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Abstract

We determine the minimum possible column multiplicity of even, doubly-, and triply-even codes given
their length. This refines a classification result for the possible lengths of qr-divisible codes over Fq. We
also give a few computational results for field sizes q > 2. Non-existence results of divisible codes with
restricted column multiplicities for a given length have applications e.g. in Galois geometry and can be
used for upper bounds on the maximum cardinality of subspace codes.
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1 Introduction

Adding a parity check bit to a binary linear code yields an even code, i.e., all codewords have an even
weight. Doubly-even binary linear codes, where the weights of the codewords are multiples of four, have
been the subject of extensive research for decades, see e.g. [DFJ+11]. Also linear codes where all occurring
weights are divisible by eight, so-called triply-even codes, have been studied in the literature, see e.g. [BM12,
MN19, Rod22]. The mentioned classes of linear codes are special cases of so-called ∆-divisible codes where
the weights of the codewords all are divisible by some integer ∆ > 1. They have e.g. applications for the
maximum size of partial k-spreads, i.e., sets of pairwise disjoint k-dimensional subspaces, see e.g. [HKK18].
More concretely, the non-existence of qk−1-divisible codes over Fq of a certain length implies an upper bound
on the cardinality of partial k-spreads. In [KK20] the possible lengths of qr-divisible codes over Fq have
been completely characterized. However, on the constructive side some of these codes require a relatively
large column multiplicity. In some applications upper bounds on the maximum possible column multiplicity
are known. E.g. in the situation of partial k-spreads the codes have a maximum column multiplicity of
one, i.e., the codes have to be projective. This special case has received quite some attention, see e.g.
[HKKW19, Kur20]. Here we ask more generally for the minimum possible column multiplicity of a ∆-
divisible code over Fq having length n. Those results imply classification results for the possible lengths of
∆-divisible codes over Fq given any upper bound γ on the allowed column multiplicity, refining the results
from [KK20]. A general parametric solution to this problem seems very unlikely, so that we solve the first
few smallest cases in this paper. Our utilized arguments will mostly be of geometric nature so that we will
use the geometric reformulation of linear codes as multisets of points in projective spaces. Non-existence
results for divisible codes of a certain length have applications for covering and packing problems in Galois
geometry, see e.g. [Etz14, EKOÖ20]. They can also be used to improve upon the so-called Johnson bound on
the size of constant-dimension codes, see [KK20], as well as more general mixed dimension subspaces codes,
see [HKK19b].

The remaining part of this paper is structured as follows. In Section 2 we introduce the necessary
preliminaries and state our main result as Theorem 13, i.e., for the binary case we completely determine the
minimum possible column multiplicity of ∆-divisible codes of length n for each ∆ ∈ {2, 4, 8}. Classification
results for even and doubly-even binary codes are obtained in Section 3 and used to conclude results for
triply-even binary codes in Section 4. We draw a brief conclusion in Section 5.

1



All of the used arguments are completely theoretical and do not rely on any computer calculations. As
a verification and continuation we present computational results in Section B in the appendix. As a small
justification why some of our arguments are quite lengthy we also give some information on the combinatorial
richness of a special case in Section A.

2 Preliminaries

For a prime power q let Fq be the finite field with q elements. Let V ≃ Fv
q be a v-dimensional vector space

over Fq and PG(v − 1, q) the projective space associated to it. By a k-space of PG(v − 1, q) we mean a
k-dimensional linear subspace of V , also using the terms points, lines, planes, and hyperplanes for 1-, 2-,
3-spaces, and (v − 1)-spaces, respectively. We define a multiset M of points via its point multiplicities
M(P ) ∈ N for each point P . We allow the addition, subtraction, and scaling with rational factors of
multisets of points componentwise as long as the resulting point multiplicities are all natural integers. For
an arbitrary subspace K in PG(v − 1, q) we define M(K) :=

∑
P≤K M(P ), where we write A ≤ B if A is a

subspace of B and the summation is over all points P . With this, we define the cardinality or size of M as
#M := M(V ), i.e., as the sum over all point multiplicities M(P ). A multiset M of points in PG(v − 1, q)
is called spanning if ⟨P : M(P ) ≥ 1⟩Fq

= Fv
q . The maximum occurring point multiplicity of M is denoted

by γ1(M), or just γ1 whenever M is clear from the context. More generally, for each 1 ≤ i ≤ v we denote
by γi, more precisely γi(M), the maximum of M(K) where K runs over all i-spaces. E.g., γv = #M.

To each multiset M of n points in PG(v − 1, q) we can assign a q-ary linear code C(M) defined by
a generator matrix whose n columns consist of representatives of the n points of M. It is well-known,
see e.g. [DS98], that this relation between C(M) and M associating a full-length linear [n, v]q code with a
multiset M of n points in PG(v−1, q) induces a one-to-one correspondence between classes of (semi-)linearly
equivalent spanning multisets of points and classes of (semi-)linearly equivalent full-length linear codes. The
maximum point multiplicity γ1 of a multiset M of points is the same as the maximum column multiplicity
of the corresponding linear code C (given an arbitrary generator matrix). So, C is projective iff M is indeed
a set, i.e., M(P ) ≤ 1 for all points P .

A linear code C is said to be ∆-divisible, where ∆ ∈ N≥1, if all of its weights are divisible by ∆. A
multiset M of points is called ∆-divisible iff its corresponding linear code C(M) is ∆-divisible. More directly,
a multiset M of points is ∆-divisible iff we have M(H) ≡ #M (mod ∆) for all hyperplanes H. As for binary
linear codes we speak of even, doubly-even, and triply-even multisets of points in PG(v − 1, 2) when they
are 2-, 4-, and 8-divisible, respectively.

If M is a multiset of points in PG(v − 1, q) and K some subset of all points (usually a subspace in
PG(v − 1, q)), then M|K denotes the restriction of M to K, i.e., M|K(P ) = M(P ) for all P ≤ K and
M|K(P ) = 0 otherwise. If K is a hyperplane then the restricted multiset M|K inherits divisibility with a
smaller divisibility constant, see e.g. [HKK18, Lemma 7].

Lemma 1. Let M be a ∆-divisible multiset of points in PG(v − 1, q). If q divides ∆, then M|H is (∆/q)-
divisible for each hyperplane H.

Of course we can apply the lemma recursively so that M|S is
(
∆/qi

)
-divisible for each subspace S of

codimension i, i.e., dimension v − i, if ∆ is divisible by qi.
For an arbitrary subspace K we denote by χK its characteristic function, i.e., χK(P ) = 1 iff P ≤ K

and χK(P ) = 0 otherwise. The support supp(M) of a multiset of points M is the set of points that have
non-zero multiplicity.

For a given multiset M of points in PG(v − 1, q) we denote by ai the number of hyperplanes H such
that M(H) = i. If M is spanning, then we have a#M = 0. We say that M has dimension k if its span is
a k-dimensional subspace K. By considering M restricted to K ∼= PG(k − 1, q) we can always assume that
M is spanning if we choose a suitable integer for k. For the ease of notation we assume that M is spanning
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in PG(k − 1, q) in the following. Counting the number of hyperplanes in PG(k − 1, q) gives

∑
i

ai =
qk − 1

q − 1
(1)

and counting the number of pairs of points and hyperplanes gives

∑
i

iai = #M · q
k−1 − 1

q − 1
. (2)

By λi we denote the number of points P such that M(P ) = i, so that

∑
i

λi =
qk − 1

q − 1
(3)

and ∑
i

iλi = #M. (4)

Double-counting the incidences between pairs of elements in M and hyperplanes gives

∑
i

(
i

2

)
ai =

(
#M
2

)
· q

k−2 − 1

q − 1
+ qk−2 ·

∑
i

(
i

2

)
λi. (5)

We call the equations (1)-(5) the standard equations for multisets of points. If M is a set of points, then
Equation (5) simplifies to ∑

i

(
i

2

)
ai =

(
#M
2

)
· q

k−2 − 1

q − 1

and is complemented to the standard equations (for sets of points) by equations (1) and (2). We call the
vector (ai)i∈N the spectrum of M. As an abbreviation we set [k]q :=

(
qk − 1

)
/(q − 1) for all k ∈ N.

If all hyperplanes have the same multiplicity, then there is a well known classification of the corresponding
multisets of points. In order to keep the paper self-contained we give a direct proof.

Lemma 2. Let M be a spanning multiset of points of cardinality n in PG(k−1, q) such that every hyperplane
H has multiplicity M(H) = s. Then, we have M(P ) = t for every point P , where t = n/[k]q. If k ≥ 2, then
we additionally have s = t[k − 1]q.

Proof. If k = 1, then we can choose t = n. The unique point P then satisfies M(P ) = #M = n = t. Now
assume k ≥ 2. Equation (1) gives as = [k]q, so that Equation (2) yields s[k]q = n[k − 1]q. If k = 2, then
we have M(P ) = s = t[k − 1]q = t for every point P since every hyperplane is a point for k = 2. For k ≥ 3
double-counting the points of M via the hyperplanes that contain P gives M(P ) = t.

Proposition 3. Let 0 ≤ l ≤ r be integers and M be a qr-divisible multiset of points in PG(v − 1, q) of
cardinality n = ql · [r + 1− l]q. Then, there exists a (r + 1− l)-space K such that M = ql · χK .

Proof. If l = r, then M is qr-divisible with cardinality qr, so that M corresponds to a qr-fold point. If
l < r, then we have qr < n < 2qr and all hyperplanes that do not contain all points of M have the same
multiplicity so that we can apply Lemma 2.

Corollary 4. Let M be a ∆-divisible multiset of points in PG(v − 1, 2) of cardinality n.

• If ∆ = 2 and n = 2, then M is the characteristic function of a double point.

• If ∆ = 2 and n = 3, then M is the characteristic function of a line.
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• If ∆ = 4 and n = 4, then M is the characteristic function of a 4-fold point.

• If ∆ = 4 and n = 6, then M is the characteristic function of a double line.

• If ∆ = 4 and n = 7, then M is the characteristic function of a plane.

• If ∆ = 8 and n = 8, then M is the characteristic function of an 8-fold point.

• If ∆ = 8 and n = 12, then M is the characteristic function of an 4-fold line.

• If ∆ = 8 and n = 14, then M is the characteristic function of a double plane.

• If ∆ = 8 and n = 15, then M is the characteristic function of a solid.

If M is a multiset of points and Q a point in PG(v− 1, q), where v ≥ 2, then we can construct a multiset
MQ in PG(v−2, q) by projection trough Q, that is the multiset image under the map P 7→ ⟨P,Q⟩/Q setting
MQ(L/Q) = M(L)−M(Q) for every line L ≥ P in PG(v−1, q). We directly verify the following properties:

Lemma 5. Let M be a spanning ∆-divisible multiset of points in PG(k − 1, q), where k ≥ 2, and let MQ

arise from M by projection through a point Q. Then we have #MQ = #M−M(Q), MQ is ∆-divisible,
the span of MQ has dimension k − 1, and γ1(MQ) = M(L) −M(Q), where L is a line containing Q and
maximizing M(L).

In the binary case also 2r-divisible multisets of points of cardinality 2r+1 can be characterized easily for
each r ∈ N. We first state an auxiliary result that is also used later on.

Lemma 6. Let M be a spanning multiset of points in PG(k − 1, q) with cardinality n, 1 ≤ l ≤ k − 2,
and K be an arbitrary l-dimensional subspace. If all hyperplanes containing K have cardinality s, then
M(K) = s− n−s

q−1 + n−s
qk−l−1(q−1)

> s− n−s
q−1 . If all hyperplanes containing K have cardinality at least s, then

M(K) ≥ s− n−s
q−1 + n−s

qk−l−1(q−1)
> s− n−s

q−1 .

Proof. Counting points via the hyperplanes containing K yields

[k − l]q · (s−M(K)) = [k − l − 1]q · (n−M(K))

in the first case. Solving for M(K) yields

M(K) =
[k − l]q · s− [k − l − 1]q · n

qk−l−1
= s− n− s

q − 1
+

n− s

qk−l−1(q − 1)
> s− n− s

q − 1
.

