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Zusammenfassung  

Das Gram-positive Bakterium Bacillus subtilis spielt eine wichtige Rolle im Bereich der 

Landwirtschaft, der Medizin und der Ernährung und bei der Produktion rekombinanter 

Proteine. Momentan werden etwa 60% aller kommerziell verfügbaren technischen Enzyme 

von Bacillus-Spezies produziert. Außerdem sind eine Vielzahl von Informationen über die 

Transkription, die Translation, die Protein-Faltung, die Sekretions-Mechanismen, die 

genetische Manipulation und die Fermentation im industriellen Maßstab verfügbar. Dem steht 

gegenüber, dass effiziente und preiswerte Expressions-Vektoren bislang fehlen. Um diese 

Lücke zu schließen, wurden ein Glycin-induzierbares und ein Lysin-autoinduzierbares 

Expressionssystem entwickelt. Ferner wurden IPTG-induzierbare Expressions-Vektoren 

konstruiert und analysiert, die Überexpression und Reinigung von Proteinen erlauben. 

Weiterhin wurde ein Promoter-Testvektor entwickelt, der die Analyse von sehr starken 

Promotoren sowie von mRNA stabilisierenden Elementen erlaubt, um die Menge an 

Transkript und die mRNA-Stabilität zu erhöhen und damit eine höhere Produktion an 

rekombinanten Proteinen zu gewährleisten.  

Während der Entwicklung der Glycin- und Lysin-induzierbaren Vektoren wurde mittels 

Northern-Blot bestätigt, dass in beiden Fällen zunächst ein kurzes Transkript, genannt 

Riboswitch, synthetisiert wird, welches nach Zugabe von Glycin und nach Entfernen von 

Lysin in ein längeres Transkript umgewandelt wird. Um die Expressionsstärke nach Induktion 

zu quantifizieren, wurden die beiden Promotoren mit ihren Riboswitches an das lacZ-

Reportergen fusioniert. Im Falle des Glycin-Systems wurde der Promotor optimiert und die 

Produktion von HtpG, Pbp4* und α-Amylase als Modellproteine analysiert. Diese Ergebnisse 

zeigten, dass der Glycin-Riboswitch erfolgreich für die regulierte Produktion von sowohl 

intra- als auch extrazellulären Proteinen und der Lysin-Riboswitch als autoinduzierbares 

System verwendet werden können. Im letzteren Fall beginnt die Produktion der 

rekombinanten Proteine, wenn die Lysin-Konzentration in der Zelle unter einen 

Schwellenwert gefallen ist.  

Außerdem wurden sechs verschiedene neuartige IPTG-induzierbare Expressions-Vektoren für 

B. subtilis konstruiert. Während der erste Vektor die intrazelluläre Produktion von 

rekombinanten Proteinen erlaubt (pHT01), enthält der zweite ein starkes Sekretions-Signal 

(pHT43). Der dritte Vektor erlaubt das Anfügen des c-Myc Epitop-Tags (pHT10), und die 

restlichen drei Vektoren das Anfügen der His- (pHT08) und Strep-Reinigungs-Tags (pHT09 
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und pHT24). Die Anwendung aller sechs Vektoren wurde durch das Einklonieren geeigneter 

Reportergene und die nachfolgende Überproduktion ihrer Proteine gezeigt.  

Zum schnellen Screening starker Promotoren wurde ein neuer Promotor-Test Vektor 

entwickelt mit dem bgaB-Gen als Reportergen, welches ein Blau-Weiß Screening erlaubt. 

Dieser Vektor enthält den lacO-Operator upstream von der Ribosomen-Bindungsstelle (RBS) 

und downstream von einer DNA-Sequenz mit Erkennungssequenzen für verschiedene 

Restriktionsenzyme. Er enthält außerdem das Gen für den Lac-Repressor, der die IPTG-

kontrollierte Expression der Promotoren erlaubt und somit die Klonierung auch starker 

Promotoren in E. coli, sowie die regulierte Expression von bgaB in B. subtilis ermöglicht.  

Insgesamt 85 verschiedene und PgroE-modifizierte σ
A
-abhängige Promotoren wurden in 

pHT06 kloniert and analysiert. Es zeigte sich, dass DNA-Sequenzen um den 

Transkriptionsstart, die -10-, die -15- und die -35-Region und upstream vom Promotor dessen 

Stärke beeinflussen. Um die Aktivität der verschiedenen Promotoren zu vergleichen, wurden 

die BgaB-Aktivitäten bestimmt und Northern-Blot-Experimente durchgeführt. Die 

Messungen einiger neuer Kombinationen von Core-Promotoren und UP-Elemente zeigten, 

dass die β-Galaktosidase-Aktivitäten jeweils bis zu 13-fach bzw. 43-fach gesteigert werden 

konnten im Vergleich mit dem bereits starken Pgrac-Promotor. Wurden beide Elemente 

kombiniert, dann wurde eine etwa 690-fache Aktivität, wieder bezogen auf den Pgrac-

Promotor, gemessen, und die Synthese an BgaB-Protein erreichte bis zu 30% des gesamten 

zellulären Proteins.  

Die mRNA-stabilisierenden Elemente wurden mit einem vergleichbaren experimentellen 

Ansatz untersucht. Zunächst wurden 17 verschiedene Stem-Loop-Strukturen am 3'-Ende der 

mRNA analysiert. Keine dieser DNA-Sequenzen zeigte einen signifikanten Einfluss auf die 

Menge an synthetisiertem Protein. Dann wurden 5'-mRNA-stabilisierende Elemente 

analysiert, und zwar eine starke RBS, ein lacO-kontrollierbares stabilisierendes Element 

(genannt CoSE) und die Spacer-Regionen zwischen RBS und CoSE. Diese Ergebnisse 

zeigten, dass das CoSE-Element zusammen mit einem geeigneten Spacer und einer starken 

RBS die Genexpression 9-fach steigern konnte, wieder bezogen auf den Pgrac-Promotor. Dies 

führtezn bis zu 26% an rekombinantem Protein und einer Halbwertszeit der mRNA von mehr 

als 60 min. Eine Kombination von starken Promotoren und stabilisierenden Elementen 

führtezn bis zu 42% an rekombinantem Protein als Anteil am Gesamtprotein.  
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Summary  

The gram-positive bacterium Bacillus subtilis is well-known for its contributions to 

agricultural, medical, and food biotechnology and for the production of recombinant proteins. 

At present, about 60% of the commercially available technical enzymes are produced by 

Bacillus species. Furthermore, a large body of information concerning transcription, 

translation, protein folding and secretion mechanisms, genetic manipulation, and large-scale 

fermentation has been acquired. But so far, efficient and inexpensive expression vectors for  

B. subtilis are still missing. To fill this gap, a glycine-inducible expression system and a 

lysine-autoinducible one were explored and IPTG-inducible expression plasmids that allow 

overexpression and purification of proteins were constructed and analyzed. Furthermore, a 

technique with a useful promoter-probe plasmid to analyze strong promoters in B. subtilis was 

established, which allowed to study promoter and mRNA stabilizing elements to enhance the 

transcript level and mRNA stability leading to higher production of recombinant protein. 

During the development of the glycine-inducible and lysine-autoinducible expression 

plasmids, the presence of a small transcript termed riboswitch corresponding to the 5' UTR in 

the absence of L-glycine or presence of L-lysine and its conversion into the full-length 

transcript after addition of the L-glycine or removal of L-lysine was confirmed by Northern 

blot. Next, the promoter and downstream riboswitch was fused to the lacZ reporter gene to 

measure glycine or lysine-dependent induction. The production potential for the glycine 

system was analyzed in detail, and the promoter strength improved by using HtpG, Pbp4* and 

α-amylase as model proteins. In summary, the glycine riboswitch can be used successfully for 

regulatable production of both intra- and extracellular proteins, and the lysine riboswitch can 

be applied as an auto-inducible expression system allowing production of recombinant 

proteins when the L-lysine concentration within the growth medium falls below a threshold 

value.  

Six commercially available novel plasmid-based IPTG-inducible expression plasmids for      

B. subtilis were constructed, too. While the first vector allows intracellular production of 

recombinant proteins (pHT01), the second provides a strong secretion signal (pHT43). The 

third vector allows addition of the c-Myc epitope tag (pHT10), and the remaining three 

vectors provide the purification tags His (pHT08) and Strep (pHT09 and pHT24). The 

versatility of all six vectors was verified by insertion of appropriate reporter genes and by 

demonstrating high level production of their proteins.  
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To develop a simple technique for rapid screening of strong promoters in B. subtilis, a new 

promoter-probe plasmid (pHT06) using the bgaB-encoded β-galactosidase was constructed 

allowing blue/white screening. This promoter-probe plasmid contains the lacO operator, 

upstream of the ribosome binding site (RBS) and downstream of a multiple cloning sites 

(MCS), and lacI coding for the Lac repressor, which allowed promoters to be controlled by 

IPTG, facilitating strong promoters to be cloned in E. coli and regulated expression of bgaB 

in B. subtilis.  

A total of 85 different synthetic and groE-modified σA-dependent promoters were introduced 

into pHT06 and analyzed. Sequences around the transcriptional start site, the -10 region, the   

-15 region, the -35 region and the upstream region turned out to influence the promoter 

strength. BgaB activities and Northern blot analyses were used to measure the activity of the 

different promoters. The measurements of some new combinations of core promoters and UP 

elements on gene expression revealed that the β-galactosidase activity expression levels could 

be increased up to 13-fold and the mRNA levels up to 43-fold as compared to the strong Pgrac 

promoter. If both elements were combined, an activity roughly 690 times higher than that 

obtained with the Pspac promoter were obtained, and synthesis of BgaB, under control of these 

promoters, could reach up to 30% of the total cellular protein.  

The mRNA stabilizing elements were also analyzed by using a similar experimental approach. 

First, seven-teen different 3’-mRNA terminal stem-loops have been investigated, which did 

not significantly influence neither the amount of protein produced nor the mRNA stability. 

Second, the 5’-mRNA stabilizing elements including a strong RBS, the lacO Controllable 

Stabilizing Element (CoSE) and the spacer between the RBS and CoSE were examined. The 

results demonstrated that CoSE together with an appropriate spacer and a strong RBS could 

increase gene expression 9-fold as compared to the  Pgrac promoter, reaching up to 26% of 

total cellular protein and a half-life of the mRNA of more than 60 min. A combination of 

strong promoters and stabilizing elements showed that recombinant protein synthesis levels of 

up to 42% of the total cellular protein could be obtained. 
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1 Introduction 

Bacillus species have been major workhorses in industrial microbiology since a very long 

time [56, 136]. The development of strains and production strategies has been influenced by 

the application of molecular biology techniques to strain development. Bacillus species are 

attractive industrial microorganisms due to several reasons such as high growth rate, their 

capacity to secrete proteins into the medium and their GRAS (generally regarded as safe) 

status with the Food and Drug Administration for some species including B. subtilis, the best-

studied Gram-positive bacterium today. Expression systems for the production of 

recombinant proteins produced intra- and extracellularly have been reviewed recently [97, 

163]. 

Bacillus subtilis is generally considered to have a great industrial potential for production and 

secretion of proteins of clinical interest like interferon [113], insulin [109], pathogenic 

antigens [2], and toxins [154], or technical enzymes of great industrial interest like proteases 

[63], α-amylase [66], and lipases [63]. The major advantages of B. subtilis as compared to 

other host production systems are high-cell-density growth and secretion of synthesized 

proteins into the cultivation medium, which facilitates isolation and purification of 

recombinant proteins during downstream processing [14, 17, 88]. High-level production of 

recombinant proteins as a prerequisite prior to subsequent purification has become a standard 

technique. Important applications of recombinant proteins are: (i) immunization, (ii) 

biochemical studies, (iii) three-dimensional analysis of the protein, and (iv) biotechnological 

and therapeutic use. Production of recombinant proteins involves cloning of the appropriate 

gene into an expression vector under the control of an inducible promoter. The selection of a 

particular expression system requires a cost breakdown in terms of design, process and other 

economic considerations. 

1.1  Controllable expression systems in B. subtilis 

Expression systems for recombinant proteins rely on inducible promoter systems. Based on 

the inducing signal, promoters can be grouped into three classes: Those of class I are activated 

by adding a chemical compound which acts as an inducer. Cells are grown first in the absence 

of the inducer to the mid-logarithmic growth phase followed by addition of the inducer, a 

chemical compound such as IPTG or xylose. Expression of the recombinant gene in the 

absence of inducer is prevented by a repressor protein which can be inactivated by the added 

inducer such as the LacI repressor by IPTG or the XylR repressor by xylose [55]. Promoters 
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of class II are activated by a temperature shift, either up or down. Cells are grown at 30-37oC 

and shifted for induction of the promoter system either to high (40-45oC) or low temperature 

(20-15oC) [103, 122]. And promoters of class III are auto-inducible that direct low levels of 

expression in the lag and log phase, and much higher levels in the stationary phase. Their 

induction relies on the intracellular concentration of a metabolite such as the promoter of 

aprE encoding for subtilisin E [71]. If this metabolite is present in excess, it will prevent 

expression of those genes involved in its own synthesis. During growth, the metabolite will be 

consumed by the cell, and if its concentration falls beyond a threshold value, the structural 

genes involved in its synthesis will be induced. And this class also includes promoters 

belonging to σB-dependent promoters such as of gsiB, encoding for a general stress protein 

[94].  

1.1.1  Published controllable expression system 

In order to produce homologous or heterologous proteins, several systems for inducible gene 

expression in B. subtilis have been developed. The starch-inducible amylase promoter is 

frequently used for production of heterologous proteins in which the desired protein is fused 

to the α-amylase promoter and leader peptide, which efficiently drives secretion of the protein 

produced into the culture medium [2, 63]. Several prophage derived heat-inducible gene 

expression systems that show very tight control of gene expression have been described. 

However, the levels of expression upon maximum induction are relatively low compared to 

those of other inducible gene expression systems [29, 63, 88]. The series of plasmid-based 

expression vectors pHCMCs has been constructed allowing stable intracellular expression of 

recombinant proteins in B. subtilis cells. These expression vectors are based on the recently 

described Escherichia coli - B. subtilis shuttle vector pMTLBs72 that uses the theta mode of 

replication [156]. Three different controllable promoters have been inserted into the shuttle 

vector: PgsiB that can be induced by heat, acid shock, and by ethanol, and PxylA and Pspac that 

respond to the addition of xylose and IPTG, respectively. All recombinant vectors exhibited 

full structural stability [104]. An inducible gene expression system based on the regulation 

machinery of E. coli Tn10-encoded tetracycline resistance has been shown to be functional in 

B. subtilis [42]. This system has been reported to generate 100-fold-increased expression upon 

induction with tetracycline; however, considerable basal levels of expression are observed. A 

more tightly regulated variant of this system has been developed, but it appeared to generate 

lower maximal levels of expression upon induction [42]. Furthermore, a well-known system 

is the xylA system, in which a gene of interest is fused to the xylose-inducible xylA promoter, 
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which is integrated at the amyE locus of the B. subtilis chromosome, has been reported to 

generate very high transcription activity upon xylose induction, whereas the basal level of 

expression is low [10, 79]. Recently, the SURE system, a SUbtilin-Regulated Expression 

system for B. subtilis has allowed strict control of gene expression by addition of subtilin. In 

this system, the spaRK-dependent signal transduction is used to control PspaS-driven gene 

expression. Several multicopy expression vectors carrying subtilin-responsive promoter 

elements, which facilitated both transcriptional and translational promoter-gene fusions, have 

been constructed [14]. Very recently, a maltose-inducible expression vector in B. subtilis has 

been developed and characterized. The vector permitted β-galactosidase expression at a high 

level (maximum activity, 8.16 U/ml) when induced and its expression was markedly 

repressed by glucose. This provided a potential expression system for cloned genes in           

B. subtilis [98]. Finally, the well-known E. coli lac repressor-based expression system has 

been functionally implemented in B. subtilis as follows [117, 173]. 

1.1.2 IPTG-inducible expression system  

The well-known E. coli lac repressor-based expression system has been functionally 

implemented in B. subtilis using a two-plasmid system, which allowed isopropyl-β-D-

thiogalactopyranoside (IPTG)-controlled gene expression in the latter species. This system 

was reported to exhibit no expression in the absence of the inducer, while very high levels of 

expression (10 to 15% of the total cellular protein) were observed after IPTG induction [55, 

85, 117].  

1.1.2.1 Chromosomal integration systems 

This control mechanism is used in an expression system that employs the hybrid Pspac 

promoter, which is composed of the B. subtilis phage SPO-1 promoter and the E. coli lac 

operator, in which IPTG-mediated derepression leads to transcription activation and yields 

high levels of gene expression. These plasmids allow the insertion of any kind of genetic 

information into the B. subtilis chromosome. The amyE locus, coding for a nonessential        

α-amylase, is used in most cases for ectopic integration [55, 161, 173]. 

1.1.2.2 Plasmid-based systems 

Two plasmid-based expression vectors have been constructed in which one plasmid allows 

intracellular production of recombinant proteins while the other directs the proteins into the 

culture medium. Both vectors use the strong promoter, Pgrac, which is composed of the          

B. subtilis groE promoter preceding the groESL operon (codes for the essential heat shock 
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proteins GroES and GroEL) of B. subtilis fused to the E. coli lac operator allowing their 

induction by addition of IPTG. While the background level of expression of these expression 

cassettes was very low in the absence of the inducer, an induction factor of about 1300 was 

measured upon addition of IPTG [117]. We and others observed that the groE promoter of   

B. subtilis is a strong promoter most probably due to the presence of an UP element [57, 96]. 

Based on these observations, this promoter was used to study whether it could drive 

expression of recombinant genes. Since the groE promoter is constitutive and high-level 

production of many recombinant proteins can be deleterious to the cells, a regulatory element 

had to be added. The lac operator (lacO) of E. coli K12 was chosen, which had already been 

successfully used in combination with different promoters such as Pspac [173].  

1.1.3 Riboswitches-based expression systems 

Each cell must regulate the expression of hundreds of different genes in response to changing 

environmental or cellular conditions. The majority of these sophisticated genetic control 

factors are proteins, which monitor metabolites and other chemical cues by selectively 

binding to targets. It has been discovered that RNA can also form precise genetic switches 

and that these elements can control fundamental biochemical processes. Riboswitches are a 

type of natural genetic control element that uses untranslated sequence in the 5’ region of 

mRNAs to form a binding pocket for a metabolite that regulates expression of that gene.  

During the last years the great importance of RNA for regulating gene expression in all 

organisms has become obvious. Consequently, several recent approaches aim to utilize the 

outstanding chemical properties of RNA to develop artificial RNA regulators for conditional 

gene expression systems. A combination of rational design, in vitro selection and in vivo 

screening systems has been used to create a versatile set of RNA-based molecular switches. 

These tools rely on diverse mechanisms and exhibit activity in several organisms, so they 

have been developmed recently in the application of engineered riboswitches for gene 

regulation in vivo [6] 

1.1.3.1 General characteristics of riboswitches  

As mentioned, riboswitches are metabolite binding domains located within the 5' untranslated 

regions (UTR) of some mRNAs which are involved in gene regulation [159, 166]. Allosteric 

rearrangement of mRNA structures is mediated by metabolite binding resulting in modulation 

of gene expression, and a change in expression with increasing ligand concentration, ranging 

from between 7-fold and 1,200-fold has been observed [50, 91, 95, 167] (Fig. 1.1). 
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Riboswitches are conceptually divided into two parts: the aptamer and the expression platform 

(Fig. 1.1B). The aptamer directly binds the metabolite, and undergoes structural changes in 

response. These structural changes affect the expression platform, which is the mechanism by 

which gene expression is regulated. Expression platforms typically turn off gene expression in 

response to the metabolite, but some turn it on [37, 86, 159].  

In the past year, three newly confirmed riboswitch classes have been reported (Fig. 1.2) [148, 

159]. The first of these, the regulation of transcription termination, is utilized by nearly every 

riboswitch class and typically involves metabolite-dependent formation of a terminator stem, 

which prevents transcription elongation and inhibits gene expression (Fig. 1.2A). Two 

exceptions are the adenine and glycine riboswitch, wherein metabolite binding prevents 

terminator stem formation and activates gene expression [91-93, 148]. Second, the regulation 

of translation initiation is less widely utilized and involves altering the accessibility of the SD 

sequence (Fig. 1.2B). In this case, metabolite binding masks the SD sequence within a 

secondary structure to prevent ribosome binding and thereby inhibit gene expression. 

Interestingly, riboswitches in Gram-negative bacteria seemingly prefer regulation of 

translation initiation, whereas Gram-positive bacteria favour transcription termination, a 

correlation that probably reflects the higher frequency of polycistronic genes in Gram-positive 

Fig. 1.1. Model of gene regulation by a 

typical riboswitch. (A) When the cellular 

concentration of metabolite is too low to 

occupy the riboswitch binding site, the 

transcription is completed, the biosynthetic 

and/or transport proteins are expressed; (B) 

when the cellular concentration of 

metabolite is high, the metabolite binds to 

the riboswitch and leads to formation of an 

intrinsic terminator, the metabolite 

biosynthetic or transport protein is not 

produced [41]. 
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bacteria [108, 167]. For example, the TPP sensing riboswitch can terminate transcription of 

downstream genes in Gram-positive bacteria, suppress translation initiation in Gram-negative 

bacteria [135]. A third expression platform that can be utilized by riboswitches to affect gene 

expression is the regulation of RNA processing events. A conceptually simplistic 

manifestation of this expression platform is represented by the GlcN6P riboswitch, for which 

ligand binding induces catalytic self-cleavage of the mRNA and inhibition of gene expression 

(Fig. 1.2C) [168]. However, it seems unlikely that the aptamer and expression platform 

(ribozyme) are separable functionalities, as they are for other riboswitches. Interestingly, the 

discovery of TPP-dependent riboswitches in eukaryotic genes has unveiled other possibilities 

for riboswitch control of RNA processing [83, 152]. For instance, the presence of TPP 

aptamers within introns or 3’ untranslated regions (UTRs) suggests that riboswitches might 

regulate splicing or 3’ end formation, respectively [135, 148, 159]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.1.3.2 The glycine riboswitch 

It has been suggested that about 2% of the B. subtilis genes are regulated via riboswitches 

[93], and three riboswitches have been studied so far. One of these riboswitches precedes the 

lysC gene [24]. The second is the gcvT operon involved in the degradation of L-glycine if the 

concentration is high within the cell [5, 93]. Both of these riboswitches operate by opposite 

mechanisms. The third are the members of the GlcN6P class of riboswitch which are self-

cleaving ribozymes; they are activated when they are bound with the sugar-phosphate 

compound [148]. 

Fig. 1.2. Mechanisms of riboswitch 

function. (A) Transcription termination 

induced by metabolite (M) binding to 

nascent RNA, as observed for a guanine 

riboswitch; (B) translation initiation 

modulated by metabolite-dependent 

sequestration of a SD sequence, as 

observed for a TPP riboswitch; (C) RNA 

processing regulated by metabolite-

dependent self-cleavage, as observed for 

a GlcN6P riboswitch [148]. 



 11

The tricistronic gcvT-gcvPA-gcvPB operon codes for enzymes involved in the degradation of 

L-glycine if its concentration is high within the cell. The gcvT operon will be transcribed 

when the L-glycine concentration within the cell is high, and the metabolite will bind to a 

tandem riboswitch. The glycine riboswitch consisting of two strikingly similar aptamers, 

connected by a short linker region present upstream of glycine catabolism and efflux genes in 

a wide variety of bacteria. The glycine riboswitch binds L-glycine to regulate three glycine 

metabolism genes by activation via inhibition of premature termination of transcription, to use 

L-glycine as an energy source (type of regulation as Fig. 1.2A) [5, 93, 148, 159].  

1.1.3.3 The lysine riboswitch  

The lysC gene of B. subtilis encodes the inphase overlapping genes for the α- and β-subunits 

of a lysine-responsive aspartokinase II [24]. The lysine riboswitch (also called L-box) binds 

L-lysine to regulate lysine biosynthesis, catabolism and transport. The lysC gene is induced 

when the L-lysine concentration is low within the cell and the metabolite-free riboswitch 

favors formation of an anti-terminator structure. If the concentration of L-lysine is high in the 

cell, transcription of the lysine operon is initiated but terminated after a transcript of about 

270 nucleotides has been synthesized. This 5’ region of the lysine transcript is not translated, 

but forms a complicated secondary structure which is stabilized by L-lysine. This in turn leads 

to the formation of a terminator structure which causes the RNAP to dissociate from the DNA 

template and to release the transcript into the cytoplasm. This regulatory principle has been 

designated as riboswitch-mediated control of gene expression (type of regulation as Fig. 

1.2A) [51, 153]. 

1.2 Purification of recombinant proteins synthesized in B. subtilis 

An important application of gene technology is the overproduction of different proteins that 

can be utilized as pharmaceutical agents, as antigens for the production of antibodies, or as 

tools for structural and functional analyses.  To separate one single protein from a complex 

mixture of proteins, while maintaining biological function, one can maintain biological 

function by controlling the pH, the temperature and the ionic strength (salt concentration) 

[11]. Many different proteins, domains, or peptides can be fused with the target protein. The 

advantages of using fusion proteins to facilitate purification and detection of recombinant 

proteins are well-recognized. The most frequently used and versatile systems are: Arg-tag, 

calmodulin-binding peptide, cellulose-binding domain, DsbA, c-Myc-tag, glutathione           

S-transferase, FLAG-tag, HAT-tag, His-tag, maltose-binding protein, NusA, S-tag, SBP-tag, 
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Strep-tag, and thioredoxin [155]. Vectors allowing production of His-tagged proteins in        

B. subtilis have been published [142]. 

1.2.1 General protein purification strategy 

To purify the protein of interest (separate it from other proteins in a mixture) one can take 

advantage of its general and specific properties: its native surface charge using ion exchange 

chromatography, its unique shape and size using gel filtration column chromatography, and 

its biological activity using affinity chromatography. These steps are sometimes applied in 

succession: first ion exchange chromatography to separate other proteins that have a different 

charge from the protein of interest, next gel filtration to separate all other proteins with a 

different size/shape than the protein of interest, and finally affinity chromatography to 

separate, based on biological activity, which is usually highly specific for the protein/enzyme 

of interest. In some cases, an enzyme may be purified to homogeneity (completely purified) 

using affinity chromatography alone since it is so effective at separating a specific enzyme 

from all other proteins in a mixture [11, 155]. 

1.2.2 Purification of His-tagged proteins 

This protein purification system is based on the remarkable selectivity of the unique Ni-NTA 

(nickel-nitrilotriacetic acid) resin for recombinant proteins carrying a small affinity tag 

consisting of 6 to 10 consecutive histidine residues, termed the His-tag. The high affinity of 

the Ni-NTA resins for His-tagged proteins or peptides is due to both the specificity of the 

interaction between histidine residues and immobilized nickel ions and to the strength with 

which these ions are held to the NTA resin. NTA has a tetradentate chelating group that 

occupies four of six sites in the nickel coordination sphere. The metal is bound much more 

tightly than to a tridentate chelator such as IDA (imidodiacetic acid), which means that nickel 

ions made the proteins be very strongly bound to the resin. This allows more stringent 

washing conditions, better separation, higher purity, and higher capacity without nickel 

leaching [97, 121, 155]. 

1.2.3 Purification of Strep-tagged proteins 

The Strep-tag is a selected eight-amino acid peptide (sequence: WSHPQFEK) with high 

specificity and affinity towards streptavidin; the Strep-tag has been developed as an 

alternative tool [139, 140]. Its sequence was derived by selection from a genetic peptide 

library [139]. The Strep-tag was bound at the same surface pocket where biotin, the natural 

ligand of streptavidin, gets complexed [138]. 
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The Strep-tag can be genetically fused up- or downstream of the reading frame of any gene 

and expressed as fusion protein. The Strep-tag system can be used to purify functional Strep-

tag proteins from any expression system including baculovirus, mammalian cells, yeast, and 

bacteria. Because of its small size, the Strep-tag generally does not interfere with the 

bioactivity of the fusion partner [67]. 

1.3  Features for overproduction of proteins in B. subtilis 

Control of gene expression can occur at the transcriptional or/and translation level (Fig. 1.3). 

Furthermore, gene expression can be controlled at the level of degradation of their mRNAs. 

Different levels of gene expression are the result of varying frequencies of transcription and 

translation initiations. General features for overproduction of proteins are a high transcription 

rate (with strong promoters), low mRNA degradation rate (including mRNA stabilizing 

elements) and high translation rate (with strong RBS) [70, 77]. 

 

 

 

 

 

 

 

 

 

1.3.1 Elements of a strong σA-dependent promoter in B. subtilis 

Many housekeeping genes expressed during vegetative growth contain a typical σA-dependent 

promoter, which is characterized by a -35 TTGACA consensus sequence and the -10 

TATAAT hexanucleotide core elements and sometimes an UP element, in which, several 

weakly conserved A and T residues are present upstream of the -35 region (-36 to -70). The 

two hexanucleotide core elements are usually separated by a 17-nucleotide spacer sequence, 

and transcription is initiated around five nucleotides downstream of the -10 box (Fig. 1.4). 

Changes in their distance and in bases (even one single base) within these sequences can 

cause subtle to drastic changes in promoter activity. Altogether, some 4,000 genes are part of 

Fig. 1.3. Transcription and translation in a prokaryotic cell. Transcription and translation 

are coupled; that is, translation begins while the mRNA is still being synthesized [12]. 
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the σA regulon of B. subtilis, although their relative expression may vary significantly 

depending primarily, but not exclusively, on the actual sequence of the -35 and -10 elements 

[57, 101, 119].  

1.3.1.1 The core promoter 

The core promoter is the area from the -35 region to the transcription start site, which contains 

the canonical hexameric -35 box (essential for RNAP holoenzyme binding) and -10 box 

(essential for transcription initiation after binding has occurred), centred ∼10 and 35 bp 

upstream of the transcription start site. Bacteria have a multisubunit RNA polymerase 

(RNAP) with a conserved subunit composition. The core enzyme is composed of β, β’, ω and 

two α subunits. Association of a σ subunit with the core enzyme forms the holoenzyme and 

determines the specificity of promoter utilization. Most RNAP holoenzyme molecules present 

during logarithmical growth contain the σA factor [89, 96, 101, 119]. 

 

 

  

 

 

 

 

 

 

 

1.3.1.2 The UP element 

The UP element, located immediately 5’ to the -35 element, has a recognizable pattern of AT-

rich sequences. It enhances RNAP binding by complexing with the C-terminal domain of α 

subunits and stimulates transcription initiation [57, 129]. In most cases, however, 

transcription of weak promoters is enhanced by regulatory proteins that act by binding to 

cognate and specific DNA sequences located upstream of the promoter and stimulating one or 

more steps of transcription initiation [89]. 

