigned to a
SCOPe database identifier. Our example protein scaffold
[Protein Data Bank (PDB) identifier 5AEI] is not classified in
the SCOPe database (version 2.08) because of its synthetic
nature. However, since it originates from natural armadillo
repeat proteins (a.118.1.1 in SCOPe), we can utilize the struc-
tures attributed to a.118 (x-a-superhelix). The structure collec-
tion comprises 2,584 structures, each hosting a binder
chain and all potentially interacting ligand chains. Each
three-dimensional structure can be observed and downloaded
individually.

Atlases

Atlases are based on pairwise interactions derived from single
structure collections. Thus, atlases in the web interface contain
a link to the corresponding structure collection. As a landing

Info=> Structure, Atlas, Pocket, ... Search

‘ Login

The input structures usually host interactions from one ligand
amino acid to more than one amino acid of the binder. In an
atlas we sometimes find distinct combinations of ligand
amino acid and interacting binder amino acids more
frequently. Such frequent groups of interactions are called
pockets and can be browsed here.

Info Pockets Info

Discover, inspect, and annotate binding pockets

automatically discovered by an atlas based itemset
analysis.

Utilize the knowledge of atlases and pockets for the

@ Tutorial mode Colors: shapely ~

Fig.1.Landing page of ATLIGATOR web. It comprises links to the five main sections, namely, Structures, Atlases, Pockets, Scaffolds, and Designs. The header includes a navigation
bar as well as a search box and a context box for user accounts. The footer features a switch for tutorial mode that enables one to switch on info boxes with explanations to
guide new users as shown. The common color scheme can be selected and an overview of the color scheme can also be activated in the footer.
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page, atlas statistics visualize the frequency of the data points.
The a.118-based atlas contains 43,645 data points, i.e., pairwise
interactions. Our design target amino acid leucine (Leu) com-
prises 3,577 interactions—with other Leu (705), histidine (His;
517), and aspartate (Asp; 325) being the most frequent binding
partners (Fig. 2A). The atlas can be browsed for atlas maps and
atlas pages where the number of data points is described and
the data points can be viewed in three-dimensional plots. The
plot of leucine’s atlas map reveals point clouds with high density
of those Leu/His/Asp interactions that can be revisited, e.g., for
the leucine-to-leucine interactions in the corresponding atlas

page (Fig. 2B). Clicking on individual data points exhibits the
entire side chains of both interaction partners of the underlying
pair (Fig. 2B—full-atom view). Furthermore, pairwise distances
of all displayed atoms can be measured. The positions in com-
bination with their Ca to Cp orientation can already provide
first ideas for the design of such interactions.

Pockets

Frequent groups of interactions found in an atlas that result
from mining all atlas data points for recurring motifs are defined
as pockets [10]. On the web interface, pockets from the same

Interaction maps, grouped by ligand residue type: Mined pockets and their support values, grouped by ligand:
ARG AsP GWU  THR TRP  SER  ASN ALA  HKw
(4869)  (1055) (998) (482) (289) (287) (270) 1%
s G AP AN SR TR THR or120f 1049)
(4089)  (927)  (673) (379) (273) (28]) (2])
LEU LEU HIS ASP MET  ALA THR ARG  DEE EEL DDE REE
(3577) (705)  (517) (325) (198) (196) (190) (8% 7% % (6%
or 136 of 1612) or 120 of 1612) or 117 of 1612) or 106 of 1612)
Asp ARG s HIS  ASN ALA  LEU
(3429) (815)  (345) (415) (293) (258) (241)
ASN  FPT AFPT DET QFP
3D (14% (8% (4% (4%
" . o or 112 of 770) or 62 of 771) or 38 of 771) or 34 of 771)
visualization
B ASP AHHL RNK AHHLL AGHHL
Atl (10% 7% (6% (5%
as map or 147 of 1342) or 101 of 1342) or 85 of 1342) or 74 of 1342)
Markers v
BEnable distance measurement Your last distance measurement was 13.719 Al visualization
D
Pocket
mining Pocket atlas
°
" °
e —
@ °&f .. .
8.0 .‘ ':
Vo

Atlas page

‘o LW

Full-atom view e

/
\

l Lo’ "
% [ 7Y .

