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ABSTRACT. In this thesis, we study the degree of the canonical map of surfaces
of general type. In particular, we give the first examples known in the literature
of surfaces having degree d = 10,11, 13,14, 15, and 18 of the canonical map. They
are presented in a self-contained and independent way from the rest of the thesis.
We show also how we have discovered them. These surfaces are product-quotient
surfaces. In this thesis, we study the theory of product-quotient surfaces giving
also some new results and improvements. As a consequence of this, we have written
and run a MAGMA script to produce a list of families of product-quotient surfaces
having geometric genus three and a self-intersection of the canonical divisor large.
After that, we study the canonical map of product-quotient surfaces and we apply
the obtained results to the list of product-quotient surfaces just mentioned. In this
way, we have discovered the examples of surfaces having degree d = 10,11, 14, and
18 of the canonical map. The remaining ones with degrees 13 and 15 do not satisfy
the assumptions to compute the degree of the canonical map directly. Hence we
have had to compute the canonical degree of these two families of product-quotient
surfaces in a very explicit way through the equations of the pair of curves defining
them.

Another work of this thesis is the classification of all smooth surfaces of general
type with geometric genus three which admits an action of a group G isomorphic to
Z% and such that the quotient is a projective plane. This classification is attained
through the theory of abelian covers. We obtained in total eleven families of sur-
faces. We compute the canonical map of all of them, finding in particular a family
of surfaces with a canonical map of degree 16 not in the literature. We discuss the
quotients by all subgroups of G finding several K3 surfaces with symplectic involu-
tions. In particular, we show that six families are families of triple K3 burgers in
the sense of Laterveer.

Finally, in another work we study also the possible accumulation points for the
slopes K2/ of unbounded sequences of minimal surfaces of general type having a
degree d of the canonical map. As a new result, we construct unbounded families of
minimal (product-quotient) surfaces of general type whose degree of the canonical
map is 4 and such that the limits of the slopes K?2/x assume countably many

different values in the closed interval [6 + 2, 8].



ABSTRACT. Questa tesi si concentra sullo studio e il calcolo del grado della
mappa canonica di superfici di tipo generale In particolare, presentiamo i primi
esempi noti in letteratura di superfici con grado d = 10,11,13,14,15, e 18 della
mappa canonica. Per rendere questi esempi accessibili a un pubblico pit ampio, li
trattiamo in modo indipendente dal resto della tesi. Queste superfici sono superfici
prodotto-quoziente.

Iniziamo approfondendo la teoria delle superfici prodotto-quoziente e fornendo
anche nuovi risultati significativi.Utilizzando tali risultati, sviluppiamo uno script
in MAGMA per produrre una lista di famiglie di superfici prodotto-quoziente aventi
genere geometrico tre e un’ alta auto-intersezione del divisore canonico. Successi-
vamente, studiamo la mappa canonica delle superfici prodotto-quoziente e applichi-
amo i risultati ottenuti alle superfici presenti nella lista generata dallo script. In
questo modo, scopriamo gli esempi di superfici con grado d = 10,11, 14, e 18 della
mappa canonica. Le restanti superfici con grado 13 e 15 non soddisfano le ipotesi
necessarie per determinare direttamente il grado della mappa canonica, pertanto
calcoliamo esplicitamente tali gradi attraverso le equazioni della coppia di curve che
definiscono le due famiglie di superfici prodotto-quoziente.

Un altro contributo di questa tesi € la classificazione di tutte le superfici lisce
di tipo generale con genere geometrico tre che ammettono un’azione di un gruppo
G isomorfo a Z& e tali che il quoziente sia un piano proiettivo. Per ottenere questa
classificazione, utilizziamo la teoria dei rivestimenti abeliani. In totale, otteniamo
undici famiglie di superfici, calcolando anche il grado della mappa canonica per
ciascuna di esse. In particolare, troviamo una famiglia di superfici con una mappa
canonica di grado 16 che non era presente in letteratura Discutiamo anche i quozi-
enti di queste famiglie per tutti i sottogruppi di G, trovando diverse superfici K3 con
involuzioni simplettiche. In particolare, dimostriamo che sei famiglie sono famiglie
di triple K3 burger nel senso di Laterveer.

Infine, in un altro studio, esaminiamo i possibili punti di accumulazione per le
pendenze K?2/x di successioni illimitate di superfici minimali di tipo generale con
un grado d della mappa canonica. Come risultato innovativo, costruiamo famiglie
infinite di superfici minimali (prodotto-quoziente) di tipo generale, il cui grado della
mappa canonica ¢ 4, e i limiti delle pendenze K2/ assumono un insieme numerabile
di valori nell’intervallo chiuso [6 + %, 8].






Introduction

In this thesis, we study the canonical map of surfaces of general type.

It is a well-known fact that the canonical map of a curve C of genus at least
two is either an embedding or of degree 2. The latter happens if and only
if C is hyperelliptic. For a smooth surface S of general type the situation
is more difficult: suppose that the canonical map ®g: S --» PPs—1 is not
composed with a pencil. Then Beauville proved that the degree d of the
canonical map is bounded by

d = deg (Br,) < 9+ 21— < 36,
Pg — 2

Note that the bound d < 36 was shown first by Persson [Per78, Prop. 5.7].
In particular, 28 < d is only possible if ¢ = 0, and p; = 3. Motivated by this
observation, the construction of regular surfaces with p, = 3 and canonical
map of degree d for every value 2 < d < 36 is an interesting, but still, a
wide-open problem, posed also by M. M. Lopes and R. Pardini in a recent
survey, [MLP23, Question 5.2].

For a long time, the only examples with 10 < d were the surfaces of
Persson [Per78], with canonical map of degree 16, and Tan [Tan03], with
degree 12.

At the moment, the main result in this direction of my thesis is the
following

Theorem 0.0.1. There exist surfaces S of general type with py = 3, ¢ = 0,
and canonical map of degree d = 10,11,13,14,15, and 18.

These surfaces are the first examples known in the literature with that
degree of the canonical map.
In recent years, the problem attracted the attention of many authors, putting
an increased effort into the construction of new examples. Two are the
main methods of construction found in the literature, generating pairs and
abelian covers. As a result, together with the surfaces obtained in my thesis,
we have now examples in the literature for all degrees 2 < d < 16 and
d =18,20,24,27,32 and 36 (see [MLP23,Rit15,Rit17a,Rit17b, Rit22,LY21,
GPR22,Binl9,Bin21a, Fal23, FG23, Bin23] for more details).
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One of the purposes of this thesis is to provide an overview of the topic of
the canonical map and to explain how we obtained the examples of Theorem
0.0.1. These are the so-called product-quotient surfaces. We decided to focus
our attention on product-quotient surfaces since they are easy to describe
and we have seen that sometimes their canonical map is accessible to be
studied.

Product-quotient surfaces are studied for the first time by Catanese in
[Cat00]. Apart from other works, that mainly deal with irregular surfaces,
we want to mention the complete classification of surfaces isogenous to a
product with p, = ¢ = 0 [BCGO08] and the classification for p, = 1, and
g = 0, under the assumption that the action is diagonal [Glel5], the rigid
but not infinitesimally rigid manifolds [BP21] of Bauer and Pignatelli that
gave a negative answer to a question of Kodaira and Morrow [MKT71, p.45],
and also the infinite series of n-dimensional infinitesimally rigid manifolds of
general type with non-contractible universal cover for each n > 3, provided
by Frapporti and Gleissner[FG23].

The setting is the following: consider an action of a finite group G on

two curves (7 and Cs. Let S be the minimal resolution of singularities of
the product C1 x Co modulo the induced (diagonal) action of G on it. S is
called product-quotient surface of quotient model (C1 x C3)/G. Assume S
is a regular surface of general type. This implies that the genera of C; and
Cy are at least two, and the quotients C;/G = PL. In other words, C; and
Cs are G-coverings of the projective line.
We first consider the problem of determine all families of regular product-
quotient surfaces given by a pair of G-coverings of the projective line, up to
isomorphism. A complete answer to this problem is Theorem 4.5.8. This
answer has been implemented in MAGMA as an algorithm that takes as
input two G-coverings C1, and Cs of the projective line. It iterates through
the list of (diagonal) actions of G on C} x C3, and returns only those actions
that yield distinct families of product-quotient surfaces of quotient model
(C1 x C2) /G. In other words, we are able to move on from a database of G-
coverings of the line', to a database of families of product-quotient surfaces.
As a consequence of this, we have produced a MAGMA script? which gives
in input a pair of natural numbers (K2, x) and returns all regular surfaces
S of general type with K% = K? and x(S) = x, which are product-quotient
surfaces.

A commented version of the MAGMA code is available here:
https://fefe9696.github.io/FedericoFallucca/pubbl.html#PhDTh

However, we recall that surfaces with a high degree of the canonical map
are regular and have p, equal to three. For this reason, we are running the

tas for example the database: https://mate.unipv.it/ghigi/tipitopo/.
2Most of the script is a modification of the script of [BP12] to any x, and we give some
other improvements.


https://fefe9696.github.io/FedericoFallucca/pubbl.html#PhDTh
https://mate.unipv.it/ghigi/tipitopo/
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script mentioned above for y equal to four and K? large.

The script is producing several hundreds of families of product-quotient
surfaces with p, equal to three. As a sample we give in this thesis a list for
the maximal possible value of K?2.

Theorem 0.0.2. Let S be a product-quotient surface of general type with
pg =3, ¢ =0, and K% = 32 of quotient model (Cy x Cs) /G. Assume that
both the topological types of the G-action on C1 and Co are in the database
[CGP23, 11" of June 2023]. Then S realizes one of the 213 families of

surfaces of general type described in tables 4.1 and 4.2.

The second part of this thesis studies the canonical map of product-
quotient surfaces. Let S be a surface of general type. Assume that the
canonical map of S is not composed with a pencil, hence its image ¥ has
dimension two. The degree of the canonical map of S is computable via
elementary intersection theory once we know the degree of the canonical
image ¥ in PPs~! and the (schematic) base locus of the canonical system
|Ks|.

If pgy is equal to three, which is the case most interesting for us, the
degree of ¥ is one, hence we have only to compute the base locus of |Kg]|.

If S is a product-quotient surface, it is simpler to compute the degree of
the composition of the canonical map of S with the map C; x Cy --» S and
divide the result by |G|. So we have to compute the base locus of the pull-
back of the canonical system of |Kg| to C; x Cy that is a linear subsytem
’KCIXCQ|G of [Kcyxay |-

We are able to determine the base locus of |K¢,xc,|¢ if certain® irre-
ducible characters of G have degree 1. We remark that this assumption
always holds for G abelian, and it is sometimes satisfied also when G is not
abelian as for example for the first family in Table 6.2 with canonical map
of degree 18. Indeed, we prove in Theorem 5.2.8 and Corollary 5.2.9 that
under the above mentioned assumption | K¢, xc,|® is spanned by p, divisors
that decompose as union of fibres for the natural projections C; x Cy — C;.

Since two fibres either do not intersect or they intersect transversally
at a point, this makes the base locus of |K¢,xc,|¢ explicit. To finish the
computation of the degree, when p, = 3, we proved the following Correction
Term formula that seems of independent interest.

Theorem 0.0.3 (Correction Term formula). Let M be a (not necessarily
complete) two-dimensional linear system on a surface spanned by three di-
visors D1, Do, and D3 of the form

Dy=aH, Dy=bK and Ds3=cH+dK

3These are at most pg irreducible characters determined by the construction, see Sub-
section 5.2.1.
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locally around a smooth point p of the surface. Here H and K are reduced,
smooth, and intersect transversally at p and a,b,c,d are non-negative inte-
gers. Take a minimal sequence of blow ups such that the strict transform M
of M has no base point points on the preimage of p. Then

M? = M? — min{ab, ad + bc}.

In some examples (see sections 6.2, and 6.3) even if our assumption on
the characters fails, we compute the degree of the canonical map using a
very explicit description of the surface.

We have also tried to construct examples of surfaces with high degree of
the canonical map in a different way.

Many of the known examples with a high degree of the canonical map are
obtained as Galois covers of rational surfaces with Galois group isomorphic
to Z& (see [MLP23]). Inspired by that we classified smooth Galois covers
of the plane with group Z§ and pg equal to three. We call them smooth
k-double covers of the plane. We have the following

Theorem 0.0.4. All smooth k-double covers S of the plane with geometric
genus 3 are reqular surfaces with ample canonical class.

The canonical map ®r, is a morphism of degree Kg on P? unless S
of type E3, in which case the canonical map is a rational map of degree
K?g — 4 = 4 undefined at 4 points.

Each family is unirational. The modular dimension of each family, that
is the dimension of its image in the Gieseker moduli space of the surfaces
of general type, equals 4 + 26=% with one exception, the family B2, whose
dimension is 19.

The values of K%, of deg iy and of the modular dimension of each
family are listed in the following table:

| Family [[A1 A2 A3 A4 B2 C3 C4 D3 D4 D5 E3 |

K3 2 4 8 16 9 8 16 2 4 8 8
degpry || 2 4 8 16 9 8 16 2 4 8 4
mod. dim. | 36 20 12 8 19 12 8 12 8 6 12

These surfaces are natural candidates to be triple K3 burgers in the sense
of [Lat19], which are important in relation to a conjecture of C. Voisin. We
determined which of these surfaces are triple K3 burgers, finding that they
are exactly the surfaces in the families B2, C3, D3, D4, D5 and E3.

Our last result concerns unbounded families of minimal surfaces of gen-
eral type with canonical map of fixed degree, say d. In fact by [Bea79] and
[Xia86] we know that if there is such a family then d < 8. Examples are
known only for d even. Focusing on the case d = 4 we noticed that the only
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unbounded families in literature have slope u(S) := K2/x(Os) tending to
either 4 or 8. We proved

Theorem 0.0.5. There is an unbounded sequence S, of surfaces that have
canonical map of degree 4 such that

lim 1 (S,) =8 <1 - 1)

n— o0 m
for all positive integers m > 6 that are not prime numbers.

The thesis is divided in 8 chapters and an appendix. The appendix
contains only classical results on surfaces, so most of the readers will not
need to look at it.

The first three chapters of this thesis are purely compilative. In the first
one we collect some classical results and relevant examples on the canonical
map of surfaces of general type. The second chapter is dedicated to the
standard theory of the Galois covers of the projective line. The third chapter
discusses cyclic quotient quotient singularities of surfaces.

Chapter 4 discusses product-quotient surfaces. The first four sections
are the now standard tools for product-quotient surfaces: we follow [Fral2]
here.

Section 4.5 contains statement and proof of the first original result of
this thesis, the above mentioned Theorem 4.5.8, classifying all families of
product-quotient surfaces given by a pair of topological types of group ac-
tions on curves.

In the last sections, following [BP12], we describe an algorithm to classify
all families of regular product-quotient surfaces with fixed K? and x. The
main improvement respect to other algorithms in literature as the one in
[BP12] is the use of Theorem 4.5.8 and of [CGP23]. More precisely, we
use a script developed in [CGP23] (or the database produced by them if
possible) to compute all possible topological types of group actions on curves
of our interest and then use Theorem 4.5.8 to deduce from it a complete list
of families of product-quotient surfaces. The last Section 4.9 contains the
Theorem 0.0.2.

Chapter 5 studies the canonical map of product-quotient surfaces. The
main results of this chapter are the above mentioned Theorem 5.2.8 and
Corollary 5.2.9, and the Correction Term formula 0.0.3. Here the Correction
Term formula is slightly differently formulated, see Theorem 5.4.3.

Chapter 6 gives explicit computations of the degree of the canonical map
of certain product-quotient surfaces with p, equal to three, surfaces found
with the program in Chapter 4. Theorem 0.0.1 is immediate consequence
of the results of Section 6.1 and 6.2, that are respectively in [FG23] and
[Fal23].

Chapter 7 is devoted to Theorem 0.0.5. This chapter’s content is essen-
tially [FP23al.
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Finally, Chapter 8 discusses the classification of Theorem 0.0.4 This
chapter’s content is [FP23b].
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Notation

Let S be a smooth projective surface over the field C of complex numbers.
An algebraic surface S is a canonical model if it has at most rational double
points as singularities and ample canonical divisor. Recall that each surface
of general type is birational to a unique canonical model. In particular the
minimal resolution of the singularities of S is its minimal model;

HP4(S) := HI(S,Q%);

q(S) or ¢ = dim H%'(S) = dim H'9(S) is the irregularity.

py(S) or py = dim H%2(S) = dim H*°(S) is the geometric genus.

Kg or K is a canonical divisor of S, so a divisor such that Og(K) = Q?g
Q% is sometimes denoted also by wg.

By abuse of notation, for any divisor D, we will denote by D its class in the
Picard group.

|T| is the (complete) linear system defined by a divisor 7" of S.

The (schematic) base locus of a linear system |T'| is denoted by Bs(|T|).
&7 denotes the (a priori rational) map of S induced by a linear system ||
of S.

Hence ® g, is the canonical map of S.

Given an irreducible surface ¥ C P", then deg(X) denotes the degree of ¥
in P™, namely, given a resolution : X — 3, and denoted by |H| the inverse
image of the system of hyperplanes of P", then deg(X) = H2.

The symbol = is the linear equivalence of divisors, while =, denotes the
numerical equivalence;

Given a divisor D, then Og(D) is its invertible sheaf, or equivalently, its line
bundle.

Given an invertible sheaf 6, then H°(S,#) is the space of global sections of
6, and h9(S,0) := dim H°(S,#). Therefore, for example, if § = wg, then
hY(S,wg) and py denote the same number. We will use one of the two
notations by the context.

Spec(f) is the spectrum of an endomorphism f: V — V.

Crit()) is the set of branch points of the morphism A\: C'— C’, with C' and
C’ smooth curves.

Given a group G, then ¢g" denotes hgh™!, for any h, g € G.

Given h € G, then inny,: G — G is the inner automorphism g — hgh~!.
The subgroup Inn(G) < Aut(G) is the group of inner automorphisms of G.
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Irr(G) is the set of irreducible characters of a finite group G.

CF(G) denotes the class group function space of G, so the space of functions
of G constant on conjugacy classes.

Let (-) be the classical Hermitian product defined on CF(G);

Given a representation ¢, : G — GL(V) afforded by a character 7, and an
irreducible character x, then VX or V, denotes the isotypic component of V/
of character x. Hence dim(VX) = (n, x) - x(1).

GL,,, (k) denotes the group of invertible matrices of size m over the field k.
For each real number z, let [z] be the smallest integer greater or equal than
z.

Given a positive number n, then 0 < [a],, < n denotes the rest of the division
of a by n.

When we write ¥\ we mean the first root of the complex number A, i.e. if

A=A - € then VX = /|)] ein.



Chapter 1

The history of the problem
and main results in the
literature

It is a well-known fact that a smooth projective variety X of dimension n
admits always an invertible sheaf, the sheaf wy = Q% of the sections of the
n-alternating power of the cotangent bundle of X, denoted as A™T™ X . Since
any X is canonically equipped by this object, then wyx takes the name of
canonical sheaf, and A™T™* X of canonical bundle.
Moreover, from the correspondence among invertible sheaves and classes of
Pic(X), then wy corresponds to a class of divisors in Pic(X), usually denoted
by K x, which takes the name of canonical divisor, as one can expect.
Whenever the corresponding class divisor in Pic(X) of an invertible sheaf
0 is effective, namely h°(X,6) > 0, then 0 induces a (rational) map X --»
Ph°(X 70)_1, up to projective transformations. Let me spend some words more
about it. Firstly, this map is usually denoted by ®y, or equivalently by ®g,
where © € Pic(X) is the class divisor whose 6 corresponds to: § = Ox(0©).
To be consistent with the notation fixed in this thesis, I will adopt the
second kind of notation. The map is defined by sending a point p € X to
the functional class [ev,] € P(H"(X,0)*), where ev,(s) is the evaluation at
p of a global section s, for a fixed trivialization of § at p. Although ev,
depends on the choice of the trivialization, its class [ev,] is not. In fact,
evp defined in different charts would be different just by a multiplicative
constant, which is the co-cycle of 6 in those charts, evaluated at the point
D.
From the geometrical point of view, one can see $g as the map sending each
point p to the hyperplane ker(ev,) C H 0(X, 0) of the effective divisors on X
in the class ©, and passing through the point p.

However, some points p € X might be problematic: any section of 6
could vanish at p, which translates in ®g to be not defined at p. For this
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reason, ®g is a priori only a rational map.

Sometimes it is useful to write ®g also in projective coordinates, by fixing
a basis so, ..., sp0(x,0)—1 Of HY(X,0) (and hence fixing also its dual basis).
In this case, each element [f] € P(H°(X,0)*) is uniquely identified by its
coordinates [f(so) : -+ 1 f(spo(x,6)—-1)], and so Pg: X --» Ph’(X.0)~1 gends
P [s0(p) -t swocxay1 ()]

Definition 1.0.1. The geometric genus of X is p, := h%(X,0x(Kx)).
Assume p, > 0, namely Kx is a an effective divisor.
The (rational) map @k, : X --» PPo~! given by the canonical sheaf wy, or
equivalently by the canonical divisor Kx, is called canonical map.

Instead, the plurigenus of X is P, := h%(X,O0x(nKx)), n > 2. Assume
P, > 0, namely nKx is effective.
The pluricanonical map @k, : X --» PPn~1 is the (rational) map given by
the class divisor nKx.

Since these maps are always attached on a smooth projective variety X,
then the geometry of X can be studied through them. In particular, the
canonical map plays an important role in the theory of algebraic curves, and
the pluricanonical maps for the classification of algebraic surfaces.

Let me give a brief panoramic of what is known in the literature, which
is the state of the art at the moment, and which are in my opinion the most
interesting questions not yet solved. We remind also to the nice survey
[BCPO6] for more details to the topic.

In the case of the curves, everything is known. In particular, the canon-
ical map of a curve C' of genus > 2 is either an embedding or of degree 2.
The latter happens if and only if C' is hyperelliptic.

Instead, in the case of complex surfaces, the pluricanonical maps are ex-
tensively studied by Enriques [Enr49], Kodaira, and Bombieri [Bom73]. In
particular, they attacked the problem to establish when the pluricanonical
map P, i, of a surface of general type (see the Def. A.2.5) is birational
(onto its image), for n sufficiently large. The question is naturally raised
since one can observe that the plurigenus F,, grows very quickly, and so nKg
may have enough independent global sections to ensure @,k is birational.
Let S be the canonical model of a surface of general type, and let K2 be the
self-intersection of a canonical divisor. Bombieri obtained the fascinating
result that ®,x is an isomorphism, for n > 5. The maps ®4x, and Pz,
are birational with few well-understood exceptions.

Nowadays, the result reached by Bombieri, together with several other re-
sults obtained later on (see the footnotes), can be summarized as follows:

Theorem 1.0.2. (Modern version of Bombieri theorem on the pluricanon-
ical maps) Let S be the canonical model of a surface of general type, and let
K? be the self-intersection of its canonical bundle. We have:



(i) Forn>5, O,k is an embedding;
(i1) ®ar a morphism, and

a. if K? > 2, then it is an embedding;

b. if K? =1, then it is a birational morphism, with one exception
1.
K? =1, p, = 2, where ®454(5) is a quadric cone Q C P3
embedded in P® by means of the linear system of quadrics of P2,
and the degree of ®4rcg is 2;

(iii) (I>3K5 18
a. an embedding, if K* > 3;
b. a morphism, if K? = 2. Moreover, ®3x is birational, with the
exception’ :

K? =2, p, = 3, where ®3x,(S) = P? embedded in P° by means

of the linear system of plane cubics, and the degree of ®3x is 2;
c. a birational map, if K? = 1, with the exception®:

K? =1, p, = 2, where ®3x,(S) is a quadric cone embedded in

P® as a rational ruled surface of degree 4, and the degree of D3

18 2;

(iv) Pofcs’ is

a. a birational morphism, if K2 > 10, except when S has a struc-
ture of a genus 2 fibration, in which case the bicanonical map is
generically finite of degree 2 over a rational or ruled surface;

b. a generically finite morphism, if K* > 5, or py > 1;

'Bombieri’s original formulation had another possible exception for surfaces with K? =
1, pg = 0, called numerical Godeaux surfaces, that was later excluded by Miyaoka in
[Miy76]

2Bombieri’s original formulation had another possible exception for surfaces with K2 =
2, pg = 0, called numerical Campedelli surfaces, later on excluded in [BCT78].

3Here Bombieri had the same possible exception for numerical Godeaux surfaces as
above, excluded in [Miy76]

4We sketch here the improvements respect to the original results of Bombieri on the
bicanonical map. Xiao studied the bicanonical map and he proved in [Xia85a] that it is
generically finite if and only if S is not numerical Godeaux: K? = 1, and p, = ¢ = 0.
In this case, note that P> = 2, so that ®ax is a rational fibration. At the moment,
only examples of genus 4 fibrations are known, although the genus may be 3, or 4 (see
[CP06]). Moreover, Persson proved in [Per78, Prop. 5.5] that if ®ox is generically finite,
then its degree is at most 8 (sharp, [Per78, Ex. 5.6]). Finally, as a consequence of Reider
results [Rei88, Prop. 3], then ®,x¢ (n > 3) is a morphism if (n — 1)2K? > 5, and it is
an embedding if (n — 1)2K? > 10. Furthermore, if K2 > 5, or p, > 1, then ®2x, is a
morphism (see [CP06, Thm. 6]), and if K2 > 10, then either it is a birational morphism,
or it admits a pencil of curves of genus 2.
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c. a generically finite rational map, of degree at most 8 (sharp),
except for S with K? =1, pg = q = 0. In this case, ®ox 4 is a
fibration with fibres of genus 3, or 4, and base of genus 0.

See [CP06, Thm. 8] for details.

At the end of the paper, Bombieri leads the point on the most interest-
ing problems still open: which is the structure of the canonical map ®x,
and the famous conjecture K2 < 9x(Os), nowadays known as Bogomolov-
Miyaoka-Yau inequality, proved independently five years later by Miyaoka
(see [Miy77]), and Yau (see [Yau77], [Yau78]).

The starting point of this thesis comes with the epochal paper [Bea79]
published by Beauville in 1979, where he takes up the open question of the
structure of the canonical map, and gives, together with Persson in [Per78,
Prop. 5.7], the first bound (see Thm. 1.1.5) of the degree of the canonical
map, by also using the just proved Bogomolov-Miyaoka-Yau inequality (see
the proof of the Thm. 1.1.5).

He brought to light the great variety of the behaviour of ® ., with respect
to the more rigid pluricanonical maps. Let me exhibit his principal results:

1. If the canonical map is composed with a pencil, and p, > 863, then
the fibres of the pencil have genus 2 < g < 4, and the pencil has not
fixed points (see [ChelT]);

2. If the canonical map is not composed by a pencil, the image of the
canonical map is a surface having p, = 0, or a canonical surface (see
Thm. 1.0.3). In particular, the degree of ®f is <9, if x(Og) > 31,
for the first case, ° and < 3, if x(Og) > 14, for the second case.
Moreover, if K? < 3py — 7, then @y is a rational map of degree 2
over a ruled surface.

Later on, one can find some refinements of these results in the literature,
(see for instance [Xia85b], [Xia86]).

Recently, M.M. Lopes and R. Pardini published a self-contained survey
[MLP23] about point 2 of the statement, of great inspiration to me. Let
us suppose that ¥ := @k (5) is a surface, and let d be the degree of ®x,.
In this survey, they explain very well the topic and exhibit the known pos-
sibilities for ¥ and d, reached by Beauville. Moreover, they investigate the
question of producing concrete examples for such possibilities, presenting
the two main methods (abelian covers and generating pairs) of construction
used by several authors in the literature. In the end, the authors lead on

®He gives also an example of an unbounded family of surfaces (in the sense that x(Os)
increases arbitrarily) such that the degree of ®x is 8. This implies that the inequality
deg(®Pky) < 9 is close to be sharp.



several open questions. One focused my attention particularly, which be-
came one of the central topics of this thesis:

[MLP23, Question 5.2]: For every 2 < d < 36, does there exists any
surface S with p, = 3, and canonical map of degree d?

To make sense of this question, and then try to attack it, I would like to
take a step back. First, I am going to show the proof of the point 2 due to
Beauville, and then determine the bounds of the canonical map leading to
the natural formulation of the above question.

Let S be a surface of general type with p, := py(S) > 3. Let ®gy: S --»
PPs~1 be the canonical map of S; we assume that the image © := ® 4 (9)
is a surface, and we set d be the degree of ®x,. Sometimes X could be
singular; we choose a resolution n: X — ¥ of the singularities of 3. We
define py(X) 1= pyg(X), ¢(X) := ¢(X) (note that they do not depend on the
choice of 1), and we say that ¥ is of general type if X is of general type.

Theorem 1.0.3. ([Bea79, Thm. 3.1]) There are the following possibilities:

(A) pg(z) =0,

(B) py(X) = pg(S), and ¥ is a canonical surface (in the sense that the
canonical map of a resolution of X is the resolution itself, or equiva-
lently, ¥ is embedded in PPs~' by its canonical map).

Proof. Denote by py := pg(S). Let n: X — ¥ be a resolution of 3. One
can apply the classical result [Bea96, Theorem II.7] to the rational map
nlo®g,: S --» X to get a (surjective) morphism 7 = (™o ®x,) o€ from
Sto X , where € is a composition of a finite number of blow-ups. Moreover,
the canonical map of Sis @ K¢ O€, by construction. The situation is therefore
the following:

S ‘ S
l o |
™ q)Kg\ ECPKS
X — > C Prol

Let us suppose there exists a no-zero holomorphic 2-form w of X (hence, we
are supposing that p,(2) # 0, and we are going to show that we fall in the
case (B) of the statement). Since m*w is a 2-form of S and ® Ko factorizes
through =, then div(n*w) = 7*H + Z, where H is the pullback in X of an
hyperplane in PPs~1 and Z is an effective divisor, the fixed part of |K §|
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Let us denote by Ky the divisor of w. One can apply the classical The-
orem A.1.6 to get also another equality (among divisors)

q P
™ H + 7 =div(r*w) = 7" Ko + Z(ej -1)C; + ZTZE@, (1.1)
j=1 i=1

where C are irreducible curves whose image with respect to 7 is a curve I';,
while E; are the curves contracted by m. Here e; is the ramification index
of U}, namely the coefficient of C; in the divisor 7*I';, and r; > 0.

Let us consider now an irreducible curve I" of X, and a curve C on S
whose image is 7(C') = I'. Denote by e the coefficient of C' in the divisor 7*I",
and by h and k the coefficients of I' in the divisors H, and K| respectively.
Then the coefficient of C' in the divisor 7*H + Z is at least he, whilst that
of the right member of the identity (1.1) is exactly ke + (e — 1). We have
got

he <ke+(e—1) = h<k.

In other words any irreducible curve I' occurring in H (with coefficient h)
has to occur also in Ky (with coefficient & > h), so that Ky— H is an effective
divisor, denoted as F: Ko = H + E.

Thus h%(X,0x(H)) < py(X), by the classical Theorem A.1.1. The thesis
follows once one observe the following facts:

- A subsystem of the linear system |H| on X induces the map 71, whose
image is X, a surface not contained in an hyperplane, since ®g is
non-degenerate. This means that h%(X,Ox(H)) > p, = py(S).

- By the classical result A.1.7 applied to the map m, then the pullback
HY(X,0x(Kx)) = H°(S,04(Kg)) is injective, so that py(X) <

~

pg(S) = py.

Putting together the obtained inequalities, we get
Py < h(X, Ox(H)) < pg(X) < py.

Hence all inequalities are equalities, and we get |Kx| = |H| + E, by the
Theorem A.1.1. This means that E is the fixed part of |[Kx/|, and 7 is the
canonical map of X, always by the Theorem A.1.1. We have fallen in case
(B) of the statement. O

1.1 Bounds on the degree of the canonical map

Here we discuss the possibilities of ¥ and d. Let us write Kg = M+ Z, where
Z is the fixed part of the canonical linear system |Kg|. Let ®p7: S --» X C
PPs—1 be the canonical map of S. If | M| is not base-point free, or equivalently
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®,/ is not a morphism, we can apply the classical result [Bea96, Theorem
I1.7] to get a morphism (®p;0¢€): S — X C PPs~! where e: S — S is a
composition of blow-ups.

Lemma 1.1.1. We have
M? > ddegX,

and the equality holds if and only if the mobile system |M| of |Kg| is base-
point free.

Proof. The mobile system |M| would be base-point free if and only if its
induced map ®,; is a morphism, and so if and only if M? = (<I>}k\/[H)2 =
ddeg ¥, by the projection formula. However, in the case in which the mobile
system is not base-point free, then we consider ®,; o . By construction of
€, which is a composition of blow-ups, we get

M? > ((®p0€)* H)? = ddeg X.

Lemma 1.1.2. The following inequalities holds

(A) deg¥ > py — 2, if S falls in the case (A) of the Beawville Theorem
1.0.3. Moreover, if ¥ is not a ruled surface, then degX > 2p, — 4;

(B) deg¥ > 3py + q(X) — 7, if S falls in the case (B) of the Beauwville
Theorem 1.0.35.

Proof. Let us discuss the case (A). We observe that ¥ is irreducible because
S is irreducible and ®;; is a morphism. In the case in which ®,; is not a
morphism, then we use the map ®); o ¢, and the fact that S is irreducible,
if S is irreducible. (remember that S is a blow-up of S). Furthermore, ¥ is
not contained in a hyperplane, since ®,; is non-degenerate. Then Theorem
A.1.9 applies, and the thesis follows.

Let us consider now the case (B). In this case, ¥ is a canonical surface,
so a resolution n: X — X C PPs~! of ¥ is the canonical map of X. Note
that X is the the canonical image also for the minimal model X,,;, of X.
Jongmans Theorem A.1.10 applies to the minimal surface X,,;y, so that

deg(X) = K%, > 3pg(Xmin) + a(Xmin) — 7= 3pg + q(Z) — 7,
and the thesis follows. O

Lemma 1.1.3. Assume S is minimal. Then KL% > M?2.
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Proof. By assumption, Kg is nef. Furthermore, M is nef, by its definition.
Therefore, we have

Kg« =KgM + KgF
> KsM = M?+ MF
> M?2.

O

Theorem 1.1.4 (Bogomolov-Miyaoka-Yau Inequality, [Miy77], [Yau77],
[Yau78]). Any surface S of general type satisfies K% < 9x(Og). Moreover,
the equality holds if and only if S is the quotient of a ball in C? by an infinite
discrete group.

Finally, we can establish the possibilities of ¥ and d.

Theorem 1.1.5. Let S be a surface with py := py(S) > 3, and such that
the image ¥ C PPs~1 of the canonical map of S is a surface. Let d be the
degree of the canonical map of S. Then

(A) If S falls in the case (A) of the Beauville Theorem 1.0.3, then
(i) if ¥ is ruled,

27 —9q(5) .

d<9+ ; 1.2
- (1.2)

(ii) if ¥ is not ruled,

1 27 —9q(95)
< Z I S S
d_2<9+ Pg— 2 >,

(B) Otherwise, if S falls in the case (B) of the Beauville Theorem 1.0.5,
then

d§3+30—MQD—9M$
3pg + Q(E) -7

Proof. Assume S is minimal. We apply in sequence the Lemmas 1.1.1, and
1.1.3 together with the Theorem 1.1.4 to get

ddeg¥ < M?
< K3
< 9x(Os) = 9(pg — q(S) + 1).

Now we apply the Lemma 1.1.2, and we get

d(pg —2) < ddegX < 9(py — q(S) + 1),



1.1 Bounds on the degree of the canonical map 11

if S falls in the case (A) of the Beauville Theorem 1.0.3, and ¥ is ruled.
Otherwise, if 3 is not ruled, then

d(2py — 4) < ddegX < 9(pg — q(5) + 1).
Instead, if S falls in the case (B) of the Beauville Theorem, then
d(3pg +q(X) = 7) < ddeg ¥ < 9(pg — q(5) +1).

In the case in which S is not minimal, one can consider its minimal model and
obtains the above inequalities. However, the canonical map of the minimal
model of § factors through that of S, so that these maps have the same
degree d, and image ¥ C PPs—!. Finally, it is sufficient to remember that
the geometric genus and the irregularity are birational invariants. O

Many consequences of these inequalities can be drawn. Some of them
are the following;:

Remark 1.1.6. 1. d <9, if p; > 30, or ¢(S) > 3; Moreover, if ¥ is non
ruled, then d < 4, if p, > 30, or ¢(S) > 3.

2. as noted first by Persson in [Per78, Prop. 5.7], the maximum possible
degree is 36, and can be reached only if py = 3, and ¢(S) = 0. In this
case, 3 = P2, a surface of degree 1, and we would have

36=ddegL < K2<93—-0+1)=36 = K2 =36=9x(Og).

Thus S is a quotient ball (from B-M-Y Theorem 1.1.4), with K% = 36,
pg =3, q(S) =0, and |Kg| is base-point free;

3. d > 23 implies ¢ < 1 and p, = 3, whilst d > 28 implies ¢ = 0 and
by = 3;

4. if ¢(S) > 0, then the maximum possible degree is 27, when p, = 3,
and ¢(S) = 1. In this case, we would have ¥ = P2 and

27 =ddegX < K2<9(3—-1+4+1) =27 = KZ%=27=9%(05s).
Thus S is a quotient ball (Thm. 1.1.4), with K2 = 27, p, = 3,
q(S) =1, and |Kg| is base point free;

5. in case (B), the maximum possible value is 9, when p, = 4, and
q(S) = q(X) = 0. In this case, we would have
45=9(3-44+0—-7)<9degX < K2<9(4—0+1) =45
deg(X) =
_, )des(X) =5,
K% =45=9y(0Os).
This means that S is a quotient ball (Thm. 1.1.4), with K% = 45,

pg =4, q(S) =0, and |Kg| is base-point free. Moreover, ¥ has to be
a quintic surface in P3, with ¢(¥) = 0.

(1.3)
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6. in case (B), if d = 3, then ¢(5) < 3.

The first natural question is: are the obtained inequalities in cases (A)
and (B) sharp?
C. Rito uses in [Rit22] the Borisov-Keum equations of a fake projective
plane and the Borisov-Keum equations of the Cartwright-Steger surface to
show the existence of a surface with p, = 3, ¢ = 0, and canonical map of
maximum degree 36, and of a surface with p, = 3, ¢ = 1, and canonical map
of degree 27 (see the points 2. and 4. above). The first surface is an étale
Z3-cover of the fake projective plane, and the second an étale Zs-cover of
the Cartwright-Steger surface.
In the case (B), is not still clear if an example of a surface with canonical
map of degree 9 exists (see the point 5. above). The best record in the
literature is obtained independently by R. Pardini in [Par91b, Example 2.2]
and by S. Tan in [Tan92]. They found the same surface, which is a Z2-
cover of P? ramified on five lines in general position. Here the surface has
invariants K2 = 25, p, = 4, ¢(S) = 0, and X is a quintic surface in P? with
10 rational double points as singularities. The degree of the canonical map
is 5.

As we said at the beginning of the Chapter, we are majorly interested
to investigate

[MLP23, Question 5.2]: For every 2 < d < 36, does there exists any
surface S with p, = 3, and canonical map of degree d?

We point out that this question is well-posed thanks to points 2. and 3.
remarked above. In particular, if we are interested to get examples with
d > 28, then we have also to require that S is regular, and p, = 3.
Therefore, the idea of the thesis is to study systematically a class of surfaces
with such invariants. As we will see, the regular product-quotient surfaces
of general type are good candidates, since they can be easily described and
their canonical map is accessible to be studied.

1.2 Examples

Before going on to the Chapter 4 on product-quotient surfaces, we would like
to mention which have been the first examples presented in the literature,
with p, = 3, and which degree of the canonical map is attained by these.
We present in details those that can be easily described. Instead, we remand
the remain to the respective papers.

The technique of their construction can be expressed by using the theory
of abelian covers (for more details, please see [Par91a]).
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Example 1.2.1. (d = 2) This example, in [Bea79], was known to M.
Noether, as mentioned in [Enr49]. Let us take a surface Y with p,(Y") = 0.
Choose a line bundle on Y such that |2L| is base-point free and Ky + L is
a very ample divisor. Let w: S — Y be the double cover given by choosing
a general element D € |2L|, hence satisfying 2L = D. Then S is smooth,
Kg = n* (Ky + L). Thus Kg is ample, so S is minimal of general type.
Moreover, since py(Y) = 0, we have |[Kg| = 7*|Ky + L|. This means the
canonical map of S is the composition with 7 and the embedding defined
by the divisor Ky + L.

We have constructed a family of surfaces S with the canonical map of degree
2, and unbounded p,.

In particular, to get an example with p, = 3, one can just take ¥ = P2
and look for the first line bundle L for which Ky + L is very ample, namely
L = 4h, where h is the class of a line. In this case, the canonical map of S
is the double cover m branched over a smooth optic, and its invariants are
K:=2¢=0.

These are in fact the surfaces in Theorem 1.0.2 (iii), b.

Example 1.2.2. [d = 3...9] This example can be found in [MLP23, Ex-
ample 4.5]. We take G = Z32, and Y a del Pezzo surface of degree d > 3. For
every 0 # v € G choose a curve D, € | — Ky| such that ), D, is smooth
normal crossing. The relations to ensure the existence of a G-cover are
2L19 = 2L11 = 2Lo1 = —2Ky, whose only solution (since Pic(Y") is without
torsion) is Lig = Li; = Loy = —Ky. The corresponding bi-double cover
m: S — Y is smooth, we have 2Kg = 7*(—Ky ), which is ample, because
d > 3, and —Ky is ample. This means S is minimal of general type. We
have Kg =d, and p; = 3, ¢ = 0.

Finally, |Ks| is spanned by the three curves R, := n~1(D,) = 37*(D,), so
that |Kg| is base-point free and so the canonical map of S is mapped d-to-1
to P2,

We would like to point out that for d = 9, then Y = P?, and this
construction realizes one of the 11 families of smooth k-double covers of P2
with p, = 3 founded in the classification cit.. And the end of that Chapter,
the reader can find also a description of S by equations in the weighted
projective space P(13,33).

Example 1.2.3 (d = 12, Tan Example). See [Tan03, Theorem 2. (6)].

Example 1.2.4. [d = 16, Persson Example] This is due to Persson in
[Per78]. Let Y = P2, and let h be the class of a line. We take the group
G = 74, and consider the character xo € G* sending each vector of v € G
to the sum of its coordinates. Let us consider divisors D,,, which are a line,
for v & ker xo, and D, = 0, otherwise (hence they are in total 8 lines on
P2). The relations to ensure the existence of a 4-double cover 7: S — Y
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branched over those lines are 2L, =) D,. We have

v&ker x

2Ly, = ngkerxo D, =8h
2LX = Zv&kerx DU = ngker xoUker x DU = 4h’ if X 75 X0

whose only solution is L,, = 4h, and L, = 2h, for x # xo. We also assume
that the lines D, are in general position, so that S is smooth. Moreover, we
have Kg = 7*(h), and so S is minimal of general type with Kg =16, p, =3
and ¢ = 0. Finally, the linear system |Kg| = 7*|Ky + Ly,| = 7*|h|, so the
canonical map of S is the covering .

Example 1.2.5 (d = 20, Bin Example). We refer the reader to [Bin21a]
for a complete description. The author takes the group G := Z%, and a del
Pezzo surface Y of degree 5. He constructs two 4-double covers m;: S; — Y,
i =1,2, with p; = 3, ¢ = 0, and K? = 20, for the first case, and 24, for the
second one. Moreover, he shows that |Kg,| is base point free, so that the
canonical map has degree d = Kgl = 20, whilst | Kg,| has fixed part, so that
the degree of the canonical map decreases to 20.

Example 1.2.6 (d = 24, Rito Example). These are 4-double covers, Galois
covers with Galois group G isomorphic to (22)4, of a rational surface with
pg=3, Ki=24,¢=0.

Example 1.2.7 (d = 32, Gleissner, Pignatelli, Rito Example). We describe
only one of the two examples in [CGP23] because they differ just by a
different choice of the building data of the covering. Let us take G := Zj
and Y := P! x PL. Let Fi,..., Fs be six distinct vertical lines of Y, and
G1,...,Gg other six distinct horizontal lines. We denote by ey, - - - , e4 a basis
of G. By e;,..;, we mean e;, + ---+e;,. Let us consider the Zj-covering
m: 5 = Y given by

D¢, :=F1, D, :=1F3, D. :=1F3, D, =1y Deg,:=Fs,

-D624 = Fﬁv
Deysy := G, Deyyy i= G2, Deyyy := G5, Deyyy := Ga, De,, 1= Gb,

De23 = GG-

The branch locus of 7 is therefore something like
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F5 + Fg + G5 + Gs

Fi1+ F2 +G1 + Go

Fs3+ Fy+ G3 + Gy

The covering 7 is well defined because there exists divisors L,, x € G¥,
satisfying Pardini’s linear equations 2L, = ) gker(x) D,. Since there is
no 2-torsion in the Picard group of Y, then 7 is uniquely determined. In
particular, we have L, = 2F + 2G, if x € ker(e12) Nker(ess), x # 0, and
L, =F +2G, or L, = 2F + G, otherwise. S is smooth, with p, = 3, and
q = 0. The canonical system |Kg| is generated by
Fi+F+G1+Gs, F3+Fi+Gs+Gy, Fs+ Fo+Gs+ G,

where F, 1= 3m*(F;), and é; := 37m*(G;). Observe that F\,E = (/;\Zé; =0,
while F\Zé; = 4. This implies Kg = 32. Finally, by looking to their image
on Y, one verifies that the above three divisors have no common intersection

(see also the above figure). Therefore |Kg| is base-point free, and the degree
of the canonical map amounts to d = K g = 32.

