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1. Introduction

Batteries are a key enabler for the transition from a fossil
fuel-driven to a sustainable society with mainly renewable energy
sources.[1] In particular, for electric vehicles (EV) and stationary
battery energy storage systems (BESS), batteries are needed. As
the production of batteries is an energy-intensive process and
often relies on rare raw materials, it is important to expand
the use-phase of the battery system.[2,3] This can be achieved
by anticipating potentially harmful operating conditions to miti-
gate degradation and failure and by enabling a appropriate sec-
ond use-phase, for example, reusing an automotive battery
system as an electrical storage system for renewable energy.[2]

Here, the battery management system (BMS) plays a major role.
The BMS should enable an accurate estimation of battery state of
charge (SOC) and state of health (SOH) and utilize models,
which predict the remaining useful life (RUL) and power
capability.[4,5]Advancements in battery management are of partic-
ular importance, considering the manifold challenging operating
conditions such as highly dynamic and irregular load in EVs,[6]

vehicle-to-grid applications,[7,8] fast charging,[9] or variation of
patterns in environmental conditions due to seasonal and
regional differences[10] that a battery faces in the field. Under

such conditions, an estimation of RUL and
power capability is associated with significant
uncertainty, which needs to be addressed.

One cause for uncertainty is that the
behavior of batteries under real operating
conditions is often significantly different
compared with idealized laboratory experi-
ments.[6] Batteries are complex systems,
where single processes cannot usually be
superimposed to describe the overall sys-
tem behavior. Instead, understanding
interplay and interaction across scales
and physical domains is needed.[11] The
system complexity can manifest in various

phenomena, for example, path dependency of battery aging,[12]

path dependency of power capability,[13] voltage hysteresis,[14]

or memory effects.[15] In these examples, the future trajectory
of the systems seems to depend on the history of operation.
Despite the relevance of these phenomena for BMS advance-
ment, they are currently often neglected. The main problem is
that appropriate test procedures, modeling approaches, and anal-
ysis methods are not established and rarely combined systemati-
cally. Moreover, many of the observed phenomena have similar
challenges; thus, many concepts, modeling approaches, and
characterization methods could be transferred. This is currently
impeded because these similarities are often not recognized.

The goal of this article is to review the research that has been
done in the field of path dependency of batteries within the past
decades. The review discusses path dependency of battery aging,
which recently has attracted lot of attention, as well as short- and
mid-term path-dependency phenomena, which were studied ear-
lier, but will be also highly important for next-generation battery
materials. The article aims to set a basis for a common method-
ology for both areas. The article discusses applied methods,
identifies similarities between various phenomena, points out,
and discusses promising modeling approaches.

The article does not aim to summarize battery management
methods that focus on other concerns besides path dependency.
Therefore, a comprehensive and comparative analysis of the dif-
ferent algorithms for battery management, for example, state
estimation, is not within the scope of this review, but can be
found elsewhere. Barillas et al.[16] performed a comparative study
of different state prediction algorithms for lithium-ion batteries.
Wang et al.[17] provided a comprehensive review of different bat-
tery modeling and state estimation approaches. Recently, Wang
et al.[18] also provided a review on digital twins and cloud-based
BMSs that could prove to be a useful tool in using more complex
and resource-heavy algorithms for battery state prediction. In
contrast to these reviews, this article specifically focuses on
the implications of path dependency for battery operation and
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Reliability of battery state estimation and lifetime prediction is essential to
develop operation strategies that improve lifetime, safety, and sustainability.
However, this is difficult, because of complex phenomena such as path
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hysteresis, or memory effects. Herein, these phenomena as well as test protocols,
models, and analysis methods being frequently applied in this context are
reviewed. The discussion indicates that insights into path dependency are of
great importance to understand battery operation under realistic conditions.
Challenges and possible future research directions are outlined.
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model based predictions, which is to our best knowledge
currently not available. Moreover, the article aims to provide
an overview and a first intuitive understanding of the underlying
causes for path dependency by depicting the explanation models
discussed in literature. However, we note that the overview is
neither conclusive nor comprehensive with respect to a mecha-
nistic understanding, because mechanisms are in many cases
still under scientific debate.

In Section 2, the path dependency of lithium-ion battery aging
is addressed. Afterward, in Section 3, phenomena of short- and
mid-term path dependency are reviewed and discussed. The
major difference is that path dependency of aging is permanent,
while path dependency discussed in Section 3 usually vanish or
can be recovered. Finally, in Section 4, challenges and possible
future research directions are outlined and discussed.

2. Path Dependency of Lithium-Ion Battery Aging

Capacity and power capability of a battery changes over its life-
time. These changes need to be anticipated for optimal operation
of the system. Thus, SOH estimation and RUL prediction are
essential functions of the BMS. Therefore, a considerable effort
is made to characterize battery aging in laboratory experiments.
Unfortunately, real-world applications have irregular cycling pat-
terns that yield path-dependent behavior, which make predic-
tions based on laboratory experiments difficult.[6] Figure 1
illustrates different levels of abstraction for characterization of
battery operation, which go from static tests with a high level
of abstraction up to collection of real field data. The behavior
under real conditions is often far from that in laboratory
environments.[19]

In this section, the current status of research in the field of
path dependency of lithium-ion battery aging is reviewed.
First, basic definitions are provided. Second, various test strate-
gies and in particular dynamic battery aging tests are reviewed.
Third, characterization methods for degradation pathways are
depicted. After that, the current status of understanding

path-dependent aging behavior is given. Finally, attempts to
cover path dependency in aging models are summarized.

2.1. Definitions

In general, a degradation path could be defined as the trajectory
of the battery SOH, for example, the relative resistance, through
time.[20] Thus, different degradation paths could be distin-
guished, for example, by different slopes of the relative resis-
tance. A degradation path could be also differentiated the
usage schedule, that is, the sequence of operation conditions,
or by the observed degradation processes, that is, degradation
modes.[21] As shown, there are various possibilities to define a deg-
radation path. Two approaches to differentiate the path are
depicted. 1) The observed processes, for example, degradation pro-
cesses and 2) the slope of the observed state, for example, SOH.

The usage schedule itself is rather the cause for different paths
and is therefore not a sufficient condition to differentiate paths.

Definitions and wording used to define path dependence are
not always fully consistent. For instance, Su et al.[22] stated that
path dependence means the effect of the past on current perfor-
mance, while memory effect means impact of path on future evo-
lution of the performance. Karger et al.[23] related the definition
of path dependence to whether the future degradation can be
explained by the current state. For the following discussion,
we define three levels of path dependencies (PD I-III): [leftmar-
gin¼ 4em]. 1) PD I: The path depends on the usage schedule.
2) PD II: State change depends on the sequence of conditions
within a usage schedule and not just on the cumulative condi-
tions. 3) PD III: The future path depends on the history of
the path and cannot be explained by the present state alone.

