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Abstract
Agent-based modeling is a promising tool for familiarizing students with complex systems as well as programming skills. 
Human–environment systems, for instance, entail complex interdependencies that need to be considered when modeling 
these systems. This complexity is often neglected in teaching modeling approaches. For a heterogeneous group of master’s 
students at a German university, we pre-built an agent-based model. In class, this was used to teach modeling impacts of land 
use policies and markets on ecosystem services. As part of the course, the students had to perform small research projects 
with the model in groups of two. This study aims to evaluate how well students could deal with the complexity involved in 
the model based on their group work outcomes. Chosen indicators were, e.g., the appropriateness of their research goals, the 
suitability of the methods applied, and how well they acknowledged the limitations. Our study results revealed that teaching 
complex systems does not need to be done with too simplistic models. Most students, even with little background in modeling 
and programming, were able to deal with the complex model setup, conduct small research projects, and have a thoughtful 
discussion on the limitations involved. With adequate theoretical input during lectures, we recommend using models that 
do not hide the complexity of the systems but foster a realistic simplification of the interactions.

Keywords Higher education · University teaching · Blended learning · Individual-based models · Wicked problems · Socio-
ecological systems

Introduction

Human–environment systems entail complexity regarding 
heterogeneity, interactions, and feedback mechanisms, cre-
ating wicked problems (Zellner & Campbell, 2015). Teach-
ing the principles of complex systems can allow students 
to understand different scientific domains. Wicked prob-
lems have firstly been defined by Rittel and Webber (1973) 
as problems that cannot be finally formulated and lack a 
final solution, while intermediate solutions might generate 
new problems. They exist in human–environment systems 
because of differences in social ideals and uncertainties of 

environmental changes (Duckett et al., 2016). One approach 
to tackle wicked problems is via complex system modeling, 
for example, agent-based modeling. For these applications, 
the non-deterministic and iterative model-building process 
is an excellent fit (Zellner & Campbell, 2015). Multiple 
interdependencies of wicked problems can be represented 
in complex system modeling via the set of initial param-
eters, causalities, and produced outcome variables (Zellner 
& Campbell, 2015).

To familiarize students with such complex systems, agent-
based modeling, an established tool in research, is also an 
evolving tool in education (Bodine et al., 2020; Ginovart, 
2014). Complex agent-based models are less developed in 
human–environment sciences than in disciplines like chemis-
try, physics, or climate sciences (An et al., 2021). Therefore, 
education in this field is a worthwhile investment, potentially 
benefitting future research. Understanding complex systems 
will help students to understand not only human–environment 
systems but also other scientific domains, e.g., concepts related 
to self-organization (Rates et al., 2016).
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Agent-based models (also called individual-based 
models) are characterized by individual actors (agents) 
making decisions and interacting with each other and 
their environment (An et al., 2021; Railsback & Grimm, 
2012). They are carried out via a programmed code, but 
certain platforms with a graphical user interface allow the 
models to be run without understanding the underlying 
mathematics (Ginovart, 2014). Yet, complex elements like 
path dependency, self-organization, or feedback mecha-
nisms can emerge that are not intuitively visible in the 
single parts of the system alone (An et al., 2021). Agent-
based models are most commonly formulated in discrete 
events and time steps (Ginovart, 2014). They are suitable 
for education, as the outcome of theoretical concepts can 
be illustrated and changed in real time. For example, the 
open-source platform NetLogo can be used for running 
models without adapting the underlying code. At the same 
time, it is also suitable for teaching programming skills 
(Murphy et al., 2020).

Studies evaluating the usage of agent-based modeling in 
teaching have previously focused on simple models with a 
small set of adjustable parameters. This contrasts with under-
standing the capability of agent-based modeling to tackle 
wicked problems in classrooms. For teaching modeling in the 
social science domain, models on segregation are commonly 
assessed (Hostetler et al., 2018). In the ecological field, stud-
ies focus mainly on predator and prey models (Ameerbakhsh 
et al., 2016; Benhadi-Marín et al., 2020; Ginovart, 2014). 
Also, models for teaching basic principles of survival and 
population growth in terrestrial or aquatic ecosystems are 
evaluated (Dickes et al., 2016; Hmelo-Silver et al., 2014). 
The studies that evaluate teaching modeling practices are 
conducted with students ranging from elementary school 
(Dickes et al., 2016) to higher education (Ameerbakhsh et al., 
2016). Students have described this way of teaching as inter-
esting (Ginovart, 2014) and rated NetLogo as a game-based 
learning tool (Ameerbakhsh et al., 2016).