Example 1.2.8 (d = 27,36, Rito’s Examples). See [Rit22].






Chapter 2

Galois coverings of Riemann
surfaces

This chapter aims to discuss Galois covers of a Riemann surface.

Definition 2.0.1. Let C' be a Riemann surface, and G be a finite group
acting holomorphically on C. Then \: C — C/G is called Galois covering.
It can also be called G-covering if one needs to specify which is the group
G acting on C.

Given a Riemann surface C’, we say that (C,)\) is a G-covering of C' if
A: C — C/G is a G-covering, and C/G = C'.

We are going to investigate C'/G, where G is a finite group acting ho-
molorphically and faithfully on C.

Remark 2.0.2. The action of G on C can always be assumed to be faithful.
If K is the normal subgroup of G of elements acting trivially on C, then
G’ := G/K acts on C, and obviously C/G = C/G’.

Proposition 2.0.3. [Mir95, Prop. II1.3.1] Let C' be a Riemann surface,
G < Aut(C), and let p € C. Suppose that the stabilizer subgroup Stab(p) is
finite. Then Stab(p) is cyclic.

Proposition 2.0.4. [Mir95, Prop. I11.3.2] Let C' be a Riemann surface, let
G be a finite group acting faithfully and holomorphically. Then the set of
points of C' with non trivial stabilizer is discrete.

Remark 2.0.5. In the same assumption of the previous proposition, if C is
compact, then only finitely many points have non trivial stabilizer.

The next goal is to define a complex structure on C'/G, the only one for
which the quotient map A: C'— C/G is holomorphic.

Theorem 2.0.6. [Mir95, Prop. I11.3.3] Let C' be a Riemann surface and let
G < Aut(QG) finite. Fixz a point p € C. Then there is an open neighbourhood
U of p such that:
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o U is invariant under the action of Stab(p): g(u) € U for each g €
Stab(p);

e UNg(U) =0 for every g ¢ Stab(p);

e the natural map o: U/Stab(p) — C/G, induced by sending a point in
U to its orbit, is a homeomorphism onto an open subset of C/G;

e no point of U except p is fized by any element of Stab(p).
Using the previous statement, we get the following structure theorem.

Theorem 2.0.7. [Mir95, Thm. II1.3.4] Let C' be a Riemann surface and let
G < Aut(C) finite. Then C/G has a unique structure of Riemann surface
such that X\: C — C/G is holomorphic of degree |G|, and the ramification
index rp(X) of a point p equals rp(X) = |[Stab(p)|.

Note that the previous theorem has many others implications.

Remark 2.0.8. The ramification locus of X is the set of points of C' having
non trivial stabilizer.

Remark 2.0.9. Let ¢ € C'/G be a branch point of A, and p € C be a point
over q. The stabilizer of a point g - p over ¢ is conjugated to Stab(p):
Stab(g - p) = g - Stab(p) - g~!. In particular, they have the same order, so
that

rg.p(A) = 1p(A) = [Stab(p)|.
This justify the following

Definition 2.0.10. We say that m > 1 is the ramification index of a point
g € C/G if it is the ramification index of a point p over q.

Note that ¢ € C'//G is a branch point if and only if its ramification index
is at least two.

Remark 2.0.11. The number of points over ¢ € C/G equals |G|/m, where
m is the ramification index of q.

Remark 2.0.12. (Hurwitz formula for Galois coverings) The well-known Hur-
witz formula assumes a nice homogeneous form if applied to Galois coverings.
Let g1,...,q- be the set of branch points of A of ramification indices m; > 2
respectively. The ramification divisor of A can be rearranged as

r

SN =Dp=> | > () -1)p

peC i=1 \per—1(q)
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where A\7!(g;) is the divisor of the fibre of ¢; taken with the reduced structure.
Let w be a non-zero meromorphic 1-form of C'/G. Then

div(N*'w) = Ndiv(w Z “Hap). (2.1)

By applying the degree operator to both divisors of the equation, we get the
Hurwitz formula

29(C) — 2 = deg(M)(29(C/G) - 2) +Z i = DA @)
i=1

= 16129(C/G) ~2) + (s — I (22)
— g <2g(C/G) -2+ <1 - ni)) .

We are interested to understand which is the action of Stab(p) locally
around p.

Lemma 2.0.13. (Linearization of the action, [Mir95, Cor. 111.3.5]) Let C
be a Riemann surface and let G < Aut(C) finite. Fiz a point p € C, and
let m be the order of its stabilizer. Let h € Stab(p) be a generator of the
stabilizer subgroup. Then there is a local coordinate z on C centred at p such
that h maps the point of coordinate z to the point of coordinate Az, where
A=emk is one of the primitive m-roots of the unity.

Definition 2.0.14. The previous lemma gives a bijection among the prim-
itive m-roots of the unity and the generators of Stab(p). We denote by local

monodromy of p the unique generator of Stab(p) acting by z — ez,

Remark 2.0.15. The local monodromy of ¢ - p is the conjugate ghg~! of
h. In other word, the local monodromy of points of the same G-orbit are
conjugated between them.

2.0.1 The Riemann Existence Theorem

Let C be a Riemann surface and let G < Aut(G) finite. By Theorem 2.0.7
we can define a structure of Riemann surface on ¢’ = C/G such that the
quotient map A: C' — C" is holomorphic. Let X := {q1,...,¢} be the set
of branch points of A\. Then

A C\MNHX) = O\ X

is an étale covering.
We pose the following question: given a set of r points X := {q1,...,¢,} on
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a Riemann surface C’ and an étale Galois covering of C’\ X is it possible to
extend that covering to a Galois covering of the entire C’? Is the Riemann
surface C unique up to isomorphism?

Theorem 2.0.16. (Riemann Eristence Theorem) Let C and C' be Riemann
surfaces and let X C C' be a finite set. Let

/\0:6—>C,\X

be a proper étale covering.

Then X\ can be extended to a branched covering of C', that is there exists a
Riemann surface C, a proper biholomorphic map \: C — C' and a biholo-
morphic map ¢: C\ \™1 — C such that the following diagram commutes:

C+2— C\NYX)—— C

| |

'\ X - c’

Moreover C is unique up to tsomorphisms.

The Riemann Existence Theorem is extremely useful in many situations.
We are going to use it in the next section together with the following classic
result in algebraic topology:

Theorem 2.0.17. (Ezistence Theorem of covering spaces) Let X be a topo-
logical space which is path-connected, locally path-connected, and semilocally
simply connected. Then, for every subgroup K < m(X,x0), there exists a
covering A\: X — X such that \(m1(Xy,2)) = K for a suitable choice of
the base point T € \~1(xg). The covering X is unique up to equivalence of
COVETINGS.

2.1 Description of Galois covers of the line via the-
oretical group data

A Galois covering may be often difficult to describe, especially with equa-
tions. Given a finite group G, we are particularly interested to determine
any G-covering (C, \) of P! branched over r points q,...,q,, up to topo-
logical equivalence. A surprisingly fact is that local monodromies g; € G
of points over ¢; determine C, the action on C', and so the covering A. We
collect these local monodromies in a sequence [g1,. .., g;], which takes the
name of spherical system of generators.
The chapter discusses the main results on the deep correspondence

among G-coverings of the line (up to topological equivalence) and (classes)
of spherical systems of generators.
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Definition 2.1.1. Given a Riemann surface C’ and a finite group G, we say
that a couple (C, \) is a G-covering of C" if G acts on C, and X\: C' — C' is
the quotient map, so it exhibits C’ as the quotient of C via G.

Definition 2.1.2. We say that (C1, A1) and (Ca, \2) are topological equiv-
alent if there exists a orientation preserving homeomorphism f: C; — Co,
and an automorphism ¢ € Aut(G) such that f(g-p) = ¢(g) - f(p), for any
g € G, and p € C;. We say that (C1,A1) and (Co, A\2) are isomorphic if
moreover f is a biholomorphism.

Consider the set of G-coverings modulo isomorphism. The topologi-
cal equivalence partitions it in equivalence classes, let C be one of them.
Gonzdlez-Diez and Harvey showed in [GDH92] that C has a natural struc-
ture of connected complex manifold such that the natural map of C on the
moduli space of curves mapping (C, A) to C' is analytic. More precisely, the
manifold C is the normalization of its image C. In particular, Cis always an
irreducible subvariety of the moduli space of curves.

Remark 2.1.3. Let C’ be a Riemann surface. We remark that
e the genus g,
e the number r of points of the branch locus,
e the ramification indices my,...,m, > 2,

are invariants up to topological equivalence of G-coverings (C, A) of C".
The Hurwitz formula (2.2) establishes the relationship among the genus g
of C, the genus ¢’ of C’, and the ramification indices m;:

T
1
29 — 2 = = - . .
g |G| (29 2+Z<1 mz)) (2.3)
i=1
Definition 2.1.4. Up to re-label m;, we can assume 2 < mj < --- < m,

The sequence [myq,...,m,| is called signature of (C, \).

Let us suppose now C’ = P!, so we are working with G-coverings of the
line.

Definition 2.1.5. We set 7" (G) the collection of all classes of G-coverings
of P! ramified over r points modulo topological equivalence.

Definition 2.1.6. A spherical system of generators (of length r) of G is a
sequence [g1,...,gr] € G" of elements of G such that g; # 1 for all ¢, and

b G:<gl7"'7g7“>;

e g1---gr = 1.
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The sequence [0(g1), .. .,0(gr)] is called signature of [g1,. .., gr].

Remark 2.1.7. For each signature [myq,...,m,] consider the orbifold group

T(mi,...,mp) =1, Wy =1="1...9).

There is a natural bijection among the set of surjective homomorphisms
T(mi,...,m;) — G and the set of the spherical systems of generators
[g1,-..,gr] of fixed signature [my,...,my].

The bijection associates to any homomorphism ¢ the spherical system

of generators [p(71), ..., o]

Definition 2.1.8. We set D"(G) C G" the collection of all spherical systems
of generators of G of length r.

Consider a finite group G, and a non-negative integer r > 0. Take the

group B, whose presentation with generators o1,...,0,_1 is
0i0j = 004, ‘Z.—j’>1
B, = <01,...,0r1: 0i0j0; = 00,05, li —j| = 1>.
IS
(O'r_lu.'o'l) :]_

We call such generators Hurwitz moves. We consider the following action of
Aut(G) x B, on D" (G):

Uelgr, .9 = [¥(g1),. ... ¥(gr)], U € Aut(G).

An Hurwitz move o; € 1/3: acts as
;- [91, e 7gr] = [91, -5 9i-1,9i * Ji+1 'g;1>9i>9i+2> .. -gr]-

The action of the generators o; extends to an action of the entire B,.
We finally have the following classical result

Theorem 2.1.9. The collection of all classes of G-coverings of P' ram-
ified over r points modulo topological equivalence is in bijection with
D" (G)/Aut(G) x B,:

T7(G) = D"(G)/Aut(G) x B,. (2.4)

For a proof, we refer to the recent paper [GT22, Cor. 5.7].

We describe the bijection in Theorem 2.1.9. Take an element in the
quotient D" (G)/Aut(G) x By, and choose a representative [g1, ..., g,] of it.
From Remark 2.1.7 we obtain a surjective morphism T(m1,...,m,) — G,
with m; = o(g;).

We choose a finite set X := {q1,...,¢.} on P!, a point ¢o € P'\ X, and a
geometric basis of the fundamental group of P!\ X with base point go:
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Definition 2.1.10. Consider a smooth regular arc 7; joining ¢y to g, (for
some permutation p). Assume that 7; intersects only at gy and that the
tangent vectors at gy are pairwise distinct and follow each other in the
counterclockwise order (we orient S? by the outer normal). We define the
loop n; as follows:

Fix a small disk D around g,,. The loop 7; starts at the point qp, travels
along 7j; till reaches the boundary 9D, then makes a complete tour of 0D
counterclockwise and finally goes back to go again along 7;.

Call always by 7; the homotopy class of the loop n;. We say that ny,...,n,
is a geometric basis (veferred to ) of m (P*\ X,q0), X = {q1,...¢-}.

Figure 2.1: Two examples of geometric bases, the first with 4 = Id, and the
second with = (i i+ 1).

Remark 2.1.11. The class of the loop 7; does not depend on the choice of the
disk D. Moreover, if we replace 7; with different paths 5;, and called §; the
resulted closed loops, then 7; and &; would be conjugated in 71 (P \ X, qo).
In fact, define the loop v that starts at ¢q, travels along 7j; till 9D, follows

a piece of D and finally goes back along ;. Then §; = vt

Let us fix a geometric basis 7y, . . ., n, referred to the permutation p = Id.
Observe that the product 7 ... 7, can be contracted to the point go (see the
figure (2.2) below). This is the only relation between the class of these
loops. In other words, the choice of a geometric basis gives a presentation
of m1(P'\ X, qo):

Lri= (15l Y1), I, S mP\ X, ), v—m (25)
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Figure 2.2: The contraction of the product loop 71 ---n,- to the point ¢,
where the basis 71,...,n, is referred to p = Id, in the first case, and to
= (i i+ 1), in the second case.

Notice that T(my, ..., m,) is a quotient by I',. Therefore, the choice of a
geometric basis gives a group homomorphism 71 (P'\ X, qo) — T(my, ..., m,)
mapping, for all ¢ = 1,...,r, the geometric loop 7; around g, to ;.
The kernel of the composition 1 (P \ X, qo) — T(my,...,m,) — G defines
a unique étale G-covering of P! \ X from Existence Theorem of covering
spaces 2.0.17.
By Riemann Existence Theorem 2.0.16, this completes to a G-covering (C, \)
of PL.
The bijection of Theorem 2.1.9 maps the class of [gy,...,g,] modulo
Aut(G) x B, to the class of (C, A) modulo topological equivalence.

In particular Theorem 2.1.9 says that

1. if in the above construction we change

e the set of spherical generators [g/b ..., gr] by a set in the same
orbit for the action of Aut(G) x B,, or

e the points qo, q1, . . ., ¢, with other r + 1 points of P!, or

e the choice of the geometric basis 7, ...,n,

then the new obtained G-covering is topologically equivalent to (C, \);
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2. if (C1, A1) and (C2, A2) are obtained by spherical systems of generators
that are not in the same Aut(G) x B,-orbit then (C1, A1) and (Ca, A2)
are not topologically equivalent.

3. every G-covering (C,\) up to topological equivalence is obtained in
this way by a spherical system of generators of G.

We discuss in details only the third point above. Hence we show how to get
a spherical system of generators from a G-covering of the line.

Consider a G-covering A: C — P! whose branch locus consists of r
points. Take an orientation preserving homeomorphism, v: P! — P!, map-
ping this branch locus to X = {qi1,...,¢-}. Denote by C5 the curve C' with
the complex structure making ) o A: C3 — P! holomorphic. Then (Cy, \2)
is topologically equivalent to (C,\). Therefore, without lost of generality,
we can assume that the branch locus of (C, \) is exactly X.

Then A: C\ A™}(X) — P!\ X is an unramified covering.

We choose a point pg € A™%(go). Consider the normal subgroup

A (C\XHX), po) < (P X, qo), (2.6)

and the monodromy map based at pg

TP\ X, q0) =25 A g0),  n> Lpo(n) = iipe(1). (27)

This sends any class loop 1 of P!\ X based at gp to the end point of its
(unique) class lifting 7j,, on C'\ A™!(X), starting at the point pyg. Observe
that (2.7) is surjective since C'\ A~1(X) is path-connected.

The point ¢¢ is not a branch point of the covering, so that the orbit
A~!(qo) consists of |G|-points, and we can identify A™'(q0) = G: g-po > g.
Once such identification is fixed, then the monodromy map (2.7) is a group
homomorphism: suppose Lp,(1n) = g - po, and Ly, (y) = h - pg. Observe
Mpo = TlpoVgpo> and the paths Jg.p, and g - Jp, are both lifting of v at the
initial point ¢g-pg. Thus they are homotopic paths and have the same ending
point. We can conclude

£P0(777) = 7/7\:)/100(1) = :Yg'po(l) =g ﬁpo(l) =g- (h 'pO) - (gh) " Po-

Moreover, the kernel of (2.7) is exactly the normal subgroup (2.6). Notice
that only the kernel of this map is uniquely determined by the covering.
Let us choose now a geometric basis 71, ..., 7, we get the isomorphism (2.5).

The composition I',. — 71 (P'\ X, o) Eﬂ> G is an epimorphism which sends
vi to some g; € G (remember that (2.7) is surjective). We have therefore
got a sequence [g1,...,9,] € G" of elements of G, which are generating G,
and whose product is 1. This is a spherical system of generators (of length
r) of G as in the Definition 2.1.6.
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In the subsection 2.1.1, we prove that g; is the local monodromy (see the
Def. 2.0.14) of a point over g;, and the ramification index of ¢; is exactly
m; = 0(g;) > 2. In particular, the signature of (C, \) is the signature of the
spherical system [g1,...,g,|, and the genus g of C' can be computed by the
signature using the Hurwitz formula (2.3).

Let us give some examples of how to use the Theorem 2.1.9:

Example 2.1.12. Let p > 2 be a prime number, and consider the group
G= ZIQ,. We are going to compute T3(Z12,), the collection of the Zg—coverings
of the line (up to topological equivalence) ramified over 3 points. Consider a
spherical system [v1, v9, v3]. Note that v; and vy have to be linearly indepen-
dent, since otherwise v3 = (p—1)v; + (p—1)vg, and so they would not gener-
ate the entire Z2. Now take the base change matrix M € Aut(Z2) from the
standard basis to {vi,v2}. Then [vy, ve,v3] = M -[(1,0),(0,1), (p—1,p—1)].
We can conclude that

THZ2) = {[(F, )]} = D(Z2)/Aut(Z2) x By = {[(1,0), (0, 1), (p—1,p—1)]}.

By the Hurwitz formula (2.3), the genus of the Zg—covering C of the line
associated to such spherical system is:

(p-1)p—-2)

2g(C)—2:p2<—2+3—;) = ¢g(C) = 5

The covering (F, \) may be described as follows: take the Fermat curve of
degree p in P?
F = {ah + 2} + 28 = 0} C P?,

and define the action
o: ZI% — Aut(F'), (a,b) = [(w0: 21 :22) = (w0 : (o Cg%)], (pi=er.

This action has 3p-points with non-trivial stabilizer. They form three orbits
of length p. A representative of each orbit and a generator of the stabilizer
is given by

point ‘ (—1:0:¢p) ‘ (—1:¢y:0) ‘ (0:-1:¢)
generator ‘ (1,0) ‘ (0,1) ‘ (p—1,p—1)°

The quotient map is
A\: FCP? =P (w0, 21, 9) +> (24, 2B).

It is branched along (0,1), (1,0), and (1,1).
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Example 2.1.13. Let G = S3 = (1,0 | 72 = 0% = 1,07 = 70~ !) be the
symmetric group of 3 elements. Consider r = 3, so we are going to determine
T3(Ss3), the collection of S3-coverings of the line (up to equivalence) ramified
over r = 3 points. Let [g1, g2, g3] be a spherical system of S3, and set m; :=
o(g:) € {2,3}. Without lost of generality, we can suppose m; < mg < mg
(otherwise we re-order the g;’s by moving the system on its Aut(G) x B,-
orbit through suitable Hurwitz moves). By the Hurwitz formula (2.3), the
genus of the G-covering C' associated to [g1, g2, g3] is

1 1 1
2g(0)—2:6<—2+3— <++>)
mq mo ms3

(2.8)
1 1 1

In particular, 3(7%1 + miQ + m%s) has to be an integer, which holds only for

mi = mg = mg = 3, or m; = my = 2 and mg = 3. The first case is not

admissible, since there are not g1, g2, g3 of order 3 generating Ss3. It remains

the second case. Observe that (2.8) gives g(C) = 0, hence C' = P!,

The elements of order 2 of Sg are 7, 7o, and 702.

Since [g1, g2, 93] is a spherical system, then g3 = g;lgfl, and g1 # go
otherwise we would get g3 = 1, because they have order 2. Thus the list of
spherical systems D?(S3) with ordered signature [2,2, 3] is obtained just by
choosing distinct g1, g2 € {7, 70,70%}. Such list is
?]

[1,70,0
T T
[Ta 7-0-27 U] = <U s 0_2) : [T’ TO, 02] = 0-10-%01 : [7—7 TO, 02]7
T TO
[ro,7,0] = <a L 02> |7, 7o, 02] = G%O’%O’l - [ry 7o, 02],

2

T+ T0
[7_0-277-0-a J] = <J — 0_2 ) ' [T’ TO, 02] = 0-:1))0-%0-1 ’ [Ta TO, 02]7

(2.9)

2
T TO
[TU2777 0-2} = < o= o ) : [7-77—0-7 02] =01 [Ta 70702]7
T TO

2 2 2 2 2
[ro,T0%, 07 = (UH a) my10,0%) =07 - [T, TO, 0.
Observe that any automorphism ¥ € Aut(S3) acts on [r,70,0%] as some
element o € B,. -
Since any spherical system shares the same Aut(G) x B,-orbit of [, 70, 02],

then we can conclude
T3(Ss) = {[(P', )]} = D*(S5)/Aut(G) x B, = {[r, 70,0}

An action of S on C' = P! is
27mi

7 - (w0, 1) := (@1, 20), o - (0, 21) = ((320,21), (3:=€5.
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The quotient map is
AP PL o (wo, @) = (202, (20 + 28)/2).

Example 2.1.14. Consider the group G = S3 x Zf,, p > 2 prime number.
We compute 73(S3 x ZIQ)). Up to apply suitable Hurwitz moves, we can
assume that a spherical system [(g1,v1), (92, v2), (93, v3)] has o(g1) < o(g2) <
0(g3). Observe g; # 1, otherwise S3 would be generated by only one element,
and this is not possible since it is not cyclic. The same argument holds for
Zg, so that v; # 0. This implies [g1, g, g3] € D3(S3) is a spherical system
of S3, and [v1,v,v3] € D3(Z?2) is a spherical system of Z2. However, we
have proved that any ordered system of S5 of the list (2.9) shares the same
orbit of [, 70, 0%] by a suitable automorphism ¥ of S3, and any system of
Z2 shares the same orbit of [(1,0),(0,1),(p — 1,p — 1)] by a base change
matrix M. Thus (¥, M) sends [(7,(1,0)), (70, (0,1)), (02, (p — 1,p — 1))] to
[(g1,v1), (92,v2), (93,v3)]. We have proved

D3(S3 x Z2)
Aut(S3) x GLa(Zy) x Bs
={[(7,(1,0)), (r0,(0,1)), (0%, (p = 1,p — 1))]}.

By the Hurwitz formula (2.3), the genus of the associated G-covering C' is

1

T3(S3 x Z2)

24(—243-1-%) if p=2
29(C)—2=1454(-2+3-2) if p=3 —
6p> (—2 13- (% + 4+ %)) otherwise

0 if p=2
g(C)=<10 if p=3
(B3p—1)(p—1) otherwise.

As we could expect, it becomes soon computationally difficult getting
the Aut(G) x By-orbits of D"(G), when r or G increase. For this rea-
son, several authors put an increased effort into the development of an
efficient algorithm to compute such orbits, usually with the helping also
of a computational algebra system (e.g. MAGMA, [BCP97]). A big step
forward in this direction is given for instance in [CGP23], where the au-
thors collect in a database a representative for any orbit of spherical sys-
tems of fixed genus g. At the moment, we have a complete list for any
genus g < 40, with a few exceptions. We also mention their useful website
https://mate.unipv.it/ghigi/tipitopo/. Here, chosen a finite group G
and a signature m, one can ask to the database to pick-up one representa-
tive for any orbit of spherical systems of the group G' having that pre-fixed
signature m.


https://mate.unipv.it/ghigi/tipitopo/

2.1 Description of Galois covers of the line via theoretical group
data 29

2.1.1 Monodromy and spherical systems of generators

Consider a G-covering of the line (C, \) branched over X = {qi,...,¢.}, a
point qo € X, and a geometric basis n1,...,n, referred to a permutation pu.
Hence we have a presentation I', — 71 (P! \ X, q), which composed with
the monodromy map L, based at a point py over go gives an epimorphism
I’y — G sending 7; — g;. We have got the spherical system [g1, ..., g].

We are going to prove that any g¢; is the local monodromy (see the
Definition 2.0.14) of a point over g, and its order is the ramification index
m := m; of q,,. To show this, let us consider a point p over g,,.

Consider an invariant open neighbourhood U of p as in the Theorem 2.0.6.
Hence for any h ¢ Stabg(p), then h(U) N U = (. Up to choose U small
enough, we linearize the action of Stabg(p) locally around p, by the Lemma
2.0.13. Hence it there exists a local coordinate z around p such that a
generator g of Stabg(p) acts as a multiplication of a primitive m-root of the
unity, g: z — e%kz, and the quotient map A assumes the local normal form
z—w=2z"

Given h ¢ Stabg(p), note that A(U) is an open neighbourhood of h - p with
the same properties as U: there exists a local coordinate z, around h - p
such that the generator hgh™! of Stabg(h - p) acts as zp, — e%kzh, and A
assumes locally around 5 - p the normal form zj, — w = z;".

Consider the path v := 7;, where 7; is as the Definition 2.1.10; let us
call by ¢ the intersection of v and dD. Up to choose the disk D small
enough, we can assume ¢, falls into the local chart A(U) of ¢,,. Let us say
wo = w(qy) is the local coordinate of ¢f, on A\(U). Call by pj, the point over
q(, of the lifting of v starting at pp; it falls into only one of the open sets
h(U), h ¢ Stabg(p). Without lost of generalities, up to rename h - p to p,
we can suppose that pf, falls into U. Let zo = z(p{,) be the local coordinate
of p{, on U. By construction, zq is one of the m-roots of wy. The situation
is the following
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Let us change now the base point gy to ¢, via 7. The spherical system

referred to the new geometric basis v~ 'n1v,...,7 0.y is [g1, ..., g-] again.
In particular, by construction of v, the loop v~ 17 is the circle t — €™y

of radius |wp|. Its unique lifting via A: 2z + 2™ starting at zp is then
tsem 20, whose ending point is e zo. From the other side £, (v Iny) =

27

gi - Dy We have therefore proved g; - zo = e™m 2.
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“hopo h(U),h ¢ Stabg(p)

Po

q0

2mit

Figure 2.3: The lifting of the loop vy~ 1n;v: t — e?™wy starting at the point
27

20 = py. We get g; - z0 = €m 2.

Moreover, this shows g;-29 € ¢;(U)NU # 0, so that g; € Stabg(p). Since
any element of Stabg(p) is acting on U by the multiplication of a m-root of
the unity and g; - 29 = e zo, then g; has to act as z — e%z, which proves
g; is the local monodromy of the point p.

Remark 2.1.15. We have immediately got also that hg;h~! is the local mon-
odromy of the point h - p, with h ¢ Stabg(p). Hence the local monodromies
of points over g, are conjugated to each other.

Remark 2.1.16. The order of g; € G has to be o(g;) = m = m,. This follows
because the action of gf is gf sz = eyz, 0<k<m-—1.

To see this, you can either simply compose k-times the local action of g;, or
to re-iterate the previous geometrical approach as follows:

Consider ¥ instead of n;. So y~1nFy is the loop t — >kt starting at
wo = ¢}, and going over the circle of radius |wg| k-times. It is sent to gf via
the monodromy map based at pf), so that Ly (y"InFy) = gk - pj. The lifting

of 7*17757 starting at 29 = pj via A1 z = w = 2™ is t > e m 'z, whose
ending point is then e m zy. We have proved gf -z0 =€ m zp, which forces
gf to act as required.
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hepo h(U), h ¢ Stabe (p)
™ _ 2mi (77l71)20

50 mmeT . U

L9

Figure 2.4: The lifting of the loop ’yflnf’y: t > e2mikt
point zp = pf. We get g; - 20 = eIt 20.

wo starting at the




Chapter 3
Cyclic quotient singularities

Here we discuss cyclic quotient singularities of normal complex surfaces and
their minimal resolution. Such singularities are crucial to be studied for
sections 4.3 and 4.4 of the Chapter 4 since the quotient model of an unmixed
type of a product-quotient surface has only finitely many cyclic singularities.

Definition 3.0.1. Let X be a normal complex variety. We say that a point
p € X is a quotient singularity if there exists a neighbourhood U of p such
that U =2 C™/H, where H is a finite subgroup of Aut(C™,0), the group of
automorphism of C™ fixing the origin 0.

Remark 3.0.2. Consider a subgroup H < Aut(C™,0) and a change of coordi-
nates ¢: C" — C" around 0, namely an automorphism of C™ fixing 0. Then
this change determines a new group H' := {¢oho¢~': h € H} < Aut(C™,0)
conjugated to H, H = ¢H¢~' = H, and an isomorphism C™/H — C™/H'
sending Hx — H'(¢p(x)).
Another equivalent interpretation is that we have changed the action of H
on C™ via the map ¢; the new action may be different from the previous
one, but the quotient C™/H doesn’t change, up to isomorphism.
Therefore, one can try to change coordinates on C™ in order to represent
the singularity through a suitable subgroup H, which may be considered in
some sense ”canonical”. Let us see how.

Lemma 3.0.3. (Cartan, cf. [Bri67, Lemma 2.2 |) If H is a finite subgroup
of Aut(C™,0), then there exists a system of coordinates such that the action
of H is linear, namely H < GL(m, C).

Proof. Let us define the map ¢: C™ — C™ sending x +— >, .y (Joh)f1 h-z,
where Jyh denotes the Jacobian matrix of A at the point x = 0. We observe
that ¢ is a change of coordinates around O:

Jod =Y (Joh) ' Joh = |H|L, = det(Jop) = |H| # 0.
heH
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Called by z = (21, ..., zn) the coordinates of the target of the map ¢, then
the new action of H via ¢ is

g-z=(pogod™)z=>_ (Joh) 'h-g-(¢'2)

heH
= Jog Y (Johg) ™" (hg) - (67 '2)
heH
= (Jog)=.
O

Remark 3.0.4. By the just proved Cartan’s lemma 3.0.3, every quotient
singularity C™/H can be realized through a finite linear subgroup H <
GL(m,C).

Lemma 3.0.5. If H is a finite abelian subgroup of GL(m,C), and h1, ... hy
are generators of order ri,...,r respectively, then there exists a system of
coordinates of C™ such that H has the form

2mipyq 2mipy g
e " “ee 0 O e Tk P O 0
2P, 1 2mip Lk
0 0 ... en 0 0 ... e "k

for some piiy ..., pmi, i EN, i =1,...k.

Proof. Since H is finite, then each element of it has finite order and so it
is a diagonalizable matrix. Moreover, H abelian implies that its elements
are matrices commuting to each other, so that there exists a basis b of
eigenvectors diagonalizing simultaneously all of them. In other words, called
by M = My (Idcm) the base change matrix from the standard basis e to
b, then MAM™~" is diagonal, for each A € H. Thus, choose the change
of coordinates  — Mz to get an isomorphism C™/H — C™/H’, where
H' = MHM™! consists only of diagonal matrices. Now, the generators h;
of H corresponds to diagonal matrices D; of H', and D;* = I since h; has
order r;. Therefore the eigenvalues of D; are r;-roots of the unity, and the
thesis follows. O

The previous lemma justifies the following

Definition 3.0.6. A normal complex variety X has a cyclic quotient singu-
larity in p € X if there exists a neighbourhood U of p such that U = C™/H,
where H is a cyclic subgroup of GL(m, C) of the form

2mipq O O

e r
27TiPpm

0 0 ... e -
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for some p1, ... pm, 7 € N. We say that %(pl, ..., Pm) is the type of singularity
of p.

Since we are interested on singularities on a surface, we consider from

now a subgroup
2mip 0
H= <<e ’ 2mq>> < GL(2,0C),
0 e r

in which case we will say that C2/H is a singularity of type %(p, q).

Remark 3.0.7. In dimension two the singular points which are quotient sin-
gularities through the action of a finite abelian group are cyclic quotient
singularities. This follows directly from the classification of finite subgroups
of GL2(C) (see [Mat02, Theorem 4.6.20]).

Remark 3.0.8. As we can expect, there are different way to describe a sin-
gularity. For example, a singularity of type %(2, 3) is biholomorphic to one
of type £(1,4), simply because H = (g) = (¢*), and so C?/(g) = C?/(g*),

2mi2

(e 5 0
where g := 0 omiz | -
e 5

Definition 3.0.9. Take the set of formal symbols %(p, q). We define on this
set the following equivalence relation: we say that %(pl, q1) is equivalent to

2mip;
. mi 0 .
%(pg,cp) it C™/Hy = C™/Hs, where H; := < € 2mig; >, 1=1,2.
0 e i
A cyclic quotient singularity corresponds to an equivalence class.

The next lemma says that we can always pick up a ”canonical” repre-
sentative for any equivalence class. Before proving this, we give some easy
remarks.

Remark 3.0.10. Each 1(p,q) is equivalent to 1([p],, [q],), where [p], denotes
the representative < r of the class of p modulo . Therefore, one can suppose
without lost of generality that 0 < p,q < r.

Remark 3.0.11. %(p, q) is equivalent to %(q,p). Remembering the Remark
3.0.2, it is sufficient to take the change of coordinates (z,y) — (y, z), which
gives a new cyclic group generated by

27ip 2miq
0 1\ (e~ 0 01\ _(er 0
10 0 5t 1 0/ 0 et

Remark 3.0.12. Let (z,y) be the coordinates of C2. A singularity of type
%(O,q) is a smooth point (and it is always equivalent to some %(0, 1)). In
fact, the ring of the invariants of C2/H is C[C?/H| = Clx,y"] = C[X, Y],
and so C?/H =2 C? (see the Proposition 3.0.14).
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One can ask himself if there could be others H < GL(2,C) giving a
smooth quotient C?/H = C2.
A famous theorem by Chevalley and Sheppard-Todd says that given a fi-
nite group H < GL(k, C), then the quotient C*/H is non-singular if and
only if H is generated by quasi-reflections (matrices that diagonalise to
diag(1 ,...,l,e v ) p € N).
Thus, in the case k = 2, the only cyclic quotient singularities giving a smooth
quotient are equivalent to 1(0,1).

Lemma 3.0.13. Fach cyclic quotient singularity of type f(p, q), with p,q #
0, is equivalent to a cyclic quotient singularity of type (1 a), with 1 < a <
n, and ged(a,n) = 1.

Proof. Claim: take d = ged(p, ). Therefore p = p'd, r = r'd, and
ged(p/,r") = 1. Then P, q) is equivalent to (p q). To prove this, call for

2mip
brevity g := (6 i 9 ) We observe that

/gy = (C2/g™) / (ta)/4g™)) - (3.1)

However, the action of (¢") on C2 gives a cyclic singularity of type Lipr!, qr')
= 1(0,¢), which is smooth, by the Remark 3.0.12. Thus C?/(g" ") = C2, via
the isomorphism ¢: (¢")(z,y) — (z,3%). Let us call the coordinates of the

new C2 by (X,Y).
We observe also that (g)/(g"") = (g%), hence the isomorphism (3.1) becomes

C2/(g) = C?/{g"),

and the action of (g¢) on the new C? is then

9" (X,Y) = d(g" - (67 (X,Y)) = (9" - (9" ) (,9)))
$((g") (g - (x,9)))
¢

(g7 ) (e a0 7 y))

2mip 2migd
=(er x,e

y?)

o o)\

Thus we can start the proof of the lemma by supposing %(p, q) has

ged(p,7) = 1. However, this implies ¢g' generates (g), where t = p~! is
the inverse of p modulo 7, and so %(p, q) is equivalent to %(1, gt). By the
Remark 3.0.11, %(l,qt) is equivalent to %(qt, 1), for which the claim above
applies. Therefore, %(qt, 1) is equivalent to some %(a, 1), which is equivalent

0 %(1,a), with 1 <a < n, and ged(a,n) = 1. O
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It is useful the following standard result

Proposition 3.0.14. [Mum08, Sec. 7] [Rei03, Exs 4.3-4.4 for details] Let
G be a finite group acting on CF by algebraic automorphisms. Write by
T1,..., T the coordinates of CF. Then the quotient X := CF/G is an affine
algebraic variety whose points correspond one-to-one with the orbits of the
group action, and such that the ring C[X] of the functions defined on X are
precisely the invariant polynomials on CF, namely C[X] = Clxy,...z;)¢
The ring C[X] is finitely generated. Moreover, if fi,...fn are invariant
polynomials generating C[X], then X is defined as follows: take the ring
homomorphism ¢: Cluy, ..., uy] = C[X]9, u; — fi. Therefore the kernel
of ¢ is the ideal of the relations between the generators f;. We have

X=V(ker¢) ={ueC": Flu)=0,F € ker g},
and the quotient map is
Ck%XgCNa ZZ‘:(LL‘l,,l’k)H(fl(j),,fN(i'))

Example 3.0.15. The Remark 3.0.12 is the baby trivial example. The sec-
ond non-trivial one is the singularity %(1, 1). Here the ring of the invariants
of X := C?/H is C[z?, y?, xy], therefore X := V(u3 —ujuz) C C3 is the cone
over a quadric, and the vertex of the cone is the singularity.

We are going to compute the ring of the invariants of a cyclic quotient
singularity X := C2/H of type 2(1,a), with ged(a,n) = 1. Let (z,y) be
coordinates on C2. Since the action on C? is linear and diagonal on the
components x and y, then the ring of the invariants has to be generated by
some monomials 2%y®, so that C[X] is identified just by the monoid of the
positive quadrant of a lattice of R?, the lattice M of points («, 3) satisfying
a+af =0 mod n. Equivalently, 3 = (n — a’)a mod n, where o’ = a~*
is the inverse of a modulo n. Note that any («, ) has to be an integer
combination of (0,0) = 1, (n,0) = 2, (0,n) = ¢, and (1,n —d’) = zy" %,
which are trivially invariant polynomials. in other words, we have

CIX] = €y : (0 B) € MR,
where M is the lattice
M :={(a,B): a+af =0 modn}="27Z(n,0)HZ0,n)+Z(1,n—a). (3.2)
We would like to find a (minimal) set of generators of C[X]. Let us see how.

Definition 3.0.16. Let 1 < a < n be coprime integers. Then the Hirze-
bruch-Jung continued fraction of n/a is the expression

= b, ..., bi. (3.3)
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For example,
1

7

3 =1[3,2,2] =3 2_%.
Proposition 3.0.17. [Rei03, Prop. 2.2] Let 1 < a < n be coprime integers
and consider the lattice L = Z*> +Z-1(1,a). Then L contains the lattice Z?
as a sublattice of index n, and its other cosets are represented by the n — 1
lattice points %(j, [aj]n) contained in the unit square of R? (see the Figure
3.1). Define the Newton polygon as the convexr hull Newton(L) in R? of all
non-zero lattice points in the positive quadrant

0,1) (0,0)

e €0 = (O/ 1)

(0,0) (L,0) (0,0) erv1 = (1,0)

Figure 3.1: The lattice L and its Newton polygon

Write

€0 = (07 1)7 €1 (]-aa)u €2, ", €, €41 = (150)

"
for the lattice points on the boundary of Newton(L). Then

(I) Any two consecutive lattice points e;,ej+1 for i = 0,...,1 form an
oriented basis of L.

(II) Any three consecutive lattice points e;_1,e;,e;+1 fori=1,... 1 satisfy
the relation
ei+1 +ei—1 = bie;, by >2. (3.4)

(III) The integers by, ..., by in (II) are the entries of the continued fraction:
n
a

= [b1,...by.

The relation in (II) can be viewed as a change of coordinates from
the basis e;—1,€e; to the next basis e;,e;+1 expressed by the matrix

0 -1 .
<1 b > , that is,

e;=0-¢e_1+1-¢;, eiy1=—1-¢€_1+0b;-e.
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(IV) The boundary points eq,...,e;11 are a minimal set of generators of

the monoid L N R%O.

Proof. (I) Let us consider the parallelogram II := (0, e;, €;41,€; + €i41).

(I1)

(I11)

By construction, the lower triangle A~ := (0, e;, ¢;4+1) of II does not
contain lattice points other than its vertices. The same holds for the
upper triangle AT := (e;, e;41,€1 + €;41) since any vector v belonging
on AT is such that e; +e;11 — v € A, and so the only lattice points
of AT are its vertices. This means II is a fundamental domain for L,
in the sense that any point of R? is obtained from a vector of II by a
translation of a vector of L. In fact, e;,e;+1 is a basis of (the vector
space) R?, and so any vector v can be written as v = ae; + Beir1.
Then v = v/ +v”, where

vV =(a—|a))e;+(B—1B))eir1 €11, and v = |a]e;+|Bleir1 € L

Thus, if v € L, then v/ = v —v"” € IIN L, and so it has to being one of
the vertices of II, which proves e;, e;41 is a Z-basis of L.

Remark 3.0.18. For plane lattices, the convexity condition is very
strong, and implies that we get a Z-basis of a lattice. This part fails
in dimension > 3.

Since e;_1,e; is a Z-basis, then e;41 = ae;—1 + Be;, with o, 5 € Z.
However, €;, ;41 is a Z—basis too, forcing « to be 1 or —1. However,
from the figure, e; is a positive combination of e;—; and e;11, so that
a=—1and €41 +e;_1 = Be;, with 8 > 0. If 8 = 1, then e; would
be inside the Newton polygon of L, which contradicts the fact e; is on
the boundary of Newton(L). Therefore g > 2.

We have proved that es+¢e9 = bieq, with by > 2. Thus e; = %(bl, bia—
n) is in the unit square, which means bja — n > 0. Actually we can
not have bja — n > a otherwise ey would be above e; and this is not
possible since ey belongs to the boundary of the Newton polygon of
L. Then by > [2]. By contradiction, if by > [2], then the point
vi=eg+ (b1 — [%}) e1 € L would lie on the positive quadrant, and so
ez would be write as ey = v 4 [ 2], which contradicts once more ez is
on the boundary. This proves b; = [2].

a

The statement for bo, ..., b works recursively: write
L= (Z‘elEBZ-eH_l)—}-Z-eg.

Change the standard basis to {e;11,e1} to get L = Z%2 + 7 - n%(l,al),
where n1, a; are obtained writing es in such basis:
n 1 1 n

1
62:(b1—g)'€1+a‘€l+1:(aabl—a)zg(lvbla—n)
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so that nj := a, and a; := bja — n. Observe that ged(ai,n1) = 1. We
can use what we have said above to get ej + e, = [ ]e}, in the new
basis. Here, observe that b, is exactly [Z—ﬂ, while ef, corresponds to e,
e} corresponds to ez, and €} is eg, since the smaller cone of Newton(L)
spanned by ey, e;4; is the same like before. We have got e; +e3 = baes.
The result follows by recursion.

(IV) The points ey, ..., €11 generate L N Rng since any non-zero point of
Ln R2>0 has to fall in one of the sectors identified by a couple e;, €;41
(see the figure below). In particular, it has to live in the upper-sector
{ae; + Beit1: a>t,>1—t,t€[0,1]} of e;, €;41, otherwise it would
be a new lattice point of the boundary of Newton(L), which is not
possible. This proves that it can be written as a non-negative integer
combination of e;, ¢;11 (and so of eg, ..., e111).

Finally, they are a minimal set of generators because if e; = >, 2 (i€,
for some «a; non-negative integers, then e; would not be on the bound-
ary of Newton(L).

(0,0) erv1=(1,0)

O

Corollary 3.0.19. Let X := C2/H be a cyclic quotient singularity of type
L(1,a). Let M be the lattice (3.2) of the invariant monomials of X. Then
the Proposition 3.0.17 applies to %M Let

1
eo = (0,1), el = E(l,n —a), el ex+1 = (1,0)

be the lattice points of the boundary of the Newton polygon of %M
Then a minimal set of generators of the ring C[X] is done by the corre-
sponding invariant monomials of neg,ney,...,nexr1 € M, that are

n n—a’ n
Uuo =19 , Uy =y , U2y ... UL, Uk+1 = T .
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These monomials satisfy

Ui—1Uig1 = Uy, for i=1,...,k, (3.5)

where a; are the entries of the continued fraction " = [ay,...,a;]. Note
that the relations (3.5) are enough to specify all the u; as rational expression
of wg,u1, or any two consecutive monomials u;, uiv1. Thus the morphism
C? - X c Ck2 (z,9) = (uo,...,urs1), is the quotient map. However,
the above relations (3.5) are not enough to determine the image X; for a
full set of generators of the ideal I(X) we also need relations for u;u; with

li —j] > 2.

Proof. The point (IV) of the Proposition 3.0.17 permits to say neo, ...,
neg1 form a minimal set of generators of the monoid M MR, so that their
corresponding monomials form a minimal set of generators of C[X]. Finally,
the relations (3.5) comes out simply by transposing the relations of (I7)

between ne;_1, ne;, and ne;41 to their corresponding invariant monomials.
O

Example 3.0.20. Let (z,y) be the coordinates on C2. The computation
of the ring of invariants comes out in a nice uniform way if we analyse the
extreme cases (1,1) and 1(1,n — 1). We are going to use the Corollary
3.0.19.