In the following sections, these definitions are elaborated in
more detail in the context of battery degradation. PD I depicts
that the usage schedule of the battery does have an impact on
the observed degradation processes or the slope of the SOH.
For instance, if battery cells show different degradation processes
or a different slope of the SOH for different temperatures, this
fulfills PD I. The definition PD II further depicts that not only the
cumulative conditions that appeared in the past impacts the state
change, for example, the final SOH, but also their chronological
sequence. For instance, the PD II is fulfilled, if the final SOH
of a cell aged first at hot temperatures and afterward at cold temper-
atures is different as compared with being aged first at cold temper-
atures and afterward at hot temperatures. The definition PD III
depicts that for two cells with the same state, for example, same
SOH, the future trajectory will depend on how this state was
reached. In this case, the SOH is not sufficient to predict the future
trajectory, but instead the history of the degradation path needs to
be taken into account. In general, definitions at lower levels are
included within higher-level definitions, for example, PD III
includes PD I and PD II. As can be depicted from this discussion,
whether the degradation is path dependent or not depends on the
definition of a degradation path and path dependency.

2.2. Dynamic Battery Aging Tests

The overwhelming majority of laboratory experiments are static
aging tests.[24–26] In a static test, the stress condition is kept

static test
constant stress
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dynamic test
time variant 

stress pattern
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Figure 1. Illustration of different levels of abstractions for characterization
of battery operation. It is depicted that from high level of abstraction, for
example, static tests, to real operating profiles, the number of possible
variation increases. Further, it is shown that models are usually derived
at a higher level of abstraction and validated with more realistic data, while
many modeling validation cycles are possible.
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constant during the aging experiment. An example is a cyclic
aging test with fixed c-rate and temperature. By varying a single
influencing stress condition, for example, the temperature, its
isolated impact can be revealed. As an example for a very broad
test matrix that studies the impact of several stress conditions
using static tests, the study of de Hoog et al.[26] can be
highlighted. The advantage of a static test is that the impact
of particular stress condition on the battery aging can be observed
directly. Further, on the basis of such studies, degradation
models can be derived.[27] However, it is uncertain if models
being identified at these idealized aging conditions provide
good estimates under realistic aging conditions. Therefore,
Schmalstieg et al.[27] validated the derived aging models based
on synthetic driving profiles, which showed a good agreement
for cell capacity. However, deviations with respect to cell
resistance were observed. This approach is depicted in
Figure 1. It is shown that tests with high level of abstraction
are used to derive models being validated at tests under more
realistic conditions.

In the review of Sulzer et al.,[6] the need to combine laboratory
tests and field data to achieve better predictions is emphasized.
They suggest to supplement static laboratory tests by real-world
data to take path dependency in case of irregular cycling patterns
into account. Baure et al.[28] raised the question of whether exper-
imental data can replace real world data. They investigated if syn-
thetic driving profiles are representative for real driving
cycles. They found that the average current and charge capacity
during discharge are important parameters and should be
used to determine adequate synthetic profiles. This shows that

there is a need to identify important features of real profiles
to derive adequate synthetic profiles being testable in laboratory
environments.

As discussed earlier, it is well known that static tests often do
not cover the complexity of battery aging sufficiently. An attempt
to make laboratory tests more realistic is to include variation of
the stress factors over time in dynamic tests.[29–31] For this type of
test, various names are used, for example, “dynamic test,”[29]

“time-dependent conditions,”[30] or “transient conditions.”[31] A
selection of dynamic tests is shown in Figure 2. The typical goal
of a dynamic test is to investigate whether the sequence of stress
factors does have an impact on the degradation and sometimes
this is directly related to the question of whether there is path
dependency. If the sequence of stress conditions impacts the
defined metric for battery aging (e.g., capacity, internal resis-
tance), it is usually seen as proof for path dependency. In the
following sections, an overview of research using dynamic tests
is given.

In Figure 2a, different scenarios for pulse sequences are
shown. This sequence variations were used by Gering et al.[32]

to investigate path dependency. The applied scenarios were
designed to include a variation of the magnitude of the applied
constant power pulses, while also ensuring equal cumulative dis-
charge energies for all scenarios. They also presented initial
results of a second study, which includes temperature cycles with
isothermal conditions and transient temperature changes. This
study was perused later and published by Dubarry et al.[34]

Werner et al.[31] also performed aging experiments with temper-
ature variation over time and space. For the latter the aging could

Figure 2. Dynamic battery aging tests for a) variation of pulse sequences. Reproduced with permission.[32] Copyright 2011, Elsevier. b) Simultaneous
variation of DOD and c-rate. Reproduced with permission.[33] Copyright 2015, Elsevier. c) Variation of sequence of calendar and cycling aging conditions
with d) corresponding capacity fade over time. Reproduced under terms of the CC-BY license.[12] Copyright 2020, The Authors, published by Wiley-VCH.
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be characterized using the average temperature. In contrast, for
the variation over time, significantly different aging behavior’s
were observed for equal average temperatures. Su et al.[22] used
static and dynamic aging tests for temperature and SOC
variations. They applied a statistical method, that is, analysis
of variance (ANOVA), to investigate the path dependency in con-
sideration of aging uncertainty. ANOVA is a statistical method
that can be used to compare the means of two different groups.
For testing path dependency, one group can be cells that undergo
the same sequences during aging and the other can be the cells
that undergo different sequences. The method reveals whether
the impact of sequence variation is statistically significant com-
pared with differences caused by cell-to-cell variations. Here, no
significant impact of temperature variation was observed. For
SOC variations, no impact on capacity but a significant impact
on resistance was shown and assigned to a change of the diffu-
sion resistance. Based on their results, they concluded that in this
example, capacity fade is a memoryless effect. This confirmed the
results of Sarasketa-Zabala et al.,[29] who also investigated the
effect of aging sequences of temperature and SOC in calendar
aging tests. Here, aging models were parameterized using static
aging conditions and validated with dynamic aging tests. Since
they observed low prediction errors in the validation, they con-
cluded that the aging sequence plays a minor role. The same
authors also investigated the impact of sequence variations in
dynamic cycling aging tests.[33] An example aging sequence is
shown in Figure 2b. Here, variation of depth of discharge
(DOD) and c-rate are superimposed. Again, models were first
parameterized using static tests and afterward validated with
dynamic tests. They observed that cell aging was lower under
dynamic aging conditions than it was expected to be based on
the static aging tests. Therefore, they suggested stepwise valida-
tion using various combinations of dynamic tests. They empha-
sized that there is a need to check if sequences matter. Recently,
Raj et al.[12] investigated calendar and cycling aging in dynamic
tests. They investigated aging for four different groups. Applied
sequences are shown in Figure 2c. Capacity fade for the investi-
gated cells is shown in Figure 2d. The results show that in case of
higher c-rates, that is, C/2, the aging sequences significantly
influences capacity fade, which indicates path-dependent battery
aging. Dynamic tests using six different aging conditions were
applied by Karger et al.[23] Their study included variations of
temperature, mean SOC, DOD, and c-rate. They compared
two different methods, that is, cumulative charge throughput
and current capacity, for aging modeling. For cycling tests they
observed noncumulative capacity fade and labeled that as path
dependence through sequence dependence, which is in accor-
dance to other studies and uses definition PD II. However, as
this noncumulative behavior can be explained using the current
capacity method, they concluded that the capacity fade is not path
dependent (PD III). This indicates that definitions of path depen-
dence used in literature are not always consistent. Compared
with previous examples, rather complicated duty cycles were
investigated by Dubarry et al.[21] They investigated the sequence
of two duty cycles of a electrical vehicle battery under grid opera-
tion. In total, they studied 12 duty cycle combinations. They
concluded that path dependency only occurs with higher c-rates.

To sum up, it is well known that static tests often oversimplify
battery aging, which yields errors in battery lifetime prediction.

