
Approximation of SeparableControl LyapunovFunctionswith
NeuralNetworks ?

Mario Sperl a, Jonas Mysliwitz a, Lars Grüne a

aMathematical Institute, University of Bayreuth, Bayreuth, Germany

Abstract

In this paper, we investigate the ability of deep neural networks to provide curse-of-dimensionality-free approximations of
control Lyapunov functions. To achieve this, we first prove an error bound for the approximation of separable functions with
neural networks. Subsequently, we discuss conditions on the existence of separable control Lyapunov functions, drawing upon
tools from nonlinear control theory. This enables us to bridge the gap between neural networks and the approximation of control
Lyapunov functions as we identify conditions that allow neural networks to effectively mitigate the curse of dimensionality
when approximating control Lyapunov functions. Moreover, we present a suitable network architecture and a corresponding
training algorithm. The training process is illustrated using two 10-dimensional control systems.

Key words: control Lyapunov functions; neural networks; curse of dimensionality.

1 Introduction

Control Lyapunov functions (clfs) are a well-established
tool in nonlinear control theory. They serve as a certifi-
cate of asymptotic null-controllability and can also be
used to examine robustness against uncertainties and
disturbances or to study performance criteria. However,
their most common application lies in designing stabiliz-
ing feedback laws using the clf as guidance towards the
equilibrium [4]. Given some asymptotically controllable
system, we are thus interested in finding a corresponding
clf. Since, in general, it is quite hard to compute clfs an-
alytically, we rely on numerical methods. However, tra-
ditional numerical methods, which rely on a grid-based
approach for the computation of the derivative of the
clf, suffer from the curse of dimensionality. This means
that, to achieve a certain accuracy, the number of re-
quired grid points and, thus, the numerical effort grows
exponentially in the dimension of the state space. Con-
sequently, such approaches become impractical in high
dimensions.

This paper concerns the use of (deep) neural networks

? A preliminary version of this paper was presented at the
12th IFAC Symposium on Nonlinear Control Systems NOL-
COS 2022, see [15]. Corresponding author M. Sperl.

Email addresses: mario.sperl@uni-bayreuth.de (Mario
Sperl), jonas.mysliwitz@uni-bayreuth.de (Jonas
Mysliwitz), lars.gruene@uni-bayreuth.de (Lars Grüne).

(NNs) to circumvent the curse of dimensionality for ap-
proximating clfs. Our approach is related to the work
[39], which investigates structural properties on con-
trol systems that allow for an exact representation of
a (possibly discontinuous) stabilizing feedback by NNs.
Further, there exist several papers that present algo-
rithms for the computation of clfs by NNs, see, e.g.
[24,26,34]. However, while the algorithms therein have
similarities with our numerical approach, none of them
provides a complexity analysis regarding the curse of
dimensionality. Establishing conditions for a curse-of-
dimensionality-free approximation of clfs is the main
contribution of this work. Addressing this challenge re-
quires the identification of a suitable class of functions
that can be approximated by NNs without suffering from
the curse of dimensionality.

There exist various recent papers that discuss results re-
garding a curse-of-dimensionality-free approximation of
solutions of particular kinds of partial differential equa-
tions, see, e.g., [3,10,14,18,19,33]. In particular, some
of these references exploit the smoothness of solutions
of 2nd order Hamilton-Jacobi-Bellman equations for
a curse-of-dimensionality-free approximation to solve
optimal control problems. However, when it comes to
computing a clf for a deterministic system, which can
be characterized as a solution of a particular first-order
Hamilton-Jacobi-Bellman equation, we cannot expect
such a level of smoothness. Thus, we rely on a differ-
ent structural assumption that allows NNs to overcome

Preprint submitted to Automatica 2 November 2023

the curse of dimensionality. To this end, we consider
so-called separable functions. Informally speaking, a
mapping is called separable if it can be written as a
sum of functions that are each defined on some lower-
dimensional domain. Separable functions fall into the
class of compositional functions. The ability of NNs to
overcome the curse of dimensionality for compositional
functions has been discussed in [32]. A very detailed pre-
sentation of compositional functions, the corresponding
network architecture, and a complexity analysis can be
found in [21]. Furthermore, curse-of-dimensionality-free
approximations of compositional functions have also re-
cently been studied in the works [9] and [35]. Compared
to general compositional functions, separable functions
have a simpler structure that allows for more precise es-
timates, while the classes of control systems admitting
separable clfs are still non-trivial.

Contribution

In this paper, we bridge the gap between NN approxima-
tion theory and the computation of clfs via NNs. Based
on [16], we provide complexity results regarding the ap-
proximation of separable functions. Next, we extend the
results for Lyapunov functions in [16] to clfs. Specifically,
we use methods from nonlinear control theory to iden-
tify conditions on the control system such that a separa-
ble clf exists. Additionally, we expand upon the discus-
sions in [15] to explore achieving separability through a
state space transformation. Overall, we identify scenar-
ios where NNs can provably overcome the curse of di-
mensionality in the computation of clfs. Finally, we pro-
pose the corresponding network architecture and train-
ing algorithm including the used loss function. In this
context, we would also like to mention those topics that
are not part of this paper. While this paper provides an
expressivity result and proposes a training algorithm, it
does not delve into the analysis of the convergence of
the training algorithm or the generalization properties of
the NN. Also, we only consider the case in which smooth
clfs exist, which allows us to better focus on the main
results of this paper. Nonsmooth clfs will be addressed
in future research.

Outline

The remainder of this paper is organized as follows: The
problem formulation is introduced in the next section.
Afterwards, we provide a complexity analysis regarding
the approximation of separable functions with NNs. In
Section 4 we focus on the existence of separable clfs.
To this end, we first discuss the use of techniques from
nonlinear control theory that lead to separability and
then consider the existence of separable clfs after suitable
state space transformations. In Section 5 we introduce
a numerical algorithm for training our NN to represent
a clf and apply it to two test cases. Finally, Section 6
concludes the paper.

Notation

For n ∈ N we set [n] := {1, . . . , n} and define In ∈ Rn×n
to be the identity matrix. Let K ⊂ Rn be some com-
pact set. Then we denote the infinity norm for contin-
uous functions f on K via ‖f‖∞,K := supx∈K‖f(x)‖.
The symbol D is used to denote the classic differential
operator. Moreover, for some multi-index α ∈ Nn we use
Dα to denote the higher-order partial derivative with re-
spect to α. We make use of the comparison functions K
and K∞, where K denotes all continuous and strictly in-
creasing functions γ : R≥0 → R≥0 with γ(0) = 0 andK∞
comprises allK-functions that satisfy limr→∞ γ(r) =∞.

