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Abstract

English abstract

Partial differential equations play an important role in many applications. Therefore it is of enormous
significance to provide algorithms and methods to solve them numerically in a reasonable time. One
operator that has gained importance in recent years is the fractional Laplacian. The dissertation
is dedicated to the goal of providing tools to handle finite element problems in three dimensions
involving the fractional Laplacian in a numerically efficient way.

The fractional Laplacian belongs to the class of elliptic operators and is, as the name suggests,
closely related to the Laplace operator. The major difference between the two is that the fractional
Laplacian is a non-local operator and this results in some fundamental differences between the prop-
erties of both. The most important difference for us is the stiffness matrix. This poses two enormous
challenges from a numerical point of view. On the one hand, the stiffness matrix is densely populated
in contrast to the Laplace operator and on the other hand the calculation of the entries can be very
complex and expensive. The reason for this is that in the worst case the entries consist of a sum
of five- and six-dimensional integrals, which are singular if the support of the linear basis functions
overlap. Therefore, a main contribution of this work is to develop efficient quadrature and cubature
formulas for the singular integrals, and another is to derive suitable approximation methods for the
stiffness matrix.

For the first part we adapt the Duffy transformation to the needs of the fractional Laplacian in three
dimensions. A total of seven different singularity cases have to be investigated individually. In order
to make the numerical integration efficient, the integration error is adapted to the error of the finite
element solution. Thus, we develop new quadrature formulas for an efficient calculation of the entries.
In addition, we also present efficient cubature formulas based on these error estimates, which are based
on an adaptation of the Duffy transformation. For the second problem, we choose to use hierarchical
matrices (H -matrices) and prove that this method is also efficient for the fractional Laplacian.
H -matrices offer the advantage that the effort for constructing the approximation and performing
the matrix-vector-multiplication is only quasi-linear instead of quadratic. Moreover, we also present
a new, kernel-independent method to construct uniform H - and H 2-matrix approximations for
nonlocal operators. The presented method is based on an adaptation of the cross approximation.
Finally, the efficiency of the methods and procedures presented here is tested by means of numerical
examples.
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Deutsche Kurzzusammenfassung

Partielle Differentialgleichungen spielen in vielen Anwendungen eine wichtige Rolle. Deshalb ist es
von enormer Bedeutung Algorithmen und Methoden bereitzustellen, um diese in annehmbarer Zeit
numerisch zu lösen. Ein Operator, der in den letzten Jahren an Bedeutung gewonnen hat, ist der
fraktionale Laplace Operator. Die vorliegende Dissertation ist dem Ziel gewidmet, Werkzeuge bereit
zustellen, um finite Elemente Probleme im dreidimensionalen Raum, die den fraktionalen Laplace
involvieren, numerisch effizient zu handhaben.

Der fraktionale Laplace gehört zur Klasse der elliptischen Operatoren und ist, wie der Name ver-
muten lässt, eng mit dem Laplace Operator verwandt. Der gravierende Unterschied zwischen den
beiden ist allerdings, dass der fraktionale Laplace ein nicht-lokaler Operator ist, wodurch sich teil-
weise fundamentale Unterschiede zwischen den Eigenschaften der beiden Operatoren ergeben. Der
für uns wichtigste Unterschied ist die Steifigkeitsmatrix. Diese stellt uns aus numerischer Sicht vor
zwei signifikante Probleme. Zum einem ist die Steifigkeitsmatrix im Unterschied zum Laplace Oper-
ator dicht besetzt und zum anderen kann sich die Berechnung der Einträge als höchst zeitaufwendig
und komplex erweisen. Der Grund dafür ist, dass die Einträge im schlimmsten Fall aus einer Summe
von fünf- und sechsdimensionalen Integralen bestehen, die auch noch singulär sind, wenn sich die
Träger der linearen Basisfunktionen überschneiden. Der Hauptteil der Arbeit besteht darin, zum
einem effiziente Quadratur- und auch Kubaturformeln für die singulären Integrale zu entwickeln und
zum anderen geeignete Approximationsmethoden für die Steifigkeitsmatrix herzuleiten.

Für den ersten Teil haben wir die Duffy Transformation auf die Bedürfnisse des fraktionalen
Laplaces im dreidimensionalen Raum adaptiert. Dazu müssen insgesamt sieben verschiedene Sin-
gularitätsfälle einzeln untersucht werden. Um die numerische Integration effizient zu gestalten,
wird der Integrationsfehler an den Fehler der finite Elemente Lösung angepasst. Dadurch ergeben
sich neue Quadraturformeln für eine effiziente Berechnung der Einträge. Zusätzlich stellen wir auf
Basis dieser Fehlerabschätzungen auch effiziente Kubaturformel vor, die auf einer Anpassung der
Duffy Transformation basieren. Für die zweite Problematik entscheiden wir uns für den Einsatz
von hierarchischen Matrizen (H -Matrizen) und beweisen, dass diese Methode auch für den frak-
tionalen Laplace effizient einsetzbar ist. H -Matrizen bieten die Vorteile, dass der Aufwand für das
Aufstellen der Approximation nur quasi-linear ist, ebenso wie der Aufwand für die Matrix-Vektor-
Multiplikation. Zusätzlich stellen wir auch eine neue, kern-unabhängige Methode vor, um uniforme
H - und H 2-Matrixapproximationen für nicht-lokale Operatoren zu konstruieren. Die vorgestellte
Methode basiert auf einer Anpassung der Kreuzapproximation. Zum Abschluss wird die Effizienz der
hier vorgestellten Methoden und Verfahren an Hand von numerischen Beispielen getestet.
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1. Introduction

Partial differential equations and their numerical solutions play a significant role in applications.
One operator that has received more attention in recent years is the fractional Laplacian, e.g. in
the modeling of cardiac electrical propagation [23], in fractional quantum mechanics [66, 67], in the
modeling of anomalous diffusion [26, 85], in fluid mechanics [32, 33], and in stochastic processes [17,
59, 63] as so called Lévy processes.

The fractional Laplacian belongs to the family of elliptic operators and has close connections to
the Laplace operator; see [58, 65, 80]. However, in contrast to the Laplace operator, the fractional
Laplacian is a non-local operator, which causes quite some differences and issues. For example the
mean value property of the fractional Laplacian is also a non-local property and the corresponding
stiffness matrix is dense; see [1, 2, 3, 4, 22, 58, 65]. As a consequence, especially the computation
of the entries of the stiffness matrix and its efficient approximation are of utmost importance to be
able to solve the applications numerically in reasonable time. For the two-dimensional case these two
issues are already resolved in [1, 2, 3, 4, 75]. However, the computation of the entries of the stiffness
matrix is strongly dependent on the dimension of the problem.

The aims of this work are to introduce the fractional Laplacian and its theoretical framework, and
to present an efficient numerical treatment for the finite element method (FEM) approach of this
operator in three dimensions. In contrast to [4], which used the fast multipole method introduced by
Greengard and Rokhlin (see [28, 48, 49, 74]), we employ H -matrices (see [13, 18, 51]) to approximate
the stiffness matrix. While in a SIAM News article [30] the multipole method has been named to be
one of the top 10 algorithms of the 20th century, the issue is that it relies on explicit kernel expansions,
which on the one hand allows to tailor the expansion tightly to the respective problem, but on the other
hand requires its own analytic apparatus including a-priori error estimates for each kernel. In order to
overcome this technical difficulty, kernel-independent generalizations were introduced; see [81]. While
these keep the analytic point of view, H - and H 2-matrices (see [50, 53, 55]) generalize the method
as much as possible by an algebraic perspective. In addition to the n-body problem, these methods
can be applied to general elliptic boundary value problems either in its differential or its integral
representation; see [13, 51]. Furthermore, approximate replacements of usual matrix operations such
as addition, multiplication, and inversion can be carried out with logarithmic-linear complexity, which
allows to construct preconditioners in a fairly automatic way.

This dissertation is divided into ten chapters, the introduction being the first one. The second
chapter is devoted to the introduction of the fractional Laplacian and the main problem, the finite
element approximation of the operator. One way to define the fractional Laplacian is as an integral
operator, i.e.

(−∆)su(x) := cd,s f.p.
∫
Rd

u(x)− u(y)

|x− y|d+2s
dy, cd,s :=

22s Γ(s+ d/2)

πd/2 Γ(1− s)
.

Here, s ∈ (0, 1) is called the order of the fractional Laplacian, Γ is the Gamma function, and f.p.
denotes the finite part of the integral of a function singular at x ∈ Rd; see [2, 22, 58, 80]. Following the
work of [22, 24, 58, 65, 73] we present known results such as the fundamental solution, the s-mean value
property, the Poisson kernel for balls and the Green’s function. These results are the counterparts of
the classical results for the Laplace operator; see [40, 46]. In Section 2.3 we concentrate on the weak
formulation of the fractional Laplacian. For this purpose, appropriate Sobolev spaces are introduced
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1. Introduction

(see [2, 3, 4, 70, 80]) and we illustrate how the computational domain can be reduced to a finite
domain. This is necessary since due its non-local nature the fractional Laplacian is defined by an
integral over the whole Rd. The last part of Section 2 describes main problem, the finite element
approximation of the fractional Laplacian, and we state some error estimates for the finite element
solution.

In Chapter 3 the foundation for the computation of the entries is laid. Depending on the support
of the linear basis function used for the FEM approach, the entries of the stiffness matrix consists of
five- and six-dimensional integrals. If the support of the linear basis functions overlap, the integrals
become singular and a singularity treatment is necessary to compute these entries. In two dimensions
(d = 2) this issue is handled in [3, 4, 75]. By extending the ideas of [36, 75] to our three-dimensional
cases, we introduce an adapted version of the Duffy transformation to the interaction between two
tetrahedra and between a tetrahedron and a panel to lift the arising singularities. In total, this leads
to seven different singularity cases which have to be treated separately. In contrast to [29], where
quadrature rules for the interaction between d-dimensional simplices are presented, our approach
allows a higher reduction of the dimension of the integrals that need to be treated numerically. In [29],
(2d − 1)-dimensional integrals have to be computed numerically, whereas our method guarantees
that only in the worst case we have to compute five-dimensional integrals. In most cases, a lower-
dimensional numerical integration is sufficient. In Section 3.4 we give a quick summary over each
case, including the costs of the singularity removal and the number of integrals which have to be
computed numerically.

Since all singularities are lifted, Chapter 4 illustrates how the resulting integrals can be computed
efficiently. By applying the results [4, 75], error estimates for the integrals are provided and we derive
a rule to choose the number of Gauss points per dimension in order to satisfy the error estimates for
the finite element solution presented in Chapter 2.

In Chapter 5 we introduce an improved Duffy transformation. In contrast to Chapter 3, we illustrate
that the nonlinear transformation which lifts the singularity does not have to map the integration
domain to the six-dimensional unit cube, but it can also map the integration domain to a combination
of suitable reference elements and still lift the singularity. The idea of this approach is that we can
use symmetric cubature rules (see [86]) instead of a tensor Gauss quadrature approach in order to
reduce the costs of the numeric integration. Additionally, we obtain some geometrical insight of what
happens with the starting geometry after the Duffy transformation.

Since we developed efficient tools to compute the entries of the stiffness matrix, Chapter 6 deals
with the issue of an efficient approximation of the stiffness matrix itself. Since the stiffness matrix is a
dense matrix, it is too costly to compute the whole matrix for larger problems. Therefore, we give an
introduction on the well known concept of H -matrices; see [13, 18, 51]. H -matrices are an effective
way to approximate stiffness matrices of elliptic operators, since the setting up of the matrix only
requires O(N log(N)) steps and the matrix-vector multiplication only requires O(N log(N)) steps,
where N is the size of the discretized system. In addition to this, we also provide two known methods
by which an H -matrix can be computed: a degenerate kernel approximation and the adaptive cross
approximation, the ACA. As a major contribution in this chapter, we prove that the stiffness matrix
of the fractional Laplacian can also be approximated by an H -matrix.

Besides the efficient approximation of the stiffness matrix, preconditioners also play a crucial role
in FEM. This also holds true for the fractional Laplacian, since the condition number of the stiffness
matrix scales like O(h−2s), where h is the discretization size of the geometry; see [4]. It is well-known

2



1. Introduction

that for a large class of elliptic problems the inverse of the stiffness matrix can be approximated by an
H -matrix and can be used as a preconditioner; see [13, 42, 43, 44, 45]. Chapter 7 is dedicated to this
topic. In [60], it is already proven that the inverse of stiffness can also be efficiently approximated by
an H -matrix. In contrast to this approach, we do not want use the Caffarelli-Silvestre extension of
the fractional Laplacian (see [25, 80]), but the integral form of the operator and the weak formulation
of the problem. Therefore we are not required to Beppo-Levi spaces, which makes our approach
easier accessible to a wide audience. The aim of this chapter is to apply and adapt these ideas to the
case of the fractional Laplacian. While we were able to prove that the inverse can be approximated
with an H -matrix, using this approach it is still an open question if the approximation can be done
efficiently, i.e. the approximation error decays exponentially w.r.t. the rank of the approximation.
Additionally, we can prove a local Caccioppoli inequality for the fractional Laplacian.

Chapter 8 is dedicated to uniform H -matrices and H 2-matrices. Both are specializations of
standard H -matrices; see [50, 53, 55]. H 2-matrix approximations cannot be constructed without
taking into account the analytic background. For instance, the construction of suitable cluster bases
is a crucial task. In order to guarantee as much universality of the method as possible, polynomial
spaces are frequently used; see [19]. While this choice is quite convenient due to special properties of
polynomials, it is usually not the most efficient approach. To see why, keep in mind that the three-
dimensional approach based on spherical harmonics [28] requires k = O(p2) terms in a truncated
expansion with precision of order p. The number of polynomial terms for the same order of precision
requires k = O(p3) terms. In the special case of surface problems, an isogeometric approach exploiting
surface information and a suitable parameterization can also yield a behavior of k = O(p2); see [57].
The number of terms k required to achieve a prescribed accuracy is crucial for the overall efficiency of
the method. In addition to its dependence on the kernel, this number also depends on the underlying
geometry (local patches of the geometry may have a smaller dimension). Additionally, a-priori error
estimates usually lead to an overestimation of k. It is therefore helpful to find k in an automatic
way, i.e. by an adaptive procedure. Such a method has already been introduced in Section 6.3, the
ACA [12]. In Section 8.1 we generalize the cross approximation method to the kernel-independent
construction of uniform H -matrices and H 2-matrices for matrices A ∈ RN×N with entries of the
form

aij =

∫
Ω

∫
Ω
|x− y|−αφi(x)φj(y) dy dx, i = 1, . . . , N, j = 1, . . . , N.

Here, φi and φj denote linear basis functions and α > 0. The next two sections are dedicated to
uniform H -matrices and H 2-matrices, respectively. Each matrix type is introduced and we state
error estimates for the approximation with the method introduced in Section 8.1. Additionally, in
Section 8.3 a new algorithm for efficient precomputations is derived.

After the theory chapters, we turn to numerical tests and exemplify the theoretical results from the
previous chapters numerically. For this purpose, Chapter 9 is divided into three sections. The first
section deals with the efficient calculation of the entries of the stiffness matrix, i.e. with the results
from Chapters 3 to 5. On two selected singularity cases, we verify that the two Duffy transformations
lift the singularity and that the errors behave according to the estimates presented in Chapter 4. In
addition, the two different Duffy transformations are compared with each other in terms of accuracy
and effort. In Section 9.2 the dense stiffness matrix is compared to its H -matrix approximation
and we test the efficiency of the H -matrix approximation of the inverse of the stiffness matrix. The
last example covers the theory of Chapter 8. Using a fractional diffusion process, the three methods

3



1. Introduction

to approximate the stiffness matrix, the standard H -matrix approximation, the uniform H -matrix
approximation, and the H 2-matrix approximation, are compared with each other. This takes into
account the amount of memory required, the time required to set up the matrix, and the time required
to solve the system of linear equations.

In the last chapter of the dissertation we give a short summary. In doing so, we take the opportunity
to address what could still be improved to make the processes even more efficient.
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2. Fractional Laplacian

2.1. Introduction

For the fractional Laplacian a lot of different representations and approaches exist. The operator can
be defined by an extension problem (see [25, 80]), a heat semi-group approach (see [80]) or as a singular
integral (see [2, 22]) to name a few of them. In order to get an overview, we recommend [64, 69, 80].
Here, we prefer the representation as a singular integral for two reasons. The first one is that
this definition gives an easy access to the standard FEM framework; see e.g. [2, 3, 4]. The second
reason is that we gain access to important features of elliptic operators, such as the mean value
property, fundamental solution, Green’s function and Poisson operators, which are the keystones for
the classic theory for the Laplace operator; see e.g. [40, 46, 52]. These properties are a good way to
develop a feeling for the fractional Laplacian and to work out similarities and differences with the
Laplace operator. The link between these two is the potential theory, mainly the Riesz potentials;
see e.g. [65, 73]. In this chapter we summarize known results for the fractional Laplacian from the
literature based on [22, 58].

2.2. Singular integral representation

Let d ∈ N and Ω ⊂ Rd be a Lipschitz domain. We consider the fractional Poisson problem

(−∆)su = f in Ω,

u = 0 in Rd\Ω,
(1)

where the fractional Laplacian (see [80]) is defined as

(−∆)su(x) := cd,s f.p.
∫
Rd

u(x)− u(y)

|x− y|d+2s
dy, cd,s :=

22s Γ(s+ d/2)

πd/2 Γ(1− s)
. (2)

Here, s ∈ (0, 1) is called the order of the fractional Laplacian and Γ is the Gamma function. No-
tice that for smooth functions vanishing at infinity the integral in (2) is absolutely convergent for
0 < s < 1/2; see [80]. For 1/2 ≤ s < 1 the integral has to be understood in a regularized sense;
see [80]. Here, f.p. denotes the finite part of the integral of a function singular at x ∈ Rd. For the
fractional Laplacian this means that for any δ > 0

(−∆)su(x) = cd,s lim
ε→0

∫
Rd\Bε(x)

u(x)− u(y)

|x− y|d+2s
dy

= cd,s

∫
Rd

u(x)− u(y)−∇u(x)T (x− y)χ|x−y|<δ(y)

|x− y|d+2s
dy, (3)

where χ denotes the characteristic function. It is well-known, see e.g. [22, 80], that (2) is well defined
for functions u ∈ L1

s(Rd) ∩ C0, 2s+ε(Ω) for s < 1/2 and u ∈ L1
s(Rd) ∩ C1, 2s+ε−1(Ω) for s ≥ 1/2 and

for all ε > 0. Note,

L1
s(Rd) :=

{
u ∈ L1

loc(Rd) :

∫
Rd

|u(x)|
1 + |x|d+2s

dx <∞
}

5



2. Fractional Laplacian

is a weighted L1 space, equipped naturally with the norm

∥u∥L1
s(Rd) :=

∫
Rd

|u(x)|
1 + |x|d+2s

dx.

For the sake of brevity, we write C2s+ε(Ω) to denote both C0, 2s+ε(Ω) for s < 1/2 and C1, 2s+ε−1(Ω)
for s ≥ 1/2.

As mentioned before, the Laplace operator and the fractional Laplacian have quite some similarities,
namely a fundamental solution, a Green’s function, a Poisson operator and a mean value property.
All of these properties will be introduced regarding the fractional Laplacian. It is well-known, see
e.g. [65], that the fundamental solution of the Laplace operator is the kernel of the Newton potential
and the Newton potential is a special Riesz potential, namely the Riesz potential of the order 2. Here,
the fundamental solution F of the fractional Laplacian,

F (x) := ad,s |x|−d+2s for x ∈ Rd \ {0} and ad,s =
Γ(d/2− s)

22s πd/2 Γ(s)
,

is up to a constant factor the kernel to the Riesz potential of the order 2s; see [65]. The corresponding
properties are summarized in the following theorem; see [22, 80].

Theorem 1. F is a solution to
(−∆)sF = δ0

in the distributional sense, where δ0 is the Dirac Delta distribution evaluated at zero.
Let f ∈ C2s+ε

0 (Rd) and let u be defined as

u(x) := (−∆)−sf(x) :=

∫
Rd

F (x− y) f(y) dy.

Then u ∈ L1
s(Rd) and in the distributional sense

(−∆)su = f.

Moreover, u ∈ C2s+ε(Rd) and point-wise in Rd

(−∆)su(x) = f(x). (4)

Notice that (−∆)−s is the inverse operator to the fractional Laplacian in (4). Analogous to the
harmonic functions we define the s-harmonic functions.

Definition 1. Let D ⊂ Rd. A function u satisfying (−∆)su = 0 in D is called s-harmonic in D. If
u satisfies (−∆)su = 0 in Rd, u is called s-harmonic.

Next we introduce the Poisson kernel for balls; see [22, 58].

Definition 2. Let r > 0 and ξ ∈ Rd. For x ∈ Br(ξ) and y ∈ Rd \ Br(ξ), the Poisson kernel Pξ,r is
defined by

Pξ,r(x, y) := ad,s
(r2 − |x− ξ|2)s

(|y − ξ|2 − r2)s
|y − x|−d−2s, ad,s := π−d/2−1Γ(d/2) sin(πs). (5)
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2. Fractional Laplacian

In contrast to the Laplace operator, for the fractional Laplacian a function, which lives on the
complement of the ball Br(ξ), is needed to construct an s-harmonic function inside the ball Br(ξ);
see [22, 58].

Theorem 2. Let r > 0, g ∈ Ls
1(Rd) ∩ C(Rd) and let

Pξ,rg(x) :=

{∫
Rd Pξ,r(y, x) g(y) dy, if x ∈ Br(ξ),

g(x), if x ∈ Rd \Br(ξ).

Then Pξ,rg is the unique point-wise continuous solution of the problem

(−∆)su = 0 in Br(ξ),

u = g in Rd \Br(ξ).

Remark. There also exists an Poisson operator, which constructs s-harmonic functions outside a
ball; see [65].

Using the Poisson kernel and the fundamental solution, the Green’s function G for balls can be
introduced; see [22].

Lemma 1. Let r > 0 and ξ ∈ Rd. For any x, z ∈ Br(ξ) and x ̸= z, the function G is defined by

G(x, z) := F (x− z)−
∫
Rd\Br(ξ)

F (z − y)Pξ,r(y, x) dy.

Remark. This principle can also be applied to more complicated domains. For more details; see [65].

Similar to the Laplace operator, the Green function can be used to construct solutions to fractional
Poisson problems.

Theorem 3. Let r > 0, ξ ∈ Rd, f ∈ C2s+ε(Br(ξ)) ∩ C(Br(ξ)) with ε > 0 and let

u(x) :=

{∫
Br(ξ)

f(y)G(x, y) dy if x ∈ Br(ξ),

0 if x ∈ Rd \Br(ξ).

Then u is the unique point-wise continuous solution of the problem (1)

(−∆)su = f in Br(ξ),

u = 0 in Rd \Br(ξ).

As the final property of the four, we present the s-mean value property ; see [22].

Definition 3. Let D ⊂ Rd be a domain. A function u ∈ L1
s(Rd) ∩ C(D) satisfies the s-mean value

property in D, if for all closed balls Br(x) ⊂ D it holds that

u(x) = Ms(x, u, r), Ms(x, u, r) := as

∫
Rd\Br(x)

r2s

(|y − x|2 − r2)s
u(y)

|y − x|d
dy,

where as := π−d/2−1Γ(d/2) sin(πs).
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2. Fractional Laplacian

Since the s-mean value property is defined by a convolution, it can alternatively be required only
that u ∈ L2(Rd) and that the integral exists for all closed balls Bε(x) ⊂ D; see [58]. Following the
work of [58], we want to present three interesting properties of functions satisfying the s-mean value
property. First, we start with the uniqueness of such a function.

Lemma 2. Let u and v satisfy the s-mean value property in a domain D. If u(x) = v(x) in D, then
u(x) = v(x) a.e. in Rd.

Moreover, we can show a direct connection between a harmonic function and a function satisfying
the s-mean value property. Each function being harmonic in Rd satisfies also the s-mean value
property there; see [58].

Lemma 3. If u is harmonic in the usual sense in Rd, then u satisfies the s-mean value property
in Rd.

Notice, this statement does not apply if Rd is replaced by a domain D ⊂ Rd. This is because the
s-mean value property demands information about u throughout Rd, whereas this does not apply to
harmonic functions in D.

Furthermore, the Poisson kernel can be used as an alternative representation of functions satisfying
the s-mean value property; see [58].

Lemma 4. Let u satisfy the s-mean value property in a domain D ⊂ Rd. For each open ball Br(ξ)
contained with its closure in D,

u(x) = Pξ,ru(x)

in Br(ξ) and u is analytic in D.

As it can be seen, a function satisfying the s-mean value property is a smooth function. These
three lemmas are important keystones to prove the equivalence between the s-mean value property
and s-harmonicity.

Theorem 4. Let D be a domain in Rd and u ∈ L1
s(Rd) ∩C2s+ε(D) with ε > 0. Then u satisfies the

s-mean value property in D if and only if u is s-harmonic in D.

Proof. Let D be a domain in Rd and let u ∈ C(D) be a Lebesgue measurable function in Rd. By
using the Lemmas 2 to 4 it is shown in [58, Theorem 2] that u satisfies the s-mean value property
if and only if (−∆)su exists in D and (−∆)su(x) = 0 in D. The existence of the operator can be
guaranteed by u ∈ L1

s(Rd) ∩ C2s+ε(D); see [22, 80].

Remark. Note that the function space

L̃2(Ω) := {u ∈ L2(Rd) : u = 0 a.e. in Rd\Ω} ⊂ L1
s(Rd). (6)

The inclusion can be easily seen by applying the Cauchy-Schwarz inequality:

∥u∥L1
s(Rd) ≤ |Ω|1/2∥u∥L2(Ω).

To finish this introduction to the fractional Laplacian, we show the point-wise limits for s; see [80].
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2. Fractional Laplacian

Theorem 5. Let x ∈ Rd and 0 < α < 1. If u ∈ C2(B2(x)) ∩ L∞(Rd) then

lim
s→1−

(−∆)su(x) = −∆u(x).

If u ∈ Cα(B2(x)) ∩ L1
0(Rd) then

lim
s→0+

(−∆)su(x) = u(x).

2.3. Weak formulation

Let Ω ⊂ Rd be a Lipschitz domain. Again, we consider the fractional Poisson problem

(−∆)su = f in Ω,

u = 0 in Rd\Ω.
(7)

Now, the solution of problem (7) is searched for in Sobolev spaces

Hs(Ω) = {v ∈ L2(Ω) : |v|Hs(Ω) <∞},

where

|v|2Hs(Ω) =

∫
Ω

∫
Ω

|v(x)− v(y)|2

|x− y|d+2s
dx dy

is the Slobodeckij seminorm. The space Hs(Ω) is a Hilbert space, equipped with the norm

∥v∥Hs(Ω) = ∥v∥L2(Ω) + |v|Hs(Ω).

Zero trace spaces Hs
0(Ω) can be defined as the closure of C∞0 (Ω) w.r.t. this norm.

Due to the non-local nature of the fractional Laplacian, we need to define the Hilbert space

H̃s(Ω) := {u ∈ Hs(Rd) : u = 0 in Rd \ Ω},

which can be equipped with the norm

∥u∥H̃s(Ω) = |u|Hs(Rd).

H̃s(Ω) is the closure of C∞0 (Ω) in Hs(Rd); see [70]. It is known (see [3]) that H̃s(Ω) coincides with
Hs

0(Ω) for s ̸= 1/2, and for s = 1/2 it holds that H̃1/2(Ω) ⊂ H
1/2
0 (Ω). Negative order spaces H−s(Ω)

can be defined as the dual space of H̃s(Ω).
With this notation we can reformulate (7) in a weak form: given f ∈ Hr(Ω) with r ≥ −s find

u ∈ H̃s(Ω) satisfying
a(u, v) = ⟨f, v⟩Ω, v ∈ H̃s(Ω), (8)

where
a(u, v) = cd,s

∫
Rd

∫
Rd

u(x)− u(y)

|x− y|d+2s
v(x) dy dx.

9



2. Fractional Laplacian

and ⟨·, ·⟩Ω denotes the duality pairing. Due to symmetry and the support of u and v, we observe that

a(u, v) =
cd,s
2

∫
Rd

∫
Rd

[u(x)− u(y)][v(x)− v(y)]

|x− y|d+2s
dy dx (9a)

=
cd,s
2

∫
Ω

∫
Ω

[u(x)− u(y)] [v(x)− v(y)]

|x− y|d+2s
dy dx+ cd,s

∫
Ω

∫
Rd\Ω

u(x) v(x)

|x− y|d+2s
dy dx. (9b)

=
cd,s
2

∫
Ω

∫
Ω

[u(x)− u(y)] [v(x)− v(y)]

|x− y|d+2s
dy dx+

cd,s
2s

∫
Ω
u(x) v(x)

∫
∂Ω

(x− y)Tny
|x− y|d+2s

dsy dx,

where ny is the inward normal vector w.r.t. ∂Ω. The last step is due to applying the Gauss theorem
to |x−y|−d−2s. The following lemma together with the well known Lax-Milgram theorem shows that
the variational problem (8) is uniquely solvable. Furthermore, it shows that a can be defined for a
larger set of functions. In the following we use the expression for

κd,s(ε) :=

∫
Rd\Bε(0)

|x|−d−2s dx = ωd

∫ ∞
ε

rd−1−d−2s dr =
ωd

2s
ε−2s,

where ωd denotes the surface area of the unit ball in Rd.

Lemma 5. The bilinear form a : H̃s(Ω)×H̃s(Ω) → R is symmetric, coercive and continuous. a(u, v)
is defined for u ∈ L2(Rd) ∩Hs(K̂) and v ∈ H̃s(K), where K ⊂ K̂ ⊂ Rd such that K is bounded and
dist(K, ∂K̂) > 0.

Proof. The symmetry is obvious and the coercivity and the continuity follow (see (9a)) from

a(v, v) =
cd,s
2

|v|2Hs(Rd) =
cd,s
2

∥v∥2
H̃s(Ω)

.

For the second part of the assertion, observe similar to (9b)

a(u, v) =
cd,s
2

∫
K̂

∫
K̂

[u(x)− u(y)][v(x)− v(y)]

|x− y|d+2s
dy dx+ cd,s

∫
K̂

∫
Rd\K̂

[u(x)− u(y)]v(x)

|x− y|d+2s
dy dx

≤
cd,s
2

|u|2
Hs(K̂)

|v|2
Hs(K̂)

+ cd,s

∫
K
v(x)

∫
Rd\K̂

u(x)− u(y)

|x− y|d+2s
dy dx.

Setting δ := dist(K, ∂K̂) > 0, the latter integral can be estimated as∫
K
v(x)

∫
Rd\K̂

u(x)− u(y)

|x− y|d+2s
dy dx

=

∫
K
u(x) v(x)

∫
Rd\K̂

1

|x− y|d+2s
dy dx−

∫
K
v(x)

∫
Rd\K̂

u(y)

|x− y|d+2s
dy dx

≤ κd,s(δ) ∥u∥L2(K) ∥v∥L2(K) +

∫
K
|v(x)|

∫
Rd\Bδ(x)

|u(y)|
|x− y|d+2s

dy dx

10



2. Fractional Laplacian

and∫
K
|v(x)|

∫
Rd\Bδ(x)

|u(y)|
|x− y|d+2s

dy dx ≤ ∥u∥L2(Rd)

∫
K
|v(x)|

(∫
Rd\Bδ(x)

1

|x− y|2(d+2s)
dy

)1/2

dx

≤
√
κd,d/2+2s(δ) ∥u∥L2(Rd)

∫
K
|v(x)| dx

≤
√

|K|κd,d/2+2s(δ) ∥u∥L2(Rd) ∥v∥L2(K).

Additionally to the uniqueness of the solution, there exists also a regularity result relative to the
smoothness of the boundary of Ω; see [1].

Theorem 6. Let u ∈ H̃s(Ω) be the solution of (8) and ε > 0. If ∂Ω is of C∞ class, then
u ∈ Hs+1/2−ε(Ω).

As one can see, we can not expect regularity as in the Laplace case, where u ∈ H2(Ω) if ∂Ω is
of C2 class or if Ω is a convex polygon and f ∈ L2(Ω); see [39]. Actually, there exists a well know
example for this, see e.g. [2, 4],

(−∆)su = 1 in B1(0),

u = 0 in Rd \B1(0),
(10)

which will be used later on for the numerical tests, too. The peculiarity is that the analytical solution
u of this problem is only in Hs+1/2−ε(B1(0)) for any ε > 0,

u(x) =
2−2s

Γ(1 + s)2
(1− |x|2)s,

although both the right-hand side and the boundary of the ball B1(0) are smooth. Similar regularity
results are known w.r.t. the right-hand side f ; see [2].

Theorem 7. Let 0 < s < 1/2 and ε > 0. If f ∈ C1/2−s(Ω) for some β > 0, then the solution u
of (8) belongs to Hs+1/2−ε(Ω).

Let 1/2 < s < 1 and ε > 0. If f ∈ Cβ(Ω) for some β > 0, then the solution u of (8) belongs to
Hs+1/2−ε(Ω).

2.4. Finite element approximation

Henceforth, let Ω be a polygon. As we have seen in the last section, the fractional Poisson problem

(−∆)su = f in Ω,

u = 0 in Rd\Ω,

can be reformulated in the weak form: find u ∈ H̃s(Ω) satisfying

a(u, v) = ⟨f, v⟩Ω, v ∈ H̃s(Ω). (11)

11



2. Fractional Laplacian

We use a Galerkin approach to discretize the problem with piecewise linear basis functions; see [21].
Let the set {φ1, . . . , φN} denote the basis of the space of piecewise linear functions V (T ) ⊂ H̃s(Ω),
where T is a regular partition of Ω into M tetrahedra and N inner points. P is the set of panels, being
the faces of the tetrahedra of T . Additionally, we impose three assumptions for the discretization.
The first one is that the tetrahedra are quasi-uniform, i.e. there exist constants c1, c2 > 0 with

c1 ht1 ≤ ht2 ≤ c2 ht1 (12)

for all t1, t2 ∈ T , where ht is defined as the diameter of the tetrahedron t. The second assumption
is that the elements of the discretization, the panels and the tetrahedra, do not degenerate, i.e. both
the interior angles and the solid angles of the tetrahedra are bounded below independently of ht by
the angle θT > 0:

θt > θT for all t ∈ T , (13)

where θt is the minimal interior angle of the tetrahedron t. Since each element of P is a face of a
tetrahedron in T , the interior angles of the panels are also bounded below by θT .

Last, we assume that only a bounded number of supports of the linear basis functions overlap; i.e.
there is a number ν ∈ N such that for each i ∈ {1, . . . , N}

max
x∈ int suppφi

|{j ∈ {1, . . . , N} : x ∈ int suppφj}| ≤ ν. (14)

Moreover, we introduce h as the mean of all diameters, i.e.

h :=
1

|T |
∑
t∈T

ht. (15)

Then (12) is also valid for h, i.e.
c1 h ≤ ht ≤ c2h (16)

for all t ∈ T . Now we are interested in the solution uh of the discrete problem (11):

a(uh, vh) = ⟨f, vh⟩Ω, vh ∈ Vh := V (T ) ⊂ H̃s(Ω).

Since we use a conforming discretization Vh of H̃s(Ω), the Lax-Milgram theorem still guarantees the
existence and uniqueness of the Galerkin approximation uh. The Galerkin method yields the discrete
fractional Poisson problem AuN = g with A ∈ RN×N , g, uN ∈ RN having the entries

aij =
cd,s
2

∫
Ω

∫
Ω

[φi(x)− φi(y)] [φj(x)− φj(y)]

|x− y|d+2s
dx dy

+
cd,s
2s

∫
Ω
φi(x)φj(x)

∫
∂Ω

(x− y)T ny
|x− y|d+2s

dsy dx, i, j = 1, . . . , N,

gi = ⟨f, φi⟩Ω, i = 1, . . . , N.

By using the compact support of the linear basis functions, the expression for aij can be simplified
to

aij =
cd,s
2

∫
Ωij

∫
Ωij

[φi(x)− φi(y)] [φj(x)− φj(y)]

|x− y|d+2s
dx dy

+
cd,s
2s

∫
Ωij

φi(x)φj(x)

∫
∂Ωij

(x− y)T ny
|x− y|d+2s

dsy dx
(17)
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2. Fractional Laplacian

where Ωij := suppφi ∪ suppφj . If the supports of the basis functions φi and φj are disjoint, the
computation of the entry aij simplifies to

aij = −cd,s
∫

suppφi

∫
suppφj

φi(x)φj(y)

|x− y|d+2s
dx dy. (18)

Besides the stiffness matrix A, we introduce two other N ×N matrices

A = J ∗(−∆)sJ , B = J ∗(−∆)−sJ , and M = J ∗J . (19)

B is the Galerkin discretization of the inverse of (−∆)s and M is the mass matrix. Here, J is the
natural bijection J : Rn → Vh defined by

J x =
N∑
i=1

xiφi,

and J ∗ : V ′h → Rn is defined by

(J ∗φ, x)h = (φ,J x)L2 for all x ∈ Rn, φ ∈ V ′h,

where (x, y)h := hdxT y denotes the (naturally scaled) Euclidian inner product; see [13]. According
to [52], under the assumptions (12) to (16) there are constants 0 < cJ ,1 < cJ ,2 independent of h and
d such that

cJ ,1∥x∥h ≤ ∥J x∥L2(Ω) ≤ cJ ,2∥x∥h for all x ∈ Rd. (20)

For the Galerkin approximation uh, error estimates exist; see [2].

Theorem 8. If the family of triangulations Th satisfies (12) and (13), and u ∈ H l(Ω), for
0 < s ≤ 1/2 < l < 1 or 1/2 < s < 1 < l < 2, then

∥u− uh∥H̃s(Ω) ≤ C(s, d)hl−s |u|Hl(Ω). (21)

In particular, by applying regularity estimates for u in terms of the data f , the solution satisfies

∥u− uh∥H̃s(Ω) ≤


C(s)h1/2 | log h| ∥f∥C1/2−s(Ω) if 0 < s < 1/2,

C(s)h1/2 | log h| ∥f∥L∞(Ω) if s = 1/2,
C(s,β)
2s−1 h1/2

√
| log h| ∥f∥Cβ(Ω) if 1/2 < s < 1, β > 0.

By using a standard Aubin-Nitsche argument [39], we obtain estimates in L2(Ω); see [20].

Theorem 9. If the family of triangulations Th satisfies (12) and (13), and, for ε > 0, u ∈ Hs+1/2−ε(Ω),
then

∥u− uh∥L2(Ω) ≤

{
C(s, ε)h1/2+s−ε |u|Hs+1/2−s(Ω) if 0 < s < 1/2,

C(s, ε)h1−2ε |u|Hs+1/2−ε(Ω) if 1/2 ≤ s < 1.

Remark. For s > 1/2 the assumption (12) can be replaced by the assumption of so called locally
quasi-uniform meshes, which enables the use of graded meshes; see [2].
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2. Fractional Laplacian

These results naturally assume that the stiffness matrix A can be calculated exactly. However,
looking at (17) it seems that this is not possible. Even in the simplest case (see (18)) we are not
able to calculate the six-dimensional integrals analytically. Therefore, we have to rely on numerical
integration. Additionally, the integrals may even become singular if the supports of the linear basis
functions have a nonempty intersection. In the next section, we derive a method to lift these singu-
larities and we provide estimates in dependence of the discretization parameter h indicating which
quadrature rule must be used to guarantee the error estimate (21).
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3. Duffy transformation

The Duffy transformation is a well-known method for singularity lifting of singular integrals. In
his original work M. Duffy [36] described how to lift point singularities at one corner of a three-
dimensional pyramid. For this purpose the integration domain was transformed to the unit cube and
the singularity was lifted by the Jacobi determinant of the nonlinear transformation. This is done in
a similar way to spherical coordinates.

Based on this idea, Sauter and Schwab [75] have investigated singularities that can arise from
the interaction of triangles, such as a point singularity when the triangles touch at a corner, or
a singularity along a common edge of these triangles. Such problems occur in the context of the
boundary element method (BEM) for elliptic operators; see [78].