A systematic way to introduce more realistic conditions is a
dynamic test. They allow to assess path dependency of the aging
process. Studies mostly focused on two or three different aging
conditions and investigated the impact of the sequence of these
conditions. The sequence variations were sometimes designed to
fulfill equal cumulative stress[31,32] or equal cumulative duration
of stress conditions.[12] Evidence for path dependency was not
always found and also depended on how path-dependence was
defined.[23] Most studies that use dynamic tests focus on testing
for PD II. It seems that higher c-rates triggered path-dependent
behavior.[12,21] The relevance of taking aging uncertainty into
account was often highlighted,[22,32] and application of statistical
methods like ANOVA was suggested.[22] As an alternative, the
error of model predictions can be used to reveal the impact of
the sequence variation.[29] A systematic comparative study on
various approaches to depict path dependency is currently not
available. Further, apart from these generally observed proce-
dures, a common guideline on how to design and utilize
dynamic tests to investigate path dependency of battery aging
is currently missing.

2.3. Characterization of Degradation Pathways

In the following sections, various approaches to assess and
describe degradation paths are reviewed and discussed.

There are many possible degradation processes in lithium-ion
batteries. These processes are usually intensified by particular
aging stress conditions. For instance, lithium plating will be trig-
gered by low temperatures and high charging rates,[35] while
solid–electrolyte interface (SEI) layer growth rate increases at
high temperatures and high SOCs.[36] Therefore, it is evident that
degradation processes can differ for different stress conditions,
for example, different usage schedules. This was addressed by
Bauer et al.[37] They investigated battery aging in a sequence
of high and low temperatures. Both aging stress conditions cause
capacity loss and loss of pulse power capability. In Figure 3a,
results of this aging study are shown. The graph shows the loss
of pulse power capability against capacity loss. It can be clearly
seen that the trajectory of aging depends on the aging stress con-
ditions. Thus, PD I is fulfilled. Further, it can be seen that the
sequence variation causes different final states on this plane.
This suggests that here PD II is fulfilled as well. However, no
conclusions with respect to PD III are possible based on this
study. The authors concluded that cell state is better character-
ized by the position on this plane in contrast to use-only capacity
loss or pulse power capability.

As different degradation paths often manifest in different deg-
radation processes, detection and separation of degradation pro-
cesses is highly important. To separate degradation processes,
often differential voltage analysis (DVA) or incremental capacity
analysis (ICA) are applied. For both methods, the change of the
open-circuit voltage (OCV) during aging is measured. Using
OCV, incremental capacity versus voltage or the derivative of
voltage versus capacity can be depicted. To differentiate aging
processes with ICA, it is assumed that different aging phenom-
ena will influence features of the incremental capacity differ-
ently. In Figure 3b, this is illustrated for different aging
trajectories that are plotted in a 3D space of selected features
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of interest of the ICA as given by Dubarry et al.[38] Further, posi-
tions with equal capacity loss are indicated. This demonstrates
that the same capacity loss can be reached by different degrada-
tion pathways and is then also differentiable by its incremental
capacity spectra. ICA can be also used to assess degradation
modes, for example, loss of active material (LAM) or loss of lith-
ium inventory (LLI). Dubarry et al.[39] utilized ICA in their study
of path dependency, which revealed that first LLI and later LAM
occurred. Baure et al.[40] used ICA to differentiate degradation
paths. They found that the degradation of cells is more complex
than just capacity loss and the resistance increase. Besides ICA,
DVA can also be used to differentiate different degradation
modes.[33] By analysis of the shift of particular features of the
differential voltage spectra, degradation modes can be identified.
Further, degradation of negative and positive electrode can be
differentiated. Ma et al.[41] used both methods, that is, DVA
and ICA, to improve SOH estimation in electric buses and could
identify different degradation paths. The main advantage of ICA
and DVA is that they enable a detailed insight into degradation
mechanisms. As discussed above, capacity loss could be caused
by a combination of different degradation modes, which can be
depicted by these methods. However, time-consuming OCV
measurements at both, the full-cell and half-cell level, are needed
to achieve this insight.

Apart from OCV-based methods, dynamic methods can be
used to differentiate degradation processes.[42] For example,
electrochemical impedance spectroscopy (EIS) was used to differ-
entiate different degradation processes for the variation of parti-
cle size distribution.[43] Moreover, nonlinear frequency response
analysis (NFRA) was used to differentiate between high- and low-
temperature aging and identify particular aging mechanisms
such as lithium plating.[44–46] Model-supported analysis of EIS
spectra was used to differentiate between degradation pro-
cesses.[47] This approach further enables detailed characteriza-
tion of single degradation processes such as the degradation
of the SEI.[48] Beyond that, also data-driven estimation of SOH
is a possible alternative, which was reviewed by Li et al.[49] As
described earlier, EIS and NFRA are useful methods to depict
lithium-ion battery degradation. In contrast to DVA and ICA,

these measurements are less time-consuming. However, analy-
sis of measurement results often requires the use of
appropriate battery models. Pastor-Fernandez et al.[50] compared
EIS-based identification of degradation modes with equilibrium
voltage-based methods. They concluded that both approaches
have their advantages and drawbacks for implementation within
the BMS. Therefore, they suggest to investigate both approaches
for on-board diagnosis.

Another important factor for the characterization of degrada-
tion pathways is the identification of a suitable metric of the bat-
tery SOH. Thomas et al.[20] stated that observed path dependency
of relative resistance might also indicate that this measure does
not sufficiently characterize the SOH. Su et al.[22] characterized
SOH using a combination of capacity and resistance, which mit-
igated this issue. The battery state could also be defined as a com-
bination of various features in a higher dimensional space.[38]

Dubarry et al.[51] pointed out that SOH should not be defined
with a simple equation, but requires a more in-depth under-
standing of the battery degradation mechanisms. The discussion
demonstrates that observation of path-dependent behavior is also
related to the definition of the SOH. A poorly defined SOH most
certainly is path dependent by PD II, while a better assessment of
the actual battery state might resolve this path dependency.
However, if the SOH is defined by a rather complex multidimen-
sional state, it is very unlikely that aging with variation of the
usage schedule will ever reach the same SOH. In this case
the SOH would lose its purpose to provide meaningful informa-
tion about the state of the system. Ideally, the SOH is a good
indicator for the current battery performance and RUL of the
battery.

An important issue with respect to degradation paths is that it
may not only be influenced by the usage schedule, but also by cell
internal properties, which are associated with significant
manufacturing uncertainties.[52] This can be also often seen in
experimental data, for example, the oxford battery degradation
dataset I, which was used for instance by Richardson et al.[53]

The dataset has eight cells cycled at the same operating condi-
tions and yet they show a different trajectory of degradation.
The impact of manufacturing uncertainty on cell performance

Figure 3. a) Degradation path given as the ratio of capacity loss Δc and loss of pulse power capability Δp for two degradation paths with aging under hot
and cold temperatures with variation of the order. Reproduced with permission.[37] Copyright 2015, Elsevier. b) 3D representation of degradation paths
with features of interests at the axis, which are gathered from incremental capacity spectra. Reproduced with permission.[38] Copyright 2017, Elsevier.
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was also investigated with a model-based approach by Schmidt
et al.[54] The results indicate that uncertainty is significantly influ-
enced by the particular limiting process and optimum of the elec-
trode design. Further, Beck et al.[55] showed that heterogeneity in
battery packs will yield different degrees of losses. Baumhofer
et al.[52] stated that a low variation in production is helpful to
investigate large experimental matrices. This is especially impor-
tant to study path dependency, because it allows to attribute the
observed differences to the variation of usage schedules.[56] In the
experimental study conducted by Raj et al.,[12] attempts were
made to account for manufacturing variability by considering
cells with similar capacities at the beginning of life.
Nevertheless, uncertainty cannot be fully mitigated and
usually increases with aging. Therefore, adequate statistical
methods need to be applied to differentiate difference of
degradation paths caused by uncertainty from differences caused
by the usage schedule.