In the second case the same reasoning yields

M(K) ≥ s− n− s

q − 1
+

n− s

qk−l−1(q − 1)
> s− n− s

q − 1
.

Proposition 7. Let r ≥ 1 be an integer and M be a 2r-divisible multiset of points in PG(v − 1, 2) with
cardinality 2r+1. Then, either M = 2r+1 · χP for a point P or there exist subspaces K and E ≤ K with
r+1 ≥ dim(E) = dim(K)− 1 ≥ 1 such that M = 2r+1−dim(E) ·χK\E = 2r+1−dim(E) ·χK − 2r+1−dim(E) ·χE.

Proof. Let k be the dimension of the span of M. If k = 1, then there clearly exists a point P with
M = 2r+1 ·χP . For k ≥ 2 the standard equations yield a0 = 1 and a2r = 2k − 2. We choose E as the unique
hyperplane with multiplicity zero (and K as the entire ambient space). If P is a point with M(P ) > 0, then
Lemma 6 yields M(P ) = 2r−k+2. Since there are exactly 2k−1 points outside of E, all points P outside of
E have multiplicity 2r−k+2 = 2r+1−dim(E).
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In other words, the corresponding multisets of points are suitable multiples of affine spaces or are given
by 2r+1-fold points, which might be considered as a degenerated case. We remark that the corresponding
situation for q > 2 is more complicated, see papers on the so-called cylinder conjecture [DBDMS19, KM21].

Definition 8. By Γq(∆, n) we denote the minimum of γ1(M) over all ∆-divisible multisets of points M
in PG(v − 1, q) with cardinality n, where v is sufficiently large. If no such multiset of points exist we set
Γq(∆, n) = ∞.

In [War81, Theorem 1] it was shown that each (ped)-divisible code over a finite field with characteristic p,
where gcd(p, d) = 1, is a d-fold repetition of a pe-divisible code. So it suffices to determine Γq(∆, n) for the
cases when ∆ has no non-trivial factor that is coprime to q. In [KK20, Theorem 1] the possible (effective)
lengths of qr-divisible codes over Fq were completely characterized for all r ∈ N. In order to state the result
we need a bit more notation. For each r ∈ N and each integer 0 ≤ i ≤ r we define sq(r, i) := qi · [r − i+ 1]q.
Note that the number sq(r, i) is divisible by qi but not by qi+1. This allows us to create kind of a positional
system upon the sequence of base numbers Sq(r) :=

(
sq(r, 0), sq(r, 1), . . . , sq(r, r)

)
. With this, each integer

n has a unique Sq(r)-adic expansion

n =

r∑
i=0

eisq(r, i)

with e0, . . . , er−1 ∈ {0, . . . , q−1} and leading coefficient er ∈ Z. Rewritten to our geometrical setting [KK20,
Theorem 1] says:

Theorem 9. For n ∈ Z and r ∈ N the following are equivalent:

(i) For sufficiently large v there exists a qr-divisible multiset of points of cardinality n in PG(v − 1, q).

(ii) The leading coefficient er of the Sq(r)-adic expansion of n is non-negative.

As an example we consider the S2(2)-adic expansion of 9: 1 · 7 + 1 · 6 − 1 · 4. So, there is no 4-divisible
multiset of points with cardinality 9 in PG(v−1, 2), where the dimension v of the ambient space is arbitrary.
A direct implication of Theorem 9 is:

Proposition 10. We have Γ2(2, 1) = ∞, Γ2(4, n) = ∞ for n ∈ {1, 2, 3, 5, 9}, and Γ2(8, n) = ∞ for
n ∈ {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 18, 19, 21, 25, 33}.

For ∆ ∈ {2, 4, 8} the possible cardinalities of ∆-divisible sets of points over F2 are completely determined,
see e.g. [HKK18] and [HKKW19, Theorem 2], where it was shown that no binary 8-divisible projective linear
code of effective length 59 exists. In our context this implies:

Proposition 11. We have Γ2(2, n) = 1 iff n ≥ 3, Γ2(4, n) = 1 iff n ∈ {7, 8} or n ≥ 14, and Γ2(8, n) = 1 iff
n ∈ {15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51} or n ≥ 60.

We can use the corresponding examples to construct multisets of points of larger divisibility or larger
cardinality. If M is a ∆-divisible multiset of points in PG(v − 1, q), then q · M is a q∆-divisible multiset
of points in PG(v − 1, q) with cardinality q · #M and maximum point multiplicity q · γ1(M). Using the
decomposition Fv1

q ⊕Fv2
q

∼= Fv1+v2
q we can also combine two ∆-divisible multisets of pointsMi in PG(v1−1, q),

where i = 1, 2, to a ∆-divisible multiset of points in PG(v1 + v2 − 1, q) with cardinality #M1 +#M2 and
maximum point multiplicity max{γ1(M1), γ1(M2)}. Applied recursively we obtain:

Proposition 12.

(i) We have Γ2(2, 2) = 2, Γ2(4, n) = 2 for n ∈ {6, 10, 12, 13}, and Γ2(8, n) = 2 for n ∈ {14, 28, 29, 34, 36, 38,
40, 42, 43, 44, 52, 53, 54, 55, 56, 57, 58, 59}.

(ii) We have Γ2(4, n) ≤ 4 for n ∈ {4, 11} and Γ2(8, n) ≤ 4 for n ∈ {12, 20, 24, 26, 27, 35, 39, 41}.

(iii) We have Γ2(8, n) ≤ 8 for n ∈ {8, 22, 23, 37}.
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The main goal of the remaining part of this paper is to show that the upper bounds in (ii) and (iii)
are indeed sharp, see Theorem 13. We remark that the constructions used in [KK20] imply Γq(q

r, n) ≤ r
whenever Γq(q

r, n) ̸= ∞ and r ∈ N.

Theorem 13.

• We have Γ2(2, 1) = ∞, Γ2(4, n) = ∞ for n ∈ {1, 2, 3, 5, 9}, and Γ2(8, n) = ∞ for n ∈ {1, 2, 3, 4, 5, 6, 7, 9,
10, 11, 13, 17, 18, 19, 21, 25, 33}.

• We have Γ2(2, n) = 1 iff n ≥ 3, Γ2(4, n) = 1 iff n ∈ {7, 8} or n ≥ 14, and Γ2(8, n) = 1 iff n ∈
{15, 16, 30, 31, 32, 45, 46, 47, 48, 49, 50, 51} or n ≥ 60.

• We have Γ2(2, 2) = 2, Γ2(4, n) = 2 for n ∈ {6, 10, 12, 13}, and Γ2(8, n) = 2 for n ∈ {14, 28, 29, 34, 36, 38,
40, 42, 43, 44, 52, 53, 54, 55, 56, 57, 58, 59}.

• We have Γ2(4, n) = 4 for n ∈ {4, 11} and Γ2(8, n) = 4 for n ∈ {12, 20, 24, 26, 27, 35, 39, 41}.

• We have Γ2(8, n) = 8 for n ∈ {8, 22, 23, 37}.

Another tool that we can use in the task of proving Theorem 13 is the classification of ∆-divisible codes
spanned by codewords of weight ∆ [KKar]. An exemplary implication is:

Lemma 14. Let C be a binary code with non-zero weights in {8, 16, 24} that is spanned by codewords of
weight 8. Then, we have

A8 ∈ {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 25, 29, 30, 31, 33, 37, 45}

for the number A8 of the number of codewords of weight 8 in C (including the case that C is empty).

Proof. We apply the classification of [KKar]: The possible weight enumerators of the indecomposable sub-
codes are given by 1 + 1x8, 1 + 3x8, 1 + 7x8, 1 + 15x8, 1 + 6x8 + 1x16, 1 + 10x8 + 5x16, 1 + 14x8 + 1x16,
1 + 30x8 + 1x16, 1 + 15x8 + 15x16 + 1x24, and 1 + 21x8 + 35x16 + 7x24. Combining two such blocks with
maximum weight 8 gives the further possibilities 1+2x8+1x16, 1+4x8+3x16, 1+8x8+7x16, 1+2x8+1x16,
1 + 16x8 + 15x16, 1 + 2x8 + 1x16, 1 + 6x8 + 9x16, 1 + 10x8 + 21x16, 1 + 18x8 + 45x16, 1 + 14x8 + 49x16,
1 + 22x8 + 105x16, and 1 + 30x8 + 225x16. Combining these or a block with maximum weight 16 with
a block with maximum weight 16 further possibilities 1 + 7x8 + 7x16 + 1x24, 1 + 9x8 + 19x16 + 3x24,
1 + 13x8 + 43x16 + 7x24, 1 + 21x8 + 91x16 + 15x24, 1 + 11x8 + 15x16 + 5x24, 1 + 7x8 + 7x16 + 1x24,
1 + 13x8 + 35x16 + 15x24, 1 + 17x8 + 75x16 + 35x24, 1 + 25x8 + 155x16 + 75x24, 1 + 15x8 + 15x16 + 1x24,
1 + 17x8 + 43x16 + 3x24, 1 + 21x8 + 99x16 + 7x24, 1 + 29x8 + 211x16 + 15x24, 1 + 31x8 + 31x16 + 1x24,
1 + 33x8 + 91x16 + 3x24, 1 + 37x8 + 211x16 + 7x24, and 1 + 45x8 + 451x16 + 15x24.

3 Classification results for even and doubly-even multisets of points

A few classification results are already stated in Corollary 4. Here the characterized multisets of points are
given by λ · χK for some subspace K. For n ≥ 3 another construction of a spanning even set of n points in
PG(n− 2, 2) is given by a so-called projective base Bn of size n, i.e., a set of n points such that each n− 1
points span an (n− 1)-space.

Proposition 15. Let M be a 2-divisible multiset of points in PG(v − 1, 2) with cardinality 5. Then either
M = χL + 2 · χP , where L is a line and P a point, or M is the characteristic function of a projective base
B5 of size 5.

Proof. If there exists a point P with M(P ) ≥ 2, then M− 2 · χP is also 2-divisible with cardinality 3, so
that we can apply Proposition 3. Thus, we can assume γ1(M) = 1 in the following so that the standard
equations yield k = 4 for the dimension of the span of M. Since γ1(M) = 1 no three points form a line
L (since otherwise M − χL would be the characteristic function of a double point). Finally, 2-divisibility
implies that no four points can span a plane, which is a hyperplane in our situation.
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Proposition 16. Let M be a 2-divisible multiset of points in PG(v − 1, 2) with cardinality 4. Then either
M = 2 ·χP1 +2 ·χP2 for two points P1, P2 (that may also be equal) or there exists a plane E and line L ≤ E
with M = χE − χL = χE\L.

Proof. This is a special case of Proposition 7.

Proposition 17. Let M be a 2-divisible multiset of points in PG(v − 1, 2) with cardinality 6. Then either
M contains a point of multiplicity at least two, M is the characteristic function of a projective base B6 of
size 6 or M = χL1

+ χL2
for two (disjoint) lines L1, L2.

Proof. If there is no point of multiplicity at least two, then we have γ1(M) = 1, which we assume in the
following. If M contains three points forming a line L, then M− χL is also 2-divisible of cardinality 3, so
that we can apply Proposition 3. In the remaining part we can assume that each three points span a plane
and denote the dimension of the span of M by k. Since each line contains at most two points of M, we
have k ≥ 4. If k = 4, then there has to be a plane E containing four points. Since no three points of M|E
form a line, there exists a line L ≤ E such that M|E = χE −χL = χE\L. However, then M|E is 2-divisible,
c.f. Proposition 16, and M − M|E = 2 · χP for a suitable point P . Thus, it remains to consider the case
k = 5. Here 2-divisibility implies M(E) ≤ 3 for every plane E since otherwise M(⟨E,P ⟩) = 6 for each point
P /∈ E with M(P ) = 1, which contradicts k = 5. Moreover, no five points can span a solid, which is a
hyperplane for k = 5.

