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Shifts in vegetation activity of terrestrial 
ecosystems attributable to climate trends

Steven I. Higgins      , Timo Conradi     & Edward Muhoko    

Climate change is expected to impact the functioning of the entire  
Earth system. However, detecting changes in ecosystem dynamics 
and attributing such change to anthropogenic climate change has 
proved difficult. Here we analyse the vegetation dynamics of 100 sites 
representative of the diversity of terrestrial ecosystem types using 
remote-sensing data spanning the past 40 years and a dynamic model 
of plant growth, forced by climate reanalysis data. We detect a change 
in vegetation activity for all ecosystem types and find these changes can 
be attributed to trends in climate-system parameters. Ecosystems in dry 
and warm locations responded primarily to changes in soil moisture, 
whereas ecosystems in cooler locations responded primarily to changes 
in temperature. We find that the effects of CO2 fertilization on vegetation 
are limited, potentially due to masking by other environmental drivers. 
Observed trend switching is widespread and dominated by shifts from 
greening to browning, suggesting many of the ecosystems studied are 
accumulating less carbon. Our study reveals a clear fingerprint of  
climate change in the change exhibited by terrestrial ecosystems over  
recent decades.

Climate change is impacting the structure and functioning of terres-
trial ecosystems1–6. Detecting this change and attributing it to climate 
change is a major research challenge in Earth systems science7. Detec-
tion is difficult because signals in the data can be diluted by the stochas-
ticity inherent in the system, the short length of available time series, 
errors in the observation process and the often overriding effect of 
land-use change. Attribution is difficult because ecosystem dynamics 
can be nonlinear and asynchronous and the dynamics are co-limited by 
environmental drivers that are often highly correlated with one another. 
For example, biomass increases that are expected as a consequence 
of enhanced carbon assimilation by elevated atmospheric CO2 con-
centrations may be constrained by water and nutrient availability8–11. 
These difficulties mean that convincing detection and attribution of 
climate change impacts on ecosystems is limited to a small number of 
well-studied systems7.

The most convincing evidence to date for attributing changes in 
ecosystems to climate change comes from the high latitudes where 
temperatures are increasing from the lower thermal limits of multiple 

ecological processes7,12. In such examples, the case for attribution has 
been constructed from experimental, modelling and observational 
lines of evidence derived from multiple studies. Yet it has emerged that 
even in these high-latitude ecosystems, where there is convincing evi-
dence for change, not all instances of these ecosystems have changed 
in the same way13–15. Some cases exhibited greening (an increase  
in vegetation activity), others browning (a decrease in vegetation  
activity), and for yet others, the initially reported trends had to be 
revised as the observation window has expanded in time and space10,14–17.  
This suggests that robust detection and attribution require longer 
time series and assessments at multiple instances of each of the world’s 
major ecosystem types.

Earth observation satellite programmes provide multi-decade 
time series of vegetation activity and allow the monitoring of many 
sites. Previous studies have used Earth observation data to detect 
change in vegetation activity across the entire land surface and 
identified that vegetation change is to some extent sensitive to 
climate-system parameters18–23. However, such complete analyses of 
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and growth processes in the model are co-limited by combinations 
of air and soil temperature, soil moisture, solar radiation and atmos-
pheric CO2

30,35 (Methods). The model’s structure thereby represents 
a hypothesis of how environmental factors co-limit the growth  
of a phytometer.

The first step in our analysis is to use the state-space approach to 
estimate the model parameters for each vegetation index time series 
(Fig. 1a). We then use time-series decomposition methods to identify 
anomalies in the vegetation indices (Fig. 1b) and to generate detrended 
time series of the climate-system forcing data (air and soil temperature, 
soil moisture, solar radiation, atmospheric CO2; Methods). The fitted 
model is then used with the full and detrended climate data to predict 
the observed anomalies in the vegetation indices. To attribute vegeta-
tion trends to trends in the climate-system data, we use the slope of the 
regression (with intercept 0) between observed and modelled anoma-
lies (Fig. 1c). Attribution is diagnosed if the slope of this regression from 
model runs forced by the full climate data (red line in Fig. 1c) is positive 
and clearly higher (no overlap in the credible intervals of the slopes; 
Extended Data Figs. 9a and 10a) than the regression slope from model 
runs forced by climate data with trends removed (blue line in Fig. 1c). 
That is, attribution is diagnosed if trends in climate-system variables 
statistically enhance the ability to predict the observed anomalies in 
the vegetation indices. For cases where attribution is supported, we 
estimate the relative importance of trends in each climate-system vari-
able in explaining the anomalies. This was achieved by assessing the 
change in regression slope induced by separately removing trends in 
each climate-system variable (Fig. 1d). The same analyses were repeated 
using the EVI time series (Extended Data Figs. 4, 9b and 10b).

Widespread shifts from greening to browning
The anomaly trends observed in the satellite vegetation indices 
revealed qualitatively different patterns when interpreted using trend 
analyses. To quantify these different patterns, we used both quad-
ratic polynomials and a bent-cable piecewise linear regression. Both 
approaches allow one to test whether there is a long-term trend and 
whether there has been a shift in this long-term trend. We classified the 
response trends as being (1) hat shaped where trends in the vegetation 
indices increased at first (‘greening’) but later declined (‘browning’), 
(2) cup shaped where trends decreased initially and later increased or 
(3) linear where no change in the sign of the trend was detected. The 
majority of sites illustrated hat-shaped trends, fewer sites illustrated 
cup-shaped trends and only a minority of sites illustrated linear trends 
(Fig. 2 and Extended Data Fig. 5). In the analyses that used the shorter 
EVI time series, the cup-shaped trends were more common than in the 
analyses that used NDVI data (Extended Data Fig. 5). In the NDVI data, 
overall increasing and decreasing vegetation greenness trends were 
almost equally distributed, while in the EVI data, more sites revealed 
increasing trends. Analysing these trends for the common (15 yr) time 
window for which both data products are available revealed similar 
distributions although the EVI data revealed more increasing trends 
than the NDVI data (Extended Data Fig. 6). Despite uncertainty associ-
ated with vegetation index datasets and time-series window (1982–2015 
or 2000–2019), both analyses agreed that nonlinearity dominated 
and that greening trends switching to browning trends was the most 
common pattern in the data.

