
Bayreuther Arbeitspapiere zur Wirtschaftsinformatik

Lehrstuhl für
Wirtschaftsinformatik

Information Systems
Management

Bayreuth Reports on Information Systems Management

Die Arbeitspapiere des Lehrstuhls für

Wirtschaftsinformatik dienen der Darstellung

vorläufiger Ergebnisse, die i. d. R. noch für

spätere Veröffentlichungen überarbeitet werden.

Die Autoren sind deshalb für kritische Hinweise

dankbar.

 The Bayreuth Reports on Information Systems

Management comprise preliminary results

which will usually be revised for subsequent

publications. Critical comments would be

appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere die der

Übersetzung, des Nachdruckes, des Vortrags,

der Entnahme von Abbildungen und Tabellen –

auch bei nur auszugsweiser Verwertung.

 All rights reserved. No part of this report may

be reproduced by any means, or translated.

Authors: Information Systems and Management
Working Paper Series

Edited by:

Prof. Dr. Torsten Eymann

Managing Assistant and Contact:

Raimund Matros

Universität Bayreuth

Lehrstuhl für Wirtschaftsinformatik (BWL VII)

Prof. Dr. Torsten Eymann

Universitätsstrasse 30

95447 Bayreuth

Germany

Email: raimund.matros@uni-bayreuth.de ISSN

 1

IST-FP6-003769 CATNETS

D4.2

Performance Evaluation

Contractual Date of Delivery to the CEC: 31. August 2006

Actual Date of Delivery to the CEC: 13. October 2006

Author(s): Oscar Ardaiz, Michele Catalano, Pablo
Chacin, Isaac Chao, Juan Carlos Cruellas,
Felix Freitag, Liviu Joita, Manuel Medina,
Leandro Navarro, Omer F. Rana, Björn
Schnitzler, Miguel Valero

Workpackage: WP4

Est. person months: 19

Security: public

Nature: final version

Version: 1.0

Total number of pages: 34

Abstract:

This deliverable describes the work done and the on-going work of WP4 at month 24.
A performance measuring infrastructure has been developped for the the prototype and
simulator, concering the experiment configuration, data measurement, and data collection. A
performance evaluation framework has been prepared to obtain the metrics from the measured
data. Initial experiments have been carried out results to test the developped prototype,
simulator and the performance measuring infrastructure.

 2

CATNETS Consortium

This document is part of a research project partially funded by the IST Programme of the
Commission of the European Communities as project number IST-FP6-003769. The partners
in this project are: LS Wirtschaftsinformatik (BWL VII) / University of Bayreuth
(coordinator, Germany), Arquitectura de Computadors / Universitat Politecnica de Catalunya
(Spain), Information Management and Systems / University of Karlsruhe (TH) (Germany),
Dipartimento di Economia / Università delle merche Ancona (Italy), School of Computer
Science and the Welsh eScience Centre / University of Cardiff (United Kingdom), Automated
Reasoning Systems Division / ITC-irst Trento (Italy)

UniversityofBayreuth
LS Wirtschaftsinformatik (BWLVII)
95440 Bayreuth
Germany
Tel: +49 921 55-2807, Fax: +49 921 55-2816
Contactperson: Torsten Eymann
E-mail: catnets@uni-bayreuth.de

Universitat Politecnica de Catalunya
Arquitectura de Computadors
Jordi Girona, 1-3
08034 Barcelona
Spain
Tel: +34 93 4016882, Fax: +34 93 4017055
Contactperson: Felix Freitag
E-mail: felix@ac.upc.es

University of Karlsruhe
Institute for Information Management and
Systems
Englerstr. 14
76131 Karlsruhe
Germany
Tel: +49 721 608 8370, Fax: +49 721 608
8399
Contactperson: Daniel Veit
E-mail: veit@iw.uka.de

Università delle merche Ancona
Dipartimento di Economia
Piazzale Martelli 8
60121 Ancona
Italy
Tel: 39-071- 220.7088 , Fax: +39-071-
220.7102
Contactperson: Mauro Gallegati
E-mail: gallegati@dea.unian.it

University of Cardiff
School of Computer Science and the Welsh
eScience Centre
University of Caradiff, Wales
Cardiff CF24 3AA, UK
United Kingdom
Tel: +44 (0)2920 875542, Fax: +44 (0)2920
874598
Contactperson: Omer F. Rana
E-mail: o.f.rana@cs.cardiff.ac.uk

ITC-irst Trento
Automated Reasoning Systems Division
Via Sommarive, 18
38050 Povo – Trento
Italy
Tel: +39 0461 314 314, Fax: +39 0461 302
040
Contactperson: Floriano Zini
E-mail: zini@itc.it

 3

Changes

Version Date Author Changes
0.1 06/07/06 FF
0.2 17/07/06 OA Paste sections 2.1, 2.2 (UPM) and 3 (UPC,CU)
0.3 20/07/06 OA Added figures in section 3
0.4 26/07/06 OA Extended discussion in section 2.4.1
0.5 22/08/06 OA Added text from UKA on sections 2.2.4 and 4.

Several todos included from latest discussions about metrics
framework and feasibility of measurements.

0.6 23/08/06 FF Text added and formating
0.9 30/08/06 OA Reorganizing section 2.
1.0 31/08/06 FF Cleaning up
1.1 01/09/06 FF Another revision, but still not clean, annex from Michele
1.2 15/09/06 FF English revision of annex

 4

CONTENT

1 Introduction .. 5

1.1 Performance measuring goals .. 5
2 Performance measuring framework ... 6

2.1 Metrics.. 6
2.2 Design and implementation of the performance measurement infrastructure in the
prototype... 8

2.2.1 Requirements on the performance measuring infrastructure 8
2.2.2 Measured metrics ... 9
2.2.3 Measurement infrastructure.. 11

2.3 Design and implementation of the performance measurement infrastructure in the
simulator... 13

2.3.1 Measured metrics ... 13
2.3.2 Measurement infrastructure.. 14

2.4 Evaluation framework design and implementation.. 15
2.4.1 Overview .. 15
2.4.2 Database use... 16

2.5 Discussion .. 19
3 Performance evaluation tests with the prototype ... 19

3.1 Experiment set up... 19
3.2 Results and discussion.. 21

4 Summary and future work.. 23
5 References .. 24
6 ANNEX I.. 25

 5

1 Introduction
This deliverable describes the work done and the on-going work in WP4 of in tasks

• T 4.1 Metrics specification and implementation, prototype and simulator (M7-30)
• T 4.2 Evaluation of implemented market mechanisms (M13-30)
• T 4.3 Prototype evaluation (M19-30)
• T 4.4 Performance analysis, comparison, evaluation (M25-30)
• T 4.5 Further research on properties of Catallaxy applied to computer networks (M19-

30)

The deliverable refers to the tasks related to performance evaluation of the CATNETS project
in year 2. In Table 1 the character of this work is illustrated and set into context. In the first
year of the project a theoretical metrics framework was devised as basis for the evaluation of
the Catallactic approach. In the second year the implementation of this framework into the
prototype and simulator developped in parallel during this year was pursued. First feedback
from the practical realization of the framework has been obtained. The third year will focus
on the usage of the measurement and performance evaluation infrastructure for evaluation of
the Catallactic approach. Additional insight concerning the metrics used will also be obtained
and fine tuning of the measurement infrastructure might be required guided by the
performance results.