L 3
LEU ligan dCA

s 1

Full-atom view

Fig.2.Visualization of atlas and pockets. Starting at an atlas, the ATLIGATOR web gives an overview of the atlas’ content (A), and further offers the option to plot and visualize
its content in three dimensions (B). Atlas maps and pages can be inspected as Ca—Cp plots as well as in a full-atom view while concentrating on just one ligand origin. Pockets
derived from mining the atlas are grouped in pocket collections. In addition to an overview of the contained pockets (C), all pockets can be plotted in Ca—Cp plots as well as

in full-atom view (D).
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atlas are grouped in pocket collections. After opening the a.118
pocket collection, statistics are displayed for all ligand amino acid
types (Fig. 2C) of which a DHL pocket was the most abundant
Leu pocket. This pocket, being composed of the three amino
acids Asp (D), His (H), and Leu (L), was observed in interaction
with 10% of all Leu ligand residues of the initial atlas.

The pocket and its data points are visualized in different
representations: First, the most representative pocket, which
corresponds to the pocket instance with the lowest deviation
from the item set clusters’ centroids [10], is visualized in a
full-atom stick representation. Second, the clustered data
points (centroids of clusters) and all data points of the pocket
atlas are initially shown in atlas representation with ligand
and binder Co and Cp atoms as bubbles (Fig. 2D). The pocket
atlas contains all data points and represents a filtered instance
of the original atlas. It exposes three spatially restricted clus-
ters for His Ca positions as well as two clusters for each Leu
and Asp (see Fig. 2D) and provides two additional types of
representations. On the one hand, all ligand residue atoms
can be displayed separately to see the distribution of ligand
side chain conformations. On the other hand, after clicking
on a ligand or binder atom, the corresponding single pocket
instance is plotted with all residues in full-atom representa-
tion (Fig. 2D). The full-atom representation of our example
reveals two interaction motifs: First, Leu being trapped between
2 His, 1 Asp, and 1 Leu, where the Leu-Leu interaction is
dominated by side chain-backbone interactions. Second, Leu
is attacked by Leu and His roughly at a 90° angle with the Asp
facing its carboxy group to the backbone of the target Leu.
These single pocket instances provide promising starting
points for our redesign and can be downloaded as .pdb files
or used directly for grafting onto a user-defined scaffold.

Redesign of binding interfaces

While the analysis of frequent motifs helps to extract ideas for
the redesign of interaction interfaces, we additionally included
design tools to directly use this information on specific binding
interfaces. Those tools will be briefly introduced below.

Scaffolds

Proteins on which ATLIGATOR pockets shall be grafted are
called scaffolds. Users can upload their own protein structures,
hosting two or more polypeptide chains. One of these chains
has to be defined as the ligand chain, comprising the residue
on which basis the pocket should be selected. The chain has to
be defined as the binder chain that is mutated eventually. After-
wards, mutable positions must be selected to finalize the scaf-
fold preparation.

Designs

A design is defined by the scaffold and the residue types that
will be used in mutable ligand positions. Each design can harbor
multiple design tasks where the binder can be altered by apply-
ing different mutations. After selecting a pocket collection for
the design task, the user can start designing. Within the tool
manual graft, two ways of mutating the scaffold are imple-
mented. The first method is based on choosing a pocket from
the pocket collection for each ligand residue that will be grafted
automatically onto the scaffold (Fig. 3). The grafting applies
mutations based on the selected pocket onto the best fitting
mutable binder positions as in ATLIGATOR [10]. However,
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the selection of mutated positions heavily depends on the
underlying pocket data, which might not fit flawlessly with
the scaffold if the geometry of the interaction is not perfectly
alignable. Moreover, the best graft is not guaranteed to fit better
than the next best grafts due to the lack of scoring for resulting
shape complementarity or actual interactions. Thus, as the
second mutation method, we implemented an option to choose
manual mutations. Mutations can be added independently for
all mutable binder residues and override mutations from pocket
grafting.

Since grafted mutations incorporate the side chain con-
former of the pocket data point and the manual mutations do
not include a side chain conformer at all, the rotamers do not
resemble realistic conformations. Thus, a refinement of the
designed interface might be necessary to judge the design’s
quality. Manual graft offers to repack the mutable interface
using Rosettas fixbb protocol to generate more realistic side
chain conformations [13].

Conclusion

The development of ATLIGATOR opens up the possibility to
collect and learn from protein-protein interactions in a stream-
lined and automated fashion. ATLIGATOR web empowers
users to leverage its functionality in a user-friendly and easily
accessible environment. Additionally, the web interface extends
ATLIGATOR tools with novel functions like connecting atlas
data points to the underlying structural data and an advanced
design tool for pocket grafting and rational design. In summary;,
the easy access via this graphical interface enables a broader
user base to apply ATLIGATOR and helps to understand its
principles. Thus, ATLIGATOR web might also be a starting
point and encourage users to directly apply the python package
for extended analysis and design.