2.4. Interaction of Degradation Processes

Most of the literature that has been reviewed here addressed
identification and characterization of degradation paths or aimed
to test path dependency. Usually, the underlying causes for the
observed difference in degradation path or path dependency is
not examined in detail.

Analysis of the degradation modes enabled to characterize dif-
ferent aging trajectories in more detail. Dubarry et al.[39] for
example differentiated between LLI in the beginning and
LAM at the end of degradation paths. Su et al.[22] revealed that
the applied sequence variation had little effect on capacity, but
significant effect on resistance, which was assigned to change
in diffusion processes. Dubarry et al.[21] assigned the observed
difference in degradation paths to a LAM at the anode. Raj
et al.[12] identified path dependency to be more relevant using
high c-rates. They also confirmed that this impacts more the cell
resistance than the cell capacity. By analyzing the degradation
modes, they revealed that the path dependency mainly leads
to a difference in loss of lithiated active material and speculated
that this is due to difference in electrode cracking and loss of
electrical contact. They concluded that assuming that calendar
and cycling tests can be superimposed might not be valid for
higher c-rates.

For some studies that investigated sequence variations in
dynamic aging tests, path dependency was shown, while for
others no path dependency could not be seen. Raj et al.[12] stated
that path dependency appears if triggered degradation processes
interact and do not appear if degradation processes are indepen-
dent. This was also suggested by Edge et al.[57] They further spec-
ified such interactions as positive and negative feedback between
degradation processes. This is illustrated in Figure 4 for degra-
dation with two different degradation processes, A and B. In
Figure 4a,b, aging is shown for positive and negative interaction
between process A and process B, respectively. In Figure 4c, the
aging is shown without interaction. Aging is always shown as rise
of resistance for two simple sequences for which the order of
stress conditions is switched. If the processes A and B interact,
it means that a positive interaction yields larger resistance, if
process A is triggered first. It yields lower resistance in case

of a negative interaction between process A and process B
and process A is triggered first. If there is no interaction, the
order of the stress factors does not impact the resistance.
Therefore, interaction of degradation processes should result
in path-dependent (PD II) behavior. To enable the consideration
of path dependency (PD II), feedback and interaction of degra-
dation processes needs to be considered. However, this is usually
not considered.[57] Interaction between degradation processes
was studied by Reniers et al.[58] using various degradation mod-
els. Their results show that degradation mechanisms can interact
and influence each other.

Yang et al.[59] investigated the interaction of lithium plating
and SEI growth in a model-based approach. Further, Carelli
et al.[60] introduced an electrochemical model that couples lith-
ium plating with SEI layer growth, which includes a positive
feedback of plating on SEI growth. This interaction is a possible
explanation for accelerated aging of battery degradation.[60–62]

Schuster et al.[62] showed that extreme conditions can trigger
the shift to accelerated aging early. Further, Anseán et al.[63] sug-
gested that interaction of mechanisms can cause accelerated
aging, that is, LAM can yield lithium plating. As the phenome-
non of accelerated aging is highly important for battery lifetime
prediction and for second-use application, interaction of
degradation processes should be studied in more detail. Path-
dependency studies that utilize dynamic tests seem to be a
promising approach to trigger and expose interactions of
degradation processes.

2.5. Aging Modeling

There are several modeling approaches for battery aging that
range from purely data-driven models to models derived from
first principles. An important application of these models is
the prediction of battery lifetime. This is challenging, because
of the different interdependent degradation processes that lead

Figure 4. Various interactions of degradation processes A and B in a
dynamic test with variation of the sequence of aging stress conditions
1 and 2 and its impact on change of resistance: a) positive interaction,
b) negative interaction, and c) without interaction.
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to path-dependent behavior. Available aging models that
consider path-dependent behavior of battery degradation are
described in this section. Remaining challenges of these
modeling approaches are outlined.

Aging models derived from accelerated aging tests, for exam-
ple, models used by Schmalstieg et al.,[27] often consider that the
different degradation processes can be superimposed and that
consideration of cumulative exposure is sufficient to evaluate
the SOH.[64] However, if the aging is path dependent by PD
II, that is, the current state is affected by sequence of the aging
conditions in the usage schedule and not just by the cumulative
stress, the assumption is not valid. A possible improvement is to
use rate-based aging models, which consider the rate of
degradation instead of a cumulative value.[64] However, this will
not solve the issue, if the state variable considered to measure
degradation is path dependent by PD III, that is, the future
degradation path depends on the history of operation and not
just on the current state.

Aging models should also consider another important factor,
which is the representation of the state, as has been pointed out
in Section 2.3. An improved representation of SOH, which
enables to describe battery degradation more accurately, can
be achieved by consideration of a combination of capacity and
internal resistance as suggested by Dubarry et al.[65] They used
an equivalent circuit model, which is separated for anode and
cathode and considered different degradation modes. Thus, a
multidimensional representation of the SOH seems to be
important. However, it is currently not clear how many and
which specific properties should be considered.

Si[66] built a prognostic model that utilizes the history of the
observed data by constructing a state-space model and updating
key parameters, which can improve RUL prediction. Li et al.[67]

used a time series-based model to make predictions based on the
historical path. Li et al.[49] stated that it is difficult to predict aging,
if the model has been trained at very different training datasets. A
recent work of Lu et al.[68] addresses this challenge by developing
machine learning models that predict battery aging by consider-
ing varying operating conditions in training and possible
future cycling protocols. Themain drawback of data-drivenmeth-
ods is that a large amount of training and validation data is
required to ensure that path dependency in batteries is learnt
accurately.

In physicochemical models, interaction of degradation pro-
cesses should be considered to account for path dependency.
This can be achieved by combining various degradation models
as suggested by Reniers et al.[58] and Kupper et al.[69] With this
also the effect of accelerated aging can be depicted.[69] However,
to accurately identify interactions, larger and more realistic data-
sets are needed.[58]

The discussed examples indicate that it might not be possible
to develop predictive models with very high accuracy based on
static laboratory experiments, because it is very different from
real operating conditions. Therefore, utilization of dynamic
aging tests for model parameterization seems a promising
approach to improve lifetime predictions. In case of physico-
chemical models, interaction of degradation processes should
be considered. For data-driven models, operation history should
be taken into account.

3. Short- and Mid-Term Path Dependency

In the previous section, path dependency was discussed in the
context of long-term battery aging and the SOH. However, path
dependency also exists on short- and mid-term time scales. In
contrast to the path dependency of battery aging, the phenomena
discussed in this section vanish or can be recovered.
Nevertheless, from a methodological perspective, there are many
similarities with path dependency of battery aging. Therefore, the
definitions given in Section 2.1 are also applied in this section.

