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On the Evolution Equations of Nonlinearly Permissible,
Coherent Hole Structures Propagating Persistently in
Collisionless Plasmas

Hans Schamel* and Nikhil Chakrabarti

A fundamental study describing nonlinear plasma wave propagation is
presented. Elementary linear wave theory describes small-amplitude random
waves, but lacks information about coherent structures. This improved wave
model arises from the fact that structure formation is inevitably associated
with particle trapping, which can only be properly addressed by the
pseudo-potential method instead of Bernstein, Greene, and Kruskal (BGK) -
likemethods. Only by using this method can legitimate nonlinear dispersion
relations be obtained and reconciled with trapping scenarios. This privilege is
used to derive evolution equations for five structures, the derivation being
simplified by the acoustic nature of the permitted modes. The focus is on a
special structure, the solitary electron hole of negative polarity, with which it
can explain a spacecraft observation for the first time. Furthermore, it is
shown that an intrinsically nonlinear structure can become macroscopically
linear and thus harmonic by suitably adjusting the trapping scenario. An
example is the monochromatic ion acoustic wave that propagates at ion
sound velocity without dispersion. In this literature research, it also takes a
critical look at a recently awarded work.

1. Introduction

A look behind the scenes of pattern formation in collisionless
plasmas, more precisely in Vlasov-Poisson (VP) systems, still
reveals some surprises and contradictions despite decades of
research.[1,2] On the one hand, satellite measurements in near-
Earth regions of space[3] show a wealth of coherent, long-lived
structures, the recording and interpretation of which being the
more advanced the better the current understanding of solitary
stuctures is. On the other hand, many theoretical model builders
who make the linear Vlasov dynamics the starting point of their
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investigations try in vain to come close
to these patterns. Not only do they over-
look the fact that in the process of struc-
ture formation, coherence, and particle
trapping form an alliance without which
persistent equilibria cannot exist, but also
that the trapping of individual particles by
a coherent wave is in principle stochas-
tic in nature. The trajectories of resonant
particles near the separatrix become er-
godic, and with it the bundle of charac-
teristics of the Vlasov equation. It follows
immediately that Cauchy’s initial value
problem is ill-posed for VP systems, a
dilemma the plasma community has yet
to learn how to deal with.
In a recent review,[2] one of the authors

of the present work achieved some clari-
fication by putting coherence and parti-
cle trapping on the same footing and re-
flecting the chaotic nature of particle cap-
ture through different trapping scenar-
ios. Only then can diversity and abun-
dance, as observed, be fully taken into

account. His investigations suggest a double paradigm shift: i)
the transition from the linearized Vlasov spectra (discrete: Lan-
dau; continuous: van Kampen/Case) to the continuous spectra of
hole equilibria and ii) the transition from the BGK[4] to the pseu-
dopotential method.

2. The Pseudo-Potential Method

The question we address in this article is how to use the second
part of Schamel’s pseudo-potential method[5] to set up evolution
equations for long-lived electrostatic structures of the form𝜙(x, t)
that self-consistently propagate in collision-free plasmas. This is
of paramount interest for two reasons:

(i) such structures are observed ubiquitously in space and mea-
sured in laboratories, e.g.,[6] and

(ii) the standard wave theory, which seems to have been gener-
ally accepted since van Kampen and Landau, cannot give a
satisfactory, i.e., complete answer.

Several requirements determine the path for such an under-
taking.
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1. The structure must be embedded in a plasma, i.e., when it
disappears, the undisturbed plasma must come out.

2. Regardless of its strength, it must satisfy the Vlasov-Poisson
system.

3. It must in some sense represent and take care of the chaotic
behavior of the particle trajectories in the resonance range.

4. The multiplicity of solutions must also include the case of a
stationary propagating wave 𝜙(x − v0t), where v0 is the phase
velocity.

5. The coherence of the wave is directly related to the concept of
particle trapping in the resonance range, i.e., both aspects are
mutually dependent and cannot be treated independently.

6. The absence of Landau damping and, more generally, of lin-
ear Vlasov dynamics caused by corresponding distortions in
the resonance range of fe and fi, respectively, is a necessary
prerequisite.

