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Zusammenfassung 

Buenos Aires, die Hauptstadt von Argentinien, ist umgeben von einem landwirt-

schaftlichen Grüngürtel mit fruchtbaren Mollisolen, welcher in erster Linie den gesamten 

Bedarf speziell an Gemüse für die städtische Bevölkerung bereitstellt. Die schnell wachsende 

Bevölkerung dieser Megastadt verursacht einerseits eine Verringerung der landwirt-

schaftlich nutzbaren Fläche und andererseits eine höhere Nachfrage an Nahrungsmitteln. 

Um genügend Nahrungsmittel zu produzieren, sind Intensivierung der Landwirtschaft und 

Erhaltung nachhaltiger Bodenfruchtbarkeit von essentieller Bedeutung. Dennoch ist die 

Bevölkerung durch eine gesteigerte Anwendung von Pestiziden und schwermetallhaltigen 

Düngern, Eutrophierung wegen hoher Dungausbringung und möglicher Bodendegradation 

zunehmend über die negativen Aspekte dieser landwirtschaftlichen Intensivierung wie z. B. 

Umweltverschmutzung besorgt, weswegen organische Bewirtschaftungsmaßnahmen mehr 

und mehr an Aufmerksamkeit gewinnen. Die innere Zone des Grüngürtels wird vielfältig 

landwirtschaftlich genutzt. Neben Brachen und Weiden werden konventionelle und 

organische Bewirtschaftung auf Äckern und unter Gewächshäusern betrieben, wobei noch 

anthropogen unbeeinflusste Flächen existieren, deren Böden eine Referenz des natürlichen 

Bodenzustandes darstellen. Verschiedene Landnutzungssysteme und unterschiedliche land-

wirtschaftliche Praxis, die potenziell die Bodenökologie und –umgebung verändern können, 

haben starken Einfluss auf mikrobielle Gemeinschaften. Bodenmikroorganismen sind nicht 

nur äußerst wichtig für die Fruchtbarkeit und Nachhaltigkeit, sie spielen außerdem eine 

wesentliche Rolle in globalen Nährstoffkreisläufen. 

Ziele dieser Dissertation waren, zu untersuchen, ob unterschiedliche landwirtschaftliche 

Praxis mit variierendem Eintrag von Pestiziden und Schwermetallen Bodenverschmutzung 

verursachen und ob die verschiedenen Landnutzungssysteme zu einer Veränderung der 

bodenmikrobiologischen Struktur und Funktion führen. Außerdem wurde, geprüft ob eine 

intensive konventionelle Bewirtschaftung zu einer Verschlechterung der Bodenqualität führt 

und ob deren Ersatz durch organische Bewirtschaftung diese Situation verbessern kann. Es 

wurde ebenso untersucht, ob eine Umwandlung der Landnutzung, ausgehend von einer 

Brache hin zu typischen Landnutzungssystemen des Untersuchungsgebietes, die boden-

mikrobiologische Struktur und Funktion beeinflusst, wobei spezielle Schwerpunkte auf 

Pestizidapplikation als auch auf konventionelle sowie organische Bewirtschaftungsweisen 
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gelegt wurden. Daher wurden typische Landnutzungssysteme untersucht sowie ein 

Feldexperiment über die Dauer einer kompletten Vegetationsperiode von neun Wochen 

durchgeführt, beginnend mit einer Brache, welche sowohl gepflügt wie auch ungepflügt die 

natürliche Variabilität zeigte. In diesem Experiment wurden konventionelle Behandlungen 

unter Verwendung mineralischer Dünger sowie durch das Insektizid Endosulfan und das 

Fungizid Chlorothalonil allein wie auch in Kombination simuliert, während organische 

Behandlungen unter Verwendung von Humus sowie durch das biologische Insektizid 

Bacillus thuringiensis und das Fungizid Kupferoxychlorid ebenfalls allein und in 

Kombination nachempfunden wurden. 

In Oberböden der verschiedenen Landnutzungssysteme konnten außer den Insektiziden 

Cypermethrin, Deltamethrin, Malathion und Triazofos, welche unter der Bestimmungs-

grenze (0,1 µg kg-1) lagen, die Insektizide Carbofuran, Chlorpyrifos, Dimethoat, Endosulfan 

und Permethrin, das Fungizid Chlorothalonil und das Herbizid Trifluralin zwischen 0,2 und 

34,2 µg kg-1 ausschließlich in konventionell bewirtschafteten Böden von Äckern, unter 

Gewächshäusern und in einer Brache, die vorher auch konventionell bewirtschaftet wurde, 

quantifiziert werden. In den Böden der übrigen Landnutzungssysteme lagen alle dieser 

Pestizide unter der Bestimmungsgrenze. Die mittleren Schwermetallgehalte (Fe 17,1 –  

18,9 und Mn 0,60 – 0,79 g kg-1, Cu 16,8 – 19,2, Ni 6,8 – 7,4, Pb 10,6 – 13,2 und Zn 32,5 – 39,8 

mg kg-1) unterschieden sich nicht signifikant innerhalb der Landnutzungssysteme. Cadmium 

wurde nur in einer Brache detektiert (0,9 mg kg-1). Demzufolge wurde die Kontaminations-

gefahr ausgehend von Pestiziden und Schwermetallen als gering bewertet. Folglich wird 

kein alarmierendes Risikopotential für menschliche Gesundheit, Boden– und Wasserqualität, 

Pflanzenwachstum und Tierwelt erwartet. 

Für die Charakterisierung der bodenmikrobiologischen Struktur und Funktion in Böden 

der verschiedenen Landnutzungssysteme wurden zwanzig Phospholipidfettsäuren (PLFS) 

bzw. folgende Parameter analysiert: Enzymaktivitäten (saure Phosphatase, Arylsulfatase, 

Cellulase, Dehydrogenase und Urease), basale und substrat-induzierte Respiration, 

bodenmikrobielle Biomasse, metabolischer Quotient, netto-Stickstoff-Mineralisation, netto-

Nitrifikation und potentielle Denitrifikation. Je eine Hauptkomponentenanalyse (HKA) 

wurde für die funktionellen und strukturellen Parameter durchgeführt, um die Datenmenge 

zu reduzieren und um korrelierende Parameter zu vereinigen. Für die funktionellen 
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Parameter wurden vier Hauptkomponenten (mikrobielle Kapazität, Mineralisationsaktivität, 

Stickstofftransformationspotential und metabolische Aktivität) extrahiert, während für die 

PLFS sechs mikrobielle taxonomische Gruppen unterschieden werden konnten. 

Mit Hilfe einer anschließenden Diskriminanzanalyse, berechnet durch die Faktorwerte 

der HKA für die Funktionsparameter, wurden sechs unabhängige Landnutzungsgruppen 

differenziert. Fast alle Böden der konventionell bewirtschafteten Gewächshäuser sowie der 

organisch bewirtschafteten Gewächshäuser und Äcker, Weiden und des Referenzstandortes 

konnten den erwarteten Landnutzungsgruppen zugeordnet werden. Dabei war ein Wechsel 

zwischen Innen- und Außenbewirtschaftung im organischen Landbau erkennbar. Böden 

konventionell bewirtschafteter Äcker und Brachen wurden in einer Gruppe vereinigt, was 

von einer hierarchischen Klassenanalyse bestätigt wurde und stärkste Ähnlichkeit zwischen 

diesen beiden Landnutzungssystemen zeigte. Außerdem demonstrierte die Klassenanalyse 

Ähnlichkeiten zwischen konventionellen und organischen Freiland- sowie konventionellen 

und organischen Gewächshausbewirtschaftungen. Die Referenz- und Weideböden bildeten 

zwei weitere eigenständige Klassen im Vergleich zu den verbleibenden Landnutzungs-

systemen, da sie deutliche Unterschiede zu jenen der Anbauflächen aufwiesen. Jegliche 

Landnutzungsänderung führte zu einer starken Reduktion der basalen Respiration und des 

metabolischen Quotienten verglichen mit den Referenzböden, während die Weideböden 

eine deutliche Steigerung in ihrer Biomasse und ihren Enzymaktivitäten erkennen ließen. Es 

konnten jedoch keine signifikanten Unterschiede zwischen den Bewirtschaftungsweisen und 

der Innen- und Außenbewirtschaftung gefunden werden. 

Im Zuge landwirtschaftlicher Nutzung zeigten alle taxonomischen Mikroorganismen-

gruppen, die durch die PLFS-Analyse erhalten wurden, eine Biomassereduktion relativ zu 

den Referenzböden. Die niedrigste Biomassereduktion wurde in Bracheböden aufgrund des 

Eintrags organischen Materials durch Exkremente des Tierbestands detektiert, während 

Ackerböden höhere PLFS-Gehalte aufwiesen als jene unter Gewächshäusern. Verglichen mit 

den konventionell bewirtschafteten Böden wurden in jenen organischer Bewirtschaftung 

höhere Gehalte Gram-negativer Bakterien und Pilze ermittelt. Weitere Effekte hinsichtlich 

der Bewirtschaftungsweisen konnten nicht gefunden werden. Im Allgemeinen zeigten 

Bracheböden die niedrigsten Gehalte der taxonomischen Gruppen, was darauf hindeutete, 

dass Bodenmikroben lange brauchen, um sich von den Folgen landwirtschaftlicher Nutzung 
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zu erholen. Die relativen Anteile der mikrobiellen Gruppen in Böden der anderen Land-

nutzungssysteme resultierten in deutlich niedrigeren Werten für Actinomyceten, Gram-

positive, anaerobe und speziell Gram-positive, aerobe Bakterien im Vergleich zu den 

anthropogen unbeeinflussten Böden. Nur in Weideböden hatten die Actinomyceten 

niedrigere Werte als die der Referenz. Mit Ausnahme geringerer Anteile von Protozoa in 

Böden konventionell bewirtschafteter Gewächshäuser und Brachen verglichen mit den 

Referenzböden, wurden in Böden aller Landnutzungssysteme für Protozoa, Pilze und Gram-

negative Bakterien höhere Anteile gefunden, obwohl deren absolute PLFS-Gehalte reduziert 

wurden. Gram-negative Bakterien hatten sogar signifikant höhere Werte in Acker- und 

Bracheböden im Vergleich zu jenen der restlichen Landnutzungssysteme. Unterschiede 

zwischen den Bewirtschaftungsweisen sowie zwischen Freiland- und Gewächshaus-

bewirtschaftung wurden nicht gefunden. Des weiteren war eine Differenzierung der 

Landnutzungssysteme durch eine Diskriminanzanalyse nicht möglich, während eine 

hierarchische Klassenanalyse die Ergebnisse der oben durchgeführten im Wesentlichen 

bestätigte. 

Für die Auswertung des Feldexperiments wurden die selben Parameter wie oben 

beschrieben analysiert, um für die Untersuchung der verschiedenen Landnutzungssysteme 

die bodenmikrobiologische Struktur und Funktion bewerten zu können. Eine HKA wurde 

ebenfalls sowohl für die funktionellen als auch für die strukturellen Parameter durchgeführt, 

wobei fast die gleichen vier Hauptkomponenten, mikrobielle Kapazität, Mineralisations-

aktivität, metabolische Aktivität und Stickstofftransformationspotential, für die 

funktionellen Parameter ermittelt wurden. Eine sinnvolle Klassifikation war jedoch für die 

analysierten PLFS wegen eines zu homogenen Datensatzes, gleicher Boden- und Klima-

bedingungen sowie erst kürzlich veränderter Bodenbehandlung nicht möglich. 

Erneut wurde eine anschließende Diskriminanzanalyse, berechnet mit den Faktorwerten 

der HKA, für die funktionellen Parameter durchgeführt, welche deutlich zwischen Brache, 

konventionell und organisch bewirtschafteten sowie unbehandelten Parzellen unterscheiden 

konnte. Eine Unterscheidung zwischen Böden der selben Bewirtschaftungsweise hinsichtlich 

unterschiedlicher Pestizidapplikationen war jedoch ebenso wenig möglich wie hinsichtlich 

der Applikationsmenge. Dennoch kann gefolgert werden, dass eine Änderung der Land-

nutzung die Bodenfunktionalität beeinflusst und dass die Bestimmung dieser Parameter ein 
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potentielles Werkzeug zur Betrachtung von Bodengesundheit und der Umwandlung von 

Brachen in sowohl konventionell als auch organisch bewirtschaftete Äcker ist. 

Die PLFS 14:0, 17:0 und 10Me17:0 sowie die mikrobiologisch taxonomische Gruppe der 

Protozoa, die durch die PLFS 20:4ω6 repräsentiert wird, reagierten sowohl in relativen als 

auch in absoluten Gehalten am sensibelsten auf die verschiedenen Düngergaben. Nach 

starken Schwankungen zeigte der PLFS-Summengehalt, der die gesamte lebende Biomasse 

repräsentiert, am Ende des Experiments geringere Werte in organischen, verglichen mit 

konventionellen Behandlungseinheiten. Wie bei der bodenmikrobiologischen Funktion 

wurden innerhalb der Struktur keine Effekte weder durch die Art noch durch die Menge der 

Pestizide verursacht. Außerdem war die Zugabe des Gram-positiven Bacillus thuringiensis 

durch die PLFS-Analyse nicht detektierbar. Allerdings war es möglich, mit Hilfe einer 

Diskriminanzanalyse, die mit den Faktorwerten aus der HKA der PLFS berechnet wurde, 

deutlich zwischen Böden der Brache-, organisch und konventionell bewirtschafteten sowie 

der unbehandelten Parzellen zu differenzieren, wobei die Böden der letzteren von denen der 

konventionell bewirtschafteten erst nach sechs Wochen nach Düngerzugabe voneinander zu 

unterscheiden waren. 

Schließlich wurden in beiden Teilen dieser Dissertation signifikante Korrelationen 

zwischen den absoluten PLFS-Gehalten der einzelnen mikrobiellen taxonomischen Gruppen 

und den bodenmikrobiologischen Funktionsparametern gefunden, was auf enge Zusammen-

hänge zwischen bodenmikrobiologischer Struktur und Funktion hindeutet. Daher besitzt die 

Zusammensetzung der mikrobiellen Gesellschaft alleine noch keinen Indikatorwert und 

muss mit den Funktionsparametern in Verbindung gesetzt werden. Einzelne untersuchte 

Parameter konnten weder signifikante Unterschiede zwischen Böden verschiedener Land-

nutzungssysteme noch innerhalb des Feldexperiments aufdecken. Daher kann gefolgert 

werden, dass diese schluffigen und tonigen Mollisole der inneren Zone des Grüngürtels um 

Buenos Aires, die eine potentiell geringe Bioverfügbarkeit von Xenobiotika aufweisen, nicht 

sensibel auf eine intensive landwirtschaftliche Nutzung reagieren. Obwohl sich eine kurz- 

und mittelfristige Bodendegradation als Folge dieser Nutzung nicht zeigte, wie aus dem 

Feldexperiment und der Untersuchung der typischen Landnutzungssysteme hervorging, 

wird dringend geraten, die Langzeiteffekte weiter zu untersuchen. 
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Resumen 

En Buenos Aires, la cápital de Argentina, la población en rápido crecimiento causa, por un 

lado, una disminución del sector agrario y, por otro, un aumento en el consumo de 

productos alimenticios. Esta metrópolis se encuentra rodeada por un cinturón verde agrícola, 

contituido por Mollisoles fertiles, el cual abastece por completo la necesidad, especialmente 

de verduras, de la población urbana. Para que la poducción alimenticia de abasto es de suma 

importancia la explotación agrícola y el mantenimiento de la sustentabilidad del suelo. Sin 

embargo, el aumento en el uso de pesticidas y abonos con metales pesados, la eutrofización a 

causa de la alta aplicación  de fertilizantes, y una posible degradación de los suelos, a llevado 

a que la población se encuentre cada vez más preocupada por los aspectos negativos de esta 

explotación agrícola, tales como la contaminación. Por consiguiente estan ganando cada vez 

más resonacia los cultivos orgánicos. En la zona interna del cinturón verde se utilizan 

diferentes sistemas agrarios. Junto a barbechos y pastizales se practican sistemas de cultivo 

convencionales y orgánicos tanto en los campos de cultivo como bajo los invernaderos, y no 

dejan de existir áreas sin ningúna influencia antrópogenica, cuyos suelos se utilizarón como 

referencia para representar el estado natural de los suelos. Las comunidades microbianas se 

ven influenciadas fuertemente por quellos sistemas de uso del suelo y las diferentes practicas 

agrarias con potencial de modificar la ecológia del suelo y su entorno. Los microorganismos 

del suelo no sólo son importantes para la fertilidad y sustentabilidad de este, sino que 

también juegan un papel muy importante en los ciclos globales alimeticios. 

Las metas de esta disertación eran, investigar si las diferentes practicas agrarias con 

respectivas variaciones en el uso de pesticidas y metales pesados causan la contaminación 

del suelo, y si los diferentes sistemas de cultivo llevan hacia una modificación de las 

estructuras sociales microbianas del suelo y sus funciones. Además se investigo si un manejo 

convencional tiene como consecuensia una disminución de la calidad del suelo, y si es 

posible mejorar esta situación suplantandolo por un manejo orgánico. También se examino si 

un cambio en el uso del suelo partiendo de un barbecho hasta llegar a un sistema típico de 

cultivo utilizado en el área a examina modifica la estrutura social microbiana y sus 

funciones. Al hacer esto se puso mayor enfasis en aplicaciones de pesticidas y en sistemas de 

cultivo convencionales como orgánicos. Para ello se llevo a cabo una investigación sobre los 

sistemas típicos de cultivo y se conceptuo un experimento de campo con la duración de un 
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periodo de vegetación completo, es decir nueve semanas. Se empezo por un barbecho, la cual 

muestra tanto estando arada como no la variabilidad natural. En este experimento se 

simularon aplicaciones convencionales, tanto individuales como en combinación, de 

fertilizantes minerales, del insecticida endosulfan y del fungicida chlorothanil. Para la parte 

orgánica se simularon igualmente, por separado y en combinación, aplicaciones de humus, el 

insecticida biológico Bacillus thuringiensis y el fungicida oxicloruro de cobre. 

En el subsuelo de los diferentes sistemas de cultivo fue posible cuantificar a parte de los 

insecticidas cypermethrin, deltamethrin, mathion y triazofos, que se encontraron bajo el 

valor minimo de detección, únicamente en los suelos de los campos cultivados conven-

cionalmente, en los situados bajo invernaderos y en los suelos de barbecho los siguientes 

insecticidas: carbonfuran, chlorpyrifos, dimethoat, endosulfan y permethrin, el fungicida 

chlorothalonil y el herbicida trifluralin, todos se encontraron representados entre 0,2 y 34,2 

µg kg-1. En los demás suelos procedentes de los otros sistemas de cultivo se encontro que 

estos pesticidas están bajo el valor minimo de detección. Dentro de los diferentes sistemas de 

cultivo, nose encontro ningúna diferencia significante entre los valores promedio de metales 

pesados (Fe 17,1 – 18,9 y Mn 0,60 – 0,79 g kg-1, Cu 16,8 – 19,2, Ni 6,8 – 7,4, Pb 10,6 – 13,2 y  

Zn 32,5 – 39,8 mg kg-1). En el barbecho se detecto cadmio (0,9 mg kg-1). Consecutivamente se 

catálogo como leve el peligro de contaminación a partir del uso de pesticidas y metales 

pesados. Por lo tanto, no se cuenta con ningún riesgo potencialmente alarmante para la salud 

humana, la calidad del suelo y agua, el crecimiento de la vegetación y el mundo animal.  

Para la caracterización de la estructura social microbiana del suelo y sus funciones dentro 

de los diferentes sistemas de cultivo se analisaron veinte fosfolípidos, ácidos grasos, (PLAG) 

y los siguientes parámetros: actividad enzimática, (fosfatase ácida, arilsulfatasa, celulasa, 

dehidrogenasa y ureasa), respiración de basales e inducia por sustrato, biomasa microbiana, 

cociente metabólico, mineralización de nitrógeno neto, nitrificación neto y denitrificación 

potencial. Con el fin de reducir la cuantidad de datos y unir parámetros condicionados se 

realizo por parámetro funcional y estructural un análisis del componente principale (ACP). 

Para los parámetros funcionales se extrajeron cuatro componentes principales (capacidad 

microbiana, efectividad de mineralización, potencial de transformación de nitrógeno y 

actividad metabólica) mientras que para los PLAG se pudieron identificar seis grupos 

taxonómicos microbianos. 
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Con la ayuda de un análisis discriminante, calculado a partir de los valores de factor de la 

ACP de los parámetros funcionales, se identificaron seis grupos independientes de uso de 

suelo. Casi todos los suelos de los invernaderos cultivados convencionalmente como también 

de los cultivados orgánicamente y de los campos, pastizales y puntos de referencia se 

ordenaron dentro del grupo de uso de suelo esperado. Al hacer esto, se noto una diferencia 

entre el cultivo orgánico a cielo abierto y el cultivo orgánico bajo invernadero. Suelos 

provenientes de cultivos conventionales y barbechos se ordenaron dentro de un mismo 

grupo, lo cual se confirmo por medio de un análisis jerárquico de clases y mostro un mayor 

parecido entre estos dos sistemas de cultivo. Además demostro el análisis de clases 

similitudes tanto entre cultivos a cielo abiero convencionales y orgánicos como entre cultivos 

de invernadero convencionales y orgánicos. Los suelos pertenecientes a pastizales y áreas de 

referencia mostraron fuertes discordancias con las otras áreas de cultivo, por lo tanto, se les 

ordeno respectivamente dentro de dos grupos independientes. Mientras que en los suelos de 

pastizales se identifico un aumento significativo en biomasa y actividad enzimática, lleva 

cualquier cambio en el uso del suelo a una disminución de la respiración de basales y del 

cociente metabólico en comparación con los suelos del área de referencia. Sin embargo, no se 

pudo detectar diferencias significativas entre las diferentes formas de cultivo, el cultivo a 

cielo abierto e invernadero. 

Todos los grupos taxonómicos microbianos identificados a través del análisis de los PLAG 

mostraron una disminución de biomasa en comparación a los suelos de referencia a 

consecuencia del uso agrario. En los suelos provenientes de barbecho se encontro que la 

disminución de biomasa era menos significante, debido al ingreso de material orgánico en 

forma de excremento animal. Los suelos del campo mostraron un contenido más elevado de 

PLAG en comparación con los suelos situados bajo invernaderos. Además al comparar los 

suelos provenientes de cultivos convencionales con aquellos provenientes de cultivos 

orgánicos se encontro que en los orgánicos habia una mayor cantidad de bacterias Gram 

negativas y hongos. A parte no fue posible detectar ningún otro efecto dependiente de la 

forma de cultivo. Por lo general se identificaron en los suelos de barbecho el menor 

contenido en grupos taxonómicos lo cual muestra que los microorganismos del suelo 

necesitan de un largo periodo para recuperarse del uso agrícola. Al comparar los suelos del 

área sin influencia antrópogena con los suelos de cultivo se encontro que el porcentaje de los 
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siguientes grupos microbiales era mucho más bajo: actinomycetes, bacterias anaerobias 

Gram positivas y especialmente bacterias Gram positivas aerobias, bacterias anaerobias. Las 

actinomycetes presentaron solamente en los suelos de pastizales valores menores a los del 

suelo de referencia. Al comparar los suelos de todos los sistemas de cultivo con los suelos de 

referencia se encontro en todos los suelos un porcentaje más alto, a pesar de que su 

contenido total de PLAG se habia reducido, de protozoa, hongos y bacterias Gram negativas, 

a excepción de los suelos provenientes de cultivo convencional de invernadero y barbecho 

donde el porcentaje encontrado de protozoa fue menor al de los suelos de referencia. En 

suelos del campo y barbecho se encontro incluso una cantidad significantemente mayor de 

bacterias Gram negativas en comparación con aquellos suelos de otros sistemas de cultivo. 

No se detectaron diferencias entre los sistemas de cultivo o entre cultivo a campo abierto e 

invernadero. Un análisis jerárquico de clases reforzo los resultados esenciales obtenidos, 

mientras que a través de un análisis discriminante no fue posible catalogar los diferentes 

sistemas de uso del suelo. 

Con el fin de poder evaluar en la investigación de los diferentes sistemas de uso del suelo 

las estructuras sociales microbianas del suelo y sus funciones, se análisaron los mismo 

parámetros descritos previamente en la valoración del experimento de campo. Tanto para los 

parámetros funcionales como estructurales se llevo a cabo una ACP. Para los parámetros 

estructurales se determinaron practicamente los mismos cuatro componentes principales 

capacidad microbiana, efectividad de mineralización, potencial de transformación de 

nitrógeno y actividad metabólica, pero no fue posible realizar una mejor clacificación para 

los PLAG análisados ya que la base de datos era demasiado homógena, las condiciones de 

clima y clima de suelo eran iguales y además se habia realizado hace poco un cambio en el 

tratamiento del suelo.  

De nuevo se calculo un análisis discriminante para los parámetros funcionales, a partir de 

los valores factor de la ACP los cuales pudieron marcar una diferencia clara entre barbecho, 

cultivo convencional y orgánico, y parcelas sin tratamiento alguno. Sin embargo no fue 

posible identificar una diferencia entre los suelos pertenecientes al mismo método de cultivo 

y diferencias en la aplicación de pesticidas. Tampoco fue posible con relación a la cantidad 

aplicada de pesticida. A pesar de todo, es factible concluir que un cambio en el uso del suelo 

influencia la funcionabilidad del suelo y que determinar estos parámetros podría ser una 
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heramienta para evaluar la salud del suelo y la transformación de barbechos en campos 

cultivados convencionalmente o orgánicamente.  

Los PLAG 14:0, 17:0 y 10Me17:0 al igual que los grupos taxonómicos microbianos de los  

protozoa, los cuales se encuentran representados por los PLAG 20:4ω6, reaccionan, tanto en 

porcentaje relativo como total, con la mayor sensibilidad hacia las diferentes palicaciones de 

fertilizantes. Al concluir un exprimento de aplicaciones fuertes se da una reducción mayor en 

el valor total de la suma de PLAG, la cual representa toda la biomasa, bajo las aplicaciones 

del tramiento orgánico a que bajo las aplicacionese del tratamiento convencional. Al igual 

que en las funciónes sociales microbianas del suelo, no se encontro ningúna reacción dentro 

de la estructura a las aplicaciones de pesticidas de ningúna clase, ni tampoco bajo ningúa 

cantidad. Además no fue posible detectar la aplicación de la Gram positiva Bacillus 

thuringiensis a través del anális de los PLAG. Sin embargo con la ayuda del análisis 

discriminante calculado a través de los valores factor de la ACP de los PLAG, fue posible 

marcar una diferencia clara entre los suelos del barbecho, cultivos orgánicos y 

convencionales y de las parcelas sin tratamiento alguno. Aunque no fue hasta despuése de la 

sexta semana de aplicación de fertilizantes que se identifico una diferencia entre los suelos de 

parcelas sin tratamiento y los suelos de parcelas del cultivos convencionales. 

Finalmente se encontraron, en las dos partes de esta disertación, corelaciones significantes 

entre los contenidos absolutos de PLAG de cada grupo taxonómico microbiano y los 

parámetros funcionales microbianos del suelo, lo cual indica una estrecha relación entre 

estructuras sociales microbianas del suelo y sus funciones. Por lo tanto, la compoción social 

microbiana por si sola no conforma ningún valor indicativo y tiene que relacionarse con los 

parámetros funcionales. A través de la evaluación de parámetros individuales no fue posible 

determinar ni diferencias significantes entre suelos pertenecientes a diferentes sitemas de 

cultivo ni dentro del experimento de campo. Consecuentemente se puede concluir que estos 

Mollisoles arcillosos y limosos situados en la zona interna del cinturón verde que rodea a 

Buenos Aires, que muestran una disponibilidad biológica potencial reducida de xenobiotica, 

no reaccionan sensibles hacia el uso intensivo agrario. A pesar, de que nose encontro una 

degradación del suelo, ni a corto o mediano plazo a causa de este uso, como se mostro en el 

experimento de campo y en las investigaciones de los diferentes sistemas tipicos de cultivo, 

se recomienda fuertemente seguir estudiando los efectos que podrían darse a largo plazo. 
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Summary 

In Buenos Aires, capital of Argentina, the fast growing population is causing a decrease in 

the agriculturally available area on the one hand and also a higher demand for food on the 

other hand. This mega-city is surrounded by an agricultural green belt with fertile Mollisols 

primarily providing the entire supply for the urban population especially with vegetables. In 

order to produce enough food, intensification of agriculture and maintenance of sustainable 

soil fertility are of essential importance. However, meanwhile the population is increasingly 

concerned about the negative aspects of this agricultural intensification being environmental 

contamination because of an enhanced application of pesticides and heavy metal containing 

fertilisers, eutrophication due to a higher manure addition and probably soil degradation in 

the course of which organic management is getting increasing attention. The inner zone of 

the green belt is agriculturally used in manifold ways. Besides fallows and pastures, 

conventional and organic cultivation are conducted on open fields and under greenhouses, 

while also anthropogenically unaffected areas with soils representing a reference for natural 

soil condition still exist. Various land use systems and diverse agricultural practices having 

the potential to change soil ecology and environment strongly influence soil microbial 

communities. Soil microorganisms are not only very important for fertility and sustainability 

of agricultural soils, they also play an essential role in global element cycles. 

The objectives of this dissertation were to examine whether diverse agricultural practices 

with varying inputs of pesticides and heavy metals cause soil pollution and whether the 

different land use systems lead to an alteration of soil microbial community structure and 

function. Additionally, it was investigated whether conventional cultivation leads to a soil 

quality deterioration and if a replacement by organic cultivation can improve this situation. 

It was also tested whether land use conversion from fallow to typical land use systems of the 

investigation area influences soil microbial community structure and function with special 

emphasis on pesticide application and conventional as well as organic management. For this 

purpose, a monitoring on existing typical land use systems was conducted as well as a field 

experiment during a complete vegetation period of nine weeks was designed starting from a 

fallow area being tilled and exhibiting the natural variability besides non-tilled fallow plots. 

In this experiment conventional treatments were simulated using mineral fertilisers as well 

as both the insecticide endosulfan and the fungicide chlorothalonil alone or in combination, 
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while organic treatments were simulated using humus as well as both the biological 

insecticide Bacillus thuringiensis and the fungicide copper oxychloride also alone or in 

combination. 

In top soils of the different land use systems except for the insecticides cypermethrin, 

deltamethrin, malathion and triazofos, which were below the detection limit (0.1 µg kg-1), the 

insecticides carbofuran, chlorpyrifos, dimethoate, endosulfan and permethrin, the fungicide 

chlorothalonil and the herbicide trifluralin could be quantified between 0.2 and 34.2 µg kg-1 

exclusively in conventionally managed soils of agricultural fields and greenhouses and in 

one fallow soil, which was previously also conventionally cultivated. In the soils of the 

remaining land use systems all of these pesticides were below the detection limit. The mean 

heavy metal contents (Fe 17.1 – 18.9 and Mn 0.60 – 0.79 g kg-1; Cu 16.8 – 19.2, Ni 6.8 – 7.4,  

Pb 10.6 – 13.2 and Zn 32.5 – 39.8 mg kg-1) did not differ significantly (P < 0.05) between the 

diverse land use systems. Cadmium was only detectable in one fallow (0.9 mg kg-1). Thus, 

the contamination hazard due to pesticides and heavy metals in the green belt around 

Buenos Aires can be regarded as low. Consequently, no alarming risk potential for human 

health, soil and water quality, plant growth and wildlife from agriculture is expected. 

For the characterisation of the soil microbial community structure and function in soils of 

the different land use systems twenty phospholipid fatty acids (PLFA) and the following 

parameters were examined, respectively: enzyme activities (acid phosphatase, arylsulfatase, 

cellulase, dehydrogenase and urease), basal and substrate-induced respiration, soil microbial 

biomass, metabolic quotient, net nitrogen mineralisation, net nitrification and potential 

denitrification. In order to reduce data and to combine correlating parameters two principal 

component analyses (PCA) were carried out, one for the structural and one for the functional 

parameters. For the first ones four principal components (microbial capacity, mineralisation 

activity, nitrogen transformation potential and metabolic activity) were extracted, while for 

the PLFA six microbial taxonomic groups (Gram positive, anaerobic and aerobic as well as 

Gram negative bacteria, actinomycetes, protozoa and fungi) could be differentiated. 

With the aid of a subsequent discriminant analysis of the factor scores calculated by the 

PCA of the functional parameters six independent land use groups could be differentiated. 

Nearly all soils of conventionally managed greenhouses, organically managed greenhouses 

and agricultural fields, pastures and reference sites could be allocated to the expected land 
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use groups. A shift between indoor and outdoor cultivation in organic management systems 

was obvious. Soils of conventionally managed agricultural fields and fallows were combined 

into one group being confirmed by a hierarchical cluster analysis and exhibiting the highest 

similarities between the soils of these two land use systems. In addition, the cluster analysis 

demonstrated similarities between conventional and organic outdoor as well as between 

conventional and organic indoor cultivations. The reference and pasture soils formed two 

more own clusters in comparison to the remaining land use systems because they exhibited 

great differences compared to those of the agricultural managements. Any land use change 

led to a heavy reduction in basal respiration and metabolic quotient when compared to the 

reference soils, while the pasture soils were distinctly enhanced in microbial biomass and 

enzyme activities. However, no significant differences in soil microbial community functions 

were detected between the management systems and in- and outdoor cultivation. 

In the course of agricultural land use all taxonomic groups of microorganisms acquired by 

the PLFA analysis showed a reduction in biomass relative to the reference soils. The lowest 

microbial biomass reduction was detected in pasture soils because of organic matter input 

through excrements of animal stocks, while soils of agricultural fields exhibited higher PLFA 

contents than those under greenhouse cultivation. Higher contents of Gram negative bacteria 

and fungi were determined in organically managed soils when compared to the conventional 

ones. Further effects of the management systems under study could not be identified. Fallow 

soils generally had the lowest contents of the taxonomic groups indicating that soil microbes 

need a long time to recover from agricultural land use. Compared to the anthropogenically 

unaffected soil, the relative abundances of microbial groups in soils of the other land use 

systems resulted in distinctly lower percentages for actinomycetes, Gram positive, anaerobic 

and particularly Gram positive, aerobic bacteria. Only in pasture soils the actinomycetes had 

higher values than the reference soil. Higher proportions were found for protozoa, fungi and 

Gram negative bacteria in soils of all land use systems – although they decreased in absolute 

PLFA contents – with the only exception of conventional greenhouse and pasture soils, 

which exhibited lower proportions for protozoa than the reference soils. Gram negative 

bacteria even had significantly higher values in agricultural field soils and fallows compared 

to those of the remaining land use systems. Differences in management systems or outdoor 

and indoor cultivation were not detected regarding the relative abundances of the taxonomic 
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groups. In addition, a differentiation of the land use systems by a discriminant analysis was 

not possible, while in general a hierarchical cluster analysis confirmed the results mentioned 

above. 

For the examination of the field experiment the same parameters as described above were 

analysed in order to assess soil microbial community structure and function as described for 

the investigation of soils of the diverse land use systems. Resembling, a PCA was performed 

both for the functional and for the structural parameters whereas nearly the same four 

principal components were extracted for the functional ones namely microbial capacity, 

mineralisation activity, metabolic activity and nitrogen transformation potential. However, a 

reasonable classification of the analysed PLFA into specific microbial taxonomic groups was 

impossible caused by a too homogenous data set due to the same soil and climatic conditions 

and recent changes in treatments. 