1. 1(1,1). Here 1M =Z2+Z- 1(1,n—1), and -2 = [2,...,2], whose

length is n — 1. The points e; of the boundary of the Newton polygon
of %M can be recursively computed trough the relations (3.4):

1
eo = (0,1), elzﬁ(l,n—l),

1
es = —eg + 2e1 = *(2,7], — 2),
n
1
es = —e; +2ea = —(3,n —3),
n
1
€n_1= —€pn_3+ 26, 9= E(TL — 1, 1),
en = (1,0).

Thus the Newton polygon of %M and its boundary looks like the
following figure
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eo =(0,1) (0,0)
e = %(1,7[—1)
en1 = l(n—l,l)
n
(0,0) ey =(1,0)

Then a minimal set of generators of the ring of invariant polynomials
of X = C?/H is given by

n n—1 n—
up =Y, U1 =2y ) ceey Up—1=1T Y, Un =2 .

The quotient map is

C* =X cC (zy) e (yay" 2"y 2",

and X = {rk (uo e un_1> < 1} C C"*! is the cone over the
Uy uz ... Un

rational normal curve of degree n in P". Here, the singularity of type
1(1,1) is the vertex of the cone.

. 1(1,n—1). We have 2M =Z*+Z- 1(1,1), and % = [n]. The points

of the boundary of the Newton polygon of %M are then

1
ey — (0, 1), €1 = E(L 1), €9 = (1,0)

The Newton polygon and its boundary looks like

ep = (0,1) (0,0)

[ ]
e =201,1)
13

(0, 0) € = (1/ 0)
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A minimal set of generators of the ring of the invariants of X = C?/H
is then
ug =y", uy = zy, and ug = z™.

The quotient map is
C? > X c C3, (z,y) — (Y, xy,a"),

and X = {Y" — XZ = 0} C C3. Thus the singular point of X is a
Rational Double Point of type A,,_1 (see the Theorem 3.1.6 and the
Remark 3.1.8).

The next step is to discuss the minimal resolution of a cyclic quotient
singularity, see [BHPVAV04, Section IIL.5] or [Rei03] for major details.

Notation: Given z,y be two complex variables, and v := @ € 72,

B
then (zy)? denotes the monomial 2%y”. We observe Z2 — C[z,y],v — (zy)"
is a morphism of Z-moduli.

Theorem 3.0.21. [Rei03, Thm. 3.2](Resolution of a cyclic quotient sin-
gularity) As usual, consider a singularity X = C%/H of type %(1,(1). Let

a' = a~! be the inverse of a modulo n. Write L for the overlattice L =

Z2+7Z-L(1,a) of Z%, and by
M={(,8): a+af =0 modn} C Z>

the dual lattice of L of invariant monomials defined at (3.2).

Let fo,..., fra1 be a set of minimal generators of the monoid M N

R2>0 (obtained for instance via the Corollary 3.0.19; this means k is the
length of the continued fraction of -~ ), and C* — X C CF2 (z,y) —
((zy)Po, ..., (zy)/++1) be the quotient map.
Write % = [by,...,b], and let eq,...e;1 be the lattice points of the bound-
ary of the Newton polygon of L defined in the Proposition 3.0.17. For each
1 =0,...,1 let &,n; be monomials forming the dual basis of M to e;, e;jr1;
that is, such that

ei(&) = 1,ei(n;) =0, ei+1(&i) = 0,ei41(n;) = 1.

Denote by A; the 2 X 2 matriz whose columns are the vectors e;,e;+1. Then
X has a resolution of singularities b: Y — X C CK*2 constructed as follows:

Y =Yy U YiU---Ug_, Y, (3.6)

where each Y; = C? with coordinates &;, n;. For any i = 0,...,1 — 1, the
glueing Y; U Y41 consists of
1

b Y\ {6 = 0} o Yier \ (misr =0}, (€)= (5?”1771, 5,) .
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The resolution map is
£, . .
b: Y_>X7 (glvnl)H ((é.lnl)Az fow-'a(fini)Az fk+1> ) 2:07"'71'

The exceptional curves of the resolution (namely, those which are contracted
to the singular point of X ) are exactly I, and have local equation E;y; =
{ni=0}Up, {&i1 =0} 2P, i=0,...,0—1. Here E? = —b;, E; - E;11 =1
fori=1,...,1 =1, and the intersection point is the origin (&,n;) = (0,0)
of the piece Y;. Instead, E; - E; =0 if |i — j| > 2.

The exceptional divisor E = Ué:1 E; is called Hirzebruch-Jung string,
and its dual configuration is

E, E En E
o o - B
-b, -b; ~bi1 -b

Proof. When you fix the dual basis e}, ef, | of M to e;,e;y1 then you are
constructing a new Y; = C? with coordinates &;,7;, and a map Y; = C? —
X C CF*+2 which is an isomorphism outside the singular locus of X. This is
defined as follows: any point of X can be written as ((zy)/°,..., (zy)f*+)
for suitable x and y. The vectors fy, ... fy+1 are written in the dual stan-
dard basis of M, so let us write them in the new basis €, e}, ;: Alf; =
M{ef,ef+1},std(IdR2)fj is the vector of the coordinates of f; in that new basis.

Then (zy)l = ((xy)ez (:L"y)eiﬂ) ’, and this suggests to define

. (A7 (é) . (A7D* (2)
i = (zy) = (2y) and 7 = (ay)9+ = (2y) :

The map we are looking for is then b;: Y; = C2 — X < CF2, (&,m) —
((&mi)AFo, .. (€mi)Aifk+1). Actually, a point of the image of b; falls on
X because the relations of X translates as linear relations between the
vectors fo,..., fra1, and the same relations are satisfied by the vectors
Atfo, ..., Al fr41. Hence the map is well defined. The map is algebraic since
any A!f; has integer non-negative entries, which are exactly fj(e;), fj(eit1)
eZnN Rzo.

Let us write the vectors €], ef, ; in function of the basis { fo, f1}. The coordi-
nates of these vectors in that basis are the columns B; of the change base ma-
trix B := Mg, 1} fer er,,} (Idg2). Then the inverse map X\ {0} = Y\ b; ' (0)
is defined by sending (uo, ..., ugps1) — ((uou1)?', (uou1)??). Note that the
inverse map of b; is just rational (B is unimodular), and its definition does
not to depend from the chosen basis { fo, f1}; if you would define it through
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another basis { fj, fj+1}, then the map would be just the same, in virtue of
the linear relations of X between the vectors fy,..., fr+1.

We glue together the pieces Yy, ..., Y; by taking care that if p ~ ¢, with
p € Y; and q € Yi41, then bi(p) = bi+1(q). Leti =0,...,l—1. The glueing ¢;
is defined through the change base matrix M (et ez (Idg2), which

z‘+1}v{€f+17ef+2}
is the transpose of the inverse matrix (g b_l ) defined at the point (I11)
it 1

of the Proposition 3.0.17:

i 5
i

(1) o0
(&ismi) — ((&mi) ! , (&mi) 0 ) = (& 51)-

The curves that are contracted to the singular point of X are exactly [,
say Fy,...,F;. Fixi =1,...,1 —1. By a direct computation, FE;, F;1
intersect transversally each other at the point (&,n;) = (0,0) of the piece
Y;. Instead, their self-intersection E? = —b;,1=1,...,l, can be computed
via elementary intersection theory. O

Let us give an example to understand better which is the approach.

Example 3.0.22. 1. %(1, 1). A minimal set of generators of MﬁRQZO is
computed at the point 1. of the Example 3.0.20:

fOZ(Ovn)7 flz(l)n_l)v"'a fn:(nao)a
and the quotient map C? — X = {rk <u0 e un_l) < 1} C
U Uz ... Uy

C"*!is given by (z,y) — (y", zy™ ', ...,2"). Instead, the points of
the boundary of the Newton polygon of the lattice L are

1
€y = (0, 1), €1 = *(1,1), €9 = (1,0).
n
Thus we have got only two copies Yy, Y; of C?, with coordinates &y, ng
and &1,m respectively. Consider the first copy Yy. The monomials
&o,mo form the dual basis of M to eg,e;, and in function of z and y
are

(AgHt- (é) (Ag Dt (2)
o = (zy) =z7ly, and 7= (2y) ="

since Ag = Mg ey, (Idg2), and so the (Aght = Mg ges ery (Idg2).
To compute the resolution b: Y — X on Y; we need to write any
invariant monomial (xy)fi in function of &,n9. This can be done

)
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easily writing any f; from the standard basis to the new basis eg, e].
In other words, (zy)fi = (£mo)0fi, and the resolution b is

(0,m0) — ((ﬁono)Aé'fO, . (gonO)Aé'fn)
= (53”07 53_17707 53_2ﬂ07 o 7770) .

Consider now the other copy Y7, whose variables &1,7; form the dual
basis of M to eq, es. They can be written in function of x and y as

1 0
<A11)t-(0> (A11>t-(1> X
&1 = (wy) =y", and = (zy) =xy

where A1 = My e, o} (Idg2). The resolution b on Y7 is then

(&1,m) = ((flﬂl)Ai'fo,---a(flﬁl)Ag'f“> = (&, &am, &ty ant) .

To compute how the copies Yy and Y7 glue to each other observe that a
couple of identified points has to be sent to the same point via b. This
suggests to use the change base matrix M := M{eg,e’{},{e’;,e;}(ldw),
which is the transpose of the inverse of the change base matrix from the
base e, €1 to the next basis e, ea defined at (II1) of the Proposition
3.0.17. Therefore, the map ¢o: Yo\ {0 = 0} — Y1\ {m = 0} is defined

I
(§0,m0) = | (€om0) <0 , (omo) L =<£8no,£10>.

To summarize, Y = Yy Uy, Y1 where ¢g is defined as above, and the
resolution map of X is

b:Y — X = {rk (“0 . “”—1> < 1} c ¢cntt
uy uy ... Un
(&0.m0) = (€8m0, €5 10, €0 10, - - -, m0)
(617771) — (5175177175177%7 o 7517]?) .

The exceptional locus of Y consists of only one rational curve F; =
{no = 0} Uy, {&1 = 0} of self-intersection —n.

. 2(1,n—1). A set of minimal generators of M N R;O is

fo = (O,n), f1 = (1, 1) and f2 = (n,O),

and the quotient map C? — X = {Y" — XZ = 0} C C? is given by
(@,y) = (2", zy,y").
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Instead, the points of the boundary of the Newton polygon of the
lattice L are

1 1
eo=1(0,1), e1=—-(1,n—-1), ex=—-(2,n—2), ,..., e,=(1,0).
n n
Let &;,m; be monomials forming the dual basis of M to e;, e;41, for
1=0,...,n— 1. They can be written in function of z and y as
(A7 (é) . (A7H" (g) 1
& = (zy) - xn*(Hl)yH_la ni = (zy) - wn_z?’

i i+1
where A; = Mstd,{ei,ei+1}(IdR2) - % (n -1 n-— (Z + 1)

tion b: Y — X C C3 of X is constructed as follows

> . The resolu-

Y =YoUg, - Us,_p Y1,

where each Y; 22 C? with coordinates &, n;. For any i = 0,...,n — 2,
the glueing Y; U Yi41 is given by ¢;: Vi \ {& = 0} — Yig1 \ {miy1 =
0}, (&mi) = (2, %), and the resolution map is

b:Y - X ={Y"-XZ=0}cCC3
(&) > (&m0 D, gomi, €.

The exceptional locus of Y consists of n — 1 rational curves F;y; =
{ni = 0} Uy, {&41 = 0}, any of them with self intersection —2, for
i=0,...n—1. Here E; - Ej11 = 1, whilst E; - E; =0 for |[i — j| > 2.

. %(1, 2). We determine a minimal set of generators of M HRQZO through
the Corollary 3.0.19: here % = [3,2], and the Newton polygon of
%M and its boundary are

fo=01) (0,0)

(0, 0) f3 = (11 O)
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Therefore the quotient map is
C* = X CC (z,y) = (v°, 297 2%y, 2°).

Instead, the Newton boundary of L is

1 1
eo = (0,1), er = 3(1,2), eg = 5(3, 1), and e3=(1,0).

Taking dual basis gives

& =1 2y, mo = 2°, G=a Y m =2yt L=y’ =y’

Thus Y = Yy Uy, Y1 Uy, Yo, with 3 copies of C? glued by

1
and b1: &o = Eimr,me =

1
bo: & = Emo,m = %
1

5707
The resolution map is
b:Y - X CC?,
(€0,m0) = (€573 E5m0, €070, M)
(&,m) = (E8m, &om, &ng,s &),
(&2,m2) = (&2, Eama, €315, E513).

3.1 Normal surfaces with at most cyclic quotient
singularities

Let us consider a normal surface X having at most a finite number of cyclic
quotient singularities, and call by p: S — X its minimal resolution (obtained
by applying the Theorem 3.0.21 to any singular point of X).

We denote by Ky the canonical (Weil) divisor on X corresponding to
i+(Q30), where i: X° — X is the inclusion of the smooth locus of X. Ac-
cording to Mumford, we have an intersection product with values in Q for
Weil divisors on a normal surface. We are going to consider in particular
the self-intersection of the canonical divisor, K% e Q.

Let x be a singular point of X of type %(1,(1), with 1 < a < n coprime

integers, and let
1

-
by — b3 —...

From the Theorem 3.0.21, the exceptional divisor of a minimal resolution
of x is then an Hirzebruch-Jung string (for short HJ-string), namely E =
U§:1 E; where all E; are smooth rational curves, EZ2 = by, Bi- Eiy1 =1
fori=0,...,l -1, and E; - E/j = 0 otherwise. In a neighbourhood of x

n:b1

a

= [b1,..., bl

l
Ks = p"Kx +) ik, (3.7)
=1
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where the rational numbers r; are determined by the conditions

(Ks+Ej)-E;=29(E;)—2=-2, (Kg—» miE)-E;j=0,j=1,..1

1=1
(3.8)
Lemma 3.1.1. Let n and a be coprime integers with 1 < a < n, and
let & = [b1,...,b;]. Let A be the intersection matriz determined by the
Hirzebruch-Jung string of a singularity of type %(1, a), i.e.
b 1 0 - ... 0
1 —b 1 0 :
1 . T
A= O S MI(Z)
: 0o ' 1 0
. . 1 *bl—l 1
0 - .- 0 1 —b

Then det(A) = (—1)!n.

Proof. By induction on [. If | = 1, then a = 1 and b; = n. We have
det((—b1)) = —b1 = (=1)'n. Suppose the formula is true for fractions
whose HJ-string has length equal at most [ — 1. We are going to prove the
formula holds for I. Develops det(A) with respect the first column

det(A) = —b1 det(An) — det(Alz). (3.9)
Aj1 is the intersection matrix of the HJ string [bg, ..., ], which can be
computed as follows
n 1 a
S - ba, ..., b =
a ' [ba,....0] — b2, aby —n

Therefore, by induction hypothesis, det(A1;) = (—1)""'a. Instead, devel-
oping det(Aj2) with respect to the the first row, one sees that it is the
determinant of the intersection matrix of the HJ string [bs,...,b;]. Once
more, we can compute it as

a 1 abi —n
=by— = [bs,....b] = .
ab—n > [bs,....b] [ba, - i albsb; — 1) —n

By induction hypothesis, we have det(A2) = (—1)""2(ab;—n). The equation
(3.9) becomes

det(A) = (=Dlaby — (=1)!(aby —n) = (=1)'n.
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Lemma 3.1.2. ([Bar99],[Hir53]) Let x be a singularity of type +(1,a), with
ged(n,a) = 1. Consider 2 = [b1,...,b]. In a neighbourhood of x we have

l
Ks=p"Kx + ZTzEz
i=1
Given A\g = 0, \1 = 1, and pg = n, p1 = a, define
Ait1 = —Ai—1 +biN; and  piq1 = —pi—1 + bifi, (3.10)
fori=1,....0—1. Thennr; =X+ u; —n, fori =1,...,1.
Proof. The conditions (3.8) implies that

l l
0= (KS— rE> "Ej=0b; —2— (Z}E) - Ej
=1

l =1 (3.11)
— (ZHE@) . Ej = bj — 2.
i=1
For short of notation, consider the (n x 1)-vectors r, b, and 1 whose i-th
entry of them is the number r;, b;, and 1 respectively, for i = 1,...,[. The
latter equation of (3.11) is equivalent to ‘e;Ar = b; — 2, j = 1,...,l, where
e1,...,e; is the canonical basis, and A is the intersection matrix of the HJ-

string of x, which is invertible by the Lemma 3.1.1. In other words, r is the
only solution of the linear system Ax =b —2-1.

Observe then r + 1 solves the sublinear system A’x = 0, where A’ :=
A2,...,1—1]1,...,1) € Mj_5;(Z) is the matrix obtained by removing the
first and last rows from A. A solution of the system A’ can be constructed as
follows: let us fix two numbers tg,¢; € R, and define the vector v(to,t1) :=

(tl, .. ,tl)t, where t; satisfies the recursive formula ¢;11 = —t;—1 + b;t;,
i =1,...1— 1. By construction, v(tg,t1) € ker(A’). Observe that the recur-
sive formula between ¢;, 1 = 1,...,l — 1, can be re-written in two equivalent
ways:

(tit;) - <—01 li) (—01 b11> (?1]) ; (3.12)
<u~;) _ <b1 —01> (b11 _01> <2> -~

By a simple check, the vectors v(0,1) and v(n,a) are linearly independent,
and so they form a basis of ker(A’), which has dimension 2, since the rank
of A" is I — 2 (otherwise there could be a linear relation between the rows
of A’, which are those of A, and so A would not have maximal rank). Note
that by construction

v(0,1) = (A1,..., ) and v(n,a) = (u1,...,m)", (3.14)
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where \; and p; are those numbers defined at (3.10).
Remembering that r + 1 € ker(A’), then there exist suitable «, 3 such that

r=av(0,1)+ Bv(n,a) — 1. (3.15)

The variables a, 8 can be found through the first and last equation of the
linear system Ax = b — 21, whose we remember r is the only solution:

—b =b —2
{ 171 + 12 1 (3.16)

ri_1 — byr; = by — 2.

By (3.11) and (3.14), we need to know A1, \a, p1, po and N1, Ay, py—1, py to
compute rq,79, and r;_q, ;.
Let 1 < @’ < n such that @’ = a~! is the inverse of @ modulo n. Then
2% =[by,...,b1], and we get

B)-( - )0 =
D06 D D) e

The last identity follows from (3.13). From the other side, we have

b\ (0 1 0 1 n\ (-1
()= Col) -G @) =00) e
The last identity follows from (3.12). Putting together the equations (3.17)
and (3.18), we get

M=1, X=b, No1=-n+bd, \=d,

B B B B (3.19)
p1=a, p2=-n+ba, w_1="=0, w=1

Thus ry = a+pBa—1,ry = aby+B(—n+bja)— 1,11 = a(—n+ba')+
Bb; — 1, and r; = aa’ + 8 — 1. The system (3.16) becomes

—bi(a+pBa—1)+aby +p(—n+bra) —1=>b; — 2
a(-n+ba)+ b —1—b(ad +8—1)=b — 2.

—fn+b—1=b —2
—an—i—bl—l:bl—Z.

Thus a = 8 = %, and replacing them to the Equation (3.15), we get nr =
v(0,1) + v(n,a) — nl. O
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Lemma 3.1.3. For a singular point x of X of type %(1, a), with1 <a<n
coprime integers, we have in a neighbourhood of x

2 ro
K2=K% - <—2++a+a+2(bi—2)>.

n ;
=1
Here o/ = a™! is the inverse of a modulo n, 1 < a’ < n, and b; are given by

%= [b1,...,b.

Proof. In a neighbourhood of = we have Kg = p*Kx + Zi’:l r;E;, where r;
are the rational numbers computed in the Lemma 3.1.2. Since p: S — X is
birational and contracts the rational curves FE;, then

l 2
KZ=K%+ (Z rE) : (3.20)

i=1

However

! 2 ! !
<Z V’iEz‘> = (Z ’f’iEz) (Ks—p*Kx) =Y _riEi-Ks
i=1

=1 =1
l 1 l
= Z;’I“i(—2 - Ez2) = E Z;nn(bl - 2)
1= 1=

l

= SOt = (i 2).

=1

The last equality follows from the Lemma 3.1.2. We have got

! 2 !
<Z T‘iEz‘> = %Z(’\Z + pi —n)(bi —2)
i=1

i=1

MN

l
= %Z(Ai+ﬂi)(bi —-2)— (b; —2)
i=1

1

z
A+ ) (b =2) = (b —2).

=1

.
Il

1 -1
= Z(Az + pi)(bi —2) +
=1

n

S|

(3.21)

Extending the first sum

-1 -1 -1
Do )b =2) =D (Nibi = 2X) + > (ibi — 2p15)
=1 =1 =1

-1 -1

= Z()\ifl + Ny —2N) + Z(,uzel + flit1 — 244).

i=1 =1
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These two sums are telescopic sums, and so

-1
> i i) (b —2) = =(Mm1 = Ao) + A = A1 = (p—1 — o) + pu — pa. (3.22)
i=1

Thanks to the computation (3.19) done during the proof of the Lemma 3.1.2
and to the Equation (3.22), then the Equation (3.21) becomes

I 2

1

(Z TiEz) = (At Ao = A= e+ o — i+ (4 ) (B = 1))

i=1
!

=) (b —2)

=1

1
=—(n—bd —1-b+n—a+(1+d)b 1))
n

l

:%(2n—(2+a+a’))—2(bi—2)

=1

, l
:—<—2+2+2+a+2(bi—2)>.

i=1
(3.23)

The thesis follows by replacing the value obtained in the Equation (3.23) to
the Equation (3.20). O

Definition 3.1.4. A singular point x of a normal surface X is a Rational
Double Point (for short RDP) or Du Val singularity if the exceptional di-
visor £ = UFE; of the minimal resolution p: S — X of the singularities of
X consists of a three of smooth rational curves E;, and Kg - E; = 0, or
equivalently Ef = -2,

Definition 3.1.5. ([Rei87, Definition 1.1]) A normal variety X of dimension
n has canonical singularities if

1. for some n > 1, then the (Weil) divisor nKx is Cartier;

2. if p: Y — X is a resolution of the singularities of X and F = UF; is
the exceptional divisor of p, then

nKy = p*nKx + ZaiEi, a; > 0.

In dimension 2, canonical singularities are the same as Rational Double
Points, as the following theorem states:
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Theorem 3.1.6. (¢f. [Mat02, Theorem 4.6.7]) Let = be a singular point
on a normal surface X. Then x is a canonical singularity if and only if it
is a Rational Double Point. Moreover, x is locally analytically determined
by the dual graph of the exceptional divisor of the minimal resolution of its
singularity, which is one of the following 5 types:

An o oo
Dn *—o— 4—<
EG H—I—o—o

Br eedees
Py eodeeee

More precisely, an analytic neighbourhood of x is biholomorphic to a neigh-
bourhood of the origin of one of the following hypersurfaces of C3:
22 +y? + 2" =0 if the graph is Ap;
24224+ 2" =0 if the graph is Dy;
22+ 13 + 22 =0 if the graph is Eg;
2?2+ 2 +yz> =0 if the graph is Er;
2?24+ 193 4+ 2° =0 if the graph is Fx;

8

Remark 3.1.7. Let X be a surface with at most canonical singularities and
p: S — X be a minimal resolution of the singularities of X. Then (see
[Mat02, Theorem 4.6.2])

Kg=p"Kx.

Remark 3.1.8. A cyclic quotient singularity is a canonical singularity, or
equivalently a Rational Double Point, if and only if is of type %(1, n—1).
Here, H C SL(2,C), and the exceptional divisor of its minimal resolution
consists of n — 1 rational smooth curves of self-intersection —2, whose dual
graph is A,_1.

To prove this, take a cyclic quotient singularity of type %(1, a), whose
continued fraction 2 = [by,...,b] has length [. Assume it is a canoni-
cal singularity, or equivalently a RDP. From the Theorem 3.0.21, then the
exceptional divisor of the minimal resolution of 1(1,a) consists of I ra-
tional smooth curves E;, whose dual graph is of type A;, and with self-
intersection E? = —b;. However, we are assuming that %(1, a) is a RDP so
that Ez2 = —b; = —2. This means

22[2,...,2]:“%1 — n=I0+1, a=l=n—1.

Let us compute now the Euler characteristic e(.S) of a minimal resolution

of the singularities of X.



3.1 Normal surfaces with at most cyclic quotient singularities 55

Lemma 3.1.9. Let X be a normal variety having at most a finite number of
cyclic quotient singularities, and X° its smooth locus. Consider p: S — X
the minimal resolution of the singularities of X. For any singular point x
of type %(1, a), write by l, the length of continued fraction % = [b1,...,b,].
Then

e(S) =e(X°) + ) (I +1).

Proof. Fix a singular point x and set [ := [,. Consider the three p~!(z) =
Uizl E; of the exceptional curves of x. From the Theorem 3.0.21 we know
that F; - Fj1 1 =1, and E; - Ej = 0 otherwise. Thus we can write

l

e(p~!(z)) = e(B" \ {point}) + e(| ] £:)

=2
l
=l+e(|JE) =
=2
=l—1+e(B)=1+1

The thesis follows by applying this result recursively for any singular point
of X

— e\ @) + Y elp (@) = e(X°) + 3 (0 + 1),

O]

Definition 3.1.10. Let X be a normal complex surface having at most a
finite number of cyclic quotient singularities. A representation of the basket
of singularities of X is a multiset

1 1

B(X) = {)\ X <(1, a)) : X has exactly A singularities of type (l,a)} .
n n

For instance, B(X) = {2 X z 1 ,1),1x = 1 4) } means that X has 2 singu-

larities of type ( 1) and one smgularlty of type £(1,4).

Remark 3.1.11. We observe that a normal surface X with only cyclic quo-
tient singularities has different representation of its basket. For instance,

{2 x ;(1,3)},{1 x ;(1 3),1 x ;(1 5)},{2 x ;(1,5)}

represent the same basket of singularities of X.

This justifies the next definition
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Definition 3.1.12. Consider the set of multisets of the form

B(X) = {/\ « (1(1,a)> ca,n, A € N,a < n, ged(a, n) = 1} ,

n

together with the equivalence relation given by ”%(1,a) is equivalent to
1(1,a)", where @’ = a™' in (Z/Zn)*. A basket of singularities is then
an equivalence class.



Chapter 4

Product-Quotient Surfaces

In the 30’s L. Campedelli and L. Godeaux have constructed the first exam-
ples of surfaces of general type with p; = 0. Such surfaces have been known
later on as numerical Campedelli surfaces, and numerical Godeaux surfaces.
They have been ones of the possible exceptions encountered by E. Bombieri
in the 70’s in its famous Theorem 1.0.2 on the structure of the multicanon-
ical map @,  of surfaces of general type. This is one of the reasons why
several authors started to study them, and tried to give more examples.

The idea of Godeaux was to consider the quotient of simpler surfaces
by the free action of a finite group. In this spirit, Beauville (see [Bea96,
pg. 118]) proposed a simpler construction of surfaces of general type, by
considering the quotient of a product of two curves C; and Cs by the free
action of a finite group. Moreover, he gave an explicit example by taking
the quotient of two Fermat curves of degree 5 in P2.

After [Cat00] many authors started studying the surfaces that appear as
quotient of a product of curves.

They are revealed to be a very useful tool for building new examples of
algebraic surfaces and studying their geometry in an accessible way. Apart
from other works, that mainly deal with irregular surfaces, we want to
mention the complete classification of surfaces isogenous to a product with
pg = ¢ = 0 [BCGO8] and the classification for p; = 1 and ¢ = 0 under the
assumption that the action is diagonal [Glel5], the rigid but not infinitesi-
mally rigid manifolds [BP21] of Bauer and Pignatelli that gave a negative
answer to a question of Kodaira and Morrow [MKT71, p.45] and also the in-
finite series of n-dimensional infinitesimally rigid manifolds of general type
with non-contractible universal cover for each n > 3, provided by Frapporti
and Gleissner[FG23].

The chapter is organized as follows: in the first two sections we study
the action of a finite group on a product of curves, and we give the formal
definition of product-quotient surfaces of unmixed and mixed type. In Sec-
tion 4.3 and 3.1 we study the type of singularities of their quotient model,
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which are necessary to determine their invariants. This is the main content
of Section 4.4.

The next Section 4.5 aims to describe regular product-quotient surfaces of
general type through a set of group data. This is one of the most crucial steps
for trying to get a classification of them via an efficient algorithm, which
has to be implemented in a computational algebra system (e.g. MAGMA
[BCPI7]). One of the most difficult implementation problems is to get an
efficient database. Indeed usually a few millions of group data determine
the same product-quotient surface up to isomorphism. We present a new
approach to the problem and we give new results which permits to avoid
those repetitions.

The next section proves that the classification problem with fixed self-
intersection K2 and characteristic y is theoretically manageable. These
results are raised in the Section 4.8, where we present a classification algo-
rithm.

4.1 Automorphism group of a product of curves

Let C7 and C5 be two Riemann surfaces of respective genus g; > 2. In
general, the automorphism group of Cy x Cy contains Aut(C7) x Aut(Cy).
It could happens that they are equal, although this is not always true.

An easy counterexample is obtained by taking two copies of the same curve
C. In fact, the involution ¢:: C x C — C x C, (z,y) — (y,z), is an
automorphism of C' x C not belonging to the product Aut(C)2.

Moreover, this suggests also that Aut(C)? x, Zs is contained in Aut(C x C)
via the injective homomorphism ® defined through ¢

®: Aut(0)? 1y, Zoy — Aut(C x C), (f,g,a) — (f,g) o™

Here, the semidirect product Aut(C)?x,Zs is defined by the homomorphism

2 2
p: Zz — Aut(Aut(C)?) sending T — (Aut<(1% : @?}SC) ) :

A surprisingly fact is that

o Aut(Cy x Cy) = Aut(Cy) x Aut(Cy), if C; and Cy are not isomorphic
to each other;

o Aut(C x C) = Aut(C)? %, Zo.
This result follows directly once we prove

Lemma 4.1.1. (Rigidity Lemma [Cat00, Lemma 3.8]) Let f: C; x Cy —
By x By be a surjective morphism between products of curves. Assume that
both By and Bo have genus > 2. Then, after possible exchanging By with B,
there are holomorphic maps f;: C; — B; such that f(z,y) = (fi(x), fa(y)).
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4.2 Group action on a product of curves

Consider two Riemann surfaces C; and C of genus g; > 2. Let G be a finite
group acting faithfully on the product C; x C2. By what we have said in the
previous Section 4.1, the action of G on C'y x Cy can be only of two types:

e Unmized: G acts independently (non necessarily faithfully) on each
factor G — Aut(C;), and the action of G on C; x C5 is diagonal:

9(z,y) = (9(z),9(y))-

This happens when Cy and Cs are not isomorphic to each other;

e Mized: here the two curves C; are the same curve C. In this case,
we have G — Aut(C)? x, Zy and so there could be elements of G
that exchange the two factors via the involution ¢. Define GV :=
G N Aut(0)?, so that G = G %, (G N Zy).

Observe that the action of G is unmixed, so it acts on each factor
and the action on the product is diagonal.

Definition 4.2.1. Let C; and C5 be two curves of genus ¢g; > 2. Let G
be a finite group acting on each of them and consider its diagonal action
on C; x Cy. Then X := (C; x Cq)/G is called quotient model of unmized
type, and the minimal resolution S of the singularities of X is called product-
quotient surface (of unmixed type).

Let us define also

Definition 4.2.2. Let C be a curve of genus g > 2. A (faithful) action of
G on C x C is said to be mired if G is not contained in Aut(C)2. In this
case, we say that X := (C x C)/G is a quotient model (of mized type) and
the minimal resolution .S of the singularities of X is called product-quotient
surface (of mized type).

From now on, we are going to analyse product-quotient surfaces of un-
mixed type.
The situation can be described through the following commutative hexago-
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nal diagram:

A1 (Ol X CQ)/G A2 (41)

Cl/GXCQ/G.

We will refer to the notation of the maps fixed in above picture (4.1) for the
rest of the chapter.

Observe that the reason why we have considered g; > 2 is given by the
following

Lemma 4.2.3. Let G be a finite group acting on a product C1 x Cs, where C;
are two Riemann surfaces of respective genus g;. Let S — X = (C1 xCy)/G
be the minimal resolution of the singularities of X = (C1 x C2)/G. If S is
of general type, then g; > 2.
Conwversely, if the quotients C;/G have genera > 2 (and therefore also g; >
2), then S is of general type.

Proof. Suppose S is of general type. Then the Corollary A.2.10 applies to
the quotient map Aja: C1 x Co — (C1 x C2)/G, and we have xk(C; x Cy) >
k(S) = 2. Thus C; x Cs is of general type too. However, by the Theorem
A.2.8, we have k(C1) + £(C2) = k(C1 x Cq) = 2. Therefore x(C;) = 1 for
each 7, and this is equivalent to say that g; > 2, from the Remark A.2.6 .

Conversely, suppose that both C;/G have genus > 2. Then apply the
Corollary A.2.10 to the map A: (C; x C2)/G — C1/G x C3/G to get
k(S) > k(C1/G x C2/G) = k(C1/G) + k(C2/G) > 1+1=2. O

Remark 4.2.4. In general is not true that if g; > 2, then S is of general type.
A list of examples can be found in [BP16, Table 1, pg. 341].

Since we want to construct surfaces S of general type as the minimal
resolution of the singularities of (C7 x C3)/G, we shall consider C; of genus
gi = 2.

Remark 4.2.5. Consider a product-quotient surface S of general type of
quotient model (C7 x C2)/G (of unmixed type). Then we can suppose
without lost of generalities that G acts faithfully on both factors Cy and
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Cs.

To prove this, let us consider the actions ¢;: G — Aut(C;) with kernels K.
If both of K; are trivial, then we are nothing to do, so let us suppose for
instance that K71 # {1}. Since K; are normal subgroups of G, then G acts
also on C1/Ky and Cy/K;. Moreover, K7 is contained in the kernels of the
actions G — Aut(C;/Kj), i # j, and so it makes sense to take the actions
G/K1 — Aut(Ci/Kj) on CZ/KJ

By construction, we have a natural isomorphism

(Cl X CQ)/G — (Cl/KQ X CQ/Kl)/(G/Kl),
G(p1,p2) = (G/K1)(Kap1, K1p2).

Furthermore, we get the quotient (C;/Ka x C2/K1) /(G/K7) is of general
type, and so C;/K; have always genus > 2, by the Lemma 4.2.3.

To summarize, we have constructed two new curves C;/K; of genus > 2
such that the group G/K; acts on them, and the obtained quotient model
is still isomorphic to (Cy x C3)/G. Since we have assumed that K is non-
trivial, then |G/K1| < |G|. Thus we can repeat the same procedure in a
finite number of steps until the actions on the two curves is faithful.

4.3 Singularities of a quotient model of unmixed
type

In this section we investigate the types of singularities of the quotient model
X := (C1 x C2)/G of unmixed type. Many of these results are taken from
[BP12].

Proposition 4.3.1. Let X := (C1 x C3)/G be a quotient model of unmized
type. Then

1. (analytic neighbourhood of a point G(p1,p2) € X )

Consider a point (p1,p2) of C, and for any i = 1,2 take a Stab(p;)-
invariant neighbourhood U; of p; as in the Theorem 2.0.6.

Linearize the action of Stab(p;) locally around p; as the Lemma 2.0.15.
Let x be the local coordinate of Uy =2 Vi C C around p1, and y that of
Us; = Vo C C around po.

Then a generator of Stab(p1, p2) = Stab(p1) N Stab(p2) acts naturally
on Uy x Uy 2 V) x Vo C C? simultaneously on both factors by multi-
plication of some n-roots of the unity, n := |Stab(p1, p2)|:

27i 2mi

(z,y) = (e “z e y), 1<a,b<n.
Moreover
27i
@ 0 o
o xa)/ ( 0 b> = (U x Uy) [Stab(pr,pa) = X
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is an homeomorphism onto an open neighbourhood of G(p1,p2) of
2mi

e n

X. In other words, X = (V4 xVa)/ ( 0 2(’)”b> locally around

e n
G(plaPZ);

2. the singular points of X are only cyclic quotient singularities;

3. Let Sing(X) be the set of singular points of X. Then Sing(X) is the
branch locus of the map A2, and

Sing(X) C U A a1 go),

q1€Crit(A1),q2€Crit(A2)

where Crit()\;) is the set of branch points of N;. In particular, Sing(X)
18 finite.

Proof. 1. Since the action on Cy x Cy is diagonal, then Stab(pi,p2) =
Stab(p1) N Stab(pz). By Proposition 2.0.3, then Stab(p;) is a cyclic sub-
group of G, so that Stab(pi,p2) is cyclic too; let us say g is a generator.
If x is the local coordinate of U; = Vj around p1, and y that of Uy = Vg
around ps, then g acts locally as x — ¢ % around p1, and as y — e by
locally around po, for suitable 1 < a,b < n. Therefore, g acts locally around

(p1,p2) as (z,y) — (6 g ezﬁmby)

Observe that the map « is injective, by construction of U;:

if Stab(p1, p2)(q1,q2) and Stab(p1,p2)(¢], ¢5) are sent to the same class
G(q1,q2) = G(q}, ), then there exists h € G such that ¢j = h-q1 € Uy, and
¢y = h-q2 € Us. However, U; N (h-U;) =0 if h & Stab(p;). This forces h to
belong to Stab(p;), and so to Stab(pi, p2).

The map « is also continuous and open since, composed with the projec-
tion Uy x Uy — (U x Us) /Stab(p1,p2), it gives the quotient application

(A12) 0, x 0!

U1XU2*> U1><U2 /Stabpl,pg *)X 01XCQ)/G

Cl><02

2. is straightforward. Point 1. proves X is locally isomorphic to X = V; x
27
w0 .
c 2miy |) Otherwise.
e n

V2 Q (C2, if Stab(pl,pg) = {1}, and (V1 X VQ)/(

In particular, the point G(p1,p2) is either smooth, or it is a cyclic quotient
singularity of type %(a, b).

3. Since G(p1,p2) is not singular when Stab(pi,p2) = {1}, then any
singular point of X is contained in the branch locus of A\js. Conversely,
take a branch point G(p1,p2) of Ai2, so that Stab(pi,pe2) is not trivial of
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order n > 1. Let g be a generator. The local action of g around (pi,p2) is
(x,y) — (e%ax,e%by), for suitable 1 < a,b < n. Therefore G(p1,p2) is
a cyclic quotient singularity of type %(a, b) which is not smooth, otherwise
1 (a,b) would be equivalent to 1(1,0), from the Remark 3.0.12. This would
mean either a or b is equal to n, and g would act locally around p; as the
identity. Since the action of G on C} is supposed to be faithful, then g =1,
which contradicts n > 1. We have proved G(p1,p2) is singular.

Now take a branch point G(p1,p2) of A\j2. Then the stabilizer of (p1,p2)
is not trivial, which forces p; and ps to being ramification points of A;, and
Mg respectively. Hence their images ¢; = \;(p;) are branch points. We have
proved G (p1,p2) € A"1(q1,q2), with g; branch points of \;.

From Proposition 2.0.4, the branch locus of ); is finite, so that there are a
finite number of couples (g1, ¢2) for which ¢; is a branch point of \;. Since
A is by construction a finite map (not necessarily Galois, but of order |G|)
then A~!(q1, g2) is a finite set too. We have proved A~ (Crit(\1) x Crit(\2))
is finite, and so the same holds for Sing(X). O

By the point 3. of the Proposition 4.3.1, we have seen that a point
G(p1,p2) of X may be singular only if it belongs to a fibre A™1(q1, ¢2),
with ¢; := \;j(p;) branch point of \;. Let us count the points of the fibre

A a1, go).

Proposition 4.3.2. ([BP12, Prop. 1.16]) Consider a point (q1,q2) € C1/G
xC/G and, fized a point p; € C; over q;, denote by H; the stabilizer of that
point. Consider the right action of H; on G, and take the quotients G/H;.
Then

(1) there is a G-equivariant bijective map (X o \2) Y (q1,q2) — G/H; x
G/Hj, where the G-action on the target is given by left multiplication
(simultaneously on both factors);

(2) Each point of \"*(q1, q2) is in one-to-one correspondence with an orbit
of the Hi-(left) action on G/Hs. In other words, there is a bijection
map A\ (q1,q2) — (G/Hs) /Hy.

Proof. (1) Observe that (Ao Xi2)"'(q1,¢2) = {(g1 - P1,92 - p2) : 91,92 €
G}. Therefore define simply the map sending each point (g; - p1, g2 - p2) —
(91H1, g2 H>).

(2) Quotient the previous map of the point (1) with respect to the action
of G. This map is a correspondence since the map of (1) is G-equivariant.
Moreover, observe that the quotient (G/H; x G/H2) /G is in natural bi-
jection with (G/Hg) /H; via the map G(g1H1,g2H2) — H1(g1_192H2). To

summarize, we have the following correspondences

(Ao A2) (g1, 2)/G "~ (G/Hy x G/H>) /|G —=— (G/H>) /H,

=X12((AoA12)~1(q1,92))=A"1(q1,92)
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O

It remains to study the types of cyclic quotient singularities of the points
lying on the fibre A™!(q1,¢2). In order to do this, we state and prove the
following

Proposition 4.3.3. ([BP12, Prop. 1.18]) The notation is the same like the
Proposition 4.3.2. Let g € H1 be a generator of Hy, which is also the local
monodromy (see Definition 2.0.14) of the point py over qi. Similarly, take
h € Hy the local monodromy of the point pa over qo.

An element [t| € (G/Hz) /H1 corresponds to a cyclic quotient singularity
of type 1(1,a), where n := |Hy NtHat™|, and a is given as follows: let
be the minimal positive number such that there exists 1 < v < o(h) with

¢® =th"t~'. Then a:= OV(LZ).

Proof. An element [t] corresponds to the point G(p1,t - p2) € A (q1, q2),
so n is the cardinality of a stabilizer of a point (on C; x C2) over it. In
particular, the stabilizer of the point (p1,t - p2) is exactly Hy NtHyt ™ .

By definition, the local monodromy g of p; acts in local analytic coordi-

27
nates on C as ¢ — e°@x. Instead, since h is the local monodromy of ps,
then ¢ - h -t~ ! is the local monodromy of ¢ - po. Therefore t - h -t~ acts in

27

local analytic coordinates around t - ps on Cy as y +— e°(® y.

By construction of §, we claim that (g°) = Stab(pi,t - p2), and o(g) = né:
let @ = thPt~! € Stab(py,t-pz) = HiNtHyt™ ', and divide o by 6; a = ad+D,
with 0 < b < 6. Then g* = (th#t~1)(th"t~1)=% = th#~¢~!. From the min-
imality of &, then b is forced to be 0, which shows ¢® = (¢°)* € (¢%). In
particular, o(g°) = n.

It remains to show o(g) = nd. Divide o(g) by 0; o(g) = ad + b, with
0 <b<d. Then g® = (th't 1)~ = th~7% !, From the minimality of §,
then b is forced to be 0. Thus ged(o(g),d) = J, and we obtain

s ol olg)
n=ol0) = redlo(g) ) - o

Then ¢° acts (diagonally) on (z,y) as

2mi g 2mi en 0 €T
> (e o(h) Ty) = i m .
(l',y) (6 9z, e y) ( 0 62"0(;{)) <y>

This shows that a = % O

Remark 4.3.4. Observe that the number of singularities and their type over
the fibre A=!(q1,q2) does not depend from the choice of the local mon-
odromies g and h on their conjugacy classes. If you replace p; by v1 - p1, and
p2 by vo - pa, then the local monodromies g and h are respectively replaced
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by their conjugated ¢**, and h*2. Applying the Proposition 4.3.3, we get
a different singularity for each [t], but the whole set of singularities above
(g1, 92) does not change.

To better understand the Proposition 4.3.3 let us give an example.

Example 4.3.5. Consider the special linear group G := SL(2,5) and the
local monodromies g and h of two points p; and pa over a fibre A7 (q1, ¢2).
We compute the types of the singularities of the points of this fibre through
g and h under the assumption that ¢ = h =: s is of order 5.

Thus H; = Hs = (s) is a subgroup of order 5, and G/Hj consists of 24
elements. The (left)-action of Hy on G/Hs gives 4 orbits of length 5 and 4
orbits of length 1. The latter ones arising from the points kH» fixed with
respect the action of Hy. These points have to satisfy

s-(kHy) = kHy <= k™'-s-k=s’, forsome j.

We note that s is conjugate only to itself and s*, and not to s? and s3. In
other words, if s = k™' -s-k and s* = r~!.s-r, then the fixed points of the
action are kHy and rHo.
In particular, it turns out that two of the four fixed points ki Hs, ko Ho satisfy
the condition s = k:l-_l - 5 - k;, while the other two fixed points r1Ho, r9Ho
satisfy s = ri_l -8 Ty

By the Proposition 4.3.3, the 4 orbits of cardinality 5 give smooth points
of X; instead {k1Hsz},{koHs2} give two points with n = 5, a = 1, and
{r1Ha}, {roH2} give other two points with n =5, a = 4.
To summarize, the fibre A=!(g1, g2) consists of 8 points; 4 of them are smooth
points of X, 2 of them are singular of type %(1, 1), and the remain two are
singular of type #(1,4).