Here, their theory and the Duffy transformation are adapted to the requirements of the fractional
Laplacian in three dimensions, i.e. to the integrals in (17):

It1,t2 :=

∫
t1

∫
t2

k1(x, y) dy dx :=

∫
t1

∫
t2

[φi(x)− φi(y)] [φj(x)− φj(y)]

|x− y|3+2s
dy dx, (22)

It,τ :=

∫
t

∫
τ
k2(x, y) dsy dx :=

∫
t
φi(x)φj(x)

∫
τ

(y − x)Tnτ (y)

|x− y|3+2s
dsy dx, (23)

where t, t1, t2 ∈ T , τ ∈ P and nτ is the normal vector w.r.t. the panel τ . As we can see in (22)
and (23), we have to study the cases of the interaction of two tetrahedra and of a tetrahedron and
a triangle, respectively. This results in a total of seven singularity cases, which must be considered
individually. However, the procedures for each case share common principles.

3.1. A simple introductory example

To understand the basic idea, we present an adapted version of the basic problem of [36],

Ip =

∫
p
f(ω) dω,

where p := {ω ∈ R4 : 0 ≤ ω4 ≤ ω1, 0 ≤ ω3 ≤ ω2, 0 ≤ ω2 ≤ ω1 and 0 ≤ ω1 ≤ 1}, and where
f(ω) = |ω|−2 is a function with a point singularity at (0, 0, 0, 0)T . Then we have

Ip =

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω1

0

1

ω2
1 + ω2

2 + ω2
3 + ω2

4

dω4 dω3 dω2 dω1.

Obviously, the singularity can be lifted with spherical coordinates. However, the integration domain
is not well suited for this approach. Surprisingly, the simple nonlinear transformation,

ξ := ω1, η1 := ω2/ω1, η2 := ω3/ω2, η3 := ω4/ω1,

is also sufficient to lift the singularity. First, we study the Jacobi determinant detJ (ξ, η) = ξ3η1 of
the nonlinear transformation. Second, we consider the integration domain

0 ≤ ω1 ≤ 1
0 ≤ ω2 ≤ ω1

0 ≤ ω3 ≤ ω2

0 ≤ ω4 ≤ ω1

⇔


0 ≤ ξ ≤ 1
0 ≤ ξη1 ≤ ξ
0 ≤ ξη1η2 ≤ ξ η1
0 ≤ ξη3 ≤ ξ

⇔


0 ≤ ξ ≤ 1
0 ≤ η1 ≤ 1
0 ≤ η2 ≤ 1
0 ≤ η3 ≤ 1

 (24)
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3. Duffy transformation

and then the complete integral

Ip =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

ξ3η1
ξ2 + (ξη1)2 + (ξη1η2)2 + (ξη3)2

dη3 dη2 dη1 dξ

=
1

2

∫ 1

0

∫ 1

0

∫ 1

0

η1
1 + η21 + (η1η2)2 + η23

dη3 dη2 dη1.

The decisive factor is the structure of the integration domain, which induces an ordering of the
variables, i.e.

0 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1 and 0 ≤ ω4 ≤ ω1 ≤ 1. (25)

This order is used by the nonlinear transformation to lift the singularity in two steps, which is similar
to using spherical coordinates, where ξ takes the role of the radius. First, ξ is factored out of the
fraction, which is clearly not singular anymore, and second, the determinant of the Jacobi matrix is
used to lift the remaining singularity w.r.t. ξ.

In order to apply this technique to our problems, we need to understand more about the ordering
of the variables, which is of crucial importance in the removal of the singularity. As it can be seen
in (25), the ordering leads to two inequality chains. To be more precise it leads to one inequality chain,
which splits up after at least one common variable (in this case ω1). We call such an inequality chain
a forking inequality chain. In this situation, after the application of the nonlinear transformation,
ξ can be factored out of the denominator, which is crucial for lifting the singularity. Therefore, we
have to make sure that all variables can be described with a forking inequality chain. To ensure such
a forking chain, it may be necessary to split up the integration domain.

3.2. Interaction between two tetrahedra

First, we consider (22), i.e. how two tetrahedra interact with each other. Here, we have to distinguish
four different cases: the tetrahedra can have a common point, a common edge, a common face or can
be identical. In order to describe the resulting singularity types, the geometry will be shifted to the
reference element, the unit tetrahedron

t̃ := {x̃ ∈ R3 : 0 ≤ x̃3 ≤ 1− x̃1 − x̃2, 0 ≤ x̃2 ≤ 1− x̃1, 0 ≤ x̃1 ≤ 1}.

For this we need the linear mapping χt : t̃→ t,

χt(x̃) =Mtx̃+ at, (26)

where Mt := [bt−at, ct−at, dt−at] ∈ R3×3 and at, bt, ct and dt denote the corners of the tetrahedron t.
Note that this specific unit tetrahedron is chosen due to Chapter 5. Using the transformation theorem,
we get for (22)

It1,t2 =

∫
t̃

∫
t̃
k1(χt1(x̃), χt2(ỹ)) |Mt1 | |Mt2 | dỹ dx̃ =:

∫
t̃

∫
t̃
k̃1(x̃, ỹ) dỹ dx̃, (27)

where |M⋆| := |detM⋆| for ⋆ ∈ {t1, t2}. Additionally, let the linear basis functions φi be defined in
the following way,

φi(x) := αT
i

(
x
1

)
= αT

i,1:3 x+ αi,4, αi ∈ R4,
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3. Duffy transformation

where αi,1:3 := (αi,1, αi,2, αi,3)
T . Additionally, we denote by e1, e2 and e3 the first, the second, and

the third canonical unit vector in R3.

3.2.1. Point singularity

First, we consider the simplest case, that the two tetrahedra have a common corner point. Without
loss of generality the mappings χt1 and χt2 are chosen in such a way that at1 = at2 . This implies
that the integrand k̃1 is singular for x̃ = 0 = ỹ. By considering the integration domain as a set of
inequalities and rewriting them,

0 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ 1− x̃1
0 ≤ x̃3 ≤ 1− x̃1 − x̃2
0 ≤ ỹ1 ≤ 1
0 ≤ ỹ2 ≤ 1− ỹ1
0 ≤ ỹ3 ≤ 1− ỹ1 − ỹ2


⇔



0 ≤ x̃1 ≤ 1
x̃1 ≤ x̃1 + x̃2 ≤ 1

x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ 1
0 ≤ ỹ1 ≤ 1
ỹ1 ≤ ỹ1 + ỹ2 ≤ 1

ỹ1 + ỹ2 ≤ ỹ1 + ỹ2 + ỹ3 ≤ 1


,

We see that the variables form two disjoint inequality chains:

0 ≤ x̃1 ≤ x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ 1 and 0 ≤ ỹ1 ≤ ỹ1 + ỹ2 ≤ ỹ1 + ỹ2 + ỹ3 ≤ 1.

However, as the initial example (25) has shown, a forking inequality chain is needed to lift the singu-
larity. Therefore, we connect the two chains with each other by introducing an artificial dependence
on the first chain link:

ỹ1 + ỹ2 + ỹ3 ≤ x̃1 + x̃2 + x̃3 ≤ 1 and x̃1 + x̃2 + x̃3 ≤ ỹ1 + ỹ2 + ỹ3 ≤ 1.

From the geometric point of view, this means that the integration domain must be split up:

0 ≤ x̃1 ≤ 1
x̃1 ≤ x̃1 + x̃2 ≤ 1

x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ 1
0 ≤ ỹ1 ≤ 1
ỹ1 ≤ ỹ1 + ỹ2 ≤ 1

ỹ1 + ỹ2 ≤ ỹ1 + ỹ2 + ỹ3 ≤ ∥x̃∥1


∪



0 ≤ ỹ1 ≤ 1
ỹ1 ≤ ỹ1 + ỹ2 ≤ 1

ỹ1 + ỹ2 ≤ ỹ1 + ỹ2 + ỹ3 ≤ 1
0 ≤ x̃1 ≤ 1
x̃1 ≤ x̃1 + x̃2 ≤ 1

x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ ∥ỹ∥1


. (28)

Notice that x̃i, ỹi ≥ 0 for i = 1, 2, 3. As a consequence, we obtain the desired forking inequality chain
for each of the two domains. For the first domain it reads

0 ≤ ỹ1 ≤ ỹ1 + ỹ2 ≤ ỹ1 + ỹ2 + ỹ3 ≤ x̃1 + x̃2 + x̃3 ≤ 1 and 0 ≤ x̃1 ≤ x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ 1

and for the second domain

0 ≤ x̃1 ≤ x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ ỹ1 + ỹ2 + ỹ3 ≤ 1 and 0 ≤ ỹ1 ≤ ỹ1 + ỹ2 ≤ ỹ1 + ỹ2 + ỹ3 ≤ 1.

Similar to the introductory example, these inequality chains are used to introduce a set of new
variables ω ∈ R6 for each domain. By interchanging the order of integration we see for both domains:
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3. Duffy transformation

• domain I:

ω1 := x̃1 + x̃2 + x̃3, ω2 := x̃1 + x̃2, ω3 := x̃1, ω4 := ỹ1 + ỹ2 + ỹ3, ω5 := ỹ1 + ỹ2, ω6 := ỹ1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω1

0

∫ ω4

0

∫ ω5

0
k̃1

 ω3

ω2 − ω3

ω1 − ω2

 ,
 ω6

ω5 − ω6

ω4 − ω5

 dω.

• domain II:

ω1 := ỹ1 + ỹ2 + ỹ3, ω2 := ỹ1 + ỹ2, ω3 := ỹ1, ω4 := x̃1 + x̃2 + x̃3, ω5 := x̃1 + x̃2, ω6 := x̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω1

0

∫ ω4

0

∫ ω5

0
k̃1

 ω6

ω5 − ω6

ω4 − ω5

 ,
 ω3

ω2 − ω3

ω1 − ω2

 dω.

Finally, each domain can be mapped onto the six-dimensional unit cube:

ξ := ω1, η1 := ω2/ω1, η2 := ω3/ω2, η3 := ω4/ω1, η4 := ω5/ω4, η5 := ω6/ω5,

where again detJ (ξ, η) = ξ5 η1 η
2
3 η4 =: ξ

5 detJ (η), denotes the Jacobi determinant of the nonlinear
transformation. The transformation of the integration domain works analogously to (24). All in all
this leads to

It1,t2 =

∫
[0,1]

∫
[0,1]5

[k̃1(D1(ξ, η)) + k̃1(D2(ξ, η))] detJ (ξ, η) dη dξ,

where
Dm(ξ, η) := (D1

m(ξ, η),D2
m(ξ, η)) = (ξD1

m(η), ξD2
m(η)) = ξDm(η), m = 1, 2, (29)

with

D1(η) :=

 η1η2
η1(1− η2)
(1− η1)

 ,
 η3η4η5
η3η4(1− η5)
η3(1− η4)

 and D2(η) :=

 η3η4η5
η3η4(1− η5)
η3(1− η4)

 ,
 η1η2
η1(1− η2)
1− η1


is the Duffy transformation for the m-th sub-domain. To see that ξ can also be factored out of

k̃1(x̃, ỹ) =
[φi(x)− φi(y)][φj(x)− φj(y)]

|x− y|d+2s
|Mt1 ||Mt2 |,

where x = χt1(x̃) and y = χt2(ỹ), let us first investigate the denominator. Due to the choice of χt1

and χt2 ,

|x− y|−d−2s = |χt1(x̃)− χt2(ỹ)|−d−2s = ξ−d−2s|Mt1D
1
m(η)−Mt2D

2
m(η)|−d−2s, m = 1, 2. (30)

However, the examination of the product of the linear basis functions φi, φj is more complicated
due to the interaction between the linear basis functions and the tetrahedra. Depending on the choice
of the tetrahedra, terms in the product [φi(x) − φi(y)][φj(x) − φj(y)] of the differences can vanish.
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3. Duffy transformation

There exits three different cases: a term vanishes in both, in one, and in none of the factors. First,
we consider the case that no term vanishes. This happens if and only if t1, t2 ⊂ suppφi ∩ suppφj . In
this case, we obtain

φ⋆(x)− φ⋆(y) = αT
⋆,1:3(Mt1 x̃−Mt2 ỹ) = ξαT

⋆,1:3(Mt1D
1
m(η)−Mt2D

2
m(η)) (31)

for m = 1, 2 and for ⋆ = i, j. This implies that ξ can be factored out of the difference. For the
second case, we only have to investigate the factor which contains the vanishing term, because the
other factor can be treated in the same way as (31). Without loss of generality, we assume that
t2 ̸⊂ suppφi and t1, t2 ⊂ suppφj . Moreover, we know that at1 = at2 ∈ t2, which implies that
φi(at1) = 0 and that

φi(x) = φi(χt1(x̃)) = αT
i,1:3Mt1 x̃+ φi(at1) = αT

i,1:3Mt1 x̃ = ξαT
i,1:3Mt1D

1
m(η) (32)

for m = 1, 2. The last case happens if and only if suppφi∩ suppφj = at1 . Then the ideas used in (32)
can be applied twice.

By combining the results of (30), (31), and (32), it is shown that ξ can be factored out of k̃1,

It1,t2 =
1

5− 2s

∫
[0,1]5

k̃1,V (η) dη, k̃1,V (η) := [k̃1(D1(η)) + k̃1(D2(η))] detJ (η). (33)

Since the integral relative to ξ can be integrated analytically, only a five-dimensional integral has to
be integrated numerically. The regularity of the remaining integrand will be proved in Lemma 8.

Since the number of regions increases with the degree of singularity, we introduce a new notation
to exploit the symmetry of Dm. Let Dm be a transformation as mentioned above,

Dm(ξ, η) = (D1
m(ξ, η),D2

m(ξ, η)) and Dm(η) = (D1
m(η),D2

m(η)),

then we define DT
m as

DT
m(ξ, η) := (D2

m(ξ, η),D1
m(ξ, η)) and DT

m(η) := (D2
m(η),D1

m(η)).

3.2.2. Singularity along an edge

For the next case, we assume that the tetrahedra t1 and t2 have a common edge. Without loss of
generality the mappings χt1 and χt2 are chosen in such a way that at1 = at2 and bt1 = bt2 . This leads
to χt1(κ e1) = χt2(κ e1) for all κ ∈ [0, 1]. Therefore, k̃1 is singular if and only if x̃1 = ỹ1 and if the
remaining variables are zero. We can exploit this to make the emerging inequalities more compact
by first performing a linear transformation, x̂1 := 1− x̃1 and ŷ1 = 1− ỹ1, since the integrand is still
singular if and only if x̂1 = ŷ1. For the sake of simplicity we denote x̂1 and ŷ1 again by x̃1 and ỹ1,
respectively. This leads to

It1,t2 =

∫ 1

0

∫ x̃1

0

∫ x̃1−x̃2

0

∫ 1

0

∫ ỹ1

0

∫ ỹ1−ỹ2

0
k̃1

1− x̃1
x̃2
x̃3

 ,
1− ỹ1

ỹ2
ỹ3

 dỹ dx̃. (34)
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3. Duffy transformation

Before introducing the local coordinates, we first split the integration domain and change the inte-
gration order in the second domain

0 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1
0 ≤ x̃3 ≤ x̃1 − x̃2
0 ≤ ỹ1 ≤ x̃1
0 ≤ ỹ2 ≤ ỹ1
0 ≤ ỹ3 ≤ ỹ1 − ỹ2


∪



0 ≤ ỹ1 ≤ 1
0 ≤ ỹ2 ≤ ỹ1
0 ≤ ỹ3 ≤ ỹ1 − ỹ2
0 ≤ x̃1 ≤ ỹ1
0 ≤ x̃2 ≤ x̃1
0 ≤ x̃3 ≤ x̃1 − x̃2


. (35)

This is basically the same idea as in (28) only used on

0 ≤ x̃1 ≤ 1 and 0 ≤ ỹ1 ≤ 1.

Next, we introduce local coordinates to describe the singularity along the edge as a five-dimensional
point singularity. For the first domain choose z̃ ∈ R5 as z̃1 := ỹ1 − x̃1, z̃i := ỹi, z̃i+2 := x̃i, i = 2, 3,
and for the second domain choose z̃ ∈ R5 as z̃1 := x̃1 − ỹ1, z̃i := x̃i, z̃i+2 := ỹi, i = 2, 3. Thus, (35)
becomes 

0 ≤ x̃1 ≤ 1
0 ≤ z̃4 ≤ x̃1
0 ≤ z̃5 ≤ x̃1 − z̃4

−x̃1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ x̃1 + z̃1
0 ≤ z̃3 ≤ x̃1 + z̃1 − z̃2


∪



0 ≤ ỹ1 ≤ 1
0 ≤ z̃4 ≤ ỹ1
0 ≤ z̃5 ≤ ỹ1 − z̃4

−ỹ1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ ỹ1 + z̃1
0 ≤ z̃3 ≤ ỹ1 + z̃1 − z̃2


. (36)

The advantage of the early split up (35) is that after the introduction of the relative coordinates the
singularity is already at the boundary of each domain. The next step is to introduce an ordered set
of variables. The first sub-domain yields the following forking inequality chains

0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ −z̃1 + z̃2 + z̃3 ≤ x̃1 ≤ 1 and 0 ≤ z̃4 ≤ z̃4 + z̃5 ≤ x̃1 ≤ 1.

The forking inequality chain splits after the first chain link x̃1. However, the set for which k̃1 is
singular is characterized by z̃ = 0. Therefore, we have to divide the sub-domain again to push the
splitting one link further. This is done by applying the same ideas as in (28) to obtain

−z̃1 + z̃2 ≤ −z̃1 + z̃2 + z̃3 ≤ z̃4 + z̃5 and z̃4 ≤ z̃4 + z̃5 ≤ −z̃1 + z̃2 + z̃3.

Therefore, the first integration domain can be described by

0 ≤ x̃1 ≤ 1
0 ≤ z̃4 ≤ x̃1
0 ≤ z̃5 ≤ x̃1 − z̃4

−x̃1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ x̃1 + z̃1
0 ≤ z̃3 ≤ z̃4 + z̃5 + z̃1 − z̃2


∪



0 ≤ x̃1 ≤ 1
0 ≤ z̃4 ≤ x̃1
0 ≤ z̃5 ≤ −z̃1 + z̃2 + z̃3 − z̃4

−x̃1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ x̃1 + z̃1
0 ≤ z̃3 ≤ x̃1 + z̃1 − z̃2


.

By introducing a new set of variables ω ∈ R6 representing the forking inequality chains and by
interchanging the order of integration, we obtain:
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3. Duffy transformation

• domain I a):

ω1 := x̃1, ω2 := z̃4 + z̃5, ω3 := z̃4, ω4 := −z̃1 + z̃2 + z̃3, ω5 := −z̃1 + z̃2, ω6 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω2

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω3

ω2 − ω3

 ,
1− ω1 + ω6

ω5 − ω6

ω4 − ω5

 dω

• domain I b):

ω1 := x̃1, ω2 := −z̃1 + z̃2 + z̃3, ω3 := −z̃1 + z̃2, ω4 := −z̃1, ω5 := z̃4 + z̃5, ω6 := z̃4,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω2

0

∫ ω5

0
k̃1

 1− ω1

ω6

ω5 − ω6

 ,
1− ω1 + ω4

ω3 − ω4

ω2 − ω3

 dω

The domains are mapped onto the six-dimensional unit cube. The mapping and the computation of
the Jacobian determinants are handled in the same way as in (24):

• domain I a):

ξ1 := ω1, ξ2 := ω2/ω1, η1 := ω3/ω2, η2 := ω4/ω2, η3 := ω5/ω4, η4 := ω6/ω5,

detJ1(ξ, η) = ξ51 ξ
4
2 η

2
2 η3 =: detJ (ξ) detJ1(η)

∫
[0,1]2

∫
[0,1]4

k̃1

 1− ξ1
ξ1 ξ2 η1

ξ1 ξ2(1− η1)

 ,
1− ξ1 + ξ1 ξ2 η2 η3 η4

ξ1 ξ2 η2 η3(1− η4)
ξ1 ξ2 η2(1− η3)

 detJ1(ξ, η) dη dξ

• domain I b):

ξ1 := ω1, ξ2 := ω2/ω1, η1 := ω3/ω2, η2 := ω4/ω3, η3 := ω5/ω2, η4 := ω6/ω5,

detJ2(ξ, η) = ξ51 ξ
4
2 η1 η3 =: detJ (ξ) detJ2(η),

∫
[0,1]2

∫
[0,1]4

k̃1

 1− ξ1
ξ1 ξ2 η3 η4

ξ1 ξ2 η3(1− η4)

 ,
1− ξ1 + ξ1 ξ2 η1 η2

ξ1 ξ2 η1(1− η2)
ξ1 ξ2(1− η1)

 detJ2(ξ, η) dη dξ

Using the symmetry between the two sub-domains in (36), the singular integral can written as

It1,t2 =

∫
[0,1]6

4∑
m=1

k̃1(Dm(ξ, η)) detJm(ξ, η) dξ dη,

where Dm are again the Duffy transformation of the m-th sub-domain and D3 = DT
1 , D4 = DT

2

due to symmetry. If we take a closer look at the Dm, one can notice these transformations have a
structure which can be used to simplify the integrals

Dm(η, ξ) = (D1
m(ξ, η),D2

m(ξ, η)) = (ξ1 e1 + ξ1 ξ2 D1
m(η), ξ1 e1 + ξ1 ξ2 D1

m(η))

= ξ1 (e1, e1) + ξ1 ξ2 Dm(η),
(37)
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3. Duffy transformation

where

D1(η) =

 0
η1

1− η1

 ,
 η2η3η4
η2η3(1− η4)
η2(1− η3)

 and D2(η) =

 0
η3η4

η3(1− η4)

 ,
 η1η2
η1(1− η2)
1− η1

 .

Notice that we can almost use the same arguments as in (33) to factor ξ1 and ξ2 out of k̃1. In detail,
we get for the denominator

|x− y|−d−2s = |χt1(x̃)− χt2(ỹ)|−d−2s

= |ξ1ξ2 [Mt1D
m
1 (η)−Mt2D

m
2 (η)] + χt1([1− ξ1] e1)− χt2([1− ξ1] e1)|−d−2s

= (ξ1ξ2)
−d−2s |Mt1D

m
1 (η)−Mt2D

m
2 (η)|−d−2s

for m = 1, . . . , 4, since the remaining difference cancels out to due χt1(κ e1) = χt2(κ e1) for all
κ ∈ [0, 1]. For the numerator of the integrand, we have again to distinguish between the three cases:
a term vanishes in both, in one, and in none of the factors. The last case is analogous to the treatment
of the denominator

φi(x)− φi(y) = αT
i,1:3 (Mt1 x̃−Mt2 ỹ) = ξ1ξ2 α

T
i,1:3 (Mt1D

m
1 (η)−Mt2D

m
2 (η))

for m = 1, . . . , 4. Without loss of generality one term vanishes if and only if t2 ̸⊂ suppφi and
t1, t2 ⊂ suppφj ,

φi(x) = αT
i,1:3Mt1 x̃+ φi(at1) = ξ1ξ2 α

T
i,1:3Mt1D

m
1 (η) + φi(χt1([1− ξ] e1)) = ξ1ξ2 α

T
i,1:3Mt1D

m
1 (η)

for m = 1, . . . , 4. The last step is due to χt1([1 − ξ] e1) ⊂ [at1 , bt1 ] and φi|[at1 ,bt1 ] = 0, since t2 ̸⊂
suppφ1. If in both factors a term vanishes that means without loss of generality that t2 ̸⊂ suppφi

and t1 ̸⊂ suppφj . Applying the ideas of the procedure presented in Section 3.2.1 it is obvious that
ξ1ξ2 can be factored out. Thus, we obtain

It1,t2 =
1

5− 2s

1

4− 2s

∫
[0,1]4

k̃1,E(η) dη, k̃1,E(η) :=
4∑

m=1

k̃1(Dm(η)) detJm(η). (38)

As one can see, after the Duffy transformation only a four-dimensional integral has to integrated
numerically instead of a six-dimensional one. The regularity of the remaining integrand will be
shown in Lemma 8.

3.2.3. Singularity on a face

Let t1 and t2 have a common face τ . Without loss of generality the mappings χt1 and χt2 are chosen
in such a way that at1 = at2 , bt1 = bt2 and ct1 = ct2 . This leads to

χt1(κ1 e1 + κ e2) = χt2(κ1 e1 + κ2 e2) for all κ1, κ2 ∈ [0, 1].
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3. Duffy transformation

Therefore, k̃1 is singular if x̃i = ỹi for i = 1, 2 and x̃3 = 0 = ỹ3. First, we introduce local variables
z̃ ∈ R4 to describe the singularity as a four-dimensional point singularity, z̃i := ỹi − x̃i, i = 1, 2,
z̃3 := ỹ3 and z̃4 := x̃3. Hence, we obtain by starting with (34)

It1,t2 =

∫ 1

0

∫ x̃1

0

∫ 1−x̃1

−x̃1

∫ z̃1+x̃1−x̃2

−x̃2

∫ z̃1−z̃2+x̃1−x̃2

0

∫ x̃1−x̃2

0
k̃1

1− x̃1
x̃2
z̃4

 ,
1− z̃1 − x̃1

z̃2 + x̃2
z̃3

 dz̃ dx̃1:2.

Since we want to apply the ideas from the introductory example in Section 3.1, the singularity has to
be shifted to the boundary of the integration domain by splitting it up. To simplify this procedure,
the order of integration relative to x̃1:2 and z̃ is reversed, which results in

−1 ≤ z̃1 ≤ 1
max{−1, −1 + z̃1} ≤ z̃2 ≤ min{1, 1 + z̃1}

0 ≤ z̃3 ≤ min{1, 1 + z̃1}+ min{0, −z̃2}
max{0, −z̃2, −z̃1 + z̃3, z̃2 − z̃1 + z̃3} ≤ x̃1 ≤ min{1, 1− z̃1}

max{0, −z̃2} ≤ x̃2 ≤ x̃1 + min{0, z̃1 − z̃2 − z̃3}
0 ≤ z̃4 ≤ x̃1 − x̃2


. (39)

The following procedure is similar to the two singularity cases before. The domain is subdivided
to push the point singularity to the boundary. In total, we split the set into nine sub-domains to
resolve the min and max constraints. Furthermore, eight of these domains have to be refined again
to satisfy a suitable forking inequality chain in the same way as in Section 3.2.2. Here, only the
final result after the nonlinear transformation to the six-dimensional unit cube is presented. For a
detailed consideration we refer to Appendix A.1.1. In the same sense as in (29) and (37) the nonlinear
transformations Dm for the domains share a common structure which will be used to simplify them:

Dm(ξ, η) = (ξ1 e1 + ξ1[1− ξ2] e2 + ξ1ξ2ξ3 D1
m(η), ξ1 e1 + ξ1[1− ξ2] e2 + ξ1ξ2ξ3 D2

m(η))

= ξ1 (e1, e1) + ξ1[1− ξ2] (e2, e2) + ξ1ξ2ξ3 Dm(η)
(40)

with

D1(η) =

 0
η1

1− η1

 ,
 η1η2η3

0
η1η2(1− η3)

 , D2(η) =

 0
η1η2

η1(1− η2)

 ,
 −η1η2η3

0
1− η1η2η3

 ,

D3(η) =

 0
η1η2

1− η1η2

 ,
 η1η2η3

0
η1(1− η2 η3)

 , D4(η) =

 0
η1η2η3

η1η2(1− η3)

 ,
 η1

0
1− η1

 ,

D5(η) =

 0
η1η2η3

η1(1− η2 η3)

 ,
 η1η2

0
1− η1 η2

 , D6(η) =

 0
η1η2η3

1− η1η2η3

 ,
 η1η2

0
η1(1− η2)

 ,

D7(η) =

00
1

 ,
 η1η2η3
η1η2(1− η3)
η1(1− η2)

 , D15(η) =

 η1η2η3
η1η2(1− η3)
1− η1η2

 ,
 0
0
η1

 ,
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3. Duffy transformation

where we set ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, η1 := ω4/ω3, η2 := ω5/ω4 and η3 := ω6/ω5.
The transformations D8 to D14 are the symmetric versions of D1 to D7, i.e. D7+i(η) = DT

i (η) for
i = 1, . . . , 7. The remaining two are described by

D16(η) =

 0
0
η3

 ,
 −η1η2
η1(1− η2)
1− η1

 and D17(η) =

 −η1η2
η1(1− η2)
1− η1

 ,
 0

0
η1η3

 .

For these cases the transformation relative to η has to be partially adjusted, i.e. η3 := ω6/ω3 for
m = 16, and η2 := ω6/ω4 and η3 := ω6/ω4 for m = 17. For the corresponding Jacobi determinants,
it holds that detJm(ξ, η) = detJ (ξ) detJm(η) for m = 1, . . . , 17, where detJ (ξ) = ξ51ξ

4
2ξ

3
3 and

detJm(η) = η21η2, m = 1, . . . , 15. The remaining two cases are detJ16(η) = η1 and detJ17(η) = η21.
All in all, the Duffy transformation can now be applied:

It1,t2 =
2∏

j=0

1

5− j − 2s

∫
[0,1]3

k̃1,F (η) dη, k̃1,F (η) :=

17∑
m=1

k̃1(Dm(η)) detJm(η). (41)

Again, we used the linearity of the basis functions and the transformation between the reference
tetrahedron and the original tetrahedron to simplify the Duffy transformation. Since the procedure
is completely analogous to the case of the singularity along an edge, we omit the details. The only
difference is to consider that in the case of a single vanishing term, it holds that χt1(κ1 e1+κ2 e2) ∈ τ
and φi|τ = 0. As one can see, after the Duffy transformation only a three-dimensional integral has to
be integrated numerically instead of a six-dimensional one. The regularity of the remaining integrand
will be shown in Lemma 8.

3.2.4. Two identical tetrahedra

We now deal with the strongest singularity, i.e. the two tetrahedra coincide. Since t1 equals t2, we
drop the index and k̃1 is singular if and only if x̃ = ỹ. Starting from (34) we introduce local variables
z̃ ∈ R3, z̃ := ỹ − x̃ to describe the singularity as a three dimensional point singularity, which leads to

It,t =

∫ 1

0

∫ x̃1

0

∫ x̃1−x̃2

0

∫ 1−x̃1

−x̃1

∫ z̃1+x̃1−x̃2

−x̃2

∫ z̃1−z̃2+x̃1−x̃2−x̃3

−x̃3

k̃1

1− x̃1
x̃2
x̃3

 ,
1− z̃1 − x̃1

z̃2 + x̃2
z̃3 + x̃3

 dz̃ dx̃.

Then the point singularity is moved to the boundary by swapping the integration order and splitting
up the integration domain:

−1 ≤ z̃1 ≤ 1
−1 + max{0, z̃1} ≤ z̃2 ≤ 1 + min{0, z̃1}

−1 + max{0, z̃1}+ max{0, −z̃2} ≤ z̃3 ≤ 1 + min{0, z̃1}+ min{0, −z̃2}
max{0, −z̃1, −z̃2, −z̃3,

−z̃2 − z̃3, z̃2 − z̃1, −z̃1 + z̃3, z̃2 − z̃1 + z̃3} ≤ x̃1 ≤ 1 + min{0, −z̃1}
max{0, −z̃2} ≤ x̃2 ≤ x̃1 + min{0, z̃1 − z̃2, z̃1 − z̃2 − z̃3}
max{0, −z̃3} ≤ x̃3 ≤ x̃1 − x̃2 + min{0, z̃1 − z̃2 − z̃3}


.
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3. Duffy transformation

The split is necessary to make it easier to describe the domain. The detailed preparation of the set
can be found in the Appendix A.1.2. All in all, we obtain 18 integration domains each of which
satisfies a forking inequality chain. This ultimately leads to

It,t =

∫
[0,1]4

∫
[0,1]2

18∑
m=1

k̃1(Dm(ξ, η)) detJm(ξ, η) dη dξ

= 2
3∏

l=0

1

5− l − 2s

∫
[0,1]2

k̃1,T (η) dη, k̃1,T (η) :=
9∑

m=1

k̃1(Dm(η)) detJm(η),

(42)

with Dm(ξ, η) = ξ1ξ2ξ3ξ4 Dm(η) for m = 1 . . . , 18, where

D1(η) =

 0
η1
η1

 ,
η1η20

1

 , D2(η) =

01
0

 ,
 η1η2

0
η1(1− η2)

 , D3(η) =

 0
η1
−1

 ,
 η1η2

0
−η1η2

 ,

D4(η) =

 0
η1η2
−η1η2

 ,
 η10
−1

 , D5(η) =

 0
η1η2

η1(1− η2)

 ,
10
0

 , D6(η) =

 0
η1η2
−1

 ,
 η1

0
−η1

 ,

D7(η) =

00
0

 ,
 η1η2
η1(1− η2)

−1

 , D8(η) =

 0
0
−1

 ,
 η1η2
η1(1− η2)

−η1

 , D9(η) =

 0
0
η1

 ,
 η2
1− η2

0

 .

For m = 1, . . . , 8, we set ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, ξ4 := ω4/ω3, η1 := ω5/ω4, and
η2 := ω6/ω5. The last domain needs an adapted scheme for η, i.e. η2 := ω6/ω4. The Jacobi determi-
nants result in detJm(η) = η1 for m = 1, . . . , 8, and detJ9(η) = 1. The factor 2 in (42) is due to
the symmetry. Since Dm+9(η) = Dm(η)T for m = 1, . . . , 9 and since t1 equals t2, the corresponding
mappings are identical, too. Moreover, the differences of the linear basis functions do not vanish.
Therefore, the simplifications of the Dm and the first step in (42) are easily seen. As one can see, after
the Duffy transformation only a two-dimensional integral has to be integrated numerically instead of
a six-dimensional one. The regularity of the remaining integrand will be shown in Lemma 8.

3.3. Interaction between a tetrahedron and a panel

The procedure here is similar to the procedure in Section 3.2. The main difference is that the
interaction between a tetrahedron t and a panel τ has to be studied. There are three different
singularity cases: a common point, a common edge, and the panel τ is a face of the tetrahedron t.
Again, to describe the resulting singularity types, t and τ will be mapped to the corresponding
reference element. For the panel this the unit panel τ̃ ,

τ̃ := {ỹ ∈ R2 : 0 ≤ ỹ2 ≤ 1− ỹ1, 0 ≤ ỹ1 ≤ 1}.

The transformation will be done by the mapping χτ : τ̃ → τ ,

χτ (ỹ) =Mτ ỹ + aτ , (43)
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3. Duffy transformation

where Mτ := [bτ − aτ , cτ − aτ ] ∈ R3×2 and aτ , bτ and cτ denote the corners of the panel τ . Then we
get for equation (23)

It,τ =

∫
t̃

∫
τ̃
k2(χt(x̃), χτ (ỹ)) |Mt| |Mτ | dỹ dx̃ =:

∫
t̃

∫
τ̃
k̃2(x̃, ỹ) dỹ dx̃, (44)

where |Mt| := |detMt| and |Mτ | := |(bτ − aτ ) × (cτ − aτ )|. Moreover, the canonical unit vectors of
R2 are denoted by ê1 and ê2.

3.3.1. Point singularity

We start with the simplest case that the tetrahedron and the panel have a common vertex. Without
loss of generality the linear mappings χt and χτ are chosen in such a way that at = aτ . Since the
procedure is analogous to the procedure in Section 3.2.1, only the result of the Duffy transformation
is presented. The remaining procedure is shown in Appendix A.2.1. We obtain two sub-domains and
for the integrals this implies that

It,τ =

∫
[0,1]

∫
[0,1]4

2∑
m=1

k̃2(Dm(ξ, η)) detJm(ξ, η) dη dξ,

where again Dm(ξ, η) = ξ (D1
m(η),D2

m(η)) = ξDm(η), m = 1, 2, is the Duffy transformation for the
m-th sub-domain with

D1(η) =

 1
η1η2

η1(1− η2)

 , [ η3
η3η4

] and D2(η) =

 η2
η2η3η4

η2η3(1− η4)

 , [ 1
η1

] ,

and where ξ := ω1, η1 := ω2/ω1, η2 := ω3/ω2, η3 := ω4/ω1, and η4 := ω5/ω4 for m = 1, and where
ξ := ω1, η1 := ω2/ω1, η2 := ω3/ω1, η3 := ω4/ω3, and η4 := ω5/ω4 for m = 2. The Jacobi determinants
results in detJm(ξ, η) = ξ4 detJm(η) with detJ1(η) = η1η3 and detJ2(η) = η22η3. This can be seen
similar to (29). In contrast to Section 3.2, we now have to consider a different integrand k̃2. It is
actually easier to study k̃2 because we do not have to distinguish several cases. First, consider the
difference of the integration variables

x− y = χt(x̃)− χτ (ỹ) =Mtx̃−Mτ ỹ = ξ (MtD
1
m(η)−MτD

2
m(η)).

For the inner integrand of (44) this means

(x− y)Tnτ
|x− y|3+2s

= ξ−2−2s
(MtD1

m(η)−MτD2
m(η))Tnτ

|MtD1
m(η)−MτD2

m(η)|3+2s
, m = 1, 2.

The second part is analogous to the approach in Section 3.2. Since τ ⊂ ∂(suppφi ∪ suppφj), it
follows without loss of generality that φi(at) = 0 and

φi(x) = αT
i,1:3Mtx̃+ αi,4at = αT

i,1:3MtD
2
m(ξ, η) + φi(at) = ξ αT

i,1:3MtD
2
m(η), m = 1, 2.
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3. Duffy transformation

By combining these results, we have shown that ξ can be factored out of k̃2:

It,τ =
1

4− 2s

∫
[0,1]4

k̃2,V (η) dη, k̃2,V (η) :=
2∑

m=1

k̃2(Dm(η)) detJm(η). (45)

Since the integral w.r.t. ξ can be integrated analytically, only a four-dimensional integral has to be
integrated numerically. The regularity of the remaining integrand will be proved in Lemma 9.

3.3.2. Singularity along an edge

We consider the case that t and τ share a common edge. Adapting the approach of Section 3.2.2, we
obtain four sub-domains:

It,τ =

∫
[0,1]5

4∑
m=1

k̃2(Dm(ξ, η)) detJm(ξ, η) dξ dη

with Dm being the Duffy-transformations on the corresponding domains and detJm denoting the Ja-
cobi determinant of the m-th sub-domain, detJm(ξ, η) = ξ41ξ

3
2η2 =: detJ (ξ) detJm(η), m = 1, 2, 3,

and detJ4(ξ, η) = ξ41ξ
3
2η

2
1 η2 =: detJ (ξ) detJ4(η). A more detailed approach is presented in Ap-

pendix A.2.2. Using the same idea as in (37), we obtain

Dm(η, ξ) = (D1
m(ξ, η),D2

m(ξ, η)) = (ξ1 e1 + ξ1ξ2 D1
m(η), ξ1 ê1 + ξ1ξ2 D1

m(η)) =: ξ1 (e1, ê1) + ξ1ξ2 Dm(η)

with

D1(η) =

 0
η1

1− η1

 , [ η2η3
η2(1− η3)

] , D2(η) =

 0
η2η3

η2(1− η3)

 , [ η1
1− η1

] ,

D3(η) =

 η2η3
η2(1− η3)
1− η2

 , [ 0
η1

] , D4(η) =

 η1η2η3
η1η2(1− η3)
η1(1− η2)

 , [0
1

] ,

where ξ1 := ω1, ξ2 := ω2/ω1, η1 := ω3/ω2, η2 := ω4/ω2, and η3 := ω5/ω4 for m = 1, 2, 3. For the
last domain only η2 has to be adjusted to η2 := ω4/ω3. Applying the tricks presented in the previous
sections, ξ1 and ξ2 can be factored out of k̃2. This results in

It,τ =
1

5− 2s

1

4− 2s

∫
[0,1]3

k̃2,E(η) dη, k̃2,E(η) :=
4∑

m=1

k̃2(Dm(η)) detJm(η). (46)

Hence, only a three-dimensional integral has to be integrated numerically. The regularity of the
remaining integrand will be proved in Lemma 9.