2 Problem Formulation

We consider a control system of the form

ẋ = f(x, u), (1)

where the right-hand side f : Rn × U → Rn is continu-
ous, locally Lipschitz in x, and has an equilibrium at 0,
i.e., f(0, 0) = 0. The input set is denoted as U ⊂ Rm
and the admissible control functions are given as the set
of measurable and locally essentially bounded functions
u : R≥0 → U . In order to avoid technicalities, we assume
our system (1) to be defined on the whole domain Rn.
We are interested in stabilizing the system towards the
origin. To this end, we assume the control system (1) to
be asymptotically controllable. In [38, Theorem 2.5] it
has been shown that asymptotic controllability is equiv-
alent to the existence of a clf in the sense of Dini. How-
ever, in the scope of this paper, we will only consider
the case where our control system (1) admits a contin-
uously differentiable clf, where the Dini derivate equals
the gradient. This allows us to ensure compatibility with
some theorems from the literature cited in the subse-
quent sections and avoids distracting technical difficul-
ties. The important case that no smooth clf exists will
be investigated in future research, cf. Section 6.

Definition 1 A continuously differentiable function
V : Rn → R is called (smooth) control Lyapunov func-
tion (clf) for (1) if there exist α1, α2 ∈ K∞ and α3 ∈ K
such that for x ∈ Rn

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2a)
inf
u∈U

DV (x)f(x, u) ≤ −α3(‖x‖). (2b)

Note that the existence of α1, α2 ∈ K∞ such that the two
inequalities in (2a) hold is equivalent to the fact that V
is positive-definite and radially unbounded, cf. Lemma
4.3 in [23]. The reason for our preference of using theK∞
functions α1 and α2 is due to our numerical algorithm,
see Section 5. Given the existence of a smooth clf, it is
our objective to numerically compute an approximation

2

thereof on a compact set K ⊂ Rn via NNs. To this end,
the approximation of functions via NNs is discussed in
the following section.

3 Neural Networks Approximating Separable
Functions

In the first part of this section, we briefly outline the gen-
eral functionality of NNs, clarify our notation, and re-
call the universal approximation theorem. Subsequently,
we define the notion of separable functions and state an
approximation result for such kind of functions that ex-
tends Theorem 5.1 in [17].

3.1 Preliminaries on Neural Networks

From a mathematical point of view, a (deep) neural net-
work (NN) is a mapping that takes some input vector
x ∈ Rn and processes it according to the structure and
parameters that define the network in order to return
some output. A NN consists of a certain number P ∈ N
of layers that contain Nl ∈ N, 0 ≤ l ≤ P − 1, neurons
each. We denote the value of the neuron at position k
in layer l with ylk ∈ R. The first layer is the input layer,
whence it consists of N0 = n neurons. The last layer is
called output layer and all other layers are referred to
as hidden layers. In case of a feedforward network, the
value of a neuron is determined by the values of all neu-
rons in the previous layer, that is, for 1 ≤ l ≤ P − 1 and
1 ≤ k ≤ Nl it holds that

ylk = σl

Nl−1∑
i=1

wlk,iy
l−1
i + blk

 , (3)

where wlk,i ∈ R, 1 ≤ i ≤ Nl−1, are weight parame-
ters, blk ∈ R constitutes a bias term and σl : R → R is
the activation function of layer l. Applying (3) to the
last layer and substituting for the neurons in the pre-
vious layers, one obtains the mapping represented by
the network. We denote this mapping as x 7→ W (x; θ),
where θ ∈ Rq comprises all weights and biases of the
network with q =

∑P−1
l=1 (Nl−1 + 1)Nl. Training of a

NN means adapting θ to achieve the desired behavior of
the resulting function W (x; θ). Parameters that are set
before the training process and remain constant, such
as the number and size of the layers, are referred to as
hyperparameters. Throughout this work we solely con-
sider feedforward networks with a one-dimensional out-
put W (x; θ) ∈ R and the identity as activation function
in the last layer, i.e., σP−1 = I1.

It is now natural to ask which kind of functions can be
approximated by NNs as in (3). It has been shown in [8]
that the set of functions given by a NN with one hidden
layer and a continuous sigmoidal activation function is

dense in C([0, 1]n). An overview of some extensions re-
garding single-layer NNs as universal approximators can
be found in [31]. Since we are interested in the numerical
effort needed for approximating a clf, we need a quanti-
tative version of an approximation theorem. To this end,
we characterize the complexity of a NN by the number
of neurons in its hidden layers. It is worth noting that
in the literature, complexity is also often quantified by
the number of parameters. However, since the relation
between the number of neurons and the number of pa-
rameters is polynomial, there is no difference regarding
an investigation of the curse of dimensionality. We con-
clude this subsection by citing an approximation result
that quantifies the number of neurons needed to achieve
an approximation up to a certain accuracy. To this end,
for m ∈ N, r ∈ R>0, and a compact set K ⊂ Rn we in-
troduce the Sobolev-like space

Wm,r(K) :=
{
F ∈ Cm(K,R)

∣∣ ‖F‖Wm(K) ≤ r
}
,

where ‖F‖Wm(K) :=
∑

0≤|α|≤m‖DαF‖∞,K .

Theorem 2 Let R ∈ R>0 and σ ∈ C∞(R,R) be not a
polynomial. Then for every n ∈ N there exists a constant
µn > 0 such that for all M ∈ N a NN W (x; θ) with
one hidden layer consisting ofM neurons and activation
function σ1 = σ satisfies for all F ∈ Cm(K,R)

inf
θ
‖W (·; θ)− F (·)‖∞,K ≤ µnM−

m
n R̃‖F‖Wm(K),

where K := [−R,R]n, R̃ := max {R, 1}.

Note that the constant µn depends on n but is indepen-
dent of F and M . Theorem 2 has been derived in [27,
Theorem 2.1] for the case R = 1 and its extension to
R ∈ R>0 is proven in [20, Corollary 1]. The theorem has
originally been stated for σ ∈ C∞(R,R) such that there
exists b ∈ R with σ(i)(b) 6= 0 for all i ∈ N. It has been
discussed in [32] that this condition is equivalent to σ
not being a polynomial. We can conclude from Theo-
rem 2 that the number of neurons needed to provide an
approximation up to some accuracy ε > 0 is given by
M = O(ε−

n
m), i.e., the number depends on the degree

of smoothness m and the dimension of the domain n.
Moreover, it has also been shown in [27] that the order
of neurons O(ε−

n
m) is best possible. Thus, in general,

NNs also suffer from the curse of dimensionality since
the number of needed neurons to achieve a certain accu-
racy grows exponentially in n. Similar results exist for
other kinds of activation functions, e.g., for ReLU func-
tions σ(x) = max(0, x) in [43].

3.2 Overcoming the Curse of Dimensionality with Neu-
ral Networks

The central part of this section is a result showing that
NNs are capable of overcoming the curse of dimension-
ality for so-called separable functions.

3

Definition 3 Let F ∈ C1(Rn,R) and d ∈ [n]. Then F is
called (strictly) d-separable if there exist s ∈ [n], dj ∈ [d],
j ∈ [s], and functions Fj ∈ C1(Rdj ,R) such that for all
x ∈ Rn it holds

F (x) =

s∑
j=1

Fj(zj), (4)

where zj = (xkj−1
, . . . , xkj−1) with k0 := 1 and kj :=

kj−1 + dj, j ∈ [s].