In the Section 4.7, we are going to show how much is useful the Propo-
sition 4.3.3, and how we can use it once one describes product-quotient
surfaces via theoretical group data.

4.4 On the invariants of a product-quotient sur-
face of unmixed type

In this Section, we follow the flow of [BP12], and compute the invariants of an
unmixed product-quotient surface S of quotient model X := (Cy x Cs) /G.

Definition 4.4.1. ([BP12, Definition 1.5]) Let x be a singularity of type
1(1,a) with ged(n,a) =1, and let 1 < @’ < n be the inverse of a modulo n,
a/ =a~'. Write 2 as a continued fraction

n 1
E_bl_m_[blv'“abl]

as in the Definition 3.0.16. We define the following correction terms
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o k= k(%(lva)) =-2+ 2+aT+a’ + Zi:l(bl - 2) > 0;
o erime(d(la) =141
o B, :=2e, + k,.

> 0;

1
n

Let B be the basket of singularities of X (recall X is normal and has at
most a finite number of cyclic quotient singularities, by the Proposition
4.3.1). Then we denote by

=> ks, e(B):=) e,  B(B):=)_ Bu.

Theorem 4.4.2. Let p: S — X be the minimal resolution of singularities
of X = (C1 x C3)/G. Then the self-intersection of the canonical divisor of
S and its Euler characteristic are equal to

8(g1 —1)(g2 — 1)

e(S) — 4(91 — ‘16):(|92 — 1) + e(B)

Proof. Apply the Lemma 3.1.3 recursively for any singular point to X:
Ki=K% - ke =Kx —k(B).
x

However, Aj2: C1 x Cy — X has finite branch locus, and so K¢, xc, =
Ao K x, which implies by projection formula

IG|K% = (0iKe, + p3Ke,)? = 2deg(Kc,) deg(Ke,) = 8(g1 — 1)(g2 — 1).

Let us discuss how to compute e(S). By the Lemma 3.1.9 we get

e(S) = e(X°) + S (1 + 1),

where X is the smooth locus of X. Here x is a singularity of type .- (1 az),
and [, is the length of continued fraction of n,/a,.
From the point 3. of Proposition 4.3.1, the singular locus of X is exactly
the branch locus of A\j5: C1 x Cy — X, so that Ao: Z° — X° is étale, where
= (C1 x C9) \ A\[5 (Sing(X)). Therefore, we have

e(X°) = e(Z°) _ e(Ce(Ca)  e(Apy (Sing(X)))

[EE |G

4o () )
- e e

491 —1)(g2 - 1)
B ‘G’ Znac
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The latter equality holds since |Ajy {x}| = |G|/|Stab(p1,p2)|, where (p1, p2)
is a point over z, and we have |Stab(pi,p2)| = ng, because X is locally
isomorphic in a neighbourhood of = to the quotient Vi x V5/Stab(p1, p2)
(see the point 1. of Proposition 4.3.1).

It follows that

e(S) =e(X°)+ ) (la+1)

_ A —D(g2— 1) 1
- rel —;%+Z(l$+1)

4 —1)(g2— 1) .
- e + e(B).

O
Corollary 4.4.3. Let p: S — X = (C1 x C2)/G be the minimal resolution
of singularities of X. Then
2 1
K3 = 5x(5) ~  B(B).

Proof. By the Theorem 4.4.2, we have

20(S) = K2 + k(B) + 2¢(B) = ¢(S) = ngB(B).
By Noether’s formula we obtain
12x(S5) = K& +¢(S) = Mg;B(B) = K =8x(5) - B;B).
O]
Corollary 4.4.4.
K% < 8x(9),

and the equality holds if and only if X = (C1 x C2)/G is smooth, or, equiv-
alently, isogenous to a product of curves.

Proof. Observe B(B) > 0. Moreover, if the equality holds, then B(B) = 0,
and so no singular points occur to X. O

It remains to compute the irregularity ¢, and the geometric genus p, of
S. The canonical linear system of S is amply studied in the Chapter 5, so
we refer that chapter for more details. Briefly speaking, given p: X — S
be the minimal resolution of the singularities of X = (Cy x C3) /G, then
(p~H)" : HO(S) — H'0(X°) is a natural monomorphism, X° smooth locus
of X. Since X has only cyclic quotient singularities (see Prop. 4.3.1), it is
also an epimorphism, by Freitag’s theorem [Fre71, Satz 1]. The composition



68 Product-Quotient Surfaces

of such map together with the pullback A\},: H*%(X°) — H*%(C;xCy) shows
that H*0(S) is sent isomorphically to the invariant subspace H*?(C x C)C.
We have obtained

HYO(S) = HYO(Cy x Cy)¢. (4.2)

Theorem 4.4.5. Let p: S — X be the minimal resolution of singularities
of X = (C1 xC3)/G. Then the irreqularity of S and its geometric genus are
equal to

q=9(C1/G) +g(C2/G),
pg=x(5)+q-1
(1 —1)(g2—-1) 1

=g+ 13 (¢(B) —K(B) +9(C1/G) + 9(C2/G) ~ 1.

Proof. Apply the above formula (4.2) for ¢ = 1, and use the Kiinneth for-
mula:

HY(S) = HYO(Cy x Cy)Y =
(Hl,O(Cl)G ® HO’O(CQ)) ® (HO’O(Cl) ® Hl’O(CQ)G) )

This gives ¢ = h%(Q}) = g(C1/G) + g(C2/G). Now write py = x(S) +q— 1;
the thesis follows by using Noether’s formula 12x(S) = K2 + e(9), and
replacing the values of K% and e(S) as stated by the Theorem 4.4.2. O

Corollary 4.4.6. A product-quotient surface S is reqular, namely ¢ = 0, if
and only if C;/G = PL. In other words, the curves C; are G-coverings of
Pl

In the Example 4.7.3 of the Section 4.7, we compute the basket of sin-
gularities of the quotient model X of certain product-quotient surfaces .S,
and then we apply the formulas above to perform their invariants.

We shall now list some properties of the basket of singularities of the
quotient model X = (C; x C3) /G of a product-quotient surface.

Lemma 4.4.7. Let X = (Cy x C3) /G be as above. There exists a repre-
sentation of the basket

1 1

B(X) = {Al X 7(1,@1),...,AR X (1,77/]{)}
ny nr

such that

Z)\l% c 7.

1
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Proof. Consider the fibration f1: X — C1/G, andflvet Fi, ..., F, be the sin-
gular fibres taken with the reduced structure. Let F; be the strict transform
of F; on S. Then, by [Pol10, Proposition 2.8], for a suitable representation

of the basket . )
N—=-Y F ez
ORI S
O

Corollary 4.4.8. Suppose X admits at most nodes, i.e. every singularity
is of type 3(1,1): Then 2 < K2 < 8x(S) is an even number.

Proof. Let \ be the number of singularities of X. Since any of them is of
type £(1,1), then Lemma 4.4.7 implies

1
)\-562 — )\ even.

Then e(B) € Z. This together with k(B) = 0 implies B(B) = 2e(B) is even,
and so K2 = 8x(S) — £ B(B) is even too. O

Definition 4.4.9. A multiset

1 1
B:= {Al X —(1,@1),... ,)\R X (1,713)}
ni nr

is called a possible basket of singularities for (K?2,x) is and only if satisfies
the following conditions:

e there is a representation of B, say

1 1
B {xl (L) Xy n,R(l,n'R)}

such that > )\;% €,

e B(B) = 3(8x(S) — K?).

It is clear now that the basket of the quotient model X of a product-quotient
S is a possible basket of singularities for the pair (K%, x(S5)).

4.5 Counting product-quotient surfaces arising
from a pair of topological types of G-coverings

Consider a regular product-quotient surface S of quotient model X :=
(C1 x C3) /G. By the Corollary 4.4.6, then C;/G = P!. The situation is
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the following:

A1 (Cl X CQ)/G A2
l fl/ \fz l
Plgcl/G A CQ/GgIP)I

\ + /

Cl/G X CQ/G = Pl X Pl,
(4.3)

In the Chapter 2.1 we have seen that A;: C; — P! are both described, up to
deformation, by the Aut(G) x B, (resp. Aut(G) x Bs)-orbit of a spherical
system of generators of G.
Conversely, a pair of spherical systems of generators [g1,...,¢,], and
[h1, ..., hs] gives G-coverings (C1, A1), and (Ca, A2) of PL, and so a family of
regular product-quotient surfaces S of quotient model X := (C; x C3) /G.
However, if we replace one [hq, -;,hs] with another spherical system of
generators in the same Aut(G) x Bs-orbit, then we get a family of product-
quotient surfaces that may be different.

In this section we are going to determine exactly how many families
of product-quotient surfaces one obtains by a pair of topological types of
G-coverings of P!.

Definition 4.5.1. Let us call by 7"°(G), the collection of all families of reg-
ular product-quotient surfaces, whose natural fibrations \; are G-coverings
C; of P! branched over r and s points respectively.

Remark 4.5.2. In the above definition the order of (C1, A1) and (Ca, Ag) is
relevant. Thus exchanging them gives a natural bijection from 7"%(G) —
T*"(G) which sends families to isomorphic families of surfaces.

We give a generalization of Theorem 2.1.9 for product-quotient surfaces
(see [BP12] and [BCGP12]).

Proposition 4.5.3. There is a natural bijection among T"*(G) and
D" (G) x D3(G)
Aut(G) x By x By’
where (¥, 01,02) € Aut(G) x By x By acts on ([g1, ..., gr], [, ..., hs]) via
(U, 01,02) - ([91s---59r), [P1,.. ., hs]) =
= (o1-[W(g1), ..., W(gr)], 02 - [¥(h1), ..., W(hs)]),
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in the notation of Section 2.1.

The bijection in Proposition 4.5.3 is given by a map D" (G) x D*(G) —
T75(G) as follows.

Consider a pair of spherical systems of generators [g1,...,g,] and
[R1,...,hs]. We fix points qo, q1, .. ., g € P! and a geometric basis 71, ..., 7,
as in the Definition 2.1.10, where 7); is a class loop based at ¢p around the
point ¢;. In this way, following the description of Section 2.1 we get from
the first spherical system [g1, ..., gr] a G-covering of the line (C1, A1) whose
branch locus is {qi,...,¢,}. In fact, we obtain an isomorphism among G
and the automorphism group of the covering (Ci, A1), and g; is the local
monodromy of a point over g;.

Similarly, we fix others ¢}, ¢}, . . ., ¢, € P! and a geometric basis 7, ..., 7,
where 7] is a class loop based at ¢ around ¢;. Then [hy,...,hg| gives an-
other G-covering of the line (Cs, \2), and an isomorphism among G and the
automorphism group of (Cy, A2).

Then the diagonal action of G on C1 x Cy gives a product-quotient surface
S whose quotient model is (C; x Cq) /G.

The map D" (G) x D*(G) — T"*(G) sends the pair of spherical systems
([g1s---,9r)s[h1,- .., hs]) to the family of S.

Let us discuss how Aut(G) x B, x B, acts on this construction.

We show that acting with ¥ € Aut(G) on [g1,...,9,] and [hq,..., hs]
the isomorphic class of S does not change. Acting with ¥, we obtain the
same G-coverings (C1,A1) and (C2, A2), but the isomorphisms among G
and the automorphism groups of (C1, A1) and (Cs, \2) are both modified by
composition with ¥. Then we obtain the same product € x Cy and the
action of G x G on it has been modified by composition with ¥ x W. Since
¥ x ¥ sends the diagonal to itself, then we obtain a surface isomorphic to

S.

The group Bvr acts only on the first spherical system of generators [g1, . ..
, gr] replacing (C1, A1) with a topological equivalent G-covering (C7, \}) as
described in Section 2.1. By the result of Gonzéalez-Diez and Harvey in
[GDH92] mentioned there, then (C1, A1) and (C7,\]) are in the same irre-
ducible connected family of G-coverings. In particular, the action of E on
the given construction connects surfaces of the same family.

An analogous statement holds for the action of Bvs on a spherical system
of generators [hi, ..., hs].

As discussed at the beginning of this section, to each family of product-
quotient surfaces we have a naturally associated pair of topological types of
G-coverings, thus giving a surjective map 7"°(G) — T"(G) x T*(G). By
Proposition 4.5.3 and Theorem 2.1.9 we obtain the following commutative
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diagram
rs D" (G)xD3(G)
T(G) Aut(G)x B, xB.
N (4.4)
.
§ ) ) DT (G) D*(G)
TM(G) x T*(G) < Aut(G)x B, % Aut(G) x B,

Here the map 7 is defined as the only map making the diagram commutative.
Such 7 sends the class of a pair of spherical systems of generators [V7, V53]
to the pair of classes ([V1], [V2]).

We are going to find the inverse image of each point ([V1],[V2]) by m,
which translates in determining each family of product-quotient surfaces
afforded by the pair of topological types of G-coverings, the first given by
[V1], and the second by [Va].

Definition 4.5.4. Let V :=[g1, ..., g-] be a spherical system of generators.
The group of automorphisms of braid type on V is the following subgroup
of Aut(G)

BAut(G,V) := {o € Aut(G): 3 ¢ € B, such that ¢ -V = o - V}.

Observe that BAut(G,V) is a subgroup of Aut(G): let 1,02 €
BAut(G,V), then

(prowst) V=opi(ot - V) =03 (g1 V) = (05 '01) - V

for some 01,09 € Bvr Thus ¢ o <p2_1 € BAut(G,V).

Remark 4.5.5. If you replace V by V' on its Aut(G) x B,-orbit, let us say
V' :=(¥,0)-V, then the subgroup BAut(G, V') is conjugate to BAut(G,V):
BAut(G, V') = ¥ o BAut(G,V) o U1

Note that ¥ € BAut(G, V) implies BAut(G, V') = BAut(G, V).

Definition 4.5.6. Let Vi and V5 be a pair of spherical systems of gen-
erators of G. We will say that two automorphisms ®, ¥ € Aut(G) are
(V1, Va)—related, and we will write

D~y U

if the following holds: there exist p1 € BAut(G, V1), p2 € BAut(G, V) such
that
U = 0dops.
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The relation ~vy;, y; is clearly an equivalence relation on Aut(G). We denote
by QAut(G)y, v, the quotient of Aut(G) by ~v; vs.
In other words QAut(G)y; 1, is the set of double cosets

QAut(G)y, v, = BAUt(G, Vi)\Aut(G)/BAut(G, Va).

Remark 4.5.7. Replacing V1 and V5 by two spherical systems of generators
in the same orbits, V{ = (¥y,01) - V4 and Vj = (¥g,09) - Vo, then by the
Remark 4.5.5 we have

(I)NV17V2\I/ <~ \Illo<I>o\I/2_1 ~V VY \Illo\I/O\IIQ_I.

Moreover, the bijection ® +— Wy o ® o ¥y ! induces a bijection among the
quotients

QAut(G)vy v, ¢ QAUL(G)yy vy, (@] = [Ty 0D oWyl (4.5)
that only depends on Vi, Va, V{.VJ and not on the choice of ¥y, Us.
Theorem 4.5.8. We consider the map © defined at (4.4). Let us fix a point

DG _ D)

Aut(G)x B, Aut(G)xBs’
generators Vi and Vy such that x = ([V1],[Va]). The following hold:

and let us choose a pair of spherical systems of

1. given ® € Aut(G), then

D'(G) x D¥(G)

[Vl, P . VQ] S —
Aut(G) x B, x Bs

depends only by class of ® in QAut(G)v, v,-
2. The map

QAU (G, 1, — T ()

4.6
[®] — [V1,® - V3. (4.6)
is bijective. In particular, |t~ (z)| = |QAut(G)v; 1.

3. If we replace Vi by V{ in the same Aut(G) x B,.-orbit, and Vy by vy

in the same Aut(G) x Bs-orbit, then the bijective maps in (4.5) and
(4.6) form a commutative triangle

QAut(G)vy vy

\
/

QAut(G)Vl’V2

mH(z)
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Proof. 1. Let us consider an automorphism @ = ¢ o ® o ¢y in the
same class of ® in QAut(G)y, v, where @1 € BAut(G, V1) and ¢p; €
BAut(G, V). Then

[V1,@"- Vo] = [V, (g1 0 @ 0 ) V2]

=
=[p1" - V1, (P o) - VA

=07t V1,® - (02 - V3)]

=o' Vi,02- (- Va)] = [, ® - Val.

2. Point 1. proves that the map 4.6 is well-defined. Let us consider an
element [V{, V3] € 7=1(x), hence V/ is in the same orbit of V; and Vj
is in the same orbit of V5. We write

Vi=(Uy,01)- Vi and V4§ = (Uy,09)- Vs,
where (U1, 01) € Aut(G) x By, and (U3, 09) € Aut(G) x Bs. Then
[V, V3] = (01 - Vi, Wo - Vo] = [V, (07 - W) - VR,
This proves (4.6) is surjective.
Let us consider [®4] and [®3] in QAut(G)y, v, such that
Vi, @2 - Vo] = [V1, @y - V2.

We are going to show that [®3] = [®1]. Since (V1, ®2-V2) and (Vi, @1 -
V5) share the same orbit, then there exists (¥, 01, 02) € Aut(G) x B, X

Bs such that

V1, @9 - Vo) = (¥, 01,02) - (V1,P1 - V)

- Vi=o0' W
= -1 -1
(q)l oW O(I)Q)"/Q:O'Q'VQ.

Therefore, p; := ¥ € BAut(G,Vi) and @2 := &' o U™l o &y €
BAut(G, V3). Finally, we have

Qo = 10Dy 0y,
which proves [®3] = [®4], and so that (4.6) is injective.

3. It is an immediate consequence from the definition of the map (4.5).
O

Theorem 4.5.8 gives a perfect enumeration of the families of regular
product-quotient surfaces corresponding to an ordered pair of topological
types of G-coverings of the projective line. In fact, in the Remark 4.5.2 we
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have observed that exchanging (C1, A1) and (C2, A2) defines an involution
on |J7"*(G) connecting isomorphic families.

If we are interested in counting the families given by two different topo-
logical types of G-coverings, then it is sufficient to choose an order of them
and then apply Theorem 4.5.8.

However, to enumerate the families of product-quotient surfaces associated
to twice the same topological type we need to study how the exchange of
the factors acts on QAut(G)y.y.

Proposition 4.5.9. The exchange of the factors acts on QAut(G)vyy as
the involution

QAut(G)vy — QAut(G)Vy, [(I)] — [q)il].

Proof. The exchange of the factors is a map from 7 1([V],[V]) to itself
sending each [V, ®-V]to [® -V, V] =[V,&~!.V]. =

Corollary 4.5.10. Let (C1, A1) and (Ca, \2) be two G-coverings of P! and
let Vi and Vo be their spherical systems of generators respectively. Then

the cardinality of the set of families of product-quotient surfaces given by
(C1, A1) and (Ca, A2) is equal to

1. the cardinality of QAut(G)v, vy, if (C1, A1) and (Cz, \2) are not topo-
logical equivalent;

2. the cardinality of QAut(G)v, v,/ (@ — @71), if (C1, A1) and (Ca, \s)
are topological equivalent.

Let us give an example:

Example 4.5.11. Let G = 53 % ZZ%, p > 3 prime number.

We are going to compute all regular product-quotient surfaces with quo-
tient model (C7 x C3) /G where the natural fibrations A\;: C; — P! and
Ay: Cy — P! are both ramifying over three points.

From Example 2.1.14 we can say that

D3(S3 x Z2)
e = {V},
Aut(Ss x Zg) x B3

with
V= [(7-7 (1’0))7 (TO', (07 1))7 (0-27 (p - 17p - 1))]
We need to compute the subgroup BAut(G, V) < Aut(Ss x ZZ%).
Firstly we note that, since we have assumed p > 3, then

Aut(Sg X Zg) = Aut(Sg) X GLQ(ZP).

In fact, any automorphism of Aut(Ss x ZZQ,) preserves the factors. This is
obvious for the second factor since it is the centre of the group. For the first
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factor, we note that it is generated by the only elements of order two of the
group, and then it is a characteristic subgroup.

Hence every element of BAut(G,V) can be written as a pair (¥, M),
where ¥ € Aut(Ss3), and M € GL3(Zp).

The action of Bs on [(1,0), (0,1), (p—1, p—1)] permutes its entries, since
ZIQ, is abelian. Therefore, the automorphisms M € GL2(Z,) of braid type
on it are those permuting its entries. Such automorphisms belong to the
subgroup (M, Ms) = S5 generated by

(0 1 _(p—=1 0
e (D) e (2010).

Let (¥, M) be of braid type on V, and let 7 be a braid in Bs such that
(U, M)-V =n-V. We observe that the signature of V' is [2p, 2p, 3p]: since
the third number is different from the other two, and the automorphisms
send elements in elements of the same order, then the permutation image
of n in S3 fix the number three. This implies that M fixes (p — 1,p — 1), so
M € (M;) = Zy. Therefore,

BAUt(G, V) < Aut(Sg) X <M1> = Sg X ZQ.

Let us choose two generators of Aut(S3): let Uy be the inner automorphism
given by 7 and let ¥y be the inner automorphism of 0. They act as

T T T+ 702
qll_<00—>02>’ qj2_<0b—>02>
We observe that (¥,Id) and (W5 o Wy, M) are of braid type on V, since

they act on V respectively as the braids oj03071 and 0. Since they generate
the whole Aut(Ss) x (M;) then

BAut(G, V) = Aut(S?,) X <M1> = 53 X ZQ.
Now we can compute
QAut(Sg X Zg)v’v.
Firstly, we observe that by definition of ~y ;- we have the following natural
identification

\(Aut(Sg) X GL2

QAut(S3 X Z2)v,v =paut(G,v) @) / g aut(cv)-

Since BAut(G, V) = Aut(S3) x (M) contains the subgroup Aut(Ss) x {1},
which is normal in Aut(S3) x GL2(Z,), then we have the following natural
identification

QAut(Ss x Z2)vv = () \“2E) /sy, (4.7)
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More precisely, the correspondence sends [(Idg,, A)] <+ [A].
From (4.4) and Theorem 4.5.8 we can conclude that

T33(S5 x Z2) =2 QAut(G)v,v = )\ %)/ ).

However, we are majorly interested to find the set of families of product-
quotient surfaces given by V, V. As proved in the Corollary 4.5.10, it is
sufficient to determine

QAut(G)v; vi/ (@ = @71,

This is the quotient of GL2(Z,) by the simultaneous action of the three
involutions A + M A, A+ AM; and A — A~!. These involutions generate
a group of order 8 isomorphic to a dihedral group. Hence

QAut(G)vy v,/ (2 ©71) =2 GLs(Z,) /Dy (4.8)

We have proved that regular product-quotient surfaces with quotient
model (C7 x C3) /G where the natural fibrations A\;: C; — P! and \y: Cy —
P! are both ramifying over three points are in bijection with GLa(Z,)/Ds.

This bijection can be described as follows. Consider the Riemann surface
Cy with an action ¢: G — Aut(C;) such that the quotient C;/G = P! and
the associated spherical system is V. Considering a matrix A € GLa(Z,)
and let Cy be a copy of C7 with G = S5 x Zg acting by ¢4 := ¢o (Id, A)~L.
Then the product-quotient surface of quotient model C; x C2/G corresponds
to [A].

We count these product-quotient surfaces, computing the cardinality of
the right term of (4.8).

Notice that there two involutions A — M7;A and A — AM; of Dy
that obviously don’t fix any matrix. These are suitable reflections of the
group D4. Hence the non-trivial inertia subgroups of D4 are subgroups not
containing these reflections. These are five subgroups:

1. (A A7Y) = Zy;

2. (A M{ATIM)) = Zy;

3. the centre (A — My AM;) = Zo;

4. (A AL A MyAMY) =2 7o x Zo;
5. (A A7IMy) = Zy.

First we note that the last three groups are those containing the centre.
Then the matrices with inertia group equal to one of the last three cases are
those stabilized by the centre.
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Hence we first compute the elements stabilized by the centre. They are
the doubly symmetric matrices of the form
2

a b
(b a> , a # +b.
They are in total (p — 1)°.

Recall that if A = <a b), then A~ = dib ( d _b>. The elements
c d ad=bc \ —¢c @

stabilized by A — A~! are of two types, those of determinant 1, and those
of determinant —1. Those of determinant 1 are two, +I. They are double
symmetric, hence their inertia group is the one isomorphic to Zy x Zy. Con-
versely, if a matrix A with determinant —1 has inertia group isomorphic to
Zo X Zs, then My A has determinant 1, and the same inertia group. This
implies {£I,4+M;} are the only matrices with inertia group isomorphic to
ZQ X ZQ.
Instead, the matrices having inertia group (A — A~1!) are

O A

They are in total p(p+1) —2 = (p— 1)(p + 2).

Furthermore, the set of matrices stabilized by (A +— M;A~'M;) are in
bijection with the set of matrices stabilized by (A + A1) via multiplication
of M;. Therefore they are in total (p — 1)(p + 2) again.

Recall that GLg(Z,) has (p?> — 1)(p? — p) elements. The number of
matrices with trivial stabilizer is

P - —p)— (-1 =20p-Dp+2) =@+ 1p-1p°—p-3).

It remains to determine the matrices that have inertia group isomorphic to
Zy. We will see that they exist if and only if
.

p=1 mod4 and (—4)T1 =1 mod p. (4.9)

As remarked above, they are also stabilized by the centre, hence are

double symmetric. A double symmetric matrix A = (Z Z) is equal to

AN = L <_ab “ ) if and only if

aZ—b2 —b
—b
)
b= a2ib2

However, the pair (a,b) can never be the zero vector, and so we get (a? —
b?)2 = —1. Setting 6 = a? — b?, then we obtain 2 = —1, which implies
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p =1 mod 4, and a = 6b. Note that § = det A = a? — b?> = —2b?, hence

62 = —1 = 4b*. This means b is a root of the equation 42* = —1 that
has solutions if and only if (—4)"7 = 1 mod p (from primitive element
theorem).

Finally, replacing a by db = —2b% in the matrix A, we get

20 1
A_b(l _%2).

Assume (4.9) does not hold. In this case, the cardinality of GLa(Z,)/Dy is
equal to

p+D)p-DP*—p—-3) , (p—1)(p+2) N (p—1)2—14

2 2 =
8 + 4 4 +
-1 1) (p? — 3
_ =D+ 8)(2? p+ )+1.

Instead, if p verifies (4.9), then thew cardinality of GLy(Z,)/Dy is equal to

(P+1)(P—18>(P2—P—3)+2(P—1L(p+2)+(p—1)24—4—4+2+;1:
_ =D+ He -p+3)
; .

4.6 Finiteness of the classification problem

This section is a continuation to the Section 4.4, and generalize the results of
[BP12, Sec 1.1] by removing the assumption x = 1 there and following step-
by-step the same arguments. Fixed a pair (K2, x) € Z x Z, we shall classify
regular product-quotient surfaces S of general type having such prescribed
self-intersection K2 = K2, and Euler characteristic x(5) = x.
With the spirit to obtain good candidates to investigate the main Question
5.2 of Chapter 1, we are going to consider the case x = 4 later on. In other
words, in virtue of the Corollary 4.4.4, we are looking for families of smooth
regular product-quotient surfaces of general type with geometric genus pg
equal to three.

The first Lemma shows that, for every pair (K2, x) € Z x Z, there are
only finitely many possible baskets of singularities.

Lemma 4.6.1. Let C € Q be fized. Then there are finitely many baskets B
such that B(B) = C.

More precisely, we have
- C.
L. |B| S 3

it if A % %(1,@) € B, and % = [by,...,b], then A\ b; < C.
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Proof. Observe first that B(1(1,a)) = %“l + > b; > 3. In particular,
C = B(B) > 3|8,
which shows i. The point 4i. is obvious. O

Now we consider regular product-quotient surfaces S of general type with
fixed x(S) = x € Z. Let \;: C; — P! i = 1,2, be two G-covers associated
to S, with genus g(C;) > 2 respectively. These covers induce appropriate
spherical systems of G

[917--'ag7‘]7 [h17--'ahs]7

with signature [mq,...,m,|, and [ni,...,ns] respectively, such that the
Riemann-Hurwitz relation (2.3) holds.
We need the following

Definition 4.6.2. Fix an r-tuple of natural numbers ¢ := [mq,...,m,],
and a basket of singularities B. Then we associate to these the following
numbers:

Ot) == —2+ZT: <1—;>;
2 Z

 12x + k(B) — e(B)
a(t,B) = 0

We recall

Definition 4.6.3. The minimal positive integer I, such that I, Kx is
Cartier in x is called the index of the singularity x.

The index of X is the minimal positive integer I such that I is Cartier.
In particular, I = lemgesingx Lz-

It is well known (see for instance [Mat02, Thm. 4.6.20]) that the index
of a cyclic quotient singularity %(1, a) is

n

L=— "
ged(n,a+ 1)

We shall bound now, for fixed K2, x, and B, the possibilities for

o |G];
L4 tl - [mla 7m7"]7
o ly:=[ny,...,ng,

of a product-quotient surface S with K2 = K2, x(S) = x, and basket of
singularities of the quotient model X = (C; x C2) /G equal to B.
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Proposition 4.6.4. [BP12, compare Prop. 1.14] Fiz (K2,x) € Z x Z, and
fir a possible basket of singularities B for (K?,x). Let S be a product-quotient
surface S of general type such that

i. KZ=K?;
. x(S) = x;

iti. the basket of singularities of the quotient model X = (C1 x C3) /G
equals B.

Then

a) g(C1) = a(tz,B) + 1, g(Ca) = a(t1, B) + 1;

8a(ty,B)a(ts,B

c) rys < % +4;

d) m; divides 20(t1, B)I, n; divides 2a(to, B)I;

e) there are at most |B|/2 indices i such that m; does not divide a(ty, B),
and similarly for the n;;

14 K2 HEB) 141 K2 4k(B) ‘ .
f) mi < W, n; < W, where I is the index of X, and

f(tr) := max(g, 5%), f(t2) := max(g, °3°);
g) except for at most |B|/2 indices i, the sharper inequality

1+K2+k(8)
m; < W holds, and similarly for the n;.

Remark 4.6.5. Note that b) shows ¢; and to determines the order of G. ¢)
and f) implies there are only finitely many possibilities for the types t1, t.
Instead, d), e), and g) are strictly necessary to obtain an efficient algorithm.

Proof. a) Observe that from the Corollary 4.4.3, then

Ot )a(t, B) =L 24X+ 2k(B) = 2¢(B) _ 24x = B(B) + 3k(B)

2 6 6
B BE) L k(B) K+ k(B)
- 12 B 4 7

and then by the Theorem 4.4.2 and Hurwitz’ formula, we have

afty, B) = K? 4+ k(B) _ 8(g(C) — 1)(g(Co) — 1)
) g6 (—2+ 2 (1- 1))

_ 8(y(C1) —1)(g(C2) — 1)
4(29(C1) —2) .
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Gl = 8(9(C1) —1)(g(C2) = 1) _ 8a(ty, B)a(ts, B)
- K2 + k(B) T K21 k(B)

c) Note that r < 20(t1) + 4. On the other hand, since g(C;) > 2, then

1 <at,B) = %. This implies (0 <) O(t;) < w.
d) Each m; is the branching index of a branch point p; of A\;: C; —
C1/G = P'. Let F; be the fibre of the map f1: X — C1/G. Then F; = m;W;

for some irreducible Weil divisor W;. We have

20((151,8) = 29(02) —2= KxFi = miKXWl-.

Therefore
M = (IK)()WZ' €.
mg

e) By [Ser96], if F; contains a singular point of X, then it contains at least
2 singular points. Therefore, there are at most |B|/2 indices i, 1 < i < r,
such that F; N Sing X # 0.
For all other indices j we have F; N SingX = (). Then Wj is Cartier and Kx
is Cartier in a neighbourhood of W;. In particular, M%P = % A

f) Note that ©(t1) + m% > =3 Moreover, ©(t;) > 0 implies that r > 3.
Obviously, if » = 3, since O(2,2,m) = —% < 0, then O(t;) + m% > %.

Therefore, ©(t1) + m% > f(t1), whence m; < %;1))%‘

By d) m; < 2a(ty,B)] = K;g(]zf)l. This implies
K2+k(B
L+ 0(t)m; 1+t Sepg ST 14 Ktk
m; < < <
f(t1) f(t1) f(t1)

g) This is proved by the same argument as in f), using e) instead of d). [

4.7 How to read the basket B from the local mon-
odromies

This section is directly related to the Section 4.3. Our next goal is to describe
explicitly how the couple of spherical systems

[91s--,9r] and [h1,...,h

associated respectively to G—coverings (C1, A1) and (C2, A2) determines the
singularities of the quotient model X = (C; x C2) /G.

Let us say A1 has branch locus consisting of r-points ¢i,...,q.. In the
Subsection 2.1.1 we have proved that g; is the local monodromy of a point
p; over g;; let us call the stabilizer of p; by H; := (g;). Similarly, we say that
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¢4, -.,q, is the branch locus of Ay, and then h; is the local monodromy of
a point pj; over g;; denote by Hj := (hj) be the stabilizer of p.

From the Proposition 4.3.1, then the only points of X that may be singular
are those belonging to a fibre A‘l(qi,qz.), with 1 <¢<r,1<j<s. The
Proposition 4.3.2 shows that

(G/H}) [H; = X Yaindf),  [t] — G(pi, tp))

is a bijection, and the Proposition 4.3.3 establishes the type of singularity of
the point G(p;, tp}) for any fixed [t]: let § be the minimal positive number
such that there exists 1 <~ < o(h;) with ¢} = th;til. Then G(p;, tp}) is a
cyclic quotient singularity of type %(1, a), withn =n(i, j,t) := ]HiﬂtHgt_l l,

and a = a(i, j,t) := 08;;).

To summarize, for any
e 1<i<r,

e1<j<s,

o [t] € (G/ij.) JH;,

we apply recursively the Proposition 4.3.3 to establish the type of singularity
of the point G(p;, tp}).
The set of singular points of X is therefore equal to

Sing(X) = {G(pi, tp}) : n(i,j,t) # 1,1 <i <r,1 < j < s,[t] € (G/H;})/Hi},

and a representation of the basket of singularities of X is then

B(X) = {W(La(i,j,t)): n(i,j.t) # 1,

1<i<r1<j<s,|t]e(G/H})/H;}.

Remark 4.7.1. Note that a = a(i, j,t) and n = n(i, j,t) may be not coprime.
Define by d = d(i, j, ) := ged(n,a). Then % and § are coprime, and by the
claim of the Lemma 3.0.13, then 1(1,a) is equivalent to (1, 2).

g
Remark 4.7.2. By the Remark 4.3.4, then we conclude that the basket B(X)

of a quotient model X described by a couple of spherical systems [g1, . .., gr],
and [h1, ..., hs] depends only by the conjugacy classes of g; and h;.

To better understand how to compute the basket of singularities of X

via the Proposition 4.3.3 let us give an example.

Example 4.7.3. We are going to study the basket of singularities of some
of the product-quotient surfaces obtained in the Example 4.5.11. Here we



84 Product-Quotient Surfaces

assume for simplicity p > 5. Let us consider the same spherical system V' of
4.5.11:

V= [(7-7 61)7 (TU7 62)7 (02’ (p - 1)(61 + 62))] = [91’92793]7

where eq, eg is the standard basis of ZIQ) for simplicity of notation. Let A €
GL2(Zp) be an automorphism such that

Aey, Aea, Aler +e2) & (e1) U (e2) U (e1 + e2).

We twist V by A, and so consider the new spherical system A -V =:
[h1, ha, hs].

The couple of spherical systems V and A-V describes a product-quotient
surface S of quotient model X := (Cy x C2) /G.

Let us start to consider the singular points raised from the couple g1 =
(1,e1), and h; = (7, Aey). The quotient G/(h1) consists of 3p points. Now
consider the left action of (g1) on G/(h1). The orbits [g(h1)] may have
only length 2p, p, or 2. A point with trivial stabilizer is (¢,0)(h1). In fact,
g]f : (Gv 0)<h1> = (07 0) <h1> implies

o**o € (1), and kei € (Aeq).

From our assumption on A, then this is possible only for £k = 0, or p. If
k = p, then o?7%0 = 0?70 = 1702 € (1), a contradiction. Hence k = 0, so
(0,0)(h1) has trivial stabilizer.

The points g(h1) whose stabilizer is of order 2 are fixed necessarily by

gy, and they have to satisfy

g glh) = glhy) = ¢{ =ghlg™' =
g(h1) = (1, ke1)(h1), k=0,....,p—1.

A straightforward computation shows that these points share the same (g1 )-
orbit [(h)]:

(7’, 61)k17k2 . (T, k2€1)<h1> =
(r,e1)fr k2 . ((T, koer)(7, Ael)p[’ﬂ—’@b) (h1) = (7, krer)(ha).

This shows (G/(h1))/(91) = {[(o,0)(h1)],[(h1)]}. The first orbit gives a
smooth point of X, and the second gives a singular point of type %(1, 1).

Let us going on by considering the couple g1, and he. The quotient by
(h2) consists of 3p points. The left action of (g1) on the quotient has one
orbit [(a,0)(hg)] of cardinality 2p, and [(702,0)({h2)] of cardinality p. The
first gives a smooth point, while the second a singular point of type %(1, 1).

Using a similar argument, we obtain a singular point of type %(1, 1) for
each of the two pairs go, h1, and g, hso.
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Now consider g1, and hz. Since p > 5, then the quotient by (hs3) has
cardinality 2p, and the quotient by (g;) consists only of one orbit [(c,0)(h2)].
This gives a smooth point.

The same argument works for the pairs go, h3 and g3, h1, and g3, ho which
gives then each a smooth point respectively.

It remains the couple g3 and hs. The quotient by (hs) has cardinality 2p.
The left action by (gs) on the quotient has one orbit [(o,0)(hs)] of length
p and [(7,0)(h3)] of length p. Let us analyse the first point coming from
[(0,0)(h3)]. the smallest positive & such that g} = (o,0)h3(0?,0) is § = p,
and v = p, so that the singular point is of type %(1, 1). Instead, the smallest
positive § such that g§ = (7, 0)h3(7,0) is § = p, and v = 2p. Therefore the
last singular point is of type %(1, 2).

The basket of singularities of X given by V and A -V is therefore

1 1 1
B(X) = {4 x 511, 5(L1), 3(1,2)}.

Once that we have computed the basket of singularities of X, we can deter-
mine its invariants K2, and x(S), by applying the formulas of the Theorem
4.4.2, and the Corollary 4.4.3:

24141 1
BB)= -2+ T (3-2) =,
3 3
1 1 1 2
4 1
B(B)=22—- -+ - =21.
(B) st3

Thus, replacing the genera ¢g(C;) by the values computed in the Example
2.1.14, we obtain

2 86 —4p)® 1
S 6p2 3

(6p—8 — 1)3(61’_8+1) = (2p—3)(6p—T7),

):(219—3)(629—7) 7 (p—1)(3p—5)

X(s) = g (K3 + 355)

AN
. + +

8 8 2
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4.8 Description and implementation of the classi-
fication algorithm

Fixed a pair (K2, x) € NxN, the next goal is to use the results of the previous
sections to write a MAGMA script to find all minimal regular surfaces S
of general type with K2 = K2, and x(S) = x, which are product-quotient
surfaces. After that, we specialize our classification to those surfaces with
(K2, ) = (32,4).

A commented version of the MAGMA code is available here:
https://fefe9696.github.io/FedericoFallucca/pubbl.html#PhDTh

We describe here the strategy, and explain how the most important
scripts work. The strategy is the same of [BP12]. Most of the scripts are
modification of those in [BP12]. Since those scripts were written under the
assumption y = 1, we generalize all of them to allow any value of x. At the
end of the section we will indicate which are the other main improvements

we did.

First of all, we fix the couple (K2,x). Note that by minimality of S,
and by the Corollary 4.4.4, then K2 € {1,...,8x}, and the case K? = 8x
corresponds to those surfaces whose quotient model X is smooth.

Step 1: The script Baskets lists all the possible basket of singularities for
(K?2,x) as in the Definition 4.4.9. Indeed, there are only finitely many of
them by the Lemma 4.6.1. As in the Lemma 4.6.1, the input is 3(8y — K2),
so to get for instance all baskets for (K2, ) = (28,4), we need Basket(12).
Step 2: From the Proposition 4.6.4 once we know the basket of singularities
of X, then there are finitely many possible signatures. ListOfTypes com-
putes them using the inequalities we have proved in the Proposition 4.6.4.
Here the input is K2, and ¥, so ListOfTypes first computes Baskets(3(8x —
K?)), and then computes for each basket all numerically compatible signa-
tures. The output is a list of pairs, the first element of each pair being a
basket, and the second element being the list of all signatures compatible
with that basket.

Step 3: Every surface produces two signatures, one for each curve Cj,
both compatible with the basket of singularities of X; if we know the sig-
natures and the basket, then Proposition 4.6.4 b) tells us the order of G.
ListGroups, whose input is K2, and ;, first computes ListOf Types(K?2, x).
Then for each pair of signatures in the output, it calculates the order of
the group. Next it searches for the groups of given order which admit ap-
propriate spherical systems of generators corresponding to both signatures.
Here we use the database in [CGP23] if we are in one of the cases classified
there, otherwise we use the function FindGenerators developed in the work
[CGP23]. For each affirmative answer, it stores the triple (basket, pair of
signatures, group) in a list, which is the main output.

The script has some shortcuts:
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e Let [mq,...,m,] and [nj,...,ngs] be the pair of signatures and let
T(mq,...,m;) and T(nq,...,ns) be their respective orbifold groups
(see the Remark 2.1.7). Then the order of the abelianization G of
G has to divide the order the abelianization of T(my,...,m,) and
T(ny,...,ns):

|G| divides |T(my,...,m.)%|, |T(n1,...,ns)%|. (4.10)

In fact, the orbifold (surjective) homomorphisms T(m4,...,m,) = G
and T(nq,...,ns) = G extend to surjective homomorphisms

T(my,...,m,) — G, T(ni,...,ns)" — GP.

Hence ListGroups checks first if G satisfies the condition (4.10): if not,
this case not occur.

e If the pair of signatures [my,...,m;] and [ny,...,ns] admits orbifold
groups T(myq,...,m,) and T(nq,...,ns) such that the orders of their
abelianization are coprime numbers, then G is forced to be a perfect

group:

ged (|T(m1,...,mr)“b|, \T(nl,...,ns)“bo =1 = G%={1}.

This follows directly from the condition (4.10).

MAGMA knows all perfect groups of order < 50000, and then List-
Groups checks first if there are perfect groups of the right order: if
not, this case can not occur.

o If:

- either the expected order of the group is 1024 or bigger than
2000, since MAGMA does not have a list of the finite groups of
this order;

- or the order is a number as e.g., 1728, where there are too many
isomorphism classes of groups;

then ListGroups just stores these cases in a list, secondary output of
the script. These ”exceptional” cases have to be considered separately.

Step 4: The basket of singularities of a surface described by a couple of
spherical systems [g1, ..., ¢g,] and [hq,..., hs] depends only by the conjugacy
classes of g; and h;, from the Remark 4.7.2. ExistingSurfaces runs on the
output of ListGroups(K?,x), and throws away all triples giving rise only to
surfaces whose singularities do not correspond to the basket.

Step 5: Each triple (basket, pair of signatures, group) in the output
ExistingSurfaces(K?, x) gives many different pairs of appropriate spherical
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systems of generators. On them there is the action of Aut(G) x B, x By
described in the Section 4.5. Therefore, the script FindSurfaces uses The-
orem 4.5.8 and Corollary 4.5.10 to pick up only one pair of spherical systems
of generators for any family of product-quotient surfaces compatible with the
triple (basket, pair of signatures, group). Thus, the output is a list of (bas-
ket, sphl, sph2, group), where sphl and sph2 are spherical systems of group
compatible with pair of signatures and basket.

Remark 4.8.1. The main novelties respect to the program in [BP12] are the
following;:

e The program works for every x € N whereas the original scripts in
[BP12] were assuming y = 1;

e The shortcut using perfect groups is a generalization of the similar
shortcut in [BP12], where it was applied only to the case when one of
the signatures is [2, 3, 7];

e The main improvement is Step 5 which is essentially new and much
more performing than the analogous procedure in [BP12]. Here we
use our main Theorem 4.5.8 of this chapter in combination with the
database and the script FindGenerators developed in [CGP23]. More-
over, we use these last tools from [CGP23] to speed up Step 3 as
well.

4.9 Classification of regular product-quotient sur-
faces isogenous to a product of curves with
geometric genus of three

Regular product-quotient surfaces isogenous to a product of curves with
pg = 3 are those with Kg =32 and y = 4.

We have run the function FindSurfaces described in the previous section
on each triple of the output of ListGroups(K?,x), where K? = 32, and
x = 4. This has given the following

Theorem 4.9.1. Let S be a product-quotient surface of general type with
pg =3, ¢ =0, and K% = 32 of quotient model (Cy x C3) /G. Assume that
both the topological types of the G-action on Cy and Cy are in the database
[CCGP23, 11" of June 2023]. Then S realizes one of the 213 families of
surfaces of general type described in tables 4.1 and 4.2.