Fig. 1.4. Elements of the housekeeping σA-dependent promoter. (*) C-terminal domain of 

the RNAP α subunit. 
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The upstream promoter regions (-36 to -80) of B. subtilis σA-dependent promoter sequences 

are enriched for short A and T tracts, suggesting that UP elements may be common for σA-

dependent B. subtilis promoters [57, 96].  

1.3.2 Messenger RNA stablizing elements 

Currently, at least 15 RNases are known in E. coli and at least 10 in B. subtilis [28]. The rate 

of mRNA decay is an important element in the control of gene expression (Fig. 1.5). Given 

the absence of 5’ to 3’ exoribonucleolytic activities in prokaryotes, both endoribonucleases 

and 3’ to 5’ exoribonucleases are involved in chemical decay of mRNA. As the 3’ to 5’ 

exoribonucleolytic activities are readily inhibited by stem-loop structures which are usual at 

the 3’ ends of bacterial messages, the rate of decay is primarily determined by the rate of the 

first endonucleolytic cleavage within the transcripts, after which the resulting mRNA 

intermediates with a 5’-monophosphate end is created, to which 3’ to 5’ exoribonucleases 

have greater affinity than the 5’-triphosphate end of the initial transcribed product. Successive 

cleavage events result in mRNA fragments with accessible 3’-ends, which are rapidly 

degraded by 3’-5’-exoribonucleases to oligonucleotides [35, 124]. Final turnover of mRNA 

oligonucleotides to mononucleotides is accomplished by oligoribonuclease [43] (Fig 1.6). 

During the steps of mRNA decay, stable RNA structures pose formidable barriers to the 3' to 

5' exonucleases [3, 146].  

 

 

 

 

 

 

 

 

 

While 3’-terminal stem-loop structures play an important role as 5’ stabilizers, 5’-proximal 

secondary structures or events such as ribosome stalling, regulatory protein binding, and 

ribosome binding can act as 5’ stabilizers [7, 8, 44, 45, 53, 54, 134, 145].   

Fig. 1.5. Novel mechanism in 

control of gene expression. When 

the rate of mRNA degradation is low, 

most mRNA molecules are translated 

(gene expression is ON; upper 

panel). When the rate of mRNA 

degradation is high, most mRNA 

molecules are degraded without 

translation (gene expression is OFF; 

lower panel). 
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1.3.3 Strong ribosome binding site 

Translation in bacteria is initiated by interaction of the 3’ end of the 16S rRNA, which is part 

of the small ribosomal subunit, with the Shine Dalgarno sequence also called RSB. In B. 

subtilis, the consensus RBS sequence is AAAGGAGG, which is separated from the start 

codon by an about 7-nucleotide spacer sequence. The most frequently used start codon is 

Fig. 1.6. Model for mRNA decay in E. coli.  (A) mRNA decay is initiated by the binding of 

RNase E to the 5' terminus of the transcript, followed by cleavage at an internal site ( ); (B) a 

polycistronic transcript is cleaved in an intergenic region ( ) by RNase III.  For some 

transcripts (C) degradation does not involve any endonucleolytic cleavages but is carried out 

primarily by exonucleolytic attack by enzymes such as PNPase or RNase II.  RNase G 

(restriction site  ) does not bind efficiently to 5' termini that contain a triphosphate so it is 

hypothesized that it primarily cleaves degradation products that have been generated by either 

RNase E or RNase III.  Dotted lines indicate inefficient pathways, 5'-triphosphates are shown 

in black while 5'-monophosphates are shown in green.  Oligoribonuclease is necessary to 

degrade short oligoribonucleotides (4-7 nt) that are resistant to both PNPase and RNase II. 

This model is based on data published in [110]. 
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ATG (78%), but TTG (13%), GTG (9%), and CTG (<1%) are also used as translation starts 

[127]. 

High-level expression is not only dependent upon a strong regulatable promoter and 5’ and 3’ 

mRNA stabilizers, but also on an efficient RBS sequence. One important example for a 5’ 

stabilizer has been described as part of the gsiB transcript, where a strong RBS enhances the 

half-life of the original transcript [74]. And so far, it was found that the 3' end of the cry gene 

of Bacillus thuringiensis conferred increased stability on other mRNAs in both E. coli and    

B. subtilis [169]. 

1.4  Aims of the doctoral thesis  

The major objections of the present doctoral thesis are as follows: 

(i) Development of a glycine-inducible expression system. 

(ii) Development of an autoinducible expression system relying on the consumption of 

L-lysine within the cell. 

(iii) Construction of a strong IPTG-inducible expression system based on the strong 

groESL promoter. 

(iv) Further enhancement of gene expression by optimizing the UP element, the region 

of the transcriptional start site and the half-life of the mRNA. 
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2 Materials and methods 

2.1 Bacterial strains, plasmids, oligonucleotides, antibiotics and media 

2.1.1 Bacterial strains  

The bacteria strains used in the course of this work are listed in the Tab. 2.1.  

Tab. 2.1. Bacterial strains used in this work 
Name Description Reference 

DH10B (E. coli) 
F-, mcrA, Δ(mrr, hsdRMS, mcrBC), ϕ80d 
(lacZΔM15, ΔlacX74), deoR, recA1, araD139, 
Δ(ara, leu)7697, galK, λ-, rpsL, endA1, nupG 

Bethesda Research 
laboratories 

XL1 Blue (E. coli) 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 
lac [F´ proAB lacIqZΔM15 Tn10 (TetR)] Stratagene 

1012 leuA8 metB5 trpC2 hsdRM1 [132] 

AM01 1012 amyE ::cat (CmR) [99] 

PT02 AM01 gcv::neo (CmR and NeoR) * 

PT05 1012 gcvT::neo (NeoR) * 

PT17 AM01 amyE::PgroE-Rib-lacZ (SpecR) * 

PT21 AM01 amyE::Pgcv(-10 consensus)-lacZ (SpecR) * 

PT22 AM01 amyE::Pgcv(-35 consensus)-lacZ (SpecR) * 

PT23 AM01 amyE::Pgcv(-10 and -35 consensus)-lacZ (SpecR) * 

PT40 AM01 Δ gcv::neo (CmR and NeoR) * 

PT41 AM01 Δ lysC::neo (CmR and NeoR) * 

PT42 AM01 amyE::PlysC-lacZ (SpecR) * 

PT43 PT41 amyE::PlysC-lacZ (NeoR and SpecR) * 

PT44 AM01 amyE::PlysC-Δter-laZ (SpecR) * 

PT45 PT41 amyE::PlysC-Δter-laZ (NeoR and SpecR) *  

PT46 AM01 amyE::Pgcv-lacZ (SpecR) * 

PT47 PT40 amyE::Pgcv-lacZ (NeoR and SpecR) * 

PT48 AM01 amyE::Pgcv-Δter -lacZ (SpecR) * 

PT49 PT40 amyE::Pgcv-Δter -lacZ (NeoR and SpecR) * 

Strains marked with an asterisk (*) were constructed during this work. 
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2.1.2 Plasmids 

The plasmids used during this work are listed in the Tab. 2.2.  

Tab. 2.2. Plasmids used during this work 
Name Description Reference 

pDG1728 contains the promoter-less lacZ allowing integration at 
amyE [52] 

pMUTIN-ydrB template for lacZ reporter gene  [75] 

pMUTIN-gfp+ template for gfp+ reporter gene [75] 

pBgaB template for t0 terminator of phage λ [99] 

pX-bgaB template for bgaB reporter gene [79] 

pHCMC01 pMTLBs72 with trpA transcriptional terminator, resistant 
to Cm (CmR) [104] 

pNDH09   template for srtA gene of L. monocytogenes  [106] 

pNDH33 template for PgroE promoter  [117] 

pNDH37 template for amyQ signal sequence  [117] 

pBluescript IIKS lacZ, f1 ori, AmpR, T7 and T3 promoter Stratagene 

pCT105 pBR322 + celA, template for celA [30] 

pCT208 pBR322 + celB, template for celB [30] 

pT02Z pT05-lacZ with wild-type promoter PlysC-lys riboswitch * 

pT05Z pHCMC01 with lacZ reporter gene * 

pT05-lacZ pT05Z with t0 terminator of phage λ * 

pT12 pDG1728 with wild-type promoter Pgcv-gly riboswitch * 

pT13 pDG1728 with wild-type promoter PlysC-lys riboswitch * 

pT17 pDG1728 with wild-type promoter PgroE-gly riboswitch * 

pT20 Contains neomycin cassette for knockout of gcv operon * 

pT21 pDG1728 with promoter Pgcv(-10 consensus)- gly riboswitch  * 

pT22 pDG1728 with promoter Pgcv(-35 consensus)- gly riboswitch * 

pT23 pDG1728 with promoter Pgcv(-10 and -35 consensus)- gly 
riboswitch * 

pT24 pHT01 containing bgaB fused to promoter Pgcv-gly 
riboswitch * 
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pT25 
pHT01 containing bgaB fused to consensus promoter Pgcv-
gly riboswitch * 

pT27-htpG pHT01 containing htpG fused to promoter Pgcv-gly 
riboswitch * 

pT27-pbpE pHT01 containing pbpE fused to promoter Pgcv-gly 
riboswitch * 

pT27-amyQ pHT43 containing amyQ fused to promoter Pgcv-gly 
riboswitch * 

pT28-htpG 
pHT01 containing htpG fused to consensus promoter Pgcv-
gly riboswitch *  

pT28-pbpE pHT01 containing pbpE fused to consensus promoter Pgcv-
gly riboswitch * 

pT28-amyQ pHT43 containing amyQ fused to consensus promoter 
Pgcv-gly riboswitch * 

pT30 pHT01 with wild-type promoter Pgcv-gly riboswitch * 

pT31 pHT01 with consensus promoter Pgcv-gly riboswitch * 

pT32 pHT43 with wild-type promoter Pgcv-gly riboswitch * 

pT33 pHT43 with consensus promoter Pgcv-gly riboswitch * 

pT37 Contains neomycin cassette for knockout whole gcv 
operon * 

pT39 Contains neomycin cassette for knockout of lysC operon * 

pT40 pDG1728 with promoter Pgcv-Δter–gly riboswitch * 

pT41 pDG1728 with promoter PlysC-Δter–lys riboswitch * 

pHT01 derivative of pNDH33 with deletion of a 117-bp direct 
repeat  * 

pHT06 promoter-probe plasmid to identify and screen promoters * 

pHT36 plasmid for investigate terminal stabilizing elements * 

pHT43 derivative of pNDH37 with the deletion of a 117-bp direct 
repeat * 

pHT08 pHT01 with 8x His tag at the N terminus * 

pHT08-yhcS pHT08 with yhcS gene of B. subtilis * 

pHT08-srtA pHT08 with srtA gene of L. monocytogenes * 

pHT09 pHT01 with Strep-tag at the N terminus * 



 21

pHT09-gfp+ pHT09 with gfp reporter gene * 

pHT10 pHT01 with c-Myc epitope-tag at the N terminus * 

pHT10-ywbN pHT10 with ywbN gene of B. subtilis * 

pHT24 pHT01 with Strep-tag at the C terminus * 

pHT24-gfp+ pHT24 with gfp reporter gene * 

pHT42 pHT08 with Strep-tag at the C terminus * 
Plasmids for the construction of promoter elements 

Plasmid Name of promoters/ oligos required for hybridization Reference 

pHT57 P57/ P57F & P57R * 

pHT58 P58/ P58F & P58R * 

pHT59 P59/ P59F & P59R * 

pHT60 P60/ P60F & P60R * 

pHT61 P61/ P61F & P61R * 

pHT62 P62/ P62F & P62R * 

pHT68 P68/ P68F & P68R * 

pHT69 P69/ P69F & P69R * 

pHT70 P70/ P70F & P70R * 

pHT71 P71/ P71F & P71R * 

pHT72 P72/ P72F & P72R * 

pHT73 P73/ P73F & P73R * 

pHT74 P74/ P74F & P74R * 

pHT75 P75/ P75F & P75R * 

pHT76 P76/ P76F & P76R * 

pHT77 P77/ P77F & P77R * 

pHT78 P78/ P78F & P78R * 

pHT79 P79/ P79F & P79R * 

pHT80 P80/ P80F & P80R * 

pHT81 P81/ P81F & P81R * 

pHT82 P82/ P82F & P82R * 
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pHT83 P83/ P83F & P83R * 

pHT84 P84/ P84F & P84R * 

pHT85 P85/ P85F & P85R * 

pHT86 P86/ P86F & P86R * 

pHT87 P87/ P87F & P87R * 

pHT88 P88/ P88F & P88R * 

pHT89 P89/ P89F & P89R * 

pHT90/ pHT95 P90/ P95/ P90F & P90R * 

pHT91/ pHT96 P91/ P96/ P91F & P91R * 

pHT92/ pHT97 P92/ P97/ P92F & P92R * 

pHT93/ pHT98/ P93/ P98/ P93F & P93R * 

pHT94/ pHT99 P94/ P99/ P94F & P94R * 

pHT100 P100/ P100F & P100R * 

pHT251 P251/ P251F & P251R * 

pHT252 P252/ P252F & P252R * 

Intermediate PCR products required for generation of promoters 

Template/ Name of oligos PCR 
products 

Pgrac/ S102R1 & ON76F PgroE 01 
Pgrac/ S104R1 & ON76F PgroE 02 
Pgrac/ S203R1 & ON76F PgroE 03 
Pgrac/ S206R1 & ON76F PgroE 04 
Pgrac/ S207R1 & ON76F PgroE 05 
Pgrac/ S211R1 & ON76F PgroE 06 
Hybridization of S250F & S250R PgroE 07 
Pgrac/ S228R & ON76F PgroE 08 
Pgrac/ S229R & ON76F PgroE 09 

 

PlepA/ S221F & S224R PlepA 224* 
Plasmids for the study of stabilizing elements 

Plasmid  Templates/ oligos / name of  stabilize element PCR products Reference 

pHT102 PgroE 01/ S102R2 & ON76F/ S102 * 

pHT103 PgroE 01/ S103R2 & ON76F/ S103 * 

pHT104 PgroE 02/ S104R2 & ON76F/ S104 * 

pHT105 PgroE 02/ S105R2 & ON76F/ S105 * 
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pHT106 Pgrac/ S106F & S106R/ S106 * 

pHT107 P106/ S107R & ON76F/ S107 * 

pHT108 P106/ S108R & ON76F/ S108 * 

pHT109 P106/ S109R & ON76F/ S109 * 

pHT201 PgroE 01/ S201R2 & ON76F/ S201 * 

pHT202 PgroE 01/ S202R2 & ON76F/ S202 * 

pHT203  PgroE 03/ S202R2 & ON76F/ S203 * 

pHT204  PgroE 03/ S201R2 & ON76F/ S204 * 

pHT205 PgroE 03/ S104R2 & ON76F/ S205 * 

pHT206 PgroE 04/ S206R2 & ON76F/ S206 * 

pHT207  PgroE 05/ S105R2 & ON76F/ S207 * 

pHT208  PgroE 05/ S208R2 & ON76F/ S208 * 

pHT209 PgroE 02/ S208R2 & ON76F/ S209 * 

pHT210  PgroE 06/ S210R2 & ON76F/ S210 * 

pHT211 PgroE 06/ S211R2 & ON76F/ S211 * 

pHT212  PgroE 06/ S212R2 & ON76F/ S212 * 

pHT213 PgroE 06/ S213R2 & ON76F/ S213 * 

pHT214  PgroE 01/ S214R2 & ON76F/ S214 * 

pHT215 PgroE 01/ S215R2 & ON76F/ S215 * 

pHT221 PlepA/ S221R & S221F/ S221 * 

pHT222  Pspac 222*/ S223F & S212R2/ S222 * 

pHT223  PgroE 06/ S223F & S212R2/ S223 * 

pHT224 PlepA 224*/ S221F & S212R2/ S224 * 

pHT225 PgroE 06/ S223F & S213R2/ S225 * 

pHT228 PgroE 08/ ON76F & S104R2/ S228 * 

pHT229 PgroE 09/ ON76F & S104R2/ S229 * 
pHT250 PgroE 07/ S250F & S212R2/ S250 * 
The name, description and references of the plasmids are given. Plasmids marked with an asterisk (*) were 

constructed during this work.  
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2.1.3 Oligonucleotides 

The oligonucleotides used during this work are listed in the Tab. 2.3. 

Tab. 2.3. Oligonucleotides used in the course of this work 
Name Sequence (5' to 3' ) Description 

ON01 CTAATACGACTCACTATAGGGAGAaaggacagagaaacacctcatgta 3’ end of gly-
riboswitch probe  

ON02 ATATGAGCGAATGACAGCAAGG 5’ end of gly-
riboswitch probe  

ON03 CTAATACGACTCACTATAGGGAGAagcattaatgacaagcagatag 3’ end of gcvT probe  

ON04 GACCTGTATAAGGAATATGGAGGA  5’ end of gcvT probe  

ON05 TAGATGGAGCTCAGAACGCCGTTATTTGACCTGT 5’ end of gcvT gene  

ON06 CGCTGACCGCGGCTTCATCAATAAACGCAA 3’ end of gcvT gene  

ON07 GGCCATCTCGAGGGCGCTTTACGTTTGATTATG 5’ end of gcvPB gene 

ON08 GGCCATGGTACCGCCTCGTATCTGAGCACTG 3’ end of gcvPB gene 

ON09 GGCCATGAATTCTTCAAACTCTGGAATTGCTAATG  5’ end of Pgcv  

ON10 GGCCATGGATCCTTCCTCCTTTATCAACGGCGCAGCT 3’ end of Pgcv-
riboswitch  

ON11 ggagattctttattataagaatTGTCCATAACAGCATGAAAATATG  recombinant primer 
for PgroE- riboswitch  

ON12 TCGTTCGAATTCAGCTATTGTAACATAATCGGTACG 5’ end of PgroE 

ON13 GGAATTGTTATCCGCTCACAATTCCACAATTCTTATAATA 3’ end of PgroE 

ON14 
GATGTAAGATATTGCTATAATATGTCCATAACAGCATGAAAA
TATGAG 

5’ end of -10 
consensus  

ON15 
GAGTATGTATTTGATGTAAGATATTGCTATAATATGTCCATAA
CAGC 

3’ end of -10 
consensus  

ON16 GAGTTTGACATTGATGTAAGATATTGCTATAGTATGTCC 5’ end of -35 
consensus  

ON17 GCATATAGTGATGATGGTAGGATATGAGTTTGACATTGATGT
AAGATATTGCTATA 

3’ end of -35 
consensus  

ON18 GAGTTTGACATTGATGTAAGATATTGCTATAATATGTCCATAA
CAGCATG 

5’ end of -35 and -10 
consensus  

ON19 GGCCATGAGCTCTTCAAACTCTGGAATTGCTAATG 5’ end of Pgcv of      
B. subtilis 
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ON20 GGCCATTGATCAATGATTCAAAAACGAAAGCGGACAG 5’ end of signal 
sequence 

ON21 GGCCATGGATCCTACGGCTGATGTTTTTGTAATCGG 3’ end of signal 
sequence 

ON22 
GGCCAGGATCCTTTCCCCTTTATCACACCTCATGTAAAATGAA
GGTTCTC 

3’ end of gly-
riboswitch without 
terminator 

ON23 GGCCATGAGCTCCACTGTGACACAAGGGAAGC 5’ end of yqhH gene  

ON24 GGCCATGGATCCAATGAATACAGAAATGATCTACGATG 3’ end of yqhH gene 

ON25 GGCCATAGATCTCTAATTTCATAGTTAGATCGTGTTATATGG 5’ end of lys-
riboswitch probe  

ON26 gctaatacgactcactatagggaCTCTCATTGCTTATCAATTAATCATCAT 3’ end of lys-
riboswitch probe  

ON27 CGCCAGAATTACAGATATCGACACTTC 5’ end of lysC probe  

ON28 gctaatacgactcactatagggTATACTCTTCAAGCACCGCAACGG 3’ end of lysC probe  

ON29 GGCCATGAGCTCTGATCGGTGATCCGCTGG  5’ end of uvrC gene  

ON30 GGCCATGGATCCTATCAGATCTTATTTAAAAGGACAACAT 3’ end of uvrC gene  

ON31 GGCCATCTCGAGTCGCTTCACGATGCA 5’ end of yslB gene  

ON32 GGCCATGGTACCCTCACCAACGTAAGCG 3’ end of yslB gene  

ON33 GGCCATGAATTCACAAATTGCAAAAATAATGTTGTC 5’ end of PlysC  

ON34 GGCCATGGATCCCATGTATTACCACCCTTTACATTTTG 3’ end of PlysC  

ON35 
GGCCATGGATCCTTCTCCCTTTCCTCTCATTGCTTATCAATTAA
TCATCA 

3’ end of PlysC 
without terminator 

ON36 GGCCATTGATCAACAAATTGCAAAAATAATGTTGTC 5’ end of PlysC  

ON37 GGCCATTCTAGACATGTATTACCACCCTTTACATTTTG 3’ end of PlysC  

ON38 
GCAGGATCCAAGGAGGAATCTAGAATGGAAGTTACTGACGTA
AGATTACG 5’ end of lacZ gene 

ON39 GGCCATACTAGTTTATTTTTGACACCAGACCAACTGG 3’ end of lacZ gene 

ON40 GGCCATGCTAGCGATCTCTGCAGTCGCGATGAT 5’ end of t0 
terminator 

ON41 GGCCATGGTACCGGGCAACGTTCTTGCCA 3’ end of t0 
terminator 

ON42 GCCATCTCGAGGGTAACTAGCCTCGCCGATCC 5' amp-ColE1  

ON43 GCCATCTTAAGCATGCGTATTGGGCGCTCTTCCG 3' amp-ColE1  
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ON44 GGCCATGGATCCATGAATGTGTTATCCTC 5' end of bgaB 

ON45 GGCCATGACGTCCTAAACCTTCCCGGCTTCATCA 3' end of bgaB  

ON46 GGCCATGGATCCATGGCGAAAAAAGAGTTTAAAGCAGAGTC 5' end of htpG  

ON47 GGCCATGACGTCTTACACCATGACCTTGCAAATATTGTTCG 3' end of htpG  

ON48 GGCCATGGATCCATGAAGCAGAATAAAAGAAAGCATC 5' end of pbpE  

ON49 GGCCATGACGTCTTACTACTTCGTACGGACCGCTTCT 3' end of pbpE  

ON50 GGCCATGGATCCATGATTCAAAAACGAAAGCGGACAG 5' end of amyQ  

ON51 GGCCATGACGTCTTATTTCTGAACATAAATGGAGACG 3' end of amyQ  

ON52 GGCCATAGATCTGCAAACACTGTGTCAGCGGCA 5' end of celA 

ON53 GGCCATGACGTCTTAATAAGGTAGGTGGGGTATGCTC 3' end of celA 

ON54 GGCCATGGATCCGAAGGGTCATATGCTGATTTGGCAG 5' end of celB 

ON55 GGCCATGACGTCTTATTTATACGGCAACTCACTTATGC 3' end of celB 

ON56 GATCTATGCGCGGAAGCCATCACCATCACCATCACCATCACG 5’ end of 8xHis-tag 

ON57 GATCCGTGATGGTGATGGTGATGGTGATGGCTTCCGCGCATA 3’ end of 8xHis-tag 

ON58 GATCTATGAATTGGAGCCATCCGCAATTTGAAAAAG 5’ end of Strep-tag 

ON59 GATCCTTTTTCAAATTGCGGATGGCTCCAATTCATA 3’ end of Strep-tag 

ON60 CGAACAAAAACTTATTAGCGAAGAAGATCTTTAATAACACGT 5’ end of c-Myc-tag 

ON61 GTTATTAAAGATCTTCTTCGCTAATAAGTTTTTGTTCGACGT 3’ end of c-Myc-tag 

ON62 CTGGAGCCATCCGCAATTTGAAAAATAAACGT 5’ end of Strep-tag 

ON63 TTATTTTTCAAATTGCGGATGGCTCCAGACGT 3’ end of Strep-tag 

ON64 GGCCAGATCTATGGGAGGCTTTAAATTGATCGATACG 5' end of yhcS gene 

ON65 GGCCATAGATCTAGAATGAAGAAAAGCCGCAGGCACT 3' end of yhcS gene 

ON66 GGCCATGGATCCATGATTAGTATATTTATTGCAGAAGA 5' end of desR gene 

ON67 GGCCATGACGTCTTATTTAAACCAGCCTTTTTCTTTTG 3' end of desR gene 

ON68 GGCCAGATCTATGAGTGGTCATGAAACAATCG 5' end of srtA gene 

ON69 
GGCGGATCCCGTTTTCGGCAGTTTCGTAGGGAAATATTTATTC
TCTAGTT 3' end of srtA gene 

ON70 GGCCATAGATCTATGAAGCCATCGAAAAAGGATGAAAAAG 3' end of ywbN gene 

ON71 GGCCATAGATCTTGATTCCAGCAAACGCTGGGC 5' end of ywbN gene 

ON72 GGCCATAGATCTATGGCTAGCAAAGGAGAAGAACT 5' end of gfp gene 
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ON73 GGCCATAGATCTTTTGTAGAGCTCATCCATGCCA 3' end of gfp gene 

ON74 GGCCATGACGTCTTATTTGTAGAGCTCATCCATGCCA 3' end of gfp gene 

ON75 
GCTAATACGACTCACTATAGGGAACATTAATATCGCGCCAGT
TAACATG 3’ end of bgaB probe 

ON76F TCGTTCGGTACCAGCTATTGTAACATAATCGGTACG 5’ end of PgroE  

ON77 
GGCCATGGTACCAAAGGAGGTAAGGATCCATGAATGTGTTAT
CCTC 

5’ end of bgaB for 
pHT02 

ON78 GGCCATGACGTCCTAAACCTTCCCGGCTTCATCA 3' end of bgaB for 
pHT02 

ON79 
GATCACTAGTTAACCGCGGAATTGTGAGCGGATAACAATTCC
CATATAAAGGAGGAAG MCS for pHT06 

ON80 
GATCCTTCCTCCTTTATATGGGAATTGTTATCCGCTCACAATTC
CGCGGTTAACTAGT MCS for pHT06 

P57F CTAGTTGACATTGGAAGGGAGATATGTTATTATAAGAATTGC 5’ end of P57 

P57R AATTCTTATAATAACATATCTCCCTTCCAATGTCAA 3’ end of P57 

P58F CTAGTTGAAATTGGAAGGGAGATATGTTATAATAAGAATTGC 5’ end of P58 

P58R AATTCTTATTATAACATATCTCCCTTCCAATTTCAA 3’ end of P58 

P59F 
CTAGAAAATTTTTTAAAAAATCACTTGAAATTGGAAGGGAGA
TTCTTTATTATAAGAATTGC 5’ end of P59 

P59R 
AATTCTTATAATAAAGAATCTCCCTTCCAATTTCAAGTGATTT
TTTAAAAAATTTT 3’ end of P59 

P60F CTAGAAAATTTTTTATCTTATCACTTGAAATTGGAAGGGAGAT
TCTTTATTATAAGAATTGC 5’ end of P60 

P60R 
AATTCTTATAATAAAGAATCTCCCTTCCAATTTCAAGTGATAA
GATAAAAAATTTT 3’ end of P60 

P61F 
CTAGAAAATTTTTTATCTTATCAGTTGAAATTGGAAGGGAGAT
TCTTTATTATAAGAATTGC 5’ end of P61 

P61R 
AATTCTTATAATAAAGAATCTCCCTTCCAATTTCAACTGATAA
GATAAAAAATTTT 3’ end of P61 

P62F 
CTAGAAAATTTTTTATCTTACTACTTGAAATTGGAAGGGAGAT
TCTTTATTATAAGAATTGC 5’ end of P62 

P62R 
AATTCTTATAATAAAGAATCTCCCTTCCAATTTCAAGTAGTAA
GATAAAAAATTTT 3’ end of P62 

P63F 
CTAGAAAATTTTTTATCTTATCTCTTGAAATTGGAAGGGAGAT
TCTTTATTATAAGAATTGC 5’ end of P63 

P63R 
AATTCTTATAATAAAGAATCTCCCTTCCAATTTCAAGAGATAA
GATAAAAAATTTT 3’ end of P63 

P64F 
CTAGAAAATTTTTTAAAAAATCTCTTGAAATTGGAAGGGAGA
TTCTTTATTATAAGAATTGC 5’ end of P64 

P64R 
AATTCTTATAATAAAGAATCTCCCTTCCAATTTCAAGAGATTT
TTTAAAAAATTTT 3’ end of P64 

P65F CTAGTAGACAAACTATCGTTTAACATGTTATACTATAATATGC 5’ end of P65 
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P65R ATATTATAGTATAACATGTTAAACGATAGTTTGTCTA 3’ end of P65 

P66F CTAGTTGACACTTTATCTTCCATCTGGTATAATAAATAGAGC 5’ end of P66 

P66R TCTATTTATTATACCAGATGGAAGATAAAGTGTCAA 3’ end of P66 

P67F CTAGTTGACAAATATTATTCCATCTATTACAATAAATTCAGC 5’ end of P67 

P67R TGAATTTATTGTAATAGATGGAATAATATTTGTCAA 3’ end of P67 

P68F 
CTAGAAAATTTTTTAAAAAATCTCTTGACATTGGAAGGGAGA
TATGTTATAATAAGAATTGC 5’ end of P68 

P68R 
AATTCTTATTATAACATATCTCCCTTCCAATGTCAAGAGATTT
TTTAAAAAATTTT 3’ end of P68 

P69F 
CTAGAAAATTTTTTAAAAAATCTCTTGACATTGGAAGGGAGA
TTCTTTATAATAAGAATTGC 5’ end of P69 

P69R 
AATTCTTATTATAAAGAATCTCCCTTCCAATGTCAAGAGATTT
TTTAAAAAATTTT 3’ end of P69 

P70F CTAGTTGAAATTGGAAGGGAGATTCTTTATTATAAGAATTGC 5’ end of P70 

P70R AATTCTTATAATAAAGAATCTCCCTTCCAATTTCAA 3’ end of P70 

P71F CTAGTTGACATTGGAAGGGAGATTCTTTATTATAAGAATTGC 5’ end of P71 

P71R AATTCTTATAATAAAGAATCTCCCTTCCAATGTCAA 3’ end of P71 

P72F CTAGTTGAAATTGGAAGGGAGATTCTTTATAATAAGAATTGC 5’ end of P72 

P72R AATTCTTATTATAAAGAATCTCCCTTCCAATTTCAA 3’ end of P72 

P73F CTAGTTGAAATTGGAAGGGAGATATGTTATTATAAGAATTGC 5’ end of P73 

P73R AATTCTTATAATAACATATCTCCCTTCCAATTTCAA 3’ end of P73 

P74F CTAGTTGAAATTGGAAGGGAGATTTGTTATTATAAGAATTGC 5’ end of P74 

P74R AATTCTTATAATAACAAATCTCCCTTCCAATTTCAA 3’ end of P74 

P75F CTAGTTGAAATTGGAAGGGAGAATGTTTATTATAAGAATTGC 5’ end of P75 

P75R AATTCTTATAATAAACATTCTCCCTTCCAATTTCAA 3’ end of P75 

P76F CTAGTTGAAATTGGAAGGGTTTATGTTTATTATAAGAATTGC 5’ end of P76 

P76R AATTCTTATAATAAACATAAACCCTTCCAATTTCAA 3’ end of P76 

P77F CTAGTTGAAATTGGAATATAGATTCTTTATTATAAGAATTGC 5’ end of P77 

P77R AATTCTTATAATAAAGAATCTATATTCCAATTTCAA 3’ end of P77 
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P78F CTAGTTGACATTGGAAGGGAGATTCTTTATAATAAGAATTGC 5’ end of P78 