Complex human–environment models on the other hand 
are often used in research but are not evaluated for educa-
tional purposes. Agent-based models capturing this com-
plexity mainly illustrate policies’ impact (Brady et al., 2012; 
Happe et al., 2011) and decision-making (Habib et al., 2016; 
Valbuena et al., 2010) on agricultural and forestry land use. 
To our knowledge, no assessment of whether students could 
deal with this complexity in the teaching agent-based mod-
els exists in the literature so far. Only Bodine et al. (2020) 
present a general framework for how complex agent-based 
models can be conveyed to students. Yet, an in-depth evalu-
ation of students’ ability to deal with this complexity is lack-
ing. Further research is therefore needed on the suitability of 
agent-based models in a classroom setting, with a larger set 
of adjustable parameters, displaying environmental as well 
as human interactions. This is of particular interest in higher 

education, in which students often have different levels of 
methodological capabilities and thematic knowledge.

This study aims to (i) present a complex model of a 
human–environment system developed for teaching in higher 
education (see "Method" section), (ii) to analyze the ability 
of a heterogeneous group of students to deal with the inher-
ent complexity, and (iii) to discuss potential success factors 
of teaching complex systems.

Methods

Classroom Setting and Student Characteristics

For the exercise part of a course module on “Land use poli-
cies, markets, and ecosystems,” we—both the lecturers of the 
class and authors of the paper—pre-built a spatially explicit 
agent-based model named World of Cows. As an example of 
human–environment systems, we chose an agricultural land-
scape dominated by dairy farming. In this landscape, dairy 
farms influence and are affected by different ecosystem ser-
vices (e.g., soil fertility and global climate regulation). As 
a governance tool, the model users can manipulate policy 
options—in this case, the students of our class. As learning 
objectives of the course, we defined that students can apply 
an agent-based land-use model based on real-world policies 
and markets and interpret its results in terms of impact on 
land use and ecosystem services. In addition, students should 
be able to reproduce the basics and fundamental concepts of 
modeling and put them in the context of various techniques.

The course audience were international master’s students 
from the University of Bayreuth, Germany. Participating 
students (n = 18) had varying prior background knowledge 
on key topics of the course. They were enrolled in differ-
ent master’s programs—both Master of Arts (International 
Economy and Governance) and Master of Sciences (Global 
Change Ecology, Food and Health Sciences, Environmen-
tal Geography, Environmental Sciences) and had completed 
bachelor’s degrees from a broad range of disciplines. In a 
query in the lecture part of the course module (Fig. 1), con-
ducted with the interactive presentation tool Mentimeter 
(Mentimeter, 2021), the students could rate their background 
knowledge at the beginning of the course. The group faced 
strong heterogeneity regarding soft skills such as commu-
nication, hard skills such as modeling background, and the-
matic knowledge.

Considering this heterogeneity, e.g., in terms of modeling 
skills, the course started with general exercises illustrating 
principles of agent-based modeling. We then introduced the 
pre-built model in different steps, starting with a strongly 
simplified version. Using these versions, we conveyed 
the phases of model development, including finding cod-
ing errors and model calibration. The students learned to 
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conduct experiments with the model (by iterating through 
different parameter settings) and how to run optimization 
procedures (to find optimal parameter settings). Toward the 
end of the course, we applied sensitivity analysis techniques 
and explored model validation strategies with the students.