The dominance of shifts from greening to browning trends in 
vegetation activity detected here contradicts the predominance 
of positive trends previously reported20 but is supported by stud-
ies that have shown negative NDVI and EVI trends36. Hat-shaped 
trend switching has been reported in high-latitude ecosystems 
where initial greening trends attributed to warming have now been 
replaced by browning trends attributed to seasonal water deficits10,37.  
Positive to negative trend switching has also been reported in Amazo-
nian forests, and predictions are that African tropical forests will follow 
suit38. Switching of the kind observed here is in all likelihood driven 

the land surface include pervasive land-use impacts in the data24, which 
may confound climate change and land use as drivers of vegetation 
change. Interpretation is further complicated by the fact that previous 
studies used model-based interpretations of the radiometric data col-
lected by satellites such as net primary productivity (NPP18,21,25), gross 
primary productivity (GPP23,25) and leaf area index (LAI20).

A state-space method for detection and attribution
Deepening our understanding of how ecosystems respond to climate 
change requires a robust detection and attribution methodology that 
addresses the problems highlighted in the previous paragraphs. In this 
study, we develop and apply a new method for detecting and attribut-
ing climate change impacts on terrestrial ecosystems that addresses 
confounding effects of land-use change, biases associated with short 
time series, limitations of correlative methods and ambiguities with 
interpreting NPP, GPP and LAI modelled from satellite-derived data. We 
detect change using high-quality, long-term remotely sensed normal-
ized difference vegetation index (NDVI) and enhanced vegetation index 
(EVI) time series. NDVI and EVI data products are sensitive indicators of 
leaf area and chlorophyll content, and unlike NPP, GPP and LAI products, 
they are based purely on the radiometrically and geometrically cor-
rected measurements made by satellites. The NDVI time series we use 
spans 1981–2015 and was derived from the Advanced Very High Reso-
lution Radiometer (AVHRR) satellite programme as part of the Global 
Inventory Modeling and Mapping Studies (GIMMS) project26,27. The 
EVI dataset we use spans 2000–2019 and is a product of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) programme28. GIMMS 
NDVI provides a longer record, while MODIS EVI offers the opportunity 
to use a vegetation index that does not saturate at high chlorophyll 
situations and is less sensitive to atmospheric and soil contamination28.

To avoid the confounding effects of direct human impacts on 
vegetation, we carefully selected 100 sites, distributed across the major 
ecosystems of the world, where direct land-use impacts are absent 
(Methods). We considered only grid cells (the GIMMS NDVI grid cells 
are 1/12° in size, ~9 km) that show no signs of anthropogenic land trans-
formation in the observation period. We further included only sites 
where the vegetation is relatively homogeneous within the grid cell. The 
MODIS EVI data were resampled to the GIMMS NDVI grid (Methods). 
Our final sample is stratified to include at least five examples of each 
of the major ecosystems of the world. These criteria yielded a total of 
100 sites (Extended Data Figs. 2 and 3) covering tropical evergreen for-
est (RF, n = 16), boreal forest (BF, n = 10), temperate forest (TF, n = 12), 
savannah (SA, n = 18), shrubland (SH, n = 16), grassland (GR, n = 14), 
tundra (TU, n = 9) and Mediterranean-type ecosystems (MT, n = 5).

At each site, we attributed the detected vegetation index change 
to climate-system parameters (soil temperature, air temperature, 
soil moisture, solar radiation, atmospheric CO2 concentration) by 
using a process-based model of plant growth29,30 forced by weekly 
climate-system data. The plant growth model allows us to interpret 
how temporal variation in satellite observations of vegetation indices 
relate to variation in climate-system parameters31,32. A state-space 
modelling framework33 is used to estimate the parameters of the growth 
model from the vegetation index time series. The state-space analysis 
assumes that the remotely sensed NDVI or EVI observations arise from 
an unobserved underlying dynamic process that is represented by the 
plant growth model (Methods). The analysis furthermore treats pro-
cess and observation uncertainty separately, allowing us to account 
for how observation uncertainty related to cloud and snow cover15,18,19 
structures uncertainty in the analysis.

The process model we use29 simulates a single plant that represents 
a virtual phytometer exposed to different environmental conditions; it 
therefore differs from the Dynamic Global Vegetation Models34 used in 
Earth system model attribution studies20,21,23. The simulations focus on 
modelling the plant’s carbon and nitrogen assimilation and, in a sepa-
rate process, how these assimilates influence growth29. Assimilation 
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by interactions between climate-system drivers and internal ecosys-
tem dynamics39, which makes the prediction of future trends highly  
context dependent.

Attribution of vegetation activity change
In 80 (NDVI data) or 75 (EVI data) of the 100 study sites, the model was 
able to explain variation in the observed trends in the vegetation indices 
and attribute this to trends in the climate-forcing data (Extended Data 
Fig. 9). This demonstrates a clear fingerprint of climate change on the 
activity of the world’s ecosystems. A classification of sites according 
to the relative importance of climate-system variables driving vegeta-
tion anomalies yielded two groups that were qualitatively consistent 
between the NDVI and EVI analyses (Fig. 3 and Extended Data Fig. 7). In 
the first group, moisture was the dominant factor explaining anomalies 
in the vegetation data; this group consisted primarily of grassland, 
savannah and shrubland sites. In the second group, vegetation index 
anomalies were explained by a combination of factors, with tempera-
ture often playing a central role; this group consisted primarily of boreal 
forest, temperate forest and tundra sites. It is notable that trends in CO2 
and solar radiation seldom had a dominant influence on the model’s 
ability to predict the observed anomalies in the vegetation indices 
(Fig. 3 and Extended Data Fig. 7). The lack of evidence for dominating 
CO2 effects contradicts a previous study of LAI20 but is consistent with 
analyses that conclude that CO2 enrichment effects on vegetation bio-
mass are conditional on nutrient and water supply8,11, mycorrhiza9 and 
successional stage25 and with studies that suggest that CO2 enrichment 
effects on GPP and biomass accumulation may be weakening as global 
warming progresses10,18,23,38.