Again a subsequent discriminant analysis calculated by the factor score of the PCA with 

the functional parameters could clearly distinguish between soils of fallow, conventionally as 

well as organically managed and non-treated agricultural plots. However, a differentiation 

between soils of the same management with respect to different pesticide applications was 

equally impossible as a discrimination of varying application amounts. Nevertheless, it is 

concluded that land use conversion does influence soil functionality and determining soil 

microbial functions is a potential tool to monitor soil health and conversion of fallows into 

both conventionally and organically managed fields. 

The most sensitive PLFA responding to different fertiliser applications were PLFA 14:0, 

17:0 and 10Me17:0 as well as the taxonomic microbial group of protozoa being represented 

by PLFA 20:4ω6, which exhibited differences in both absolute and relative abundances. After 

strong fluctuations the total PLFA content representing the viable biomass showed slightly 

lower values in organic compared to conventional treatments at the end of the experiment. 

Similar to the soil microbial community function the pesticides did not cause any effect on 

the structure with respect to both kind and amount of application. Furthermore, the addition 

of the Gram positive Bacillus thuringiensis was not detectable by PLFA analysis. However, by 

means of a discriminant analysis computed with the factor scores of the PCA calculated with 

the PLFA profiles it was clearly possible to distinguish among soils of fallow, organically as 

well as conventionally managed and non-treated plots whereas those of the latter ones and 
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of the conventionally managed plots were not differentiable before six weeks after fertiliser 

application. 

Finally, significant correlations between absolute PLFA contents of all analysed microbial 

taxonomic groups and soil microbial functional parameters were found in both parts of this 

dissertation indicating close connections between soil microbial community structure and 

function. Therefore, microbial community composition on its own is of no indicator value  

for soil quality and has to be combined with functional properties. Individual investigated 

parameters alone neither revealed significant differences between soils of the diverse land 

use systems nor within the field experiment. Consequently, it can be concluded that these 

silty and clayey Mollisols possessing a potentially low bioavailability to xenobiotics are not 

sensitive against intensive agricultural utilisation as in the green belt around Buenos Aires. 

Although it was revealed that soil degradation does not occur after this utilisation at the 

short- and medium-term as shown by the results of the field experiment and the monitoring 

on the typical land use systems, respectively, it is strongly recommended to further test these 

effects in the long term. 
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1.   Introduction 

 

1.1   Background 

Buenos Aires, the capital of Argentina, is one of the ten most populated mega-cities in the 

world where about one third of the Argentinean population lives. There are about 14 million 

inhabitants in the metropolitan area and nearly 2.8 million in the city center. The annual 

population growth presently comes up to one per cent, which corresponds to an increase of 

about 140,000 people per year (Kobert et al., 2004). Since about 1990 many citizens have 

moved from the city into periurban areas. Many private quarters, so-called Country Clubs, 

have been established with the consequence of a dramatic reduction in areas usable for 

agriculture. Only a small green belt around this mega-city remained to supply people with 

vegetables. This green belt is subdivided into two zones of different degrees of urbanisation 

and land use intensity. The outer zone is characterised by a low population density but a 

higher degree of agricultural use because the urban expansion has not reached this region, 

yet. The situation of the inner zone including the administrative districts of the province of 

Buenos Aires close to the city centre is reverse. It shows a high population density and a 

comparatively small area dedicated to agriculture. However, the increasing demand of 

vegetables for the urban market must mainly be covered by this decreasing agricultural area 

of the inner zone of the green belt. From this situation a rising pressure results onto the local 

farming. Agricultural ecosystems are profit-oriented where productivity is more important 

than environmental issues. In those systems the net primary production has to be optimised 

through control mechanisms like nutrient supply and plant protection methods. In that way 

limiting factors of plant growth and development are eliminated for maximal exhaustion of 

production potentials. The maintenance of sustainable soil fertility in agriculture is of main 

interest because only thus the local food production of the fast growing population can be 

guaranteed. Hence, this situation can only be satisfied by enhanced use of improved seeds, 

pesticides and fertilisers in order to increase harvest yields. However, long-term effects on 

soil contamination are poorly studied in Argentina. 

Over the past fifty years pesticides have been used increasingly in the environment. The 

ideal pesticide should only be toxic to the target organisms, biodegradable and should not 

leach into groundwater. Unfortunately, this is rarely the case and the widespread use of 
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pesticides in modern agriculture is of growing concern (Johnson et al., 2001). It has been 

estimated that less than 1 % of 2.5 million tons of pesticides applied annually is absorbed by 

the target organisms, while the rest is taken up by soil, water, air and non-target organisms 

(Andrade et al., 2005). Although pesticides are intended to protect crops, they may alter the 

equilibrium of soil processes by direct or indirect action on the soil microbes for shorter or 

longer periods depending on the intensity and spectrum of active agents and persistence of 

the parent chemical or its metabolites (Chen et al., 2001a). For example, in Argentina raised 

soybean production was closely followed by enhanced pesticide utilisation, which increased 

from 39 to 124 Gg between 1991 and 1997 (Jergentz et al., 2004). A comparable situation of 

massive pesticide application induced by the high number of harvests per year (up to five 

under greenhouses) is developed in regions with horticultural cultivation. Commonly used 

insecticides in soybean production around Buenos Aires are the pyrethroid cypermethrin, 

the organophosphate chlorpyrifos, the pyrethroid deltamethrin and the organochlorine 

endosulfan (Marino and Ronco, 2005). Pesticides are readily available for farmers but the 

cultivation practices performed by them are difficult to control (Jergentz et al., 2004). Various 

studies have already examined the contamination situation of organochlorine pesticides in 

rivers, surface and run-off waters (Rovedatti et al., 2001; Miglioranza et al., 2004a; Jergentz et 

al., 2005). Therein the pesticide contents are considered high but no evidence for potential 

hazard for wildlife could be found at present (Miglioranza et al., 2004b). 

Heavy metals are another potential problem since they severely affect microbial growth, 

morphology and metabolism in soils through functional disturbance, protein denaturation or 

destruction of integrity of cell membranes (Kandeler et al., 2000). They are unintentionally 

supplied to agricultural soils with manure or pesticides. Application of organic residues like 

humus or dung compost as a source of organic matter is a common practice in Argentinean 

agriculture (Lavado et al., 2005; Torri et al., 2003) in order to improve soil physical, chemical 

and biochemical properties (Entry et al., 1997). However, the use of organic fertilisers such as 

sewage sludge and biosolids can lead to problems with respect to the accumulation of heavy 

metals in soils (Sloan et al., 1997). Also inorganic, phosphate-containing fertilisers produced 

from rock phosphates with varying contents of trace and minor elements being widely used 

in Argentina could lead to heavy metal accumulation in agricultural soils (de López-Camelo 

et al., 1997). When applied to soils, these elements may persist due to their long residence 



1.   Introduction 3

time in soils and could be readily available for plants, especially in acid soils (Kpomblekou-A 

and Tabatabai, 1994). The use of any kind of fertilisers was restricted in Argentina some 

years ago but the accelerated technological change has produced a real boom in fertiliser 

application (de López-Camelo et al., 1997). In addition, heavy metal containing fungicides 

like copper oxychloride are especially applied in organic agriculture (du Plessis et al., 2005). 

Furthermore, human activity within the areas of La Plata and Buenos Aires City generates 

serious pollution of surface waters, sediments and soils due to direct industrial discharges. 

There are more than 300 actual sources of pollution associated with chemical industries, 

metallurgy, wood and paper mills plus non-treated urban sewage (Ronco et al., 2001). For 

trace metals such as cadmium, lead and zinc the high enrichment factors in the atmosphere 

of these areas indicate that anthropogenic inputs are more important than natural sources 

(Bilos et al., 2001). Pollution of rivers derives from farming and wastewater released from 

domestic sewage and thousands of industrial plants (Magdaleno et al., 2001). Consequently, 

besides pesticides there might additionally be an important heavy metal burden on the 

ecosystems around Buenos Aires with respect to all these potential sources with a possible 

hot spot in agriculture. 

Two different agricultural management systems have developed intending to satisfy the 

present demand for vegetables. On the one hand, the conventional cultivation system is an 

industrialized agricultural system characterized by mechanisation, monocultures and the use 

of synthetic agrochemical inputs such as plant growth regulators, mineral fertilisers and 

pesticides with an emphasis on maximizing productivity and profitability. On the other 

hand, the organic cultivation system is a holistic production system, which promotes the role 

and health of agroecosystems by conservation of biodiversity, biological cycles and soil 

microbiological activity without the use of genetically modified seeds and plants or synthetic 

agrochemicals. Differences in tillage systems between these two cultivation types do not 

exist. Organic in contrast to conventional farming management relies on crop rotation, 

animal manure, crop residues and mechanical cultivation in order to keep soil productivity. 

Additionally, the development of microbiological diversity in the fields to disrupt habitat for 

pest organisms is as important as the purposeful maintenance and replenishment of soil 

fertility, as well as plant disease, pest and weed control (Petersen et al., 1997). The amounts 

and variety of organic inputs are much higher than in conventional agriculture. In addition, 
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the microflora of these soils play an important role in mediating the release of nutrients from 

crop residues, manure and soil organic matter (Petersen et al., 1997). These two management 

systems are practiced both on agricultural fields and under greenhouses within the study 

area. Cultivation under greenhouses enables an increase of harvest frequency from three to 

five per year. Further agricultural land use systems in this inner zone of the green belt 

around Buenos Aires comprise fallows as areas of soil recovery from intense cultivation and 

pastures. Additionally, one site still occurred, which was anthropogenically unaffected. 

Variations in land use may strongly affect soil ecology and thus, they are likely to disturb 

soil microbial functions and changes in microbial community structure may in turn impact 

soil processes. Agriculturally used soils are sensitive to anthropogenic disturbances such as 

compaction and intensive utilisation, while alterations of agricultural use like management 

system, organic and mineral fertiliser application, pesticide input and cultivation practice 

influence quantity, dispersion and dynamics of soil microorganisms in an agroecosystem 

potentially leading to short, medium and long term alterations in soil productivity 

(Joergensen and Emmerling, 2006). Consequently, it is hypothesised that soil properties 

being fundamental for sustainability and productivity of soils have greatly suffered beneath 

intensive conventional management since plenty of synthetic agrochemicals have been 

applied to these agricultural fields. Joergensen and Emmerling (2006) reported that soil 

contamination with heavy metals or pesticides influence microbial groups and functions. 

Unlike, the more gently organically cultivated soils could rather have maintained higher 

activity and potential of physical, chemical, biological and biochemical parameters due to 

less input of xenobiotics into these agroecosystems. There is growing evidence that organic 

management systems positively influence soil quality characterised by higher biological 

activity in comparison to the conventionally managed soils (Emmerling, 2005; Monokrousos 

et al., 2006). On fallows, soil conditions should be less affected because of recovery during 

cultivation break whereas on pastures soil functions could be affected by soil compaction 

and excretal returns (Šimek et al., 2006). However, the site, which has not been under any 

cultivation or utilisation, reflects the natural state of a soil. Therefore, the comparison of soil 

properties of the Argentinean land use systems with those of a reference located in the same 

area should exemplify the changes of soil microbial community structure and function of 

soils due to land use. 
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1.2   Soil quality evaluation 

Soil quality has been defined as the capacity of a specific kind of soil to function, within 

natural or managed ecosystem boundaries to sustain plant and animal growth, to maintain 

or enhance environmental quality and to support human health and habitation (Doran and 

Parkin, 1994; Karlen et al. 1997). Hence, appreciation and understanding of soil properties 

and ecology is increasingly recognised as important for the maintenance and sustainability 

of natural systems. In every ecosystem the composition and activity of soil microorganisms 

play important roles in biogeochemical cycles, degradation and recycling of organic residues 

and nutrient transformation and cycling leading to nutrient availability for plants. Turn-over 

and mineralisation rates of the main nutrient elements carbon, nitrogen, phosphorus and 

sulfur are mainly controlled by the microbial activity (Chander et al., 1999). Although soil is a 

dynamic system appearing to be in equilibrium, this equilibrium is precarious since any 

disturbance of the soil environment or any change of land use has the potential to modify 

microbial populations and thus soil fertility (Chen et al., 2001a). The evaluation of soil quality 

and sustainability is a crucial issue for which strong efforts have been attempted in the last 

years for definition and measurement (Puglisi et al., 2005; Joergensen and Emmerling, 2006). 

On the one hand, it is assumed that soil microorganisms are more sensitive to human 

disturbance than soil chemical and physical properties (Degens et al., 2001) but on the other 

hand, they are able to accommodate to possible environmental constraints at the microbial 

level by adaptation and selection processes as well as by adjusting activity rates, biomass 

and community composition (Schloter et al. 2003a). However, still no generally accepted 

strategies exist for testing, surveying and evaluating the habitat function of soils for microbes 

(Kördel and Römbke, 2001; Johnsen et al., 2001). With respect to the selection of parameters 

as adequate soil quality evaluation indicators Doran and Parkin (1996) recommended a 

‘minimum data set’ including physical (texture, rooting depth, infiltration rate, bulk density 

and water retention capacity), chemical (pH value, total carbon content, nutrient levels and 

electrical conductivity) and biological (microbial biomass carbon and nitrogen, potentially 

mineralisable nitrogen and soil respiration) properties. The traditional approach to study soil 

quality was the determination of basic soil properties such as total organic carbon, total 

organic nitrogen, pH value, cation exchange capacity and available nutrients (Glaser et al., 

2001). In general, the physical and physico-chemical parameters are of little use as they alter 
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only when the soil undergoes a really drastic change (Filip, 2002). On the contrary, biological 

and biochemical parameters are sensitive to the slight modifications soils can succumb in the 

presence of any varying influencing factors (Yakovchenko et al., 1996; Nannipieri et al., 1990). 

Hence, for the assessment of the effects of different land use concerning soil sustainability, 

quality and natural properties, microbial variables constitute important criterions (Doran 

and Parkin, 1994; Franzluebbers et al., 1995; Joergensen and Emmerling, 2006). Thereby main 

focus should rely on consideration of key soil indicators, which have to include both general 

and specific biological and biochemical parameters whereby conclusions about activities and 

potentials of soil microbes and about turn-over processes in nutrient cycles and energy flows 

could be derived (Gil-Sotres et al., 2005). 

In order to characterise differences of soil microbial community functions caused by the 

above-mentioned land use systems several biochemical parameters should be determined. 

Soil enzyme activities are suggested as suitable soil quality indicators because they are a 

measure of the soil microbial activity (Nannipieri et al., 2002) and thus, they are strictly 

related to the nutrient cycles (Monreal and Bergstrom, 2000; Tabatabai and Dick, 2002). Soil 

enzymes are mostly generated by microorganisms and act either intra or extra cellular 

whereas many enzymes catalyse specific reactions for organic matter transformation in soil 

(Gianfreda et al., 2005). Dehydrogenase and cellulase activities are strongly correlated with 

microbial biomass, while arylsulfatase, phosphatase and urease are important enzymes of 

cycles of the main nutrition elements sulfur, phosphorus and nitrogen (Chander et al., 1999). 

Soil enzymes may rapidly respond to environmentally and anthropogenically induced stress 

(Gianfreda and Bollag, 1996) and are considered as early and sensitive indicators for the 

determination of the degree of soil degradation in both natural and agroecosystems (Dick, 

1997). Therefore, they are well suited to characterise the impact of pollution (Trasar-Cepeda 

et al., 2000) and cultivation on soil quality (Dick and Tabatabai, 1993). Although a significant 

correlation between microbial biomass and soil organic matter often was observed (Chander 

et al., 1999), the microbial biomass is a labile pool that is more sensitive to all environmental 

disturbances than to other pools of soil organic matter (Gregorich et al., 1994). Soil respiration 

is another parameter providing an index for both the microbial biomass and the microbial 

activity, while the metabolic quotient is considered as a sensitive indicator for soil microbial 

disturbances (Jones and Ananyeva, 2001). Generally, changes in soil microbial biomass, 
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metabolic quotient as well as basal and substrate-induced respiration rates are often 

accounted as early warnings of changes, which may occur in the long term with regard to 

soil fertility and agroecosystem properties (Emmerling and Udelhoven, 2002; Degens et al., 

2001; Kaiser et al., 1995; Teklay et al., 2006). Cultivation practices, which are associated with 

intensification of agriculture are well known to alter soil microbial biomass and activity 

(Emmerling et al., 2001; Gianfreda et al., 2005; Wardle et al., 1999). All main components of 

the nitrogen cycle such as nitrification, denitrification and nitrogen fixation also depend on 

accordant microorganisms (Pell et al., 1998). Denitrification serves as an indicator of land use 

variations since it depends on soil properties and land use practice. Pasture soils for example 

emit more nitrous oxide when compared to agricultural soils caused by urine entry and 

compaction (van Groeningen et al., 2005). Furthermore, agricultural fields receiving organic 

fertilisers particularly in organic managements show higher nitrous oxide emissions than 

grasslands (Mogge et al., 1999). Soil cultivation and residue quality have a significant impact 

on nitrogen cycling and nutrient contents (Raiesi, 2006). Therefore, nitrogen mineralisation is 

another adequate soil microbial indicator for determining the alteration of soil properties 

caused by changing land use or agricultural intensification. Many pesticides have the ability 

to eradicate parts of the soil biology or to influence the numbers and community of a diverse 

range of soil microorganisms that contribute to soil biological processes and maintain soil 

structure and fertility (Chen et al., 2001a). Moreover, management practices, particularly the 

input of fertilisers and pesticides, can have large impact on size and activity of soil microbial 

communities (Bossio et al., 1998). Furthermore, there is a growing evidence suggesting that 

microbes are far more sensitive to heavy metal stress than plants and animals inhabiting 

polluted soils (Ekelund et al., 2003). 

Recently, soil microbial community structure has also been recommended as a biological 

indicator of soil quality, although there are various ways to quantify this structure e. g. DNA 

fingerprinting and denaturating gradient gel electrophoresis (DGGE, Ibekwe et al., 2002),  

the determination of amino sugars (Glaser et al., 2004) and phospholipid ether lipids (PLEL,  

 Gattinger et al., 2002) or community level physiological profiling (CLPP, Yao et al., 2000). 

Several studies indicated phospholipid fatty acid (PLFA) analysis as a powerful and sensitive 

tool for soil status evaluation. PLFA are essential membrane components of all viable cells, 

which are not found in storage products or in dead cells (Zelles, 1999). Thus, by using the 
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composition of PLFA it is ensured that measurements will be on the living part of the 

microbes, since PLFA are considered to decompose quickly when organisms die. Therefore, 

PLFA pattern can be viewed as an integrated measurement of all living soil microorganisms 

reflecting both species composition and relative abundance. The use of PLFA profiles is 

based on the fact that microbes contain a relatively constant proportion of their biomass as 

phospholipids (Ibekwe and Kennedy, 1998). Therefore, identification and quantification of 

individual PLFA permit the detection of changes in microbial populations, since the latter 

stand for the present microbial communities in the soil (Ibekwe, 2004). Moreover, the total 

PLFA content serves as an index of the viable microbial biomass (Calderon et al., 2000). A 

possible change in microbial biomass can occur either by proportional growth of a microbial 

population without major changes in community composition or by different growth of 

microbial populations resulting in a shift in community composition (Steinberger et al., 1999). 

The PLFA pattern of living microbial cell membranes provides an insight into the diversity 

of microbial community. In practice, the PLFA are extracted from soil samples, purified and 

separated by chromatography in order to obtain the PLFA pattern of the sample. While 

PLFA profiles do not reveal species-level information directly, the lipid analysis provides  

a fingerprint of microbial diversity present at the time of sampling (Wander et al., 1995). 

Multivariate analysis of these profiles can be used to investigate compositional changes of 

soil microbial communities caused by alterations of environmental conditions. It is also 

possible to examine specific PLFA within the profile as molecular markers of different 

taxonomic microbial groups such as Gram positive or Gram negative bacteria, protozoa, 

actinomycetes and fungi (Zelles, 1999). Changes in PLFA patterns of microbial communities 

in soils subjected to a wide range of ecological conditions and alteration events would 

indicate a variation in microbial composition, which has been used to compare different land 

use systems (Bossio et al., 2005 and 2006) or various stress conditions (Allison et al., 2005). 

Land use is a strong determinant of soil microbial community and biomass (Waldrop et al., 

2000; Burke et al., 2003). Previous studies exhibited that grassland and agricultural soils 

support distinct microbial communities that are correlated with factors, which define soil 

quality, suggesting that land use affect microbial community composition (Steenwerth et al., 

2002 and 2005). The environmental conditions to which a soil has been exposed may also 

affect soil microbial biomass and community composition (Steinberger et al. 1999). In some 
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cases cultivation history had long-term effects on soil microbial community structure in 

agricultural fields (Ibekwe and Kennedy, 1998 and 1999), and gradients in soil fertility in 

either grasslands (Steenwerth et al., 2002) or cultivated sites (Yao et al., 2000) have been 

shown to influence microbial community composition. Agricultural management practice 

such as inputs of manure, cover crops, mineral fertilisers and pesticides in different amounts 

can have large impacts on the size, activity and composition of soil microbial communities 

(Bossio et al., 1998; Bossio and Scow, 1998), while changes in PLFA compositions can be 

distinguished following specific management practices over a cropping season (Bossio et al. 

1998; Bai et al. 2000). Alike, residue incorporation, cropping sequence, irrigation and tillage 

alter soil microbial biomass (Franzluebbers et al., 1995; Ibekwe et al., 2002) and community 

structure (Lundquist et al., 1999; Calderón et al., 2000 and 2001; Steenwerth et al., 2005). It has 

been demonstrated that distinct changes in specific microbial populations can occur even if 

community size, turn-over rates and activities seemed to be unaffected by pesticide addition 

(Johnsen et al., 2001). Some microbial groups may be suppressed due to the toxicity of the 

pesticide, while others may proliferate in arising ecological niches because they are able to 

use an applied pesticide as a source of energy or nutrients. Consequently, this may lead to 

successions in soil microbial community structure and thus, to altered activities at a later 

point in time. On this account, it has been suggested that measures of microbial community 

structure and function may be more sensitive to disturbance than assays focusing on general 

microbial processes or community size (Kelly et al., 2003; Schloter et al., 2003a). Therefore, 

biochemical parameters may be useful as highly sensitive bioindicators of disturbance and of 

the progress of remediation also since heavy metal impact on microbes may include changes 

in community structure and decreases in microbial biomass (Kandeler et al., 1996 and 2000). 

 

1.3   Objectives 

The population increase leading to a reduction of the periurban area around Buenos Aires 

available for agriculture enhanced the pressure on horticultural production of vegetables, 

which thus had to be increased. Hence, due to intensive agricultural practice and the rising 

input of agrochemicals eutrophication, soil contamination and degradation are expected in 

this area and thus, an evaluation of sustainability of typical agroecosystems is necessary in 

order to estimate the anthropogenic impact on agricultural soils (Vilglizzo et al., 2006). 
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One objective of this dissertation was to quantify the heavy metal and pesticide 

contamination in soils of actual land use systems in the green belt around Buenos Aires. In 

addition to the reference soil, which was not affected by man, topsoils of the following six 

land use systems were investigated in detail: Conventional and organic cultivation under 

greenhouses as well as on agricultural fields, fallows and pastures. As already mentioned, 

some studies have been carried out on environmental contamination in the investigation 

area. However, to date, only marginal information has been given about the contamination 

situation in Argentina in soils and especially in agriculturally used ones. Because of crop 

production intensification it is hypothesised that heavy metal and pesticide contamination is 

high in soils of this region. Hence, this investigation shall provide an overlook about the 

actual contamination situation in the area around Buenos Aires and should give important 

information for policy makers and stakeholders as a regulatory tool for further agricultural 

guidelines in the study area. Furthermore, an evaluation of a set of thirteen variables derived 

from ten test methods of soil microbial community functions for its ability to discriminate 

between the different land use systems and to check whether intensive agricultural land use 

deteriorates soil microbial functions was performed. For this purpose, activities of several 

enzymes related to the cycles of the main biologically important nutrients carbon, nitrogen, 

phosphorus and sulfur, the respiratory and the metabolic activity as well as fundamental 

nitrogen mineralisation processes were measured. Thus, a test procedure is suggested to 

distinguish between the different land use systems via multivariate statistics. A principal 

component analysis of the microbial functional parameters was used to reduce data and a 

subsequent discriminant analysis was conducted in order to determine their ability of 

differentiation. Finally, a hierarchical cluster analysis was carried out to exhibit similarities 

between soils of individual land use systems. Alike, the same statistical tools were used to 

characterise the influence of various agricultural land use on microbial community structure 

in soils of the inner zone of the green belt around Buenos Aires compared to the native site. 

Ibekwe and Kennedy (1999) constituted PLFA profiles as a tool to investigate community 

structure in agricultural soils. Special emphasis was put on an ecological interpretation of 

microbial groups after statistical evaluation of PLFA profiles and correlations with microbial 

functional parameters. 
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In Argentina investigations about the effects of agricultural land use on microbial 

community structure and function in soils regarding pesticide and fertiliser application have 

not been performed, yet. Moreover, impacts of agrochemicals on soil microbial populations 

and community level interactions are poorly understood. Thus, another aim of this work was 

to acquire adequate structural and functional soil quality indicators since soil microbiological 

parameters react very fast to changes of soil fertility caused by disturbances or overuse. 

Therefore, in a field experiment starting from a fallow, agricultural land use systems typical 

for the investigation area were developed temporally. On the one hand, organic cultivation 

was simulated by fertilising soil with humus and treating it alternatively with the biological 

insecticide Bacillus thuringiensis and the fungicide copper oxychloride, while on the other 

hand, conventional cultivation was simulated by adding mineral fertilisers and applying the 

insecticide endosulfan and the fungicide chlorothalonil. The effects of the pesticides alone 

and in combination on soil microbial community structural and functional parameters were 

examined. A field experiment was performed because interactions between pesticides and 

the soil microbiology under actual conditions in the agricultural field may differ from those 

in standard laboratory experiments (Beulke and Malkomes, 2001). Moreover, the advantage 

of an outdoor experiment consists in the study of temporal progressions of soil microbial 

parameters under natural field conditions. Therefore, the objectives were to demonstrate 

under equal climatic conditions and soil type whether conventionally and organically 

managed soils are accompanied by varieties in microbial biomass as well as in community 

structure and function and whether there are interactions between common application 

doses of commercially available pesticides or fertilisers and soil microbiology. From the 

results the duration of soil regeneration phases as well as analytical tools for the control of 

different fertiliser and pesticide use in conventional and organic farming can be deduced. A 

vegetation cover was established in order to get as natural conditions as possible because the 

rhizospheres of plants can play major roles in affecting the composition of the soil microbial 

community (Chen et al., 2001a). Again the same soil microbial community structural and 

functional parameters as mentioned above were analysed and statistically evaluated in the 

same way as those for the investigation of the soils of the different land use systems. 
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2.   Materials and methods 

 

2.1   Site description 

Both studies were performed in the periurban area of Buenos Aires (34° 35’ S, 58° 29’ W), 

as part of the pampean area of Argentina in South America. Buenos Aires is located about  

25 m above sea level at the Río de la Plata, a funnel-shaped estuary of the two rivers Río 

Paraná and Río Uruguay at the South American Atlantic east coast. The mean annual 

precipitation in this humid Pampa region is 1027 mm with the highest monthly amount  

in March (142 mm) and the lowest in June (61 mm). The annual temperature averages 17 °C 

with the highest in January (24 °C) and the lowest in July (5 °C). During the sampling period 

of the land use systems in May 2004, mean temperature was 12 °C and rainfall amounted up 

to 70 mm, which is typical for this month. 

The periphery of Buenos Aires is dominated by agricultural structures where grazing 

management is conducted and predominantly vegetables and flowers are cultivated with no-

tillage technique. In this periurban area two sites of the inner zone of the green belt around 

Buenos Aires were chosen for soil sampling: La Plata in the south-eastern and Pilar in the 

north-western part of Buenos Aires. At these sites six different agricultural land use systems 

were identified: pastures, fallows and conventionally as well as organically managed fields 

and greenhouses. All land use systems were long-term practices over many years except the 

fallow sites (at least two years), which have previously been conventionally cultivated. 

Additionally, one site was found, which has not been in agricultural or any other use for at 

least twenty years. This site was considered as a reference in order to reflect the microbial 

community structure and function of anthropogenically unaffected soils in order to estimate 

effects of agricultural land use. The soils under study were characterised by mollic A- and 

argillic B-horizons and thus were classified as Typic Argiudolls mainly derived from 

younger quaternary eolian deposits. Toward the east of the Pampa, soils were more clayey 

and transitions to Vertic Argiudolls and Vertisols occurred (Lavado et al., 2004). 

The area of the field experiment was located in Castelar likewise in the periurban area of 

Buenos Aires. During the experiment period from September to December 2004 the mean 

temperature was 17 °C and the rainfall amounted to 141 mm. The soil of the sample area was 

a Vertic Argiudoll as described by Morrás et al. (1998) for profile 1. 
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2.2   Field experiment 

 

2.2.1   Experiment design 

200 m² of a fallow area were plowed and flattened before 28 plots (1.5 m × 1.5 m) and 

three additional ones on the remaining fallow were established (Figure 1). After one week of 

equilibration and two weeks before the beginning of the experiment on all field plots wild 

oat (Avena sativa) was sowed (~ 200 g of seeds per plot) in order to obtain a homogenous 

vegetation cover. On one plot natural vegetation growth was compared with crop growth on 

the field plots. In addition to three reference field plots three agricultural land use systems 

(fallow, conventional and organic management) were simulated in diverse variations on nine 

plots each in threefold replication (Figure 1) as described below. 

 

Figure 1: Plot layout of the field experiment; Nat. plot: natural plot for the comparison of natural 

vegetation and crop growth, F: fallow, R: reference field, M: mineral fertiliser, Es: Endosulfan, 

Cl: Chlorothalonil, H: humus, Bt: Bacillus thuringiensis, Cu: Copper oxychloride; I, II, III: plot replicates. 

 

Fallow (i), conventional cultivation with mineral fertilisers (ii) plus endosulfan (iii), plus 
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plus Bacillus thuringiensis (vii), plus copper oxychloride (viii) or plus both (ix), and reference 

field (x) without any fertiliser and plant protection procedure. 

All conventionally managed plots were fertilised with 27.8 g of diammoniumsulfate and 

95.8 g of diammoniumhydrogenphosphate (~ 116 kg nitrogen ha-1, ~ 100 kg phosphorus ha-1, 

~ 30 kg sulfur ha-1) at the day of oat sowing, one week after plowing and two weeks before 

pesticide application. To the plots with pesticide application 173 mg endosulfan (~ 770 g ha-1, 

THIONEX-L, insecticide) or 405 mg chlorothalonil (~ 1,800 g ha-1, ISATHALONIL 50 FW, 

fungicide) or a mixture of both were added three weeks after plowing (Figure 2). 

 

Figure 2: Chronological design of the field experiment; d: days; w: week(s); C. c.: conventional 

cultivation, O. c.: organic cultivation, F: fallow. 

 

All organically managed plots were fertilised with 6 kg of humus (~ 26.7 Mg humus ha-1;  

~ 2.5 Mg TOC ha-1, ~ 0.25 Mg TON ha-1, ~ 37 kg S ha-1, ~ 157 kg P ha-1, pH 6.4) at the day of oat 

sowing, one week after plowing and two weeks before pesticide application. To the plots 

with pesticide application 16.9 mg Bacillus thuringiensis (~ 75 g ha-1, BAC THUR, insecticide) 

or 371 mg copper (Cu) in 624 mg copper oxychloride (~ 1.6 kg Cu ha-1, SUPERCUPROL, 

fungicide) or a mixture of both were added three weeks after plowing (Figure 2). 
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2.2.2   Pesticides 

 

2.2.2.1   Endosulfan 

The chlorinated sulfite diester endosulfan is a cyclodiene insecticide possessing a 

relatively broad spectrum of activity. Technical grade endosulfan is a mixture of the two 

stereoisomers α- and β-endosulfan in a ratio of 7:3 (Awashti et al., 1999). Endosulfan is used 

extensively throughout the world as a contact and stomach insecticide and as an arcaricide 

on field crops. Endosulfan does not dissolve easily in water, but sticks to particles or soil. It 

breaks down slowly and may accumulate in the environment and in organisms that are 

exposed to it (Antonious and Beyers, 1997). Because of its abundant usage and potential 

transport, endosulfan contamination is frequently found in the environment at considerable 

distances from the point of its original applications. Endosulfan has been detected in the 

atmosphere, soils, sediments, surface and rain waters and food stuffs and it is a priority 

pollutant for international environmental agencies. It is extremely toxic to fish and aquatic 

invertebrates and has been implicated in mammalian gonadal toxicity, genotoxicity and 

neurotoxicity (Siddique et al., 2003). Although several metabolites of endosulfan have been 

demonstrated to occur, only endosulfan sulfate exhibiting similar physico-chemical and toxic 

properties like endosulfan is significant as a residue (Antonious and Beyers, 1997). 

 

2.2.2.2   Chlorothalonil 

The organochlorine phthalonitrile chlorothalonil is a widely used foliar pesticide for the 

control of many fungal diseases in agricultural systems, especially in greenhouse production 

of fruits and vegetables (Yu et al., 2006). Chlorothalonil is a non-systemic fungicide with a 

wide coverage of action against a broad range of plant pathogens. It is used extensively 

worldwide and its residues have been detected in many vegetables (van Doorn et al., 1995). 

Several degradation pathways including substitution and conversion reactions have been 

identified providing manifold metabolites (Putnam et al., 2003). Nevertheless, the major 

degradation product in soil and plants is 4-hydroxychlorothalonil, which is acutely more 

toxic than the parent compound (Armbrust, 2001). The solubility of chlorothalonil in water is 

low why it is mainly absorbed in the top layer of soil (Kwon and Armbrust, 2006). However, 

its metabolite is easily soluble in water and thus the potential downward movement of this 
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compound is high if the adsorption capacity of the soil is low (van Doorn et al., 1995). 

Chlorothalonil is very toxic to fish and other water inhabiting animals and it is classified as a 

probable human carcinogen by the U.S. Environmental Protection Agency (Kwon and 

Armbrust, 2006). 

 

2.2.2.3   Bacillus thuringiensis 

Bacillus thuringiensis is a naturally occurring Gram positive bacterium common in soils 

throughout the world (Grove et al., 2001). Several strains can infect and kill insects and due 

to this property, Bacillus thuringiensis has been developed for insect control wherefore at 

present it is the only biological insecticide in widespread use. Unlike typical nerve-poison 

insecticides, Bacillus thuringiensis acts by producing proteins (δ-endotoxin, the toxic crystal) 

that react with the cells of the gut lining of susceptible insects. These proteins bind specific 

membrane receptors on the insect midgut brush-border epithelium, paralyse the digestive 

system and the infected insect stops feeding within hours. Affected insects generally die 

from starvation caused by intestinal cell lysis or from septicemia (Prieto-Samsónov et al., 

1997). The proteins are selectively toxic to different species from several invertebrate phyla 

such as arthropods (mainly insects), nematodes, flatworms and protozoa. Some formulations 

can be used on essentially all food crops and Bacillus thuringiensis is considered safe to 

people and nontarget species such as wildlife (Grove et al., 2001).  