Implementation

Code implementation

The web interface for ATLIGATOR is implemented in the
Python 3 web framework Django [14] in combination with
uWSGI as a reverse proxy and javascript for client code han-
dling. We use jQuery and bootstrap 5 as css and javascript
frameworks for web design and celery in combination with
rabbitMQ for asynchronous task handling.

Visualization

The JavaScript library plotly.js is used for responsive plotting of
statistics data. Three-dimensional plotting is performed by two
JavaScript libraries. Plotly.js is handling atlas and pockets as well
as full atom plotting of these [15]. NGL viewer is implemented
for visualization of proteins and protein complexes [16].

Availability

The sections structures, atlases, and pockets are openly accessi-
ble for discovering the data in the pre-built data structures. The
protein structures were collected by searching the SCOPe data-
base [17] with the corresponding queries. The starting structure
collections were chosen based on known peptide binding capa-
bilities, a diverse classification in SCOPe and multitude of avail-
able structures in the PDB. The protein structure files were
preprocessed to generate files with one protein chain and
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Update Manual Design
Add Manual Mutation: v
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Mutate residue 156 to:

- -

Download as PDB

A

Fig. 3. Design interface including grafting and manual mutations. Two tiles provide dropdown menus to design the scaffold protein by grafting a pocket of choice or applying
manual mutations. Changes are applied after clicking the “Update Manual Design” button or the “Repack sidechain rotamers” button, while the latter also applies the Rosetta
repacking protocol to the mutable side chain rotamers. Changes can be observed directly in the preview tile with an option to colorfully highlight the mutated positions or by

downloading the .pdb file of the designed protein.

cropped ligand chains. The resulting structure files were used
for atlas generation and subsequent pocket mining. All process-
ing parameters were used as previously described [10]. The
design sections including scaffolds and designs can be fully
explored via a user account that only requires a username, email
address, and password. We also offer a scaffold and design
example that correspond to the ones discussed above.

Documentation

The web server includes a tutorial mode that offers comments
and explanations for the different features and sections directly
on the web pages. It also links to videos for showcasing sections
of ATLIGATOR web to enable an easier start.
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1 | INTRODUCTION

Ligand binding is essential in most biological pro-
catalysis,

cesses, for example, enzyme

| Josef Paul Kynast'©® |
Birte Hocker'

Dominik Lemm' © |

Abstract

The ability to design customized proteins to perform specific tasks is of great
interest. We are particularly interested in the design of sensitive and specific
small molecule ligand-binding proteins for biotechnological or biomedical
applications. Computational methods can narrow down the immense combi-
natorial space to find the best solution and thus provide starting points for
experimental procedures. However, success rates strongly depend on accurate
modeling and energetic evaluation. Not only intra- but also intermolecular
interactions have to be considered. To address this problem, we developed
PocketOptimizer, a modular computational protein design pipeline, that pre-
dicts mutations in the binding pockets of proteins to increase affinity for a spe-
cific ligand. Its modularity enables users to compare different combinations of
force fields, rotamer libraries, and scoring functions. Here, we present a much-
improved version--PocketOptimizer 2.0. We implemented a cleaner user inter-
face, an extended architecture with more supported tools, such as force fields
and scoring functions, a backbone-dependent rotamer library, as well as differ-
ent improvements in the underlying algorithms. Version 2.0 was tested against
a benchmark of design cases and assessed in comparison to the first version.
Our results show how newly implemented features such as the new rotamer
library can lead to improved prediction accuracy. Therefore, we believe that
PocketOptimizer 2.0, with its many new and improved functionalities, pro-
vides a robust and versatile environment for the design of small molecule-
binding pockets in proteins. It is widely applicable and extendible due to its
modular framework. PocketOptimizer 2.0 can be downloaded at https://
github.com/Hoecker-Lab/pocketoptimizer.

recognition, regulation of metabolism, cellular signal
transduction, or control of gene expression. The ability
to design such interactions will help us address many

immune of society's current challenges. Computational tools for
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the design of small molecule-binding pockets in pro-
teins are of great interest for the design of tailored
enzymes that can catalyze reactions for which no natu-
ral catalyst exists'™ or for the development of specific
biosensors that can detect small molecules in vitro and
in vivo.>®