Which environmental factors dominated the anomaly response 
was clearly structured in climate space. A discriminant analysis revealed 
that the major groups in Fig. 3 and Extended Data Fig. 7 can be separated 
using mean annual temperature and mean annual soil moisture (Fig. 4a 
and Extended Data Fig. 8a). Sites where anomalies in vegetation indices 
were attributed to anomalies in soil moisture were located in warm and 
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Fig. 1 | NDVI time-series analysis of vegetation activity for a savannah site in 
the Burkina Faso National Park. a, GIMMS NDVI time series of vegetation activity 
(Data) and the process model’s (Model) fit to these data for a savannah site in the 
Burkina Faso National Park. The blue shaded envelope shows the 95% credible 
intervals around the mean model predictions, which includes parameter, process 
and observation uncertainty. b, Anomalies in the NDVI data (blue bars) and the 
fit of a bent-cable regression to these anomalies. The shaded envelope shows the 
95% credible intervals of the bent-cable regression predictions. c, Zero-intercept 

regression showing the model’s ability to predict observed anomalies, with full and 
detrended climate-forcing data. Shaded envelopes show the 95% credible intervals 
of the mean regression line. d, Posterior density of the change in the full model’s 
regression slope (as shown in c) caused by removing trends in a climate-forcing 
variable from the full model; in this example, the ability to predict anomalies was 
sensitive to soil-moisture (Msoil) and soil-temperature (Tsoil) anomalies. Extended 
Data Fig. 4 shows an analogous plot using MODIS EVI data. Tair, air temperature; 
Srad, solar radiation; CO2, atmospheric CO2 concentration.
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the anomalies in NDVI vegetation activity. The number of anomaly trends 
that showed an overall increase or decrease over the time series is indicated 
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models fitted to the anomaly data from each site (for example, Fig. 1b). Similar 
results were found when using a polynomial regression model and EVI data 
(Extended Data Fig. 5).
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dry locations. Sites where a mixture of factors, often dominated by 
temperature, explained anomalies in vegetation indices were centred 
in cooler and moister locations. The 20 (NDVI data) and 25 (EVI data) 
sites where anomalies in the forcing data could not explain vegetation 
index anomalies were centred in warmer and moister locations (sites 
labelled 0 in Fig. 4 and Extended Data Fig. 8); indeed, the majority of 
tropical rainforest sites were in this group.

In general, these findings are consistent with fundamental eco-
logical premises that warm and dry ecosystems are water limited and 
that cooler ecosystems are more likely to be temperature limited. 
What is perhaps unexpected was that changes in vegetation indices 
in ecosystems in warm and moist locations could not be attributed to 
changes in a third factor, such as atmospheric CO2. However, we would 
also expect our method to have lower statistical power in environments 
with low seasonal and interannual variation in vegetation activity 
simply because these situations yield vegetation index time series 
with lower information content. This is particularly true for the NDVI 
analysis since NDVI is known to saturate at the LAIs typical of tropical 
forests. Furthermore, moist tropical regions are often phosphorus lim-
ited40, which may constrain the ability of such ecosystems to respond 
to elevated CO2 (ref. 9).

The shape of the vegetation response and whether the response is 
increasing or decreasing over time (as summarized in Fig. 2) were not 
clearly structured in environmental space (Fig. 4 and Extended Data 
Fig. 8). The complexity in these patterns is consistent with modelling 
studies that predicted that transitions in ecosystem behaviour will 
occur at different points in time for different geographic locations41 
and with remote-sensing and field studies that have reported both 
increasing and decreasing vegetation responses within regions and 
observation time windows14,16,17,38.

Co-limiting drivers of change
Overall, we have detected change in indices of vegetation activity 
in all terrestrial ecosystem types, and in the majority of cases stud-
ied (80% for the NDVI analysis and 75% for the EVI analysis) we were 
able to attribute observed changes in vegetation indices to trends in 
climate-system variables. Temperature and moisture trends explained 
most of the variation, whereas increasing CO2 and changes in surface 
solar radiation were seldom important. The apparent insensitivity 
of vegetation to CO2 is due to co-limitation processes in the growth 
model that allow the model to accommodate no increases in plant 
biomass despite increasing potential carbon assimilation caused by 
increasing atmospheric CO2. For example, in the model, elevated CO2 

allows for higher potential rates of carbon assimilation, but decreases 
in soil moisture can prevent this potential carbon assimilation from 
being realized. In addition, the model can represent that higher carbon 
assimilation will not lead to enhanced growth as long as one of nitrogen, 
temperature and soil moisture is limiting. Analogous co-limitation 
pathways allow the model to simulate situations in high latitudes where 
increasing temperatures promote growth, yet increasing water deficits  
retard growth12,42.

The dominance of hat-shaped responses in the vegetation indices 
analysed here suggests that terrestrial ecosystems, which have been a 
valuable carbon sink in recent decades6, may sequester less carbon in 
coming decades10,18,23,38. However, NDVI and EVI provide an incomplete 
picture of ecosystem carbon sequestration43. This is because NDVI 
and EVI, although sensitive to changes in the fraction of photosyn-
thetically active radiation that is absorbed by leaves, are less sensitive 
to how efficiently this fraction is translated into assimilated carbon 
(light use efficiency (LUE))43. It follows that both the NDVI and EVI 
data may poorly represent changes in LUE, which is known to increase 
with elevated CO2

44. Plants that invest the spoils of increased LUE in 
root growth, defence, mutualisms or reproduction may therefore 
go undetected in our analysis. This incomplete picture of vegetation 
carbon dynamics could be improved by considering additional data 
sources. For example, satellite-based observations of chlorophyll 
fluorescence provide new opportunities for estimating LUE43,45, allow-
ing the separation of carbon assimilation from leaf area dynamics46. 
The state-space model used here could be expanded to simultane-
ously model a fraction of absorbed photosynthetically active radiation 
index (EVI or NDVI) from the process model’s biomass and a LUE index 
(for example, solar-induced fluorescence) from the model’s carbon 
assimilation. This would further constrain the model’s parameter 
estimates and allow attribution of both biomass and GPP trends to  
climate-system variables.