 

2.2.2.4   Copper oxychloride 

Copper is an essential trace metal for many organisms. However, at higher concentrations 

it is also a potentially toxic metal that can exert an inhibitory effect, which is the basis for 

formulation of copper-containing fungicides (Gharieb, 2002). Despite the production of a 

wide variety of synthetic organic fungicides, copper fungicides still predominate the field of 

fungicidal plant disease control. The copper fungicides have been used for the control of 

many vegetable, fruit and flowering plant diseases. The toxicity of copper compounds is due 

to their ability to precipitate proteins, which causes the coagulation of the cytoplasm. Copper 

oxychloride is probably the most widely employed copper fungicide. It has great efficacy 

against a wide variety of plant pathogenic fungi and also controls the pathogenic and non-

pathogenic fungi associated with seeds. It may be applied alone, in combination with other 
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fungicides, seed treatment or foliar application. Copper fungicide formulations are poorly 

soluble in water and its fungicidal activity depends mainly on its solubilisation and 

availability of copper ions (Gharieb et al., 2004). 

 

 

2.2.3   Fertilisers 

 

2.2.3.1   Mineral fertiliser 

Ammonium sulfate and diammonium hydrogen phosphate are used largely as artificial 

manure for alkaline soils and also for the preparation of other ammonium salts. In the soil 

sulfate and phosphate ions are released and form sulfuric and phosphoric acid, respectively, 

which lower the pH balance of the soil. Likewise these mineral fertilisers serve as high 

sources of essential nitrogen and contribute sulfur and phosphorus in plant available form 

for assimilation and plant growth. Ammonium sulfate is also used as an agricultural spray 

adjuvant for water soluble insecticides, herbicides and fungicides. There it functions to bind 

iron and calcium cations that are present in both water and plant cells. Ammonium sulfate, 

occurs in nature as the mineral mascagnite and both salts are soluble in water and insoluble 

in alcohol or liquid ammonia. 

 

2.2.3.2   Organic fertiliser (humus) 

Vermicompost (also called worm compost, worm humus or worm manure) is the end-

product of the breakdown of organic matter by some species of earthworm. This humus is a 

nutrient-rich, natural fertiliser and soil conditioner. The process of producing vermicompost 

is called vermicomposting. For the present field experiment 60 % of horse manure, 20 % of 

herbage and 20 % of corn grist were mixed and moistened to 70 % of water holding capacity. 

This compost-water-mixture was incubated in so-called compost beds. Due to chemical and 

microbiological degradation processes the temperature inside the beds rise up to 70 °C so 

that the beds have to be turned over and aerated regularly. After the temperature inside the 

beds does not vary from that outside, the processes were completed. Thereafter red 

earthworms (Eisenia fuetida) were added to the compost passing it through their body and 

transforming it into humus rich vermicompost, which finally was applied to soil. 
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2.3   Sample collection 

 

 

2.3.1   Land use systems 

Surface soil samples were taken in 0 to 10 cm depth in at least 50 m distance on sites  

greater than 1 ha. The samples were sieved (< 2 mm), homogenised and immediately stored 

at –20 °C. Prior to the analysis the samples were carefully thawed in a refrigerator at +8 °C in 

order to prevent reactivation of microorganisms and to minimise pesticide losses through 

evaporation and mineralisation during soil sample storage. Every land use system was 

sampled in fourfold replication with the exception of pastures and organic greenhouse fields, 

which were sampled only in threefold replication because no more comparable sites were 

found with the same land use within the sampling area. For reasons of comparability only 

agricultural fields with cultivation of vegetables – preferentially lettuce – were sampled. In 

order to check infield homogeneity every site was sampled in threefold replication. The 

reference site was also sampled in threefold replication in at least 100 m distance between the 

three sampling points wherefore they were considered as independent sites. 

 

 

2.3.2   Field experiment 

Surface soil samples were taken on the fallow and the agricultural field two and one 

weeks before pesticide application. At the day, before the application, samples were taken on 

the fallow, the reference as well as on the organically and conventionally fertilised plots. Two 

days, one, two, four and nine weeks after pesticide application, samples were taken in every 

plot of the ten varying treatments (Figure 1). Every sampling was conducted in 0 to 10 cm 

depth using a quadratic sampling raster (1.5 m × 1.5 m divided into 25 squares each 30 cm × 

30 cm in size). Fourfold sampling replication was done in every plot, one per raster square. 

The soil samples were combined, sieved (< 2 mm), homogenised and immediately stored at  

–25 °C. Prior to analysis the samples were carefully thawed in a refrigerator at +8 °C in order 

to prevent reactivation of microbes and to minimise pesticide losses through evaporation 

and mineralisation during soil sample storage. 
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2.4   Chemical analysis 

 

2.4.1   Basic soil parameters 

 

2.4.1.1   Texture 

20 g of air-dried, sieved (< 2 mm) soil was mixed with 100 mL of distilled water and 5 mL 

of hydrogen peroxide and boiled at 90 °C for 4 h in order to destroy humic matter. After 

centrifugation at 3000 rpm for 15 min the supernatants were removed. The remaining soil 

was dried, weighed and represented 100 % for the calculation of the percentages of each 

fraction. For soil dispergation, 10 mL of 5 % sodiumhexametaphosphate solution were added 

to the samples, which then were shaken end-over-end for 2 h. The sand fractions were wetly 

sieved, dried and weighed. The filtrates were collected in 1 L cylinders, which were filled up 

with distilled water and allowed to equilibrate at room temperature. Thereafter the samples 

were shaken and by means of a pipette apparatus after Köhn silt and clay fractions were 

sucked off after sedimentation time required at given room temperature. All fractions were 

dried, weighed and the percentages of dry soil were calculated. 

 

2.4.1.2   Water content 

The percentage of the gravimetric loss of water from a 5 g field-moist soil sample was 

determined after an incubation period of 48 h at 105 °C. 

 

2.4.1.3   pH value 

10 g of air-dried soil were merged with 25 ml of distilled water and shaken end-over-end 

for 1 h. Then the samples were allowed to equilibrate at room temperature for 1 h. Thereafter 

the pH values were determined in the suspension of the soil samples. 

 

2.4.1.4   Carbon and nitrogen contents 

Approximately 30 mg finely ground soil and an equal amount of the initial weight of 

wolfram oxide were weighed into small tin boats. The boats were closed airtight and formed 

to small pellets. The pellets were put into the autosampler and analysed for carbon and 

nitrogen by an elementar Vario EL CN-analyser. 
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2.4.2   Pollutants 

 

2.4.2.1   Pesticides 

The following eleven pesticides were analysed according to the slightly modified method 

of Laabs et al. (1999): the insecticides carbofuran, chlorpyrifos, cypermethrin, deltamethrin, 

dimethoate, endosulfan (α- and β-isomer and its metabolite endosulfan sulfate), malathion, 

permethrin and triazofos, the herbicide trifluralin and the fungicide chlorothalonil. 

All organic solvents (residue- or HPLC-grade) were purchased from Promochem, Wesel, 

Germany and deionised water was used (> 18 MΩ). Salts purchased from Merck, Darmstadt, 

Germany, were pro analysis-grade. Pesticide standards (purity > 97 %) were purchased from 

the Institute of Organic Industrial Chemistry, Warsaw, Poland, and Dr. Ehrensdorfer GmbH, 

Augsburg, Germany. All glassware was rinsed with technical acetone and ethylacetate, 

washed at 95 °C with a detergent and heated at 300 °C overnight before use. 

25 g of field-moist soil and 50 mL of a solvent mixture of acetone/ethylacetate/water 2/2/1 

(v/v/v) were merged in glass centrifuge vials and closed with teflon-lined screw caps. After 

vortexing, the vials were shaken end-over-end at 50 rpm for 4 h and centrifuged at 4000 rpm 

for 10 min. Internal standards (0.5 µg α-hexachlorocyclohexane (HCH), 0.5 µg terbuthylazine 

and 0.5 µg ditalimfos in toluene) were added to the supernatants, which then were decanted 

and filtrated through folded filters (Schleicher & Schuell, 596 ½). After adding a few drops of 

toluene, the filtrates were concentrated using a rotary evaporator (40 °C, 250 mbar). The 

remaining extracts were transferred into separating funnels and liquid-liquid extracted. For 

this purpose 25 mL of dichloromethane and – to enforce the transfer of the pesticides into the 

organic solvent phase – 5 mL of a saturated aqueous potassium chloride solution adjusted to 

pH 1 with hydrochloric acid (32 %) were added. After shaking the funnels on a horizontal 

shaker at 225 rpm for 10 min the lower dichloromethane phase was dried over anhydrous 

sodium sulfate. These separation steps were repeated twice, the three dried dichloromethane 

phases were combined and concentrated on a rotary evaporator (40 °C, 700 mbar) up to the 

toluene phase. Finally, a recovery standard (0.2 µg naphtalene-D8 in toluene) was added to 

determine the recovery of the internal standards. 
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The samples were transferred into autosampler vials and analysed by a gas 

chromatograph (GC) connected to a mass selective detector (MSD) (GC: Hewlett Packard 

(HP) Series II 6890; MSD: HP 6971 A) and an autosampler (HP 7673). The pesticides were 

separated on a 30 m capillary column (HP-5 MS consisting of 5 % phenyl-methyl siloxane) 

with a film thickness of 0.25 µm and an inner diameter of 0.25 mm. Helium (purity: 99.996 %) 

was used as carrier gas with a column pressure of 48 kPa and 1 µL of sample solution was 

injected splitless (splitless time: 1.25 min). The injector temperature was 150 °C and the 

detector temperature was 310 °C. The temperature program was run as follows: Initial 

temperature 82 °C held for 2.5 min, increased at 10 °C min-1 to 130 °C, increased at 4 °C min-1 

to 160 °C held for 10 min and finally increased at 10 °C min-1 to 280 °C held for 10 min. The 

ionisation was conducted by electron impact (70 eV) mode and the measurement was done 

in selected ion monitoring mode. The identification of pesticides was based on comparison 

with retention times and mass spectra, which were obtained from standards (Table 1). The 

internal standards were used to compensate sample processing losses, while the recovery 

standard was used to countervail apparatus-induced measurement variations and allowed  

to quantify the recoveries of the internal standards. The pesticide concentrations were 

calculated as outlined by Laabs et al. (1999). For analytes showing two or more peaks in the 

chromatogramm sum of peak areas (carbofuran I and II, permethrin I, II and III and 

cypermethrin I and II) were used for the quantification. Those internal standards used for 

quantification of particular pesticides are given above the accordant pesticides in the order of 

retention times as shown in Table 1. The mentioned target ions are specific fragment ions per 

analyte with the highest abundance, while qualifier ions are two further characteristic ions 

after ionisation in the mass selective detector (Table 1). 

Besides chlorothalonil, endosulfan and its metabolite endosulfan sulfate the samples of 

the field experiment were additionally analysed for 4-hydroxychlorothalonil, the metabolite 

of chlorothalonil. The performance of the analysis was analogous to that described above. 

However, after the clean up, the samples had to be derivatised, which was done according to  

the slightly modified method of van Doorn et al. (1995). For this purpose, the samples were 

transferred into 4 mL reaction vials and after 2 mL of diazomethane were added the mixture 

was allowed to stay at room temperature for 15 min. After evaporating excess diazomethane 

by using a gentle stream of nitrogen, 3 mL of hexane were added and the solution was 
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concentrated to 1 mL, which was repeated twice. 2 g of 10 % deactivated aluminium oxide 

(MP Alumina N, activity I, reinst-grade, 50–200 µm, MP Biochemicals, Eschwege, Germany) 

was slowly poured into a chromatographic column, which was filled with hexane. The 

hexane was drained until the level reached the top of the aluminium oxide and then the 

hexane extract was transferred onto the aluminium oxide. The column was eluted with 5 mL 

of hexane, which were abolished and with 15 mL of 4 % ethyl acetate in hexane (v/v). The 

eluates were concentrated to 200 µL on a rotary evaporator (40 °C, 400 mbar) and a recovery 

standard (0.2 µg fluorene-D10 in toluene) was added to determine the recovery of the internal 

standard. The samples were transferred into autosampler vials with toluene and measured 

as described above for the other pesticides. 

 

Table 1: Molecular weights, ion masses and retention times of pesticides and standards used for 

quantification and identification in selected ion monitoring mode. 

Molecular Target Qualifier Qualifier Retention

weights  [g] ions  [m/z] ions 1  [m/z] ions 2  [m/z] times  [min]

α-HCH * 290.8 181 183 111 19.3

Chlorothalonil 265.9 266 264 268 24.9

α-Endosulfan 406.9 237 239 241 32.5

β-Endosulfan 406.9 237 193 243 34.1

Endosulfan sulfate 422.9 272 237 387 35.1

Ditalimfos * 299.3 130 299 243 32.6

Dimethoate 229.2   93 125   63 20.3

Malathion 330.4 125   93 173 29.9

Chlorpyrifos 350.6 199 314 316 30.3

Triazofos 313.3 161   77 162 34.7

Terbuthylazin * 229.7 214    41 216 23.1

Carbofuran I 221.3 164 149 103   9.5

Carbofuran II 221.3 164 149    91 21.1

Trifluralin 335.3 306 264    41 19.1

Permethrin I 391.3 183 163 127 38.6

Permethrin II 391.3 183 163 127 38.8

Cypermethrin I 416.3 163 181 165 40.0

Cypermethrin II 416.3 163 181 165 40.2

Cypermethrin III 416.3 163 181 165 40.4

Deltamethrin 505.2 181 253 251 43.7

Naphthalin-D8 ** 136.0 136 108   76   7.5

Pesticides

 
HCH: Hexachlorocyclohexane,  * internal Standard,  ** recovery standard. 
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2.4.2.2   Heavy metals 

Heavy metals were analysed as described by McGrath and Cuncliffe (1985). Acids were 

purchased from Merck, Darmstadt, Germany and water was deionised (> 18 MΩ). All 

glassware was conditioned in a bath of 0.5 M nitric acid for at least six hours, rinsed with 

water and dried before use. All samples were analysed in duplicate. 

3 g of oven-dried (40 °C), finely ground soil were weighed into round-bottomed reaction 

flasks and moistened with 2 mL of water. 21 mL of hydrochloric acid (32 %) and 7 mL of 

nitric acid (65 %) were added dropwise. The samples were allowed to stand overnight at 

room temperature and then boiled for 2 h using an aqua regia digestion apparatus with 

reflux condenser (Gerhardt, Königswinter, Germany). After cooling down to room 

temperature the samples were filtered through folded filters (Schleicher & Schuell, 512 ½) 

into 100 mL volumetric flasks, which were filled up with 0.5 M nitric acid. The heavy metals 

cadmium, copper, iron, lead, manganese, nickel and zinc were measured with Inductively 

Coupled Plasma – Mass Spectrometry (ICP-MS, Agilent 7500 Series). For the samples of the 

field experiment only a determination of copper due to the fungicide application of copper 

oxychloride was performed. 

 

 

2.4.3   Functional parameters 

 

2.4.3.1   Enzyme activities 

All chemicals were purchased from Fluka, Taufkirchen, Germany. Every sample was 

analysed in duplicate plus one blank sample. Furthermore, two reagent blanks were 

determined. All solutions were prepared in distilled water. Because of light sensitivity of the 

enzyme reaction substrates and products for dehydrogenase, arylsulfatase and phosphatase 

activity determination every procedure was performed under diffused light. 

 

2.4.3.1.1   Acid phosphatase 

The analysis was performed according to Tabatabai and Bremner (1969). A universal 

buffer solution as described by Skujinš et al. (1962) was prepared as follows: 3.0 g of tris 

hydroxymethyl aminomethane, 2.9 g of maleic acid, 3.5 g of citric acid, 1.6 g of boric acid and 
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122 mL of 1 M sodium hydroxide (NaOH) solution were dissolved and filled up to 250 mL 

with distilled water. In order to prepare the buffer solution this stock solution was diluted 

1:5 with distilled water and adjusted to pH 6.5 with 6 M hydrochloric acid. 

1 g of field-moist soil was merged with 4 mL of buffer solution and 1 mL of substrate 

solution (25 mM sodium p-nitrophenyl phosphate in buffer solution) in glass centrifuge 

vials. Only 5 mL of buffer solution were added to the vials containing 1 g of field-moist soil 

for blank samples. The vials for the reagent blanks contained 1 g of quartz sand, 4 mL of 

buffer solution and 1 mL of substrate solution. Every vial was vortexed and incubated for 1 h 

in a shaking water bath at 37 °C. Thereafter 1 mL of 0.5 M calcium chloride (CaCl2) solution 

and 4 mL of 0.5 M NaOH solution were added to stop the enzyme reaction and to form the 

product p-nitrophenol (p-NP). Then the vials were vortexed and centrifuged at 4000 rpm for 

15 min. If necessary, the supernatants were diluted with a solution mixture (buffer solution, 

0.5 M CaCl2 solution, 0.5 M NaOH solution 5/1/4 (v/v/v)) and measured at a spectral 

photometer (Varian Cary 100) at a wavelength of 400 nm. The phosphatase activity was 

calculated by comparing absorbance values of the samples with those of standards ranging 

from 0 to 150 µg  p-NP and are expressed in [g p-NP kg-1 h-1]. 

 

 

2.4.3.1.2   Arylsulfatase 

The analysis was performed according to Tabatabai and Bremner (1970). 1 g of field-moist 

soil was merged with 4 mL of buffer solution (0.5 M sodium acetate solution adjusted to pH 

5.8 with glacial acetic acid) and 1 mL of substrate solution (25 mM potassium p-nitrophenyl 

sulfate in buffer solution) in glass centrifuge vials. Only 5 mL of buffer solution were added 

to the vials containing 1 g of field-moist soil for blank samples. The vials for the reagent 

blanks contained 1 g of quartz sand, 4 mL of buffer solution and 1 mL of substrate solution. 

Every vial was vortexed and incubated for 1 h in a shaking water bath at 37 °C. Then 1 mL of 

0.5 M calcium chloride (CaCl2) solution and 4 mL of 0.5 M sodium hydroxide (NaOH) 

solution were added to stop the enzyme reaction and to form the product p-nitrophenol  

(p-NP). Thereafter the vials were vortexed and centrifuged at 4000 rpm for 15 min. If 

necessary, the supernatants were diluted with a solution mixture (buffer solution, 0.5 M 

CaCl2 solution, 0.5 M NaOH solution 5/1/4 (v/v/v)) and measured at a spectral photometer 
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(Varian Cary 100) at a wavelength of 400 nm. The arylsulfatase activity was calculated by 

comparing absorbance values of the samples with those of standards ranging from 0 to 150 

µg p-NP and are expressed in [g p-NP kg-1 h-1]. 

 

 

2.4.3.1.3   Cellulase 

The analysis was performed according to Hope and Burns (1987). 1 g of field-moist soil 

was merged with 5 mL of buffer solution (0.1 M sodium acetate solution adjusted to pH 5.5 

with glacial acetic acid) and 0.5 g of microcrystalline cellulose (Avicel, ∼ 50 µm) in glass 

centrifuge vials. Only 5 mL of buffer solution were added to the vials containing 1 g of field-

moist soil for blank samples. The vials for the reagent blanks contained 1 g of quartz sand,  

5 mL of buffer solution and 0.5 g of Avicel. Every vial was vortexed and incubated for 16 h in 

a shaking water bath at 40 °C with exception of those of the blank samples, which were only 

incubated for 30 min. This was done because samples normally contain cellulose, which 

would act as substrate and lead to calculation mistakes. Then the vials were centrifuged at 

4000 rpm for 15 min. Afterwards the supernatants were shaken end-over-end for 30 min 

with a potassium saturated cation exchange resin to remove disturbing metals for the 

subsequent colourimetric procedure for the determination of reducing sugars according to 

Schinner and von Mersi (1990), which was performed as follows: 

1 mL of the supernatants was diluted to 10 mL with distilled water. For varying cellulase 

activity the dilution volume had to be adjusted according to the standards (see below). 1 mL 

of this dilution was merged with 1 mL of reagent A (0.09 % potassium cyanide in 1.6 % 

sodium carbonate solution) and 1 mL of reagent B (0.05 % potassium ferric hexacyanide 

solution) and heated for 15 min at 100 °C in screw capped test tubes. After cooling down to 

room temperature, 5 mL of reagent C (0.15 % ferric ammonium sulfate and 0.10 % sodium 

dodecyl sulfate in 0.42 % sulfuric acid solution) were added, the test tubes were vortexed 

and allowed to stand at room temperature for 1 h for complete colour formation. The 

cellulase activity was calculated by comparing absorbance values of the samples with those 

of standards ranging from 0 to 15 µg glucose, which were handled like the samples during 

the colourimetric procedure and are expressed in [mg glucose kg-1 h-1]. 
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2.4.3.1.4   Dehydrogenase 

The analysis was performed as described by Malkomes (1993). 1 g of field-moist soil was 

merged with 2 mL of substrate buffer solution (0.5 % triphenyltetrazolium chloride (TTC) in 

buffer solution (0.1 M tris hydroxymethyl aminomethane solution, adjusted to pH 7.6 with  

6 M hydrochloric acid solution)) in glass centrifuge vials. Only 2 mL of buffer solution were 

added to the vials containing 1 g of field-moist soil for blank samples. The vials for the 

reagent blanks contained 1 g of quartz sand and 2 mL of substrate solution. Every vial was 

vortexed and incubated for 24 h in a shaking water bath at 30 °C in the dark. Then 5 mL of 

acetone were added to stop the enzyme reaction and to extract the product triphenyl-

formazane (TPF). Thereafter the vials were shaken end-over-end for 30 min and centrifuged 

at 4000 rpm for 15 min at 5 °C. If necessary the supernatants were diluted with a mixture of 

buffer solution and acetone 2/5 (v/v) and measured at a spectral photometer (Varian Cary 

100) at a wavelength of 546 nm. The dehydrogenase activity was calculated by comparing 

absorbance values of the samples with those of standards ranging from 0 to 300 µg TPF and 

are expressed in [mg TPF kg-1 h-1]. 

 

2.4.3.1.5   Urease 

The analysis was performed according to Kandeler and Gerber (1988). 1 g of field-moist 

soil was merged with 4.5 mL of buffer solution (75 mM disodium tetraborate solution 

adjusted to pH 9.5 with 20 % sodium hydroxide (NaOH) solution) and 0.5 mL of substrate 

solution (80 mM urea in buffer solution) in glass centrifuge vials. Only 5 mL of buffer 

solution were added to the vials containing 1 g of field-moist soil for blank samples. The 

vials for the reagent blanks contained 1 g of quartz sand, 4.5 mL of buffer solution and  

0.5 mL of substrate solution. Every vial was vortexed and incubated for 2 h in a shaking 

water bath at 37 °C. Then 6 mL of acidic potassium chloride (KCl) solution (0.01 M 

hydrochloric acid in 1 M KCl solution) were added to stop the enzyme reaction and to 

extract the product ammonium (NH4+). Thereafter the vials were shaken end-over-end for  

30 min and centrifuged at 4000 rpm for 15 min. The supernatants were analysed for NH4+ by 

the following colourimetric procedure (Kandeler and Gerber, 1988): 

1 mL of the supernatants was merged with 2 mL of distilled water, 2 mL of 0.1 % sodium 

dichloroisocyanurate solution and 5 mL salicylate solution (mixture of 0.3 M NaOH solution 
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and 0.12 % sodium nitroprusside in 17 % sodium salicylate solution 1/1 (v/v)). After 

vortexing the samples were allowed to stand at room temperature for 30 min for complete 

colour formation. If necessary, the samples were diluted with a solution mixture (buffer 

solution / acidic KCl solution (see above) (2/3; v/v), distilled water, salicylate solution (see 

above) and  0.1 % sodium dichloroisocyanurate solution 1/2/5/2 (v/v/v/v)) and measured at a 

spectral photometer (Varian Cary 100) at a wavelength of 400 nm. The urease activity was 

calculated by comparing absorbance values of the samples with those of standards ranging 

from 0 to 15 µg NH4+, which were handled like the samples during the colourimetric 

procedure and are expressed in [mg NH4+ kg-1 h-1]. 

 

 

2.4.3.2   Respiratory parameters 

 

2.4.3.2.1   Basal respiration 

The analysis was performed according to Menyailo et al. (2003). Every sample was 

analysed in duplicate. 5 g of field-moist soil were placed in 60 mL incubation flasks and 

moistened with distilled water to 40 % of water holding capacity (WHC). The flasks were 

sealed with rubber stoppers and preincubated for 3 d at 28 °C. Thereafter the samples were 

moistened to 60 % of WHC, the flasks were closed with rubber stoppers, fixed with 

aluminium crimps and 6.5 mL ambient air were injected to set a pressure of about 100 mbar. 

2.5 mL of headspace air were sampled before and after samples were incubated at 28 °C for 

24 h. The headspace samples were transferred into autosampler vials with a gas-tight syringe 

and analysed for carbon dioxide (CO2) by a gas chromatograph connected to an electron 

capture detector (GC/ECD, Shimadzu GC 14 A) via an autosampler (Dani HSS 1000). 

The respiration rates expressed in [mg CO2 kg-1 h-1] were calculated by comparing peak 

areas of the samples with those of standards ranging from 0.01 to 1.0 % CO2. The CO2 

concentrations before the incubation were subtracted as blanks from those afterwards to 

compensate the initial CO2 concentrations in the flasks. For complete CO2 ascertainment also 

CO2 concentrations, which were dissolved physically using the Bunsen solubility coefficient 

(Equation (1); Gmelin, 1974) and chemically using the pK value (Equation (3); Gmelin, 1974) 

were calculated as follows. 
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[CO2]phys is the concentration of the physically dissolved CO2, α is the Bunsen solubility 

coefficient for CO2 (0.753), Vwater is the volume of the soil water, MVact is the actual mole 

volume calculated according to equation (2), [CO2]gas is the concentration of CO2 in the gas 

phase, pact is the actual atmospheric pressure and pover is the set overpressure in the 

incubation flasks. 
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MVact is the actual mole volume, Tact is the actual temperature, pnorm is the standard 

pressure (1013.25 mbar), MVnorm is the standard volume of 1 M gas (22414 mL), Tnorm is the 

standard temperature (273.15 K) and pact is the actual atmospheric pressure. 
pKpH

physchem COCO −⋅= 10][][ 22  (3) 

[CO2]chem is the concentration of the chemically dissolved CO2, [CO2]phys is the 

concentration of the physically dissolved CO2, pH is the pH value of the soil and pK is the 

pK value of H2CO3 (6.4). 

 

2.4.3.2.2   Substrate-induced respiration 

The analysis was performed according to Menyailo et al. (2003) as described for the basal 

respiration. Glucose was purchased from Fluka, Taufkirchen, Germany. The only difference 

between these analyses was as follows. After three days of preincubation 0.5 mL of 2.5 % 

aqueous glucose solution were added as carbon (C) source. The resulting concentration of 

glucose was 1 g C kg-1 soil. Thereafter the samples were also moistened to 60 % of water 

holding capacity and the analysis was proceeded as described above. 

 

2.4.3.2.3   Microbial biomass 

The analysis was performed using a modified method for substrate-induced respiration 

according to Menyailo et al. (2003) as described above. The differences between this method 

and the method used for the microbial biomass determination are both the preincubation 

and the incubation temperature, which were 22 °C as well as the incubation time, which was 

only 4 h. The microbial biomass (Cmic) expressed in [mg C (100 g)-1] was computed through 
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the respiration rate (x) expressed in [mL CO2 (100 g)-1 h-1] by means of equation (4) developed 

by Anderson and Domsch (1978):     Cmic = 40 · x + 0.37                                               (4) 

 

2.4.3.2.4   Metabolic quotient 

The metabolic quotient is the ratio between basal respiration and microbial biomass and is 

expressed in [mg CO2 (g Cmik)-1 h-1] (Anderson 2003). 

 

 

2.4.3.3   Nitrogen parameters 

 

2.4.3.3.1   Net nitrogen mineralisation 

The analysis was performed according to Menyailo et al. (2003). All chemicals were 

purchased from Fluka, Taufkirchen, Germany. Every sample was analysed in duplicate. 

15 g of field-moist soil were merged with 75 mL 1 M potassium chloride (KCl) solution in 

100 mL plastic flasks. The flasks were shaken end-over-end for 1 h. The samples were filtered 

through folded filters (Schleicher and Schuell, 512 ½), if necessary, the filtrates were diluted 

with 1 M KCl solution and analysed with a continuous flow analyser (CFA, Skalar San+ 

System) for ammonium (NH4+) and nitrate (NO3-). 

The determination of NH4+ is based on a modified Berthelot reaction. NH4+ is chlorinated 

to monochloramine, which reacts with salicylate to 5-aminosalicylate. After the oxidation 

and oxidative coupling a green coloured complex is formed. The concentrations of NH4+ 

were calculated by comparing the absorbance values measured at a wavelength of 660 nm of 

the samples with those of standards ranging from 0.05 to 0.90 µg NH4+ for low and from 0.5 

to 10 µg NH4+ for high sample concentrations and are expressed in [mg NH4+-N kg-1]. 

The determination of NO3- is based on a cadmium reduction method. The sample is 

passed through a column containing granulated cadmium to reduce the NO3- to NO2-, which 

is determined by diazotation with sulfanilamide and coupling with α-naphthylethylene-

amine dihydrochloride to form a red coloured complex. The concentrations of NO3- were 

calculated by comparing absorbance values measured at a wavelength of 540 nm of the 

samples with those of standards ranging from 0.1 to 4.0 µg NO3- for low and from 3 to 30 µg 

NO3- for high sample concentrations and are expressed in [mg NO3--N kg-1]. 
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Further 15 g of field-moist soil were moistened to 60 % of water holding capacity (WHC) 

in 100 mL plastic flasks, which then were sealed with screw caps and incubated at 28 °C for 

14 d. To avoid oxygen deficiency the flasks were opened every 3 d and vented for 5 min. At 

the end of the incubation the samples were analysed for NH4+ and NO3- as described above. 

The net nitrogen mineralisation rate was calculated as the difference between the sum of 

NH4+-N and NO3--N concentrations after and before the incubation and is expressed in  

[mg Nmin kg-1 d-1]. 

 

 

2.4.3.3.2   Net nitrification 

The analysis was performed according to Menyailo et al. (2003) as described for the net 

nitrogen mineralisation but the net nitrification rate was calculated as the difference between 

NO3- concentrations after and before the incubation and is expressed in [mg NO3--N kg-1 d-1]. 

 

 

2.4.3.3.3   Potential denitrification 

The analysis was performed according to Menyailo et al. (2003). All chemicals were 

purchased from Fluka, Taufkirchen, Germany. Every sample was analysed in duplicate.  

5 g of field-moist soil were placed in 60 mL incubation flasks and moistened with distilled 

water to 40 % of water holding capacity (WHC). The flasks were sealed with rubber stoppers 

and preincubated for 3 d at 28 °C. Thereafter 0.5 mL of 2.16 % potassium nitrate in 2.5 % 

aqueous glucose solution were added as nitrogen (N) and carbon (C) source and the samples 

were moistened to 60 % of WHC. The resulting concentration of nitrate was 0.3 g N kg-1 soil 

and that of glucose was 1 g C kg-1 soil. The flasks were closed with rubber stoppers and fixed 

with aluminium crimps. The headspace air was replaced by nitrogen to induce anaerobic 

conditions. 6.5 mL ethyne (approximates 10 % of headspace, generated from calcium carbide 

mixed with distilled water) were injected as an inhibitor of the nitrous oxide (N2O) reductase 

and to set a pressure of about 100 mbar. 2.5 mL of headspace air were sampled before and 

after samples were incubated at 28 °C for 24 h. The headspace samples were transferred into 

autosampler vials and analysed for N2O by a gas chromatograph connected to an electron 

capture detector (GC/ECD, Shimadzu GC 14 A) via an autosampler (Dani HSS 1000). 
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The potential denitrification rates expressed in [mg N2O kg-1 h-1] were calculated by 

comparing peak areas of the samples with those of standards ranging from 0.5 to 250 ppm 

N2O. N2O concentrations before the incubation were subtracted as blanks from those 

afterwards to eliminate the initial N2O concentrations in the flasks. For complete N2O 

ascertainment also the concentrations, which were dissolved physically, were calculated 

according to equations (1) and (2) (page 30). The value of the Bunsen solubility coefficient for 

N2O was 0.544 (Gmelin 1974). N2O is not chemically dissolved in water. 

 

 

2.4.4   Structural parameters 

 

2.4.4.1   Fatty acid nomenclature 

Fatty acids are designated by the total number of carbon atoms. The degree of 

unsaturation is indicated by a number separated from the chain length by a colon. The 

following number divided by ω from that before explains the position of the double bonds 

from the methyl end of the molecule. The prefixes a, i and cy refer to anteiso-, iso- and 

cyclopropyl-branching fatty acids, respectively. A number followed by Me indicates the 

position of a methyl group from the carboxyl end of the molecule (Zelles, 1999). 

 

2.4.4.2   Phospholipid fatty acid analysis 

The following phospholipid fatty acids (PLFA) were determined in this study in the order 

of chromatographic retention: 14:0, i15:0, a15:0, 15:0, i16:0, 16:1ω7c, 16:1ω5c, 16:0, 10Me16:0, 

i17:0, a17:0, cy17:0, 17:0, 10Me17:0, 18:2ω6,9, 18:1ω9c, 18:ω7c, 18:0, 10Me18:0 and 20:4ω6 

(Table 2). The abbreviation PLFA is synonymic to those fatty acids, which are separated from 

phospholipids during derivatisation while sample analysis (see below). 

The analysis of PLFA is divided into three steps: (1) extraction, (2) fractionation and (3) 

derivatisation. The extraction was described by Frostegård et al. (1991), which is based on the 

method by Bligh and Dyer (1959) as modified by White et al. (1979). The fractionation was 

described by Frostegård et al. (1991), which is based on the method by King et al. (1977). The 

derivatisation is a modified method as described by Knapp (1979). Fatty acids are separated 

from phospholipids at first and then they are transformed to fatty acid methyl esters. 
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Table 2: Short forms, molecular weights, ion masses and retention times of (phospholipid) fatty acids 

(methyl esters) and standards used for quantification and identification in selected ion monitoring 

mode. 