7. In general, the electric potential 𝜙(x, t) can no longer be ex-
pressed by known functions and identified experimentally be-
cause of its almost unlimited form.

In the review article[2] a comprehensive theory of hole equilib-
ria and several associated evolution equations were presented in-
cluding the evolution equations of the KdV- or Schamel type.[7–10]

In[2] it was shown how a suitable equilibrium structure can be
derived: starting from distributions that satisfy the correspond-
ing Vlasov equation, one can get the densities and then derive
a pseudo-potential (𝜙) with which one obtains self-consistent
solutions of the VP system by solving Poisson’s equation.
Whereas (𝜙) stands for the shape of the structure, the phase

velocity v0 satisfies a nonlinear dispersion relation (NDR).
An important aspect of finding an appropriate Vlasov solution

is to consider different trapping scenarios to represent the many
different ways a particle can be captured, a situation that reflects
the chaotic resonant region.
Themost general solution is in the small amplitude limit given

in [2] by Equation (6), extended by an appropriate ionic expression
derived in Section VII, for the NDR and by (7), again extended by
an ionic term, for the pseudo-potential (𝜙).
In general, one has to deal with various trapping scenarios for

each species, but for simplicity, we only consider the 𝛽 (and 𝛼,
respectively) trapping effect here, as in Schamel’s earlier publi-
cations. It is assumed that 0 ≤ 𝜙(x) ≤ 𝜓 << 1, where 𝜓 is the
small amplitude of the electric potential 𝜙(x).
In the case that all trapping terms vanish except (Be(𝛽), Bi(𝛼)),

the NDR and the pseudo-potential are given by
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The trapping parameters Be, Bi are defined later in the text. In the
case of vanishing q both Equations are identical with (51),(52) of
[2]. The parameter k0 is connected with the actual wavenumber k
by (9) in [2]. The normalized phase velocity is given by v0. It has to
be replaced by ṽD := vD − v0 in case of a current-carrying plasma
with a non-zero drift velocity vD.

3. A New Approach to Establishing Evolution
Equations

One way to find an evolution equation for acoustic wave struc-
tures that contains such an equilibrium solution is to combine
two ZEROS, namely 𝜙t + v0𝜙x = 0 and − ′′(𝜙)𝜙x − 𝜙xxx = 0.
The latter is derived from Poisson’s equation 𝜙′′(x) = − ′(𝜙) and
both are connected by a coupling constant c. The rationale for
c and the addition of the two zeros is as follows: For a coher-
ent wave one has phase locking, i.e., all Fourier harmonics must
propagate in lowest order with the same phase velocity given by
c, requiring an acoustic wave. The deviations due to dispersion
and nonlinear effects are small and thus of a higher order which
must be compensated for in order to arrive at a consistent the-
ory in the next order. In the case of mathematically disclosed
functions such as ne(x, t), ni(x, t), or 𝜙(x, t) with known scaling
properties, this method is equivalent to the reductive perturba-
tion method (see for instance Appendix A of [11]). However, for
undisclosed functions, which is the typical situation when more
trapping scenarios are involved, this is the only method available
to get an evolution equation. The concept of undisclosed func-
tions 𝜙(x) was first introduced in [11] and reflects the fact that in
the pseudo-potential method for inverting x(𝜙) to 𝜙(x) an inte-
gral appears, which can no longer be solved by mathematically
known functions. It is a consequence of the many trapping sce-
narios involved. For more details see [2, 11].
In addition to the arguments already mentioned, their legiti-

macy also results from the fact that only slow processes are ad-
mitted to appear on themacroscopic level. This excludes fast tran-
sient processes such as filamentation, folding, detrapping, and
retrapping, separatrix crossings, or other violent relaxations since
they are kinetic in nature. Furthermore, one must be aware that
determinism is challenged due to the non-integrability of the sin-
gle particle - coherent wave interaction problem. A secure way
is therefore to concentrate on acoustic kinetic equilibrium solu-
tions that are characterized by acoustic velocities v0 and shapes
given by (𝜙).
This method is therefore justified because it reproduces the

result of the reductive perturbation method in cases where the
latter is applicable. However, it is superior to reductive pertur-
bation theory in that it applies to cases where the latter can no
longer be used.
At the end we briefly go into the riddle that there are also ki-

netic non-acoustic VP solutions that cannot be covered by an evo-
lution equation at least not by our method.
We hence have generally

𝜙t + v0𝜙x + c[− ′′(𝜙)𝜙x − 𝜙xxx] = 0 (3)

The selection of several trapping scenarios allows a large
number of very diverse structures, which, however, are mostly
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undisclosed mathematically, since the potential 𝜙(x) cannot be
expressed anymore in mathematically known functions.[11]

4. The Five Most Relevant Evolution Equations

We restrict ourselves to the five most relevant special cases.