In other words, if F is a d-separable function, its do-
main can be split into s subspaces, having the form
Rn = Rd1 × · · · × Rds , such that F can be written as a
sum of s functions, which are defined on the respective
subspaces. For the purpose of this paper it is sufficient
to consider strictly separable functions, which means
that the intersection of two such subspaces is always the
origin, i.e., the domains are not overlapping. Construc-
tions with overlapping regions have been pursued, e.g.,
in [28,42]. For simplicity, we will omit the term “strictly”
in what follows. The benefit of a separable structure can
be exploited by a NN as shown in Figure 1. It consists
of two hidden layers, where the first one has a linear ac-
tivation σ1 = I1, and the second one uses some nonlin-
ear activation function σ2. However, the first and second
hidden layers are not fully connected but divide the NN
into n sublayers. These sublayers can be used to learn
the functions Fj in (4). The following theorem quanti-
fies the ability of this network architecture to efficiently
represent separable functions.

x1

x2

xn

y1
1

y1
d

y1
∗

y1
nd

y2
1

y2
M

y2
+

y2
nM

W...

... ...

... ...

... ...

Fig. 1. Architecture of the NN with ∗ = (n − 1)d + 1,
+ = (n− 1)M + 1, and W =W (x; θ).

Theorem 4 Let d ∈ N, r,R ∈ R>0, and σ ∈ C∞(R,R)
be not a polynomial. Define for n ∈ N the sets Kn :=
[−R,R]n and

F (n)
r,d :=

{
F ∈W1,r(Kn)

∣∣∣ F is d-separable, F (0) = 0
}
.

Then there exists a constant µd > 0 such that for all
n ∈ N and M ∈ N the NN W (x; θ) depicted in Figure 1

with n(d+M) neurons and activation functions σ1 = I

and σ2 = σ satisfies for all F ∈ F (n)
r,d

inf
θ
‖F (·)−W (·; θ)‖∞,Kn

≤ nrµd max{R, 1}M− 1
d .

PROOF. By virtue of Theorem 2 there exists a con-
stant µd > 0 such that for allM ∈ N and F̃ ∈W1,r(Kd)
it holds that

inf
θ̃
‖F̃ (·)− W̃ (·; θ̃)‖∞,Kd

≤ rµdM−
1
d max {R, 1}, (5)

where W̃ (x; θ) is a single-layer NN with activation func-
tion σ1 = σ and M neurons in its hidden layer. Now fix
n,M ∈ N and some F ∈ F (n)

r,d . Since F is d-separable
(see Definition 3), we can write F (x) =

∑s
j=1 Fj(zj)

for some s ∈ [n] and Fj ∈ C1(Rdj ,R). As F (0) = 0,
we have

∑s
j=1 Fj(0) = 0. Thus, by redefining Fj(zj) :=

Fj(zj)−Fj(0), we can assume that Fj(0) = 0 for j ∈ [s].
This yields for zj ∈ Rdj

Fj(zj) = Fj(zj) +
∑
i 6=j

Fi(0) = F (0, . . . , 0, zj , 0, . . . , 0).

(6)
Further, observe that for x ∈ Rn

DF (x) =
[
DF1(z1) DF2(z2) · · · DFs(zs)

]
. (7)

Consequently, we obtain from (6) and (7) for j ∈ [s]

‖Fj‖W1(Kd) =
∑

0≤|α|≤1

‖DαFj‖∞,Kd

≤
∑

0≤|α|≤1

‖DαF‖∞,Kn
≤ r,

whence Fj ∈W1,r(Kd). Now we want to set the weights
and biases corresponding to the first hidden layer of the
network depicted in Figure 1 such that its first s sublay-
ers contain the vectors zj , j ∈ [s], respectively. To this
end, we set b1k = 0 for k ∈ [nd] and define

w1
1,1 = w1

2,2 = · · · = w1
d1,d1 = 1,

in order to obtain the vector z1 in the first sublayer, cf.
(3). Next, we set w1

n+i,d1+i
= 1 for i ∈ [d2], as well as

w1
2n+i,d1+d2+i = 1,

for i ∈ [d3], to get z2 and z3 in the second and third sub-
layer, respectively. We continue this procedure until the
s-th sublayer. All remaining weights in the first hidden
layer, i.e., the weights that belong to some sublayer j > s

4

or to some sublayer j ∈ [s], but exceed the number dj ,
are set to 0. Furthermore, for the output layer we choose
w3

1,i = 1 for i ∈ [dM], w3
1,i = 0 for i > dM , and b31 = 0.

Observe that the output of the NN is now given as

W (x; θ) =

n∑
j=1

M∑
i=1

y2(j−1)M+i =

s∑
j=1

M∑
i=1

y2(j−1)M+i, (8)

where for each j ∈ [s] the output
∑M
i=1 y

2
(j−1)M+i of

the j-th sublayer can be interpreted as the output of
a NN with input zj and one hidden layer consisting of
M neurons, cf. Figure 1. Let us denote the respective
subnetwork byWj(zj ; θj). By applying (5) we obtain for
j ∈ [s]

inf
θj
‖Fj(·)−Wj(·; θj)‖∞,Kd

≤ rµdM−
1
d max {R, 1} := ρ

Finally, invoking (8) gives us for x ∈ Kn

inf
θ
‖F (x)−W (x; θ)‖ = inf

θ

∥∥∥ s∑
j=1

Fj(zj)−Wj(zj ; θj)
∥∥∥

≤
s∑
j=1

inf
θj
‖Fj(zj)−Wj(zj ; θj)‖ ≤ sρ.

Since s ≤ n, this shows the claim. 2

In the proof of Theorem 4, we have used the first (linear)
layer of the network displayed in Figure 1 to compute the
decomposition of the state x into vectors zj , 1 ≤ j ≤ s,
according to Definition 3. We can thus identify the first
layer with the mapping x 7→ W 1x, where W 1 ∈ Rnd×n
denotes the matrix that represents the corresponding
decomposition of x. However, since the weights w1

k,i, k ∈
[nd], i ∈ [n], can take on any real value, the first layer
of the NN depicted in Figure 1 can in fact express any
matrix W 1 ∈ Rnd×n. This observation motivates the
following definition.

Definition 5 Let d ∈ [n], F ∈ C1(Rn,R), and T ∈
Rn×n be invertible. Then F is called linearly d-separable
with respect to T if the mapping

x 7→ F (Tx)

is (strictly) d-separable.
Further, a function G ∈ C1(Rn,Rl) is called linearly d-
separable if each of its l component functions is linearly
d-separable.

Definition 5 extends the class of separable functions to
all functions that are separable after a suitable linear
transformation of the state space. The following corol-
lary generalizes Theorem 4 to the case of linearly d-
separable functions. To this end, for c ∈ R>0 we define

GLcn as the space of invertible matrices T ∈ Rn×n such
that ‖T‖∞ ≤ c and ‖T−1‖∞ ≤ c. Note that after rescal-
ing with c/‖T‖∞, every T ∈ Rn×n with condition num-
ber ≤ c2 lies in GLcn.