Agent‑Based Model of a Human–Environment 
System: World of Cows

The model’s principal purpose is to test the effect of dif-
ferent policy options on the provisioning of five different 
ecosystem services in an agricultural landscape dominated 
by dairy farming. The economic viability of dairy farms and 
overall government spending are also considered. The com-
plexity of the model is shown in complex model behavior 
(e.g., non-linear relationships) and by a rather complicated 
model setup (Sun et al., 2016), which is expressed by a high 
number of parameters (pre-set: 43, chosen via interface: 5), 
state variables (dairy farms: 7; agricultural fields: 8, govern-
ance structure: 14), and submodels (12). The submodels are 
equivalent to the consecutive decisions and steps taken by 
dairy farms within one year (Fig. 2). The model can be oper-
ated in two “world” versions. One is based on anonymized 
real-world data with fixed shapes of fields and locations 
of farms (see background in Fig. 2), the other on a grid of 
fields with random placement of initial farms (see “world” 
segment in Fig. 3).

Farms can operate at four different intensity levels. These 
will, in turn, affect milk production and the level of regulat-
ing ecosystem services such as climate regulation. Addition-
ally, there are two levels of milk producer prices depending 
on the intensity level, simulating organic and conventional 
farming. Based on income from two sources, farms decide 
if they stay in business: the net gain from selling milk plus 
government subsidies. Farms interact in a land tenure and a 

manure market. The policy options to influence the system 
are based on agricultural policies already implemented or 
discussed in a central European context.

One of the innovative policy options not yet implemented 
in a current real-world setting is a carbon or nitrate tax for 
agricultural production. This is one of the examples of how 
students could observe non-linear relationships between 
variables (Fig. 4). The model takes many processes and feed-
backs into account. Still, we had to make many simplifica-
tions, e.g., about farmers’ decision-making, farm structures, 
and interaction effects.

The complete model description, including details on 
design concepts, submodels, and basic parametrization, is 
provided as an ODD + D Protocol (Müller et al., 2013) in 
supplement S1. The model itself is available in the CoMSES 
Model Library.1

NetLogo—an Easy Access to Complex Modeling

The model was coded in NetLogo version 6.2.1 (Wilensky, 
1999). The modeling platform, rated as one of the easiest 
to handle while still having relatively good computational 
modeling strength (Abar et al., 2017), comes with three tabs: 
the code, information about the model, and the interface. 
Buttons, sliders, and choosers on the interface allow the 

Fig. 1  Results of a query shown to all students (n = 28) attending the 
lecture part of the module “Land use policies, markets, and ecosys-
tems” (1 = strongly disagree to 5 = strongly agree), conducted with 
the interactive presentation tool Mentimeter (Mentimeter, 2021)

Fig. 2  Different actions by the dairy farms in the model World of 
Cows within one year (equivalent to one time step in the model). Each 
year, the farms start by deciding if they want to stop farming. Each 
action is represented by one submodel. The background shows part of 
the “world” of the graphical user interface of the model in NetLogo (in 
the setup, based on real-world data for the agricultural fields)

1 https:// www. comses. net/ codeb ases

https://www.comses.net/codebases
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user to change the model parametrization without changing 
the actual code. Model outputs can be directly visualized in 
plots and monitors (Fig. 3).

Two convenient tools come with the modeling platform for 
more complex model analyses. With BehaviorSpace, experi-
ments can be run with models in which the covered parameter 
space and the number of replications (in case stochastic ele-
ments are present in the model) can be chosen freely (NetLogo, 
2021). BehaviorSearch,2 in turn, allows for optimization pro-
cedures. It can be used for model parametrization and analysis. 
In the context of our model, different “political goals” (e.g., 
the number of very extensive farms or a specific ecosystem 
service) can be optimized in terms of which policy settings are 
the best for achieving a certain goal.

Group Work—An Indication of Students’ Capacity 
to Deal with Model Complexity

In group projects (teams of two), students were asked to set 
a research goal they could answer/accomplish with the pre-
build model. In their group work, students could either focus 
on parametrizing the World of Cows to answer a specific 
research question (analysis-based approach) or on rewriting 
code in NetLogo by adding or modifying modules in the 
model script (code-based approach). In both cases, they were 

asked to use at least one of the two tools for their analysis: 
BehaviorSpace or BehaviorSearch. As a further prerequi-
site, impacts of policies on the provisioning of ecosystem 
services were to be analyzed with the model.