3.3.3. Singularity on a face

The last case to consider is that the panel is a face of the tetrahedron. Without loss of generality
we assume that at = aτ , bt = bτ , and ct = cτ . This means that χt(κ1 e1 + κ2 e2) = χτ (κ1 ê1 + κ2 ê2)
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3. Duffy transformation

for all κ1, κ2 ∈ [0, 1]2. Again, we outsource the preparation for the nonlinear transformation to
Appendix A.2.3. In order to lift the singularity we obtain nine domains:

It,τ =

∫
[0,1]5

9∑
m=1

k̃2(Dm(ξ, η)) detJm(ξ, η) dη dξ,

where we can apply the idea from (40) to

Dm(ξ, η) = (ξ1 e1 + ξ1(1− ξ2) e2 + ξ1ξ2ξ3 D1
m(η), ξ1 ê1 + ξ1(1− ξ2) ê2 + ξ1ξ2ξ3 D2

m(η))

= ξ1 (e1, ê1) + ξ1(1− ξ2) (e2, ê2) + ξ1ξ2ξ3 Dm(η)

with

D1(η) =

 0
η1

1− η1

 , [η1η2
0

] , D2(η) =

 0
η1η2

η1(1− η2)

 , [1
0

] , D3(η) =

 0
η1η2

1− η1η2

 , [η1
0

] ,

D4(η) =

00
1

 , [ η1η2
η1(1− η2)

] , D5(η) =

 η1η2
η1(1− η2)
1− η1

 , [0
0

] , D6(η) =

 η1
0

1− η1

 , [ 0
η1η2

] ,

D7(η) =

 η1η2
0

η1(1− η2)

 , [0
1

] , D8(η) =

 η1η2
0

1− η1η2

 , [ 0
η1

] , D9(η) =

 0
0
η2

 , [ −η1
1− η1

] ,

where ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, η1 := ω4/ω3, and η2 := ω5/ω4 for m = 1, . . . , 8. For the
ninth domain only η2 has to be adjusted to η2 := ω5/ω3. Hence, the Jacobi determinants result in
detJm(ξ, η) = ξ41ξ

3
2ξ

2
3 detJm(η), where detJm(η) = η1 for m = 1, . . . , 8 and detJ9(η) = 1. The

integral can be simplified similarly to the case described in Section 3.2.3. This results in

It,τ =

2∏
j=0

1

5− j − 2s

∫
[0,1]2

k̃2,F (η) dη, k̃2,F (η) :=
9∑

m=1

k̃2(Dm(η)) detJm(η). (47)

Hence, only a two-dimensional integral has to be integrated numerically instead of a five-dimensional
one. The regularity of the remaining integrand will be proved in Lemma 9.
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3. Duffy transformation

3.4. Summary

In the Sections 3.2 and 3.3 we adapted the Duffy transformation for our purposes, i.e. to lift singular
integrals of the type (22) and (23). Table 1 gives an overview over the costs of the Duffy transfor-
mation. As it can be seen there, the number of sub-domains increases the stronger the singularity is.

singularity case point edge face tetrahedron

# sub-domains 2 4 17 9

dim η 5 4 3 2

Table 1: Costs of the Duffy transformation for volume-volume integrals

One must not be deceived by the case where the two tetrahedra are identical, since the number of
sub-domains can be halved by exploiting the symmetry. Moreover, Table 1 shows that the dimension
of integrals which have to be computed decreases as the singularity becomes stronger. However, this
is not a generally valid statement for the Duffy transformation. It holds only in our case, since the
structure of the integral (22) is exploited.

The same statements also apply to the volume-surface integrals, as can be seen in Table 2. Note

singularity case point edge face

# sub-domains 2 4 9

dim η 5 4 3

Table 2: Costs of Duffy transformation for volume-surface integrals

that the number of sub-domains between Table 1 and Table 2 differ for the case that the geometries
share a common face quite a bit. This is due to the additional dimension in the volume-volume case.
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4. Error estimates for the integrals

4.1. Derivative free error estimates

All previous transformations result in integrals over multi-dimensional unit cubes. In the following,
we present quadrature rules and the corresponding error estimates. We follow the approach of Sauter
and Schwab [75] and use derivative-free estimates, which are based on the work of Davis [35]. By
Eρ
a,b ⊂ C we denote the closed ellipse with focal points a, b ∈ R. Further, ρ := ā+ b̄ refers to the sum

of the semimajor half-axis ā > (b − a)/2 and the semiminor half-axis b̄. The standard ellipse Eρ
0,1 is

abbreviated with Eρ. Furthermore, let k ∈ N and let f : [0, 1]k → C be a function. Then we denote
by I[f ] the integral of f over [0, 1]k and by Qn[f ] its approximation with a tensor Gauss quadrature
of order n ∈ Nk, i.e., in dimension i ∈ {1, . . . , k} we use a Gaussian quadrature rule with ni points.
Moreover, we define the quadrature error En[f ] := |I[f ]−Qn[f ]|.

Theorem 10. Let f : [0, 1] → C be analytic with an analytic extension f⋆ to Eρ for some ρ > 1/2.
Then

En[f ] ≤ c (2ρ)−2n max
z∈∂Eρ

|f⋆(z)|.

In order to generalize the previous theorem to a tensor Gauss quadrature, we need the following
definition.

Definition 4. Let X := [0, 1]k ⊂ Rk. A function f : X → C is called component-wise analytic if for
i = 1, . . . , k there exists ρi > 1/2 such that for all x ∈ X the function

fi,x : [0, 1] → C, fi,x(t) := f(x1, . . . , xi−1, t, xi+1, . . . , xk),

can be extended to an analytic function f⋆i,x : Eρi → C.

With this definition we can extend Theorem 10 to the multi-dimensional case.

Theorem 11. Let f : [0, 1]k → C be component-wise analytic and let ρ ∈ Rk be as in Definition 4.
Then the quadrature error with ni nodes in dimension i = 1, . . . , k satisfies

En[f ] ≤
k∑

i=1

max
x∈[0,1]k

Eni [fi,x] ≤
k∑

i=1

ci (2ρi)
−2ni max

x∈[0,1]k
max
z∈∂Eρi

|f⋆i,x(z)|.

The constants ci, 1 ≤ i ≤ k, are as in Theorem 10.

The proofs of Theorem 10 and 11 can be found in [75]. Our main goal is to verify the requirements
of Theorem 11 for each of the cases in Chapter 3.

4.2. Preparation

4.2.1. Analyticity of the integrands

In order to apply Theorem 11 to our cases (22) and (23), we have to prove that for each singularity
case the integrand is component-wise analytic. For this we also need assumptions on the geometry,
one for the tetrahedra and one for the panels.
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4. Error estimates for the integrals

Assumption 1. Let us assume that

1. For all t ∈ T there is cA > 0 and x0 ∈ t̄ such that |x − y| ≥ cA (|x − x0| + |x0 − y|) for all
x ∈ Ω \ t and y ∈ t.

2. For all t1, t2 ∈ T whose intersection consists of a common vertex p, there exists cA > 0 such
that |x− y| ≥ cA (|x− p|+ |p− y|) for x ∈ t1, y ∈ t2.

3. For all t1, t2 ∈ T with exactly one common edge E := t̄1 ∩ t̄2, there exists cA > 0 and a point
p ∈ E such that |x− y| ≥ cA (|x− p|+ |p− y|) for all x ∈ t1, y ∈ t2.

4. For all t1, t2 ∈ T with exactly one common face F := t̄1 ∩ t̄2, there exists cA > 0 and a point
p ∈ F such that |x− y| ≥ cA (|x− p|+ |p− y|) for all x ∈ t1, y ∈ t2.

A similar assumption is made for the combination of tetrahedra in T and panels in P.

Assumption 2. Let us assume that

1. For all t ∈ T there is cA > 0 and x0 ∈ t̄ such that |x − y| ≥ cA (|x − x0| + |x0 − y|) for all
y ∈ τ ⊂ P\t̄ and x ∈ t.

2. For all t ∈ T and τ ∈ P whose intersection consists of a common vertex p, there is cA > 0 such
that |x− y| ≥ cA(|x− p|+ |p− y|) for all x ∈ t, y ∈ τ .

3. For all t ∈ T and τ ∈ P with exactly one common edge E := t̄ ∩ τ̄ , there exists cA > 0 and a
point p ∈ E such that |x− y| ≥ cA(|x− p|+ |p− y|) for all x ∈ t, y ∈ τ .

4. For all t ∈ T and τ ∈ P with exactly one common face F := t̄ ∩ τ̄ = τ̄ , there is cA > 0 and a
point p ∈ τ̄ such that |x− y| ≥ cA(|x− p|+ |p− y|) for all x ∈ t, y ∈ τ .

In addition, we also need information about the scaling behavior of the linear mappings χt and χτ

Lemma 6. Let Mτ be as in (43) and let λmax and λmin be the largest and the smallest eigenvalue of
MT

τ Mτ , respectively. Then

c h2τ ≤ λmin ≤ λmax ≤ 2h2τ and c h2τ ≤
√

detMT
τ Mτ ≤ C h2τ

with constants c, C > 0 that depend only on the minimal interior angle θτ of the panel τ .

The proof of Lemma 7 can be found in [75].

Lemma 7. Let Mt be as in (26) and let λmax and λmin be the largest and the smallest eigenvalue of
MT

t Mt, respectively. Then

c h2t ≤ λmin ≤ λmax ≤ 3h2t and c h3t ≤
√

detMT
t Mt ≤ C h3t

with constants c, C > 0 that depend only on the angle θt being the minimum of the interior angles
and the solid angles of the tetrahedron t.
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4. Error estimates for the integrals

Proof. We set v1 := bt−at, v2 := ct− bt, and v3 := dt− bt and denote by ρt the radius of the insphere
of t. The upper bound on the eigenvalues of MT

t Mt results from the linearity of the scalar product
and Young’s inequality

(Mtξ,Mtξ) =
3∑

i,j=1

ξi ξj (vi, vj) ≤ 3
3∑

i=1

ξ2i |vi|2 ≤ 3h2t |ξ|2, ξ ∈ R3.

According to [38], for the lower bound it holds that λmin ≥ ρt/ht̃. Using elementary properties of the
tetrahedron, the estimates in [72] can be adjusted to our needs as follows:

λmin ≥ ρt h
−1
t̃

= 3h−1
t̃

|t|
|∂t|

≥ 3h−1
t̃

sin2(θt)
|v1||v2||v3|

|∂t|
≥ c̃ sin2(θt)ht.

The last step is due to the assumption that the tetrahedra do not degenerate.

Since we assumed in (13) that the interior angles and the solid angles of the tetrahedra are bounded
below by θT , Lemmas 6 and 7 show that there exists a constant cT > 0 such that for each t ∈ T and
for each τ ∈ P it holds that

|Mtx| ≥ cT ht |x|, x ∈ R3, and |Mτy| ≥ cT hτ |y|, y ∈ R2. (48)

4.2.1.1. Tetrahedron and tetrahedron With these assumptions we can prove that the integrands
after the Duffy transformation are analytic in the corresponding integration domain. The direct
consequence of this is also that the Duffy transformation has lifted the singularity.

Lemma 8. The integrands k̃1,V in (33), k̃1,E in (38), k̃1,F , in (41), and k̃1,T in (42) are component-
wise analytic for s ∈ (0, 1).

Proof. Since in the case of the integrand k̃1,T the two tetrahedra t1 and t2 are identical, we drop the
index. For each sub-domain, we have to consider three terms: the Jacobi determinant of the Duffy
transformation, the product of the linear basis functions and the denominator. The first two can
obviously be extended analytically w.r.t. all variables in a complex neighborhood of [0, 1]2 as they
are polynomials w.r.t. η. For the denominator we obtain

|Mt(D
1
m(η)− D2

m(η))| ≥ cT ht|D1
m(η)− D2

m(η)| =: cT ht distt(Dm(η)), m = 1, . . . , 9, (49)

where cT is defined in (48). Therefore, only the distance has to be studied for each domain:

dist2t (D1(η)) = η21(1 + η22) + (1− η1)
2 > 0, dist2t (D2(η))

2 = η21η
2
2 + 1 + η21(1− η2)

2 > 0,

dist2t (D3(η)) = η21(1 + η22) + (1− η1η2)
2 > 0, dist2t (D4(η)) = η21(1 + η22) + (1− η1η2)

2 > 0,

dist2t (D5(η)) = 1 + η21η
2
2 + η21(1− η2)

2 > 0, dist2t (D6(η)) = η21(1 + η22) + (1− η1)
2 > 0,

dist2t (D7(η)) = η21η
2
2 + η21(1− η2)

2 + 1 > 0, dist2t (D8(η)) = η21η
2
2 + η21(1− η2)

2 + (1− η1)
2 > 0,

dist2t (D9(η)) = η21 + (1− η2)
2 + η22 > 0.

Notice, due to symmetry it is enough to only consider the first nine sub-domains. Since the de-
nominator has no zeros in [0, 1]2 and consists of analytic functions, the whole integrand k̃1,T can be
analytically extended w.r.t. all variables in a complex neighborhood of [0, 1]2 for s ∈ (0, 1).
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4. Error estimates for the integrals

The main difference for the integrand k̃1,F is the estimation of the denominator. The intersection
between the tetrahedra t1 and t2 is a common face τ = t̄1 ∩ t̄2. Without loss of generality we assume
that the parameterizations χt1 and χt2 satisfy the relation

χt1(κ) = χt2(κ)

with κ := (κ1, κ2, 0)
T for all κ1, κ2 ∈ [0, 1]. By Assumption 1, there exists a point p on the common

face τ with p = χt1(κ), and it holds that

|χt1(D
1
m(η))− χt2(D

2
m(η))| ≥ cA (|Mt1(D

1
m(η)− κ)|+ |Mt2(κ− D2

m(η))|)

≥ c cA cT h

[
2∑

i=1

(D1
m,i(η)− κi)

2 + (κi − D2
m,i(η))

2 + D i
m,3(η)

2

]1/2

≥ c

2
h

[
2∑

i=1

(D1
m,i(η)− D2

m,i(η))
2 + D i

m,3(η)
2

]1/2
=:

c

2
h distτ (Dm(η)),

where h and cT are defined in (15) and(48), respectively. Therefore, only the distτ (Dm(η)) has to
be studied for each domain. Since the treatment of distτ (Dm(η)) is analogous to the treatment of
distt(Dm(η)), we consider only the first sub-domain:

|distτ (D1(η))|2 = η21(1 + η22[η
2
3 + (1− η3)

2]) + (1− η1)
2 > 0.

The remaining sub-domains can be estimated analogously. Since the denominator has no zeros
in [0, 1]3 and consists of analytic functions, the whole integrand k̃1,F can be analytically extended
w.r.t. all variables in a complex neighborhood of [0, 1]3 for s ∈ (0, 1).

Similar arguments apply in the case of the k̃1,V and k̃1,E .

4.2.1.2. Tetrahedron and panel In this section the intersection between a tetrahedron and a panel
is studied. First, the case that the panel is a face of the tetrahedron is considered.

Lemma 9. The integrands k̃2,V in (45), k̃2,E in (46), and k̃2,F in (47) are component-wise analytic
for s ∈ (0, 1).

Proof. For each singularity case, we have to consider for each sub-domain four terms: the Jacobi
determinant of the Duffy transformation, the product of the linear basis functions, the nominator
and the denominator. The first three can clearly be analytically extended w.r.t. all variables in a
complex neighborhood of [0, 1]2 for s ∈ (0, 1), because they are only polynomial relative to η and
polynomials are analytic in C. Only the denominator has be considered for each singularity case
differently.

The panel τ is a face of the tetrahedron t. Without loss of generality we assume that the parame-
terizations χt and χτ satisfy the relation

χt(κ1:2,0) = χτ (κ),
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4. Error estimates for the integrals

with κ1:2,0 := (κ1, κ2, 0)
T for all κ1, κ2 ∈ [0, 1] and for all κ ∈ [0, 1]2. By Assumption 2 there exists a

point p on τ̄ , with p = χt(κ1:2,0), and it holds

|χt(D
1
m(η))− χτ (D

2
m(η))| ≥ cA (|Mt(D

1
m(η)− κ1:2,0)|+ |Mτ (κ− D2

m(η))|)

≥ c cA cT h

 2∑
i,j=1

(Dj
m,i(η)− κi)

2 + D1
m,3(η)

2

1/2

≥ c

2
h

[
2∑

i=1

(D1
m,i(η)− D2

m,i(η))
2 + D1

m,3(η)
2

]1/2
=:

c

2
h distF (Dm(η)),

where h and cT are defined in (15) and (48), respectively. Therefore, only the distF (Dm(η)) has to
be studied for each domain:

|distF (D1(η))|2 = η21 (1 + η22) + (1− η1)
2 > 0,

|distF (D2(η))|2 = 1 + η21 η
2
2 + η21 (1− η2)

2 > 0,

|distF (D3(η))|2 = η21 (1 + η22) + (1− η1 η2)
2 > 0,

|distF (D4(η))|2 = η21 η
2
2 + η21 (1− η2)

2 + 1 > 0,

|distF (D5(η))|2 = η21 (η
2
2 + [1− η2]

2) + (1− η1)
2 > 0,

|distF (D6(η))|2 = η21 (1 + η22) + (1− η1)
2 > 0,

|distF (D7(η))|2 = η21 η
2
2 + η21 (1− η2)

2 + 1 > 0,

|distF (D8(η))|2 = η21 (1 + η22) + (1− η1 η2)
2 > 0,

|distF (D9(η))|2 = η21 + (1− η1)
2 + η22 > 0.

Since the denominator has no zeros in [0, 1]2 and consists of analytic functions, the whole integrand
can be analytically extended w.r.t. all variables in a complex neighborhood of [0, 1]2 for s ∈ (0, 1).

For the second singularity case, where the tetrahedron t and the panel τ share a common edge,
only the denominator has to be considered. Without loss of generality we assume that the parame-
terizations χt and χτ satisfy the relation

χt(κ e1) = χτ (κ ê1)

for all κ ∈ [0, 1]. By Assumption 2 there exists a point p on the common edge E, p = χt(κ e1) ∈ E,
with

|χt(D
1
m(η))− χτ (D

2
m(η))| ≥ cA(|Mt(D

1
m(η)− κe1|+ |Mτ (κê1 − D2

m(η)|)

≥ c cA cT h

 2∑
j=1

(Dj
m,1(η)− κ)2 +

2∑
i=1

D i
m,2(η)

2 + D1
m,3(η)

2

1/2

≥ c

2
h
[
(D1

m,1(η)− D2
m,1(η))

2 + D2
m,2(η)

2 + D1
m,2(η)

2 + D1
m,3(η)

2
]1/2

=:
c

2
h distE(Dm(η)),
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4. Error estimates for the integrals

where h and cT are defined in (15) and (48), respectively. Therefore, only the distE(Dm(η)) has to
be studied for each domain:

|distE(D1(η))|2 ≥ η21 + (1− η1)
2 > 0,

|distE(D2(η))|2 ≥ η21 + (1− η1)
2 > 0,

|distE(D3(η))|2 ≥ η22 (η
2
3 + [1− η3]

2) + (1− η2)
2 > 0,

|distE(D4(η))|2 ≥ 1 > 0.

Since the denominator has no zeros in [0, 1]3 and consists of analytic functions, the whole integrand
can be analytically extended w.r.t. all variables in a complex neighborhood of [0, 1]3 for s ∈ (0, 1).

Similar arguments apply in the case of k̃2,V .

4.2.2. Error estimates for the integrands

Since it was shown in Section 4.2.1 that all regularized integrands are component-wise analytic, the
requirements of Theorem 11 are fulfilled. In order to apply it, the sum of the half-axes ρ of the ellipse
has to be estimated for each case. Additionally, we need a notation to describe the analytic extension
onto the ellipses w.r.t. to the integration domain. We define for ρ > 0 and i ∈ {1, . . . , k}

E(i)
ρ := [0, 1]i−1 × Eρ × [0, 1]k−i ⊂ Rk.

4.2.2.1. Tetrahedron and tetrahedron First, we consider the different interactions between two
tetrahedra. In contrast to [75], we do not use spherical coordinates to do the estimations, but the
Duffy Transformation directly. The next lemma gives the desired error estimation for the case that
the two tetrahedra are identical.

Lemma 10. There exists a constant ρ > 1/2 that depends only on θT such that the integrand k̃1,T
in (42) can be analytically extended to

⋃2
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃1,T (η)| ≤ C h3−2s, i = 1, 2.

Proof. Since the two tetrahedra are identical, we drop the index. From Lemma 8 we know that k̃1,T
is analytic in a complex neighborhood of [0, 1]2. Therefore, ρ > 1/2 exists such that k̃1,T can be
analytically extended to

⋃2
i=1 E

(i)
ρ . We show that the choice of ρ is independent of h. In the proof of

Lemma 8, we have seen that the denominator of

k̃1,T (η) =

9∑
m=1

[αT
i,1:3Mt(D1

m(η)− D2
m(η))] [αT

j,1:3Mt(D1
m(η)− D2

m(η))]

|h−1t Mt(D1
m(η)− D2

m(η))|3+2s
h−3−2st |detMt|2 detJm(η).

is responsible for the size of the complex neighborhood. Due to Lemma 7 and (48), it holds that

|h−1t Mtx| ≥ cT |x|, x ∈ R3,
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4. Error estimates for the integrals

where the positive constant cT does not depend on ht. By combining this with (49), we obtain

|h−1t Mt(D
1
m(η)− D2

m(η))| ≥ cT |D1
m(η)− D2

m(η)| > 0, η ∈ [0, 1]2, m = 1, . . . , 9.

Since the Dm do not depend on ht, it follows that the size of the complex neighborhood is independent
of ht and thus also independent of h; see (16). This implies that the choice of ρ is independent of h.
We continue with the estimation of the integrand. By considering the scaling of the linear mapping χt,
we obtain

|h−1t Mtx| ≤ |x1|
|bt − at|
ht

+ |x2|
|ct − at|
ht

+ |x3|
|dt − at|
ht

≤
√
3|x|.

Due to the scaling of α⋆,1:3 with ⋆ ∈ {i, j}, it holds

|αT
⋆,1:3Mtx| ≤ C |x|,

where the positive constant C is independent of h. By combining these results, we obtain for i = 1, 2
and for m = 1, . . . , 9, that

sup
η∈E(i)ρ

∣∣∣∣∣ [αT
i,1:3Mt(D1

m(η)− D2
m(η))] [αT

j,1:3Mt(D1
m(η)− D2

m(η))]

|h−1t Mt(D1
m(η)− D2

m(η))|3+2s
detJm(η)

∣∣∣∣∣ ≤ c̃

with c̃ > 0 independent of ht. Using Lemma 7, this leads to

sup
η∈E(i)ρ

|k̃1,T (η)| ≤ c̃

9∑
m=1

h−3−2st |detMt|2 ≤ 9C h3−2s, i = 1, 2.

Next, the case of a singularity along one face is considered.

Lemma 11. There exists a constant ρ > 1/2 that depends only on θT such that the integrand k̃1,F
in (41) can be analytically extended to

⋃3
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃1,F (η)| ≤ C h3−2s, i = 1, 2, 3.

Proof. From Lemma 8 we know that k̃1,F is analytic in a complex neighborhood of [0, 1]3. Therefore,
a constant ρ > 1/2 exists such that k̃1,F can be analytically extended to

⋃3
l=1 E

(l)
ρ . We show that the

choice of ρ is independent of h. In the proof of Lemma 8, we have seen that denominator of k̃1,F

k̃1,F (η) =

17∑
m=1

βi,j(D1
m(η),D2

m(η))

|h−1Mt1D
1
m(η)− h−1Mt2D

2
m(η))|3+2s

h−3−2s |detMt1 | |detMt2 | detJm(η),

is responsible for the size of the complex neighborhood. Note that

βi,j(D
1
m(η),D2

m(η)) := [αT
i,1:3(Mt1D

1
m(η)−Mt2D

2
m(η))] [αT

j,1:3(Mt1D
1
m(η)−Mt2D

2
m(η))]
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4. Error estimates for the integrals

and h is defined in (15). Due to Lemma 7, (48) and (16), it holds that

|h−1Mtix| ≥ cT c2 |x|, x ∈ R3, i = 1, 2,

where the positive constants cT and c2 does not depend on ht. By combining this with (49), we
obtain

|h−1Mti(D
1
m(η)− D2

m(η))| ≥ cT c2|D1
m(η)− D2

m(η)| > 0, η ∈ [0, 1]2, m = 1, . . . , 9, i = 1, 2.

Since the Dm do not depend on h, it follows that the size of the complex neighborhood is independent
of h. This implies that the choice of ρ is independent of h. We continue with the estimation of the
integrand. By considering the scaling of the linear mapping χt, we obtain

|h−1Mtix| ≤ |x1|
|bti − ati |

h
+ |x2|

|cti − ati |
h

+ |x3|
|dti − ati |

h
≤

√
3 c2 |x|, i = 1, 2.

Due to the scaling of α⋆,1:3 with ⋆ ∈ {i, j}, it holds

|αT
⋆,1:3Mtix| ≤ C |x|, i = 1, 2,

where the positive constant C is independent of h. Notice that the estimation for βi,j is more
complicated, since the exact structure of βi,j depends on the interaction of the tetrahedra t1 and
t2 and the linear basis functions φi and φj . Every occurring case, be it one, two or no degenerate
difference, can again be traced back to the above estimation. By combining these results, we obtain
for l = 1, 2, 3 and for m = 1, . . . , 17, that

sup
η∈E(l)ρ

∣∣∣∣ βi,j(D1
m(η),D2

m(η))

|h−1Mt1D
1
m(η)− h−1Mt2D

2
m(η)|3+2s

detJm(η)

∣∣∣∣ ≤ c̃,

with c̃ independent of h. Using Lemma 7, this leads to

sup
η∈E(i)ρ

|k̃1,F (η)| ≤ c̃
17∑

m=1

h−3−2s |detMt1 | |detMt2 | ≤ 17C h3−2s, i = 1, 2, 3.

Now we take a closer look what happens when the singularity is along a corner.

Lemma 12. There exists a constant ρ > 1/2 that depends only on θT such that the integrand k̃1,E
in (38) can be analytically extended to

⋃4
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃1,E(η)| ≤ C h3−2s, i = 1, . . . , 4.

Here, the singularity at a common vertex is studied.

Lemma 13. There exists a constant ρ > 1/2 that depends only on θT such that the integrand k̃1,V
in (33) can be analytically extended to

⋃5
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃1,V (η)| ≤ C h3−2s, i = 1, . . . , 5.
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4. Error estimates for the integrals

Since the proofs of Lemmas 10 to 13 are structurally the same, the proofs of Lemma 12 and
Lemma 13 are omitted. Finally, the case is investigated in which the tetrahedra have a positive
distance

dt1,t2 := dist(t1, t2) := inf
(x,y)∈t1×t2

|x− y| > 0.

The transformation

D(η) := (D1(η1:3),D2(η4:6)) =

 η1
η1η2
η1η2η3

 ,
 η4
η4η5
η4η5η6

 , η ∈ R6,

is analytic and we have detJ (η) = η21η2η
2
4η5. Applying this transformation to (27), we obtain

It1,t2 =

∫
[0,1]6

k̃1,D(η) dη (50)

with
k̃1,D(η) :=

βij(D1(η),D2(η))

|χt1(D1(η))− χt2(D2(η))|3+2s
|detMt1 | |detMt2 | detJ (η)

and

βij(D1(η),D2(η)) :=

{
−φi(χt1(D1(η)))φj(χt2(D2(η))), t1 ∈ suppφi, t2 ∈ suppφj ,

−φj(χt1(D1(η)))φi(χt2(D2(η))), t2 ∈ suppφi, t1 ∈ suppφj .

We focus on the almost singular cases, i.e. dt1,t2 ≈ h, as only those cause difficulties in the numerical
integration.

Lemma 14. There exists a constant ρ > 1/2 that depends only on θT such that k̃1,D can be analytically
extended to

⋃6
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃1,D(η)| ≤ C h3−2s, i = 1, . . . , 6.

We omit the proof of Lemma 14 as it is analogous to the proof of Lemma 10 and Lemma 11.

4.2.2.2. Tetrahedron and panel Next, we consider the interaction between a tetrahedron and a
panel. First, the case of a singularity along a common face is considered, i.e. the panel is a face of
the tetrahedron.

Lemma 15. There exists a constant ρ > 1/2 that depends only on θT such that the integrand k̃2,F
in (47) can be analytically extended to

⋃2
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃2,F (η)| ≤ C h3−2s, i = 1, 2.

Second, the case of the singularity along an edge is investigated.
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4. Error estimates for the integrals

Lemma 16. There exists a constant ρ > 1/2 that depends only on θT such that the integrand k̃2,E
in (46) can be analytically extended to

⋃3
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃2,E(η)| ≤ C h3−2s, i = 1, 2, 3.

Next, the singularity at a common vertex is studied.

Lemma 17. There exists a constant ρ > 1
2 that depends only on θT such that the integrand k̃2,V

in (45) can be analytically extended to
⋃4

i=1 E
(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃2,V (η)| ≤ C h3−2s, i = 1, . . . , 4.

The proofs of Lemmas 15 to 17 are omitted as they are analogous to the proof of Lemma 10.
Finally, the case is considered in which the tetrahedron and the panel have a positive distance

dt,τ := dist(t, τ) := inf
(x,y)∈t×τ

|x− y| > 0,

The transformation

D(η) := (D1(η1:3),D2(η4:5)) =

 η1
η1η2
η1η2η3

 , [ η4
η4η5

] , η ∈ R5,

is analytic and we have detJ (η) = η21 η2 η4. Applying this transformation to (44), we obtain

It,τ :=

∫
[0,1]5

k̃2,D(D(η)) dη (51)

with

k2,D(D(η)) := φi(χt(D1(η))φj(χt(D1(η))
[χt(D1(η))− χτ (D2(η))]

Tn

|χt(D1(η))− χτ (D2(η))|3+2s
|Mt| |Mτ | detJ (η).

Notice that τ ∈ ∂(suppφ ∪ suppφ) and therefore, it holds that dt,τ ≈ h.

Lemma 18. There exists a constant ρ > 1/2 that depends only on θT such that the integrand k̃2,D
can be analytically extended to

⋃5
i=1 E

(i)
ρ . It holds that

sup
η∈E(i)ρ

|k̃2,D(η)| ≤ C h3−2s, i = 1, . . . , 5.

Since the proof of Lemma 18 is analogous to the proof of Lemma 14, it is omitted.
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4. Error estimates for the integrals

4.2.3. Error estimates for the integrals

First, we start with the integrals of type (22).

Theorem 12. The approximations of the integrals (33), (38), (41), (42), and (50) by means of a
tensor Gauss quadrature converge exponentially w.r.t. number of Gauss points n

|En[k̃1,⋆]| ≤ C h3−2s (2ρ⋆)
−2n

with ρ⋆ > 1/2 and ⋆ ∈ {D,V,E, F, T}.

Proof. Lemma 8 shows that the requirement of Theorem 11 is fulfilled for all singularity types and
Lemma 10 to Lemma 13 give the corresponding estimates for the integrands. Therefore, we can apply
Theorem 11 and obtain the desired results.

Since there is a positive distance between the tetrahedra, the integrand k̃1,D is obviously analytic.
Therefore, Theorem 11 can be applied and by combining it with Lemma 14 we obtain the desired
estimate.

Notice that for the integral (50) we have a worst-case estimation, since we assume that dt1,t2 ≈ h.
Second, we consider the integrals of type (23).

Theorem 13. The approximation of the integrals (45), (46), (47), and (51) by means of a tensor
Gauss quadrature converge exponentially w.r.t. the number of Gauss points n

|En[k̃2,⋆]| ≤ C h3−2s (2ρ⋆)
−2n

with ρ⋆ > 1/2 and ⋆ ∈ {D,V,E, F}.

Proof. First, we consider the singularity cases. Lemma 9 shows that the requirements of Theorem 11
are fulfilled for all singularity types and Lemma 15 to Lemma 17 provides the corresponding estimates.
Therefore, we can apply Theorem 11 and obtain the desired results.

For the non-singular case it is obvious that the integrand k̃2,D is analytic. Therefore, the require-
ments of Theorem 11 are fulfilled and Lemma 18 provides the corresponding estimates.

4.3. Rules for the number of Gauss points

Since we now have error estimates for the numerical integration, it can be investigated how this error
proceeds through the bilinear form. This was first done in [4].

Theorem 14. Let n1 and n2 be the quadrature orders used for touching pairs of tetrahedra and
tetrahedron and panel, respectively. Denote by aQ the resulting approximation to the bilinear form a.
Then the consistency error due to the quadrature is bounded by

|a(u, v)− aQ(u, v)| ≤ C(E1 + E2) ∥u∥L2(Ω) ∥v∥L2(Ω), u, v ∈ Vh,

where
E1 = h−3−2s (2ρ1)

−2n1 and E2 = h−2−2s (2ρ2)
−2n2

with constants ρj > 1/2, j = 1, 2.
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4. Error estimates for the integrals

Proof. Let I := {1, . . . , N}. In [4] it was shown that

|a(u, v)− aQ(u, v)| ≤ Ch−2d
[
max

t1,t2∈T
max
i,j∈I

|Et1,t2
i,j |+ h max

t∈T ,τ∈P∂Ω

max
i,j∈I

|Et,τ
i,j |
]
∥u∥L2(Ω) ∥v∥L2(Ω),

where Et1,t2
i,j and Et,τ

i,j denote the integration error between the integrals at1,t2(φi, φj) and at,τ (φi, φj),

at1,t2(φi, φj) :=

∫
t1

∫
t2

[φi(x)− φi(y)] [φj(x)− φj(y)]

|x− y|d+2s
dx dy,

at,τ (φi, φj) :=

∫
t
φi(x)φj(x)

∫
τ

(y − x)T nτ
|x− y|d+2s

dsy dx,

and their approximations, respectively. Theorems 12 to 13 give the corresponding error estimates.

Since we know how the integration error affects the bilinear form, we can establish rules for the
number of Gaussian points per dimension.

Lemma 19. The choice of Gauss quadrature rules

n1 ≥
1

2
(3 + l + s)

|log(h)|
log(2ρ1)

and n2 ≥
1

2
(2 + l + s)

|log(h)|
log(2ρ2)

conserves the convergence rate in Theorem 8.

Proof. In [4] it is already shown that

∥u− uh∥H̃s(Ω) ≤ C
(
hl−s |u|Hl(Ω) + (E1 + E2) ∥Πhu∥L2(Ω)

)
,

where Πh is the Scott-Zhang interpolation operator; see [31, 76]. The last step is to choose the
number of Gauss points in such a way that the errors E1 and E2 in Theorem 14 have the same order
of magnitude as the other error, i.e. we require E1 ≤ hl−s and E2 ≤ hl−s.

Lemma 19 shows that the cost to compute a integral scale as O(| log(h)|) per dimension. Since
we use a tensor Gauss quadrature, these costs apply for each one-dimensional integral. Obviously,
this holds only for the singular integrals and for the nearly singular integrals; i.e. dist(t1, t2) ≈ h,
respectively dist(t, τ) ≈ h. The cost for the nonsingular integrals is constant. The integral is called
nonsingular if dist(t1, t2) > 3h, respectively dist(t, τ) > 3h. In Table 3, we present an overview over
the costs for the numerical integration for each singularity type.

nearly singular vertex edge face tetrahedron

integral (22) O(| log6(h)|) O(| log5(h)|) O(| log4(h)|) O(| log3(h)|) O(| log2(h)|)
integral (23) O(| log5(h)|) O(| log4(h)|) O(| log3(h)|) O(| log2(h)|) –

Table 3: Costs of the numerical integration

An interesting fact which Table 3 provides is that for fine geometries the nearly singular integrals are
more expensive to calculate than the strongly singular integrals. However, for coarse discretizations
the costs of the Duffy transformation (see Tables 1 and 2) dominate the costs of the numerical
integration.
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5. Improved Duffy transformation

In this chapter we want to provide a variant of the Duffy transformation which is more adapted and
efficient for the numerical computation than the transformation introduced in Chapter 3. In the two
previous chapters the main focus was on lifting the singularity and providing error estimates for the
approximation of the emerging integrals, including rules on how to efficiently choose the number of
Gaussian points per dimension. Therefore, we have always transformed the tetrahedra interacting
with each other into a sum of six-dimensional unit cubes. This procedure is necessary for the error
estimates, as we have seen in Chapter 4.

From a computational point of view, however, it does not make any sense to convert two tetrahe-
dra t1 and t2, which have a positive distance between each other, into a six-dimensional unit cube,
even if the integral is nearly singular, i.e. dist(t1, t2) ≈ h. To avoid this geometric blow-up, symmetric
cubature rules for tetrahedra and triangles are then used instead of the tensor Gaussian quadrature;
see [38, 56, 62, 77, 82, 86]. The advantage is that this potentially reduces the total number of evalua-
tion points for the numerical integration. The idea behind this is well-known. Let n be the number of
Gaussian points per dimension, then n3 is the total number of points for the three-dimensional unit
cube. Since the volume of the unit tetrahedron is one sixth of the volume of the three-dimensional
unit cube, we take a symmetric cubature rule with at least n3/6 points for the numerical integration.
Table 4 shows a list of symmetric cubature formulas of different order with the corresponding number
of points. As we can see, there is not a rule for every number of points, but the existing rules meet
our requirements.

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14

points 1 4 8 14 14 24 36 46 61 81 109 140 171 236

Table 4: Number of points for the symmetric cubature rules on the unit tetrahedron

The same ideas are applied to the unit panel. Therefore, we choose symmetric cubature rules for
the panel with at least n2/4 points. Analogous to Table 4, Table 5 gives an overview of the symmetric
cubature formula for the unit panel. Both tables are from [86].

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14

points 1 3 6 6 7 12 15 16 19 25 28 33 37 46

Table 5: Number of points for the symmetric cubature rules on unit panel

While the nonlinear transformation is necessary to lift the singularity, the transformation does
not have to map to a six-dimensional unit cube. This is due to the fact that only detJ (ξ) is
necessary to lift the singularity. The mapping to the unit cube was mainly there to obtain the error
estimates. Therefore, there are still degrees of freedom for the nonlinear transformation w.r.t. η.
In the following, we exploit these degrees of freedom for each singularity case by transforming the
integration domains not to six-dimensional unit cubes, respectively five-dimensional unit cubes, but
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5. Improved Duffy transformation

to a combination for reference elements. This approach gives us two benefits. The first one is that
the number of evaluation points for the numerical integration is reduced by avoiding unnecessary
geometric blowups. The second benefit is that we can provide a geometric interpretation of what
happens to the tetrahedra, respectively the tetrahedron and the panel, after the Duffy transformation.

5.1. Interaction between two tetrahedra

5.1.1. Point singularity

First, we consider the case that the two tetrahedra t1 and t2 share a common vertex. In Section 3.2.1
we have already studied this case and found that we need to divide the integration domain into two
sub-domains to lift the singularity:

• domain I: ∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω1

0

∫ ω4

0

∫ ω5

0
k̃1

 ω3

ω2 − ω3

ω1 − ω2

 ,
 ω6

ω5 − ω6

ω4 − ω5

 dω.

• domain II: ∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω1

0

∫ ω4

0

∫ ω5

0
k̃1

 ω6

ω5 − ω6

ω4 − ω5

 ,
 ω3

ω2 − ω3

ω1 − ω2

 dω.

The next step is to apply a suitable nonlinear transformation that lifts the singularity. To do so, we
inspect again the forking inequality chain of domain I:

0 ≤ ω6 ≤ ω5 ≤ ω4 ≤ ω1 ≤ 1 and 0 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1.