Note that they are minimal surfaces, since the quotient model X is
smooth, and the canonical divisor of C x Cy (which is nef, because g(C;) > 2,
see Lemma 4.2.3) is the pullback of that of X.
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Remark 4.9.2. The database [CGP23, 11*" of June 2023] currently covers,
g being the genus of the curve, d being the order of the group, and r being
the length of the signature:
e all topological types with g < 40 except
g = 28, group G(18,4), signature 2'°
18,4), signature 219, 3
18,4), signature 22
18,4), signature 2!, 32
12,3), signature 213,33

g =34, group G
g =37, group G
g =40, group G

—~~ ~~ —~

g = 40, group G
e all cases with r = 3, g < 64, d < 2000

e all cases with r =4, g < 100 except
g = 76, group G(125,5), signature 5%
g = 88, group G(696, 35), signature 23 4

e all cases with » =5 and g < 100 except:
g = 75, group G(148, 3), signature 23, 42
g = 100, group G(81,2), signature 9°

The tables 4.1 and 4.2 contain the following informations

e t1 and ty are the signatures of the pair of spherical systems of genera-
tors defining a family of product-quotient surfaces;

e N is the number of irreducible families; our tables have only 74 lines,
but we collect in the same line N families, which share all the other
data. The number of lines counted with multiplicity N is 213 (which
is the number of families of Theorem 4.9.1.)

For the groups occurring in tables 4.1 and 4.2, we use the following notation:
we denote by Zg the cyclic group of order d, .S, is the symmetric group in
n letters, A,, is the alternating group.
PSL(2,7) is the group of 2 x 2 matrices over Fy with determinant 1 modulo
the subgroup generated by —Id.
SO(3,7) is the group of 3x 3 orthogonal matrices over F7 having determinant
1.
Dygr = {(z,y|2P,y?, xyx~ty™"), and D,, = Dy, 1 is the usual dihedral
group of order 2n.
Finally, G(n, k) is the k—th group of order n in the MAGMA database of
small groups.

To prove the main Theorem 4.9.1, it remains to show that the cases
skipped by ListGroups can not occur. It turns out that no other surfaces
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occur from the skipped cases. The techniques that we have used to exclude
these cases are those developed in [BCP06], [BP12, Chp. 3] and [Fral2, Sec
6.3]. For this reason, we decided not to provide further details on how we
excluded them.
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Table 4.1

t ts |G N |
2° 212 173 3
26 28 z3 3
31 37 z3 2
35 3° V£ 1
234 212 Zox Dy | 6
29 2042 | Zyx Dy | 4
25 2244 | Zyx Dy | 1
23 42 26 Zo x Dy | 2
26 26 ZoxDy | 1
22,42 | 22.4* | G(16,3) | 2
22,42 | 2°4%2 | G(16,3) | 6
23,42 | 2342 | G(16,3) | 2
25 28 z3 13
26 26 Z3 6
2232 | 2244 | S, 1
243 44 Sy 1
2,3,42 26 Sy 1
25 256 | Z3 x S3 1
23 4 22 4% | G(32,27) | 2
23,4 25,42 | G(32,27) | 30
22,42 | 2342 | G(32,27) | 1
25 23,42 | G(32,27) | 4
22 42 26 G(32,27) | 4
23 4 22,4 | G(32,28) | 1
25 26 Z3x Dy | 4
25 23,42 | Z3x Dy | 2
22,42 | 2342 | G(32,22) | 7
22 42 44 G(32,6) | 1
25 23,42 | G(32,49) | 1
233 22 4% | Zy x Sy 4
42,6 26 Zo X S4 3
23,6 44 Zy x Sy 1
23,6 23 42 | Zy x Sy 1
22 42 243 | Zy x S, 2
2242 | 22,62 | Zy x S, 1
25 2,3,42 | Zo x Sy 1
3,42 22.4% | G(48,30) | 3
23,4 226 | S3xDy |1
22,42 | 22,412 | G(48,14) | 1
73 73 72 7
3,52 26 As 2
53 243 | As 1
53 34 As 1
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Table 4.2

t by G N |
23 4 20 G(64,73) 1
23,4 23,42 | G(64,73) 4
23,4 44 G(64,138) 1
23,4 23,42 | G(64,138) 6
25 2° G(64,211) 1
25 25 73 x Dsg 1
22,42 | 22,42 | G(64,60) 3
22,42 | 22,42 | G(64,71) 1
22,42 | 22,42 | G(64,75) 1
2,4,6 | 22,4 | GLy(Zy) 10
42,6 22,42 | GLa(Z4) 1
3,42 23,42 | G(96,227) 1
23,3 44 G(96,227) 3
3,42 26 G(96,227) 3
23,4 | 23,4,12 | G(96,89) 1
23,6 22,42 | 73 x Sy 1
2,5,6 44 Ss 2
2,5,6 | 23,42 | S 1
3,42 245 | S5 1
32,7 22,42 | PSL(2,7) 1
43 3,77 | PSL(2,7) 4
2,4,6 | 23,42 | G(192,955) 7
2,4,6 44 G(192,955) 2
23,4 426 | G(192,955) 1
2,4,6 | 22,10% | Zo x Ss 1
43 43 G(256,295) 3
43 43 G(256,298) 2
43 43 G(256,306) 2
2,3,14 | 22,42 | Zy x PSL(2,7) | 1
2,6,7 43 Zo x PSL(2,7) | 2
2,6,7 2,82 | SO(3,7) 2

Recalling the Remark 1.1.6, part 3., the surfaces of general type with a
high degree of the canonical map have p, equal to 3. It is natural to search
among the 213 families of Theorem 4.9.1 for surfaces with canonical map of

high degree.

Note that the canonical map of these surfaces, if not composed with a
pencil, has degree at most 32.
The only surfaces in the literature with canonical map equal to 32 are
the two families in [GPR22] (see the Example 1.2.7). They are two of the

six families of Table 4.1 with group G =

73 and signatures 2% and 29.
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Furthermore, the authors proved in [GPR22, Prop. 5.3] that these two
examples are the only product-quotient surfaces with G abelian and py = 3
having degree of the canonical map equal to 32.

However, there are other families from Theorem 4.9.1 with canonical map of
degree equal to 32. For instance, using the tools developed in the following
Chapters, we proved that the surfaces in the family with group G = Zo x Dy
and both signatures 26 of Theorem 4.9.1 have also canonical map of degree
32. We decide not to include the discussion of this specific family in this
thesis.

We will discuss the canonical map of the seven product-quotient surfaces
with group Z2 of Theorem 4.9.1 in Section 6.1 and the canonical map of one
of the four families with group G := Z3 x D, and signatures 2° and 2% in
Section 6.3.






Chapter 5

On the canonical map of a
product-quotient surface

In this chapter, we investigate the canonical map of a product-quotient
surface. Their canonical map was studied, in the special case of the surfaces
isogenous to a product, in [Cat18].

In the first section we prove the main Theorem 5.1.8, called from us Base
locus formula. This is a formula for the base locus of the subsystem of the
canonical system of a Riemann surface C' given by an isotypic component
of the action of a finite group G on C. Furthermore, in Corollary 5.1.11 as-
suming C'/G = P! we give an expression of this formula in terms of spherical
systems of generators under the assumption that the associated irreducible
character is of degree one.

In the second section we study the structure of the canonical map of a
product-quotient surface S. We give a decomposition of H*?(S) in terms
of irreducible characters of G. In the Theorem 5.2.8, we determine the base
locus of the subsystems of |Kg| corresponding to characters of degree one.

Finally, Section 5.3 is devoted to the study of the degree of the canonical
map of a product-quotient surface, whenever this is not composed with a
pencil.

To compute such degree, we need to know the degree of the image of the
canonical map, that is one if p, is equal to three, and the self-intersection of
the mobile part of a subsystem of the canonical system of a suitable blow-up

of Cl X CQ.

Finally, Theorem 5.4.3 gives a Correction term formula computing this
self-intersection when p, is equal to three and all characters involved in the
decomposition of H*?(S) are of degree one.
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5.1 Isotypic components of canonical representa-
tions of actions on curves and base loci

Let C be a curve, G < Aut(C) be a finite group, C’ := C/G its quotient,
and let A\: C — C’ be the quotient map. Let g and ¢’ be the genera of C
and C' respectively.

G acts on H9(C) via the cotangent representation:

(g : w)p = (dg_l)pwg_l-pv

which is called canonical representation. Let us denote by xcqn the character
afforded by the canonical representation, which takes the name of canonical
character. By classical representation theory the character of a represen-
tation determines the representation up to isomorphism. Furthermore, any
representation can be splitted as a direct sum of irreducible representations.
In our case, we write

HY )= f HYO©O)X

x€Irr(G)

Here HY0(C)X is the isotypic component of H-?(C) of character x, namely
that G-invariant subspace such that the restriction of the canonical rep-
resentation is isomorphic to (Xcan, X)-times the irreducible representation
afforded by the character .

In terms of characters, the above splitting translates as

Xcan = Z <Xcan;X> “X-
x€lrr(G)

Thus, the canonical representation of G' can be determined just by knowing
the scalar products (Xcan,X). They can be computed through the well-
known Chevalley- Weil formula, which uses the local monodromies (see the
Definition 2.0.14) of points of the branch locus of .

We recall the beautiful thesis [Gle16] for a complete description how to use
the Chevalley-Weil formula. What is important to remark here is simply
that we use the algorithm developed in [Glel6] and implemented in the
computational algebra system MAGMA to compute the canonical character
Xcan Of any Galois branched covering.

The aim of this section is to investigate the base locus of the associated
subsystem |K¢|X given by the isotypic component H'(C)X. Let us give
first some preliminary results.

Notation: Given a point ¢ € C’, the divisor A~!(g) is considered with
the reduced structure.

Lemma 5.1.1. Consider a G-invariant subspace W C HY9(C). For any
p € A71(q), let t, be the minimal order of vanishing of a 1-form in |W| at
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p. Then all t, are equal to the same number, denoted by t,. Therefore the
base locus of |W| is a union of orbits

Bs(IW]) =Y _tA " (a)-

Furthermore, there exists a general form w € W vanishes of order exactly t,
at each p € A\71(q).

Proof. For every point p € A~!(q), it there exists a 1-form wp in W vanishing
at p with order ¢,, by the definition of t,. Given g € G, then g - w, belongs
to the invariant subspace W too, and it vanishes at g - p with multiplicity
tp, so that t,., < t,. Hence all ¢, are equal to the same number, denoted as
t.

We observe that a generic linear combination w of the obtained |A~!(q)|
1-forms w,, vanishes with order ¢, at each point of A71(q). O

Remark 5.1.2. Let w € W be the 1-form of the Lemma 5.1.1, with vanishing
order t, at each point p € A71(g). Given g € G, then g-w € W is a 1-form
with vanishing order ¢, at each point p € A7!(q).

Let HY9(C)X be the isotypic component of H?(C) of irreducible char-
acter x.

Lemma 5.1.3. Let f € M(C/G) = M(C)F be a non-zero invariant mero-
morphic function. Denote by H1’0(0)3§ the subspace of HY9(C)X consisting
of forms w such that fw is a holomorphic form. Then

fHY(OF = f-HP(OF CHY(O),  we fo (5.1)

18 a G-equivariant isomorphism. In particular, f-lT—Il’O(C’)}< is a G-invariant
subspace of H-0(C)X.

Proof. H1’0(0)3§ is G-invariant: given g € G and w € Hl’O(C)}C, then f(g -
w) = g - (fw) is holomorphic since f is G-invariant, and fw is holomorphic.
This shows immediately also that the map of (5.1) is G-equivariant. From
Schur Lemma, then the image of (5.1) is contained in H°(C)X. However,
f is not the zero function, so (5.1) is injective. O

Definition 5.1.4. Let X be a Riemann surface and ¢ € X. Let us define
kg == min {m € N: h°(X,mq) > 2}

the minimal non-gap of q. kg is therefore the smallest number such that X
admits a non-constant meromorphic function f with only one pole at ¢, of
order —Fkg.
Moreover, any non-constant f has order at g exactly —k,. Indeed, by defi-
nition of &y, then H°(X, (k; — 1)q) = C consists only of constant functions,
so that

—(kqg—1) > ordy(f) > —kq = ordy(f) = —kq.
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Remark 5.1.5. From Riemann-Roch theorem we have
WX, (g(X)+ 1)) = h*(X, K — (9(X) +1)q) +2 > 2.

Therefore
kg < g(X) + 1.

In other words, k; is the minimum of the complement of the set of the
Weierstrass gaps for ¢. In particular, k; = g(X)+1, if ¢ is not a Weierstrass
point, or k; < g(X) + 1, otherwise.

Let ¢ € C' be a branch point of A\. The stabilizers of the points lying
on g are cyclic subgroups of G and they are conjugated to each other. Thus
the order of the stabilizers depends only on ¢, denoted as m,.

We remind the Definition 2.0.14 of local monodromy:

Definition. Let us fix a point p € A7!(¢q). Given a generator h of
Stab(p), there exists a coordinate z in C' such that the action of h in a
neighborhood of p corresponds to z — Az, where A is one of the mg-roots
of the unity. This gives a bijection among the primitive mgy-roots of the
unity and the generators of Stab(p). We denote by local monodromy of p

2mi

the unique generator of Stab(p) acting by z — e™a 2.

Remark 5.1.6. The local monodromy of another point g - p over ¢ is the
conjugate ghg~! of h. In other words, the local monodromy of points lying
over ¢ are conjugated to each other.

Let x € Irr(G) be a character afforded by an irreducible representation
py, and denote by |K¢|X the associated subsystem of the canonical linear
system of C given by the isotypic component H9(C)X.

Lemma 5.1.1 applies to H1(C)X, so the base locus of |K¢|X is

Bs(|Kc[¥) =) txA"!(q).
q

We have the following

Lemma 5.1.7. Let us fiz a point ¢ € C/G. Let h be the local monodromy
of a point p € \=(q). There exist

27

a¥ € {j €[0,...,mqg—1]: em’ € Spec(py(h))}
and a non-negative integer 0 < ky < kg < g(C/G) + 1 such that
ty =mg —ay — 1+ kimg.

where kq is the minimal non-gap of q in the Definition 5.1.4.
The values ay and ky depends only from q and x and not by the choice of

peX(q).
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Proof. The order of h in G is mg, by definition of A.

We observe that the action on H%?(C)X of h is diagonalizable, and its spec-
trum is contained in the set of the mgy-roots of the unity. Hence the action
of h decomposes H'0(C)X as

mg—1

HY(C) = P Vi,
j=0

where V; is the eigenspace of eigenvalue &, and ¢ is the first mg-root of the
unity (V; may be zero, whenever ¢’ is not an eigenvalue of h).

Let w; € V; be an eigenvector. We determine the vanishing order of
w; at the point p. By definition of local monodromy, it there exists a local
coordinate z such that the action of h in a neighborhood of p is z — £z. We
write w; = f(2)dz locally around this neighborhood of p. We get

&1 (z)dz = h- (f(2)dz)
= (h")*(f(2)d2)
= f(eM )M d

Hence f satisfies f(£™a712) = &L f(2), forcing it to be f = zMa=I=1g(z™Ma),
for some holomorphic function g. Hence ord,(w;) is congruent to m, —j —1
modulo my.

Applying Lemma 5.1.1 to W = H?(C)X we find a form w € HY(C)X
with vanishing order tJ at each point of A\~!(g). Writing w as a w =
Z;ﬁ:"O_I wj, with w; € Vj. Since w; has different order at p, then

ty = ordy(w) = Ldj;’ér(l){ordp(cuj)}.
In other words, there exists jo € [0,...,m, — 1] such that 5 = ord,(wj,).
Since wj, is an eigenvector of eigenvalue £7°, then t§ = ord,(wj,) is

congruent to my — jo — 1 modulo my; let us say ty =m, —jo— 1+ kjomy,
for some non-negative integer kj,.

We claim that kj, < k,;. By contradiction, if k;, > ky, then we use the
definition of k, to pick up a meromorphic function f € M(C/G) = M(C)%
with only one pole at ¢ of order ord,(f) = —k,. In this case, then fw is a
holomorphic form. Indeed, by definition of f, the only poles of fw that may
occur lie on A~!(gq), but the order of fw at each g-p € A7!(q) is

ordg.,(fw) = ordg.p(w) + ordg.p(f)
=ty — kgmy
=mq — jo — 1+ (kj, — kg)mg =2 0.

Furthermore, by the Lemma 5.1.3, then fw € H“9(C)X. However, this
would contradict the definition of ¢, since ord,(fw) =ty — kym, < t3.
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To summarize, we have proved

t?; qu—jo— 1—|—kj0mq,

where jo is one of the integers such that £&0 € Spec(py(h)), and kj, < ky.

It remains to prove that these integers does not depend from the choice
of p € A71(g). Set ag(p) := jo, and ky (p) := kj,. If we repeat the proof using
another point g-p € A71(q), then we get integers aj(g-p) € [0,...,mq — 1]
and ky (g - p) < kq satisfying

ty =mq —ag(g-p) — 1+ ki(g p)mg.
Hence it holds at the same time
mg —ay(g-p) — 1+ ki(g-p)mg = tg =mq — ag(p) — 1+ ki (p)mg

SO

X(0 . o) — X
aX(p) —aX(g-p) = (kX(p) — kX(g-p)) mq = {ki(g p)_ki(p)
ag(g - p) = ag(p).

Theorem 5.1.8. (Base locus formula) The base locus of |Kc|X is

Bs(|K¢l|X) = Z (mq —ay —1+ kffmq) /\*1(q),
q

where the non-negative integers ay and ki are those defined in the Lemma
5.1.7.

Proof. 1t is sufficient to apply Lemma 5.1.7 to every point ¢ € C'/G. O
Remark 5.1.9. Under suitable assumptions it is possible to determine exactly
ay and kj.

For instance, if C/G = P!, then k, = g(C/G) + 1 = 1, for any ¢ € PL.

Hence kjy = 0, and we get

X —aX _
tq—mq g 1.

Moreover, if one of the following holds
e Y is an irreducible character of degree 1, or
e the local monodromy h is in the centre of G,

then p,(h) = % -1d is a multiple of the identity. In particular, ay €

2mi X

[0,...,mq — 1] is the only integer such that y(h) = e™s " x(1).
This is obvious when the character has degree one. When the local
monodromy is central, it is the following lemma that we take from [Cat18].
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Lemma 5.1.10. Let x be a character afforded by a irreducible representation

py: G — Aut(V). If h € G is in the centre of G, then py(h) is a multiple
of the identity. Precisely, py(h) = % -Idy.

Proof. The action of h on V diagonalizes V' as a direct sum of eigenspaces

27

where Vj is an eigenspace (possibly zero) of eigenvalue &, and € = e°® is
the first o(h)-root of the unity.

Let us fix j, and consider an eigenvector v € V;. For any g € G, then
py(g)v is an eigenvector of eigenvalue &7 for the operator p, (ghg~!), which
is equal to py(h), since h is in the centre of G. In other words, p,(g)v € V.
This proves V; is G-invariant. However, p, is irreducible, and so V = V.
This translates as py(h) = & - Idy. Finally, we compute

_ _ i g _ i i _ x(h)
x(h) = Tr(py(h)) = & dim(V) = & x(1) = & = Ok

O]

We deduce then the following immediate consequence from Theorem
5.1.8 and Remark 5.1.9:

Corollary 5.1.11. Assume C/G = P!, and x is an irreducible character of
degree 1. Then

Bs(|[Kc|¥) = (mq —af = 1) A" (q),

inLQTe ay € 10,...mq — 1] is the only non-negative integer such that x(h) =
2mi X
ema ™ with h local monodromy of a point p over q.

5.2 The canonical system of a product-quotient
surface

Let G be a finite group acting on a Riemann surface C;, i = 1,2. According
to the previous section, then G induces the canonical representation on
H'Y9(C;), afforded by the canonical character x&,,,.

Let S be the product-quotient surface of quotient model X := (Cy x C3) /G.
This section studies the canonical system of S.
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Theorem 5.2.1. Every G-invariant global holomorphic 2-form of C1 x Cy
extends uniquely to a global holomorphic 2-form on the minimal resolution
of the singularities p: S — X of X. It holds

H?0(S) = H?>0(Cy x )% = @)(Hm«mX®HmamaG.(am
x€Irr(G)

Furthermore,

pg(S) = Z <Xian7X> ) <Xzan7Y>'
x€Irr(G)

Proof. Denote by X° the smooth locus of X, i.e. the locus of the image
of that points of Cy x Cs with trivial stabilizer. Each global holomorphic
2-form of X° extends uniquely to a global holomorphic 2-form of C; x Cj,
via the pullback map \jy: H?9(X°) — H?9(Cy x Cy), resulting a monomor-
phism onto the invariant subspace H2°(C; x C3)¢. On the other side, the
minimal resolution of the singularities p: S — X is an isomorphism on X°,
hence (p~1)" : H*9(S) — H?(X°) is a monomorphism. Furthermore, each
global holomorphic 2-form on the smooth locus X° of X extends uniquely
to a global holomorphic 2-form on S, by Freitag’s theorem [Fre71, Satz 1],
SO (pfl)* is an epimorphism too.

Thus H?Y(S) is sent isomorphically via A}, o (p~1)* onto the invariant sub-
space H?9(Cy x C)¢ C H?9(Cy x Cy). Finally, by applying Kiinneth
formula and writing H*?(C;) as the direct sum of isotypic components, we
get

H2,O(Cl « CQ)G _ @ (Hl,O(Cl)X ® Hl,O(cQ)T])G .
x;n€lrr(Q)
Formula (5.2) follows just by applying Schur lemma: the dimension of any

piece of the sum is (X X) * (Xoan: 1) - (X1, 1). However (xn,1) = (x,7),
which is equal to 1 only for n =, and 0 otherwise. ]

Remark 5.2.2. As already discussed at (4.2), then one can say in general
that
H™(8) = H"(Cy x Cy)©

by Freitag’s theorem [Fre71, Satz 1]. Hence, another immediate consequence
firstly observed by Serrano in [Ser96, Prop. 2.2] is a formula for the irregu-
larity of S:

q(S) = 9(C1/G) + g(Ca/G).
In particular, S is regular if and only if C;/G = P!,

Let us remind the following classical lemma of representation theory:

Lemma 5.2.3. Let us consider an irreducible representation ¢, afforded by
a character x, of degree n := x(1). Consider a basis vi,...,v, of V and its
dual basis e1,...,e, of V*. Then

VeV =(u@e+ -+ v, @ en).
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Proof. The dimension of (V ® V*)¢ is

dim((V @ V)% = (xx. 1) = (x.x) = L.

Thus it is sufficient to prove v1 ® e1 + - -+ + v, ® e, is an invariant vector.

Write g € G as a matrix in the fixed basis on V', g = (gi;), and in the dual

basis on V*, g = (h;j). However, by definition of the action of G' induced
t

on V* g = (hiy) = <(gij)_1) . Then the statement follows by a direct

computation

B A

=> (Z gikhjk> “v; @ €.
ij \ k

The sum >, githji is the (i, j)-entry of the product matrix between (g;;)
and (hi;)t = (g;;)!, which is equal to 1, if i = j, and 0 otherwise. O

We use the previous lemma to say that:

Remark 5.2.4. It is possible to describe a basis of the invariant subspace
(HYO(Cy )X @ HYO(Cy) XS

Let us consider the irreducible representation ¢, : G — GL(V) of character
x. Let n := x(1) be the degree of ¢,. Then HYO(Cy)X @ H'O(Cy)X is
the direct sum of certain number of copies of V ® V* (the exact number
is (Xt X) - (X%, X)). Consequently its invariant subspace (H?(C1)X ®
H0(Cy)X)Y is a direct sum of the same number of copies of the invariant
subspace (V ® V*), which is always one dimensional:

dim (Ve V")) = (xx,1) = (x.x) = L.

Let us fix a basis {w1,...,w,} of V and the (dual) basis {n1,...,n,} on V*.
Hence, denote by {wf, e ,wﬁ} the corresponding basis of the k-th copy of V'
on HYO(C)X, k=1,...,{xtn, X) [resp. by {n},...,n}} the corresponding
basis of the I-th copy of V* on HY(Co)X, 1 =1,...,(x%,,X)]. Lemma 5.2.3
applies for any copy of (V ® V*)%, so that

(HYO(C) @ HO(C)N) =P (whenl +- +wien).  (5.3)
k,l

Definition 5.2.5. We denote by |K¢,xc,|® the linear subsystem of the
canonical system of C7 x Cy spanned by p, invariant 2-forms of C7 x Cy
defining ® .
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We give a theoretical description of the canonical map ® g of S. From
Theorem 5.2.1, the (rational) map ®x, o Aj2 is induced by the linear sub-
system | K¢, xc,|©. Therefore such map is not defined on the base locus of
| K¢y %o, |©. The situation is the following:

P91—1 « Pg2—1 Segre —— Pg192—1,

Let us fix a basis of H'9(C;) and H'(Cy). Then P o Ai2 is the com-
position of the product of the canonical maps of Cy and Cy with the Segre
embedding in P9192~1 together with the projection map proj. This latter
map sends a basis of 2-forms of C; x Cy to a basis of invariant 2-forms defin-
ing ®p.

We can use Remark 5.2.4 to give an explicit description of proj, which is
defined in coordinates as follows:

Let us fix coordinates me} on P919271 with 1 < 4,5 < x(1),and 1 < k <

(Xflzaer)) 1<1< (X?xm,@. Then

proj ((Xalf s xi g k1)) =

(vafl 4o+ Xl x € Irr(G),n = x(1),k,1).

5.2.1 Base locus of the canonical system of a
product-quotient surface

Given an irreducible character x € Irr(G), we have the following series of
inclusions

(H™(Cr)x @ H'(Co)0) T € HMO(Cr)¥ @ HO(Co)¥ € HX(Cy x C).

Let us define the associated subsystems of |K¢, x| given by these sub-
spaces.

Definition 5.2.6. We denote by | K¢, [X®|K¢, |[¥ and by (|Kc, |[¥ @ \KCQ\Y)G
the associated subsystems of |K¢,xc,| given by HYO(C1)X @ H0(C5)X and

(HY(Cr)x @ HY(Co)X) “ respectively.

Theorem 5.2.1 permits us to describe the base locus of |K¢,xc,| in
terms of the base locus of its pieces (|K¢, |[X ® |K¢, ]Y)G, x € Irr(G). Pre-
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cisely, we have

G
Bs(|Kc,yxc,|%) = N Bs((|Ke, X ® | Key[¥)™). (5.4)
(X an )70, (XZan X)7#0

Notation: Let us denote by
Bfl’ert ={q} x C2/G, and Bl .= C1 /G x {l},

where ¢ € C1/G and | € C2/G. Instead, Ry and RP°r denote the reduced
inverse images on C7 x Cy of Bge’”t and BT

R;}ert — ()\o)\12)* ({q} X CQ/G) , R?or = ()\OAIQ)* (CI/G X {l}) :

1 L
My my
Remark 5.2.7. With this notation, then the branch locus of A o A12: Cf %
CQ — Cl/G X CQ/G is the grid

Byt = {q} x Ca/G, and Bl =1 /G x {I}

with ¢ € Crit(A1) and | € Crit(A2).
Base Locus formula theorem 5.1.8 gives a formula for the base locus of
|KC'1‘X ® ’KC2|X'

Theorem 5.2.8. The (schematic) base locus of the linear subsystem |Kc, |
®|Ke,|X of |Keoyxcy,| is pure in codimension 1 and is amount to

Bs(|[Koy[¥© [Keo[) = Y ¥R+ Y R (5.5)
qeCrit(A\1) leCrit(A2)

where ty and tlY are the non-negative integers computed in Lemma 5.1.7.

Corollary 5.2.9. Let x be a character of degree 1. Then

(HY(C)X @ HM(C2)9) = HM(Cr)¥ @ HY(C2)X

and the base locus of its associated linear subsystem (|Kc,|X ® ]KCQW)G =

| Ko, X @ |Key|X is given by the formula (5.5) of Theorem 5.2.8.

Assume furthermore that C;/G = P!, for i = 1,2. Then ty and tlY
of (5.5) are the unique non-negative integers with 0 < ty < mgy — 1 and
0< tlY < my — 1 satisfying

mg—ty—1) ()

27
x(h) = e and  x(g) =e™ :

where h is the local monodromy of a point over q, and g is the local mon-

odromy of a point over [.

Proof. The first sentence is straightforward, since every v@w € H"°(C1)X®
H9(Cy)X is G-invariant

g-(wew) = (x(g)v) @ X(@w) = x(@lvew=vew.
The rest of the thesis follows from Remark 5.1.9. O
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5.3 The degree of the canonical map

We are going to establish when ® g, is composed with a pencil and, if the
answer is negative, to compute its degree.

Instead to work on .S it is convenient to work on C7 x C5. Therefore, let
us consider

The (a priori rational) map ®gg o Aj2 is induced by the linear subsystem
|Koyxcy|? of | Koy xc,| generated by p, invariant 2-forms defining ® .
We resolve the indeterminacy of @Kg o = ® g, 0 A2 by a sequence of
1XC2

blowups, as explained in the textbook [Bea96, Theorem I1.7:

Cy x Cp —=Cy x Cy

|
(e
k | KC xcy
M Y

Pro—1,

Here the morphism & i s induced by the base-point free linear system ]]\//\I |
obtained as follow: let [M| be the mobile part of K¢, xc,|“

We blow up the base-points of |M|, take the pullback of |M| and remove
the fixed part of this new linear system. We repeat the procedure, until we
obtain a base-point free linear system |M]|.

Lemma 5.3.1. The map Pk, is not composed with a pencil if and only if
M? is positive.

Proof. The map @ is composed with a pencil if and only if <I>]\A/[ is com-
posed with a pencil. Such map is composed with a pencil, so its image X
is a curve, if and only if we are able to pick-up two general hyperplanes H;
and Hy of PPo~! such that H?, = H, - H - £ = 0. However, M = & (H),

le
hence H‘Qc is zero if and only if M? is equal to zero. O

Let us suppose M2 > 0, so that @ is not composed with a pencil, and
its image has dimension 2. In this case, then ® I is a finite morphism, and

M? = deg(® ) deg(3) = deg(Px) deg(3)|G.
Thus
1 —

deg(Pry) = WM? (5.6)
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The above formula may be hard to handle, since both deg(X) and M? are
not easy to determine. However, we are interested to study the case pg
equal to three. In this case, then ® % is onto, so the image is P2, a surface
of degree 1. Hence deg(X) = 1 and we obtain

1 ~
deg(Ppy) = @M? (5.7)

Let us write M2 as M2 = M2 — (M2 — M?). M? is the self-intersection of
the mobile part of | K¢, xc,|®. Instead, M? — M? is the sum of the correction
terms arising from each isolated base-point of |M]|.

M? is computable once we know the fixed part of the linear subsystem
|Kcyxc,|@ (even without the assumption p, equal to three).

Lemma 5.3.2. Suppose that any irreducible character x such that (x.,,,x)
£ 0 and (x?,,,X) # 0 has degree 1. Then the fived part of the linear system

| Koyxcy|© s

Fix (|Kco, <o &) = < min tX> Rverty
(’ L % Cs | ) Z Xt Ohan X)70,0¢20n X)#0 q
geCrit(A\1)

Z ( min tlx> Rper.
X%an7Y>;&0

leCritng) X (XLan ) 70,(
(5.8)

Proof. The fixed part of | K¢y <, |& is the common divisor of the fixed parts

of that pieces (|K o X ® |Ke, |Y)G that are non-empty, for y irreducible char-
acter. They are non-empty whenever (xl,,,x) # 0 and (x?%,,,X) # 0. By
assumption, then y is of degree 1. Thus Corollary 5.2.9 applies, so that the
the fixed part of (|K¢, X ® |Ke, |Y)G is amount to

SR RE > iR

4€CTit(\r) leCrit(\g)
The common divisor of these fixed parts is the right member of 5.8. O
By definition of M, then
M = K¢y xo, — Fia(|Keyxe,|?).

Suppose to stay under the hypothesis of Lemma 5.3.2. Thus Fiz(|Kc,xc,|®)
is a union of fibres. To compute M? is then sufficient to know the intersec-
tions

2
2
KCl ¥ Ca" R;}ert7 KC'l «Ch _lehor7 (Rgert) 7 (thor> 7 Rzert . thor .
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We compute them.

Rg”t can be written as sum of |G|/m, components {g-p} x Co, with p point
over ¢, and g € G. {g - p} x Cy has self-intersection zero (since two points
are always homologous on a connected variety, and then the fibres of fi oA
are always numerically equivalent). Thus we can use the genus formula to
get

Keyxe, - ({9 p} x C2) = 2g(Ca) — 2 — ({g - p} x C2)* = 2g(Ch) — 2.

The same reasoning works for an horizontal divisor R;“”’. Thus, we have got

ver G or G
Koves B =W ogey ), Koo, Bl =19 0g(01) —2).
Mg my
Analogously,
ert\2 _ hor 2 _ vert hor __ |G‘2
(RZI) ) = (Rl ) = 0, and Rq . Rl T = m

It remains to determine M2 — M?2.

5.4 The correction term to the self-intersection of
a 2-dimensional linear system with only iso-
lated base points

As remarked in the previous Section 5.3, M? — M? is the sum of the correc-
tion terms arising from each isolated base-point of |M|, the mobile part of
the linear subsystem |K¢,xc,|

The contribution to the correction term of any isolated base-point may
be easily computed under the assumption that any irreducible character y
such that (xl,,,x) # 0 and (x2,,,X) # 0 has degree 1.

Let us fix a base-point (p1,p2) € C1 x Cq of the mobile part |M|. The

point p; is over ¢ € C1/G and po is over | € Cy/G. Let us fix an irreducible
character Y. We can always choose a general basis of H?(C1)X such that
each one-form of the basis has the minimum vanishing order t; at p;, which
is the natural number computed in Lemma 5.1.7.
Similarly, we can choose a general basis of H'?(C5)X such that each one-form
of the basis has minimum vanishing order tlY at po. The choice of this pair
of bases gives via tensor product a natural basis of H>?(C1)X ® H*0(Cy)X,
which is a G-invariant subspace from the assumption y is of degree one.
This permits us to conclude that the divisors spanning the linear subsystem
| K¢y xc,|® can be written in a neighbourhood of (p1, p2) as

té‘R;}ert + t?war, X such that <X(1:an, X) # 0, (Xzan,@ # 0.
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Finally, it is sufficient to remove the fixed part of |K¢,xc,|¢ computed in
Lemma 5.3.2 to get how the divisors spanning |M| are written in a neigh-
bourhood of (p1,p2). So, the linear system || is generated by p, divisors
locally near (p1,p2) of the form

a Ry + bR, ap, R 4 by R

Since we assumed that (pj,p2) is a base-point and |M| has not fixed com-
ponents, then without loss of generality a; = by = 0.

Note that Rgert and R{wr are smooth and intersect transversally at (p1,p2).
In Theorem 5.4.3 we give a general formula to compute directly the contri-
bution of (p1,p2) to the correction term M? — M? whenever pg is equal to
three.

The slightly more general setting is the following:
Let | M| be a (not necessarily complete) two-dimensional linear system on a
surface S spanned by Dj, Do, and D3. Assume that |M| has only isolated
base-points, smooth for S, and that in a neighborhood of a basepoint p we
can write the divisors D; as

Di=aH, Dy=0bK and Dj3=cH+dK.

Here H and K are reduced, smooth, and intersect transversally at p and
a,b,c,d are non-negative integers, b < a.

Let |M] be the linear system obtained as follows: we blow-up the base-
point p, take the pullback of the mobile part of |[M| and remove the fixed
part of this new linear system. If an infinitely near point of p is a base-point
for this linear system, then repeat the procedure, until we obtain a (not
necessarily complete) linear system ]M | such that no infinitely near point of
p is a base point of |M|. The linear system |M]| is called strict transform of
|M]| at p.

Lemma 5.4.1. Assume that bc + ad > ab. Then M2 = M? — ab.

Proof. We prove the lemma by induction on (a,b), with b < a. Here we
are considering the lexicographic order < defined on the lower half plane
AZ :={(a,b): a > b} C N x N as follows:

(a’,0') < (a,b) if and only if @' <a or @’ =a and V <b.

In this case, AZ admits the well-ordering principle and so it holds the math-
ematical induction.

Suppose that (a,b) = 0. Then |M]| is base-point free and so M = M? =
M? — ab. Now suppose that the statement is true for (a/,b') < (a,b). We
aim to prove it for (a,b). We blow up the base-point p, take the pullback of
the divisors D;, and remove the fixed part, which is the exceptional divisor
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bE of the blowup. In fact the pullback of D3 contains ¢ + d times E and
c+d > b, thanks to b < a and to the assumption bc + ad > ab:

a(c+d) > be+ ad > ab, SO c+d>b.
Restricted to the preimage of our neighborhood of p, these divisors are:
aH+(a—bE, bK and cH+dK+(c+d—Db)E.

Here, H and K are the strict transforms of H and K. Let [M]| be the
linear system generated by these three divisors, then M? = M? -2 If
a=borb=0, then |M| is base-point free and we are done. Otherwise, on
the preimage, the linear system |]\//T | has precisely one new base-point: the
intersection point of K and E. Locally near this point the three divisors
spanning |M| are:

(a—b)E, bK and dK+(c+d—Db)E.

We need to distinguish two cases, when (a—b) < b or when (a—b) > b. In
the first case (a —b) < b we get (b,a—b) < (a,b). We define new coefficients
a:=bV:=a-b,c:=dand d :=c+d—b. Otherwise if (a —b) > b,
then (a —b,b) < (a,b), and we define @’ :=a—b, V' :==b, ¢ :==c+d—b, and
d := d. For both cases, the new coefficients fulfill the inductive hypothesis,
because:

Thanks to bc + ad > ab, we have

b +d'd = (a—b)d+blc+d—b)

= ad + be — b?
> ab—b* = (a—b)b
=db.

By induction, the self-intersection of the new linear system M is equal to
M? = (M? = b?) — b(a — b) = M? — ab.
O

Lemma 5.4.2. Assume that bc + ad < ab. Then M? = M? — (ad + bc).

Proof. We prove the lemma by induction, once more on (a,b), with b < a.
Thus we consider the lexicographic order < on AZ, as we have done in the
proof of the Lemma, 5.4.1.

Suppose that (a,b) = 0. Then |M]| is base-point free and so M = M2 =
M? — (0d + 0c). Now suppose that the statement is true for (a’,d’) <
(a,b). Our aim is to prove it for (a,b). We blow up the base-point p, take
the pullback of the divisors D;, and remove the fixed part, which is the
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exceptional divisor (¢ 4+ d)E of the blowup, if ¢ + d < b, or the divisor bE,
otherwise. Hence we need to distinguish two cases.

Let us suppose first that ¢ +d < b (< a). Restricted to the preimage of
our neighborhood of p, the divisors are

aH+ (a—(c+d)E, bK+ (- (c+d)E and cH+dK.

Here, H and K are the strict transforms of H and K. Let \M\ | be the linear
system generated by these three divisors, then M? = M? — (c+d)?. On
the preimage, the linear system |M | has precisely two new base-points: the
intersection points of H and K with E. Locally near these points the three
divisors spanning ]M | are respectively

—~~ —~

aH + (a— (c+4d))E, (b—(c+d)E and cH,

and
(a—(c+d)E, bK+(b-(c+d)E and dK.

We claim that for both points the coefficients of the three divisors satisfy
the assumption of the Lemma 5.4.1.

Let us verify it for the first point H N E: if ¢ > (b — (¢ + d)), then define
a:=c, b :=b—(c+d), d :=a, and d := a — (¢c+ d), otherwise define
a:=b—(c+d),V:=c :=a—(c+d), and d := a. For both the cases
d >V sothat V' +d'd > a'd > d'V.

Regarding the second point K N E, we have: if d > (a — (c4d)), then define
a:=d, bV :=a—(c+d),d :=0b, and d := b — (c+ d), otherwise define
d:=a—(c+d),b:=d ¢ :=b—(c+d),d :=b. In the first case ¢ > o/,
while in the second case d’ > /. Therefore we get b'c’ + a’d’ > a’V’ for both
cases.

Thus the Lemma 5.4.1 applies for both points and the self-intersection of
the new linear system M at the final step is amount to

M= (M2~ (c 4 d)?) — (b~ (c+d))e — (a— (c+d)d =M~ (ad + be).

It remains to discuss the case ¢+ d > b.

As we have already done before, we blow up the base-point p, take the
pullback of the divisors D;, and remove the fixed part, which this time is
the exceptional divisor bE of the blowup. Restricted to the preimage of our
neighborhood of p, these divisors are:

aH+(a—bE, bK and cH+dK+(c+d—b)E
Here M2 = M2 — b2 If b= 0 or a = b, then |M]| is base-point free. In the

first case b = 0, we get ad = bc + ad < ab = 0, so M2 =M2—p=M?=
M? — (ad + be), and we are done. In the second case a = b, we get, thanks
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to the assumptions ad + bc < ab and b < ¢ + d, that
a(c+d) = ad+ be
< ab , SO c+d=b=a.
< a(c+d)

Also in this case we are done, because M2 = M2 — b% = M2 — (ad + bc).

It remains to consider when a — b = 0 or b = 0 does not hold. In this
case, on the preimage, the linear system |]T/[\ | would have precisely one new
base-point: the intersection point of K and E. Locally near this point the
three divisors spanning |M\ | are:

(a—b)E, bK and  dK+(c+d—Db)E.

We need to distinguish two cases, when (a — b) < b or when (a —b) > b. In
the first case (a —b) < b we get (b,a—0b) < (a,b). We define new coefficients
a:=bV:=a-b,:=dand d :=c+d—b. Otherwise if (a —b) > b,
then (a —b,b) < (a,b), and we define @’ :==a—b,b :=b, ¢ :=c+d—0b, and
d' := d. For both cases, the new coefficients fulfill the inductive hypothesis,
because:

Thanks to bc + ad < ab, we have

' +dd =(a—b)d+blc+d—1D)

= ad + bc — b
<ab—0b*= (a—b)b
=ad'b.

By induction, the self-intersection of the new linear system M is equal to
M? = (M? - b?) — (d'd + V)
= M? — b — (ad + bc — b?)
= M? — (ad + be).

By applying Lemma 5.4.1 and Lemma 5.4.2 it follows directly

Theorem 5.4.3 (Correction Term Formula). Let M| be a two-dimensional
linear system on a surface S spanned by D1, Dy, and Ds. Assume that |M]|
has only isolated base-points, smooth for S, and that in a neighborhood of a
basepoint p we can write the divisors D; as

Di=aH, Dy=bK and Ds=cH+dK.

Here H and K are reduced, smooth, and intersect transversally at p and
a,b, c,d are non-negative integers, b < a. Let |M| be the strict transform of
|M| along p. Then

M? = M? — min {ab, ad + bc} .



Chapter 6

Examples with a high degree
of the canonical map

In this Chapter, we are going to show some examples of families of product-
quotient surfaces with a high degree of the canonical map. Some of them are
picked up from the classification of product-quotient surfaces with p, = 3,
q =0 and K2 = 32 attained in Chapter 4 (see Theorem 4.9.1).

Some of the presented examples realize a degree of the canonical map not
yet discovered in the literature. These degrees are d = 10,11, 13,14, 15, and
18.

Any example is described without using the language of product-quotient
surfaces. In this way, the Chapter can be read separately from the rest of
the thesis and the reader does not necessarily need to know the theory of
product-quotient surfaces. Therefore, we simply decided to present every
family from the equations defining the G-coverings (C1, A1) and (Ca, A2),
and fixing a suitable action of the group G on both of them.

However, we also describe them as product-quotient surfaces presenting a
corresponding pair of spherical generators. This allows to compute the de-
gree of the canonical map by using the results in Chapter 5.

6.1 Examples with degree d =5,7,10,11, and 14

This is a joint work [FG23] together with Dr. C. Gleissner, whom I had the
pleasure to know during my visit to the Universitdt Bayreuth, Germany, as
a guest Ph.D. student.

Let F' be the Fermat septic curve

F={zf+az] +2] =0} c P

In this section we construct a series of surfaces S, as quotients of a product
of two copies of F', modulo a suitable diagonal action of the group Z%. For
any surface S, we determine the canonical map ® g, and compute its degree.
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They are the seven product-quotient surfaces with group G = Z% of
Theorem 4.9.1.
On the first copy of F' we define the action of Z% as

27

QS: Z% - Aut(F)7 (CL,b) = [(‘TO S Xxy IEQ) = <‘T0 : C’(lel : C?xQ)L <7 =eT.
This action has 21 points with non trivial stabilizer. They form three orbits
of length 7. A representative of each orbit and a generator of the stabilizer
is given by:

point ‘ (=1:0:¢r) ‘ (=1:¢7:0) ‘ (0:—1:¢)
generator ‘ (1,0) ‘ (0,1) ‘ (6,6)

Note that the automorphisms ¢(a,b) are precisely the deck transformations
of the cover

A F — Pl (zo: @1 : x2) > (2] : 2D).

The cover has degree 49 and is branched along (0: 1), (1:0) and (—1:1).
In particular F'/ Z% ~ P! and 7 is the quotient map.