CATNETS PERFORMANCE EVALUATION
year 1 design of metrics pyramid
year 2 implementation of metrics pyramid in developped prototype and simulator,

feedback on chosen metrics, some tests of performance measuring infrastructure
year 3 use of infrastructure for performance evaluation, performance results of Catallactic

approach, additional insight and fine tuning of metrics
Table 1. Evolution of performance evaluation work in CATNETS.

The document is divided in four parts: In this chapter the performance measuring goals are
recalled. The second chapter describes the implemented performance measuring
infratstructure, refering to the metrics to be obtained, the measurement infrastructure within
the prototype and simulator, and the performance evaluation framework to obtain
performance results from the experiment data. Chapter 3 describes perliminary results on
testing of the developped infrastructure. Chapter 4 contains a summary and and outlook to the
work to be done in year 3.

1.1 Performance measuring goals
The goal is to evaluate the performance of the Catallactic approach by means of a simulator
(see deliverable year 2 of WP2) and a prototype (see deliverable year 2 of WP3).

The simulator targets to compare the Catallactic decentralized approach in two dimensions
(Figure 1), one hand with a centralized economic approach and on the other hand with a
decentralized non-economic approach. The prototype implements the Catallactic approach
only. Certain configurations of experiments of the Catallactic scenario are expected to be
tested in both the simulator and the prototype. Qualitatively similar results and tendencies
should be observed in both the simulator and prototype for these experiments.

 6

Figure 1. Performance evaluation goals.

2 Performance measuring framework

2.1 Metrics
It is often useful to be able to compare two allocation methods using a single index/number.
Such an index provides an aggregated behaviour of an allocation method with reference to a
number of features. Figure 2 shows the logical structure of data and indices which has been
devised in our approach. As one reaches the upper layers of this pyramid, a loss of
information detail results.

In the lower layer of the pyramid, parameters, which are likely to be of significance within an
application layer network, have to be selected for the evaluation. These parameters define the
raw disaggregated data. Disaggregated indicators provide the first stage of evaluation, and
may comprise a number of independently measured values. The raw data could be collected
from different experiments into an integrated database.

 7

Figure 2. Metrics pyramid (from CATNETS WP4 deliverable of year 1).

For the evaluation with this approach, it is obligatory to take into account a set of
characteristics that are not directly comparable, because these characteristics correspond to
variables of different dimensions and the unit of measurement. Thus, they have to be made
comparable, e.g. by normalization, and then grouped into indicators. An indicator is defined
as a ratio (a value on a scale of measurement) derived from a series of observed facts, which
can reveal relative changes as a function of time. They also allow the analysis of performance
and the predictions of future performance. Finally, the simple and composite indices are
computed, which represent benchmarks of performance. They express information in ways
that are directly relevant to the decision-making process. Indicators help the assessment, the
evaluation, and most important, they help to improve accountability.

The approach is to obtain the technical metrics focuses on providing generic, easily
measurable parameters, which can subsequently be aggregated. The upper layer economic
metrics will be used in order to evaluate the quality of economic allocation methods. The
simple indicator layer defines a set of metrics, which are normalized between zero and one –
and are assumed to be independent, which is a classical assumption in statistics. This makes it
easier to find functions for the layers above, such as on demand availability and infrastructure
cost. The technical metrics may be combined to obtain a framework that enables evaluation of
different service oriented architectures.

Technical layer metrics can be classified into: (i) efficiency measures (number of requests,
number of accepts); and (ii) utility measures (agent satisfaction). Together, they are a measure
of technical benefit which a given service user or provider, represented through a software
agent, earns. An additional set is (iii) the set of time metrics (discovery time, negotiation time,
service provisioning time), which are measured as the rate of change of market processes.

 8

Message-based metrics (iv) are included in order to measure the activity of users to
communicate to find services.

The goal of the evaluation is the social utility index L which is a function of the means and
variances of costs and benefits. Integrating the macro-economic models in the metrics
framework, the economic policy maker has some preferences about on demand availability
and infrastructure costs and is aware of the distribution of the benefits and costs of the agent
population.

The metrics pyramid of Figure 1 has been used to guide the implementation of the
measurement infrastructure both in the prototype and simulator.

2.2 Design and implementation of the performance
measurement infrastructure in the prototype

Performance measuring components for the prototype are important in order evaluate the
current proof-of-concept implementation. It is also a research issue to explore the feasibility
of including application layer and economic metrics in such an infrastructure.

In the following sub-sections the requirements of the performance measuring infrastructure in
the context of the middleware and application components are explained. We address the
design of the framework, the used metrics and describe the current implementation.

2.2.1 Requirements on the performance measuring infrastructure

The middleware offers an agent based framework for dynamic location and management of
grid services based on economic criteria. It provides mechanisms to locate and manage the
registered resources, services and applications, locate other trading agents, engage agents in
negotiations, learn and adapt to changing conditions. Furthermore, the middleware offers a set
of generic negotiation mechanism, on which specialized strategies and policies can be
dynamically plugged in. The service and resource exchange occurs between parties that might
join the market in an ad-hoc or opportunistic way.

The requirements, which guided the design of the performance measuring infrastructure, are
the followings:

The measurement infrastructure should be able to provide a large number of diverse metrics:
the measurement should concern metrics both from the application, the middleware, and the
physical level. In addition, there is a need for both technical and economic metrics. The
economic metrics provided by the infrastructure should assist the decision makers residing in
the users (or applications) with high level metrics on whether to rely on acquiring services and
resources when needed, or hosting an infrastructure on their own. Secondly, the measuring
infrastructure should allow by means of mainly technical parameters evaluating the
infrastructure itself.

The instrumentation by the infrastructure needs to be done at different levels. User agent
related parameters should be obtained at the application level. Technical parameters
concerning the middleware performance will need to be instrumented at the corresponding
levels of the middleware architecture. Finally, the monitorization of the physical resources
will be obtained from the base platform. The component of the measuring infrastructure at the

 9

node level should locally gather the values obtained from the components working at the
same node but at different layers of the infrastructure.

The data collection should be done centrally, aiming to allow evaluating the prototype at this
stage. Nevertheless, it is noted that the software infrastructure should run in a distributed
manner on physically different devices and at a later stage with a potentially large number of
nodes. For prototype evaluation, however, the number of nodes is small, such that a
centralized approach for data collection at this stage appears acceptable.

The evaluation of these metrics, which are collected from the different nodes of the
middleware, is done at a central point. The analysis and evaluation of the middleware is done
off-line with external tools that provide the needed mathematical functions. The metrics,
which the agents need to take decisions, should be processed on-line by the agents
themselves.