To explore how well students could deal with the model 
complexity, we analyzed the group work outcomes in the 
following steps: We checked (i) whether students set appro-
priate research goals for their group work, (ii) for match-
ing content of their analysis or code adaptation with suit-
able methods, (iii) if plausible results were produced, (iv) 
whether model and group work limitations were properly 
discussed, and (v) if links to real-world challenges and pol-
icy suggestions were made.

Results

In the following sections, the different student group work 
outcomes are evaluated as indicators of how well students 
could cope using a complex model to analyze the World of 
Cows as a representation of a human–environment system.

Appropriateness of Research Goals

We rated all research goals set by students in their group 
work as appropriate for the model analysis or adjustment 
of model components. To our understanding, they all 
showed that students understood the tasks and possibilities 

Fig. 3  Sections of the model 
interface World of Cows. The 
users can adjust the policy 
options and economic settings 
through sliders and choosers. 
In the chosen example policy 
option, users can set a limit of 
organic nitrogen (Norg) per 
hectare, how much subsidies 
will be deducted if farms exceed 
it, and what percentage of 
farms are checked. Ecosystem 
services and farm indicators 
are presented in output plots 
and monitors. In the presented 
example output monitor, the 
profitability (in terms of Euro 
per hectare) for the different 
management intensity classes 
of farms is displayed. Here, the 
presented model “world” setup 
is based on the second alterna-
tive of a “random” configuration 
of agricultural fields (in contrast 
to Fig. 2)

2 See website for further information: https:// behav iorse arch. org/

https://behaviorsearch.org/
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of applying an agent-based model of a human–environment 
system. The research goals covered a wide range of topics 
(see Table 1) and differed in the scope of model adjustment 
and depth of analysis (Fig. 5), but all fulfilled the baseline 
criteria. Some student groups investigated the provisioning 
of multiple ecosystem services (n = 4) under policy scenarios 
or after code adjustments. Others focused on specific ecosys-
tem services, namely soil fertility (n = 3), habitat provision-
ing (n = 1), or climate regulation (n = 1). The approaches 
considered either multiple policy options (n = 5) or a single 
policy mechanism (n = 2). Three groups aimed at improv-
ing the model itself by (i) adding a social norm of intrinsi-
cally motivated extensive farming, (ii) optimizing the soil 
quality factor in the model, or (iii) including cow mortality 
due to heat waves. With these code-based research goals of 
improving the model, the respective student groups showed 
a deeper understanding of the modeling work than the other 
groups that decided on the analysis-based research goal. We 
rated the complexity of set research goals generally as high 
(n = 6), based on the number of policy options and ecosys-
tem services considered and if trade-offs of policy effects 
were included and the code was adjusted. According to our 
assessment, the research goals of some groups only showed 
a low (n = 1) or medium (n = 2) complexity.

Suitability of Methods

According to our evaluation, the largest part of the student 
groups chose sufficiently suitable (n = 4) to highly suit-
able (n = 4) methods, and the content of the analysis or 
code adaptation matched the research goals well. All stu-
dent teams used at least one of the offered analysis tools 
(BehaviorSpace and BehaviorSearch), depending on their 
specific research interests (see Table 1). One team had major 

difficulties during the course in understanding the usage of 
the tools and did not perform them sufficiently to pass the 
course in the initial attempt. After thorough feedback from 
the lecturers, the analysis for the second attempt was more 
profound, and BehaviorSpace was used in a correct way. 
The three teams with a code-based approach adjusted the 
pre-written NetLogo code. One team inserted conditional 
statements to give farmers the option to manage their grass-
lands extensively. This way, they allowed for intrinsic moti-
vation for “environmentally friendly farming,” even if it is 
not profitable. Another group added an improved soil fer-
tility factor of the fields for the study as an alternative to a 
random assignment of soil fertility per field. A third group 
introduced cow mortality due to heat waves in the model.