Corollary 6 Let d ∈ N, c, r, R ∈ R>0, and σ ∈
C∞(R,R) be not a polynomial. Define for n ∈ N the sets
Kn := [−R,R]n and

F (n)
r,d,c :=

{
F ∈W1,r(Kn)

∣∣∣ F is linearly d-separable

w.r.t. some T ∈ GLcn, F (0) = 0
}
.

Then there exists a constant µd > 0 such that for all
n ∈ N and M ∈ N the NN W (x; θ) depicted in Figure 1
with n(d+M) neurons and activation functions σ1 = I1
and σ2 = σ satisfies for all F ∈ F (n)

r,d,c

inf
θ
‖F (·)−W (·; θ)‖∞,K ≤ cnrµd max{cR, 1}M− 1

d .

PROOF. Let F ∈ F (n)
r,d,c. Consider the mapping

G : T−1Kn → R, x 7→ F (Tx). By assumption, G is a
d-separable function. Further, note that G(0) = 0 and
T−1Kn ⊂ cKn = [−cR, cR]n. Moreover, it holds that

‖G‖W1(T−1Kn) =
∑

0≤|α|≤1

‖DαF (T ·)‖∞,T−1Kn

= ‖F (T ·)‖∞,T−1Kn
+

n∑
j=1

‖ ∂

∂xj
F (T ·)‖∞,T−1Kn

≤ ‖F‖∞,Kn + c

n∑
j=1

‖ ∂

∂xj
F‖∞,Kn ≤ c‖F‖W1(Kn).

Hence, applying Theorem 4 yields for M ∈ N

inf
θ
‖G(·)−W (·; θ)‖∞,T−1Kn

≤ ncrµd max{cR, 1}M− 1
d ,

whereW (x; θ) is the NN constructed in the proof of The-
orem 4. Recall that its first hidden layer used the identity
as activation function and all biases of the first hidden
layer were set to 0. Thus, the neurons of the first hidden
layer are obtained asW 1x for some matrixW 1 ∈ Rnd×n.
Hence, having T−1Kn as input space and the matrix
W 1 representing the first hidden layer can equivalently
be replaced by using K as input space and redefining
W 1 := W 1T−1. With this, we obtain an approximation
of F onK. Since the linear transformation of the weights
in the first layer is already included in the infimum over
all parameters θ, we obtain the claim. 2

As an immediate consequence of Corollary 6 we obtain
that the number of neurons needed to approximate lin-

5

early d-separable functions grows only polynomially in
the state dimension n.

Corollary 7 Let ε > 0 and consider the setting from
Corollary 6. Then for n ∈ N the number of neurons N ∈
N needed to ensure

sup
F∈F(n)

r,d,c

inf
θ
‖F (·)−W (·; θ)‖∞,[−R,R]n ≤ ε

is given by

N = nd+
nd+1

εd
(crµd max{cR, 1})d = O

(
nd+

nd+1

εd

)
.

PROOF. Applying Corollary 6 yields

M ≥ (n c rµd max{cR, 1})dε−d.

The claim is obtained by counting the total number of
neurons in the hidden layers in Figure 1. 2

Remark 8 In the setting of Theorem 4 as well as in the
corollaries 6 and 7 we have worked with C1 target func-
tions and thus applied Theorem 2 for the case m = 1. If
one is in a position to apply Theorem 2 for higher values
of m, one still obtains a number of neurons that is poly-
nomially increasing in n, albeit with the lower exponent
d/m+ 1 in place of d+ 1.

4 Existence of Separable Control Lyapunov
Functions

In this section, we use of methods from nonlinear sys-
tems theory for providing conditions for the existence of
(linearly) separable clfs. Thus, by invoking the results
from Section 3 we can identify classes of systems that al-
low for a curse-of-dimensionality-free approximation of
clfs by NNs.

4.1 Separability via small-gain theory and active nodes

This subsection proves the existence of separable clfs
based on small gain theory, leveraging the notion of ac-
tive nodes from [7]. We consider a control system (1)
and assume that it can be decomposed into s ∈ N sub-
systems denoted by

Σj : żj = fj(x, ũj) = fj(zj , z−j , ũj), j ∈ [s], (9)

where

x =

z1

z2
...

zs

 , u =

ũ1

ũ2
...

ũs

 , f(x, u) =

f1(x, ũ1)

f2(x, ũ2)
...

fs(x, ũs)

with zj ∈ Rdj , U = U1×U2×· · ·×Us, ũj ∈ Uj , fj : Rn×
Uj → Rdj , and

z−j :=
(
z1, . . . , zj−1, zj+1, . . . , zs

)T
∈ Rn−dj .

We explicitly allow for the case that some subsystems
Σj , are independent of the control u, which corresponds
to the case Uj = {0}. In the following, we investigate
whether there exist functions Vj defined on the respec-
tive subspaces Rdj such that their sum constitutes a clf
for the whole system. To this end, in addition to a sta-
bility property for each subsystem, one needs to impose
a condition on the coupling of the subsystems. For this
purpose, we represent the decomposition as a directed
graph that consists of s nodes. Each node belongs to one
subsystem and there exists an edge from node i to node
j, j 6= i, if the subsystem i influences the subsystem j,
i.e., if the function fj depends on the vector zi. Figure 2
illustrates the graph corresponding to a decomposition
into 1-dimensional subsystems of the control system (10)
from Section 4 in [7].

x1

x2 x3

ẋ1 = x3 + u,

ẋ2 = x1 − x2 + x21,

ẋ3 = x2 − x3.
(10)

Fig. 2. A control system and its corresponding graph.

The following assumption imposes a stability condition
on each subsystem:

Assumption 9 For each j ∈ [s] there exists a feedback
function Fj ∈ C1(Rdj , Uj), constants αj ∈ R>0, γi,j ∈
R>0, i 6= j, as well as a positive-definite and radially
unbounded function Vj ∈ C1(Rdj ,R) such that

DVj(zj)fj(zj , z−j , Fj(zj)) ≤ −αj‖zj‖2 +
∑
i 6=j

γi,j‖zi‖2.

(11)

Note that for a subsystem Σj that is not influenced by
the control, the left-hand side in (11) does not depend
on any feedback function Fj . In particular, Assumption
9 states that for all j ∈ [s], the function Vj is an ISS-
Lyapunov function (see [41]) for the system

żj = fj(zj , z−j , Fj(zj)),

where z−j is seen as the external input. Given such a
stability assumption on each of the subsystems, small-
gain theory can be used to obtain a stability property
of the overall system, see, for instance, [11,25,36]. In the
following, we focus on the theory developed in [7] that
allows us to formulate a graph-based criterion regarding
the existence of a separable clf.

6

Definition 10 (cf. Definition 3 in [7]) Let j ∈ [s]
and consider a subsystem Σj as in (9). The subsystem
is called active if there exist γi,j ∈ R>0, i 6= j, and a
function Vj ∈ C1(Rdj ,R) such that for all αj > 0 there
exists Fj ∈ C1(Rdj , Uj) such that (11) holds.

Using this notion of active subsystems (or active nodes)
in the graph, the results of [7] yield the following propo-
sition, where we call a tuple of nodes (v1, v2, . . . , vl),
l ≥ 3, cycle if there exists an edge from vi to vi+1 for all
i ∈ [l− 1], and v1 = vl, that is, the starting node equals
the last node.