We remark that in the case where M contains a point P of multiplicity at least two we can apply
Proposition 16 to M− 2 · χP .

Proposition 18. Let M be a 2-divisible multiset of points in PG(v − 1, 2) with cardinality 7. Then either
M contains a point of multiplicity at least two, there exists a line L such that M − χL ≥ 0, or M is the
characteristic function of a projective base B7 of size 7.

Proof. W.l.o.g. we assume γ1(M) = 1 and M(L) ≤ 2 for every line L. If there would be a plane E with
M(E) ≥ 4, then there would be a line L ≤ E such that M|E = χE\L. However, in this case M|E is
2-divisible and M − M|E would be 2-divisible with cardinality 3, which is possible for the characteristic
function of a line only. Thus, we assume M(E) ≤ 3 for every plane and that each three points of M span
a plane. So, we have k ≥ 5 for the dimension of the span of M since the standard equations do not have a
solution with a5 = 0 for k = 4. For k = 5 there would be a solid S with M(S) = 5. Noting that M(L) ≤ 2
for each line L ≤ S and M(E) ≤ 3 for each plane E ≤ S we conclude that M|S would be a projective base
of size 5, so that M − M|S = 2 · χP for a suitable point P , which contradicts our assumption. Thus, it
remains to consider the case k = 6. Here we have M(S) ≤ 4 for each solid since otherwise M(⟨S, P ⟩) = 7
for each point P /∈ S with M(P ) = 1. From 2-divisibility we conclude M(H) ≤ 5 for each hyperplane H, so
that M has to be the characteristic function of a projective base of size 7.

In the case where M contains a point P of multiplicity at least two we can apply Proposition 15 to
M− 2 · χP . If a line L with M− χL ≥ 0 exists, then we can apply Proposition 16 to M− χL. We remark
that for each dimension 3 ≤ k ≤ 7 of the span of M there exists an up to symmetry unique example, if we
assume γ1(M) = 1. For even sets of points over F2 of cardinality n ≥ 8 the classification gets more involved,
see [HHK+17] for computational results.1

Let M be a doubly-even multiset of points over F2. Cardinalities n ∈ {4, 6, 7} are characterized in
Corollary 4 and cardinality n = 8 is characterized in Proposition 7. Due to Proposition 10 we have #M ≥ 10
for all other feasible cases.

Proposition 19. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with cardinality 10. Then there
either exists a point P with M(P ) ≥ 4 or M = 2 · χB5

where B5 denotes a projective base of size 5.

1Note that adding a parity check bit to an arbitrary binary linear code yields a 2-divisible linear code whose effective length
is increased by one, so that the classification of even sets of points over F2 is equivalent to the classification of sets of points
over F2 (in some sense).
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Proof. W.l.o.g. we assume γ1(M) ≤ 3 and that M is spanning with dimension k. From the standard
equations we compute a2 = 2k−2 + 1 and a6 = 3 · 2k−2 − 2, so that λ2 ≥ 1 since each hyperplane with
multiplicity 2 is 2-divisible, see Lemma 1, and so contains a double point P2. If P3 is a point with multiplicity
3, then each hyperplane H containing P3 has multiplicity M(H) = 6, so that Lemma 6 yields k = 4 via
M(P3) = 2+24−k. For the line L spanned by P2 and P3 we have M(H) = 6 for all hyperplanes H containing
L, so that Lemma 6 yields M(L) = 4 < M(P2) +M(P3) – contradiction. Thus, we have γ1(M) = 2 and
k ≥ 3 since (22−1) ·2 = 6 < 10. Moreover, k ̸= 3 since M′ defined by M′(P ) = 2−M(P ) is also 4-divisible
with cardinality 2 ·

(
2k − 1

)
− 10 = 4, which is impossible.

Let L be a line with M(L) ≥ 3, which clearly exists due to λ2 ≥ 1 and λ1 + λ2 ≥ 2. Each hyperplane H
containing L has multiplicity M(H) = 6, so that Lemma 6 yields M(L) = 4 and k = 4. With this, solving
the standard equations gives λ1 = 0 and λ2 = 5. Thus, 1

2 · M is 2-divisible with cardinality 5 and we can
apply Proposition 15.

Using Corollary 4 and Proposition 19 we conclude:

Corollary 20. Let M be a 4-divisible multiset of points in PG(v− 1, 2) with cardinality 10. Then, we have
M(P ) ∈ {0, 2, 4, 6} for every point P .

Lemma 21. Let 0 ≤ l < r be integers and M be a spanning qr-divisible multiset of points in PG(k − 1, q)

of cardinality n = ql · qr+1−l−1
q−1 + qr. Then γ1(M) = ql or γ1(M) = qr − ql−q2+r−k

q−1 .

Proof. The possible hyperplane multiplicities are m1 := ql · q
r+1−l−1
q−1 = n−qr and m2 := ql · q

r−l−1
q−1 = n−2qr.

Due to Lemma 2 both multiplicities indeed occur. If H is a hyperplane with multiplicity M(H) = m2 =

ql · qr−l−1
q−1 , then Proposition 3 implies the existence of an (r− l)-dimensional subspace S′ in H with M|H =

ql · χS′ . Thus we have γ1(M) ≥ ql. If P is a point with multiplicity M(P ) > ql, then each hyperplane
through P has cardinality m1. Lemma 6 yields

M(P ) = n− qr

qk−2
· [k − 1]q = qr − ql − q2+r−k

q − 1
.

Proposition 22. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with cardinality 11. Then,
M = χE + 4 · χP , where E is a plane and P a point.

Proof. Since no 4-divisible set of 11 points in PG(v−1, 2) exists, Lemma 21 implies γ1(M) = 3+22+r−k ≥ 4,
where k is the dimension of the span of M and r = 2. Reducing the multiplicity of a point P with maximum
multiplicity by four gives a 4-divisible multiset of points with cardinality 7, which is the characteristic
function of a plane by Proposition 3.

Proposition 23. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with cardinality 12. Then either
there exists a point with multiplicity at least four or all points have even multiplicity.

Proof. W.l.o.g. we assume γ1(M) ≤ 3. Assume that P is a point with multiplicity M(P ) = 3. If H is a
hyperplane with P ≤ H and M(H) = 4, then we can apply Proposition 16 to conclude a contradiction since
M|H is 2-divisible, see Lemma 1. Thus, all hyperplanes containing P have multiplicity 8 and Lemma 6
yields a contradiction. So, we conclude γ1(M) = 2 from Proposition 11.

Denoting the dimension of the span of M by k we conclude k ≥ 3 from 2 ·
(
2k − 1

)
≥ 11. Moreover, k ̸= 3

since M′ defined by M′(P ) = 2−M(P ) is also 4-divisible with cardinality 2 · 7− 12 = 2 otherwise, which
is clearly impossible. Now assume that P1 is a point with multiplicity 1 and P2 a point with multiplicity 2.
Consider the line L spanned by P1 and P2. Now observe that M(H) ̸= 4 for each hyperplane H containing
L since M|H is 2-divisible and Proposition 16 would yield a contradiction otherwise. Since we have λ2 ≥ 1,
this implies λ1 = 0.
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So, we can read off the explicit classification from Proposition 7 or Proposition 17.

Proposition 24. Let M be a 4-divisible multiset of points in PG(v− 1, 2) with cardinality 13. Then, either
M = χE + 2 · χL, where E is a plane and L a line, or there exists a projective base B5 of size 5 and a
point C outside of the span of B5 such that M(C) = 3, M(Q) = 1 if there exists a point P in B5 such that
Q ∈ ⟨P,C⟩, Q ̸= C, and M(Q) = 0 otherwise.

Proof. Since no 4-divisible multiset of points in PG(v − 1, 2) with cardinality 9 exists, we have γ1(M) < 4
and k ≥ 3 for the dimension k of the span of M. Due to Corollary 4 it suffices to show the existence of a
plane E with M ≥ χE . If k = 3, then we consider M′ defined by M′(P ) = 3 −M(P ). With this, M′ is
also 4-divisible, has cardinality 3 ·

(
2k − 1

)
− #M = 8 and maximum point multiplicity at most 3. From

Proposition 7 we conclude γ1(M′) ≤ 2, so that we can choose E as the ambient space. In the remaining
part we have k ≥ 4. Since there is no 2-divisible multiset of cardinality 1, we can use the standard equations
to compute a5 = 5 · 2k−3 + 1, a9 = 3 · 2k−3 − 2, and λ2 = 1− 3λ3 + 26−k.

Assume that P1, P2 are two different points with M(P1),M(P2) ≥ 2. Let L be the line spanned by P1, P2

and H be an arbitrary hyperplane containing L. Since M|H is 2-divisible and contains both P1 and P2,
Proposition 15 yields M(H) = 9. Applying Lemma 6 yields M(L) = 5 + 25−k. If k = 5, then λ2 = 3− 3λ3

and the assumption λ2 + λ3 ≥ 2 implies λ3 = 0 and λ2 = 3, so that M ≥ 2 ·χL (using M(L) = 6). If k = 4,
then we have M(L) = 7 and λ3 ≤ 1 also implies M ≥ 2 · χL. Since 2 · χL is 4-divisible M− 2 · χL is also
4-divisible with cardinality 7, Corollary 4 implies the existence of a plane E with M = 2 · χL + χE .

If λ2 + λ3 ≤ 1, then λ2 = 1 − 3λ3 + 26−k implies λ2 = 0, λ3 = 1, and k = 5. If P is a point
with multiplicity 1, then all hyperplanes containing the line L spanned by P and the unique point of
multiplicity 3 have multiplicity 9, so that Lemma 6 yields M(L) = 5. In other words there exist five
pairwise different lines L1, . . . , L5 that all contain the unique point of multiplicity 3, denoted by P3, such
that M = −2χP3 +

∑5
i=1 χLi

. If S is a solid, then S can contain at most three of the lines Li (using
M(S) ≤ 9) and intersects the others in a point. Thus, factoring out P3 from the Li yields a projective base
of size 5.

Lemma 25. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with #M = 15 and 2 ≤ γ1(M) ≤ 3
that does not contain a plane in its support. Then, we have k ≥ 5 for the dimension k of the span of M and
there does not exist a line L′ with M(P ) ≥ 2 for all points P in L′. Moreover, we have

a7 = 7 · 2k−3 + 1− 2a3, (6)

a11 = 2k−3 − 2 + a3, and (7)

a3 = (4 + λ2 + 3λ3) · 2k−6 − 1 (8)

for the spectrum of M and the multiplicity M(S) of each subspace S of codimension 2 is odd.

Proof. Since γ1(M) ≤ 3, we have k ≥ 3. If k = 3, then we consider M′ defined by M′(P ) = 3 − M(P ).
With this, M′ is 4-divisible with cardinality 6, to that Corollary 4 implies γ1(M′) ≤ 2. Thus, we can choose
E as the ambient space and have M ≥ χE . In the remaining part we have k ≥ 4. The stated equations for
the spectrum can be directly concluded from the standard equations. If k = 4, then λ2 + λ3 ≥ 1 implies
a3 ≥ 1. Let H be a hyperplane with multiplicity 3 and L be a line such that M|H = χL. For the two other
hyperplanes H ′, H ′′ that contain L w.l.o.g. we can assume M(H ′) = 7 and M(H ′′) = 11. Since M|H′ is not
the characteristic function of a plane there exists a point P ≤ H ′ with M(P ) ≥ 2 so that M|H′ −χL−2 ·χP

is a double point and we have λ2 ≥ 2. Thus, a3 ∈ N implies λ2 = 4, λ3 = 0, and λ1 = 7. However, there
cannot be seven points of multiplicity 1 and two points of multiplicity 2 in H ′′.