Short- and mid-term path dependency can have severe impli-
cations on the control of the battery.[13] For instance, prediction
of the power capability is a basic function of the BMS, while path-
dependency effects could cause under- or overestimation.[70]

Thus, path dependency of power capability might require to take
load history into account. Moreover, to determine the remaining
useful energy, it is important to determine the SOC. The SOC is
commonly determined using the OCV–SOC relationship.[71]

Unfortunately, the OCV often depends on the operation history,
which is called voltage hysteresis and needs to be taken into
account for battery management.[72] Another prominent example
is the memory-effect in nickel–metal hydride (NiMH) batteries,
which can be mitigated by ensuring complete charge/discharge
cycles.[73,74]

In this section, research on these short- and mid-term path-
dependency effects is reviewed. First, various typically observed
phenomena are summarized and differentiated from each other,
while examples for several battery materials are given. Second,
the current status on understanding these phenomena is
reviewed. It is shown that there are manifold explanations and
the mechanisms can also depend on the material, while not
all phenomena are fully understood, yet. Therefore, the overview
rather summarizes the frequently discussed theories and test
methods than being comprehensive and conclusive. Finally, var-
ious models that are used to consider these effects are discussed.

3.1. Differentiation of Observed Phenomena

Short- and mid-term path-dependency is categorized as follows:
1) the path dependency of the OCV, which is usually called volt-
age hysteresis, 2) path dependency of the power capability, and
3) memory effects that appear or manifest across several charge/
discharge cycles. The latter includes the aforementioned
memory effect in NiMH batteries, but also memory effects being
observed in current lithium-ion technologies.

In many battery materials, the voltage at a given SOC depends
on how the SOC was reached, for example, by charging or dis-
charging. This phenomena is called voltage hysteresis and does
not even disappear for very long waiting time under open-circuit
conditions.[75] Voltage hysteresis was observed earlier in NiMH
batteries,[73] but also appears in many lithium-ion-based batter-
ies. In Figure 5a, an example of the voltage hysteresis for a lith-
ium iron phosphate (LFP) cell from Marongiu et al.[14] is shown.
Here, the red line is the OCV for a full charge/discharge cycle.
This is often referred to as hysteresis boundary, because cycles
within smaller SOC ranges, that is, minor loops, usually lie in
between these boundaries. This is shown in Figure 5a for the
minor loop between 40% and 60% of the SOC. Not only does
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the voltage depend on the charge direction, but is also influenced
by other factors, such as temperature, current rate, and aging.
The impact of the latter is most distinct in the material investi-
gated by Marongiu et al.[14] Barai et al.[72] showed that the OCV is
less dependent on current than temperature. Marongiu et al.[14]

also studied the impact of the path that was applied before a
minor loop, but found a rather limited influence for the investi-
gated cell. Roscher et al.[76] conducted a broad study on the
impact of the cycling sequence on the OCV. They observed that
the OCV depends on the load history, while the impact of history
vanishes. Moreover, Gerschler et al.[77] investigated the impact of
charging prehistory on OCV for various materials. Here, SOC
was adjusted by various sequences, where the number of steps
and rest time between steps are varied. Their results showed that
the prehistory indeed has an impact on the OCV at SOC 50%,
while voltage decreases with increasing Ah throughput. In gen-
eral, the observed voltage hysteresis fulfills PD II, because the
voltage depends on the sequence of charging/discharging and
not just the cumulative charge, that is, the SOC. In this context,
PD III denotes that the future trajectory of the voltage depends
on previous trajectory and cannot be explained by the current
state, that is, voltage, alone. If state is defined by the voltage,
PD III is most certainly also fulfilled. However, the state could
be also defined by a combination of voltage and SOC, which
might resolve the observed path dependency. This is similar
to a better definition of the SOH, as discussed in the previous
section. Hysteresis behavior was observed in NiMH and many
lithium-ion battery materials such as LFP, NMC, lithium titanate
oxide (LTO), carbon,[78] and graphite.[79,80] Various overviews of
materials that possess voltage hysteresis can be found in
literature.[77,81,82]

Path dependency of power capability was investigated by
Srinivasan et al.[13] Their study shows that the discharge with
higher rates, that is, 3C, from SOC 50% depends on whether
the cell has been charged or discharged before. The results indi-
cate that the discharge capacity and voltage during discharge is
higher, if SOC is adjusted by charging from 0% SOC in compar-
ison with discharging from 100% SOC. This is the first time that
path dependency of the high rate capability of an LFP cell is
shown, which is a different phenomenon compared with the
path dependency of OCV. This observation indicates that PD

III is fulfilled. The effect of the sequence, that is, forward
(0–50–100% SOC) or backward (100–50–100% SOC), on the elec-
trode polarization was also investigated by Kondo et al.[83] using a
simulation-based approach. Example results are shown in
Figure 5b. It can be seen that the potential during charge from
50% SOC to 100% SOC, that is, A-2 and B-2, depends on the
sequence. It is higher if the cell has been charged to 50%
SOC (A-1) and is lower if the cell has been discharged to 50%
SOC (B-1). Roscher et al.[70] performed a similar test routine,
but instead of charge/discharge they characterized power capa-
bility with a pulse test. They observed that the load history has a
significant impact on short- and long-term resistance. A similar
effect was observed by Christophersen et al.[85] in two different
lithium-ion battery cells. They distinguished between charge and
discharge pulses and found that in case of charging pulse, the
resistance depends on the rate of change of SOC, but for dis-
charge pulse this was not observed. Xie et al.[86] observed similar
path-dependent behavior for lithium nickel manganese oxide
(LNMO) material. They showed that a very long relaxation can
release the path dependency. Even though the path dependency
of power capability is important for battery management, it is
often neglected.

According to Gerscher et al.,[77] one of the first reports on a
memory effect in batteries was provided by Sleight et al.[87] in
1991. They studied lithium manganese oxide (LMO) material
and observed that the slope of the voltage during discharge is
influenced by the DOD of the previous cycle. Here, the voltage
path is followed until new terrain is reached. Another memory
effect has been observed in nickel-based batteries for partial dis-
charge of the batteries.[74] Here, the system seems to memorize
repeated partial discharges in a way that the cell capacity is lim-
ited to this partial discharge capacity in the upcoming cycles. The
effect is caused by the formation of an additional phase upon
overcharge and can be cured by performing depth discharge
and subsequent charge cycle.[74,88] This phase may also yield dif-
ferent mechanical behavior of the cell.[89] Memory effects were
also reported for lithium-ion battery technologies; however,
the phenomena are different from the memory effect in nickel
electrodes. Sasaki et al.[15] reported memory effects for LFP and
LTO. The effect can be seen in Figure 5c as given by Guo et al.[84]

Here, the cell was charged and discharged between 0% and 50%

Figure 5. Collection of various short- and mid-term memory-effects: a) Voltage hysteresis with major and minor loop. Reproduced with permission.[14]

Copyright 2016, Elsevier. b) Path dependency of electrode polarization. Reproduced under terms of the CC-BY license.[83] Copyright 2018, The Authors,
published by The Electrochemical Society. c) Memory effect in lithium-ion batteries. Reproduced with permission[84] Copyright 2018, American Chemical
Society.
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SOC within the memory-writing cycle. Afterward, a full cycle,
that is, a memory-releasing cycle, was performed and compared
with a normal cycle. A distinct kink in the potential, exactly at the
end of the partial cycle, can be observed. The study of Sasaki
et al.[15] showed that this effect increases with repetition of partial
cycles and is more pronounced for charge compared with dis-
charge. Roscher et al.[76] observed a similar effect for complex
charge/discharge sequences. Guo et al.[84] showed that the parti-
cle size has a significant impact on the memory-effects in LFP.
Memory effects in batteries are manifold. The commonality is
that prior cycling has an impact on future cycling behavior, which
fulfills the definition PD III. Further, in all cases this memory of
the cycling history can be released in subsequent cycles, which
distinguishes memory effects from path dependency of cell
aging.