Dealing with climate change is at minimum a three-step process: 
detection, attribution and adaptation/mitigation. We have illustrated 
a generally applicable method for detection and attribution of cli-
mate change impacts on the world’s major terrestrial ecosystems. 
In this study, we detected that many ecosystems are on hat-shaped 
trajectories, where initial greening trends have switched to browning 
trends, suggesting that the majority of the ecosystems studied here 
may be accumulating less leaf biomass and potentially less carbon 
than they did previously. The detection and attribution methodology 
may help adaptation and mitigation strategists better understand 
the trajectories that ecosystems are on. In particular, our analyses 

CO2
Srad
Msoil

Tsoil

Tair

BF
−C

AN
−B

G
R

BF
−C

AN
−P

IP
BF

−C
AN

−S
TR

BF
−C

AN
−U

LI
BF

−C
AN

−W
AB

BF
−R

U
S−

KR
S

BF
−R

U
S−

M
IR

BF
−R

U
S−

O
C

H
BF

−R
U

S−
SC

H
BF

−U
SA

−A
LS

G
R−

KA
Z−

TE
N

G
R−

LS
O

−L
ET

G
R−

M
O

N
−M

O
N

G
R−

PE
R−

PI
U

G
R−

TI
B−

N
AG

G
R−

U
SA

−L
IT

M
T−

C
H

L−
Q

U
E

RF
−B

AR
−E

N
V

RF
−B

RA
−P

AR
RF

−G
U

F−
G

U
Y

SA
−A

U
S−

M
IT

SA
−C

AF
−M

M
M

SH
−A

RG
−E

LT
SH

−B
RA

−C
AA

SH
−B

RA
−C

H
A

SH
−K

AZ
−A

PP
TF

−A
U

S−
D

ED
TF

−C
AN

−V
AN

TF
−G

RC
−R

H
O

TF
−J

PN
−E

C
H

TF
−J

PN
−M

IO
TF

−R
U

S−
SR

E
TF

−R
U

S−
YU

Z
TF

−U
SA

−C
RA

TF
−U

SA
−G

RE
TF

−U
SA

−L
O

G
TU

−C
AN

−B
AT

TU
−C

AN
−P

IN
TU

−C
AN

−P
O

L
TU

−C
AN

−T
U

K
TU

−C
AN

−U
KK

TU
−N

O
R−

FN
M

TU
−R

U
S−

KA
R

TU
−R

U
S−

PU
R

TU
−R

U
S−

SK
I

G
R−

AR
G

−B
EL

G
R−

AR
G

−C
AM

G
R−

AR
G

−P
AT

G
R−

AU
S−

C
AM

G
R−

BR
A−

EN
V

G
R−

N
AM

−E
TO

G
R−

TZ
A−

SE
R

M
T−

AU
S−

BI
G

M
T−

C
H

L−
EL

T
SA

−A
G

O
−I

N
T

SA
−A

G
O

−M
AV

SA
−A

U
S−

C
O

L
SA

−A
U

S−
KA

K
SA

−B
FA

−B
N

P
SA

−B
RA

−A
RA

SA
−B

W
A−

C
H

O
SA

−M
O

Z−
C

O
U

SA
−M

O
Z−

M
EC

SA
−N

AM
−K

H
A

SA
−S

EN
−M

AT
SA

−Z
AF

−M
O

P
SA

−Z
M

B−
LU

P
SA

−Z
M

B−
M

IO
SA

−Z
M

B−
TO

N
SH

−B
O

L−
C

H
A

SH
−B

RA
−S

C
O

SH
−B

W
A−

C
EN

SH
−B

W
A−

KA
L

SH
−M

EX
−D

EL
SH

−M
EX

−P
O

R
SH

−M
EX

−S
AN

SH
−M

EX
−T

EH
SH

−N
AM

−O
ZO

SH
−S

SD
−L

O
E

SH
−U

SA
−J

U
N

0

0.5

1.0

Sl
op

e

0

0.5

1.0E�
ec

t o
n

sl
op

e

Fig. 3 | Sensitivity of NDVI vegetation anomalies to climate anomalies. The 
sensitivity is quantified as the effect of each of five forcing factors (Tair, Tsoil, 
Msoil, Srad and CO2) on the slope, describing the ability of the model to predict 
anomalies in the NDVI vegetation activity time series (compare Fig. 1). The slope 
of the full model is represented by the red colour ramp. Shown in the matrix are 
the 80 of 100 sites where anomalies in vegetation activity could be attributed to 
the environmental-forcing factors. The coloured circles indicate the response 

groups the sites are assigned to by an unsupervised classification of the sites 
by the effects of the five forcing factors on the slope. The site codes indicate 
ecosystem type (BF = boreal forest, GR = grassland, MT = Mediterranean-type 
ecosystems, RF = tropical evergreen forest, SA = savanna, SH = shrubland,  
TF = temperate forest, TU = tundra.), ISO 3166-1 alpha-3 country codes and  
a unique site identifier code. See Extended Data Fig. 7 for the same analysis  
using EVI data.
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classified in Fig. 3. The ellipses represent the fitted covariance estimates of 
the classes as estimated by discriminant analysis based on Gaussian finite 

mixture modelling. b,c, The shape (b) and direction (c) of the anomaly response 
(as defined in Fig. 2) plotted in bivariate climate space. The mean annual 
temperature and mean annual soil moisture were calculated over the study 
period using the ERA5-Land reanalysis data (European Centre for Medium-Range 
Weather Forecasts Reanalysis v. 5). d–f, The points in panels a (d), b (e) and c (f) 
plotted in geographic space. See Extended Data Fig. 8 for the same analysis  
using EVI data.
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revealed geographic coherence as to which environmental drivers are 
driving change, which may help the design of ecosystem restoration 
programmes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41561-022-01114-x.
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Methods
Plant growth model without environmental forcing
The model without environmental forcing closely follows the original 
description of the Thornley transport resistance (TTR) model29. A sum-
mary of the model parameters is provided in Supplementary Table 2. 
The shoot and root mass pools (MS and MR, in kg structural dry matter) 
change as a function of growth and loss (equations (1) and (2)). The litter 
(kL) and maintenance respiration (r) loss rates (in kg kg−1 d−1) are treated 
as constants. In the original model description29 r = 0. The parameter 
KM (units kg) describes how loss varies with mass (MS or MR). Growth 
(Gs and Gr, in kg d−1) varies as a function of the carbon and nitrogen con-
centrations (equations (3) and (4)). CS, CR, NS and NR are the amounts 
(kg) of carbon and nitrogen in the roots and shoots. These assumptions 
yield the following equations for shoot and root dry matter,