Phospholipid fatty acids Short Molecular Target Qualifier Qualifier Retention

(methyl esters) forms weights  [g] ions  [m/z] ions 1   [m/z] ions 2  [m/z] times  [min]

Nonadecanoic acid * 19:0 298.5 74 87 43 19.3

Myristic acid 14:0 228.4 74 87 43 10.5

13-Methylmyristic acid i15:0 242.4 74 87 43 11.5

12-Methylmyristic acid a15:0 242.4 74 87 43 11.7

Pentadecanoic acid 15:0 242.4 74 87 43 12.2

14-Methylpentadecanoic acid i16:0 256.5 74 87 43 13.2

Palmitoleic acid 16:1ω7c 254.4 55 41 74 13.5

11-Hexadecenoic acid 16:1ω5c 254.4 55 41 74 13.7

Palmitic acid 16:0 256.4 74 87 43 13.9

10-Methylpalmitic acid 10Me16:0 270.5 74 87 43 14.6

15-Methylpalmitic acid i17:0 270.5 74 87 43 14.9

14-Methylpalmitic acid a17:0 270.5 74 87 43 15.1

9,10-Methylenepalmitic acid cy17:0 268.5 55 41 74 15.4

Margaric acid 17:0 270.4 74 87 43 15.6

10-Methylmargaric acid 10Me17:0 284.5 74 87 43 16.3

Linoleic acid 18:2ω6,9 280.5 67 55 81 16.8

Oleic acid 18:1ω9c 282.5 55 41 69 16.9

Vaccenic acid 18:1ω7c 282.5 55 41 69 17.0

Stearic acid 18:0 284.5 74 87 43 17.4

10-Methylstearic acid 10Me18:0 298.5 74 87 43 18.1

Arachidonic acid 20:4ω6 304.5 79 67 80 20.2

Tridecanoic acid ** 13:0 214.4 74 87 43  9.1  
* internal Standard,  ** recovery standard. 

 

All organic solvents (residue- or HPLC-grade) were purchased from Promochem, Wesel, 

Germany and deionised water was used (> 18 MΩ). PLFA standards (purity > 98 %) were 

purchased by Larodan Fine Chemicals (Malmö, Sweden), Biotrend (Cologne, Germany), 

Fluka (Taufkirchen, Germany) and Sigma-Aldrich (Seelze, Germany). All glassware was 

rinsed with technical acetone and ethylacetate, washed at 95 °C with a detergent and heated 

at 300 °C overnight before use. 
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For extraction, 5 g of field-moist soil and 18.3 mL of a single phase mixture of chloroform-

methanol-citrate buffer solution (0.15 M aqueous citrate acid solution) 1:2:0.8 (v/v/v) were 

merged in 100 mL glass centrifuge vials and closed with teflon-lined screw caps. The vials 

were shaken for 2 h at 225 rpm on a horizontal shaker, centrifuged at 4000 rpm for 15 min 

and thereafter the supernatants were transferred into separation funnels. An internal 

standard (15 µg 1.2-dinonadecanoyl-sn-glycero-3-phosphatidylcholine in methanol) was 

added to the extracts. The remaining samples in the centrifuge vials were vortexed with 

further 5 mL of the single phase mixture, shaken for 1 h at 225 rpm on a horizontal shaker 

and centrifuged at 4000 rpm for 15 min. The supernatants were combined in the separation 

funnels and 6.2 mL of chloroform and 6.2 mL of citrate buffer solution were added in order 

to separate the organic from the water phase. The separation funnels were shaken for 30 min 

and left overnight for complete separation. 

For fractionation, the lower chloroform phases were concentrated to 200 µL on a rotary 

evaporator (40 °C, 250 mbar). 0.5 g activated silica (silica 60, reinst-grade, 0.063–0.200 mm, 

Merck, Darmstadt, Germany) were slowly poured into a chromatographic column, which 

was filled with chloroform. The chloroform was drained until the level reached the top of the 

silica and then the samples were transferred onto the silica. The columns were eluted 

sequentially with 5 mL of chloroform (abolished), 20 mL of acetone (abolished) and 20 mL of 

methanol. The methanol phases were concentrated to 200 µL on a rotary evaporator (40 °C, 

100 mbar), transferred into reaction vials with methanol and dried under nitrogen stream. 

For derivatisation, 0.5 mL of 0.5 M methanolic sodium hydroxide solution were added to 

the samples, which then were boiled for 10 min at 100 °C. After cooling down at room 

temperature 0.75 mL of 13 % methanolic borontrifluoride solution were added to the 

samples, which thereafter were heated for 15 min at 80 °C. After cooling down at room 

temperature the samples were liquid-liquid extracted. For this purpose, 1 mL of hexane and - 

to enforce the transfer of the PLFA into the organic solvent phase - 0.5 mL of saturated 

sodium chloride solution were added. After shaking the vials on a horizontal shaker at  

225 rpm for 10 min the upper hexane phases were transferred into other reaction vials. This 

separation procedure was repeated twice and after combining the hexane phases in reaction 

vials they were dried under nitrogen stream. Finally, a recovery standard (10 µg tridecanoic 

acid methyl ester in toluene) was added to determine the recovery of the internal standard. 
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The samples were transferred into autosampler vials with toluene and analysed by a gas 

chromatograph (GC) connected to a mass selective detector (MSD) (GC: Hewlett Packard 

(HP) Series II 6890; MSD: HP 6971 A) and an autosampler (HP 7673). The resulting fatty acid 

methyl esters were separated on a 30 m capillary column (HP-5 MS consisting of 5 % phenyl-

methyl siloxan) with an inner diameter of 0.25 mm and a film thickness of 0.25 µm. Helium 

(purity: 99.996 %) was used as carrier gas with a column pressure of 84 kPa and 1 µL of 

sample solution was injected splitless (splitless time: 1.25 min). The injector temperature was 

150 °C and the detector temperature 310 °C. The temperature program was run as follows: 

Initial temperature 80 °C held for 1 min, increased at 7 °C min-1 to 180 °C, increased at 1.3 °C 

min-1 to 195 °C held for 5.4 min, increased at 1.3 °C min-1 to 231 °C and finally increased at  

50 °C min-1 to 300 °C held for 5 min. The ionisation was conducted by electron impact (70 eV) 

mode and the measurement was done in selected ion monitoring mode. The identification of 

the fatty acid methyl esters was based on comparison with retention times and mass spectra, 

which were obtained from standards (Table 2). The internal standard (consisting of two fatty 

acids 19:0 and a phospholipid) was used to compensate sample-processing losses, while the 

recovery standard was used to countervail apparatus-induced measurement variations and 

allowed to quantify the recoveries of the internal standards. The PLFA concentrations were 

calculated as outlined for pesticides by Laabs et al. (1999). The mentioned target ions are 

specific fragment ions per analyte with the highest abundance, while qualifier ions are two 

further characteristic ions after ionisation in the mass selective detector (Table 2). 

 

 

2.5   Statistical analysis 

 

2.5.1   Land use systems 

The heavy metal results were analysed by one-way analysis of variance (ANOVA) using 

the various land use systems as independent variables. For this purpose, the data had to be 

transformed via various continuous functions in order to obtain normally distributed values 

(Backhaus and Erichson, 2003). The means were separated using least significant difference 

(LSD) test with a significance level of P < 0.05. An ANOVA for the pesticide values was not 

performed because not all pesticides were applied on every conventionally managed field. 
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All results of the soil microbial community functional parameters were analysed by  

one-way ANOVA as described for heavy metals. With the aid of a Kaiser normalised and 

Varimax rotated principal component analysis (PCA) with correlation matrix using all soil 

microbial function parameters as variables the data were reduced and correlating parameters 

were combined into independent components. The factor scores were extracted by the 

regression method and Eigenvalues greater than 1. By means of a subsequent discriminant 

analysis using the land use systems as grouping variables and the factor scores of the PCA as 

independent variables the soils were allocated into groups in order to ascertain whether it is 

possible to distinguish soils of different land use systems. Moreover, a hierarchical cluster 

analysis was conducted using the factor scores of the PCA as variables and the land use 

systems as label cases in order estimate similarities between the land use systems. 

With the aid of a Kaiser normalised and Varimax rotated PCA with correlation matrix 

using all soil microbial community structural parameters (phospholipid fatty acids (PLFA) 

expressed in relative abundances of the total PLFA content) as variables the correlating PLFA 

were combined into independent components in order to discriminate between different 

microbial taxonomic groups. Values of saturated, non-branched PLFA (14:0, 15:0, 16:0, 17:0 

and 18:0) were excluded from the PCA because these PLFA are constituents of all microbial 

cell membranes and thus the discrimination between various groups is not possible (Zelles, 

1999). The factor scores were extracted by the regression method and Eigenvalues greater 

than 1. Due to the same objectives as described for the functional parameters a discriminant 

analysis and a hierarchical cluster analysis were conducted as explained above. The absolute 

and relative abundances of the PLFA sum contents for all microbial groups resulting from 

the PCA as well as the total PLFA content were analysed by a one-way ANOVA as described 

for heavy metals. 

Finally, a correlation matrix was calculated using the soil microbial community structure 

(PLFA sum contents of the individual microbial taxonomic groups) and function parameters. 

The significance levels (P < 0.05 and P < 0.01) of the correlation matrix were based on the 

Spearman correlation coefficient. All statistical analyses were performed with SPSS 10.0 for 

Windows. 
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2.5.2   Field experiment 

The pollutant (copper and pesticides) results were analysed by one-way ANOVA using 

the various treatments as independent variables. This analysis was conducted as described 

for heavy metal investigation in the land use system samples (see 2.5.1, page 34). 

All results of the soil microbial community functional parameters were analysed by one-

way ANOVA as described for pollutants. A PCA was conducted with soil microbial function 

parameters as described for the land use system sites (see 2.5.1, page 34). With the aid of a 

subsequent discriminant analysis using the different treatments at respective sampling dates 

as grouping variables and the factor scores of the PCA as independent variables the soils 

were allocated into groups in order to ascertain whether it is possible to distinguish soils of 

the different treatments at all sampling dates. 

A PCA was conducted for the phospholipid fatty acids (PLFA) expressed in relative 

abundances of the total PLFA content as described for the land use system sites (see 2.5.1, 

page 34). Due to the same objectives as defined for the functional parameters a discriminant 

analysis was performed as described above. The absolute and relative abundances of the 

PLFA sum contents for all microbial groups resulting from the PCA as well as the total PLFA 

content were analysed by a one-way ANOVA as described for pollutants. 

Finally, a correlation matrix was calculated using the soil microbial community structure 

(PLFA sum contents of the individual microbial taxonomic groups) and function parameters 

as described for the land use system sites (see 2.5.1, page 34). All statistical analyses were 

performed with SPSS 10.0 for Windows. 
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3.   Results and discussion 

 

3.1   Land use systems 

 

3.1.1   Basic soil parameters 

Texture, which ranged between loamy or clayey silt and silty loam or clay, did not vary a 

lot between soils of the diverse land use systems (Table 3). Agricultural field soils had similar 

values for the remaining basal parameters. However, reference soils showed a significantly 

(P < 0.05) lower pH value and a significantly (P < 0.05) higher C/N ratio due to no carbonate 

and nitrogen fertilisation, respectively, compared to agricultural field soils. Hence, the higher 

C/N ratio in fallow soils was also owing to abandoned manuring. Pasture and reference soils 

exhibited significantly (P < 0.05) higher TOC and TON contents caused by higher dung and 

litter input, respectively, while nutrients were discharged by harvest on agricultural fields. 

 

Table 3: Basic properties of the investigated soils under diverse land use systems (± standard errors). 

Land use Sand Silt Clay pH TOC TON C/N

systems [%] [%] [%] [---] [g kg-1] [g kg-1] [---]

Conv. agr. field   8.8 ± 0.8 62.5 ± 2.8 29.8 ± 2.9 7.1 ± 0.2 23.0 ± 1.7 2.2 ± 0.1 10.3 ± 0.2

Conv. greenh.   8.6 ± 0.8 61.1 ± 1.3 31.7 ± 2.4 7.4 ± 0.3 24.1 ± 1.1 2.0 ± 0.1 10.0 ± 0.1

Org. agr. field 10.9 ± 2.3 64.3 ± 1.0 25.3 ± 1.6 7.1 ± 0.3 23.2 ± 2.0 2.2 ± 0.1 10.3 ± 0.5

Org. greenh.   9.4 ± 1.9 68.4 ± 2.4 23.1 ± 3.1 7.5 ± 0.2 24.6 ± 3.5 2.3 ± 0.3   9.9 ± 0.2

Fallow   9.0 ± 1.4 62.6 ± 1.1 28.9 ± 2.8 7.0 ± 0.2 22.0 ± 1.3 2.0 ± 0.1 10.9 ± 0.2

Pasture   6.9 ± 0.5 66.3 ± 1.5 26.8 ± 1.9 6.7 ± 0.2 29.9 ± 3.6 2.8 ± 0.4 10.4 ± 0.3

Reference   4.3 ± 0.0 62.9 ± 0.0 33.7 ± 0.0 5.7 ± 0.1 36.6 ± 1.0 3.1 ± 0.1 11.7 ± 0.3  
pH: pH value in distilled water, TOC: total organic carbon, TON: total organic nitrogen, C/N: carbon/nitrogen ratio; 

conv.: conventional,  org.: organic,  greenh.: greenhouse,  agr.: agricultural. 

 

 

3.1.2   Pollutants 

 

3.1.2.1   Pesticides 

Figure 3 shows the average pesticide concentrations in soils of the conventional land use 

systems. No mean contents for the same systems such as agricultural field, greenhouse or 
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fallow were computed because different pesticides were applied on individual sites. Hence, 

a calculation of means of the same land use systems would lead to an underestimation of the 

real pesticide contamination situation within the investigation area. With the exception of 

cypermethrin, deltamethrin, malathion and triazofos, which were below the detection limit 

of 0.1 µg kg-1 in every soil sample, all other investigated pesticides could be quantified but 

exclusively in soils of conventionally managed fields and greenhouses (Figure 3). The most 

abundant pesticide endosulfan and its metabolite endosulfan sulfate were also detected in a 

fallow soil, which was previously used as a conventionally cultivated field two years ago. 

The concentrations of carbofuran, chlorpyrifos, chlorothalonil, dimethoate, endosulfan, 

endosulfan sulfate, permethrin and trifluralin varied between 0 and 34.2 µg kg-1 (Figure 3). In 

soils of the remaining sites the pesticide contents were below the detection limit, which is an 

evidence that only on conventionally cultivated fields chemical pest control was performed. 

As expected endosulfan sulfate, α- and β-endosulfan correlated mutually highly significantly  

(P < 0.01, R = 0.600, 0.715, 0.920) because technical endosulfan, which is applied to the fields, 

is a mixture of the two isomers at a ratio of about 7:3 (Siddique et al., 2003) and in soils these 

isomers are degraded to the highly toxic endosulfan sulfate (Antonious and Byers, 1997). 

Miglioranza et al. (1999) reported concentrations of seven organochlorine pesticides (OCP) 

and metabolites between 0 – 60 µg kg-1 in natural and 0 – 100 µg kg-1 in horticultural soils of 

Typic Argiudolls of the Los Padres watershed in Buenos Aires Province, Argentina. 

Miglioranza et al. (2002) found OCP contents between 6.7 – 32.6 µg kg-1 in 0 – 30 cm soil 

depth of an agricultural farm in the southeastern region of Buenos Aires Province. Gonzalez 

et al. (2003) analysed total bulk soil concentrations of endosulfan and endosulfan sulfate of 

16.5 µg kg-1 in untreated soils from an agricultural environment in the southeastern region of 

Buenos Aires province. Miglioranza et al. (2004b) determined OCP concentrations in fluvic 

sediments in the range between 6 and 25 µg kg-1 with endosulfan as the most abundant 

compound. Jergentz et al. (2005) found 0.1 – 150, 13 – 46 and 7.8 µg kg-1 of chlorpyrifos, 

cypermethrin and endosulfan in sediments of small streams in the main soybean area of 

Argentina, respectively. The pesticide contents described in these studies correspond to 

those of the present investigation but mostly only OCPs were analysed. With respect to the 

study area around Buenos Aires no further data were found about the remaining pesticides 

determined in this investigation so that no more comparison to literature data was possible. 
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Figure 3: Average pesticide concentrations in soils of the conventional land use systems under study 

with standard error bars; endosulfan is the total of α- and β-endosulfan; c: conventional, a: agricultural 

field, g: greenhouse, f: fallow, 1 – 4: site replications. 

 

Table 4 shows pesticide thresholds of the Dutch List (1994) for soils and sediments for a 

standard Dutch soil (10 % organic matter and 25 % clay). These thresholds are intervention 

values that signal serious soil contamination when exceeded and are based upon human and 

ecotoxicological criteria. Since these values of the Dutch List are related to other pesticides 

(besides carbofuran) it would not be correct to equate them with those determined in the 

present study. However, they provide approximate benchmarks to estimate environmental 

risk potentials of the analysed pesticide contamination. The threshold for carbofuran of the 

Dutch List (2 mg kg-1, Table 4) is three orders of magnitude higher than the level of 

carbofuran of the present study (1.3 µg kg-1). Similarly, total thresholds of the Dutch List for 

chlorinated pesticides like hexachlorocyclohexanes (2 mg kg-1, Table 4) and drins (4 mg kg-1, 
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Table 4) are at least two orders of magnitude higher compared to the concentrations of 

endosulfan (maximum: 34.2 µg kg-1, Figure 3). Based on the comparison of pesticide contents 

determined in this study and the thresholds for soils and sediments from the Dutch List no 

risk potential is expected from pesticide contamination for the environment of the inner zone 

of the green belt around Buenos Aires at the moment. However, it is strongly suggested to 

further monitor pesticide contents to avoid a pesticide accumulation when the intensive 

pesticide application is maintained in the future. Usually pesticides are applied to soils 

between 0.5 and 2.0 kg ha-1 of the active ingredient in Argentinean horticulture, which 

correspond to theoretical concentrations between 0.4 and 1.6 mg of active ingredient kg-1. 

Assuming that only 1 % of the active agent is absorbed by target organisms (Andrade, et al., 

2005) when compared to the concentrations determined in this study (Figure 3) there is a 

great difference between these levels. Pesticides are lost from soils by physical processes 

(volatilisation, leaching, erosion), chemical and microbial degradation or they are fixed to 

soil particles as bound residues (Gevao et al., 2000), which could be the reason for the low 

concentrations analysed in this study. 

 

Table 4: Limit values of pesticide concentrations [mg kg-1] of the Dutch List (1994) for soils and 

sediments for a standard Dutch soil (10 % organic matter and 25 % clay) and the analysed data for 

carbofuran [mg kg-1] of the present investigation. 

Pesticides DDT, -D, -E Drins HCH Carbaryl Carbofuran Maneb Atrazin

Dutch List 4 4 2 5 2 35 6

Analysed data n. d. n. d. n. d. n. d. 0.0013 n. d. n. d.  
n. d.: not detected,  DDT, -D, -E: total of DDT, DDD, DDE,  Drins: total of Aldrin + Dieldrin + Endrin 

HCH: total of α, β-, γ- and δ-hexachlorocyclohexane. 

 

 

3.1.2.2   Heavy metals 

The average contents of the determined heavy metals in soils of every land use system are 

shown in Figure 4. With the exception of Cd (detection limit: 0.7 mg kg-1) all soil samples 

contained detectable heavy metal contents. They showed a decreasing abundance in the 

order Fe > Mn > Zn > Cu > Pb > Ni > Cd. The latter was detected only in one of the fallow 

sites with an average content of 0.9 mg kg-1. Mean contents in the upper 10 cm of the 

remaining heavy metals are 18 g kg-1 of Fe and 0.7 g kg-1 of Mn, while Zn, Cu, Pb and Ni 
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concentrations are 37, 18, 11 and 7 mg kg-1, respectively. No significant differences (P < 0.05) 

could be identified between the diverse agricultural land use systems. Cu, Fe, Ni and Pb 

contents correlated highly significantly (P < 0.01). Zn correlated significantly (P < 0.05) with 

Fe and Ni and highly significantly (P < 0.01) with Cu. Mn exhibited only significant 

correlations (P < 0.05) to Pb and Cu and there was no correlation (P > 0.05) between Pb and 

Zn. No relationships were found between heavy metals and soil texture and pH values. 
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Figure 4: Average heavy metal contents in soils of the land use systems under study with standard 

error bars;   c: conventional,  o: organic,  a: agricultural field,  g: greenhouse,  f: fallow,  p: pasture,   

r: reference. 
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The system soil-air-water is connected to various exchange processes in the environment. 

Naturally occurring heavy metals are entered into soils over dry and wet deposition from the 

atmosphere and are discharged by wind and water erosion through soil constituents or 

leached into ground water. In surface waters or soils they could be dissolved from the earth 

crust, sprayed into the atmosphere through aerosols or sedimented bound to particles 

(Alloway, 1995). In general, to estimate heavy metal inputs into soils and to assess the 

thereby anthropogenic contribution every of these input pathways have to be taken into 

account. The reference soil exhibited the highest concentrations of Cu, Fe, Pb and Ni and no 

significantly (P > 0.05) lower contents of Mn and Zn in comparison to the other land use 

systems. As this anthropogenically unaffected soil constitutes natural background levels for 

heavy metal contamination in soils of the inner zone of the green belt around Buenos Aires it 

can be assumed that also the agriculturally managed soils only represent background levels. 

Therefore, significant anthropogenic sources for heavy metals could be excluded. The 

slightly but not significantly (P > 0.05) lower Cu, Fe, Pb and Ni levels of the cultivated soils 

compared to the reference soils are likely due to heavy metal exportation into the cultural 

crops, which should be the focus of further studies. 

Ronco et al. (2001) investigated heavy metal contents from stream bottom sediments of the 

Río de la Plata estuary. It was shown that the coastal plain sector behaves as a regional sink 

between the upstream area and the estuary. The authors reported that varying and partially 

high contents of Cd, Cu, Pb and Zn (Table 5) - especially in the polluted Del Gato stream - 

among different streams within the same geomorphological and geological structures 

indicate anthropogenic sources of heavy metals. Camilión et al. (2003) indicated that bottom 

sediment heavy metal concentrations of the south-western coast of the Río de la Plata estuary 

are locally related to neighbouring metal topsoil contents within the basin whereby the 

values in soils are higher than in sediments. The Argiudolls in that study region are 

frequently affected by rainwater erosion. Thus, the fine materials with sorbed heavy metals 

are washed into the rivers, which carry them downstream where the particles are 

sedimented (Camilión et al., 2003). Therefore, higher contents of Cu, Pb and Zn (Table 5) 

compared to those in the present study were not found in the upstream areas, where some of 

the sampling sites were located, but mainly in the lower plains. Bilos et al. (2001) published 

low concentrations of airborne particulate trace metals of sites located in residential, 
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industrial and commercial sectors of La Plata City area. Concentrations of Cd, Cu, Fe, Mn, 

Ni, Pb and Zn, also analysed in the present study, are comparable to values reported for 

cities, which are not heavily polluted such as Birmingham (United Kingdom) or Mallipo 

(South Korea) and are below the general concentrations described for urban particulates 

(Bilos et al., 2001). Via enrichment factors the authors assumed that Pb, Zn, Cu and Cd are 

not only derived from natural, but supplementary from anthropogenic sources such as 

motor exhausts. According to the results of the present and the cited studies (Table 5) - 

besides the hot spot in the Del Gato stream (Ronco et al., 2001) - no alarming contents of 

heavy metals could be found in stream sediments, soils or the atmosphere of the study area. 

 

Table 5: Mean heavy metal contents from stream sediments and topsoils with standard deviations, 

number of sampling sites as well as medians, minimum and maximum contents of the study of Ronco 

et al. (2001), Camilion et al. (2003) and the present investigation. 

Means Std. dev. Sites Medians Minima Maxima

Ronco et al.  (2001)

Copper [mg kg-1] 28.7  27.6 62   68.5 4.0   133.0

Lead [mg kg-1] 34.4  50.0 62 106.5 1.0   212.0

Zinc [mg kg-1] 86.8 152.0 62 351.8 0.5   703.0

Cadmium [mg kg-1]     0.65      0.35 62       1.40   0.50         2.25

Nickel [mg kg-1] 11.9    8.5 60   17.2 0.5     35.2

Iron [g kg-1] 27.7   24.9 55   61.1 0.1   122.0

Manganese [g kg-1]    0.50      0.37 55       0.80   0.01         1.54

Camilion et al.  (2003)

Copper [mg kg-1]   32.1 21.6 64   80.0   4.9   155.0

Lead [mg kg-1]   68.4 69.3 64 156.5   2.0   311.0

Zinc [mg kg-1] 118.2 74.2 64 181.3 17.6   345.0

Present investigation

Copper [mg kg-1] 17.9 2.4 23 18.2 14.0 22.3

Lead [mg kg-1] 11.3 1.4 23 11.2   9.0 13.3

Zinc [mg kg-1] 36.9 5.6 23 36.9 27.5 46.2

Cadmium [mg kg-1]     0.04   0.19 23    0.45    0.00    0.90

Nickel [mg kg-1]   7.0 0.7 23  7.2   6.0   8.3

Iron [g kg-1] 17.9 2.3 23 18.8 15.0 22.5

Manganese [g kg-1]     0.70   0.13 23    0.88     0.57     1.18

S e d i m e n t s

S o i l s

S o i l s

 
Std. dev.: standard deviation. 
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De López Camelo et al. (1997) mentioned that the application of mineral fertilisers used in 

Argentinean agriculture such as rock phosphates could be responsible for higher amounts of 

Cd and Zn, superphosphate for Pb and diammonium phosphate for chrome and Cu in the 

soil. The authors reported that contents of heavy metals varied considerably and that the 

levels of Cd and Pb in some analysed fertilisers were significant relative to those naturally 

present in soils. Lavado et al. (1999) found higher contents of cobalt, Cu, Ni and Pb extracted 

with diethylenetriaminepentaacetic acid in cropped soils compared to pasture soils of the 

Pampa region of Pergamino (33° 56’ S, 60° 34’ W) due to the application of trace element 

enriched mineral phosphate fertilisers. In contrast, in their study, arsenic, Fe, Mn and Zn 

showed lower contents in cropped than in the pasture soils because of uptake by plants as 

micronutrients and exportation by harvest. By reason of no significant differences in heavy 

metal contents in soils of the various land use systems no particular sources for heavy metals 

caused by different agricultural practice could be assumed. 

The concentrations of elements with high environmental risk potential such as Cd, Cu, Ni 

and Pb were lower than the admissible contents for soils of the German soil conservation 

regulation (BBodSchV, 1999) and the Dutch List (1994) (Table 6). The heavy metal contents 

were lower than outlined by Morrás et al. (1998) (Table 7) who studied the geochemical 

composition of Argiudolls and loess sediments in Castelar (northeastern of the province of 

Buenos Aires) in the Pampa Ondulada and were partly only half of the agricultural soils 

analysed by Lavado et al. (1998) (Table 7) who examined heavy metals in Mollisols in Buenos 

Aires City and province. Compared to the investigation of Lavado et al. (2004), who analysed 

background levels of potentially toxic elements in Pampean Mollisols, the present study 

showed lower contents of Cd, Pb and Zn, but similar values of Ni and Cu and slightly higher 

ones for Mn (Table 7) than those found in Typic Argiudolls by these authors. Hence, it is 

reasoned that the determined heavy metal contents are also background levels for the soils of 

the inner zone of Buenos Aires province. 
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Table 6: Thresholds of heavy metal concentrations [mg kg-1] in grassland soils of the German soil 

conservation regulation (BBodSchV, 1999) from aqua regia dissolution for the pollutant transfer 

between soil and crops and of the Dutch List (2004) for soils and sediments for a standard Dutch soil 

(10 % organic matter and 25 % clay). In addition, the highest analysed data for heavy metals [mg kg-1] 

of the present investigation. 

Heavy metals Copper Lead Zinc Cadmium Nickel Arsenic Mercury

BBodSchV 1300 1200 n. d. 20 1900 50  2

Dutch List   190   530 720 12   210 55 10

Analysed data     22     13   46   1       8 n. d. n. d.  
BbodSchV: Bundesbodenschutzverordnung (German soil conservation regulation);  n. d.: no data. 

 

 

Table 7: Mean heavy metal contents from topsoils with standard deviations of the study of Morrás et 

al. (1998), Lavado et al. (1998) and Lavado et al. (2004) and of the present investigation. 

Copper Lead Zinc Cadmium Nickel Iron Manganese

[mg kg-1] [mg kg-1] [mg kg-1] [mg kg-1] [mg kg-1] [g kg-1] [g kg-1]

Morrás et al.  (1998) 24.0 ±   1.7    25.7 ± 13.1  53.7 ±   8.4 n. d.   5.3 ±   2.5 n. d. 0.86 ± 0.06

Lavado et al.  (1998) 30.0 ±   1.5  38.0 ±   3.0  85.0 ±   2.0   12.00 ± 0.75 14.0 ±   2.0 n. d. n. d.

Lavado et al.  (2004) 18.0 ±   8.3  17.7 ±   6.0    48.0 ± 24.1    0.75 ± 0.46   7.3 ±   4.3 n. d. 0.60 ± 0.17

Present investigation 17.9 ±   2.4  11.3 ±   1.4  36.9 ±   5.6    0.04 ± 0.19   7.0 ±   0.7 17.9 ±   2.3 0.70 ± 0.13  
n. d.: no data. 

 

 

 

3.1.3   Functional parameters 

 

3.1.3.1   Enzyme activities 

The acid phosphatase activity ranged between 0.41 and 1.22 g p-nitrophenol (p-NP) kg-1  

h-1 (Figure 5A) and decreased in the order pastures > references > organic agricultural fields > 

conventional agricultural fields > organic greenhouses > fallows > conventional greenhouses. 

The acid phosphatase activity of the pasture soils was significantly (P < 0.05) higher than of 

the soils of all other land use systems. The organically managed soils exhibited a tendentially 

higher acid phosphatase activity than those of the conventionally managed ones, while the 

greenhouse soils had a lower acid phosphatase activity than those of the agricultural fields. 
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The acid phosphatase activity of the fallow soils did not differ from those of all cultivated 

soils, while the activity of the reference soils was slightly higher than those of the agricultural 

field ones. Deng and Tabatabai (1997) reported an acid phosphatase activity between 0.20 

and 0.32 g p-NP kg-1 h-1 in soils of different tillage and residue managements, while de la Paz 

Jimenez et al. (2002) found an acid phosphatase activity of 0.36 – 1.26 p-NP kg-1 h-1 in Vertic 

Argiudolls of forestal, pastural and agricultural managements located at La Paz in Entre Rios 

Province, Argentina, being in the same order of magnitude as the reported values. 

The arylsulfatase activity ranged between 0.11 and 0.41 g p-nitrophenol (p-NP) kg-1 h-1 

(Figure 5B) and decreased in the order pastures > references > organic agricultural fields > 

organic greenhouses > fallows > conventional agricultural fields > conventional greenhouses. 

The pasture soils showed a significantly (P < 0.05) higher arylsulfatase activity than those of 

all other soils except for the reference ones, which exhibited a significantly (P < 0.05) higher 

arylsulfatase activity than the fallows and conventional agricultural fields and greenhouses. 

The arylsulfatase activity of the organically managed soils was tendentially higher than that 

of the conventionally managed ones, while the greenhouse soils had a tendentially lower 

arylsulfatase activity than those of the agricultural fields. The arylsulfatase activity of the 

fallow soils did not differ from those of all cultivated soils. Deng and Tabatabai (1997) found 

an arylsulfatase activity of 0.10 – 0.20 g p-NP kg-1 h-1 in soils of different tillage and residue 

managements, while de la Paz Jimenez et al. (2002) detected an arylsulfatase activity between 

0.02 and 0.19 g p-NP kg-1 h-1 in Vertic Argiudolls of forestal, pastural and agricultural 

managements located at La Paz in Entre Rios Province, Argentina, which are in the same 

order of magnitude as the reported values. 

The cellulase activity ranged between 8.0 and 15.4 mg glucose kg-1 h-1 (Figure 5C) and 

decreased in the order pastures > organic greenhouses > references > organic agricultural 

fields > conventional greenhouses > fallows > conventional agricultural fields. However, 

because of the high standard errors no significant differences (P > 0.05) could be detected. 

The organically managed soils exhibited a tendentially higher cellulase activity than the 

conventionally managed ones and the greenhouse soils showed higher values compared to 

the agricultural field ones. The cellulase activity of the fallow soils did not differ from those 

of all cultivated soils, while the pasture and reference soils exhibited the highest cellulase 

activity. Kandeler et al. (1996) reported a cellulase activity of 3.0, 3.2 and 4.7 mg glucose  
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kg-1 h-1 in a Dystric Lithosol, an Eutric Cambisol and a Calcaric Phaeozem, respectively, being 

50 to 80 % lower than the values in the present study. Omar and Abdel-Sater (2001) found a 

cellulase activity between 5.5 and 11.4 mg glucose kg-1 h-1 in a botanical garden soil in Assiut, 

Egypt, being in the same order of magnitude as the reported values. 
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Figure 5: Average enzyme activities in soils of the land use systems under study with standard error 

bars; c: conventional, o: organic, a: agricultural field, g: greenhouse, f: fallow, p: pasture, r: reference;  

A: acid phosphatase, B: arylsulfatase, C: cellulase, D: dehydrogenase, E: urease. 
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The dehydrogenase activity ranged between 1.6 and 4.3 mg triphenylformazane (TPF)  

kg-1 h-1 (Figure 5D) and decreased in the order pastures > organic agricultural fields > 

conventional greenhouses > conventional agricultural fields > fallows > references > organic 

greenhouses. The dehydrogenase activity of the pasture soils was significantly (P < 0.05) 

higher than that of soils of the conventionally managed agricultural fields, organic 

greenhouses, fallows and reference. Additionally, the organically managed greenhouse soils 

had a significantly (P < 0.05) lower dehydrogenase activity than those of the conventionally 

managed greenhouses and organically managed agricultural fields. The dehydrogenase 

activity of the fallow and reference soils did not differ from those of cultivated soils. Soils of 

the organically managed agricultural fields had a higher dehydrogenase activity than those 

of the greenhouses but no differences could be detected between the different management 

systems. Kandeler et al. (1996) reported a dehydrogenase activity of 3.7, 4.0 and 9.5 mg TPF 

kg-1 h-1 in a Dystric Lithosol, an Eutric Cambisol and a Calcaric Phaeozem, respectively, while 

Montero et al. (2004) found a dehydrogenase activity between 1.4 and 4.3 mg TPF kg-1 h-1 in 

non-tilled Entic Haplustolls and Vertic Argiudolls in three villages in Argentina, which is 

well in the range as the reported values. 

The urease activity ranged between 31.8 and 58.7 mg ammonium (NH4+) kg-1 h-1  

(Figure 5E) and decreased in the order fallows > conventional agricultural fields > references 

> pastures > conventional greenhouses > organic agricultural fields > organic greenhouses. 

However, because of the high standard errors no significant differences (P > 0.05) could be 

detected. The urease activity was tendentially higher in the conventionally managed soils in 

comparison to the organically managed ones, while the greenhouse soils exhibited lower 

values than those of the agricultural fields. The urease activity of the fallow, pasture and 

reference soils did not differ from those of the cultivated ones. Conti et al. (1998) reported an 

urease activity between 22 and 28 mg NH4+ kg-1 h-1 of a silty-loamy Typic Argiudoll of the 

Argentinean Pampa in the province of Cordoba, Argentina, while de la Paz Jimenez et al. 

(2002) found an urease activity between 5.4 and 33.6 mg NH4+ kg-1 h-1 in Vertic Argiudolls of 

forestal, pastural and agricultural managements located at La Paz in Entre Rios Province, 

Argentina. Both investigations exhibited an urease activity being at the lower end of the 

reported values. 
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Summarising, the reported ranges of individual enzyme activities can be considered as 

typical for soils under agricultural use. In general, the highest enzyme activities were found 

in soils of pastures and the reference. With respect to the differentiation of various land use 

systems, only the dehydrogenase activity exhibited significant (P < 0.05) differences between 

soils of conventional and organic managements and between those of indoor and outdoor 

cultivations. 