Similar to dynamic aging tests, sequence variations are
also frequently used to asses short and mid-term path-
dependency.[13,70,77] This indicates that application of sequence
variations is a methodological overlap between path dependency
of aging and short- and mid-term path-dependency phenomena.
The most common sequence variation is to adjust SOC either
starting from a fully discharged or a fully charged cell. This
can be used to test path dependency of power capability or path
dependency of the OCV. However, also much more complicated
sequences were tested, for example, by Roscher et al.[76] and by
Marongiu et al.[14] Since the path-dependency effect vanishes,
only the short-term history needs to be considered.
Nevertheless, possible variations are extensive, because there
are many possible influencing factors such as temperature, cur-
rent rates, or resting steps. In case of the voltage hysteresis, an
accurate assessment of the OCV is highly important. The effect
of the test protocol for assessment of open-circuit potential was
studied for example by Barai et al.[90] and by Petzl et al.[75] It was
shown that an incremental measurement is beneficial compared
with continuous measurement.[75] Weddle et al. showed that the
path dependency also impacts the cell impedance.[91] Gaberscek
et al.[92] investigated higher harmonics for dynamic characteriza-
tion of LFP, which revealed that cell impedance is nonlinear for
lower frequencies. This phenomena might be caused by path
dependency. If resistance depends on the charge direction,
dynamic signals will be distorted. Therefore, NFRA[44] seems
a promising method to investigate path dependency.

3.2. Theoretical Background

As outlined earlier, path dependency on short- and mid-term
time scales was observed in very different manifestations. In this
section, theoretical background and various explanation models
are reported. It is further discussed, if observed phenomena,
such as voltage hysteresis, path dependency of power capability,
and memory effects, have different causes or if there is possibly a
single mechanistic explanation.

One model for explaining path dependency, which was fre-
quently used in literature, is the shrinking core model.[13] It
was applied to explain the behavior of two-phase materials, such
as LFP. The shrinking core model is illustrated in Figure 6a for a
lithium insertion and extraction process. The upper part illus-
trates insertion processes of a particle. Here, a lithium-rich phase

is formed at the shell of the particle, while the core possesses a
lithium-poor phase. During charging the size of the lithium-poor
core continuously shrinks. The lower part of the figure shows the
lithium extraction process. Comparing middle stage for insertion
and extraction, it can be seen that the lithium-rich and lithium-
poor phase are flipped. If lithium is extracted from a particle after
insertion to 50%, another lithium-poor phase would be formed at
the shell of the particle. Based on this model, it can be explained
how the battery can possess memory. Here, the path history
manifests in the order of separated phases in the particle.
This could theoretically influence the power capability, if the dif-
fusion coefficients are different for the two phases.[70] Even so,
this model is very intuitive; there is evidence that this model is
not valid for LFP. For example, Laffrot et al.[93] used high-
resolution electron energy loss spectroscopy to investigate the
deinsertion/insertion process in LFP particles and found that
phase transition rather occurs by emptying and filling of chan-
nels. Other studies also concluded that the core–shell model can-
not explain experimentally observed path dependency.[15,94]

Nevertheless, the model is a valuable first assessment of how
path dependency could manifest and it is agreed upon that phase
separation in two-phase materials plays a major role in explain-
ing path-dependent phenomena like voltage hysteresis.[77,95]

Phase separation was modeled and investigated using non
equilibrium thermodynamics established by Bazant.[98] This
approach can explain the voltage hysteresis, which occurs also
for very low rates, that is, C/50. The modeling approach can also
be used to describe the phase separation in particles,[99,100] which
includes the nucleation and growth of new phases.[101] Moreover,
the modeling method can be used to investigate the impact of
conversion rates and showed that phase separation can be sup-
pressed by higher rates.[102] This is also supported experimentally
by Zhang et al.[103] They showed that for low and medium rates, a
phase separation is visible, while for high rates phase separation
is suppressed.

Dreyer et al.[104] suggested a particle-by-particle mechanism
to explain the voltage hysteresis. The model considers
many particles being electrically and ionically connected,
which allow them to interact. Thereby, the charge and
discharge processes are described by the same reaction,
where only the direction changes. Simulation results for a
system with ten particles are shown in Figure 6b. It can be
seen that the model can indeed explain the voltage hysteresis.
Their model can be used to explain the path dependence of
voltage in LFP.[96] The particle-by-particle conversion is also
supported by experiments that found that most of particles
in LFP electrode have either a single lithium-rich or a
lithium-poor phase, while only very few particles have both
phases.[97,105,106]

The idea of a multiparticle system was further extended
by including heterogeneity of the electrode.[83,107,108]

Heterogeneity can be considered by introducing a resistance dis-
tribution[107] or a particle size distribution.[83] The model can
explain the voltage hysteresis, the path dependency of the power
capability, and the memory effect of the cell voltage. It was shown
that the charge/discharge behavior of electrodes is significantly
influenced by the particle size distribution and can also change
due to degradation of the particles due to cracking or agglo-
meration.[43,109] A narrow particle size distribution should be
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beneficial to avoid heterogeneous particle charging and path
dependency.[83,109] The effect of heterogeneous electrical connec-
tion was investigated experimentally by Li et al.[97] In Figure 6c,
example results are shown for different carbon black contents. It
can be seen that for high carbon content, that is, C20, the order of
phase change is rather influenced by the particle size. In case of
poor electrical connection, that is, C5, it is mainly influenced by
the electrical network.[97]

A general explanation model for path dependency was
provided by Sleight et al.[87] in 1991. Even though this concept
is very old, it still can be used to gain a very intuitive under-
standing on path dependency of power capability. The concept
is adapted and illustrated in Figure 7. The charge and discharge
processes are illustrated by transferring entities, for example,
particles, between a charged and a discharged state. To transfer
them, an energy barrier needs to be overcome. The energy
barrier is assumed to be heterogeneous. There are entities with
high-energy barriers, for example, being large particles or
poorly connected particles, and others with low-energy
barriers. During charge and discharge always the entity with
the lowest-energy barrier is transferred first. Based on this
concept, path dependency can be depicted for the classical tests

that compares path 0–50–0% (path 1) with 100–50–0% (path 2).
It can be seen that the states at 50%, that is, H and C, are
different. For path 1, entities with low-energy barriers are in
a charged state. For path 2, entities with high-energy barriers
are charged. As a consequence, the energy barriers for further
discharge is lower for path 1. This simple and generic
energy barrier explanation model can be used to gain an
intuitive understanding for path-dependent behavior of power
capability.