The development of the performance measuring infrastructure follows the following
approach. First, we define the metrics which should be obtained and identify the measurement
points within the infrastructure. We proceed with the instrumentation and local data
collection. Then, collecting and obtaining the data at a central point is the next step. The
evaluation of the data is the final step of the process. In the following sections we describe
these steps.

2.2.2 Measured metrics

We assigned metrics to the layers of the software infrastructure. Beginning with the
application layer, there are parameters to be measured in the client (which represents the end
user) and the application. The client and the application perceive technical parameters, like
the service provision rate, the ratio between the number of requests and accepts, and the
service execution time, the duration for obtaining an accept. The client as end user will need
to transform these technical parameters into economic ones, consider the benefits and the
efforts, in order to determine the utility obtained by participating in the network. The
application might also work with economic parameters, since a business model for this
component can potentially be defined.

Related to different levels of the middleware, there are the following technical parameters: the
discovery time refers to the time the middleware needs to find other agents to negotiate with.
The negotiation time indicates the duration of the negotiation process. The negotiation process
takes place in both the service and the resource market. Each negotiation consists of several
messages according to the bargaining strategy. The message size is a parameter, which allows
describing the communication cost. The number of messages is another parameter concerning
this cost.

Feasibility of metrics measurements in prototype

We identify which middleware components should provide the metrics defined in the metrics
framework pyramid. Some metrics can be measured at the application, others at the economic
agents (integrated in the middleware) and others at the base middleware layer. Some metrics
does not seem feasible to be obtained in the implemented middleware, but from the base
platform layer, i.e. how much CPU does consume each service request.

 10

Metrics that can be measured at the application layer, and also by economic agents are:

• Number of demand requests,
• Number of accepts.

Number of demand requests seen by the application should be equal to the number of
demand requests seem by the economic agents. However, if we consider that there is a CAP
(Catallactic Access Point, see WP3 deliverable of year 2) between both entities, there might
be differences between both measures.

Metrics that can be measured by economic (Catallactic) agents are:

• Number of requests and number of accepts
• Number of negotiation requests and negotiations accepts
• Agents’ satisfaction
• Discovery time
• Negotiation time
• Number of messages

Discovery time should be measured by the Catallactic agents, since the agents have full
control of the negotiation protocol, and can determine when the discovery effectively finished
(the agents do not use the middleware's provided search mechanism).

Negotiation time should be measured by the Catallactic agents: the agents are in control of
the negotiation protocol and can determine when the negotiation has finished (agents are not
using the economic mechanisms framework provided by the middleware. which would handle
the negotiation protocol and provide the measurement of related metrics).

Number of messages should be measured by the Catallactic agents, and only the messages
related to a negotiation will be counted. This information is available only to the agents, as the
middleware cannot distinguish a transaction from another.

There are a number of other metrics, for which it has not been finally decided where and how
they can be best measured: service execution time, resource usage time, hops, latency,
message size, and network transfer.

Service execution time: It is important to notice that in the proposed architecture the actual
service invocation is not handled by the BasicService agent, but from the application level,
outside of the control of the middleware (which only participates in the allocation process). It
is possible to measure the service execution time as seen from the application clients.

Resource usage time: It is not clear how to relate the resource usage to one specific
transaction. For instance, if the service is a web service, which runs in an application server, it
is hard to measure the CPU consumption for each service request. But it is possible to
measure Average Resource Utilization, which is the metric intended to be composed from
resource provisioning time; this metric is reported for the CPU resource by using Linux
operating systems calls.

Hops: In the prototype we do not have direct control of the P2P overlay network, since it is
handled by JXTA. Currently, it is not possible to know how many hops a message follows.

 11

Latency time: We do not have a way to measure JXTA message delays. We might
implement some latency measurement service in the middleware, based on some exiting tool,
if considered appropriate.

Message size: We do not have a way to meter JXTA message size.

Client

QueryServiceFactory
(GT4/JavaWS)

ComplexService
Agent

Application

GMM Middleware

Resource (CPU)

BasicService
Agent

Base Platform

QueryServiceInstance
(GT4/JavaWS)

DB

Number of
Requests

Average
Resource Usage

Discovery Time

Service
Execution Time

Number of
Accepts

Number of Neg.
Accepts

Number of Neg.
Requests

Negotiation
Time

Agents
Satisfaction

Number of
Requests

Number of
Accepts

Figure 3. Measurement of metrics in the prototype test experiments

2.2.3 Measurement infrastructure

Instrumentation and local data collector

In our approach we took the design decision that data from one node should be locally
collected. This way, we obtain at each node an event trace, which includes the metrics from
the different middleware layers. Provision of these metrics is through agents (Figure 4). The
event trace contains the time stamps of the events, the metrics itself and a number of attributes
like the agent number, transaction number, and others, in order to allow a detailed analysis of
the behavior. The local data collector manages this data structure. In terms of implementation,
a circular structure is used such that its size is controlled.

Access to this data structure is given in two ways. One hand, the data can be written to a file
(log file), and on the other hand the local data collector can send it regularly to a global
metrics collector located on a particular node.

 12

Figure 4. Local metrics collector.

Global metrics collector

The data obtained at the different nodes is send to the global metrics collector, which resides
on a particular node of the system. Data is send by means of a push mode: local data
collectors initiate the sending to the global collector according to a configured behavior. The
global metrics collector then processes and organizes the data into a format suitable for
external packages. For initial testing, the data has been analyzed using standard software
packages. For intensive performance evaluation the performance evaluation framework has
been developped.

Issues

In the performance measuring infrastructure of the prototype, the first challenge was to obtain
metrics from all layers of the system. As such, this framework needs to work with and go
beyond other monitorization toolkits which exist for distributed systems, but which mainly
focus on the physical resources. For our purpose we also need to include application and
middleware data. These higher level metrics are necessary to be considered in our application
context, since they allow extracting metrics, which can be interpreted in economic terms.

The second challenge was that there are different destinations for some of these metrics.
These metrics, in addition, need to be conveyed to different destinations: On one hand there is
a central metrics collection point, to which most of the data is sent (except some data of the
client) and where the system is analyzed and evaluated. On the other hand, there are the
participants (the applications) as destination of metrics, since they need application layer
metrics in order to take decisions and evaluate their performance. One possible solution, to
route data to particular groups, has not yet been implemented in our framework. Our view on
this is to apply publish/subscribe mechanisms in order to assign groups to metrics.

Another issues, which may get important at a later stage of the project, are clock
synchronization and scalability. For larger scale usage beyond the current experimental
settings, the automatization of the clock synchronization between the nodes and the global
metrics collector is an issue which needs to be solved. The scalability of the performance
evaluation framework could also become critical for certain experiment configurations. Once
the system gets deployed in a larger scale beyond controlled conditions, this scalability

 13

problem may affect the number of parameters which can be monitored, and may require
additional measures to tackle the size of the traces obtained.