Since a separation of the variables already exists, we can take advantage of it. Instead of inflating the
problem to the six-dimensional unit cube, we transform it back to the appropriate reference elements,
the unit tetrahedron t̃ and the unit panel τ̃ :

ξ := ω1, η1 := 1− ω2/ω1, η2 := ω3/ω1, η3 := 1− ω4/ω1, η4 := 1− ω4/ω1 − ω5/ω1, η5 := ω6/ω1

with detJ (ξ, η) = ξ5. First, we show that this transformation maps the integration domain to the
reference elements:{

0 ≤ ω2 ≤ ω1

0 ≤ ω3 ≤ ω2

}
⇔
{

0 ≤ ξ (1− η1) ≤ ξ
0 ≤ ξ η2 ≤ ξ (1− η1)

}
⇔
{

0 ≤ η1 ≤ 1
0 ≤ η2 ≤ 1− η1

}
(52)

and 
0 ≤ ω4 ≤ ω1

0 ≤ ω5 ≤ ω4

0 ≤ ω6 ≤ ω5

⇔


0 ≤ η3 ≤ 1
0 ≤ η4 ≤ 1− η3
0 ≤ η5 ≤ 1− η3 − η4

 . (53)

With this we obtain for the integral:∫ 1

0

∫
τ̃

∫
t̃
k̃1

 ξ η2
ξ (1− η1 − η2)

ξη1

 ,
 ξ η5
ξ (1− η3 − η4 − η5)

ξη4

 detJ (ξ, η) dη dξ.
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5. Improved Duffy transformation

The next step is to repeat the process with domain II and then simplify It1,t2 by factoring ξ out of k̃1.
The ideas for this are basically the same is in Section 3.2.1. This leads to

It1,t2 =
1

5− 2s

(∫
τ̃

∫
t̃
k̃1(D̃1(η)) dη +

∫
t̃

∫
τ̃
k̃1(D̃2(η)) dη

)
=: It1,t2 [k̂

1
1,V ] + It1,t2 [k̂

2
1,V ] =: It1,t2 [k̂1,V ]

with

D̃1(η) :=

 η2
1− η1 − η2

η1

 ,
 η5
1− η3 − η4 − η5

η4

 and D̃2(η) := D̃1(η)
T .

Due to definitions of t̃ and τ̃ we know that each component of D̃1
1 (η) and D̃2

1 (η) is non-negative and

∥D̃1
1 (η)∥1 = 1 and ∥D̃2

1 (η)∥1 = 1− η3 ≥ 0.

For D̃2 this implies that D̃2 : t̃→ t̃ and obviously the mapping is linear and continuous. Therefore it
holds that χt(D̃2(·)) : t̃ → t is also linear and continuous for all t ∈ T . Let F̃ be the face of t̃ which
is described by

F̃ := {x ∈ t̃ : ∥x∥1 = 1}.

Then D̃1 maps the reference tetrahedron to F̃ . By the analog arguments as before, χt(D̃1(·)) is linear
and continuous, in particular χt1(D̃1(·)) : t̃→ F , where F is the side of the tetrahedron opposite the
corner point at1 being the common point of the two tetrahedra. If we now put these insights together
and exploit the symmetry between D̃1 and D̃2, we can now explain the Duffy transformation for the
point singularity geometrically: Instead of the interaction of the two tetrahedra, we now let each of
the two tetrahedra interact individually with the face of the other tetrahedron which is opposite to
the common vertex.

5.1.2. Singularity along an edge

The procedure from the previous section can be applied to the singularity case from Section 3.2.2.
First, remember the forking inequality chains of the domains I a) and I b) w.r.t. ω:

0 ≤ ω6 ≤ ω5 ≤ ω4 ≤ ω2 ≤ ω1 ≤ 1 and 0 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1

and
0 ≤ ω6 ≤ ω5 ≤ ω2 ≤ ω1 ≤ 1 and 0 ≤ ω4 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1.

Here, we use a nonlinear transformation to map the domains back to suitable reference elements. The
transformation is done in the same way as in (52) and (53).

• I a):

ξ1 := ω1, ξ2 := ω2/ω1, η1 := ω3/ω2, η2 := 1− ω4/ω2, η3 := 1− ω4/ω2 − ω5/ω2, η4 := ω6/ω2,∫
[0,1]2

∫ 1

0

∫
t̃
k̃1

 1− ξ1
ξ1 ξ2 η1

ξ1 ξ2(1− η1)

 ,
 1− ξ1 + ξ1 ξ2 η4
ξ1 ξ2 (1− η2 − η3 − η4)

ξ1 ξ2 η3

 detJ (ξ, η) dη dξ
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• I b):

ξ1 := ω1, ξ2 := ω2/ω1, η1 := 1− ω3/ω2, η2 := ω4/ω2, η3 := 1− ω5/ω2, η4 := ω6/ω2,

∫
[0,1]2

∫
τ̃

∫
τ̃
k̃1

 1− ξ1
ξ1 ξ2 η4

ξ1 ξ2 (1− η3 − η4)

 ,
 1− ξ1 + ξ1 ξ2 η2
ξ1 ξ2 (1− η1 − η2)

ξ1 ξ2 η1

 detJ (ξ, η) dη dξ

In both cases, it holds that detJ (ξ, η) = ξ51 ξ
4
2 . Using the same ideas and tricks as in Section 3.2.2

to simplify the integrals, we obtain

It1,t2 =
1

5− 2s

1

4− 2s

(∫
[0,1]

∫
t̃
k̃1(D̃1(η)) + k̃1(D̃3(η)) dη +

∫
τ̃

∫
τ̃
k̃1(D̃2(η)) + k̃1(D̃4(η)) dη

)

=:
4∑

m=1

It1,t2 [k̂
m
1,E ] =: It1,t2 [k̂1,E ],

where D̃m is the Duffy transformation of the m-th domain to the reference elements with

D̃1 =

 0
η1

1− η1

 ,
 η4
1− η2 − η3 − η4

η3

 and D̃2 =

 0
η4

1− η3 − η4

 ,
 η2
1− η1 − η2

η1

 .

The two remaining cases D̃3 and D̃4 are again due to symmetry

D̃3(η) := D̃1(η)
T and D̃4(η) := D̃2(η)

T .

First, we consider D̃1. Due to definitions of t̃ we know that each component of D̃1
1 (η) and D̃2

1 (η) is
non-negative and

∥D̃1
1 (η)∥1 = 1 and ∥D̃2

1 (η)∥1 = 1− η2 ≥ 0.

For D̃2
1 this implies that D̃2

1 : t̃ → t̃ and obviously the mapping is linear and continuous. Therefore
it holds that χt(D̃2

1 (·)) : t̃ → t is also linear and continuous for all t ∈ T . For D̃1
1 the situation

is a bit more complicated. Let us first interpret D̃1
1 as a mapping of the interval [0, 1] to t̃, i.e.

D̃1
1 : [0, 1] → t̃. Since ∥D̃1

1 (η)∥1 = 1, D̃1
1 maps the interval to the boundary of the tetrahedron. To

be more precise, the interval is mapped to the edge between the vertices (0, 1, 0)T and (0, 0, 1)T . If
we now additionally consider the mapping χt1 , this means that χt(D̃1

1 (·)) maps the interval [0, 1]
to the edge of the tetrahedron t1, which is between the corner points ct1 and dt1 . This edge of the
tetrahedron is the edge, which has the biggest distance to the edge where the singularity is located.
Therefore, we can interpret the case D̃1 as the interaction between the tetrahedron t2 and the edge
[ct1 , dt1 ].

Second, we have a look at D̃2. The consideration of D̃2
2 is analogous to D̃2

1 from Section 5.1.1.
χt2(D̃

2
2 (·)) maps τ̃ to the face of the tetrahedron t2 enclosed by the corner points bt2 , ct2 and dt2 .

Since ∥D̃1
2 (η)∥1 ≤ 1 and since the first component of D̃1

2 is zero, we conclude that χt1(D̃
1
2 (·)) maps

the unit panel to the face of the tetrahedron t1 enclosed by the corner points at2 , bt2 and ct2 . Since
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5. Improved Duffy transformation

the singularity is chosen such that at1 = at2 and bt1 = bt2 , we can interpret D̃1 as the interaction
between the faces of the two tetrahedra t1 and t2 which have the biggest distance between each other.

Altogether, we can interpret that after the Duffy transformation the interaction of the tetrahedra is
decomposed into two interactions and their symmetric counterparts. The first one is the interaction
of one tetrahedron with the edge of the other tetrahedron which is opposite to the common edge of
both tetrahedra and the second one is that only an edge of each tetrahedron interact with each other.
These edges are characterized by the fact that they are the ones that are farthest from each other
and are still connected through the edge over which the singularity is defined.

5.1.3. Singularity on a face

For this singularity case it is not always possible to find a geometrical interpretation. The issue is
that a clear splitting of the variables on the individual domains is missing. The reason for this is that
the forking inequality chains degenerate to one inequality chain, i.e.

0 ≤ ω6 ≤ ω5 ≤ ω4 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1.

Since there is no split up, we cannot map the integration domain w.r.t. η into two independent
reference elements. For the first fifteen domains of the domains we use the following nonlinear
transformation:

ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2,
η1 := 1− ω4/ω3, η2 := 1− ω4/w3 − ω5/ω3, η3 := 1− w4/ω3 − w5/ω3 − w6/ω3,

with detJ (ξ, η) = ξ51 ξ
4
2 ξ

3
3 . By applying the ideas and tricks from Section 3.2.3, the integrals can be

simplified to
2∏

j=0

1

5− j − 2s

∫
t̃
k̃1(D̃m(η)) dη,

where,

D̃1(η) :=

 0
1− η1
η1

 ,
1− η1 − η2 − η3

0
η3

 , D̃2(η) :=

 0
1− η1 − η2

η2

 ,
1− η1 − η2 − η3

0
η1 + η2 + η3

 ,

D̃3(η) :=

 0
1− η1 − η2
η1 + η2

 ,
1− η1 − η2 − η3

0
η2 + η3

 , D̃4(η) :=

 0
1− η1 − η2 − η3

η3

 ,
1− η1

0
η1

 ,

D̃5(η) :=

 0
1− η1 − η2 − η3

η2 + η3

 ,
1− η1 − η2

0
η1 + η2

 , D̃6(η) :=

 0
1− η1 − η2 − η3
η1 + η2 + η3

 ,
1− η1 − η2

0
η2

 ,

D̃7(η) :=

00
1

 ,
1− η1 − η2 − η3

η3
η2

 , D̃15(η) :=

1− η1 − η2 − η3
η3

η1 + η2

 ,
 0

0
1− η1

 .

The seven remaining cases are the symmetrical version of D̃i, i = 1, . . . , 7, i.e.

D̃7+i(η) = D̃T
i (η) for i = 1, . . . , 7.
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5. Improved Duffy transformation

As it can be clearly seen, on the one hand from the integration domain and on the other hand from the
integrand itself, there is no longer a clear separation into two independent domains as in the previous
cases, the point singularity and the singularity along a common edge. This is due to the resolution
of the min and max conditions; see (39). Because of the fine splitting, the individual sub-domains
are so strongly structured that the variables can be arranged into a single inequality chain.

While we can still trace where D1
1 and D2

1 map the corresponding reference element to, w.r.t.
integration there is a dependency here. Thus, χt1(D

1
1 (·)) maps the one-dimensional unit interval

to the edge between vertices ct1 and dt1 , while χt2(D
2
1 (·)) maps the unit tetrahedron to the side of

the tetrahedron t2 enclosed by the vertices at2 , ct2 and dt2 . The analogous statements and the same
nonlinear transformation also apply to most of the remaining sub-domains.

Only the seventh domain and its symmetric version, the fourteenth domain, are the exemption.
This is because D̃1

7 does not depend on η. With the experience from Sections 5.1.1 and 5.1.2, we
quickly observe that from a geometrical point of view the vertex dt1 interacts with the tetrahedron t2,
respectively the vertex dt2 interacts with the tetrahedron t1.

The remaining two cases behave differently, since there are actual forking inequality chains. First,
consider the sixteenth domain,

0 ≤ w6 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1 and 0 ≤ ω5 ≤ ω4 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1,

and adjust the nonlinear transformation to the inequality chain:

ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, η1 := 1− ω4/ω3, η2 := 1− ω4/w3 − ω5/ω3, η3 := w6/ω3,

2∏
j=0

1

5− j − 2s

∫
τ̃

∫ 1

0
k̃1(D̃16(η)) dη, D̃16(η) :=

 0
0
η3

 ,
1− η1 − η2

η2
η1

 ,

with detJ (ξ, η) = ξ51 ξ
4
2 ξ

3
3 . This case can be interpreted as the interaction between the edge between

the vertices at1 and dt2 and the face of the tetrahedron t2 enclosed by the vertices bt2 , ct2 and dt2 .
The last domain is more complicated, since the forking inequality chain splits up after ω4:

0 ≤ ω6 ≤ ω4 ≤ ω3 ≤ ω2 ≤ w1 ≤ 1 and 0 ≤ ω5 ≤ ω4 ≤ ω3 ≤ ω2 ≤ w1 ≤ 1

Although we can transform the domain to suitable reference elements, the Jacobi determinant is then
no longer independent of η, since the splitting happens only after ω4:

ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, η1 := 1− ω4/ω3, η2 := 1− ω4/w3 − ω5/ω3, η3 := w6/ω4,

2∏
j=0

1

5− j − 2s

∫
τ̃

∫ 1

0
k̃1(D̃17(η)) (1− η1) dη, D̃17(η) :=

1− η1 − η2
η2
η1

 ,
 0

0
(1− η1) η3

 ,

with detJ (ξ, η) = ξ51 ξ
4
2 ξ

3
3 (1− η1). In total, we obtain

It1,t2 =

2∏
j=0

1

5− j − 2s

(∫
t̃

15∑
m=1

k̃1(D̃m(η)) dη +
∫
τ̃

∫ 1

0
k̃1(D̃16(η)) + k1(D̃17(η)) (1− η1) dη

)

=:
17∑

m=1

It1,t2 [k̂
m
1,F ] =: It1,t2 [k̂1,F ].
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5. Improved Duffy transformation

The higher the degree of the singularity, the more complicated it is to make statements about the
geometry, since after application of the nonlinear transformation the domains are interdependent.

5.1.4. Two identical tetrahedra

Here, we consider the case where the two tetrahedra are identical and we omit the index. In Section
3.2.4, we have already seen that after the min and max conditions are resolved, the sub-domains
are very well structured. By this we mean that almost all domains satisfy a single inequality chain
w.r.t. the variables ω. Thus, these sub-domains can also be processed with the same nonlinear
transformation:

ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, ξ4 := ω4/ω3, η1 := 1− ω5/ω4, η2 := w6/ω4,

3∏
j=0

1

5− j − 2s

∫
τ̃
k̃1(D̃m(η)) dη,

where detJ (ξ, η) = ξ51 ξ
4
2 ξ

3
3 and

D̃1(η) :=

 0
1− η1
η1

 ,
η20
0

 , D̃2(η) :=

01
0

 ,
 η2

0
1− η1 − η2

 ,

D̃3(η) :=

 0
1− η1
−1

 ,
η20
η2

 , D̃4(η) :=

 0
η2
−η2

 ,
1− η1

0
−1

 ,

D̃5(η) :=

 0
η2

1− η1 − η2

 ,
10
0

 , D̃6(η) :=

 0
η2
0

 ,
1− η1

0
η2

 ,

D̃7(η) :=

00
0

 ,
 η2
1− η1 − η2

−1

 , D̃8(η) :=

00
0

 ,
 η2
1− η1 − η2

η1

 ,

and the sub-domains 10 to 17 are again the symmetric versions of the first eight domains, i.e.

D̃m+9(η) = D̃m(η)T , m = 1, . . . , 8.

The remaining two sub-domains behave different because there are real forking inequality chains:

ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, ξ4 := ω4/ω3, η1 := ω5/ω4, η3 := w6/ω4,

3∏
j=0

1

5− j − 2s

∫
(0,1)2

k̃1(D̃9(η)) + k̃1(D̃18(η)) dη, D̃9(η) :=

 0
1− η1
η1

 ,
 η2
1− η2

0


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5. Improved Duffy transformation

where D̃18(η) := D̃9(η)
T and detJ (ξ, η) = ξ51 ξ

4
2 ξ

3
3 . In total, this leads to

It,t = 2

3∏
j=0

1

5− j − 2s

(∫
τ̃

8∑
m=1

k̃1(D̃m(η)) dη +
∫
(0,1)2

k̃1(D̃9(η)) dη

)

=:
9∑

m=1

It,t[k̂
m
1,T ] =: It,t[k̂1,T ].

Because the domains are so highly structured, a geometric interpretation is not possible for all domains
except three: For example consider domain 5, the interaction of the tetrahedron with itself can be
interpreted as the interaction of the vertex bt with the face enclosed by the vertices at, ct and dt. For
domain 8, we see that the vertex at interacts with the face opposite to at. For domain 9 the Duffy
transformation leads to the observation that instead of the tetrahedron the two edges, which run
between the vertices ct and dt, and bt and ct, are treated.

5.2. Interaction between a tetrahedron and a panel

5.2.1. Point singularity

We start with the case that the tetrahedron t and the panel τ have a common vertex. This case has
been studied in Section 3.3.1 and a division of the integration domain is necessary in order to lift the
singularity. Both domains, I and II, satisfy a suitable forking inequality chain:

0 ≤ ω5 ≤ ω4 ≤ ω1 ≤ 1 and 0 ≤ ω3 ≤ ω2 ≤ ω1 ≤ 1,

and
0 ≤ ω5 ≤ ω4 ≤ ω3 ≤ ω1 and 0 ≤ ω2 ≤ ω1.

Similar to Section 5.1.1, a nonlinear transformation is used to map the two domains to matching
reference elements:

• domain I:

ξ := ω1, η1 := 1− ω2/ω1, η2 := ω3/ω1, η3 := 1− ω4/ω1, η4 := ω5/ω1,

∫ 1

0

∫
τ̃

∫
τ̃
k̃2

 ξ η2
ξ (1− η1 − η2)

ξ η1

 ,

(
ξ η4

ξ (1− η3 − η4)

) detJ (ξ, η) dη dξ.

• domain II:

ξ := ω1, η1 := ω2/ω1, η2 := 1− ω3/ω1, η3 := 1− ω3/ω1 − ω4/ω1, η4 := ω5/ω1,

∫ 1

0

∫ 1

0

∫
t̃
k̃2

 ξ η4
ξ (1− η2 − η3 − η4)

ξ η3

 ,

(
ξ η1

ξ (1− η1)

) detJ (ξ, η) dη dξ.
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5. Improved Duffy transformation

For both cases it holds that detJ1(ξ, η) = ξ4. Using the tricks and ideas of Section 3.3.1 the integrals
can be simplified to

It,τ =
1

4− 2s

(∫
τ̃

∫
τ̃
k̃2(D̃1(η)) dη +

∫ 1

0

∫
t̃
k̃2(D̃2(η)) dη

)
=: It,τ [k̂

1
2,V ] + It,τ [k̂

1
2,V ] =: It,τ [k̂2,V ],

where

D̃1(η) :=

 η2
1− η1 − η2

η1

 , [ η4
1− η3 − η4

] and D̃2(η) :=

 η4
1− η2 − η3 − η4

η3

 , [ η1
1− η1

] .

Since there is a clear separation of the geometry, we can explain the Duffy transformation geometri-
cally. With the prior knowledge from Section 5.1.1, we see that after the Duffy transformation the
interaction between the tetrahedron and the panel is split up into two parts. In the first part the
panel interacts with the face of the tetrahedron which is opposed to the common vertex and in the
second part the tetrahedron interacts with the edge of the panel opposite the common vertex.

5.2.2. Singularity along an edge

Here, the case is considered that the tetrahedron t and the panel τ share a common edge. According
to Section 3.3.2 the integration has to be split up in four sub-domains in order to lift the singularity:

It,τ =

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω2

0

∫ ω4

0

3∑
m=1

k̃2(Qm(ω)) dω +

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2(Q4(ω)) dω,

where

Q1 :=

 1− ω1

ω3

ω2 − ω3

 , [1− ω1 + ω5

ω4 − ω5

] , Q2 :=

 1− ω1

ω5

ω4 − ω5

 , [1− ω1 + ω3

ω2 − ω3

] ,

Q3 :=

1− ω1 + ω5

ω4 − ω5

ω2 − ω4

 , [1− ω1

ω3

] , Q4 :=

1− ω1 + ω5

ω4 − ω5

ω3 − ω4

 , [1− ω1

ω2

] .

Next, we exploit the structure of the integration domains to map the sub-domains to matching
reference elements. For the first three ones this leads to

ξ1 := ω1, ξ2 := ω2/ω1, η1 := ω3/ω2, η2 := 1− ω4/ω2, η3 := ω5/ω2,

and for the fourth sub-domain, we obtain that

ξ1 := ω1, ξ2 := ω2/ω1, η1 := 1− ω3/ω2, η2 := 1− ω3/ω2 − ω4/ω2, η3 := ω5/ω2.

Note that in each case it holds that detJ (ξ, η) = ξ41 ξ
3
2 . By applying the same tricks and ideas from

Section 3.3.2, It,τ simplifies to

It,τ =
1

5− 2s

1

4− 2s

(∫
[0,1]

∫
τ̃

3∑
m=1

k̃2(D̃m(η)) dη +
∫
t̃
k̃2(D̃4(η)) dη

)
=:

4∑
m=1

It,τ [k̂
m
2,E ] =: It,τ [k̂2,E ],
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5. Improved Duffy transformation

where

D̃1 :=

 0
η1

1− η1

 , [ η3
1− η2 − η3

] , D̃2 :=

 0
η3

1− η2 − η3

 , [ η1
1− η1

] ,

D̃3 :=

 η3
1− η2 − η3

η2

 , [ 0
η1

] , D̃4 :=

 η3
1− η1 − η2 − η3

η2

 , [0
1

] .

As it can be seen, due to the forking inequality chains, there is a strict separation of the geometry
in each sub-domain, which makes a geometric interpretation of the Duffy transformation possible.
With the knowledge from the previous sections, we can quickly see what became of the tetrahedron t
and the panel τ . First, consider the first sub-domain. There, the panel τ interacts with edge of t
which is between the vertices ct and dt. This edge is the edge of t which has the biggest distance
to the singularity. For the second sub-domain the interaction of t and τ becomes after the Duffy
transformation the interaction between the face of t enclosed by at, ct and dt, and an edge of τ
enclosed by bτ and cτ . These two geometries are connected by the edge along which the singularity
resides. The case of the third sub-domain can be interpreted as the symmetric version of the case
of the second domain. The Duffy transformation resolves the original interaction to the interaction
between the face of t described by the vertices bt, ct and dt and the edge of τ which is located
between aτ and bτ . The last sub-domain is a little special, since after the Duffy transformation the
complete tetrahedron t still interacts with a part of the panel τ , to be more precise t interacts with
the vertex cτ .

5.2.3. Singularity on a face

As the last case, we consider that the panel τ is a face of the tetrahedron t. Since this singularity
case was already discussed in detail in Section 3.3.3, we provide only a brief summary,

It,τ =

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

8∑
m=1

k̃2(Qm(ω)) dω +

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω3

0
k̃2(Q9(ω)) dω,

before we apply the nonlinear transformation to suitable reference elements. For the first eight sub-
domains we use

ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, η1 := 1− ω4/ω3, η2 := ω5/ω3

and for the last sub-domain

ξ1 := ω1, ξ2 := ω2/ω1, ξ3 := ω3/ω2, η1 := ω4/ω3, η2 := ω5/ω3.

In each case it holds that det J(ξ, η) = ξ41 ξ
3
2 ξ

2
3 . By applying the same tricks as in Section 3.3.3 this

leads to

It,τ =

2∏
j=0

1

5− j − 2s

(∫
τ̃

8∑
m=1

k̃2(D̃m(ω)) dω +

∫
[0,1]2

k̃2(D̃9(ω)) dω

)
=:

9∑
m=1

It,τ [k̂
m
2,F ] =: It,τ [k̂2,F ],
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5. Improved Duffy transformation

where

D̃1(ω) =

 0
1− η1
η1

 , [η2
0

] , D̃2(ω) =

 0
η2

1− η1 − η2

 , [1
0

] ,

D̃3(ω) =

 0
η2

1− η2

 , [1− η1
0

] , D̃4(ω) =

00
1

 , [ η2
1− η1 − η2

] ,

D̃5(ω) =

 η2
1− η1 − η2

η1

 , [0
0

] , D̃6(ω) =

1− η1
0
η1

 , [ 0
η2

] ,

D̃7(ω) =

 η2
0

1− η1 − η2

 , [0
1

] , D̃8(ω) =

 η2
0

1− η2

 , [ 0
1− η1

]
and D̃9(η) coincides with D9(η) due to the forking inequality chain. Although there is not a strict
separation of the domains in all cases, we can interpret all cases geometrically. For example, in the
first case, two edges of t interact with each other that are not connected, namely the edges between
the vertices ct and dt and the edges between the vertices at and bt. The same is true for the remaining
cases, either two edges are considered or a face and a vertex. The crucial point is that there is always
a spatial separation between the elements.

5.3. Summary

The Sections 5.1 and 5.2 present an alternative approach to the Duffy transformation. Since only
the nonlinear transformation w.r.t. η is adjusted, it is quite obvious that the singularities is lifted for
each case. Therefore, the resulting integrals are nonsingular, like their counterparts in the Chapter 3.
The costs of the transformation itself are also almost the same, i.e. for each singularity case the same
number of splittings is necessary to lift the singularity. An overview of the costs can be found in
the Tables 1 and 2 in Section 3.4. While the Duffy transformation presented in Chapter 3 is well
suited for a standard multi-dimensional integration approach and for the error estimates presented
in Chapter 4, the Duffy transformation introduced in this chapter is more adjusted to the numerics.
On the one hand this approach reduces the computation time, because less points are used for the
numerical integration and on the other hand for almost each singularity case the Jacobi determinant is
identical for each sub-domain. This simplifies this complicated process at least a little bit. Moreover,
we now have a geometric idea of how the splitting of the geometry can be interpreted.
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6. H -matrix approximation of the stiffness matrix

In the last chapters we dealt with the efficient computation of the entries of the stiffness matrix A;
see (17). Here, we shift the focus from the entries to the matrix itself. This step is very important
for the finite element treatment of the fractional Laplacian, since the operator is non-local. The non-
locality of the fractional Laplacian results in A being a dense matrix. Since it is too costly to compute
and to store every single entry of A, the stiffness matrix is approximated by a hierarchical matrix,
also called H -matrix. H -matrices offer several crucial advantages, such as the storage requirements
being reduced from O(N2) to O(N log(N)), the matrix-vector multiplication can be handled with
quasi-linear complexity, i.e. O(N log(N)), and for elliptic operators a coarse H -matrix approximation
of the inverse of the stiffness matrix can be used for preconditioning; see [13, 50, 51, 53].

In this chapter we summarize the results of [13]. First, we give an short introduction to H -matrices
and prove that the stiffness matrix of the fractional Laplacian can be approximated by H -matrices.
Afterwards we present two well known methods to construct an H -matrix.

6.1. A short introduction to H -matrices

The aim of this section is to construct H -matrix approximations to the stiffness matrix A.
First, the set of indices I × I, I = {1, . . . , N}, is partitioned into sub-blocks q × w, q, w ⊂ I, such

that the associated supports

Xq :=
⋃
i∈q

Xi for q ⊂ I and Xi := suppφi,

satisfy the so-called geometrical admissible condition, i.e. for some parameter ρ > 0 it holds that

min{diamXq, diamXw} ≤ ρ dist(Xq, Xw). (54)

The usual way of constructing such partitions is based on cluster trees; see [13, 53]. A cluster
tree TI for the index set I is a binary tree with root I, where each q ∈ TI and its nonempty
successors SI(t) = {q′, q′′} ⊂ TI (if they exist) satisfy q = q′ ∪ q′′ and q′ ∩ q′′ = ∅. We refer to
L (TI) = {q ∈ TI : SI(t) = ∅} as the leaves of TI and define

T
(ℓ)
I := {q ∈ TI : dist(q, I) = ℓ} ⊂ TI ,

where dist(q, w) is the minimum distance between q and w in TI . Furthermore,

L(TI) := max{dist(q, I), t ∈ TI}+ 1

denotes the depth of TI . For the construction of the cluster trees the principal component analysis
(PCA) is recursively used; see [71]. The so-called main direction of the cluster is calculated by the PCA
and the cluster is divided into its two sons by the plane perpendicular to the main direction, which
contains the center of the cluster. The advantage of this method is that the resulting cluster tree is
geometrically balanced, i.e. there exist constants cg, cG > 0 such that for each level l = 0, . . . , L(TI)−1

diam(Xq)
d ≤ cg 2

−l and |Xq| ≥ 2−l/cG for all q ∈ T
(l)
I . (55)
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6. H -matrix approximation of the stiffness matrix

Once the cluster tree TI for the index set I has been computed, a partition P of I × I can be
constructed from it. A block cluster tree TI×I is a quad-tree with root I × I satisfying conditions
analogous to a cluster tree. It can be constructed from the cluster tree TI in the following way.
Starting from the root I × I ∈ TI×I , let the sons of a block q ×w ∈ TI×I be SI×I(q, w) := ∅ if q ×w
satisfies (54) or min{|q|, |w|} ≤ nH

min with a given constant nH
min > 0. In the remaining case, we set

SI×I(q, w) := SI(q)×SI(w). The set of leaves of TI×I defines a partition P of I×I and its cardinality
|P | is of the order |I|; see [13]. As usual, we partition P into admissible and non-admissible blocks

P = Padm ∪ Pnonadm,

where each q×w ∈ Padm satisfies (54) and each q×w ∈ Pnonadm is small, i.e. satisfies min{|q|, |w|} ≤ nH
min.

Additionally, we introduce a new constant

csp := max
q∈TI

|{w ⊂ I : q × w ∈ TI×I}|, (56)

which gives a upper limit to the number of blocks q×w ∈ TI×I associated with a given cluster q ∈ TI .
csp is called sparsity constant. With this H -matrices can be defined; see [13].

Definition 5. Let k ∈ N. The set of hierarchical matrices on the block cluster tree TI×I with
admissible partition P := L (TI×I) and block-wise rank k is defined as

H (TI×I , k) = {A ∈ RN×N : rankAb ≤ k for all admissible blocks b ∈ P}.

For the sake of brevity, elements from H (TI×I , k) will often be called H -matrices.

Notice, that for each A ∈ H (TI×I , k) it holds that rankAb ≤ max{k, nH
min} for b ∈ P . The next

step is to construct suitable approximations to the admissible blocks of A.

6.2. Degenerate kernel approximation

Let m,n ∈ N. The set of matrices of at most rank k is denoted by

A ∈ Rm×n
k := {A ∈ Rm×n : rankA ≤ k}.

According to [13], each rank-k matrix has an outer product form, i.e. there are matrices U ∈ Rm×k

and V ∈ Rn×k such that
A = UV T .

A matrix A ∈ Rm×n
k is called low-rank matrix, if

k (m+ n) < mn.

This means that any rank-k matrix is a low-rank matrix, if it is cheaper to store all matrix entries of
its outer product form than all entries of the matrix itself.

For the H -matrix approximation of the stiffness matrix, only the admissible blocks have to be
approximated. The non-admissible blocks are computed entrywise. Let b = q × w be an admissible
block, therefore dist(Xq, Xw) > 0 and the entries of the stiffness matrix simplify to

aij = −cd,s
∫
Xw

∫
Xq

φi(x)K(x, y)φj(y) dx dy, K(x, y) := |x− y|−d−2s,
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where i ∈ q and j ∈ w; see (18). The main idea is to use a degenerate kernel approximation of the
kernel K to construct a low-rank approximation of the block; see [13].

Definition 6. Let D1, D2 ⊂ Rd be two domains. A kernel function κ : D1 × D2 → R is called
degenerate if k ∈ N and functions ul : D1 → R and vl : D2 → R, l = 1, . . . , k, exist such that

κ(x, y) =

k∑
l=1

ul(x) vl(y), x ∈ D1, y ∈ D2.

The number k is called degree of degeneracy.

Replacing K by its degenerate kernel approximation Kk leads to

akij = −cd,s
k∑

l=1

∫
Xq

φi(x)ul(x) dx
∫
Xw

φj(y) vl(y) dy =
k∑

l=1

uliv
l
j = uTi vj ,

where i ∈ q and j ∈ w. By combining the corresponding ui, respectively the corresponding vj of the
same set, we obtain the matrices U ∈ R|q|×k and V ∈ R|w|×k with

Ui,: := ui for all i ∈ q and Vj,: := vj for all j ∈ w.

Hence, we can expand the degenerate kernel approximation of K to a rank-k approximation of the
block itself, which can easily be seen by

Ak
b = UV T .

Based on the degenerate kernel approximation Kk, an H -matrix AH can be constructed by

(AH )b =

{
Ak

b , if b is an admissible block
Ab, if b is an non-admissible block

.

For the theoretical treatment the linear operators Λq : L
2(Ω) → R|q|,

(Λqf)i =

∫
Ω
f(x)φi(x) dx, i ∈ q, (57)

are used; see [13]. Since suppΛq = Xq, we refer to Λq as localizers. For admissible blocks b = q × w
it holds for the block Aqr of the stiffness matrix that

Aqw = ΛqA Λ∗w, (A f)(y) :=

∫
Ω
K(x, y)f(x) dx,

where Λ∗w : R|w| → L2(Ω) is the adjoint of Λw : L2(Ω) → R|w| defined by

(Λ∗wz, f)L2(Ω) = zT (Λwf) for all z ∈ R|w|, f ∈ L2(Ω).

Additionally, there exists a constant cΛ > 0, which usually depend on h, the mean diameter of the
tetrahedra, such that

∥Λqu∥2 ≤ cΛ∥u∥L2(Xq), (58)

for all q ∈ I and u ∈ L2(Xq). This can easily seen by using the Cauchy-Schwarz inequality and (57).
The following error estimate shows how the error of the degenerate kernel approximation affects the
error of the matrix approximation.
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6. H -matrix approximation of the stiffness matrix

Theorem 15. Let ε > 0 and assume that there exists kε ∈ N such that for each admissible block
b = q × w there is a degenerate kernel function Kb

kε
satisfying

|K(x, y)−Kb
kε(x, y)| ≤ ε, x ∈ Xq, y ∈ Xw.

Then there exists AH ∈ H (TI×I , kε) such that

∥A−AH ∥2 ≤ ε c2Λ ν |Ω|,

where the constants cΛ and ν are defined in (58) and (14), respectively.

The proof of Theorem 15 can be found in [13]. In order to use the relative error for the degenerate
kernel approximation instead of the absolute error, the geometric admissibility condition (54) has to
be made stricter to

max{diamXq, diamXw} ≤ ρ dist(Xq, Xw). (59)

Theorem 16. Let ε > 0 and assume that there exists kε ∈ N such that for each admissible block
b = q × w there is a degenerate kernel function Kb

kε
satisfying

|K(x, y)−Kb
kε(x, y)| ≤ ε|K(x, y)|, x ∈ Xq, y ∈ Xw.

Then there exists AH ∈ H (TI×I , kε) such that

∥A−AH ∥2 ≤ csp cd,s ν ω
2
d (ρ/2)

2d (ρ−1 + 2)d−2s c
d−2s

d
g (1− 2−

d−2s
d )−1 ε,

where the constants csp, cd,s, ν and cg are defined in (56), (2), (14) and (55), respectively, and ωd

denotes the surface area of the unit ball in Rd.

Proof. Let b = q × w ∈ P . If b is non-admissible, we set

(AH )b = Ab.

Otherwise b satisfies the geometrical admissibility condition (59)

max{diamXq, diamXw} ≤ ρ dist(Xq, Xw) and min{|q|, |w|} ≥ nH
min.

According to the assumptions, there exists a degenerate kernel Kb
kε
(x, y) =

∑kε
l=1 u

b
l (x) v

b
l (y) for each

admissible block b. Let the functions ubl and vbl , l = 1, . . . , k, be extended to Ω by zero.
We define a linear operator Λs

b : L
2(Ω× Ω) → R|q|×|w| by

(Λs
bf)ij := −cd,s

∫
Xq

∫
Xw

φi(x)f(x, y)φj(y) dy dx.

From

∥Λs
bf∥2F = c2d,s

∑
i∈q

∑
j∈w

{∫
Xq

[∫
Xw

f(x, y)φj(y) dy
]
φi(x) dx

}2

≤ c2d,s
∑
i∈q

∥φi∥2L2(Xq)

∑
j∈w

[∫
Xw

f(x, y)φj(y) dy
]2

≤ c2d,s
∑
i∈q

∥φi∥2L2(suppφi)

∑
j∈w

∥φj∥2L2(suppφj)
∥f∥2L2(Xq×Xw)

≤ c2d,s ν
2 |Xq| |Xw| ∥f∥2L2(Xq×Xw)
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it follows that ∥Λs
b∥F←L2 ≤ c2d,s ν

2 |Xq|
1
2 |Xw|

1
2 , where ν is defined (14). We deduce that

∥(A−AH )b∥2F ≤ ∥Λs
b∥F←L2 ∥K −Kb

kb
∥2L2(Xq×Xw) ≤ c2d,s ν

2 |Xq| |Xw| ε2 ∥K∥2L2(Xq×Xw),

which proves ∥(A−AH )b∥2 ≤ cd,s ν |Xq|
1
2 |Xw|

1
2 ε ∥K∥L2(Xq×Xw).

ObviouslyK(·, ·) does not belong to L2(Ω×Ω). In fact it is easily seen that ∥K∥L2(Xq×Xw) increases,
when the sets Xq and Xw approach each other. The construction of Xw, however, ensures

σ := dist(Xq, Xw) ≥ ρ−1diamXw

as well as ρσ ≥ diamXq due to the admissibility condition (59). Therefore

|Xq|
1
2 |Xw|

1
2 ∥K∥L2(Xq×Xw) ≤ σ−d−2s |Xq| |Xw|.

Using |Xw| ≤ ωd(diamXw/2)
d ≤ ωd(ρσ/2)

d and |Xq| ≤ ωd(ρσ/2)
d, we see that

|Xq|
1
2 |Xw|

1
2 ∥K∥L2(Xq×Xw) ≤ ω2

d

(ρ
2

)2d
σd−2s.

Let q∗ and w∗ be the fathers of q and w, respectively. Then

ρ dist(Xq∗ , Xw∗) ≤ max{diamXq∗ , diamXw∗}

and it follows from [13, (1.22)] that

dist(Xq, Xw) ≤ dist(Xq∗ , Xw∗) + diamXq∗ + diamXw∗

≤ (ρ−1 + 2) max{diamXq∗ , diamXw∗} ≤ (ρ−1 + 2) c1/dg 2−l/d,

where l denotes the level of t in TI . Hence, we obtain

∥(A−AH )b∥2 ≤ cd,s ν ω
2
d

(ρ
2

)2d
(ρ−1 + 2)d−2s c

d−2s
d

g 2
−l(d−2s)

d ε.

From the proof of [13, Theorem 2.16] we see that

∥A−AH ∥2 ≤ csp

L(TI)∑
l=0

∥(A−AH )b∥2 ≤ csp cd,s ν ω
2
d

(ρ
2

)2d
(ρ−1 + 2)d−2s c

d−2s
d

g (1− 2−
d−2s

d )−1 ε.

6.2.1. Interpolation on tensor product grids

One way to construct such a degenerate kernel is by polynomial interpolation on tensor product grids;
see [13]. First, we consider the univariate case. Let y1, . . . , yp ∈ [a, b] ⊂ R be pairwise distinct points
and f ∈ C([a, b]). Then we can define the interpolation polynomial Ipf ∈ Πp−1 by

Ipf(y) =
p−1∑
i=0

f(yi)Li(y), Li(y) :=

p−1∏
j=0,j ̸=i

y − yi
yi − yj

.
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Instead of random interpolation nodes, Chebyshev nodes

tj :=
a+ b

2
+
b− a

2
cos

(
2j + 1

2p
π

)
, j = 0, . . . , p− 1,

are chosen. The advantage is that the Lebesgue constant ∥Ip∥ depends only logarithmically on p,

∥Ip∥ := max{∥Ipf∥∞,[a,b]/∥f∥∞,[a,b] : f ∈ C([a, b])} ≤ 1 +
2

π
log p, (60)

which is asymptotically optimal. Additionally, we consider only a specific class of smooth functions;
see [13, 51].

Definition 7. A function κ : Ω × Rd → R satisfying κ(x, ·) ∈ C∞(Rd \ {x}) for all x ∈ Ω is called
asymptotically smooth in Ω w.r.t. y if constants c and γ can be found such that for all x ∈ Ω and all
α ∈ Nd

0

|∂αy κ(x, y)| ≤ c p! γp
|κ(x, y)|
|x− y|p

for all y ∈ Rd \ {x},

where p = |α|.

In [13] it is shown that the interpolation error decreases exponentially w.r.t. p.