MS[t + 1] = MS[t] + GS[t] −
(kL + r)MS[t]

1 + KM

MS[t]

, (1)

MR[t + 1] = MR[t] + GR[t] −
(kL + r)MR[t]

1 + KM

MR[t]

, (2)

where GS and GR are

GS = gCS × NS
MS , (3)

GR = gCR × NR
MR , (4)

and g is the growth coefficient (in kg kg−1 d−1).
Carbon uptake UC is determined by the net photosynthetic rate 

(a, in kg kg−1 d−1) and the shoot mass (equation (5)). Similarly, nitrogen 
uptake (UN) is determined by the nitrogen uptake rate (b, in kg kg−1 d−1) 
and the root mass. The parameter KA (units kg) forces both photosyn-
thesis and nitrogen uptake to be asymptotic with mass. The second 
terms in the denominators of equations (5) and (6) model product 
inhibitions of carbon and nitrogen uptake, respectively; that is, the 
parameters JC and JN (in kg kg−1) mimic the inhibition of source activity 
when substrate concentrations are high,

UC =
aMS

(1 + MS
KA
) (1 + CS

MS×JC
)
, (5)

UN = bMR
(1 + MR

KA
) (1 + NR

MR×JN
)
. (6)

The substrate transport fluxes of C and N (τC and τN, in kg d−1) between 
roots and shoots are determined by the concentration gradients 
between root and shoot and by the resistances. In the original model 
description29, these resistances are defined flexibly, but we simplify 
and assume that they scale linearly with plant mass,

τC =
MS ×MR
MS +MR ( CSMS − CR

MR ) (7)

τN = MS ×MR
MS +MR ( NRMR − NS

MS ) (8)

The changes in mass of carbon and nitrogen in the roots and shoots 
are then

CS[t + 1] = CS[t] + UC[t] − fCGs[t] − τC[t] (9)

CR[t + 1] = CR[t] + τC[t] − fCGr[t] (10)

NS[t + 1] = NS[t] + τN[t] − fNGs[t] (11)

NR[t + 1] = NR[t] + UN[t] − fNGr[t] − τN[t] (12)

where fC and fN (in kg kg−1) are the fractions of structural carbon and 
nitrogen in dry matter.

Adding environmental forcing to the plant growth model
In this section, we describe how the net photosynthetic rate (a), the 
nitrogen uptake rate (b), the growth rate (g) and the respiration rate (r) 
are influenced by environmental-forcing factors. These environmental- 
forcing effects are described in equations (13)–(17) and summarized 
graphically in Extended Data Fig. 1. All other model parameters are 
treated as constants. Previous work that implemented the TTR model 
as a species distribution model30 is used as a starting point for add-
ing environmental forcing. As in this previous work30, we assume 
that parameters a, b and g are co-limited by environmental factors 
in a manner analogous to Liebig’s law of the minimum, which is a 
crude but pragmatic abstraction. The implementation here differs  
in some details.

Unlike previous work30, we use the Farquhar model of photosyn-
thesis47,48 to represent how solar radiation, atmospheric CO2 concen-
tration and air temperature co-limit photosynthesis35. We assume that 
the Farquhar model parameters are universal and that all vegetation 
in our study uses the C3 photosynthetic pathway. The Farquhar model 
photosynthetic rates are rescaled to [0,amax] to yield afqr. The effects of 
soil moisture (Msoil) on photosynthesis are represented as an increasing 

step function S(Msoil,β1,β2) = max {min (Msoil−β1

β2−β1
, 1) ,0} . This allows us 

to redefine a as,

a = afqr S(Msoil,β1,β2) (13)

The processes influencing nitrogen availability are complex, and 
global data products on plant available nitrogen are uncertain. We 
therefore assume that nitrogen uptake will vary with soil temperature 
and soil moisture. That is, the nitrogen uptake rate b is assumed to 
have a maximum rate (bmax) that is co-limited by soil temperature Tsoil 
and soil moisture Msoil,

b = bmax S(Tsoil,β3,β4) Z(Msoil,β5,β6,β7,β8). (14)

In equation (14), we have assumed that the nitrogen uptake  
rate is a simple increasing and saturating function of temperature.  
We have also assumed that the nitrogen uptake rate is a trapezoidal 
function of soil moisture with low uptake rates in dry soils, higher 
uptake rates at intermediate moisture levels and lower rates once  
soils are so moist as to be waterlogged. The trapezoidal function is 

Z(Msoil,β5,β6,β7,β8) = max {min (Msoil−β5

β6−β5
, 1, β8−Msoil

β8−β7
) ,0}.

The previous sections describe how the assimilation of carbon and 
nitrogen by a plant are influenced by environmental factors. The TTR 
model describes how these assimilate concentrations influence growth 
(equations (3) and (4)). In our implementation, we additionally allow 
the growth rate to be co-limited by temperature (soil temperature, Tsoil) 
and soil moisture (Msoil),

g = gmax Z(Tsoil,β9,β10,β11,β12) S(Msoil,β13,β14). (15)

We use Tsoil since we assume that growth is more closely linked to soil 
temperature, which varies slower than air temperature. The respiration 
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rate (r, equations (1) and (2)) increases as a function of air temperature 
(Tair) to a maximum rmax,

r = rmaxS(Tair,β15,β16). (16)

The parameter r is best interpreted as a maintenance respiration. 
Growth respiration is not explicitly considered; it is implicitly incor-
porated in the growth rate parameter (g, equation (15)), and any tem-
perature dependence in growth respiration is therefore assumed to be 
accommodated by equation (15).