Proposition 11 Consider a control system of the form
(1) given through subsystems of the form (9) and let As-
sumption 9 hold. Moreover, assume that in each cycle of
the directed graph corresponding to the decomposition (9)
there is at least one active subsystem. Then there exists
a d-separable clf for the system (1).

PROOF. Let Vj , j ∈ [s], denote the ISS-Lyapunov
functions obtained fromAssumption 9. Applying Propo-
sition 1 and Proposition 2 in [7], respectively, yields the
existence of coefficients rj ∈ R>0, j ∈ [s], such that
V :=

∑s
j=0 rjVj is a Lyapunov function for

żj = fj(zj , z−j , Fj(zj)), j ∈ [s]

This implies that V satisfies condition (2b), whence V
is a clf for (1). Finally, redefining Vj := rjVj gives us the
decomposition of V as d-separable function, cf. Defini-
tion 3. 2

Revisiting the control system in (10), we can check that
Vj(xj) = x2j is an ISS-Lyapunov function for each sub-
system and that the first subsystem is active. Thus,
Proposition 11 yields the existence of a 1-separable clf
for Example 10. Overall, by invoking Corollary 7 we can
conclude that Proposition 11 identifies a class of control
systems, where a clf can be approximated by a NN with-
out the curse of dimensionality. For an extension of the
above theory towards systems with non-quadratic K∞
functions in (11), we refer to [7, Section III].

4.2 Linear separability via linearization

In this subsection, the discussion of Subsection 4.1 is
extended to the existence of linearly d-separable clfs ac-
cording to Definition 5. We motivate this extension by
considering a variation of (10), namely the control sys-
tem

ẋ1 = x3 + u,

ẋ2 = x1 − x2 + x22,

ẋ3 = x2 + x3.

(12)

Applying the backstepping procedure (cf. Section 6.1 in
[37]) yields the existence of a clf for the system (12).
However, the obtained clf is not 1-separable. In fact, it
follows from Lemma 5 in [15] that there does not exist a
1-separable clf for (12). However, one can show that the
control system falls into a class of systems that possess
a linearly 1-separable clf, at least on some neighborhood
of the origin. In order to formulate the corresponding
assertion, we first show that linear stabilizable systems
always admit a linearly 1-separable clf.

Proposition 12 Consider a linear control system of the
form

ẋ = Ax+Bu, (13)
where A ∈ Rn×n and B ∈ Rn×m. Assume that (A,B)
is stabilizable. Then there exists a linearly 1-separable clf
V for the system (13). The function V is quadratic, i.e.,
V (x) = xTPx for some P ∈ Rn×n and satisfies

inf
u∈Rm

DV (x)(Ax+Bu) ≤ DV (x)(A+BF)x ≤ c‖x‖22
(14)

for a suitable feedback matrix F ∈ Rn×m and a constant
c > 0.

PROOF. It is known that for a linear and stabilizable
system, there always exists a clf of the form V (x) =
xTPx for a suitable symmetric and positive definite ma-
trix P ∈ Rn×n. The inequality (14) then follows from
the usual matrix Lyapunov inequality. As P is symmet-
ric and positive-definite, there exists an orthogonal ma-
trix T ∈ Rn×n such that

P̃ := T−1PT = TTPT = diag(p1, . . . , pn)

is a diagonal matrix. Thus,

V (Tx) = (Tx)TP (Tx) = xT P̃ x =

n∑
i=1

pix
2
i

is a 1-separable function. 2

Proposition 12 implies that linearizable control systems
locally possess linearly 1-separable clfs.

Corollary 13 Consider a control system (1) with a C1-
function f and assume that its linearization at the origin
is stabilizable. Then the control system (1) possesses a
linearly 1-separable clf on some neighborhood of the ori-
gin.

PROOF. Write f(x, u) = Ax+Bu+ g(x, u) with

lim
‖(x,u)‖→0

‖g(x, u)‖
‖(x, u)‖

= 0.

7

Since (A,B) is stabilizable, Proposition 12 yields the ex-
istence of c ∈ R≥0, F ∈ Rn×m, and a linearly 1-separable
function V (x) = xTPx such that (14) holds. Following
the proof of [40, Theorem 19], we obtain

inf
u
DV (x)f(x, u) ≤ −c‖x‖22 + 2xPg(x, F (x)) < 0

for x sufficiently small, since

‖2xPg(x, F (x))‖
‖x‖2

→ 0

for x→ 0. Hence, V is a clf for the nonlinear system (1)
in a suitable neighborhood of the origin. 2

4.3 Linear separability via feedback linearization

Next we explore a class of systems for which Proposi-
tion 12 can be employed to achieve linear separability
through a potential nonlinear transformation. To this
end, we extend the definition of feedback linearizability
from [40, Section 5.3] to multi-input systems.

Definition 14 An affine control system

ẋ = f(x) +

m∑
j=1

gj(x)uj

with control input u = (u1, . . . , um)T ∈ Rm is called
feedback linearizable, if there exists a diffeomorphism S ∈
C1(Rn,Rn) as well as maps aj , bj : Rn → R, j ∈ [m],
such that the transformed control system

˙̃x = f̃(x̃) +

m∑
j=1

g̃j(x̃)vj

with transformed state x̃ = S(x), new control input v =
(v1, . . . , vm)T ∈ Rm and

f̃(x̃) = DS(x)
(
f(x) +

m∑
j=1

aj(x)gj(x)
)
,

g̃j(x̃) = bj(x)DS(x)gj(x),

is a linear control system, i.e., if there exist matrices
A ∈ Rn×n and B ∈ Rn×m auch that f̃(x̃) = Ax̃ and
(g̃1(x̃), . . . , gm(x̃)) = B holds for all x̃ ∈ Rn.

Theorem 15 Consider a feedback linearizable affine
control system with transformation map S satisfy-
ing S(0) = 0, for which the pair (A,B) is stabiliz-
able. Then the control system has a clf V of the form
V (x) = Ṽ (S(x)) with a linearly 1-separable function
Ṽ : Rn → R.

PROOF. According to Proposition 12, we have

inf
v∈Rm

DṼ (x̃)(Ax̃+Bv) ≤ DṼ (x̃)(Ax̃+BFx̃) ≤ −c‖x̃‖22

for suitable c ∈ R≥0, F ∈ Rn×m, and some linearly
1-separable mapping Ṽ . For V (x) = Ṽ (S(x)) and uj =
aj(x) + bj(x)vj we then obtain

DV (x)
(
f(x) +

m∑
j=1

gj(x)uj
)

= DṼ (S(x))DS(x)
(
f(x) +

m∑
j=1

gj(x)(aj(x) + bj(x)vj)
)

= DṼ (x̃)
(
f̃(x̃) +

m∑
j=1

g̃j(x̃)vj
)

= DṼ (x̃)(Ax̃+Bv).

This implies

inf
u∈Rm

DV (x)
(
f(x) +

m∑
j=1

gj(x)uj

)
≤ −c‖S(x)‖22.