2.3 Design and implementation of the performance
measurement infrastructure in the simulator

The measurement infrastructure in the simulator is used to measure a set of predefined
economical and technical metrics. The term measurement infrastructure is understood as a
generic way to collect and measure different kinds of metrics and to store them during the
simulation process independent of their type.

In the following, different aspects that are used to realize such an infrastructure are discussed:
Section 2.4.1 describes the measured metrics for the central and Catallactic cases. Section
2.4.2 introduces the technical concepts of the measurement infrastructure.

2.3.1 Measured metrics

Deliverable D4.1 describes a set of technical and economical metrics for the evaluation of the
central and Calallactic allocation mechanisms. The challenge we encountered is that some of
those metrics can be measured by the simulator but not by the middleware and vice versa.
Furthermore, we identified some metrics that can be measured in the Catallactic case but are
fixed in the central case. An example for such a metric is the service discovery time: In the
Catallactic case, several nodes need to be contacted in order to find adequate counterparts for
a service provisioning. In the central case this time is fixed, as the “discovery” of relevant
services is realized by a central component, i.e. the auctioneer.

For the first step of the simulator implementation, a partial set of the envisioned metrics
framework is implemented. In the following, an overview of the measured metrics is given.
The implementation of the metrics is independent from the economic model.

Basic Service Provisioning Time

Definition: The basic service provisioning time represents the time that is required to execute
a basic service. This includes the allocation time for the basic service and the allocation time
for the resources needed for basic service execution. In the centralised case, allocation time is
the time needed by the central auctioneers to allocate the basic service and the related
resource bundle. In the Catallactic case, allocation time is the time needed to for basic service
and resource discovery and bargaining.

Measurement: In terms of code, basic service provisioning time is the time that is required
for a single iteration in the following "for" statement in class ComplexServiceAgent:

for (String bsName = accessPatternGenerator.getNextBS(); bsName !=
null; bsName = accessPatternGenerator.getNextBS()) {

} // for each BS in CS

This statement iterates over all the Basic Service which compose a Complex Service. For time
calculation, the method GridTime.getTimeMillis() is used. It returns the time in
milliseconds from the beginning of the simulation. The Basic Service Provisioning time is the

 14

difference between the value returned by getTimeMillis()at the end of the iteration and
the value returned at the beginning.

Complex Service Provisioning Time

Definition: The complex service provisioning time is the time that is required for the
(complete) execution of a Complex Service and is the sum of the provisioning times of the
component basic services. If some Basic Service in the Complex Service fails, then Complex
Service Provisioning Time is not calculated for that Complex Service.

Measurement: In terms of code, it is the time needed for all iterations in the "for" statement
of

for (String bsName = accessPatternGenerator.getNextBS(); bsName !=
null; bsName = accessPatternGenerator.getNextBS()) {

} // for each BS in CS

This time is the difference between the values returned by getTimeMillis()before and
after the execution of the “for” statement above.

Complex Service Agent Allocation Rate

Definition: The complex service agent allocation rate is the ratio between the number of
successful requests for complex services and the total number of requests for complex
services.

Measurement: In terms of code, this metric is measured at the end of run() method of class
ComplexServiceAgent. A counter C1 for successful requests is increased at the end of the
previously mentioned "for" statement if all BSs have been successfully allocated. A counter
C2 of total request is increased if CS != null in the run() method. The Complex Service Agent
Allocation Rate is the ratio between C1 and C2.

Application Allocation Rate

Definition: The application allocation rate is the weighted average of all (Complex Service
Agent) allocation rates and is calculated at the end of simulation.

Measurement: In terms of code, this metric can be measured outside the simulator code. For
example, for every ComplexServiceAgent we could record at the end of the run() method the
values of the counters previously mentioned. This way, the weighted average can be easily
calculated.

2.3.2 Measurement infrastructure

A central metrics logger realizes the logging of metrics. Basically, the logger is represented
by a singleton class called MetricsLogger1 in the simulator. The class can be accessed by

1 The class can be found in the org.catnets.optorsim.utils package of OptorSim.

 15

every other class that measures any metric. An overview of the methods provided by the class
is outlined in Table 6.

Each time, a new metric measurement is reported to this class, the attribute and value of the
metric as well as further information concerning this metric are stored in a CSV text file. The
use of text files as an output media is used due to simplicity. In case we encounter scalability
problems due to the use of text files, the output medium can be easily switched to a database.
For a further evaluation of the stored metrics, the output text files can be easily imported into
a database.

Table 2. Methods of the Metrics Logger class

MetricsLogger.class: Method Summary
void close()
static MetricsLogger instance()
boolean isLogging()
void log(long timeStamp,

org.catnets.optorsim.infrastructure.AlnSite site,
org.catnets.optorsim.negotiations.Negotiator negotiator,
java.lang.String name, double value)

void setLogging(boolean doLogging)

The MetricsLogger class provides a function called “log” which is called to store a
particular metric. For instance, an instance of a BasicServiceAgent class may call this
method to store the time that is required for an allocation. Beside the name and the value of a
metric, the method stores further information such as the time of measurement as well as the
site and the negotiator who measured the particular metric. For a detailed overview of the
different classes and their meaning in the simulator, the reader is referred to deliverable WP2
year 2.

2.4 Evaluation framework design and implementation
This section is devoted to the description of the scripts, which implement the evaluation
process of the CATNETS project. In the following section, we will show how the evaluation
process should be adapted to the simulator and prototype environments.

2.4.1 Overview

The evaluation process is composed by four steps (Figure 5).

• Collection of input from the simulator and prototype functions storing it in a database
• Economic metric evaluation by an application which perform the application of

formulas automatically communicating with the database
• Optional selection of data in order to perform analysis on a sub set of data
• Store the results in a single database in order to map the parameter grid with results.

 16

Figure 5. Evaluation process.

Input data Collection

The evaluation process requires the analysis of a large amount of data. The simulator and
prototype/middleware/application tests have been organized in several experiments, each of
them characterized by the parameter settings and scenarios. In order to perform a systematic
investigation on the dataset, it needs a:

• definition of the store data structure
• selection of a database standard platform
• automatization of metrics evaluation over the different experiments
• storing of final economic metrics

The best way to map the general evaluation process overview in an efficient process is to
build an application communicating with the database taking as inputs the database records
consisting of technical metrics output of simulator and prototype, and providing as output the
economic metrics evaluation.

2.4.2 Database use

The design of the metrics evaluation begins with the selection of the metrics and parameters
for the description of the Catallactic/centralized scenario. The metrics shown in section 2.1
are collected in a database and fill a group of tables according. Each table is filled by different
functions, which are called in different times, i.e. runtime and at the end of the experiments.

The basic tables are:

Experiment table: collects the main information about the parametrization, the time occurred
to run simulation/experiment and the number of agents. Each experiment is labelled with an
id.