From an energetic point of view, the recognition of
small molecules by proteins relies on the cooperative
formation of a set of weak, non-bonded interactions,
primarily van der Waals (vdW), and electrostatic
attraction, as well as the formation of hydrogen bonds.
These interactions can be estimated based on a variety
of receptor ligand scoring functions”® and can be used
to identify specific mutations that lead to increased
binding affinity of a protein to its ligand. Additionally,
solvent effects have been discussed to play a major role
but are not always included in the scoring
functions.'™'? Apart from protein-ligand interactions,
internal protein interactions must also be considered
upon mutation to minimize destabilizing effects on the
protein structure. To this end, we developed a modular
pipeline called PocketOptimizer that accounts for both
packing energies and binding-related energies and that
can include different scoring functions to allow adapta-
tion to specific design problems.'? In this design pipe-
line, we address side chain flexibility via rotamer
libraries and ligand flexibility by using stochastic or
systematic search algorithms.'*'* In addition, discrep-
ancies between designs and experimental results can
be more easily determined because all sampled confor-
mations, together with the computed interaction ener-
gies, are written to user-inspectable files. Finally, a
deterministic solving procedure is applied to extract
the optimum from the sampled search space.'®

Due to the significance of protein-ligand binding,
several tools have been developed to computationally
score and (re)design protein binders. Commonly, these
techniques attempt to approximate binding free energy
changes and binding constants based on ensembles of
bound and unbound states.'®™'® While most programs
use only one way of designing and scoring, the Pocke-
tOptimizer framework, which only evaluates the bound
state, is set up to use different modules. This way, dif-
ferent approaches or scoring functions can be com-
pared, and a tailored method can be created for the
design problem at hand. However, PocketOptimizer
became outdated, making the addition of new func-
tions difficult. Here, we present a new version, Pocke-
tOptimizer 2.0. Its new user interface is much more
accessible, and the modular architecture has been
improved and extended to provide more options for
modeling and scoring within the computer-aided
design process.

2 | RESULTS

2.1 | Design pipeline

The design pipeline can be divided into four main steps:
structure preparation, flexibility sampling, energy calcu-
lations, and computation of design solutions (see
Figure 1). As input for the pipeline, the structures of a
protein and a ligand are needed. The ligand has to be
placed manually inside the binding pocket since its initial
position influences the design results and can therefore
hardly be automated. Before the actual design process
can start, the protein undergoes a cleaning procedure to
remove unwanted ions, water molecules, small mole-
cules, and protein chains. Next, all amino acid side
chains are protonated according to a pH value defined by
the user. Afterwards, an initial minimization step is per-
formed to resolve potential clashes that may occur in the
process of model building. During minimization, back-
bone atoms are typically constrained to maintain the
backbone conformation. Once scaffold preparation is
complete, the binding pocket can be defined by selecting
flexible residues at certain design positions. Thus, all
non-selected residues are fixed along with the backbone.
Similar to the protein, the ligand is protonated. This is
then followed by a parameterization step in which atom
types, force field parameters, and partial charges are
assigned for both structures.

In the second step, the flexibility sampling step of
the pipeline (Figure 1), rotamers for residues at all
defined design positions and ligand poses can be sam-
pled. PocketOptimizer 2.0 includes two rotamer librar-
ies: a smaller, backbone-independent rotamer library
compiled from high-resolution protein crystal struc-
tures named CMLib*® and a larger, backbone-
dependent rotamer library known as the Dunbrack
rotamer library.?! For ligand pose sampling, ligand
conformations can be generated using different algo-
rithms.">'* All generated conformers are then system-
atically translated and rotated along a user-defined
grid to create an ensemble of poses within the binding
pocket. To reduce computational overhead, rotamers
and poses are subsequently pruned from the
search tree.

Interaction energies for rotamers and ligand poses are
calculated in the third step of the pipeline. For this pur-
pose, the binding pocket needs to be decomposed into
self- and pairwise interaction energies. Whereas self-
interaction energies describe the interaction between
either rotamers or ligand poses and the fixed scaffold,
pairwise-interaction energies describe the interaction
between rotamers or ligand poses and other rotamers.
This decomposition of energies allows solving the design



69 | Research Articles

NOSKE ET AL.

PocketOptimizer

Structure Preparation | Sampling Flexibility

Prepared
Complexes
& Sampling

Scaffolds

Protein Scaffold
Ligand Structure

=

Protein & Ligand Protonation
Protein Cleaning & Minimization
Ligand & Protein Parametrization

Pocket Definition

Side-Chain Rotamer Sampling
Ligand Conformer Generation
Ligand Pose Sampling

FIGURE 1

#B ey WILEY- L 2o

Energy Calculation Design Solutions

Ligand Poses
Side-Chain
Rotamers

Side-Chain vs. Fixed Residues
Side-Chain vs. Side-Chain
Ligand vs. Fixed Residues

Ligand vs. Side-Chain

Creation of Solver Input Files
Graph-Theoretical Solving (MPLP)
Generation of Reports & Output Structures