 

3.1.3.2   Respiratory parameters 

The basal respiration rate ranged between 2.7 and 6.1 mg carbon dioxide (CO2) kg-1 h-1 

(Figure 6A) and decreased in the order pastures > references > fallows > conventional 

agricultural fields > organic greenhouses > organic agricultural fields > conventional 

greenhouses. The pasture and reference soils exhibited a significantly (P < 0.05) higher basal 

respiration rate than those of all other land use systems, which did not show any trends 

between different management systems or indoor and outdoor cultivation. Emmerling and 

Udelhoven (2002) analysed a basal respiration rate of 1.6 and 3.0 mg CO2 kg-1 h-1 in arable 

and grassland soils (Cambisols, Luvisols, Fluvisols and Stagnosols), respectively, while 

Svensson and Pell (2001) determined a rate between 0.4 – 1.5 mg CO2 kg-1 h-1 in differently 

cropped systems of Haplic Phaeozems and Eutric Cambisols in southern Sweden. Teklay et 

al. (2006) found a basal respiration rate of 1.4 mg CO2 kg-1 h-1 in Mollisols of agricultural 

fields in Wondo Genet, Ethiopia. 

The substrate-induced respiration rate ranged between 50.6 and 92.7 mg CO2 kg-1 h-1 

(Figure 6B) and decreased in the order conventional greenhouses > organic greenhouses > 

pastures > organic agricultural fields > references > conventional agricultural fields > fallows. 

Soils of the conventionally managed agricultural fields and fallows exhibited significantly  

(P < 0.05) lower values than those of the two greenhouse cultivations and the pasture soils. 

Furthermore, the substrate-induced respiration rate of the conventional greenhouse soils was 

significantly (P < 0.05) higher than that of the organically managed agricultural field soils. 

The greenhouse soils exhibited a tendentially higher substrate-induced respiration rate in 

comparison to that of the agricultural field soils, while no differences with respect to the 

management systems were obvious. The fallow soils exhibited similarly low values as those 

of the conventional agricultural fields. Svensson and Pell (2001) found a substrate-induced 
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respiration rate between 6.9 and 17.1 mg CO2 kg-1 h-1 in differently cropped systems of Haplic 

Phaeozems and Eutric Cambisols in southern Sweden, while Templer et al. (2005) analysed a 

rate of 48 mg CO2 kg-1 h-1 in agricultural soils of the Los Haitises region of the Dominican 

Republic. The mean rate by Teklay et al. (2006) ranged from 10.0 to 18.0 mg CO2 kg-1 h-1 in 

Mollisols of agricultural fields in Wondo Genet, Ethiopia, depending on nutrient supply. 

Hence, the reported values were up to ten times higher than those of comparable soils given 

in literature, which was eventually caused by methodological differences. 
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Figure 6: Respiratory parameters in soils of the land use systems under study with standard error 

bars; c: conventional, o: organic, a: agricultural field, g: greenhouse, f: fallow, p: pasture, r: reference; 

A: basal respiration, B: substrate-induced respiration, C: microbial biomass,  D: metabolic quotient. 

 

The microbial biomass carbon content (Cmic) ranged between 0.64 and 1.20 g Cmic kg-1 

(Figure 6C) and decreased in the order pastures > organic agricultural fields > conventional 

agricultural fields > organic greenhouses > fallows > references > conventional greenhouses. 

The pasture soils exhibited a significantly (P < 0.05) higher content than those of all other 
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land use systems. A tendentially higher content was found in soils of the agricultural fields 

in comparison to the greenhouse soils, while no differences were detected between soils of 

the organic and conventional managements. The content of the fallow and reference soils did 

not differ from that of all cultivated soils. Alvarez et al. (1998) found a microbial biomass 

content of 0.2 – 0.5 and 1.5 g Cmic kg-1 in soils of agricultural fields and pastures, respectively, 

in Typic Argiudolls of a study area of the INTA in Pergamino, Argentina. Emmerling and 

Udelhoven (2002) reported 0.30 and 0.47 g Cmic kg-1 in arable and grassland soils (Cambisols, 

Luvisols, Fluvisols and Stagnosols), respectively, while Mishra et al. (2005) determined a 

biomass content between 1.0 and 3.5 g Cmic kg-1 in pastural Inceptisols and Alfisols of the 

USA. Templer et al. (2005) analysed a biomass content of 1.7 g Cmic kg-1 in agricultural soils of 

the Los Haitises region of the Dominican Republic. Therefore, the present study confirmed a 

higher biomass content in pastures compared to agricultural fields. 

The metabolic quotient ranged between 4.0 and 9.1 mg CO2 (g Cmic)-1 h-1 (Figure 6D) and 

decreased in the order references > conventional agricultural fields > fallows > pastures > 

organic greenhouses > organic agricultural fields > conventional greenhouses. The values of 

the reference soils were significantly (P < 0.05) higher than of those of all other land use 

systems. The metabolic quotient is a measure of how effective microorganisms are. Hence, 

higher values indicate lower efficiency in microbial transformation activity and in conserving 

carbon resources in the reference than in agriculturally used soils. Comparable to the basal 

respiration no trends were found towards the management systems or the indoor and 

outdoor cultivations. 

Corroborating the results of the enzyme activities, the pasture and reference soils showed 

the highest values of the respiratory parameters, while except for the substrate-induced 

respiration no significant (P > 0.05) differences between the soils of conventional and organic 

managements and between indoor and outdoor cultivations could be detected. The reported 

respiratory parameter values (except for substrate-induced respiration) were comparable to 

those of other studies and can thus be considered as typical values for agricultural soils. 

 

3.1.3.3   Nitrogen parameters 

The net nitrogen mineralisation rate ranged between 1.0 and 2.8 mg Nmin kg-1 d-1  

(Figure 7A) and decreased in the order references > conventional greenhouses > pastures > 
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conventional agricultural fields > organic agricultural fields > organic greenhouses > fallows. 

However, because of the high standard errors no significant differences (P > 0.05) could be 

detected. The conventionally cultivated soils exhibited a tendentially higher net nitrogen 

mineralisation rate than the organically cultivated ones. The highest rate of the reference 

soils indicated reductions in supply of naturally plant-available nitrogen in all agriculturally 

used soils, while the net nitrogen mineralisation rate of the fallow and pasture soils did not 

differ from the cultivated ones. Mishra et al. (2005) determined a net nitrogen mineralisation 

rate between 0.4 and 5.9 mg Nmin kg-1 d-1 in pastural Inceptisols and Alfisols of the USA, 

while Templer et al. (2005) found a rate of 0.9 mg Nmin kg-1 d-1 in agricultural soils of the Los 

Haitises region of the Dominican Republic. Both studies showed values for the net nitrogen 

mineralisation in the same order of magnitude as the reported ones. 
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Figure 7: Nitrogen parameters in soils of the land use systems under study with standard error bars;  

o: organic, c: conventional,  a: agricultural field,  g: greenhouse,  f: fallow,  p: pasture,  r: reference;   

A: net nitrogen mineralisation, B: net nitrification, C and D: N2O and CO2 emission at the potential 

denitrification, respectively. 
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The net nitrification rate ranged between 1.7 and 3.6 mg NO3--N kg-1 d-1 (Figure 7B) and 

decreased in the order references > pastures > conventional greenhouses > conventional 

agricultural fields > organic greenhouses > organic agricultural fields > fallows. However, 

because of the high standard errors no significant differences (P > 0.05) could be detected. 

With the exception of a distinctly higher net nitrification rate in the pasture soils these results 

corresponded to those of the net nitrogen mineralisation. Templer et al. (2005) analysed a net 

nitrification rate of 0.9 mg NO3--N kg-1 d-1 in agricultural soils of the Los Haitises region of 

the Dominican Republic. 

The potential denitrification rate ranged between 0.9 and 3.0 mg N2O kg-1 h-1 (Figure 7C) 

and decreased in the order organic greenhouses > conventional greenhouses > organic 

agricultural fields > fallows > conventional agricultural fields > references > pastures. 

However, because of the high standard errors no significant differences (P > 0.05) could be 

detected. A tendentially higher rate was found in soils of the greenhouses compared to those 

of the agricultural fields, while no differences in the management systems were detected. 

The pasture and reference soils showed much lower values than the other ones possibly due 

to the lower pH values (Table 3, page 37) since the optimum for the potential denitrification 

is known being pH 7– 8 (Šimek and Hopkins, 1999). Templer et al. (2005) analysed a potential 

denitrification rate of 1.0 mg N2O kg-1 d-1 in agricultural soils of the Los Haitises region of the 

Dominican Republic being in the same order of magnitude as the reported values, while 

Svensson and Pell (2001) found a lower rate between 0.1 – 0.6 mg N2O kg-1 h-1 in differently 

cropped systems of Haplic Phaeozems and Eutric Cambisols in southern Sweden. 

The CO2 emission rate of the potential denitrification under anaerobic condition ranged 

between 7.0 and 21.6 mg CO2 kg-1 h-1 (Figure 7D) and decreased in the order organic 

greenhouses > conventional greenhouses > fallows > conventional agricultural fields > 

organic agricultural fields > pastures > references. However, because of the high standard 

errors no significant differences (P > 0.05) could be detected. The trend corresponded to that 

of the N2O emission rate of the potential denitrification because during anaerobic respiration 

N2O and CO2 are released simultaneously from the soil. 

The potential denitrification is the only soil microbial functional parameter, which 

exhibited the lowest values for the pasture and reference soils, while these soils showed the 

highest values for the net nitrogen mineralisation and net nitrification. Furthermore, no 
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significant differences (P > 0.05) were observed between soils of the organic and conventional 

management systems and between indoor and outdoor cultivations. However, as the values 

were similar to those of other investigations about agricultural soils, they seem to be typical 

for soils under these land use systems. 

 

3.1.3.4   Principal component analysis 

As shown above, by means of individual soil microbial community functional parameters 

it was not possible to distinguish between soils of different land use systems, in particular 

between soils of different management systems as well as indoor and outdoor cultivations. 

Hence, a principal component analysis (PCA) was applied in order to pool correlating data 

into independent components. For the analysed parameter values a Kaiser-Meyer-Olkin-

measure of sampling adequacy of 0.573 was computed, which indicated that a PCA was 

useful for the data set, while a value lower than 0.0005 calculated from the Bartlett's Test of 

Sphericity exhibited that significant relationships among the analysed parameters existed 

and that the data set was suitable for a PCA (Backhaus and Erichson, 2003). Four principal 

components explaining 75.6 % of the total variance were extracted via PCA (Table 8). 

 

Table 8: Varimax rotated (after Kaiser normalisation) component matrix of the principal component 

analysis of all investigated soil microbial functional parameters. Each component combines variables 

with the highest factor loadings (bold) in a column. 

Microbial functional parameters Component 1 Component 2 Component 3 Component 4 Interpretation

Microbial biomass  0.91  0.10  0.09  0.00

Arylsulfatase activity  0.80  0.16 -0.04  0.19 Microbial

Acid phosphatase activity  0.64  0.15 -0.62  0.17 capacity

Dehydrogenase activity  0.55  0.23 -0.43 -0.16

Net nitrogen mineralisation  0.07  0.85 -0.03  0.13

Net nitrification  0.35  0.82 -0.11  0.26 Mineralisation

Substrate-induced respiration  0.10  0.74  0.32 -0.16 activity

Cellulase activity  0.17  0.61 -0.27  0.35

Potential denitrification (N2O) -0.01  0.03  0.87 -0.27 Nitrogen
Potential denitrification (CO2) -0.18  0.18  0.82 -0.02 transformation

Urease activity  0.26 -0.34  0.55 -0.21 potential

Metabolic quotient -0.06  0.14 -0.20  0.93 Metabolic
Basal respiration  0.54  0.22 -0.14  0.77 activity  
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Besides the microbial biomass carbon the first component explaining 21.0 % of the total 

variance (microbial capacity) included arylsulfatase, acid phosphatase (not highly specific 

because of similarly high correlation coefficients in two components) and dehydrogenase 

activities. This result was concordant with that of Taylor et al. (2002) who examined strong 

correlations between these parameters in comparison of enzyme activities using various 

techniques. This indicated that the bigger the microbial biomass the more enzymes are 

released into the soil in order to degrade large molecules of the soil organic matter and the 

higher is the catabolic activity regarding the dehydrogenase activity. The second component 

(mineralisation activity) explaining 20.4 % of the total variance was composed of nitrogen 

(net nitrogen mineralisation and net nitrification) and carbon (substrate-induced respiration 

and cellulase activity) mineralisation parameters. In ecosystems, in which easily degradable 

organic matter such as organic manure is incorporated the activity of hydrolytic enzymes 

like cellulases is stimulated whereby glucose is produced. This glucose release increases the 

substrate-induced respiration that enhances the mineralisation activity of the soil microbes. 

The third component (nitrogen transformation potential) explaining 19.7 % of the total 

variance contained anaerobic N2O and CO2 emission rates of the potential denitrification and 

urease activity. Particularly, the N2O and CO2 emissions correlated since nitrate is used as 

oxygen source during the anaerobic respiration and is degraded simultaneously to N2O and 

CO2. The fourth component (metabolic activity) explaining 14.5 % of the total variance 

consisted of the metabolic quotient and basal respiration, which are both indicators of turn-

over and instability of the microbial biomass (Wardle et al., 1999). 

 

3.1.3.5   Hierarchical cluster analysis 

Subsequent to the principal component analysis (PCA) a first discriminant analysis was 

performed calculated via the factor scores of the PCA in order to distinguish between soils of 

the seven diverse land use systems. In this analysis strong similarities between conventional 

agricultural fields and fallows (data not shown) were ascertained. As already mentioned 

above, all fallow sites were previously conventionally cultivated. Hence, a differentiation of 

soils with the aid of soil microbial functional parameters possibly only works in medium or 

long term land uses and is less suitable for short term changes. Consequently, these two land 

use systems should show similarities with regard to these investigated parameters. In order 
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to clarify this hypothesis, a hierarchical cluster analysis was conducted demonstrating that 

soils of conventionally managed fields and fallows are very similar (Figure 8). Furthermore, 

similarities between soils of conventionally and organically managed agricultural fields and 

between soils of conventionally and organically managed greenhouses could be observed. 

Therefore, not the cultivation systems, but on a small scale climatic or other factors resulting  

from varieties of indoor or outdoor cultivation were more responsible for differences in soil 

microbial community functional parameters within agricultural managements. The reference 

and pasture soils were distinctly separated from these agricultural management systems and 

formed own clusters in each case (Figure 8). 

 

 0                      5                     10                    15                    20                    25 
Land use systems +---------+---------+---------+---------+---------+ 
 
Conventional agricultural fields òûòòòòòø 
Fallows ò÷     ùòòòòòø 
Organic agricultural fields òòòòòòò÷     ùòòòòòòòòòòòòòòòòòòòòòòòø 
Conventional greenhouses òòòòòûòòòòòòò÷                       ùòòòòòòòòòòòø 
Organic greenhouses òòòòò÷                               ó           ó 
References òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷           ó 
Pastures òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷ 

Figure 8: Dendrogram of the hierarchical cluster analysis of the land use system soils under study. 

 

3.1.3.6   Discriminant analysis 

By reason of the results obtained by the cluster analysis, a second discriminant analysis 

was performed. Soils of the same land use were expected being in the same discriminant 

group (Table 9). The two land use systems conventional agricultural fields and fallows were 

combined into group A (conventional agricultural field). 96.9 % of the total variance of all 

group centroids were described by the first (78.2 %) and the second (18.7 %) canonical 

discriminant function and correlation coefficients close to 1 (0.965 and 0.873) indicated strong 

correlations between discriminant scores and groups. Very low Wilks' Lambda values close 

to 0 (0.011 and 0.153) showed that the group means were different, which was confirmed by 

a high significance greater than 99.5 %. The third and fourth canonical discriminant function 

explaining 2.9 and 0.2 % of the total variance, respectively, were insignificant. In Figure 9 the 

first two resulting canonical discriminant functions are plotted and it is visible that a 

differentiation among groups of specific land use systems was possible. 
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Figure 9: Plot of the values of canonical discriminant function 1 and 2 (x- and y- axis, respectively) at 

six classification items. Framed sampling sites could not be correctly allocated (see Table 9). 

 

According to the actual groupings of soils of the different land use systems of the 

discriminant analysis (Table 9) a definite separation between soils of pastures, references and 

conventional agricultural fields including fallows compared to the other soils could be found 

because these land use systems were allocated into the expected groups. The organic 

greenhouse of site 3 and the organic agricultural field of site 2 were allocated to group C 

(organic agricultural field) and group D (organic greenhouse), respectively. This could be 

explained by a change of indoor and outdoor cultivation because farmers around Buenos 

Aires often cultivate in greenhouses at first and then remove them and use the field outdoor 

and vice versa. The conventional agricultural field of site 4 was allocated to group C (organic 

agricultural field). This site was an agricultural research area, which belonged to the INTA in 

La Plata. Due to previous investigations this site was formerly organically managed and only 

recently by reasons of other concerns its land use has been changed into conventional 

management. Ultimately, the fallow of site 1 was conventionally cultivated in former times, 

however, it was used as a greenhouse site. Consequently, the fallow soils were not long 

enough under this land use and thus, they still exhibited the same soil microbial functional 

properties like soils of conventionally managed fields, which they were before. Therefore, the 

reported results of the statistical analysis clearly showed that this approach could serve as a 

test procedure to differentiate between soils of different medium- to long-term agricultural 

land use practices when compared to anthropogenically unaffected sites. 
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Table 9: Allocation of soils of six different land use systems into groups via discriminant analysis 

(conventional agricultural fields combined with fallows in group A). Bold sampling sites could not be 

correctly allocated. 

Discriminant groups Land use systems Expected groupings Actual groupings

ca 1,  ca 2,  ca 3,  ca 4 ca 1,  ca 2,  ca 3,

f 1,  f 2,  f 3,  f 4 f 2,  f 3,  f 4

Group B Conventional greenhouse (cg) cg 1,  cg 2,  cg 3,  cg 4 cg 1,  cg 2,  cg 3,  cg 4,  f1

Group C Organic agricultural field (oa) oa 1,  oa 2,  oa 3,  oa 4 oa 1,  oa 3,  oa 4,  og 3,  ca 4

Group D Organic greenhouse (og) og 1,  og 2,  og 3 og 1,  og 2,  oa 2

Group E Pasture (p) p 1,  p 2,  p 3 p 1,  p 2,  p 3

Group F Reference (r) r 1,  r 2,  r 3 r 1,  r 2,  r 3

Group A Conventional agricultural field (ca)

 
1 – 4: sampling sites. 

 

3.1.3.7   Ecological significance 

The ecological significance of the investigated parameters among the different land use 

systems can tendentially be estimated in Figure 10, in which parts A, B, C and D exhibit the 

factor scores of the principal components (PC, Table 8, page 54): PC 1 (Microbial capacity: 

soil microbial biomass carbon, arylsulfatase, acid phosphatase and dehydrogenase activities),  

PC 2 (Mineralisation activity: substrate-induced respiration, cellulase activity, net nitrogen 

mineralisation and net nitrification), PC 3 (Nitrogen transformation potential: potential 

denitrification and urease activity) and PC 4 (Metabolic activity: basal respiration and 

metabolic quotient), respectively. According to this, the soils of conventional agricultural 

fields and fallows (group A of the discriminant analysis) showed medium levels of PC 1 and 

3, the lowest levels of PC 2 and high levels of PC 4. The soils of conventional greenhouses 

(group B of the discriminant analysis) were characterised by the lowest levels of PC 1 and 4, 

medium levels of PC 3 and the highest levels of PC 2. The soils of organic agricultural fields 

(group C of the discriminant analysis) exhibited medium levels of all PC, while soils of the 

organic greenhouses (group D of the discriminant analysis) showed low levels of PC 1, 

medium levels of PC 2 and 4 and the highest levels of PC 3. The pasture soils (group E of the 

discriminant analysis) were characterised by the significantly (P < 0.05) highest levels of PC 

1, medium levels of PC 2 and 4 and the lowest levels of PC 3. The reference soils (group F of 

the discriminant analysis) had the significantly (P < 0.05) highest levels of PC 4, high levels of 

PC 1 and 2 and low levels of PC 3. 
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Figure 10: Factor scores of all four principal components (PC) of the land use systems under study 

with standard error bars; c: conventional, o: organic, a: agricultural field, g: greenhouse, f: fallow,  

p: pasture, r: reference;  A: PC 1 (Microbial capacity: microbial biomass carbon, acid phosphatase, 

arylsulfatase and dehydrogenase activities), B: PC 2 (Mineralisation activity: substrate-induced 

respiration, cellulase activity, net nitrogen mineralisation and net nitrification), C: PC 3 (Nitrogen 

transformation potential: potential denitrification and urease activity) and D: PC 4 (Metabolic activity: 

basal respiration and metabolic quotient). 

 

Therefore, in comparison to the anthropogenically unaffected soils it was obvious that any 

change of soil management into agricultural land use led to a strong reduction of the 

metabolic activity (basal respiration and metabolic quotient), while the remaining 

components were affected only slightly. Mainly pasture soils showed an enhanced microbial 

capacity (microbial biomass carbon and arylsulfatase, dehydrogenase and acid phosphatase 

activities) and a reduced nitrogen transformation potential (potential denitrification and 

urease activity). The soils of greenhouse managements exhibited only a tendentially reduced 

microbial capacity (microbial biomass carbon and arylsulfatase, dehydrogenase and acid 

phosphatase activities) and a slightly enhanced mineralisation activity (substrate-induced 

respiration, cellulase activity, net nitrogen mineralisation and net nitrification), while among 

conventional and organic management systems no differences were found. 

BA 

C D

Fa
ct

or
  s

co
re

s 
 o

f  
th

e 
 p

rin
ci

pa
l  

co
m

po
ne

nt
s 



3.   Results and discussion  -  Land use systems 60

3.1.4   Structural parameters 

 

3.1.4.1   Microbial biomass 

The sum of all determined phospholipid fatty acid (PLFA) concentrations is a measure of 

a viable microbial biomass, since phospholipids are readily degraded after cell death (Zelles, 

1997) and thus, these biomass values can be compared for every land use system (Figure 11). 

Joergensen and Emmerling (2006) recently have published a conversion factor of 5.8 ± 2.3 of 

total PLFA contents (µmol kg-1) into microbial biomass carbon (mg kg-1), while in the present 

investigation a conversion factor of 10.4 ± 2.6 (N = 69) was calculated between total PLFA 

content and microbial biomass carbon content (calculated via substrate-induced respiration, 

3.1.3.2, page 50). However, conversion factors are only reasonable for particularly defined 

PLFA to be analysed and converted into microbial biomass. Otherwise, diversely calculated 

biomass data are not comparable. Therefore, the results are further on presented as total 

PLFA concentration instead of microbial biomass, which decreased in the soils of different 

land use systems in the order references (100 % ± 15.6 %) > pastures (81.5 ± 7.8 %) > organic 

agricultural fields (72.6 ± 7.8 %) > conventional agricultural fields (65.1 ± 5.2 %) > organic 

greenhouses (62.1 ± 6.2 %) > conventional greenhouses (61.5 ± 9.1 %) > fallows (55.0 ± 4.3 %). 

The differences between the reference soils and those of every other land use system besides 

the pastures and organic agricultural fields were significant (P < 0.05). Hence, any change to 

agricultural land use leads to a reduction of soil microbial biomass. Additionally, the second 

highest biomass content in the pasture soils was significantly (P < 0.05) higher than that of 

the lowest of the fallow soils. This means that pasture soils were able to maintain microbial 

biomass due to nutrient inputs through animal manure but the fallow soils exhibited no 

recovery from agricultural land use. Within the various cultivation systems, no significant  

(P > 0.05) differences in microbial biomass content were found. These results are comparable 

to those of Waldrop et al. (2000) who showed that the microbial biomass content in various 

cultivated soils were not significantly different. Also Wander et al. (1995) and Petersen et al. 

(1997) could not find significant differences in microbial biomass content between differently 

cultivated Alfisols and Inceptisols in Pennsylvania and Typic Agrudalfs developed on glacial 

deposits, respectively. In comparison of indoor and outdoor cultivations of the same 

management systems it is visible that the latter tendentially exhibited a higher microbial 
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biomass content, which corresponded to the results of Ibekwe and Kennedy (1998) who 

detected a lower content in greenhouse Mollisols than on agricultural field ones. 
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Figure 11: Total PLFA content in soils of the land use systems under study with standard error bars;  

c: conventional,  o: organic,  a: agricultural field,  g: greenhouse,  f: fallow,  p: pasture,  r: reference. 

 

The total PLFA content correlated highly significantly (P < 0.01) with total organic carbon 

(TOC) and total organic nitrogen (TON) contents (Figure 12a) indicating a close connection 

between nutrient concentrations and the amount of the microbial biomass. In addition, the 

total PLFA content showed highly significant (P < 0.01) correlations to soil microbial function 

parameters such as acid phosphatase and arylsulfatase activity, basal and substrate-induced 

respiration, soil microbial biomass (calculated using the substrate-induced respiration) and 

net nitrification (Figure 12b). The correlation with soil microbial biomass corresponded to the  
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Figure 12a: Correlation plots (P < 0.01, N = 69) of total PLFA content with total organic carbon (TOC; 

R = 0.557) and total organic nitrogen (TON; R = 0.562) contents. 

Phospholipid  fatty  acid  content  [µmol kg-1] 
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Figure 12b: Correlation plots (P < 0.01, N = 69) of total PLFA content with soil microbial functional 

parameters such as acid phosphatase activity (PA; R = 0.429), arylsulfatase activity (AA; R = 0.636), 

basal respiration (BR; R = 0.441), substrate-induced respiration (SIR; R = 0.375), microbial biomass 

(MB; R = 0.587) and net nitrification (NN; R = 0.369).  

 

results as reported for Typic Agrudalfs (Petersen et al., 1997), for red soils of south-western 

China (Yao et al., 2000) and for forest soils of northern Germany (Bååth and Anderson, 2003) 

but no correlation with the pH value could be found in contrast to the latter investigation. 
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3.1.4.2   Principal component analysis 

Individual PLFA cannot be used to represent specific species both because an individual 

bacterial or fungal species can contain numerous fatty acids and because the same fatty acids 

occur in many different organisms. However, with the aid of a principle component analysis 

(PCA) correlating PLFA were pooled into independent principal components, which then 

could be allocated to different microbial taxonomic groups according to literature (see 

below). For this purpose, relative abundances of every PLFA were calculated, each PLFA 

being used as variable in the PCA. A Kaiser-Meyer-Olkin-measure of sampling adequacy of 

0.687 was computed, which indicated that a PCA was useful for the data set, while a value 

lower than 0.0005 calculated from the Bartlett's Test of Sphericity exhibited that significant 

relationships among the variables existed and that the data were suitable for PCA (Backhaus 

and Erichson, 2003). Four principal components explaining 77.8 % of the total variance were 

extracted via PCA (Table 10). Allocations of the determined PLFA to particular microbial 

groups according to the PCA are summarised in Table 11 and are discussed below. 

 

Table 10: Varimax rotated (after Kaiser normalisation) component matrix of the principal component 

analysis of individual PLFA. Each component combines variables with the highest factor loadings 

(bold) in a column. PLFA 10Me16:0 was unspecific because it showed high factor loadings in two 

components (italic and underlined). 

PLFA Component 1 Component 2 Component 3 Component 4

10Me17:0  0.91 -0.09  0.03  0.15

10Me18:0  0.84 -0.22  0.18 -0.03

cy17:0  0.78  0.48  0.17  0.20

a17:0  0.74 -0.27  0.44  0.05

20:4ω6  0.66  0.26 -0.26 -0.18

i17:0  0.63 -0.33  0.14  0.46

18:1ω7c -0.59  0.47 -0.34 -0.08

16:1ω5c  0.09  0.89 -0.00 -0.07

16:1ω7c -0.32  0.87 -0.12  0.05

10Me16:0  0.01 -0.64  0.06  0.60

a15:0  0.09 -0.00  0.92  0.00

i15:0  0.03  0.01  0.80  0.33

i16:0  0.47 -0.42  0.64  0.18

18:1ω9c -0.01 -0.11 -0.17 -0.89

18:2ω6,9 -0.38  0.31 -0.32 -0.47  
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Table 11: Allocation of PLFA to microbial groups according to the principal component analysis. 

Gram +, Actino- Gram - Gram +, Not Unspecific

anaerobic  b. mycetes bacteria aerobic  b. representative PLFA

cy17:0 A,B 10Me17:0 A 20:4ω6 D 16:1ω5c A,F a15:0 A,C 18:1ω9c E,F 10Me16:0 14:0 A

 a17:0 A,C 10Me18:0 A 16:1ω7c A,F  i15:0 A,C  18:2ω6,9 E,F 15:0 A

  i17:0 A,C 18:1ω7c A,F  i16:0 A,C 16:0 A

A = Zelles, 1999;   B = Burke et al ., 2003;   C = Steinberger et al ., 1999 17:0 A

D = Cavigelli et al ., 1995;  E = Ruess et al ., 2002;  F = Treonis et al ., 2004 18:0 A

Protozoa Fungi

 
b.: bacteria. 

 

The PLFA cy17:0, a17:0, i17:0, 10Me17:0, 10Me18:0 and 20:4ω6 were combined in the first 

component explaining 28.9 % of the total variance. Within this component three microbial 

groups were in close connection to each other. The PLFA cy17:0 is a biomarker for both 

Gram positive anaerobic and Gram negative bacteria (Burke et al., 2003; Zelles, 1999). 

Because of the fact that the methyl-branched PLFA a17:0 and i17:0, which are biomarkers for 

Gram positive bacteria (Zelles, 1999; Steinberger et al., 1999), were also allocated into this 

component, these three PLFA were considered as biomarkers for Gram positive, anaerobic 

bacteria. Furthermore, the PLFA 10Me17:0 and 10Me18:0 – generally known as biomarkers 

for actinomycetes (Zelles, 1999) – and the PLFA 20:4ω6 representing the protozoa (Cavigelli 

et al., 1995) also showed high factor loadings in the first component. Consequently, both 

microbial groups also being able to live under anaerobic conditions (Amador et al., 2006) 

exhibited strong correlations to the above-mentioned taxonomic group for the investigated 

data set. 

The non-branched, mono-unsaturated PLFA 16:1ω5c and 16:1ω7c in the second principal 

component explaining 19.9 % of the total variance are biomarkers for Gram negative bacteria 

(Zelles, 1999; Treonis et al., 2004). The PLFA 18:1ω7c showed a high negative factor loading 

in the first component, which indicated an opposite trend than the Gram positive, anaerobic 

bacteria, actinomycetes and protozoa. This PLFA also had a quite high factor loading in the 

second component. According to Treonis et al. (2004) the PLFA 18:1ω7c also stands for Gram 

negative bacteria and thus, it was included into the second component. However, by reason 

of the high factor loadings in the two principal components it was not very sensitive for this 

microbial group. 
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The third component explaining 16.7 % of the total variance contained anteiso- and iso-

branched PLFA a15:0, i15:0 and i16:0, which are known as biomarkers for Gram positive 

bacteria (Zelles, 1999; Steinberger et al., 1999). Therefore, this component combined Gram 

positive, aerobic bacteria since these PLFA did not correlate with those of the first, which has 

already included Gram positive, anaerobic bacteria.  

Within the fourth component explaining 12.3 % of the total variance the PLFA 18:1ω9c 

and 18:2ω6,9 exhibited the highest negative factor loadings. These PLFA are typical for fungi 

(Treonis et al., 2004). Ruess et al. (2002) extracted these two PLFA at high concentration in 

membranes of 16 different taxonomic groups of fungi living in soil. Moreover, a significant 

positive correlation between PLFA 18:2ω6,9 and ergosterol was detected, which is known as 

a characteristic compound of fungal cell membranes (Bååth and Anderson, 2003). 

The PLFA 10Me16:0 exhibited similar factor loadings in two principal components, while 

it showed an opposite trend than the remaining PLFA in both components. Therefore, this 

PLFA – generally known as biomarker for actinomycetes (Zelles, 1999) – was not considered 

being representative for any particular taxonomic group in this study because it could also 

be derived from other microorganisms such as sulfate reducing bacteria (Pelz et al., 2001; 

Chang et al., 2001), anaerobic ammonium oxidizing bacteria (Mills et al., 2006) and generally 

from all eubacteria (Wakeham et al., 2006). 

In the following text, absolute PLFA contents and their percentage changes in soils of the 

different land use systems relative to the reference soils (Table 12) are discussed for every 

microbial taxonomic group. 

 

Table 12: Percentage changes of absolute PLFA contents of the microbial taxonomic groups in soils 

of the land use systems under study relative to the reference soils with standard errors. 

Land use

systems

Conv. agr. field 64.4 ±   8.6 63.2 ±   8.4 86.0 ±   5.5 82.4 ±   4.8 52.3 ±   6.8 76.3 ±   4.7

Conv. greenh. 54.2 ±   3.6 50.1 ±   7.8 48.9 ± 16.4 64.7 ± 13.0 53.1 ±   7.4 63.0 ±   8.7

Org. agr. field 67.2 ±   6.7 58.8 ±   9.1 83.3 ± 12.6 95.8 ± 14.3 60.6 ±   8.6 84.3 ± 10.2

Org. greenh. 51.6 ±   4.4 44.4 ±   8.8 84.9 ± 26.8 71.3 ±   6.6 53.6 ±   7.8 76.9 ±   9.5

Fallow 50.1 ±   4.7 47.4 ±   9.0 73.0 ± 19.9 73.4 ±   9.5 46.1 ±   2.3 58.6 ± 11.4

Pasture 80.6 ± 11.8 87.8 ± 10.5 77.2 ± 17.6 86.7 ± 12.8 74.7 ± 13.3 89.8 ±   4.3

Reference 100.0 ± 19.1  100.0 ± 19.9 100.0 ± 11.8 100.0 ± 14.7 100.0 ± 20.4 100.0 ± 15.7

Actino-

mycetes

Gram +,

anaerobic  b.
Fungi

Gram +,

aerobic  b.

Gram -

bacteria
Protozoa

 
Conv.: conventional, org.: organic, agr.: agricultural, greenh.: greenhouse, b.: bacteria. 



3.   Results and discussion  -  Land use systems 66

3.1.4.3   Individual microbial taxonomic groups 

The PLFA content indicating Gram positive, anaerobic bacteria (Figure 13) decreased in 

the order references > pastures > organic agricultural fields > conventional agricultural fields 

> conventional greenhouses > organic greenhouses > fallows. The content of the reference 

soils was significantly (P < 0.05) higher than that in soils of the other land use systems 

besides the organic agricultural fields and the pastures, which showed significantly (P < 0.05) 

higher values than soils of the conventionally and organically managed greenhouses and the 

fallows. The PLFA content in soils of the organic agricultural fields was also significantly  

(P < 0.05) higher than in the fallow soils. Greenhouse cultivation apparently increased the 

effect that any agricultural land use decreased the microbial biomass. However, differences 

between the organically and conventionally cultivated systems could not be found. Gram 

positive, anaerobic bacteria reduced up to 50 % in fallow soils, while pasture soils showed 

the lowest decrease up to 20 %. The biomass of Gram positive, anaerobic bacteria exhibited 

highly significant (P < 0.01) correlations with TOC (R = 0.544) and TON (R = 0.569) contents. 