4.1. The Solitary Electron Hole

This branch is obtained by assuming k0 = 0, q = 0, Bi = 0, v0 ≈
O(1) and |Be| << 1. Making use of the Taylor expansion of
the Z′

r(x) function: −
1
2
Z′
r(v0∕
√
2) ≈ (1.307 − |v0|)∕1.307 and of

1
2
Z′
r(u0∕
√
2)≈ 𝛿∕𝜃v20 << 1 we get |v0| = 1.307(1 − Be), the slow

electron acoustic branch. This mode is placed on both sides of
the electron Maxwellian at a distance of 1.307 and it holds
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𝜙2

2
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(√
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4
x

)
(4)

In this case c=1.307 and the evolution equation is found to be
given by the Schamel equation[8–10]

𝜙t + 1.307

(
1 − Be

15
8

√
𝜙

𝜓

)
𝜙x − 1.307𝜙xxx = 0 (5)

4.2. The Ion Acoustic Soliton

Utilizing the expansion − 1
2
Z′
r(x) = 1 − 2x2 +⋯ for |x| << 1 and

− 1
2
Z′
r(x) = − 1

2x2
(1 + 3

2x2
+⋯) for |x| >> 1 we get in the solitary

wave limit k0 = 0 and with Be = 0 = Bi and 𝜃 >> 1 a NLD of the
form 1 − v20 − 𝜃

1
u20
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u30
+⋯ .) = q. It is solved in lowest order
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√
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2
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𝛿 + 3

𝜃
)] >> 1 and v0 =

√
𝛿 << 1 where

q = ( 𝛿
2

v40
− 1

3
)𝜓 = 2𝜓∕3 > 0. In this case c =

√
𝛿 and the evolution

equation is found to be

1√
𝛿
𝜙t +
(
1 + 𝜙

)
𝜙x +

1
2
𝜙xxx = 0 (6)

which becomes after the renormalization of the time (
√
𝛿t → t)

the famous KdV equation.[7]

This soliton is therefore characterized by
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For this wave to exist, the pair (Be, Bi) must vanish. The absence
of (Be, Bi) (and of course of Landau damping) is guaranteed by
setting the two quantities Be :=

16
15

1√
𝜋
(1 − 𝛽 − v20)e

−v20∕2
√
𝜓 and

Bi :=
16
15

1√
𝜋
(1 − 𝛼 − u20)e

−u20∕2
√
𝜓 , respectively, equal to zero (for

more details see [2]). With v0 =
√
𝛿 and u0 =

√
𝜃 the trapped re-

gion is therefore distorted by 𝛽 = 1 − 𝛿 ≈ 1. The electron distri-
bution in the trapped region is only slightly distorted from the
Maxwell distribution, while the ion distribution shows a remark-
able dip near the ion sound velocity in the high-energy tail.[12]

Next we consider the simple but nonetheless interesting single
wave case.

4.3. The Monochromatic Ion Acoustic Wave Pattern

In this case k0 = k, q=0 and (Be = 0, Bi = 0). The wave solution
is then given by

−(𝜙) = k2

2
𝜙(𝜓 − 𝜙) x(𝜙) = 1

k

[
𝜋

2
+ sin−1

(
1 − 2𝜙

𝜓

)]
𝜙(x) = 𝜓

2
[1 + cos(kx)] (8)