Since S is a diffeomorphism with S(0) = 0, there exist
α1, α2 ∈ K∞ with

α1(‖x‖2) ≤ (‖S(x)‖2) ≤ α2(‖x‖2),

see Lemma 1 in [22]. Thus, V satisfies all inequalities in
(2), whence it is a clf. 2

The following corollary now follows immediately.

Corollary 16 Consider the setting of Theorem 15 and
assume that the transformation map S is linearly k-
separable for some k ∈ [n]. Then the control system has
a clf V that is a composition of a linearly 1-separable
function with a linearly k-separable function.

Note that Corollary 16 in particular applies to linear
mappings S, as linear mappings are always 1-separable.
We can conclude that for control systems that satisfy
the requirements in Corollary 16 there exists a curse-
of-dimensionality-free approximation with a NN that
is built as in Figure 1, but has one additional hidden
layer at the beginning, which is used to represent the
k-separable transformation S.

5 Network architecture and training algorithm

The present section discusses the NN structure and a
corresponding training algorithm for the computation
of a separable clf, whose performance is illustrated by
numerical results for two test cases.

8

5.1 Network Structure

The structure of the NN that we use for the computation
of a linearly separable clf is exactly the one depicted in
Figure 1 with the modification of introducing a hyperpa-
rameter s for the number of sublayers, i.e., replacing the
n sublayers in Figure 1 by s sublayers. It is important
to note that our NN architecture entails the 3 hyperpa-
rameters d, s, and M . The maximal input-dimension of
each sublayer d has to be chosen large enough such that
the considered control system possesses a d-separable
clf. Note that if some function is d-separable, then it is
also d+ 1 separable with the same decomposition of its
domain. However, since the numerical effort increases
exponentially in d (cf. Theorem 4), a good estimate for
d significantly improves the efficiency of the approach.
Regarding the choice of s, according to Definition 3 it is
always sufficient to choose s = n. However, although the
numerical effort does not increase exponentially in s, a
smaller choice for s still enhances the numerical perfor-
mance. Lastly, the number of neurons in each sublayer
M determines the accuracy to which the functions Vj
can be represented and thus determines the accuracy of
our computed clf.

An important feature of this network architecture is the
fact that the decomposition of the state vector x into
the vectors zj , 1 ≤ j ≤ s, is determined by the first hid-
den layer. Thus, the detection of a suitable splitting of
the state space (see Definition 3) is part of the training
process. This means that the numerical algorithm pre-
sented in this section does not need to know the split-
ting or coordinate transformation discussed in Section 4.
Rather, this structure will be “learned” by the network
in the training process. It is possible to incorporate the
linear transformation computed by the first hidden layer
in Figure 1 into the second hidden layer, that is, to merge
the two hidden layers into one hidden layer. However, in
our numerical test cases, the NN with two hidden lay-
ers as depicted in Figure 1 frequently demonstrated an
improved numerical performance.

5.2 Basic Training Algorithm

Our goal is that the NN x 7→ W (x; θ) approximately
is a clf for the system (1). In order to achieve that, we
need to train the parameters θ of our NN accordingly.
To this end, we define a loss-function L that penalizes
the violation of any of the three inequalities defining a
smooth clf in Definition 1. For any point x ∈ K we set

L(x,W (x; θ), DW (x; θ)) :=

([W (x; θ)− α1(‖x‖)]−)
2

+ ([W (x; θ)− α2(‖x‖)]+)
2

+ η
([
α3(‖x‖) + inf

u∈U
DW (x; θ)f(x, u)

]
+

)2
, (15)

where α1, α2 ∈ K∞, α3 ∈ K, [·]+ := max(·, 0), [·]− :=
min(·, 0), and η > 0 is a weighting factor. Note that

the functions α1, α2, and α3, as well as the parameter η
are hyperparameters of the algorithm. In particular, the
choice of the lower bound α1 and the upper bound α2

play a crucial role. Suppose we know that some separable
clf V exists and fix some α1 ∈ K∞. Then (possibly after
rescaling V) there always exists α2 ∈ K∞ such that
α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) for all x ∈ K. Thus, the
hyperparameterα2 only needs to be chosen large enough.
However, a smaller choice ofα2 leads tomore significance
of the second term in (15), thus enhancing the training
process. In conclusion, finding a good choice of α1 and
α2 may involve some example-dependent trial and error.

Note that L depends on the point x, the evaluation
W (x; θ) and the orbital derivative DW (x; θ)f(x, u). We
calculate this orbital derivative alongside the evaluation
of W (x; θ) via automatic differentiation. Moreover, we
need to evaluate the expression infu∈U DW (x; θ)f(x, u).
This expression can be simplified for systems with U =
[−C,C]m for some C > 0 and an affine linear control
input of the form

ẋ = f(x, u) = h(x) + g(x)u,

since then we have

inf
u∈U

DW (x; θ)f(x, u)

=DW (x; θ)h(x)− C‖DW (x; θ)g(x)‖1,
(16)

cf. [15, Lemma 6]. The training process of the NN is then
performed by minimizing the value of the loss function
(15) over some finite set of training data DT ⊂ K using
a stochastic gradient descent algorithm. The training
process is stopped if

‖L(·,W (·, θ), DW (·, θ))‖∞,DV
≤ ε (17)

for a fixed ε > 0 and a finite set of validation data DV ⊂
K that is chosen independently of the training data DT .

Remark 17 Clfs can be characterized as solutions of
Zubov’s equation [5], i.e., as optimal value functions for
suitable optimal control problems. For such problems, su-
pervised learning approaches have been proposed in the
literature, see e.g. [2,30]. However, they are difficult to
apply in our setting, because while we assume that a sep-
arable clf exists, we do not know its precise form and thus
also not the corresponding optimal control problem.

5.3 Numerical Improvements

We now sketch two ideas to improve the training process
of the NN. At first, we consider an adaptive sampling
procedure for the training data DT ⊂ K. Initially, we
choose DT randomly and uniformly distributed in K.
However, due to the characteristics of the control system
or for numerical reasons, it might be more difficult to

9

converge towards a clf on some subset of K than on
others. In order to react to such issues, we use another
set D̃V ⊂ K that is chosen independently of DV and
DT and locate the κ1 ∈ N points in D̃V that have the
largest loss value after training for a certain amount of
epochs. Afterwards, for every such point x̃ ∈ D̃V , we add
a certain amount κ2 ∈ N of points that are uniformly
chosen in some neighborhood of x̃ to our set of training
data DT . Thus, we increase the focus of our training
towards regions in K, where the largest errors occur.
This idea is based on the works [29,44].

Furthermore, in our numerical tests it has turned out
that the most significant error usually lies around the
origin. We tackle this by adding the term W (0; θ)2 +
‖DW (0; θ)‖2 to the loss-function used for the training
of the network, cf. [6]. Note that W (0; θ) = 0 is also
enforced by (2a). However, this is only crucial for train-
ing points near the origin. Adding W (0; θ)2 to the loss
function forces the used optimization routine to stay at
W (0; θ) = 0 during all stages of the training. Analo-
gously, DW (0; θ) = 0 is also implicitly enforced since
(2a) requires 0 to be a global minimum ofW (·, θ). How-
ever, we could observe a numerical improvement by ex-
plicitly adding W (0; θ)2 + ‖DW (0; θ)‖2. A different ap-
proach to address issues at the origin has been pursued
in [12], where a small neighborhood around the origin is
excluded from the domain K of the computed clf.