The detailed mechanisms that yield the complex behavior of
two-phase materials are not finally revealed. Thus, further
research is needed. A comprehensive review of two-phase sepa-
ration of LTO and LFP was done by Li et al.[105]. Here, also phase
diagrams and mechanistic details for these materials are pro-
vided. Malik et al.[110] provided a critical review, which assesses
that LFP is the subject of controversial debate, while the various
views are discussed in detail. It is very likely that phase change is
the main cause for many path-dependent phenomena observed
in lithium-ion batteries. Nevertheless, there are also other possi-
ble causes for path-dependency such as different reaction path-
ways for charge and discharge[82,111] or path-dependent lithium
site occupation.[112]

Figure 6. Mechanistic theories, models, and insights of short- and mid-term path dependency. a) Shrinking core model. Reproduced with permission.[70]

Copyright 2010, Elsevier. b) Voltage hysteresis simulation using a particle-by-particle model with ten particles. Reproduced with permission.[96] Copyright
2011, Elsevier. c) Experimental observation of phase change in LFP for high (C20) and low (C5) content of carbon. Reproduced with permission.[97]

Copyright 2020, John Wiley and Sons.
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3.3. Modeling

Modeling of short- and mid-term path dependency is important
for various reasons. First, models could be used to improve the
electrode and material design to mitigate path dependency first
hand. Second, models can also help to get a better understanding
of these phenomena. This could be used to overcome the
associated challenges for battery operation by improving battery
management.[113] Finally, models could be directly integrated
into the BMS to improve functions like SOC estimation and
power capability prediction. In the following, the most relevant
physics-based, equivalent circuit-based, and data-driven models
are discussed.

Some effort was made to model the aforementioned shrinking
core theory.[114] For instance, integration of phase separation in
classical particle models was used to simulate graphite hystere-
sis.[115] Theory of nonequilibrium thermodynamics was used to
simulate phase separation as well as the dependency of applied
rate.[98,101] Multiparticle approaches were frequently used
to simulate path-dependent effects. They can describe various

phenomena,[94] such as voltage hysteresis, path dependency of
power capability, and the memory effect of the voltage. The basic
ingredients, which are essential for these kinds of models, are
1) the representation of the electrode by multiple particles with
2) heterogeneous properties that are described by distribution
functions and 3) a nonmonotonous open-circuit potential.[83]

These models can in principle describe path dependency.
Nevertheless, there are some differences in their implementa-
tion. These kinds of models either consider particle size
distribution[83] or heterogeneous distribution of resis-
tance.[94,107,108,116] In addition, the models differ in terms of their
level of detail due to consideration of the intercalation
channels,[107,108] being spatially homogeneous[83,116] or spatially
resolved along the thickness of the electrode.[91] As can be
depicted, there are several physics-based models that accurately
describe various path-dependency phenomena. However, these
kinds of models are usually computationally expensive and are
not suitable to be integrated into the BMS. Thus, a remaining
challenge is to simplify these models to be suitable for BMS
application.

According to Yiyang et al.[97] the local electronic connectivity
between a particle and the carbon network controls the lithiation
pathway. The carbon network is shown to have a significant
impact on the electrode performance.[117] Therefore, it is impor-
tant to have a better representation of the complex electrical net-
works as suggested by Schmidt et al.[118] An example for various
typologies of an electrical network and the according degree dis-
tribution functions are shown in Figure 8a. This model approach
allows to investigate the impact of the network structure and its
degradation on the path dependency and should be elaborated in
more detail for systems that possess significant path-dependent
behavior.

Equivalent circuit models (ECM) are the most commonmodel
types for BMS applications and are frequently adapted to con-
sider path dependency effects such as voltage hysteresis.
Verbugge et al.[120] used an ECM to estimate the SOC and
showed that hysteresis plays a critical role for an accurate estima-
tion in NiMH batteries. Thele et al.[121] adapted an ECM model
with an additional element that represents the hysteresis voltage.
He et al.[122] used an ECM model combined with Prandtl–
Ishlinskii (PI) to model cell voltage hysteresis. They verified their
model based on dynamic driving cycles. Roscher et al.[76]

included additional resistance within the ECM model, which
is adapted based on the operating history to account for the path
dependency of the power capability. The model approach is illus-
trated in Figure 8b. The information of the past operation is
stored as shell sequence memory. The model approach is moti-
vated by the shrinking core concept. As the shrinking core theory
is most likely not valid to explain voltage hysteresis, future work
on ECM-based models should be based on a more profound
understanding of these phenomena. This might also facilitate
consideration of various phenomena with a single model as it
was achieved for physics-based models, that is, multiparticle
models,[94] already. It can be seen that classical ECMs need to
be refined to accurately consider path dependency.

Path dependency can also be modeled using data-driven
approaches. Xu et al.[119] used machine learning in combination
with sigma-point kalman filter and ECM to improve SOC estima-
tion. The data-driven part of the model uses long short-term

Figure 7. Explanation model for path dependency of power capability
based on heterogeneous energy barriers. Two different charge/discharge
paths are depicted, that is, path 1 A–E) start with discharged state
(0–50–0% SOC) and path 2 F–J) start with charged state (100–50–0%
SOC). Upper graph shows the transfer of entities with according energy
barriers for both paths. Lower graph shows the SOC. Low-to-high-energy
barriers are indicated with arrows in green to red, respectively.
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memory (LSTM) to eliminate the effect of voltage hysteresis.
LSTM is a type of recurrent neural network that has the ability
to make predictions based on sequential input data. In the case of
modeling hysteresis, this could be the previous operating history
of the cell. The modeling approach is illustrated in Figure 8c.
With this approach the OCV voltage is corrected based on the
short-term operation history. Remaining challenges are the train-
ing of suchmodels as well as choosing appropriate features of the
operation history. Further, transferring this modeling approach
to other short and mid-term path dependency phenomena
should be addressed.

Future work should address the development of novel models
that accurately consider path dependency and are applicable
within a BMS. This could be achieved by refining ECMs or reduc-
ing complexity of physics-based models. Promising alternatives
are data-driven models that explicitly take the operation history
into account. The development and training of such models is a
common challenge for degradation modeling and modeling of
short- and mid-term path-dependency phenomena. In all cases
it is also important to develop adequate methods to parameterize
these models with standardized electrochemical tests. Similar to
aging modeling, utilization of test protocols based on sequence
variations is needed.

4. Challenges and Future Work

This section describes some challenges and future work that
arise in context of path dependency in batteries.

4.1. Next-Generation Battery Materials

To increase the energy density, to replace rare rawmaterials, or to
improve system sustainability, new materials need to be used in

future battery technologies.[1] Charge/discharge processes and
degradation mechanisms in many promising new materials
are even more complex than in current battery technologies.
There are indications for several materials that they possess sig-
nificant path-dependent behavior. Some examples are given.

In lithium–sulfur batteries, the cathode continuously changes
its morphology. These changes are significantly influenced by
the operating conditions like temperature, voltage, and current.[4]

It was shown that Li2S decomposition during charge depends on
the previous discharge step as it impacts the structure of the Li2S
precipitates.[123] Here, amorphous structure is preferred at fast
discharge rates, which is easier to decompose during the subse-
quent charge. This indicates path-dependent behavior and needs
to be taken into account for operation and characterization of
these cells.[124] Fotouhi et al.[125] investigated SOC estimation
in lithium–sulfur batteries, which was shown to be challenging
due to its unique features.