Note that in the Example 2.1.12 we have shown (F,\) is the unique
Z%—covering of P! up to topological equivalence.
On the second copy of F', for which we use the homogenous variables y =
(Yo : 1 : y2), the group acts by ¢po A, where A € Aut(Z2) is an automorphism
depending on the specific example. The explicit choices for A are stated
in the tables below. To write the canonical systems of the corresponding
unmixed quotients

S:=(FxF)/72 modulo the diagonal actions d X (poA),

we need to fix a suitable basis of the space H°(F, L) of global holomorphic
1-forms on F'. In affine coordinates such a basis is given by

; , T x
{wig = " Odu | j+k < 4}, where wi="1 and v:i=22.
Lo o

Note that:
I) The action of Z2 on H°(F, QL) under pullback with ¢ is

d(a,b)* (wyp) = (LUTDTIE=0

Note that this is not the canonical representation defined in Section 5.2
but its composition with the map g — ¢!, which is an automorphism
of G since G is abelian.

I1) By Theorem 5.2.1, the space of canonical sections HY(Kg) is isomor-
phic to the invariant subspace

HO(Ks) = (HO(Qh) @ H(Qh) ™,
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where the action on the tensor product is diagonal, i.e. (a,b) € Z2
acts via

6(a,b)* @ B(A(a,b))".
The observations I) and II) imply:

Lemma 6.1.1. A basis of H*(Kg) is given by the Z2-invariant tensors
Wikim = Wik @ Wi A tensor wjkm is invariant if and only if for all (a,b) €
Z% it holds:

/
a(j+1)+b(k—6)+a'(I+1)+b (m—6) = 0mod 7, where <Z,> =A <Z> .

We can now state and prove our main result:

Theorem 6.1.2. For all A € Aut(Z2) in the Table 6.1, the diagonal action
¢ % (¢po A) of Z2 on the product of two Fermat septics is free. The quotient
is a reqular smooth projective surface S of general type with p, = 3. A basis
of H(Kg), the canonical map ® i, in projective coordinates and its degree
are stated in the Table 6.1.

The image of the canonical map of the last surface is the conic {23 = zgz2} C
P2. The surfaces no. 3, 4, 5, and 6 of the table are the first known examples
of surfaces with deg(®k,) = 10, 11, and 14.

The degrees 5 and 7 of the first and second surfaces have also been
realized by a different construction [MLP23, Example 4.5].

Remark 6.1.3. The surfaces S in the Table 6.1 are examples of unmixed
surfaces isogenous to a product of curves. More precisely, they are Beauville
surfaces, which are by definition the rigid surfaces isogenous to a product.
Rigidity means that they do not admit nontrivial deformations. This is
equivalent to the fact that the quotient curves C;/G are isomorphic to P!
and the quotient maps C; — C;/G ~ P! are branched in three points.

Using Theorem 4.5.8 and Corollary 4.5.10 we find that there are exactly
seven families of product-quotient surfaces isogenous to a product of the
form (F x F) /Z? given by the seven classes of the matrices in table 6.1.

Using the MAGMA [BCP97] algorithm from the paper [GPR22] one can
classify all regular unmixed surfaces isogenous to a product of curves with
pg = 3 and abelian group G. Among them are the unmixed Beauville sur-
faces with p, = 3 and abelian group. The latter form seven biholomorphism
classes, which are exactly the surfaces in the table of our theorem.
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Indeed, as remarked above, the non-trivial

proof of Theorem 6.1.2. First we show that the seven diagonal actions ¢ x
stabilizers of the points on the first copy of F' are generated by (1,0), (0,1)
and (6, 6). However, none of these elements have a fixed point on the second

(poA) on F x F are free.
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copy of F' under the twisted actions ¢o A. Thus, the actions are free and the
quotient surfaces S are smooth, projective and of general type. The latter
holds because the genus of the Fermat septic is g(F') = 15 > 2. Moreover,
they are regular surfaces by the Corollary 4.4.6, since F'//Z2 is biholomorphic
to P!. The geometric genus of each S is therefore equal to

(g(F) —1) 147

— —1=3.

Using Lemma 6.1.1, we compute a basis of H’(Kg) for each surface S. Re-
placing the affine variables by :—é and % and multiplying by x%yé we obtain
the bi-quartics that define the canonical map.

It remains to determine the degree of ®g, for each surface S. Follow-
ing the strategy explained in Section 5.3, we resolve the indeterminacy of

<I>|K 2 = ® i, o0 A2 by a sequence of blowups, where A\j2: F' x F' — §'is
FXF

the quotient map, and |Kpyp|%* is the subsystem of |Kpy r| generated by
three invariant 2-forms defining ® . Hence we have

FxF——=FxF

I
\ ‘<I> Z%
K
P~ ¥ FxF
M

P2,

Here the morphism @+~ is induced by the base-point free linear system |J\7 |

obtained as follow: let | M| be the mobile part of | Ky p|%7.

We blow up the base-points of |M|, take the pullback of |M| and remove
the fixed part of this new linear system. We repeat the procedure, until we
obtain a base-point free linear system |M]|.

The self-intersection M? is positive if and only if ® 17 s not composed with
a pencil, by Lemma 5.3.1. In this case (IDM\ is onto and it holds:

— 1 ~
den(c,)22] = deg(® ) = II? = deg(ye,) = 0%
For the computation of the resolution, it is convenient to write the divisors of

the bi-quartics defining ® 22 as linear combinations of the reduced curves
FXF

F; == {z; = 0} and G := {yr = 0} on F' x F. Note that F; and G},
intersect transversally in |Z%| = 49 points and (F}, Fy) = (G}, Gy) = 0, for
all j, k. Thus, these curves can be illustrated as a grid of 21 vertical and 21
horizontal lines.

Consider the third surface in the table. Here, the divisors of the three bi-
quartics spanning the canonical system |Kpx F|Z$ are:

Fi1+3F,+4G,, 21 +2F5+3Go+Gh and Fy+3+Go+G1+2Gs.
(6.1)
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The fixed part of |Kpxp|% is Fy and the mobile part |M| has precisely
4 x 49 = 196 base-points given by the intersection among:

NGy, FonNGy, FoNGp, and FoNGo.

In this case observe that M? = (3F, +4G2)? = 24 x 49. We can perform the
computation of the difference M? — M2 by applying the Correction Term
Formula 5.4.3 recursively to each base-point of |M|.

For simplicity, let us call by p;; a point belonging to the intersection F; NG).
Then

-Around pis, the divisors are given by 4Gs, Fy, and 2F) + 2G2. In the
notation of the Theorem 5.4.3, a = 4, b =1 and ¢ = d = 2. This implies
ad + bc = 10 > 4 = ab. The correction term is ab = 4;

-Around pog, the divisors are 3Fy, 2F5 + 3Gy and Gg. In this case a = 3,b =
1,¢=2,d = 3 and the correction term is ab = 3;

-Around ps1, we have 3F,, 2F, + (G1 and (1, which yields 3 as correction
term;

-Around pog, we have 3F, + 4G9, 2F5 and 2G5, thus the correction term is
4.

The degree of the canonical map is therefore given by

1

49
1

:E((3F2+4G2)2—4><49—3><49—3><49—4><49):10.

deg(® ) <M2 (M2 JW))

The degree of the canonical map of all other surfaces can be computed in
the same way. O
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Remark 6.1.4. The degrees of the canonical maps of the surfaces of Theorem
6.1.2 may be computed from the associated pair of spherical systems of
generators. The strategy is that developed in Chapter 5

Consider the third surface S in Table 6.1. It is described by the following
pair of spherical systems of generators:

[(1,0),(0,1),(6,6)] and [(5,6),(3,6),(6,2)].

Let €1: Z2 — C* be the character Z2 defined by sending (1,0) to the first
7-root of the unity (7, and (0,1) to 1. Similarly, ez sends (1,0) to 1 and
(0,1) to (7. The group of characters of Z2 is generated by €; and es.

By applying Chevalley-Weil formula [Gle16, Thm. 1.3.3], then

a+ B+ [6(a+ )7
7
[Ba+ 68]7 + [Ba + 68]7 + [6a + 20]7
- )

<Xcan7 6?6§> -1+

<Xcan7 €?€§> -1+

where x.,, is the canonical character of the first copy of F, and x?,,, that

of the second copy.

The pairs (a, 3) for which ef‘e’g occurs on X, and e?e’g = % 7 h

occurs on x2,, are

(a; 8) € {(3,6),(4,4),(5,3)}.

2,0 1,0 1,0 z3
From Theorem 5.2.1 we have H*%(S) = (H*(F) @ H"(F))"" decomposes
into three pieces of dimension one:

HLO(F)E 62 ® Hl O(F)6162 HLO(F)E 62 ® Hl O(F)€162

HLO(F)E‘?é% ® Hl O(F)elez

Theorem 5.2.8 determines which is respectively a generator of the associated
sublinear system given by each of these pieces:

vert vert hor hor hor
3Ry + RZhyy + Ry + 2110 + B2,
ver vert hor hor
R?Sﬁﬁ + 33?16?5 + 43?175)'
Thus, the above three divisors are spanning the linear system |Kpy F|Z$

Notice that what we have obtained agrees with (6.1) in the proof of the
Theorem 6.1.2. Indeed, we observe that

Fo=R%y,  R=ERgh,  B= R,
Go=R(%y,  Ci=Rgy,  CG2= Ry

Finally, it is sufficient to follow the rest of the proof of Theorem 6.1.2 starting
from (6.1) to perform the degree of the canonical map.
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6.2 Examples with degree 12,13,15,16, and 18

This work can be found in [Fal23]. In this section we construct a series of
surfaces S, as quotients of a product of the two curves C7 and (5, modulo
a suitable diagonal action of the group S3 x Z3. For any surface S, we
determine the canonical map @k, and compute its degree.

These surfaces have p, = 3 and Kg = 24, so they are not in the list of
Theorem 4.9.1. We have found them however by using the script of Section
4.8 for (K2, x) = (24,4).

Notation: Let us denote by o and 7 a rotation (3-cycle) and a reflec-
tion (transposition) of the group Ss respectively. Consider also the three
irreducible characters of S3, so the trivial character 1, the character sgn
computing the sign of a permutation, and the only 2-dimensional irreducible
character p := % (Xreg — sgn — 1), where X;4 is the character of the regular
representation of Ss.

Let us fix a basis e, es of Z% and consider the dual characters €1, €5 of €1
and e, i.e. the characters defined by

ei(ael + beg) = <§61i+b62i, (3:=e3

where ¢;; is the Kronecker delta.

We consider the projective space P? with homogeneous coordinates zg,
...,x3 and the weighted projective space P3(1,1,1,2) with homogeneous
coordinates yg,...,y3. Here y3 is the variable of weight 2. We take the
curves C7 C P? and Cy C P3(1,1,1,2) as follows

3_.3_ 3 3_ .3 .3
01:{372 O ’ Oy {?JQ Yo+ i A 11

vy =+ o} vi = yo + 97 — 2257

Both curves are smooth, in fact this is the reason why we assume A # —1,1
in the definition of Cs.
On the first curve C; we consider the action of S5 x Z% given by

¢1: Sy x Z5 — Aut(Ch), (o7, (a,b)) —
(w0 : w1 @y s as) = (G ey = (—1) G g - G )
We leave to the reader to checking that this defines an action.

Note that the automorphisms ¢1(c?77, (a, b)) are precisely the deck trans-
formations of the cover
1 % ]P’l,

(vo @1 @2t a3) = (20 : 71) = (27} (af +28)/2). (6.2)

A O 2 p
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In particular Cy1/ (S x Z3) ~ P! and )\; is the quotient map.

We point out that the intermediate quotient P! 51 pl s the unique
Ss-covering of P! ramified over three points described in the Example 2.1.13.
Instead, the curve C; is the unique S3 x Z3-covering of P! described in the
Example 2.1.14, for p = 3.

The cover A; is branched along p; := (1 : 1), po := (0 : 1) and p3 :=
(=1 : 1), corresponding to the three orbits of the points with non trivial
stabilizer, of respective length 9,18 and 9. A representative of each orbit
and a generator of the stabilizer is given by:

b1 D2 &
representative | (1:1:0: v/2) (1:0:1:1) (1:—C3:v2:0)
generator | g1 1= (7, (1,0)) | g21= (0% (2.2)) | g5 1= (o7, (0, 1))

On the second curve C5 the action ¢4 is defined as

po: Sy x Z5 — Aut(Ca), (o'77,(a,b)) —

(Yo : 1 w2 ys) = (Chygyy 1wy 2 G520 %0 C§a+2b+iy3)] :

As in the previous case, we leave to the reader to checking that this defines a
group action and note that the automorphisms ¢o (o7, (a, b)) are precisely
the deck transformations of the cover

Ao Cp 25 P 2L P

(o:y1:y2:93) = (o:y1) = (vays : (S +v%)/2).

Hence Cy/ (Sg X Z%) ~ P! and ), is the quotient map. The cover is branched
along ¢ = (1 : 1), g2 := (0: 1), g3 := (1 : A) and g4 := (=1 : 1),
corresponding to the four orbits of the points with non trivial stabilizer,
of respective length 27,18,18 and 9. Note that the points ¢; are pairwise
distinct under the assumption A # —1, 1.

A representative of each orbit and a generator of the stabilizer is given
by:

q1 q2
rep | (1:C3:v/2:2—2)) (0:1:1:1)
gen hi = (o1,0) hs := (0, (1,0))
a3 q4
rep | (1: VA= VA —1: V1+A—VAZ—1:0) | (1:=1:0: ¢2+2)) -
gen hs = (Id, (1,1)) hy = (7,(1,2))

We compute the action of S3 x Z% on HY(C;, Qa)
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By standard adjunction theory HO(Cl,Q}Jl) is isomorphic to H°(Cy,

Oc¢, (2)), isomorphism mapping a monomial xg_a_ﬁ _A’xff‘xg z3 to the 1-form
Wapsy that in affine coordinates is
T x T
WaBy 1= u P22 du, where wi=" v:="2 and =22
Zo Zo Zo

The character of the canonical representation of C7, the action of S3 x Zg
on HY(C1, Qlcl), can be computed by the standard Chevalley-Weil formula
and is amount to

Xean = € -€34sgn-€1-€a+sgn-eg+sgn-e1+pu-e1-ea+p-€3-egtpu-er-e3. (6.3)

We give an explicit decomposition in irreducible subspaces. Using the ex-
pression in affine coordinates we obtain

i_j i g =1y«
(0", (a,0)) - wapy = ¢1((0"77, (a,0)) )" (wapy) =
i(B—1) ~a(B—2)+b(y—2)+(a—(2a+B+y—2)[j]4+2842y—7)i
(_1)3(6 1)C3(B )+Hb(v=2)+(a—(2a+8+v-2)[j]+28+2y )w(a—(2a+ﬁ+7—2)[ﬂ)ﬂv'
A tedious but straightforward computation gives the following decomposi-
tion:

HO(Cla Q%jl) :<w011>6%-6% S <W100>sgn-61-62 @ <W02O>sgn-62 S <w002>sgn-61€9

(w000, W200) peer-e2 B (w0105 W110) .2, D (W01, W101) r.ey .2+

Similarly, adjunction theory gives an isomorphism among H®(Cs, 9102) and

—a—B-2v, o B v

H°(Cy,O¢,(4)) mapping a monomial yé Tyy,ya to the 1-form w;ﬁ

that in affine coordinates is

~

W = (Y (P22l
and t = y—g
Yo Yo Yo

1 2
where u = n v = L]

We obtain a basis of 19 dimension space H°(Cs, O¢,(4)) by taking the 22
monomials of degree 4 in the variables y; and removing Yoys, y1ys and
Y5, that can be expressed in terms of the other monomials using the cubic
equation defining Cy. Accordingly we get a basis of H%(Ca, 9102) by removing
from that set wy, 5. the 1-forms wy,, wigy and wigy. The canonical character
of (s is given by Chevalley-Weil as

2 2 2. 2 2
Xean =SgN - €1 - €2 + Sgn - €] - €5+ sgn - €1 - €2 + Sgn - €1 + sgn - €5 + U - €1

b peg+ 2 €3+ sgn-et et et + e - e,
(6.4)
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and the action on H%(Cy, 9102) computed in affine coordinates as above is

i _j i —1\x
(0'77,(a,D)) - wop, = ¢2((0'77, (a,0)) ) (Wap,) =
(_1)jCa(25+7)+b(5+774)+(a7(2a+ﬁ+2’yf4)[j]+2,3+'y+1)iw/

3 (a—(2a+B+2y—4)[5])Bv"

Another tedious computation gives the decomposition

H(Cy,9¢,) =(w002) sgn-e2-c; @ (Wh21) sgn-e2.¢3 © (Wiz0)sgn-er-eo
® (Wion)sgn-er B (Wr00) sgn-e2 B (Woo1, Waor) peex
@ (Wor1> Wi wea © ((Woo0» Wioo) @ (W/1007w§00>)u.€§
B (Wo10 + Wa10) sgn-2 © (Whio — Wat0)e B (Wi10, W10) 2
S (

/ /
Wa205 w020>u~61~62 :

We consider unmixed quotients S := (Cy x C3)/ (S3 x Z3) modulo a
diagonal action ¢1 X (¢2 o ¥), where W is one of the automorphisms of S5 x Zg.
Firstly we study the singularities of S. We observe that C; and Cs have
stabilizers of order 6,3 and 6 and 2, 3,3 and 6 respectively. Hence 18 points
of C} and 36 points of Cy have stabilizer of even order. However S5 x Z3
has only three elements of order 2 and they are in the same conjugacy class.
This means that each of these three elements fix exactly 6 - 12 = 72 points
of C1 x Cy. Thus S can never be smooth and if it admits only nodes, then
they are in total 3 -72/27 = 8.

Now let us consider the following automorphisms of S5 x Z3

\Iflzfd, \112: 7 a<0 1> )
T TO 2 0
o o2 0 2 o o2 0 2
Uy = , , Uy = , .
’ ({THT (1 0)) ! <{THT <2 0))

A direct computation shows us that for these four choices of ¥ the surface
S has exactly 8 nodes and no other singularities.

Remark 6.2.1. We use the Theorem 4.5.8 proving that the families of product
-quotient surfaces given by these two topological types of group actions on
curves having only eight nodes as singularities are those presented in this
section.

The vector space HY(Kg) is isomorphic to the invariant subspace

2
(HO(QF,) © H(04,))™"
agonal, i.e. (077, (a,b)) € S3 x Z3 acts via

, where the action on the tensor product is di-

1

H1((0'7, (a,0)) ) @ o (W (0, (a,5) )" (6.6
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For each character n of S5 x Z§ define its twist by ¥ as
ny :=no UL
Pulling back H%(Kg) to C1 x Cy we obtain from Theorem 5.2.1 that

Lemma 6.2.2. A basis of H'(Kg) is given by the (53 X Z%)—z’nvam‘ant 2-
Jorms of H(Q, ) © HO(Q¢,) with respect to the action (6.6). Hence

S x 72 Sa %732
(H(8,) @ H(Q8,) ™ = @ (H(28,)y © H(Q, )ng) ™",
n#0

where HO(Q};Z,)T7 1s the isotypic component of HO(Q}JZ_) of character n. More-
over
1 2 1 2 —
bg = <Xcan " Xeans 1) = Z<Xcan777> ’ <Xcan7 77\If>
n#0

/

mrs- We can now state and prove our main

Denote by wjrimrs = wjk @w
result:

Theorem 6.2.3. For all ¥ € Aut(Ss x Z3) in (6.5), the diagonal action
$1 % (¢ 0 W) of S3 x Z3 on the product of the two curves Cy and Cy is not
free. The quotient is a canonical model of a regular surface S of general
type with Kg =24, p, = 3 and with 8 rational double points as singularities
of type %(1,1). A basis of HY(Kg), the canonical map @k in projective
coordinates and its degree are stated in the Table 6.2.

Proof. We have already mentioned that for all ¥ in (6.5) the action is not
free and the quotient S has 8 singularities of type %(1, 1) and no other
singularities. The genus of the two curves is g(C;) > 2, hence C7 x C has
ample canonical divisor and so S has ample canonical divisor too. It follows
S is a canonical model.
The self-intersection of the canonical divisor of each S is amount to
_ 8(g(C1) —1)(g(Cr) — 1)

K2 = =24,
s |S3 x Z3]

They are regular surfaces, because they do not possess any non-zero
holomorphic one-forms, since C;/ (Sg X Z%) is biholomorphic to P'. The
geometric genus of each S is therefore equal to (see Theorem 4.4.5)

(9(C1) —1)(g(C2) — 1) 1 (8-3> _1-=13

— (Og) — 1 = =
pg = x(Os) 1S5 x 72| EETAGED

Using Lemma 6.2.2 we have computed a basis of H*(Kg). In fact since we
have proved that p, = 3 it is enough to verify that the given elements of
the table are invariant for the corresponding action. Applying the explicit
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isomorphisms from HO(Cl,Qél) to H°(C1,0¢, (2)) and from HO(C’Q,QIC2)
to H°(Cy, O, (4)) we obtain the product of quadrics and quartics defining
the canonical map in the table.

It remains to determine the degree of ® g for each surface S. Instead
to work on S it is convenient to work on C] x Cy, following the strategy of
Section 5.3:

A12 Pk
Cl><02 S****>P2
7
7
\ e
e

‘I)Kcl xCo -
p10-19-1

That the map ® g o A1z is induced by the sublinear system |K¢, xc, ]SSXZ§
of |Kc, xc,| generated by the three invariant 2-forms defining ® .

We resolve the indeterminacy of ® S3x23 = ® i, 0 M2 by a sequence of
C1xCy
blowups

C’TX\C’QHCHXCQ

|

‘<1> S3x7%
~ Keyxc
®5 ¥ 12

P2.
Here the morphism ® - is induced by the base-point free linear system |J\7 |

obtained as follow: let [M]| be the mobile part of |K¢, xc, |53%%3.
We blow up the base-points of |M]|, take the pullback of the mobile part
|M| and remove the fixed part of this new linear system. We repeat the
procedure until we obtain a base-point free linear system |M\ |

From Lemma 5.3.1, then the self-intersection M? is positive if and only
if ¢ 37 is not composed with a pencil. In this case ® 57 is onto and it holds:
L =

deg(Pky) = deg(®) = aM .

1
|Sg X Zg‘
For the computation of the resolution, it is convenient to write the divisors

of the product of quadrics and quartics defining ® g, (and hence ® $3%723 )
C1xCo
as linear combinations of the curves F; := {z; = 0} and G}, := {y, = 0}

on C7 x Cy. We point out that these curves are reduced and intersect
pairwise transversally thanks to the assumption A # —1,1. In particular
(Fj,Fk) = (Gj, Gk) =0 and (FJ, Gk) = 81, for k 7é 3, while (Fj,Gg) = 162.
Consider the first surface in the table. Here, the divisors of the three prod-
ucts of quadrics and quartics spanning the subsystem |® S3x72 | are:

C1xCo

Fo + F1 4+ 2Gs + Gs, 2F5 + 2Goy + 2G1 and 2F5 + 4Gs. (67)
Then \CDKSSM% | has not fixed part so that

C1xCo

M? = (\N1,Kg)? = |S3 x 72| - K% =54 - 24.
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Furthermore, |® S3x23 | has precisely 81 (non reduced) isolated base-points
Cl XéQ
Fy N Gy. We can perform the computation of the difference M? — M? by
applying the Correction term formula 5.4.3, recursively for each base-point
of [® S3x23 E
C1xCop
In a neighbourhood of each of these base-points the three divisors are re-

spectively
2G2 5 2F2 and 4G2 .

Since Fy and G9 are transversal we are in the situation of the Theorem
5.4.3, with H = G and K = F5, a =4,b =c = 2, and d = 0. This implies
ad + bc = 4 < ab = 8. The correction term is ab + cd = 4 for each of the 81
base-points. Thus

M?— M?=4-81.

The degree of the canonical map is therefore given by

1 ~ 1 —~ 1
deg(® :—M2:—<M2— M2 — AP ) =~ (54-24—4-81) =18
Now we take in exam the second surface in our table. Here the subsystem
| S3x23 | has not fixed part and it is spanned by:

K

C1xCo

D1 = 2F2—|—G0—|—G1+G3, D2 = 2F3—|—2G0+2Gl D3 = F2—|-2G2+A,
where A = ((320y2 — 219?). The (set-theoretical) base locus is
KNGy, FonGy, ANGy,ANGy, and ANF3NGs.

We remark that the other pieces of the base locus are empty. In fact that
points would belong in some F;NF; or G;NG; and we have already mentioned
that they are pairwise disjoint.

We determine the correction term to the self intersection number for

each of these base-points of |® S3x23 |.
C1xCo

We consider first the 81 points F» N Gy, for ¢ = 0,1. Here Fy and G;
intersect transversally on each of them. Around one of these points, the
divisors Dy, are given by G; + 2F5, 2G; and F>. We are in the situation of
the Theorem 5.4.3, with H = G; and K = Fh,a=d=2and b =c = 1.
Hence ad + bc = 5 > 2 = ab, which yields ab = 2 as correction term.

We let go on to the 81 base-points ANG;. The local coordinates around
one of these points are X := x;/z; and Y := y;/y;, where j = 0,1, # i. So
the divisors Dy, are respectively given by

(v=0}, 2{vy=0 and {¢VZ-X =0}

Thus D; and D3 intersect transversally in (0,0) and we fall down once more
in the situation of the Theorem 5.4.3. Here H = Dg and K = D1, a =b=1,
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c=0and d = 2. Since ad + bc = 2 > 1 = ab, then the correction term is
amount to ab = 1.

We consider finally the points A N F3 N G3. These points satisfy the
equations

ys =g+ 1y —2Mygy? =0

23 =2} + 23 =0. (6.8)
G3xoyp — T1y3 =0
The last two equations imply that o3 = —mg and
2390 = (Groyp)® = (21y1)° = afyy = —agyy.

Thus y§ + y$ = 0 and comparing it with the first equation of 6.8 we get
Mgy = 0. Therefore A N F3 N G is non empty only if A = 0.
Let us suppose A # 0. Then

M?2-M?=2.2.81+2-81=6-81,

and the degree of the canonical map is amount to
1 — 1
deg(®xs) = o (M2 — (M2 - M2)> = - (54-24-6-81) = 15.

It remains to consider the case when A = 0. The base-points A N F3 N G3
are the following 54 ones:

Uy := ((1 D — ;fl : %Qﬁfz : O) , (1 Lo (?3 : \6/56%(172[]“3}2)@4 : 0)) ;
with k1+ k3 =2 mod 3,
where k; = 0,1,2, for ¢« # 3, and k3 = 0,...,5. Fix coordinates X :=

z1/z0+ (3 and Y = yy1/yo — e around one of these points, for example
that one for k = (2,0,0,0). The divisors Dy, are locally given by

(Y =0}, 2{X=0}, {Y(2%+Y-2%X-XY)=0}={Y =0}

In this case H = {X =0} and K ={Y =0} anda =2 and b = d = 1,
¢ = 0. The correction term is ab = 2.

Hence -
M?-M?=2.2-81+2-81+2-54=6-81+2-54.

The degree of the canonical map is therefore given by

1 — 1
deg(®,) = o (Mz— (M2—M2)> = - (54-24-6-81-2.54) = 13,

The degree of the canonical map of all other surfaces of Table 6.2 can be
computed in a similar way. O
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Table 6.2

P Qm@& + m@m&vmm : m@So\Mm& : mmSomgoav {02200zm - 020000m * TOT0Z0m ‘0ZT00T M} TR
0 M AL Aﬁmag + mmoavm\mma : mmm& : M\ZROHV ﬁomo::\: + 0%g100m ¢0¥0020Mm &oooobﬁ €M e
0#ZY F 81
0=XY Jt &I a1 0/0x€9)2fcx : LAOAEL « CATAOAT 022011 0200TOMES *002200m “T0T0Z0 4 .
AY 1 oqr Qma T — mm T vvm@ T m@m@m&. AR \mmﬁ { m— mEY m m} il z
0 !
QT AWQMH : MQMQMH : mmm\mﬂﬁo&_v A_mowomooﬁo“oomomo“dQNOOOH\JM P ‘T
(°g)3op (fi‘z)*Mg (531)oH Jo siseqg A | ON



6.2 Examples with degree 12,13,15,16, and 18 129

Remark 6.2.4. In this case we can also compute the degree of the canonical
map with the strategy developed in Chapter 5 only for the family no. 1 in
Table 6.2 since in the other cases there is one character x of degree two such
that x occurs on x?,,, and X occurs on x2,,,.

We compute the degree of the canonical map of the surface no. 1. in
Table 6.2 with the strategy developed in Chapter 5.

Consider the first surface S in Table 6.1. It is described by the following
pair of spherical systems of generators:

(7, (1,0)), (0%, (2,2)), (o7, (0,1))],  [(07,0), (e, (1,0)), (Id, (1, 1)), (7, (1,2))]

We apply Chevalley-Weil formula [Gle16, Thm. 1.3.3] to both the curves C;
and Cy to perform the canonical characters xi,,, and x2,,. They are (6.3)
and (6.4) respectively.

We notice that the irreducible characters x such that y occurs on x.,,
and ¥ occurs on x?2,,, have degree one and are precisely:

sgn - €1 - €2, sgn - €3, and sgn - €1.

2
From Theorem 5.2.1 we have H*(S) = (H“°(Cy) ®H1’0(Cg))SSXZ3 de-
composes into three pieces of dimension one:

Hl,O(Cl)sgn-eysg ® H1,0(02)sgn~e%e§’ Hl,O(Cl)sgn~62 ® H1,0(02)sgn~5§’

2

Hl,O(Cl)sgn~q ® H1,0(02)39n~61 )

Theorem 5.2.8 determines which is respectively a generator of the associated
linear subsystem given by each of these pieces:

ver hor hor
R{gh) + Ry + 2R 1)
ver hor
2R + 2R,

2R ) + AR ).

Thus, the above three divisors are spanning the linear system | K¢, xc, | X1,
Notice that what we have obtained agrees with (6.7) in the proof of the
Theorem 6.2.3. Indeed, we observe that

B=Rih,  F+tR=RgY,  F=R,),
Go+Gr1=Rh,  CGa=R{h,  Ca=R%,

Finally, it is sufficient to follow the rest of the proof of Theorem 6.2.3 starting
from (6.1) to compute the degree of the canonical map.
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6.3 Example with degree 24

This is a joint work with Dr. Davide Frapporti. The surfaces S constructed
here are a quotient of a product of the two curves C; and Cs modulo a
suitable diagonal action of the group D4 x Z3.

Notation: Let Dy = (rt|r* t2,trt=!1 = r3) be the dihedral group of
order 8, where r and t denote a rotation (of order 4) and a reflection (of order
2) of the square respectively. Consider also the five irreducible characters of
Dy, so the trivial character 1 and the characters

p1: Dy — 75 — C*, thrt e (1),
po: Dy — 72— C*, It (=1),
M1 - 2 D4 — Z% — C*, thi — (—1)i+j,

1
X5:Q(Xreg_(1+/~’/1+ﬂ2+ﬂl'/~02))'

where X¢4 is the character of the regular representation of Dy.

Let us fix a basis e, es of Z% and consider the dual characters €1, €5 of €1
and eg, i.e. the characters defined by

€i(aer + beg) == (—1)“51i+b52¢7

where ¢;; is the Kronecker delta.

We consider the projective space P4(1,1,1,1,2), with homogeneous co-
ordinates xg,--- ,x4. Here x4 is the variable of weight 2. Let us consider
also the projective space P5 with homogeneous coordinates yo, .. . , 5.

We take the curves C; C P*(1,1,1,1,2), and Cy C P? as follows

2 \—1_2 A1+1,..2
T =513+ S5-I
Cr: Qa3 = AHad + Aded LA ¢ {=1,0,1} Mo # £y,

Azt = N3 (23 + 25)” — (a3 — 2)?

vi=yt -y}
Y3 = 13y — ui

02: 2 ) :ui¢{_17071}7,ui7£2|:,uj,i7£j.

yi = (1yo — y1)(p2yo — 1)
Y2 = (myo + y1)(p2yo + y1)

Both curves are smooth, in fact this is the reason why we assume those

restrictions on the coefficients A\; and p; in the definition of C and C5.

On the first curve Oy, we consider the action ¢1: Dy x Z3 — Aut(C})
given by

(1,(a,b)) — [x = (2o 1 (=1)%bzy ¢ (=1)% : (=1)Pa3 : (—1)%T0zy) |,
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(tr,(0,0)) =
(i) i(i—1) it
[X = (g s (ST @y (1) myp i agogp s (1) +JJU4)] :

We leave to the reader to checking that this action is well-defined.

Note that the automorphisms ¢1(t/7%, (a, b)) are precisely the deck trans-
formations of the cover
m: O 164 p1 21, P!, x— (342d:22—2d) — ((x% +23)%: (2% - 1‘(2))2) )
In particular C;/ (Dg X Z%) ~ P! and 7 is the quotient map. The cover is
branched over p; := (1:0), p2 := (1:1) and p3 := (1 : A\2), pg := (1 : \3)
and ps := (0 : 1), corresponding to the five orbits of the points with non
trivial stabilizer, each one of length 16. Note that p; are pairwise distinct
thanks to the assumptions \; ¢ {—1,0,1}, and A2 # £A;. A representative
of each orbit and a generator of the stabilizer is given by:

P1 P2
rep. | (1:vA1:vA :1:02) | (0:v A —1:V/ A +1:v2:/A—1)
gen. g1 = (t’l", (Ov O)) g2 ‘= (t’I“Q, (Oa 1))
Pp3
rep. | (VI —=X1:0:v2X\ 1 V14 A1 \/)\%—/\%)
gen. g3 := (tr%,(1,0))
P4 Ps

rep. | (VI=Xa: VA=A VA + A V1+X:0) | (G:i0:1:1:9)
gen. g4 = (7“2, (1,0)) g5 := (tr3,(0,1))

On the second curve Cy the action ¢o: Do x Z3 — Aut(Cs) is defined as
(1,(a,0)) = [y = (o s y1 s (=) Py (=1)%y3 1 ya 2 y5)],

(tjri, ((),O)) = [y —

(yo: (—=1)yy tya: (—1)Fys 1 (—1)

i(3i2+1) +ij i(3i—1)+ij

Yayy) : (1) 2 Ys—[5))]-

As in the previous case, we leave it to the reader to check that this action
is well-defined and note that the automorphisms ¢o(t/7*, (a, b)) are precisely
the deck transformations of the cover

16:1 2:1
7rg:Cg—>IF’1—>IP1, y»—>(y0:y1)»—>(y(2):yf).

Hence Cy/ (D2 X Z%) ~ P! and m is the quotient map. The cover is
branched over ¢ := (0 : 1), g2 := (1 : 0), g3 := (1 : 1), q4 := (1 : p?),
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g5 = (1 : p3) and g := (1 : u?), corresponding to the six orbits of the
points with non-trivial stabilizer, each one of length 16. Note that the
points ¢; are pairwise distinct under the assumptions p; ¢ {—1,0,1}, and
Wi # E£pj,i # j. A representative of each orbit and a generator of the
stabilizer is given by:

a1 q2
repres. | (0:1:4:4:1:1) | (1:0:1: pg: /p1z, /H102)
gen. | hy:= (tr® (1,1)) he = (tr, (1,0))
4q3
repres. | (1:1:0:+/p3 —1,3/(1 — D(po — 1) : /(i + 1)(p2 + 1))
gen. hs = (1,(1,0))
d4
repres. | (1:pn i /1 —pf /g — pf 202 /200 (p2 + 1))
gen. hy = (t,(0,0))

qs
repres. | (1: po: \/1—M§ : \/ué—u% :0: \/2M2(M2+M1))

gen. hs == (t,(0,0))
d6
repres. | (1:pz: /1 —p3 00 y/(p1 — pa)(p2 — p3) = v/ (i1 + p3) (i + 13)) -
gen. he := (Tga (1, 1))

We compute the action of Dy x Z3 on H°(C;, QICZ) By the adjunction for-
mula H°(C1, Qa) is isomorphic to H°(C1,O¢, (2)), isomorphism mapping
a monomial :Ug_a_ﬁ_'y_%:nf‘:chgxi to the 1-form w45 that in local affine

coordinates is

a=1,B-1p7160=1 ¢

Wafrys = U
x1 o xrs3 T4
where w:=— wv:=-—-, t:=— and s5:= .
o o 0 z}

We obtain a basis of 9 dimension space H°(Cy, O¢,(2)) by taking the 11
monomials of degree 2 in the variables g, ...z3, 74, and removing 23, x3,
that can be expressed in terms of the other monomials using the quadratic
equations defining C. Accordingly we get a basis of H°(C1, Qlcl) by remov-
ing from that set wagys the 1-forms wapoo, wo200-

The canonical character of C7 is given by the Chevalley-Weil formula as

X}:an:N2'61+M2+N1‘€1+X+X'€2+M1'61'62+61'62.

We give an explicit decomposition in irreducible subspaces. Using the ex-
pression in affine coordinates we obtain

(thi, (a,b)) - WaBys = ¢1((tjriﬂ (a, b))il)*(waﬁws) =

K
= (—=1)" W(a—(a=B)[i)(B+(a—B)i]) (v—i]+@—(a+B+7+20)) (i)
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where

31'(31'2 04 )

+i(B+6—1+j(a+p)).

K:=ala+p+d—-1)+bla+v+0—-1)+jla+9d)+

A tedious but straightforward computation gives the following decomposi-
tion:

HO(C1,Q8,) =(w1100) pg-e; ® (W0001) o B (W0010) u1-e1 B (w1000, Wo110) %
® (w1010, W0100) x-e2 D (W0000 + W0020) o1 -€1-€0

@ (W0000 — W0020)e;-€2-

Similarly, adjunction theory gives an isomorphism among H°(Cs, Qlcz) and

—a—f-y—6-0, o B

H°(C3,0¢,(2)) mapping a monomial yg YT Yo ygygyg to the 1-

form w(’l 50 that in affine coordinates is

Whse = () (W)PHE)THS) T
where o =% o =% p. B g._ ¥ .4 Y
Yo Yo Yo Y0 Yo

We obtain a basis of 17 dimension space H°(Cs, O¢,(2)) by taking the 21
monomials of degree 2 in the variables y; and removing v, Y3, y3, and ya,
that can be expressed in terms of the other monomials using the quadratic
equations defining Cy. Accordingly we get a basis of H(Cy, Qlcz) by remov-
ing from that set w5, 55 the 1-forms wsggg, w200, Wooo20: a0d wWoggge- The
canonical character of Cy is given by Chevalley-Weil as

X(z;an = 2p11-po-€1+ - €1+2)x €1 €2 uo-€1-€a[11 - o€+ [l €2+ (11 - flo- €1 €2+
+ X+ X +e+ pe,
and the action on H%(Cy, Q}b) computed in affine coordinates as above is

(7", (0,5)) - whgao = G2 (¢, (,0)

K
= (=1)7 Wap (- [+ 16) 116+ (1-[1)0)

)*(W&ﬁwe) =

where

K:=aB-1)+bB+7+0+0)+j+i(a+8—1)+ij(0+0)+
n <3i(3i+ D | Ula(il2+ 1)> P UC Py

2 2 2
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Another tedious computation gives the decomposition
0 1
H°(C2,9¢,) = ({wooooo) ® <0ﬁ’/20000>)mm.61 @ (w10000) pz-ex
@ ({wlooo1> wioo10) © (Wooo10s w60001>)x.€1.62

D (W10100) pa-e1-e2 D (W11000) p1-pz-c2 B (W01000) pr2-e2
B (W00100) 1 -z-e1-e2 D (W01001+ W01010) X
® (Woo101> W00110) x-e1 B (Wo0011)er B (Wo1100) pr2 -

We consider the unmixed quotient S := (Cy x Cs)/ (D4 x Z3) modulo the
diagonal action ¢1 X ¢2. We observe that the non-trivial stabilizers of
the points on the first curve C) are generated by (tr, (0,0)), (tr?, (0,1)),
(tr2,(1,0)), (r2,(1,0)), and (tr3,(0,1)). However, none of these elements
have a fixed point on the second curve Cy under the action ¢o. Thus, the
action ¢ X ¢9 is free and the quotient surface S is smooth, projective, and
of general type. The latter holds because the genus of the two curves is
9(C;) > 2, hence C x Cy has ample canonical divisor, and so Kg is ample
too.

By Theorem 5.2.1, the vector space H°(Kg) is isomorphic to the invari-

ant subspace (HO(Qlcl) ® HO(QéQ))DMZ%
product is diagonal, i.e. (0’77, (a,b)) € Dy x Z3 acts via

$1((0*77, (a,0)) 71" @ ga((0"77, (a,0)) )", (6.9)

Let denote by wjkimrstou := Wjkim ® Wl pu- We can now state and prove our
main result:

Theorem 6.3.1. The diagonal action ¢1x do of DyxZ3 on the product of the
two curves C1 and Cs is free. The quotient is a smooth projective surface
S of general type with Kg = 32, and py = 3. In particular, S is quasi-

abelian, a basis of H°(Kg) is {w110010000, W000101100, ¥100001001 & W011001010 }
the canonical map P in projective coordinates is

, where the action on the tensor

1

Pio(x,y) = (T122Y0Y1 : Tay2ys : Y2(ToT1Y5 + T223Y4)) ,
and its degree d is equal to 24.

Proof. We have already mentioned that the action is free, and the quotient
S is smooth, projective, and of general type.

Hence the self-intersection of the canonical divisor of each S amounts to
2 _ 8(9(C1) —1)(g(Ca) —1) _ 8-8-16 _

K2 = 32.
o |Dy x 73] 32

They are regular surfaces, because they do not possess any non-zero holo-
morphic one-forms, since C;/ (D4 X Z%) is biholomorphic to P!. The geo-
metric genus of each S is therefore equal to (see Theorem 4.4.5)

(9(C1) = D(g(Co) =1) | _ 816

1=3.
1Dy x 72| 32

DPg :X(OS) 1=
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Since we have proved that p, = 3, we leave it to the reader to verify that
the given 2-forms are invariant for the action (6.9). Applying the explicit
isomorphisms from HO(Cl,Qél) to H°(C1,0¢, (2)) and from HO(CQ,QéQ)
to H°(Cy, Oc,(2)) we obtain the bi-quadrics defining the canonical map.

It remains to determine the degree of ®x . Instead of working on S it
is convenient to work on C; x Cy by following the strategy of Section 5.3:

P
Cl X 02 A S — fKE >-]P)2

-
7
\ e
e
<DK01 xCg -

IP)9~17—1

The map ®x, o A2 is induced by the sublinear system |K(;1Xc2]D4XZ§ of
| K¢y xc,| generated by the three invariant 2-forms defining ® .

We resolve the indeterminacy of ® Dyx7} = ® i, 0 M2 by a sequence of
C1xCy
blowups,

CTX\CQH-C&XCQ

I
‘(I) Dy %22
P~ Koy xc
o Y 1%C2

P2

Here the morphism @+ is induced by the base-point free linear system ]J\/J\ |
obtained as follow: let us consider the mobile part |M| of | K¢, xcy |DaxZ3
We blow up the base-points of |M|, take the pullback of |M| and remove
the fixed part of this new linear system. We repeat the procedure until we
obtain a base-point free linear system |M]|.

From Lemma 5.3.1 the self-intersection M? is positive if and only if ® %

is not composed with a pencil. In this case ® % is onto and it holds:

1 1 —~

For the computation of the resolution, it is convenient to write the divisors
of the bi-quadrics defining ® i, (and hence & 4ng) as linear combinations
C1xC

of the curves Fj := {z; = 0} and G}, = {ys - Oi on C7 x Cy. We point
out that these curves are reduced. The F}’s are pairwise disjoint, and the
G}’s as well, by the assumption on the coefficients \; and p;. Moreover Fj
and Gy meet transversally in each one of their 128 (if j # 4), resp. 256
(if j = 4), intersection points. Summarizing, (F}, F) = (G;,Gi) = 0 and
(Fj,Gk) = 128, for j 75 4, while (F4,Gk) = 256.

The divisors spanning the subsystem | K¢, xc,|P4%% are:

Dy = Fi+F+Go+Gy, Dy = Fi+Ge+Gs  and  Dyi=GatA,
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’D4><Z§

where A = (xoz1y5 + r2x3y4). Hence | Ko, xc, has not fixed part and

M? = (XNyKg)? = |Dy x Z3| - K% = 322,
The (set-theoretical) base locus of | M| = | K¢, xcy|P4*% is contained in
NGy, FoNGy, GoNEyNA, and GiNFiNA

We remark that the other pieces of the base locus are empty. In fact, those
points would belong to some F; N F}, or G; N Gj.

We determine the correction term to the self intersection number for
each of these base-points of |M]|.

We consider first the 128 points F; N Gy, for i = 1,2. Here F; and Go
intersect transversally. Around one of these points, the divisors Dy are given
by F;, G2, and G2. We are in the situation of the Correction Term formula
5.4.3 with H = F; and K = GG3, a = b =d =1 and ¢ = 0. Hence the
correction term is ab = ad + bc = 1.