The different steps of the PocketOptimizer pipeline. For each section, the required input, the included steps, and the

obtained output are listed. The workflow starts with a protein and a ligand structure. These are processed in a preparation step (first box). To
account for flexibility, rotamers and ligand poses are sampled (second box). Next, the interaction energies for each rotamer and each ligand
pose against the fixed scaffold and against each other are calculated (third box). Finally, the best design solutions are identified using an

integer linear programming solving algorithm (fourth box)

problem at a later stage. The computed energies can be
further subdivided into those representing interactions
within the protein or interactions between protein and
ligand. While the so-called packing-related energies rep-
resent changes in protein stability, the binding-related
energies represent changes in binding affinity and are
therefore particularly important. Hence, they can be
scaled according to the packing energies and calculated
based on a variety of receptor-ligand scoring
functions.®***

In the last step of the pipeline, PocketOptimizer uses
a solver algorithm based on integer linear programming
(ILP) to identify the best design solutions.'® The algo-
rithm requires weighted energy tables and indices of all
rotamers and ligand poses. Once executed, it can provide
indices that minimize the total energy. The correspond-
ing rotamers and ligand poses represent the global mini-
mum energy conformation (GMEC) of our system, where
the ligand binding energy can again be extracted. Accord-
ing to these rotamers and ligand poses, output files of the
resulting energies and design structures can be generated.
This includes the designed structures in PyMOL ses-
sions®® as well as the text and HTML files containing the
generated energy tables.

2.2 | New features in
PocketOptimizer 2.0

The original version of PocketOptimizer 1.0° was mainly a
collection of binaries and Python scripts that interconnected
the various parts of the design pipeline. It was then extended

with a command-line interface to allow for easier interaction
with the framework.?* Nonetheless, source code and soft-
ware dependencies remained unchanged. As, these are now
a decade out of date, we fundamentally rewrote the software
and implemented a range of new functionalities to extend it
further (Table 1). This resulted in version 2.0 of PocketOpti-
mizer, which will be presented in a comparative manner in
the following section.

The first version of PocketOptimizer was written in
Python 2.7, which lost maintenance support in the begin-
ning of 2020. Since most Python libraries are no longer
supporting Python 2.7, PocketOptimizer was rewritten in
Python 3.9. Additionally, we implemented a Python
application programming interface that allows not only
to use specific functionalities of the design pipeline, but
also permits a more user-friendly and flexible interaction
with the framework. PocketOptimizer 2.0 now also offers
multi-core processing, making it faster and scaling better
on a larger number of CPUs. Moreover, progress bars
have been added to monitor computation progress. Addi-
tionally, parts that have already been computed can be
now reused when varying a design task.

Previously, in PocketOptimizer 1.0, the user had to
prepare the input protein structures, often using external
software such as Chimera.”> In the new version of our
software, HTMD's protein preparation pipeline system-
Prepare has been implemented®® for this. It also comes
with the possibility to assign specific protonation states
according to calculated empirical pKa values
(PROPKA?") and user-defined pH values. After prepara-
tion, minimization is now also available using the molec-
ular dynamics framework OpenMM,*® which provides
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TABLE 1
Version 1.0
Language Python 2.7/C++
Ul CLI
Processing Single core

Scaffold preparation External (Chimera)

Ligand preparation External
Minimization External
Rotamer sampling TINKER
Rotamer library CMLib

Energy computation BALL

Force field AMBERY96
Scoring options CADDSuite/Vina

Compute detection Re-computation

Time estimation None

Comparison of PocketOptimizer 1.0 and 2.0, listing the main differences between both versions

Version 2.0
Python 3.9
API/CLI

Multi core

Internal (systemPrepare)

Internal (OpenBabel/antechamber/MATCH)
Internal (OpenMM)

FFEvaluate

CMLib/Dunbrack

FFEvaluate

AMBER {f14SB/CHARMM36
Smina/FFEvaluate

Detection of computed elements

Progress bars

Abbreviations: API, application programming interface; CLI, command-line interface.

GPU-accelerated minimization. In addition, we imple-
mented a small molecule preparation interface that uses
the OpenBabel chemical toolbox* for protonation and
the Antechamber software,®® or MATCH?' for
parameterization.