Lemma 20. Let D1, D2 ⊂ R such that D2 is a closed interval and D1∩D2 = ∅. Let κ be asymptotically
smooth w.r.t. y. Then for all x ∈ D1 it holds that

∥κ(x, ·)− Iy,pκ(x, ·)∥∞,D2 ≤ c̄

(
1 +

2dist(x,D2)

γdiam(D2)

)−p
∥κ(x, ·)∥∞,D2 ,

with c̄ := 8cp (1 + log(p)/π) (1 + γ diam(D2)/dist(x,D2)).

The next step is to adapt the one-dimensional interpolation to multivariate functions f : D2 → R
with D2 :=

∏d
ν=1[aν , bν ] ⊂ Rd. For the interpolation nodes we consider tensor product nodes

yα = (y(1)α1
, . . . , y(d)αd

) ∈ D2, α ∈ Nd
0, ∥α∥∞ < p,

where y(v)i ∈ [av, bv], i = 1, . . . , p − 1, are pairwise distinct for each v = 1, . . . , d, and tensor product
polynomials

Ipf = I(1)
p . . . I(d)

p f ∈ Πd
(p−1)d,

where I(ν)
p f denotes the univariate interpolation operator applied to the ν-th argument of f . Note

that Ip,yκ is a degenerate kernel of degree k = pd, since

Ip,yκ(x, y) =
∑
∥α∥∞<p

κ(x, tα)Lα(y),

where Lα(y
(1), . . . , y(d)) :=

∏d
ν Lαν (y

(ν)) ∈ Πd
(p−1)d is the product of univariate Lagrange polynomials

Lαν . Applying Lemma 20 to the tensor product approach leads to the following result; see [13].

58



6. H -matrix approximation of the stiffness matrix

Theorem 17. Let D1 ⊂ Rd and D2 =
∏d

i=1[ai, bi] such that

ρ dist(D1, D2) ≥ max
i=1,...,d

bi − ai,

holds for an ρ > 0 satisfying c γ ρ < 1. Let κ(x, y) be asymptotically smooth w.r.t. y. Then for all
x ∈ D1 and y ∈ D2, it holds that

|κ(x, y)− Iy,pκ(x, y)| ≤ cp |κ(x, y)|,

where

cp := c̃ p

(
1 +

2

p
log p

)d ( γ ρ

2 + γ ρ

)p

.

6.2.2. Cross approximation

Theorem 17 can be used for our purposes, since according to [51], K is asymptotically smooth for
each d ∈ N and for each s ∈ (0, 1). However, the interpolation method on tensor grids has two
disadvantages. The first one is that for the geometric admissibility condition the original domain Xq

is not sufficient, but a bounding box of Xq is needed. The second disadvantage is that the degree
of degeneracy k cannot be increased by one, since it holds that k = pd, where p are the number of
interpolation points per dimension. This can make the approximation quite expensive especially if
small relative errors are to be achieved.

Another method that does not have these disadvantages is the so-called cross approximation. The
general idea behind this is that for the approximation not an arbitrary function system is used, but
a function system consisting of restrictions of κ itself. Thereby, a quasi optimal approximation is
achieved; see [13]. The quasi-optimality is to be understood in such a way that up to constants,
the quality of the cross approximation of κ is better than the quality of any given function system
Ξ := {ξ1, . . . , ξk}, i.e.

Ek ≤ c inf
Ξ

sup
x∈D1

inf
p∈spanΞ

∥κ(x, ·)− p∥∞,D2 ,

where Ek denotes the error associated with the cross approximation with a degree of degeneracy k.
Again, assume that Xq and Xw satisfy (54), then the cross approximation of κ for k = 1 is defined

as
κ1(x, y) :=

κ(x, y0)κ(x0, y)

κ(x0, y0)
, x ∈ Xq, y ∈ Xw,

with fixed x0 ∈ Xq, y0 ∈ Xw and it holds that

κ1(x0, y) = κ(x0, y), y ∈ Xw and κ1(x, y0) = κ(x, y0), x ∈ Xq.

Hence, κ1 interpolates κ on whole domains. This is a huge advantage compared to the first presented
method, since in general interpolation achieves exactness only at the interpolation points. The next
step is to extend the procedure to a general degree of degeneracy k. For this purpose, we set

κ(x, [y]k) =

κ(x, y1)...
κ(x, yk)

 ∈ Rk and κ([x]k, y) =

κ(x1, y)...
κ(xk, y)

 ∈ Rk
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with points xl ∈ Xq and yl ∈ Xw, l = 1, . . . , k. The degenerate kernel approximations can be
constructed by

κk(x, y) = κ(x, [y]k)
TW−1k κ([x]k, y),

where the k × k matrix Wk is defined by

Wk =

κ(x1, y1) . . . κ(x1, yk)
...

...
κ(xk, y1) . . . κ(xk, yk)

 .

In [13] sequences {κk} and{rk} for the approximation of κ have been defined by the following rule

r0(x, y) = κ(x, y), κ0(x, y) = 0,

and for k = 0, 1, . . .

rk+1(x, y) = rk(x, y)−
rk(x, yk+1) rk(xk+1, y)

rk(xk+1, yk+1)
,

κk+1(x, y) = κk(x, y) +
rk(x, yk+1) rk(xk+1, y)

rk(xk+1, yk+1)
,

(61)

where xk+1 and yk+1 are chosen in each step so that rk(xk+1, yk+1) ̸= 0.
Additionally, κ can be described by rk and κk in the following way; see [13].

Lemma 21. For the generate sequences κk and rk, k ≥ 0, it holds that

κk(x, y) + rk(x, y) = κ(x, y).

With the lemma above and (61) one sees very nicely that the cross approximation preserves its
interpolation property:

κk(xl, y) = κ(xl, y), y ∈ Xw and κk(x, yl) = κ(x, yl), x ∈ Xq, (62)

for l = 1, . . . , k, respectively. Thus κk gradually interpolates κ on Xq ×Xw. The next theorem shows
the earlier mentioned quasi-optimality of the cross approximation; see [13].

Theorem 18. Assume that in each step we choose xk so that

|rk−1(xk, yk)| ≥ |rk−1(x, yk)| for all x ∈ D1.

Then it holds for any given system Ξ = {ξ1, . . . , ξk} of functions that

|rk(x, y)| ≤ 2k(1 + ∥IΞ
k ∥) sup

z∈{x,x1,...,xk}
inf

p∈span Ξ
∥κ(z, ·)− p∥∞,D2 ,

where ∥IΞ
k ∥ is the Lebesgue constant defined in (60) w.r.t. Ξ.

Theorem 18 implies that the error of the cross approximation is up to constants smaller than
the approximation error associated with any system of functions Ξ = {ξ1, . . . , ξk}. Thus the error
converges exponentially to zero w.r.t. k, since the earlier mentioned approximation by polynomials is
an example. Other examples are the approximation by spherical harmonics or the sinc interpolation;
see [54, 79]. The only shortcoming of this error estimation is the exponentially growing factor 2k. As
mentioned in [13], this factor is a worst-case estimate, which is hardly observable in practice.
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6.3. The adaptive cross approximation

In this section we want to present an algebraic approach to compute a low-rank approximation of
an admissible block. Instead of approximating the kernel function, as we have done in Section 6.2,
we focus here directly on the matrix entries themselves and use them for the approximation. This
will be done by the adaptive cross approximation (ACA) algorithm, which will be presented in this
section later on; see [12, 13, 14, 16]. This algorithm is based on the cross approximation, which was
introduced in Section 6.2. The ACA is capable of creating a low-rank approximation of an admissible
block by only using few of the original matrix entries. For this purpose, it is not necessary to set
up the entire matrix beforehand. Since the entries are only computed on demand, the rank of the
approximation can be chosen adaptively while kernel approximations require an a-priori choice, which
is usually too large.

6.3.1. The algorithm

The next steps are now to adapt the cross approximation to the algebraic setting. For this we follow
the work of [13]. Let Ab ∈ Rm×n be a matrix block of the stiffness matrix A corresponding to an
admissible block b. Ab corresponds here to the function K, that we want to approximate. Therefore
set R0 := Ab and find a nonzero pivot in Rk, say (ik, jk), and subtract a scaled outer product of the
ik-th row and the jk-th column:

Rk+1 := Rk − [(Rk)ikjk ]
−1(Rk)1:m,jk(Rk)ik,1:n, (63)

where we use the notations (Rk)i,1:n and (Rk)1:m,j for the i-th row and the j-th column of Rk,
respectively. Notice that (63) is the algebraic version of (61). According to [13], jk should be chosen
the maximum element in modulus of the ik-th row (see Theorem 18); i.e.

|(Rk−1)ikjk | = max
j=1,...,n

|(Rk−1)ikj |.

The choice of ik is more complicated. There are at least three different options; see [11, 13]: a
heuristic way, a rigorous way and a geometrical way. The first one is mostly reliable and easy to
compute and implement. In contrary to the heuristic way the rigorous way guarantees that the
ACA converges. However, it is more costly and more difficult to implement. The last option also
guarantees the convergence of the ACA and it is based on the geometrical information behind the
cluster corresponding to rows of Ab. This method will be adressed in Section 8.4.

The interesting part of (63) is that the update from Rk to Rk+1 consists only of the entries in
the jk-th column and the ik-th row of the Rk. Therefore, it is not necessary to build the whole
matrix Rk. Moreover, this shows that it is enough to only compute few of the original entries of Ab.
Taking advantage of this, Algorithm 1 is an efficient reformulation of (63); see [13]. Note that the
vectors uk and ṽk coincide with (Rk−1)1:m,jk and (Rk−1)

T
ik,1:n

, respectively.
The set Z serves for saving the vanishing rows of Rk. If the ik-th row of Rk is nonzero and hence is

used as vk, it is also added to Z since the i-th row of Rk+1 will vanish. The matrix Sk :=
∑k

l=1 ulv
T
l

will be used as an approximation of Ab = Sk +Rk. Obviously, the rank of Sk is bounded by k.
Let ε > 0 be given. According to [13], the following condition

∥uk+1∥2∥vk+1∥2 ≤
ε(1− ρ)

1 + ε
∥Sk∥F (64)
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Algorithm 1 Adaptive Cross Approximation (ACA)

Let k = 1; Z = ∅
repeat

find ik according to a mentioned method
ṽk := aik,1:n
for l = 1, . . . , k − 1 do

ṽk := ṽk − (ul)ikvl
end for
Z := Z ∪ {ik}
if ṽk does not vanish then

jk := argmaxj=1,...,n|(ṽk)j |
vk := (ṽk)

−1
jk
ṽk

uk := a1:m,jk

for l = 1, . . . , k − 1 do
uk := uk − (vl)jkul

end for
k := k + 1

end if
until the stopping criterion (64) is fullfilled or Z = {1, . . . ,m}

can be used as a stopping criterion on k. Assume that ∥Rk+1∥F ≤ ρ∥Rk∥F with ρ from (54), then

∥Rk∥F ≤ ∥Rk+1∥F + ∥uk+1v
T
k+1∥F ≤ ρ∥Rk∥F + ∥uk+1∥2∥vk+1∥2.

Hence,

∥Rk∥F ≤ 1

1− ρ
∥uk+1∥2∥vk+1∥2 ≤

ε

1 + ε
∥Sk∥F ≤ ε

1 + ε
(∥Ab∥F + ∥Rk∥F ).

From the previous estimate we obtain ∥Rk∥F ≤ ε∥Ab∥F , i.e., condition (64) guarantees a relative
approximation error ε. Hence, the rank required to guarantee a prescribed accuracy can be found
adaptively.

The costs of the Algorithm 1 are of the order |Z|2(m+ n), since ∥Sk∥2F can be computed by

∥Sk∥2F = ∥UV T ∥2F =

|Z|∑
i,j

(uTi uj)(v
T
i vj).

6.3.2. Error estimation

The next step is to estimate the remainder Rk. According to [13], the entries of Rk will be estimated
by the approximation error

FΞ
qw := max

j∈w
inf

p∈span Ξ
∥A Λ∗j − p∥∞,Xq

in an arbitrary system of functions Ξ := {ξ1, . . . , ξk} with ξ1 = 1. Note that A Λ∗j is an asymptotically
smooth function due to suppΛ∗j = Xj . The unisolvency of this problem is guaranteed by the choice
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6. H -matrix approximation of the stiffness matrix

of the pivoting rows for the second and third way mentioned in Section 6.3.1; see [11, 13]. If the
heuristic approach is chosen the following assumption

det[Λiξj ]i,j=1,...,k ̸= 0

is needed. In Section 6.2 we have presented systems Ξ together with their approximation errors. In
the next theorem the approximation error associated with algorithm 1 is estimated; see [13].

Theorem 19. Let Λi be defined as in (57). Then for i = 1, . . . ,m and j = 1, . . . , n it holds that

|(Rk)ij | ≤ 2k(1 + ∥IΞk ∥)

(
1 +

k∑
l=1

|c(i)l |

)
∥φi∥L1FΞ

qw,

where the c(i)l satisfy for i = 1, . . . ,m

∫
Ω

(
φi

∥φi∥L1

−
k∑

l=1

c
(i)
l

φl

∥φl∥L1

)
q = 0 for all q ∈ span Ξ.

Similar to the error estimate of the cross approximation (63), we obtain here again the exponential
growing factor 2k. However, this growth is also known to be rarely observable in practice. One
interesting fact is that the Algorithm 1 has a similarity to the LU factorization, where such a so-called
growth of entries may also happen; see [47]. According to [13], this can be seen from Rk = LkRk−1,
where

Lk =



1
. . .

0

− (Rk−1)k+1,k

(Rk−1)kk
1

...
. . .

− (Rk−1)mk

(Rk−1)kk
1


∈ Rm×m.

Lk differs from a Gauß matrix only in the position (k, k).
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7. H -Approximation of the inverse of the stiffness matrix

Besides the efficient approximation of the stiffness matrix A, preconditioners are also of great impor-
tance for FEM. This is due to the fact that the condition number of the stiffness matrix deteriorates
with a finer geometry. For example it is well-known that the condition number of stiffness matrix of
the Laplace operator is of the order of h−2, where h is again the mean diameter of the tetrahedra,
while the condition number of the stiffness matrix of the fractional Laplacian scales as h−2s; see [5].
To counteract this problem, preconditioners are used. However, these usually have to be tailored to
the problem.

For elliptic problems H -matrices can be used to overcome this issue, since the inverse of the stiffness
matrix A−1 can also be approximated by an H -matrix; see [13]. In contrast to the approximation of
A, a coarser approximation of A−1 is used as a preconditioner. However, we have to ensure that the
costs for the computation of A−1H ∈ H (TI×I , k), which are of the order of O(k2L2(TI)|I|), remain
within limits, i.e. the rank k of the approximation only depends logarithmically on the the accuracy
of the approximation.

For a big class of elliptic problems this is already done by [13, 42, 43, 44, 45, 60]. Even for the
fractional Laplacian this result is already proven in [60]:

Theorem 20. Let ρ > 0 and γ ∈ (0, 1). Let b = q × w be a bounding box admissible block, i.e. there
exists bounding cubes BRq and BRw with side length Rq and Rw, respectively, such that Xq ⊂ BRq ,
Xw ⊂ BRw , and

max{BRq , BRw} ≤ ρ dist(BRq , BRw).

Then, for each k̃ ∈ N, there exist matrices Uq ∈ R|q|×k and Vw ∈ R|w|×k with rank k ≤ Cdim(2 +
ρ)d+1γ−d+1k̃d+2 such that

∥(A−1)b − UqV
T
w ∥2 ≤ CapxN

1+d
d γk̃.

The constants Cdim and Capx depend only on d, Ω, the shape regularity of T , and on s.

In contrary to the approach presented in [60], we do not want use the Caffarelli-Silvestre extension of
the fractional Laplacian (see [25, 80]), but the integral form of the operator and the weak formulation
of the problem. Thereby, we are not required to Beppo-Levi spaces, which makes our approach
easier accessible to a wide audience. We tried to adapt the ideas of [13] to the framework of the
fractional Laplacian. However, for our approach the non-locality of the fractional Laplacian hampers
an analogous result. While we can prove that A−1 can be approximated with H -matrices, we cannot
verify that the approximation is efficient, i.e. the approximation error decays exponentially w.r.t. the
rank k. In the following, we first share the idea of the proof and then partial results, like a local
Caccioppoli inequality, and explain in detail what issues we faced.

7.1. Idea of the proof

Instead of directly approximating the inverse of the stiffness matrix with an H -matrix, a detour is
taken, since we do not know the exact form of the Green’s function. For this purpose it is first shown
that A−1 can be approximated by C := M−1BM−1, where the mass matrix M and the Galerkin
discretization of (−∆)−s, called B, are defined in (19), and then an H -matrix approximation of each
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7. H -Approximation of the inverse of the stiffness matrix

component of C is performed. Note that the exact product of H -matrices is again an H -matrix;
see [13]. The procedure is almost identical to the case of the Laplace operator.

First, we represent the finite element solution uh via the Ritz projection; see [52],

Ph = JA−1J ∗(−∆)s : H̃s(Ω) → Vh,

which maps the solution u ∈ H̃s(Ω) of the variational problem (8) to the finite element solution
uh = Phu of (11). The finite element error is then given by eh(u) := ∥u−Phu∥L2(Ω) and the weakest
form of the finite element convergence is described by

eh(u) ≤ εh∥f∥H−s(Ω) for all u = (−∆)−sf, f ∈ H−s(Ω), (65)

where εh → 0 as h→ 0. (−∆)−s is called the inverse of the fractional Laplacian; see [80]. Second, we
can prove the following lemma. The proof is omitted, since it is identical to the original one; see [13].

Lemma 22. Let cJ ,1, cJ ,2 and εh be quantities from (20) and (65). Then

∥A−1 − C∥2 ≤
c2J ,2

c4J ,1

εh.

The advantage of this detour is that it is already well-known (see [13]) that M−1 can be well
approximated by an H -matrix NH , i.e. for any given εM−1 > 0 there is NH ∈ H (TI×I , kM−1) such
that

∥M−1 −NH ∥2 ≤ εM−1 ∥M−1∥2,

where kM−1 ∼ | log εM−1 |d. For B the approach has to be adapted to the fractional Laplacian. The
issues we faced here will be treated in detail later on. First, we want to finish the general idea of the
proof. To do this, assume that we have a similar result as for M−1, i.e for any given εB > 0 there is
BH ∈ H (TI×I , kB) such that

∥B −BH ∥2 ≤ εB ∥B∥2,

where kB ∼ | log εB|d. By setting CH := NH BH NH , we have an approximation for A−1. As
mentioned before, the exact product of H -matrices is again an H -matrix belonging to H (TI×I , kC),
where kC := cmax{kM−1 , kB}L2(TI) and c is a positive constant; see [13]. From this step on, the
rest of the proof is identical to the original work. Hence, we obtain

∥C − CH ∥2 ≤ c1(εM−1 + εB),

where c1 is a positive constants. This leads to

∥A−1 − CH ∥2 ≤ c1(εM−1 + εB) + c2 εh,

where c2 := c−4J ,1c
2
J ,2. Then we adjust the ranks kM−1 and kB,

kM−1 ∼ | log εh|d and kB ∼ | log εh|d,

such that
∥A−1 − CH ∥2 ≤ 3 c2 εh.

This would lead to the desired result as in [13].
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7. H -Approximation of the inverse of the stiffness matrix

7.2. Approximation of the discretized inverse operator

As we have seen in Section 7.1, the basic idea of the proof works also for the fractional Laplace. The
issues start with the H -matrix approximation of B. Since we do not know the exact form of the
Green’s function G, we first confirm that B can be approximated with an H -matrix and assume that
there exists a suitable degenerate kernel approximation for G.

Theorem 21. Let D be a bounded C1,1 domain. Assume that for any ε > 0 there exists kε ∈ N such
that for each block b = q × w satisfying (59) there is a degenerate kernel function Gb

kε
satisfying

∥G−Gb
kε∥L2(Xq×Xw) ≤ ε∥G∥L2(Xq×X̂w),

where X̂w := {x ∈ Ω : 2ρ dist(x,Xw) ≤ diamXw}. Then there is BH ∈ H (TI×I , kε) such that

∥B −BH ∥2 ≤ csp c
2
J ,2 c̃G (ρ−1 + 2)2sc

2s
d
g (1− 2−

2s
d )−1 ε,

where the constants csp, cJ , cg and c̃G are defined in (56), (20), (55), and (66), respectively.

Proof. For non admissible blocks b, we simply set

(BH )b = Bb = (J ∗(−∆)−sJ )b.

Next consider the admissible blocks b = q × w. We define the integral operator

Kbφ =

∫
Ω
Gb

kε(x, ·)φ(x) dx for suppφ ∈ Ω̄

and set (BH )b = (J ∗KbJ )b. The rank of (BH )b is bounded by kε; see [13, Sect. 3.3].
Let x ∈ R|w| and y ∈ R|q|. To see that (BH )b approximates the block Bb, use the representation

of ∆−s (see [27]), and use (20). The estimate

((B −BH )b x, y)h = (J ∗((−∆)−s − Kb)J x, y)h
= ((−∆)−s − Kb)J x,J y)L2

≤ ∥G−Gb
kb
∥L2(Xq×Xw) ∥J x∥L2(Xw) ∥J y∥L2(Xq)

≤ ε c2J ,2 ∥G∥L2(Xq×Xw) ∥x∥h ∥y∥h

proves ∥(B −BH )b∥2 ≤ ε c2J ,2 ∥G∥L2(Xq×Xw).
From [27, Theorem 1.1] we know that G exists and that

|G(x, y)| ≤ cG
|x− y|d−2s

, x, y ∈ D, x ̸= y,

if D is a bounded C1,1 domain. The positive constant cG depends only on s and d. It can be seen
that ∥G∥L2(Xq×Xw) may increase when the sets Xq and X̂w approach each other. The construction
of X̂w, however, ensures

σ := dist(Xq, X̂w) ≥
1

2
dist(Xq, Xw) ≥

1

2ρ
diamXq
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7. H -Approximation of the inverse of the stiffness matrix

as well as 2ρσ ≥ diamXq due to the admissibility condition (59). Therefore, it holds that

∥G∥L2(Xq×X̂w) ≤ cG σ
−d+2s |Xq|

1
2 |X̂w|

1
2 .

Using |X̂w| ≤ ωd(
1
2diam X̂w)

d ≤ ωd(ρ+
1
2)

dσd and |Xq| ≤ ωdρ
dσd, where ωd is the volume of the unit

ball in Rd, we see that

∥G∥L2(Xq×Xw) ≤ c̃G σ
2s, c̃G := cG ωd (ρ(ρ+ 1/2))d/2. (66)

Let q∗ and w∗ be the fathers of q and w, respectively. Then

ρ dist(Xq∗ , Xw∗) ≤ max{diamXq∗ , diamXw∗}

and it follows from [13, (1.22)] that

dist(Xq, X̂w) ≤ dist(Xq, Xw) ≤ dist(Xq∗ , Xw∗) + diamXq∗ + diamXw∗

≤ (ρ−1 + 2) max{diamXq∗ , diamXw∗} ≤ (ρ−1 + 2)c1/dg 2−l/d

where l denotes the level of t in TI . We obtain

∥(B −BH )b∥2 ≤ c2J ,2 c̃G (ρ−1 + 2)2sc
2s
d
g 4−

ls
d ε.

From the proof of [13, Theorem 2.16] we see that

∥B −BH ∥2 ≤ csp

L(TI)∑
l=0

∥(B −BH )b∥2 ≤ csp c
2
J ,2 c̃G (ρ−1 + 2)2sc

2s
d
g (1− 4−

s
d )−1 ε.

7.3. Degenerate kernel approximation

As Theorem 21 indicates the problem is not to find a suitable H -approximation of B, but to construct
a degenerate kernel approximation of the Green’s function G. The approaches presented in Section 6.2
can not be applied, because we neither know if G is asymptotically smooth nor can we verify it.
However, it is well-known that the Green’s function G(x, ·) is s-harmonic in Y \{Bε(x)} with ε > 0.
Therefore, the idea is to approximate G via functions satisfying (11).

Following the road map illustrated in [13] for the Laplace case, we need two results: a local
Caccioppoli inequality for the fractional Laplacian and suitable approximation space.

7.3.1. Caccioppoli inequality

In order to prove a local Caccioppoli inequality it is necessary to deepen our understanding of s-
harmonic functions and how to construct them. One way to construct an s-harmonic function on a
sphere Bε(ξ) is to use the Poisson operator Pξ,ε. For functions u ∈ Ls

1(Rd)∩C(Rd) we have already
done this in Theorem 2. According to [58], this assumption can be relaxed to L∞(Rd) functions.
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7. H -Approximation of the inverse of the stiffness matrix

Lemma 23. Let u ∈ L∞(Rd). Then Pξ,εu satisfies the s-mean value property in Bε(ξ).

Notice that the condition u ∈ L∞(Rd) in the previous lemma can be relaxed further on. Remember
from (6) that

L̃2(Ω) := {u ∈ L2(Rd) : u = 0 a.e. in Rd\Ω} ⊂ Ls
1(Rd).

Lemma 24. Let δ > ε > 0 and Bε(ξ) ⊂ Ω. If u ∈ L̃2(Ω) ∩ L∞(Bδ(ξ) \ Bε(ξ)), then Pξ,εu satisfies
the s-mean value property in Bε(ξ).

Proof. In order to show that the integrals are well-defined, we show that |Pξ,εu(x)| < ∞ for x ∈
Bε(ξ). With

I1(x) :=

∫
Rd\Bδ(ξ)

Pξ,ε(x, y)u(y) dy and I2(x) :=

∫
Bδ(ξ)\Bε(ξ)

Pξ,ε(x, y)u(y) dy,

where Pξ,ε is the Poisson kernel defined in (5), we split the integral to see that

|Pξ,εu(x)| ≤ |I1(x)|+ |I2(x)|.

Using dist(Bε(ξ), ∂Bδ(ξ)) = δ − ε > 0, we obtain

|I1(x)| ≤ as
ε2s

(δ2 − ε2)s
(δ − ε)−d

∫
Rd\Bδ(ξ)

|u(y)| dy ≤ as ε
s
√
|Ω| (δ − ε)−d−s∥u∥L2(Ω).

For I2 we exploit the boundedness of u

|I2(x)| ≤ ∥u∥L∞(Bδ(ξ)\Bε(ξ))

∫
Rd\Bε(ξ)

λξ,ε(x, y) dy = ∥u∥L∞(Bδ(ξ)\Bε(ξ)).

The last step is due to the normalization of the inner integral; see [58, p. 206]. In summary we obtain

|Pξ,εu(x)| ≤M∥u∥L2(Rd) + ∥u∥L∞(Bδ(ξ)\Bε(ξ)),

where M := as ε
s
√

|Ω| (δ − ε)−d−s. In the same way as in Lemma 2 in [58], it can be shown that
Pξ,εu satisfies the s-mean value property in Bε(ξ).

The requirement u ∈ L∞(Bδ(ξ) \ Bε(ξ)) is not a critical assumption. It can be seen from the
following lemma; see [80].

Lemma 25. Let u ∈ H̃s(Ω) be a solution to (−∆)su = 0 in D. Then u is locally bounded, i.e.
∥u∥L∞(K) ≤ c∥u∥L2(Ω) for all compact K ⊂ D.

We introduce the set

Xs(D) := {u ∈ H̃s(Ω) : a(u, φ) = 0 for all φ ∈ C∞0 (D)} (67)

which consists of H̃s-functions being s-harmonic in D and vanishing outside Ω.

Lemma 26. Let u ∈ Xs(D) and K ⊂ D be compact, then u is s-harmonic in intK.
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7. H -Approximation of the inverse of the stiffness matrix

Proof. Let Bε(z) ⊂ intK. Then there is ε′ > ε such that Bε′(z) ⊂ intK. Since u ∈ Xs(D), Lemma 25
guarantees that u ∈ L∞(K). By applying Lemma 24 to Bε′(z), we obtain that Pz,ε′u satisfies the
s-mean value property in Bε′(z). Therefore, Pz,ε′u is also s-harmonic in Bε′(z); see Lemma 4 and
Theorem 4. Since the bilinear form a is symmetric, coercive and continuous (see Lemma 5) and since
u = Pξ,ε′u a.e. in Rd \Bε′(z), Lax-Milgram guarantees that u = Pz,ε′u. Therefore, u is s-harmonic
in Bε′(z). Since this holds for all closed balls in intK, it follows that u is s-harmonic in intK.

The following lemma shows that locally smooth functions are sufficient to construct globally smooth
cut-off functions.

Lemma 27. Let χ ∈ C1(Rd) satisfy 0 ≤ χ ≤ 1 with ∥∇χ∥∞ <∞. If u ∈ Hs(K), where K = suppχ,
then χ2u ∈ Hs(Rd).

Proof. φ := χ2u ∈ Hs(K) can be seen from

|φ|2Hs(K) =

∫
K

∫
K

|χ2(x)u(x)− χ2(y)u(y)|2

|x− y|d+2s
dy dx

≤ 2

∫
K

∫
K

|χ(y)|4|u(x)− u(y)|2 + |χ2(x)− χ2(y)|2|u(x)|2

|x− y|d+2s
dy dx

≤ 2|u|2Hs(K) + 2

∫
K
|u(x)|2

∫
K

|χ(x)− χ(y)|2|χ(x) + χ(y)|2

|x− y|d+2s
dy dx

≤ 2|u|2Hs(K) + 8

∫
K
|u(x)|2

∫
K

|χ(x)− χ(y)|2

|x− y|d+2s
dy dx

and the boundedness of the inner integral w.r.t. x ∈ K∫
K

|χ(x)− χ(y)|2

|x− y|d+2s
dy ≤ ∥∇χ∥2∞

∫
B1(x)

|x− y|2−d−2s dy +
∫
Rd\B1(x)

1

|x− y|d+2s
dy

≤ ∥∇χ∥2∞
∫ 1

0
r1−2s dr + κd,s(1) ≤

∥∇χ∥2∞
2− 2s

+ κd,s(1).

Since φ = 0 in Rd \K, φ ∈ Hs(Rd) follows from

|φ|2Hs(Rd) =

∫
K

∫
K

|φ(x)− φ(y)|2

|x− y|d+2s
dy dx+ 2

∫
K

∫
Rd\K

|φ(x)|2

|x− y|d+2s
dy dx

= |φ|2Hs(K) + 2

∫
K
|u(x)|2

∫
Rd\K

|χ(x)|4

|x− y|d+2s
dy dx.

The inner integral is uniformly bounded for x ∈ K∫
Rd\K

|χ(x)|4

|x− y|d+2s
dy ≤

∫
B1(x)

|χ(x)− χ(y)|4

|x− y|d+2s
dy +

∫
Rd\B1(x)

1

|x− y|d+2s
dy

≤ ∥∇χ∥4∞
∫
B1(x)

|x− y|4

|x− y|d+2s
dy + κd,s(1)

≤ ∥∇χ∥4∞
∫ 1

0
r3−2s dr + κd,s(1) ≤

∥∇χ∥4∞
4− 2s

+ κd,s(1).
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In [34, Prop. 5.1] a Caccioppoli inequality for a group of kernels satisfying certain conditions is
introduced. We will use some ideas of his proof and the framework of [13, Lem. 4.18] and customize
it to the fractional Laplacian. Notice that the result in [34] is a global Caccioppoli inequality, i.e. it
contains the L2-norm of u on Ω on the right-hand side, whereas we need the following local variant.

Theorem 22. Let ρ > 0 and let K ⊂ D be compact satisfying diamK ≤ ρ dist(K, ∂D). There is a
constant cL = cL (d, s, ρ, diamK) > 0 such that

|u|Hs(K) ≤
cL

dists(K, ∂D)
∥u∥L2(D)

for all u ∈ Xs(D).

Proof. Let χ ∈ C1(Rd) satisfy 0 ≤ χ ≤ 1, χ = 1 in K, such that ∥∇χ∥∞ ≤ 2/σ, where σ :=
dist(K, ∂K ′) and K ′ := suppχ ⊂ D satisfies

1

4
≤ σ

dist(K, ∂D)
≤ 1

2
.

The definition (67) ofXs(D) implies u ∈ Hs(K ′). Furthermore, Lemma 27 shows that φ := χ2u ∈ Hs(Rd)
and φ = 0 in Rd \D. Hence, φ may be used as a test function in (9) due to the dense embedding of
C∞0 (D) in H̃s(D). With a(u, φ) = 0 we obtain that∫
Ω

∫
Ω

[u(x)− u(y)][φ(x)− φ(y)]

|x− y|d+2s
dy dx︸ ︷︷ ︸

=:I

= −2

∫
Ω

∫
Rd\D

u(x)φ(x)

|x− y|d+2s
dy dx︸ ︷︷ ︸

=:J

+2

∫
Ω

∫
Ω\D

u(x)φ(x)

|x− y|d+2s
dy dx.

Due to φ = 0 in Ω \D, the first integral reads

I =

∫
D

∫
D

[u(x)− u(y)][φ(x)− φ(y)]

|x− y|d+2s
dy dx︸ ︷︷ ︸

=:I1

−2

∫
Ω\D

∫
D

u(x)φ(y)

|x− y|d+2s
dy dx︸ ︷︷ ︸

=:I2

+2

∫
Ω

∫
Ω\D

u(x)φ(x)

|x− y|d+2s
dy dx.

Hence, we obtain I1 = 2(I2 − J). Notice that

[u(x)− u(y)] [φ(x)− φ(y)] = χ2(x)u2(x)− [χ2(x) + χ2(y)]u(x)u(y) + χ2(y)u2(y)

= |χ(x)u(x)− χ(y)u(y)|2 − |χ(x)− χ(y)|2u(x)u(y)

and, therefore,

I1 ≥
∫
K′

∫
K′

|χ(x)u(x)− χ(y)u(y)|2

|x− y|d+2s
dy dx−

∫
D

∫
D

|χ(x)− χ(y)|2 |u(x)||u(y)|
|x− y|d+2s

dy dx.

By Young’s inequality and by exploiting the symmetry we obtain that∫
D

∫
D

|χ(x)− χ(y)|2 |u(x)||u(y)|
|x− y|d+2s

dy dx ≤
∫
D
|u(x)|2

∫
D

|χ(x)− χ(y)|2

|x− y|d+2s
dy dx.
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The next step splits the inner integral relative to x ∈ D∫
D

|χ(x)− χ(y)|2

|x− y|d+2s
dy ≤

∫
D\Bσ(x)

|χ(x)− χ(y)|2

|x− y|d+2s
dy +

∫
Bσ(x)

|χ(x)− χ(y)|2

|x− y|d+2s
dy.

The first integral is not singular. Using 0 ≤ χ ≤ 1, we have∫
D\Bσ(x)

|χ(x)− χ(y)|2

|x− y|d+2s
dy ≤

∫
Rd\Bσ(x)

|x− y|−d−2s dy = κd,s(σ) =
ωd

2s
σ−2s.

For the second integral we use |χ(x)− χ(y)| ≤ ∥∇χ∥∞|x− y| ≤ 2
σ |x− y| and obtain∫

Bσ(x)

|χ(x)− χ(y)|2

|x− y|d+2s
dy ≤ 4

σ2

∫
Bσ(x)

|x− y|2−d−2s dy =
4ωd

σ2

∫ σ

0
r1−2s dr =

2ωd

1− s
σ−2s.

In summary, this leads to
I1 ≥ |χu|2Hs(K′) − c σ−2s ∥u∥2L2(D).

Next, we investigate the integral

I2 − J =

∫
K′
φ(y)

∫
Rd\D

u(x)− u(y)

|x− y|d+2s
dx dy

=

∫
K′
φ(y)

∫
Rd\K̂

u(x)− u(y)

|x− y|d+2s
dx dy −

∫
K′
φ(y)

∫
D\K̂

u(x)− u(y)

|x− y|d+2s
dx dy =: I3 − I4,

where K̂ := {x ∈ Rd : dist(x,K ′) < σ̃} ⊂ D and σ̃ := σ/2. Due to the construction of K̂, there
exists a compact set K̃ with K̂ ⊂ K̃ ⊂ D. According to Lemma 26, u is s-harmonic in K̂. Using the
s-harmonicity we obtain for I3 that

I3 = −
∫
K′
φ(y)

∫
Rd\K̂

u(y)− u(x)

|y − x|d+2s
dx dy + c−1d,s

∫
K′
φ(y) (−∆)su(y) dy

and distinguish for now between two cases. First, we consider s < 1/2:

I3 =

∫
K′
φ(y)

∫
K̂\Bσ̃(y)

u(y)− u(x)

|y − x|d+2s
dx dy +

∫
K′
φ(y)

∫
Bσ̃(y)

u(y)− u(x)

|y − x|d+2s
dx dy.

For the first integral we obtain using |φ(y)[u(x)− u(y)]| ≤ 3[u2(x) + u2(y)] that∫
K′
φ(y)

∫
K̂\Bσ̃(y)

u(y)− u(x)

|y − x|d+2s
dx dy ≤ 3

∫
K′

∫
K̂\Bσ̃(y)

u2(y) + u2(x)

|y − x|d+2s
dx dy

≤ 3κd,s(σ̃) ∥u∥2L2(D) + 3
|K ′|
σ̃d+2s

∥u∥2L2(D) ≤ C σ−2s∥u∥2L2(D),

where we have used

|K ′| ≤ ωd (diamK ′)d ≤ ωd (diamK + σ)d ≤ ωd [ρ dist(K, ∂D) + σ]d

≤ ωd (4ρ+ 1)dσd = 2dωd (4ρ+ 1)dσ̃d.

71



7. H -Approximation of the inverse of the stiffness matrix

Due to its singularity, the second integral in I3 has to be investigated in more detail. According to
Lemma 4, u is analytic in K̂. Hence, we obtain for 0 < s < 1/2 that∫

K′
φ(y)

∫
Bσ̃(y)

u(y)− u(x)

|y − x|d+2s
dx dy ≤ Ca ωd

∫
K′

|φ(y)|
∫ σ̃

0
r−2s dr dy ≤ C̃σ−2s∥u∥L2(D).

For the second case, s ≥ 1/2, we use (3) and choose δ = σ̃:

I3 =

∫
K′
φ(y)

∫
K̂\Bσ̃(y)

u(y)− u(x)

|y − x|d+2s
dx dy +

∫
K′
φ(y)

∫
Bσ̃(y)

u(y)− u(x)−∇u(y)T (y − x)

|y − x|d+2s
dx dy.

The first integral in I3 is for both cases, s < 1/2 and s ≥ 1/2, identical and is handled in the same
way. For the second one, we use again that u is an analytic function in K̂:∫
K′
φ(y)

∫
Bσ̃(y)

u(y)− u(x)−∇u(y)T (y − x)

|y − x|d+2s
dx dy ≤ Ca ωd

∫
K′

|φ(y)|
∫ σ̃

0
r1−2s dr dy ≤ C̃σ−2s∥u∥L2(D).

We now deal with I4 by using Bσ̃(y) ⊂ K̂ for y ∈ K ′ and the same ideas as above

I4 ≤ 3

∫
K′

∫
D\Bσ̃(y)

u2(y) + u2(x)

|y − x|d+2s
dx dy

≤ 3κd,s(σ̃) ∥u∥2L2(D) + 3
|K ′|
σ̃d+2s

∥u∥2L2(D) ≤ Cσ−2s∥u∥2L2(D).

From I1 = 2(I2 − J) we finally obtain that

|u|2Hs(K) ≤ |χu|2Hs(K′) ≤ 2(I2 − J) + c σ−2s∥u∥2L2(D) ≤ c̃ σ−2s∥u∥2L2(D) ≤
42sc̃

dist2s(K, ∂D)
∥u∥2L2(D).

7.3.2. Construction of the approximation space

Adapting the approach of [13], the next step is to construct an approximation space V being a finite
dimensional subspace of Xs(D). However, Xs(D) has to be a closed subspace of L2(Rd) for this
approach. Unfortunately, we are unable to verify it.

To overcome this issue, we introduce, motivated by Lemma 5, the set

Xs
loc(D) := {u ∈ L̃2(Ω) ∩Hs

loc(D) : a(u, φ) = 0 for all φ ∈ C∞0 (D)},

which consists of Hs
loc-functions being s-harmonic and vanishing outside Ω, where

Hs
loc(D) = {u ∈ L2(D) : u ∈ Hs(K) for all compact K ⊂ D}.