Most group work results (n = 8) were presented with 
descriptive statistics obtained in BehaviorSpace and/or 
BehaviorSearch. For example, one group compared mean 
number of cows depending on the occurrences of heatwaves 
(Fig. 6a). Only one group conducted a more profound sta-
tistical analysis. They used standard deviation, and a dou-
ble-sided t-test to assess the impacts of greenhouse gas tax 
rates on the provisioning of ecosystem services (Fig. 6b). 
No teams conducted a sensitivity analysis of their results.

Plausibility of Results

All group work results (see Table 1) were rated by us as 
generally plausible outputs, given the framework of the pre-
written model. However, for more than half of the groups 
(n = 5), we felt unsure if all steps in the analysis were carried 
out correctly because of different potential sources of errors 
like (i) a low number of replicates even though a strong 
stochastic fluctuation of marked prices was set, (ii) poorly 

Fig. 4  Effect of one of the five 
policy options (nitrate tax) in 
the model World of Cows on 
produced milk (originating from 
farms operating in different 
intensity levels)
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specified ranges of modeling parameters, or (iii) impression 
of unclear understanding of some of the model components.

Acknowledgment of Limitations

Most student groups (n = 7) pointed out at least one limita-
tion, such as simplified assumptions used in their analyses 
and methodological procedures (see Table 1). Some groups 
set their focus on limitations of their own approach, like (i) 
chosen interval of values in the optimization procedure, (ii) 
low resolution of available data, and (iii) one-sided focus of 
the analysis. Some groups rather pointed out limitations of 
the pre-written model World of Cows as such, like (i) limited 
complexity of farmer’s decision-making, (ii) simplified repre-
sentation of geo-chemical processes, and (iii) random model 
components like implemented fluctuating market prices that 
make the analysis and prediction more challenging.

Links to Real‑World Challenges and Policy 
Suggestions

A link to real-world challenges (see Table 1) was made by 
the majority of student groups (n = 6). Concrete policy sug-
gestions were given by four groups, with one group also indi-
cating possible limitations to a successful implementation. 

Another group did not want to base any policy recommen-
dation on their model analysis because they felt it was too 
one-sided as they had left out economic considerations. One 
group also mentioned that in the near future, it would be nec-
essary to update their analysis because of the changing legal 
framework of the common agricultural policy of the Euro-
pean Union in the next funding phase. As part of the discus-
sion of limitations (see chapter 3.4), also a comparison with 
real-world data, like government reports or statistical data, 
was made. Two out of the three groups not pointing out any 
real-world challenges had chosen a code-based approach. 
Real-world applicability was a less important question for 
these groups because of the technical focus.

Discussion

Most Students Successfully Handled Model 
Complexity

The outcomes of student group work indicate that teaching 
modeling of human–environment systems with a complex 
agent-based model setup has challenges but is well achiev-
able. Within one semester, even students with little back-
ground in modeling and programming could deal with the 

Fig. 5  Counts of student groups 
showing the proportions of (i) 
approach and (ii) complexity of 
research goals, (iii) tools used 
for the method of analysis, and 
(iv) their suitability to reach 
the defined research goal, as 
well as (v) discussed types of 
limitations

Fig. 6  Two examples of group work results showing a an identification of the impact of cow numbers through heatwaves and b the height of a 
greenhouse gas tax (Euro per ton  CO2 equivalents) needed to significantly impact ecosystem services. In this case, climate regulation (120 €/t)
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complicated model structure and complex model behavior 
(Sun et al., 2016). Most students provided thoughtful discus-
sions as part of their small research projects. These included 
comprehensive analyses of policy scenarios on land use and 
ecosystem services as well as adding new model compo-
nents. Turner et al. (2021) have highlighted the need for 
interdisciplinary teaching approaches for complex problem-
solving. Their experiences with a multi-university cohort 
(using system dynamics modeling) support our study results 
that teaching complex systems does not need to rely only on 
simplistic models.