Rotamer sampling previously relied on the molecular
modeling software TINKER.** During the procedure,
clashing rotamers were minimized to induce a better fit.
Since this minimization can distort the resulting rotamers
and is based on an older force field version, we replaced
TINKER with the force field evaluation tool FFEvalu-
ate.*® For the same reason and to further limit external
dependencies, the Biochemical Algorithms Library
(BALL),* previously used for all energy calculations, was
replaced by FFEvaluate. Whereas for BALL, all atom
types had to be manually predefined for the AMBER96
force field, FFEvaluate handles them through a Python
library called ParmEd,*® allowing the usage of newer
force fields such as AMBER ff14SB or CHARMMS36. In
addition, the scoring function for ligand interactions has
been adapted. While version 1.0 included CADDSuite*
and AutoDock Vina,® CADDSuite has been removed due
to its dependency on the BALL library. AutoDock Vina,
on the other hand, is now included in Smina,*? which is
a new fork and includes other scoring functions such as
Vinardo (Vina RaDii Optimized).” These scoring func-
tions differ in their compilation of scoring terms describ-
ing effects such as vdW interactions, electrostatics, and
solvation. Besides, FFEvaluate has been implemented for
binding-related energy calculations based on force fields
that are also used to evaluate internal protein interac-
tions. Accordingly, the enhancements and improvements

not only make the pipeline more consistent, but also
make it less reliant on the use of external software.

2.3 | Benchmarking

PocketOptimizer 1.0 was validated against a benchmark
compiled from the 2010 version of the PDBbind data-
base.>”*® Complexes were selected based on the avail-
ability of a high-quality crystal structure with no
mutations outside of the binding pocket, only minor
conformational differences of the backbone in the bind-
ing pocket, with less than seven potential binding water
molecules, and with less than 15 rotatable bonds in the
ligand. According to these selection criteria, a bench-
mark set consisting of 12 differently folded proteins had
been compiled.?® For each protein, at least two muta-
tional variants with a corresponding affinity measure
for the same ligand were included. To validate the new
version of PocketOptimizer, we compiled a subset based
on this original benchmark. Pairs of mutational variants
with at least a 50-fold difference in binding affinity were
selected. This difference in binding affinity was consid-
ered to be well outside of experimental error and should
be predicted by our design pipeline. In addition, we
extended the benchmark set with new structures from
the 2020 version of the PDBbind database using the
same selection criteria. Overall, our new benchmark set
consists of 13 different proteins and 33 protein crystal
structures (see Table S1). Skeletal representations of all
ligands included in the compiled benchmark set are
shown in Figure S1.
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TABLE 2 Correctly ranked design mutation pairs
Original sampling New sampling
procedure and library procedure and library Original data
(PocketOptimizer 2.0) (PocketOptimizer 2.0) (PocketOptimizer 1.0)
Test case Total Binding Total Binding Total Binding
D7r4 amine-binding protein 1/1 1/1 1/1 1/1 1/1 1/1
ABC transporter alpha-glycoside-binding 0/2 0/2 1/2 1/2 —/- —/-
protein
Estrogen receptor o 11 1/1 1/1 1/1 1/1 1/1
FimH Fimbrial adhesin 2/2 2/2 2/2 2/2 —/—= —/=
HIV-1 protease 5/5 5/5 4/5 5/5 5/5 5/5
Ketosteroid isomerase 2/2 1/2 2/2 2/2 2/2 2/2
Lysine-, arginine-, ornithine-binding 7/10 9/10 7/10 9/10 =/= =//=
periplasmic protein
Neuroamidase N1 3/4 2/4 2/4 2/4 1/4 0/4
Nopaline-binding periplasmic protein 1/2 1/2 0/2 1/2 —/- —/—
Purine nucleoside phosphorylase (PNP) 1/4 0/4 4/4 4/4 7/8 6/8
Streptavidin 5/5 4/5 5/5 5/5 5/5 5/5
Thymidylate synthase (TS) 0/4 3/4 1/4 2/4 1/6 0/6
Anionic trypsin 2 1/2 2/2 1/2 2/2 1/2 1/2
Mean 65.9% 70.5% 70.5% 84.1% 70.6% 61.8%

Note: This is shown for two different versions of PocketOptimizer 2.0 using two rotamer sampling procedures in combination with two different rotamer
libraries and for the original data from benchmarking with PocketOptimizer 1.0 (Vina). For PNP and TS, the number of pairs differs since we were more
stringent in applying the cutoff of a 50-fold affinity change for each pair. For each test case, the total number of design mutation pairs and the number of
correctly ranked pairs by total energy or by binding energy are indicated. The mean value refers to the number of correct predictions in relation to the total

number of predictions made.