However, for functions u ∈ Xs
loc(D) we can only prove a non-local Caccioppoli inequality, since we

cannot guarantee that u ∈ L∞(K) for each compact K ⊂ D.
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7. H -Approximation of the inverse of the stiffness matrix

Theorem 23. Let K ⊂ D be compact. Then there is a constant c > 0 such that

|u|Hs(K) ≤ c∥u∥L2(Ω) for all u ∈ Xs
loc(D).

Proof. We follow the same approach as in the proof of Theorem 22. Only the terms I2 and J are
handled in a different way.

I2 =

∫
Ω\D

∫
D

u(x)φ(y)

|y − x|d+2s
dy dx ≤

∫
K′

∫
Ω\D

|u(x)| |u(y)|
|y − x|d+2s

dx dy

≤ dist(K ′, ∂D)−d−2s ∥u∥2L1(Ω) ≤ C∥u∥2L2(Ω).

Then J is estimated:

|J | ≤
∫
Ω

∫
Rd\D

|u(x)||φ(x)|
|y − x|d+2s

dy dx ≤
∫
K′

|u(x)|2
∫
Rd\D

|y − x|−d−2s dy dx

≤
∫
K′

|u(x)|2
∫
Rd\Bσ(x)

|y − x|−d−2s dy dx = κd,s(σ) ∥u∥2L2(D).

From I1 ≤ 2(|I2|+ |J |) we finally obtain

|u|Hs(K) ≤ c∥u∥L2(Ω).

The Caccioppoli inequality is important for the proof of the following lemma.

Lemma 28. The space Xs
loc(D) is a closed subspace of L2(Rd).

Proof. Let {uk}k∈N ⊂ Xs
loc(D) converge to u in L2(Rd) and let K ⊂ D be compact. According to

Theorem 23, the sequence {uk}k∈N is bounded on K,

|uk|Hs(K) ≤ c ∥uk∥L2(Rd) ≤ C.

Due to the Banach-Alaoglu theorem (see [83]), a sub-sequence {uik}k∈N converges weakly in Hs(K)
to û ∈ Hs(K). Hence, for any v ∈ L2(K) we have

(u, v)L2(K) = lim
k→∞

(uik , v)L2(K) = (û, v)L2(K),

which proves that u = û ∈ Hs(K). Notice that this holds for all compact subsets of D. Since
the functional a(·, φ) : L̃2(Rd) ∩ Hs

loc(D) → R for φ ∈ C∞0 (D) (see Lemma 5), we see by the same
argument that a(u, φ) = 0. Hence, u ∈ Xs

loc(D) is proved and Xs
loc(D) is closed in L2(Rd).

Before we can start to construct an approximation space V , we need a Poincaré inequality for
functions u ∈ Hs(D).

Theorem 24. For any u ∈ Hs(D) we set ū = |D|−1
∫
D u. Then

∥u− ū∥L2(D) ≤

√
(diamD)d

|D|
(diamD)s |u|Hs(D).
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7. H -Approximation of the inverse of the stiffness matrix

Proof. Using the Cauchy-Schwarz inequality∫
D
|u(x)− ū|2 dx =

1

|D|2

∫
D

∣∣∣∣∫
D
u(x)− u(y) dy

∣∣∣∣2 dx ≤ 1

|D|

∫
D

∫
D
|u(x)− u(y)|2 dy dx,

we obtain ∫
D
|u(x)− ū|2 dx ≤ (diamD)d+2s

|D|

∫
D

∫
D

|u(x)− u(y)|2

|x− y|d+2s
dy dx.

With this we have all the building blocks together to construct V .

Lemma 29. Let B ⊂ D. Then for any k ∈ N there is a subspace V ⊂ Xs
loc(B) satisfying dimV ≤ k

so that

distL2(D)(u, V ) ≤ cA

(
diamD

d
√
k

)s

|u|Hs(D)

for each u ∈ Xs
loc(D), where cA depends only on s and the shape of D.

Proof. We decompose D into k quasi-uniform and shape-regular sub-domains Di, i.e. there is c > 0
such that

diamDi ≤
c
d
√
k

diamD and |Di| ≥ c (diamDi)
d, i = 1, . . . , k.

Let
W = {v ∈ L2(Rd) : v is constant on each Di, i = 1, . . . , k and v|Rd\D = 0}.

Then dimW ≤ k and according to Theorem 24 for u ∈ Hs(Di) it holds that∫
Di

|u− ūi|2 dx ≤ (diamDi)
d+2s

|Di|

∫
Di

∫
Di

|u(x)− u(y)|2

|x− y|d+2s
dy dx,

where ūi := |Di|−1
∫
Di
u is the mean value of u in Di. The properties of the decomposition of D into

the Di lead to ∫
Di

|u− ūi|2 dx ≤ c2s−1

k2s/d
(diamD)2s

∫
Di

∫
Di

|u(x)− u(y)|2

|x− y|d+2s
dy dx.

Summation over all i yields

∥u− ū∥L2(D) ≤
cs−1/2

ks/d
(diamD)s |u|Hs(D)

with ū ∈W defined by ū|Di = ūi and ū|Rd\D = 0.
In order to guarantee that the approximation is done from a subset of Xs

loc(B), we project W
onto Xs

loc(B). Let P : L2(Rd) → Xs
loc(B) be the L2(Rd)-orthogonal projection onto Xs

loc(B) and let
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7. H -Approximation of the inverse of the stiffness matrix

V = P (W ). P exists, since Xs
loc(B) is closed in L2(Rd), see Lemma 28. Keeping in mind that P has

norm one and u ∈ Xs
loc(D) ⊂ Xs

loc(B), we obtain

∥u∥2L2(Rd\D) + dist2L2(D)(u, V ) ≤ ∥P (u− 0)∥2L2(Rd\D) + ∥P (u− ū)∥2L2(D) = ∥P (u− ū)∥2L2(Rd)

≤ ∥u∥2L2(Rd\D) + ∥u− ū∥2L2(D),

which proves the assertion.

Notice that if the orthogonal projection P̃ : L2(Rd) → Xs
loc(D) is used to construct V instead of

P , it cannot be guaranteed that the dimension of V depends on k. This is because V would consist
of s-harmonic functions in D vanishing outside of D. Therefore, the detour via Xs

loc(B) is necessary.

7.3.3. Approximation result

Lemma 30. Assume that B ⊂ D is a domain such that for some ρ > 0 it holds that

0 < diamB ≤ ρ dist(B, ∂D).

Then for any k ∈ N there is a subspace V ⊂ Xs
loc(B) satisfying dimV ≤ k so that

distL2(B)(u, V ) ≤ cA cL

(
ρ
d
√
k

)s

∥u∥L2(B) (68)

for each u ∈ Xs(D). The constants cA and cL are from the Lemma 29 and Theorem 22, respectively.

Proof. Choose V ⊂ Xs
loc(B) as in Lemma 29, then it holds

distL2(B)(u, V ) ≤ cA

(
diamD

d
√
k

)s

|u|Hs(B).

Since u ∈ Xs(D) ⊂ Xs
loc(D), we can apply Theorem 22:

distL2(B)(u, V ) ≤ cA cL

(
ρ
d
√
k

)s

|u|Hs(D).

Although Lemma 30 can be applied to approximate the Green’s function, it does not satisfy our
requirements, since the approximation error does not decay exponentially w.r.t. k. To obtain such
an error estimate, Lemma 30 has to be applied to a sequence of domains Ki, i = 0, . . . , l ∈ N, with

B = Kl ⊂ Kl−1 ⊂ . . . ⊂ K0 ⊂ D.

This is not possible here, since we can not guarantee that v := arg distL2(B)(u, V ) ∈ H̃s(Ω). Obviously,
it holds that v ∈ Xs

loc(B), however, this not enough to apply Theorem 22, the Caccioppoli inequality,
to v. The main issue is that we cannot prove that a function v ∈ Xs

loc(B) is s-harmonic in the
interior of B. In contrast to harmonic functions u, where u ∈ H1

loc(B) is enough to show that u is
continuous in the interior of B; see [41], this is not true for s-harmonic functions. Here, the Hs(Rd)
regularity is necessary, see [80]. Nevertheless, we can show that the inverse of the stiffness matrix
can be approximated by H -matrices.

For this Lemma 30 will now be applied with algebraic decay to G(x, ·) on Xw with x ∈ Xq.
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7. H -Approximation of the inverse of the stiffness matrix

Lemma 31. Let b = q × w be a block and assume that there is ρ > 0 such that

0 < diamXw ≤ ρ dist(Xq, Xw).

Then for any ε > 0 there is a separable approximation

Gk(x, y) =
k∑

m=1

um(x) vm(y) with k ≤ kε := cA cL

(
ρ
d
√
k

)s

,

so that for all x ∈ Xw

∥G(x, ·)−Gk(x, ·)∥L2(Xw) ≤ ε∥G(x, ·)∥L2(X̂w), (69)

where X̂w := {y ∈ Ω : 2ρ dist(y,Xw) < diamXw}.

Proof. Note that due to dist(Xq, X̂w) > 0, we have G(x, ·) ∈ Xs(X̂w) for all x ∈ Xq. Since in addition
diamXw ≤ 2ρ dist(Xw, ∂X̂w), Lemma 30 can be applied with ρ replaced by 2ρ. Let {v1, . . . , vk} be
a basis of the subspace W ⊂ Xs(B) with B ⊂ Xw and

k = dimW ≤ cA cL

(
ρ
d
√
k

)s

.

According to (68), G(x, ·) can be decomposed into G(x, ·) = Ĝ(x, ·) + rx with Ĝ(x, ·) ∈ W and
∥rx∥L2(Xw) ≤ ε∥G(x, ·)∥L2(X̂w). Expressing Ĝ(x, ·) by means of the basis of W , we obtain

Ĝ(x, ·) =
k∑

m=1

um(x)vm(·)

with coefficients ui(x) depending on the index x ∈ Xq. The function

Gk(x, y) :=
k∑

m=1

um(x) vm(y)

satisfies estimate (69).
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8. Uniform H -matrices and H 2-matrices

As mentioned before, the assembling of the stiffness matrix of the fractional Laplacian is quite costly
even if we use a standard H -matrix approach. One possibility to reduce the computational effort
even further is the use of uniform H -matrices or even H 2-matrices. These are both special types
of H -matrices, which will be introduced later on in this section. First, we want to provide the
necessary means to construct such matrices. To do so, we will provide a method to generalize
the cross approximation presented in Section 6.2.2 to the kernel-independent construction of uniform
H -matrices and H 2-matrices for the stiffness matrix A. The method can also be applied to matrices
A ∈ RM×N with entries of the from

aij =

∫
Ω

∫
Ω
κ(x, y)φi(x)ψj(y) dy dx, i = 1, . . . ,M, j = 1, . . . , N. (70)

Here, φi and ψj denote locally supported ansatz and test functions. The kernel function κ is of the
type

κ(x, y) = ξ(x) ζ(y) f(x, y) (71)

with a singular function f(x, y) = |x−y|−α, α > 0, and functions ξ and ζ each depending on only one
of the variables x and y. Such matrices result, for instance, from a Galerkin discretization of integral
operators. In particular, this includes the single layer potential operator κ(x, y) = |x− y|−1 and the
double layer potential operator of the Laplacian in R3 for which κ(x, y) = (x−y)·ny

|x−y|3 =
x·ny

|x−y|3 − y·ny

|x−y|3 .
Note that collocation methods and Nyström methods can also be included by formally choosing
φi = δxi or ψj = δxj , where δx denotes the Dirac distribution centered at x. In contrast to H -matrices
for which the method is applied to blocks, in the case of uniform H -matrices and H 2-matrices cluster
bases have to be constructed. If this is to be done adaptively, special properties of the kernel have to
be exploited, in order to be able to guarantee that the error is controlled also outside of the cluster.
In particular, we will apply these techniques to the fractional Laplacian.

8.1. Interpolants and quadrature rules

For the construction of uniform H -matrix approximations and H 2-matrix approximations (see Sec-
tions 8.3 and 8.4), quadrature rules for the computation of integrals∫

X
f(x, y) dx

will be required which depend only on the domain of integration X ⊂ Rd and which are valid in the
whole far-field of X, i.e. for y ∈ Fρ(X), where

Fρ(X) := {y ∈ Rd : ρ dist(y,X) ≥ diamX}

with given ρ > 0. Such quadrature formulas are usually based on polynomial interpolation together
with a-priori error estimates. The aim of this section is to introduce new adaptive quadrature formulas
which are controlled by a-posteriori error estimates.
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8. Uniform H -matrices and H 2-matrices

8.1.1. Harmonic interpolants

In the special situation that f(x, ·), x ∈ X, is harmonic in

Xc := Rd \X

and vanishes at infinity it is possible to control the quadrature error for y ∈ Fρ(X) also computa-
tionally. Notice that f(x, y) = |x − y|−α is harmonic in Rd, d ≥ 3, only for α = d − 2. Fractional
exponents, including α = d+ 2s, will be treated later on in Section 8.1.2.

Harmonic functions u : Ω → R in an unbounded domain Ω ⊂ Rd are known to satisfy the mean
value property

u(x) =
1

|Br|

∫
Br(x)

u(y) dy

for balls Br(x) ⊂ Ω and the maximum principle

max
Ω

|u| ≤ max
∂Ω

|u|

provided u vanishes at infinity; see [46].
Let Σ ⊂ Rd be an unbounded domain such that (see Fig. 1)

Σ ⊃ Fρ(X) and ∂Σ ⊂ F2ρ(X). (72)

A natural choice is Σ = Fρ(X). Since our aim is to check the actual accuracy and we cannot afford

X

Fρ(X)

∂Σ

F2ρ(X)

Figure 1: Σ and the far-fields F2ρ(X) and Fρ(X).

to inspect it on an infinite set, we introduce the finite set M ⊂ ∂Σ to be close to ∂Σ, i.e., we assume
that M satisfies

dist(y,M) ≤ δ, y ∈ ∂Σ. (73)
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Then we apply the cross approximation introduced in Section 6.2 to our problem. Let r0 = f and for
k = 0, 1, 2, . . . assume that rk has already been defined. Let xk+1 ∈ X be chosen such that

rk(xk+1, ·) ̸= 0 in M, (74)

then set
rk+1(x, y) := rk(x, y)−

rk(xk+1, y)

rk(xk+1, yk+1)
rk(x, yk+1) (75)

and sk+1 := f − rk+1, where yk+1 ∈M denotes the maximum of |rk(xk+1, ·)| in M . As we have seen
already in (62), sk interpolates f at the chosen nodes xi, i = 1, . . . , k, for all y ∈ Fρ(X), i.e.,

sk(xi, y) = f(xi, y), i = 1, . . . , k,

and belongs to Fk := span{f(·, y1), . . . , f(·, yk)}. In addition, the choice of (xk, yk) ∈ X ×M guar-
antees unisolvency, which can be seen from

detCk = r0(x1, y1) · . . . · rk−1(xk, yk) ̸= 0,

where Ck ∈ Rk×k denotes the matrix with the entries (Ck)ij = f(xi, yj), i, j = 1, . . . , k. Hence, one
can define the Lagrange functions for the system and the nodes xi, i.e. L(j)

k (xi) = δij , i, j = 1, . . . , k,
as

L
(i)
k (x) :=

detC(i)
k (x)

detCk
∈ Fk, i = 1, . . . , k,

where C(i)
k (x) ∈ Rk×k results from Ck by replacing its i-th row with the vector

vk(x) :=

f(x, y1)...
f(x, yk)

 .
Another representation of the vector Lk ∈ Rk of Lagrange functions L(i)

k is

Lk(x) = C−Tk vk(x). (76)

Due to the uniqueness of the interpolation, sk has the representation

sk(x, y) =
k∑

i=1

f(xi, y)L
(i)
k (x) = vk(x)

TC−1k zk(y), (77)

where zk(y) := [f(x1, y), . . . , f(xk, y)]
T .

For an adaptive procedure it remains to control the interpolation error f − sk = rk in X ×Fρ(X).
The following obvious property follows from (75) via induction.

Lemma 32. If f(x, ·) is harmonic in Xc and vanishes at infinity for all x ∈ X, then so do sk(x, ·)
and rk(x, ·).
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The following lemma shows that although M ⊂ ∂Σ is a finite set, it can be used to find an upper
bound on the maximum of rk(x, ·) in the unbounded domain Fρ(X).

Lemma 33. Let the assumptions of Lemma 32 be valid and let 2ϱρ δ < diamX, where ϱ = ( d
√
2 −

1)−1 + 2. Then there is ck > 0 such that for x ∈ X it holds

max
y∈Fρ(X)

|f(x, y)− sk(x, y)| ≤ 2max
y∈M

|f(x, y)− sk(x, y)|+ ckϱδ,

where ck := ∥∇yrk(x, ·)∥∞.

Proof. Let x ∈ X and y ∈ ∂Σ. We define the set

N := {z ∈ Bϱδ(y) : rk(x, z) = 0}

of zeros in Bϱδ(y). If N ̸= ∅ then with z ∈ N

|rk(x, y)| = |
∫ 1

0
(y − z) · ∇yrk(x, z + t(y − z)) dt| ≤ ckϱδ.

In the other case N = ∅, our aim is to find y′ ∈ M such that |rk(x, y)| ≤ 2|rk(x, y′)|. rk does not
change its sign and is harmonic in Bϱδ(y) due to Bϱδ(y) ⊂ Xc, which follows from (72) as

2ρ dist(Bϱδ(y), X) ≥ 2ρ dist(y,X)− 2ρϱδ ≥ diamX − 2ρϱδ > 0.

Due to the assumption (73) we can find y′ ∈ Bδ(y) ∩M . Then B(ϱ−2)δ(y) ⊂ B(ϱ−1)δ(y
′) ⊂ Bϱδ(y).

Hence, the mean value property (applied to rk if rk is positive or to −rk if rk is negative) shows

|rk(x, y)| =
1

|B(ϱ−2)δ|

∫
B(ϱ−2)δ(y)

|rk(x, z)| dz ≤
1

|B(ϱ−2)δ|

∫
B(ϱ−1)δ(y

′)
|rk(x, z)| dz

=
|B(ϱ−1)δ|
|B(ϱ−2)δ|

|rk(x, y′)| =
(
ϱ− 1

ϱ− 2

)d

|rk(x, y′)| = 2|rk(x, y′)|.

Since rk vanishes at infinity, (72) together with the maximum principle shows

max
y∈Fρ(X)

|rk(x, y)| ≤ max
y∈Σ

|rk(x, y)| ≤ max
y∈∂Σ

|rk(x, y)| ≤ 2 max
y′∈M

|rk(x, y′)|+ ckϱδ.

Notice that due to (77) we have

∇yrk(x, y) = ∇yf(x, y)−∇ysk(x, y) = ∇yf(x, y)−
k∑

i=1

L
(i)
k (x)∇yf(xi, y).

Hence,
ck = ∥∇yrk(x, ·)∥∞ ≤ (1 + Λk)max

x∈X
∥∇yf(x, ·)∥∞

with the Lebesgue constant Λk(x) :=
∑k

i=1 |L
(i)
k (x)|. Although it seems that Λk(x) ∼ k in practice,

there is no proof for this observation up to now. A related topic in interpolation theory are Leja
points; see [68].

To see that this special kind of interpolation is more efficient than polynomial interpolation, we
present the following example.

80



8. Uniform H -matrices and H 2-matrices

Example 1. Let X ⊂ R3 be 1000 points forming a uniform mesh of the unit cube [0, 1]3. We choose
Σ = {x ∈ R3 : |x| > 10}. M is a discretization of ∂Σ with 768 points. We consider f(x, y) = |x−y|−1
and compare the quality of sk with the quality of the interpolating tensor Chebyshev polynomial of
degree k. Table 6 shows the maximum point wise error measured at X ×M ; see also Fig. 2.

k 8 27 64 125 216 343

Cross approximation 3.93e-4 1.74e-6 2.76e-9 1.13e-12 3.35e-14 6.60e-15
Chebyshev interpolation 3.24e-4 7.03e-6 2.15e-7 5.13e-09 1.23e-10 3.77e-12

Table 6: Approximation error of sk and tensor Chebyshev interpolation polynomial of degree k.

Table 7 compares the cross approximation with a sparse grid interpolation obtained from the Sparse
Grid Matlab Kit; see [9].

k 7 25 69 165 351

Cross approximation 9.25e-4 3.50e-6 1.82e-9 8.74e-14 3.10e-15
Sparse grid interpolation 1.10e-3 9.43e-5 7.29e-6 5.08e-07 3.25e-08

Table 7: Approximation error of sk and sparse grid interpolation polynomial for k nodes.

0 100 200 300

10−15

10−12

10−9

10−6

10−3

Figure 2: Error versus k of the cross approximation (black), Chebyshev interpolation (blue), and
sparse grid interpolation (red).

8.1.2. s-harmonic interpolants

The next step is to adapt Lemma 32 and Lemma 33 to the fractional Laplacian, i.e. f(x, y) =
|x− y|−d−2s. For Lemma 32, this is quite obvious.
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Lemma 34. If f(x, ·) is s-harmonic in Xc and vanishes at infinity for all x ∈ X, then so do sk(x, ·)
and rk(x, ·).

Adapting Lemma 33 is more complicated. The lemma is based on two fundamental properties
of harmonic functions, the mean value property and the maximum principle. For the fractional
Laplacian, this becomes an issue, since according to [22] there is no comparable statement to the
maximum principle and since the s-mean value property is a non-local property. However, as the
next lemma shows, there is a Harnack inequality for s-harmonic functions.

Lemma 35. Let u be a s-harmonic function on Ω with u ≥ 0 in Rd and let B2R(ξ) ⊂ Ω. Then for
x, y ∈ BR(ξ) it holds

u(x) ≤M u(y), M :=

(
R2 − |x− ξ|2

R2 − |y − ξ|2

)s (
R+ |y − ξ|
R− |x− ξ|

)d

. (78)

Proof. For s-harmonic functions u in BR(ξ) we have the following representation using the Poisson
kernel

u(x) = Pξ,Ru(x) = as

∫
Rd\BR(ξ)

(
R2 − |x− ξ|2

|z − ξ|2 −R2

)s
u(z)

|z − x|d
dz, x ∈ BR(ξ).

Hence, for x, y ∈ BR(ξ) we obtain

u(x)

u(y)
=

(
R2 − |x− ξ|2

R2 − |y − ξ|2

)s
∫
Rd\BR(ξ) u(z)(|z − ξ|2 −R2)−s |z − x|−d dz∫
Rd\BR(ξ) u(z)(|z − ξ|2 −R2)−s |z − y|−d dz

≤
(
R2 − |x− ξ|2

R2 − |y − ξ|2

)s (
R− |x− ξ|
R+ |y − ξ|

)−d
due to |z − x| ≥ ||z − ξ| − |x− ξ|| ≥ |R − |x− ξ|| and |z − y| ≤ |z − ξ|+ |y − ξ| ≤ R + |y − ξ|. The
associated integrals∫

Rd\BR(ξ)

u(z)

(|z − ξ|2 −R2)s
dz =

∫
Rd\B2R(ξ)

u(z)

(|z − ξ|2 −R2)s
dz +

∫
B2R(ξ)\BR(ξ)

u(z)

(|z − ξ|2 −R2)s
dz

are finite, since a s-harmonic function is Lebesgue measurable in Rd and continuous in Ω. Therefore
the first summand is limited by (3R2)−s∥u∥L1(Rd) and for the second one we use spherical coordinates

∫
B2R(ξ)\BR(ξ)

u(z)

(|z − ξ|2 −R2)s
dz ≤ C ∥u∥L∞(B2R(ξ)\BR(ξ))

2R∫
R

2r

(r2 −R2)s
rd−2 dr <∞.

The non-locality causes the sign of u to be prescribed on the whole space Rd. By adapting the
work of [61], we can formulate a Harnack inequality with no requirements for the sign of u.
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Lemma 36. Let u be a s-harmonic function in Ω and let B2R(ξ) ⊂ Ω. Then for x, y ∈ BR(ξ), it
holds

u(x) ≤M u(y) +MPξ,2Ru
−(y),

where M is defined in (78) and u− is the negative part of u.

Proof. By using u = u+ − u−, we obtain

u(x) = Pξ,2Ru(x) = Pξ,2R[u
+ − u−](x) ≤ Pξ,2Ru

+(x).

Since Pξ,2Ru
+ fulfills the requirements of Lemma 35, the lemma can be applied

u(x) ≤ Pξ,2Ru
+(x) ≤MPξ,2Ru

+(y) =MPξ,2R[u+ u−](y) =M [u(y) + Pξ,2Ru
−(y)].

However, Pξ,2Ru
− has to be calculated. Therefore, this lemma is not an adequate replacement for

the mean value property.
Instead of the s-harmonicity, we rely on other properties of f , the smoothness and the decay at

infinity. We can reduce the maximization to a bounded domain

ΣR := {y ∈ Σ : dist(y,X) < R},

where R > 0 is chosen such that for x ∈ X

max
y∈Σ\ΣR

|rk(x, y)| ≤ max
y∈ΣR

|rk(x, y)|. (79)

Such an R exists due the decay of rk

|rk(x, y)| ≤ ckR
− d√

k, x ∈ X, dist(y,X) = R.

Analogous to the harmonic case, we introduce the finite set MR ⊂ ΣR to be close to ΣR, i.e., we
assume that MR satisfies

dist(y,MR) ≤ δ, y ∈ ΣR. (80)

Additionally, due to the smoothness of f(x, y) = |x− y|−d−2s rk(x, ·) satisfies a Lipschitz condition,
i.e. there exists a constant cL > 0 such that

|rk(x, y)− rk(x, y
′)| ≤ cL |y − y′| for y, y′ ∈ ΣR. (81)

Lemma 37. Let rk vanish at infinity for all x ∈ X and satisfy (81). Let 2ϱρ δ < diamX, where
ϱ := 1/(1− 2−1/d). Then there is ck > 0 such that for x ∈ X

max
y∈Fρ(X)

|f(x, y)− sk(x, y)| ≤ max
y∈MR

|f(x, y)− sk(x, y)|+ (ck + cL)ϱδ,

where ck := ∥∇rk(x, ·)∥∞ and cL is defined in (81).
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Proof. Let x ∈ X and y ∈ ΣR. We define the set

N := {z ∈ Bϱδ(y) : rk(x, z) = 0}

of zeros in Bϱδ(y). If N ̸= ∅ then with z ∈ N

|rk(x, y)| = |
∫ 1

0
(y − z) · ∇rk(x, z + t(y − z)) dt| ≤ ckϱδ.

Next, we consider the case N = ∅. rk does not change its sign in Bϱδ(y) and Bϱδ(y) ⊂ Xc, which
follows from (72) as

2ρ dist(Bϱδ(y), X) ≥ 2ρ dist(y,X)− 2ρϱδ ≥ diamX − 2ρϱδ > 0.

Due to the assumption (80) we can find y′ ∈MR with y′ ∈ Bδ(y) ∩MR. Using (81), this leads to

rk(x, y) ≤ rk(x, y
′) + cL|y − y′| ≤ rk(x, y

′) + cLϱδ,

if rk(x, y) > rk(x, y
′) > 0 and to

−rk(x, y) ≤ −rk(x, y′) + cL|y − y′| ≤ −rk(x, y′) + cLϱδ,

if rk(x, y) < rk(x, y
′) < 0. The two remaining cases are obvious. Due to (79) we obtain that

max
y∈Fρ(X)

|rk(x, y)| ≤ max
y∈ΣR

|rk(x, y)| ≤ max
y′∈MR

|rk(x, y′)|+ (ck + cL)ϱδ.

As it can be seen, Lemma 37 holds for all α > 0, since we no longer exploit the fact that rk is
either harmonic or s-harmonic. Instead, we only use the decay and smoothness of rk.

8.2. Exponential error estimates for multivariate interpolation

For analyzing the error of the cross approximation, the remainder rk has to be estimated. Theorem 18
establishes a connection of rk with the best approximation in an arbitrary system Ξ = {ξ1, . . . , ξk}
of functions and Theorem 17 presents a qualitative estimate for a polynomial system Ξ. For the
uniqueness of polynomial interpolation it has to be assumed that the Vandermonde matrix [ξj(xi)]ij ∈
Rk×k is non-singular. The goal of the following section is to provide new error estimates for the
convergence of the cross approximation which avoids the unisolvency assumption by employing radial
basis functions (RBFs) for the system Ξ instead of polynomials as the former type of functions are
positive definite; see e.g. [24]. Since the interpolation error of RBFs is governed by the fill distance
(see (83)), we will be able to state a rule for choosing the next pivotal point xk (in addition to (74))
leading to fast convergence.

Although RBFs lead to a positive definite Vandermonde matrix A, its numerical stability might be
an issue. The eigenvalues of A depend significantly on the distribution of the points and in particular
on their distances. A typical measure for this is the separation distance

qXk
:=

1

2
min

x,y∈Xk, x ̸=y
∥x− y∥2.
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In our case, i.e. for the Gaussian kernel, Φ(x, y) = exp(−β|x−y|2) with β > 0, the smallest eigenvalue
of A can be estimated by

λmin(A) ≥ C(2β)−d/2 exp

(
−40.71d2

q2Xk
β

)
q−dXk

,

where C = C(d) > 0 is a d-dependent constant; see [84]. One of the main aims of the techniques
presented here is a uniform coverage of the considered domain with interpolation points and no
generation of local clusters of points, so also from the numerical point of view the Vandermonde
matrix A is expected to behave in a stable way.

We consider functions f of the form

f(x, y) =
1

|x− y|α
, α > 0,

on two domains X,Y satisfying

diamX ≤ ρ dist(X,Y ) and diamY ≤ c0 diamX,

where c0 is a positive constant. The validity of the latter condition usually results from a partitioning
of the computational domain Ω× Ω induced by a hierarchical partitioning of the matrix (70). Here,
the choices Y = M and Y = MR are of particular importance, where the sets M ⊂ ∂Σ ⊂ F2ρ(X)
and MR ⊂ ∂ΣR ⊂ F2ρ(X) are introduced in Sections 8.1.1 and 8.1.2, respectively. Notice that
diamM ≤ diamMR ≤ diam ∂Fρ(X) ≤ diamX + 2 dist(X, ∂Fρ(X)) = (1 + 2/ρ) diamX.

In order to employ RBFs for the system Ξ, we have to apply two additional steps. The first step
is to extend the function f outside of X × Y by

f̃(x, y) := f̃(x− y) :=


σα, if |x− y| ≤ σ,

|x− y|−α, if σ < |x− y| ≤ σ + 2ϑ,

−σ+2ϑ−|x−y|
ϑ(σ+ϑ)α , if σ + ϑ < |x− y| ≤ σ + 2ϑ,

0, if |x− y| > σ + 2ϑ,

where σ := dist(X,Y ) and ϑ := diamX + diamY . Obviously, it holds that f̃ = f on X × Y . The
second step is to smooth f̃ by using the smoothness kernel gm(x) := (m/π)

d
2 e−m∥x∥

2
2 for m ∈ N and

x ∈ Rd, i.e. f̃m = f̃ ∗ gm. Since f̃ is continuous, it holds according to [84, Thm. 5.20] that f̃m
converges to f̃ for m→ ∞. Let Φm(x, y) := (m/2π)

d
2 e−

m
2
∥x−y∥22 . For fixed m ∈ N and for y ∈ Y we

interpolate f with the radial basis function

py(x) :=
k∑

i=1

f(xi, y)L
Φm
i (x) (82)

on the data set Xk = {x1, . . . , xk}. Here, Lκ
j , j = 1, . . . , k, are the Lagrange functions for Φm and Xk.

Lemma 38. Let m ∈ N. Then for x ∈ X, y ∈ Y

|f(x, y)− py(x)| ≤ (1 + ΛΦ
k )∥f − fm∥L∞(X×Y ) + c λ1/hXk,X∥f∥L2(X×Y ),
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where 0 < λ < 1 depends on Φm and Xk, c > 0 is a constant, Λκ
k := supx∈X

∑k
i=1 |L

Φm
i (x)| denotes

the Lebesgue constant and the fill distance

hXk,X := sup
x∈X

dist(x,Xk). (83)

The proof of the lemma can be found in [10, 11].
The convergence can be controlled by choosing the node xk+1 such that the fill distance hXk+1,X

is minimized from step k to step k+1. This minimization problem can be solved efficiently, i.e. with
logarithmic-linear complexity, with the approximate nearest neighbor search described in [6, 7, 8].

Remark. In practice, we replace possibly uncountable sets X with a sufficiently fine mesh. In our
applications, X is a discrete cloud of points.

If we choose the pivots x1, . . . , xk such that the fill distance behaves like hXk,X ∼ k−1/d, Lemma 38
shows exponential convergence of py w.r.t. k provided the Lebesgue constant grows sub-exponentially.

Applying the results of the previous lemma to the remainder rk, we obtain the following result for
interpolating f on X × Y . Notice that this result shows that the convergence is governed only by
the fill distance. Hence, the unisolvency assumption on the nodes x1, . . . , xk in the older convergence
proof of ACA (which was based on polynomials; see [13]) can be dropped.

Theorem 25. For y ∈ Y let py denote the radial basis function interpolant (82) for fy := f(·, y) =
| · −y|−α. Choosing y1, . . . , yk ∈ Y such that

|detC(i)
k (y)| ≤ cM |detCk|, 1 ≤ i ≤ k, y ∈ Y,

where cM > 1 is a constant, it holds that

|rk(x, y)| ≤ c(cMk + 1)λ1/hXk,X ,

where Xk := {x1, . . . , xk}.
Proof. Let the vector of the Lagrange functions Lκ

i , i = 1, . . . , k, corresponding to the radial basis
function κ and the nodes x1, . . . , xk be given by

Lκ(x) =

L
κ
1(x)
...

Lκ
k(x)

 .
Using (77), we obtain

rk(x, y) = f(x, y)− vk(x)
TC−1k wk(y)

= f(x, y)− wk(y)
TLκ(x)− [vk(x)− CkL

κ(x)]T C−1k wk(y)

= fy(x)− py(x)−
k∑

i=1

[C−1k wk(y)]i [fyi(x)− pyi(x)]

= fy(x)− py(x)−
k∑

i=1

detC(i)
k (y)

detCk
[fyi(x)− pyi(x)],

where the last line follows from Cramer’s rule. The assertion follows from the triangle inequality and
Lemma 38.
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Remark. In practice, Y will be replaced by a discrete set of points. For the choices Y = M or
Y =MR, it is sufficient to choose the nodes y1, . . . , yk ∈ Y according to the condition

|rk−1(xk, yk)| ≥ |rk−1(xk, y)| for all y ∈ Y,

which is much easier to check in practice and which leads to the estimate

|detC(i)
k (y)| ≤ 2k−i|detCk|, 1 ≤ i ≤ k, y ∈ Y ;

for details see [13].

8.3. Uniform H -matrix

Hierarchical matrices are well-suited for treating non-local operators with logarithmic-linear complex-
ity; see [13, 18, 51].

In order to approximate the matrix (70) more efficiently, we employ uniform H -matrices; see [50].

Definition 8. A cluster basis Φ for the rank distribution (kq)q∈TI
is a family Φ = (Φ(q))q∈TI

of
matrices Φ(q) ∈ R|q|×kq .

Definition 9. Let Φ and Ψ be cluster bases for TI and TJ . A matrix A ∈ R|I|×|J | satisfying

A|qw = Φ(q)F (q, w)Ψ(w)H for all q × w ∈ Padm

with some F (q, w) ∈ RkΦq ×kΨw is called uniform hierarchical matrix for Φ and Ψ.

The storage required for the coupling matrices F (q, w) is of the order kmin{|I|, |J |} if for the sake
of simplicity it is assumed that kq ≤ k for all q ∈ TI . Additionally, it is not useful to choose kq > |q|.
The cluster bases Φ and Ψ require k[|I|L(TI) + |J |L(TJ)] units of storage; see [55].

In the following we employ the method from Sect. 8.1 to construct a uniform H -matrix approxi-
mation to an arbitrary block q × w ∈ Padm of matrix (70). Let ε > 0 be given and [x]q = {xqα, α ∈
ϑq} ⊂ Xq and [v]q = {vqα, α ∈ σq} ⊂ Fρ(Xq) be the pivots chosen in (75) such that

|f(x, y)−
∑
α∈ϑq

Lq
α(x)f(x

q
α, y)| < ε, x ∈ Xq, y ∈ Fρ(Xq), (84)

for each cluster q. Here, Lq(x) := f(x, [v]q)f
−1([x]q, [v]q) denotes the vector of Lagrange functions

defined in (76). ϑq and σq denote index sets with cardinality k. From Theorem 25 we know that
k ∼ | log ε|d. Similarly, for w ∈ TJ let [y]w = {ywβ , β ∈ σw} ⊂ Yw and [z]w = {zwβ , β ∈ ϑw} ⊂ Fρ(Yw)
be chosen such that

|f(x, y)−
∑
β∈σw

f(x, ywβ )L
w
β (y)| < ε, x ∈ Fρ(Yw), y ∈ Yw, (85)

where Lw(y) := f−1([z]w, [y]w)f([z]w, y). For x ∈ Xq and y ∈ Yw this yields the dual interpolation

f(x, y) ≈
∑
α∈ϑq

Lw
α (x)f(x

w
α , y) ≈

∑
α∈ϑq , β∈σw

Lq
α(x) f(x

q
α, y

w
β )L

w
β (y)

87



8. Uniform H -matrices and H 2-matrices

with corresponding interpolation error

|f(x, y)−
∑

α∈ϑq , β∈σw

Lq
α(x) f(x

q
α, y

w
β )L

w
β (y)| ≤ |f(x, y)−

∑
α∈ϑq

Lq
α(x)f(x

q
α, y)|+

+
∑
α∈ϑq

|Lq
α(x)| (|f(xqα, y)−

∑
β∈σw

f(xqα, y
w
β )L

w
β (y)|)

≤ ε+ ε
∑
α∈ϑq

|Lq
α(x)| = (1 + Λq

k)ε (86)

and the Lebesgue constant Λq
k ≥ 1. We define the matrix B of rank at most k

bij =
∑

α∈ϑq , β∈σw

f(xqα, y
w
β )

∫
Xq

Lq
α(x)φi(x)ξ(x) dx

∫
Yw

Lw
β (y)ψj(y)ζ(y) dy

= [Φ(q)F (q, w)Ψ(w)T ]ij ,

(87)

where ξ and ζ are the functions defined in (71). Notice that both matrices

[Φ(q)]iα :=

∫
Xq

Lq
α(x)φi(x)ξ(x) dx and [Ψ(w)]jβ :=

∫
Yw

Lr
β(y)ψj(y)ζ(y) dy

are associated only with q and w, respectively, and can be precomputed independently of each other.
Only the matrix F (q, w) ∈ Rk×k with [F (q, w)]αβ := f(xqα, ywβ ) depends on both clusters q and w.

Remark. Since the vector of Lagrange functions Lq(x) has the representation Lq(x) = C−1k vk(x),
the matrices Φ(q) ∈ R|q|×|ϑq | can be found from solving the linear system

CkΦ(t) = [

∫
Xq

vk(x)φi(x)ξ(x) dx]i.

With ∥φi∥L1 = 1 = ∥ψj∥L1 the Cauchy-Schwarz inequality implies

|aij − bij | ≤
∫
Yw

∫
Xq

|f(x, y)−
∑

α∈ϑq , β∈σw

Lq
α(x) f(x

q
α, y

w
β )L

w
β (y)| |ξ(x)| |φi(x)| |ζ(y)| |φj(y)| dx dy

(86)
≤ 2Λq

k ∥ξ∥∞∥ζ∥∞ ε.

and thus

∥A|qw −B∥22 ≤ ∥A|qw −B∥2F = ∥A|qw − Φ(q)F (q, w)Ψ(w)T ∥2F =
∑

i∈q, j∈w
|aij − bij |2

≤ (2Λq
k∥ξ∥∞∥ζ∥∞)2|q||w|ε2.

(88)

Notice that the computation of the double integral for a single entry of the Galerkin matrix (70) is
replaced with two single integrals in (87).