Fire can reduce the structural shoot mass MS as follows,

MS[t + 1] = MS[t](1 − S(F,β17,β18)). (17)

where F is an indicator of fire severity at a point in time (for example,  
burnt area) and the function S(F, β17, β18) allows MS to decrease 
when the fire severity indicator F is high. If F = 0, this process plays 
no role. This fire impact equation was used in preliminary analyses, 
but the data on fire activity did not provide sufficient information 
to estimate β17 and β18; we therefore excluded this process from the  
final analyses.

We further estimate two additional β parameters (βa and βb) so 
that each site can have unique maximum carbon and nitrogen uptake 
rates. Specifically, we redefine a as a′ = βa a and b as b′ = βb b.

Data sources and preparation
To describe vegetation activity, we use the GIMMS 3g v.1 NDVI data26,27 
and the MODIS EVI28 data. The GIMMS data product has been derived 
from the AVHRR satellite programme and controls for atmospheric 
contamination, calibration loss, orbital drift and volcanic eruptions26,27. 
The data provide 24 NDVI raster grids for each year, starting in July 1981 
and ending in December 2015. The spatial resolution is 1/12° (~9 × 9 km). 
The EVI data used are from the MODIS programme’s Terra satellite; it is 
a 1 km data product provided at a 16-day interval. We use data from the 
start of the record (February 2000) to December 2019. The MODIS data 
product (MOD13A2) uses a temporal compositing algorithm to produce 
an estimate every 16 days that filters out atmospheric contamination. 
The EVI is designed to reduce the effects of atmospheric, bare-ground 
and surface water on the vegetation index28.

For environmental forcing, we use the ERA5-Land data31,32 (Euro-
pean Centre for Medium-Range Weather Forecasts Reanalysis v. 5; 
hereafter, ERA5). The ERA5 products are global reanalysis products 
based on hourly estimates of atmospheric variables and extend from 
present back to 1979. The data products are supplied at a variety of spa-
tial and temporal resolutions. We used the monthly averages from 1981 
to 2019 at a 0.1° spatial resolution (~11 km). The ERA5 data provide air 
temperature (2 m surface air temperature), soil temperature (0–7 cm 
soil depth), surface solar radiation and volumetric soil water (0–7 cm 
soil depth). Fire data were taken from the European Space Agency Fire 
Disturbance Climate Change Initiative’s AVHRR Long-Term Data Record 
Grid v.1.0 product49. This product provides gridded (0.25° resolution) 
data of monthly global (from 1982 to 2017) burned area derived from 
the AVHRR satellite programme. As mentioned, the fire data did not 
enrich our analysis, and the analyses we present here therefore exclude 
further consideration of the fire data.

All data were resampled to the GIMMS grid. The mean pixel EVI 
was then calculated for each GIMMS cell for each time point in the 
MODIS EVI data. We used linear interpolation on the NDVI, EVI and ERA5 
environmental-forcing data to estimate each variable on a weekly time 
step. This served to set the time step of the TTR difference equations 
to one week and to synchronize the different time series.

Site selection
The GIMMS grid cells define the spatial resolution of our sample 
points. GIMMS grid cells are large (1/12°, ~9 km), meaning that most 

grid cells contain multiple land-cover types. We focused on wilder-
ness landscapes, and our aim was to find multiple grid cells for the 
major ecosystems of the world. We used the following classifica-
tion of ecosystem types to guide the stratification of our grid-cell 
selection: tropical evergreen forest (RF), boreal forest (BF), temper-
ate evergreen and temperate deciduous forest (TF), savannah (SA), 
shrubland (SH), grassland (GR), tundra (TU) and Mediterranean-type  
ecosystems (MT).

We used the following criteria to select grid cells. (1) Selected grid 
cells should contain relatively homogeneous vegetation. Small-scale 
heterogeneity was allowed (for example, catenas, drainage lines, peat-
lands) as long as many of these elements are repeated in the scene (for 
example, rolling hills were accepted, but elevation gradients were 
rejected). (2) Sites should have no signs of transformative human activ-
ity (for example, tree harvesting, crop cultivation, paved surfaces). 
We used the Time Tool in Google Earth Pro, which provides annual 
satellite imagery of the Earth from 1984 onwards, to ensure that no 
such activity occurred during the observation period (note that the 
GIMMS record starts in July 1981; however, it is likely that evidence of 
transformative activity between July 1981 and 1984 would be visible 
in 1984). Grid cells with extensive livestock holding on non-improved 
pasture were included. In some cases, a small agricultural field or  
pasture was present, and such grid cells were used as long as the field or 
pasture was small and remained constant in size. (3) Grid cells should 
not include large water bodies, but small drainage lines or ponds were 
accepted as long as they did not violate the first criterion. (4) Grid cells 
should be independent (neighbouring grid cells were not selected) and 
cover the major ecosystems of the world. Using these criteria, we were 
able to include 100 sites in the study (Extended Data Figs. 2 and 3 and 
Supplementary Table 4).

State-space model
We used a Bayesian state-space approach. Conceptually, the analysis 
takes the form,

M[t] = f(M[t − 1],βββ,θθθt−1, ϵt−1) (18)

VI[t] = mM[t] + η. (19)

Here M[t] is the plant growth model’s prediction of biomass 
(M = MS + MR) at time t, and ϵt−1 is the process error associated with 
the state variables. In the model, each underlying state variable  
(MS, MR, CS, CR, NS and NR) has an associated process error term. The 
function f(M[t − 1], β, θt−1, ϵt−1) summarizes that the development of 
M is influenced by the state variables MS, MR, CS, CR, NS and NR, the 
environmental-forcing data θt−1 and the β parameters. The observation 
equation (equation (19)) uses the parameter m to link the VI (vegetation 
index, either NDVI or EVI) observations to the modelled state M. The 
parameter η is the observation error. Equation (19) assumes that there 
is a linear relationship between modelled biomass (M) and VI, which is 
a simplification of reality50–52. The observation error η is structured by 
our simplification of the data products quality scores (coded Q = 0, 1, 2, 
with 0 being good and 2 being poor; Supplementary Table 3) to allow 
the error to increase with each level of the quality score. Specifically, 
we define η = e0 + e1 × Q.