Transaction Table: collects the main technical metrics regarding each transaction occurred
between Complex services and basic services.

Usage table: is filled by the main technical metrics related to the usage of the market from
agents.

Distance table: includes the main metrics regarding the distance of the exchanging agents.

 17

Metrics table: is filled by the intermediate and final metric layers defined in the pyramid (see
section 2.1).

Each record of the table is the result of processing the technical metrics data and it refers to
each experiment.

Transaction Table

After each successful contract between a complex service and a basic service (including
successful sub-contracts with several local resource managers), the complex service stores the
transaction related data to the metrics database (transaction level) in the transaction table
(Table 3). The transaction table is written by the Complex Service at runtime.

Table 3. Transaction table.
Column Description Unity of Measurement
exp id The id of the experiment, to distinguish between several experiments within one

table (foreign key for experiment table).
Integer

complex service id. The unique number of the complex service Integer
basic service id. The unique number of the basic service Integer
1st resource id. The unique number of the first sub-contracted resource Integer
2nd resource id. The unique number of the second sub-contracted resource Integer
3rd resource id. The unique number of the third sub-contracted resource Integer
Timestamp Time elapsed from the begin of simulation and experiment (Simulation time

reference/Realtime for prototype).
Milliseconds

Number of Demand Requests This metric counts the number of launched discovery processes until this contract
is achieved.

Integer

Number of Negotiation Requests This metric counts the number of launched negotiation processes until this
contract is achieved

Integer

Agent Satisfaction Still needs to be defined for centralized approach. In the decentralized case, it
weighs the service/resource quality and the price, i.e. all possible basic service are
ranked at complex service level depending on its negotiation start prices and their
self-indicated quality (e.g. average response time) in comparison to the desired
objectives given in the bill of services (measured in %). After the contract could
be achieved, these values are compared again to the desired objectives and this
value contributes to the satisfaction.

Real

Discovery Time This metric is used to measure the time to find a given set of possible negotiation
partners.

Milliseconds

Negotiation/Waiting time The measurement of the negotiation time starts after service discovery has
completed, and ends before service usage or service provisioning. For centralized
approach, this also comprises the allocation time

Milliseconds

Service Provisioning Time The evaluation framework defines the service provisioning time as the
service usage time of one transaction (This metric is only taken into account for
the prototype, as provision time cannot be fixed.).

Milliseconds

Resource Provisioning Time (Effective
Job Execution Time)

The evaluation framework defines the resource provisioning time as the resource
usage time of one transaction. (This metric is only taken in to account for the
prototype, as provision time cannot be fixed.)

Milliseconds

Job Execution Overhead Time Total Job Execution Time - (Discovery Time + Negotiation Time + Provision
Time)

Milliseconds

Total Job Execution Time The total job execution time is defined as a sum of discovery time, negotiation
time (waiting time in centralized approach), network transfer time and
provisioning time (which is - however - fixed for simulation).

Milliseconds

Experimentation table

At simulation/prototype run initiation an introductory entry is stored to the experimentation
table (Table 4.). This information should enable a distinct identification of the experiment. It
is written by the configuration scripts at start-up.

Table 4. Experimentation table.
Column Description Unity of Measurement
exp id The id of the experiment, to distinguish between several

experiments within one table (foreign key for experiment table).
Integer

description Contains data about which density/dynamicity is used Text
approach centralized/decentralized/prototype C/D/P

 18

start timestamp. Experiment start time (Realtime) dd.mm.yyyy hh:mm
end timestamp Experiment stop time (Realtime). dd.mm.yyyy hh:mm
Agents Total number of agents CS+BS+RS for each Experiment. Integer

Usage Table

When simulation is finished, the usage times of each agent are stored to the usage table (Table
5). The usage table is written by each agent after simulation.

Table 5. Usage table.
Column Description Unity of Measurement
exp id The id of the experiment, to distinguish between several experiments

within one table (primary key for transaction table).
Integer

agent id The unique id of the agent. Integer
Service Usage The service usage is evaluated by the ratio between the service

provisioning time and the total simulation time (only for simulator).
Milliseconds

Resource Usage The resource usage is evaluated by the ratio between the resource
provisioning individual time and the total simulation time (only for
simulator).

Milliseconds

Number of Messages This value counts the number of messages. Integer

Distance table

Table 6 helps to calculate the distance between contract partners. This calculation is sufficient
to be done after the simulation. It has to be understood as an adjacency matrix, showing hops
and latency times between communication partners. This enables to store the numbers at
configuration time of the simulation, disburdening the calculation. Distances and times is
considered to be the same on the way back, so every pair is itemized only once.

Table 6. Distance table.
Column Description Unity of Measurement
exp id The id of the experiment, to distinguish between several experiments

within one table (primary key for transaction table).
Integer

sender agent Message transmitter Integer
receiver agent Message receiver Integer
hops Distance between the partners in hops Integer
latency time Distance between the partners in latency time. Milliseconds

Metrics level

Now, the MATLAB scripts are called. These must generate the data according to the metrics
pyramid. The data will be stored in the following metrics level table (Table 7).

Table 7. Metrics level table.
Column Description Unity of Measurement
exp id The id of the experiment, to distinguish between several experiments

within one table (foreign key for metrics table).
Integer

allocation rate Average Allocation Rate Normalized [0;1]
agent satisfaction Average Agents’ Satisfaction Normalized [0;1]
service access Average Service Access Time Normalized [0;1]
resource access Average Job Execution Overhead Time Normalized [0;1]
distance Average Distance between Contract Partners Normalized [0;1]
service usage Service Usage Normalized [0;1]
resource usage Resource Usage Normalized [0;1]
network usage Network Usage Normalized [0;1]
availability Availability Normalized [0;1]
infrastructure costs Infrastructure Costs Normalized [0;1]

 19

risk Risk Normalized [0;1]
utility Utility Normalized [0;1]

The scripts enable the user to select the data of each experiment from the input tables and then
evaluate the metrics. Furthermore, it saves the results on the database as the schema
represented in the previous table.

2.5 Discussion
The performance measurement infrastructure to obtain the metrics pyramid (see section 2.1)
has been realized as a real implementation. This implementation consists of two main
components, the measurement infrastructure and the performance evaluation framework. The
measurement infrastructure has been integrated into the prototype and simulator, respectively,
and obtains raw data. The performance evaluation framework has been realized with
MATLAB and database integration and is called after simulation to compute the performance
numbers, which should assess the Catallactic approach.

In the practical development of the performance measurement infrastructure it was found that
some of the proposed metrics are difficult to obtain in the prototype, like the number of hops
and latency, due to the selected tools and mechanisms with which the prototype has been
realized. We also noticed that in the simulator a few metrics are only meaningful in a
particular scenario, like discovery time in the decentralized case, while in the centralized case
the discovery function is not part of the mechanism.

Experiments with the developed simulator and prototype are need in order to fine tune in
another iteration the performance measurement infrastructure. The experiments will both
provide the performance results for the Catallactic mechanism but also provide feedback on
which metrics form the devised pyramid will allow us need particular focus for this
evaluation.