If L′ is a line with M(P ) ≥ 2 for all points P in L′, then M−2 ·χL′ would be 4-divisible with cardinality
9, which is impossible. If S is a subspace of codimension 2, then denote the three hyperplanes containing
S by H1, H2, H3, so that #M + 2 · M(S) = M(H1) +M(H2) +M(H3) ≡ 1 (mod 4) yielding M(S) ≡ 1
(mod 2).

Lemma 26. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with #M = 15 and 2 ≤ γ1(M) ≤ 3
that does not contain a plane in its support. There exist a3 lines Li sharing a common point B such that
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M(P ) = 1 for all points P contained in one of the lines Li and λ1 ≥ 2a3 + 1. Moreover, we have k = 5 for
the dimension k of the span of M.

Proof. Let H be a hyperplane of multiplicity 3 and L be a line with M|H = χL. If H
′ is another hyperplane

with multiplicity 3 and L′ a line with M|H′ = χL′ , then we have L ̸= L′ since otherwise M(H ∩H ′) = 3 and
the third hyperplane containing H ∩H ′ would have multiplicity 15 = #M. So, there exist a3 lines Li such
that M(P ) = 1 for all points P contained in one of the lines Li. Moreover any two such lines Li intersect
in exactly a point.

So, if a3 ≤ 2, then there exist a3 lines Li sharing a common point B such that M(P ) = 1 for all points
P contained in one of the lines Li and λ1 ≥ 2a3 + 1.

If there exist three of the lines Li with pairwise different intersection points, then they span a plane E
with six points of multiplicity 1 noting that the 7th point P has multiplicity 0 since M does not contain a
plane in its support. Since the multiplicity of every subspace of codimension 2 is odd, we have k ≥ 6, see
Lemma 25. With this Equation (8) yields a3 ≥ 4. The fourth line Li also has to be completely contained in
E, which is impossible.

Thus, in general all lines Li intersect in a common point B and we conclude λ1 ≥ 2a3 + 1. Due to
Lemma 25 it remains to show k ≤ 5. From λ2+λ3 ≥ 1 we conclude λ1 ≤ 13 and a3 ≤ 6, so that Equation (8)
implies k ≤ 6. If k = 6, then Equation (8) gives a3 ≥ 4. Let S be a solid spanned by three of the lines Li. If S
also contains a fourth line Li, then we haveM(S) ≥ 9 and all three hyperplanes containing S have multiplicity
11 and indeedM(S) = 9. LetH be one of these hyperplanes that contains a point Q with multiplicity at least
2, so that indeed M(Q) = 2. W.l.o.g. we assume that the four lines in S are labeled L1, . . . , L4. Note that
M|H , 2 ·χQ, χL1 , and χ(L2∪L3)\B are 2-divisible so that M|H − 2 ·χQ−χL1 −χ(L2∪L3)\B = χL4\B is also 2-
divisible, which is a contradiction. Thus, any four lines Li span a hyperplaneH with multiplicity 11. Pick one
of these and a solid S that intersects these four Li in exactly point B, so that M(S) ∈ {1, 3}. If M(S) = 1,
then the two other hyperplanes that contain S have multiplicity 3, which would imply γ1(M) = 1 < 2. If
M(S) = 3, then one of the other two hyperplanes containing S has multiplicity 3 and one has multiplicity
7, which implies a3 ≥ 5. With this, Equation (8) gives a3 = 5, λ1 = 11, λ2 = 2, and λ3 = 0. Let H denote
the 16 hyperplanes not containing B. Since 5 · 1 + 2 · 2 = 9 < 11 we have M(H) ∈ {3, 7} for all H ∈ H, so
that 8 · 14 =

∑
H∈H(M(H)− 1) ≥ 6 · 16 – contradiction.

Thus, we have k ≤ 5 and Lemma 25 gives k = 5.

Proposition 27. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with cardinality 15. Then either
there exists a point of multiplicity at least 4, γ1(M) = 1, or there exists a plane E with M ≥ χE.

Proof. W.l.o.g. we assume 2 ≤ γ1(M) ≤ 3 and that M does not contain a plane in its support. Lemma 26
states k = 5 for the dimension of the span of M, so that Equation (8) yields a3 ≥ 2. Using the notation
from Lemma 26 we consider the plane E := ⟨L1, L2⟩ with M(E) ≥ 5. Due to Lemma 25 M(E) is odd.
Since M does not contain a plane in its support, we have M(E) ∈ {5, 7}. If M(E) = 7, then there exists
a point P ≤ E with multiplicity M(P ) = 2. However, E is contained in a hyperplane H of multiplicity
7 and M|H − 2 · χP − χL1

= χL2\B is 2-divisible – contradiction. Thus, M(E) = 5 and for the three
hyperplanes H1, H2, H3 containing E we can assume w.l.o.g. M(H1) = 7, M(H2) = 7, and M(H3) = 11.
Since M|Hi −χL1 is 2-divisible for i = 1, 2 we have γ1(Hi) = 1. Now let P ≤ H3 be a point of multiplicity at
least 2, so that M|H3−2·χP −χL1 is 2-divisible with cardinality 6, so that Proposition 17 implies λ2+λ3 ≥ 2.
With this we conclude λ1 = 11, λ2 = 2, λ3 = 0, and (a3, a7, a11) = (2, 25, 4). For two hyperplanes H, H ′ of
multiplicity 11 let E′ denote their intersection. Counting points gives M(E′) ≥ 7. Since M does not contain
a plane in its support, we have M(E′) = 7, so that the third hyperplane H ′′ containing E′ has multiplicity
7 and contains a double point P . So, M|H′′ − 2 · χP is 2-divisible with cardinality 5 and dimension at
most 3. Using Proposition 15 we conclude that E′ contains both points of multiplicity 2 and three points
of multiplicity 1 that form a line. Let L′ be the line spanned by the two double points and Q be the third
point on the line, so that M(Q) = 1 and M(L′) = 5. Each of

(
4
2

)
= 6 pairs of hyperplanes of multiplicity 11

yields a different plane E′ ≥ L′, so that λ1 ≥ 1 + 6 · 2 = 13, which is a contradiction.

We remark that if a 4-divisible multiset of points M in PG(v− 1, 2) with cardinality 15 contains a point
P with multiplicity at least 4, then M− 4 ·χP is also 4-divisible with cardinality 11, so that Proposition 22
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implies the existence of a plane in the support of M. For γ1(M) = 1 the possibilities have been classified
in [HKK19a]. Except for a single case all point sets also contain a plane in its support. We summarize the
result in:

Corollary 28. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with cardinality 15. Then either
there exists a plane E and a 4-divisible multiset of points M′ in PG(v − 1, 2) with cardinality 8 such that
M = χE +M′ or there exists a projective base B7 of seven points and a point P outside of ⟨B7⟩ such that
M(Q) = 1 iff there is a point P ′ in B7 with Q ≤ ⟨P ′, P ⟩ and M(Q) = 0 otherwise.

Lemma 29. Let M be a 4-divisible multiset of points in PG(v − 1, 2) with cardinality 16 and γ1(M) ≤ 3.
Then, we have λ3 ≤ 4 and λ2 + 3λ3 ≤ 12. If λ3 < 4, then λ3 ≤ 2.

Proof. W.l.o.g. we assume γ1(M) = 3. Note that λ2 ≤ 16−3λ3

2 implies λ2 +3λ3 ≤ 8+ 3λ3

2 ≤ 12.5 for λ3 ≤ 3.
So, let P1, P2, P3 be three arbitrary different points with multiplicity at least 2. If they form a line L, then
M − 2 · χL is 4-divisible with cardinality 10, so that Corollary 20 yields a contradiction. Thus, any three
points with multiplicity at least two span a plane E. If E contains a fourth point of multiplicity at least 2,
then they form an affine plane A, so that we can apply Proposition 7 to conclude the statement. Since there
is no 4-divisible multiset of points with cardinality [3]2 · 3 − #M = 7 · 3 − 16 = 5, we have k ≥ 4 for the
dimension of the span of M. For the case k = 4 consider a plane E spanned by three points of multiplicity
3. Since M(E) ≥ 9, we have M(E) = 12. However, the three different lines spanned by the three pairs of
the considered three points of multiplicity 3 have even cardinality and the third point has multiplicity at
most 1, so that E contains three points with multiplicity 0 that form a line L′. Since the fourth point in
E\L′ has multiplicity at most 1, we obtain the contradiction M(E) ≤ 10. Thus, we can assume k ≥ 5 in
the following.

Let E be a plane spanned by three points of multiplicity 3. Since M(E) ≥ 9 we have M(H) = 12 for
every hyperplane H containing E, so that Lemma 6 yields M(E) = 8 + 26−k. An arbitrary line L that is
contained in hyperplanes of multiplicity 12 only has multiplicity M(L) = 8+25−k, which is impossible. Now
assume k = 5 for a moment, so that M(E) = 10 and E contains an additional point Q with multiplicity 1. If
there would be a line L ≤ E with multiplicity 7, then for a hyperplane H ≥ L with multiplicity 8 we would
have that M|H − χL is 2-divisible with cardinality 5 containing two double points – contradiction. Thus,
the four points with non-zero multiplicity in E form an affine plane, i.e., M|E is 2-divisible. So, for each of
the three hyperplanes H containing E we have M(H) = 12 and M|H −M|E is 2-divisible with cardinality
2, i.e., a double point. Thus, we conclude λ3 = 3, λ2 = 3, and λ1 = 1. However, for a line L spanned by
two points P ′, P ′′ of multiplicity 3 we have M(L) = 6 there exists a hyperplane H ≥ L with multiplicity
M(H) = 8. Thus, M|H − 2 · χP ′ − 2 · χP ′′ is 2-divisible with cardinality 4 containing at least two points of
multiplicity 2, so that Proposition 7 yields the existence of two points with multiplicity 1 outside of L. This
contradicts λ1 = 1 and it remains to consider the case k = 6. Here the plane E spanned by three points
of multiplicity 3 has multiplicity 9 and any solid containing S has multiplicity 10. Thus, we have λ3 = 3,
λ2 = 0, and λ1 = 7. Now consider a line L spanned by two points of multiplicity 3, so that M(L) = 6, and
let H ≥ L be a hyperplane with multiplicity 8, so that Proposition 7 yields that M|H spans a plane E′ and
the four points of non-zero multiplicity form an affine plane. Let S be the solid spanned by E′ and the third
point of multiplicity 3, so that M(S) ≥ 8 + 3 = 11, which is impossible for k = 6.

Lemma 30. Let M be a 4-divisible spanning multiset of points in PG(k−1, 2) with cardinality 16, γ1(M) =
3, and λ2 ≥ 2. Then, we have (λ1, λ2, λ3) ∈

{
(7, 3, 1), (6, 2, 2), (9, 2, 1)

}
.

Proof. Let P1, P2, P3 be three arbitrary different points with multiplicity at least 2. If they form a line L,
then M − 2 · χL is 4-divisible with cardinality 10, so that Corollary 20 yields a contradiction. Thus, any
three points with multiplicity at least two span a plane E. If E contains a fourth point of multiplicity at
least 2, then they form an affine plane A, so that we can apply Proposition 7 to conclude the statement.
Assume M(P1) = 3, M(P2) = M(P3) = 2, and that each plane contains at most three points of multiplicity
at least 2 in the following. Since there is no 4-divisible multiset of cardinality 9, E contains at least one
point with multiplicity 0, so that 7 ≤ M(E) ≤ 10. Since M|H is 2-divisible for any hyperplane H, we
have M(H) = 12 if H ≥ E, so that Lemma 6 yields M(E) = 8 + 26−k, which implies M(E) ∈ {9, 10}
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and k ∈ {5, 6}. Since E contains only three points of multiplicity at least 2, we have a0 = 0. With this,
we conclude λ2 + 3λ3 = 26−k · (3 + a12) − 8. Let Q be an arbitrary point outside of E and S be the solid
spanned by Q and E. If k = 5, then M(S) = 12 and M(E) = 10 implies M(Q) ≤ 2, so that λ3 = 1. Using
λ2 + 3λ3 = 2a12 − 2 we conclude λ2 ≡ 1 (mod 2), so that λ2 ≥ 3. Now consider a plane E′ spanned by
three points of multiplicity 2. Since E′ does not contain a fourth point of multiplicity at least 2, we conclude
that every hyperplane H ′ ≥ E′ has multiplicity 12. As before, we can conclude M(E′) = 10, which then
implies M(P ) ≥ 1 for all P ≤ E – contradiction. It remains to consider the case k = 6 where M(E) = 9
and M(S) = 10 for every solid S ≥ E, so that λ2 + λ3 = 3.