The coupling constant is in the ion acoustic range again c =
√
𝛿

and the evolution equation degenerates to

1√
𝛿
𝜙t + (1 − k2)𝜙x − 𝜙xxx = 0 (9)

which is identically satisfied by𝜙(x − v0t) of (8) since it holds v0 =√
𝛿.
Note that a nonlinearly correct, monochromatic ion acous-

tic wave structure moves with exactly v0 =
√
𝛿, i.e., it shows no

dispersion. It satisfies the “thumb-teardrop” dispersion relation,
which is strictly nonlinear. The fact that Landau and van Kam-
pen/Case equilibria actually obey the same equation and thus
could be equally well used oversees that they only obey the lin-
ear Vlasov but not the full Vlasov equation.[13,14] To say that this
mode is the ordinary ion acoustic wave structure and therefore
well-known and not new misjudges the nonlinear background.
A monochromatic wave structure is subject to the nonlinear
particle-wave interaction as well, which leads to ergodic particle
trajectories (see also [15]) in the resonance region of phase space,
i.e., near the separatrix, which is manifest in the various trap-
ping scenarios.
As shown in [2], and earlier papers cited therein, this har-

monic mode is marginally stable with respect linear perturba-
tions and hence lacks Landau damping (and Landau growth, re-
spectively, in case of a nonzero linearly supercritical drift velocity
or current).[16]

Note that (Be = 0, Bi = 0) does not mean the absence of trap-
ping but only the absence of these parameters.
Macroscopically the evolution equation is linear, but micro-

scopically, i.e., on the kinetic level, the nonlinearity is in the spirit
of the trapping nonlinearity mandatory. Long-lived structures, as
seen in collision-free plasmas, can only be constructed by suit-
able distortions of fe and fi in the resonance range. This implies
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Figure 1. Solitary electron hole of negative polarity 𝜑(𝜁) as a function of 𝜁

that only fully nonlinear solutions of the Vlasov-Poisson system
are allowed.

4.4. The Solitary Electron Hole of Opposite Polarity

A remarkable structure, almost unknown in the literature, is a
single solitary electron hole in which𝜙(x) is dip rather hump like.
This special structure is obtained in the limit of q = 0 = Bi by set-
ting 2k20 = −Be > 0 (see Section 4.1 of [2]). The pseudo-potential
then becomes

−
(𝜑)
𝜓2

= −
Be

4
𝜑(1 −

√
𝜑)(1 +

√
𝜑 − 2𝜑) (10)

This expression shows that (𝜑) has a double zero at 𝜑 = 1 and a
single zero at𝜑 = 0. It hence represents an inverted solitary wave
structure with𝜑 = 0 at x = 0 and𝜑 = 1 for |x|→ ∞ (see Figure 1
of [2]). Its shape is given by

𝜑(𝜁 ) = 1
4
[3 tanh2(|𝜁 | + 𝜁0) − 1]2 (11)

where 𝜁 := −
√
3Be
8

x and 𝜁0 = tanh−1(1∕
√
3) = 0.65848. In Figure 1

we plot 𝜑(𝜁 ) as a function of 𝜁 .
The phase velocity at the slow electron acoustic speed is v0 =

1.307(1 − 3
2
Be) and the evolution equation is identical to (5) but

with a different sign of Be. Consequently, the electron distribu-
tion function in the resonant trapped particle range is now less
depressed or even hump-like (𝛽 > −0.71).
As an example, we present in Figure 2 the relevant distribu-

tion function of electrons at 𝜙 = 𝜓 in the wave frame for the
consistent set of parameters Be = −1∕4, k20 = 1∕8, v0 = 1.8,𝜓 =
0.1, 𝛽 = 4.35, vD = 0. As before, the remaining trapping param-
eters 𝛾 ,𝜒1,𝜒2, and 𝜁 have been set zero. The underlying distribu-
tion is (1) of [2] and is given by

fe(v) =
1 +

k20𝜓

2√
2𝜋

⎧⎪⎪⎨⎪⎪⎩
e−(
√
v2−2𝜓+v0)2∕2 for v >

√
2𝜓

e−v
2
0∕2[1 − 𝛽( v

2

2
− 𝜓)] for −

√
2𝜓 ≤ v ≤ +

√
2𝜓

e−(−
√
v2−2𝜓+v0)2∕2 for v < −

√
2𝜓

⎫⎪⎪⎬⎪⎪⎭
(12)

Figure 2. The distribution fe(v) at 𝜑 = 1 or |x| = ∞ as a function of v.