It was shown that the behavior of all solid-state batteries
depends on the operating conditions, while it is currently not
well understood how various processes might interplay and
how that affects the overall cell performance.[126] Therefore, it
is highly important to understand the impact of operating
conditions and the interplay between various stress conditions
such as temperature, pressure, and current density on battery
degradation and failure.[126–128]

The plating and stripping process in lithium metal electrodes
significantly depends on the operation conditions. Lu et al.[129]

studied failure mechanisms in lithium metal batteries for fast
charging with sequential c-rate variations and showed a signifi-
cant effect on capacity fade.

The voltage hysteresis of silicon is more pronounced
compared with current anode materials like graphite.[130,131]

The reason for this hysteresis might be lithiation anisotropy.[132]

In the first cycle, there is a distinct structural reorganization from

Figure 8. a) Various typologies of an electrical network that can be investigated with model-based approaches. Reproduced with permission.[118] Copyright
2021, The Authors, published by American Chemical Society. b) Equivalent circuit for consideration of voltage hysteresis. Reproduced with permission.[76]

Copyright 2009, Elsevier. c) Data-driven model that considers short-term history dependency. Reproduced with permission[119] Copyright 2020, Elsevier.
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crystalline to amorphous structure.[132] The considerable voltage
hysteresis of silicon electrodes cannot be neglected for SOC
estimation and battery management. The relevance of silicon
for next-generation batteries might bring significant attention
to short- and mid-term path-dependency phenomena in future.

As shown, path-dependent phenomena play major role in
many materials being considered as next-generation materials.
Therefore, path-dependent behaviors of batteries need to be
anticipated to accelerate the development of new materials
and future BMS that facilitate optimal operation.

4.2. Battery Management System

There is a demand for advanced BMS that enables a more reliable
estimation of SOH and SOC as well as prediction of RUL and
power capability. As discussed in this article, path-dependent
behavior significantly disturbs classical BMS approaches, such
as SOC estimation based on SOC–OCV relationship, the predic-
tion of power capability based on the SOC, or RUL estimation
based on static laboratory experiments. A BMS that considers
path dependency can improve battery lifetime, diagnosis for
second-use applications, and reliability of the system. This
is of particular importance for large BESS as well as EV
applications.

Path-dependent behaviors such as voltage hysteresis, path
dependency of power capability, and path-dependent aging have
to be taken into account for the development of competitive bat-
tery systems. Relevant issues that arise from path-dependent
behavior of batteries are given as follows: 1) development of
BMS models that include short- and mid-term path dependency,
2) including operation history for state estimation, 3) definition
of a more informative SOH that considers and anticipates
different degradation paths, 4) utilization of dynamic aging tests
or in-field data to parameterize aging models, and 5) logging of
degradation pathways.

4.3. Battery Characterization

Investigation of path dependency requires special testing
sequences. Classical tests to assess battery performance do not
anticipate that the battery operation could be path dependent.
However, path dependency is relevant for characterization of
OCV, rate capability, and aging. Many examples for testing path
dependency of aging and short- and mid-term path dependency
were depicted in this review. With respect to aging, the impor-
tance of dynamic aging tests was highlighted. In a strong rela-
tionship, sequence variations are also highly important to
investigate path dependency of the OCV and power capability
and memory effects. Various approaches to characterize and
to investigate path dependency can be depicted. However, cur-
rently there is no established standard to test path dependency.
Future work should address this issue and develop standardized
tests that can be used to assess various phenomena of path
dependency.

For battery aging, this should include a systematic approach to
test a broad spectra of aging sequences in dynamic tests. This is
challenging, because testing of large matrices in static aging tests
is already time-consuming and degrees of freedom dramatically

increase with dynamic tests. Further, a rigorous interpretation of
these aging tests is needed. This requires the application of ade-
quate statistical methods to account for aging uncertainty as well
as differentiation of degradation modes.

In the context of short- and mid-term path-dependency,
characterization of voltage hysteresis is highly important. This
is difficult because voltage hysteresis is influenced by manifold
factors. In particular, the impact of battery aging has been shown
to be significant. In order to test path dependency of power
capability and possible memory effects similar to dynamic aging
tests, sequence variations need to be taken into account. Short-
and mid-term path dependency vanishes over time. Thus, cycling
memory horizon and dependency horizon are critical for the
assessment.

4.4. Common Methodology

Currently, there is only a small overlap between research of path
dependency of aging and the short- and mid-term path-
dependent phenomena. In consideration of the similarity of
the problem and the methodological overlaps depicted in this
article, this is surprising. Therefore, from our perspective, it
is highly important to establish a common methodology for
path dependency in batteries. Moreover, path dependency is also
relevant in other areas, such as political science.[133] Thus,
interdisciplinary efforts could help to develop a sophisticated
methodology. A common methodology will advance the research
in this field. In particular, this methodology should include com-
mon definitions and wording, test protocols, statistical tools, and
models. In this article, the current status was summarized,
which is a basis for the establishment of such a common meth-
odology. Some specific examples for required common efforts
with respect to method development in both fields are given
as follows: 1) common definitions for path dependency, for
example, PD I-III, as given in this article; 2) common definitions
for operation history; 3) common modeling approaches such as
data-driven models that consider operation history; 4) common
methods to define test protocols that are based on sequence
variations; 5) common statistical methods such as ANOVA to
elaborate path dependency in the context of uncertainty of inter-
nal states; 6) utilization of multidimensional states for SOH and
SOC; and 7) state estimation based on dynamic data such as EIS
and NFRA

5. Conclusion

Optimal operation is important for the advancement of battery
systems. Better operation strategies, monitoring, and control
of batteries improve the sustainability, reliability, and customer
acceptance of current and future battery technologies. It was
shown that path dependency has a significant impact on various
aspects of battery operation. Meanwhile, the current understand-
ing is limited, available methods are not broadly established and
often insufficient to take these phenomena adequately into
account. As a consequence, current battery management usually
neglects these phenomena. Therefore, opportunities to improve
the reliability of prediction and state estimation methods are
currently left out.
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The main objective of this article is to summarize the effort
that has been made to investigate and understand path depen-
dency in batteries. This is needed to tie loose ends of various
research efforts in this field. Research of path dependency of
battery aging seems mostly separated from research of short-
and mid-term path-dependency effects.

The article provides basic definitions for pathways and path
dependency. Here, path-dependency is defined by different levels
(PD I-III) being frequently used in literature. On this basis the
observed phenomena are categorized and discussed. This discus-
sion shows similarities between path dependency of battery
aging and short- and mid-term phenomena. Further, the article
reports the methods used to test and model path dependency.
There are not many methods available that specifically target path
dependency, even though in general there is a broad spectra of
methods for battery management. Nevertheless, it is shown that
some specific methods are suitable. For instance, it was shown
that to characterize path-dependency, sequence variations should
be utilized, because this significantly improves testing to be more
realistic. Further, it can be seen that sophisticated physics-based
models are available, but are not broadly established and
validated, which hinders systematic integration into BMS.
Operation history should be considered for state estimation
and predictions. Data-driven models that use operation history
as an input are a highly promising approach in this regard.

To sum up, this article provides a common basis for future
research, which eventually will yield a common methodology
to study path dependency. In our opinion, the core elements
of this methodology are common definitions, tests for path
dependency that rely on sequence variations, as well as models
for path dependency based on a profound understanding of these
phenomena or explicit consideration of the operating history in
data-driven models. Special emphasis needs to be set on next-
generation materials that may possess path-dependent behavior
that is even more pronounced than the current generation.
Finally, the methods and models need to be integrated into
modern BMS, which will have significant implications for design
of the BMS.
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