P78R AATTCTTATTATAAAGAATCTCCCTTCCAATGTCAA 3’ end of P78 

P79F CTAGTTGACATTGGAAGGGAGATATGTTATAATAAGAATTGC 5’ end of P79 

P79R AATTCTTATTATAACATATCTCCCTTCCAATGTCAA 3’ end of P79 

P80F CTAGTTGACATTGGAATATAGATATGTTATAATAAGAATTGC 5’ end of P80 

P80R AATTCTTATTATAACATATCTATATTCCAATGTCAA 3’ end of P80 

P81F CTAGTTGAAATTGGAATATTTTATGTTTATTATAAGAATTGC 5’ end of P81 

P81R AATTCTTATAATAAACATAAAATATTCCAATTTCAA 3’ end of P81 

P82F CTAGTTGACATTGGAATATAGATTCTTTATTATAAGAATTGC 5’ end of P82 

P82R AATTCTTATAATAAAGAATCTATATTCCAATGTCAA 3’ end of P82 

P83F CTAGTTGACATTGACAGGGAGATTCTTTATTATAAGAATTGC 5’ end of P83 

P83R AATTCTTATAATAAAGAATCTCCCTGTCAATGTCAA 3’ end of P83 

P84F CTAGTTGACATTGGAATATAGATATGTTATAATAAGAATAGC 5’ end of P84 

P84R TATTCTTATTATAACATATCTATATTCCAATGTCAA 3’ end of P84 

P85F CTAGTTGAATCTTTACAATCCTATTGATATAATCTAAGCTGC 5’ end of P85 

P85R AGCTTAGATTATATCAATAGGATTGTAAAGATTCAA 3’ end of P85 

P86F 
CTAGTTGACATTGGAATATAGATATGTTATAATAAGAATAGG
GC 5’ end of P86 

P86R CCTATTCTTATTATAACATATCTATATTCCAATGTCAA 3’ end of P86 

P87F CTAGTTGACATTGGAATATTTTATGTTTATAATAAGAATTGC 5’ end of P87 

P87R AATTCTTATTATAAACATAAAATATTCCAATGTCAA 3’ end of P87 

P88F CTAGTTGACATTGGGTATAAGATTTGTTATAATAAGAATAGC 5’ end of P88 

P88R TATTCTTATTATAACAAATCTTATACCCAATGTCAA 3’ end of P88 

P89F CTAGTTGACATTGGTTTAAAGATATGTTATAATGGGTATAGC 5’ end of P89 

P89R TATACCCATTATAACATATCTTTAAACCAATGTCAA 3’ end of P89 

P90F CAAAAGAATGATGTAAGCGTGAAAAATTTTTTATCTTA 5’ end of P90 
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P90R 
CTAGTAAGATAAAAAATTTTTCACGCTTACATCATTCTTTTGG
TAC 3’ end of P90 

P91F CAAAAGAATGATAAAAGCGTGAAAAATTTTTTAAAAAA 5’ end of P91 

P91R 
CTAGTTTTTTAAAAAATTTTTCACGCTTTTATCATTCTTTTGGT
AC 3’ end of P91 

P92F CTCACAAAAAAAGTGAGGATTTTTTTATTTTTGTA 5’ end of P92 

P92R CTAGTACAAAAATAAAAAAATCCTCACTTTTTTTGTGAGGTAC 3’ end of P92 

P93F CAACCCAGATATGATAGGGAACTTTTCTCTTTCTTGTTA 5’ end of P93 

P93R 
CTAGTAACAAGAAAGAGAAAAGTTCCCTATCATATCTGGGTT
GGTAC 3’ end of P93 

P94F CTGTCAACATGAGAATTCTTATCATCAATTTTTGAAAA 5’ end of P94 

P94R 
CTAGTTTTCAAAAATTGATGATAAGAATTCTCATGTTGACAGG
TAC 3’ end of P94 

P100F 
CTAGAAAATTTTTTAAAAAATCTCTTGACATTGGAAGGGAGA
TATGTTATTATAAGAATTGC 5’ end of P100 

P100R 
AATTCTTATAATAACATATCTCCCTTCCAATGTCAAGAGATTT
TTTAAAAAATTTT 3’ end of P100 

P222F  GGCCATGGTACCAGGCCTTACACAGCCCAGTCCAG 5’ end of P222 

P222R1 
TGTGGAATTGTGATCCGCTCACAATCCACAATACACATTATGC
CACACCTTGTAGAT 3’ end of P222 

P251F 
CTAGAAAATTTTTTAAAAAATCTCTTGACAAATATTATTCCAT
CTATGATTATAAATTCAGC 5’ end of P251 

P251R 
TGAATTTATAATCATAGATGGAATAATATTTGTCAAGAGATTT
TTTAAAAAATTTT 3’ end of P251 

P252F 
CTAGAAAATTTTTTAAAAAATCTCTTGACACTTTACAATCCTA
ATGATATTATCTAAGCTGC 5’ end of P252 

P252R 
AGCTTAGATAATATCATTAGGATTGTAAAGTGTCAAGAGATTT
TTTAAAAAATTTT 3’ end of P252 

S102R2 
GCCATGGATCCTTCCTCCTTTAATTGGTATCCGCTCACAATTC
CACAA 3’ end of S102 

S103R2  
GGCAGGATCCTTCCTCCTTTAATTGAATTGTTATCCGCTCACA
ATT 3’ end of S103 

S104R GGAATTGTTATCCGCTCACAATTCCCCTATTCTTATAATAAAG 3’ end of S104 

S104R2  
GGCCATGGATCCTTCCTCCTTTAATTGGGAATTGTTATCCGCT
CACA 3’ end of S104 

S105R2  
GGCAGGATCCTTCCTCCTTTAATTGGGGAATTGTTATCCGCTC
ACAATT 3’ end of S105 

S106F GGCCATACTAGTGTACCAGCTATTGTAACATAATCGGTACG 5’ end of S106 

S106R GCTACCGCGGTATTCTTATAATAAAGAATCTCCCTTCC 3’ end of S106 

S107R  
GGCAGGATCCTTCCTCCTTTAATTGCGGAATTGTTATCCGCTC
ACAATT 3’ end of S107 
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S108R  
GGCAGGATCCTTCCTCCTTTAATTCGCGGAATTGTTATCCGCT
CACAATT 3’ end of S108 

S109R  
GGCAGGATCCTTCCTCCTTTAATTCCGCGGAATTGTTATCCGC
TCACAATT 3’ end of S109 

S201R2  
GGCAGGATCCTTCCTCCTTTAATTTGGAATTGTTATCCGCTCA
CAATT 3’ end of S201 

S202R2  
GGCAGGATCCTTCCTCCTTTAATTTGTGGAATTGTTATCCGCT
CACAATT 3’ end of S202 

S206R2  
GGCAGGATCCTTCCTCCTTTAATTGGGAATTGTGATCCGCTCA
CAA 3’ end of S206 

S208R2  
GGCAGGATCCTTCCTCCTTTAGTTGGGGAATTGTTATCCGCTC
ACAATT 3’ end of S208 

S210R2  
GGCAGGATCCTTCCTCCTTTAATTGGTTGAATTGATAGAATCT
AGTTGTTGTGGAATTGTGATCCGCTCAC 3’ end of S210 

S211R2  
GGCAGGATCCTTCCTCCTTTAATTGGGAATTGTGATCCGCTCA
CAA 3’ end of S211 

S212R2  
GGCAGGATCCTTCCTCCTTTAATTGGTGTTGGTTGTGGAATTG
TGATCCGCTCACA 3’ end of S212 

S213R2  
GGCAGGATCCTTCCTCCTTTAATTGGTGTTGGTTGTTGTTGTG
GAATTGTGATCCGCTCACA 3’ end of S213 

S214R2  
GGCAGGATCCTTCCTCCTTTAATTGGTGTTGGTTGTGGAATTG
TTATCCGCTCACA 3’ end of S214 

S215R2  
GGCAGGATCCTTCCTCCTTTAATTGGTGTTGGTTGTTGTTGTG
GAATTGTTATCCGCTCACA 3’ end of S215 

S221R  
GGCAGGATCCTTCCTCCTTTAATTAAACGCAAAATACACTAGC
TTAGAT 3’ end of S221 

S223F  
CCGAGGTACCAAAATTTTTTAAAAAATCTCTTGACATTGGAAG
GGAGATTCTTTATAATAAGAATTGTGG 5’ end of S223 

S228R GGAATTGTTATCCGCTCACAATTCCGCTATTCTTATAATAAAG
AATCTC 3’ end of S228 

S229R GGAATTGTTATCCGCTCACAATTCCGCAATTCTTATAATAAAG
AATCTC 3’ end of S229 

ON, oligonucleotide; P, oligonucleotides for promoter elements; S, oligonucleotides for stabilizing elements; the 
DNA sequences recognized by restriction enzyme are underlined. 

2.1.4 Antibiotics 

The antibiotics used in this work are listed in Tab. 2.4. 

Tab. 2.4. List of antibiotic solutions used in this work 

Antibiotic 
Concentration of 

stock solution (mg/ml) Dissolved in 
Final concentration 

(μg/ml) 
Ampicillin 50 - 100 70% ethanol 50 
Chloramphenicol 20 100% ethanol 10 
Rifampicin 100 50% methanol 100 
Neomycin 10 water 10 
Spectinomycin 100 water 100 
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2.1.5 Media 

LB medium (1 % (w/v) trypton, 0.5 % (w/v) yeast extract, 1 % (w/v) NaCl). 

Spizizen minimal medium (SMM) [149] supplemented with 50 µg/µl L-tryptophan, 50 µg/µl 

L- methionine and 50 µg/µl L-leucine. When necessary, the medium was supplemented with 

L-lysine at a final concentration of 300 µg/ml or L-glycine at a final concentration of 10 mM. 

Antibiotics (Table 2.4), 2 % (w/v) insoluble starch, 0.5 % CMC (w/v), 1.6 % X-gal and 0.01 

or 0.1 or 1 mM IPTG were added when necessary.  

Agar was added to 1.5 % (w/v) to prepare plates. 

2.2 Enzymes, antibodies, biochemicals, chemicals and kits  

2.2.1 Enzymes 

Roche: alkaline phosphatase, T7 RNA polymerase, DNase I. 

Merk: proteinase K. 

Sigma: RNase A, lysozyme. 

Fermentas: restriction enzymes, taq DNA polymerase, Deepvent DNA polymerase. 

2.2.2 Antibodies 

All the antibodies used are given in Tab. 2.5 with their final dilutions. 

Tab. 2.5. Antibodies used in this work 

Name From organism Dilution Reference 

α-AmyQ Bacillus amiloliquefaciens 1 : 15 000 V. Kontinen 

α-GFP Aequoria victoria 1 : 5000 Clontech 

α-HtpG Bacillus subtilis 1012 1 : 10 000 S. Schwab 

α-PBP* Bacillus subtilis 1012 1 : 10 000 [176] 

α-His synthetic 1 : 5000 Qiagen 

α-Strep synthetic 1 : 5000 IBA 

α-c-Myc synthetic 1 : 5000 Sigma 

 

2.2.3 Biochemicals and chemicals 

Amersham: Amonium persulphate, hyperfilm ECL. 

Fermentas: DNA ladder, RNA ladder and protein ladder. 
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Pierce: Luminol substrate. 

Roche: blocking reagent, chemiluminescent substrate CPD-Star, protease inhibitor, RNAase 

inhibitor, Xgal, ONPG, DTT and IPTG. 

Roth: acetic acid, agar, agarose, aqua phenol, chloroform, diethylpyrocarbonate (DEPC), 

Ethidium bromide (Et.Br), isopropanol, L-lysine, L-glycine, L-Tryotophan, L-methionine, L-

leucine, pepton, potassium acetate, potasium phosphate, polyacrylamide, sodium phosphate, 

sodium chloride, starch, MOPS, sodium dodecyl sulphate,  TEMES, Tris,  yeast extract.  

2.2.4 Kits 

Epicentre: Fast-Link™ DNA Ligation Kit. 

Qiagen: PCR purification Kit, gel-extraction Kit, midi purification Kit and Ni-NTA Spin (50) 

Kit. 

IBA: Strep-Tactin Spin Column Kit. 

2.3 General methods 

2.3.1 PCR and colony PCR 

The technique of PCR (Polymerase Chain Reaction) is used to produce a large number of 

copies of a DNA sequence, e.g., a gene, to provide a sufficient amount for cloning [131]. This 

became effective by the isolation of a thermostable DNA polymerase from Thermus aquaticus 

[130]. During the PCR, DNA is denatured at high temperature and specific oligonucleotide 

primers are annealed and elongated at lower temperature in a cyclic manner. 

Colony PCR is based on standard PCR using total DNA from colonies as template to allow 

the rapid detection of recombinant clones. 

2.3.2 Cloning 

All the steps necessary for cloning were carried out as described by using standard methods 

[133]. Preparation of competent E. coli cells and transformation were carried out as standard 

heat shock transformation [68] or electroporation [36]; PCR for screening of plasmids and 

preparation of plasmid DNA by the alkaline lysis method with SDS have been described [13, 

69]. The correct DNA sequence of all inserts into plasmids was verified by sequencing carried 

out by the SeqLab, and only plasmids with the correct DNA sequence were used in further 

experiments. 
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2.3.3 Growth and collection of samples 

During this work, B. subtilis strains were grown in LB medium or SMM with the appropriate 

antibiotic(s) when necessary in a waterbath shaker (∼200 rpm) at 37oC. Overnight cultures in 

5 ml medium in glass tubes were transferred partially to Erlenmeyer flasks containing 

medium to an OD578 of 0.05-0.08. When an OD578 of 0.8 (in LB medium) or 0.2 (in SMM) 

was reached (set as t = 0), the culture was divided into two subcultures where one was further 

grown in the absence and the other in the presence of the inducer, 0.01 mM or 0.1 mM or 1 

mM for IPTG or 10 mM for L-glycine or 300 µg/ml for L-lysine. Aliquots were removed and 

centrifuged, and either the pellet and/or the culture supernatant were collected. Further 

samples were taken at different points of time after induction as indicated in the experiments. 

Normally, a certain amount of cells was collected corresponding to 1.2 of OD578 for              

β-galactosidase assays, or 2.5 of OD578 for protein analyses and 10 of OD578 for RNA 

analyses. 

2.4 Northern blot experiments 

Northern blot analysis was performed as described [65, 128]. 

2.4.1 Isolation of total RNA from B. subtilis 

B. subtilis cells were grown and induced as described in 2.3.3. Especially, B. subtilis strains 

1012, PT43, PT45, PT47, PT49 and B. subtilis 1012/pHT plasmids were induced by removal 

of L-lysine or 10 mM L-glycine or 0.1 mM IPTG and/or 100 µg/ml of rifampicin were added 

when necessary. The cells were then killed by addition of “killing buffer” (5 mM MgCl2, 20 

mM NaN3, 20 mM Tris-HCl; pH7.5). Total RNA was extracted using the protocol for 

isolation of RNA from yeast with modifications [126]. The cell walls of the cells were 

digested by lysozyme (1 mg/ml) on ice for 5 min before extraction of the RNA. The samples 

were heated at 95oC for 5 min before addition of phenol. 

2.4.2 Electrophoresis of RNA and vacuum blot transfer to membranes 

RNA samples were separated on 1.2% agarose gels and the transfer occurred onto Nylon-

membranes. The transfer was carried out with the help of the Vacuum-Blot-Annex 

(VacuGeneTMX1, Pharmacia). 

2.4.3 Transcriptional labelling of RNA probes 

Pairs of primers ON44/ON75 were used to amplify an internal part of the bgaB gene. The 

primer pairs ON01/ON02 and ON25/ON26 were used to generate the PCR product 
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corresponding to the lysC-riboswitch and gcv-riboswitch region and ON03/ON04 and 

ON27/ON28 to an internal part of lysC and gcv, respectively. These amplicons harbour a T7 

promoter at the 3’ end and were used as templates for in vitro transcription according to the 

instructions of the manufacture [128]. 

2.4.4 Cleaning of DIG-labelling RNA probes 

When the DIG-labelled-antisense-RNA was used at the beginning for hybridization 

experiments, a very strong background was detected on the X-ray-film. The more RNA probe 

was used, the more the background was decreased. While this phenomenon has been 

observed, its reasons are not known. Therefore, the RNA probes were purified routinely 

before they were used in hybridization experiments. All the steps were carried as in the 

hybridization procedures, but the blank membranes were used. 

2.4.5 Hybridization of membrane-bound RNA with RNA probes 

This experiment was carried out as described [128]. 

2.4.6 Stripping of RNA probes 

This experiment was carried out as described [128]. 

2.5 SDS-PAGE, Western blot analysis and rapid purification of proteins 

2.5.1 Extraction of denatured total cell lysate from B. subtilis 

For the extraction of denatured cell lysate from B. subtilis cells (2.5 of OD578) prepared as in 

2.3.3 were resuspended in 100 μl of lysis buffer (15% (w/v) sucrose, 50 mM Tris/HCl; pH 

7.2) containing 2.5 mg/ml lysozyme and incubated at 37oC for 5 min. Then, 50 μl of 3x 

sample loading buffer (0.135 M Tris/HCl, 30% glycerol, 3% SDS, 0.03% bromophenol blue, 

0.15 M DTT) were added to the suspension and frozen until they would be used. Before the 

samples were used, they had been heated for 5 min at 95oC and 15 μl of each sample were 

used for SDS-PAGE. 

2.5.2 Measurement of protein concentrations 

The method of Bradford was used for the measurement of the protein concentrations from cell 

extracts [81]. 

2.5.3 Precipitation of proteins from the culture supernatant 

Protein from cultured supernatant was collected by the TCA method. One volume of 40% 

TCA was mixed with three volumes of culture supernatant, incubated on ice for 10 min and 
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centrifuged (12,000 rpm at 4oC for 10 min). The pellet was then washed twice with ice-cold 

acetone and dried at room temperature. The pellet was dissolved in water and loading buffer 

for SDS-PAGE was added. 

2.5.4 Protein electrophoresis using discontinuous SDS-PAGE 

The electrophoretic separation of proteins according to their molecular mass was performed 

as first described by Laemmli [84]. 

2.5.5 Immunoblot analysis 

In order to immunochemically detect proteins using antibodies, the proteins were transferred, 

after their electrophoretic separation, onto a nitrocellulose membrane using electroblotting 

[158]. The electrophoretic transfer of proteins to nitrocellulose membranes was achieved by 

“Semi-Dry-Blotting” between graphite plate electrodes in a “Fast-Blot” apparatus (Biorad). 

The procedure for detection of labelled proteins followed the instruction of ECL Western blot 

(Amersham Biociences). 

To corroborate the versatilities of the expression vectors pT and pHT for the overproduction 

of proteins, B. subtilis 1012 harbouring plasmids with the heat shock gene htpG [143] (pT27-

htpG, pT28-htpG and pHT01-htpG) and the gene pbpE coding for a penicillin binding protein 

(pT27-pbpE, pT28-pbpE and pHT01-pbpE) were analysed by immunoblot. B. subtilis strain 

1012 carrying one of these two vectors was grown either in LB medium or SMM  [149] at 

37oC to the mid-exponential growth phase. Then, the cultures were divided into subcultures 

where one was further grown untreated while the others were induced with 10 mM L-glycine 

or 1 mM IPTG. These cells were further grown, and samples were collected as described in 

2.3.3 and prepared (see under 2.5.1). Equal amounts of proteins (0.025 of OD578) were applied 

per lane, and the blots were probed with α-HtpG or α-Pbp4*. 

To confirm expression of α-amylase in the culture medium, cells of B. subtilis 1012 

containing the plasmids pT27-amyQ or pT28-amyQ or pHT43-amyQ were grown as described 

in 2.3.3. Aliquots were taken immediately before addition of 10 mM L-glycine or 1 mM IPTG 

(0 h) and 2 to 4 h after induction. Cells were pelleted by centrifugation and equal amounts of 

supernatant were analyzed, and the blots were probed with α-AmyQ.  

In addition, to confirm the presence of the 10-amino-acid epitope-tag (c-Myc, pHT10-ywpN 

and pHT10-gfp) or the 8-amino-acid His (8xHis, pHT08-yhcS and pHT08-srtA) and Strep 
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(pHT09-gfp and pHT24-gfp) purification tags, a Western blot was carried and the monoclonal 

antibodies α-c-Myc, α-His or α-Strep were used. 

All other cells were grown as described under 2.3.3; samples were applied on polyacrylamide 

gels and transferred to membranes for immunoblot detection as described in this section. 

2.5.6 Purification of proteins with His-tag and Strep-tag 

In order to allow purification of recombinant proteins from bacterial lysates by single-step of 

affinity chromatography, the proteins were fused with two different purification tags, namely 

the His- and the Strep-tag. The purification procedure can be divided into three stages: 

preparation of the cell lysate, binding of the recombinant protein to the affinity column, 

washing, and elution of the recombinant protein. The method of single-step purification of 

His-tagged proteins is described in [121] and that of Strep-tagged proteins in [67]. 

2.6 Visualization and measurement of reporter gene expression 

2.6.1 Visualization of extracellular enzyme activity (α-amylase) on plates 

Single colonies of the B. subtilis strains carrying plasmid pT27-amyQ or pT28-amyQ were 

grown for 24 h on LB or SMM plates with or without 10 mM L-glycine and 2% insoluble 

starch and stained with I2/KI solution [107]. Pictures were recorded using a digital camera. 

2.6.2 Observation of the strength of promoters on X-gal plates 

Blue colonies can be seen on X-gal LB plates containing IPTG. However, to see the 

difference of the promoter strength, low amount of IPTG should be added. Especially, to 

screen for strong promoters, 0.01 mM IPTG was applied and the plates with B. subtilis strains 

could be observed between 10 – 30 h for blue and white colonies. To compare B. subtilis 

strains carrying different plasmids, cells were transferred to new plates with various 

concentrations of IPTG (0, 0.0025, 0.005, 0.01, 0.025, 0.05 and 0.1 mM) and incubated at 

30oC or 37oC. Each sample was replicated twice. The grey values (density) of colonies were 

determined using QuantityOne programme (Biorad) and represents the strength of promoters; 

higher values mean stronger promoters. 

2.6.3 Measurement of the β-galactosidase activity 

2.6.3.1 β-galactosidase BgaB 

Blue colonies from LB-Xgal plates were used for determination of β-galactosidase activity.  

B. subtilis strains 1012 carrying pT or pHT with the bgaB reporter gene were grown, and 
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samples collected as described under 2.3.3. The activity was determined at 55oC as described 

[99] with the exception that the BgaB activity was measured in a microtiterplate reader 

(VersaMax, Molecular Devices). One unit is defined as ΔA420*OD578
-1*min-1 and displayed as 

units/OD578 for all the results, in which one OD578 is defined as the optical density of the 

samples used in the assay, A420 is the absorbance of the samples measured by the 

microtiterplate reader and, min indicates the incubation time of the plate at 55oC.  

2.6.3.2 β-galactosidase LacZ 

B. subtilis strains PT17, PT21, PT22, PT23, PT42 to PT49 and 1012 carrying pT02Z were 

grown and samples were collected according to section 2.3.3. β-galactosidase activity were 

measured at 405 nm at 28oC as described elsewhere [164]. One unit is defined as Vmax*OD578
-1, 

in which OD578 is defined as the optical density of the samples used in the assay and Vmax is 

the maximum kinetic rate reported as miliOD/minute. The data were displayed as units/OD578 

for all the results. 

2.7 Construction of plasmids and strains 

2.7.1 Construction of expression vectors based on the glycine riboswitch  

To allow integration of transcriptional fusions at the amyE locus, the integration vector 

pDG1728 was used. This vector contains a promoter-less lacZ gene sandwiched between 

amyE-front and amyE-back [52] and was used as a backbone for the construction of several 

plasmids. pT12 contains the wild-type promoter of the gcv operon and the complete 

riboswitch amplified by PCR using the oligos ON9 and ON10 and DNA of strain 1012 as 

template inserted into pDG1728. pT17 harbours the promoter of the groE operon 

(ON12/ON13; template pNDH33) fused to the riboswitch (ON10/ON11; template DNA 

1012); both PCR products were fused using recombinant PCR. pT21 carries the -10 consensus 

region of the gcv promoter and was obtained by using the mutagenic primer ON15 together 

with ON9 to amplify the promoter region and ON10 and ON14 to amplify the riboswitch 

followed by recombinant PCR to fuse both amplicons. pT22 contains the -35 consensus 

sequence and was constructed in a similar way using ON9 and the mutagenic primer ON17 to 

amplify the promoter region and ON10 and ON16 for the riboswitch. pT23 carries the 

complete consensus sequence obtained with the primer pairs ON9 and ON17 for the promoter 

and ON10 and ON18 for the riboswitch region. To study the influence of the transcriptional 

terminator on the regulation of gcv, the region corresponding to the right arm of the inverted 

repeat was removed using the primer pair ON9 and ON22 resulting in pT40. ON22 contains 
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the SD sequence of gcv to ensure translation of lacZ. All amplicons were verified by DNA 

sequencing. The resulting plasmids pT12, pT17, pT21, pT22, pT23, pT40 were transformed 

into the B. subtilis strain AM01 selecting for spectinomycin-resistant cells and screening for 

chloramphenicol sensitivity, and strain PT46, PT17, PT21, PT22, PT23 and  PT48 were kept 

for further studies. The transcriptional fusion from plasmids pT12 and pT40 were also 

transformed into strain PT40 yielding PT47 and PT49 [116]. 

The following constructs allow expression of recombinant genes from two plasmid vectors: 

pHT01 carrying either the promoter-less bgaB or htpG or pbpE gene and pHT43 carry the 

promoter-less amyQ gene including its own signal sequence. The wild-type gcv promoter 

together with the riboswitch (ON10/ON19; template pT12) was fused to bgaB (pT24), htpG 

(pT27-htpG), pbpE (pT27-pbpE) and amyQ (pT27-amyQ). The consensus promoter and the 

downstream riboswitch was fused (ON10/ON19; template pT23) to bgaB (pT25), htpG 

(pT28-htpG), pbpE (pT28-pbpE) and amyQ (pT28-amyQ) as well. Insertion of the wild-type 

promoter without (ON10/ON19, template pT12) and with the signal sequence of amyQ 

(ON20/ON21; template pNDH37) into pHT01 resulted into pT30 (Fig. 2.1 A) and pT32 (Fig. 

2.1 B), respectivety. Replacement of the wild-type promoter by the consensus promoter 

resulted in pT31 (ON10/ON19; template pT23) and pT33 (ON20/ON21; template pNDH37), 

respectively [116]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Genetic and restriction map of the expression vector pT30 and the expression-

secretion vector pT32. (A) pT30 with the wild-type Pgcv promoter; (B) pT32 with the wild-

type Pgcv promoter fused to the coding region for the signal sequence. 

A B 
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2.7.2 Construction of expression vectors based on the lysine riboswitch 

To check for the function of the riboswitch, it was transcriptionally fused to the lacZ gene 

present in the integration vector pDG1728 [52]. The region coding for the riboswitch 

including its promoter was generated by PCR using the primer pair ON33/ON34 and DNA of 

strain 1012 as template. The amplicon was cleaved with EcoRI  and BamHI and ligated into 

pDG1728 treated with the same enzymes. The resulting plasmid pT13 was transformed into 

the B. subtilis strain AM01 selecting for spectinomycin-resistant cells and screening for 

chloramphenicol sensitivity, and strain PT42 was kept for further studies. The transcriptional 

fusion was also transformed into strain PT41 yielding PT43. 

To study the influence of the transcriptional terminator on the regulation of lysC, the region 

corresponding to the right arm of the inverted repeat was removed using the primer pair ON33 

and ON35 resulting in pT41. ON35 contains the SD sequence of lysC to ensure translation of 

lacZ. pT41 was transformed into strain AM01 and all following steps were as described for 

pT13. Strain PT44 is a derivative of AM01 and PT45 of PT41, both carrying the 

transcriptional fusion with the partial deletion of the terminator. 

To test whether the lysine system can be used as an auto-inducible expression system, 

plasmid pT02Z was constructed allowing expression of the lacZ gene. The coding sequence 

of lacZ gene was amplified using ON38/ON39 with pMUTIN-ydrB as template, cleaved with 

XbaI and BamHI and inserted into pHCMC01 treated with the same enzymes resulting in 

pT05Z. Next, the terminator t0 was amplified using ON40/ON41 with pBgaB as template and 

inserted into pT05Z at NheI and KpnI sites resulting in pT05-lacZ (Fig. 2.2). The region 

coding for the riboswitch including its own promoter was generated by PCR using the primer 

pair ON36/ON37 and DNA of strain 1012 as template. The amplicon was fused with the lacZ 

gene from pT05-lacZ at the BclI and XbaI restriction sites resulting in pT02Z. The correct 

plasmid was then transformed into B. subtilis 1012, and the expression level of                    

β-galactosidase was measured in the absence and presence of different concentrations of       

L-lysine. 

2.7.3 Construction of structurally stable plasmids  

It has been observed that the two plasmids  pNDH33 and pNDH37 [117] exhibit some 

structural instability in E. coli [105]. When the complete DNA sequence of these two 

plasmids was analysed, an 117-bp sequence was detected occurring twice. This sequence in 

derived for the 3’ end of the lacI gene and occurs as a direct repeat. To increase the stability 
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of these two plasmids in E. coli, one copy of the 117 bp direct repeat containing the 3' end of 

lacI was removed as follows. The DNA region containing the bla gene and the origin of 

replication derived from the pBR322 vector was amplified using oligonucleotides ON42 and 

ON43 with pMTLBs72 as template. The resulting 2010-bp amplicon was cleaved with XhoI 

and AflII and ligated with pNDH33 or pNDH37 treated with the same enzymes resulting 

pHT01 and pHT43, respectively (Fig. 2.3). 