We see that a hump-like trapped electron distribution is re-
sponsible for this particular solution. An analogous mode struc-
ture is obtained on the opposite side of the Maxwellian peak,
since the solution is independent of the sign of v0.
As an isolated structure propagating in a quiescent plasma, it

may be less relevant since the perturbation must extend to infin-
ity, which in the case of asymmetric potentials would even force
different asymptotic regions.[17] However, as the experimental
observations[3] suggest, immersed in a more turbulent environ-
ment, it can meet the conditions for its existence. It can also be
the origin of incoherent Langmuir wave trapping and give rise
to a so-called envelope soliton ([18–20]), which is another intri-
cate coherent plasma wave structure involving both particle and
wave trapping.

4.5. The Solitary Ion Hole

This negatively polarized potential structure, which is well lo-
calized, is obtained by assuming k20 =

1
2
(𝜃3∕2Bi − Be),

[21] q = 0,
and v0 << 1. In case of Boltzmann electrons, when Be = 0, 𝛽 = 1,
we get u0 = 1.307(1 + 1

𝜃
−
√
𝜃Bi). Moreover applying the shift
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𝜑 → �̂� := 𝜑 - 1, where −1 ≤ �̂� ≤ 0, we find

−
(�̂�)
𝜓2

=
Bi

2
𝜃3∕2�̂�2(1 −

√
−�̂�),

�̂�(x) = −sech4(
√
Bi𝜃

3∕2

4
x) (13)

which agrees with (8) of [22] or (23) of [23]. The coupling constant
c is in the slow ion acoustic range, c = 1.307

√
𝛿∕𝜃, and the cor-

responding evolution equation reads√
𝜃

𝛿
�̂�t + 1.307

(
 − Bi𝜃

3∕2 15
8

√
−�̂�
)
�̂�x − 1.307�̂�xxx = 0 (14)

which is again of Schamel type. The constant is given by :=
1 + 1

𝜃
+ Bi

√
𝜃(𝜃 − 1). It can easily be checked, e.g., by means of

the pseudo-potential formalism, that the stationary solutions of
(14), �̂�(x − v0t), coincide with �̂� of (13) and the corresponding

phase velocity v0 =
√

𝛿

𝜃
u0 =

√
𝛿

𝜃
1.307(1 + 1

𝜃
−
√
𝜃Bi).

Using this procedure, it is straightforward to construct for
acoustic modes further evolution equations e.g., for ion holes of
positive polarity and/or for solitary holes that are based on theD1
(and/orD2, respectively) trappingmechanism that is responsible
for the well-known Gaussian (or second order Gaussian, respec-
tively) solitary mode (see [2]). For the latter case, as shown in (A4)
of Appendix B of [11], the nonlinear term in the evolution equa-
tion is extended by a ln𝜑 and a ln2 𝜑 term in addition to the

√
𝜑

term (see also (42) of [11]).

5. A First Application: The Negative Potential
Pulses Observed in Space

Last but not least, as a direct application, we offer an explanation
of a series of electrostatic solitary waves found by multispacecraft
observations in the magnetosheath.[3] These structures, propa-
gating close to the thermal electron velocity and below, exhibited
a negative electrostatic potential for which no consistent descrip-
tion could be presented by the authors. Their expectation was that
“a kinetic pseudo-potential method used with a specific distribu-
tion function to solve for a steady-state BGK solution” might be
a viable approach.
Here, we confirm their expectation by the following consider-

ation.
Weuse the negative solitary potential found in Section IV.4, but

include the further trapping scenario Γe of [2]. A negative poten-
tial is then obtained by shifting𝜑 by -1, which implies a replacing
of 𝜑 through 𝜑 := 1 + �̂� by 1+�̂� in (10) so that we get

−
(�̂�)
𝜓2

= −
Be

4
(1 + �̂�)(1 −

√
(1 + �̂�))(1 +

√
(1 + �̂�) − 2(1 + �̂�))

(15)

where −1 ≤ �̂� ≤ 0. Its phase speed, complemented by the Γe ef-
fect, becomes

v0 = 1.307(1 + Γe −
3
2
Be) (16)