5.4 Numerical Examples

Finally, we illustrate the presented algorithm with two
numerical experiments, where the corresponding control
systems have a linear-affine control input, respectively.
Our computations are conducted with Python 3.10.6 and
Tensorflow 2.11.0 (see [1]) on an NVIDIA GeForce RTX
3070 GPU. The optimization has been performed with
the ADAM stochastic gradient descent method.
At first, we consider an extension of the control system

x1
1.00.50.00.51.0x2

1.0 0.5 0.0 0.5 1.0

W
,D

W
f

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Fig. 3. Approximate clf (solid) and its corresponding orbital
derivative (mesh) for the system (18) on the (x1, x2)-plane.

(10) to a 10-dimensional state space. We set

ẋ1 = x10 + u,

ẋ2 = x1 − x2 + x21,

ẋj = xj−1 − xj , 3 ≤ j ≤ 10,

(18)

and U = [−5, 5]. We use the NN depicted in Figure
1 with d = 1, M = 128, s = 10 sublayers, and the
softplus-function σ(x) = ln(1 + exp(x)) as activation to
compute a clf for (18) on K = [−1, 1]10. The training
has been pursued choosing α1(r) = 0.2r2, α2(r) = 10r2,
and α3(r) = 0.01r2, as well as |DT | = |DV | = 5 · 105.
It has stopped after 21 epochs (using a batch size of
32) satisfying (17) with ε = 10−3. Figure 3 shows the
computed NN output W (x; θ) as surface plot. Further,
the directional derivative DW (x; θ)f(x, u∗) with

u∗(x) = arg minDW (x; θ)f(x, u) (19)

is calculated according to (16) and depicted as wireframe
plot. Note that the directional derivative is strongly de-
creasing with increasing values of |x1| due to the direct
influence of u on x1, see (18). This is in contrast to the
plot in Figure 4, where the clf and its derivate in direction
of the optimally controlled vector field are shown on the
(x2, x3)-plane. Figure 5 depicts the evaluation ofW (x; θ)
alongside the trajectory starting at (1, · · · , 1)T ∈ R10

and being controlled via u∗(x) as in (19).

x2
1.00.50.00.51.0x3

1.0 0.5 0.0 0.5 1.0

W
,D

W
f

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Fig. 4. Approximate clf (solid) and its corresponding orbital
derivative (mesh) for the system (18) on the (x2, x3)-plane.

0 5 10 15 20 25

t

0

1

2

3

4

5

W
(x

(t)
;

)

Fig. 5. Evaluation of W (x; θ) along a trajectory.

10

Secondly, we consider the 10-dimensional control system

ẋ = f(x, u) =

−x1 + 0.5x2 − 0.1x29

−0.5x1 − x2
−x3 + 0.5x4 − 0.1x21

−0.5x3 − x4
0.5x5 + 0.1x27 + u1

−0.5x5 − x6
0.5x8 + u2

−0.5x7 − x8
0.5x10 − u3

0.1x22 − 0.5u3 + u4

(20)

with U = [−10, 10]4, based on example (13) provided in
[17]. Note that the system is asymptotically controllable,
but is unstable for u ≡ 0. By defining zj = (x2j−1, x2j),
j ∈ [5], we can decompose (20) into five two-dimensional
subsystems that each consist of a linear stabilizable con-
trol system, possibly interconnected with other subsys-
tems through non-linearities. To illustrate the ability of
our approach to determine the subspaces that lead to
separability, we apply a randomly generated invertible
matrix T ∈ R10×10 and consider the resulting trans-
formed system ẋ = T−1f(Tx, u). We employed the hy-
perparameters α1(r) = 0.05r2, α2(r) = 10r2, α3(r) =
0.01r2, as well as d = 2, s = 5, and M = 128 in a train-
ing process with DT = 2 · 105 and a batch size of 128.
This training process was conducted to compute a clf on
the domain [−1, 1]10 and reached the tolerance ε = 10−3

after 52 epochs. Figure 6 shows the computed clf and its
derivative in direction of the optimally controlled vector
field on the (x5, x6)-plane. Additionally, the lower bound
α1 and the upper bound α2 are plotted in orange, respec-
tively. As desired, all four functions touch at the origin.
WhileW (x; θ) is strictly increasing within the space de-
fined by its lower and upper bounds, the corresponding
orbital derivate is strictly negative.

x5 1.00.50.00.51.0

x6
1.00.50.00.51.0

W
,D

W
f

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Fig. 6. Plot of the computed clf W (x; θ), its derivate
DW (x; θ)f(x, u∗), and the bounds α1, α2 on the
(x5, x6)-plane for example (20).

6 Conclusion

In this paper, we have discussed the capability of NNs
to approximate clfs in high space dimensions. To this
end, we have shown that NNs can overcome the curse
of dimensionality for approximating (linearly) separable
functions and provided conditions for the existence of
(linearly) separable clfs. Thus, we have identified con-
trol systems that allow for a curse-of-dimensionality-free
approximation of clfs with NNs. Moreover, a numeri-
cal algorithm was presented and illustrated on two ten-
dimensional control systems.

For future research, we aim to investigate the approx-
imation of non-smooth clfs with NNs. A possible basis
for this may be recent results on curse-of-dimensionality-
free approximations of non-smooth compositional func-
tions with ReLU NNs, see [13], which rely on the ap-
proximation result in [43]. Moreover, we aim to explore
the usage of noninteracting control via feedback decou-
pling and other methods from nonlinear control theory
to identify situations where a clf (or more general an op-
timal value function) can be represented by a NN with-
out the curse of dimensionality.

Acknowledgements

The authors acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) in the frame of the priority programme SPP
2298 “Theoretical Foundations of Deep Learning” -
project number 463912816.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, et al.
TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] G. Albi, S. Bicego, and D. Kalise. Gradient-augmented
supervised learning of optimal feedback laws using state-
dependent Riccati equations. IEEE Control Syst. Lett.,
6:836–841, 2022.

[3] C. Beck, A. Jentzen, K. Kleinberg, and T. Kruse. Nonlinear
monte carlo methods with polynomial runtime for Bellman
equations of discrete time high-dimensional stochastic
optimal control problems. preprint arXiv:2303.03390, 2023.

[4] P. Braun, L. Grüne, and C. M. Kellett. (In-)
Stability of Differential Inclusions–Notions, Equivalences,
and Lyapunov-like Characterizations. SpringerBriefs in
Mathematics. Springer, Cham, 2021.

[5] F. Camilli, L. Grüne, and F. Wirth. Control Lyapunov
functions and Zubov’s method. SIAM J. Control Optim.,
47(1):301–326, 2008.