 

 

 

 

 

 

 

 

 

 

  

 

To test whether the removal of the repeated region has any influence on the control of gene 

expression, the following plasmids were constructed. The coding sequences for BgaB, HtpG, 

Pbp4* and α-amylase AmyQ containing its own signal sequence were amplified using 

ON44/ON45 with pX-bgaB [79], ON46/ON47 and ON48/ON49 with chromosomal DNA of 

B. subtilis 1012 and ON50/ON51 with pKTH10 [112] as template, cleaved with BamHI and 

AatII and inserted into pHT01 treated with the same enzymes resulting in pHT01-bgaB, 

pHT01-htpG, pHT01-pbpE and pHT43-amyQ respectively. The genes celA and celB were 

amplified using ON52/ON53 with pCT105 and ON54/ON55 with pCT208 as template [30]. 

The amplicons were cleaved with BglII/AatII for celA and BamHI/AatII for celB and inserted 

into pHT43 treated with BamHI and AatII resulting pHT43-celA and pHT43-celB, 

respectively. 

 

Fig. 2.2. Genetic and restriction map of the expression vector pT05-lacZ. This vector has 

been derived from pHCMC01 containing the lacZ reporter gene and the t0 terminator of

phage λ. 
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To allow detection and rapid isolation of recombinant proteins, the coding region for three 

different tags were inserted into pHT01. We have chosen the 10-amino-acid epitope-tag        

c-Myc [39], and the 8-amino-acid His [64] and Strep [73] purification tags. First, the coding 

regions for the His- and Strep-tag including the start codon were inserted into the BamHI site 

of pHT01 downstream of the SD sequence using the two pairs of complementary 

oligonucleotides ON56/ON57 and ON58/ON59, respectively, resulting in the novel plasmids 

pHT08 and pHT09. The coding regions for c-Myc and Strep including a stop codon allowing 

Fig. 2.3. Genetic and restriction map of the expression vector pHT01. Indicated are three 

orfs (orf-1, orf-2 and orf-3) derived from the Bacillus plasmid pBS72, the ampicillin (Amp) 

and chloramphenicol (Cm) resistance marker active in E. coli and B. subtilis, repectively, the 

replication region (rep) of pMB1, the lacI gene and the Pgrac promoter followed by a MCS and 

a strong transcription terminator indicated as bar. Below the plasmid map, the DNA sequences 

of  the MSC of  pHT01, of the His-tag of pHT08, of the Strep-tag of pHT09, the MCS 

preceding the Strep-tag in pHT24 and the c-Myc-tag in pHT10 and the MCS of the expression-

secretion vector pHT43. 
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their fusion to the 3’ end of any gene of interest were inserted into pHT01 at the AatII site 

using two pairs of complementary oligonucleotides each (ON60/ON61 for c-Myc and 

ON62/ON63 for Strep) resulting in pHT10 and pHT24, respectively (Fig. 2.3). Next the gene 

yhcS was amplified using ON64/ON65, with B. subtilis 1012 chromosomal DNA as template 

and the core region of srtA (termed as srtA) of L. monocytogenes [125] using ON65/ON67 

and pNDH09 [106] as template; the amplicons were cleaved by appropriate enzymes and then 

inserted into pHT08 yielding pHT08-yhcS and pHT08-srtA. The gene ywbN and gfp+ were 

amplified using ON68/ON69 with B. subtilis 1012 chromosomal DNA and ON70/ON71 with 

pMUTIN-gfp+ [75] as template and inserted into pHT10 and pHT24 resulting pHT10-ywbN, 

pHT10-gfp and pHT24-gfp. The gene gfp+ was also amplified using ON70/ON72 and then 

inserted into pHT09 resulting pHT09-gfp. 

2.7.4 Construction of the promoter-probe vector pHT06 

The promoter-probe plasmid, pHT06, basal on bgaB, was constructed for the identification 

and screening of promoters was constructed as follows. The BgaB-encoding region was 

amplified by PCR using plasmid pX-bgaB [79] as template with primers ON77 and ON78. 

The amplified fragment was cloned into the pHT01 [105] at KpnI/AatII site resulting pHT02. 

The lacO sequence with restriction sites for SpeI and SacII was inserted at the BamHI 

restriction site using the two complementary oligonucleotides ON79 and ON80 resulting in 

pHT06 (Fig. 2.4). E. coli or B. subtilis carrying the promoter-probe plasmid pHT06 will give 

white colonies on IPTG-X-gal LB plates.  

2.7.5 Construction of plasmids to identify elements of strong promoters 

Construction of plasmids pHT59 to pHT100 (Tab. 2.2): To generate a library of promoters, 

core promoters and some full-length promoters were introduced into plasmid pHT06 between 

SpeI and SacII using two complementary oligonucleotides (see on Tab. 2.3). Some upstream 

regions of core promoters were introduced into plasmids pHT70 or pHT80 between KpnI and 

SpeI; the number of plasmids corresponds to the number of the oligos used (Tab. 2.2 and 2.3). 

As examples, promoter P88 was assembled from the two complementary oligonucleotides 

P88F and P88R, ligated into plasmid pHT06 at SpeI and SacII resulting in plasmid pHT88. 

Transformants were first screened by blue/white colonies and then verified by colony PCR. 

Other synthetic promoters were introduced into this plasmid at the MCS by similar 

approaches.  
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2.7.6 Construction of plasmids allowing the analysis of 3’ stabilizing elements 

To investigate the influence of 3’-stablizer elements on the expression of the bgaB reporter 

gene, plasmid pHT36 was constructed by removing the trpA transcriptional terminator from 

pHT01-bgaB. The coding regions for ORF-3 and ORF-1 were amplified by PCR using 

pMTLBs72 as template and the primer pair S36F and S36R. The AatII/ClaI-treated PCR 

fragment was cloned into the 7917 bp AatII/Bsp119I-treated fragment of pHT01-bgaB 

resulting in pHT36 (Fig. 2.5). 

 

 

 

 

 

 

 
 
 
 
 

 

Fig. 2.4. Genetic and restriction map of the promoter-probe plasmid pHT06. 

Fig. 2.5. Genetic features of the expression vector pHT01-bgaB and plasmid pHT36 to 

investigate 3’ stabilizer elements. 
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2.7.7 Construction of plasmids to study mRNA stabilizing elements 

Construction of a plasmid with 3’ stabilizing elements: Two complementary oligonucleotides 

were hybridized to generate a terminal stabilizing element and these terminators were 

introduced into plasmid pHT36 at AatII resulting in plasmids pHT110 to pHT124 with 

numbers corresponding to the numbers of their primers (Tab. 2.2 and 2.3). As an example, the 

element S124 was generated by hybridization of the two complementary oligonucleotides 

S124F and S124R; this hybridized product was ligated into pHT36 at AatII. The correct 

transformants were screened by using colony PCR, and candidate plasmids were further 

analysed by restriction enzymes and DNA sequencing. 

Construction of other plasmids with names numbered larger than pHT100 (Tab. 2.2): Other 

promoters with stabilizing elements numbered larger than 100 (Tab. 2.3) were generated by 

PCR and then introduced into pHT06 at the MCS region. As an example, P212 promoter with 

S212 was generated by two PCR steps. First, the promoter groE with lacO fragment, called 

PgroE_211* was amplified using the two primers ON76F and S211R1 and the promoter Pgrac in 

pNDH33 as template. The PCR products were then purified by the gel extraction kit (Qiagen). 

Second, the promoter with S212 was amplified using two oligos ON76F and S212R2. The 

PCR fragments were digested with KpnI and BamHI and then ligated into pHT06 treated with 

the same enzymes, resulting in pHT212. The right transformants were also screened by 

blue/white colonies and using colony PCR, candidate plasmids were further analysed by 

restriction analysis and sequencing (see Fig. 2.6 for more detail). 

2.7.8 Construction of the knockout strains to study glycine expression system 

To delete the gcv structural genes (gcvT, gcvPA, gcvPB) from the B. subtilis chromosome 

(Fig. 2.7 A), about 300-bp-regions up- and downstream of the operon were amplified using 

ON5/ON6 and ON7/ON8 and chromosomal DNA of strain 1012 as template, and the two 

amplicons were used to sandwich a neomycin resistance marker as shown in Fig. 2.7, and all 

fragments were cloned into pBluescript 2KT (+) resulting in plasmid pT20 (Fig. 2.7 B). The 

recombinant plasmid was used to transform strain 1012, neomycin-resistant colonies were 

selected and several candidates were checked for correct replacement of the gcv operon by 

PCR and by the presence of the neomycin resistant marker. One positive strain, PT05, was 

kept for further studies. The gcv::neo marker was transferred into AM01 resulting in strain 

PT02 to facilitate subsequent isolation of integrants after transformation with the pDG1728 

derivatives.  
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To completely delete the gcv operon (including the riboswitch and the structure genes) from 

B. subtilis chromosome, an about 300-bp region upstream of the gcv operon (on yqhH) (Fig. 

2.7 A) was amplified using ON23/ON24 and chromosomal DNA of strain 1012 as template, 

and the amplicon was inserted into pT20 between the SacI and BamHI restriction sites 

resulting in plasmid pT37 (Fig. 2.7 C). The neomycin resistance marker was amplified using 

ON23/ON8 and plasmid pT37 as template, and all fragments were used to transform strain 

AM01. Neomycin-resistant colonies were selected and checked for correct replacement of the 

whole gcv operon by PCR and by the presence of the neomycin resistant marker. One positive 

strain, PT40, was kept for further studies. 

 

 

 

 

                      PgroE
WT                     

KpnI 
lacO RBS 

Transcriptional 
start site

BamHI 

PgroE_S212 

Stabilizing element S212 

Spacer 

PCR 1 

ON76F 

Pgrac 

S211R1 

ON76F 

PgroE_211*

S212R2 

PCR 2 

Fig. 2.6. Schematic representation of the construction of the promoter PgroE_S212, 

P212. Positions of transcriptional start site, stabilizing element, spacer and ribosome binding 

site are indicated; grey box represent the lacO operator. 
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2.7.9 Construction of lysC knockout strains to study lysine expression system 

The complete lysC gene including its leader region was deleted from the chromosome as 

follows. The lysC gene is flanked by the genes yslB and uvrC (Fig. 2.8 A); about 300 bp from 

both genes were amplified separately using the oligonucleotide pair ON29/ON30 for uvrC 

and ON31/ON32 for yslB and chromosomal DNA of B. subtilis strain 1012 as template. Both 

Fig. 2.7 Genetic and restriction map of the gvc operon and of the plasmids pT20 and pT37 

which have been constructed for the deletion of the gcv operon.  (A) The coding regions of 

the gcv operon on B. subtilis chromosome, gcvPB (glycine decarboxylase subunit 2), gcvPA

(glycine decarboxylase subunit 1) and gcvT (aminomethyltransferase) are shown; (B) plasmid 

pT20 used to delete the gcv structural genes (gcvT, gcvPA, gcvPB) from the B. subtilis

chromosome; (C) plasmid pT37 used to delete the whole gcv operon including gcv-riboswitch 

and the gcv structural genes from the B. subtilis chromosome. 
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amplicons were treated with the enzymes SacI and BamHI for uvrC and KpnI and XhoI for 

yslB, and the DNA fragments were cloned into plasmid pT20 flanking the neo gene resulting 

in pT39. In the last step during the construction of the lysC knockout, the flanking regions of 

lysC including the neo marker were amplified using ON29 and ON32 and plasmid pT39 as 

template. The linear DNA fragment was transformed into strain AM01, and transformants 

were selected on LB plates containing neomycin. Chromosomal DNA was isolated out of 

several neomycin-resistant transformants and analysed for replacement of the lysC gene by 

the neo gene by PCR. All of them turned out to correct, and one transformant (strain PT41) 

was kept for further studies (Fig. 2.8 B).   
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B. subtilis PT40 

Fig. 2.8. Display of the chromosomal regions of the knockout strains PT41. (A) 

Chromosomal region of the lysC gene in B. subtilis 1012; (B) construction of strain PT41. 
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3 Results 

This work was focused on the construction of novel controllable expression systems and to 

identify features important for overproduction of recombinant proteins in B. subtilis. First, the 

L-glycine and L-lysine amino acid-responsive riboswitches that regulate gene expression are 

used to construct glycine-inducible and lysine-autoinducible expression vectors; and IPTG-

inducible expression plasmids that allow expression and purification of proteins were also 

constructed. Second, a protocol with a useful promoter-probe plasmid to analyze strong 

promoters in B. subtilis was established. Using this new technique, promoter elements and 

mRNA stabilizing elements were studied to enhance the transcriptional level and mRNA 

stability leading to higher protein production levels. 

3.1 Exploring glycine controllable expression systems 

This part describes the development of a glycine-inducible expression system for B. subtilis. 

This is the first report that a naturally occurring riboswitch can be used for controllable 

overproduction of recombinant proteins using the inexpensive inducer L-glycine. First, the 

presence of a small transcript corresponding to the 5’ UTR in the absence of L-glycine which 

is converted into the full-length transcript after addition of the amino acid was confirmed by 

Northern blot. Next the lacZ reporter gene was fused with the promoter and the riboswitch 

and glycine-dependent induction was demonstrated. Furthermore, to obtain higher levels of 

recombinant proteins, the promoter strength was enhanced, and the HtpG, Pbp4* and            

α-amylase were used as model proteins.  

3.1.1 The glycine degrading gcv operon is strongly induced after addition of L-glycine 

3.1.1.1 Demonstration of the transcription attenuation model of the three genes gcvT-gcvPA-

gcvPB in-vivo 

The model of transcription attenuation suggested by Mandal and coworkers [93] predicts the 

synthesis of a short transcript in the presence of low L-glycine concentrations, while the full-

length mRNA should appear after raising the concentration to 10 mM. To prove this 

prediction, B. subtilis 1012 cells were grown in minimal medium to the mid-logarithmic 

growth phase in the complete absence of L-glycine at 37oC. Then, L-glycine was added to a 

final concentration of 10 mM and growth was continued. Aliquots were withdrawn 

immediately before adding L-glycine and at different time points after addition of this amino 

acid. Total RNA was prepared and subjected to Northern blotting, which was probed with two 

different antisense RNAs, one complementary to the riboswitch and the second to the gcvT 
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gene, the first gene of the tricistronic operon. When antisense RNA complementary to the 

riboswitch was used to probe the Northern blot, a short transcript with a length of about 200 

nucleotides was predominating, while three additional very faint larger bands were present, 

too (Fig. 3.1A). Already 5 min after increasing the L-glycine concentration, the full-length 

transcript could be detected (about 4 kb) including two additional smaller bands (Fig. 3.1A). 

These could arise either from premature transcription termination, from internal processing, 

they could represent degradation products or a mixture of these possibilities. If the second 

probe, complementary to the gcvT gene, was used the short transcript was not detected as to 

be expected, while the overall pattern was comparable (Fig 3.1B). Most interestingly, the 

amount of the band representing the attenuation product decreased slowly over time followed 

by a further increase (Fig. 3.1A). One possibility to explain this surprising result could be that 

the attenuation product is very stable. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1.2 To analyse for enhanced stability of the gcv riboswitch RNA   

To examine this possibility experimentally, cells were grown to the mid-exponentially growth 

phase, and de novo synthesis of RNA was inhibited by the addition of rifampicin. As shown 

in Fig. 3.2B, the attenuation product was undetectable after 2 min indicating that an extended 

half-life does not explain the appearance of this band in Fig. 3.1A. Another possibility to 

explain this unexpected finding could involve processing of the full-length transcript.  

 

Fig. 3.1. Northern blot analysis of the gcv

operon. Total RNA was prepared from B. subtilis

wild-type strain 1012 grown in minimal medium at 

37oC before (lane 1) and 5, 10, 30, 60 and 90 min 

(lanes 2-6) after addition of 10 mM L-glycine. The 

Northern blot was probed with antisense RNA

complementary to the riboswitch (A), the gcvT

gene (B), and dnaK (C) which served as a loading

control. 20 micrograms of RNA were applied per 

lane. Transcript size was determined by

comparison with RNA size marker as indicated. 
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3.1.1.3 To analyse for processing of the full-length transcript 

To examine this possibility, the rifampicin experiment was repeated in a slightly different 

way. Cells were grown first in absence and then in presence of L-glycine, and rifampicin was 

added 2.5 min later. Total RNA was prepared 30 min before addition of the amino acid          

(t = -30), immediately after supplementation with L-glycine (t = 0) and at different time points 

after addition of rifampicin as indicated in Fig. 3.3.  

The Northern blot was probed with anti-riboswitch (Fig. 3.3A) and anti-gcvT RNA (Fig. 

3.3B), and the X-ray film was overexposed to detect low abundance transcripts, too. While 

the full-length transcript and its putative degradation products could be detected already in the 

absence of L-glycine as described above, there was a dramatic increase upon addition of        

L-glycine, and both the full-length and the riboswitch RNA decayed rapidly after inhibition of 

transcription (Fig. 3.3A). When the Northern blot was probed with anti-gcvT, the result was 

different. Here, the full-length RNA was more stable (Fig. 3.3B). While no full-length RNA 

could be detected 20 min after addition of rifampicin when the blot was probed with anti-

riboswitch RNA, this transcript was still present, though in reduced amounts, using anti-gcvT 

RNA (compare Fig. 3.3A and 3.3B). The only interpretation of this result is that indeed 

processing of the full-length transcript occurs to remove the riboswitch RNA. It follows that 

only the high molecular weight transcript in the Fig. 3.3A represents full-length RNA, while 

the corresponding transcript in the Fig. 3.3B corresponds to a processing product. The 

Fig. 3.2. Northern blot analysis for enhanced stability of the gcv riboswitch RNA. Cells 

of B. subtilis strain 1012 were grown in minimal medium at 37oC to the mid-exponential 

phase. Then, rifampicin was added at a final concentration of 100 μg/ml to inhibit further 

transcription. Total RNA was prepared just before addition of rifampicin (lane 0) and 2, 4, 6, 

10, 15, 20 and 30 min (lanes number 2-30) after addition of rifampicin. (A) The total RNAs 

were separated on an agarose gel and stained with Et.Br, and the ribosomal RNAs served as a 

loading control; (B) the Northern blot was probed with antisense RNA complementary to the 

riboswitch.  

5S + tRNA 
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difference in molecular weight between these two RNA species cannot be resolved under the 

experimental conditions used here. In summary, the continued synthesis of the riboswitch 

RNA neither results from an enhanced half-life nor from processing of the full-length 

transcript. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1.4 Detection of the DNA sequence coding for the transcriptional terminator results in 

the disappearance of the riboswitch RNA 

Base on published data  [93],  it can be expected that removal of the transcriptional terminator 

located at the 3’ end of the riboswitch will result in constitutive expression of gcv operon 

independent of the absence or presence of L-glycine in the growth medium. But will the 

riboswitch RNA be synthesized in such a deletion mutant? To answer this question, the 

coding region of the terminator was deleted as described in the Methods section 2.7.1, and the 

deletion derivative was fused to the lacZ reporter gene and integrated at the amyE locus in 

strain PT40 with a complete deletion of the gcv operon (strain PT49). As a control, the wild-

type promoter-riboswitch region was fused to lacZ and integrated ectopically in the same 

strain (PT47). 

Fig. 3.3. The gcv encoded attenuation 

product is rather unstable and its 

continued synthesis during the induction 

phase does not result from processing. 

Cells of B. subtilis strain 1012 were grown 

in minimal medium at 37oC to the mid-

exponential phase, cells were induced with 

glycine and then rifampicin was added at a 

final concentration of 100 μg/ml to inhibit 

further transcription. Total RNA was 

prepared 30 min before addition of 

L-glycine (t = -30), immediately after 

addition of the inducer (t = 0) and rifampicin 

(t = 2.5) at the time points indicated. The 

Northern blot was probed with antisense

complementary to the riboswitch (anti-

riboswitch) (A) and with anti-gcvT RNA (B).

A 

 

 

B 
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Next, both strains were incubated in minimal medium. When the cultured cells reached the 

mid-log growth phase, L-glycine was added as described. Aliquots were withdrawn just 

before adding of the L-glycine (t = 0) and at different points after induction and probed with 

anti-riboswitch RNA. When the operon fusion carrying the wild-type riboswitch was 

analysed, only the leader transcript was present when the cells grew in the absence of           

L-glycine. Addition of L-glycine resulted in the appearance of additional bands as described 

above (Fig. 3.4A). Next, expression was analysed with a truncated the transcriptional 

terminator. As to be expected expression was constitutive and the riboswitch RNA was not 

produced (Fig. 3.4B). These results clearly indicate that the terminator plays an important role 

in transcription termination and release of the riboswitch RNA, and the gcv-riboswitch is also 

synthesised if fused to a foreign gene. This observation opens the possibility to use the gcv-

riboswitch for controlled expression of recombinant gene. 

 

 

 

 

 

 

 

 

 

3.1.2 Expression of the reporter gene lacZ fused to glycine riboswitch 

3.1.2.1 To determine the optimal L-glycine concentration resulting in highest induction 

factor   

Based on these results, the promoter activity was measured in the absence and presence of    

L-glycine. The lacZ gene was fused to the riboswitch including the σA-dependent promoter, 

and the transcriptional fusion was integrated into the B. subtilis chromosome at the amyE 

locus using strain PT02 as recipient which carries a deletion of the gcv operon resulting in 

PT46 as described in the Methods section 2.7.1.  

Fig. 3.4. In the absence of the transcriptional 

terminator the riboswitch RNA is absent. (A) 

Strain PT47 carrying the transcription 

terminator; (B) strain PT49 devoid of part of 

the terminator. The two strains were first grown 

in minimal medium at 37oC to the mid-

exponential phase (t = 0), cells were induced 

with 10 mM L-glycine and then total RNA was 

prepared at the time points indicated and 

probed with anti-riboswitch RNA.  
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First, the different L-glycine concentrations (from 0.1 to 100 mM) were tested to determine 

the optimal concentration resulting in the highest induction factor. Cells were grown in 

minimal medium to the mid-exponential growth phase. Then, the culture was split into six 

subcultures, where one was incubated without further treatment, while the others were 

induced with different L-glycine concentrations as indicated in Fig. 3.5. Aliquots were 

withdrawn from all cultures for determination of the enzymatic activity. 50 mM L-glycine 

resulted in the highest β-galactosidase activities, which increased dramatically within the first 

hour after addition of L-glycine to about 48 units followed by a further increase to 

approximately 65 units 6 h after induction. Since the difference in the enzymatic activity at 

later times between 10 and 50 mM was only minor (Fig. 3.5), the 10 mM of L-glycine was 

used in all subsequent experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. Full induction of the glycine-dependent riboswitch RNA occurs after addition 

of a L-glycine concentration of 0.1-100 mM. Cells of strain PT46 were grown in minimal 

medium in the absence of L-glycine at 37oC to the mid-exponential growth phase. Then, the 

culture was split into six subcultures, where one was further grown in the absence and the 

others in the presence of L-glycine at the concentrations indicated. Aliquots were removed 

at the time points indicated for determination of the β-galactosidase activities. 
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3.1.2.2 The effect of culture medium on β-galactosidase activity 

To follow induction more closely and to compare the increase in β-galactosidase activity in 

minimal and LB medium, the experiment was repeated. The β-galactosidase activity started to 

increase slightly 10 min after addition of L-glycine and reached the maximum level after 

about 2 h in LB medium (Fig. 3.6A). Since the enzymatic activity of the culture grown in the 

absence of L-glycine also started to increase after about 60 min, an induction factor of 2.3 can 

be calculated after 240 min (Fig. 3.6A). When the same experiment was carried out in 

minimal medium the induction levels were higher but reached about the same values after 2 to 

4 h (Fig. 3.6B). In contrast to the culture grown in LB medium, the β-galactosidase activity 

did not increase over time resulting in an induction factor of 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. The riboswitch of the gcv operon confers glycine-inducibility to the lacZ

reporter gene. The transcriptional fusion present in plasmid pT12 was integrated at the 

amyE locus in strain PT02 which carries a deletion of the gcv operon. Cells were grown in 

LB (A) or in minimal medium (B) to the mid-exponential growth phase. Aliquots were 

withdrawn immediately before (t = 0) and at the time points indicated after addition of 10 

mM L-glycine. The enzymatic activities are expressed in relative β-galactosidase units. The 

reporter enzyme activities were measured from cultures without added L-glycine (open bars) 

and at the time point indicated after addition of 10 mM L-glycine (closed bars). 
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These results prove that glycine-inducible expression of lacZ can be obtained. 

3.1.3 Does the growth temperature influence the expression level? 

Next, I asked whether the growth temperature will influence the basal level of expression 

through the stability of the attenuation terminator. The stability of RNA secondary structure is 

temperature dependent. This is used to regulate initiation of translation by several genes such 

as the rpoH gene of E. coli, the ROSE element of Bradyrhizobium japonicum and the prfA 

gene of L. monocytogenes [26, 26, 72, 72, 102, 102]. To find out whether the growth 

temperature will influence the basal expression level or the expression level after increasing 

the L-glycine concentration or both, cells were grown at three different temperatures, and the 

β-galactosidase activity was measured. Since the cells were grown up to 45oC, lacZ could not 

be used as a reporter gene since its activity is highly unstable at high temperatures [177]. 

Instead, we fused the bgaB gene to the riboswitch coding for the heat-stable β-galactosidase 

(pT24) [62], and the fusion is expressed from a plasmid assumed to be present in about four 

copies [156].  Cells were grown at three different temperatures (30, 37 and 45oC) in LB 

medium till the mid-logarithmic growth phase was reached (t = 0). Then, the cultures were 

divided while one subculture was further grown without addition of L-glycine while 10 mM 

L-glycine was added to the second. The basal levels measured after 2 h in all three uninduced 

control cultures grown at three different temperatures did not vary considerably, and the 

induced levels remained comparable in the 30 and 37oC cultures, too (Fig. 3.7A and B), but 

was reduced in the 45oC culture (Fig. 3.7C). These results revealed that growth from 30 to 

45oC did not influence the basal level of expression, while the high temperature reduced the 

induced level. 

3.1.4 Analysis of mutant gcv promoters 

A comparison of the DNA sequence of the σA-dependent promoter directing expression of the 

gcv operon with that of the consensus sequence [57, 58] revealed that the -35 region deviates 

in four and the -10 region in only one position from the consensus sequence (Fig. 3.8). In 

addition, there is an extended -10 region present. Such variants of the -10 element have been 

reported to increase the strength of the promoter, and they are often accompanied by a weak    

-35 element as shown in the present case [57]. 
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Fig. 3.7. Influence of the 

growth temperature on the 

basal and induced level of the 

reporter enzyme. Cells were 

grown in LB medium at 30oC

(A), 37oC (B) and 45oC (C). 

Aliquots were withdrawn for 

β-galactosidase determinations 

before (0 h) and at different 

times after addition of 10 mM 

L-glycine (1 to 4 h) from the 

uninduced (open bars) and 

induced (closed bars) cultures. 

Fig. 3.8. DNA sequences of the wild-type gcv promoter, the consensus sequence of the σA 

housekeeping promoter and of three promoter mutants. TG represents the extended -10 

region. 
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The question was asked whether altering the two elements of the gcv promoter will lead to a 

stronger expression level. To this end, both the -35 and the -10 regions were mutated 

separately and both elements together to the consensus sequence as shown in Fig. 3.8. All 

three strains were grown in LB and in minimal medium (only the data for minimal medium 

are shown) as described in 2.3.3, and L-glycine was added when the cells had reached the 

mid-log growth phase. Aliquots were taken for determination of β-galactosidase activities as 

shown in Fig. 3.9. When the promoter with the -10 consensus region was analyzed, the basal 

levels were comparable with those measured with the wild-type promoter (compare Figs. 3.6 

and 3.9A). Addition of 10 mM L-glycine led to reduced expression suggesting that the gcv 

promoter with a -10 consensus sequence is weaker relative to the wild-type promoter. At 

least, the mutation to the consensus sequence did not improve the promoter strength. When 

the promoter with the -35 consensus element was analyzed both the basal and the induced 

levels were significantly increased, and an induction factor of about 10 was measured (Fig. 

3.9B). In summary, the alterations in the -35 region improved the promoter strength, but at the 

expense of the basal level. When both the -35 and the -10 regions were changed to the 

consensus sequence, the basal level was increased more than 10-fold as compared to the wild-

type promoter (compare Figs. 3.6 and 3.9C), and the induced level was slightly decreased as 

compared to the promoter with the -35 consensus sequence, leading to an induction factor of 

about 3.5. In conclusion, while the –10 consensus element did not led to a promoter 

improvement, the –35 consensus increased the promoter strength about 5-fold. 

3.1.5 Fusion of the groE promoter to the riboswitch 

Can the gcv promoter be replaced by a foreign promoter without affecting the induction 

behaviour? The strong groE promoter [117] was fused to the riboswitch and to lacZ and the 

operon fusion was integrated at the amyE locus resulting in PT17 (see 2.7.1). As already 

observed for the consensus gcv promoter, the basal level was rather high, and the induced 

level reached values about 10-fold higher after 3 h of induction (Fig. 3.10A). In conclusion, 

the promoter can be exchanged without impairing the induction behaviour. In another 

experiment, the gcv promoter-riboswitch region was moved to the plasmid pHT01 fusing it to 

the bgaB reporter gene (pT24). Here, the results from Figs. 3.7B and 3.10B were compared; 

in both cases, cells were grown at 37oC, bgaB was used as reporter gene and the fusion is 

expressed from a plasmid assumed to be present in about four copies [156]. In the first case, 

cells were grown in LB medium and the second case is minimal medium. The basal level was 

significantly lower when the reporter gene was expressed in LB medium. 
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Fig. 3.9. Analyses of mutant gcv

promoters. The β-galactosidase 

activities expressed from promoters 

with the -10 consensus element (A), the 

-35 consensus element (B) and both 

consensus elements (C) were analyzed 

with cells grown in minimal medium. 

See legend to Fig. 3.6 for further 

explanations. 

Fig. 3.10. Expression of reporter genes 

fused to the groE promoter integrated in 

the chromosome and to the gcv promoter 

located on a plasmid. (A) The groE

promoter was fused to the riboswitch and to

lacZ and the operon fusion was integrated at 

the amyE locus, see legend to Fig. 3.6 for 

further explanations; (B) the wild-type gcv 

promoter was fused to the bgaB gene present

on a plasmid. Cells were grown in minimal 

medium; see legend to Fig. 3.7B for further 

explanations. 

A

B
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3.1.6 Synthesis of recombinant proteins from plasmid-based expression systems 

In the last series of experiments, the amount of several recombinant proteins were analyzed 

which can be produced using the glycine riboswitch with the wild-type (pT27) and the 

consensus promoter (pT28) using the vector plasmids pHT01 and pHT43. As model proteins, 

we have chosen two intra- and one extracellular protein (see in 2.7.1). 