(see Section 4.1 of [2], Equation (28), in which 2k20 has to be re-
placed by −Be). We see a high degree of flexibility in the phase
velocity since Γe can take either sign. The evolution equation un-
derlying the structure is again identical to (5), where 1 is to be
replaced by 1+Γe and

√
𝜑 by

√
(1 + �̂�) and where Be takes now

negative values. It can be re-derived by applying our method and
using (15) and (16).
In our last step we prove that the electron density in the cen-

ter of such a structure is increased corresponding to a negativley
charged core.[3]

To show this, we return to our first notation 𝜑, with 0 ≤ 𝜑 ≤ 1,
in which the electron density is expressed by

ne(𝜑) − 1
𝜓

=
k20
2

+

[
Γe −

1
2
Z′
r(
v0√
2
)

]
𝜑 − 5

4
Be𝜑

3∕2 (17)

(see (2) of [24] or (2) in [2]). To get a useful expression for the big
bracket in (17) we use the NDR, which reads

k20 +

[
Γe −

1
2
Z′
r(
v0√
2
)

]
− 𝜃

2
Z′
r(
u0√
2
) = Be (18)

It is solved in the SEAW limit (and immobile ions: 𝜃 = 0) by (16).
By use of 2k20 = −Be we can express the big bracket in this limit
by

[
Γe −

1
2
Z′
r(
v0√
2
)

]
= 3
2
Be (19)

and insert it into (17) to get

ne(𝜑) − 1
𝜓

=
−Be

4
(1 − 6𝜑 + 5𝜑3∕2) (20)

Since −Be > 0 it follows that this expression is positive for 𝜑 =
0 corresponding to a centrally enhanced density peak and zero
for 𝜑 = 1, which stands for the constant density in the solitary
wave limit. A negative solitary potential has of course a positive
curvature at the minimum (𝜑′′ = ne−1

𝜓
> 0) and a zero curvature

at infinity.
This is true as long as electron trapping dominates.
For an even lower v0 in the ion thermal range, Bi is no longer

negligible and one then has to look for a two-parametric (Be, Bi)
solution (see Section 4 of [2]), which in the limit of Be = 0 be-
comes the ordinary solitary ion hole Section 4.5 ).
Unfortunately, the experimental data are too sparse to perform

a more detailed analysis. At least a measurement of the distri-
bution of trapped particles along with an available phase velocity
related to the plasma rather than the spacecraft would be a neces-
sary requirement. Also, to what extent ions contribute to the trap-
ping nonlinearity should be an important issue. Experimenters
are therefore encouraged to take this next step and dig deeper
into the kinetic world to contribute to a better understanding of
pattern formation in collisionless plasmas.
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6. Finite Amplitude Extensions

Often, finite amplitudes are encountered. In this case, the present
theory loses its validity because the underlying Taylor expansions
are no longer possible. Instead, one has to go back to the early
work of Bujarbarua and Schamel,[17,23,25–27] where the appropri-
ate extensions in the case of 𝛽 trapping scenario for electrons and
𝛼 trapping scenario for ions were worked out. Although the for-
malism remains the same, new functions found in these papers
are involved. As seen in (5a),(5b) of [25] both densities, ne and ni,
can be expressed by the functions I(x),(x, y), and T+,−(𝛽, y) that
are the appropriate extensions of our earlier functions. The sub-
script +,− in the trapped particle contribution T+,−(𝛽, y) refers to
whether the first argument 𝛽 is positive or negative, where a posi-
tive 𝛽 indicates a hump-like distribution of the trapped electrons.
By use of hump-like trapped particles, 𝛽 > 0, 𝛼 > 0, the authors
in [27] were able to achieve a new regime for double layers, the
so-called strong double layer, which doesn’t possess a small am-
plitude limit being entirely restricted to finite amplitudes. It is
clear that such an extension to finite amplitudes, supplemented
by the additional trapping scenarios, will increase the variety of
solutions immeasurably and definitely keep up with the experi-
mental variety.
It goes without saying that the spatiotemporal behavior of

structures of finite amplitude cannot be addressed by an evolu-
tion equation, although they also are characterized by a pseudo-
potential (𝜙) and a nonlinear dispersion relation NDR (see
(14),(17) of [25] or (8),(10) of [23]). In the existence diagram of
solitary electron holes of finite amplitude (see Figure 3 of [23] or
Figure 8 of [17]) hence only the region around the line v0 = 1.307
and 𝜓 << 1 can be directly linked with an evolution equation.