The model was formulated using the R package LaplacesDemon53. 
All β parameters are given vague uniform priors. The parameter m is 
given a vague normal prior (truncated to be >0). The process error 
terms are modelled using normal distributions, and the variances of 
the error terms are given vague half-Cauchy priors. The ex parameters 
are given vague normal priors. The model also requires the param-
eterization of M[0], the initial vegetation biomass; M[0] is given a 
vague uniform prior. We used the twalk Markov chain Monte Carlo 
(MCMC) algorithm as implemented in LaplacesDemon53 and its default 
control parameters to estimate the posterior distributions of the 
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model parameters. We further fitted the model using DEoptim54,55, 
which is a robust genetic algorithm that is known to perform stably 
on high-dimensional and multi-modal problems56, to verify that the 
MCMC algorithm had not missed important regions of the param-
eter space. The models estimated with MCMC had significantly lower 
log root-mean-square error than models estimated with DEoptim 
(paired t-test NDVI analysis: t = –2.9806, degrees of freedom (d.f.) = 99, 
P = 0.00362; EVI analysis: t = –4.6229, d.f. = 99, P = 1.144 × 10–5), sug-
gesting that the MCMC algorithm performed well compared with the 
genetic algorithm.

Anomaly extraction and trend estimation
We use the ‘seasonal and trend decomposition using Loess’ (STL57) as 
implemented in the R58 base function stl. STL extracts the seasonal 
component s of a time series using Loess smoothing. What remains 
after seasonal extraction (the anomaly or remainder, r) is the sum  
of any long-term trend and stochastic variation. We estimate the trend 
in two ways. First, we estimate the trend by fitting a quadratic poly
nomial (r = a + bx + cx2) to the remainder (r is the remainder, x is time  
and a, b and c are regression coefficients). The use of polynomials 
allows the data to specify whether a trend exists, whether the trend is 
linear, cup or hat shaped and whether the overall trend is increasing or 
decreasing. As a second method, we estimate the trend by fitting  
a bent-cable regression to the remainder. Bent-cable regression is a 
type of piecewise linear regression for estimating the point of transition 
between two linear phases in a time series59,60. The model takes  
the form r = b0 + b1x + b2 q(x, τ, γ)60. Here r is the remainder, x is time,  
b0 is the initial intercept, b1 is the slope in phase 1, the slope in  
phase 2 is b2 − b1 and q is a function that defines the change point: 
q(x, τ, γ) = (x−τ+γ)2

4γ
I(τ − γ < τ + γ) + (x − τ)I(x > τ + γ) ; τ represents the  

location of the change point and γ the span of the bent cable that joins 
the two linear phases; I(A) is an indicator function that returns 1 if A  
is true and 0 if A is false. The bent-cable model allows the data to specify 
whether a trend exists and whether there has been a switch in the trend, 
thereby allowing the identification of whether the trend is linear, cup 
or hat shaped and whether the overall trend is increasing or decreasing. 
Both the polynomial and bent-cable models were estimated using 
LaplacesDemon’s53 Adaptive Metropolis MCMC algorithm and vague 
priors, although for the bent-cable model we constrained τ to be in the 
middle 70% of the time series and γ to be at most two years.

The STL extraction of the seasonal components in the air tempera-
ture, soil temperature, soil moisture and solar radiation data (there is 
no stochasticity or seasonal trend in the CO2 data we used) allows us  
to simulate detrended time series d of these forcing variables  
as d = ̄y + s + N(μ,σ)  where N(μ, σ) is a normally distributed random 
variable with mean and standard deviation estimated from the remain-
der r (we verified that r was well described by the normal distribution), 
̄y  is the mean of the data over the time series and s is the seasonal  

component extracted by STL. For CO2, the detrended time series is 
simply the average CO2 over the time series.

Data availability
The NDVI data used in this study are from the GIMMS 3g v.1 NDVI data 
product26,27, downloaded from https://ecocast.arc.nasa.gov/data/
pub/gimms/3g.v1/ on 8 January 2019. The EVI data are from the MODIS  
Vegetation Indices data product28, downloaded from https://lpdaac.
usgs.gov/products/mod13a2v006/ on 1 April 2020. The climate-system 
data were from the ERA5-Land monthly averaged data from  
1950 to present32 downloaded from the Climate Data Store (https:// 
doi.org/10.24381/cds.68d2bb3) on 3 July 2020. Annual historical 
atmospheric CO2 concentrations were taken from ISIMIP, downloaded 
3 June 2020. In preliminary analyses we used fire data from the ESA 
Fire Disturbance Climate Change Initiative’s AVHRR LTDR Grid v.1.0 
product49 from https://doi.org/10.5285/4f377defc2454db9b2a6d03
2abfd0cbd downloaded on 2 July 2020.

Code availability
A C version of the TTR-SDM growth model described in Methods that 
can be called from R is available at https://github.com/pfloek-bt/
TTRcodeAttribution.
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Extended Data Fig. 1 | Graphical description of β parameters. Graphical 
representation of how the β parameters define the influence of environmental 
forcing variables on rates in the plant growth model as described by equations 
13 to 17. All units are rescaled to the range 0-1 and the β parameters represent 
positions on the x-axes. The effect of photosynthetically active radiation, air 

temperature and atmospheric CO2 on carbon assimilation is described by the 
Farquhar photosynthesis model. Two additional β parameters (βa and βb) which 
describe the the influence of site fertility on carbon and nitrogen assimilation are 
not represented in this diagram. In addition, for all analyses we set fire severity to 
zero, thereby ignoring the effects of fire.
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Extended Data Fig. 2 | Distribution of the 100 study sites. The different colours indicate the biome assignments made using the authors assessment of the Google 
Earth imagery. BF=boreal forest, GR=grassland, MT=Mediterranean type ecosystems, RF=tropical evergreen forest, SA=savanna, SH=shrubland, TF=temperate forest, 
TU=tundra.
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Extended Data Fig. 3 | Distribution of study sites in climate space. The 
distribution of the 100 study sites in the temperature and mean annual 
precipitation climate space used by Whittaker61. The data points are 