Lemma 31. Let M be a 4-divisible multiset of points in PG(v−1, 2) with cardinality 17 and 2 ≤ γ1(M) ≤ 3.
Then, we have

a5 = 2k−3 + 2 + a13,

a9 = 7 · 2k−3 − 3− 2a13,

λ2 + 3λ3 = −5 + 26−k · (3 + a13) ,

and k ≥ 4. Moreover, each three points of multiplicity at least 2 span a plane and each four points of
multiplicity at least 2 span a solid.

Proof. Since no 2-divisible multiset of points of cardinality 1 exists, the multiplicities of the hyperplanes
are contained in {5, 9, 13}. From the standard equations we compute the stated equations. Clearly we have
k ≥ 3. If k = 3, then M′ defined by M′(P ) = 3−M(P ) would be 4-divisible with #M′ = 4 and γ1(M′) ≤ 3
– contradiction. If L′ is a line with M ≥ 2 · χL′ , then M− 2 · χL′ would be 4-divisible with cardinality 11,
so that Proposition 22 implies γ1(M) ≥ 4 – contradiction. In other words each three points of multiplicity
at least 2 span a plane. If E is a plane and L ≤ E a line with M ≥ 2 · χE\L, then M− 2 · χE\L would be
4-divisible with cardinality 9 – contradiction. Thus, any four points of multiplicity at least 2 span a solid.

Lemma 32. Let M be a 4-divisible multiset of points in PG(v−1, 2) with cardinality 17 and 2 ≤ γ1(M) ≤ 3.
Then there exists a point P with M(P ) = 2, k ≥ 6, or λ3 = 1.

Proof. Assuming λ2 = 0 the standard equations yield

a5 = 2k−3 + 2 + a13,

a9 = 7 · 2k−3 − 3− 2a13, and

3λ3 = (3 + a13) · 26−k − 5,

where k denotes the dimension of the span of M. If k ≤ 3, then λ3 ≤ 5 implies a13 < 0 – contradiction. If
k = 4, then λ3 ≡ 1 (mod 4), so that we can assume λ3 = 5. With this we have a5 = 6, a9 = 7, a13 = 2, and
λ1 = 2. Let L be the line spanned by the two points of multiplicity one. From Proposition 15 we conclude
that every hyperplane of multiplicity 5 has to contain L. However, L is contained in three hyperplanes only
– contradiction.

Finally, assume k = 5 and λ3 ≥ 2. If λ3 = 2, then 3λ3 = (3 + a13) · 26−k − 5 would imply that a13
is fractional. So, let P1, P2, P3 be different points with multiplicity 3. They cannot form a line L since
M − 2 · χL would be 4-divisible with cardinality 11 but does not contain a point of multiplicity at least
4, which contradicts Proposition 22. So, let E be the plane spanned by P1, P2, and P3. Clearly every
hyperplane H containing E has multiplicity at least 9. However, multiplicity 9 is impossible, since otherwise
M|H −

∑3
i=1 2 · χPi

would be 2-divisible of cardinality 3, so that Corollary 4 yields that P1, P2, P3 form
a line – contradiction. Thus, we have M(E) = 11, which implies λ3 = 3, λ1 = 8, a13 = 4, a5 = 10, and
a9 = 17. Now let L ≤ E be a line with multiplicity 7, so that M|L is 2-divisible and all 7 hyperplanes
containing L have multiplicity 13 – contradiction.

Lemma 33. Let M be a 4-divisible multiset of points in PG(v−1, 2) with cardinality 17 and 2 ≤ γ1(M) ≤ 3.
If there exists a line L consisting of three points Pi with M(Pi) = i for 1 ≤ i ≤ 3, then we have k = 5,
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λ1 = 9, λ2 = 1, λ3 = 2, a13 = 3, a9 = 19, and a5 = 9. Up to symmetry a unique representation of M is
given by the columns of 

111 1 111 1 00 0 00 00 00
000 1 111 0 11 0 00 00 11
000 0 111 1 00 1 01 01 01
000 0 000 0 00 0 11 00 11
000 0 000 0 00 0 00 11 11

 .

Proof. Since M(L) = 6 ̸≡ #M (mod 2), Lemma 1 implies k ≥ 5. Assume that Q is another point with
M(Q) ≥ 2 and consider the plane E spanned by L and Q. If H ≥ E is a hyperplane with multiplicity 9,
then M′ := M|H −χL−2 ·χP3 −2 ·χQ would be 2-divisible with cardinality 2, so that M′ = 2 ·χP for some
point P . However, we have M′(P2) = 1 – contradiction. Thus, every hyperplane H ≥ E has multiplicity
13, so that Lemma 6 yields M(E) = 9 + 26−k.

If k = 5, then M(E) = 11 and the other six planes E′ containing L have multiplicity 7, so that all
points of multiplicity at least 2 are contained in E. Lemma 31 then yields λ2 + λ3 = 3, so that λ2 + 3λ3 =
−5 + 26−k · (3 + a13) and a13 ≥ 3 implies λ2 = 1, λ3 = 2, λ1 = 9, and a13 = 3. Using the equations in
Lemma 31 we then compute a9 = 19 and a5 = 9.

If k = 6, then M(E) = 10 and each solid S ≥ E has multiplicity 11. Thus, as before, we conclude
that all points with multiplicity at least 2 are contained in E and λ2 + λ3 = 3. Let R1, R2, R3 be pairwise
different points such that M|E −χL − 2 ·χP3

− 2 ·χQ =
∑3

i=1 χRi
. For any two points Z1, Z2 of multiplicity

1 outside of E there exists a third point Z3 (depending on Z1 and Z2), so that M|H = M|E +
∑3

i=1 χZi for

the hyperplane H = ⟨E,Z1, Z2⟩ and M′ :=
∑3

i=1 χRi
+

∑3
i=1 χZi

is 2-divisible consisting of six different
points of multiplicity 1. Now we apply Proposition 17. If M′ is the sum of the characteristic functions of
two disjoint lines, then one of the two lines has to be contained in E, i.e., the Ri form a line. In that case,
also the Zi have to form a line for each choice of a pair {Z1, Z2}, so that the seven points of multiplicity 1
outside of E form a disjoint plane E′. However, then we can apply Proposition 19 to M− χE′ = M|E to
obtain a contradiction. Thus, M′ is a projective base of size 6 in all cases. This is impossible as it can be
seen using coordinate representations: W.l.o.g. we assume Ri = ei for 1 ≤ i ≤ 3, where ej denotes the jth
unit vector. Since M is spanning, we assume w.l.o.g. that also ei are points of multiplicity 1 for 4 ≤ i ≤ 6.
Choosing 4 ≤ i < j ≤ 6 the points e1, e2, e3, ei, ej are completed by e1 + e2 + e3 + ei + ej to a projective
base of size 6. However, e1, e2, e3, e1 + e2 + e3 + ei + ej , e1 + e2 + e3 + ei + eh are completed by ej + eh to
a projective base of size 6 for each {i, j, h} = {4, 5, 6}, which gives more than seven points of multiplicity 1
outside of E – contradiction.

It remains to consider the case λ3 = λ2 = 1 and λ1 = 12. The projection MP2
of M through P2 is

4-divisible with cardinality 15 and a unique point P ′ of cardinality 4 (arising from P1 and P3). However,
Proposition 22 yields a contradiction for MP2

− 4 · χP ′ .

For the classification of the case k = 5, λ1 = 9, λ2 = 1, λ3 = 2, a13 = 3, a9 = 19, and a5 = 9, we
consider a projection MP2

of M through the unique point P2 of multiplicity 2. Note that the line L is
mapped to a point Q with multiplicity MP2

(Q) = M(P3) +M(P1) = 4, so that MP2
− 4 · χQ is 4-divisible

with cardinality 11. From Proposition 22 we conclude the existence of a point Q
′
and a plane E

′
such that

MP2 = 4 · χQ + 4 · χQ
′ + χE

′ . The preimage of Q
′
has to be a line L′ consisting of P2, the second point of

multiplicity 3, that we denote by P ′
3, and a point P ′

1 of multiplicity 1. Since P2 and P ′
3 are contained in E,

also P ′
1 is contained in E. Let L̃ := ⟨P1, P

′
1⟩, N be the third point in L̃, and A be the seventh point in E, i.e.,

the set of points in E is given by {P1, P2, P3, P
′
1, P

′
3, A,N}. Since M(E) = 11 we have M(A) +M(N) = 1.

Each of the three hyperplanes H1, H2, H3 containing E has multiplicity 13 and consists of two points of
multiplicity 1 outside of E. By Li we denote the line spanned by those two points, where 1 ≤ i ≤ 3. Since
k = 5, the line Li meets E in a point Zi. We will now determine Zi and show Z1 = Z2 = Z3. Let Zi ≤ L̂ ≤ E

be an arbitrary line and Ê =
〈
L̂, Li

〉
be a plane depending on the choice of L̂. Note that M(Ê) = M(L̂)+2

and M(Ê) ≡ #M ≡ 1 (mod 2) due to Lemma 1. Thus Zi cannot be contained in L or L′, which implies
Zi ∈ {A,N}. Noting that N ≤ ⟨P3, P

′
3⟩ we then conclude Zi = A for all 1 ≤ i ≤ 3, which then implies
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M(A) = 1 and M(N) = 0. For a parameterization of M we denote the ith vector by ei and choose w.l.o.g.
A = e3, P2 = e2, P3 = e1, so that P ′

3 = e1+ e2+ e3, P1 = e1+ e3, P
′
1 = e1+ e2, and N = e2+ e3. W.l.o.g. we

choose L1 = ⟨e3, e4⟩ and L2 = ⟨e3, e5⟩. From 4-divisibility we then conclude L3 = ⟨e3, e2 + e4 + e5⟩, which
can be seen e.g. by looking at the first 15 columns of the stated matrix and using the fact that the number
of ones in each row has to be divisible by 4.

Lemma 34. Let M be a spanning 4-divisible multiset of points in PG(k− 1, 2) with cardinality 17, λ2 = 0,
and γ1(M) = 3. Then, we have λ3 ∈ {1, 2} and a line spanned by two points of multiplicity 3 has multiplicity
6. If λ3 = 2, then k ≥ 6.

Proof. Assume that L is a line consisting of two points of multiplicity 3 and one point of multiplicity 1.
Noting that M|L is 2-divisible and λ2 = 0 we conclude M(H) = 13 for each hyperplane H ≥ L. Since
M(L) = 7, we have k ≥ 4 and can use Lemma 6 to conclude M(L) > 9 – contradiction.

Due to Lemma 32 it suffices to consider the case λ3 ≥ 3. W.l.o.g. we assume that the points with
the coordinates e1, e2, and e3 have multiplicity 3, so that the points in ⟨e1 + e2, e1 + e3⟩ have multiplicity
zero. Set E := ⟨e1, e2, e3⟩ and Q := ⟨e1 + e2 + e3⟩. Since no 4-divisible multiset of points of cardinality 9
exists, we have M(Q) ∈ {0, 1} so that M(E) ∈ {9, 10}. Note that M|E is not 2-divisible if M(E) = 9,
so that all hyperplanes H ≥ E have multiplicity 13 and Lemma 6 yields M(E) = 9 + 26−k, so that k = 6
and M(E) = 10, i.e., M(Q) = 1. So, M|E is 2-divisible and each hyperplane H ≥ E has multiplicity
13 and is given by M|H − M|E = χLH

for some line LH . For an arbitrary point P ̸∈ E with non-
zero multiplicity consider the solid S = ⟨E,P ⟩ and the three hyperplanes H1, H2, H3 containing S. Since

M(H1) = M(H2) = M(H3) = 13, we have M(S) = 11 and M = M|E +
∑3

i=1 χLHi
− 2χP . Using the same

argument for a different point P ̸= Q ̸∈ E with non-zero multiplicity yields a contradiction.