3.1.6.1 Synthesis of intracellular recombinant proteins  

 The intracellular protein is encoded by htpG heat shock gene [143] and pbpE coding for a 

penicillin binding protein [118]. Synthesis of both proteins was analyzed in LB and in 

minimal medium, before and 2 and 4 h after glycine-induction by separation of the whole 

proteins on an SDS-PAGE followed by Coomassie staining (Figs. 3.11 and 3.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11. Identification of the htpG gene product. B. subtilis strain PT05 carrying either   

pT27-htpG or pT28-htpG were grown in either minimal (A) or LB medium (B) at 37oC to mid-

log, divided into two subcultures, where one was further grown untreated and the second treated 

with 10 mM L-glycine. Aliquots were taken before addition of L-glycine (0 h), two hours later 

from the untreated (2 h (-)) and 2 and 4 h later from the induced cultures (2 h and 4 h). Cells were 

lysed by lysozyme and 100 μg of protein were loaded per lane on an 10% SDS-PAGE. After gel 

electrophoresis, the proteins were stained with Coomassie blue. Immunoblot analysis of HtpG 

present in the cells grown in minimal (C) and LB (D) medium. 
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While no HtpG-specific and Pbp4*-specific band could be detected when the gene was fused 

to the wild-type promoter in both minimal and LB medium after addition of L-glycine (Figs. 

3.11A, B and 3.12A, B), a band with the molecular weight of HtpG and Pbp4* became visible 

with the consensus promoter in both media (Figs. 3.11A, B and 3.12A, B). To use a more 

sensitive method allowing detection of even small amounts of protein, immunoblots were 

carried out. Here, HtpG and Pbp4* were shown to be present in all samples even before 

induction, but its amount increased significantly after addition of L-glycine (lanes 2 h and 4 h 

in Figs. 3.11C, D and 3.12C, D). It has to be mentioned that there is a low level expression of 

htpG and pbpE from its chromosomal location. The highest amount of HtpG and Pbp4* could 

be detected when the gene was transcribed from the consensus promoter and the cells were 

cultivated in minimal medium. These data are in agreement with measurement of the            

β- galactosidase activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.6.2 Synthesis of extracellular recombinant proteins  

Synthesis of extracellular proteins coded for by the amyQ gene [112] was analyzed in 

minimal and in LB medium, before and 2 and 4 h after glycine-induction. Production of         

Fig. 3.12. Identification of the pbpE gene product. B. subtilis strain PT05 carrying either 

pT27-pbpE or pT28-pbpE were grown and treated as described in the legend to Fig. 3.11. 

Coomassie blue staining of Pbp4* present in cells grown in minimal (A) and LB medium (B). 

Immunoblot analysis of Pbp4* present in the cells grown in minimal (C) and LB (D) medium. 
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B
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α-amylase was analyzed first by checking for halo formation on minimal and LB medium 

containing starch. As to be expected small colonies were formed on minimal and larger ones 

on LB medium (Fig. 3.13). The size of the halo was influenced by the promoter used and by 

the absence or presence of L-glycine. It turned out that the largest amount of α-amylase was 

secreted when the amyQ gene was fused to the consensus promoter in the presence of 10 mM 

L-glycine (Fig. 3.13). Next, this result was verified by applying equal amounts of protein 

collected from the supernatants of the two strains grown in the two media to SDS-PAGE 

analysis. As can be seen from Fig. 3.14, α-amylase was produced in both media and from both 

promoters, but the largest amount of enzyme was secreted in LB medium using the consensus 

promoter (Fig. 3.14B) which could be confirmed by Western blots (Fig. 3.14D).  

 

 

 

 

 

 

 

 

 

 

 

 

These results clearly demonstrate that the glycine riboswitch can be used for regulatable 

production of both intra- and extracellular proteins. Four plasmid-based expression vectors 

have been constructed where two allow intracellular production of recombinant proteins 

(pT30 and pT31), while the other two direct the proteins into the culture medium (pT32 and 

pT33) (see in 2.7.1). Both vectors pT30 and pT32 use the wild-type Pgcv promoter while the 

other two pT31 and pT33 use the consensus promoter allowing their induction by addition of 

L-glycine (Fig. 2.1). 

 

Fig. 3.13. Production of α-amylase by single colonies as verified by halo formation on 

plates containing starch. Single colonies were analyzed on either LB or minimal medium in 

the absence or presence of 10 mM L-glycine. 
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3.2 Exploring lysine controllable expression systems 

This part describes the development of a lysine auto-inducible expression system for             

B. subtilis. First, a detailed transcriptional analysis of the lysine-responsive and riboswitch-

regulated lysC operon of B. subtilis, the presence of a small transcript corresponding to the 5’ 

UTR in a high concentration of L-lysine which is converted into the full-length transcript after 

remove or in the presence of a low concentration of the amino acid was confirmed and carried 

out by Northern blot. Next, the lacZ reporter gene was fused with the promoter and the 

riboswitch and lysine-dependent induction was demonstrated. Furthermore, it was shown that 

using system can be used as the auto-inducible expression system based on different L-lysine 

concentrations.  

 

Fig. 3.14. Identification of α-amylase.

Cells carrying the plasmids pT27-amyQ

or pT28-amyQ were grown in either 

minimal (A) or LB medium (B) in the 

absence (0 h, 2 h (-)) or after addition of 

10 mM L-glycine (2 and 4 h). Cells 

were pelleted by centrifugation and 

equal amounts of supernatant were

analyzed by a 10% SDS-PAGE stained 

with Coomassie blue. In addition, the 

α-amylase produced was visualized by 

immunoblotting in minimal medium (C) 

and in LB medium (D). 

A 

B 

C 

D 
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3.2.1 Transcriptional analysis of the lysC gene  

As reported above, expression of the lysC gene is regulated by a lysine-responsive riboswitch 

which directly senses the amount of L-lysine present within the cell [51, 153]. To test for the 

switch in transcription following removal of L-lysine, a Northern blots was carried out using 

two different antisense RNAs, one which detects the riboswitch and the full-length transcript 

and the other the full-length transcript only. B. subtilis strain 1012 was grown in minimal 

medium supplemented with 300 μg/ml of L-lysine. When cells reached the mid-exponential 

growth phase, they were sedimented by centrifugation, washed twice in minimal medium 

without L-lysine and resuspended in the original volume without L-lysine. Aliquots were 

withdrawn immediately before centrifugation (t = 0) and up to 180 min later. When the 

riboswitch probe was used, only an about 0.27 kb transcript was present when the L-lysine 

concentration was high (Fig. 3.15A). Upon removal of the L-lysine, the full-length 1.6-kb 

transcript became detectable already after 5 min with no further increase up to 180 min (Fig. 

3.15A). When the same RNA preparations were challenged with anti-lysC RNA, only the full-

length transcript became apparent after removal of the L-lysine (Fig. 3.15B). In conclusion, 

removal of L-lysine from the growth medium changes the transcription profile from the 

transcription attenuation product to the full-length product within 5 min. Surprisingly, the 

0.27-kb riboswitch persists for up to at least 180 min as the dominant transcript. Two different 

possibilities were envisaged to explain for the continued presence of the riboswitch RNA, 

stability or processing. 

3.2.1.1 Analysis for enhanced stability of the riboswitch RNA 

To analyse for enhanced stability of the riboswitch RNA, cells of strain 1012 were grown in 

minimal medium to the mid-exponential growth phase and rifampicin was added to inhibit 

further transcription. Aliquots were removed just before addition of the antibiotic and up to  

10 min later. As can be seen from Fig. 3.16B, the 0.27-kb transcript decayed rapidly with a 

half-life of 2-4 min. Therefore, increased stability of the riboswitch RNA under these growth 

conditions can be excluded. 
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3.2.1.2. Analysis for processing of the full-length transcript 

Next, the possibility was investigated whether the riboswitch RNA may be derived from the 

full-length 1.6-kb transcript by processing. In this experiment, cells were grown again in 

minimal medium supplemented with L-lysine followed by its removal as described. 

Rifampicin was added immediately after resuspension of the cells in L-lysine-free medium, 

and aliquots were taken 30 min before removal of the L-lysine and up to 20 min in the 

absence of added L-lysine. When the RNA preparations were probed with anti-riboswitch 

RNA, a dramatic increase in the amount of the leader transcript can be observed which 

Fig. 3.15. Northern blot analysis of the 

lysC gene of B. subtilis. Cells of strain 

1012 were grown in minimal medium in 

the presence of 300 μg/ml L-lysine till the 

mid-exponential growth phase. Then, the 

cells were sedimented by centrifugation, 

washed twice in minimal medium without 

L-lysine and finally resuspended in the 

same medium. Aliquots were removed for 

total RNA preparation just before the 

centrifugation step (t = 0) and at the time 

points indicated. The Northern blot was 

probed with (A) anti-riboswitch RNA; (B)

anti-lysC RNA. (C) an Et.Br stained gel is 

shown that comparable amounts of RNA 

were applied per lane.  

Fig. 3.16. The riboswitch RNA is unstable. 

Cells of strain 1012 were incubated in 

minimal medium in the presence of 300 μg/ml 

L-lysine. Then, rifampicin was added at a final 

concentration of 100 μg/ml. Aliquots were 

removed just before addition of the antibiotic 

(t = 0) and up to 10 min later. (A) Et.Br 

stained gel; (B) Northern blot probed with 

anti-riboswitch RNA.  
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rapidly decayed over time as described above (Fig. 3.17A). When the same RNAs were 

probed with anti-lysC RNA, a tiny band was present before removal of the L-lysine, followed 

by a significant increase at t = 0 and a rapid decrease in the presence of rifampicin (Fig. 

3.17B). 5 min after addition of the antibiotic, no 1.6-kb transcript is visible. This result clearly 

argues against processing as a possibility for the presistance of the riboswitch RNA in the 

absence of L-lysine. There is only one possibility and that is continued synthesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2. Deletion of the DNA sequence coding for the transcriptional terminator results in the 

disappearance of the riboswitch RNA  

It has been published that point mutations within the leader region of the lysC gene results in 

constitutive expression [24, 174]. Based on these results it can be expected that removal of the 

transcriptional terminator will also result in constitutive expression of lysC independent of the 

presence or absence of L-lysine in the growth medium. But what happens to the riboswitch 

RNA? Will it be synthesized in such a deletion mutant? To answer this question, the coding 

region of the terminator was deleted as described in the Methods section, and the deletion 

derivative was fused to the lacZ reporter gene and integrated at the amyE locus in strain PT41 

 
Fig. 3.17. The riboswitch RNA is not produced by processing. Strain 1012 was grown as 

described in minimal medium with added L-lysine and cells were sedimented, washed as 

described and resuspended in L-lysine-free minimal medium. Then, rifampicin was added at a 

final concentration of 100 μg/ml at t = 0. Aliquots were removed 30 min before transfer into 

the L-lysine-free medium (t = -30) and at the time points indicated and hybridized to the 

riboswitch riboprobe (A) and lysC riboprobe (B). 
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with a complete deletion of the lysC region (strain PT45). As a control, the wild-type 

promoter-riboswitch region was fused to lacZ and integrated ectopically in the same strain 

(PT43).  

Next, both strains were incubated in minimal medium supplemented with L-lysine. When the 

culture reached the mid-log growth phase, the L-lysine was removed as described. Aliquots 

were withdrawn just before removal of the L-lysine (t = 0) and at different time points after 

removal and probed with anti-riboswitch RNA. When the operon fusion carrying the wild-

type riboswitch was analysed, only the leader transcript was present when the cells grew in 

the presence of L-lysine. Removal of L-lysine resulted in the appearance of additional bands, 

where the smaller ones most probably represent degradation products (Fig. 3.18A). In contrast 

to strain 1012 where the maximum amount of the full-length transcript became already 

apparent after 5 min, it took about 60 min with the lacZ transcript. In addition, the riboswitch 

RNA was present all the times as described before. In conclusion, this result demonstrates that 

the riboswitch is also synthesised if fused to a foreign gene and that such a fusion can change 

the induction behaviour. This observation opens the possibility to use the lysine riboswitch for 

controlled expression of recombinant genes (see Discussion). Next, expression was analysed 

with a truncated transcriptional terminator. As to be expected expression was constitutive and 

the riboswitch RNA was not produced (Fig. 3.18B). This result clearly indicates that the 

terminator plays an important role in transcription termination and the release of the 

riboswitch RNA  

 

 

 

 

 

 

 

 

 

Fig. 3.18. In the absence of the 

transcriptional terminator the riboswitch 

RNA is absent. (A) Strain PT43 carrying the 

transcription terminator and (B) strain PT45 

devoid of part of the terminator were first 

grown in minimal medium supplemented with 

L-lysine followed by centrifugation, washing 

and resuspension in L-lysine-free minimal 

medium at t = 0. Total RNA was prepared at 

the time points indicated and probed with anti-

riboswitch RNA. 
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3.2.3 Removal of L-lysine from the growth medium leads to an about ten-fold induction of 

lacZ  

The results obtained with the Northern blot shown in Fig. 3.18A prompted me to quantify the 

induction of the lacZ reporter gene after removal of the L-lysine. Cells of strain PT42 were 

grown in minimal medium supplemented with 300 μg/ml L-lysine to mid-log, washed and 

divided into two subcultures. While one was further grown in the presence of L-lysine, the 

second was incubated in its absence. Aliquots were removed for determination of                  

β-galactosidase activities just before centrifugation (t = 0) and 2, 3 and 4 h later. While about 

4 units of β-galactosidase activity were measured before centrifugation which increased to 

about 30 units upon further growth in the presence of L-lysine, 130 units were found after 1 h 

of growth in the absence of the amino acid which increased to approximately 270 units upon 

further growth (Fig. 3.19A). In summary, removal of L-lysine from the growth medium 

resulted in an about 10-fold induction of the lacZ gene.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19. Analysis of the promoter-

riboswitch region fused to lacZ. 

Strain PT42 with the wild-type lysC 

region (A) and strain PT43 carrying a 

deletion of lysC (B), and both 

containing the promoter-riboswitch 

region of lysC fused to lacZ were 

grown in minimal medium 

supplemented with L-lysine, 

centrifuged, washed and split into two 

cultures as described in the legend to 

Fig. 3.15. Aliquots were removed for 

measurement of β-galactosidase 

activity at the time points indicated.  

A 

B 
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Next, I checked whether the induction behaviour will be influenced by the presence of the 

wild-type lysC gene. The experiment was repeated with strain PT43 carrying a complete 

deletion of the lysC operon including its promoter and riboswitch region. As can be seen from 

Fig. 3.19B, the basal level was increased from 30 to 40 units in the presence of L-lysine while 

removal of the amino acid resulted in 770 to 970 units. In conclusion, deletion of the wild-

type lysC copy from the chromosome increased the induction factor to 25.  

In another experiment, to answer the question what extend inactivation of the transcription 

terminator will influence the expression level of the lacZ reporter gene, strains PT44 and 

PT45 with and without the wild-type chromosomal copy of lysC and the transcriptional fusion 

between the promoter region and the riboswitch with the truncated terminator sequence and 

lacZ were analysed. While close to 600 units were measured in strain PT44 in the presence of 

L-lysine, there was a slight increase after its removal from 720 about 1000 units in both the 

presence and absence of L-lysine (Fig. 3.20A). A slight increase was already seen in the wild-

type background (Fig. 3.19A) and seems to be the result of growth to a higher cell density. 

But most importantly, there is no difference in the β-galactosidase activities between the two 

cultures confirming the constitutive expression of lacZ in the absence of a functional 

transcription terminator. When the operon fusion was analysed in strain PT45, no significant 

difference was found as compared to the isogenic wild-type strain (Fig. 3.19B). From this 

result I infer that the presence of a wild-type riboswitch does not influence the expression 

level at a second copy with a truncated transcriptional terminator.  

3.2.4 The auto-inducible expression systems  

From the result shown in Fig. 3.19A, removal of L-lysine from the growth medium resulted in 

an about 10-fold induction of the lacZ gene. Next, the whole of cassette was transferred onto 

the promoter- probe plasmid pT05-lacZ as described under Materials and methods 2.7.2 

resulting in pT02Z and checked for the influence of the induction factor. B. subtilis strain 

1012 carrying pT02Z was grown in minimal medium with L-lysine as described, and the 

culture was divided into two subcultures when cells reached mid-exponential growth. Where 

one was further incubated in the presence of L-lysine, the other was grown in the absence of 

L-lysine, the β-galactosidase activities in the supplemented medium increased from 43 units 

at t = 0 to 56 units at t = 270 min (Fig. 3.21A). When the L-lysine has been removed, the 

enzymatic activity increase within the first 15 min to 270 units and reached its maximum 

value after 90 min with 520 units (Fig. 3.21A) resulting in an induction factor of about 12. 
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Next, different L-lysine concentrations (from 2.5 to 20 µg/ml) were tested to determine the 

optimal concentration resulting in the highest induction factor and for the purpose of creating 

an auto-inducible system. Cells were grown in minimal medium supplemented with 300 

μg/ml L-lysine to mid-log, washed and divided into seven subcultures. Where one was further 

grown in the absence of L-lysine, the others were incubated in the presence of different         

L-lysine concentrations as indicated in Fig. 3.21B (2.5, 5, 7.5, 10, 15, and 20 µg/ml). Aliquots 

were removed for determination of β-galactosidase activities after centrifugation 0.5, 1, 2, 4, 

6, 8, 10 and 24 h. 5 μg/ml L-lysine resulted in the high induction factor and could be used for 

auto-induction (Fig. 3.21B).  

In conclusion, a novel auto-inducible expression system for B. subtilis and related species 

allowing the regulated expression of recombinant genes has constructed. This system is based 

on the low concentration of L-lysine in the mid-exponential growth phase leading to the 

concomitant induction of the recombinant gene.  

 

Fig. 3.20. Analysis of the promoter-

riboswitch region fused to lacZ in the 

absence of the transcriptional 

terminator. Strain PT44 (A) and strain 

PT45 (B) were grown and treated as 

described in the legend to Fig. 3.19.  

A 

B 
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Fig. 3.21. β-Galactosidase activity of lacZ reporter gene located on a vector plasmid. 

Strain 1012 contains the vector plasmid pT02Z with the wild-type lysC region (PlysC-

riboswitch) fused to lacZ was grown in minimal medium supplemented with L-lysine, 

centrifuged, washed and split into different cultures. (A) To analyse the promoter-riboswitch 

region fused to lacZ on the vector plasmid, cells were washed and split into two cultures as 

described in the legend to Fig. 3.15; (B) full induction of the lysine-dependent riboswitch RNA 

occurs after addition of a L-lysine concentration of 2.5-20 µg/ml. Cells were washed and 

divided into seven subcultures with different L-lysine concentrations (0, 2.5, 5, 7.5, 10, 15, and

20 µg/ml). Aliquots were removed for measurement of β-galactosidase activity at the time 

points indicated.  
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3.3 Construction of plasmids allowing detection and single-step purification of 

recombinant proteins expressed in B. subtilis 

Six novel plasmid-based IPTG-inducible expression vectors were constructed for B. subtilis. 

While one vector allows intracellular production of recombinant proteins, the second provides 

secretion. The third vector allows addition of the c-Myc epitope tag, and the remaining three 

vectors provide the purification tags His and Strep. The versatility of all six vectors was 

proven by insertion of appropriate reporter genes and demonstration of regulated 

overexpression. Recombinant proteins with a His- or Strep-tag could be purified to near 

homogeneity in a single step. 

3.3.1. Removal of a 117-bp direct repeat results in structural stability of expression vectors 

in E. coli  

During the work with the two novel expression and secretion vectors pNDH33 and pNDH37 

[117], respectively, in E. coli, these vectors were observed to suffer from structural instability. 

After transformation of these two cloning vectors, small and large colonies appeared on the 

plates. Analysis of plasmids from small colonies revealed the expected size, while those from 

large colonies carried smaller plasmids allowing faster growth. To find out the reason for this 

structural instability, we investigated the DNA sequence of both vector plasmids for the 

presence of a direct repeat. Direct repeats have been reported to frequently result in deletions 

removing the DNA located between the direct repeats and one copy of the repeat [4]. Indeed, 

inspection of the DNA revealed the presence of a 117 bp segment occurring twice in the DNA 

and carrying the 3' end of the lacI gene (data not shown), where the second copy is located 

between the SphI and DrdI sites in Fig. 1 of [117]. The second copy was removed as 

described under Materials and methods 2.7.3 yielding the derivative plasmids pHT01 and 

pHT43 (Fig. 2.3). Both plasmids resulted in colonies of equal size after transformation into   

E. coli. To compare the structural stabilities of the former plasmid pNDH33 with the new 

plasmid pHT01 in E. coli, the derivatives containing the bgaB reporter gene coding for a heat-

stable β-galactosidase was used [61].  

The experiment started from one blue colony formed on LB plates containing X-Gal and        

1 mM of IPTG, which were grown overnight in selective LB medium. The plasmid DNA 

from these overnights and from serial dilutions and new overnights were analyzed up to about 

80 generations. While pHT01-bgaB remained stable, a smaller plasmid derivative of 

pNDH33-bgaB became apparent already after about 40 generations and predominated 
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thereafter (Fig. 3.22). The size of the smaller plasmid was determined to be 3.4 kb which is in 

perfect agreement with recombination between the two direct repeats where the smaller 

recombination product carries the bla gene and the origin of replication, while the bgaB gene 

has been deleted. When cells were analyzed for their phenotype on X-Gal plates after about 

80 generations, more than 99% of them exhibited a blue phenotype when carrying pHT01-

bgaB, while only 0.2% of those inheriting pNDH33-bgaB showed blue colonies already after 

40 generations. It was concluded that indeed the 117 bp direct repeat is responsible for the 

structural instability of the plasmids pNDH33 and pNDH37. Both, pHT01 and pHT43 will 

substitute pNDH33 and pNDH37 as expression and expression-secretion vectors, 

respectively.  

 

 

 

 

 

 

 

 

 

3.3.2. Expression levels of the new expression vectors  

To compare the expression and secretion levels of the new with the previous vector plasmids, 

first, two reporter genes htpG and pbpE were fused to the strong Pgrac promoter in pHT01 

resulting in pHT01-htpG and pHT01-pbpE, where htpG codes for a heat shock protein of so 

far unknown function [61], and pbpE for the penicillin-binding protein 4* [118]. B. subtilis 

strain 1012 carrying these recombinant plasmids and the already described pHT01-bgaB were 

grown in LB medium at 37°C to mid-log and IPTG was added at 1 mM. Aliquots were 

withdrawn just before adding IPTG (Fig. 3.23A, lanes 1, 4 and 7), 2 (lane 2, 5 and 8) and 4 h 

(lanes 3, 6 and 9) and analyzed for the production of the recombinant proteins by SDS-PAGE 

and Coomassie blue staining. In all three cases, a prominent protein band can be visualized 

corresponding to the expected size of the recombinant protein (Fig. 3.23A). It also becomes 

 

Fig. 3.22. Analysis of the structural stability 

of two different plasmids. Single colonies of E. 

coli strain XL1 Blue carrying pHT01-bgaB and 

pNDH33-bgaB, respectively, were grown 

overnight in LB medium at 37°C in the presence 

of ampicillin. Plasmids were prepared from 

these overnight cultures, cut with AflII and BglI 

and analyzed by agarose gel electrophoresis 

(lane 1). About 1,000 cells of the overnight were 

used to prepare a new overnight, etc. Lane 1 

through 4 represent the plasmids obtained after 

about 20, 40, 60, and 80 generations.  
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clear that 4 h of induction did not lead to a further increase in the amount of recombinant 

proteins as compared to 2 h of induction.  

To further verify overexpression of the recombinant proteins, after addition of the inducer, 

0.15 OD578 were applied per lane except for lanes C4 to C6 where only 0.025 OD578 were 

added. Western blots were carried out using antibodies raised against Pbp4* and HtpG; 

antibodies against BgaB are not available. When the Western blot was probed with αPbp4*, a 

very weak band could be detected in the uninduced culture (Fig. 3.23B, lane 7) which 

dramatically increased after addition of IPTG to the growing cells (lanes 8 and 9). A similar 

result was obtained when the Western blot was probed with αHtpG (compare Fig. 3.23C, lane 

4 with lanes 5 and 6 where only 0.025 OD578 were added). These data clearly demonstrate that 

the new expression vector pHT01 results in overexpression of recombinant proteins 

comparable to the results obtained with pNDH33 [117]. 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3.23. Overexpression of three different proteins fused to the Pgrac promoter. B. subtilis 

1012 cells carrying the recombinant plasmids pHT01-bgaB, -htpG and -pbpE were grown in 

LB medium at 37°C to mid-log. Then, IPTG was added at 1 mM and cells were incubated for 

another 4 h. Aliquots were withdrawn immediately before adding ITPG (lanes 1, 4 and 7) and 2 

(lanes 2, 5 and 8) and 4 h (lanes 3, 6 and 9) after addition of the inducer. 0.15 OD578 were 

applied per lane except for lanes C4 to C6 where only 0.025 OD578 were added. (A) Coomassie 

blue staining of the 10% SDS-PAGE; (B) and (C) Western blots probed with αPbp4* and 

αHtpG, respectively.  
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Next, the new expression-secretion vector pHT43 was compared with pNDH37 using three 

different reporter genes, celA, celB and amyQ, where the first two code for cellulases and the 

latter for an α-amylase [30, 112]. As described before, B. subtilis cells were grown in LB 

medium at 37oC to the mid-log phase (t = 0) followed by induction with 1 mM of IPTG, and 

the supernatants were analyzed for the presence of the secreted recombinant protein. While 

none of the three proteins was present in detectable amounts before addition of IPTG (Fig. 

3.24, lane 0), additional protein bands started to appear 1 h after induction (lane 1) and 

increased up to about 5 h (lane 5). While the amounts of CelA and CelB appeared to be 

comparable with both vectors, significantly higher amounts of AmyQ were synthesized with 

the new vector pHT43 (compare lanes 5 in Fig. 3.24C). In conclusion, both vectors produce at 

least comparable amounts of exoenzymes. Why the amount of AmyQ expressed from pHT43 

is higher than the amount synthesized with pNDH37 is unknown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.24. Secretion of different 

exoenzymes. B. subtilis 1012 cells 

carrying either pHT43-celB, -celA or 

-amyQ were grown in LB medium as 

described before. Supernatant was 

removed just before adding 1 mM 

IPTG (lane 0), and 1 to 6 h later 

(lanes 1 to 6). 300 μl of supernatant 

was applied per lane of a 10% SDS-

PAGE which was stained with 

Coomassie blue. The data for the 

plasmids pNDH37-amyQ, pNDH37-

celB and pNDH37-celA were taken 

from [117].  
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3.3.3. Incorporation of the epitope tag c-Myc 

Preparation of monoclonal antibodies against proteins is a time-consuming task taking several 

months. To reduce the time involved, epitope tags have been developed which can be added 

either to the N- or to the C-terminus of any protein. We constructed a derivative of the vector 

pHT01 where the coding region for the c-Myc tag [39] was inserted in such a way that it can 

be added to the C-terminus of any recombinant protein of interest resulting in pHT10. Next, 

the coding regions of two different genes were fused in-frame to c-Myc. We have chosen the 

genes ywbN and gfp coding for a putative sortase [111] and for the GFP [141]. Synthesis of 

both proteins was induced by addition of IPTG as described before using the recombinant 

plasmids pHT10-ywbN and pHT10-gfp. While both proteins were not detectable in the 

absence of IPTG (Fig. 3.25A, lanes 1 and 4), they became detectable 2 h after induction of the 

cells with IPTG (lanes 2 and 5) and did not increase in their amount when analyzed after 4 h 

(lane 3 and 6) as described above for different proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the presence of the c-Myc tag was analyzed by Western blot using monoclonal 

antibodies. In each case, one band became visible with the expected molecular mass (Fig. 

3.25B); HtpG served as a loading control (Fig. 3.25C). In summary, the vector plasmid 

Fig. 3.25. Detection of two different 

proteins carrying the c-Myc 

epitope tag by immunoblotting.  

B. subtilis 1012 inheriting pHT10-

ywbN and pHT10-gfp were grown in 

LB medium and treated with 1 mM 

IPTG. Aliquots were taken before 

addition of IPTG (t = 0) and 2 and  

4 h after addition (t = 2 and 4). 0.15 

OD578 were lysed and analyzed by 

SDS-PAGE (A) and by a Western 

blot of the gel was probed with  

α-cMyc (B), α-HtpG as a loading 

control (C). 

A

B

C

M 0 2 4 0 2 4 h
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pHT10 allows overproduction of c-Myc-tagged recombinant proteins and their easy detection 

by immunoblotting.  

3.3.4. Addition of the His- and Strep-tags  

To improve the versatility of the expression vector by allowing single-step purification of 

recombinant proteins, two different purification tags were decided, namely the His- and the 

Strep-tag. While the His-tag is widely used in conjunction with metal chelate resins [64], the 

Strep-tag has been developed as an alternative tool [139, 140]. The Strep-tag, an eight-amino 

acid peptide (sequence: WSHPQFEK), has a high specificity and affinity towards 

streptavidin. Its sequence was derived by selection from a genetic peptide library [140] and 

later found to occupy the same pocket of streptavidin where biotin normally becomes 

complexed [138]. Both tags allow a one-step purification of recombinant proteins using 

affinity chromatography. The coding region for eight histidine residues was inserted 

immediately downstream of the Pgrac promoter in such a way that the His-tag is located at the 

N-terminus of the recombinant protein (pHT08). The 8-amino-acid Strep-tag was inserted into 

pHT01 in such a way to allow N- and C-terminal fusions (pHT09 and pHT24, respectively).  

3.3.4.1. Addition of the His-tag 

The functionality of both vectors was checked by first fusing the coding region of the genes 

yhcS and srtA coding for a putative B. subtilis sortase and the core region of the                    

L. monocytogenes sortase A, respectively [111, 125] to the His purification tag present in 

pHT08. Both plasmids were transformed into B. subtilis 1012, and cells were grown in the 

absence of IPTG to the mid-log phase. Then, production of the recombinant proteins was 

induced by addition of IPTG and production of the protein was followed by applying samples 

on a SDS-PAGE followed by Coomassie blue staining and by Western blotting using anti-His 

antibodies (Fig. 3.26). In both cases, 2 h of induction turned out to be sufficient for high level 

of production of the recombinant proteins (Fig. 3.26A and C lane T and 2). Next, both 

proteins were purified using Ni-NTA columns as described [39] (Fig. 3.26C, lanes E1 and 

E2). Both proteins could be purified to near homogeneity as demonstrated in Fig. 3.26C. The 

recombinant proteins were confirmed by Western blot (Fig. 3.26B and D). It was concluded 

that the expression vector pHT08 is suitable for overproduction and single step purification of 

recombinant proteins with a His-tag at their N-terminus.  
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3.3.4.2.  Addition of the Strep-tag 

The coding region for the Strep-tag was inserted into pHT01 in such a way to allow its fusion 

either to the N- or C-terminus of the recombinant protein resulting in pHT09 and pHT24, 

respectively. To prove the functionality of both vectors, the coding region of gfp was 

translationally fused to the Strep-tag resulting in pHT09-gfp and pHT24-gfp. Both proteins 

could be produced after IPTG induction though the strain where the Strep-tag was fused to the 

C-terminus produced higher amounts of GFP (Fig. 3.27). With both tags, GFP could be 

purified to near homogeneity using an affinity column with immobilized streptavidin.  