By exploiting the structure of f , we can use a reference geometry for the computation of the
interpolation points. Since f only dependence on the distance between x and y, the reference element
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Algorithm 2 Efficient computation of Φ
Apply the ACA on the reference geometry, i.e. on Xref and ∂Σref

Perform an QR-decomposition on Cref with Cref
ij = f(xrefi , yrefj )

for each Cluster Xq belonging to an admissible block do
for i = 1, . . . , k do

xi := diamXq x
ref
i + ξq

yi := diamXq y
ref
i + ξq

end for
for i = 1, . . . , k do

Solve CrefΦi = (diamXq)
α[
∫
Xq
vk(x)φi(x)ξ(x) dx]i

end for
end for

can placed in the origin. Additionally, by using a scaling argument the uniform approximation can
performed on a unit sphere. The set ∂Σref is defined by the parameter ρ of the original geometry
and by Xref is discretization of the unit sphere denoted. Let be b = q × w be an admissible block
and denote by ξq and ξr the center of the clusters Xq and Xw, respectively. Then we formulate
Algorithm 2 to compute efficient the matrices Φ and Ψ. Since the stiffness matrix A is an symmetric
matrix, it is sufficient to only compute the matrices Φ.

The huge advantage is that instead of applying the ACA to each cluster, the ACA has only to
be applied to the reference geometry. Additionally, the costs to solve the linear equation systems
can also be significantly reduced, since for each equation system the same matrix Cref is be used.
Note the Algorithm 2 can only be applied in this way, when for the admissible condition also spheres
BdiamXq(ξq) and BdiamXw(ξw) are used.

8.4. H 2-matrix

In order to reduce the amount of storage for storing the bases Φ and Ψ one can establish a recursive
relation among the basis vectors. The corresponding structure are H 2-matrices; see [18, 55]. This
sub-structure of H -matrices is even mandatory if a logarithmic-linear complexity is to be achieved
for high-frequency Helmholtz problems. To this end, directional H 2-matrices have been introduced
in [15].

Definition 10. A cluster basis U = (U(q))q∈TI
is called nested if for each q ∈ TI \ L (TI) there are

transfer matrices Tq′q ∈ Rkq′×kq such that for the restriction of the matrix U(q) to the rows q′ it holds
that

U(q)|q′ = U(q′)Tq′q for all q′ ∈ SI(q).

For estimating the complexity of storing a nested cluster basis U notice that the set of leaf clus-
ters L (TI) constitutes a partition of I and for each leaf cluster q ∈ L (TI) at most k|q| entries have
to be stored. Hence,

∑
q∈L (TI)

k|q| = k|I| units of storage are required for the leaf matrices U(q),
q ∈ L (TI). The storage required for the transfer matrices is of the order k|I|, too; see [55].
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8. Uniform H -matrices and H 2-matrices

Definition 11. A matrix A ∈ R|I|×|J | is called H 2-matrix if there are nested cluster bases U and V
such that for q × w ∈ Padm

A|qw = U(q)F (q, w)V H(w)

with coupling matrices F (q, w) ∈ RkUq ×kVw .

Hence, the total storage required for an H 2-matrix is of the order k(|I|+ |J |).

Remark. It may be advantageous to consider only nested bases for clusters t having a minimal
cardinality nH 2

min ≥ nH
min. Blocks consisting of smaller clusters are treated with H -matrices.

We define the matrices U(q) ∈ R|q|×kq , q ∈ TI , by the following recursion. If q ∈ T \ L (TI) then
the set of sons SI(q) is non-empty and we define

U(q)|q′ = U(q′)TU
q′q, q′ ∈ SI(q),

with the transfer matrix

TU
q′q := f([x]q′ , [v]q)f

−1([x]q, [v]q) ∈ Rkq′×kq .

For leaf clusters q ∈ L (TI) we set U(q) = Φ(q). Similarly, we define matrices V (w) ∈ R|w|×kw ,
w ∈ TJ , using transfer matrices

T V
w′w := fT ([z]w, [y]w′)f−T ([z]w, [y]w) ∈ Rkw′×kw .

Then U := (U(q))q∈TI
and V := (V (w))w∈TJ

are nested bases.

Lemma 39. Assuming that maxq∈TI ,w∈TJ
{∥U(q)∥F , ∥V (w)∥F , ∥TU

q′q∥F } ≤ γ and kq ≤ k it holds that
there exists a constant c > 0 such that

∥A|qw − U(q)F (q, w)V (w)T ∥F ≤ c(L− ℓ)
√
|q||w| ∥ξ∥∞∥ζ∥∞ ε, q × w ∈ Padm,

where ℓ denotes the level of q × w.

Proof. Let q ∈ TI \ L (TI) and w ∈ TJ \ L (TJ). For q′ ∈ SI(q) and w′ ∈ SJ(w) we have

U(q)|q′F (q, w)V (w)|Tw′ = U(q′)TU
q′qF (q, w)(T

V
w′w)

TV (w′)T

= U(q′)F (q′, w′)V (w′)T − U(q′)D(q′, w′)V (w′)T ,
(89)

where D(q′, w′) := F (q′, w′)− TU
q′qF (q, w)(T

V
w′w)

T . Using

∥D(q′, w′)∥2F ≤ 2∥F (q′, w′)− TU
q′qF (q, w

′)∥2F + 2∥TU
q′q∥2F ∥F (q, w′)− F (q, w)(T V

w′w)
T ∥2F ,

one observes that the previous expression consists of matrices with entries

f(xi, yj)− f(xi, [v]q)f
−1([x]q, [v]q)f([x]q, yj), i ∈ q′, j ∈ w′,

and
f(xi, yj)− f(xi, [y]w)f

−1([w]w, [y]w)f([w]w, yj), i ∈ q, j ∈ w′,
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8. Uniform H -matrices and H 2-matrices

which can be estimated using (84) and (85) due to xi ∈ Xq ⊂ Fρ(Yw) and yj ∈ Yw ⊂ Fρ(Xq). Thus,

∥D(q′, w′)∥F ≤
√

2(1 + γ2)
√
|q′||w′| ε.

By induction we prove that ∥A|qw−U(q)F (q, r)V (w)T ∥F ≤ γ2
√
2(1 + γ2)(L−ℓ)

√
|q||w| ∥ξ∥∞∥ζ∥∞ ε,

where ℓ denotes the maximum of the levels of q and w. If both q and w are leaves, then ∥A|qw −
Φ(q)F (q, w)Ψ(w)T ∥ ≤ 2Λq

k

√
|q||w| ∥ξ∥∞∥ζ∥∞ ε due to (88). From (89) we see

∥A|q′w′ − U(q)|q′F (q, w)V (w)|Tw′∥F ≤ ∥A|q′w′ − U(q′)F (q′, w′)V (w′)T ∥F + ∥U(q′)D(q′, w′)V (w′)T ∥F
≤ γ2

√
2(1 + γ2)(L− ℓ− 1)

√
|q′| |w′| ∥ξ∥∞∥ζ∥∞ ε+ γ2

√
2(1 + γ2)

√
|q′||w′| ε

≤ γ2
√
2(1 + γ2)(L− ℓ)

√
|q′| |w′| ∥ξ∥∞∥ζ∥∞ ε.

This shows

∥A|qw − U(q)F (q, w)V (w)T ∥2F =
∑

q′∈SI(q), w′∈SJ (w)

∥A|q′w′ − U(q)|q′F (q, w)V (w)|Tw′∥2F

≤ 2γ4(1 + γ2)(L− ℓ)2(∥ξ∥∞∥ζ∥∞ ε)2
∑

q′∈SI(q), w′∈SJ (w)

|q′| |w′|

= 2γ4(1 + γ2)(L− ℓ)2(∥ξ∥∞∥ζ∥∞ ε)2|q||w|.

The same kind of estimate holds if q or w is a leaf, because then U(q) = Φ(q) or V (w) = Ψ(w).

Remark. Lemma 39 can also be applied to uniform H -matrix blocks.
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9. Numerical results

The focus of the following numerical tests lies on three problems. First, we focus on the error of
numerical integration for singular integrals of the type (22) and (23). For this purpose, we verify
for two selected singularity cases whether the error estimates from the Theorems 12 and 13 hold
true. Additionally, we compare the two approaches, the nonlinear transformation to unit cubes
and the nonlinear transformation to suitable reference elements, presented in Chapters 3 and 5.
The second and the third problem are fractional diffusion processes with different geometries. To
be more precise, the second problem is (10), where an analytical solution is known. There, the
rules presented in Lemma 19 are validated and we show that a coarse H -matrix approximation
of the inverse of the stiffness matrix is well suited as a preconditioner. In the last example, the
standard H -matrix approach is compared with the uniform H -matrix approach and the H 2-matrix
approach, as presented in Chapter 8. All computations were performed on a single computation node
consisting of two Intel E5-2630 v4 processors with 64 GB RAM. The implementation is based on
the C++ software library AHMED [13]: Another software library on Hierarchical Matrices for Elliptic
Differential equations. In the process, the library was supplemented with the methods presented in
this dissertation and their necessary frameworks. This includes the singularity removal techniques
from Chapters 3 and 5, the uniform H -matrix and the H 2-matrix approximations from Chapter 8.

9.1. Singular integrals

We consider the integrals (22) and (23). To exemplify the numerical errors presented in Chapter 4,
we choose for the first two tetrahedra t1 and t2 such that both share a common face, and linear basis
functions such that t1 ̸⊂ suppφi and t2 ̸⊂ suppφj . For the second integral we choose a tetrahedron t
and panel τ sharing a common edge, and a linear basis function with φi = φj . Then the integrals
simplify to:

I1 := −
∫
t1

∫
t2

φi(y)φj(x)

|x− y|3+2s
dy dx and I2 :=

∫
t
φ2
i (x)

∫
τ

(y − x)Tnτ (y)

|x− y|3+2s
dsy dx.

After applying the respective Duffy transformation, a three-dimensional integral must be computed
numerically in both cases. In the following, we focus only on the stronger singularities, i.e. we set
s = 0.8.

First, we consider the Duffy transformation presented in Chapter 3. Since the integrals cannot be
integrated analytically, we replace the exact values I1 = I[k̃1,F ] and I2 = I[k̃2,E ] by Q20[k̃1,F ] and
Q20[k̃2,E ], respectively, where Q20 denotes the approximation of the integral with 20 Gauss points
per dimension.

In Figure 3, the error of the numerical integration En, n = 2, . . . , 7, is shown for four different
diameters h. Notice that the error is plotted logarithmically. Based on the Theorems 12 and 13, one
expects log(En) to be linear w.r.t. the number of Gauss points. This can also be observed in the
Figures 3a and 3b. Obviously, h has no influence on the slope of the curves.

Next, we repeat the example, however, using the cubature formulas described in Chapter 5. Re-
member, the difference between the two approaches is only the nonlinear transformation. Instead of
mapping the integration domain to a six-dimensional unit cube, respectively a five-dimensional unit
cube, the integration domain is mapped to suitable reference elements. The regularized integrands
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(b) Integration error for I2

Figure 3: Integration error for different values of h using tensor Gauss quadrature formulas

are denoted by k̂1,F and k̂2,E . As reference value for the exact integral, we still use Q20[k̃1,F ] and
Q20[k̃2,E ], respectively.
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(a) Integration error for I1
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(b) Integration error for I2

Figure 4: Integration error for different values of h using symmetric cubature formulas

Figure 4 illustrates the error of numerical integration En, n = 2, . . . , 7, for four different diame-
ters h. Based on n, the symmetric cubature formulas for the tetrahedron and the panel are chosen
as described in Section 5, i.e. for the numerical integration of the tetrahedron a rule with at least
n3/6 evaluation points is used and for the numerical integration of the panel a rule with at least
n2/2 evaluation points is used. For I2 the numerical integration behaves as expected, the slope of
the graphs is almost linear. However, the graphs in Figure 4a behave differently. For n = 2, . . . , 5
the graphs decrease linearly as Theorem 12 indicates. But for n = 6, 7 the error plots are slightly
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9. Numerical results

increasing. We suppose that the issue here is that for the numerical integration three different types
of quadrature rules are used: a Gaussian quadrature rule, a symmetric cubature rule for panels and
a symmetric cubature rule for tetrahedra. To obtain a more stable approach we suggest to split up
the last two sub-domain such that each new sub-domain can be described by one inequality w.r.t. ω,
since then all appearing integrals can be computed via the symmetric cubature rule for tetrahedra.

However, for our main purpose, the approximation of the entries of the stiffness matrix, we do not
need such a fine approximation of the integrals. If we take a look at Figure 5, we see the relative
errors of the numerical integration displayed for both approximation schemes, the one introduced in
Chapter 3 and the one introduced in Chapter 5, for h = 0.0001, respectively. In both cases, the
relative error decreases exponentially and it is less than 1% for n = 4. Even for n = 3 the error is
about by 5%. For the approximation of the entries of the stiffness this is sufficient.
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(a) Relative integration error for I1
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(b) Relative integration error for I2

Figure 5: Comparison of the relative errors for h = 0.0001

As the Figures 3 to 5 have shown, both approaches presented are suitable to approximate the
integrals I1 and I2. The Duffy transformation to the six-dimensional unit cube, five-dimensional
unit cube, respectively, produces more accurate approximations. On the other hand, the procedure
presented in Chapter 5 is much faster, as shown in Table 8.

In Table 8, the number of evaluations of the kernel for the numerical integration for each case
is calculated for n = 2, . . . , 7 and the corresponding methods are compared by the ratio of the
evaluations of the kernel. As Table 8 displays computing the integrals I1 and I2 is an expensive task.
Note, the computation of entry of the stiffness matrix consists of multiple integrals of the type of I1
and I2, if the support of the linear basis functions corresponding to this entry overlap. Therefore,
it is mandatory to compute this integral in an efficient way and the method presented in Chapter 5
provides that, e.g. the cubature approach requires 16% less evaluations of the kernel compared to the
tensor Gauss quadrature. This is due to the fact that the symmetric cubature rule for tetrahedra
dominates the costs here and the rule was chosen such that number of evaluation points is roughly
at n3/6. For I2 we also obtain a good speed up. Actually, it is more than we expect for the bigger
values of n. This can be explained by the choice of the number of evaluation points of the symmetric
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9. Numerical results

n 2 3 4 5 6 7

k̃1,F 136 459 1 088 2 125 3 672 5 831

k̂1,F 23 74 174 334 588 917

ratio 17% 16% 16% 16% 16% 16%

k̃2,E 32 108 256 500 864 1 372

k̂2,E 13 25 46 71 108 150

ratio 40% 23% 18% 14% 13% 11%

Table 8: Number of evaluations of the kernel

cubature rule for the panel. Since we do not use exactly at least n2/2 points, but mostly rounded
off, the speed up is better than expected.

9.2. Fractional diffusion process on a unit ball

For the second part of the numerical results, we consider (1), the fractional Poisson problem, where
we set f = 1 and Ω = B1(0) ⊂ R3:

(−∆)su = 1 in B1(0),

u = 0 on R3\B1(0).

As mentioned in Section 2.3 the analytic solution of the problem,

u(x) =
2−2s

Γ(1 + s)2
(1− |x|2)s,

is well-known (see [2]) and displayed in Figure 6a and 6b for x3 = 0 and for two different values of s.
Following the approach described in Section 2.4, we discretize the problem. Notice that according
to Lemma 7 the interior angles of the panels should not be chosen too small, otherwise the Duffy
transformation becomes unstable. Here, we use the transformation displayed in Chapter 5. For
the computation of the stiffness matrix we use the lower bound on the number of Gauss points per
dimension presented in Lemma 19 and adapt it to the symmetric cubature rules for panels and the
tetrahedra, respectively. The stiffness matrix A is computed in two different ways, first as a dense
matrix and second it is approximated by an H -matrix, where the admissible blocks are computed
via the ACA. The accuracy of the ACA is adapted to the fineness of the discretization of the unit
sphere. The resulting finite element solutions are denoted by uFEM and uACA, respectively.

Figure 7 shows the error between the exact solution u and the finite element solution uFEM together
with the theoretical error estimate of Theorem 8 in a log-log scale. Notice that for s = 0.8 we are
not able to compute uFEM for the finest discretization, since the computation of the dense matrix
exceeds the available memory of 64 GB RAM.
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Figure 6: Exact solution u
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Figure 7: Absolute error between the analytic and numerical solution

According to [2], it holds that u ∈ Hs+1/2−ε(B1(0)). Hence, we would expect a convergence rate
less than 1/2 w.r.t. h. As it can be seen in Figure 7, the convergence rates are better than expected.
For both cases we obtain an optimal rate of 1− s and 2− s, respectively; cf. Theorem 8. This may
be due to the fact that the analytical solution is a smooth function in the interior of B1(0) as the
singularity of u is located on the boundary ∂B1(0). Moreover, for the numerical computations a
(inner) polyhedral approximation of B1(0) is used.

Since we have numerically verified that the H -matrix approximation of A is working, we can study
the benefits of this approach.

In Table 9 the results for the storage requirements are illustrated for s = 0.2 and for s = 0.8. The
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9. Numerical results

s = 0.2 s = 0.8

N 219 1 130 17 563 144 716 219 1 130 17 563 144 716

A 0.2 4.9 1 177.4 79 899.3 0.2 4.9 1 177.4 79 899.3

AH 0.2 4.8 362.9 6 072.9 0.2 4.8 374.8 6 458.9

compr. rate 100% 98% 32% 8% 100% 98% 31% 8%

Table 9: Storage requirements for the stiffness matrix in MB for two different values of s

compression rate is defined as the ratio between the storage requirements between A and AH . For
the coarse grids we cannot save anything, because most of the blocks are too small to apply the ACA
efficiently. But we can see a significant saving with the finer grids. Only 8% of the original memory
is needed for AH for the finest discretization. This is a saving of over 70 GB for both cases. The
results for s = 0.2 are slightly better than for s = 0.8, because for s = 0.2 the rank of the blocks is
smaller.

Similar observations can be made about the computation time for the setting up the stiffness
matrix.

s = 0.2 s = 0.8

N 219 1 130 17 563 144 716 219 s 1 130 17 563 144 716

A 0.6 s 6.1 s 706.0 s 45 338.2 s 0.6 s 60.5 s 1 183.2 s 63 424.1 s

AH 0.6 s 6.3 s 297.9 s 7 041.4 s 0.6 s 60.1 s 783.3 s 25 487.6 s

time ratio 100% 103% 42% 16% 100% 99% 66% 40%

Table 10: Computation time for the setting of the stiffness matrix for two different values of s

The time for setting up the stiffness matrix and the speed up between the methods is displayed
in Table 10. Again, for the small examples almost no block is approximated and therefore we gain
no advantage. For the finer grids, however, a large speed up can be seen. The computation is more
than five times faster for the H -matrix approach compared to the dense matrix for s = 0.2 and more
than two times faster for s = 0.8. Thus, also note that a big difference between the values of s can
be observed. This is mainly due to quadrature rules being used. As we have seen in Figure 7 the
solutions for s = 0.2 have smaller errors compared to the solutions for s = 0.8 and this accuracy has
to be paid by the quadrature rules.

As the final point, we focus on solving the linear system of equations and the utility of A−1H , the
rough approximation of the inverse of the stiffness matrix, as a preconditioner. εA−1

H
, the accuracy of

the approximation of the preconditioner, is set to 0.1 for all geometries and for both values of s.
Table 11 presents an overview over the time being needed to solve the linear system of equation

for s = 0.2 and s = 0.8, respectively. There are three different cases listed: the dense stiffness matrix
A, the H -matrix AH and the H -matrix Aprecond

H , where we used A−1H as a preconditioner. Note
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9. Numerical results

s = 0.2 s = 0.8

N 219 1 130 17 563 144 716 219 1 130 17 563 144 716

A 0.01 s 0.07 s 13.76 s 123 326 s 0.02 s 0.16 s 25.19 s –

AH 0.01 s 0.10 s 4.83 s 88.05 s 0.04 s 0.13 s 7.42 s 224.59 s

Aprecond
H 0.02 s 0.14 s 7.68 s 158.98 s 0.02 s 0.12 s 5.61 s 134.95 s

Table 11: Computation time for the setting of the stiffness matrix for two different values of s

that for the finest geometry the linear system of equations w.r.t. A could not be solved, since the
computation of A itself exceeded the available memory. Additionally, Table 11 illustrates that for
the finer geometries the H -matrix approach is far more efficient in comparison to the dense matrix.
Both approaches behave similar for the coarse grids. The reason for this is again that here almost no
block is admissible and therefore there is no significant difference between A and AH .

Interesting are the results for the preconditioner. By having a closer look at Table 11, we can
see that for s = 0.2 applying the preconditioner costs more than not using it, while for s = 0.8 the
preconditioner provides a good speed up by a factor of two.

s = 0.2 s = 0.8

N 219 1 130 17 563 144 716 219 1 130 17 563 144 716

CG 25 35 37 53 21 37 71 136

PCG 4 6 6 6 5 6 10 17

Table 12: Number of steps for solving the system for two different values of s

Table 12 gives insight to this. There, the number of steps for solving the linear systems by the
CG-method, respectively the PCG-method, are listed. First of all, it is obvious that A−1H is a good
choice for preconditioning, since the number steps needed to solve the system are reduced drastically.
For s = 0.2 the preconditioning is almost optimal, since the number of steps is constant w.r.t. N , i.e.
εA−1

H
can be chosen smaller to achieve sufficient results. As mentioned in Chapter 7, the reason for

this is that the condition of the stiffness matrix scales as O(h−2s). Actually, for s = 0.2 the linear
system of equations may be well-conditioned enough in order to do without preconditioning, while
for s = 0.8 the preconditioning proves to be quite useful.
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9. Numerical results

9.3. Fractional diffusion process on an ellipse

For the last example, we consider again (1), the fractional Poisson problem, where we set f = 1 and
Ω := {x ∈ R3 : x21 + x22 + x23/9 = 1} ⊂ R3:

(−∆)su = 1 in Ω,

u = 0 on R3\Ω.

The general setup and our approach are the same as in Section 9.2, i.e. for the singularity removal
the Duffy transformation introduced in Chapter 5 is used and the quadrature rules are chosen via
Lemma 19. We compare three types of H -matrix approximations of A using the same block cluster
tree generated with ρ = 0.8. The first one is generated via standard ACA, the second one is a uniform
H -matrix approximation and the third one is an H 2-matrix approximation. Due to the Galerkin
approach, we choose various volume discretizations of the ellipse Ω as the computational domain, the
Dirichlet data g ≡ 1, the order of the fractional Laplacian is s = 0.8 and the accuracy εHACA of the
ACA for H -blocks depends on the discretization of Ω.

Since no analytical solution is known for this geometry, we cannot directly verify the accuracy of
the numerical solution uh. Since we already exemplified in Section 9.2 that the standard H -matrix
approximation performs well, it is used here as a reference value for the numerical verification of the
other two methods. To be more precise for each grid we calculate eh the mean relative error between
the solutions of the discretized problem, i.e.

eh(u
N
⋆ ) :=

1

N

N∑
i=1

|(uNH )i − (uN⋆ )i|
|(uNH )i|

, uNH , uN⋆ ∈ RN , ⋆ ∈ {Hu,H
2}.

Notice, uNH , uNHu
and uNH 2 are the solutions of corresponding discretized problems.

Table 13 shows the minimum sizes of the respective clusters nH
min, n

Hu
min, and nH 2

min, the accuracy of
the respective used ACAs εHACA, εHu

ACA, and εH
2

ACA and the error eh. The accuracies εHu
ACA and εH

2

ACA

H -matrix uniform H -matrix H 2-matrix

N nH
min εHACA nHu

min εHu
ACA eh nH 2

min εH
2

ACA eh

7 100 30 1.0e− 2 100 1.0e− 2 4.0e− 2 100 1.0e− 2 3.8e− 2

62 964 60 1.0e− 3 200 1.0e− 3 1.1e− 2 200 1.0e− 3 1.0e− 2

528 747 60 1.0e− 4 400 1.0e− 4 4.2e− 2 400 1.0e− 4 3.8e− 2

Table 13: Comparison between the three different H -matrix approximations

for the uniform H -matrix blocks, respectively for the H 2-blocks, were adjusted so that all methods
produce almost the same error eh. Note that nHu

min and nH 2

min denote the minimal size of blocks being
approximated via the uniform approach, respectively the H 2-matrix approach.

Since all three methods generate similar errors, we can compare the different H -matrix approx-
imations amongst each other. First we start with setting up the stiffness matrix. In Table 13 the
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9. Numerical results

H -matrix Hu-matrix H 2-matrix

N AH precalculations AHu precalculations AH 2

7 100 60.0 s 0.1 s 54.2 s 0.1 s 54.6 s

62 964 3 047.7 s 1.4 s 2 914.7 s 1.1 s 2 929.2 s

526 747 95 615.0 s 27.6 s 87 709.6 s 19.2 s 87 902.1 s

Table 14: Time comparison for setting up the stiffness matrix

time being needed to set up the stiffness matrix is listed. We can observe that both methods that are
based on a uniform approximation need almost the same time, while they are both faster than the
standard H -matrix method. For the finest geometry the CPU time for approximating A is reduced
by almost 10%, i.e. more than two hours. The speed up is due to the uniform approximation, since
the costly numerical integral is done beforehand. The more blocks are approximated with a uniform
method, the faster is the setting up of the matrix.
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Figure 9: AH 2 for N = 7100

This can be seen from Figs. 8 and 9. These figures show the matrix A for the coarsest discretiza-
tion, which was approximated as an H -matrix and H 2-matrix, respectively. The red blocks were
calculated entry by entry, the green and blue blocks are low-rank approximations calculated via ACA
and uniform approach, respectively, and the numbers in the low-rank blocks are the ranks kH and
kH 2 , respectively. As it can be seen, the ranks kH and kH 2 of corresponding blocks hardly differ.
This is due to the difference in accuracy between εHACA and εH

2

ACA. Obviously, the difference in rank
grows larger if the accuracies are equal. Theoretically, kH is smaller than kH 2 , since kH is tailored
to the block, while kH 2 is the result of a uniform approximation. For this example we omit the
uniform H -matrix, since in this case the matrix is identical to the H 2-matrix, because the critical
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9. Numerical results

parameters are for both cases identical, i.e. εHu
ACA = εH

2

ACA and ρH 2 = ρHu .
Of course not only the CPU time benefits from the small difference between kH and kH 2 , but also

the storage requirements as can be seen from Table 15. For each selected discretization, less storage is

H -matrix uniform H -matrix H 2-matrix

N memory compr. rate memory compr. rate memory compr. rate

7 100 61 MB 31.7% 56 MB 28.9% 56 MB 29.1%

62 964 1 502 MB 9.9% 1 353 MB 8.9% 1 356 MB 8.9%

528 747 27 195 MB 2.5% 21 350 MB 2.0% 20 938 MB 2.0%

Table 15: Memory comparison between H -, uniform H - and H 2-matrices

required when using the method presented in Chapter 8. For example, the finest discretization requires
almost 25% less storage (i.e. more than 6 GB). In addition, the uniform H -matrix approximation
and the H 2-approximation become more efficient the larger the number of degrees of freedom N
becomes, since the precomputations can be exploited for an increasingly larger part of the matrix.
Notice, the memory requirements for the precomputations are already included in Table 15.

As a last point we consider the runtime of the CG-method for all H -matrix approximations.
Table 16 displays the time needed to solve the resulting linear system via the CG-method and how

H -matrix uniform H -matrix H 2-matrix

N tCG CG steps tCG CG steps tCG CG steps

7 100 1.1 s 52 1.0 s 52 1.3 s 64

62 964 54.4 s 91 57.0 s 99 57.8 s 99

528 747 1 485.6 s 175 2 397.1 s 196 3 200.1 s 197

Table 16: Time comparison for solving the linear system

many steps were needed for the algorithm. Notice that the solving of the linear system is not
parallelized. The interesting issue is that here for the first time the standard H -matrix approximation
is fastest. The uniform H -matrix approximation is a little bit slower and becomes slower the larger
N becomes. The same applies for the H 2-matrix. However, here the problems are larger, since the
matrix is worse conditioned which can be seen by number of CG steps needed. The issue gets better,
though, when the time per CG step is considered. In this context the H -matrix is two times faster
than H 2-matrix and 1.4 times faster than the uniform H -matrix for the finest geometry. Actually,
this is not so surprising since the costs for the matrix-vector-multiplication for the uniform H -matrix
block is more expensive than the standard H -matrix block, since we have to consider an additional
matrix (see Section 8.3). Additionally, in most cases kHu is larger than kH . This is obvious, since for
each block kH is specially adapted to it, while kHu is only tailored to the worst case (see Algorithm 2).
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9. Numerical results

Theoretically, the H 2-matrix should be more efficient than the standard H -matrix (see [51]). The
issue is that this holds true if the rank of the son clusters is always smaller than the rank of the
father cluster. This assumption is violated by our implementation, since for each cluster belonging
to an H 2-admissible block a uniform approximation is performed via a reference element similar to
Algorithm 2. This can also be observed in Figure 9. Therefore, each H 2-admissible block has the
same rank kH 2 and each transfer matrix between clusters belonging to such an admissible has the
dimension of kH 2 ×kH 2 . Therefore, matrix-vector multiplication for H 2-matrices is slower than the
matrix-vector multiplication for the standard H -matrix. A simple way to improve this issue would
be to parallelize the matrix-vector multiplication. While this would not improve the basic problem,
it would drastically reduce the total time required to solve the linear system of equations.
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10. Conclusion

10.1. Summary

As we have seen, the aim of the dissertation is to handle the fractional Laplacian efficiently nu-
merically, with the special focus on three dimensions. To this end, Chapter 1 laid the theoretical
foundation. It is especially interesting to see how closely related the operator is to the Laplace op-
erator. Nevertheless, there are serious differences between the two due to the nonlinearity of the
fractional Laplacian, cf. for example the mean value properties. Moreover, the weak formulation of
the fractional Laplacian looks more like the BEM formulation of the Laplace operator than the weak
formulation of the Laplace operator. Therefore, the computation of the entries of the stiffness matrix
is also very complex and time-consuming. In total, we spent three chapters on it. The time-consuming
part here is the singularity removal. In Chapter 3 we introduced new tensor Gauss quadrature for-
mulas for integrals of the type (22) and (23). The tensor Gauss quadrature approach is necessary
for the error estimates being applied in the following chapter, Chapter 4. There, based on the error
estimates for the finite element solution we derived rules on the minimal number of Gauss points
per dimension w.r.t. the discretization size. However, from a computational point of view the tensor
approach is not ideal, because the integration domain consisting of tetrahedra and panels has to be
blown up to multidimensional unit cubes. Therefore, in Chapter 5 we went back to the singularity
removal. In contrast to the standard Duffy transformation, we applied here another kind of nonlinear
transformation. Instead of blowing up the whole geometry to a six-dimensional unit cube, we have
shown that it is enough to map only the geometry regarding ξ to a unit cube and for the remaining
variables η the forking inequality chains can be exploited to map the geometry to suitable reference
elements, e.g. to a combination of unit panels and unit tetrahedra. In Section 9.1 it is illustrated that
the cubature approach is significantly faster than the standard tensor Gauss quadrature approach.

After we provided efficient means to compute the entries of the stiffness matrix, we focused on
an approximation of the matrix itself. In Chapter 6 we laid out the foundation for it and have
shown that the stiffness matrix can be approximated by an H -matrix. Unfortunately, we were not
able to fully adapt the approach of [13] concerning the approximation of the inverse of the stiffness
matrix. The issue is that we cannot prove that for u ∈ Xloc(D) it holds that u ∈ L∞(K) for
each compact subset K ⊂ D. If this statement is true then it could be easily proven that the
error of the H -matrix approximation of the inverse stiffness matrix is decaying exponentially w.r.t.
the rank. Nevertheless, we were able to provide a local Caccioppoli inequality for the fractional
Laplacian. Chapter 8 provides two additional H -matrix approximations, the uniform H -matrix
and the H 2-matrix. Both approaches are introduced in the Sections 8.3 and 8.4, respectively. Both
methods can be computed via a new version of the ACA that we derive in Section 8.1. Additionally, we
have shown that this new kind of approximation can be applied to functions f , where f(x, y) = |x−y|α
with α < 0. This means that the method can also be used for the numerical treatment of the Laplace
operator. As a next step we compared these three different methods with each other and observed
that w.r.t. the time needed to set up the matrix and the memory requirements, the two methods
from Chapter 8 are superior, as predicted by the theory. Only for solving the linear equation system
the standard H -matrix approach is faster.
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10. Conclusion

10.2. Outlook

Future research might improve some of the presented methods. For example, in Section 9.3 we
discussed that the issue for H 2-matrix approach is that there is no decrease of the rank along
the cluster tree. Therefore, we can observe that there are way less performance improvements as
we would expect. The main problem is that for each cluster the some admissible parameter ρ is
used. Therefore, each cluster has the same rank kH 2 . To solve this issue, we could introduce a
new parameter n̂H 2

min with nH
min ≤ n̂H 2

min < nH 2

min to artificially deepen the cluster tree being used for
the H 2-matrix approximation. However, for these new generated clusters we have to ensure that
the uniform cross approximation is executed with a new admissible parameter ρ̂ being smaller than
ρ such that k̂H 2 , the rank of uniform cross approximation for these new clusters, is smaller than
kH 2 . In order to ensure that ρ̂ ≤ ρ the far-fields of the corresponding leaf cluster of the cluster
tree w.r.t. nH 2

min are used instead of the far-fields of the individual clusters for the uniform cross
approximation. Unfortunately, this is not enough guarantee that ρ̂ < ρ. The issue is the curse of
dimensions. Due to the construction of the cluster tree via the PCA neither the diameter of the
new clusters decreases significantly nor does the distance between the new clusters and the specially
selected far-fields increases significantly on the first new added levels of the cluster tree. If the cluster
tree w.r.t. n̂H 2

min is deep enough, then ρ̂ < ρ can be guaranteed for most of the leaf clusters. However, a
new issue can occur, namely that for these leafs the accuracy of the approximation has to be adjusted,
which may more or less negates the effect of ρ̂ or even worsen the situation. This adjustment of the
accuracy may be necessary due to Theorem 39. All in all, this idea is a balancing problem between
n̂H 2

min and the accuracy of the approximation.
Until now we applied the uniform cross approximation presented in Section 8.1 only on admissible

matrix blocks. It would be particularly interesting to see whether these methods can also be applied
efficiently on a smaller scale. Using the geometric insights from Section 5, one could create new
uniform quadrature rules for nearly singular integrals and for the integrals arising in the Duffy trans-
formation. The basic idea is to split up the integrals and perform the costly numerical integration
as precomputations. Hereby, the costs are significantly reduced since in the case of the nearly sin-
gular integrals only two independent three-dimensional integrals have to be computed instead of one
six-dimensional integral. However, there are still some open questions here. Is the number of interpo-
lations points less than the total number of Gauss points needed for the numerical interpolation? Is it
efficient to perform a uniform approximation for each tetrahedron? How to select the discrete set MR

efficiently? Since the discretization is only quasi-uniform the distance between two tetrahedra can be
less than the mean diameter h. Therefore, for each tetrahedron MR must be selected appropriately.
Another possibility would be to set ρ to a smaller value, in order to use a reference element in the
same sense as in Algorithm 2 in Section 8.3. However, if we follow this approach the question is if
the method is still efficient and faster than the standard multi-dimensional numerical integration.

A similar question can be asked regarding the entries of the non-admissible blocks. Let us consider
a matrix entry aij belonging to a non-admissible block bqw. Although the clusters Xt and Xs do not
satisfy the geometric admissibility condition, the supports of the linear basis function φi and φj can
still satisfy it. It is obvious that for the precomputations a reference element can be used to reduce
computational costs. However, in order to obtain a numerical stable method the quasi uniformity of
the tetrahedra has to be considered. Therefore, the main issue is how to keep the process stable and
also efficient at the same time.
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A. Appendix: Duffy Transformation

In this chapter we present the treatment of the singular integrals from Chapter 3 in detail. This
includes resolving the min and max constraints and generating suitable forking inequality chains.
Note that the numbering of the sub-domains Di does not have to match the numbering of the Duffy
transformations Di in the individual singularity cases. As we have seen in Chapter 3 some sub-domains
require a different transformation and were therefore moved backwards in the numbering.

A.1. Interaction between two tetrahedra

We first start with the interaction between two tetrahedra. Note that the first two singularity cases
have already been treated in detail in the Sections 3.2.1 and 3.2.2.

A.1.1. Singularity on a face

In this section we study the singularity case that the two tetrahedra share a common face. The result
for the Duffy transformation is already presented in Section 3.2.3. Here, the remaining intermediate
steps that were previously omitted are presented.

A.1.1.1. Derivation of the integration domains
As we have seen in Section 3.2.3, the changing of the integration order leads to the following set:

D :=



−1 ≤ z̃1 ≤ 1
max{−1, −1 + z̃1} ≤ z̃2 ≤ min{1, 1 + z̃1}

0 ≤ z̃3 ≤ min{1, 1 + z̃1}+ min{0, −z̃2}
max{0, −z̃2, −z̃1 + z̃3, z̃2 − z̃1 + z̃3} ≤ x̃1 ≤ min{1, 1− z̃1}

max{0, −z̃2} ≤ x̃2 ≤ x̃1 + min{0, z̃1 − z̃2 − z̃3}
0 ≤ z̃4 ≤ x̃1 − x̃2


,

where we have already considered the first sub-domain D1:

D1 :=



−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1
0 ≤ z̃3 ≤ z̃1 − z̃2

−z̃2 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1

0 ≤ z̃4 ≤ x̃1 − x̃2


.

In order to get the remaining subsets, we must understand that the dependencies of the variables
among themselves arose from splitting the inequalities. This idea is slightly different to (28), since
we do not interleave two inequality chains, but we construct an artificial dependency between them:{

−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ 0

}
=

{
−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1

}
∪
{

−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0

}
.
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The same applies, of course, to the procedure for z̃3:
−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ 1 + z̃1

 =


−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ z̃1 − z̃2

 ∪


−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0

z̃1 − z̃2 ≤ z̃3 ≤ 1 + z̃1

 .

This leads to two extra sub-domains:

D2 :=



−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ 1 + z̃1
−z̃1 + z̃3 ≤ x̃1 ≤ 1

−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2


, D3 :=



−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ 1 + z̃1

−z̃1 + z̃3 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ x̃1 − x̃2


.

However, such dependencies are not always necessary, as we see here:

D4 :=



−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1
0 ≤ z̃3 ≤ 1 + z̃1 − z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2


For the case 0 ≤ z̃1 ≤ 1 the procedure and the ideas are the same. Here, five sub-domains are needed
to resolve the min and max conditions:

D5 :=



0 ≤ z̃1 ≤ 1
−1 + z̃1 ≤ z̃2 ≤ 0

0 ≤ z̃3 ≤ z̃1 − z̃2
−z̃2 ≤ x̃1 ≤ 1− z̃1
−z̃2 ≤ x̃2 ≤ x̃1

0 ≤ z̃4 ≤ x̃1 − x̃2


, D6 :=



0 ≤ z̃1 ≤ 1
−1 + z̃1 ≤ z̃2 ≤ 0
z̃1 − z̃2 ≤ z̃3 ≤ 1

−z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ x̃1 − x̃2



D7 :=



0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1
0 ≤ z̃3 ≤ z̃1 − z̃2
0 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1
0 ≤ z̃4 ≤ x̃1 − x̃2


, D8 :=



0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ 1− z̃2
z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2



and D9 :=



0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1
0 ≤ z̃3 ≤ 1− z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2


.
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All in all, we obtain that

D =

9⋃
i=1

Di.

A.1.1.2. Preparations for the nonlinear transformation
The next step is to establish for each sub-domain a forking inequality chain and to introduce a set of
new variables ω ∈ R6 representing the forking inequality chain.

Sub-domain D1 Since we get here an inequality chain,

0 ≤ −z̃1 ≤ −z̃1 + z̃3 ≤ −z̃2 ≤ −z̃2 + z̃4 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

that fulfills our requirements, namely the variables which do not describe the singularity are in the
first two chain links, a split up of D1 is not necessary. Therefore, it is possible to proceed with the
introduction of the new set of variables ω ∈ R6 that reflect this ordering:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃2 + z̃4, ω4 := −z̃2, ω5 := −z̃1 − z̃3, ω6 := −z̃1.∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω4

ω3 − ω4

 ,
1− ω1 + ω6

ω1 − ω2

ω5 − ω6

 dω.