4 The minimum possible point multiplicity for triply-even multi-
sets of points

Let M be an 8-divisible multiset of points in PG(v−1, 2). From Corollary 4 we know γ1(M) = 8 if #M = 8
and γ1(M) = 4 if #M = 12.

Lemma 35. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 22. Then, we have
γ1(M) ≥ 8.

Proof. The possible hyperplane multiplicities are given by 14 and 6. If H is a hyperplane with M(H) = 6,
then Corollary 4 yields M|H = 2 · χL for some line L. If P is a point with multiplicity M(P ) > 2, then all
hyperplanes containing P have multiplicity 14 and Lemma 6 yields M(P ) = 6 + 25−k, so that it suffices to
consider the case M(P ) = 7. Since M|H −4 ·χP is 4-divisible with cardinality 10 and a point of multiplicity
3, Corollary 20 gives a contradiction.

It remains to consider the case γ1(M) = 1. Using the standard equations we compute λ2 = 19 + 28−k

for the dimension k of the span of M, which clearly contradicts #M = 22.

Lemma 36. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 23. Then, we have
γ1(M) ≥ 8.

Proof. The possible hyperplane multiplicities are given by 15 and 7. If H is a hyperplane with M(H) = 7,
then Corollary 4 yields M|H = χE for some plane E. If P is a point with multiplicity M(P ) > 1, then all
hyperplanes containing P have multiplicity 15 and Lemma 6 yields M(P ) > 7. However, not all hyperplanes
can have multiplicity 15.
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Lemma 37. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 37 and γ1(M) ≤ 7.
Then, we have

a13 = 5 · 2k−4 + 2 + a29,

a21 = 11 · 2k−4 − 3− 2a29, and
7∑

i=2

(
i

2

)
λi = 9 + 28−k · (3 + a29) (9)

for the spectrum of M, where k is the dimension of the span of M. There do not exist a solid S′, a plane E′,
or a line L′ such that M ≥ χS′ , M ≥ 2 · χE′ , or M ≥ 4 · χL′ , respectively. Moreover, we have γ1(M) ≤ 3,
each point of multiplicity at most 3 is contained in a hyperplane with multiplicity 13, and k ≥ 6.

Proof. Since there is no 4-divisible multiset of cardinality 5, the hyperplane multiplicities are given by 13,
21, and 29. With this, the stated equations follow from the standard equations. If a subspace S′, E′, or L′,
as specified in the statement would exist, then M−χS′ , M− 2 ·χE′ , or M− 4 ·χL′ would be an 8-divisible
multiset of cardinality 22, 23, or 25, which is impossible due to Lemma 35, Lemma 36, and Proposition 10.

Assume that P is a point with M(P ) ≥ 4. Proposition 24 implies M(H) ∈ {21, 29} for each hyperplane
H containing P , so that Lemma 6 yields M(P ) > 5, i.e., λ4 = λ5 = 0 and each point with multiplicity at
most 3 indeed has to be contained in a hyperplane of multiplicity 13. Double counting the points in the
hyperplanes containing P yields that P is contained in 2k−5 − 2 hyperplanes of multiplicity 29 if M(P ) = 6
and 2k−4−2 hyperplanes of multiplicity 29 if M(P ) = 7. Thus, we have k ≥ 6 if λ6 ≥ 1 and k ≥ 5 if λ7 ≥ 1.

First we will show λ6+λ7 ≤ 1 and k ≥ 5. Assume that L is a line spanned by two points with multiplicity
at least 6 and denote the third point of L by P . From Proposition 24 we conclude that each hyperplane H
with multiplicity 13 meets L exactly in P , so that a13 ≤ [k − 1]2 − [k − 2]2 = 2k−2 < 5 · 2k−4 + 2 + a29 –
contradiction. Thus, we have λ6+λ7 ∈ {0, 1}. From a13 ∈ N we conclude k ≥ 4. If k = 4, then Equation (9)
implies λ6 + λ7 ≥ 1, which is possible for k ≥ 5 only.

Assume that P is a point of multiplicity at least 6. Further assume the existence of a line L not
containing P but whose three points all have multiplicity at least 2. By E we denote the plane spanned by
L and P , so that M(H) ≥ 21 for every hyperplane H containing E, see Proposition 24. If M(H) = 21,
then M|H − 2 · χL − 4 · χP is 4-divisible with cardinality 11, so that Proposition 22 implies the existence of
a point Q with multiplicity 4 in M|H − 2 · χL − 4 · χP . Since γ1(M) < 8 and λ4 + λ5 + λ6 + λ7 ≤ 1 this is
impossible. Thus, all 2k−3 − 1 hyperplanes containing E have multiplicity 29. Now let L̃ ≤ E be a line with
P ≤ L̃, so that we have M(H) ∈ {21, 29} for every hyperplane containing L̃. Denoting the number of those
hyperplanes with multiplicity 29 by x and double counting points gives(

2k−3 − 1
)
· (37−M(L̃)) =

(
2k−2 − 1

)
· (21−M(L̃)) + 8x,

so that M(L̃) = 5 + 27−k + 26−kx. Using x ≥ 2k−3 − 1 we conclude M(L̃) ≥ 13 + 26−k. However,
M(L̃) ≤ 7 + 2 · 3 = 13 – contradiction.

So, if P is a point with multiplicity at least 6, then any line L that does not contain P contains a point
of multiplicity at most 1. With this, Proposition 24 yields that any hyperplane H with multiplicity 13
contains of a unique point of multiplicity 3 and 10 points of multiplicity 1. Especially, we have M(P ′) ̸= 2
for every point P ′ and k ≥ 6. If k ≥ 7, then let H1 be a hyperplane with multiplicity 13 and K ≤ H1

a (k − 2)-dimensional subspace with multiplicity M(K) = 13. With this let H2 and H3 be the two other
hyperplanes containing K. W.l.o.g. we assume M(H2) = 21 and M(H3) = 29. Clearly P ̸≤ H1 and since
M|H2

− M|K − 4 · χP would be 4-divisible with cardinality 4, P is also not contained in H2. However,
M|H3 −M|K −4 ·χP is 4-divisible with cardinality 12. By construction, except at most one point, the point
multiplicities are contained in {0, 1, 3}, which contradicts Proposition 23. It remains to consider the case
k = 6. If P6 is a point of multiplicity 6, then it is contained in 2k−5 − 2 = 0 hyperplanes of multiplicity 29,
so that the line L spanned by P6 and a point of multiplicity 3 is contained in hyperplanes of multiplicity 21
only. Lemma 6 then yields the contradiction M(L) = 7 < 6 + 3. So, let P7 be a point of multiplicity 7, so
that 3λ3 = 4a29, which implies a29 ≥ 3 and λ3 ≥ 4. Now let L be a line spanned by two points of multiplicity
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3 such that P7 is not contained in L and E be the plane spanned by L and P7. If H would be a hyperplane
with multiplicity 21, then we can apply Lemma 32 to M|H − 4 · χP7 – contradiction. So, Lemma 6 yields
M(E) = 23 and M(S) = 25 for each solid containing E. Moreover, we have a29 ≥ 7, so that a29 ≥ 9 and
λ3 ≥ 12, which is impossible.

Thus, we finally conclude γ1(M) ≤ 3.

If k = 5, then the existence of a hyperplane of multiplicity 13 implies λ1 ≥ 4, see Proposition 24, so that
λ2 + 3λ3 ≤ 33. With this, Equation (9) yields λ1 = 4, λ2 = 0, λ3 = 11, and a29 = 0. However, the four
points of multiplicity 1 span a unique plane, which contradicts a13 ≥ 12 > 3.

Lemma 38. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 37. Then, we have
γ1(M) ≥ 8.

Proof. Assume that M is an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 37, γ1(M) ≤ 7,
and minimum possible dimension k of its span. Lemma 37 yields γ1(M) ≤ 3 and k ≥ 6, so that there clearly
exists a point Q with multiplicity zero. Using Lemma 5 we conclude that the projection MQ through Q is
an 8-divisible multiset of points with cardinality 37, γ1(MQ) ≤ 2 · γ1(M) ≤ 6, and dimension k − 1 of its
span, which contradicts the minimality of k.

Lemma 39. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 20. Then, we have
γ1(M) ≥ 4.

Proof. The possible hyperplane multiplicities are given by 12 and 4. If the latter occurs, then there is a
point of multiplicity 4, see Corollary 4. Otherwise we can apply Lemma 2 to obtain a contradiction.

Lemma 40. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 24. Then, we have
γ1(M) ≥ 4.

Proof. W.l.o.g. we assume 2 ≤ γ1(M) ≤ 3. The possible hyperplane multiplicities are given by 0, 8, and
16. Let P be a point with multiplicity M(P ) = 3. Due to Proposition 7 we have M(H) = 16 for every
hyperplane H containing P , so that Lemma 6 yields M(P ) ≥ 9 – contradiction. Thus, we have γ1(M) = 2
and denote the dimension of the span of M by k. Using the standard equations we compute

a0 = a16 − 2k−1 + 2,

a8 = −2a16 + 3 · 2k−1 − 3, and

λ2 = −108 + (a16 + 3) · 28−k,

so that
a16 ≥ 2k−1 − 2 and λ2 ≥ 20 + 28−k > 20,

which contradicts λ2 ≤ 24/2 = 12.

Lemma 41. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 26. Then, we have
γ1(M) ≥ 4.

Proof. W.l.o.g. we assume 2 ≤ γ1(M) ≤ 3. The possible hyperplane multiplicities are given by 18 and 10. If
there exists a point P with multiplicity M(P ) = 3, then Corollary 20 implies M(H) = 18 for all hyperplanes
H that contain P . With this Lemma 6 yields M(P ) ≥ 11 – contradiction. Thus, we have γ1(M) = 2 and
the standard equations yield λ2 = 17+28−k for the dimension k of the span of M, which clearly contradicts
#M = 26.

Lemma 42. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 27. Then, we have
γ1(M) ≥ 4.
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Proof. The possible hyperplane multiplicities are given by 19 and 11. If the latter occurs, then there is a point
of multiplicity at least 4, see Proposition 22. Otherwise we can apply Lemma 2 to obtain a contradiction.

Lemma 43. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 35. Then, we have
γ1(M) ≥ 4.

Proof. The possible hyperplane multiplicities are given by 11, 19, and 27. However, if there exists a hyper-
plane H with M(H) = 11, then Proposition 22 yields the existence of a point with multiplicity at least 4.
Otherwise Lemma 6 gives M(P ) > 3 for every point P .

Lemma 44. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 39. Then, we have
γ1(M) ≥ 4.

Proof. Assume that M is an 8-divisible multiset of points in PG(v−1, 2) with cardinality 39, γ1(M) ≤ 3, and
minimum possible dimension k of its span. If Q would be a point with multiplicity 2, then the projection
MQ through Q would be 8-divisible with cardinality 37 and γ1(MQ) ≤ 6, so that Lemma 38 yields a
contradiction. Thus, we have λ2 = 0 and γ1(M) = 3, see Proposition 11. Since γ1(M) ≤ 3 and #M = 39,
we clearly have k ≥ 4. If k = 4, then the multiset of points M′ defined by M′(P ) = 3−M(P ) is 8-divisible
with cardinality 6 – contradiction. Thus, we have k ≥ 5. Since each hyperplane H with multiplicity 7 is given
by M|H = χE for some plane E, see Corollary 4, each hyperplanes H ′ that contains a point of multiplicity 3
has multiplicity M(H ′) ≥ 15. Lemma 6 yields that each point of multiplicity 3 is contained in a hyperplane
H of multiplicity 15. Using γ1(M) ≤ 3 and λ2 = 0, Corollary 28 yields M|H = 3 · χE − 2 · χL to a plane E
and a line L ≤ E. So, λ3 ≥ 1 implies λ3 ≥ 4.