 

 

 

Fig. 3.26. Overproduction and affinity 

purification of proteins with a His-tag.

B. subtilis 1012 carrying pHT08-yhcS

and pHT08-srtA were grown in LB

medium to mid-log, and production of 

the recombinant proteins was induced by 

addition of 1 mM IPTG. (A) Cells were 

lysed and aliquots were analyzed by 

SDS-PAGE (lane 1, before induction; 

lane 2 and 3, after 2 and 4 h induction); 

(B) Western blot analysis using α-His; 

(C) Cells were lysed and aliquots were 

analyzed by SDS-PAGE (lane T, total 

protein), the cellular extracts were 

applied to appropriate affinity columns, 

washed and the bound protein was 

eluted. E1 and E2 stand for the first and 

second elution step; and (D) Western 

blot analysis using α-His. 
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3.4 Establishment of a simple method for identification and screening of strong and 

efficient promoters 

To be able to screen for strong promoters easily, a promoter-probe vector has been developed, 

which uses the bgaB-encoded β-galactosidase as reporter enzyme. Furthermore, this vector 

carries the lacO operator, the lacI gene encoding the Lac repressor and a MCS allowing 

insertion of promoters. The lacO and lacI elements convert any promoter into a controllable 

promoter, which can be induced by IPTG. Therefore, it should be able to insert even very 

strong promoters into this new promoter-test vector to be cloned them in the absence of IPTG 

in E. coli. The following chapters first describe construction of the promoter-probe vector and 

then analyze their induction in relation of the IPTG concentration added to the medium. 

 

 

Fig. 3.27. Overproduction and affinity 

purification of proteins with a Strep-

tag. B. subtilis 1012 carrying pHT09-gfp 

and pHT24-gfp were grown in LB 

medium to mid-log, and production of 

the recombinant proteins was induced by 

addition of 1 mM IPTG. (A) Cells were 

lysed and aliquots were analyzed by 

SDS-PAGE (lane 1, before induction; 

lane 2 and 3, after 2 and 4 h induction); 

(B) Western blot analysis using α-Strep; 

(C) α-HtpG as loading control. (D) Cells 

were lysed and aliquots were analyzed by 

SDS-PAGE (lane T, total protein), the 

cellular extracts were applied to 

appropriate affinity columns, washed and 

the bound protein was eluted. E1 and E2 

stand for the first and second elution step; 

(E) Western blot analysis using α-Strep; 

(F) Eppendorf tubes contain aliquots after 

elution. 
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3.4.1 Construction of the promoter-probe vector pHT06 

In order to screen for strong promoters in B. subtilis, the promoter-probe vectors pLacZ [176], 

pBgaB [99], pNDH05 and pT05Z have been used in the past. Plasmid pNDH05 is similar to 

pHT06 but does not contain lacO and lacI and in pT05Z bgaB was replaced by lacZ to screen 

for promoter strength. However, we failed at the very first step, to clone promoters P88, P89 

and some others in E. coli using pNDH05 or pT05Z (data not shown). The reason for this 

failure is most probably overproduction of the bgaB or lacZ encoded enzymes leading to 

death of the E. coli transformants. To overcome this problem, the lacO operator and the lacI 

gene were introduced to control expression of bgaB in both E. coli and B. subtilis (2.7.4) 

resulting in the novel promoter-probe plasmid pHT06 (Fig. 2.4). This plasmid was 

constructed based on the backbone of plasmid pMTLBs72 [156] and its derivative pHT01 

[105] as described in Material and methods (2.7.4). 

3.4.2 The use of the promoter-probe vector pHT06 for cloning and analysis of strong 

promoters 

In order to check whether plasmid pHT06 will accept strong promoters, the two synthetic 

promoters P88 and P89 were introduced. As to be expected, the cloning step in E. coli is 

rather simple by allowing to screen for blue colonies on X-gal plates in the low concentration 

of IPTG. Plasmids were then extracted for restriction enzyme analysis, DNA sequencing and 

transformation into B. subtilis. The BgaB activity of the B. subtilis strains harbouring those 

plasmids was measured. The activity was higher than that from the strong promoter Pgrac, 

pHT01-bgaB [105], which served as a reference in all the following experiments. Based on 

this positive finding, more than 80 different promoters were introduced into this plasmid to 

analyse for the influence of different promoter elements (Fig. 3.29A and part 3.5) and 

stabilizing elements (Fig. 3.29B and part 3.6). This result indicates that the first problem of 

cloning and maintaining strong promoters has been successfully solved. 

3.4.3 Linearity of BgaB activity and IPTG concentration 

Next, it was attempted to measure the activity of different promoters induced at 1 mM and  

0.1 mM of IPTG to compare their strength, which did not work properly (data not shown). 

But while analyzing with the libraries, it was found that there was a correlation between BgaB 

activity and IPTG concentration. To compare the promoter activities, the linear range between 

the IPTG concentration and the β-galactosidase activity was investigated, using the three 

different strong promoters P69, P78 and P223 and Pgrac as a reference [117]. The results 
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revealed a linear range for all promoters with an IPTG concentration from 0.0025 to 0.025 

mM added to the culture medium (Fig. 3.28). Furthermore, it turned out that the weaker 

promoters had an extended linear range. P69 and P78 could be induced with 0.05 mM of 

IPTG and Pgrac with up to 0.1 mM. The data also showed that using high concentrations of 

IPTG, for example 1 mM for very weak promoters such as PlepA, P85 and P70, better 

resolution between the different promoters was obtained (data not shown). These results 

further demonstrate that the second problem to compare the strength of different promoters 

has been solved. 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4 Observation and measurement of the promoter strength 

All promoters from the library were analyzed on X-gal plates containing different 

concentrations of IPTG. Plates were incubated at 37oC, and pictures were taken by a digital 

camera (Fig. 3.29). As to be expected, the colour of the colonies could be distinguished at 

concentrations of IPTG between 0.0025 and 0.025 mM. Representative colonies on plates 

with 0.01 or 0.1 mM IPTG are shown in Fig. 3.29C and the activity of promoters from plates 

with 0.01 mM IPTG is easier to be distinguished based on the colour. Higher concentrations 

of IPTG did not allow to resolve the strength of strong promoters, but resulted in a better 

resolution for weak promoters. Based on these results, the concentration of 0.01 mM IPTG 

was chosen for further investigations. Fig. 3.29A and 3.29B exhibit the activity of different 

 

Fig. 3.28. Linear range between IPTG concentration and BgaB activity. The samples were 

collected 2 h after IPTG addition (0.0025, 0.005, 0.01, 0.025, 0.05, 0.1 and 1 mM). The 

promoters Pgrac, P69, P78, P223 were analyzed. The data represent the averages of three 

independent experiments. 
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promoters on X-gal plate with 0.01 mM IPTG and bluer colour indicates stronger promoters. 

In addition, the pictures (Fig. 3.29A, 3.29B) were analysed by the QuantityOne programme 

(Biorad) and the intensity of the blue colour was converted into grey values, which represent 

the strength of the promoters; higher values represent stronger promoters. From these plate 

experiments, the strength of the promoters could be visualized based on the intensity of the 

blue colour of the colonies (Fig. 3.29) and classified based on the grey value of colonies (Fig. 

3.30 and data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, all promoters were also evaluated by BgaB measurement 2 and 4 h after addition 

of IPTG. The strength of the promoters was almost in agreement with the data obtained from 

the colour of the colonies (Fig. 3.30 and Fig. 3.33B). A major difference between the plate 

and the liquid assays is that reading of the blue colour on plates occurred during stationary 

 

Fig. 3.29. Screening the strength of strong promoters on LB plates. All clones were spotted 

on LB X-gal plates containing 0.01 mM IPTG and incubated at 37oC for 16 h (A and B). 

Different clones are shown to study the influence of promoter elements (A) and 5’-mRNA 

stabilizing elements (B). Below the plates with the colonies, the numbers of the different 

promoters are given, which will be described below in detail. (C) Influence of IPTG 

concentrations (0.01 and 0.1 mM) on the development of blue colour of the colonies; the 

colonies from (A) indicated by a rectangle were displayed grown in the presence of two 

different IPTG concentrations as indicated.  
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growth phase, while determination of the β-galactosidase activity used cells in the exponential 

growth phase. This might explain some of the slight differences. Fig. 3.30A and Fig 3.30B 

showed a good agreement of grey values and BgaB activities of strong σA-dependent 

promoters in B. subtilis. Moreover, the strength of the promoter P223 was 23 times higher 

than Pgrac 4 h after addition of 0.01 mM IPTG and P85 was 5 times weaker than Pgrac. From 

these data, it can be inferred that choosing the appropriate concentration of IPTG within a 

linear range is important for a successful analysis. It also turned out that incubation of the 

plates at 30oC yielded better results than incubation at 37oC, and there were no differences 

between the promoters when the plates were kept from 10 – 30 h in the incubator (data not 

shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.30. Analysis of 

promoter strength based on 

grey values of colonies and

their BgaB activity. Samples 

were arranged in increasing 

grey values. Labels of partial 

promoters in A and B here are 

comparable with A and B in 

Fig. 3.29. The intensity of 

colonies from pictures was 

analyzed by the QuantityOne 

programme (Biorad). The data 

shown here were the averages 

of at least two independent 

plates or BgaB measurements 

2 h after IPTG induction. The 

two or more values differed 

among themselves by <15% for 

samples with activities 10 

times higher than those 

obtained with the Pgrac

promoter and <5% for other 

samples. 

 

A 

 

B 
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In summary, these results clearly show that screening of a library of different promoters can 

be done first on LB plates containing 0.01 mM IPTG and based on this analysis, appropriate 

colonies can be selected for further analysis. The plate method developed here saves time as it 

circumvents analysis of each promoter by the time-consuming β-galactosidase measurement. 

3.5 Elements of strong σA-dependent promoters in B. subtilis  

A total of 40 different synthetic and groE-modified σA-dependent promoters (Fig 3.31) were 

introduced into the promoter-probe plasmid, pHT06, and analyzed. Strong promoters could be 

screened for and classified based on the strength of promoters as described before. The further 

analysis focused on the influence of five different on the promoter strength: (1) the 

transcriptional start site, (2) the -10 region, (3) the -15 region, (4) the -35 region and (5) the 

upstream region. BgaB activities and Northern blot analyses were carried out to measure the 

activity of the different promoters. The analysis of combinations of core promoters and UP 

elements on gene expression revealed that the β-galactosidase activity expression levels could 

be increased up to 23-fold and the mRNA levels up to 43-fold as compared to the strong Pgrac 

promoter, and expression of bgaB, under control of these new promoters, could reach up to 

30% of the total cellular protein. 

3.5.1 Pgrac is a strong σA-dependent promoter for B. subtilis  

One of the new synthetic strong promoters called Pgrac was constructed using the B. subtilis 

promoter groE and the lacO operator from E. coli (Fig. 3.32A). Expression of bgaB, htpG and 

pbpE under control of this promoter resulted in 10%, 12% and 16%, respectively, of 

recombinant protein of the total cellular protein, and this promoter is 30 and 60 times stronger 

than PxylA and Pspac based on the BgaB activity [117]. Northern blot analysis demonstrated that 

the amount of bgaB mRNA expressed from Pgrac, (plasmid pHT01 [105]) is 10 and 18 times 

higher than Pspac and PlepA, respectively (Fig. 3.32B). These data demonstrate that PgroE is 

indeed a strong promoter and the question was raised which genetic element(s) is responsible 

for the high expression level. To be able to dissect and to analyse the different promoter 

elements separately, the new promoter-probe plasmid pHT06 was used that facilitated 

generation and analysis of promoter libraries. Plasmids with different groE-modified           

σA-dependent promoters were generated (Fig 3.31 for promoter sequences). The grey values 

of transformants, BgaB activities (Fig. 3.29 and 3.30) and the Northern blot analyses (Fig. 

3.33 and 3.34) were used to determine the activity of these promoters. 
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Core promoter 

Upstream 

-35 -10 -1 -15 - 23 -76 

Core promoters  -35         -10   +1 
P65 (Pc2mu)  TAGACAAACTATCGTTTAACATGTTATACTATAATATGCG 
P66 (PlacUV*)  TTGACACTTTATCTTCCATCTGGTATAATAAATAGAGCGG 
P67 (PaprE*)  TTGACAAATATTATTCCATCTATTACAATAAATTCAGCGG 
P85 (PlepA)       TTGAATCTTTACAATCCTATTGATATAATCTAAGCTGCGG 
 
P70 (PgroE)       TTGAAATTGGAAGGGAGATTCTTTATTATAAGAATTGCGG 
P57 (-35, -15)  ----C--------------ATG------------------ 
P58 (-15, -10)  -------------------ATG----A------------- 
P71 (-35)   ----C----------------------------------- 
P72 (-10)   --------------------------A------------- 
P73 (-15)   -------------------ATG------------------ 
P74 (-15)   --------------------TG------------------ 
P75 (-15)   ------------------A-G------------------- 
P76 (-15)   ---------------TTTA-G------------------- 
P77 (-22)   ------------TAT------------------------- 
P78 (-35, -10)  ----C---------------------A------------- 
P79 (-35, -15, -10) ----C--------------ATG----A------------- 
P80 (-35, -15, -10) ----C-------TAT----ATG----A------------- 
P81 (-22, -15)  ------------TATTTTA-G------------------- 
P82 (-35, -22)  ----C-------TAT------------------------- 
P83 (-35, -25)  ----C----AC----------------------------- 
P87 (-35, -15, -10) ----C-------TATTTTA-G-----A------------- 
P88 (-35, -15, -10) ----C-----GTATA----ATG----A--------A---- 
P89 (-35, -15, -10) ----C-----TTTAA----ATG----A--GG-T--A---- 
 
 
 
 
 
 
 
Upstream region of core promoter               -36 
P60 (groEWT)  AAAGGAGGTAAGGATCACTAGAAAATTTTTTATCTTATCAC 
P59 (groE-42)  --------------------------------AAAA----- 
P61 (groE-36)  ----------------------------------------G 
P62 (groE38)  -------------------------------------CT-- 
P63 (groE37)  ---------------------------------------T- 
P64 (groE-37_-42)  --------------------------------AAAA---T- 
P70/P80 (HT06)  ACCGGAATTAGCTTGGTACCAAAGGAGGTAAGGATCACTAG 
P95/P90 (groE-36-38) AAAAGAATGATGTAAGCGTGAAAAATTTTTTATCTTACTAG 
P96/P91 (groE-36-38-42) --------------------------------AAAA-CT-G 
P97/P92 (hag)  CCTCACAAAAAAAGTGAGGATTTTTTTATTTTTGTACTAGT 
P98/P93 (lepA)  ACCCAGATATGATAGGGAACTTTTCTCTTTCTTGTTACTAG 
P99/P94 (c2mu)  TGTCAACATGAGAATTCTTATCATCAATTTTTGAAAACTAG 
 
Full promoter  UP  -35              -10       +1 
P64  AAAATTTTTTAAAAAATCTCTTGAAATTGGAAGGGAGATTCTTTATTATAAGAATT 
P91  AAAATTTTTTAAAAAACTAGTTGACATTGGAATATAGATATGTTATAATAAGAATT 
P68 AAAATTTTTTAAAAAATCTCTTGACATTGGAAGGGAGATATGTTATAATAAGAATT 
P69 AAAATTTTTTAAAAAATCTCTTGACATTGGAAGGGAGATTCTTTATAATAAGAATT 
P100 AAAATTTTTTAAAAAATCTCTTGACATTGGAAGGGAGATATGTTATTATAAGAATT 
P252 AAAATTTTTTAAAAAATCTCTTGACACTTTACAATCCTAATGATATTATCTAAGCT 
 
Fig. 3.31. Sequence of modified promoters based on the promoter of the groE operon 

(P70). Only chances are indicated within promoters P57-P89 from P70, and within promoters 

P59-P64 from P60. 
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3.5.2 Influence of UP elements on gene expression 

It has been reported that UP elements can enhance the transcription initiation in B. subtilis 

[21, 96]. To answer the question whether the upstream region of the groE promoter functions 

as an UP element stimulating the core promoter activity in Pgrac, different promoters were 

compared. The BgaB activity of the full-length PgroE promoter (UP element and core 

promoter) in P01 and P229 (changing the T in P01 to a C in P229 at +3) were compared with 

the PgroE core promoter lacking the UP element in P70 and a weak promoter such as PlepA in 

P85 (Tab. 3.1). The relative BgaB activity shows that the complete promoters P01 and P229 

lead to activities 10 times higher than that expressed from promoter P70 without the UP 

element (Tab. 3.1). These results demonstrate that the UP element of PgroE plays an important 

role in the strength of the Pgrac promoter. This result further indicates that the expression level 

is largely dependent on the strength of the promoter. This was also the case for the weak 

promoter P85 (Tab. 3.1), where the BgaB activity is 5 times lower than that measured with 

Pgrac.  

lacO PgroE bgaB 
A 

Pgrac  

Fig. 3.32. The Pgrac promoter. (A)  Genetic features of the Pgrac promoter; (B) Northern blot 

analyses of different promoters as indicated. Relative mRNA expression levels were calculated 

by the QuantityOne programme (Biorad), BgaB activities were measured using 1 mM IPTG. 

B 

mRNA levels
Relative
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Tab. 3.1. Influence of the upstream region of the core promoter PgroE on the BgaB activity.  

 

 

 

 

 

 

 

Next, different upstream regions of PgroE and of several other promoters were compared    

(Tab. 3.2). The UP element mutant C2mu derived from a phage φ29 promoter has been shown 

experimentally to enhance the promoter activity 1.6-fold as compared to the C2 wild type 

promoter [96]. The UP element of the hag gene could also be shown to stimulate transcription 

from both σD- and σA-dependent promoters in B. subtilis [21]. These UP elements were fused 

to the groE core promoter, and the strength of these promoters was compared with those of 

the lepA and groE promoters. The activity of the upstream region of the core groE promoter 

(P95) with modifications (because of the introduction of a restriction enzyme site) was 

comparable with that of C2mu (P99), which indicates that the groE promoter contains a 

strong UP element. When the DNA sequence TCTT located at -42 to was mutated to AAAA 

(promoter P96), its activity increased two-fold. When the UP elements of the lepA and hag 

promoters were fused to the groE core promoter (P97 and P98), the activities turned out to be 

4-fold lower (Tab. 3.2, left panel). By fusing the UP elements of the groE and C2mu 

promoters to the strong core promoter P80 (Tab. 3.2, P90, P91 and P94), the BgaB expression 

levels of those UP elements from groE (pHT90 and pHT91) were relevant to C2mu (P94). 

However, when the UP elements of the lepA and hag promoters were fused to the strong core 

promoter P80 (Tab. 3.2, P92 and P93), the activities were not much lower as in case of fusing 

with the weaker core promoter P70 (P97 and P98). 
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Tab. 3.2. Influence of the upstream region of core promoters on the BgaB activity.  
Relative BgaB activity Relative BgaB activity 

UP element Promoter 
2 h 4 h 

Promoter
2 h 4 h 

groEwt1 P01 1.00 1.00 P01 1.00 1.00 
(-) P70 0.11 0.10 P80 12.66 14.99 
groE-36-38 P95 0.41 0.50 P90 12.95 16.14 
groE-36-38-42 P96 0.91 1.01 P91 15.65 15.63 
lepA P97 0.11 0.15 P92 11.63 13.34 
hag P98 0.15 0.18 P93 12.95 16.14 
C2mu P99 0.43 0.46 P94 15.36 16.80 

Cells were induced with 0.01 mM IPTG for 2 and 4 h; small superscript numbers indicate modification sites 

when compared with the wild type upstream sequence of the groE promoter. Data are given for the groE core 

promoter P70 (left panel) and P80 (right panel) in the absence (-) or presence of different UP elements. Pgrac was 

called P01 here; lepA, hag and C2mu, represent upstream sequences of the lepA, hag and the mutated of phage 

φ29 C2 promoters.  

To have a closer look on the strong groE UP element, it was modified and fused with the core 

promoter region of the groE promoter (P70) and the strength of derivative promoters was 

measured. The UP element was enriched for short A and T tracts based on the consensus 

sequence (-54-nAnnnnnTnnnAAAAnnnTn-36) [57]. The modified groE promoters effected 

the amount of mRNA produced (Fig. 3.33A), the BgaB activity using the plate assay (Fig. 

3.33B) and the BgaB activity after 2 h and 4 h of induction (Fig 3.33B). Shorter UP regions 

seem not to affect the expression level of BgaB when compared to the promoter P01 and P60 

(groEWT2) (Fig 3.33B). The amount of mRNA produced from P60 was slightly higher as 

compared to P01 30 min after addition of IPTG (Fig. 3.33A) for unknown reasons. This result 

was in total agreement with the finding in E. coli that the RNAP holoenzyme initially binds to 

a DNA region covering 75-80 bp, extending from –55 to +20 [82]. Single changes at -38, TC 

→ CT (P62) and at -37, A → T (P63) resulted in reduction of the BgaB expression level. 

Changes at -36, C → G (P61) or a combination of -36 and -38 (P95) reduced the activity by at 

least a factor of two, while changes at -42, from TCTT → AAAA increased the activity when 

compared P95/P96 (Tab. 3.2) and P60/P59 and P63/P64 (Fig. 3.33). Especially, modification 

of this promoter (P64) based on the consensus sequence above resulted in two times higher 

BgaB activity and five times higher mRNA levels as compared to the wild-type sequence of 

P01 and P60 (Fig. 3.33). From this result, one can conclude that the modified nucleotide 

sequence of the groE UP element, -55-AAAATTTTTTAAAAAATCTC-36 is an active UP 

element for σA-dependent promoters, at least in this case of groE promoter. 
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3.5.3 Influence of the +1 region on gene expression 

To investigate the influence of transcriptional start site region on the expression level, 

constructs with different nucleotides at the +1, +2 and +3 positions were changed or 

introduced (Tab. 3.3). The BgaB expression level increased by 20% when changing the T in 

P01 to an A in P205 at +1, while it produced only a slight increase when combined with the 

strong promoter P80 resulting in P84. Addition of two additional CC (pHT106) or GG 

(pHT86) nucleotides resulted in a more than 3-fold reduction of the BgaB expression level. 

By changing the U residue at +3 in P205 to G in P104, the BgaB expression level was 

increased more than twice, most probably by enhancing the mRNA stability. 

 

 

A 

B 

Fig. 3.33. Analysis of bgaB expression under control of different promoters with 

modified UP elements. (A) Northern blot analysis; (B) grey values of colonies (partially 

extracted from Fig. 3.29), and relative BgaB activities. Relative mRNA expression levels 

were calculated by the QuantityOne programme (Biorad).  

 

mRNA levels 
Relative 

Name of the promoter with a modified UP element 
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Tab. 3.3. Influence of the +1 region on the expression of bgaB. 
Relative BgaB activity 

Promoter 
Original 
promoter Sequence 2 h 4 h 

P01 P01 +1-UGUGG-lacO- 1.0 1.0 

P205 P01 +1-AGUGG-lacO- 1.2 1.2 

P104 P01 +1-AGGGG-lacO- 2.7 2.8 

P106 P01 +1-ACCGCGG-lacO- 0.3 0.4 

P80 P80 +1-TGCGG-lacO- 12.7 15.0 

P84 P80 +1-AGCGG-lacO- 13.4 14.7 

P86 P80 +1-AGGGCGG-lacO- 1.5 1.9 
Promoters P104, P106 and P205 are different from P01 (Pgrac), P84 and P86 are different from P80 as indicated 
in the sequence. Potential transcriptional start sites are underlined.  
 

3.5.4 Influence of the core promoter on gene expression levels 

In this part, the core groE promoter was modified and compared to the wild-type sequence 

(Fig. 3.31). I also analysed the following published promoters: (i) C2 derived from the 

lysogenic phage φ29 [96] (in P65); (ii) the E. coli lacUV5 promoter carrying a promoter-UP 

mutation [59] (in P66); and (iii) an aprE derivative promoter [160] (in P67). These promoters 

exhibited a two- to eleven-fold higher BgaB activity as compared to P01 (Tab. 3.4). The 

modifications of the groE core promoter with changes to reduce G residue within the -23 

region (from -26 to -21) resulted in P77, P81, P80 and P82, the BgaB expression levels 

reduced slightly as compared to the original promoter P70, P76, P79 and P71 (Tab. 3.4) 

3.5.4.1 Influence of the -10 and -35 regions on the BgaB activity 

RNAP from diverse bacteria recognizes the same housekeeping-dependent promoters with the 

TTGACA (-35) and TATAAT (-10) consensus elements, as defined for the E.coli RNAP, 

indicating conserved features of this class of eubacterial promoters [57, 101]. To determine 

the influence of the -35 region on the BgaB activity in B. subtilis, the -35 region of PgroE
WT 

TTGAAA (P70) was replaced by the TTGACA consensus sequence (P71). When the BgaB 

activity of this new promoter P71 was measured, it was increased about 7-fold in B. subtilis 

and 2-fold in E. coli (Tab. 3.4). In the case of the -10 region, the TATTAT sequence in P70 

was changed to the TATAAT consensus one (P72). The activity of BgaB was increased about 

10-fold in B. subtilis, but only twice in E. coli (Tab. 3.4). When both consensus sequences 

were combined in the promoter P78, the amount of transcript was increased 38.8-fold (Fig. 
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3.34) and the relative BgaB activity 96-fold (Tab. 3.4). These results are in agreement with 

the consensus hexanucleotide core elements of strong promoters [57, 101].  

 Tab. 3.4. BgaB measurement of core promoter regions in B. subtilis and in E. coli. 
Relative activity in B. subtilis Relative activity in B. subtilis Promoter 0 h 2 h 4 h Promoter 0 h 2 h 4 h 

P57 (-35, -15) 13.9 12.1 17.9 P79 (-35, -15, -10) 18.0 14.6 18.1 

P58 (-15, -10) 11.5 13.8 16.8 P80 (-35, -15, -10) 15.4 12.7 15.0 

P65 (C2) 7.2 5.9 6.7 P82 (-35, -22) 0.6 0.5 0.6 

P66 (lacUV5) 11.6 9.3 11.2 P83 (-35, -25)  0.7 0.8 0.8 

P67 (aprE) 1.4 2.2 2.6 P87 (-35, -15, -10) 5.3 13.2 16.0 

P77 (-22) 0.17 0.08 0.07 P88 (-35, -15, -10) 9.9 13.2 16.0 

P78 (-35, -10) 5.6 8.3 9.6 P89 (-35, -15, -10) 11.5 13.3 16.7 

  Relative activity in E. coli 

P70 (groEWT) 0.17 0.11 0.10 P70 (groEWT) 0.75 0.80 0.68 

P71 (-35) 0.88 0.73 0.91 P71 (-35) 1.19 1.65 2.46 

P72 (-10) 1.03 1.25 1.58 P72 (-10) 1.18 1.92 2.64 

P73 (-15) 5.79 8.34 9.40 P73 (-15) 1.37 1.79 2.36 

P74 (-15) 1.52 1.55 1.49 P74 (-15) 1.07 0.59 0.51 

P75 (-15) 0.26 0.19 0.13 P75 (-15) 0.94 0.26 0.22 

P76 (-15) 0.28 0.21 0.16 P76 (-15) 0.73 0.38 0.28 

P81 (-22, -15) 0.21 0.10 0.08 P81 (-22, -15) 0.71 0.30 0.24 

 

3.5.4.2 Influence of the -15 region on the BgaB activity in B. subtilis and E. coli 

Another set of mutations, located in the -15 region (between positions -20 and -13) was 

generated. It is known that the -15 region (-20TTTATGTT-13) shown to exert high level of 

expression in E. coli [89] as in P76 and P81 exhibited only a slight effect in E. coli and none 

in B. subtilis (P76 and P81; Tab. 3.4).  Further studies identified sequence elements, including 

the dinucleotide TG at position -15 and -14 (designated the extended -10 region), which is the 

most highly conserved DNA sequence in promoters from gram-positive bacteria but not from   

E. coli [49, 57, 101]. In the present study, changes at position -15 and -14 of the dinucleotide 

CT (P70) to TG (P74) had an apparent effect in increasing the activity 15 times when 

compared to P74/P70 in B. subtilis and not at all in E. coli (Tab. 3.4). This result is in 

agreement with the dinucleotide TG at position -15 and -14 having a more pronounced effect 

on transcription in B. subtilis than in E. coli [59]. An A residue at the -16 position seems to be 
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more important in increasing the promoter strength in B. subtilis (5-fold increase; compare 

P73 and P74) than in E. coli (3-fold), ATG at the -16 to -14 region (P73) increased the 

activity 94-fold as compared to the core groE promoter P70, while moving the ATG region 

upstream of the -17 to -15 region in P75 resulted in an about 40-fold drop in the BgaB activity 

(compare P73 with P75; see the DNA sequence in Fig. 3.31 and the relative BgaB activity in 

Tab. 3.4). These results suggest that promoters with the -15 ATG extended region could 

enhance the bgaB expression more than 94-fold as compared to the wild-type core promoter 

of groE, and 8-fold higher than Pgrac. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3.5.4.3 Analysis of combinations of the -10, the -15 and the -35 regions 

The combination of the -35 or the -10 consensus sequence with the -15 ATG region resulted 

in promoters P57 and P58 (see Fig. 3.31 for sequences), and both of them were analysed by 

Northern blot (Fig. 3.34) and measurement of the BgaB activity (Tab. 3.4). The results 

revealed a 38- to 42-fold higher mRNA level when they were compared with Pgrac (Fig. 3.34), 

and 12-fold higher BgaB activity (Tab. 3.4). The promoter with a combination of both the -35 

and -10 consensus sequence with the -15 ATG region was named P79, and some derivatives 

called P80, P87, P88 and P89 (sequences in Fig. 3.31). When their relative BgaB activities 

were measured, they were 150 to 180 times higher as compared to PgroE
WT (P70) (Tab. 3.4). 

Clearly, the strong groE promoters include not only the TTGACA (-35) and TATAAT (-10) 

hexanucleotide core elements but also an ATG trinucleotide at position -16, -15, -14.  