We go on showing that no other base-points arise from the loci GoN FyN
A, and G1 N Fy N A. The points Go N Fy N A satisfy the equations

f = (e + 2B~ (5B =0
yi = (tyo — 1) (payo — 1) =i (6.10)
y3 = (uayo + 1) (p2yo + y1) =yi

ToT1Ys5 + T2X3Y4 =0

The last equation implies that x%x%yg = x%x%yz, so, through the second and
the third equations, we get

xie? = alal. (6.11)

Now we use the equations defining C; to substitute in the equation (6.11)
the values 22 and z3 in function of 22 and 3:

A —1 A +1 A+ A —1
x%( 5 x§+ 5 x%)z( 5 m%—i—Tw% x%
A +1
2

(w5 — ) = 0.

We remember that we have assumed \; # —1, so z3 = x{. Finally, substi-

tuting 2 with £22 in the first equation of the system (6.10), we get
0=M\(z2 +22)% — (22 — 23)? = 4\3ad, if a3 =23
0=M5(z% +22)? — (2% —22)? = —4a}, if 23 = —ap.

The condition Ay # 0 that we have assumed for Cy and xg # 0 permits us
to conclude that both cases are not allowed. Hence Gg N Fy N A is empty.
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It remains to study the points G; N Fy N A, which satisfy the equations

4af = N3(a3 + 25)* — (23 —a25)® =0

y3 = (pyo — y1) (p2yo — y1) = p1poyl (6.12)
Y2 = (payo + y1) (p2yo + 1) = p1peyg '
ToT1Ys + T2T3Y4 =0

The last equation implies that x%z%y% = x%x%yz, so, through the second and
the third equations, we get

(x%a:% — x%x%) pipe = 0.

: 2,2 _ 2.2
However, by the assumptions on Cy, we have 1, po # 0, so zjzr] = x523,

that is the equation (6.11). Thus, following exactly the flow of the computa-
tions done after (6.11), we obtain a contradiction also in this case. Therefore
G, N FyN A is empty.
Then
M? — M? =1-128 4+ 1- 128 = 256.

The degree of the canonical map amounts to

1

_ 1
- M2—M2—M2):— 92 _ 956) = 24.
32< ( ) =50 56)

deg(q)KS)






Chapter 7

Unbounded families with
canonical map of degree 4

This is a joint work [FP23a] together with Prof. Roberto Pignatelli.
An unbounded family of surfaces is a sequence of surfaces S,, with an ar-
bitrarily large Euler characteristic x(QOg,, ), namely lim,_,~ x(Og, ) = +00.
In Chapter 1 we have seen from a pioneering work of Beauville [Bea79]
and a Theorem of X. Gang [Xia86] that the degree ¢ of the canonical map
of a surface 5, if we assume a large enough Euler characteristic, is bounded
from above by 8. Precisely, this follows by point (i) of Theorem 1.1.5:

27 —9q(95)
pg -2
and by [Xia86, Theorem 3], which excludes the case § = 9 for x(Og) > 134.
Recall that the degree of the canonical map is a birational invariant, hence

we can assume S is minimal.

In the beautiful survey by M. Mendes Lopes and R. Pardini [MLP23]
can be found, among other things, examples of unbounded surfaces with
canonical map of degree § € {2,4,6,8}.

0<9-+ <9 for x(Og) > 31

The slope p of a minimal surface S is defined as u(S) = X(KT:%) By
Bogomolov-Miyaoka-Yau inequality 1.1.4 u(S) < 9. Furthermore, for any
unbounded family .5, of minimal surfaces whose canonical map has a degree
of § we have

5(x(0s) = 3) < K2 < 9x(0g) = liminf u(S,) € [4,9)]. (7.1)

The above sentence 7.1 follows easily by applying in sequence lemmas 1.1.3,
1.1.1, and 1.1.2 proved in Chapter 1. This raises the following question
(compare [MLP23, Question 5.6]):

Question: For all §, which are the accumulation points of the slopes in
the range [d,9] of unbounded families of minimal surfaces whose canonical
map has a degree of 67
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We know only three constructions of unbounded families of minimal
surfaces whose canonical map has a degree of 4.

The first, mentioned in [MLP23], is obtained by taking the product of
two hyperelliptic curves. All these surfaces have slope 8.

The second, see [Bin21b, Remark 3], is a construction as Galois cover of
P! x P! with Galois group (Z/2Z)3; they also have lim y (S,,) equal to 8.

The last, constructed by F. J. Gallego and G. P. Purnaprajna, give
unbounded families with lim x4 (S,,) equal either to 8 or to 4, see the last
column of [GP08, Table at page 5491]

In this chapter, we show that lim x4 (S,,), when S, is an unbounded family
of minimal surfaces whose canonical map has a degree of 4, may assume
infinitely many different values. More precisely, we prove the main Theorem
7.3.1.

All these surfaces are product-quotient surfaces, those studied in Chapter
4. Their canonical map is studied in Chapter 5.

7.1 Generalized Wiman Curves

By a classical result of Harvey and Wiman ([Har66, Wim95]) an automor-
phism of a curve of genus g at least 2 has order at most 4g + 2. Moreover,
there is exactly one curve of genus ¢ with an automorphism of order 4¢g + 2
for each integer g > 2, usually referred in literature as the Wiman curve of
genus g.

Definition 7.1.1 (Generalized Wiman curves). Consider two positive
integers n,d > 1.

A generalized Wiman curve of type n,d is a curve in the weighted pro-
jective space P (1, 1, {%d]) defined by an equation of the form

2 d
y* = 2" f(af, o)
where f is a homogenous polynomial of degree d in the two variables xg, z1
without multiple roots such that neither xzg nor z; divide f.

Remark 7.1.2. The assumptions on the polynomial f ensure that any gen-
eralized Wiman curve is smooth.

By adjunction a generalized Wiman curve C of type n,d has genus g =
(2] — 1. In fact a basis of H(C, K¢) is given by the monomials

]2 [%]-5,

nd_ nd]_
Zg , T, | 3,3171“1 ? (7.2)

1,..,x0w[
A generalized Wiman curve of type n,d has the following two natural

commuting automorphisms

27

t: (2o, 71,y) = (T0, 71, —Y) p: (2o, 71,y) = (To,€ " 21,Y)

of respective order 2 and n. This shows
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1. all generalized Wiman curves are hyperelliptic, ¢ being their hyperel-
liptic involution;

2. a generalized Wiman curve of type 2¢g + 1,1 is the Wiman curve of
genus g.

Since ¢ is the hyperelliptic involution, ¢ acts on H°(C, K¢) as the mul-
tiplication by —1. The points fixed by ¢ are the 2g + 2 points of the divisor
y=0.

Definition 7.1.3. We will say that p is the rotation of C.
We conclude this section by studying the action of the rotation.

Proposition 7.1.4. The action of p on the locus xox1 # 0 has all orbits of
order n.

The divisor x1 = 0 is given by two points, both fized by p.

If both n and d are odd, then the divisor xqg = 0 is given by one single
point, fized by p. FElse the divisor g = 0 is given by two distinct points,
fized by p if d is even and exchanged by p if d is odd.

The monomials in (7.2) are eigenvalues for the induced action of p on
HY(C,K¢). More precisely p acts on them as

ndl_9_g jus} ndl_o_g
a:(E #]-2 xf — e(aH)QTx([ 712 xy (7.3)

Proof. The rotation lifts the automorphism of P! = C'/i acting as (xg, z1)
(:co,e%xl), which fixes only the two points zoxr; = 0, so the analogous
statement holds for p.

By the definition of f the point (zg,x1) = (0, 1) is a branching point of
the hyperelliptic 2 : 1 map C — P! if and only if both n and d are odd, in
which case the divisor 29 = 0 in C'is a single (double) point, that is therefore
fixed by p. Else, if nd is even, xg = 0 is formed by two distinct points with
homogeneous coordinates (zg,x1,y) = (0,1, £ug) for some @y # 0. These
two points are either fixed or exchanged by p. By the properties Sf the
weighted projective space they are fixed by p if and only if (ef% P =1
We conclude the analysis of the divisor xp = 0 by observing that the last
equation is verified if and only if d is even.

Since the point (xg,z1) = (1,0) is not a branching point of the hyperel-
liptic map, the divisor 1 = 0 is made by two distinct points with coordinates
(xo,x1,y) = (1,0, £u;) for some @1 # 0, both obviously fixed by p.

The function z := z1/x is a local coordinate in both of then, on which p

. nd
acts as z +» e n 2. The adjunction formula maps a monomial x(E el 72%:6‘{
to the form that locally restricts to z%dz and therefore p acts on it as the

multiplication by e(@*1) o O
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7.2 Wiman product-quotient surfaces

Definition 7.2.1. For all integers n,d;,ds and for all 1 < k < n — 1 with
ged(k,n) = 1 we define a Wiman product-quotient surface of type n,dy, ds
with shift k to be the minimal resolution S of the singularities of its quotient
model X := (Cy x Cy)/ H where

e Cj, j=1,21is a generalized Wiman curve of type n, d;;

e H C Aut(C; x C9) is the cyclic subgroup of order n generated by the
automorphism

(2.9) = (1, 0y)
where p; is the rotation of Cj.

Denote the hyperelliptic involution of C; by ¢;. Then Aut(C; x C3) con-
tains a subgroup of order 4 generated by (¢1,1) and (1,¢2). The correspond-
ing quotient of C x Cy is isomorphic to P! x P!, Since this group commutes
with H and it intersects H trivially, it defines a subgroup K = (Z/27Z)? of
Aut(X). Note that X/K is dominated by P' x P! and therefore it is rational.

Lemma 7.2.2. The canonical map of S factors through the rational surface
X/K.

Proof. By the Kuenneth formula
H°(Cy x Co, Koyxcy) = HY(C1, Key) © H(Cy, Kcy)

and then both involutions (11, 1) and (1,2) act on H(Cy x Oy, Ko, xc,) as
the multiplication by —1. From Theorem 5.2.1, the pull-back map sends
HO(S, Kg) = H°(X, K x) isomorphically onto the invariant subspace H°(Cy
xCy, Koy, ). Tt follows that all elements of K act on HY(S, Kg) = H°(X,
Kx) as a multiple of the identity.

This implies that HY(S, Kg) cannot separate two points in the same
orbit by the action of K. O

In the “degenerate” case n =1, S = X is the product of the two hyper-
elliptic curves C and Cy. Assuming dj,ds > 5 (to have genera at least 2)
we find an unbounded family of surfaces with canonical map of degree 4 as
those mentioned in [MLP23].

The degree of the canonical map remains in fact 4 also for bigger n.

Theorem 7.2.3. Let S be a Wiman product-quotient surface of type n,dy, do
and assume n > 2.

1. Ifdi,ds > 3, then Kg is nef.

2. If dy > 4, do > 5 then the canonical map of S has degree 4.
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Proof. We denote by xg,x1,y the coordinates of the weighted projective
space containing C4 as in Definition 7.1.1, and by Zg,Z1,y the analogous
coordinates for Cs. By the Kuenneth formula the monomials

o) [o] 0
Ma,b = T Ty T1Tq

form a basis of eigenvectors for the action of the (pl, pé) of H on H°(Cy x

Cs, K¢, xc,) with respective eigenvalues e(atIHR(H1) 22 Q6 4 basis of HO(S,
Kg) is given by the monomials

{mgp|n divides a + 1+ k(b+ 1)} (7.4)
1. Pulling back H°(S, Kg) to C1 x Cy we get a linear system | K¢, xc, |7
defined by the vector subspace V' C H%(Cy x Co, K¢y xc,) generated
by the monomials m,; in (7.4).

We claim that if both d; are at least 3, then the base locus of | K¢, ¢, |7
is finite.

We first note that the divisor defined by each mg; on C7 x Cz is a
linear combination of the 4 divisors zg = 0, g = 0, z1 = 0, 1 = 0.
Then the base locus of | K¢, xc,|? is contained in the union of these 4
divisors.

We show that the intersection of the base locus of |Kc,xc,|? with
x1 = 0 is finite. It suffices to prove that there is a monomial in V'
of the form mgp. In other words, that there is an integer 0 < b <

an{| — 2 so that n divides 1 + k(b + 1), which is equivalent to ask

that the remainder class of b module n is the unique class solving

the corresponding congruence. Since dy > 3, {"Td;‘ —2>n-—1and

therefore we can find a b in our range for any such a class, giving a
monomial mgp in V.

A similar argument show that the intersection of the base locus of
| K¢y o, | with each of the other three divisors zg = 0, g = 0, 1 = 0
is finite, by showing the existence of a monomial in V' of respective
type m[%w Lop M, [ndﬂ L and mg0. This concludes the proof of the

2

claim.

Since the base locus of |K¢,xc,|" is finite, the base locus of |Kx| is
finite too whereas the base locus of | Kg| may contain some irreducible
curves, all exceptional for the map S — X, the minimal resolution of
the singularities of X. In particular there is no (—1)-curve in the base
locus of |Kg|. But a (—1)-curve on a surface S is always in the base
locus of |Kg|! So S is a minimal surface, in the sense that it does not
contain (—1)-curve. Since the canonical system is not empty, then S
minimal implies that Kg is nef.
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2. If dy > 4, do > 5, arguing as above, we can find a monomial of the
form mg in V' such that also mq y4pn, M b, My pn belong to V. These
4 monomials map C1 x Cq as xyTy, voTy, v Ty, v1T] onto a smooth
quadric Q C P3. Then the canonical image of S, dominating Q, is a
surface as well.

Choose a general point ¢ € Q. Its preimage in C7 x Cy has cardinality
(2n)?, giving 4n points of S. The group K acts freely on them, giving
n smooth points ¢1,...,q, of X/K. We know by Lemma 7.2.2 that
the canonical map of X factors through X/K; we finish the proof by
showing that it separates the g;.

The automorphism (p1, 1) of C1 x Cy commutes with H, so it defines
an automorphism px of X. This automorphism commutes with K, so
inducing a further automorphism pg of order n of X/K. A straight-
forward direct computation shows that px permutes the g; cyclically.

Now choose a monomial in V' of the form mj .. Then the action of
(p1,1) on the vector subspace of V' generated by mi ¢, mop, M0 p+n,
Minby Mnp4n has exactly two distinct eigenvalues, which differ by a
primitive n—th root of the unity. This implies that the canonical map
of X separates the g;.

O]

Remark 7.2.4. The statement of Theorem 7.2.3 is not meant to be sharp.
For example, essentially the same proof shows that part (2) extends to the
case di = 3 with the possible exception n = 2.

Remark 7.2.5. The proof of Theorem 7.2.3, part (1) shows that the canonical
system of these surfaces has no fixed components.

In fact, it contains all the elements necessary to explicitly compute the
base locus of the canonical system, by describing its pull-back on Cj x Cy,
the base locus of the linear system | K¢, xc, |

Consider for example the first case n = 2, d; = do = 3. In this case
k = 1. Then the given basis of H°(S, Kg) is {z0To, 171 }. This implies that
the base locus of |K¢,xc,| is formed by 8 simple points, four defined by
x9 = T1 = 0 and four defined by Ty = x1 = 0. The involution defining S
as quotient of C7 x Cy acts on these eight points freely, so H°(S, Kg) has
exactly four simple base points, their images.

By Proposition 7.1.4 this involution fixes exactly 4 points, those at x1 =
71 = 0, inducing 4 singular points of type A; on S. The standard formulas
from Theorem 4.4.2 and Theorem 4.4.5 give K2 = 4 and p4(5) = ¢(S) = 2,
confirming that the canonical system is a pencil with 4 base points.
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7.3 Unbounded sequences of Wiman
Product-Quotient surfaces

In this section we only consider Wiman product-quotient surfaces of type
n, di,ds with both di, ds even.

Identifying a point of X with an orbit of the action of H on C; x Cy, the
singular points of X correspond to the orbits of cardinality smaller than n.

By Proposition 7.1.4 the orbits of the rotation of a generalized Wiman
curve of type n,d with d even are all of order n with 4 exceptions, 4 fixed
points. So X has 16 singular points. A straightforward application of Propo-
sition 4.3.3 shows that 8 are of type %(1, k) and 8 of type %(1,?1 — k).

We consider the invariant v of the basket introduced in [BP16, Section
4]: it vanishes by [BP16, Proposition 4.4] since the basket contains as many
points of type %(1,]@) as of type %(1,71 — k). By [BP16, Proposition 4.1]
K% =8y (0g) — 2y —1 =8y (0s) — | where [ is the number of exceptional
curves of § — X.

Therefore

- _ 8x(0s) — K2 _ l l
8 — u(S) x(O3) X(0s)  (n3-2)(n%-2) +4(1-1)

Writing the continued function of ¥

n 1

Pk
by —

1
bs — ...

then ([Rie74, Section 3]) the number of irreducible components of the
resolution above two singular points of respective type %(1, k) and %( 1,n—k)
equals 1+ > (b; — 1), so

8(1+> (bj—1)) 32 14+3.(b; — 1)
M( ) (n%l—Q) nd72—2) +4(1 B l) dldg n ( )

In the simplest case kK = 1 we obtain 1+Z£Lbj_1) = 1+Z_1 =1 and then

Theorem 7.3.1. There is an unbounded sequence S, of surfaces that have
canonical map of degree 4 such that

lim 4 (S,) =38 <1 - 1)
n—o00 m

for all positive integers m > 6 that are not prime numbers.
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Proof. Write m = ab with a > 2, b > 3 and pick a sequence of Wiman
product-quotient surfaces S, of type n, 2a,2b and shift 1.

We are in the assumptions of Theorem 7.2.3, part (2) (di = 2a > 4,
dy = 2b > 6 > 5) so the canonical map of S, has degree 4.

Finally, by (7.5)

n—o00 B Cll dQ n ab n

21 b, —1 1 -1 1
WG R SUESL 8+n28< )

7.4 Further questions and possible generalizations

We have studied some natural generalizations of this construction giving
surfaces with canonical map of degree 4. Unfortunately they do not lead
to a substantial improvement of our main result, so we have decided not to
include them in this work. However, we mention them here for completeness.

We obtain in fact similar results for Wiman product quotient surfaces
where the d; are not both even. One can also consider hyperelliptic curves
of equation y? = zoz1f(zf,27). All these generalizations lead to surfaces
with canonical map of degree 4 and slope in the same range [6 + %, 8].

The other possible generalization is by considering shifts other that 1.
More precisely, consider a sequence of positive integers k,, with 1 < k,, <
n — 1, ged(kp,n) = 1. Then a sequence S, of Wiman product-quotient
surfaces of type n, 2a, 2b and shift k, has

n—0o00 m n—oo n

lim p(S,) =8 — 8i lim o <kn) .

where

0<k> 14Xk -)

n n

Obviously o (%) >0, 0 () = 1. It is known [TU22, Lemma 3.3] that
o < 1. An independent proof has been sent us by J. Stevens.
Question: What are the possible limits of {0’ (%)} C [0, 1] for sequences

of rational numbers % with unbounded demominators?

Note lim,,_vo0 0 (mg‘“) = % We could not obtain any sequence with

limit neither zero nor of the form % If there were more possible limits, this
construction would improve our main result.



Chapter 8

Smooth k-double covers of
the plane of geometric genus

3

This is a joint work [FP23b] together with Prof. Roberto Pignatelli.

In this chapter we classify all smooth surfaces with geometric genus
equal to three and an action of a group G isomorphic to (Z/2)" such that
the quotient is a plane. We find 11 families, listed in the main Theorem
8.4.1. We compute the canonical map of all of them, finding in particular a
family of surfaces with canonical map of degree 16 that we could not find
in the literature. We discuss the quotients by all subgroups of G finding
several K3 surfaces with symplectic involutions. In particular we show that
six families are families of triple K3 burgers in the sense of Laterveer. These
families are those listed in Corollary 8.5.3.

The surfaces of general type with geometric genus 3 are interesting to be
studied from several points of view. A first interest, which is the central one
of this thesis, comes from the study of the degree of the canonical map. We
recall the Remark 1.1.6, point 3: a surface of general type with a high degree
of the canonical map have p, equal to 3. We remind to the beautiful survey
[MLP23] (see also Section 1.2) to the known examples with a high degree of
the canonical map. We just mention here that most of these examples are
obtained as Galois covers of rational surfaces with Galois group isomorphic
to (Z/2)*: see for instance the examples with canonical map of degree 32 in
[GPR22] and those of degree 20 in [Bin21a].

On the other hand, a classical conjecture of Claire Voisin, describing how
0—cycles on a surface S should behave when pulled-back to a self-product of
enough copies of .5, led Laterveer to the definition of triple K3 burgers. These
are surfaces with p, = 3 provided with three pairwise commuting involutions
such that the quotients are K3 surfaces. Studying them, Laterveer proved in
[Lat21a] Voisin’s conjecture for some family of surfaces, including a family
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of surfaces with p, = 3 (that he calls ”Garbagnati surfaces of type G3”)
with an action of (Z/2)? whose quotient is P2. This leads us to the problem,
interesting by itself, of studying and classifying all surfaces with p, = 3 with
an action of a group isomorphic to G = (Z/2)" such that the quotient S/G
is isomorphic to P? and then studying their geometry, by investigating their
canonical map and if they are triple K3 burgers. We call surfaces like these
k—double planes for short.

The main argument to attain our classification is that by using the stan-
dard formulas for abelian covers, if the Galois group is of the form (Z/27)*,
the numerical class of all divisors D, is determined by the characteristic line
bundles L,. We give the explicit formula in Theorem 8.1.11. So we first
compute the possible L, that is easy, and then deduce from it the class of
each divisor.

This is (unfortunately) not true for general abelian group, since different
numerical class of divisors may give the same characteristic sheaves L., see
Remark 8.1.7. So a similar analysis for different groups may be harder.
However, there are several interesting examples of Galois covers of rational
surfaces with Galois group of the form (Z/pZ)*, see for example Section 6.1
and [BGvBP22], so also such a classification would be desirable.

The chapter is organized as follows.

In section 1 we recall the general theory of abelian covers and prove the
just mentioned Theorem 8.1.11 when the group is of the form (Z/2Z)*. In
section 2 we recall the known results on the canonical systems of abelian
covers. Note that in these two sections we use the multiplicative notation
for G* since it is more efficient for writing the general theory, whereas in the
other sections we switch to the additive notation which is more convenient
for the computations.

In section 3 we study and classify all the smooth k—double planes, ob-
taining the 11 mentioned families in terms of the branch divisors D, and of
the characteristic sheaves L, .

In section 4 we prove Theorem 8.4.1, and then we study each family sep-
arately. For each family we write explicit equations in a weighted projective
space, and describe the quotients by all subgroups of G, determining all the
K3 surfaces obtained in this way and the symplectic involutions on them.

Finally, in the last section, we determine which families are families of
triple K3 burgers.

Notation: A Galois cover is a finite morphism 7: X — Y among alge-
braic varieties with the property that there is a subgroup G of Aut(X) such
that 7 factors as the composition of the quotient map X — X/G with an
isomorphism X/G =Y. We will always assume Y to be irreducible, whereas
we find it convenient for the general theory of Galois covers not to do any
analogous assumption for X. The finite group G is the Galois group of .
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An abelian cover is a Galois cover whose Galois group is an abelian group.

A k—double cover is an abelian cover whose Galois group is isomorphic to
(Z/27.)*. A k—double plane is a k—double cover of P2,

8.1 Abelian covers

In this section we collect some preliminary results on abelian covers, mostly
well known.

Let m be an abelian cover with Y smooth and X normal. Following
[Par9lal, we decompose the direct image of the structure sheaf of X as a
sum of line bundles corresponding to the characters of G

m0x = P L.

XEG*

By the Zariski-Nagata purity theorem, the branch locus of 7 is a divisor.
We call this divisor D when it is taken with the reduced structure. The
ramification divisor R of 7 is the preimage 7~ 1(D), also taken with the
reduced structure.

Let T be an irreducible component of R. By [Par9la, Lemma 1.1] the
elements of G fixing all points of T form a cyclic subgroup H of G, the
inertia group of 7. By [Par9la, Lemma 1.2], there is a unique character
v: H — C*, a generator for the group of characters H*, and a uniformizing
parameter ¢t for Ox r such that, for all h € H, h acts as

t — (h)t.

This gives a natural decomposition

R= > Ruy

H<G cyclic
1 generating H*

of the ramification divisor as follows: if T is an irreducible component of R,
then T' is a summand of Rg  if and only if its inertia group is H and the
corresponding character is .

As in [FP97] we observe that there is a natural bijection among the
pairs (H, ) as above and the group G, associating to each element g € G
the subgroup H = (g) generated by it and the unique character ¢y € H*

2mi
with the property that ¢(g) = el#l. So we can set Ry := Ry, and write
R = ZQEG Rg.
Since G is abelian, if 77 and 75 are two irreducible components of R
in the same G—orbit, they share the same inertia group H and the same
character 9, so Tt and T belong to the same summand R,. Therefore there
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are reduced divisors D, (denoted Dy in [Par91al) such that Ry = 7= 1(D,).
These give a decomposition of the branch divisor

D= D,
geG
Definition 8.1.1. [Par9la, Definition 2.1] The building data of an abelian

cover m: X — Y are the line bundles £, and the reduced effective divisors
D, introduced above.

Note that, if 0 is the identity of G, Dy = 0. Analogously, if 1 is the
trivial character of G, £1 = Oy.

Remark 8.1.2. X is connected (equivalently: irreducible) if and only if, for
all x #1, HO(L;1) = 0.

The building data determine the cover in the following sense.

Definition 8.1.3. Let 7: X — Y be an abelian cover with Galois group G,
Y smooth and X normal. Fix an element g € GG and a character y € G*. Let
o(g) be the order of g. Then there exists a unique integer 0 < ry < o(g) — 1
such that

X, 27

x(g) = €7 e,

Given a further character x' € G* we set moreover

; {1 if 1 + 1% > o(g)

0 else

Theorem 8.1.4. [Par9la, Theorem 2.1 and Corollary 3.1] Let 7: X — Y
be an abelian cover with Galois group G, Y smooth and X normal.
Then for all x,x' € G*

Ly@Ly=Lyw®O0x | Y e Dyl . (8.1)
geG

Conversely, given an abelian group G and a smooth irreducible variety Y
assume that we have

a line bundle L, on'Y for each character x € G* and
an effective divisor Dy for all g € G

satisfying (8.1), and with the property that the divisor D =) Dy is reduced.
Then there is a unique Galois cover m: X — Y whose Galois group is
G, and whose building data are the L, and the Dy, such that X is normal.

Equation (8.1) shows that the divisors D, determine the line bundles £,
up to torsion as follows.
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Definition 8.1.5. For all x set L, € Pic(Y') = Div(Y)/ ~ for the divisor
class of the invertible sheaf £,. We use the additive notation for the torsion
product in Pic(Y).

Corollary 8.1.6. [Par91la, see Proposition 2.1]
X

o(x)Ly = Z o0y D,.

= o)

In particular

X
T
Ly Znum ¥ — =Dy
s ol)

Proof. Note first that by definition of ry, for all k € N, Té‘k is the remainder
of the Euclidean division of kry by o(g). Then

Lr=ca|> Erg |
A olg)] 7
geG
follows by induction on k applying (8.1) to the products £, @ L, k-1.
For k = o(x) we obtain the stated formula since £; = Ox and % is
integral.

In particular, if Pic(Y) is torsion free (for example if Y is rational) then
the divisors do determine the line bundles.

In the next sections we are going to walk in the opposite direction: first
we look for the "good” possible £, and then we find suitable divisors D,
realizing them.

Of course the divisors will be free to move in their linear equivalence
class. We find it important to notice that for general G' the line bundles £,
do not determine even the linear equivalence class of the divisors Dy. In
fact this fails already for cyclic groups of order 5 of more. We just write one
example of this phenomenon.

Then the following choices

degDg=0 degDy=2 degD3=0 degD5=0 degDs=2
degDg =0 degDy=1 degDs=1 degDs=1 degD;=1

give both Galois covers with Galois group G and £, = Op1(2) for all x # 1.

In contrast, we show in the forthcoming Theorem 8.1.11 that when G ==
(Z/27)F then L, determine the linear equivalence class of the divisors Dy
up to torsion.

We first need a Lemma on the sums of the ry for general abelian covers.
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Definition 8.1.8. The natural isomorphism G — G** allows each g in G
to be considered as a character of G*, which we will also denote by g, by
setting

9(x) = x(9)-

Then ker g is the subgroup of G* of the characters x such that x(¢g) = 1. In
other words
X €Ekerg & g € kery.

Let ‘H be a subgroup of G*, possibly of the form ker g. For all g € G we
will denote by gj3; the element of H* obtained restricting g to H.

Lemma 8.1.9. For all g € G, for each subgroup H of G*,

Sy = |H2|o(g) <1 1 > (8.2)

0(9\?—[)

In particular

d orx= 'C;' (o(g) —1). (8.3)

Proof. Since ry = 0 if and only if x € ker g, then the number of addenda of

X : — _[#H
erH rg that are equal to zero is exactly }ker g|H| = Sl
The remaining |H| (1 — m> addenda are integers between 1 and

o(g) — 1. Since ry # 0 implies ry + 7@(1 = 0(g) it follows that their average
equals @, thus giving the result. O

It follows that

Proposition 8.1.10.

Z LX =num

XEG* geG

|Gl

|
N
—_
|
QS
o~
N~—
~__
-]
@
=)
=

Moreover, for every g € G,

G 1
> Ly =num 2’0(;) > (1 — 0()> Dy, (8.5)

x€Eker g heG

X
Proof. By Corollary 8.1.6 Ly =num deG %Dg.
Summing over all x and using (8.3) we obtain (8.4).
Setting H = ker g and summing only on the characters in H, using (8.2)

and |H| = % we obtain (8.5). O

Now we can give the announced formula for the linear systems of the
divisors Dy in terms of the L, when the group is (Z/ 27)".



8.2 The canonical system of an abelian cover 153

Theorem 8.1.11. Let w: X — Y be a k—double cover, Y smooth and X
normal, with set of data Ly, Dy. Then for all g € G

1
Dy Znum 555 Y L= > Ly

x¢&ker g x€ker g

Proof. Let us fix an element g € G = (Z/QZ)k, g # 0.
We note that for all h in (Z/2Z)", 0(h|kerg) equals 1 if h € (g) = {0, g}
and 2 otherwise. Then by (8.5)

Z Ly Znum 2872 Z <1 — h|k)> Dy, = 2+3 Z Dy,.
er g

Xx€Eker g heG g (h)

By (8.4), recalling that Dy = 0, we obtain ZXeG* ¥ Snum ok—2 > hea Dn
and then

R LR SR S P P B

heG x€G* xEker g
1
- ok—2 Z Ly - Z Ly
x¢ker g x€ker g

8.2 The canonical system of an abelian cover

A canonical divisor Kx on a normal variety X is a Weil divisor, the closure
of a canonical divisor of the smooth part of X (see [Rei87, (1.5)]).

If : X — Y is a G—cover, then G acts on 7, (Ox(Kx)) inducing a
decomposition on it in eigenspaces

T (Ox(Kx)) = @ m(Ox(Kx))™
XEG*

Theorem 8.2.1. [BP21, Proposition 2.4], [Par91a, Proposition 4.1, ¢) for
the case when X is smooth] Let w: X — Y be an abelian cover, with X
normal and Y smooth, whose building data are L, and Dgy. Then

(1. Ox (Kx))™ 2 Oy (Ky) @ Ly-1. (8.6)

Consider a global section 0 € H°(Oy(Ky) ® L,-1), and let (o) €
Div(Y) be the induced effective divisor. By (8.6) ¢ determines an ele-
ment of H(m.0Ox(Kx)) = H°(Ox(Ky)), whose divisor is, by the proof
of [BP12, Proposition 2.4] (compare also [Lie03, Section 3.4]),

)+ Z — X" —1)R,. (8.7)
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It follows

Proposition 8.2.2. Assume that all not empty linear systems |Ky + Ly|
are base-point-free.
Then the base locus of |Kx| equals

N U &
XEG*: g€G:

|Ky +Ly|#D rg5#0(g)—1
Proof. Since |Ky + Ly/| is base-point-free, if the linear subsystem of |Kx]|
corresponding to HO(Ox(Kx))X ") is not empty, by (8.7) its base locus

equals
U R,
geG:
rg#o(g)—1

Since these linear subsystems generate |Kx|, its base locus equals their
intersection. O

We recall that all complete linear systems on P are base-point-free,
so Proposition 8.2.2 gives a complete description of the base locus of the
canonical system of any abelian cover of a projective space. For k—double
covers of P we obtain as in [GPR22, Section 2] (see also [Cat99, Section

2]),

Corollary 8.2.3. Let m: X — P™ be a k—double cover with building data
Ly, Dy. Then |Kx]| is base-point-free if and only if

N U Dy=0.

x:deg Ly>n+1 g€&kerx

8.3 Smooth k-double planes with p,=3

Definition 8.3.1. A smooth k—double plane is a k—double cover 7: X —
P? such that all D, are smooth, each two of them intersect transversally,
and no point in P? belongs to three of them.

In particular the branch divisor D = ) Dy is a smooth normal crossing
divisor.

The assumption ensures the smoothness of X.

Proposition 8.3.2. Let m: X — P? be a smooth k—double plane. Then X
18 smooth.

Proof. This is a special case of [Par91a, Proposition 3.1] (see also [Man01,
Proposition 3.14]). O
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Notation
It is convenient to consider G and G* as vector spaces over the field with
2 elements as in [Man01, Setup 3.2]. We are thus going to switch to the
additive notation, so for example the sheaf £ will be £y from now on, and
for each character x we will write —y for the character that was called y
in the previous section.

Denote by e, - - - , e, the standard basis of G = (Z/2)" and by ey, ..., ¢
the dual basis of G*.

To every smooth k—double plane 7: X — P? we consider its building
data L,, D4 and the numbers

dgy := deg Dy, ly == deg L.

Note that dy = [y = 0.
Note moreover that since G = (Z/2Z)*, for each x € G*, x = —x. We
will use this often in the following computations.

Definition 8.3.3. We will say that a smooth k—double plane with p, = 3
is

of type A if I, =4, 1, € {1,2} for all x & (e1)
of type B if e, =le, = le;4e, =3, I, € {1,2} for all x & (€1, €2)
of type C'if I, = 1., =l = 3, I, € {1,2} for all x & {0,€1,€2,€3}
By (8.6) for a smooth k—double plane 7: X — P?
pg(X) = h(Ox(Kx)) = h'(m(Ox (Kx))) = Y h%(Op(ly —3)), (88)
X€EG*
so in all cases of Definition 8.3.3 we obtain p,(X) = 3. Conversely

Proposition 8.3.4. Up to automorphisms of G every smooth k—double
plane with py(X) = 3 falls in one of the three cases in Definition 8.3.3.

Proof. Since X is connected, for all x # 0, HO(L';l) = 0 and thus [, > 0.
By (8.8) I, <4 and either there is only one x with [, > 3, in which case
ly =4, or there are three x with [, > 3, all with [, = 3.
Using an automorphism of G, we can reduce the former case to ”type
A” and the latter case either to "type B” or "type C”, depending if the
three special characters are linearly dependent or not. O

We now look at when a k—double plane with p, = 3 has canonical system
base-point-free.

Lemma 8.3.5. Let m: X — P2 be a smooth k—double plane with pg =3 of
type t. Then |Kx| is base-point-free if and only if
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dg =0 for all g € kere; when t = A;
dg =0 for all g € kere; Nker €2 when t = B;
dg =0 for all g € Uj<;<j<s (kere; Nkere;) when t = C.

Proof. By Corollary 8.2.3 |Kx| is base-point-free if and only if

N U b,=0.

X:lx>3 g€kerx

For type A we deduce d, = 0 for all g € kere;.

In the remaining cases we have three characters x with [, = 3. We first
show that for each x with [, = 3 there is at least one g € ker x such that
dg # 0. In fact, in this case Kpz + Ly = 0 and thus by (8.7) > crery By
is a canonical divisor. If ) gekery dg vanished, then this canonical divisor
would vanish, and thus Ox (K x) would be isomorphic to Ox, contradicting
Dg = 3.

For type C we obtain that | K x| is base-point-free if and only the following
intersection of three divisors

U py|nl U Dg|n| U Dy (8.9)

g€kere; g€ker e g€ker ez

vanishes, and by our last remark all three divisors are not empty. Then if
there is a g such that d, # 0, belonging to two different kere;, then any
intersection point among D, and one of the D; # 0 in the kernel of the
third €; is in (8.9), and thus |Kx| is not base-point-free.

Conversely, if d;, = 0 for all g € U1§i<j§3 ker €; N ker €; then the three
divisors we are intersecting in (8.9) have no common components, and thus
the intersection is empty since D is a smooth normal crossing divisor.

For type B the result follows similarly using that ker e; Nker ea = ker e; N
ker (€1 + €2) = ker ea Nker (€1 + €2) . d

We can now classify the k—double planes with p, = 3, by considering
separately the three cases in Definition 8.3.3.

For type A we obtain a special case of the situation classified in [DG14,
Theorem 1.1].

Proposition 8.3.6. The smooth k—double planes with p, = 3 of type A
form four families, one for each value of k =1,...,4.

In all cases 7 is the canonical map of X, |Kx| = |7*Op2(1)| is base-
point-free and

lp=0 le, =4 ly =2 for all remaining x
dg = 0 for all g € ker ¢ dy =24F for all g & ker ¢
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Proof. By (8.1), for all x € G*, Iy + lyye, = le, + 2 e €7 e g > ley = 4.

Since for x not in (e;) we have [, < 2, it follows I, = 2.

It follows moreover > ) vtedg = 050 dg = 0 for all g that are
neither in ker y nor in ker x +€;. Varying x € G* this shows that d, = 0 for
all g € kere;.

Then by Lemma 8.3.5 |Kx| is base-point-free. In fact HO(Ox(Kx)) =
H°(Ox(Kx))): this implies that the canonical map is composed with 7.
In fact since m,(Ox(Kx))€) = Op2(1), 7 is exactly the canonical map of
X and |Kx| = |1*Op2(1)].

Finally by Theorem 8.1.11, for all g & kere,

d — ngkerg lX - erkerg lX o
g = =

2k72
(44 @21 —1)-2) = (0+ (21 —1)-2) oi

2k72

It follows k < 4.
We leave to the reader the easy check that all 4 cases do exist by checking
that (8.1) holds for them. O

To study the next two cases, we preliminarily note that Corollary 8.1.6
may be rewritten as [, = % > g&ker x dg or equivalently

VxeGT ) dy=d-2l, (8.10)
g€ker x

where d :=deg D =} d,.
For type B we obtain only one family.

Proposition 8.3.7. The smooth k—double planes of type B with p; = 3
form one family, with k = 2. These surfaces have a canonical system that
1s base-point-free and

lp=0 Iy =3 forx#0
do =0 dg =3 forg#0

Proof. We note that G is the union of the three subgroups ker €1, ker €5 and
ker (€1 + €2), which pairwise intersect in ker (e; Ne€z). It follows that

> ng% —d+ S dy+ Y dg+ S 4y |

g€ker(e1Nez) g€ker €1 g€ker €2 g€ker(e1+ez)
=d— (l61 + e, + l€1+€2) =d-09,

sod>9.
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On the other hand, since [, < 2 for all x ¢ (€1, €2)

22 S =9+ Y L9+ (26-4) 2=
XEG* X&(e1,€2)

sod <8+ 21%2

Since by assumption k > 2, we conclude that d =9 and k = 2.

The d, follow by Theorem 8.1.11. Since €1 N €3 is trivial, Lemma 8.3.5
ensures that the canonical system is base-point-free.

We leave to the reader to check that equations (8.1) are verified. t

For type C we obtain six families. In order to write them clearly we
introduce the following rather standard notation.

Notation
The weight w(g) of an element g = (g1, .. .,gx) € (Z/2Z)" is the number of
g; different from zero.

For every h < k we denote by wy(g) the number of g; different from zero
with 7 < h.

In the following we apply this notation to both the elements of G and of
G*.

We note that by Lemma 8.3.5 the canonical system of a k-double plane
with p, = 3 of type C' is base-point-free if and only if Zg|w3 <1dg =0.

Let us set € := Z?:l €;- We note that g € kere if and only if ws(g) is
even. It follows that

2 ) dy=3d- ng > d

glws(g)<1 glws(g) even
3
=3d=3 | D dy| = D dy
1=1 \ g¢&kere; g€kere

from which, by (8.10)

3 dg_f<3d 251, —d+2l>_d+l Zlel_dﬂtl —9. (8.11)

|w3( )<1

We consider first those surfaces whose canonical system is base-point-
free.

Proposition 8.3.8. The smooth k—double planes with p, = 3 of type C
with canonical system base-point-free form the following five families.

(C3) k=3,1p=0 and

Ly =3 ifw(x) =1, le
dg =0 ifw(g) <1, dg = 2 otherwise.

1, ly = 2 otherwise;
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(C4) k=4,1p=0 and

Ly =3 ifw(x) =1, le=1, L, = 2 otheruwise;
dg =0 if ws(g) <1, dg =1 otherwise.

(D3) k=3,1p=0 and

Ly =3ifw(x) =

1, le =2, ly =1 otherwise;
dy =0 if w(g) <1, de)+egtes =4, dy =1 otherwise.

(D4) k=4,1y=0 and

L=3ifws(x) =1, Iy=1ifws(x)=w(x)=2 I, =2 otherwise;
or wz(x) € {0, 3},
x & {0, ¢}

dg =2 ifws(g) =3, dy=1ifws(g) =w(g) =2 dy=0 otherwise.

(D5) k=5,1y=0 and

L=3ifws(x) =1, Iy=1ifws(x)=w(x) =2 I, =2 otherwise;
or w3(x) € {0,3},

x {0, ¢}
dg =1 if w3(g) = w(g) =2
or ws(g) =3, dy = 0 otherwise.

Proof. Since we are assuming that the canonical system is base-point-free,
by Lemma 8.3.5 and (8.11)
d=9—-1,

and we have to distinguish two cases, depending if [ = 1 or 2.

We start with the case [, = 1. Then d = 8.

By (8:4) >\ ecqrIx =8~ 2k=2 = 2k+1 50 the average of the [, equals 2.
We know the values of five I,: I =0, lc = 9 — 8 = 1 and the three ., = 3;
their average equals 2 as well. Since for all remaining x, [, < 2 we conclude
that they all equal 2. By Theorem 8.1.11 d¢, 4, = 24k g0 k=3 or 4. In
both cases we deduce all other dy by 8.1.11 obtaining the cases (C3) and
(C4) in the statement.
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Otherwise lc = 2 and d = 7. Then by (8.10) >_ ., dg = 1, so for each
i = 1,2, 3 there exists a unique g € ker¢; such that d, # 0, that we denote
by gi, and dg, = 1.

We show that the g; are linearly dependent by proving that the vector
subspace

3
V= ﬂ ker g; C G*
i=1

has at most codimension 2.

First we note that if y is a character with [, = 1 different from €1 + €3,
€1 + €3 and €2 + €3, then it belongs to V. In fact then for all ¢ € {1,2,3} it
holds lyy¢, < 2 and then by (8.1)

Yoodg= D dyg=lytlrg—l, <1+2-3=0.
géker x géker x
g€kere; g&ker(x+e;)

Then we note that there are at least two x in V' with [, # 1: 0 and e.
So, setting A := # {x € G*|l, =1}, then #V > A—-3+2=A—1. On the

other hand A = 228 4+ 1= % _o. b ‘=) 241 41 7. 282 = gb=2 4,

Therefore
#V > A—-1=2"2 (8.12)

proving the claim that the g; are linearly dependent.

By Lemma 8.3.5 g; # g; when ¢ # j, so g3 = g1 + g2, and V has
exactly codimension 2, and (8.12) is an equality. We complete € to a basis
€,€4,...,€, of V. Then €q,...,€, is a basis of G* respect to which V =
{x|ws(x) € {0,3}}. Since (8.12) is an equality we know exactly which [,
are equal to 1: those in V different from 0 and ¢, plus the three characters
€1+ €2, €1 + €3 and €o + €3.

Note that respect to the basis eq,..., e, of G dual to €1, ..., e we have

g1 = ez +e3, g2 = €1 +e3, g3 =e1 + eo.

Finally we compute all d, from the [, using Theorem 8.1.11. For g =
e1 + es + e we obtain

d61+€2+63 = 219%2 Z lX - Z lX

w3 (x) odd w3 (x) even

We note that [, appears in this expression with the opposite sign of [, .
Since w3(x) = 3 — ws(x + €), then x € V = {x|ws(x) € {0,3}} if and
only if x + € € V. We have proved that, if y does not belong to (€1, €2, €3)
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then [, = 1if x € V and [, = 2 otherwise. So the contributions of the [,
not in (ey, €2, €3) cancel each other out and

de1+62+63 = ij (lq + l62 + l63 +le — l€1+62 - l61+e3 - l62+63) =

— 8 — 257]{

T 9k—2

so k < 5 and we obtain a family for each k = 3,4,5. We leave to the reader
the computation of the remaining d,, giving the families (D3), (D4) and
(D5). O

Finally we consider those k—double planes with p, = 3 whose canonical
system is not base-point-free, and see that they provide exactly one more
family.