3 Performance evaluation tests with the prototype
Given the developed prototype (see deliverable WP3 of year 2) and the implemented
measurement infrastructure and evaluation framework, we have carried out test runs to apply
all these components togehter. These test runs had the main purpose to assure that the
components work correctly togehter and are the step just prior to the experiments which
should lead to obtain the performance numbers – given the performance measurment
infrastrucure.

3.1 Experiment set up

We have carried out experiments with the current version of the middleware, allowing a
preliminary performance assessment of the Grid Market Middleware (GMM).

The goal of the experiments is to evaluate the autonomic behaviour of the GMM in terms of
self-organisation, given by decentralized resource discovery and by adaptation to load and
capacity of the resources.

 20

For these experiments we have used as economic agents an implementation of the ZIP (Zero
Intelligence Plus) agents discussed in, which use a gradient algorithm to set the price for
resources. Clients initiate negotiations with a price lower than the available budget. If they are
not able to buy at that price, they increase their bids until either they win or reach the budget
limit.

Services start selling the resources at a price, which is solely influenced by the node's
utilization, following the pricing model presented in year 2’s deliverable of WP3. Services get
involved in negotiations and the price will also be influenced by demand. If a Service agent is
selling its resources, it will increase the price to test to what extend the market is willing to
pay. When it no longer sells, it will lower the price until it becomes competitive again or it
reaches a minimum price defined by the current utilization of the resource.

In order to test the performance of the market based resource allocation mechanism, we setup
controlled experiments deploying several instances of the middleware in a Linux server farm.
Each node has 2 CPU Intel PIII 1 GHz and 512 MB of memory. The nodes in the server farm
are connected by an internal Ethernet network at 100Mps.

We deploy GMM and the Web Services on six nodes (named arvei-7 to arvei-12). On each
node we also deploy a Web Service, which performs a CPU intensive calculation on the
machines, increasing load. These Web Services are exposed in a Tomcat server. Access to
execute these Web Services on the Resources is what will be negotiated by the services and
the clients.

The experiments consist in launching 2 clients concurrently from 2 other nodes, which are not
running the Web Services. Each client performs 50 requests, in intervals of 10 seconds.
Whenever a client wins a bid with a service, it invokes the Web Service in the selected node.
The complete experiment runs for about 10 minutes. We generate a baseline load on three
nodes (arvei-10, arvei-.11 and arvei-23) of 25% of CPU usage to simulate some background
activity, how is generated is explained in deliverable 3.2. Also to better test autonomic load
balancing, we artificially stressed one of the nodes (arvei-10) up to 95-100% of CPU usage
for a short time during the experiment.

 21

CSCSCSCS
CS

WS-Client
WS-Client

WS-Client
WS-Client

J48WS

BS

J48WS

Arvei-8

J48WS

BS

J48WS

Arvei-9

J48WS

BS

J48WS

Arvei-7

CSCSCSCS
CS

J48WS

BS

J48WS

Arvei-10
J48WS

BS

J48WS

Arvei-11

J48WS

BS

J48WS

Arvei-12

Arvei-6

Arvei-5

WS-Client
WS-Client

WS-Client
WS-Client

Figure 6. Experimental setup.

3.2 Results and discussion
The data obtained with the performance evaluation infrastructure in the experiment has been
passed to the evaluation framework, which implements the metrics pyramid layers. The
purpose is to carry out a test of the complete components developed for the performance
evaluation.

The data used as inputs for the evaluation is the following:

1. allocation: an entry by each successful negotiation for a Basic Service, reported by the
Complex Service
2. price: a periodic report of the price done by Basic Services
3. utilization: a periodic report of the CPU utilization done by the Resource
agents, as a fraction (0.0 to 1.0)
4. negotiation.time: time needed to negotiate for a Basic Service, reported
by the Complex Service (in milliseconds)
5. execution.time: time needed to actually execute the service, reported by
the Complex Service (in milliseconds)

Each metric follows the following format:

 22

Timestamp, a long with the time stamp of the metric generation;
Node where the metric was issued;
Agent that generated the metric;
Name of the metric;
Value of the metric;

Table 8. Adaption.

Available data Referred metric
price satisfaction
execution.time provisioning.time
negotiation negotiation.time
utilization resource.usage

The data used is mixed in nature because it is collected periodically (price and utilization) or
after each successful transaction (execution.time, negotiation.time and allocation). In section
2.2, the major evaluation process requirements and those met by the actual dataset are shown.

In year one’s deliverable of WP4 the features that data should have are shown. Essentially,
each data for each technical metric is referring to a single transaction and it has to be collected
by the agent interested in it (CS, BS, RS). In this respect, price and utilization data are
collected periodically and independently by each transaction, giving a number of observation
respectively of 943 and 856, while execution.time, negotiation.time, and allocation are 100-
observations dataset and are collected each of them by the CSs.

As can bee seen in Table 8 much of the input data, as established in the metric pyramid, is not
available and for the data considered here there was some difficulties to adapt it to the original
schema. In the table the adaptation of data with respect the original schema is shown. For
what price concerns (satisfaction mapping), the quality data that define the satisfaction ratio is
missing (see deliverable WP4 Y1 for the context of this metric). It has been supposed that
quality, measured as average response time, is equal for each transaction and of 30
milliseconds. Furthermore, as a correspondence between agents misses, in order to get the
price corresponding each transaction, the closer “execution” observation has been collected.
To achieve this goal, the time stamp of execution and price has been matched. The
computation works as follow: the first price data that has been collected after the execution
data time stamp has been considered. Repeating the above procedure for each execution time,
a 100-observation data set both for price and utilization it has been extracted. The following
step is to calculate the first aggregation level, which contemplates the construction of a
normalized metrics set. In particular, the access.time metric as the sum of execution and
negotiation.time is calculated.

To normalize the sum it has been applied the following metric:

n.time)negotiatio.time(executionβ-etime.access +=

where 0.00005 β = is a parameter choose arbitrarily.
Once obtained the final data set, it is possible to evaluate the economic metrics: satisfaction,
access.time and resource.usage. Finally, On.Demand.availability (ODM) and
Infrastructure.costs (IC) are calculated as follow

 23

onsatisfactitime.accessODM +=

usage.resourceIC =

and, applying the mean and standard deviation of both the metrics on the right side of
equation, as in deliverable WP4 Y1, we obtain the inputs for the final index, where the results
are shown in Table 9.

()[] () () () usage.resource
2

usage.resource
2

time.access
2

sat.agent
22

sat.agenttime.access βμβσσ21αμμ21-1αL +++++=

Table 9. Results.