 

 

Fig. 3.34. Northern blot analysis of bgaB expression under control of different 

promoters. These promoters are derivatives of the wild-type groE promoter and carry either 

mutations of the core region or are combined with UP elements or both. Relative mRNA 

expression levels were calculated by QuantityOne programme (Biorad). 

mRNA levels 
Relative 

bgaB 
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3.5.5 Combinations of UP elements and core promoters 

The previous results already showed that a modified UP element of the groE promoter, (P64) 

enhanced expression of bgaB. Will this improved UP element further increase the activity of 

already strong promoters? To answer this question experimentally, this strong UP element 

was combined with the core promoter regions from P79, P78 and P57 resulting in P68, P69 

and P100. The BgaB activities of these promoters are presented in Tab. 3.5, the amount of 

BgaB protein in Fig. 3.35, of the transcripts in Fig. 3.34. The new promoters did not 

significantly enhance bgaB expression when compared with P57, P78 and P79. This result 

indicates that a combination of a strong UP element and a strong core promoter does not 

further increase expression. A core promoter itself is sufficient to obtain high gene expression 

levels. However, the influence of the two new promoters P68 and P100 with the -15 ATG 

region revealed that the β-galactosidase activity levels could be increased up to 13-fold and 

the mRNA levels up to 43-fold as compared to the strong Pgrac promoter. This corresponds to 

an about 690-fold increase when compared with the well-known Pspac promoter, and 

expression of bgaB under control of these promoters reached up to 30% of the total cellular 

protein (Fig. 3.35, P68, P100). I also checked for the production of another intracellular 

recombinant proteins (Pbp4*). Expression of pbpE under control of the promoter P100 

reached up to 38% of the total cellular protein (Fig. 3.43). Those data also corroborated 

previous observations that the -15 region plays an important role in increasing the strength of 

the groE promoter. 

Tab. 3.5. BgaB measurement of consensus promoters in B. subtilis. 
Relative BgaB activity  Promoter Original core 

promoter 0 h 2 h 4 h 

P01 (grac-full) PgroE  1.0 1.0 1.0 

P68 (UP*, -35, -15, -10) PgroE (P79) 9.8 12.3 15.8 

P69 (UP*, -35, -10) PgroE (P78) 10.3 10.0 13.0 

P100 (UP*, -35, -15) PgroE (P57) 10.8 14.8 16.0 

P252 (UP*, -35, -15, -10) PlepA (P85) 1.5 1.1 1.2 

UP*: UP element from P64 was used for this experiment. 
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In case of the weak promoter lepA, even though the core promoter region of the lepA 

promoter (Fig. 3.31, P85) has a good -15 and -10 region (-15TGATATAAT-7), the expression 

level is rather low when compared with the corresponding modified PgroE (Tab. 3.4, P72 and 

P74). Promoter P252 was constructed by a combination of a strong UP element, the -35 and   

-15 region of P100 and the core lepA promoter. This new promoter improved the lepA 

promoter about 5-fold when compared to P85 (Tab. 3.5) at 0.01 mM IPTG, and the mRNA 

levels increased up to 2.4-fold as compared to the strong Pgrac promoter (Fig. 3.34). However, 

when the BgaB activity induced with 1 mM IPTG was determined with P252, it turned out to 

be 60 times higher than that expressed from P85 and PlepA wild-type (data not shown) as in the 

case of Pgrac (Fig. 3.32). 

3.6 Using stabilizing elements to enhance the protein expression level in B. subtilis 

In order to improve the productivity of B. subtilis, efforts have focused on the development of 

protease deficient strains [170] and the identification of efficient regulatory elements at the 

transcriptional (see in Results part at 3.5), the translational and the protein secretion levels 

[172], but the potentiality of transcript stabilization has hardly been investigated [32]. Decay 

of mRNA plays an important role in gene expression control. The main factors affecting 

mRNA stability in bacteria are translation initiation frequency, codon usage and RNA 

secondary structures. Efficient translation initiation and consequent immediate ribosomal 

protection from degradation stabilizes the mRNA and is achieved by selection of ribosomal 

 

Fig. 3.35. Production of BgaB from different promoters. Different concentrations of IPTG 

were applied as indicated, and proteins were separated by 10% SDS-PAGE. The percentage of 

the expressed BgaB protein was calculated by AlphaEaseFC (Alpha Innotech) programme. 
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binding sites lacking inhibitory secondary structural elements. Stable hybrid mRNAs might be 

constructed by implementation of efficient 5’ and 3’ stabilizing sequences as a barrier against 

exonucleases [124, 150]. 

In this work, mRNA stabilizing elements were also analyzed by using a similar experimental 

approach. First, 17 different 3’-mRNA terminal stem-loops have been investigated. Second, 

the 5’-mRNA stabilizing elements including a strong RBS, the lacO controllable stabilizing 

element (CoSE) and the spacer between RBS and CoSE were examined (Fig. 3.36). The 

results demonstrated that the CoSE together with an appropriate spacer and a strong RBS 

could increase the protein expression level 9-fold as compared to the  Pgrac promoter, resulting 

in up to 26% of the total cellular protein and a half-life of the mRNA of more than 60 min. A 

combination of strong promoters and stabilizing elements revealed that recombinant protein 

expression levels up to 42% of the total cellular protein could be obtained. 

 
 

3.6.1 3’-mRNA terminal stem-loops  

Protection of the 3’ end has been less well studied for B. subtilis than for E. coli. E. coli 

transcription terminators and other stable secondary structures inhibit the progress of both 

PNPase and RNase II. The cryIAa transcription terminator serves as a stabilizer of 

exonucleases heterologous RNAs in B. subtilis [169], suggesting that this phenomenon may 

be shared by both organisms even though PNPase is the only major exonuclease they have in 

common [28]. To further examine the specificity of the enhancement effect of the trpA 

terminator fragment at the 3’ end, plasmid pHT36 was constructed by removing the trpA 

transcriptional terminator from pHT01-bgaB (see in 2.7.6, Fig. 2.5 for genetic features, and 

Fig 3.37 for the pedigree of plasmids). Then, terminal stabilizing elements were introduced 

into pHT36 at the AatII restriction site, and the cells were cultured for the measurement of    

β-galactosidase activity (Tab. 3.6). When the OD578 reached to 0.8, 0.1 mM IPTG was added 

and cells further incubated for 30 min. Then, rifampicin was added and samples were taken 

Spacer 

 

Stem-loop

Pgrac

CoSE
Fig. 3.36. Genetic features of the Pgrac promoter. 

PgroE - TGTGG...lacO...CCcaatt...RBS 
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just before addition of rifampicin (0) and 5, 10, 15, 20 30, 45 and 60 min thereafter. Total 

RNA was prepared, separated through an 1.2% agarose gel, blotted and probed with anti-

bgaB RNA. Densitometric quantification was performed using the QuantityOne programme. 

The mRNA half-life was calculated by setting the control value (t = 0) to 100% (Fig. 3.38 and 

Tab. 3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3.37.  Relation between the plasmids pNDH33, pHT01, pHT06 and pHT36. -, removal 

of the repeated 117-bp region; Pgrac promoter or trpA terminator; +, addition of bgaB gene or 

MCS. 
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Tab. 3.6. Sequences of 3’-mRNA terminal stem-loops and their influence on mRNA stability and BgaB activity in B. subtilis. 
Relative BgaB activity Name Origine ΔG 

kcal/mol 2 h 4 h Sequence of the 3’-mRNA terminal stem-loops 

S01 trpAWT -15.7 1.00 1.00 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUUUUUUC 

S36 orf-3 -13.8 0.71 0.58 CAACAAAGGCUGAGACAGACUCCAAACGAGUCUGUUUUUUUAA 

S110 skfA -23.3 1.07 0.96 GACGUCUUUGAGAAUAGGGAGUUGAGCGUAUUUGCUUAUACUCCUUAUUUUCUUUUUUUU 

S111 * -21.5 1.00 0.92 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUGCUUUUUC 

S112 * -24.3 0.83 0.84 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUGCCUUUUUC 

S113 * -27.1 0.79 0.81 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUGCCCUUUUUC 

S114 * -29.9 0.78 0.79 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUGCCCCUUUUUC 

S115 trpAWT -15.7 0.95 0.98 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUUUUUUC 

S116 ** -20.5 0.78 0.65 GACGUGAAAAAAGCCCGCUCAUUAGGCGGGCUGCCCCGGGGACGUC 

S117 * -26.2 0.99 0.82 GACGUCCCCGGGCAGCCCGCCUAAUGAGCGGGCUGCCCCUUUUUC 

S118 * -27.7 0.82 0.83 GACGUCCCCGGGGCAGCCUGCCUAAUGAGCGGGCUGCCCCUUUUUC 

S119 * -27.1 1.22 1.35 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUGCCCUUUC 

S120 * -27.1 1.17 1.20 GACGUCCCCGGGGCAGCCCGCCUAAUGAGCGGGCUGCCCUUC 

S121 * -30.0 0.91 0.74 GACGUCUAGCCCGGGUAAGCUUCGGCCGAGCCCGCCUAAUGAGCGGGCUCGGCCUUUUUC 

S122 * -30.0 0.91 0.94 GACGUCUAGCCCGGGUAAGCUUCGGCCGAGCCCGCCUAAUGAGCGGGCUCGGCCUUUC 

S123 htpG -23.0 0.72 0.68 GACGUCAAAAAGGAAUCGUCUCAUAAGGAGACGAUUCCUUUUUUUC 

S124 dnaK -20.0 0.75 0.89 GACGUCAGAAAGUCAAAGUCAGGCAUCUCUUGGCUUUGACUUUUUUUC 

S36 were generated by removal of trpA termininator from S01 (plasmid pHT01) and the terminator of the transcriptional unit is at the end of orf-3 on plasmid pHT01. All 
stabilizing elements (terminators), from S110 to S124 were introduced into plasmid pHT36 at AatII site (underline). trpAWT, wild type E. coli trpA terminator; *, modification 
of E. coli trpA terminator; **, reversed complement of S115. skfA, stem-loop between B. subtilis skfA and skfB with additional of poly T. htpG and dnaK are terminators of   
B. subtilis htpG and dnaK genes. The free energy was calculated by RNAfold programme at 37oC. 
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The marked differences between the plasmid pHT01-bgaB (S01) and pHT36 (S36) presented 

in Fig. 2.5, in which S01 contains the E. coli trpA terminator and a truncated orf-4 (function 

unknown) [156], while these sequences are absent from S36. The expression level from S36 

was slightly lower than that from S01 (Tab. 3.6 and Fig. 3.38). S01 and S115 use the same   

E. coli trpA terminator, but S115 does not contain the truncated orf-4. The expression levels 

of these two constructs were comparable. These results indicate that the E. coli trpA 

terminator slightly influenced both the BgaB activity and mRNA stability.  

The data in Tab. 3.6 indicate that lowering the free energy in S113 and S121 resulted in a 

slight reduction of the BgaB activity. However, after removal of some T-residues (Tab. 3.6; 

S119, S120 and S122), the BgaB activity increased. It follows that leaky transcription of the 

 

Fig. 3.38. Rifampicin experiment for determination of mRNA stability. The plasmid 

pHT36 carries different transcription terminators. The cells were cultured in LB medium at 

37oC, and when an OD578 of 0.8 was reached, 0.1 mM IPTG was added and the incubation 

continued for 30 min. Then rifampicin (100 μg/ml final concentration) was added. Total RNA 

was prepared at the time points indicated and probed with anti-bgaB RNA. Densitometric 

quantification was performed using the QuantityOne programme (Biorad). The mRNA half-life 

was calculated by setting the value of control (t=0) to 100%.  
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downstream genes, orf-3 (function unknown) and orf-1 (Fig. 2.5), will increase BgaB 

expression. This phenomenon might explain the result of leaky expression of orf-1, which is 

supposed to code for RepA, and by increasing the amount of RepA the copy number of the 

plasmid is increased, too [156, 157]. The orf-1 product (RepA) displays homology to DnaA 

chromosomal initiators and carries a DNA binding (HTH) motif and the intergenic region 

encompasses repeated sequences (iterons) and a dnaA box [156, 157]. It has been proposed 

that binding of RepA to the iterons is a prerequisite for initiating plasmid replication [33]. 

One might exploit this characteristic of the plasmid to construct a copy-number control 

regulated expression plasmid for B. subtilis like the E. coli pBAC/oriV vector [165]. 

In general, the expression levels of bgaB with differently modified trpA stem-loop terminators 

or some natural stem-loop terminators of skfA, htpG and dnaK were similar. Decreasing or 

increasing the free energy of stem-loop structures did not increase significantly the BgaB 

activity (30% increase or decrease), and the average half-life of the bgaB transcripts is          

30 min, similar to S01 from pHT01-bgaB. In summary, data from these experiments do not 

recommend using these 3’-mRNA terminal stem-loop structures to stabilize mRNAs for 

enhancing protein production. 

3.6.2  The 5’ stem-loop structure (lacO stabilizing element) 

It is known that the 5’-end of transcript plays an important role as a stabilizing element [15, 

16, 38, 90, 146]. It was asked whether the lacO operator can be used to both to control 

expression of recombinant genes and to act as a 5’ stabilizing element. The lacO of Pgrac (Fig. 

3.36) was used for further modifications. The different promoters with modification of the 

lacO stem-loop structure were inserted into the promoter-probe plasmid pHT06. 

To increase the free energy (ΔG) of the lacO stem-loop structure, I modified some nucleotides 

outside of the lacO terminus resulting in S102 (ΔG = -6.3) and S103 (ΔG = -2.8) (S01 from 

Pgrac; ΔG = -9.8) (Fig. 3.39 and Tab. 3.7). The results showed that a higher free energy of the 

stem-loops in S102 and S103 lowered the BgaB activity and reduced the mRNA stability 

(Tab. 3.7 and Fig. 3.39). As mentioned before, a high GC at the +1 region decreased the BgaB 

activity (Fig. 3.9 and Tab. 3.7, S106, S107, S108 and S109) due to reduction of the amount of 

mRNA molecules (data not shown), though the mRNA stability of S109 increased up to 60 

min. Keeping ΔG around - 9.8 in the cases of S201, S205, S228 and S229 did not change the 

BgaB expression level significantly. In contrast, the bgaB mRNA stability was decreased to 

13.9 min (S201) and 18.7 min (S205), and kept at about the same level in the case of S1 (29.8 
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min), S228 (26 min) and S229 (30 min) (Fig.3.39, Tab. 3.7). This result indicates that there 

might be interferences between the lacO stem-loop and the stabilizing RBS. 

Based on published data [146], a decrease in free energy of the stem-loop at the 5’-terminus 

should increase the mRNA stability. Addition of some nucleotides outside lacO, S104 (-12.9), 

S105 (-16.4), S203 (-14.1), S207 (-16.9), S208 (ΔG = -16.9) and S209 (-16.1) turned out to 

increase the mRNA stability from 32 to 60 min. The stabilizing elements S104, S105, S203, 

S209 could increase the BgaB activity 1.5- to 2.8-fold as compared to S01, while S207 and 

S208 exerted the same influence as S01 (Tab. 3.7). Unexpectedly, S202 (ΔG = -14.4) reduced 

both the mRNA (21 min) and the BgaB (0.7) expression level (Tab. 3.7, S202). This result 

indicates that increased mRNA stability is not always accompanied by an increase in the 

BgaB expression level, which reinforces the assumption that there is an influence between the 

stem-loop and the RBS leading to a lower BgaB expression level. On the other hand, analysis 

of modified nucleotides inside lacO to decrease the free energy of the stem-loop as seen with 

S206 (ΔG = -13.7) and S211 (ΔG = -11) did not increase the mRNA stability, but the BgaB 

activity was enhanced more than 2-fold as compared to the Pgrac promoter (Tab. 3.7). The 

modification inside lacO especially draw my attention because of a lower background level 

(data not shown) as compared to the other sequences, and it will be easy to decrease the free 

energy of the stem-loop by addition of other nucleotides outside lacO for further study of 

protein expression.  

It can be concluded that a lower free energy of the lacO stem-loop at the 5’-terminus of 

transcripts resulted in a higher mRNA stability, even there were some exceptions, but the 

BgaB activity is still not very high. This result suggests a putative interference between the 

stem-loop structure and the stabilizing RBS element. I decided to investigate the interference 

between the strong RBS and the spacer region between the lacO stem-loop and the RBS. 

Generally, the promoters S104, S105, S206, S209 and S211 could be used for further 

investigations. However, only the promoters S206 and S211 have been used for further 

modifications of lacO because they revealed a lower background and the possibility to 

decrease the free energy below -16.6, while avoiding too many GCs at the transcriptional start 

site region. 
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Tab. 3.7. Sequences of 5’-mRNA stabilizing elements and their influence on mRNA stability and BgaB activity in B. subtilis 
Relative BgaB activity 

Name ΔG 
kcal/mol 

Half-life of 
mRNA 
(min) 2 h 4 h          Stem-loop sequence                                           Spacer and RBS 

S01 -9.8 29.8 1.00 1.00 UGUGGAAUUGUGAGCGGAUAACAAUUCCC---AAUUAAAGGAGG 
S102 -6.3 14.9 0.38 0.49 UGUGGAAUUGUGAGCGGAUAACAAUUC-----AAUUAAAGGAGG 
S103 -2.8 16.4 0.74 0.90 UGUGGAAUUGUGAGCGGAUAACAAUU------AAUUAAAGGAGG 
S104* -12.9 49.0 2.75 2.79 AGGGGAAUUGUGAGCGGAUAACAAUUCCC---AAUUAAAGGAGG 
S105 -16.4 62.9 2.29 1.77 AGGGGAAUUGUGAGCGGAUAACAAUUCCCC--AAUUAAAGGAGG 
S201 -10.5 13.9 0.91 1.02 UGUGGAAUUGUGAGCGGAUAACAAUUCCA---AAUUAAAGGAGG 
S202 -14.4 21.1 0.70 0.73 UGUGGAAUUGUGAGCGGAUAACAAUUCCACA-AAUUAAAGGAGG 
S203 -14.1 39.0 1.57 1.49 AGUGGAAUUGUGAGCGGAUAACAAUUCCACA-AAUUAAAGGAGG 
S205 -8.7 18.7 1.18 1.18 AGUGGAAUUGUGAGCGGAUAACAAUUCCC---AAUUAAAGGAGG 
S206 -13.7 27.4 2.33 2.47 AGUGGAAUUGUGAGCGGAUCACAAUUCCC---AAUUAAAGGAGG 
S207 -16.9 36.4 1.09 1.03 UGGGGAAUUGUGAGCGGAUAACAAUUCCCC--AAUUAAAGGAGG 
S208 -16.9 46.1 0.91 1.06 UGGGGAAUUGUGAGCGGAUAACAAUUCCCC--AACUAAAGGAGG 
S209 -16.4 41.1 2.12 2.71 AGGGGAAUUGUGAGCGGAUAACAAUUCCCC--AACUAAAGGAGG 
S211 -11.0 31.9 2.25 2.24 UGUGGΔAUUGUGAGCGGAUCACAAUUCCC---AAUUAAAGGAGG 
S228* -9.0 26.0 1.20 1.21 AGCGGAAUUGUGAGCGGAUAACAAUUCCC---AAUUAAAGGAGG 
S229* -9.8 30.0 0.99 0.98 UGCGGAAUUGUGAGCGGAUAACAAUUCCC---AAUUAAAGGAGG 
S106* -9.0 30.8 0.34 0.39 ACCGCGGAAUUGUGAGCGGAUAACAAUUCCC---AAUUAAAGGAGG 
S107 -15.7 15.6 0.20 0.21 ACCGCGGAAUUGUGAGCGGAUAACAAUUCCGC--AAUUAAAGGAGG 
S108 -17.5 29.4 0.36 0.44 UCCGCGGAAUUGUGAGCGGAUAACAAUUCCGCG-AAUUAAAGGAGG 
S109 -21.0 60.8 0.35 0.54 ACCGCGGAAUUGUGAGCGGAUAACAAUUCCGCGGAAUUAAAGGAGG 

All stabilizing elements were fused with the promoter groE. The free energy was calculated by the RNAfold programme at 37oC. Relative BgaB activities were compared 
with those measured with pHT01-bgaB which was set as 1. Densitometric quantifications were performed using the QuantityOne programme. The mRNA half-life was 
calculated by setting the control value (t=0) to 100%. *, Construction of plasmid is described in 3.5. 
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3.6.3 Influence of a strong RBS 

It has been reported that a strong RBS could function as an mRNA stabilizing element and 

enhance the protein expression level [7, 8, 32, 44, 45, 53, 54, 74, 134, 145, 146]. The strong 

B. subtilis gsiB RBS [74] was evaluated again in this work. The promoter groE and lepA were 

fused with the strong gsiB RBS, then the recombinant promoters were introduced to pHT06, 

in which lacO was removed.  I was unable to construct promoters S219 and S220 (Tab. 3.8) 

and other strong promoters (not shown), indicating that PgroE was already a very strong 

promoter in E. coli, which causes lethal overproduction of BgaB when combined with a 

strong RBS. This result also indicates that when using stabilizing elements (RBS and 5’-stem-

loop structures), a strong promoter must be controlled to facilitate cloning in E. coli and 

expression later in B. subtilis. This could explain the failure to use known stabilizing elements 

Fig. 3.39. Rifampicin experiment for 

determination of mRNA stability. All lacO 

variants have been inserted into plasmid 

pHT06. The cells were grown and treated as 

described in the legend to Fig. 3.38.  
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for overproduction of recombinant protein. To study controllable stabilizing elements for B. 

subtilis including strong RBSs for overproduction of proteins is the main task of part 3.6.3. 

When the wild type RBS of lepA was replaced by the strong gsiB RBS, the BgaB activity was 

more than 100-fold higher, and the BgaB protein reached about 2.8% of the total cellular 

protein (Fig. 3.42), while it was undetectable when synthesized from the lepA RBS (data not 

shown). In addition, replacement of the RBS increased the half-life of the bgaB transcript 

from 6 to 17 min (Fig. 3.41). These findings are in agreement with the observation that the 

stability of the gsiB mRNA depends on the strong RBS [74]. It further indicates that the gsiB 

RBS can be used to enhance the stability of the bgaB transcript significantly and most 

probably of any transcript. 

Tab. 3.8. BgaB activities and half-lifes of bgaB mRNA in B. subtilis equipped with different 
RBS sequences. 

Relative BgaB activity 
Name Original promoter 2 h 4 h 

Half-life of 
bgaB mRNA 

(min) 

S219 PgroE - - - 

S220 PgroE - - - 

lepA (S02) From pHCMC02 < 0.02 < 0.02 6.04 

S221 PlepA 2.1 3.97 17.12 

Name RBS Sequences from transcriptional start site to RBS 

S219 (PgroE) groEWT RBS TGTGACTATTGAGGAGGTTGGATCC 

S220 (PgroE) gsiB RBS TGTGAAATTAAAGGAGGAAGGATCC 

lepA (S02) (PlepA) lepA
WT RBS TAGTGTATTTTGCGTTTAATAGTAGGAGTGAGGATCC 

S221 (PlepA) gsiB RBS TAGTGTATTTTGCGTTTAATTAAAGGAGGAAGGATCC 

The sequence S02 corresponds to the wild-type lepA promoter-RBS of pHCMC02 [104]. This table gives the 
names of the promoters and of the RBSs used. Potential transcriptional start sites and RBS are underlined.         
B. subtilis cells were induced with 1 mM IPTG. 
 

3.6.4 Influence of the spacer length between the lacO stem-loop and the RBS 

From the results shown in 3.6.2, and 3.6.3, it can be concluded that the spacer length between 

the lacO operator and the RBS is an important factor, which contributes to mRNA stability 

and overexpression of recombinant proteins. To screen for the optimal spacer, two DNA 

sequence sets were analysed one based on S202 (S214 and S215) and the other on S211 (S213 
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and S210) using a lacO sequence with a free energy ΔG of about -14.5. Interestingly, the 

spacer did not only influence the mRNA stability, but the bgaB expression level (Tab. 3.9 and 

Fig. 3.40). Spacer lengths of 13, 19 and 29 nucleotides were tested to optimize BgaB 

expression. A spacer of 19 nucleotides (S213) seems to be optimal for the production of 

BgaB, in that the BgaB activity could be increased up to 9-fold as compared to the original 

spacer and the half-life of the mRNA was enhanced to more than 60 min (Fig. 3.40). 

The two promoters P212 and P01 are identical, but differ in their stabilizing elements 

including the stem-loop and the spacer region. With P212, the BagB protein accumulated to 

about 30% of the total cellular protein as compared to about 10% with P01 (Fig 3.42). These 

data indicate that spacers of 13 to 29 nucleotides located between lacO and RBS greatly 

enhanced the stability of the mRNA and the protein expression level.  

Tab. 3.9. Sequence of stabilizing elements with different spacer lengths. 

Name ΔG Sequence of controllable stabilizing elements 

S202 -14.4 UGUGGAAUUGUGAGCGGAUAACAAUUCCACAaauuAAAGGAGG 
(Spacer 4) 

S214 -14.6 UGUGGAAUUGUGAGCGGAUAACAAUUCCACAaccaacaccaauuAAAGG
AGG (Spacer 13) 

S215 -14.6 UGUGGAAUUGUGAGCGGAUAACAAUUCCACAacaacaaccaacaccaau
uAAAGGAG (Spacer 19) 

S212 -14.9 UGUGGΔAUUGUGAGCGGAUCACAAUUCCACAaccaacaccaauuAAAGG
AGG (Spacer 13) 

S213 -14.9 UGUGGΔAUUGUGAGCGGAUCACAAUUCCACAacaacaaccaacaccaau
uAAAGGAG (Spacer 19) 

S210 -14.9 UGUGGΔAUUGUGAGCGGAUCACAAUUCCACAacaacuagauucuaucaa
uucaaccaauuAAAGGAGG (Spacer 29) 

S202 was used to construct S215 and S215; S211 was used to construct S212, S213 and S210.  
 

3.6.5 Combinations of strong stabilizing elements with different promoters 

The strong controllable stabilizing elements (CoSE) S212 and S213 were fused to the two 

weak promoters PlepA (resulting in P224) and Pspac (P222) and the two strong promoters P69 

(P223 and P225) and P100 (P250) (see description in Tab. 3.10). To assay for functionality of 

CoSE, the combinations of CoSEs and promoters were inserted into the promoter-probe 

plasmid pHT06. Next, these recombinant plasmids were transformed into     B. subtilis 1012, 

and the BgaB activities were measured (Tab. 3.10). While the activity was extremely low in 
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the absence of CoSE, it increased 45-fold when PlepA and Pspac were combined with CoSE 

S212 (P224 and P222) as compared to PlepA (in pHCMC02) and Pspac (in pHCMC05). The 

half-life of the mRNAs also increased (Tab. 3.10 and Fig. 3.41, PlepA/P224 and Pspac/P222). 

The expression level of the BgaB protein under control of P224 (PlepA-CoSE) reached up 7% 

of the total cellular protein (with did not result in the appearance of any additional band with a 

molecular mass of BgaB, in the case of PlepA) (Fig. 3.42, S224).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The products expressed from the three recombinant promoters P223, P225 and P250 were 

analysed. The BgaB activity was enhanced 2- to 3-fold as compared to the original promoters 

(P68 and P100) and to a more than 23-fold level as compared to strong promoter Pgrac       

(Tab. 3.10). I also looked directly for the production of the BgaB reporter protein using the 

different recombinant promoters P223 and P250, and compared them to P01 (Pgrac
WT) and 

P212 (PgroE
WT-CoSE). As shown in Fig. 3.42, P250 led to the production of BgaB up to 35.5% 

of the total cellular protein, and P223 could even overproduce BgaB up to 42% of the total 

cellular protein. While BgaB protein produced from the strong Pgrac in P01 produced 9.2%, 

PgroE
WT-CoSE (P212) produced 26.7%, P68 and P100 (see in Fig 3.35) 30% of the total 

cellular protein. These results strongly indicate that CoSE could help to enhance significantly 

both mRNA stability and the protein level. 

Fig. 3.40. Rifampicin experiment for determination of mRNA stability and relative BgaB 

activity. The plasmid pHT06 carried the different promoters with modifications of the spacer 

length between lacO and RBS. The cells were grown and treated as described in the legend to 

Fig. 3.38.  

BgaB 
2 h 

Half-life 
(min) 
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Tab. 3.10. Combination of stabilizing elements with different promoters (Pspac, PlepA, P69 and 
P100). 

Relative BgaB activity
Promoter Description 

2 h 4 h 
Half-life 

P01 Pgrac in pHT01-bgaB 1.0 1.0 29.4 

PlepA From pHCMC02 < 0.02 < 0.02 6.04 

P224  PlepA with S212 0.67 0.89 > 60 

Pspac From pHCMC05 < 0.02 < 0.02 5.3 

P222 Pspac with S212 0.48 0.92 20.9 

P69 P69 (UP*, -35, -10) 10.0 13.0  

P223 P69 with S212 21.02 33.01 36.8 

P225 P69 with S213 23.63 41.60 32.9 

P100 P100 (UP*, -35, -15) 14.8 16.0  

P250 P100 with S212 22.53 34.55 > 60 

UP*: The UP element was modified from P64; -35, -10, -15, and the core promoter was modified at the -35, -15 
or/and -10 region. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.41. Rifampicin experiment for 

the determination of mRNA stability. 

The plasmid pHT06 carried different 

promoters. The cells were grown and 

treated as described in the legend to Fig. 

3.38.  
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To analyse expression of two additional genes, pbpE and htpG were fused to the strong 

promoter P250, carrying the stabilizing element S250. Gene pbpE was additionally fused to 

P100 to allow a comparison. Expression from these promoters result in up to 38%, 28% and 

26% recombinant protein of total cellular protein (Fig. 3.43). This result indicates that those 

promoters and stabilizing elements can be used not only for BagB, but also for other proteins. 

 

 

 

Fig. 3.42. SDS-PAGE of some plasmids with stabilizing elements or recombinant 

promoters. Different concentrations of IPTG were applied as indicated. The percentage of 

the produced BgaB in total cellular protein was calculated by the AlphaEaseFC programme 

(Alpha Innotech). 



 108

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.43. SDS-PAGE of pbpE and htpG fused with promoters P100 and P250. Different 

concentrations of IPTG were applied as indicated. The percentage of the expressed recombinant 

proteins Pbp4* and HtpG was calculated by the AlphaEaseFC programme (Alpha Innotech). 
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4.  Discussion 

4.1 Riboswitches in expression systems 

Expression systems based on strong and tightly regulated promoters play an important role in 

modern biotechnology (reviewed recently in [97, 163]). The first inducible system for            

B. subtilis was described by Yansura and Henner [173] based on the artificial spac promoter 

which is under the negative control of the LacI repressor. Subsequently, induction systems 

have been constructed based on sucrose [178], phosphate-starvation [87], T7 polymerase [29], 

xylose [79], stationary phase [70] and citrate [40] as inducer. From all of these different 

systems, only the IPTG- and the xylose-inducible ones are widely used. The advantages and 

disadvantages of these different expression systems would be discussed elsewhere [144]. New 

alternative systems allowing both intra- and extracellular expression are being searched for, 

which should be easy to use, very efficient and inexpensive. Two of them use the amino acids 

L-glycine and L-lysine as inducer. 