24 | Backbone-dependent rotamers lead
to improved prediction accuracy

We tested PocketOptimizer 2.0 against the extended
benchmark set to compare both versions of the software.
The results indicate a similar performance, with a mean
prediction accuracy of about 66% compared to about 71%
in the first version (see Table 2). Significant differences
were found only in two test cases, namely, neuroamidase
N1, where the new version gave significantly better pre-
dictions, and purine nucleoside phosphorylase, where it
made significantly worse predictions. In both test cases,
this has been attributed to the fact that minimizing rota-
mers with TINKER led to a general preference for larger
amino acids, as they can engage in more favorable inter-
actions. We can largely overcome this bias by using a
backbone-dependent rotamer library and performing no
subsequent rotamer minimization, which leads to a pre-
diction accuracy of 70% (see Table 2). Looking only at the
cases tested with both versions, PocketOptimizer 2.0 with
the new rotamer sampling method achieves a higher
overall prediction accuracy of 75% according to the total

By

energies. If only the binding-related energies are consid-
ered, this trend becomes even clearer, with the original
rotamer library and sampling procedure achieving a pre-
diction accuracy of about 71%, while the new sampling
method and library lead to a higher prediction accuracy
of about 84%. This is particularly evident in the case of
purine nucleoside phosphorylase, where the original
rotamer sampling procedure and library were only able
to correctly predict one out of four cases, whereas our
new rotamer sampling procedure in combination with
the Dunbrack rotamer library leads to correct predictions
in all cases. eroid isomerase, LAOBP: lys In this test case,
the relevant design position is at the entrance of the bind-
ing pocket and assumed to influence binding dynamics,
as it also has a high temperature factor.> Three different
variants were tested with PocketOptimizer 2.0: Histidine,
aspartate, and phenylalanine, with the histidine showing
significantly higher binding affinity. Like the first, the
new version correctly predicts hydrogen bonds between
ligand and aspartate. For histidine, this is the case only
when we use our new sampling procedure and
backbone-dependent rotamers. Nonetheless,
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FIGURE 2 Pocket residue and ligand pose RMSD values
between experimentally determined and designed structures.
RMSD values were calculated after superimposing the structures
using their backbone atoms. Only heavy atoms were considered in
all calculations, and only residues that were allowed to change
conformations during the designs were included. For each protein
test case that included more than one crystal structure, the average
RMSD and standard deviation were calculated. Protein test cases
are ABP: D7r4 amine-binding protein, AGBP: ABC transporter
alpha-glycoside-binding protein, ER: estrogen receptor o, FIMH:
fimH fimbrial adhesin, HP: HIV-1 protease, KI: ketosteroid
isomerase, LAOBP: lysine-, arginine-, ornithine-binding
periplasmic protein, N: neuroamidase N1, NBP: nopaline-binding
periplasmic protein, PNP: purine nucleoside phosphorylase, S:
streptavidin, TS: thymidylate synthase, T: anionic trypsin 2

phenylalanine is rotated toward the ligand, regardless of
rotamer sampling, and forms favorable vdW interactions,
whereas it points away from the ligand in the crystal
structure (see Figure S2).

To gain further insight, we calculated structural devi-
ations between experimentally determined and designed
structures. On the one hand, we focused on the designed
pocket residues, and on the other, on the predicted ligand
poses (see Figure 2). We found that the pocket side

chains deviate by 0.93 A on average when designed with
the original rotamer sampling method and library, while
they deviate by only 0.75 A with our new method and
library. Not only the affinity predictions are more accu-
rate overall, but also the pocket side chains are better
reproduced on average. The ligand poses, on the other
hand, are more comparable, differing by 0.56 A on aver-
age with the original procedure and by 0.57 A when FFE-
valuate and Dunbrack are used. Nevertheless,
significantly better pose predictions are observed for two
test cases (ABP and ER). This indicates an overall good
prediction of poses by PocketOptimizer. However, since
the ligand starting poses were taken from the initial
structures (see calculations) and often differ only slightly
between mutants, the structural deviations may be higher
than the suggested values.

3 | CONCLUSION

PocketOptimizer 2.0 has been updated and refined to pre-
dict affinity-improving mutations and to design protein—
small molecule interactions. Different functions, such as
scoring, can be easily compared, and approaches can be
optimized for a specific design task. The program pro-
vides a clean user interface. Its compute times have been
significantly improved by adapting the pipeline to multi-
core processing. The preparation of the protein scaffold
and the ligand are now included in the pipeline, as well
as a minimization step. To extend the modularity of the
pipeline, we added the options for rotamer libraries, scor-
ing functions, and force fields. In addition, rotamer sam-
pling and energy calculations have been updated with
newer tools. This improved version of PocketOptimizer
performs as good or even better than its predecessor on
an extended benchmark set. Overall, the affinity predic-
tions appear to be more accurate, and also the pocket side
chains are better reproduced on average. Thus, Pocke-
tOptimizer 2.0 provides a robust and versatile framework
for the design of small molecule-binding pockets in
proteins.