Metric Value
L 0.43508

sageresource.uσ 0.32025

 sageresource.uμ 0.48686

eaccess.timσ 0.013218

agent.satσ 0.015615

agent.satμ 0.46295

 eaccess.timμ 0.080522
α 0.5
β 0.5

The metric (mean) values in Table 9 close to 0 means that the system for the related metric
works well while the metric (st.deviation) values close to zero means that the dispersion
around the mean value is low and the again the system works well. However, one experiment
is not sufficient to say more. The metrics framework can be confirmed to work well when it
has been tested in many experiment, and when many different parameter settings have been
compared.

4 Summary and future work
The developped performance measuresment infrastructure has built on the metrics pyramid
devised from a theoretical point of view during the first year of the proyect.

In this second year, in parallel to the ongoing development of the simulator and prototype, a
performance measurement infrastructure has been developped. This infrastructure counts with
tools to faciliate the configuration of experiments, components to measure and components to
provide raw data.

In order to transform the raw data into aggregate values, a evaluation framework which uses
databases and relies on MATLAB routines has been implemented. This framework is
expected to ease and accelerate the process of obtaining performance results form the
experiments in a fairly automatic way.

Initial experiments where the performance measuring infrastructure has been used together
with the evalution framework have been carried out. This step focussed on the testing of the

 24

deveolpped components, verify if they work together correctly, and is prior to the obtention of
performance numbers.

The practical developement and implementation of components has lead to new insight into
the theoretically devised year one’s performance pyramid. The feasibility of some of the
proposed metrics has been confirmed, but it was also found that others are not easily
obtainable in all scenarios or limited to the simulator or prototype only.

The stabilization of the developped simulator and prototype in year 3 should allow obtaining
performance numbers for the Catallactic mechanisms. This task will also allow to fine tune
the performance measuring metrics and the developped infrasture.

5 References

[ACC+05] O. Ardaiz, P. Chacin, I. Chao, F. Freitag, L. Navarro, “An Architecture for

Incorporating Decentralized Economic Models in Application Layer Networks”,
Internacional Workshop in Smart Grid Technologies within AAMAS, Utrecht,
Netherland, July 2005.

[Diet05] Diet Agents Platform, December 2005, http://diet-agents.sourceforge.net/

[ERA+03] T. Eymann, M. Reinickke, O. Ardaiz, P. Artigas, F. Freitag, L. Navarro, “Self-

organizing resource allocation for autonomic network”, Proceedings. 14th
International Workshop on Database and Expert Systems Applications, Germany,
656- 660, Prague, Chech Republic, 2003.

[FLC02] F. Freitag, J. Caubet, J. Labarta, “On the Scalablitiy of Tracing Mechanisms”. Euro-

Par, Paderborn, Germany, August 2002.

[Glob05] Globus Toolkit, December 2005, http://www.globus.org/

[JRA+05]L Joita, O Rana, O Ardaiz, P Chacin, I Chao, F Freitag, L Navarro, “Application

Deployment using Catallactic Grid Middleware”, 3rd International Workshop on
Middleware for Grid Computing, Grenoble, France, November 2005.

[Jxta05] Project JXTA, December 2005, http://www.jxta.org/

[LHF04] K. Lai, B. A. Huberman, and L. Fine, “Tycoon: A Distributed Market-based

Resource Allocation System,” HP Lab, Palo Alto, Technical Report cs.DC/0404013,
Apr. 2004

[MCC04] Matthew L. Massie, Brent N. Chun, and David E. Culler, “The Ganglia Distributed

Monitoring System: Design, Implementation, and Experience”. Parallel Computing,
Vol. 30, Issue 7, July 2004.

[Plan06] PlanetLab. http://www.planet-lab.org/

 25

6 ANNEX I

Documentation of the MATLAB GUI for CATNETS
Evaluation Process

1 Introduction

This is documentation for Matlab scripts involving a first attempt to develop a platform corresponding
to the evaluation process of the CATNETS project. In the future, the data of the simulator and
prototype will be inputs of the same scripts. In this documentation the following goals are addressed:

• produce artificial technical metrics
• evaluate intermediate indicators
• calculate aggregated index
• write into the technical metrics a database
• read the technical metrics as tables from a database
• manage Sql queries on the technical metrics

In the following document, the above issues are addressed and the intermediate and final outputs
regarding the procedures/scripts implemented in Matlab are shown.

1.1 General overview

The evaluation process is visualized in Figure 5 of section 'Evaluation framework design and
implementation'. The first step is to get data as inputs, like artificial technical metrics or actual metrics.
The second step is to evaluate the economic metrics layer and the higher level metrics. The third step
is to perform a selection with some criteria of the economic metrics. The process finishes with storing
the data selected in a single database.

To achieve the functions comprised in the above steps it is convenient to automate the whole process.
The best way is to use an application working with a database. For this purposes two scripts called
GenTables, which perform an artificial generation of technical metrics, and CatnetsValue, which
perform the evaluation process, are available. Both scripts are built upon the database and the GUI
(graphical user interface) toolboxes available for Matlab, in order to manage easy and automatically
the evaluation process. GenTables script accept as inputs the number of agents (Complex Services,
Basic Services and Resources), and provide as output the data in the same schema as tables 2-3-4-5-6
in section 'Evaluation framework design and implementation', storing it in a database using a given
ODBC or JDBC connection. The behaviour of CatnetsValue is more complex because it reads the
technical metrics data stored in the tables provided by GenTables and it creates a final table and stores
the economic metrics following the general pyramid layer schema (see Figure 2 of section 2).

 26

Figure A.1: databases available in MySql.

2 How to set database connection for ODBC MySql platform

The Database Toolbox, and therefore GenTables and CatnetsValue, supports the import and export of
data from any ODBC/JDBC-compliant database management system. The database system used is
MySql. So in order to follow the instruction below MySql 5.0 version or above is needed.

In order to perform a SQL operation on data, the setting of a database connection is needed. At the
moment, the scripts are set for being connected to the database ‘catnets’. The general command in
Matlab to perform the connection is

conn=database('databaseSourceName','username','password');

so the actual command in the code is

conn=database('catnets','','');

Furthermore, to perform the connection a database connection for the MySql database with database
source name “catnets”2 is established.

Once the database connection has been created, the next step is to create a new database called
'catnets'. Start the MySql command line client and type

create database catnets;

to see the result type the command “show databases;” and the list of available databases should state
as in Figure A.1.

2 To set the connection follow the instructions in the official reference manual available at
http://downloads.mysql.com/docs/refman-5.0-en.a4.pdf#search=%22refman-5.0-en.a4.pdf%22

 27

Figure A.2: GenTables GUI

2 Install and run GUI

Once the 'empty' database is ready, the scripts can be used. Save the package into a directory; select in
Matlab as “current directory” the directory where the package is installed, and type ’gentables’ on the
Matlab command window. Now, a GUI as in Figure A.2 should open and you should be ready to
work.