Let H be hyperplane with multiplicity 15 and E a plane, L ≤ E a line such that M|H = 3 · χE − 2 · χL.
Choose a subspace K ≤ H of codimension 2 intersecting E in a line of multiplicity 7, i.e., containing two
points of multiplicity 3 and one point of multiplicity 1. We denote the other two hyperplanes containing K
by H ′ and H ′′. W.l.o.g. we assume M(H ′) = 15 and M(H ′′) = 23. So, let E′ ≤ H ′ a plane and L′ ≤ E′ a
line such that M|H′ = 3 · χE′ − 2 · χL′ . We conclude λ3 ≥ 6, λ1 ≥ 5 and denote the solid spanned by E and
E′ by S. By construction we have M(S) ≥ 23. However, we have M(H) ̸= 23 for any hyperplane H ≥ S
since M|H − 3 · χE + 2 · χL would be 4-divisible with cardinality 8 containing two points of multiplicity 3,
which contradicts Proposition 7. Thus, we have M(H) = 31 for every hyperplane H that contains S, so
that Lemma 6 yields M(S) = 23 + 28−k. If k = 5, then M(S) = 31. However, since no three points of
multiplicity 3 form a line, S can contain at most 8 points of multiplicity 3 and seven points of multiplicity 1,
which yields M ≥ χS and M− χS is 8-divisible of cardinality 31, so that Lemma 40 yields a contradiction.

Let H be an arbitrary but fixed hyperplane of multiplicity 15 and E be the corresponding plane that
contains the non-zero points of M|H . Now consider subspace K ≤ H of codimension 2. In 2k−4 − 1 cases
E ≤ K and the other two hyperplanes containing K have multiplicities 23 and 31. In 6 · 2k−4 cases K
intersects E in a line of multiplicity 7 and the other two hyperplanes containing K have multiplicities 15
and 23. In 2k−4 cases K intersects E and a line of multiplicity 3 and there are two cases for the other two
hyperplanes H ′, H ′′ containing K. Either {M(H ′),M(H ′′)} = {7, 23} or M(H ′) = M(H ′′) = 15. Denote
the number of occurrence of the first case by x, so that x ∈ N with x ≤ 2k−4. With this, we compute

a7 = x,

a15 = 1 + 8 · 2k−4 − 2x,

a23 = 7 · 2k−4 − 1 + x, and

a31 = 2k−4 − 1,

so that 29−k + 28 + 28−kx = 3λ3, which implies λ3 ≥ 10 and λ1 ≤ 9. However, in E there are three points
of multiplicity 1 and there exists a hyperplane H ≥ E with M(H) = 23, so that Proposition 7, γ1(M) ≤ 3,
and λ2 = 0 imply λ1 ≥ 3 + 8 = 11 > 9 – contradiction.
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Lemma 45. Let M be a spanning 8-divisible multiset of points in PG(v − 1, 2) with cardinality 41 and
1 ≤ γ1(M) ≤ 3. Then, we have

a17 = 9 · 2k−4 + 2 + a33,

a25 = 7 · 2k−4 − 3− 2a33,

λ2 + 3λ3 = 11 + 28−k · (3 + a33) ,

and k ≥ 5. Moreover, for each line L there exists a hyperplane H ≥ L with M(H) = 17 and a point P ≤ L
with M(P ) ≤ 1.

Proof. Since no 4-divisible multiset of points of cardinality 9 exists, the possible multiplicities of the hyper-
planes are given by 17, 25, and 33. Using the standard equations we compute the stated equations. Since
γ1(M) ≤ 3, we clearly have k ≥ 4. If k = 4, then the multiset of points M′ defined by M′(P ) = 3−M(P )
is 8-divisible with cardinality 4, which is impossible.

Let L be an arbitrary line. If L is not contained in a hyperplane of multiplicity 17, then Lemma 6
yields M(L) > 25 − 16 = 9. However, γ1(M) ≤ 3 implies M(L) ≤ 9 – contradiction. So, let H ≥ L be
a hyperplane with M(H) = 17. If M(P ) ≥ 2 for all points P ≤ L, then M|H − 2 · χL is 4-divisible with
cardinality 11, so that Proposition 22 contradicts γ1(M) ≤ 3.

Lemma 46. Let M be a spanning 8-divisible multiset of points in PG(v − 1, 2) with cardinality 41 and
1 ≤ γ1(M) ≤ 3. Then, there does not exist a hyperplane H such that M|H is given as specified in Lemma 33.

Proof. Assume that M is a spanning 8-divisible multiset of points in PG(k − 1, 2) with cardinality 41 and
1 ≤ γ1(M) ≤ 3, such that M|H1 is as specified in Lemma 33 for some hyperplane H1. Since M|H1 spans a 5-
dimensional subspace we have k ≥ 6 for the dimension of the point set spanned by M. Let E := ⟨e7, . . . , ek⟩,
where we also allow E to be an empty space for k = 6. W.l.o.g. we also assume coordinates as in Lemma 33,
so that especially H1 = ⟨e1, . . . , e5, E⟩. Consider the subspace S := ⟨e1, e2, e4, e5, E⟩ ≤ H1 with M(S) = 9,
so that we have M(H2) = 17 and M(H3) = 25 for the two other hyperplanes containing S. Note that the
line L := ⟨e1, e2⟩ is contained in H2 ≥ S and consists of a point of multiplicity i for all 1 ≤ i ≤ 3, so that
we can apply Lemma 33 to M|H2 . W.l.o.g. we assume that the second point of multiplicity 3 in H2 (that is
not contained in S) has coordinates e6. With this, the point set M|H1∪H2 is given by the columns of

1111111100000000000010111
0001111011000001100011110
0000111100101010100000000
0000000000011001100000101
0000000000000111100000011
0000000000000000011111111

,

where the entries in the rows 7 to k are all 0 and not displayed. This multiset of points consists of 14 points
of multiplicity 1, a unique point of multiplicity 2, and three points of multiplicity 3.

There exist at least

Ω := 2k − 1− (λ1 + λ2 + λ3)−
(
λ2 + λ3

2

)
− λ3 · λ1

points Q of multiplicity 0 such that every line that contains Q has multiplicity at most 3. Assume k ≥ 8. If
λ3 ≥ 3 + 4 = 7, then we have (λ1, λ2, λ3) ∈ {(18, 1, 7), (16, 2, 7), (14, 3, 7), (15, 1, 8)}, where Ω ≥ 38 > 0. If
λ3 < 7, then λ2 + λ3 ≤ 12 implies Ω ≥ 255 − 30 − 66 − 126 = 43 > 0. So, such a point Q exists and the
projection MQ of M through Q is 8-divisible with cardinality 41 and γ1(MP ) ≤ 3, see Lemma 5. W.l.o.g.
we can assume that k is minimal, so that it suffices to consider the cases k ∈ {6, 7} in the following.

If k = 6, then Lemma 45 yields λ2+3λ3 = 23+4a33. Since the points in H1∪H2 contribute 1·1+3·3 = 10
to λ2+3λ3 and the points outside of H1∪H2 can contribute at most 16, we have a33 = 0 and λ2 ≡ 2 (mod 3),
which implies λ2 = 2, λ3 = 7, and λ1 = 16. Let P ′

2 denote the second point of multiplicity 2, which lies
outside of S. For the plane E′ := ⟨P ′

2, L⟩ we know that all hyperplanes H that contain E′ have multiplicity
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25, so that Lemma 6 implies M(E′) = 13 and M(S′) = 17 for every solid S′ ≥ E′. From Lemma 45 we know
that the points with multiplicity at least 2 are contained in an affine plane, so that E′ consists of two points
of multiplicity 2, two points of multiplicity 3, and three points of multiplicity 1 forming a line. Starting
from L′′ := ⟨e2, e1 + e2 + e3⟩ we can construct E′′ := ⟨P ′

2, L
′′⟩ and deduce the same structure information

for E′′. Since both E′ and E′′ contain the two points of multiplicity 2, their span S′ := ⟨E′, E′′⟩ is a solid
with multiplicity at least M(E′) + 2 · 3 ≥ 19 > 17 – contradiction.

If k = 7, then Lemma 45 yields λ2 + 3λ3 = 17 + 2a33. We choose K := ⟨e1, . . . , er⟩ and H1 := ⟨K, e7⟩,
so that M(K) = M(H1) = 17 and {M(H2),M(H3)} = {25, 33} for the other two hyperplanes that contain
K. Let H2 := ⟨K, e6⟩, so that e6 ∈ H2\K is a point of multiplicity 3 and Proposition 7 implies M(H2) = 33.
Thus, M′ := M|H2

−M|K is 4-divisible with cardinality 16 and contains at least one point of multiplicity
3 as well as five points of multiplicity 1. Since there can be at most ⌊8/3⌋ = 2 more points of multiplicity
3, Lemma 29 implies that M′ contains at most two points of multiplicity 3 in total. Since M|H3 −M|K is
4-divisible with cardinality 8, Proposition 7 implies 3 ≤ λ3 ≤ 4. Combining this with λ2 + 3λ3 = 17 + 2a33
and a33 ≥ 1 we conclude λ2 ≥ 7. Using Proposition 7 again we conclude 1 ≤ λ3 (M′) and λ2 (M′) ≥ 2,
so that we can apply Lemma 30. If λ3 = 3, then λ2 ≤ 1 + 3 + 4 = 8, which contradicts λ2 + 3λ3 ≥ 19.
Thus, we have λ3 = 4 and the upper bound λ2 ≤ 1 + 2 + 4 implies a33 = 1, λ2 = 7, and λ1 = 15 using
λ2 +3λ3 = 17+ 2a33 and λ1 +2λ2 +3λ3 = 41. Moreover, the six points of multiplicity 1 and the two points
of multiplicity 3 outside of H1 form an affine solid. However, we have

⟨e6, e2 + e6, e1 + e2 + e6, e1 + e2 + e4 + e6, e1 + e2 + e5 + e6, e1 + e4 + e5 + e6⟩ = ⟨e1, e2, e4, e5, e6⟩ ,

which is a contradiction.

Lemma 47. Let M be an 8-divisible multiset of points in PG(v − 1, 2) with cardinality 41. Then, we have
γ1(M) ≥ 4.

Proof. Assume that M is a spanning 8-divisible multiset of points in PG(k − 1, 2) with cardinality 41,
γ1(M) ≤ 3, and minimum possible dimension k of its span. Proposition 11 yields γ1(M) ≥ 2.

Assume that P2 is a point with multiplicity 2. If L ≥ P2 is a line that also contains a point of multiplicity
3 and a point of multiplicity 1, then Lemma 45 implies the existence of a hyperplane H ≥ L with M(H) = 17
and Lemma 33 yields a description of M|H . However, Lemma 46 gives a contradiction. Using Lemma 45
again we conclude M(L′) ≤ 5 for each line L′ ≥ P2. So, for the projection MP2 of M through P2 we have
γ1(MP2

) ≤ 3. However, MP2
is 8-divisible with cardinality 39, which contradicts Lemma 44. Thus, we have

λ2 = 0 and γ1(M) = 3.
Lemma 45 gives 3λ3 = 11 + 28−k · (3 + a33), so that λ3 ≥ 4. Let L be a line spanned by two points of

multiplicity 3. Lemma 45 yields the existence of a hyperplane H ≥ L with M(H) = 17, so that Lemma 34
gives M(L) = 6, λ3(M|H) = 2, λ1(M|H) = 11, and k ≥ 7 (for the dimension of M). Since λ1 ≥ 11, we have
λ3 ≤ 10. So, 4 ≤ λ3 ≤ 10 implies λ1 + λ3 ≤ 33,

(
λ3

2

)
≤ 45, and λ1 · λ3 ≤ 140. Since 33 + 45 + 140 < 28 − 1

for k ≥ 8, there exists a point Q of multiplicity zero such that every line L′ ≥ Q has multiplicity at most
3. With this, the projection MQ of M through Q is 8-divisible with cardinality 8 and γ1(MQ) = 3, see
Lemma 5. Due to the assumed minimality of k we have k = 7.