Our chosen indicators of how well the students could deal 
with model complexity all showed satisfactory levels. Espe-
cially high indicator values were reached for (i) choosing 
appropriate research goals, (ii) the principal suitability of 
applied methods, and (iii) the acknowledgment of limitations 
of the analysis. Students used most, but not all, method-
ologies introduced in class. That no group work included a 
sensitivity analysis might be due to the late introduction of 
this method, but it was likely also perceived as a challenging 
additional effort. We rate the indicator of acknowledging 
limitations as particularly important in showing if students 
understood model complexity. Holmes et al. (2015) also 
used this as an indicator of student’s ability to think criti-
cally. Two groups in our study did not point out any limita-
tions in their group work presentation. This could indicate a 
lack of in-depth understanding of the model complexity by 
the respective groups. Hogan and Thomas (2001) rated (high 
school) student groups that failed to investigate properly why 
a model yielded a certain output as a “less productive” mod-
eling approach. A sound model interpretation and being able 
to identify improvement needs are therefore closely linked. 
Most of the student groups in our study proved, by pointing 
out at least one and often several limitations of their results, 
knowledge about the model structure and insights into rel-
evant impact pathways of the chosen policy options.

We perceived that correctly using the two built-in analysis 
tools (BehaviorSearch and BehaviorSpace) in NetLogo was 
the most challenging part of the course work for the student 
teams. Murphy et al. (2020) mention the step of designing 
experiments in BehaviorSpace as one of the more advanced 
elements of a teaching schedule using agent-based models, 
requiring substantial previous understanding and exercise 
by students. In our experience, using the optimization tool 
BehaviorSearch (not included in the analysis by Murphy 
et  al. (2020)) was even more challenging for students. 
Students’ struggles with the two analysis tools negatively 
affected our rating of the plausibility of group work results 
in terms of how reliable we perceived the results. However, 
in our eyes, the principal importance was that students cor-
rectly understood and handled the policy options and eco-
system service indices represented in the model. This was 
the case for the large majority of student groups. According 

to our understanding, establishing connections from the 
model results to real-world applications hints toward a 
deeper understanding of the motivation behind modeling 
human–environment systems and its implications. Gill et al. 
(2014) also used this as an indicator of depths of under-
standing. In their case, they analyzed how well  7th-grade 
students could apply knowledge to real-world problems and 
decision-making. In our study, such a link was made by more 
than half of the student groups. We rate this as a convincing 
performance.

Success Factors for Teaching Complex Systems 
to a Heterogeneous Group of Students

We identified several factors that contributed to successfully 
teaching agent-based modeling to students without compro-
mising on the complexity involved. These are also based on 
students’ course evaluations and individual feedback at the end 
of the course. The most critical factors were offering a pre-
built model, choosing an accessible coding environment, using 
flipped-classroom elements, and flexible group work projects.

For our class, we provided students with a pre-built model 
that the students could engage with and modify. Mulder et al. 
(2015) identified that providing high-school students with 
an outlined model they needed to complete enhanced their 
learning experience in contrast to starting the modeling from 
scratch. Offering a pre-built model was key to teaching the 
complexity of studying human–environment systems in the 
class. As several students had little to no prior programming 
skills, providing a model in various stages throughout the 
semester helped them to follow the modeling process. This 
would not have been possible if they had to write the model 
from scratch. Alessi (2000) defined this approach of students 
using a pre-built model as suitable for procedural learning 
while building a model by themselves rather suitable for 
declarative or conceptual learning. Before students focus on 
complex coding questions, we perceive it as very helpful for 
them to understand all aspects of modeling practice defined 
by Schwarz et al. (2009), namely constructing, using, evalu-
ating, and revising models. We covered all of these aspects 
in our course, especially the three later ones. A possible 
follow-up course, teaching students how to build a complex 
model, can therefore integrate what the students learned in 
our class but would need an additional introductory course 
diving deeper into coding languages. We used the compa-
rably simple coding language NetLogo, which was a great 
advantage for students to get familiar with agent-based mod-
eling compared to other, more difficult coding environments 
(Abar et al., 2017; Railsback & Grimm, 2012). These con-
siderations made complex agent-based modeling accessible 
to a group of students with very heterogeneous backgrounds. 
As we assumed only little prior capabilities in modeling, sta-
tistics, or thematic knowledge, our approach should also be 
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feasible to apply in other contexts, including undergraduate 
education. However, as skills in independent working and 
knowledge of human–environment systems are necessary to 
understand the model, some adjustments might be required if 
used in undergraduate or even secondary education.