Proposition 8.3.9. The smooth k—double planes with p, = 3 whose canon-
ical system is not base-point-free are of type C and form one family, with

k=3,10=0 and

le; =3 logye =1 ly = 2 otherwise

d61+62+63 =3 d81+62 =2 d63 - d81+€3 - d€2+63 =1 do= de1 - dez =0

Their canonical system has four simple base points, the preimages of the two
points in the intersection of the line D, and the conic D¢, e, .

Proof. By propositions 8.3.6 and 8.3.7 these double planes are of type C.
Thus, using (8.4)

d-262= 3" 1, =94 Y <2k (8.13)
XEG* x#{e;}
from which we deduce, since k > 3, d < 8 + 2,%2 <8+ % So d < 8.

We recall that the existence of base points for the canonical system is

equivalent to >° ., ;)<1 dg # 0. On the other hand by (8.11)

> dg=d+lc—9<l—1.
glws(g9)<1
We conclude that
le=2 d=8 > odg=1
glws(g)<1

and thus there is an unique h € G with d;, = 1 and ws(h) = 1. Note that
exactly one of the three characters ¢; is not in ker h.
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The inequality in (8.13) fails to be an equality exactly by 1. This means
that there is exactly one character n with [, = 1. By the expression of dj, in
term of the [, in Theorem 8.1.11 we deduce that n ¢ ker h (or dj, would be
negative) and dj = %%3 So k = 3.

Using an automorphism of G we can now assume without loss of gener-
ality n = €1 + €2. We have now computed all I.: we leave to the reader to
compute all d, by applying Theorem 8.1.11.

By (8.7) the canonical system |K x| is generated by the following three
divisors

R63 + R62+63 Res + Re1+e3 R81+62

and then by the smoothness assumption the base locus is the schematic
intersection Re,ye, N Res.

The line D, and the conic D, ., intersect transversally in two points.
Above each of them there are two points of X, stabilized by the index two
subgroup (e1 + ez, e3), the intersection points of Re,te, N Rey. A straight-
forward local computation shows that Re, ¢, and R, are transversal. [

8.4 The eleven families

In the previous section we have proved that the smooth k-double planes with
pg = 3 form 11 families. In this section we will study these families.

Notation

We will denote each family by a letter and a number. The number is
the exponent k of the Galois group, while the letter reminds the type. In
particular the 4 families in Proposition 8.3.6 give surfaces of type Al, A2,
A3 and A4, while the surfaces in Proposition 8.3.7 form the family B2.
There are more families of surfaces of type C with the same Galois group,
so for these we need to use more letters: we will use the letters C, D and E.
Precisely the surfaces in Proposition 8.3.8 are named, as already specified in
that statement, as C3, C4, D3, D4 and D5, while the surfaces in Proposition
8.3.9 form the family E3.

All these surfaces have ample canonical class, since it is numerically the
pull-back of an ample class of P? (see e.g. [Par9la, Proof of Proposition
4.2]). Their irregularity vanishes, for example since their geometric genus is
3 by construction and the Euler characteristic is 4 by [Par91a, (4.8)].

For each family we compute the degree of the canonical map.

Theorem 8.4.1. All smooth k-double covers S of the plane with geometric
genus 3 are reqular surfaces with ample canonical class.

The canonical map @iy is a morphism of degree ng on P? unless S
of type E3, in which case the canonical map is a rational map of degree
K2 — 4 = 4 undefined at 4 points.
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Each family is unirational. The modular dimension of each family, that
is the dimension of its image in the Gieseker moduli space of the surfaces
of general type, equals 4 + 267 with one exception, the family B2, whose
dimension is 19.

The values of Kg, of deg kg and of the modular dimension of each
family are listed in the following table:

| Family [[A1 A2 A3 A4 B2 C3 C4 D3 D4 D5 E3|

K2 2 4 8 16 9 8 16 2 4 8 8
deg ¢y 2 4 8 16 9 8 16 2 4 8 4
mod. dim. || 36 20 12 8 19 12 8 12 8 6 12

Proof. Each surface S is a Galois cover m: S — P2. By the Leray spectral
sequence, H'(S,0g) = H' (P2, 71,05) = EBX H! (PQ,E;l). Since every line
bundle on P? has trivial first cohomology group, it follows h'(S, Og) = 0.

The value of the self-intersection of the canonical class follows by the
formula (see [Par9la, (4.8)])

2

1

2 k

K=2 —3—!—55 dg
geG

By Propositions 8.3.6, 8.3.7, 8.3.8, 8.3.9 the canonical system of S is base
point free unless S is of type E3, in which case it has four simple base
points. So (blowing up the base points in this last case) we get a surface
with canonical system having movable part of self intersection as in the
second line of the table above, so strictly positive. Then the canonical map
is not composed with a pencil. Since p, = 3 then the canonical map of this
surface is a morphism on P? of the given degree.

The families are parametrized by a Zariski open subset of a product of
projective spaces, the complete linear systems to which the divisors |Dg],
quoted by the faithful action of PGL(3), a group of dimension 8. Since the
surfaces are of general type, their automorphism group is finite and therefore
it contains only finitely many subgroups of the form (Z/2Z)*, which implies
that the map from this quotient to the Gieseker moduli space of the surfaces
of general type is finite. So the modular dimension of each family equals

—8+ ) dim|Dy|

which gives the modular dimensions in the table above. As an example, the
family E3 depends on the choice of three lines, a conic and a cubic so its
modular dimension is

—8+3-2+5+9=12.
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For each family we will first give explicit equations of the surfaces embed-
ded in a suitable weighted projective space, computed by using the equations
in [Cat08, Section 6] (see also [Man01, Section 3.3]) as follows.

We consider a weighted projective space whose first three variables z,
x1, xo of weight 1. The group acts trivially on them: in fact the k-double
cover is the map on P? given by them. Each branch divisor divisor Dy, g=
Z]f ije;, is defined by a homogeneous polynomial in the x;, the polynomial
flllk(x]) € (C[J/‘Q,ZEl,CEQ]. If Dg = 0 then flllk (ZC]) =1.

Then we add variables y;;...;,., i; € {0, 1}, meaning that e; acts on y;,...i,
via multiplication by (—1)%. The equations

Yryory Ystoosp, = Yirty H firi,  when all r; + s; +t; are even

Do1575,05 1585
both odd
(8.14)

define an embedding of these surfaces in the weighted projective with vari-
ables x;,%;,...,- The weight of the variable y;,..;, is the positive integer
lZ 546

Sometimes these equations allow to eliminate some variables, embedding
the surfaces in a weighted projective space of smaller dimension. For exam-
ple for the family A2 we find the equation y11%01 = Y10, using it to eliminate
Y10 gives an embedding in a smaller dimensional weighted projective space.
In the following we will eliminate all the variables that we can eliminate, to
give simpler equations.

Then we will discuss all ”intermediate” quotients, the quotients of these
surfaces by subgroups of the Galois group of the cover, with a focus on K3
surfaces and symplectic involutions.
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8.4.1 Family A1l

These surfaces have K2 = 2.
They are the hypersurfaces of degree 8 in P(13,4), with variables zq, 21,
r2; Y1,
yi = fi(z)),
with deg fi = 8.
These are the Horikawa surfaces in [Hor76][Theorem 1.6.(i)]. This is the
Example 1.2.1 due to Beauville.

8.4.2 Family A2

These surfaces have K? = 4.
These are the complete intersections of two quartics in P(13,22), with
variables zo, z1, T2, Y11, Yo1,

vt = fio(z;) Yo = fui(z;)

with deg fo = 4.

There are three intermediate quotients: the quotient by e; and e; +e2 are
double planes branched on quartics, so del Pezzo surfaces of degree 2. The
quotient by es is a double plane branched on both quartics, so a degeneration
of the family A1, a Horikawa surface with 16 nodes.

This family is in [DG14, Theorem 1.1.(5)]. These surfaces were also
studied by Horikawa, see [Hor78, Theorem 2.1].

8.4.3 Family B2

These surfaces have K2 = 9.
They are embedded in P(13,3%), with variables xq, 1,2, ¥10, Y01, Y11,
defined by the equations

fio(®5)  yio Y11
Rank | w0 fulz;)  yo =1
Y11 yor  Joi(zy)

with deg fo = 3. This the Example 1.2.2, for d = 9.

The three intermediate quotients are double planes branched on the
union of two cubics: three K3 surfaces with 9 nodes.

We met this family in [Cat99, Example 6] and [Garl9, Proposition 6.3].
They are also studied in [Lat21la] and [GP22].



166 Smooth k-double covers of the plane of geometric genus 3

8.4.4 Family A3

These surfaces have K? = 8.
They are embedded in P(1°,29), with variables w0, 1, 2, Y010, Yoo1,
Y110, Y101, Yo11, Y111, defined by the equations

fi(z;)  yowo Yool Y111
Rank | Y010 firo(w)  wour Y101 _q
Yool your  fio(zj) o
Y111 Y101 yiio  Jfioo(z))

with deg fo = 2.

The quotients by kere; are double planes branched on the union of 4
conics, degenerations of the family Al with 24 nodes. The quotients by
each of the other 6 subgroups of index 2 are double planes branched on the
union of 2 conics, del Pezzo surfaces of degree 2 with 4 nodes.

The quotients by a subgroup (g) of index 4 behave differently according
to if g belongs to kere; or not. If g € kere; the quotient is a degeneration
of the family A2 with 16 nodes. Otherwise, for the remaining four g, the
quotients are 2-double planes such that each of the three branching divisors
is a conic. By, e.g [BP21, Propositions 2.4-2.5 and their proof] they have
pg = 0 and bicanonical sheaf trivial, so they are Enriques surfaces.

These surfaces are in [DG14, Theorem 1.1.(3)], where the authors give
them through equations of a different (not normal) birational model.
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8.4.5 Family C3

These surfaces have K2 = 8.
They are embedded in P(1%,23), with variables xo, 21, T2, Y111, Y110,
Y101, Yo11, defined by the equations

Jfuo(zj)  your Y101 ,
Rank | your  fioi(z;) w10 =1 yi11 = fi ()
Y101 yiio  for(xj)

with deg fo = 2.

The Galois group has seven subgroups of index 2, the three of the form
ker €;, the three of the form kere; + €;, and kere.

The quotients by a subgroup of the form ker ¢; are double planes branched
on the union of 3 conics, so K3 surfaces with 12 nodes. The quotients by a
subgroup of the form ker¢; 4 ¢; are double planes branched on the union of
2 conics, so del Pezzo surfaces of degree 2 with 4 nodes. The quotients by
ker € are double planes branched on one conic, so P! x P!,

The quotients by a subgroup (g) of index 4 are 2—double planes as
follows. If ¢ = e; + e + e3 then the three branching divisors are three
smooth conics, so the quotients are smooth Enriques surfaces. If g is of the
form e; + e; then one of the branching divisors is empty, one is a smooth
conic, and the last is union of two conics: the quotients are K3 surfaces with
8 nodes. If g is one of the e; then two divisors are conics whereas the third
is the union of two conmics: they are surfaces with K? = 4, pg = 2 and 8
nodes.

Then each surface in this family dominates six different K3 surfaces. Let
us give names to them. Let U; ; be the K3 with 8 nodes obtained quoting by
(ei+ej) and let Vi be the K3 with 12 nodes obtained quoting by ker e;. Then
these K3 are naturally subdivided in three pairs by double covers V; ; — Uy,
(here k ¢ {i,j}) branched on 8 nodes and nowhere else, quotient of V; ; by
the symplectic involution induced by e;. The V; ; are special cases of the
K3 surfaces considered in [vGS07, 3.5], where the plane quartic considered
there splits as union of two conics.
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8.4.6 Family D3

These surfaces have K2 = 2.
They are embedded in P(1%,2) with variables zg, z1, T2, Y110, Y101, Y011,
Y111, defined by the equations

Jfuo(zj)  your Y101 ,
Rank | your  fioi(z;)  wiio =1 Y = fi(x))
Y101 yiio  four(xj)

with deg fi110 = deg fi01 = deg fo11 = 1 and deg fi11 = 4. Note that these
equations are identical to those of the family C3, the only difference being
in the degrees.

The quotients by a subgroup of the form ker ¢; are double planes branched
on the union of 2 lines and one quartic, so K3 surfaces with 9 nodes. The
quotients by a subgroup of the form ker¢; + ¢; are double planes branched
on the union of 2 lines, so del Pezzo surfaces of degree 8 with 1 node. The
quotients by ker € are double planes branched on one quartic, so smooth del
Pezzo surfaces of degree 2.

The quotients by a subgroup (g) of index 4 are 2—double planes as
follows. If g = e; + e2 + e3 then the three branching divisors are lines, so
the quotients are projective planes P2. If ¢ is of the form e; + ej then one
of the branching divisors is empty, one is a smooth quartic, and the last is
union of two lines: the quotients are K3 surfaces with 2 nodes. If g is one
of the e; then two divisors are lines whereas the third is the union of a line
and a quartic: they are surfaces with K? =1, pg = 2 and 8 nodes.

Then each surface in this family dominates six different K3 surfaces
naturally subdivided in three pairs as in the previous case. More precisely,
let U;; be the K3 with 2 nodes obtained quoting by (e; + e;) and let Vj,
be the K3 with 9 nodes obtained quoting by kerex. Then we have double
covers V; j = Uy, k & {4, j}, branched on 8 nodes and nowhere else, quotient
of V; j by the symplectic involution induced by e;. These are again special
cases of the K3 surfaces considered in [vGS07, 3.5], where the plane conic
considered there splits as union of two lines.

We finally note that, since the quotient by e; + es + e3 represents these
surfaces as double cover of the plane, these surfaces are a degeneration of
the surfaces in the family A1, special Horikawa surfaces in the family of
[Hor76, Theorem 1.6.(i)] with extra automorphisms.
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8.4.7 Family E3

These surfaces have K2 = 8.
They are embedded in P(1%, 23, 3%), with variables g, =1, T2, Y110, Y101,
Yo11, Y111, Y100, Yo10, defined by the equations

Ji0f111 Y100 Yo1o J110foo1  Yo11 Y101

Rank | w100  fior w10 ]| =1, Rank | you1  fior w10 ] =1,
Yoo Y10 four yio1 Yo fou
fiir Y00 Y11 fiir Yoo Y111

Rank | y100 fiiofior wou1 | =1, Rank | yo10 fiioforr wio1 | = 1.
yiir  your  foor yiir Y1 foor

with deg fi01 = deg fo11 = deg foo1 = 1, deg f110 = 2 and deg f111 = 3.

The quotients by the subgroup ker €; or ker €5 are double planes branched
on the union of one line, one conic and one cubic, so K3 surfaces with 11
nodes. The quotients by the subgroup ker ez are branched on the union of
three lines and one cubic, so K3 surfaces with 12 nodes. The quotients by
ker €1 + €5 are branched on the union of two lines, so del Pezzo surfaces of
degree 8 with 1 node. The quotients by ker €1 + €3 or ker €5 + €3 are branched
on the union of two lines and a conic, so del Pezzo surfaces of degree 2 with
5 nodes. The quotients by ker e are branched on the union of one line and
one cubic, so del Pezzo surfaces of degree 2 with 3 nodes.

The quotients by a subgroup (g) of index 4 are 2—double planes as
follows. If g = e1 + e2 + eg then two of the branching divisors are lines and
the third is the union of a line and a conic, so the quotients are del Pezzo
surfaces of degree 1 with 4 nodes. If g = e; + e2 then one divisor is empty,
the second is the union of two lines, the third is the union of a line and a
cubic, and the quotients are K3 surfaces with 8 nodes. If g is e; 4+ e3 or
e + e3 then one of the branching divisors is a line, one is a cubic, and the
last is union of a line and a conic: the quotients have K? = pg = 1 and 4
nodes. If g = e3 then two divisors are lines and the third is union of a conic
and a cubic: the quotients have K? = 1, pg = 2 and 12 nodes. If g is e; or
eo then one divisor is the union of two lines, one is a conic and the last is
the union of a line and a cubic, giving surfaces with K? = 4, pg = 2 and 8
nodes.

Then each surface in this family dominates four different K3 surfaces.
We get only one symplectic involution by the construction, on the K3 surface
with 8 nodes quotient by e; + e2. The symplectic involution is induced by
e1, and the quotient is the K3 with 12 nodes obtained by keres. The two
K3 surfaces with 11 nodes are both dominated by a surface of general type
with K2 = p, = 1.
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8.4.8 Family A4

These surfaces have K2 = 16.

They are embedded in P(13,2'%) with variables zg, 21, T2, 1111, Y0100,
Y0010, Yooo1, Y1011, Y1101, Y1110, Y0110, Y0101, Y0011, Y1010, Y1100, Y0111, Y1001,

defined by the equations

Rank

Rank

Rank

Rank

Rank

Rank

Rank

f1000f1011
Y1111
Yio11
Y1100

J1000.f1101
Y1111
Y1101
Y1010

J1000.f1110
Y1111
Y1110
Y1001

J1100f1101
Y0100
Yo1i10
Y1010

J1100.f1110
Yo1o00
Y0101
Y1001

J1o010f1110
Yoo1o
Yoo11
Y1001

J1o00f1111
Y1011
Y1101
Y1110

Y1111
fi110f1101
Yo100
Yoo11

Y1
J1110f1011
Yoo10
Yo1o1

Y1111
J1101 fro11
Y0001
Yo110

Yo100
fiirofiin
Yoo10
Y1110

Y0100
Jiio1 fiin
Y0001
Y1101

Y0010
Jro11f11m1
Yooo1
Y1011

Y1o11
J1100f1011
Yo110
Yo101

Yio11
Y0100
J11oof1111
Yo111

Y1101
Y0010
fro10f1111
Yo111

Y1110
Yooo1
froo1f1111
Yo111

Yo110
Y0010
Jio10f1011
Y1100

Yo101
Yooo1
J1o01 f1o011
Y1100

Yoo11
Yooo1
f1o01.f1101
Y1010

Y1101
Y0110
J1o10f1101
Yoo11

with deg fo = 1. This is Persson example 1.2.4.

The quotients by kere; are double planes branched on the union of 8
lines, degenerations of the family A1l with 28 nodes. The quotients by each
of the other 6 subgroups of index 2 are double planes branched on the union

Y1100

Yoo11 -1

Yoi11
fio10f1001

Y1010

Yo101 -1

Yoi11
f1100f1001

Y1001

Yo110 -1

Yyoi11
f1100f1010

Y1010

Y1110 -1

Y1100
f1000.f1001

Y1001

Y1101 -1

Y1100
f1000.f1010

Y1001

Y1011 -1

Y1010
f1000.f1100

Y1110

Yo1o1 -1

Yoo11
fio01 f1110

of 4 lines. They are del Pezzo surfaces of degree 2 with 6 nodes.
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The quotients by a subgroup H of index 4 behave differently according
to if H is contained in kere; or not. If H C kere; the quotients are de-
generations of the family A2 with 24 nodes. Otherwise, the quotients are
Enriques surfaces with 6 nodes.

The quotients by a subgroup (g) of index 8 also behave differently ac-
cording to if g belongs to kere; or not. If g € kere; the quotients are
degenerations of the family A3 with 32 nodes. Otherwise the quotients are
numerical Campedelli surfaces, surfaces with p, = 0, K 2 = 2 and ample
canonical class.

Note that these surfaces are then double covers of numerical Campedelli
surfaces: in fact they were first found by Persson in this way in [Per78, Ex.
5.8]. They are also in [DG14, Theorem 1.1.(1)], where the authors give them
through equations of a different (not normal) birational model.
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8.4.9 Family C4

These surfaces have K? = 16.
They are embedded in P(1%,2') with variables zg, 21, T2, 1110, Y1001,

Y0011, Y0101, Y1111 Y0111, Y1101, Y1011, Y0001, Y1100, Y1010, Yo110 defined by the
equations

fi110 Y1001 Y0101 Y0011 Y1111 Y1110
y1o01 fiotofi100fo111  Y1100f1100 y1010f1010 yor1o0fo111  Yo1i11
Rank | voio1 y11o0f1100  fiioofortofiorr  yoiiofoiio yio10f1011 Y1011 -1
yoo11 Y1010 1010 yo11o0fo110  fioioforiofitor  Yiioofii01 Y1101
yi111  yoi1ofo111 y1010f1011 y1100f1101  fi101f1011fo111 Yooo1
Y1110 Yo111 Y1011 Y1101 10001 fi111
fiioofiio1 Yoi1o Y1010
Rank Y0110 J1o10f1011 Y1100 =1
Y1010 y1ioo  Jforrofoinn

with deg fo = 1.

We describe only the intermediate quotients that are K3 surfaces.

We find three intermediate K3 surfaces with 15 nodes, the quotients
by kere;, i = 1,2,3, double planes branched on six lines. Each of them is
double covered by a K3 with 14 nodes, the quotient by (ker ¢;)N(ker€; + €;),
{i,7,k} = {1,2,3} with a symplectic involution by e;. Note that each of
these last surfaces is double covered by two further intermediate quotients
with p, = 1, the quotients by e; + e; and e; + ey + e4, both giving surfaces
with K ample, K? = 2 and 8 nodes. There are special case f the ”special
Horikawa surfaces” considered in [Lat21b]. These pairs of K3 are again a
specialization of [vGS07, 3.5], where all plane curves splits as union of lines.
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8.4.10 Family D4

These surfaces have K2 = 4.
They are embedded in P(1%) = P7 with variables g, =1, Z2, Y1100, Y1010,
Y0110, Y0001, Y1111 we take the surfaces defined by the equations

fiioo(z;)  yor1o Y1010 i = fiuso(e;)
Rank Yo110 flOlO(ij) Y1100 =1 ) B f ( )
Y1010 yiioo  Jforio(zj) Yooo1 = S1111(Z;

with fe general of respective degrees deg f1100 = deg fio10 = deg fo110 = 1
and deg f1110 = deg f1111 = 2.

The intermediate quotients that are K3 surfaces form three towers of
three K3s corresponding to the chain of subgroups, for ¢,57 <3, # j

(ei +ej) C (e +ej,eq) C (ei,ej,eq)

giving three towers of double covers between K3 surfaces U; ; — V; j — W, ;
with respectively 4, 10 and 13 nodes.

8.4.11 Family D5

These surfaces have K2 = 8.
They are embedded in P(12) = P! with variables xo, 71, 2, ¥11000,

Y101005 Y01100, Y00010> Y0001, Y11110, Y11101, Yooo11, Y11111 defined by the equa-
tions

Jiii(z;)  yoooto 00001 Y11111
Rank | Y0010 fi110(z5)  wooor1 Y11101 _1
400001 yooorr  fiiwo1(xj)  yiiiio
Y111 Y11101 Y11110 f11100($j)

f11000(2j)  Yo1100 10100
Rank | yoiioo  fiotoo(z;)  yi1000 =1
Y10100 y11o00  forroo(z;)

with f, general of degree 1.

There are 48 intermediate quotients that are K3 surfaces, divided in
three families, each of them giving several towers of three consecutive double
covers between (four) K3 surfaces. One for each pair i # j, i,j = 1,2,3.
Namely for each pair of subgroups Hy C Hg with |Hy| = d and

(i +€;) C Hy C Hg C (e, €5, €4, €5)

we obtain a tower of 4 K3 surfaces with respectively 8, 12, 14 and 15 nodes,
with the surfaces with 8 and 15 nodes depending only on ¢ and j.
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8.5 Burgers

We recall Laterveer’s definition [Lat19, Definition 3.1]

Definition 8.5.1. A surface S is called a triple K3 burger if the following
conditions are satisfied:

(0) S is minimal, of general type, with ¢ = 0 and p, = 3;

(i) there exist involutions o;: S — S (j = 0,1,2) that commute with one
another, and such that the quotients X; := S/ (0;) (j = 0,1,2) are
birational to a K3 surface Xj;

(ii) there is an isomorphism

((po)*, (p1)*, (p2)*) : H*(X0,0) ® H*(X1,0) & H*(X>,0)
— H?*(S,0),

where p;: S — Yj denotes the quotient morphism.

Laterveer’s original definition included also the third condition (iii) that
the involutions respect the canonical divisor: o7|Kg| = |Kg|. We removed
that because it is automatic since the pull-back of a canonical divisor by an
automorphism is the divisor of the pull-back of the corresponding differential
form.

Our surfaces not of type A are natural candidates to be triple K3 burger.
In fact

Proposition 8.5.2. Let S be a smooth k—double plane not of type A.

If S is of type B2 set, in the notation of the previous section, og = e1+ea,
01 = e1 and o9 = eo. Otherwise set oy = ey + e2, 01 = e2 + e3 and
o9 = e1 + e3. Then there is an isomorphism

((po)*, (m1)*, (2)") : H*(X0,0) ® H*(X1,0) & H*(X2,0) = H*(S,0),
where pj: S — Yj denotes the quotient morphism.

Proof. Let S be a smooth k—double plane of type C. So we are considering
now the families C3, C4, D3, D4, D5 and E3, and not considering the family
B2 yet.

We know that H?(S, Kg)X = 0 unless x = €1, €2, or 3. More precisely

H(S, Kg) = pyH*(Xo, Kx,) ® pi H* (X1, Kx,) @ psH' (X2, Kx,)
=CoeCoC.
which implies the stated isomorphism by the standard Serre duality.

If S is of type B2 the proof follows by the same argument replacing €3
with €1 + €9. O
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The following consequence has already been proved by Laterveer for the
surfaces of type B2 in [Lat19, Remark 3.4]

Corollary 8.5.3. The families B2, C3, D3, D/, D5 and E3 are families of
triple K3 burgers.

Proof. All our surfaces have ample canonical class, so condition (0) is auto-
matic.

In Proposition 8.5.2 we have chosen involutions o; in each case and
proved condition 2 for them. About condition (i), we have shown that the
surfaces Yj are nodal K3 surfaces in the previous section. ]

We note that the surfaces in the family C4 are not triple K3 burgers since
the quotients Yj are three surfaces of general type, more precisely surfaces
with K ample, K? = 2, pg = 1, ¢ = 0 and 8 nodes. However each of them
is a double cover of a K3 surface with 14 nodes.






Appendix A

Appendix

A.1 Classical results on Surfaces

This section lists and sometimes proves the main results on surfaces that are
freely given in the thesis. They may be presented with strong hypothesis,
which are the same ones encountered in the course of the thesis and for
which they therefore apply.

If you are interested in some more general result, we suggest to see
[GHT78], [Bea96]

Here S and X are smooth projective surfaces.

Theorem A.1.1. Let A, B two effective divisors of S such that A — B is
also an effective divisor C, namely A = B+ C. Then

1. C+|B| C|A|;
2. hO(S, 05(B)) < hO(S, Os(A));

3. Let us denote by c a local defining function of C. The induced (ratio-
nal) map ®p factorizes through ® 4:

where the projection map wp is the (rational) projective dual map in-
duced by the injective linear map

H°(S,05(B)) —25 5 HY(S,05(A)) , s—c-s. (A1)

The (schematic) base-locus of ®p amounts to Bs(®p) = Bs(®a)+C.

Furthermore, the following are equivalent
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(a). C+[B| = |A[;
(b). h°(S,0s(B)) = h°(S, Os(A));

(c). mp is an isomorphism (namely, in suitable projective coordinates cor-
responds to the identity). In other words ®4 and ®p are the same
map;

Proof. The point 1 is straightforward. Let us prove the point 2. Consider
the natural multiplication map (A.1) given by C. This map is well defined
thanks to C'+ B = A: if s is a global section of Og(B), then div(s) = B,
and so div(c-s) = div(c)+div(s) = C+ B = A, hence c- s is a global section
of Og(A4).

This map is naturally injective: if ¢- s =c- &', then

div(c) + div(s) = div(c- s)
= div(c- s) = div(s) = div(s’), andso s = \s.
= div(c) + div(s'),
(A.2)

If s is zero, then also s’ is zero and we are done. However, if s is no-zero,
one can use ¢-s = c- s and (A.2) to say ¢-s = A(c- s), that implies A = 1,
and s’ = As = 5. Hence ®C is injective, and so the point 2 follows.

About the point 3, one can consider the projective dual map of ®C, that in
general is not a morphism. This map is not defined on the functional maps
of H%(S,05(A)) that composed with ®C are zero. This means also that
mp o ®4 is not defined exactly on the points of C' and on the base locus of
® 4. It remains to prove Pg = mg o @4, that is a direct check

(w5 0 @) (p) = [evy' 0 (20)] = [e(p)evy] = [ev)’] = Tr(p).

Now we prove (a) implies (b). It is sufficient to prove that ®C' is
surjective. Given t € HY(S,0g5(A)), from (a), there exists an effective
divisor D = B such that div(t) = C + D. By using the identification
|B| = P(HY(S,05(B))), one can say that D is the divisor of a global holo-
morphic section s € H%(S, Og(B)). Therefore

div(t) = C + D = C + div(s) = div(c- s), and so t=Ac-s).

About (b) implies (c), it is sufficient to observe that ®C' becomes an isomor-
phism, and so its projective dual map is an isomorphism too. In this case,
we observe that ®5 and ® 4 would be the same map, up to the projective
transformation wg.

It remains to prove (a) when holds (c). Let D € |A|; by the identifica-
tion of |A| = P(H(S, Og(A))) it there exists a global section s such that
D = div(t). However, mp is an isomorphism so ®C' results to being an
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isomorphism too. In particular, it there exists s € H°(S, Og(B)) such that
t =c-s,and so D = div(t) = div(c) + div(s) = C+ B € C + |B|. The
theorem is proved. ]

Definition A.1.2. Let 7: S — X be a morphism.

1. Consider a vector bundle E % X of rank n. The pullback bundle 7*E
on S is the fibred product S ®x E := {(p,e) : 7(p) = b(e)} together
with the projection map S ®x E =% S on the first factor. Given
an open cover {V,}o of X and the trivializations {¢a: b~1(Va) —
Vo x C"}, of the vector bundle E, then

O (T (V) = 7 H(Va) x € (pye) = (p, ¢a(m(D)))

are the trivializations of the vector bundle 7*F. Therefore, 7*F is
given by the co-cycles {ggq © 7} gq, Where {gga }gq are the co-cycles of
E;!

2. Let us suppose that 7 is surjective, and consider a divisor D on X.
We define the pullback 7*D as the divisor on S whose local defining
function is f, o 7w, where f, is a local defining function of D. ?

Remark A.1.3. If m: S --» X is a rational map, then it is possible to extend
the definition of the pullback 7*E. Let us consider an open cover {V,}q
of X and the co-cycles {gga}ga of E. Let U be the maximal definition
domain of 7; hence S\ U is a finite set of points, let us say pi,...,p;. Take
the collection of local holomorphic functions (ggq o 7) : 7= H(Vy) — GL(C"),
that are defined on U. Then, by Hartogs theorem, gg, o 7 can be uniquely
extended to a map that is holomorphic also on the points pi,...,pr. We
denote such a map always by gg, o . Furthermore, the properties

(daaom) =1, (ggaom) = (gapom) ™", (gypom)(gga°m) = (graom)

hold not only outside of p1, . .., pr, thanks to the uniqueness of the extension.
Therefore {ggo 0 7}ga are co-cycles of a line bundle on S, that we will call
pullback bundle, and will be denoted as 7*FE.

Theorem A.1.4. Let m: S --+» X be a dominant map. Given a divisor D
of X, then

1. ™0x(D) = Og(m*D);

1One can observe that a problem occur, if 7 would not be surjective. In fact, it could
happen that some V,, is not contained in the image of 7, and so ¢,, would not makes sense.
In this case, we can simply avoid considering that open set V., and the definition can be
extended for m morphism.

20ne can define the pullback of a divisor in general when 7(S) € D. This requirement
is always satisfied if 7 is surjective or a dominant map.
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2. The pullback map
™ HY(X,0x (D)) — H°(S,O5(7* D)), sHrsom
18 injective.

Proof. The point 1 is a direct consequence of the definitions. Consider a
trivializating open cover {V, }, of the line bundle Ox (D), and denote by s,
the local function of a section s € H(X,Ox (D)) in the open set V,. The
pullback map is well defined since for any s € H°(X,Ox (D)), then s, o7
is holomorphic on 7~ %(V,), except for at most a finite number of points
where 7 is not defined. However, from Hartogs theorem, then s, o 7w can be
extended to a unique map holomorphic also on that points. We denote this
map always by s, o m. Therefore s o m := {s, o 7}, is a global section of
Ogs(m*D), and 7* is well-defined.

Furthermore, the map is injective because if 7*s = sow and 7*s’ = s'o7
are equal, then their local holomorphic functions s, o 7, s/, o m are equal at
any open set 7~ !(V,) of S. However, s, and s/, are equal on 7(7~(V,)),
which is dense in V,,, since m is dominant. This means that s and s’ are
equal everywhere. O

Let us consider now the canonical bundles wg and wx. Any global holo-
morphic 2-forms of X can be (uniquely) lifted to a global holomorphic 2-
form of S, in the following way: Let w = g(z1, 22)dz1 A dzg be a 2-form on
X written in local coordinates z := (21, 22) around a point ¢ € X. Given a
point p € 771(q) and fixed local coordinates x := (1, z2) around p, we can
compose locally w with 7 to get

g(m(x1,x2)) det(Jpxm)dz1 A dxa,

where J,ym is the Jacobian matrix of m in those local coordinates. We
observe that if one changes coordinates x’ around p and z’ around ¢, then
g(m(x), xh)) det(Jpyxm) =
= g(m(z1,x2)) det (Jpz) (det(Jpz) det(Joxm)) det(Jxix))
= g(m(z1,x2)) det(Jzxm) det(Jxix).
This means that
g(m(2h, %)) det(Jpsm)
g(m(x1,x2)) det(Jpxm)

that is the co-cycle in the coordinates x’, x of the canonical bundle wg. This
justify the next definition

= det(Jxx),

Definition A.1.5. Given a global 2-holomorphic form w = {g(z)}, of
X, its pullback 7w*w is the collection of holomorphic functions W =
{(g o m) det(Jzx7)}x. By construction, 7*w is a global 2-holomorphic form
of S.
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To one side, we have obtained the pullback 7*w of a 2-form w, and,
from the other side, the pullback 7*div(w) of the divisor of w. The natural
question is: Is there a relation between div(7*w) and 7*div(w)?

Theorem A.1.6. (Hurwitz formula) Let m: S — X be a surjective mor-
phism. Then the following identity of divisors holds

div(m*w) = 7 div(w) + R,

where R is an effective divisor, the ramification locus of ©.° In particular,
one can give a more precise description of the ramification divisor

q p
R = Z(ej -1)C; + ZWE@',
i=1

=1

where C; are irreducible curves whose image with respect to m is a curve I';,
while E; are curves contracted by w. Here e; is the ramification index of Cj,
namely the coefficient of C; in the divisor m*I';, and r; > 0.

Proof. By the definition of m*w, we have m*w = (g o m) det(Jxm)dx1 A dzo
in local coordinates x = (z1,x2), where w = g¢(z1,22)dz1 A dz2 in local
coordinates z = (21, z2). Therefore

div(r*w) = 7*div(w) + div(det(Jx7)) = 7*div(w) + R.

Now we prove the remain part of the statement. Let us consider an irre-
ducible curve C' := C}, with image the curve I' := I';, and denote e := ¢; its
ramification index. Fixed a point p on C, it there exists local coordinates
x around p and z around 7(p) € I" such that 7 in this local coordinates is
(x1,m2) — (x§,22). We observe that C' = {x1 = 0}, and I' = {z; = 0}, in
those local coordinates. But now

e—1
det(Jxm) = det (ex(l) (1)> = ez,

which proves e — 1 is the coefficient of C' in the divisor R. O

Corollary A.1.7. Let w: S — X is a surjective morphism. Any holomor-
phic 2-form w of X lefts uniquely to a global holomorphic 2-form m™*w of S,
and the following commutative diagram holds

*

H(X,0x(Kx)) s » HO(S,05(Ky))

\ Jer

HY(S,05(m*KXx)).

3The ramification locus of a morphism is always a pure codimension 1 subvariety, by
the Zariski-Nagata purity theorem.
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Here R is the ramification locus of m. Moreover, one has

S il X
PHO(S, 05(Ks))") ———rs P(HO(X, O5(Kx))")

and the canonical map of S factors through  if and only if py(S) = pge(X).

Proof. By the Hurwitz formula Theorem A.1.6, we have that div(r*w) =
m*div(w) + R, with 7*div(w) and R effective divisors. We have fallen in
the hypothesis of the Theorem A.1.1, with A := Kg, B := n*Kx, and
C := R. Hence the Theorem A.1.1 applies, and ®R is injective. The other
map H°(X,0x(Kx)) — H°(S,05(7*Ks)) is injective too, by the Theorem
A.1.4. The commutativity of the first diagram is straightforward, and from
this follows also that 7* is injective.

Let us prove now the commutativity of the second diagram. Let p € S, then

(17 0 Prg) (p) = 7" [ewp] = [det(Jmp)evn(y)] = [evr(p)] = (Pry 0 7) (p)-

Finally, ®f factors through = if and only if 7* is an isomorphism, that
happens if and only if p,(S) = py(X). O

Theorem A.1.8 (Clifford Theorem). Let C' be an irreducible smooth curve,
and D be a divisor of C such that 0 < deg(D) < 2¢g(C) —2. Then

BO(C, 00 (D)) < %deg(D) +1.

Proof. For the proof, we remind to [GHT78, pg. 251] O

Theorem A.1.9. Let ¥ C P™ be an irreducible surface, not contained in
an hyperplane. Then deg(X) > n — 1; furthermore, if ¥ is not ruled, then
deg(X) > 2n — 2.

Proof. Let n: S — 3 C P" be a resolution of ¥. Denote by |H| the inverse
image of the linear system of hyperplanes of P". Let us pick up a generic
smooth curve C € |H| and consider D := H|,. We have the following exact
sequences

0 —— Os(-C) » Og Oc — 0

<®OS(H)

0 > Og Os(H) —— O¢(D) —— 0.
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The long exact sequence in cohomology

B

0 —— H°(S,05) —— HY(S,05(H)) —— H°(C,0c(D)) — ---
~ C

implies that h°(S, Og(H)) < h%(C,0c(D)) + 1. We observe that |H| is the
system that induces the resolution 7, so h%(S,Og(H)) = n + 1, since ¥ is
not contained in an hyperplane. Therefore n < h?(C, O¢(D)).

We also observe that C? = deg(D) = deg(X), by construction.
Now we need to distinguish two cases:

(HK > 0) In this case, by the genus formula of smooth curves on surfaces, we
would have deg(D) = C? < C?+ HK = 2(g(C)—1). We can therefore
apply Clifford Theorem A.1.8, and get h%(C,O¢(D)) < 3 deg(D) + 1.
Finally

n < h(C,00(D)) < = deg(D) + 1 —> deg(X) = deg(D) > 2n — 2.

O |

(HK < 0) We observe that this happens only if ¥ is ruled. In fact, by the
Enriques-Kodaira classification, if k(S) = —oo, namely h°(S, Og(dS))
= 0 for every d > 0, then S is ruled. Hence, if S is non-ruled, then it
must there exists T' € |dK| # () for some d sufficiently large. However,
our divisor H is nef, and T is effective. This means dHK = HT > 0,
and so HK > 0.

Now we finish to prove the statement of the theorem. We observe that
in this case deg(D) = C? > C? + HK = 2(g(C) — 2). In particular,
this implies h'(C, O¢(D)) = h°(C,0c(K¢ — D)) = 0. We apply now
the Riemann-Roch theorem for curves

n < h%(C,0c(D)) = deg(D)—g(C)+1 = deg(X) = deg(D) > n—1.

O]

Theorem A.1.10 (Jongmans Theorem, 1947). Any minimal surface S of
general type with a birational canonical map satisfies the inequality

K% >3p,(S) +q(S) - 7.

Proof. See [Deb82, Thm. 3.2]. O

A.2 The Kodaira dimension

Now let us define the Kodaira dimension of a compact complex manifold X.
Roughly speaking, the Kodaira dimension is a useful tool to measure the



184 Appendix

size of its canonical model.

In the case of surfaces, it divides them into four classes, according to the
”ampleness” of their canonical divisor. Any of such classes have been inten-
sively studied in the literature. The most important result in this direction
is the the so-called Enriques-Kodaira classification [BHPVdV04, Theorem
VI.1.1].

Definition A.2.1. The canonical ring of X is the ring

R(Kx) =@ H"(X,dKx).
d>0

The canonical model of X is the projective scheme Proj (R(Kx)).

Here P; := dim H°(X,dK ) is called d-plurigenus of X.

In particular, p, := P is called geometric genus of X.

The Kodaira dimension of X is denoted by x(X) and it is —oo if the pluri-
genera Py := dim H°(X,dKx) are zero for any d > 0; otherwise is the
minimum % such that P;/d* is bounded, namely

: Py
limsup —= < oo.
d—+o0
Theorem A.2.2. ([BHPVAdV04, Theorem 1.7.2] or [Uen75, Theorem 8.1])

Let X be a compact complex manifold. Let us denote by degtr(R(X)) the
degree of trascendency of the canonical ring R(X) over C. Then

—00 if R(X)=C
k(X) = , .

degtr(R(X)) —1 otherwise
Remark A.2.3. ([Har77, page 421]) Let ®,,x, be the rational map to the
projective space associated with the linear system |mKx|. Then the Kodaira
dimension of X is the maximal dimension of the images of ®,,x,, m > 1.4
Moreover, x(X) is a birational invariant and it assumes values —c0, 0, ..., n,
with n := dim(X).

The above Remark A.2.3 justifies the following definitions

Definition A.2.4. The Kodaira dimension of an algebraic variety X is the
Kodaira dimension of a resolution p: X — X of the singularities of X.

Definition A.2.5. We say that a variety X of dimension n := dim(X) is
of general type if K(X) = n, or equivalently if

P,
lim sup 4 <.
d—+o00 ar

“If [nK x| = 0, then ®,,x, =  and we say that dim(f}) = —oo.
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Remark A.2.6. ([Bea96, Example VII.2]) In the case of curves, it is easy to
determine the Kodaira dimension in terms of its genus. Let C' be a smooth
curve of genus g. Then

e K(C)=—00 <= g=0 < C=P
e K(C)=0 < g=1;
e K(C)=1 <= g>2.

In general, we can say something more about the Plurigenera of X with
Kodaira dimension 0, without so much effort.

Remark A.2.7. X has Kodaira dimension 0 if and only if the Plurigenera
P; =0 or 1, but not always 0.

In fact, if X has Kodaira dimension 0, then it would exists at least one dg
such that Py, # 0. Now, by contradiction suppose Py, > 2. Then we would
have at least two independent sections sg,s1 € H%(X,doKx). In this way,
we would get a subsystem (sis7 " : i =0,...,m) C H(X, (mdy)Kx) gener-
ated by m+1 sections. We claim that they are also linearly independent. To

see this, consider a linear combination of them such that Y ;" ; a;s)s7" ™" = 0.

The (complex) polynomial p(xo,z1) = > ,_, aixéx;n_] can be decomposed
in irreducible polynomials of degree 1; let us say p(zo,z1) = [} (cizo +
Biz1). Since p(so,s1) = 0, then we would get X = U {a;so + Bis1 = 0}.
However, X is irreducible and so it must there exists j such that X =
{ajso + Bjs1 = 0}. In other words, we would get a;sg + 351 = 0, which
implies oj = 3; = 0, since g, s1 are linearly independent. To conclude, we
get p(xp,x1) = 0 and this implies a; = 0 for each i = 0,...m.

Since we have proved that H°(X, (mdy)Kx) contains a subspace of dimen-
sion m+-1, then P4, > m+1, which contradicts the fact that P, is bounded.

Theorem A.2.8. [Uen75, page 69]) If X1 and Xo are connected compact
complex manifolds, then k(X1 x X2) = k(X1) + k(X2).

For sake of simplicity, we state and prove the following only for the case
of algebraic surfaces.

Theorem A.2.9. Let 7: S — X be a surjective morphism of smooth alge-
braic surfaces. Then k(S) > k(X).

Proof. By the Hurwitz formula A.1.6, we have dKg = 7n*(dKx) + D for
any d > 1, where D is an effective divisor (in particular, D is d-times the
ramification divisor of ).

Therefore, by Theorems A.1.1 and A.1.4 then the pullback 7*: H(X,dKx)
— HO(S,7%(dKx)) C H°(S,dKg) is injective. In other words, h?(dKg) >
hO(dK x).
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Define k := k(.9); if £ < 0, then the thesis follows immediately. Otherwise,
we would get

. hO(dKs) _ . RO (dKx)
| ——=>1 _—
T T SR T
hence k(X) < k = Ek(S). O

Corollary A.2.10. Let f: Y — X be a surjective morphism of algebraic
surfaces, with Y and X not necessarily smooth. Then k(Y) > r(X).

Proof. Let py: Y - Y and pX: XX be two resolutions of the singulari-
ties of Y and X. We are going to show x(Y) > x(X). Consider the natural
rational mapAlA/ -=3 X and resolve its indeterminacy by a finite number of
blow-ups b: Y/ — Y. We have therefore a morphism 7: Y’ — X fitting in

the following commutative diagram

™

Y’ b,y — Ly
|
|
|
|
|
|
|
N

X — X

Since f is surjective, then 7 is a surjective morphism too. Apply now the
Theorem A.2.9 to the map 7 to get #(Y’) > x(X). However, the Kodaira
dimension is a birational invariant by the Remark A.2.3, and so x(Y) =
k(Y') > k(X). O
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