A highly significant (P < 0.01) negative correlation was found with the pH value (R = – 0.339). 

The PLFA content indicating actinomycetes (Figure 13) decreased in the order references > 

pastures > conventional agricultural fields > organic agricultural fields > conventional 

greenhouses > fallows > organic greenhouses. The reference soils contained the significantly 

(P < 0.05) highest actinomycetes biomass compared to that in soils of the other land use 

systems besides the pastures, which showed significantly (P < 0.05) higher values than soils 

of the conventionally and organically managed greenhouses and fallows. Thus, the content 

of actinomycetes relative to the reference soils behaved similar in comparison to the Gram 

positive, anaerobic bacteria besides those of soils of the organic agricultural fields, which 

showed decreases up to 41 % compared to 33 % of the Gram positive, anaerobic bacteria. The 

content in agriculturally used soils was reduced even up to 56 %. Nevertheless, the pasture 

soils contained up to 88 % of the actinomycetes content relative to the reference soils. In soils 

under greenhouse cultivation the content reduced more than in soils of outdoor cultivations, 

while differences between conventionally and organically managed systems were not found. 

The actinomycetes biomass correlated highly significantly (P < 0.01) with TOC (R = 0.484) 

and TON (R = 0.538) contents but only significantly (P < 0.05) with water (R = 0.284) content. 

A highly significant (P < 0.01) negative correlation was found with the pH value (R = – 0.641). 
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Figure 13: PLFA contents of different microbial taxonomic groups in soils of the land use systems 

under study with standard error bars; conv.: conventional, org: organic, agr.: agricultural. 

 

The PLFA content indicating protozoa (Figure 13) decreased in the order references > 

conventional agricultural fields > organic greenhouses > organic agricultural fields > pastures 

> fallows > conventional greenhouses. However, no significant (P > 0.05) differences between 

the land use systems under study were found in the PLFA content of this taxonomic group. 

The highest decrease of the protozoa content up to 51 % relative to the reference soils was 

found in the conventionally managed greenhouse soils whereas every other agriculturally 

used soil showed a lower content up to 17 %. The pasture soils exhibited the highest content 

of 77 % and those of the fallows of 73 %. Besides the conventionally managed greenhouse 
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soils no differences between both the indoor and outdoor and the conventionally and 

organically managed systems were found. The protozoa biomass correlated significantly  

(P < 0.05) with the soil water content (R = 0.247) and showed a highly significant (P < 0.01) 

negative correlation with the pH value (R = – 0.379). 

The PLFA content indicating Gram negative bacteria (Figure 13) decreased in the order 

references > organic agricultural fields > pastures > conventional agricultural fields > fallows 

> organic greenhouses > conventional greenhouses. However, no significant (P > 0.05) 

differences between the investigated land use systems could be found in the PLFA content of 

this microbial group. The soils of organically managed agricultural fields showed an almost 

equal content (96 %) of Gram negative bacteria relative to the reference soils followed by the 

pasture soils (87 %) and those of the conventionally managed agricultural fields (82 %). The 

highest reduction of up to 35 % exhibited the fallow soils as well as the conventionally and 

organically managed greenhouse soils. Therefore, the Gram negative bacteria exhibited a 

tendentially lower content in soils of the greenhouse compared to the outdoor cultivations, 

while soils of the organically managed systems showed a tendentially higher content than 

the conventionally managed ones. The biomass of the Gram negative bacteria correlated 

significantly (P < 0.05) with TOC (R = 0.242) and TON (R = 0.293) contents but no correlation 

was found with the pH value. 

The PLFA content indicating Gram positive, aerobic bacteria (Figure 13) decreased in the 

order references > pastures > organic agricultural fields > organic greenhouses > conventional 

greenhouses > conventional agricultural fields > fallows. The reference soils exhibited a 

significantly (P < 0.05) higher PLFA content of Gram positive, aerobic bacteria than those of 

the other land use systems besides the pastures, which showed a significantly (P < 0.05) 

higher content than the fallow soils. The pasture and fallow soils had the lowest (25 %) and 

highest (54 %) decrease, respectively, relative to the reference soils. No significant differences 

with respect to Gram positive, aerobic bacteria could be observed among all agricultural land 

use systems. The biomass of Gram positive, aerobic bacteria correlated highly significantly  

(P < 0.01) with TOC (R = 0.678), TON (R = 0.611) and water (R = 0.359) contents but showed a 

highly significant (P < 0.01) negative correlation with the pH value (R = – 0.369). 

The PLFA content indicating fungi (Figure 13) decreased in the order references > 

pastures > organic agricultural fields > organic greenhouses > conventional agricultural fields 
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> conventional greenhouses > fallows. However, no significant (P > 0.05) differences were 

found in the PLFA content of this taxonomic group. The fungi content exhibited the lowest 

decrease in the pasture soils (10 %) and the highest one in the fallow soils (41 %) relative to 

those of the reference. Indoor cultivations showed a higher decrease in fungi content than 

outdoor cultivations and the organically managed soils had a slightly higher content than the 

conventionally managed ones. The fungal biomass correlated highly significantly (P < 0.01) 

with the TON content (R = 0.308) and significantly (P < 0.05) with the TOC content (R = 0.289) 

but no correlation was found with the pH value. 

Summarising, the absolute contents of individual microbial taxonomic groups basically 

behaved like the microbial biomass resulting from the total PLFA content. The soils of the 

reference exhibited the highest biomass of all taxonomic groups, followed by those of the 

pastures. A higher biomass content was observed in soils of agricultural fields compared to 

greenhouse soils, which might be caused by various climatic factors, different irrigation or 

tillage systems among indoor and outdoor cultivations. With the exception of slightly higher 

contents of fungi and Gram negative bacteria no differences were detectable between soils of 

conventional and organic management systems. Ibekwe and Kennedy (1999) found mono-

unsaturated fatty acids in highest amounts in both field and greenhouse samples followed 

by saturated and branched chain fatty acids. The fallow soils mostly showed the lowest 

contents of the microbial groups that could be ascribed to changed soil conditions by reasons 

of land use abandonment that microbes have to cope with. Unfortunately, due to lack of 

literature no comparison of absolute contents with other investigations about PLFA in soils 

of different agricultural land use systems was possible. The significant positive correlations 

of microbial groups with soil organic matter (TOC and TON) are in good agreement with the 

results of Allison et al. (2005) and Yao et al. (2000) indicating that sustainable soil organic 

matter management would also positively influence soil microbial biomass and thus nutrient 

cycling. Negative correlations of bacteria and protozoa with the pH values are in contrast to 

the investigations of Allison et al. (2005) and Treonis et al. (2004), while also no correlation 

between fungi and pH values was detected by Bååth and Anderson et al. (2003) and Treonis 

et al. (2004). However, it is generally known that neutral pH values favour bacterial growth, 

while fungi tend to dominate at acidic conditions in contrast to other soil microorganisms 

(Glaser et al., 2004). 
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3.1.4.4   Microbial community composition 

In this investigation soils derived from younger quaternary eolian sediments with similar 

silty texture and developed under the same subtropical climate (Table 3) were selected so 

that it can be assumed that differences in the microbial community structure were due to the 

actual land use. The relative contribution of the individual taxonomic groups to the total 

PLFA content decreased in the order Gram positive, aerobic bacteria ~ Gram negative 

bacteria > fungi > Gram positive, anaerobic bacteria > actinomycetes > protozoa in soils of all 

land use systems (Figure 14). Gram negative bacteria exhibited a significantly (P < 0.05) 

higher relative contribution in soils of the fallows, conventionally and organically managed 

agricultural fields in comparison to those of the conventionally managed greenhouses, 

pastures and the reference, while compared to the organically cultivated greenhouse soils 

their contribution was only tendentially but not significantly (P > 0.05) higher. Hence, the 

rapidly growing Gram negative bacteria, which make use of a variety of different readily 

available carbon sources (Burke et al., 2003) caused a conspicuous change in microbial 

community composition. Light variabilities in the relative contributions within all other 

microbial groups among the land use systems were not significant (P > 0.05). Bossio et al. 

(2006) explained that a low relative abundance of mono-unsaturated fatty acids representing 

Gram negative bacteria indicates restricted aeration and / or lower carbon availability. The 

authors found that the differences between wetland and agricultural sites stood for 20 % of 

all variability in PLFA profiles and was greater than seasonal and spatial variability. Despite 

a high total organic carbon content in the pasture and reference soils (Table 3, page 37) the 

relative contribution of Gram negative bacteria was very low (Figure 14). Hence, their higher 

contribution in soils of the fallows, conventionally and organically managed agricultural 

fields could not be ascribed to high carbon availability because in these soils the organic 

carbon content was lower than in soils of the other land use systems (Table 3, page 37). Thus, 

this fact might be caused by better aeration due to higher tillage activity and resulting lower 

soil density on the one hand, or due to other climatic conditions on the other hand in soils of 

the agricultural fields and the fallows, which formerly have been treated as conventionally 

managed agricultural fields, in comparison to the anthropogenically unaffected, pasture and 

greenhouse soils. Contradictory, Yao et al. (2000) described a switch from a Gram positive 

dominated population to more Gram negative species being indicative of progressive change 
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from oligotrophic to more eutrophic conditions. This would mean that agricultural fields 

were fertilised more when compared to greenhouse soils and consequently, pastures and the 

reference are tendentially the richest in nutrients. 
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Figure 14: Relative contribution of the individual microbial taxonomic groups in soils of the land use 

systems under study with standard error bars; conv.: conventional, org: organic, agr.: agricultural, 

greenh.: greenhouse. 

 

Relative to the reference soils the contribution of Gram positive, anaerobic bacteria at the 

sum content of all detected microbial taxonomic groups slightly decreased in soils of all land 

use systems, while that of the actinomycetes decreased more besides pasture soils, in which a 

light increase was observable (Table 13). With the exception of little decreases in soils of 

pastures and conventionally cultivated greenhouses the relative contribution of protozoa 

mainly increased in the remaining land use systems. Gram positive, anaerobic bacteria 

exhibited the most distinct relative decrease of all land use systems when compared to the 

reference soils, while the only microbial groups, which showed a clear relative increase were 

fungi and Gram negative bacteria, although these taxonomic groups absolutely decreased. 
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Table 13: Percentage changes of relative abundances of the microbial taxonomic groups in soils of 

the land use systems under study relative to the reference soils with standard errors. 

Land use

systems

Conv. agr. field 99.1 ±   7.4 97.5 ±   7.3 129.5 ±   6.2 127.1 ±   6.4 80.7 ±   5.0 118.0 ±   4.7

Conv. greenh. 92.7 ±   9.3 89.1 ± 20.2 91.2 ± 34.9 102.5 ±   7.4 87.7 ±   3.0 103.2 ±   6.9

Org. agr. field 94.9 ±   8.6 85.2 ± 15.1 119.0 ± 23.6 130.5 ±   8.1 84.2 ±   7.0 116.8 ±   9.1

Org. greenh. 84.4 ±   2.8 72.4 ± 11.4 134.3 ± 40.3 114.8 ±   6.1 86.7 ±   4.5 123.5 ±   4.4

Fallow 93.4 ± 10.4 87.9 ± 16.3 126.3 ± 33.7 132.1 ±   8.9 86.1 ±   5.9 104.1 ± 13.0

Pasture 99.2 ±   5.5 109.0 ±   3.9 91.4 ± 16.3 105.2 ±   5.7 91.6 ±   7.8 111.9 ±   8.9

Reference 100.0 ±   3.6 100.0 ±   4.8 100.0 ± 12.4 100.0 ±   1.0 100.0 ±   4.7 100.0 ±   3.3

Gram +,
Fungi

aerobic  b.

Gram +, Actino-
Protozoa

Gram -

anaerobic  b. mycetes bacteria

 
Conv.: conventional,  org.: organic,  agr.: agricultural,  greenh.: greenhouse,  b.: bacteria. 

 

Bossio et al. (1998) reported that changes over time in the microbial community of two 

Californian Entisols were of greater magnitude than changes associated with management 

regimes. In contrast to the present investigation, Bossio et al. (1998) were able to discriminate 

microbial communities with the aid of PLFA profiles in different soils and differentiated 

those that had developed under various agricultural management systems. Similar results 

were found in a study about PLFA in tropical soils where the microbial community structure 

varied measurably on different soil and land use types whereas soil types had greater effects 

on the community than did the management of these soils (Burke et al., 2003). Furthermore, it 

was demonstrated that soil management had an influence on soil microbial community 

structure by comparing PLFA profiles in tropical forest and converted Mollisols under 

pineapple plantations in Tahiti (Waldrop et al., 2000). The authors showed that especially 

biomarkers for Gram positive bacteria were relatively less abundant in plantation than in 

forest soils. However, this is in contrast to the results of Burke et al. (2003) who reported that 

biomarkers for Gram positive bacteria tended to be relatively more abundant in agricultural 

treatments. Both Waldrop et al. (2000) and Burke et al. (2003) agreed that actinomycetes and 

fungi were more important in agricultural or plantation soils compared to the forest ones. 

Equal results were obtained for protozoa (Burke et al., 2003), while Gram negative bacteria 

showed no discernable pattern in response to managements (Waldrop et al., 2000). Bossio et 

al. (2005) found PLFA profiles, which were primarily sensitive to land use conversion in a 

landscape in western Kenya but also differentiated soil types and soil management effects on 

microbial communities. Forest soils were indicative of a higher relative abundance of Gram 
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negative bacteria and fungi and conversely, agricultural soils indicated higher levels of 

actinomycetes and Gram positive bacteria (Bossio et al., 2005). Ibekwe and Kennedy (1998) 

found higher relative abundances of branched fatty acids representing Gram positive 

bacteria in soils of agricultural fields in comparison to greenhouse soils, while fatty acids 

reported to be of origin of Gram positive bacteria were present in high proportion in both 

non-rhizosphere and rhizosphere in agricultural soils (Ibekwe and Kennedy 1999). 

Steenwerth et al. (2002) determined higher incidences of markers for Gram positive bacteria, 

fungi and eukaryotes particularly in perennial grassland sites – which could be comparable 

with fallows – when compared to agricultural fields. Van der Wal et al. (2006) reported that 

fungal biomass was low at the start of land abandonment and increased during the first two 

years afterwards. After this initial increase of fungal biomass no further increase was 

apparent and thus, the authors concluded that this was caused by stopping agricultural 

management activities (van der Wal et al., 2006). 

In the present study, it was surprising that large inputs of organic as well as inorganic 

fertilisers over many years did not cause more pronounced changes in microbial community 

composition. Also neither the application of pesticides nor the unintended entry of heavy 

metals through sewage sludge or heavy metal containing mineral fertilisers in conventional 

cultivations hardly had effects, what possibly could be explained by low concentrations in 

the soils under study. Furthermore, soil compaction and manure input on pastures did not 

seem to have any significant effects on these soils. The results may indicate that eventually 

plant cover, varying climatic conditions due to different irrigation or tillage activities in 

indoor compared to outdoor cultivations – as described for Gram negative bacteria – had 

stronger effects in agricultural soils around Buenos Aires. For future studies more soils of 

different types and texture as well as of other environmental or land use factors likely to 

influence soil microbial communities are needed to be analysed in order to examine other 

potential sources responsible for changes in community composition and to check for the 

applicability of PLFA pattern as indicators of microbial soil biodiversity. In this investigation 

PLFA analysis generally was capable to detect potential changes in soil microbial community 

composition. The intensive pressure on land use led to a drastic reduction of the microbial 

biomass but fortunately the structure of the soil microbial decomposer community kept 

within a limit. 
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3.1.4.5   Discriminant and hierarchical cluster analysis 

With the aid of a discriminant analysis calculated by the factor scores resulting from the 

principal component analysis of the determined PLFA, it was not possible to discriminate 

between soils of the diverse land use systems (data not shown). Hence, it can be concluded 

that soil microbial community function parameters were more capable to distinguish among 

soils of the different land use systems than soil microbial community structure ones. These 

results are in contrast to those of Puglisi et al. (2005) who found strong effects after changing 

environmental conditions of soils by evaluating PLFA patterns using multivariate statistical 

analyses. Similar to the statistical analysis of the functional parameters (Figure 8, page 56) a 

hierarchical cluster analysis was performed using the factor scores as variables and the land 

use systems as label cases with the objective to identify similarities between soils of the land 

use systems. This cluster analysis (Figure 15) showed strong similarities in PLFA pattern of 

greenhouse soils, which were very different to those of agricultural fields. Pasture and fallow 

soils showed almost the same PLFA pattern, while being similar to those of conventional and 

organic agricultural fields. Reference soils formed a single cluster. Hence, the pasture soils 

behaved totally different in comparison to the hierarchical cluster analysis of the functional 

parameters, in which they formed an own cluster. However, good agreement resulted from 

cultivated soils. The microbial parameters showed similarities between soils of greenhouses, 

which distinctly differed from those of agricultural fields indicating that not the soils of the 

same management systems exhibited the highest similarities but those of indoor or outdoor 

cultivations. In both hierarchical cluster analyses the reference soils were allocated to single 

clusters showing the most varieties in comparison to anthropogenically affected soils. 

 

 0                       5                    10                    15                    20                    25 
Land use systems +---------+---------+---------+---------+---------+ 
 
Fallows òûòòòòòø 
Pastures ò÷     ùòòòòòòòòòòòòòø 
Organic agricultural fields òòòòòòò÷             ùòòòø 
Conventional agricultural fields òòòòòòòòòòòòòòòòòòòòò÷   ùòòòòòòòòòòòòòòòòòòòòòòòø 
Conventional greenhouses òòòûòòòòòòòòòòòòòòòòòòòòò÷                       ó 
Organic greenhouses òòò÷                                             ó 
References òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷ 

Figure 15: Dendrogram of the hierarchical cluster analysis of the land use systems under study. 
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3.1.4   Linking soil microbial community structure to function 

Schloter et al. (2003b) stated that microbial community structure as its own is of no value 

as soil quality indicator and has to be combined with functional parameters. Another 

possibility to use structural microbial diversity as an indicator would be to monitor 

taxonomic groups of microbes, which are known to influence ecosystemary processes 

(Schloter et al., 2003b). Correlation coefficients and significance levels between soil microbial 

community structure and function parameters of the soils under study are given in Table 14. 

In contrast to Waldrop et al. (2000) who correlated the relative abundances of individual 

PLFA with enzyme activities, in this study absolute microbial taxonomic group contents 

were correlated with enzyme activities, respiratory and nitrogen parameters. Because of a 

low contribution to the microbial community composition the protozoa biomass exhibited 

the lowest connection to the functional parameters compared to the other microbial groups. 

Only significantly (P < 0.05) negative correlations could be found with substrate-induced 

respiration and net nitrification. This became more distinct regarding correlations with soil 

microbial biomass. Those microbial groups showing the lowest contribution to total PLFA 

content (protozoa and actinomycetes; Figure 14) were not correlated, while those showing a 

higher contribution were correlated. Hence, Gram positive bacteria representing the highest 

proportion of the microbial biomass exhibited the most correlations to the soil microbial 

functional parameters indicating the highest ecological significance in the soils under study. 

Besides urease activity, metabolic quotient and potential denitrification the biomass of Gram 

positive, aerobic bacteria showed mainly highly significant (P < 0.01) correlations with all 

analysed functional parameters. Both Gram positive, anaerobic bacteria and actinomycetes 

exhibited mainly highly significant (P < 0.01) positive correlations to acid phosphatase, 

arylsulfatase, dehydrogenase activity, basal respiration and metabolic quotient and highly 

significant (P < 0.01) negative correlations to potential denitrification. Furthermore, Gram 

positive, anaerobic bacteria correlated significantly (P < 0.05) with microbial biomass and net 

nitrification. Thus, the taxonomic group of Gram positive bacteria played an important role 

for nutrient release in the studied soils. Gram positive bacteria are considered being stress 

tolerators (Waldrop et al., 2000), which grow slowly and are able to metabolise complex 

organic substrates such as lignin and humic acids more readily than Gram negative bacteria 

(Burke et al., 2003). Basal respiration can serve as an indicator of total carbon turn-over and 
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reflects the availability of soil organic matter (Yao et al., 2000). Therefore, due to the higher 

organic matter content particularly in pasture and reference soils (Table 3, page 37) all Gram 

positive bacteria and fungi had highly significant (P < 0.01) correlations to basal respiration 

and thus demonstrated good carbon turn-over and availability. This especially applied to 

Gram positive, anaerobic bacteria and actinomycetes since they were additionally correlated 

with the metabolic quotient, which is a measure for degradation rates of organic carbon 

(Anderson,  2003). By reason of the fact that a lot of enzymes are necessary to decompose soil 

organic matter these groups likewise were often correlated with enzyme activities except for 

urease. Gram negative bacteria had highly significant (P < 0.01) correlations to arylsulfatase 

and urease activity, microbial biomass and significant (P < 0.05) correlations to potential 

denitrification. This explained why this group is the only one correlating positively with the 

latter anaerobic process and thus being involved therein in contrast to the even negatively 

correlated Gram positive bacteria. This corresponded to the general knowledge that mainly 

Gram negative bacteria e. g. Paracoccus denitrificans and pseudomonads e. g. Pseudomonas 

stutzeri besides some Gram positive Bacillus ssp. are responsible for denitrification (Suharti 

and de Vries, 2005). Because of very low ammonium contents (< 0.04 mg kg-1, data not 

shown) in all soils under study nitrifying Gram negative bacteria like Nitrosomonas ssp. or 

Nitrobacter ssp. did not correlate with net nitrogen mineralisation or net nitrification but with 

urease activity, which delivers ammonium necessary for nitrification by degrading urea. 

Correlations between Gram positive bacteria and net nitrogen mineralisation as well as net 

nitrification were not due to direct connections but they were caused by ample TON contents 

in soils (Table 3, page 37). The same is also true for fungi, exhibiting correlations to microbial 

biomass as well as to basal and substrate-induced respiration indicating high metabolising 

activity. 
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Table 14: Correlation coefficients between PLFA contents of the microbial taxonomic groups and soil 

microbial functional parameters (N = 69). 

Soil microbial

functional parameters

Acid phosphatase 0.604 ** 0.688 ** 0.210 0.017 0.584 ** 0.173

Arylsulfatase 0.456 ** 0.407 ** 0.138 0.493 ** 0.565 ** 0.534 **

Cellulase 0.196 0.093 -0.062 -0 034 0.407 ** 0.118

Dehydrogenase 0.299 * 0.286 * -0.015 0.066 0.293 * 0.175

Urease 0.190 0.192 0.215 0.366 ** 0.220 0.274 *

Basal respiration 0.472 ** 0.361 ** -0.108 0.200 0.519 ** 0.366 **

Substrate-induced respiration 0.176 -0.094 -0.280 * 0.226 0.425 **  0.306 *

Microbial biomass 0.290 * 0.105 -0.060 0.535 ** 0.471 ** 0.630 **

Metabolic quotient 0.312 ** 0.283 * -0.064 -0.078 0.211 0.003

Net nitrogen mineralisation 0.160 -0.013 -0.221 0.189 0.275 * 0.156

Net nitrification 0.287 * 0.120 -0.263 * 0.212 0.422 ** 0.272 *

Potential denitrification -0.337 ** -0.646 ** -0.232 0.310 * -0.141 0.157

Protozoa
Gram -

bacteria

Gram +,

anaerobic  b.

Actino-

mycetes aerobic  b.
Fungi

Gram +,

 
* significant (P < 0.05),  ** highly significant (P < 0.01);  b.: bacteria. 
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3.2   Field experiment 

 

3.2.1   Basic soil parameters 

The first 10 cm of the soil of the field experiment consisted of 24.5 % clay, 61.1 % silt and 

14.4 % sand constituting a silty loam. For this soil depth the initial pH value was 5.9 ± 0.0, 

total organic carbon (TOC) content 23.2 ± 0.5 g kg-1, total organic nitrogen (TON) content  

2.1 ± 0.1 g kg-1 and C/N ratio 10.8 ± 0.1. 

Figure 16 shows the climate data like temperature and precipitation throughout the field 

experiment duration. The temperature tendentially increased during the field experiment. 

With the exception of the sixth sampling day there was no precipitation event before soil 

sampling. As a result, these samples excepting those of the last sampling day had a similar 

water content between 14 and 18 %. Before the sixth sampling day a stronger precipitation 

event took place, by which the samples exhibited a water content between 22 and 24 % 

besides those of the fallow plots with 18.5 %. Due to the intense temperature increase and 

marginal precipitation before the last sampling day the samples contained only between  

9 and 10 % of water besides the samples of the fallow plots with 12 %. 
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Figure 16: Climate diagram about daily mean temperature (upper black curve) and precipitation (lower 

grey curve) as well as sampling dates for the duration of the field experiment. Sampling date number 1 

was the day of fertiliser and seed application and number 3 that of pesticide application; P: plowing. 
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The reference plots exhibited tendentially higher TOC and TON contents than the fallow 

ones (Figure 17) caused by the incorporation of cover plants into the top soil after plowing, 

which were tendentially higher at the end of the experiment compared to the beginning. 

Equally, the conventionally managed plots showed similar trends compared to those of the 

reference ones, while the organic treatments had the mainly significantly (P < 0.05) highest 

contents of TOC and TON due to the humus addition, through which organic carbon and 

nitrogen was added to the soil. With respect to the C/N ratio, fallow and reference treatments 

exhibited very similar trends (Figure 17) with values between those of the conventional and 

organic treatments throughout the field experiment and had tendentially higher values at  

the end in comparison to the beginning. The significantly (P < 0.05) lowest C/N ratio of the 

conventionally managed plots were attributed to the mineral nitrogen fertilisation, while the 

mostly significantly (P < 0.05) highest values of the organically managed plots were because 

of the organic fertilisation since the C/N ratio of the humus was higher than that of the soil. 
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Figure 17: Chronological sequence of the basic soil properties with standard error bars (N = 3). 
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Until two weeks after pesticide application the fallow plots had the significantly (P < 0.05) 

and thereafter the tendentially highest pH value possibly caused by particulate leaching of 

alkaline acting cations due to sporadic irrigation of the other treatments, while they showed 

similar values like the reference and the organically managed plots at the experiment end. At 

the day of pesticide application as well as two and seven days after, the organic treatments 

had the significantly (P < 0.05) lowest pH values, while thereafter they exhibited a similar 

trend like the reference plots. At the beginning of the experiment the conventional managed 

plots showed very similar values like the reference plots, while afterwards they had the 

significantly (P < 0.05) lowest values because through mineral fertilisation phosphate and 

sulfate were added to the soil and after their solution in soil water the pH values reduced. 

 

 

3.2.2   Pollutants 

The chronological sequences of the active agent contents of endosulfan and metabolite 

endosulfan sulfate, of chlorothalonil and metabolite 4-hydroxychlorothalonil and of copper 

imported to the soils by application of THIONEX-L, ISATHALONIL and SUPERCUPROL, 

respectively, are given in Figure 18. Endosulfan and chlorothalonil exhibited significantly  

(P < 0.05) decreasing contents in soils after application throughout the field experiment, 

while the contents of their degradation products significantly (P < 0.05) increased. The 

copper content was significantly (P < 0.05) higher after application compared to that before, 

however, during the field experiment the content has not changed significantly (P > 0.05). 

In the following text the results of the soil microbial functional parameters are discussed 

with respect to Tables 15 to 20. Tables 15, 17 and 19 show mean values and standard errors of 

all parameters in every treatment at every sampling date, while Tables 16, 18 and 20 exhibit 

the same values subtracted by those of the reference plots at the respective sampling date. 

Therefore, through the subtraction of the reference values climatic factors were eliminated 

since there was a variation in temperature and precipitation throughout the field experiment 

(Figure 16, page 78), which also affected the development of the soil microbial functional 

parameters of the treatments. Various small letters describe significant (P < 0.05) differences 

among diverse treatments on a sampling day (vertical) and capital letters describe significant 

(P < 0.05) temporal differences within the same treatment during the experiment (horizontal). 
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Figure 18: Chronological sequence of the pollutant contents after pesticide application with standard 

error bars. Figures A and B exhibit decreasing contents of the active agents endosulfan and 

chlorothalonil as well as increasing contents of their degradation products endosulfan sulfate and  

4-hydroxychlorothalonil of the conventional treatments, respectively, while Figure C shows the copper 

content of the organic treatments (N = 6). 

 

 

 

3.2.3   Functional parameters 

 

3.2.3.1   Enzyme activities 

The acid phosphatase activity ranged between 0.74 and 1.30 g p-nitrophenol kg-1 h-1  

(Table 15) during the field experiment. The values of the fallow plots showed a similar but 

mostly lower trend than those of the reference plots. All treatments showed a higher acid 

phosphatase activity at the end of the experiment than at the beginning. However, by 

subtraction of the values of the reference plots only the activity of the organic treatments 

increased and that of the conventional ones decreased. Therefore, the organically managed 

BA

C
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plots exhibited a tendentially and at the last sampling day even a significantly (P > 0.05) 

higher acid phosphatase activity than the conventionally managed ones. This could be 

attributed to the application of mineral phosphate to the conventional treatments, which 

shifted the enzyme reaction equilibrium to the side of the reaction product phosphate and 

thus, inhibited the acid phosphatase activity on these treatments. The plots treated with 

conventional pesticides exhibited the lowest acid phosphatase activity of all conventional 

treatments two days after pesticide application, and after one week the soils recovered with 

the exception of the plots treated with both endosulfan and chlorothalonil, which indicated a 

synergistic inhibiting effect on the acid phosphatase activity. However, no enzyme activity 

reduction could be detected for the organic plant protection practice. 

The arylsulfatase activity ranged between 0.17 and 0.34 g p-nitrophenol kg-1 h-1 (Table 15) 

during the field experiment. The arylsulfatase activity in the fallow plots showed a similar 

increasing development like that in the reference plots. The conventionally managed plots 

showed a relatively constant arylsulfatase activity within the experiment duration excepting 

an increase one week after pesticide application but subtracting the reference values the 

activity decreased. By contrast, in the organic treatments the arylsulfatase activity increased 

with time and remained constant compared to the reference plots except a strong increase 

four weeks after pesticide application. Two weeks after pesticide application until the end of 

the field experiment, a significantly (P < 0.05) lower arylsulfatase activity was found in 

conventionally compared to organically fertilised plots, which was similar but more distinct 

in comparison to phosphatase activity. This was attributed to the mineral sulfate application 

on these plots inhibiting the arylsulfatase activity through a shift of the enzyme reaction 

equilibrium to the side of the reaction product sulfate. Corroborating the trends of the acid 

phosphatase activity, the conventionally managed plots, which were treated with pesticides, 

exhibited the lowest arylsulfatase activity of all conventional treatments two days after 

pesticide application indicating a pesticide-induced inhibition. However, five days later the 

arylsulfatase activity recovered with the exception of the plots treated with both endosulfan 

and chlorothalonil indicating a synergistic effect on arylsulfatase activity inhibition. In 

addition, the plots with copper oxychloride application had the lowest arylsulfatase activity 

of all organically managed ones except at the experiment end, which indicated an inhibiting 

effect of the arylsulfatase activity by copper. 
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The cellulase activity ranged between 12.7 and 21.7 mg glucose kg-1 h-1 (Table 15) during 

the field experiment. The fallow and reference plots exhibited similar trends with the 

exception of the day of pesticide application and nine weeks after when the activity of the 

fallow plots was significantly (P < 0.05) higher than in the reference ones. Because of high 

fluctuation and standard errors of the cellulase activity it was not possible to detect certain 

trends considering time and different management systems. However, the cellulase activity 

was tendentially higher in all treatments at the end of the experiment compared to the 

beginning both with original values and those subtracting the reference values. Moreover, 

the organically managed plots had a tendentially lower cellulase activity two and four weeks 

after pesticide application compared to the conventionally managed ones. On the one hand, 

this result was surprising since the cellulase activity was expected to increase caused by the 

higher supply of organic carbon, while on the other hand, this could be attributed to fewer 

readily available nutrients after humus addition in contrast to mineral fertilisation wherefore 

microbes produced less enzymes. At the end of the field experiment the cellulase activity of 

the conventionally managed plots decreased in the order plots treated with mineral fertiliser 

> mineral fertiliser plus endosulfan > mineral fertiliser plus chlorothalonil > mineral fertiliser 

plus both pesticides. This again indicated a synergistic inhibiting effect on cellulase activity 

by the conventionally used pesticides. However, no effects could be detected for the organic 

plant protection practice. 

The dehydrogenase activity ranged between 3.3 and 7.8 mg triphenylformazane kg-1 h-1 

(Table 15) during the field experiment. The activity of the fallow and reference plots showed 

a similar development but the variation of the fallow was not as high as that of the reference. 

Temporal fluctuation of the dehydrogenase activity within one treatment was higher than 

differences between the diverse treatments. After a strong increase two days after pesticide 

application the dehydrogenase activity of the conventional treatments almost returned to the 

initial values at the experiment end, while the values subtracting those of the reference plots 

were higher at the end of the field experiment compared to the beginning. The organically 

managed plots had a lower dehydrogenase activity at the end compared to the beginning of 

the experiment whereas the plots treated with copper oxychloride exhibited a tendentially 

lower activity than the remaining ones being significant (P < 0.05) four weeks after pesticide 

application. After strong fluctuations and subtracting the values of the reference plots the 
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values of the organic treatments mainly slightly decreased compared to the initial ones. The 

plots treated with endosulfan and chlorothalonil exhibited the tendentially lowest values of 

the conventional treatments throughout the experiment, while suppressed dehydrogenase 

activity due to copper application could be observed for the organic plant protection. 

The urease activity ranged between 21.5 and 34.8 mg ammonium kg-1 h-1 (Table 15) during 

the field experiment. The fallow plots exhibited tendentially the highest urease activity 

caused by the highest pH values (Figure 17, page 79) since urease activity has its optimum in 

alkaline medium (Klose and Tabatabai, 1999). Towards the experiment end, the pH value of 

the reference and organic treatments returned to the initial state and thus, the urease activity 

approximated to those of the fallow plots. Both conventional and organic treatments showed 

increasing developments and had higher values at the end of the experiment compared to 

the beginning, which was even significant (P < 0.05) for the latter ones. Subtracting the values 

of the reference plots the urease activity was reduced in the conventional and organic 

treatments in comparison to the initial ones. At the experiment end, the conventionally 

managed plots showed a significantly (P < 0.05) lower urease activity than the organically 

managed ones, which was attributed to different fertiliser application. Ammonium of the 

mineral fertiliser inhibited the urease activity in conventional treatments through a shift of 

the enzyme reaction equilibrium to the side of the reaction product ammonium. Hence, the 

activity was higher in the organic than in the conventional plots. Two and seven days after 

pesticide application the plots treated with endosulfan had the lowest urease activity, while 

thereafter no differences among the conventional treatments were detectable. Moreover, no 

effects could be detected for the organic plant protection practice. 