One of the major challenges faced in the course was the 
very heterogeneous group of students with various disci-
plinary backgrounds and study progress. To deal with this 
heterogeneity, using group work proved to be one of the key 
factors. This relates to the results of Bodine et al. (2020), who 
found that even if students do not finish the task of complet-
ing a model, working on the topic in a group enhances the 
learning process. Giving students the flexibility to design 
their own research questions and to focus either on a method-
ological or theoretical task also seemed to be a very suitable 
way of addressing the heterogeneity in the class without com-
promising students’ learning success. Due to the heterogene-
ous group of students, we explicitly decided to teach large 
parts of the module in a flipped-classroom format, which 
proved to provide a very suitable learning environment. In a 
flipped classroom approach, much of the teaching material is 
provided to the students as preparatory material that needs to 
be studied before the class sessions, which can then be suc-
cessfully used for more interactive learning in small groups 
(Wipper, 2021). The format has been gaining widespread 
attention in different higher education disciplines recently 
and is very suitable for teaching complex content. For exam-
ple, Mattis (2015) found that teaching mathematical com-
plexity to university students in a flipped classroom format 
increased accuracy and decreased mental effort in students’ 
work. In our study’s flipped-classroom sessions, students 
could learn the material at their own pace, skip basics, or 
consult additional material according to their previous knowl-
edge. Students stated that they dedicated five to six hours on 
average for coursework, including time spent in class, with 
one person only spending less than three hours and one per-
son nine to ten hours per week. The course was conducted 
during the first winter term of the Covid-19 pandemic. While 
the first few lessons could be conducted in person, we taught 
most of the course online.

Methodological Limitations

In this study, we used our classroom as a practical case 
study to investigate the suitability of teaching complex 
human–environment systems in higher education. We 
employed a less common methodology by analyzing stu-
dents’ group work outputs without interviews or question-
naires. To our understanding, this proved to be a very suita-
ble approach. Nevertheless, we acknowledge that this offered 
no option for analyzing a controlled treatment effect. Addi-
tionally, limited understanding by single students might not 
be evident from group work results if they teamed up with 

a more advanced group partner. In future studies, we sug-
gest adding student reflections, e.g., by including autoethno-
graphic reports by students (Murphy et al., 2022). To achieve 
comparability of students’ capacity to deal with complexity, 
we only analyzed the results of one student cohort. Con-
siderations were changing course and module requirements 
between terms and potential differences between classes 
with in-person and online teaching necessary due to the 
Covid-19 pandemic. The focus on one student cohort lim-
ited the number of students to only 18 students, which is a 
relatively small sample size. We recommend further research 
investigating how different cohorts of students can deal with 
complex models using agent-based modeling and whether 
these results are similar to our findings. Lastly, we recognize 
limitations related to online teaching due to the Covid-19 
pandemic. Although we used activating elements and break-
out rooms, online teaching might have limited the interaction 
between students and teachers. We expect that this might 
have slightly reduced the ability of students to deal with the 
complexity of the model.

Conclusion

Teaching the principles of complexity can help students to 
understand different scientific domains and learn how to deal 
with today’s wicked problems like climate change. We pre-
sented the neglected approach to teach this real-world com-
plexity with a correspondingly complex agent-based model 
(in terms of adjustable parameters and interdependencies). 
Our results show that we can trust students’ ability to deal 
with model complexity, even in an interdisciplinary course. 
This should encourage more teaching and research endeav-
ors to take this route. We found that agent-based modeling 
is a suitable method for conveying complexity and wicked 
problems. According to our understanding, it can also be a 
helpful approach in other scientific domains and educational 
programs beyond the analysis of human–environment sys-
tems. Our chosen teaching approach proved to work well, 
especially for a heterogeneous group of students. We allowed 
students to develop their own research goals and introduced 
complex models stepwise with the flipped classroom tech-
nique. Our identified success factors can be applied to teach-
ing modeling approaches in general, even though we perceive 
agent-based modeling to be a particularly useful tool.
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