7. A Selected Literature Search

Finally, after being asked to update the manuscript to reflect re-
cent publications, we are responding in two ways. We cover arti-
cles dealing with the pseudo-potential method and the Schamel
equation (S equation),[8] and also take a slightly more critical look
at work that has received a lot of attention lately. First of all, we
note that the number of publications on electrostatic structures
has become unmanageably large,making a serious study of them
difficult, if not impossible, at least for us. In our focus, we can see
some trends and relate the work of some other groups to the cur-
rent work.
The effect of an inhomogeneous magnetic field on an electron

hole was investigated in [28] using the pseudo-potential method.
They show that if a hole propagates into the area with a stronger
magnetic field, it grows. If it propagates along a positive plasma
density gradient, it will instead be accelerated[29] and constricted.
Kar et al.[30] reported on a possible excitation of solitary elec-

tron holes in a laboratory plasma, whose propagation speed
agrees with the theoretical one. When using a dielectric cov-
ered metallic (instead of a purely metallic) electrode,[31] solitary
ion holes could also be observed. Mathematical and background
plasma aspects related to the S-equation have been treated in a
number of papers ([32–35]). The pseudo-potentialmethodwas used
to derive the electron hole stucture in a superthermal plasma hav-
ing a 𝜅 distribution with singularities in [36], and a regularized 𝜅

distribution in [37], the latter of which presenting an illustration
of the Schamel distribution.
Most publications, however, focus on the BGKmethod and use

mathematically known profiles 𝜙(x), which limits the solution
space. In particular, the phase velocity v0 remains an often un-
solved or wrongly solved problem.
This brings us to part two and a critical look at Hutchinson’s

work. In his award-winning review article[38] he compares the
pseudo-potential method with the BGK method for single elec-
tron holes (k0 = 0), but does not adequately acknowledge their
differences. In particular, he sees no need for an independent
derivation of a NDR depending on the trapping scenarios, which
must be carried within a BGK analysis in a second step using the
pseudo-potential method. Of course, it would be better to start di-
rectly with the pseudo-potential method. His work therefore fo-
cuses mainly on the structural part of a pattern, essentially ignor-
ing the second, equally important aspect, the treatment of phase
velocity as a function of trapping scenarios. Apart from that, he
keeps making mistakes in his calculations.[2]

The real situation is much more delicate because a macro-
scopic measurement e.g., of 𝜙(x) is insufficient for what is hap-
pening in the microscopic phase space and even a measurement
of the trapped particles does not enforce unambiguousness, as
shown in [39, 40]. Moreover, undisclosed solitary electron holes
𝜙(x), which can no longer be expressedmathematically,[41] as well
as periodic, cnoidal waves inclusively the present (k0 ≠ 0) solitary
wave are also not discussed by him.
His error in [42] is particularly striking, when he actually

claims that the conditions for the existence of ion sound waves
and ion holes, respectively, are not 𝜃 > 3.5, as is found in the lit-
erature, but the opposite 𝜃 < 3.5. That hot electrons, not hot ions,
favor the existence of these waves can be easily seen by look-
ing at the NDR in its simplest form. We neglect for simplicity
in (1) the right hand side and get: k20 −

1
2
Z′
r(

v0√
2
) − 𝜃

2
Z′
r(

u0√
2
) = 0,

which is sometimes called the “on-dispersion case”.[43] For ion
acoustic waves it holds v20 ≈ 𝛿 << 1 and u20 = 𝜃 such that, us-
ing − 1

2
Z′
r(

v0√
2
) ≈ 1, one gets:− 1

2
Z′
r(

u0√
2
) ≈ −1

𝜃
(k20 + 1). This is es-

sentially (14) of his paper and becomes in the long wave limit:
− 1

2
Z′
r(

u0√
2
) ≈ −1

𝜃
, which has to be solved. This quantity has to be

negative and be placed between -0.285, the minimum of the left
hand side, and 0 (see Figure 1 of [2]). It then follows −𝜃−1 >
−0.285 or 𝜃−1 < 0.285 or 𝜃 >