superimposed on Whittaker’s61 biome scheme. BF=boreal forest, GR=grassland, 
MT=Mediterranean type ecosystems, RF=tropical evergreen forest, SA=savanna, 
SH=shrubland, TF=temperate forest, TU=tundra.
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Extended Data Fig. 4 | EVI time series analysis of vegetation activity for a 
savanna site in the Burkina Faso National Park. (A) MODIS EVI time series of 
vegetation activity (data) and the state space model’s fit to these data (model). 
The blue polygon shows the 95% credible intervals around the mean model 
predictions which includes parameter, process and observation uncertainty. 
(B) Anomalies in the NDVI data (blue bars) and the fit of a bent-cable regression 
to these anomalies. The polygons show the 95 % credible intervals of the bent-
cable regression predictions. (C) Zero intercept regression showing the model’s 

ability to predict observed anomalies, with full and detrended climate forcing 
data. Polygons show the 95% credible intervals of the mean regression line. (D) 
Posterior density of the change in the full model’s regression slope (as shown 
in panel C) caused by removing trends in a climate forcing variable from the 
full model; in this example the ability to predict anomalies was sensitive to soil 
moisture and soil temperature anomalies. Figure 1 shows an analogous plot using 
GIMMS NDVI data.
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Extended Data Fig. 5 | Distribution of NDVI and EVI anomaly response types. 
The frequency of cup (initial decrease, subsequent increase), hat (initial increase, 
subsequent decrease), and linear time trends in the anomalies in NDVI and EVI. 
The number of anomaly trends that showed an overall increase or decrease over 
the time series are indicated by different colours. Overall increases or decreases 
less than 2 % in EVI were classified as small. The response types were classified 

from bent-cable and polynomial regression models fitted to the anomaly  
data from each site. Panels show results using polynomical regression on 
the NDVI data (a), bent-cable regression on the EVI data (b) and polynomial 
regression on the EVI data. Figure 2 shows results for the bent-cable regression  
on the NDVI data.
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Extended Data Fig. 6 | Comparison of anomaly response types for 2000-2015 
for NDVI and EVI data. Repeat of the analyses shown in Fig. 2 and Extended Data 
Fig. 5 using the common time window (years 2000-2015) for which both EVI 
and NDVI data are available. Shown are the frequencies of cup (initial decrease, 
subsequent increase), hat (initial increase, subsequent decrease), and linear time 
trends in the anomalies in vegetation indices. The number of anomaly trends 
that showed an overall increase or decrease over the time series are indicated 
by different colours (the category “small” as defined in Fig. 2 and Extended Data 

Fig. 5 was not detected in these analyses). These plots reveal that although the 
analysis time window influences the trends detected, that the EVI and NDVI data 
reveal similar trends, albeit with more decreasing trends in the NDVI data and 
more cup shaped trends when using bent-cable regression. The EVI and NDVI 
response shapes of individual sites agreed for 52% and 45% of cases (respectively 
for polynomial and bent-cable analyses). The EVI and NDVI response trends of 
individual sites agreed for 67% and 59% of cases (respectively for polynomial and 
bent-cable analyses).

http://www.nature.com/naturegeoscience
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Extended Data Fig. 7 | Sensitivity of EVI vegetation anomalies to climate 
anomalies. The sensitivity is quantified as the effect of each of five forcing 
factors (T air = air temperature, T soil = soil temperature, M soil = soil moisture, 
S rad = solar radiation and CO2 = atmospheric CO2 concentration) on the slope 
describing the ability of the model to predict anomalies in the vegetation activity 
time series (Extended Data Fig. 4). The slope with the full model is represented by 
the red colour ramp. Shown in the matrix are the 75 of 100 sites where anomalies 

in vegetation activity could be attributed to the environmental forcing factors. 
The coloured circles indicate the response groups the sites are assigned to by 
an unsupervised classification. The site names are codes indicating ecosystem 
type (BF=boreal forest, GR=grassland, MT=Mediterranean type ecosystems, 
RF=tropical evergreen forest, SA=savanna, SH=shrubland, TF=temperate forest, 
TU=tundra), country and site name. Red colours indicate high sensitivity, blue 
colours indicate low sensitivity. See Fig. 3 for the same analysis using NDVI data.
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Extended Data Fig. 8 | Ecosystem sensitivity classes in relation to climate 
(using EVI data). (A) The distribution of attribution classes (Extended Data  
Fig. 7) in bivariate temperature and moisture climate space. Points represent  
the locations of the 100 study sites in climate space. Attribution classes are 
the two major groups classified in Extended Data Fig. 7. Sites labelled 0 are 
sites excluded from Extended Data Fig. 7 because the model could not explain 
observed anomalies. The colours of the sites labelled 1 and 2 correspond to 
the groups classified in Extended Data Fig. 7. The ellipses represent the fitted 

covariance estimates of the classes as estimated by discriminant analysis based 
on Gaussian finite mixture modelling. (B, C) The shape and direction of the 
anomaly response (as defined in Extended Data Fig. 5) plotted in bivariate climate 
space. The mean annual temperature and mean annual soil moisture were 
calculated over the study period using the ERA5 reanalysis data. Panels D, E and 
F plot the points in panels A, B and C in geographic space. See Fig. 4 for the same 
analysis using NDVI data.

http://www.nature.com/naturegeoscience
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Anomaly prediction with full and detrended climate 
data. The slopes of the zero intercept regression of the model’s ability to predict 
anomalies in vegetation activity when using the full and detrended climate data 
(for example Fig. 1C). The points represent the mean of the posterior estimates 
of the slope, the tick marks span the 95 % credible intervals of the estimates. 

Attribution is diagnosed if the slopes are positive and clearly higher (no overlap 
in the credible intervals) for model runs forced by the full climate data than for 
model runs forced by climate data with trends removed. Panel (a) shows the 
results when using the NDVI data and panel (b) when using EVI data.

http://www.nature.com/naturegeoscience
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Extended Data Fig. 10 | Summary of NDVI and EVI anomaly prediction with 
full and detrended climate data. Probability density functions of the slopes 
of the zero intercept regression of the model’s ability to predict anomalies in 
vegetation activity when using the full and detrended climate data (shown in 

Extended Data Fig. 9). Solid lines are for all sites, broken lines are for the cases 
where attribution was diagnosed.Panel (a) shows the results when using the NDVI 
data and panel (b) when using EVI data.

http://www.nature.com/naturegeoscience
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