Summarising, the reported ranges of individual enzyme activities were in the same order 

of magnitude like those of the land use system soils and thus, they can be considered typical 

for the assayed soils of agricultural use. In general, the significantly (P < 0.05) lowest enzyme 

activities were found in soils of conventional treatments due to mineral fertiliser application 

inhibiting enzyme activity through addition of those substances, which are released by soil 

enzymatic reactions. By contrast, in organic treatments enzyme activities were higher since 

the applied humus as an additional organic carbon source had to be mineralised in order to 

release plant available nutrients. The fallow plots showed intermediate values with strong 

variations when compared to the other treatments. With regard to pesticide and heavy metal 
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applications to the soils only tendential effects on soil microbial functions could be detected 

in contrast to literature where strong impacts of pesticides on soil microbes were reported. 

Omar and Abdel-Sater (2001) examined the influence of the herbicide brominal and the 

insecticide selecron on a clayey botanical garden soil in Assiut, Egypt. They reported an 

inhibition of the cellulase activity, while the acid phosphatase activity was promoted at field 

application rates and delayed at higher application doses of the two pesticides. The effect on 

the arylsulfatase activity fluctuated between promotion and inhibition, but inhibition was 

predominant (Omar and Abdel-Sater, 2001). Sannino and Gianfreda (2001) investigated the 

influence of the herbicides glyphosate, paraquat, atrazine and of the insecticide carbaryl on 

the activities of invertase, urease and acid phosphatase in Italian soils with a wide range of 

physical and chemical properties. The authors found general activation effects for urease, 

while inhibitory effects were observed for the acid phosphatase activity in the presence of 

glyphosate and paraquat and raises with atrazine and carbaryl. Contradictory, the invertase 

activity was increased by glyphosate and paraquat and decreased by atrazine and carbaryl 

(Sannino and Gianfreda, 2001). The activities of dehydrogenase and acid phosphatase were 

suppressed by fungicide applications of captan and benomyl on terrestrial microcosms with 

silty loam, while the urease activity was increased (Chen et al., 2001a). Beulke and Malkomes 

(2001) found activating as well as inhibiting effects and strongly inhibiting effects in the 

dehydrogenase activity of two German loamy sand soils treated with the herbicides dinoterb 

and metazachlor, respectively, while the effects in the soil having the same physico-chemical 

properties but markedly lower organic carbon content in comparison to the other were much 

stronger. Soil enzyme activity was reduced significantly in the order arylsulfatase > alkaline 

phosphatase > urease > xylanase in all particle-size fractions of a Calcaric Phaeozem exposed 

to four heavy metal pollution loads (control, 300 mg kg-1 Zn, 100 mg kg-1 Cu, 50 mg kg-1 Ni, 

50 mg kg-1 V and 3 mg kg-1 Cd as well as two- and threefold contents) (Kandeler et al., 2000). 

 

3.2.3.2   Respiratory parameters 

The basal respiration rate ranged between 4.2 and 8.2 mg carbon dioxide (CO2) kg-1 h-1 

(Table 17) during the field experiment. The values of the fallow plots varied strongly from 

the beginning to the end of the experiment and were mostly significantly higher than those 

of the reference plots. After a strong reduction one week after pesticide application the basal 
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respiration rate of the conventionally and organically managed plots tendentially increased 

both with and without subtraction of the reference values and showed higher values at the 

end of the experiment. However, the basal respiration rate of the organically managed plots 

varied stronger and tended to be higher than of the conventional ones, which was significant 

(P < 0.05) two weeks after pesticide application. Concerning the applications of the pesticides 

no differences could be detected both in conventional and organic treatments. 

The substrate-induced respiration rate ranged between 44.3 and 80.2 mg CO2 kg-1 h-1 

(Table 17) during the field experiment. The values of the fallow treatments mainly were 

significantly (P < 0.05) the lowest throughout the experiment and showed a similar trend like 

the reference ones, which had the second lowest values. The developments of the organically 

and conventionally managed plots were very similar and showed strong fluctuations until 

two weeks after pesticide application. The substrate-induced respiration rate of both 

managements were lower at the end of the experiment compared to the beginning, while 

subtracting that of the reference plots the values nearly returned to the initial state. However, 

at the beginning of the experiment the organic treatments exhibited significantly (P < 0.05) 

higher values due to the addition of easily degradable organic matter in the form of humus, 

which changed towards the end of the experiment as the values of the conventional ones 

tended to be the highest. Concerning pesticide applications no effects could be detected on 

both management systems. 

The microbial biomass carbon content (Cmic) ranged between 0.68 and 1.40 g Cmic kg-1 

(Table 17) during the field experiment. The microbial biomass showed a similar trend in the 

fallow and reference treatments whereas it was lower in the fallow ones. After strong 

fluctuations the biomass carbon content for both management systems exhibited higher 

values at the end compared to the beginning of the field experiment, while subtracting those 

of the reference plots they decreased at the end. Differences between the two management 

systems were not detectable. Until four weeks after pesticide application the plots only 

treated with mineral fertiliser exhibited mainly the lowest microbial biomass carbon content 

when compared to all conventionally managed plots indicating activation effects of the 

pesticides. At the end of the experiment when the pesticides distinctly were degraded the 

plots with conventional pesticide application exhibited lower values compared to those only 

treated with mineral fertiliser, which was significant (P < 0.05) for the plots with both 
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pesticide applications. This result indicated that at least a combined pesticide application 

reduced soil microbial biomass even after pesticide degradation. Hence, a negative pesticide 

effect in the longer term can be assumed, especially when pesticides are applied repeatedly 

with subsequent cultivation periods. Regarding the organically managed plots, those treated 

with copper oxychloride mostly exhibited the lowest biomass being significant (P < 0.05) four 

weeks after application and indicating inhibiting effects like the conventional treatments. 

The metabolic quotient ranged between 3.9 and 9.9 mg CO2 (g Cmic)-1 h-1 (Table 17) during 

the field experiment. Equal to the basal respiration the values of the fallow plots varied 

strongly being significantly (P < 0.05) the highest and exhibited similar trends as those of the 

reference plots. With the exception of a very high value of the mineral fertilised plots four 

weeks after pesticide application all conventional treatments showed the same trend with 

small fluctuations and similar values as those at the beginning of the experiment, while they 

increased subtracting the values of the reference plots until the end of the field experiment 

compared to the beginning. The metabolic quotient of the organic treatments varied stronger 

during the experiment especially when those of the reference plots were subtracted. The 

values were similar at the end of the experiment compared to the beginning and subtracting 

those of the reference plots they were higher. Similar to the basal respiration the organic 

treatments tendentially exhibited a mainly significantly (P < 0.05) higher metabolic quotient 

than the conventional ones since two weeks after pesticide application. Until two weeks after 

experiment beginning the plots treated with conventional pesticides had a tendentially lower 

and four weeks after a significantly (P < 0.05) lower metabolic quotient when compared to 

the minerally fertilised ones, which indicated activating effects by endosulfan as well as by 

chlorothalonil. With respect to the organically managed plots those treated with copper 

oxychloride exhibited a tendentially higher metabolic quotient compared to the remaining 

ones, which indicated an inhibiting effect caused by copper. 

Summarising, the reported ranges of the respiratory parameters were in the same order of 

magnitude like those of the land use system samples and thus, they also can be considered 

typical at least for pampean Mollisols under agricultural use. The values of the respiratory 

parameters were tendentially higher in organic treatments compared to the conventional 

ones because through humus fertilisation easily degradable organic carbon was added to the 

soil, which could be metabolised rapidly to carbon dioxide. The fallow plots exhibited 
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strongly fluctuating values in comparison to the other treatments indicating a high natural 

variability, which might be climatically driven (Figure 16). With respect to pesticide as well 

as heavy metal applications to the soils again effects on soil microbial functions could be 

detected hardly in contrast to literature, in which several impacts of pesticides on these 

parameters were reported. Probably the high natural fertility of Mollisols could compensate 

for negative effects of pesticides on soil microbial functions, which will be only obvious after 

advanced soil degradation. 

Beulke and Malkomes (2001) determined a lower substrate-induced respiration rate in 

two German loamy sand soils treated with metazachlor and dinoterb compared to the non-

treated control soils whereas the inhibiting effect of dinoterb was significantly stronger than 

that of metazachlor during the incubation time. Jones and Ananyeva (2001) determined 

positive correlations between pesticide transformation rates of the herbicide propachlor and 

of the fungicide metalaxyl and the microbial respiration activity such as basal and substrate-

induced respiration as well as soil microbial biomass in sandy loamy Ultisols under forest, 

pasture and arable land. The authors stated that the occurrence of a relationship between the 

above mentioned variables may be a useful tool for evaluating and predicting the fate of 

pesticides and also the microbes in different soils. Consequently, the negative correlation 

between the metabolic quotient and pesticide transformation rates reflects the physiological 

status of the microbial community and may be used as an indicator of ecosystem stress since 

disturbance or stress of a microbial community affected by pesticide application leads to an 

increase of the metabolic quotient values (Jones and Ananyeva, 2001). Smith et al. (2000) 

investigated potential non-target effects of long-term application of the fungicide benomyl 

on microbial properties in Udic Argiustolls. They found a 10 % increase of substrate-induced 

respiration and distinct increases in microbial carbon content. By contrast, in a laboratory 

incubation of a silt-loam Luvisol Chen et al. (2001b) initially found a 30–50 % suppression of 

the substrate-induced respiration by application of benomyl, captan and chlorothalonil. In a 

laboratory study with three different soils types – Calcaric Phaeozem, Eutric Cambisol and 

Dystric Lithosol – contaminated with four levels of heavy metals (control, 300 mg kg-1 Zn, 

100 mg kg-1 Cu, 50 mg kg-1 Ni, 50 mg kg-1 V and 3 mg kg-1 Cd as well as two- and threefold 

contents) Kandeler et al. (1996) detected more strongly decreasing values of soil microbial 

biomass content and basal respiration rate corresponding to increasing contamination levels. 
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3.2.3.3   Nitrogen parameters 

The net nitrogen mineralisation rate ranged between 0.7 and 2.7 mg mineral nitrogen  

kg-1 d-1 (Table 19) during the field experiment. The values of the fallow plots showed the 

same trend than those of the reference ones, but they were slightly lower than the latter. The 

conventional treatments only provided reliable data four and nine weeks after pesticide 

application. Due to a high ammonium content (data not shown) because of mineral nitrogen 

fertilisation extraordinarily varying data were obtained not suitable for evaluation. Hence, 

these samples were designated as not detectable in Table 19 and 20. Nevertheless, the net 

nitrogen mineralisation rate of the conventionally managed plots of the last two sampling 

days was higher than that of the organically managed ones being significant (P < 0.05) nine 

weeks after pesticide application. This was attributed to the mineral fertilisation through 

which the mineralisation was activated and released further mineral nitrogen. The net 

nitrogen mineralisation rate of the organic treatments fluctuated strongly throughout the 

field experiment duration and was slightly higher at the end of the experiment than at the 

beginning both with or without the subtraction of the reference values. In both management 

systems the pesticide application promoted the net nitrogen mineralisation since the plots 

only treated with the respective fertiliser showed lower values compared to those treated 

with pesticides. 

The net nitrification rate ranged between 1.2 and 5.9 mg nitrate nitrogen kg-1 h-1 (Table 19) 

during the field experiment. The fallow plots having the lowest values showed a similar 

trend compared to the reference ones. After strong variations, the values of the organic 

treatments returned to those of the initial state, which was equal to the values subtracting 

those of the reference plots. By contrast, both with or without the subtraction of the reference 

plots values the net nitrification rate of the conventional treatments exhibited continuously 

decreasing values from the beginning to the end of the experiment. This fact was caused by a 

highly significant (P < 0.01) correlation between net nitrification and ammonium content  

(R = 0.755) since via mineral nitrogen fertilisation a high amount of ammonium was added to 

the soil stimulating net nitrification and the fewer the ammonium content became over time 

the fewer nitrate could be produced. The same result was obtained for the values subtracting 

those of the reference plots and the significantly (P < 0.05) lower net nitrification rate of the 

organic in comparison to the conventional treatments was again explained by the different 
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fertiliser and thus ammonium application. Concerning pesticide applications no effect could 

be detected in the conventional treatments, while in the organic treatments the application 

promoted the net nitrification as the plots only treated with humus exhibited lower values 

compared to those treated with pesticides. 

The potential denitrification rate ranged between 0.4 and 1.3 mg nitrous oxide kg-1 h-1 

(Table 19) during the field experiment. The values of the fallow treatments were higher at the 

beginning and lower at the end of the experiment than those of the reference ones and 

showed a different development compared to the latter. Two weeks after the experiment 

beginning there was a distinct maximum in potential denitrification in soils of all treatments 

in consequence of the precipitation event (Figure 16, page 78) leading to anaerobic soil 

conditions. The potential denitrification rate of the conventional treatments with and without 

the subtraction of the reference values varied after the beginning of the field experiment and 

was significantly (P < 0.05) lower at the end. The values of the organic treatments were 

significantly (P < 0.05) higher at the end of the experiment than at the beginning, while the 

values subtracting those of the reference plots were only tendentially higher at the end. The 

potential denitrification rate of the conventional treatments was significantly (P < 0.05) lower 

than that of the organic ones, which could be explained the by different fertilisation. The 

potential denitrification rate exhibited highly significant (P < 0.01) correlations with total 

organic carbon (R = 0.424) and nitrogen (R = 0.395) contents as well as with the pH value  

(R = 0.483). By means of humus application easily degradable organic matter was added to 

the organic treatments, while via mineral sulfate and phosphate addition to the conventional 

treatments the pH value was reduced (Figure 17, page 79) below the pH optimum for the 

potential denitrification, which was examined being pH 7 – 8 by Šimek and Hopkins (1999) 

for long-term organically and minerally fertilised arable soils. Since pH value, total organic 

carbon and nitrogen contents were significantly (P < 0.05) higher in soils of the organically 

managed plots compared to the conventionally managed ones the potential denitrification 

heavily depending on these conditions, exhibited a higher rate in the organic treatments. 

However, with respect to the pesticide applications no effects could be detected in both 

management systems. 

 

 



3.   Results and discussion  -  Field experiment 99

   
   

Ta
bl

e 
19

a:
 A

ve
ra

ge
 n

itr
og

en
 p

ar
am

et
er

 v
al

ue
s 

in
 s

oi
ls

 o
f a

ll 
tre

at
m

en
ts

 d
ur

in
g 

th
e 

ex
pe

rim
en

t w
ith

 s
ta

nd
ar

d 
er

ro
rs

. 

    
   

 D
at

a 
fo

llo
w

ed
 b

y 
va

rio
us

 s
m

al
l l

et
te

rs
 a

re
 s

ig
ni

fic
an

tly
 (P

 <
 0

.0
5)

 d
iff

er
en

t i
nd

ic
at

in
g 

tre
at

m
en

t e
ffe

ct
s 

(v
er

tic
al

) w
hi

le
 d

at
a 

fo
llo

w
ed

 b
y 

va
rio

us
 c

ap
ita

l l
et

te
rs

 a
re

 s
ig

ni
fic

an
tly

 (P
 <

 0
.0

5)
 d

iff
er

en
t 

   
   

 in
di

ca
tin

g 
te

m
po

ra
l e

ffe
ct

s 
(h

or
iz

on
ta

l);
  F

: f
al

lo
w

,  
R

: r
ef

er
en

ce
, M

: m
in

er
al

 fe
rti

lis
er

,  
E

s:
 e

nd
os

ul
fa

n,
  C

l: 
ch

lo
ro

th
al

on
il,

  H
: h

um
us

,  
B

t: 
B

ac
ill

us
 th

ur
in

gi
en

si
s,

  C
u:

 c
op

pe
r o

xy
ch

lo
rid

e;
 

   
   

 n
. d

.: 
no

t d
et

ec
ta

bl
e.

 



3.   Results and discussion  -  Field experiment 100

   
   

Ta
bl

e 
19

b:
 A

ve
ra

ge
 n

itr
og

en
 p

ar
am

et
er

 v
al

ue
s 

in
 s

oi
ls

 o
f a

ll 
tre

at
m

en
ts

 d
ur

in
g 

th
e 

ex
pe

rim
en

t w
ith

 s
ta

nd
ar

d 
er

ro
rs

. 

    
   

 D
at

a 
fo

llo
w

ed
 b

y 
va

rio
us

 s
m

al
l l

et
te

rs
 a

re
 s

ig
ni

fic
an

tly
 (P

 <
 0

.0
5)

 d
iff

er
en

t i
nd

ic
at

in
g 

tre
at

m
en

t e
ffe

ct
s 

(v
er

tic
al

) w
hi

le
 d

at
a 

fo
llo

w
ed

 b
y 

va
rio

us
 c

ap
ita

l l
et

te
rs

 a
re

 s
ig

ni
fic

an
tly

 (P
 <

 0
.0

5)
 d

iff
er

en
t 

   
   

 in
di

ca
tin

g 
te

m
po

ra
l e

ffe
ct

s 
(h

or
iz

on
ta

l);
  F

: f
al

lo
w

,  
R

: r
ef

er
en

ce
, M

: m
in

er
al

 fe
rti

lis
er

,  
E

s:
 e

nd
os

ul
fa

n,
  C

l: 
ch

lo
ro

th
al

on
il,

  H
: h

um
us

,  
B

t: 
B

ac
ill

us
 th

ur
in

gi
en

si
s,

  C
u:

 c
op

pe
r o

xy
ch

lo
rid

e.
 



3.   Results and discussion  -  Field experiment 101

   
   

Ta
bl

e 
20

a:
 A

ve
ra

ge
 n

itr
og

en
 p

ar
am

et
er

 v
al

ue
s 

su
bt

ra
ct

in
g 

re
fe

re
nc

e 
m

ea
ns

 in
 s

oi
ls

 o
f a

ll 
tre

at
m

en
ts

 d
ur

in
g 

th
e 

ex
pe

rim
en

t w
ith

 s
ta

nd
ar

d 
er

ro
rs

. 

    
   

 D
at

a 
fo

llo
w

ed
 b

y 
va

rio
us

 s
m

al
l l

et
te

rs
 a

re
 s

ig
ni

fic
an

tly
 (P

 <
 0

.0
5)

 d
iff

er
en

t i
nd

ic
at

in
g 

tre
at

m
en

t e
ffe

ct
s 

(v
er

tic
al

) w
hi

le
 d

at
a 

fo
llo

w
ed

 b
y 

va
rio

us
 c

ap
ita

l l
et

te
rs

 a
re

 s
ig

ni
fic

an
tly

 (P
 <

 0
.0

5)
 d

iff
er

en
t 

   
   

 in
di

ca
tin

g 
te

m
po

ra
l e

ffe
ct

s 
(h

or
iz

on
ta

l);
  F

: f
al

lo
w

,  
R

: r
ef

er
en

ce
, M

: m
in

er
al

 fe
rti

lis
er

,  
E

s:
 e

nd
os

ul
fa

n,
  C

l: 
ch

lo
ro

th
al

on
il,

  H
: h

um
us

,  
B

t: 
B

ac
ill

us
 th

ur
in

gi
en

si
s,

  C
u:

 c
op

pe
r o

xy
ch

lo
rid

e;
 

   
   

 n
. d

.: 
no

t d
et

ec
ta

bl
e.

 



3.   Results and discussion  -  Field experiment 102

   
   

Ta
bl

e 
20

b:
 A

ve
ra

ge
 n

itr
og

en
 p

ar
am

et
er

 v
al

ue
s 

su
bt

ra
ct

in
g 

re
fe

re
nc

e 
m

ea
ns

 in
 s

oi
ls

 o
f a

ll 
tre

at
m

en
ts

 d
ur

in
g 

th
e 

ex
pe

rim
en

t w
ith

 s
ta

nd
ar

d 
er

ro
rs

. 

    
   

 D
at

a 
fo

llo
w

ed
 b

y 
va

rio
us

 s
m

al
l l

et
te

rs
 a

re
 s

ig
ni

fic
an

tly
 (P

 <
 0

.0
5)

 d
iff

er
en

t i
nd

ic
at

in
g 

tre
at

m
en

t e
ffe

ct
s 

(v
er

tic
al

) w
hi

le
 d

at
a 

fo
llo

w
ed

 b
y 

va
rio

us
 c

ap
ita

l l
et

te
rs

 a
re

 s
ig

ni
fic

an
tly

 (P
 <

 0
.0

5)
 d

iff
er

en
t 

   
   

 in
di

ca
tin

g 
te

m
po

ra
l e

ffe
ct

s 
(h

or
iz

on
ta

l);
  F

: f
al

lo
w

,  
R

: r
ef

er
en

ce
, M

: m
in

er
al

 fe
rti

lis
er

,  
E

s:
 e

nd
os

ul
fa

n,
  C

l: 
ch

lo
ro

th
al

on
il,

  H
: h

um
us

,  
B

t: 
B

ac
ill

us
 th

ur
in

gi
en

si
s,

  C
u:

 c
op

pe
r o

xy
ch

lo
rid

e.
 



3.   Results and discussion  -  Field experiment 103

The CO2 emission rate of the potential denitrification ranged between 5.8 and 17.6 mg CO2 

kg-1 h-1 (Table 19) during the field experiment. The trend of the fallow plots values was 

similar but mostly lower in comparison to that of the reference ones. At the end of the 

experiment the CO2 emission rate of the conventional and organic treatments approximated 

that at the beginning, while subtracting the CO2 emission rate of the reference plots they 

showed tendentially decreasing values. At the beginning of the experiment the plots of both 

management systems showed a similar emission rate. Two weeks after pesticide application 

the CO2 emission rate of the reference plots and of the plots of three conventional treatments 

raised significantly (P < 0.05) possibly because of the precipitation event (Figure 16, page 78). 

Four weeks after application until the experiment end the values of the organically managed 

plots were tendentially higher than those of the conventionally managed ones similar to the 

N2O emission rate. The pesticide application had no effect on potential denitrification both in 

conventional and organic treatments. 

Summarising, again the reported ranges of nitrogen parameters were in the same order of 

magnitude than those of the land use system samples and thus, they also can be considered 

typical for Mollisols under agriculture at least in Argentina. The fallow and reference plots 

showed very similar trends for all nitrogen parameters. Due to a higher ammonium content 

because of mineral fertilisation the nitrogen mineralisation activities were significantly  

(P < 0.05) higher in the conventional treatments compared to the organic ones. By contrast, 

the organically managed plots exhibited a markedly higher potential denitrification activity 

than the conventionally managed ones caused by organic matter addition through humus 

application. With regard to pesticide as well as heavy metal applications to the soils only 

sparsely effects on soil microbial community functions could be detected, while in literature 

several impacts of pesticides on these parameters were reported. 

Banerjee and Dey (1992) found a significant increase in net nitrogen mineralisation in the 

rhizosphere microflora of Gangetic alluviums treated with a combination of the herbicide 

basalin and either the fungicide dithane or the fungicide bengard when compared to control 

soils in a random block design field experiment in West Bengal, India. However, when the 

pesticides were applied alone the authors reported a decrease in net nitrogen mineralisation. 

Chen et al. (2001b) detected a significantly increased total inorganic nitrogen content due to 

higher rates of net nitrogen mineralisation and net nitrification in silt-loam Luvisols 
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incubated with the herbicides benomyl, captan and chlorothalonil caused by mineralisation 

of dead organisms. Beulke and Malkomes (2001) determined a higher rate of net nitrogen 

mineralisation in two German loamy sand soils treated with the herbicides metazachlor and 

dinoterb when compared to the non-treated control soils, which was confirmed by Engelen et 

al. (1998) who studied the impacts of the herbicides dinoterb and metamitron on a loamy 

sand and also found stimulating effects on the net nitrogen mineralisation. In a laboratory 

investigation on three diverse soil types (Calcaric Phaeozem, Eutric Cambisol and Dystric 

Lithosol) contaminated with four heavy metal levels (uncontaminated control, 300 mg kg-1 

zinc, 100 mg kg-1 copper, 50 mg kg-1 nickel, 50 mg kg-1 vanadium and 3 mg kg-1 cadmium as 

well as two- and threefold concentrations of these heavy metals) Kandeler et al. (1996) 

determined a more strongly decreasing nitrogen mineralisation activity according to raising 

contamination levels. 

 

 

3.2.3.4   Principal component analysis 

As shown above, by means of individual soil microbial functional parameters it was 

hardly possible to distinguish between soils of different treatments, in particular different 

cultivation systems and primarily different plant protection practices. The latter fact might 

be caused by the limited bioavailability of the pesticides in soils of high clay and organic 

carbon content as explained by Ahtiainen et al. (2003) who found microbial activities and 

biomass following the weather conditions during the growing season whereas significant 

effects of pesticide treatments on microbial processes were not observed. Contradictory, in 

laboratory studies the toxicity of certain pesticides was clearly detected by bacterial toxicity 

tests, while in the field inhibitory effects were observed only at unrealistically high contents 

(Ahtiainen et al., 2003). 

A principal component analysis (PCA) was applied in order to pool correlating data into 

independent components. For the analysed parameter values with the exception of those of 

the net nitrogen mineralisation because of lacking data (see 3.2.3.3, page 97) a Kaiser-Meyer-

Olkin-measure of sampling adequacy of 0.521 was computed, which indicated that a PCA 

was useful for the data set, while a value lower than 0.0005 calculated from the Bartlett's Test 

of Sphericity showed that significant relationships among the analysed parameters existed 
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and that the data were suitable for a PCA (Backhaus and Erichson, 2003). Comparable to the 

PCA of the soil microbial functional parameters of the different land use systems (see 3.1.3.4, 

page 54) four similar principal components explaining 66.8 % of the total variance were 

extracted (Table 21) whereas in this PCA the cellulase activity could not be attributed to a 

principal component because of very low correlation coefficients and thus, it was considered 

possessing a too low contribution at the whole soil microbial community function. 

 

Table 21: Varimax rotated (after Kaiser normalisation) component matrix of the principal component 

analysis of all investigated soil microbial functional parameters. Each component combines variables 

with the highest factor loadings (bold) in a column. 

Microbial functional parameters Component 1 Component 2 Component 3 Component 4 Interpretation

Microbial biomass  0.84  0.16 -0.06  0.15 Microbial
Arylsulfatase activity  0.80 -0.22  0.19  0.01

Acid phosphatase activity  0.58 -0.57 -0.06  0.26 capacity

Dehydrogenase activity  0.11  0.77  0.11 -0.06

Substrate-induced respiration  0.14  0.62 -0.41  0.30 Mineralisation

Net-nitrification -0.10  0.58 -0.41  0.12 activity
Urease activity  0.23 -0.60  0.17 -0.05

Basal respiration  0.32 -0.08  0.85  0.12 Metabolic
Metabolic quotient -0.45 -0.26  0.77 -0.07 activity

Potential denitrification (CO2) -0.06  0.06 -0.10  0.86 Nitrogen trans-
Potential denitrification (N2O)  0.42 -0.03  0.19  0.67 formation potential

Cellulase activity -0.45  0.12  0.33  0.34 Not specific  

 

The first component (microbial capacity) explaining 20.3 % of the total variance including 

microbial biomass as well as arylsulfatase and acid phosphatase activity (not highly specific 

due to similarly high correlation coefficients in two components) corresponded to the results 

of Taylor et al. (2002) who examined strong correlations between these three parameters in 

comparison of enzyme activities using various techniques. Consequently, this indicated the 

higher the microbial biomass content is the more enzymes are released into the soil in order 

to degrade large sulfate and phosphate containing molecules of the soil organic matter. The 

second component (mineralisation activity), which explained 18.1 % of the total variance, 

consisted of carbon (dehydrogenase activity and substrate-induced respiration) and nitrogen 

(net nitrification and urease activity) mineralisation parameters. Net nitrogen mineralisation 
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was also included to and discussed in this principal component because of the results of the 

former PCA of the land use system soils calculated with the aid of the same soil microbial 

functional parameters and because of another PCA calculated for soil samples of the field 

experiment providing data for the net nitrogen mineralisation and the remaining functional 

parameters (data not shown). Both PCA exhibited a close connection between net nitrogen 

mineralisation and net nitrification and in addition, a highly significant (P < 0.01) correlation 

(R = 0.677) between these two nitrogen mineralising parameters was detected. Except the 

urease activity the parameters of the second component are sensitive correlating oxidising 

parameters in organic matter degradation being used for estimating effects on soil microbes 

during xenobiotic presence in order to draw conclusions to microbial biomass (Engelen et al., 

1998). In a soil ecosystem possessing a high carbon mineralisation activity simultaneously 

organic nitrogen compounds being converted to ammonium are released. Hence, the more 

ammonium is available in the soil the more is transformed to nitrate through nitrification but 

the fewer is produced by urease activity caused by an urease inhibition due to the enzyme 

reaction product ammonium explaining the negative algebraic sign of the urease correlation 

coefficient (Table 21). The third component (metabolic activity) explaining 15.7 % of the total 

variance was composed of the metabolic quotient and basal respiration, which are both 

correlating indicators of turn-over processes and instability of the microbial biomass (Wardle 

et al., 1999). The fourth component (nitrogen transformation potential) explaining 12.7 % of 

total variance contained N2O and CO2 emission rates of the potential denitrification – the 

only anaerobic process within the soil microbial community functional parameters under 

study. 

 

 

3.2.3.5   Discriminant analysis 

According to the results obtained from the individual soil microbial function analysis that 

pesticides if any caused only hardly effects on soil microbial activities the data of the plots 

treated with pesticides were omitted in this analysis at first. With the aid of a discriminant 

analysis it was investigated whether it is possible to discriminate between soils of different 

management systems regarding fertilisation and the degree of land use as conducted for the 

land use systems (see 3.1.3.6, page 56). For that purpose, soils of the same treatments such as 
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fallow, reference, conventionally and organically fertilised plots at the same sampling day 

were expected to be allocated in the respective discriminant group. 94.4 – 99.7 % of the total 

variance of all group centroids were described by the first (57.8 – 87.9 %) and the second 

(11.9 – 38.1 %) canonical discriminant functions (CDF) and canonical correlation coefficients 

close to 1 (CDF 1: 0.942 – 0.990 and CDF 2: 0.910 – 0.942) indicated strong correlations 

between discriminant scores and groups. Very low Wilks' Lambda values close to 0 (CDF 1: 

0.002 – 0.018 and CDF 2: 0.061 – 0.160) showed that the group means were different, which 

was confirmed by a high significance greater than 95.4 %. The third canonical discriminant 

functions explaining 0.3 – 5.6 % of the total variance were insignificant. In Figure 19 the first 

two resulting canonical discriminant functions for all sampling days are plotted and it is 

obvious that a differentiation among treatments of different fertilisation and the degree of 

land use was possible. The same kind of discriminant analysis was also applied to the data of 

the conventionally and organically managed plots whereas it was investigated whether the 

plots only treated with mineral fertiliser as well as those plus endosulfan, plus chlorothalonil 

or plus both pesticides and the plots only treated with humus as well as those plus Bacillus 

thuringiensis, plus copper oxychloride or plus both pesticides, respectively, are differentiable. 

These analyses exhibited that it was neither possible to differentiate between soils treated 

and non-treated with pesticides nor between soils treated with one or two applications  

(data not shown). This result was in contrast to Kandeler et al. (1996) who could distinguish 

between soils (Calcaric Phaeozem, Eutric Cambisol and Dystric Lithosol) contaminated with 

four different heavy metal levels (uncontaminated control, 300 mg kg-1 zinc, 100 mg kg-1 

copper, 50 mg kg-1 nickel, 50 mg kg-1 vanadium and 3 mg kg-1 cadmium as well as two- and 

threefold concentrations of these heavy metals) by means of a discriminant analysis. As a 

result, in the present investigation, differences in the activity of soil microbial community 

functions were only induced by various fertiliser applications confirming the results of the 

land use system samples where it was possible to distinguish between already established 

different management systems in the same area whereas effects of pesticide applications 

could also be excluded due to low pesticide contents in soils of conventional management 

systems (see 3.1.2.1, page 37). 
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Figure 19: Chronological sequence of the values of the canonical discriminant functions 1 and 2  

at all sampling dates after pesticide application; : fallow, : reference field, : conventional field, 

: organic field; : group centroids. 

 

 

3.2.3.6   Ecological significance 

As already mentioned above, pesticides which were applied at a common agricultural 

practice level had hardly effects on the investigated soil microbial functions on Mollisols in 

the surroundings of Buenos Aires. Hence, only the ecological significance of the investigated 
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parameters between the two management systems with respect to the different fertiliser 

application and the degree of land use can tendentially be estimated in Figure 20 and 21 

whereas Figure 20 exhibits the factor scores of the principal components (PC, Table 21, page 

105) and Figure 21 shows those scores after subtraction of the reference means. Parts A, B, C 

and D exhibit factor scores of PC 1 (Microbial capacity: microbial biomass, acid phosphatase 

as well as arylsulfatase activity), PC 2 (Mineralisation activity: substrate-induced respiration, 

dehydrogenase as well as urease activity, net nitrogen mineralisation and net nitrification), 

PC 3 (Metabolic activity: basal respiration and metabolic quotient) and PC 4 (Nitrogen 

transformation potential: N2O and CO2 emission of the potential denitrification), 

respectively. 

Until one week after pesticide application strong fluctuations of the factor scores but no 

particular trend with respect to the different treatments were observable. The organically 

managed plots exhibited the significantly (P < 0.05) highest levels in PC 1 two and four 

weeks after pesticide application indicating the highest microbial capacity when compared 

to the remaining treatments. This could be explained by the highest contents of total organic 

carbon (TOC) and total organic nitrogen (TON) in these plots, while the microbial capacity 

was reduced at the end of the experiment corresponding to the decreasing TOC and TON 

contents (Figures 17, page 79). The remaining treatments showed similar raising trends of the 

microbial capacity in the order reference > conventional > fallow plots with the exception of 

the last sampling day when the latter two were exchanged. The reference soils had a higher 

microbial activity according to higher TOC and TON contents than the fallows and the 

conventionally managed plots. Consequently, the microbial capacity was strongly related to 

TOC and TON contents, which was confirmed by highly significant (P < 0.01) correlations  

(R = 0.592 and R = 0.568, respectively). Therefore, the organic management system soils were 

usually better provided with organic matter because of the humus application leading to an 

enhanced microbial capacity. 

In PC 2 the conventionally managed plots had the tendentially highest levels, while the 

reference and organic treatments showed medium levels during the field experiment and the 

lowest at the end. The fallow soils had the lowest levels before as well as two and four weeks 

after pesticide application, while having a medium level at the end. These results could be 

explained by a highly significant (P < 0.01) correlation of the mineralisation activity with 
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ammonium (R = 0.557) and nitrate (R = 0.509) contents (data not shown). Due to ammonium 

addition through mineral nitrogen fertilisation to conventionally managed plots net nitrogen 

mineralisation and particularly net nitrification were heavily activated (Table 19, page 99) 

leading to the tendentially highest mineralisation activity although the urease activity was 

inhibited as denoted by a negative correlation coefficient to this component (Table 21, page 

105). In a similar manner, the application of easily degradable organic matter in the form of 

humus induced a temporary increase in carbon mineralisation at first also releasing organic 

nitrogen compounds and serving as substrate for the nitrogen mineralisation, which then 

produced ammonium and nitrate. In the soils of the reference only the natural vegetation 

was incorporated as substrate in contrast to the fallow plots, which were not fertilised at all 

explaining the lowest levels with the exception at the end of the experiment when the 

fertilisers of the other treatments were exhausted. Thus, any kind of fertilisation activated 

partly carbon but strongly nitrogen mineralisation leading to an enhanced mineralisation 

activity. 