1
0.285

= 3.5. In an equal tempera-
ture plasma 𝜃 = 1 the propagation of these waves is not pos-
sible, which every plasma physicist learns at the beginning of
his training. And of course the same holds for ion holes with
u0 = 1.307.[22]

Moreover, asymmetric solitary holes have already been men-
tioned by [17], and ultra-slow solitary electron holes, u0 << 1,
have already been found in many earlier papers of Schamel et al.
without the requirement of a second hump in the ion distribu-
tion as claimed by him in [44]. By the way, in a plasma with
two ion peaks, the hole can settle even in the high-energy tail
of the second hump because high velocities often lower its en-
ergy and increase its attractive property as a negative energy
hole.[2,24,45–49] Therefore, neither linear wave theories nor BGK-
like nonlinear theories can adequately treat this phenomenon,
which is controlled by the different trapping scenarios and there-
fore the pseudo-potential method is a necessary requisite.

Ann. Phys. (Berlin) 2023, 535, 2300102 2300102 (6 of 8) © 2023 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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To mention also a possibly positive innovation, we note that
Hutchinson in [42] generalized the trapping scenario of (1) in [2]
by another term, namely (−𝜀)1∕2+2∕l, l integer, e.g., l= 2, 4, 8, in
the trapped ion (electron) distribution, where 𝜀 = u2∕2 − 𝜃(𝜓 −
𝜙(x)) (𝜀 = v2∕2 − 𝜙(x)) that correlates with the potential |𝜑(x)| =
sechl(x).
For l = 4 we can see under which circumstances his solution

is obtained by the pseudo-potential method, namely by setting
Γe + Γi =

3
2
𝜃

3
2Bi, where we have included for the most general

case (see [2]) the two Gamma trapping terms on the left hand
side of the NDR (1) and where we have set Be = 0 = q. However,
the fact that there is also an “off-dispersion excitation” withBi > 0
and Γi,e arbitrary but with the same electric potential remains un-
recognized or is at least not commented by him. Such a discus-
sion could potentially shed more light on the limitations of the
BGK method used.
In summary, many of his ideas are still influenced by linear

wave theory, which, however, is misplaced in this area. Even us-
ing a BGK-like theory is not enough. He sees no need for the
pseudo-potential method to fully exploit the spectrum of phase
velocities. No wonder, then, when invalid results such as “ultra-
slow velocities exist only at the center of a double-humped ion
distribution” are obtained.
We also regret that there are many other publications worth

reading that we could not include in our literature research due
to time constraints, and also point out that the earlier but less
precise notation “modified KdV equation”, introduced by HS in
[8], is still used in current publications instead of themore explicit
notation “S equation”.

8. Conclusion

A key issue remains finally to be discussed. Are there also evolu-
tionary equations for the countless number of small amplitude
equilibrium structures apart from the acoustic limit? A simple
example is the harmonic (single)mode that satisfies the “Thumb-
Teardrop” dispersion relation for k = O(1) rather than for |k| <<
1. An answer to this question is left to future research. How-
ever, there are good reasons to be suspicious of the existence
and validity of such evolutionary equations. One reason is that
the macroscopic and even the kinetic-microscopic description is
overwhelmed to deal with such structural kinetic events, since
correlations in the separatrix region of phase space become im-
portant to control and stabilize the trapping dynamics.[2]

In summary, we have studied dynamical evolution equa-
tions in Vlasov-Poisson systems that are centered around equi-
libria or, in the language of nonlinear dynamics, around fixed
points. This new, rather quiescent plasma state is nonlinear and
either appears after the passage of a more violent linear evolution
(e.g., linear two-stream instability or nonlinear Landau damping)
or is directly initiated by local nuclei that are ubiquitous in driven,
actual plasmas.[24,47–49] In this state, particle trapping and coher-
ence have entered during phase locking into a mutually depen-
dent relationship that controls a dynamics. It lets you completely
forget the linear world and comes up with an unlimited wealth
of structures and phase velocities. Under certain circumstances -
more precisely under special trapping conditions - this can lead to
wave phenomena that are macroscopically harmonic and linear,
but nevertheless microscopically, i.e., intrinsically nonlinear.
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