4 | MATERIALS AND METHODS

Protein and ligand structures were taken from the PDB,
and ligand starting poses were assumed to be the same as
in the crystal structures. Protonation states were adjusted
according to the pH values reported in the literature for
affinity measurements (see Table S1). Side chains were
minimized with the AMBER ff14SB force field and
allowed to change conformations during designs if they
were within 4 A of the ligand or a Ca atom of a mutation

K
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position. Residues located at the end of protein segments
or involved in disulfide bridges were kept static. The
number of ligand conformations was selected according
to the number of rotatable bonds a ligand contains.
Ligand poses were then created by rotating all generated
conformations by +20° around each axis and translating
them by +0.5 A in each direction. Rotamer sampling was
performed using two different procedures. First, TINKER
in combination with the CMLib rotamer library and the
AMBER96 force field was used, and second, FFEvaluate
in combination with the Dunbrack rotamer library, and
the AMBER ff14SB force field was used. Of the rotamers
and ligand poses generated, only those with a vdW
energy of less than 100 kcal/mol in the scaffold were
kept. Protein—protein interactions were assessed based on
the AMBER ff14SB force field, while protein-ligand
interactions were evaluated using the Autodock Vina
scoring function and were upscaled by a factor of 50.
According to the objective of the design, predictions were
considered to be correct if, after the identification of the
GMEC, the binding energy of the mutant that experimen-
tally shows higher binding affinity is lower.
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Supplementary Information for

PocketOptimizer 2.0: A modular framework for computer-aided ligand-binding design

by Jakob Noske, Josef Paul Kynast, Dominik Lemm, Steffen Schmidt, and Birte Hocker
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Figure S1: Skeletal representation of ligands included in the benchmark set. The ligand identifiers are shown
below, structures were taken from: https://www.rcsb.org.
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Table S1: Benchmark used to evaluate PocketOptimizer 2.0 in comparison. It is a subset of the one used to test
PocketOptimizer 1.0 and includes all pairs of mutational variants with an affinity change of at least 50-fold.
Protein-ligand complexes are sorted by protein names and ligands are listed by their ligand identifiers. Wildtype
structures are indicated and all mutations listed. In case of HIV-1 protease, where the binding pocket is formed
by two chains, all indicated mutations are present in both chains. The experimentally determined binding
affinities for each complex are listed along with the PDB identifier of the experimentally solved structures, if
available.

Protein Ligand Mutation(s) Affinity [nM] PDB
D7r4 Amine Binding Protein! TSS WT Inf -
L111D 53 2pql
Ciycoside-Binding Protein T W M0 6w
W287A 58 6jb0
Estrogen Receptor a>* EST WT 0.29 lgwr
E353A 60 -
FimH Fimbrial Adhesin® KGM WT 1.1 4x08
Y137A 206.4 5fs5
HIV-1 Protease® DMP323 WT 0.8 -
V82F 0.4 Imet
184V 20 Imes
V82F, 184V 800 Imeu
Ketosteroid Isomerase’ EQU WT 45750 1oh0
D40N 810 logx
v e
DI11A 70 6mku
Y14A 800 6mlo
D30A 5000 6ml9
R77A 9000 6mlg
D161A 42000 6mla
Neuroamidase N1° G39 WT 0.32 2hu4
H274Y 84.8 3cl0
N294S 25.9 3cl2
Nopaline—Bindin.g 1l;eriplasmic OP1 WT 0.5 b3
Protein
MI17N 39.9 4pp0
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Pl‘,‘;::;;li‘:fylg’::ﬂe DIH WT 0.01 Irsz
H257D 0.9 2a0y
H257F 0.95 2a0x
Streptavidin'? BTN WT 0.0001 lswe
N23A 0.028 1n43
N23E 0.0069 -
S27A 0.011 In9m
Thymidylate Synthase' DCM WT 160000 Inje
N229C 490 Inja
N229D 2800 Injc
Anionic Trypsin 24 BEN WT 12000 lane
D189G, G226D 15000000 lbra
A Asp 257 His 257 Phe 257

Figure S2: Binding pocket of purine nucleoside phosphorylase with the ligand DIH. Designs based on the original
rotamer sampling method and library are shown in light gray, while designs based on the newly implemented
rotamer sampling method and library are shown in white. In all designs and crystal structures the conformation of
the side chain at mutation position 257 is highlighted. A): Aspartate mutations calculated based on the wildtype
crystal structure: 1rsz, hydrogen bonds between aspartate and the ligand are depicted in yellow and orange. B)
Histidine mutations calculated based on the mutant crystal structure: 2a0x, hydrogen bonds between histidine and
the ligand are depicted in yellow. C) Phenylalanine mutations based on the wildtype crystal structure: 1rsz, the
crystal structure of the mutated protein (2a0x) is depicted in dark gray.
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