Using k = 7, the equation 3λ3 = 11+28−k ·(3 + a33) = 17+2a33 implies λ3 ∈ {7, 9} and a33 ∈ {2, 5}. Due
to Lemma 31 the hyperplane H with multiplicity 17 contains a 5-dimensional subspace K with multiplicity
M(K) = 5. Since also the two other hyperplanes that contain K then also have multiplicity 17, Lemma 34
yields λ3 ≤ 3 · 2 = 6 – contradiction.

5 Conclusion

We have determined the minimum possible column multiplicities for ∆-divisible binary linear codes for
each given length n and all ∆ ∈ {2, 4, 8}. This refines a comprehensive characterization result on the
possible length of qr-divisible linear codes over Fq from [KK20]. The motivation for this refinement is that
in some applications upper bounds on the allowed maximum column multiplicity are given. We mainly
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use geometric methods to obtain computer-free proofs. While the stated result can also be obtained by
an exhaustive computer enumeration, the question arises whether the theoretical tools can be strengthened
and approaches be simplified in order to obtain results for wider ranges of parameters. As outlined in
Section B in the appendix, currently we cannot go much further even using extensive computer enumerations.
Interestingly enough Γ2(2

r, n) is always a power of 2, if finite at all, for r ∈ {1, 2, 3}. Our, rather sparse,
numerical data might suggest the conjecture that Γq(q

r, n) always has to be a power of the characteristic
p of the underlying field Fq. However, such a strong statement is wrong in general. To this end, note that
applying the construction of [LR19, Theorem 10] to the smallest non-trivial blocking set in PG(2, p), i.e.,the

projective triangle, yields a p-divisible multiset M of points with cardinality #M = p2+1
2 +2p and maximum

point multiplicity γ1(M) = p+3
2 for each odd prime p. So, for p ≥ 5 we have Γp(p,#M) < p while [HKK18,

Theorem 11] yields Γp(p,#M) > 1.
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A Combinatorial data of the possible 4-divisible multisets of points
with cardinality 17

In our discussion of 8-divisible multisets of points of cardinality 41, 4-divisible multisets of points of cardi-
nality 17 played an important role. To this end we have stated several auxiliary results for the latter.

In order to demonstrate the combinatorial richness we have listed key parameters of these objects in
Table 1. This data has been obtained by an exhaustive computer enumeration using the software package
LinCode [BBK21]. The three cases of maximum point multiplicity 1 have also been computationally classified
in [HHK+17].

B Computational results

One alternative way to prove Theorem 13 is to use the fact that for every field size q and every divisibility
constant ∆ ∈ N there exists an integer N(q,∆) such that for all n ≥ N(q,∆) there exists a projective ∆-
divisible linear code over Fq with length n. So, for each pair q, ∆ a complete determination of the function
Γq(∆, ·) amounts to a finite computation. So, we may simply enumerated all ∆-divisible codes over Fq

with length strictly smaller than N(q,∆) and determine the corresponding column multiplicities. To this
end we have used the software package LinCode [BBK21] and list the corresponding enumeration results of
semi-linearly non-equivalent linear codes per length and dimension in the subsequent tables. Here a blank
entry means that no such code exists.

For 16-divisible binary linear codes we have only partial results. We remark that the smallest attained
dimension for a given length can be explained by a statement similar to Lemma 1. Lengths that do not
occur at all are explained by Theorem 9. The complete classification of the possible lengths of projective
16-divisible binary linear codes is still an open problem, see e.g. [HKK18, HKKW19]. The same is true for
the projective q2-divisible linear codes over Fq when q ≥ 3 and the projective q-divisible linear codes over
Fq when q ≥ 5.

For ternary linear codes we can state Γ3(3, n) = 1 iff n = 4 or n ≥ 8. Moreover, we have Γ3(3, n) = 3
iff n ∈ {3, 6, 7} and Γ3(3, n) = ∞ iff n ∈ {1, 2, 5}. For quaternary linear codes we can state Γ4(4, n) = 1
iff n ∈ {5, 10, 15, 16, 17} or n ≥ 20. Moreover, we have Γ4(4, n) = 2 iff n ∈ {12, 14, 18, 19}, Γ4(4, n) = 4 iff
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n k ∆ γ1 λ1 λ2 λ3 spectrum
17 3 4 7 4 0 2 (a5, a9, a13) = (4, 2, 1)
17 3 4 5 3 0 3 (a5, a9, a13) = (3, 4, 0)
17 4 4 7 6 2 0 (a5, a9, a13) = (8, 3, 4)
17 4 4 6 6 1 1 (a5, a9, a13) = (7, 5, 3)
17 4 4 5 5 2 1 (a5, a9, a13) = (6, 7, 2)
17 4 4 4 6 2 1 (a5, a9, a13) = (5, 9, 1)
17 4 4 4 4 0 3 (a5, a9, a13) = (6, 7, 2)
17 4 4 3 4 2 3 (a5, a9, a13) = (5, 9, 1)
17 4 4 3 6 4 1 (a5, a9, a13) = (4, 11, 0)
17 5 4 7 10 0 0 (a5, a9, a13) = (16, 5, 10)
17 5 4 6 7 2 0 (a5, a9, a13) = (14, 9, 8)
17 5 4 5 9 0 1 (a5, a9, a13) = (12, 13, 6)
17 5 4 5 6 3 0 (a5, a9, a13) = (12, 13, 6)
17 5 4 4 7 3 0 (a5, a9, a13) = (10, 17, 4)
17 5 4 4 10 0 1 (a5, a9, a13) = (10, 17, 4)
17 5 4 4 6 2 1 (a5, a9, a13) = (11, 15, 5)
17 5 4 3 5 3 2 (a5, a9, a13) = (10, 17, 4)
17 5 4 3 9 1 2 (a5, a9, a13) = (9, 19, 3)
17 5 4 3 10 2 1 (a5, a9, a13) = (8, 21, 2)
17 5 4 3 6 4 1 (a5, a9, a13) = (9, 19, 3)
17 5 4 2 7 5 0 (a5, a9, a13) = (8, 21, 2)
17 5 4 2 11 3 0 (a5, a9, a13) = (7, 23, 1)
17 5 4 2 15 1 0 (a5, a9, a13) = (6, 25, 0)
17 6 4 4 10 0 1 (a5, a9, a13) = (21, 31, 11)
17 6 4 4 7 3 0 (a5, a9, a13) = (21, 31, 11)
17 6 4 3 11 0 2 (a5, a9, a13) = (18, 37, 8)
17 6 4 3 10 2 1 (a5, a9, a13) = (17, 39, 7)
17 6 4 3 6 4 1 (a5, a9, a13) = (19, 35, 9)
17 6 4 3 12 1 1 (a5, a9, a13) = (16, 41, 6)
17 6 4 2 7 5 0 (a5, a9, a13) = (17, 39, 7)
17 6 4 2 11 3 0 (a5, a9, a13) = (15, 43, 5)
17 6 4 2 13 2 0 (a5, a9, a13) = (14, 45, 4)
17 6 4 2 15 1 0 (a5, a9, a13) = (13, 47, 3)
17 6 4 1 17 0 0 (a5, a9, a13) = (12, 49, 2)
17 7 4 2 11 3 0 (a5, a9, a13) = (31, 83, 13)
17 7 4 2 7 5 0 (a5, a9, a13) = (35, 75, 17)
17 7 4 2 13 2 0 (a5, a9, a13) = (29, 87, 11)
17 7 4 2 15 1 0 (a5, a9, a13) = (27, 91, 9)
17 7 4 1 17 0 0 (a5, a9, a13) = (25, 95, 7)
17 8 4 1 17 0 0 (a5, a9, a13) = (51, 187, 17)

Table 1: Combinatorial data of 4-divisible multisets of points of cardinality 17.
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n / k 1 2 3 4 5 6 7 8 9
2 1
3 1
4 1 1 1
5 1 1 1
6 1 2 3 2 1
7 2 4 4 2 1
8 1 3 8 10 7 3 1
9 3 9 18 16 9 3 1
10 1 4 17 37 46 30 13 4 1

Table 2: Number of even codes per dimension k and effective length n.

n / k 1 2 3 4 5 6 7 8 9
4 1
6 1
7 1
8 1 1 1 1

10 1 1 1
11 1 1
12 1 2 3 4 2
13 1 1 2
14 2 4 6 5 4
15 3 6 6 4 2
16 1 3 8 18 21 15 7 2
17 2 7 14 11 5 1
18 3 9 27 44 45 21 6
19 6 22 52 62 40 10
20 1 4 17 64 149 212 156 65 10

Table 3: Number of doubly-even codes per dimension k and effective length n.
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n / k 1 2 3 4 5 6 7 8 9 10 11
8 1
12 1
14 1
15 1
16 1 1 1 1 1
20 1 1 1
22 1 1
23 1 1
24 1 2 3 4 4 1
26 1 1 2
27 1 1 1
28 2 4 6 7 6 1
29 1 1 2 1
30 3 6 8 7 6 2
31 4 8 8 6 4 1
32 1 3 8 18 32 34 24 13 5 1
34 2 7 14 11 5 1
35 3 7 7 3 1
36 3 9 27 54 65 36 11 1
37 2 5 8 5 1
38 6 22 57 79 61 21 2
39 10 36 57 49 30 10 1
40 1 4 17 64 194 347 323 187 59 11 1
41 2 12 29 26 12 3

Table 4: Number of triply-even codes per dimension k and effective length n.
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n / k 1 2 3 4 5 6 7 8 9 10 11 12
16 1
24 1
28 1
30 1
31 1
32 1 1 1 1 1 1
40 1 1 1
44 1 1
46 1 1
47 1 1
48 1 2 3 4 4 3 1
52 1 1 2
54 1 1 1
55 1 1 1
56 2 4 6 7 8 3 1
58 1 1 2 1
59 1 1 1 1
60 3 6 8 9 8 4 1
61 1 1 2 1 1
62 4 8 10 9 8 4 2
63 5 10 10 8 6 3 1
64 1 3 8 18 32 48 48 35 21 11 4 1
68 2 7 14 11 5 1
70 3 7 7 3 1
71 3 7 7 3 1
72 3 9 27 54 75 56 26 6 1
74 2 5 8 5 1
75 2 5 5 4 1
76 6 22 59 86 75 34 9 1
77 2 5 8 6 4 1
78 10 36 64 66 52 28 11 2
79 14 47 71 63 44 23 8 1

Table 5: Number of 16-divisible codes per dimension k and effective length n.
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n ∈ {4, 8, 9, 13}, and Γ4(4, n) = ∞ iff n ∈ {1, 2, 3, 6, 7, 11}. For n ∈ {6, 7, 9} there exist projective [n, 3]4
two-weight codes that are 2-divisible. They belong to the families TF1, TF2, RT1, and RT2, see [CK86].
Since 19 = 14 + 5 this gives constructions for all cases with Γ4(4, n) = 2.

n / k 1 2 3
3 1
4 1
6 1 1
7 1 1

Table 6: Number of 3-divisible ternary linear codes per dimension k and effective length n.

n / k 1 2 3 4 5 6 7
4 1
5 1
8 1 1
9 1 1
10 1 1 1
12 1 2 2
13 2 3 1
14 1 5 3 1
15 1 3 6 2 1
16 1 4 9 7 2
17 3 12 9 2
18 2 18 25 8 1
19 1 14 42 25 6 1

Table 7: Number of 4-divisible quaternary linear codes per dimension k and effective length n.
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