By contrast, in PC 3 except two weeks after pesticide application the fallow plots exhibited 

the significantly (P < 0.05) highest levels of metabolic activity throughout the experiment 

duration, which could be explained by the highest pH value (Figures 17, page 79) correlating 

highly significantly (P < 0.01) with the factor scores of this principal component (R = 0.352). 

The remaining treatments had similarly low levels whereas those of the reference plots 

tended to be the lowest. Hence, this indicated that any soil alteration additionally leading to 

a pH variation animated soil microorganisms being expressed in low levels of the metabolic 

capacity and high microbial efficiency. This result corresponded to that of the diverse land 

use systems, in which because of any change of soil management into agricultural land use a 

strong reduction in metabolic activity was observable indicating an effect caused by soil 

tillage, which was not performed on the present fallow plots. 

Conventional and reference treatments exhibited similar developments in PC 4 with a 

significant (P < 0.05) increase two weeks after pesticide application due to the precipitation 

event (Figure 16, page 78) increasing the anaerobic process of potential denitrification by 

more oxygen-free soil properties. Until the end of the experiment all treatments exhibited 

similar trends whereas the organically managed plots had tendentially the highest and the 

conventionally managed ones tended to have the lowest levels. This result has already been 
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explained by higher total organic carbon and nitrogen as well as due to a higher pH value in 

organic treatments in comparison to the conventional ones (see 3.2.3.3, page 98). Hence, soil 

oxygen content apparently had a stronger effect on nitrogen transformation potential than 

soil chemical properties. Nevertheless, a light effect caused by different fertiliser application 

and thus by reason of diverse management systems was observable. 
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Figure 20: Chronological sequence of the factor scores of all four principal components (PC) of the 

treatments fallow ( ), reference ( ), conventional field ( ) and organic field ( ) at all sampling dates 

with standard error bars (N = 3); A: PC 1 (Microbial capacity: microbial biomass, acid phosphatase 

activity and arylsulfatase activity), B: PC 2 (Mineralisation activity: substrate-induced respiration, 

dehydrogenase activity and urease activity, net nitrogen mineralisation and net nitrification), C: PC 3 

(Metabolic activity: basal respiration and metabolic quotient) and D: PC 4 (Nitrogen transformation 

potential: N2O and CO2 emission of the potential denitrification). 
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Figure 21: Chronological sequence of the factor scores subtracting those of the reference means of 

all four principal components (PC) of the treatments fallow ( ), reference ( ), conventional field ( ) 

and organic field ( ) at all sampling dates with standard error bars (N = 3); A: PC 1 (Microbial 

capacity: microbial biomass, acid phosphatase activity and arylsulfatase activity), B: PC 2 

(Mineralisation activity: substrate-induced respiration, dehydrogenase activity and urease activity,  

net nitrogen mineralisation and net nitrification), C: PC 3 (Metabolic activity: basal respiration and 

metabolic quotient) and D: PC 4 (Nitrogen transformation potential: N2O and CO2 emission of the 

potential denitrification). 
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The organic treatments exhibited significantly (P < 0.05) lower microbial biomass contents 
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compared to the conventional ones at the end of the experiment (Table 22). The temporal 

fluctuation of soil microbial biomass was higher than differences between diverse treatments 

such as fertiliser and pesticide applications. Using the soil microbial biomass data computed 

from substrate-induced respiration (see 3.2.3.2, page 90) a factor of 6.2 ± 1.1 (N = 177) was 

calculated for the conversion of total PLFA contents (µmol kg-1) into soil microbial biomass 

carbon (mg kg-1) corresponding to the factor of 5.8 ± 2.3 calculated by Joergensen and 

Emmerling (2006). Nevertheless, as already mentioned for the PLFA analysis of the land use 

system soils (see 3.1.4.1, page 60) since conversion factors are only reasonable for particularly 

defined PLFA, results are further on demonstrated as total PLFA concentrations instead of 

soil microbial biomass. 

The total PLFA content correlated highly significantly (P < 0.01) with total organic carbon 

(TOC) and total organic nitrogen (TON) contents (Figure 22a) indicating a link between 

nutrient concentrations and the amount of microbial biomass. Furthermore, the total PLFA 

content exhibited highly significant (P < 0.01) correlations to the soil microbial functional 

parameters such as acid phosphatase, arylsulfatase and dehydrogenase activity, basal 

respiration, microbial biomass (calculated via substrate-induced respiration) and metabolic 

quotient (Figure 22b). The correlation to soil microbial biomass was also reported for Typic 

Agrudalfs (Petersen et al., 1997), for red soils of south-western China (Yao et al., 2000) and for 

forest soils of northern Germany (Bååth and Anderson, 2003). However, again no correlation 

to the pH value could be found in contrast to the investigation of Bååth and Anderson (2003).  

 

0

10

20

30

40

0 50 100 150 200 250

TO
C

 [g
 k

g-1
]

0.0

1.0

2.0

3.0

4.0

0 50 100 150 200 250

TO
N

 [g
 k

g-1
]

 
 

Figure 22a: Correlation plots (P < 0.01, N = 177) of total PLFA content with total organic carbon 

(TOC; R = 0.277) and total organic nitrogen (TON; R = 0.260) contents. 
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Figure 22b: Correlation plots (P < 0.01, N = 177) of total PLFA content with soil microbial functional 

parameters such as acid phosphatase activity (PA; R = 0.161), arylsulfatase activity (AA; R = 0.299) 

dehydrogenase activity (DA; R = 0.189), basal respiration (BR; R = 0.203), microbial biomass  

(MB; R = 0.440) and metabolic quotient (MQ; R = –0.222). 

 

Phospholipid  fatty  acid  content  [µmol kg-1] 
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3.2.4.2   Principal component analysis 

Individual PLFA cannot be used to represent specific species, both because an individual 

bacterial or fungal species can contain numerous fatty acids and because the same fatty acids 

occur in many different organisms (Zelles, 1999). However, via principle component analysis 

(PCA) correlating PLFA can be pooled into independent principal components, which then 

can be allocated to different microbial taxonomic groups according to literature. Moreover, 

with respect to the investigation of Kelly et al. (2003) by means of a PCA of PLFA profiles it 

was possible to distinguish between soils with different contamination levels of heavy metals 

by contrasting factor scores resulting from the principal components. In the present PCA, 

PLFA contents expressed as percentage of total PLFA content were calculated, each PLFA 

being used as variable. A Kaiser-Meyer-Olkin-measure of sampling adequacy of 0.662 was 

computed indicating that a PCA was useful for the data, while a value lower than 0.0005 

calculated from the Bartlett's Test of Sphericity showed that significant relationships among 

the variables existed and that the data were suitable for PCA (Backhaus and Erichson, 2003). 

Resembling the PCA of the land use system samples (see 3.1.4.2, page 63) four principal 

components, which explained 76.7 % of the total variance were extracted via PCA (Table 23). 

However, a reasonable classification of the analysed PLFA into specific microbial taxonomic 

groups regarding this PCA was impossible. The PCA indeed provided high factor loadings 

for the individual PLFA in the principal components but with different algebraic signs and 

above all particular PLFA standing for certain microbial groups were allocated into diverse 

components. This might be explained by very similar soil conditions such as texture, soil 

density or water content as well as all climatic factors, which might not be effectual for a 

differentiation. Another reason could be that the experiment duration of nine weeks was too 

short for a discriminative development of the different taxonomic microbial groups in this 

agricultural soil under the given treatments regarding fertiliser and pesticide application and 

thus, no variabilities in PLFA pattern could be detected. On this account, according to the 

examination of soils of the diverse land use systems the allocation of the microbial taxonomic 

groups was adopted since similar soil types (Typic Argiudolls) were determined in the same 

investigation area (Table 11, page 64). 
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Table 23: Varimax rotated (after Kaiser normalisation) component matrix of the principal component 

analysis of individual PLFA. Each component combines variables with the highest factor loadings 

(bold) in a column. 

PLFA Component 1 Component 2 Component 3 Component 4

i15:0  0.85  0.21  0.25  0.02

a15:0  0.83 -0.21  0.14  0.12

18:2w6,9 -0.82 -0.09  0.17  0.03

10Me16:0  0.62  0.56 -0.16 -0.05

18:1ω7c -0.40 -0.77 -0.22 -0.02

16:1ω7c  0.01 -0.76 -0.17  0.24

i17:0  0.20  0.77  0.30  0.27

20:4ω6 -0.25  0.63 -0.36  0.27

10Me17:0 -0.33  0.62  0.37  0.47

16:1ω5c  0.10 -0.00 -0.84  0.12

i16:0  0.55  0.05  0.77  0.07

10Me18:0 -0.15  0.31  0.66  0.20

a17:0  0.22  0.53  0.65  0.13

18:1ω9c -0.45 -0.05  0.04 -0.83

cy17:0 -0.56  0.04  0.13  0.69  

 

 

The temporal variations of PLFA sum contents representing different microbial taxonomic 

groups are given in Tables 24 to 27. Tables 24 and 26 show mean absolute and relative 

contents, respectively, and standard errors of all microbial groups in all treatments at every 

sampling date. However, Tables 25 and 27 exhibit the same absolute and relative contents, 

respectively, subtracting those of the reference plots at a particular sampling date. The latter 

allowed a better comparison of treatment effects since subtracting the reference plot PLFA 

concentrations at individual sampling dates eliminated climatic effects being an important 

driver for soil microbial properties. Different letters next to the values indicate significant  

(P < 0.05) differences among the data whereas small letters describe differences caused by 

various treatments at individual sampling dates (vertical), while capital letters describe 

differences caused by time variations during the field experiment (horizontal). 
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3.2.4.3   Individual microbial taxonomic groups 

No significant (P > 0.05) differences of absolute PLFA sum contents of the individual 

taxonomic groups except those of protozoa could be observed both for temporal (Table 24) 

and treatment effects (Table 25). Consequently, soil microbial community composition as 

indicated by individual PLFA is also no adequate measure for the differentiation between 

conventional and organic agriculture. In contrast, Banerjee and Dey (1992) determined a 

significantly decreasing total number of bacteria, actinomycetes and fungi in rhizosphere 

microflora of Gangetic alluviums treated with the herbicide basalin and the fungicides 

dithane and bengard when compared to control soils in a random block design field 

experiment in West Bengal, India. The authors concluded that different pesticides have 

different effects on growth and activity of the rhizosphere microflora at various stages of 

plant growth and thus, they may affect the latter. Contradictory, bacterial and actinomycetes 

populations in clayey botanical garden soils in Assiut, Egypt, treated with the herbicide 

brominal and the insecticide selecron were promoted at field application rate but inhibited at 

fivefold rate (Omar and Abdel-Sater, 2001), while both pesticides significantly decreased the 

total number of the most determined fungal species. Heavy metal contamination induced a 

shift of the ratio of fungal to bacterial PLFA in a Calcaric Phaeozem (Kandeler et al., 2000) in 

contrast to the present investigation, in which no effect on this ratio was detectable (data not 

shown). Kandeler et al. (2000) exhibited that heavy metal-resistant fungi can survive in 

medium polluted soils being supported by the results of Frostegård et al. (1996) who found a 

strong increase of the fungal biomarker PLFA 18:2ω6,9 due to zinc contamination in arable 

soils in southern Sweden. Nevertheless, in the present investigation protozoa represented by 

PLFA 20:4ω6 (Cavigelli et al., 1995) and three more individual PLFA 14:0, 17:0 and 10Me17:0, 

which usually indicate all microbial groups and actinomycetes (Zelles, 1999), respectively, 

exhibited the highest sensitivity against different fertiliser applications. Figure 23 exhibits the 

PLFA contents subtracted by those of the reference plots in order to eliminate variations 

caused by climatic factors. Thus, after strong fluctuations at the beginning of the experiment 

two and four weeks after pesticide application the organic treatments exhibited distinctly 

higher contents of these PLFA compared to the conventional ones, while at the end of the 

field experiment the values for the organically managed plots partly decreased dramatically 

under the level of the conventionally managed ones. Differences caused by the various 
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pesticide applications were not detectable. Furthermore, plots treated with the Gram 

positive, aerobic Bacillus thuringiensis (Grove et al., 2001) did not exhibit higher contents in 

PLFA a15:0, i15:0 and i16:0 representing Gram positive, aerobic bacteria indicating that it 

was not possible to quantify the concentration of this biological insecticide in agricultural 

soils by means of PLFA analysis. 
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Figure 23: Temporal variation of the individual absolute PLFA contents with standard error bars;  

: only humus; : Bacillus thuringiensis; : copper oxychloride; –: Bacillus thuringiensis plus copper 

oxychloride, : only mineral fertiliser, : endosulfan, : chlorothalonil, : endosulfan plus 

chlorothalonil (N = 3); values subtracting those of the reference means. 

 

 

3.2.4.4   Microbial community composition 

Tables 26 and 27 show the relative abundances of the taxonomic microbial groups at the 

total PLFA content both non-subtracting and subtracting the values of the reference plots, 

respectively. The Gram positive, anaerobic and the Gram negative bacteria did not exhibit 

Experiment  duration  [weeks] 
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different trends between the diverse treatments throughout the experiment duration, while 

the actinomycetes had a significantly (P < 0.05) higher relative abundance in conventional 

treatments than in organic ones at the last sampling day. The latter result was even more 

obvious when subtracting the relative actinomycete abundance of the reference from those of 

the diverse treatments at individual sampling dates, especially at the end of the experiment 

when the values of the organically managed plots tendentially decreased and those of the 

conventionally managed ones significantly (P < 0.05) increased compared to the beginning. 

Four and nine weeks after pesticide application the relative fungal abundance tended to be 

higher in conventional treatments in comparison to the organic ones, while the time before 

no trend was detectable. A clearer development was found in consideration of the Gram 

positive, anaerobic bacteria, which showed higher relative abundances in organic compared 

to conventional treatments two and four weeks after the beginning of the experiment, while 

the values were reversed at the end. The values of the organic treatments mostly decreased 

and those of the conventional ones increased until the end of the experiment compared to the 

beginning. The pesticide applications seemed to have no effects on soil microbial community 

structure, which was in contrast to the results of Smith et al. (2000) who determined effects of 

long-term fungicide applications on microbial properties in tallgrass prairie Udic Argiustolls 

in northeast Kansas, USA. In that investigation benomyl reduced significantly bacterial 

biomass and the relative contribution of fungi to total microbial activity. Furthermore, Kelly 

et al. (2003) reported that soils with higher levels of heavy metal contamination showed 

decreases in indicator PLFA for fungi, Gram positive bacteria and actinomycetes indicating a 

change in population structure of the soil microbial community resulting from heavy metal 

contamination. Fraterrigo et al. (2006) found that microbial communities in formerly farmed 

southern Appalachian (USA) forest soils had a higher relative abundance of markers for 

Gram negative bacteria and a lower abundance of markers for fungi when compared to 

previously logged and reference stands. Nevertheless, regarding the individual microbial 

groups again the PLFA 20:4ω6 representing protozoa (Cavigelli et al., 1995), the PLFA 

10Me17:0 representing actinomycetes as well as the unspecific PLFA 14:0 and 17:0 (Zelles, 

1999) exhibited most distinct trends in connection with the fertiliser applications (Figure 24). 

Equally to the absolute contents, the relative abundances of these PLFA subtracted by those 

of the reference plots exhibited distinctly higher values in organic than in conventional 
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treatments two and four weeks after field experiment beginning, while those of the latter 

treatments reduced drastically at the end. Again differences caused by the various pesticide 

applications were not detectable. 
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Figure 24: Temporal variation of the individual relative PLFA abundances with standard error bars;  

: only humus; : Bacillus thuringiensis; : copper oxychloride; –: Bacillus thuringiensis plus copper 

oxychloride, : only mineral fertiliser, : endosulfan, : chlorothalonil, : endosulfan plus 

chlorothalonil (N = 3); values subtracting those of the reference means. 

 

 

3.2.4.5   Discriminant analysis 

Although it was not possible to attribute the principal components to specific microbial 

taxonomic groups it was reasonable to compute the discriminant analysis with the factor 

scores obtained by the principal component analysis in order to investigate whether it is 

possible to distinguish between soils of different management systems. This was done in the 

style of the discriminant analysis of the soil microbial community functional parameters (see 

3.2.3.5, page 106), in which it was feasible to differentiate between conventional and organic 
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treatments as well as fallow and reference plots within the field experiment. The present 

results derived from individual microbial groups and microbial community composition that 

pesticides caused no effects on PLFA pattern could be explained by a low bioavailability of 

pesticides in soils with high organic carbon and high clay contents (Ahtiainen et al., 2003), 

which may also be the case for the Mollisol under study. Hence, the data of the plots treated 

with pesticides were omitted in this analysis at first. Soils of the same treatments such as 

fallow, reference, conventionally and organically fertilised plots at the same sampling day 

were expected to be allocated in the respective discriminant group. 94.7 – 100.0 % of the total 

variance of all group centroids were described by the first (54.5 – 94.6 %) and the second  

(5.2 – 40.2 %) canonical discriminant functions (CDF) and canonical correlation coefficients 

close to 1 (CDF 1: 0.964 – 0.993 and CDF 2: 0.852 – 0.964) indicated strong correlations 

between discriminant scores and groups. Very low Wilks' Lambda values close to 0 (CDF 1: 

0.001 – 0.005 and CDF 2: 0.041 – 0.240) exhibited that the group means were different, which 

was confirmed by a high significance greater than 87.5 %. The third canonical discriminant 

functions, which explained 0.0 – 5.3 % of the total variance were inconsiderable. In Figure 25 

the first two resulting canonical discriminant functions for all sampling days are plotted and 

it was obvious that a differentiation among the treatments of different fertilisation and the 

degree of land use was predominantly possible. A distinct differentiation from the other 

treatments was observable for the fallow plots and those of the organically managed ones. 

Congruent to the trend of the pH value (Figure 16, page 78) at the first four sampling days a 

difference between reference plots and those of the conventional management was not 

detectable, while at the end of the experiment also these diverse treatments were clearly 

differentiable. Consequently, in comparison to the investigation of the functional parameters 

it could be concluded that the soil microbial community structural parameters were less 

sensitive against soil alteration than soil microbial community functional parameters since 

with the aid of the latter ones it was already possible to distinguish between the various 

treatments at the day of pesticide application. The same kind of discriminant analysis was 

also applied to the data of the conventionally and organically managed plots whereas it was 

investigated whether the plots only treated with mineral fertiliser as well as those plus 

endosulfan, plus chlorothalonil or plus both pesticides and the plots only treated with 

humus as well as those plus Bacillus thuringiensis, plus copper oxychloride or plus both 
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pesticides, respectively, are differentiable. The analyses exhibited that it was neither possible 

to differentiate between soils treated and non-treated with pesticides nor among soils treated 

with one or two applications (data not shown). Consequently, differences in soil microbial 

community structure were only induced by various fertiliser additions, which confirmed the 

same results of the investigation of the soil microbial community function. 
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Figure 25: Chronological sequence of the values of the canonical discriminant functions 1 and 2  

at all sampling dates after pesticide application; : fallow, : reference field, : conventional field, 

: organic field, : group centroids. 
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3.2.5   Linking soil microbial community structure to function 

Since the microbial community structure is not sufficient as an indicator for soil quality 

(Schloter et al., 2003b) absolute PLFA contents of the microbial taxonomic groups influencing 

ecosystem processes were correlated with the microbial community functional parameters. 

Table 28 exhibits correlation coefficients and significance levels between the structural and 

functional parameters. Equal to the total PLFA content – the measure of viable microbial 

biomass – all microbial group contents correlated highly significantly (P < 0.05) with the 

arylsulfatase activity and the soil microbial biomass content, which was computed from the 

substrate-induced respiration. This result emphasised the significance of the two parameters 

being in the first principal component of the principal component analysis of the functional 

parameters and representing the microbial capacity. By contrast, with the exception of the 

protozoa all microbial taxonomic groups mostly exhibited highly significant (P < 0.05) 

negative correlations with the metabolic quotient indicating microbial growth without stress. 

The metabolic quotient reflects the physiological status of the soil microbial community and 

may be used as a stress indicator for ecosystems (Jones et al., 2001). According to this, the 

lower the value of this quotient is the higher is the microbial biomass and the lower is the 

basal respiration. Consequently, the microbes did not correlate with the substrate-induced 

respiration because the easily degradable carbon sources offered during this analysis were 

used for production of biomass and less of energy. Contradictory to the study of the land use 

systems, in which the protozoa were the microbial group providing the lowest ecological 

significance, in the field experiment, this microbial group exhibited the most mainly highly 

significant (P < 0.05) correlations with the functional parameters and thus, it was the most 

sensitive group against soil alteration. This result was confirmed by the absolute contents 

and relative abundances of protozoa (Figures 23 and 24, page 127 and 129, respectively) 

showing an obvious differentiation between organically and conventionally managed plots 

in comparison to the abundances of the remaining groups. However, when compared to the 

results of the land use systems this situation seemed to be reversible because after some time 

when all microbial groups adapted to soil alteration the protozoa apparently loose ecological 

significance. The Gram positive bacteria including actinomycetes and the Gram negative 

bacteria exhibited fewer correlations when compared to the previous study indicating that 

these groups were inhibited by soil alteration and had to cope with the new soil conditions at 
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first. However, fungi, which are considered more resistant to stress and soil alteration (Bååth 

and Anderson, 2003; Kandeler et al., 2000) maintained their ecological significance despite 

new habitat conditions and exhibited even more correlations to functional parameters as in 

actual agricultural land use system soils. Beneath changed soil physico-chemical properties 

particularly caused by tillage and fertiliser application but hardly because of pesticide 

treatments recently arisen ecological niches were not occupied by specific microbial groups, 

yet. According to this and the principal component analysis, in which a classification into 

microbial taxonomic groups was impossible, the most correlations were found with the same 

functional parameters since no specification into various ecological tasks took place. Hence, 

the correlation analysis of the field experiment samples reflected soil microbial conditions 

immediately after soil alteration, while that of the investigation of the different land use 

systems described the microbial status of soils being in ecological equilibrium. 

 

Table 28: Correlation coefficients between PLFA contents of the microbial taxonomic groups and soil 

microbial functional parameters (N = 177). 

Soil microbial

functional parameters

Acid phosphatase 0.250 ** 0.192 * 0.383 ** 0.081 0.051 0.192 **

Arylsulfatase 0.367 ** 0.290 ** 0.325 ** 0.276 ** 0.246 ** 0.231 **

Cellulase -0.080 -0.094 0.023 0.021 -0.068 0.023

Dehydrogenase 0.130 0.071 -0.247 ** 0.280 ** 0.221 ** 0.152 *

Urease -0.035 -0.055 0.100 -0.059 -0.147 -0.075

Basal respiration 0.201 ** 0.120 0.297 ** 0.247 ** 0.110 0.227 **

Substrate-induced respiration 0.132 0.067 -0.137 0.072 0.139 0.138

Microbial biomass 0.514 ** 0.444 ** 0.247 ** 0.452 ** 0.340 ** 0.511 **

Metabolic quotient -0.280 ** -0.296 ** 0.016 -0.188 * -0.216 ** -0.265 **

Net nitrogen mineralisation 0.160 0.157 0.014 0.038 0.045 0.188 *

Net nitrification 0.066 0.084 -0.290 ** 0.066 0.127 0.118

Potential denitrification 0.009 -0.152 * 0.149 * 0.085 -0.092 0.016

Gram +,
Protozoa Fungi

aerobic  b.

Gram +, Actino- Gram -

bacteriaanaerobic  b. mycetes

 
* significant (P < 0.05),  ** highly significant (P < 0.01);  b.: bacteria. 
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4.   Conclusions 

Soil scientists, agronomists and ecologists are concerned about the effects of continuous 

intensive soil management practices on the diversity of soil microbial communities and on 

soil sustainability. On the one hand, in this dissertation the anthropogenic stress resulting 

from different agricultural land use systems on microbial community structure and function 

in soils of conventional and organic cultivation on open agricultural fields as well as under 

greenhouses, pastures and fallows of the inner zone of the green belt around Buenos Aires, 

Argentina, was characterised. Additionally, soils of an anthropogenically unaffected natural 

site was used as a reference. On the other hand, a field experiment was designed in order to 

examine the suitability of microbial parameters to differentiate between recently established 

agricultural management systems (conventional versus organic) in a land use conversion 

starting from a fallow with particular respect to pesticide and fertiliser application. Hence, 

the pesticide and heavy metal contamination situation was examined in topsoils of the 

investigation area. Moreover, soil microbial community function was determined by enzyme 

activities (acid phosphatase, arylsulfatase, cellulase, dehydrogenase and urease), basal as 

well as substrate-induced respiration, microbial biomass, metabolic quotient, net nitrogen 

mineralisation, net nitrification and potential denitrification, while soil microbial community 

structure was studied by means of phospholipid fatty acid (PLFA) analysis. 

 

4.1   Land use systems 

The pesticides carbofuran, chlorpyrifos, chlorothalonil, dimethoate, endosulfan (α- and β-

isomer and the metabolite endosulfan sulfate), permethrin and trifluralin were determined 

exclusively in soils of conventionally managed fields or in greenhouses and in one fallow 

soil, which was previously also conventionally managed. Therefore, only on conventional 

sites chemical pest control was performed and thus, conventionally managed fields could be 

distinguished from other land use system soils by pesticide analysis. Pesticides below the 

detection limit were cypermethrin, deltamethrin, malathion and triazofos. Hence, no risk 

potential was expected from pesticide contamination for environment since the determined 

pesticide concentrations in soils of the conventionally managed fields were distinctly below 

the intervention values of the Dutch List. Low pesticide concentrations could be caused by 

volatilisation, leaching, erosion, mineralisation or fixation to soil particles as bound residues. 
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The fact that no pesticides were found in the non-conventional sites implies that the risk for 

human health via soil erosion and / or food contamination can be considered as low. Copper, 

lead, manganese, nickel, iron and zinc could be quantified in all soil samples, while 

cadmium could only be detected in one fallow soil. As no significant differences in heavy 

metal contents in the investigated soils including the reference site could be observed no 

significant anthropogenic heavy metal sources such as pest control, mineral phosphate 

fertilisers or sewage sludge could be assumed. Additionally, atmospheric contamination 

caused by local industry and traffic could be considered as low when compared to reference 

values (e.g. Dutch List). For this reason, it was not possible to separate land use systems by 

heavy metal contents. All heavy metal levels were within the background range for 

uncontaminated soils. Hence, heavy metal contents were not regarded as harmful for the 

environment. Unfortunately, no investigations of heavy metal and pesticide contamination 

of agricultural soils in other metropolitan areas with the same socio-economic background as 

described for Buenos Aires such as São Paulo (Brazil), Bangkok (Thailand) or Kathmandu 

(Nepal) were found for the purpose of comparison to the present study. 

Since the examination of individual soil microbial community functional parameters did 

not provide unambiguous results these parameters were divided into the following four 

components via principal component analysis: 

- Microbial capacity (microbial biomass carbon, acid phosphatase, arylsulfatase and 

dehydrogenase activities), 

- Mineralisation activity (cellulase activity, substrate-induced respiration, net nitrogen 

mineralisation and net nitrification), 

- Nitrogen transformation potential (urease activity and potential denitrification), 

- Metabolic activity (basal respiration and metabolic quotient). 

By means of a subsequent discriminant analysis the soils of the reference, pastures as well 

as greenhouses and organically managed agricultural fields could be separated. Only soils of 

the conventionally managed agricultural fields and the fallows could not be differentiated 

indicating insufficient time for conversion of microbial parameters. With the knowledge that 

all fallow soils previously have been conventionally cultivated the assumption that both land 

use systems exhibit similar soil microbial function properties was clarified by a hierarchical 

cluster analysis. Additionally, it was exhibited that not cultivation systems were mainly 
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responsible for differences in properties of agriculturally managed soils but factors resulting 

from indoor or outdoor cultivation. Furthermore, the reference and pasture soils were very 

different to those of the agricultural managements. The reference soils showed much higher 

values for basal respiration and microbial quotient compared to the other land use systems, 

while the pasture soils exhibited a higher microbial biomass and increased enzyme activities. 

With the aid of relative abundances, individual PLFA could be divided into the following 

four components representing particular taxonomic groups via principal component analysis 

and literature corresponding to their highest factor loadings: 

- Principal component 1: Gram positive, anaerobic bacteria (PLFA cy17:0, a17:0, i17:0), 

actinomycetes (PLFA 10Me17:0, 10Me18:0) and protozoa (PLFA 20:4ω6). 

- Principal component 2: Gram negative bacteria (PLFA 16:1ω5c, 16:1ω7c, 18:1ω7c). 

- Principal component 3: Gram positive, aerobic bacteria (PLFA a15:0, i15:0, i16:0). 

- Principal component 4: Fungi (PLFA 18:1ω9c, 18:2ω6,9). 

Total PLFA contents revealed that any agricultural land use led to a decrease in microbial 

biomass in comparison to anthropogenically unaffected soils. The lowest biomass reduction 

was detected in pasture soils because of organic matter input through excrements of animal 

stocks. Soils of greenhouse cultivations exhibited tendentially lower contents compared to 

outdoor cultivations on agricultural fields. Gram negative bacteria and fungi showed higher 

contents in soils with organic managements than in those with conventional ones. Fallow 

soils, which mainly had the lowest contents in all soils for every taxonomic group, indicated 

that soil microorganisms need a long time to recover from agricultural land use regarding 

that these soils have not been used at least for two years. Most of the microbial taxonomic 

groups relatively decreased compared to the reference soil – in particular the Gram positive, 

aerobic bacteria. Fungi and Gram negative bacteria relatively increased although they 

decreased in absolute terms. Therefore, a change of soil microbial community composition 

was obvious because of any agricultural land use. In soils of conventionally and organically 

managed agricultural fields and fallow sites, Gram negative bacteria exhibited significantly 

greater contents than soils of the remaining land use systems. This might be caused by better 

aeration due to higher tillage activity and resulting in lower soil density on the one hand or 

due to other climatic conditions or irrigation practice on the other hand in indoor compared 

to outdoor cultivations. 
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It can be concluded that the current organically and conventionally agricultural practice 

of Argentinean farmers concerning plant protection and fertilisation in the inner zone of the 

green belt around Buenos Aires is not considered as endangering or alarming for human 

health, soil and water quality, plant growth and wildlife. Nevertheless, the development of 

agriculture in this area has to be observed further on in case the situation comes to a head 

because the pressure on agriculture will increase due to continuing population growth, city 

expansion and soil sealing. This investigation clearly showed that no significant differences 

in microbial parameters were detected neither between soils of conventional and organic 

management systems nor between cultivations on agricultural fields and greenhouses using 

individual microbial parameters. Instead, it was clearly demonstrated that it was possible to 

distinguish between various agricultural medium- to long-term (> 2 years) land use systems 

using a set of microbial functional parameters followed by multivariate statistical analysis. 

However, this investigation revealed that the selected soil microbial functional parameters 

were not sensitive enough for short-term (< 2 years) land use changes. Furthermore, it can be 

stated that PLFA analysis is a valuable tool for evaluating soil microbial diversity. However, 

this diversity and the microbial composition of the soils under study were not significantly 

influenced by the different agricultural land use systems. Therefore, further investigations 

should be performed in order to find other parameters, which are regarded as spontaneous 

indicators of variations in soil physical, chemical or biological properties for the detection of 

land use changes on the short term and for the examination how sensitive the presented 

procedures are. 

 

4.2   Field experiment 

Resembling the land use systems the examination of individual soil microbial community 

function parameters of the field experiment did not provide unambiguous results. Therefore, 

these parameters were also divided into four components via principal component analysis: 

- Microbial capacity (microbial biomass, acid phosphatase and arylsulfatase activity), 

- Mineralisation activity (substrate-induced respiration, dehydrogenase and urease 

activity, net nitrogen mineralisation and net nitrification), 

- Metabolic activity (basal respiration and metabolic quotient), 

- Nitrogen transformation potential (potential denitrification). 



4.   Conclusions 138

The cellulase activity could not be taken into account because of too low correlation 

coefficients to the principal components indicating a too low contribution at the whole soil 

microbial functionality in this field experiment. With the aid of a subsequent discriminant 

analysis the plots of the fallow, reference and conventional as well as organic treatments 

could be separated at any sampling date throughout the experiment duration. By contrast, it 

was not possible to differentiate between soils treated with pesticides and only fertilised ones 

both in conventionally and organically managed treatments. Equally no differences were 

found in soils treated with one or two pesticides. Consequently, differences in the activity of 

the soil microbial functions were only induced by various fertiliser applications. 

Phospholipid fatty acid (PLFA) profiles actually provide a robust measure, which can be 

used to fingerprint the structure of soil microbial communities and to calculate their biomass. 

On the one hand, probably due to a still too homogeneous data set (same soil and recent 

changes in management practice) a differentiation of soil microbial community structure by 

means of a principal component analysis was not possible. On the other hand, with the aid  

of a subsequent discriminant analysis it was possible to distinguish between soils of non-

fertilised agricultural field, fallow as well as conventionally and organically managed plots, 

indicating small differences among individual microbial groups but synergistic effects of soil 

microbial community structure. However, a differentiation between the non-fertilised and 

conventional treatments was only feasible for six weeks after fertiliser addition to the soil. In 

addition, a discrimination among soils of the same management system being treated with 

various pesticides was not feasible. Furthermore, a quantification of the amount of applied 

Gram positive Bacillus thuringiensis in organic cultivation by means of PLFA analysis was not 

possible as opposed to the other pesticides, which could be determined by residue analysis. 

Four PLFA (14:0, 17:0, 10Me17:0 and 20:4ω6) were identified being very sensitive to humus 

or mineral fertiliser application regarding both absolute and relative abundance. 

In literature there are several studies showing strong effects of pesticides on soil microbes 

by application of two to ten times higher pesticide concentrations as commercially used. The 

present investigation was consciously conducted using actual pesticide amounts in order to 

determine the current impact of Argentinean agriculture on the structure and function of the 

soil microbial community during a single vegetation period. According to the present results 

mentioned above, the actual agricultural practice does not drastically influence the activity of 
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soil microorganisms and thus soil sustainability. These results indicate that the clayey and 

silty as well as fertile Mollisols of the investigation area constitute very stable soil ecosystems 

potentially exhibiting a low bioavailability of pesticides. On this account, it was not possible 

to state a quality index for these soils. Additionally, many correlations between soil microbial 

community structure and function parameters were found in both parts of this dissertation 

indicating close connections between soil microbial community structure and function. 

Therefore, microbial community composition alone was of no indicator value for soil quality 

and had to be combined with functional properties. 

 

To draw a conclusion, a gentle utilisation of the valuable resource soil is crucial for 

sustainable agriculture in mega-cities such as Buenos Aires. However, since soil microbial 

community structure and function provide details about the integrated state of soil quality 

and disturbance regimes the evaluation of sustainability of intensely agriculturally used soils 

is not only of interest in mega-cities. The results of this investigation can be used for giving 

advices for sustainable agriculture in the periurban area of Buenos Aires and can provide 

basic knowledge about other conurbations in the world. With special regard to the situation 

in the surroundings of Buenos Aires, according to the results of the present dissertation, 

under current circumstances soil degradation and contamination as well as disturbance of 

soil community structure and function are not expected. Admittedly, the situation in several 

years of continuing land use intensification is arguable why long-term observations and 

investigations on more severe soil conditions are required and suggested for the future. 
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