[6] Y. Chang, N. Roohi, and S. Gao. Neural Lyapunov control.
In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[7] K. Chen and A. Astolfi. On the active nodes of network
systems. In 2020 59th IEEE Conference on Decision and
Control (CDC), pages 5561–5566. IEEE, 2020.

11

[8] G. Cybenko. Approximation by superpositions of a sigmoidal
function. Math. Control Signals Systems, 2(4):303–314, 1989.

[9] W. Dahmen. Compositional sparsity, approximation classes,
and parametric transport equations. preprint arXiv:
2207.06128, 2023.

[10] J. Darbon, G. Langlois, and T. Meng. Overcoming the
curse of dimensionality for some Hamilton-Jacobi partial
differential equations via neural network architectures. Res.
Math. Sci., 7, 2020.

[11] S. Dashkovskiy, B. Rüffer, and F. Wirth. Small gain theorems
for large scale systems and construction of ISS Lyapunov
functions. SIAM J. Control Optim., 48(6):4089–4118, 2010.

[12] N. Gaby, F. Zhang, and X. Ye. Lyapunov-net: A deep neural
network architecture for Lyapunov function approximation.
In 2022 IEEE 61st Conference on Decision and Control
(CDC), pages 2091–2096. IEEE, 2022.

[13] Q. Gong, W. Kang, and F. Fahroo. Approximation of
compositional functions with ReLU neural networks. Systems
Control Lett., 175:105508, 2023.

[14] L. Gonon and C. Schwab. Deep ReLU neural
networks overcome the curse of dimensionality for partial
integrodifferential equations. Anal. Appl., 21(01):1–47, 2023.

[15] L. Grüne and M. Sperl. Examples for separable control
Lyapunov functions and their neural network approximation.
IFAC-PapersOnLine, 56(1):19–24, 2023.

[16] L. Grüne and F. Wirth. Computing control Lyapunov
functions via a Zubov type algorithm. In Proceedings of the
39th IEEE Conference on Decision and Control, pages 2129–
2134. IEEE, 2000.

[17] L. Grüne. Computing Lyapunov functions using deep neural
networks. J. Comput. Dyn., 8(2):131–152, 2021.

[18] J. Han, A. Jentzen, and W. E. Solving high-dimensional
partial differential equations using deep learning. Proc. Natl.
Acad. Sci., 115(34):8505–8510, 2018.

[19] M. Hutzenthaler, A. Jentzen, T. Kruse, T. Anh Nguyen,
and P. von Wurstemberger. Overcoming the curse of
dimensionality in the numerical approximation of semilinear
parabolic partial differential equations. Proceedings of the
Royal Society A, 476(2244):20190630, 2020.

[20] W. Kang and Q. Gong. Neural network approximations
of compositional functions with applications to dynamical
systems. preprint arXiv:2012.01698, 2020.

[21] W. Kang and Q. Gong. Feedforward neural networks
and compositional functions with applications to dynamical
systems. SIAM J. Control Optim., 60(2):786–813, 2022.

[22] C. M. Kellett and P. M. Dower. Input-to-state stability,
integral input-to-state stability, and L2-gain properties:
Qualitative equivalences and interconnected systems. IEEE
Trans. Automat. Control, 61(1):3–17, 2015.

[23] H. Khalil. Nonlinear systems. Third Edition. Prentice-Hall,
Upper Saddle River, NJ, 2002.

[24] S. Khansari-Zadeh and A. Billard. Learning control
Lyapunov function to ensure stability of dynamical system-
based robot reaching motions. Robotics and Autonomous
Systems, 62(6):752–765, 2014.

[25] T. Liu, D. Hill, and Z.-P. Jiang. Lyapunov formulation of
ISS cyclic-small-gain in continuous-time dynamical networks.
Automatica J. IFAC, 47(9):2088–2093, 2011.

[26] Y. Long and M. Bayoumi. Feedback stabilization: Control
Lyapunov functions modelled by neural networks. In
Proceedings of 32nd IEEE Conference on Decision and
Control, pages 2812–2814. IEEE, 1993.

[27] H. Mhaskar. Neural networks for optimal approximation of
smooth and analytic functions. Neural Comput., 8(1):164–
177, 1996.

[28] S. Na, S. Shin, M. Anitescu, and V. M. Zavala. On
the convergence of overlapping schwarz decomposition for
nonlinear optimal control. IEEE Trans. Autom. Control,
67(11):5996–6011, 2022.

[29] T. Nakamura-Zimmerer, Q. Gong, and W. Kang. Adaptive
deep learning for high-dimensional Hamilton–Jacobi–
Bellman equations. SIAM J. Sci. Comput., 43(2):A1221–
A1247, 2021.

[30] T. Nakamura-Zimmerer, Q. Gong, and W. Kang. Neural
network optimal feedback control with guaranteed local
stability. IEEE Open Journal of Control Systems, 1:210–222,
2022.

[31] A. Pinkus. Approximation theory of the mlp model in neural
networks. Acta Numer., 8:143–195, 1999.

[32] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao.
Why and when can deep-but not shallow-networks avoid the
curse of dimensionality: A review. International Journal of
Automation and Computing, 14(5):503–519, 2017.

[33] C. Reisinger and Y. Zhang. Rectified deep neural networks
overcome the curse of dimensionality for nonsmooth value
functions in zero-sum games of nonlinear stiff systems. Anal.
Appl., 18(06):951–999, 2020.

[34] S. Richards, F. Berkenkamp, and A. Krause. The Lyapunov
neural network: Adaptive stability certification for safe
learning of dynamical systems. In Proceedings of The
2nd Conference on Robot Learning, Proceedings of Machine
Learning Research, pages 466–476. PMLR, 2018.

[35] A. Riekert. Deep neural network approximation of composite
functions without the curse of dimensionality. preprint
arXiv:2304.05790, 2023.

[36] B. S. Rüffer. Monotone dynamical systems, graphs, and
stability of large-scale interconnected systems. PhD thesis,
Universität Bremen, 2007.

[37] R. Sepulchre, M. Janković, and P. Kokotović. Constructive
Nonlinear Control. Springer, London, 1997.

[38] E. D. Sontag. A Lyapunov-like characterization of asymptotic
controllability. SIAM J. Control Optim., 21(3):462–471, 1983.

[39] E. D. Sontag. Feedback stabilization using two-hidden-layer
nets. In 1991 American control conference, pages 815–820.
IEEE, 1991.

[40] E. D. Sontag. Mathematical Control Theory. Springer New
York, 1998.

[41] E. D. Sontag and Y. Wang. On characterizations of the input-
to-state stability property. Systems Control Lett., 24(5):351–
359, 1995.

[42] M. Sperl, L. Saluzzi, L. Grüne, and D. Kalise. Separable
approximations of optimal value functions under a decaying
sensitivity assumption. preprint arXiv:2304.06379, 2023.

[43] D. Yarotsky. Optimal approximation of continuous functions
by very deep ReLU networks. In Conference on Learning
Theory, pages 639–649. PMLR, 2018.

[44] X. Zhang, J. Long, W. Hu, J. Han, et al. Initial value problem
enhanced sampling for closed-loop optimal control design
with deep neural networks. preprint arXiv:2209.04078, 2022.

12