Sub-domain D2 For D2 a split has to be done, since the forking inequality chain,

0 ≤ −z̃1 ≤ −z̃2 ≤ −z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

0 ≤ −z̃1 ≤ −z̃2 ≤ −z̃2 + z̃4 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

splits up after the second chain link, which is one link too early:

D2 =



−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ 1 + z̃1
−z̃1 + z̃3 ≤ x̃1 ≤ 1

−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3


∪



−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ −z̃2 + z̃4 + z̃1
−z̃1 + z̃3 ≤ x̃1 ≤ 1

−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2


.

This implies for the first sub-domain,

0 ≤ −z̃1 ≤ −z̃2 ≤ −z̃2 + z̃4 ≤ −z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

and for the second one,

0 ≤ −z̃1 ≤ −z̃2 ≤ −z̃1 + z̃3 ≤ −z̃2 + z̃4 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

Therefore, we now have for each sub-domain a suitable inequality chain and we can present for each
domain a matching set of variables ω ∈ R6:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃1 + z̃3, ω4 := −z̃2 + z̃4, ω5 := −z̃2, ω6 := −z̃1,
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∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω5

ω4 − ω5

 ,
1− ω1 + ω6

ω1 − ω2

ω3 − ω6

 dω

and

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃2 + z̃4, ω4 := −z̃1 + z̃3, ω5 := −z̃2, ω6 := −z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω5

ω3 − ω5

 ,
1− ω1 + ω6

ω1 − ω2

ω4 − ω6

 dω.

Sub-domain D3 First we take a look at the inequality chain corresponding to D3:

0 ≤ −z̃2 ≤ −z̃1 ≤ −z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

0 ≤ −z̃2 ≤ −z̃2 + z̃4 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Since the chain splits one link too early, again, we have to subdivide D3:

D3 =



−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ 1 + z̃1

−z̃1 + z̃3 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3


∪



−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ z̃1 − z̃2 + z̃4

−z̃1 + z̃3 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ x̃1 − x̃2


The interesting point here is that the first sub-domain satisfies a forking inequality chain, which is
not suitable for our approach:

0 ≤ −z̃2 ≤ −z̃1 ≤ −z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

0 ≤ −z̃2 ≤ −z̃2 + z̃4 ≤ −z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Although the inequality chain now splits at the appropriate link, the resulting chains are not inde-
pendent of each other, because both end on z̃2. In order to resolve this an additional split up is
necessary:

−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ 1 + z̃1

−z̃1 + z̃3 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ −z̃1 + z̃2


∪



z̃2 − z̃4 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ z̃1 − z̃2 + z̃4

−z̃1 + z̃3 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ x̃1 − x̃2


Then we can introduce for each sub-domain a new set of variables ω ∈ R6:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃1 + z̃3, ω4 := −z̃1, ω5 := −z̃2 + z̃4, ω6 := −z̃2,
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∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω6

ω5 − ω6

 ,
1− ω1 + w4

ω1 − ω2

ω3 − ω4

 dω

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃1 + z̃3, ω4 := −z̃1, ω5 := −z̃2 + z̃4, ω6 := −z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω6

ω4 − ω6

 ,
1− ω1 + ω5

ω1 − ω2

ω3 − ω5

 dω

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := z̃4 − z̃2, ω4 := z̃3 − z̃1, ω5 := −z̃1, ω6 := −z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω6

ω3 − ω6

 ,
1− ω1 + ω5

ω1 − ω2

ω4 − ω5

 dω

Sub-domain D4 For the forth domain we get a forking inequality chain,

0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ −z̃1 + z̃2 + z̃3 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1,

0 ≤ z̃4 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1,

which splits up one link too early. Therefore, D4 is subdivided:

D4 =



−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1
0 ≤ z̃3 ≤ 1 + z̃1 − z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3


∪



−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1
0 ≤ z̃3 ≤ z̃1 − z̃2 + z̃4

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2


.

Then a new set of variables ω ∈ R6 is established to represent this structure:

ω1 := x̃1, ω2 := x̃1 − x̃2, ω3 := −z̃1 + z̃2 + z̃3, ω4 := −z̃1 + z̃2, ω5 := z̃2, ω6 := z̃4,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω3

0
k̃1

 1− ω1

ω1 − ω2

ω6

 ,
 1− ω1 + ω5

ω1 − ω2 + ω4 − ω5

ω3 − ω4

 dω

ω1 := x̃1, ω2 := x̃1 − x̃2, ω3 := z̃4, ω4 := −z̃1 + z̃2 + z̃3, ω5 := −z̃1 + z̃2, ω6 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2

ω3

 ,
 1− ω1 + ω6

ω1 − ω2 + ω5 − ω6

ω4 − ω5

 dω
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Sub-domain D5 At first glance D5 is a little special, because the forking inequality chain behaves
differently,

0 ≤ z̃1 ≤ z̃1 − z̃2 ≤ x̃1 − x̃2 + z̃4 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1,

0 ≤ z̃3 ≤ z̃1 − z̃2 ≤ x̃1 − x̃2 + z̃4 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1.

The forking happens one link further as necessary. As we have seen in Lemma 8, this is not a problem.
Therefore, D5 does not need to be further refined and the procedure can be continued:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1 − z̃2, ω3 := x̃1 − x̃2 + z̃4, ω4 := z̃1 − z̃2, ω5 := z̃1, ω6 := z̃3,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω4

0
k̃1

 1− ω1 + ω5

ω1 − ω2 + ω4 − ω5

ω3 − ω4

 ,
 1− ω1

ω1 − ω2

ω6

 dω

Sub-domain D6 As we can see,

0 ≤ z̃1 ≤ z̃1 − z̃2 ≤ z̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1,

0 ≤ z̃1 ≤ z̃1 − z̃2 ≤ z̃1 − z̃2 + z̃4 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1,

D6 has to divided up in order to satisfy a matching forking inequality chain:

D6 :=



0 ≤ z̃1 ≤ 1
−1 + z̃1 ≤ z̃2 ≤ 0
z̃1 − z̃2 ≤ z̃3 ≤ 1

−z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3


∪



0 ≤ z̃1 ≤ 1
−1 + z̃1 ≤ z̃2 ≤ 0
z̃1 − z̃2 ≤ z̃3 ≤ z̃1 − z̃2 + z̃4

−z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ z̃4 ≤ x̃1 − x̃2


.

According to the inequality chains, a new set of variables ω ∈ R6 is introduced for each sub-domain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1 − z̃2, ω3 := z̃3, ω4 := z̃1 − z̃2 + z̃4, ω5 := z̃1 − z̃2, ω6 := z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1 + ω6

ω1 − ω2 + ω5 − ω6

ω4 − ω5

 ,
 1− ω1

ω1 − ω2

ω3

 dω,

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1 − z̃2, ω3 := z̃1 − z̃2 + z̃4, ω4 := z̃3, ω5 := z̃1 − z̃2, ω6 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1 + ω6

ω1 − ω2 + ω5 − ω6

ω3 − ω5

 ,
 1− ω1

ω1 − ω2

ω4

 dω.
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Sub-domain D7 For D7 we do not have to do anything, because a matching inequality chain
already exists,

0 ≤ z̃2 ≤ z̃2 + z̃3 ≤ z̃1 ≤ z̃4 + z̃1 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Thus a matching set of variables ω ∈ R6 can already be presented:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃1 + z̃4, ω4 := z̃1, ω5 := z̃2 + z̃3, ω6 := z̃2,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω4

ω1 − ω2

ω3 − ω4

 ,
 1− ω1

ω1 − ω2 + ω6

ω5 − ω6

 dω.

Sub-domain D8 Next we consider D8,

0 ≤ z̃2 ≤ z̃1 ≤ z̃2 + z̃3 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1,

0 ≤ z̃2 ≤ z̃1 ≤ z̃1 + z̃4 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1,

where again a split up is needed:

D8 =



0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ 1− z̃2
−z̃1 + z̃2 + z̃3 ≤ x̃1 ≤ 1− z̃1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3


∪



0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ z̃1 − z̃2 + z̃4
−z̃1 + z̃2 + z̃3 ≤ x̃1 ≤ 1− z̃1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2


.

Then we introduce the new set of variables matching the forking inequality chains:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃2 + z̃3, ω4 := z̃1 + z̃4, ω5 := z̃1, ω6 := z̃2,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω5

ω1 − ω2

ω4 − ω5

 ,
 1− ω1

ω1 − ω2 + ω6

ω3 − ω6

 dω

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃1 + z̃4, ω4 := z̃2 + z̃3, ω5 := z̃1, ω6 := z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω5

ω1 − ω2

ω3 − ω5

 ,
 1− ω1

ω1 − ω2 + ω6

ω4 − ω6

 dω

Sub-domain D9 The treatment of the last sub-domain is analogous to the treatment of D3. As
we can see,

0 ≤ z̃1 ≤ z̃2 ≤ z̃2 + z̃3 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1,

0 ≤ z̃1 ≤ z̃4 + z̃1 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1,
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there are two problems concerning the forking inequality chain. First, the chain splits up one link
to early and second, both chains are not independent of each other after the split up. To solve this
issue, D9 is divided up in two steps:

0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1
0 ≤ z̃3 ≤ 1− z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3


∪



0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1
0 ≤ z̃3 ≤ z̃1 + z̃4 − z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ x̃1 − x̃2


.

And then the first resulting sub-domain is split up again:

0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1
0 ≤ z̃3 ≤ 1− z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ −z̃1 + z̃2


∪



0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ z̃1 + z̃4
0 ≤ z̃3 ≤ 1− z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3


.

For each of these three domains we establish a new set of variables ω ∈ R6 according to the forking
inequality chains:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃2 + z̃3, ω4 := z̃2, ω5 := z̃1 + z̃4, ω6 := z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω6

ω1 − ω2

ω5 − ω6

 ,
 1− ω1

ω1 − ω2 + ω4

ω3 − ω4

 dω,

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃2 + z̃3, ω4 := z̃1 + z̃4, ω5 := z̃2, ω6 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω6

ω1 − ω2

ω4 − ω6

 ,
 1− ω1

ω1 − ω2 + ω5

ω3 − ω5

 dω,

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃1 + z̃4, ω4 := z̃2 + z̃3, ω5 := z̃1, ω6 := z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω6

ω1 − ω2

ω3 − ω6

 ,
 1− ω1

ω1 − ω2 + ω5

ω4 − ω5

 dω,

A.1.2. Two identical tetrahedra

Next, we consider the singularity case that the two tetrahedra are identical.
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A.1.2.1. Derivation of the integration domains
As in the case of a singularity along one side, also in the case that the two tetrahedra are identical, a
set described by min and max conditions arises by swapping the integration order, see Section 3.2.4:

D :=



−1 ≤ z̃1 ≤ 1
−1 + max{0, z̃1} ≤ z̃2 ≤ 1 + min{0, z̃1}

−1 + max{0, z̃1}+ max{0, −z̃2} ≤ z̃3 ≤ 1 + min{0, z̃1}+ min{0, −z̃2}
max{0, −z̃1, −z̃2, −z̃3,

−z̃2 − z̃3, z̃2 − z̃1, −z̃1 + z̃3, z̃2 − z̃1 + z̃3} ≤ x̃1 ≤ 1 + min{0, −z̃1}
max{0, −z̃2} ≤ x̃2 ≤ x̃1 + min{0, z̃1 − z̃2, z̃1 − z̃2 − z̃3}
max{0, −z̃3} ≤ x̃3 ≤ x̃1 − x̃2 + min{0, z̃1 − z̃2 − z̃3}


.

The first step here is to resolve the min and max conditions. The ideas are the same is in Appendix
A.1.1. Starting with

−1 ≤ z̃1 ≤ 0 and − 1 ≤ z̃2 ≤ z̃1,

the condition on z̃3 has to be divided into three parts to server the min and max conditions:

D1 :=



−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1

−1− z̃2 ≤ z̃3 ≤ 0
−z̃2 − z̃3 ≤ x̃1 ≤ 1

−z̃2 ≤ x̃2 ≤ x̃1
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2


, D2 :=



−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1
0 ≤ z̃3 ≤ z̃1 − z̃2

−z̃2 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1

0 ≤ x̃3 ≤ x̃1 − x̃2


,

and D3 :=



−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ 1 + z̃1
−z̃1 + z̃3 ≤ x̃1 ≤ 1

−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3


.

The next case being studied is z̃1 ≤ z̃2 ≤ 0. Here, three split ups are needed to get sub-domains with
a feasible representation:

D4 :=



−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0

−1− z̃2 ≤ z̃3 ≤ z̃1 − z̃2
−z̃2 − z̃3 ≤ x̃1 ≤ 1

−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2


, D5 :=



−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0

z̃1 − z̃2 ≤ z̃3 ≤ 0
−z̃1 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3



and D6 :=



−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0
0 ≤ z̃3 ≤ 1 + z̃1

−z̃1 + z̃3 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3


.
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Then we consider 0 ≤ z̃2 ≤ 1 + z̃1 and obtain:

D7 :=



−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1

−1 ≤ z̃3 ≤ z̃1 − z̃2
−z̃3 ≤ x̃1 ≤ 1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2


, D8 :=



−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1

z̃1 − z̃2 ≤ z̃3 ≤ 0
z̃2 − z̃1 ≤ x̃1 ≤ 1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3



and D9 :=



−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1
0 ≤ z̃3 ≤ 1 + z̃1 − z̃2

−z̃1 + z̃2 + z̃3 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3


.

The procedure for the case 0 ≤ z̃1 ≤ 1 is analog. In total we get the same amount of domains:

D10 :=



0 ≤ z̃1 ≤ 1
−1 + z̃1 ≤ z̃2 ≤ 0

−1 + z̃1 − z̃2 ≤ z̃3 ≤ 0
−z̃2 − z̃3 ≤ x̃1 ≤ 1− z̃1

−z̃2 ≤ x̃2 ≤ x̃1
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2


, D11 :=



0 ≤ z̃1 ≤ 1
−1 + z̃1 ≤ z̃2 ≤ 0

0 ≤ z̃3 ≤ z̃1 − z̃2
−z̃2 ≤ x̃1 ≤ 1− z̃1
−z̃2 ≤ x̃2 ≤ x̃1

0 ≤ x̃3 ≤ x̃1 − x̃2


,

D12 :=



0 ≤ z̃1 ≤ 1
−1 + z̃1 ≤ z̃2 ≤ 0
z̃1 − z̃2 ≤ z̃3 ≤ 1

−z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3

0 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3


, D13 :=



0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1

−1 + z̃1 ≤ z̃3 ≤ 0
−z̃3 ≤ x̃1 ≤ 1− z̃1

0 ≤ x̃2 ≤ x̃1
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2


,

D14 :=



0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1
0 ≤ z̃3 ≤ z̃1 − z̃2
0 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1
0 ≤ x̃3 ≤ x̃1 − x̃2


, D15 :=



0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1

z̃1 − z̃2 ≤ z̃3 ≤ 1− z̃2
z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3


,

D16 :=



0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1

−1 + z̃1 ≤ z̃3 ≤ z̃1 − z̃2
−z̃3 ≤ x̃1 ≤ 1− z̃1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2


, D17 :=



0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1

z̃1 − z̃2 ≤ z̃3 ≤ 0
z̃2 − z̃1 ≤ x̃1 ≤ 1− z̃1

0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
−z̃3 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3


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and D18 :=



0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1
0 ≤ z̃3 ≤ 1− z̃2

z̃2 − z̃1 + z̃3 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2 − z̃3
0 ≤ x̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 − z̃3


.

All in all, the domain D can now be described by 18 sub-domains, i.e.

D =
18⋃
i=1

Di.

A.1.2.2. Preparations for the non-linear transformation One advantage of this strongly structured
domain D is that every sub-domain Di satisfies already a forking inequality chain, which is suitable
for our approach. Since the procedure is always analogous for each sub-domain, we will abbreviate
the procedure and only state the results, i.e. the forking inequality chain and the new set of variables
ω ∈ R6 which reflect this ordering.

Sub-domain D1 Forking inequality chain:

0 ≤ −z̃1 ≤ −z̃2 ≤ −z̃2 − z̃3 ≤ −z̃2 + x̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃2 + x̃3, ω4 := −z̃2 − z̃3, ω5 := −z̃2, ω6 := −z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω5

ω3 − ω5

 ,
1− ω1 + ω6

ω1 − ω2

ω3 − ω4

 dω.

Sub-domain D2 Forking inequality chain:

0 ≤ −z̃1 ≤ −z̃1 + z̃3 ≤ −z̃2 ≤ x̃3 − z̃2 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := x̃3 − z̃2,
ω4 := −z̃2, ω5 := −z̃1 + z̃3, ω6 := −z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω4

ω3 − ω4

 ,
 1− ω1 + ω6

ω1 − ω2

ω3 − ω4 + ω5 − ω6

 dω.
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Sub-domain D3 Forking inequality chain:

0 ≤ −z̃1 ≤ −z̃2 ≤ −z̃1 + z̃3 ≤ x̃3 − z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := x̃3 − z̃1 + z̃3, ω4 := −z̃1 + z̃3, ω5 := −z̃2, ω6 := −z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω5

ω3 − ω4

 ,
1− ω1 + ω6

ω1 − ω2

ω3 − ω6

 dω.

Sub-domain D4 Forking inequality chain:

0 ≤ −z̃2 ≤ −z̃1 ≤ −z̃2 − z̃3 ≤ x̃3 − z̃2 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := x̃3 − z̃2, ω4 := −z̃2 + z̃3, ω5 := −z̃2, ω6 := −z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω6

ω3 − ω6

 ,
1− ω1 + ω5

ω1 − ω2

ω3 − ω4

 dω.

Sub-domain D5 Forking inequality chain:

0 ≤ −z̃2 ≤ −z̃2 − z̃3 ≤ −z̃1 ≤ x̃3 − z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := x̃3 − z̃1 + z̃3, ω4 := −z̃1, ω5 := −z̃2 − z̃3, ω6 := −z̃2,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω6

ω3 − ω4 + w5 − ω6

 ,
1− ω1 + ω4

ω1 − ω2

ω3 − ω4

 dω.

Sub-domain D6 Forking inequality chain:

0 ≤ −z̃2 ≤ −z̃1 ≤ −z̃1 + z̃3 ≤ x̃3 − z̃1 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := x̃3 − z̃1 + z̃3, ω4 := −z̃1 + z̃3, ω5 := −z̃1, ω6 := −z̃2,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2 + ω6

ω3 − ω4

 ,
1− ω1 + ω5

ω1 − ω2

ω3 − ω5

 dω.

116



A. Appendix: Duffy Transformation

Sub-domain D7 Forking inequality chain:

0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ −z̃3 ≤ x̃3 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2, ω3 := x̃3, ω4 := −z̃3, ω5 := −z̃1 + z̃2, ω6 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2

ω3

 ,
 1− ω1 + ω6

ω1 − ω2 + ω5 − ω6

ω3 − ω4

 dω.

Sub-domain D8 Forking inequality chain:

0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ x̃3 − z̃1 + z̃2 + z̃3 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1,

0 ≤ −z̃3 ≤ −z̃1 + z̃2 ≤ x̃3 − z̃1 + z̃2 + z̃3 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2, ω3 := x̃3 − z̃1 + z̃2 + z̃3, ω4 := −z̃1 + z̃2, ω5 := −z̃3, ω6 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω4

0
k̃1

 1− ω1

ω1 − ω2

ω3 − ω4 + ω5

 ,
 1− ω1 + ω6

ω1 − ω2 + ω4 − ω6

ω3 − ω4

 dω.

Sub-domain D9 Forking inequality chain:

0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ −z̃1 + z̃2 + z̃3 ≤ x̃3 − z̃1 + z̃2 + z̃3 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1, ω2 := x̃1 − x̃2, ω3 := x̃3 − z̃1 + z̃2 + z̃3, ω4 := −z̃1 + z̃2 + z̃3, ω5 := −z̃1 + z̃2, ω6 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1

ω1 − ω2

ω3 − ω4

 ,
 1− ω1 + ω6

ω1 − ω2 + ω5 − ω6

ω3 − ω5

 dω.

Sub-domain D10 Forking inequality chain:

0 ≤ z̃1 ≤ z̃1 − z̃2 ≤ z̃1 − z̃2 − z̃3 ≤ x̃3 + z̃1 − z̃2 − z̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1+ z̃1, ω2 := x̃1−x̃2+ z̃1− z̃2, ω3 := x̃3+ z̃1− z̃2− z̃3, ω4 := z̃1− z̃2− z̃3, ω5 := z̃1− z̃2, ω6 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1 + ω6

ω1 − ω2 + ω5 − ω6

ω3 − ω5

 ,
 1− ω1

ω1 − ω2

ω3 − ω4

 dω.
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Sub-domain D11 Forking inequality chain:

0 ≤ z̃1 ≤ z̃1 − z̃2 ≤ x̃3 + z̃1 − z̃2 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1,

0 ≤ z̃3 ≤ z̃1 − z̃2 ≤ x̃3 + z̃1 − z̃2 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1 − z̃2, ω3 := x̃3 + z̃1 − z̃2, ω4 := z̃1 − z̃2, ω5 := z̃3, ω6 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω4

0
k̃1

 1− ω1 + ω6

ω1 − ω2 + ω4 − ω6

ω3 − ω4

 ,
 1− ω1

ω1 − ω2

ω3 − ω4 + ω5

 dω.

Sub-domain D12 Forking inequality chain:

0 ≤ z̃1 ≤ z̃1 − z̃2 ≤ z̃3 ≤ x̃3 + z̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1 − z̃2, ω3 := x̃3 + z̃3, ω4 := z̃3, ω5 := z̃1 − z̃2, ω6 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1 + ω6

ω1 − ω2 + ω5 − ω6

ω3 − ω4

 ,
 1− ω1

ω1 − ω2

ω3

 dω.

Sub-domain D13 Forking inequality chain:

0 ≤ z̃2 ≤ z̃1 ≤ z̃1 − z̃3 ≤ x̃3 + z̃1 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := x̃3 + z̃1, ω4 := z̃1 − z̃3, ω5 := z̃1, ω6 := z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω5

ω1 − ω2

ω3 − ω5

 ,
 1− ω1

ω1 − ω2 + ω6

ω3 − ω4

 dω.

Sub-domain D14 Forking inequality chain:

0 ≤ z̃2 ≤ z̃2 + z̃3 ≤ z̃1 ≤ x̃3 + z̃1 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := x̃3 + z̃1, ω4 := z̃1, ω5 := z̃2 + z̃3, ω6 := z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω4

ω1 − ω2

ω3 − ω4

 ,
 1− ω1

ω1 − ω2 + ω6

ω3 − ω4 + ω5 − ω6

 dω.
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Sub-domain D15 Forking inequality chain:

0 ≤ z̃2 ≤ z̃1 ≤ z̃2 + z̃3 ≤ x̃3 + z̃2 + z̃3 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := x̃3 + z̃2 + z̃3, ω4 := z̃2 + z̃3, ω5 := z̃1, ω6 := z̃2,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω5

ω1 − ω2

ω3 − ω4

 ,
 1− ω1

ω1 − ω2 + ω6

ω3 − ω6

 dω.

Sub-domain D16 Forking inequality chain:

0 ≤ z̃1 ≤ z̃2 ≤ z̃1 − z̃3 ≤ x̃3 + z̃1 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := x̃3 + z̃1, ω4 := z̃1 − z̃3, ω5 := z̃2, ω6 := z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω6

ω1 − ω2

ω3 − ω6

 ,
 1− ω1

ω1 − ω2 + ω5

ω3 − ω4

 dω.

Sub-domain D17 Forking inequality chain:

0 ≤ z̃1 ≤ z̃1 − z̃3 ≤ z̃2 ≤ x̃3 + z̃2 + z̃3 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := x̃3 + z̃2 + z̃3, ω4 := z̃2, ω5 := z̃1 − z̃3, ω6 := z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

 1− ω1 + ω6

ω1 − ω2

ω3 − ω4 + ω5 − ω6

 ,
 1− ω1

ω1 − ω2 + ω4

ω3 − ω4

 dω.

Sub-domain D18 Forking inequality chain:

0 ≤ z̃1 ≤ z̃2 ≤ z̃2 + z̃3 ≤ x̃3 + z̃2 + z̃3 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Introduction of a new set of variables ω ∈ R6 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := x̃3 + z̃2 + z̃3, ω4 := z̃2 + z̃3, ω5 := z̃2, ω6 := z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0

∫ ω5

0
k̃1

1− ω1 + ω6

ω1 − ω2

ω3 − ω4

 ,
 1− ω1

ω1 − ω2 + ω5

ω3 − ω5

 dω.
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A.2. Interaction between a tetrahedron and a panel

This section is dedicated to the singularity removal regarding the interaction between a tetrahedron
and a panel. Similar to Section A.2.1 we explain the the missing steps of the Duffy transformation
which were omitted in Section 3.3.

A.2.1. Point singularity

First, we start with the point singularity. Following the approach of Section 3.2.1, the integration
domain is considered as a set of inequalities and rewriting:

0 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ 1− x̃1
0 ≤ x̃3 ≤ 1− x̃1 − x̃2
0 ≤ ỹ1 ≤ 1
0 ≤ z̃5 ≤ 1− ỹ1

⇔


0 ≤ x̃1 ≤ 1
x̃1 ≤ x̃1 + x̃2 ≤ 1

x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ 1
0 ≤ ỹ1 ≤ 1
ỹ1 ≤ ỹ1 + z̃5 ≤ 1

 .

To guarantee a suitable forking inequality chain, the set is split up in the same way as (28):
0 ≤ x̃1 ≤ 1
x̃1 ≤ x̃1 + x̃2 ≤ 1

x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ 1
0 ≤ ỹ1 ≤ 1
ỹ1 ≤ ỹ1 + z̃5 ≤ x̃1 + x̃2 + x̃3

 ∪


0 ≤ ỹ1 ≤ 1
ỹ1 ≤ ỹ1 + z̃5 ≤ 1
0 ≤ x̃1 ≤ 1
x̃1 ≤ x̃1 + x̃2 ≤ 1

x̃1 + x̃2 ≤ x̃1 + x̃2 + x̃3 ≤ ỹ1 + z̃5

 .

Hence, we obtain two domains and for each of them a new set of variables ω ∈ R5 is introduced
satisfying a forking inequality chain:

• domain I:

ω1 := z̃1 + z̃2 + z̃3, ω2 := z̃1 + z̃2, ω3 := z̃1, ω4 := z̃4 + z̃5, ω5 := z̃5,

∫ 1

0

∫ w1

0

∫ w2

0

∫ w1

0

∫ w4

0
k̃2

 ω3

ω2 − ω3

ω1 − ω2

 , [ ω5

ω4 − ω5

] dω.

• domain II:

ω1 := z̃4 + z̃5, ω2 := z̃5, ω3 := z̃1 + z̃2 + z̃3, ω4 := z̃1 + z̃2, ω5 := z̃1,

∫ 1

0

∫ w1

0

∫ w1

0

∫ w3

0

∫ w4

0
k̃2

 ω5

ω4 − ω5

ω3 − ω4

 , [ ω2

ω1 − ω2

] dω.
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A.2.2. Singularity along an edge

Next, the singularity along an edge is considered. As presented in Section 3.3.2 the integration domain
is separated into two parts:

0 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1
0 ≤ x̃3 ≤ x̃1 − x̃2
0 ≤ ỹ1 ≤ x̃1
0 ≤ ỹ2 ≤ ỹ1

 ∪


0 ≤ ỹ1 ≤ 1
0 ≤ ỹ2 ≤ ỹ1
0 ≤ x̃1 ≤ ỹ1
0 ≤ x̃2 ≤ x̃1
0 ≤ x̃3 ≤ x̃1 − x̃2

 .

For each part we introduce local coordinates z̃ ∈ R4,

z̃1 = ỹ1 − x̃1, z̃2 = ỹ2, z̃3 = x̃2, z̃4 = x̃3 and
z̃1 = x̃1 − ỹ1, z̃2 = x̃2, z̃3 = x̃3, z̃4 = ỹ2,

to describe the singularity as point singularity at the origin:
0 ≤ x̃1 ≤ 1
0 ≤ z̃3 ≤ x̃1
0 ≤ z̃4 ≤ x̃1 − z̃3

−x̃1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ x̃1 + z1

 ∪


0 ≤ ỹ1 ≤ 1
0 ≤ z̃4 ≤ ỹ1

−ỹ1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ ỹ1 + z̃1
0 ≤ z̃3 ≤ ỹ1 + z̃1 − z̃2

 .

The next step is to check for each sub-domain if it satisfies a forking inequality chain, which satisfies
the requirements of our approach. Starting with the first one, we obtain:

0 ≤ z̃3 ≤ z̃3 + z̃4 ≤ x̃1 und 0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ x̃1.

Since the forking happens one link to early, the domain has to be split up:
0 ≤ x̃1 ≤ 1
0 ≤ z̃3 ≤ x̃1
0 ≤ z̃4 ≤ x̃1 − z̃3

−x̃1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ z̃1 + z̃3 + z̃4

 ∪


0 ≤ x̃1 ≤ 1
0 ≤ z̃3 ≤ x̃1
0 ≤ z̃4 ≤ −z̃1 + z̃2 − z̃3

−x̃1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ x̃1 + z̃1

 .

These two domains satisfy each a suitable forking inequality chain. Therefore, we can introduce now
a new set of variables ω ∈ R5 corresponding to these inequality chains:

ω1 := x̃1, ω2 := z̃3 + z̃4, ω3 := z̃3, ω4 := −z̃1 + z̃2, ω5 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω2

0

∫ ω4

0
k̃2

 1− ω1

ω3

ω2 − ω3

 , [1− ω1 + ω5

ω4 − ω5

] dω

and
ω1 := x̃1, ω2 := z̃1 − z̃2, ω3 := −z̃1, ω4 := z̃3 + z̃4, ω5 := z̃3,
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1∫
0

∫ ω1

0

∫ ω2

0

∫ ω2

0

∫ ω4

0
k̃2

 1− ω1

ω5

ω4 − ω5

 , [1− ω1 + ω3

ω2 − ω3

] dω.

For the second domain the approach is analogous. First, we investigate whether the domain satisfies
a suitable forking inequality chain or not:

0 ≤ z̃4 ≤ ỹ1 und 0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ −z̃1 + z̃2 + z̃3 ≤ ỹ1.

Here, we have the same issue as with the first sub-domain, the chain splits up one link to early. In
order to solve this, the domain gets subdivided:

0 ≤ ỹ1 ≤ 1
0 ≤ z̃4 ≤ ỹ1

−ỹ1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ ỹ1 + z̃1
0 ≤ z̃3 ≤ z̃4 + z̃1 − z̃2

 ∪


0 ≤ ỹ1 ≤ 1
0 ≤ z̃4 ≤ −z̃1 + z̃2 + z̃3

−ỹ1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ ỹ1 + z̃1
0 ≤ z̃3 ≤ ỹ1 + z̃1 − z̃2

 .

Since these sub-domains satisfy a suitable forking inequality chain, a new set of variables ω ∈ R5

corresponding to this inequality chains can be presented:

ω1 := ỹ1, ω2 := z̃4, ω3 := −z̃1 + z̃2 + z̃3, ω4 := −z̃1 + z̃2, ω5 := −z̃1,

∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

1− ω1 + ω5

ω4 − ω5

ω3 − ω4

 , [1− ω1

ω2

] dω

ω1 := ỹ1, ω2 := −z̃1 + z̃2 + z̃3, ω3 := z̃4, ω4 := −z̃1 + z̃2, ω5 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω2

0

∫ ω4

0
k̃2

1− ω1 + ω5

ω4 − ω5

ω2 − ω4

 , [1− ω1

ω3

] dω.

A.2.3. Singularity on a face

A.2.3.1. Derivation of the integration domains The approach is similar as to the approaches in
Appendices A.1.1 and A.1.2. The main difference is that here only five variables appear. After
introducing local coordinates to describe the singularity as a three-dimensional point singularity and
interchanging the integration order, we obtain the set

D :=


−1 ≤ z̃1 ≤ 1

−1 + max{0, z̃1} ≤ z̃2 ≤ 1 + min{0, z̃1}
max{0, −z̃1, −z̃2, z̃2 − z̃1} ≤ x̃1 ≤ min{1, 1− z̃1}

max{0, −z̃2} ≤ x̃2 ≤ x̃1 + min{0, z̃1 − z̃2}
0 ≤ z̃3 ≤ x̃1 − x̃2

 .

The next steps are to solve the min and max conditions. We start with the case −1 ≤ z̃1 ≤ 0
and choose z̃2 so that the min and max conditions can be resolved. By doing so, we obtain three
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sub-domains:

D1 :=


−1 ≤ z̃1 ≤ 0
−1 ≤ z̃2 ≤ z̃1
−z̃2 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1

0 ≤ z̃3 ≤ x̃1 − x̃2

 , D2 :=


−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0

−z̃1 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2

0 ≤ z̃3 ≤ x̃1 − x̃2



and D3 :=


−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1

−z1 + z2 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
0 ≤ z̃3 ≤ x̃1 − x̃2

 .

The procedure is repeated for the case 0 ≤ z̃1 ≤ 1, which leads to:

D4 :=


0 ≤ z̃1 ≤ 1

−1 + z̃1 ≤ z̃2 ≤ 0
−z̃2 ≤ x̃1 ≤ 1− z1
−z̃2 ≤ x̃2 ≤ x̃1

0 ≤ z̃3 ≤ x̃1 − x̃2

 , D5 :=


0 ≤ z̃1 ≤ 1
0 ≤ z̃2 ≤ z̃1
0 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1
0 ≤ z̃3 ≤ x̃1 − x̃2

 ,

and D6 :=


0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1

−z̃1 + z̃2 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
0 ≤ z̃3 ≤ x̃1 − x̃2

 .

All in all, the min and max conditions can be resolved, by splitting up D into six sub-domains:

D =
6⋃

i=1

Di.

A.2.3.2. Preparations for the non-linear transformation The next step is to check, if each sub-
domain satisfies a suitable forking inequality chain, i.e. the split up happens after the third link and
only the first and second link may depend on the components of x̃. These are necessary requirements
to lift the singularity.

Sub-domain D1 For D1 we even get only one inequality chain,

0 ≤ −z̃1 ≤ −z̃2 ≤ −z̃2 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

which is sufficient for our purpose. Then a new set of variables ω ∈ R5 is introduced to represent this
ordering:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃2 + z̃3, ω4 := −z̃2, ω5 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃1

 1− ω1

ω1 − ω2 + ω4

ω3 − ω4

 , [1− ω1 + ω5

ω1 − ω2

] dω.
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Sub-domain D2 The treatment of D2 is a little bit more elaborate, since the forking inequality
chain,

0 ≤ −z̃2 ≤ −z̃1 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

0 ≤ −z̃2 ≤ −z̃2 + z̃3 ≤ x̃1 − x̃2 − z̃2 ≤ x̃1 ≤ 1,

does not fulfill our requirements. Therefore, an additional split up of this region is needed:

D2 =


−1 ≤ z̃1 ≤ 0
z̃1 ≤ z̃2 ≤ 0

−z̃1 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2

0 ≤ z̃3 ≤ −z̃1 + z̃2

 ∪


z̃2 − z̃3 ≤ z̃1 ≤ 0

z̃1 ≤ z̃2 ≤ 0
−z̃1 ≤ x̃1 ≤ 1
−z̃2 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2

0 ≤ z̃3 ≤ x̃1 − x̃2

 .

This allows us to introduce a new set of variables ω ∈ R5:

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃1, ω4 := −z̃2 + z̃3, ω5 := −z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

 1− ω1

ω1 − ω2 + ω5

ω4 − ω5

 , [1− ω1 + ω3

ω1 − ω2

] dω,

ω1 := x̃1, ω2 := x̃1 − x̃2 − z̃2, ω3 := −z̃2 + z̃3, ω4 := −z̃1, ω5 := −z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

 1− ω1

ω1 − ω2 + ω5

ω3 − ω5

 , [1− ω1 + ω4

ω1 − ω2

] dω.

Sub-domain D3 By taking a closer look at D3,

0 ≤ −z̃1 ≤ −z̃1 + z̃2 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1

0 ≤ z̃3 ≤ x̃1 − x̃2 ≤ x̃1 ≤ 1

we see that we have the same issue as with D2, which is solved in the same way:

D3 =


−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ 1 + z̃1

−z̃1 + z̃2 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
0 ≤ z̃3 ≤ −z̃1 + z̃2

 ∪


−1 ≤ z̃1 ≤ 0
0 ≤ z̃2 ≤ z̃1 + z̃3

−z̃1 + z̃2 ≤ x̃1 ≤ 1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
0 ≤ z̃3 ≤ x̃1 − x̃2

 .

The next step is to introduce a new set of variables ω ∈ R5 corresponding to the forking inequality
chains:

ω1 := x̃1, ω2 := x̃1 − x̃2, ω3 := −z̃1 + z̃2, ω4 := −z̃1, ω5 := z̃3,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω3

0
k̃2

 1− ω1

ω1 − ω2

ω5

 , [ 1− ω1 + ω4

ω1 − ω2 + ω3 − ω4

] dω,

ω1 := x̃1, ω2 := x̃1 − x̃2, ω3 := z̃3, ω4 := −z̃1 + z̃2, ω5 := −z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

 1− ω1

ω1 − ω2

ω3

 , [ 1− ω1 + ω5

ω1 − ω2 + ω4 − ω5

] dω.
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A. Appendix: Duffy Transformation

Sub-domain D4 For D4 the approach is straight forward, since there already exists a suitable
inequality chain:

0 ≤ z̃1 ≤ z̃1 − z̃2 ≤ z̃1 − z̃2 + z̃3 ≤ x̃1 − x̃2 + z̃1 − z̃2 ≤ x̃1 + z̃1 ≤ 1.

Therefore, we can introduce a new set of variables ω ∈ R5 matching the inequality chain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1 − z̃2, ω3 := z̃1 − z̃2 + z̃3, ω4 := z̃1 − z̃2, ω5 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

 1− ω1 + ω5

ω1 − ω2 + ω4 − ω5

ω3 − ω4

 , [ 1− ω1

ω1 − ω2

] dω.

Sub-domain D5 The treatment of D5 is analog to the treatment of D4, since we have here one
suitable inequality chain:

0 ≤ z̃2 ≤ z̃1 ≤ z̃1 + z̃3 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

This one is used to introduce a new set of variables ω ∈ R5:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃1 + z̃3, ω4 := z̃1, ω5 := z̃2,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

1− ω1 + ω4

ω1 − ω2

ω3 − ω4

 , [ 1− ω1

ω1 − ω2 + ω5

] dω.

Sub-domain D6 The last sub-domain is similar to D2, since an additional split up of D6 is
necessary. This is, because the forking inequality chain is not suitable to our approach:

0 ≤ z̃1 ≤ z̃2 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1

0 ≤ z̃1 ≤ z̃1 + z̃3 ≤ x̃1 − x̃2 + z̃1 ≤ x̃1 + z̃1 ≤ 1.

Resolve this issue, D6 is subdivided:

D6 =


0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ 1

−z̃1 + z̃2 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
0 ≤ z̃3 ≤ −z̃1 + z̃2

 ∪


0 ≤ z̃1 ≤ 1
z̃1 ≤ z̃2 ≤ z̃1 + z̃3

−z̃1 + z̃2 ≤ x̃1 ≤ 1− z̃1
0 ≤ x̃2 ≤ x̃1 + z̃1 − z̃2
0 ≤ z̃3 ≤ x̃1 − x̃2

 .

Following this new ordering we introduce a new set of variables ω ∈ R5 for each sub-domain:

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃2, ω4 := z̃1 + z̃3, ω5 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

1− ω1 + ω5

ω1 − ω2

ω4 − ω5

 , [ 1− ω1

ω1 − ω2 + ω3

] dω,

ω1 := x̃1 + z̃1, ω2 := x̃1 − x̃2 + z̃1, ω3 := z̃1 + z̃3, ω4 := z̃2, ω5 := z̃1,∫ 1

0

∫ ω1

0

∫ ω2

0

∫ ω3

0

∫ ω4

0
k̃2

1− ω1 + ω5

ω1 − ω2

ω3 − ω5

 , [ 1− ω1

ω1 − ω2 + ω4

] dω.
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