4.1.1 The glycine system 

It has been suggested that about 2% of the B. subtilis genes are regulated via riboswitches 

[93]. If B. subtilis cells grow in the presence of a high L-glycine concentration, they activate 

expression of the gcv operon whose enzymes degrade L-glycine to 5-10-methylene-

tetrahydrofolate, ammonia and CO2 [78]. Activation of the gcv operon occurs by L-glycine 

itself, which binds to a tandem riboswitch as first suggested and then experimentally proven 

[5, 93]. Based on this mechanism, we asked whether it can be converted into an expression-

secretion system for B. subtilis and related species. In a first experiment, Northern blot was 

used to prove that indeed only a short transcript, the attenuation product, was synthesized in 

the absence of added L-glycine corresponding to the 5' UTR. Upon increasing the L-glycine 

concentration, full-length transcripts were present already after 5 min. These data fully 

confirm the in vitro data of Mandal and coworkers [93] that a low L-glycine concentration 

leads to transcription attenuation due to the formation of a rho-independent terminator. Most 

interestingly, the attenuation product did not disappear after L-glycine induction. An extended 

half-life of this short transcript could be excluded by the rifampicin experiment, as well as its 

production by processing. But processing indeed occurs, and seems to increase the stability of 

the 3' terminal product coding for the three enzymes. The question remains what might be the 

function of the riboswitch RNA under inducing conditions? Two possibilities were envisaged, 

not mutually exclusive. First, the riboswitch RNA could be translated. Indeed, a reasonable 
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Shine-Dalgarno sequence can be deduced from its primary sequence (AAGGAG) followed by 

an open reading frame encoding a potential 25-residues peptide. If this peptide is really 

synthesized, it might exert a regulatory role as described, e.g., for phage λ CIII and B. subtilis 

SpoVM peptides, which both inhibit the proteolytic activity of the ATP-dependent 

metalloprotease FtsH [31, 60]. Another example are the pentapeptides encoded by the phr 

genes, which inhibit their cognate phosphatases [115]. Second, the riboswitch RNA could act 

as a nc (non-coding) RNA. More than 60 ncRNAs have been described in E. coli, where most 

of them exert a regulatory function [46, 151].  

These results suggest that the riboswitch regulatory region can be used to express recombinant 

genes. To evaluate its potential, the lacZ reporter gene was fused to the riboswitch. The lacZ 

gene offers a simple and fast way to measure promoter strength. First I investigated which      

L-glycine concentration yielded full induction. It turned out that 10-50 mM L-glycine resulted 

in an up to 6-fold increase in the β-galactosidase activity, and all subsequent experiments 

have been carried out using 10 mM of L-glycine. If this induction factor is compared to those 

obtained with the most used systems, an induction factor of about 40 was measured with 

xylose and an about 15-fold induction with IPTG, respectively [55]. Minimal medium yielded 

a higher induction factor than LB medium due to a higher basal level caused by the unknown 

L-glycine concentration present in this complex medium. Next, the promoter strength should 

be increased, and this was obtained when the wild-type -35 element was replaced by its 

consensus sequence. We noticed that both the basal and the induced level were increased. A 

further improvement of the -10 region was not possible suggesting that this element is already 

optimal. Experiments are in progress to reduce the basal level by (i) increasing the number of 

U residues immediately downstream of the terminator structure (in the wild-type sequence, 

five U residues are present) and (ii) to increase the strength of the terminator structure to 

obtain a more efficient transcription termination in the absence of added L-glycine (Fig. 4.1). 

The U residues immediately downstream of the terminator weaken the interaction between the 

transcript and the RNAP, and three to seven U residues have been described with natural 

terminators. We asked, whether the stability of the terminator structure could be influenced by 

the growth temperature, which in turn would influence the basal level of expression. This 

turned out to be the case, but only at 45°C; no significant difference could be measured 

between the two cultures grown at 30°C and 37°C, two temperatures which are normally used 

for the production of recombinant proteins. 
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The production of two recombinant proteins was also checked, one present in the cytoplasm 

(HtpG and Pbp4*) and the other secreted into the medium (α-amylase). In both cases, 

Fig. 4.1. The glycine-responsive riboswitch. (A) Secondary structure [93]; (B) primary 

structure; (C) primary structure with a potential open reading frame. 
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detectable amounts of the recombinant protein on Coomassie blue stained SDS-PAGE were 

only present when the genes were fused to the consensus promoter. While the medium did not 

significantly influence the amount of HtpG and Pbp4* protein produced, higher amounts of  

α-amylase were secreted into the medium when the cells were grown in LB medium 

indicating that less protein is secreted from cells grown in minimal medium. 

In conclusion, these experiments demonstrate that the glycine tandem riboswitch can be used 

to obtain regulatable expression of recombinant proteins, both intra- and extracellularly. 

These data have already been published [116]. 

4.1.2 The lysine system 

The lysine-responsive lysC gene as a second example for a riboswitch regulated gene was 

studied, which becomes induced at low L-lysine concentrations within the cytoplasm [51, 

153]. Northern blot experiments were carried out to study the switch in transcription of lysC 

upon removal of L-lysine from the medium. The transcription pattern changed as to be 

expected from the short riboswitch RNA to the full-length transcript (Fig. 3.15A). 

Surprisingly, the riboswitch RNA not only continued to be synthesized for at least 3 h, but 

remained predominant. We could show convincingly that the riboswitch RNA does neither 

result from increased stability nor from processing of the full-length transcript. Using in vitro 

single-round transcription with E. coli RNAP in the absence of L-lysine, the riboswitch RNA 

could be detected, but it corresponded to only ~36% of the total transcript yield [51, 153]. 

Under in vivo conditions, the riboswitch RNA accumulated to more than 90% of the total 

lysC-specific transcript (Fig. 3.15A). When the right arm of the transcriptional terminator was 

removed, the riboswitch RNA failed to be synthesized as to be expected. When the                

β-galactosidase activity was measured, it turned out to be inducible in the presence of the 

wild-type terminator (Fig. 3.19), but constitutive when the truncated terminator was present 

(Fig. 3.20). This finding is surprising since all the sequence information to fold the anti-

terminator is still present. This result indicates that formation of the active riboswitch able to 

bind L-lysine needs the sequence information of the complete transcriptional terminator. But 

these results cannot exclude the possibility that the coding region for lacZ interferes with the 

ability to fold the anti-terminator structure. A detailed mutational analysis has to be carried 

out to identify those sequences needed to build the active riboswitch. 

Three important questions arise. By which mechanism continued synthesis of the riboswitch 

is ensured? What is the biological function of the riboswitch RNA during expression of lysC? 
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Why the level of the full-length mRNA is very low after removal of L-lysine? Theoretically, 

the riboswitch RNA could serve as a reservoir for L-lysine. This possibility is rather unlikely 

because of two reasons. First, the amount of riboswitch RNA molecules though not quantified 

should be too low to act as a storage devise for L-lysine. Second, the short half-life strongly 

argues against the storage hypothesis. Based on the finding that the amount of riboswitch 

RNA remains more or less constant, independent of the L-lyine concentration, one can ask 

whether it could be translated. A close inspection of the RNA sequence revealed a reasonable 

Shine-Dalgarno sequence (AGAAAGatGG) and a downstream GTG start codon followed by 

23 sense codons as already suggested for the glycine riboswitch. Alternatively, the riboswitch 

RNA could serve as a ncRNA [46, 151] influencing translation of one or more transcripts 

(Fig. 4.2). Further experiments have to be carried out to test these possibilities. If the 

riboswitch RNA exerts a function within the cell, which has never been reported so far, low 

L-lysine concentrations will allow for transcription attenuation only for 5-10% of the 

riboswitch RNA molecules based on the results shown in Fig. 3.19A, and no specific 

mechanism will be needed. Alternatively, through less likely, an unknown metabolite could 

stabilize a secondary structure different from the one recognized by L-lysine thereby 

favouring transcription attenuation. Furthermore, B. subtilis produces three aspartate kinases, 

I, II, and III, regulated by different end products; the gene dapG coding for aspartate kinase I, 

the gene lysC coding for aspartate kinase II are regulated by diaminopimelate and lysine, 

respectively, and the yclM gene coding for aspartate kinase III is regulated by threonine and 

lysine [25, 48, 80]. To our surprise, the band of full-length transcript turned out to be rather 

low. What could be the reason for their relatively low amount the lysC mRNA? As 

mentioned, B. subtilis codes for a total of three aspartate kinase iso enzymes. Why there are 

three enzymes (as also described for E. coli [114]) is not known. The possibility exists that 

there is no need for a significant increase in the amount of aspartate kinase II, since kinase I or 

III or both are present in sufficient amounts. It will be interesting to analyse transcription of 

dapG and yclM under condition of high and low L-lysine concentrations. It will also be 

interesting to delete dapG or yclM and both genes together, and study the influence of these 

deletion derivatives on the expression of lysC. Perhaps, deletion of dapG and yclM together 

will significantly enhance expression of lysC under condition of L-lysine depletion. 
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Analysis of the transcriptional fusion between the promoter region of lysC and lacZ indicates 

that it can be used for controlled expression of recombinant genes as already mentioned. Since 

removal of L-lysine by centrifugation is only feasible with small volumes, expression in large 

volumes requires a different and less time-consumable method. One possibility is to start 

Fig. 4.2. The lysine-responsive riboswitch. (A) Secondary structure [153]; (B) primary 

structure; (C) primary structure with a potential open reading frame. 
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growth in an appropriate concentration of L-lysine, which, after consumption, leads to 

autoinduction of the recombinant gene. We have tested this hypothesis and obtained only a   

3-fold induction after 4 h of growth starting with 5 μg/ml L-lysine (Fig. 3.21B). An 

alternative method would involve regulated expression of an artificial aptamer able to quickly 

sequester the L-lysine upon induction. There are already several examples where engineered 

riboswitches have been used to obtain regulated gene expression (reviewed in [6]) including 

an artificial system for B. subtilis, where expression of recombinant genes can be induced by 

the addition of theophylline [6], but none of them has used a natural riboswitch so far. 

4.2 A promoter-probe plasmid for screening promoters in B. subtilis 

The promoter-probe vector pHT06 based on a multi-copy theta-replication plasmid [156, 157] 

can replace the single-copy pBgaB [99] for screening of strong promoters, which allows heat 

stable β-galactosidase gene expresson in the cytoplasm. Plasmid pHT06 can be used as a 

promoter-probe vector by introducing DNA fragments at BamHI, NheI, SacI, KpnI, SpeI, and 

SacII or as controllable promoter-test vector as done in this work. In addition, one can use the 

feature of lacO to control expression in E. coli during cloning, but not in B. subtilis by 

replacing lacI by the promoter at SacII, NheI and SacI. As an example, a library of synthetic 

promoters was introduced, which had various strengths leading to different expression levels. 

In this work, promoters P88 and P89 were chosen to demonstrate the utility of plasmid pHT06 

for cloning and screening strong promoters successfully. 

Two obstacles were overcome during this work: (i) cloning and (ii) conditions to compare the 

strength of promoters by applying a linear range of IPTG concentrations. First, while it is 

difficult to use the available promoter-probe vectors pNDH05, pT05Z (this work), pLacZ 

[176] or pBgaB [99] for cloning of strong promoters, which causes lethal overproduction of 

recombinant proteins in E. coli, this problem can be avoided by using the new promoter-test 

plasmid pHT06. Second, there is little information about the correlation of IPTG 

concentrations and β-galactosidase activity. Actually, we faced this problem when all the 

promoters from the libraries were checked at 1 mM and then at 0.1 mM IPTG (data not 

shown). It turned out that almost all strong promoters conferred nearly the same activity. For 

example, the activity of P88, P89 and Pgrac were nearly the same at 1 mM of IPTG after 2 or  

4 h of induction and at 0.01 mM P88 and P89 were about 10 times higher thanthat of Pgrac. 

This useful promoter-probe vector could largely solve problems to screen strong promoters by 

observation of the coulor of colonies on X-gal plates. 
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The low copy number and structural stable vector pHT06 together with the expression vector 

pHT01 [105] would become interesting for anyone who wants to establish a library of 

promoters or genes. With these available techniques, one could generate mutant libraries 

using the error-prone PCR method [27] with these new plasmids to identify and study 

elements of promoters in B. subtilis or gene functions.  

4.3 Improve the productivity of B. subtilis  

B. subtilis produces and secretes large amount of various proteins into the culture medium 

[120]. For the last two decades numerous attempts have been made to use this bacterium as an 

efficient host for the expression of recombinant proteins [147]. To improve the productivity of 

B. subtilis, we aimed to identify efficient regulatory elements enhancing transcription from 

expression plasmids. Published data [105, 117] and those presented in Fig. 3.32 prove that the 

Pgrac promoter is indeed a strong promoter, which consists not only of the strong PgroE 

promoter, but also of the lac operater with a dual function: control of transcription and acting 

as a stabilizing element. Further efforts have been focused on the development of elements for 

increasing the promoter strength and for identification of mRNA-stabilizing elements in 

overproduction of proteins. 

4.3.1 Strong promoters in B. subtilis 

A compilation and analysis of B. subtilis σA-dependent promoter sequences [57] indicates that 

promoter recognition depends on the following consensus sequences: (i) the transcription start 

site, which should be a purine, (ii) the -10 region TATAAT, (iii) a six nucleotide spacer 

between the +1 and the -10 region, (iv) a TnTG sequence from -17 to -14, (v) the -35 region 

TTGACA, (vi) a 17 nucleotide spacer between the -10 and the -35 region and (vii) an 

upstream region containing An and Tn from -70 to -36 called UP element. Based on this 

information, I focused on sequences at transcriptional start site, the -10 region, the -15 region, 

the -35 region and the UP element upstream of the groE promoter aiming to construct 

stronger promoters. To analyse the elements for a strong promoter, the newly constructed 

promoter-probe plasmid pHT06 was used. A total of 85 different synthetic and groE-modified 

σA-dependent promoters (Fig. 3.31) were cloned into pHT06 and analysed by measuring the 

BgaB activities, the amount and stability of the bgaB transcripts and the amount of BgaB 

produced.  

The promoter recognition by the bacterial RNAP holoenzyme involves interactions not only 

between core promoter elements and the sigma subunit, but also between a DNA element 
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upstream of the core promoter (UP element) and the α subunit. DNA binding by the α subunit 

can increase transcription dramatically [47]. UP elements are AT-rich sequences located 

upstream of the -35 element of some promoters [20, 47]. They act as binding sites for the 

αCTD of the α subunit of the RNAP [13, 52]. The promoter PgroE precedes the groESL 

operon coding for the GroEL chaperonin [137] and is a strong promoter because of a potential 

UP element (Tab. 3.1), and its activity is comparable with the mutant C2mu UP element [96]. 

The UP element of groE was modified based on the consensus sequence. The groE UP 

element sequence from P64 (-55-AAAATTTTTTAAAAAATCTC-36) served as an active UP 

element also for other σA-dependent promoters, and resulted in a 2-fold increase in the BgaB 

activity and a 5-fold higher mRNA expression as compared to Pgrac (P01) [105, 117]. This 

agrees well with the alignment of 236 B. subtilis σA-dependent promoters [57] demonstrating 

that the -54-nAnnnnnTnnnAAAAnnnTn-36 sequence represents an UP element of              

σA-dependent B. subtilis promoters. 

As mentioned, UP elements increase the affinity between the RNA polymerase and the 

downstream core promoter. But, as shown here, when the core promoter provides already a 

high affinity, it cannot be further increased by addition of an UP element. It follows that an 

UP element increases the strength of only those promoters with a low affinity for the RNA 

polymerase. To ensure a high transcription rate, nature has evolved two possibilities: a strong 

core promoter or a weak core promoter with an UP element. 

 

 

 

 

 

 

 

 

When the UGU at transcriptional start site region was changed to AGG (in P104, Tab. 3.3), 

the BgaB expression level was more than doubled. It can be concluded that the new potential 

transcriptional start site confers increased stability to the transcript. When the U was replaced 

by an A residue (P205), this increases the predicted free energy from -12.9 to -8.7 (Fig. 4.3) 

Fig. 4.3. Secondary structure 

of the lacO stem-loop of S01 

(in Pgrac), S104 (in P104) and 

S205. 
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and reduced the mRNA stability. All these data point to the possibility to use the lacO as a 5’ 

stabilizing element.   

One set of mutations, located between positions -35 and -10, was created and tested. It turned 

out that mutation of the ‘extended -10 region’ (named -15 region in this thesis) was very 

important (Tab. 3.4, P73). The term ‘extended –10 promoters’ refers to the TG motif, 1 base 

upstream of the –10 region, which plays a vital role in several E.coli promoters [76]. In         

B. subtilis, it is termed the -16 region with the sequence 5’-RTRTG-3’ [100]. Then,  a more 

comprehensive analysis of 142 promoters, all with experimentally determined transcription 

start sites, confirm that the –16 region (TRTG) is conserved [57]. Based on this analysis, the   

-15 region TTCT in the PgroE
WT promoter was replaced by TATG, in P73, and the BgaB 

activity increased up to 94-fold. This result strengthens those published by Voskuil, indicating 

that the -16 region TRTG motif (R = purine) appears to be a basic element present in many 

gram-positive bacterial promoters [162]. We and others noticed that the -16 region TRTG 

motif was essential in some promoters [23, 89, 162, 171], especially in weak promoters [59] 

or promoters that lack an UP element [18, 19], or promoters that lack an identifiable –35 

region [9, 22, 76, 162]. Promoters with a combination of UP elements and consensus core 

promoter elements (-15 ATG and -10 consensus; -15 ATG and -35 consensus; or -15 ATG 

and -10 and -35 consensus) resulted in the production of BgaB protein reaching levels of up to 

about 30% of the total cellular protein, especially with those promoters containing the -15 

ATG triplet.  

4.3.2 Role of messenger RNA stabilizing elements in overproduction of proteins 

Gene expression levels are mainly determined by the efficiency of transcription, mRNA 

stability and the frequency of mRNA translation. Transcription (in 4.3.1) and translation has 

been the subject of intense optimization in recombinant expression systems. Stability of the 

mRNA transcript is however rarely addressed. But gene expression is controlled by the decay 

of mRNA [123, 124]. Messenger RNA stability has been shown to play an important role in 

the regulation of gene expression, and much needs to be learned about the elements that 

function as mRNA stability determinants. Four different elements with stabilizing 

potentialities will be discussed separately, namely: (i) a 3’ mRNA terminal stem-loop; (ii) the 

5’ lacO stem-loop; (iii) a strong RBS; (iv) the spacer length between the 5’ lacO stem-loop 

and the RBS. 

 



 119

3’ mRNA terminal stem-loop structures 

We found that the terminal stem-loop at the 3’ end of the mRNA did not correlate with 

mRNA stability (Tab. 3.6, Fig. 3.38). This is in contrast to findings of Wong et al. (1986), 

who concluded, based on their data, that the 3’ end of the cry gene of B. thuringiensis (Fig. 

4.4) conferred increased stability on other mRNAs in both E. coli and B. subtilis [169]. In 

another publication, addition of the cry transcription terminator at the 3' end of the lacZ gene 

did not confer any increase in its stability and produced only marginal effects on the final     

β-galactosidase activity [70]. This finding indicates that such a 3’ stabilizing element does not 

act by itself, but is influenced by the sequence of the transcript in a way, which is not yet 

understood at the molecular level. One possibility would be the formation of alternative 

secondary structures. A spacer region, inserted between the 3’ end of the mRNA and the cry 

element could alleviate this problem. Such a spacer region, which by itself will form a stem-

loop structures could protect the cry hairpin structure or any other additional secondary 

structure. The average half-life of the bgaB transcripts was 30 min in this study with modified 

versions of the trpA terminator or the natural terminators of the skfA, htpG and dnaK genes. 

These results indicate that the 3’-mRNA terminal stem-loop structures did not further increase 

the half-life of mRNAs as compared to P01 with the trpAWT terminator (ΔG = -15.7 kcal/mol) 

with a half-life about 30 min. Wong [169] employed the penP gene with a half-life of 2.0-2.8 

min to study the influence of the cry terminator in both E. coli and B. subtilis. The data in 

Tab. 3.6 indicate that the E. coli trpA terminator had only a slight influence on the BgaB 

activity. These results are consistent with the results of Wong [169], who had tested the 

terminators from two additional bacterial genes that encode stable mRNAs, the lpp gene of   

E. coli and the ery gene from the S. aureus. The mRNA half-lifes for these transcripts were 

reported to be 11.5 and >22 min, respectively. However, no enhancement on the expression of 

the penP gene was obtained; the penP-lpp and penP-ery fusions expressed penP at the same 

level as did the native penP gene in both E. coli and B. subtilis. These findings indicate that 

the half-life of a transcript and its translation efficiency do not necessarily correlate. This is 

surprising and further indicates that there might be an additional mechanism(s) influencing 

the amount of protein to be discovered.  
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We noted that after removal of some T residues (U residues in Tab. 3.6), the BgaB activity 

increased. This means that leaky transcription termination of the upstream located gene orf-1 

(called repA) encoding the plasmid replication initiator [156] would increase BgaB 

expression. Increasing the amount of RepA in turn should lead to an increase in the copy 

number of the plasmids with a concomitant enhanced production of the BgaB protein due to 

the gene dosin effect. However, there is a transcriptional terminator just before orf-1; only a 

small amount of the transcript could reach to orf-1 due to overriding the transcriptional 

terminator. One might exploit this feature to conditionally increase the copy number of 

plasmid for protein overproduction purpose. On the other hand, the exoribonuclease PNPase 

activity is demonstrated in B. subtilis by Deutscher and Reuven [34] and shown to be the 

predominant degradative activity in cell extracts with poly(A) or poly(U) RNA as a substrate. 

The 5’ lacO stem-loop structure 

The results shown in Tab. 3.7 and Fig. 3.39 point to the importance of a stem-loop as 

exemplified by lacO. Therefore, the effect of the predicted lacO stem-loop on mRNA stability 

was analysed. When constructs with decreased free energy of lacO by changing nucleotides 

inside of lacO (Fig.4.5, S211) were tested, the BgaB activity increased more than 2-fold as 

compared to the Pgrac promoter (Tab. 3.7, Fig. 3.39, S206 and S211). This is consistent with 

the idea that the major determinant for mRNA stability is a blocked 5’-end [146]. The lacO 

stem-loop increased the BgaB activity >2-fold, but there was no clear effection mRNA 

stability. Therefore, it would be of interest to determine whether a strong RBS and a spacer 

between the 5’ stem-loop and the RBS caused an effect in the half-life of the mRNA.  

Fig. 4.4. Secondary structure of 

the potential 3'-end of the cry 

mRNA [169]. 
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Influence of a strong RBS on mRNA stability 

We found that the strong RBS of gsiB correlated with mRNA stability and expression of the 

reporter gene (Tab. 3.8 and Fig. 3.41 and Fig. 3.42), when it was fused to PlepA. This is in 

agreement with the findings of B. thuringiensis cryIIIA mRNA [1] and gsiB mRNA [74] that 

mRNA stability can depend on a strong RBS, which is located four (cryIIIA) or nine (gsiB) 

nucleotides away from the 5’-end. These results suggest that a strong RBS enhance mRNA 

stability when positioned close the 5’ end, most probably by impairing binding of an 

endonuclease.  

The spacer length between 5’the stem-loop and the RBS 

The experiments shown in Fig. 3.39 and 3.40 demonstrated that even a highly stable            

5’-terminal structure could not confer stability without an adequate distance between the 

5’end of the structure and the RBS. The spacer of a length of 13 to 29 bp not only influenced 

the mRNA stability, but also the BgaB protein expression level (Tab. 3.9 and Fig. 3.40). We 

and other propose that the binding of ribosomes at an RBS that is located too close to the      

5’-terminal structure will result in perturbation of the structure. Based on crystallography 

studies [175], 15 nts upstream of the initiation codon are protected by the ribosome bound in a 

ternary complex. In the case of this study, a spacer length of 19 nucleotides in the case of 

S213 can be considered as optimal for production of BgaB, in that the BgaB activity could be 

increased up to 9-fold as compared to the Pgrac promoter with a half-life of the mRNA of more 

than 60 min (Fig. 3.40). These data suggests that this spacer is short enough to allow 

ribosome binding without being inhibited by the formation of the protective 5’-terminal 

Fig. 4.5. Secondary structure of the 5’ 

stem-loop from S01 (in Pgrac) and S211 
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structure. Once the spacer is increased to 29 nts (S110, Fig. 3.40), ribosome binding no longer 

affected secondary structure formation, resulting in a very stable mRNA.  

It can be concluded that the lacO stem-loop, a Controllable Stabilizing Element (CoSE) and 

elements of strong σA-dependent PgroE promoter can be used for overproduction of 

recombinant proteins in B. subtilis. To evaluate its potential, CoSE was combined with other 

promoters, and all constructs could increase the half-life of the mRNA and increase the BgaB 

activity and the yield of BgaB, PBP4* and HtpG proteins. Promoter P223 consists of CoSE 

S212 and the strong promoter P68 able to overproduce BgaB up to 42% of total cellular 

protein (Fig. 3.42). While BgaB protein from strong Pgrac 9.2% [105, 117]; from PgroE
WT-

CoSE, S212, 26.7% (Fig. 3.42); from P68 and P100 (see in Fig 3.35), BgaB up to 30% of 

total cellular protein.  The other recombinant proteins, PBP4*, P100 could overproduce this 

protein up to 38% and P250 up to 28% in total cellular protein (16% in Pgrac); HtpG, P250 

could overproduce this protein up to 26% in total cellular protein (12% in Pgrac). On the other 

hand, CoSE could be extended to other bacteria. See in Fig. 4.6, the positive effect on BgaB 

expression in E. coli, the result shown that S01 (pHT01) is weaker than S212 and S221 is 

weaker than S224, which is similar the result in B. subtilis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

In summary, all of strong promoters and CoSE explored in this study are extremely useful for 

improvement expression system in both B. subtilis and E. coli.  

 
 

Fig. 4.6. Using CoSE in E. coli. Cell with different plasmids/stabilizing element were 

stretched on X-gal LB plate with 0.01 mM IPTG.  
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4.4 Outlook 

B. subtilis is used to produce and to secrete large amounts of various proteins into the culture 

medium since the last two decades [120]. Then, numerous attempts have been made to 

convert this bacterium into an efficient host for the expression of recombinant genes [147]. At 

present, about 60% of the commercially available enzymes are produced by Bacillus species; 

and a large body of information concerning transcription, translation, protein folding and 

secretion mechanisms, genetic manipulation, and large-scale fermentation has been acquired 

as mentioned in the ‘Introduction’ of this thesis and in [56, 97, 163, 170]. But more 

knowledge on cellular functions and development of better production systems is still needed 

[163]. Based on the results in this thesis, a key question is how the glycine-inducible and the 

lysine-autoinducible expression systems can be improved for industrial production and how 

strong promoters with CoSE as a useful tool can be applied for the downstream processing. 

(i) One may improve the glycine-inducible system by fusing the CoSE at downstream of 

the riboswitch and to combine it with a strong promoter. This system can be used for 

overproduction of recombinant proteins using the inexpensive inducer glycine. 

(ii) As discussed, there is the possibility to improve the expression level of the lysine-

responsive riboswitch-regulated lysC gene by deleting the two other genes coding for 

aspatokinase iso enzymes. These experiments are in progress.  

(iii) One possibility to reduce basal level of expression in E. coli in to use shuttle vectors 

with a low copy number in E. coli and a high copy number in B. subtilis. 

(iV) Based on the strong promoter P68, P100, S212, S223 or S250 expression vectors with 

purification tags and secretion vectors can be developed.  
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6 List of abbreviations and symbols 

Abbreviation Denotation 
Aa amino acid(s) 
A260 absorption at a wavelength of 260 nm 
A280 absorption at a wavelength of 280 nm 
AmpR resistant to ampicillin 
amyQ gene coding for protein α-amylase (AmyQ) 
APS ammoniumperoxodisulfate 

α- alpha, indicating antibodies against something (except α-
amylase) e.g, α-AmyQ means antibodies against AmyQ 

αCTD C-terminal domain of the RNA polymerase α subunit 
B. amyloliquefaciens Bacillus amyloliquefaciens 
bgaB coding for the heat stable reporter β-gaclactosidase (BgaB) in 

G. stearothermophilus 
bp base pairs 
B. subtilis Bacillus subtilis 
cat gene coding for chloraphenicol-acetytransferase 
celA gene coding for cellulase A (CelA) from C. thermocellum 
celB gene coding for cellulase B (CelB) from C. thermocellum 
CmR resistant to chloramphenicol 
CMC carboxy methyl cellulose 
C. thermocellum Clostridium thermocellum 
oC degrees centigrade 
DEPC diethylpyrocarbonate 
DNA deoxyribonucleic acid 
Δ deletion 

E. coli Escherichia coli  
Et.Br ethidium bromide 
et al. et alteri 
g gram 
GFP green fluorescent protein 
gly L-glycine 
kb kilobase 
kDa kilo-Dalton 
LB Luria-Bertani  
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lysC gene code for the α- and β-subinits of a lysine-responsive 
aspartokinase II 

h hour(s) 
HCl hydrocloride acid 
htpG gene coding for hight temperature protein G (HtpG) 
IAA isoamylalkohol 
IPTG isopropyl-ß-D-thiogalactoside 
lacZ gene coding for the reporter β-gaclactosidase (LacZ) in E. coli 
l liter 
MCS Multiple cloning sites 
min minute(s) 
mg milligram 
ml mililiter 
mM milimole 
MOPS morpholiopropanesulfonic acid 
mRNA messenger RNA 
μg microgram 
μl microliter 
Neo neomycin 
nt nucleotide(s) 
ON oligonucleotide 
ONPG ortho-nitrophenyl-β-galactoside 
OD578 optical Density at a wavelength of 578 nm 
PBS phosphate-buffer saline 
pbpE gene coding for penicillin-binding protein PBP4* in B. subtilis 
Pgrac an IPTG inducble promoter, a hybrid promoter of PgroE and lac 

operator 
pmol picromole 
Pspac an IPTG-inducible promoter, a hybrid promoter of the phage 

SPO-1 and the lacO 
PgsiB (glucose stavation inducible) σB-dependent general stress 

promoter 
Pgcv a glycine-inducible promoter, a promoter and 5’UTR of the 

gcvT operon 
PlysC a lysine-inducible promoter, a promoter and 5’UTR of the lysC 

operon 
RBS ribosome binding site 
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Rif rifampicin 
RNA ribonucleic acid 
RNAP RNA polymerase 
rpm revolution or round per minute 
RT room temperature 
S. aureus Staphylococcus aureus 
sec second 
SD Shine-Dalgarno 
SDS sodium dodecyl sulphate 
srtA gene coding for SrtA (e.i. of L. monocytogenes) 
TEMED N,N,N`,N`-tetramethylenethylendiamide 
TCA trichloroacetic acid 
Tris tri-(hydroxymethyl)-aminomethane 
Tween-20 polyoxyethylensorbitane monlaurate 
U units (enzyme activity) 
UTR untranslated region 
v/v volume/volume 
w/v weight/volume 
X-gal 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside 
yhcS gene coding for protein YhcS in B. subtilis 
ywpE gene coding for protein YwpE in B. subtilis 
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