3 Artificial technical metrics

In order to grant the future evaluation process for CATNETS project, we want to develop a procedure
in Matlab, which is robust, corresponding to the methodological approach developed into deliverables
and preliminary discussions. As we have not yet a set of data coming from the simulator and prototype
experiments, we need to simulate the evaluation process starting with artificial data. Figure A.2 shows
the mask enabling the user to input the number of agents (complex service, basic service and
resources) and the number of the experiment. Each experiment is run with the agent number set and
comprises the same set of artificial technical metrics. When the scripts run, no topology and
interaction of agents is taken into account. Each technical metrics is obtained drawing a random
number from a uniform distribution with arbitrarily support. For example, the “Number of Demand
Requests” data is obtained setting a support equal to 20; meaning that the maximum value for each
agent of launched discovery processes until the contract is achieved is at maximum set to be 20. The
scripts extract randomly the metrics with respect to the unity of measurement (i.e. integer, real or time
format) and the interval of definition (i.e. comprised between [0,1]).

Figure A.2 shows an example: Set the input as in Figure A.2, and set the number of complex services,
basic services and resources equal to 5 and the number of experiment equal to 10. Then click on the
Start button. Now, for each agent the scripts draw a random number and if it's lower than a certain
probability p, then the agents perform a transaction and related artificial technical metrics are produced

 28

and stored in the tables. Then the metrics are imported and written into the database 'catnets' with the
following tables:

• Transactions Table, corresponding to Table 2
• Experiment Table, corresponding to Table 3
• Usage Table, corresponding to Table 4
• Distance Table, corresponding to Table 5

To see the list of tables created type on the MySql command line client (Figure A.3):

show tables;

and to see the content of table experiment type (Figure A.4):

select * from experiment;

Figure A.3: Tables storing artificial technical metrics

Figure A.4: Experiment Table data

 29

Figure A.5: CatnetsValue GUI

4 Economic metrics

Now we can start the CatnetsValue GUI typing into the command window ’catnetsvalue’. The result
should be as in Figure A.5. The CatnetsValue procedure evaluates the economic metrics, write them
into a table called 'metric', and perform a selection of data, on which the evaluation procedures could
be carried out.

To evaluate globally the economic metrics, push the 'Write' button. The evaluation of the economic
layer metrics is performed for each experiment. Furthermore, an insert operation is performed and
each record collects the metrics for each experiment. To see the result type on the Mysql command
line client

select * from metrics;

 30

and the table content should be like that in figure A.13 (see last page of this annex).

In order to perform an evaluation process on a subset of data it could be possible to perform an SQL
'select' operation with any criteria and save it as a new table. When CatnetsValue is started the
database available for the connection populates the listbox 'Database'. In this case there are the catnets
and information schema databases in the listbox. Click twice on the former and click on the 'Import
Database' button. The second listbox will be populated by the tables present in the database. In this
case the tables are distance, experiment, transactions and usa as in Figure A.6.

Figure A.6: Import tables function

To observe the structure of one table click on the 'distance' and the column names, which populates the
third, listbox as in figure A.7.

Figure A.7: Import table data function

Click twice on one item in the listbox 'Fields' (Receiver_agent in the figure A.8) and the SQL
command select all Receiver_agent from distance (figure A.9) is generated.

 31

Figure A.8: Receiver_agent field selection

Figure A.9: edit box SQL command

Figure A.10: Where condition setting

 32

5 Multiple Fields selection, where clauses and export

In the section A.4 a simple selection operation is shown. In order to perform more complex
operations, CatnetValue allows to do a selection on multiple fields and restrict the selection
with a 'where criterion'. The simplest example is to select the metrics from each tables with
experiment id = 1, i.e select a subset of artificial technical metrics coming from the
experiment with id 1. The user has to write into the edit box of the CatnetValue the selection
command. The SQL command will appear in the edit box following this example. Leave the
Toggle button "Where Condition" un-pressed, and select the ''Distance'' table. Now the third
list box is populated by the fields name list of the table ''Distance''. Select the "Sender_Agent"
Field into the third listbox. The result is the print into the edit box of the SQL query ''select all
Sender_agent from distance''. Note that this SQL command does not have WHERE clause.
Before introducing it, note that you can manually edit the SQL command or cancel it.
Moreover you can include more tables into the selection operation. For example, select two
tables, for example Distance and Experiment. Now the result is the presence of the list
Distance.exp_id, Distance.Sender_agent,, Experiment.exp_id,......, Experiment.end_t in the
last listbox (fields). If you select Experiment.exp_id fields, while the result in edit box
is:"select all Experiment.exp_id from Distance,Experiment".

Now, if you wish to include the WHERE condition, push the toggle button "Where
condition". While it is pushed, it is not possible to alter the SQL command selection, doing
new selection on the listbox Tables. Being the WHERE condition button pushed down, select
''Experiment'' in the listbox Tables and “exp_id” from the ''Fields'' listbox. Choose the sign
''='' from the popupmenu ''Sign''; type ''1'' into the ''value'' edit box. Select the operator
''NONE'' from the popupmenu ''Operator''; Push the button ''apply'', into the list box will
appear the sentence '' where Exp.id = 1''. Now push the button '' OK''. Then you shall have the
sentence ''select all Sender_agent from distance where exp_id =1''.

Finally, you are ready to export the selection into the database. This is done by typing the
name of the table into the edit box ''name'' (type in the name edit box 'selection') click on
''export'' button and the result is a new table into the Tables database with number and names
of columns resulting from the selection query (see figure A.10 for the above instruction). To
see the results type in the Mysql command line client:

show tables;

and

select * from selection;

The results are in figures A.11 and A.12.

 33

Figure A.11: 'Selection' table

Figure A.12: Selection table content

 34

Figure A.13: 'Metrics' table; economic metrics for 10 experiments, 15 agents.

ISSN

	Nummer: No. 14
	Datum: 2006
	Autoren: Oscar Ardaiz, Michele Catalano, Pablo Chacin, Isaac Chao, Juan Carlos Cruellas, Felix Freitag, Manuel Medina, Leandro Navarro, Miguel Valero (Universidad Polytecnica de Catalunya), Liviu Joita, Omer F. Rana (Cardiff University), Björn Schnizler (University of Karlsruhe), Torsten Eymann (University of Bayreuth)

	Titel: Performance Evaluation - Annual Report Year 2
	ISSN: ISSN
	Nr: 1864-9300
	authors: Oscar Ardaiz, Michele Catalano, Pablo Chacin, Isaac Chao, Juan Carlos Cruellas, Felix Freitag, Manuel Medina, Leandro Navarro, Miguel Valero (Universidad Polytecnica de Catalunya), Liviu Joita, Omer F. Rana (Cardiff University), Björn Schnizler (University of Karlsruhe), Torsten Eymann (University of Bayreuth)
	ISSN number: 1864-9300
	abstract: In this paper a performance measuring infrastructure,developed for the prototype and
simulator, concering the experiment configuration, data measurement, and data collection, is presented. A corresponding performance evaluation framework is defined to obtain the metrics from the measured data. Initial experiments were carried out to test the developed prototype, simulator and the performance measuring infrastructure.

	issn number: 1864-9300

