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Abstract. In medical treatment, it can be necessary to identify specific motor units in muscles from mea-
surements on the skin. In [24], we already derived and analyzed an optimization problem suitable for such an
identification. This work presents an optimization algorithm that exploits the specific mathematical structure of
this problem. Our algorithm is based on a Newton line-search approach in function space with inexact function
evaluations due to adaptive numerical quadrature. We present a global convergence result for this method and
describe in detail its algorithmic implementation. Finally, we illustrate its practical performance by a numerical
study.
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1. Introduction. In the human body, various bioelectric sources arise, which we can mea-
sure indirectly as electric potentials on the skin. A fundamental question in medical research
and diagnosis is: can we identify the bioelectric source from these surface measurements? Such
identification of bioelectric activity is needed in many fields of medicine, e.g., in measuring brain
activity (EEG) or cardiac activity (ECG). Correspondingly, a lot of work has been performed
to develop tools for computational assistance, see, e.g., [11] and references therein for EEG. In
general, refinements of Tychonov regularization techniques are applied to the spatial problem.
When measuring potentials caused by muscle activity, the corresponding technique is called
surface electromyography (sEMG). Potential applications arise in research (Which motor unit is
responsible for which movement?) or pre-operative planning (Where is the location of important
nerves which should not be harmed in operations?). Similar techniques as described above have
also been applied to electromyography measurements [18, 26, 27]. The presented techniques
yield a smooth, distributed reconstruction of sources, which is appropriate in applications with
smoothly distributed sources within the tissue. These approaches mainly solve spatial problems,
not taking into account the spatio-temporal structure of the problem.
However, bioelectrical sources responsible for muscle activity have a special structure. A muscle
consists of muscle fibers organized in bundles, so-called motor units. Muscle activity now means
that the peripheral nervous system activates one or more motor units. This activation causes
electrical signals, so-called action potentials, to propagate along the muscle fibers of the motor
unit. We can describe the action potentials as concentrated line measures that move along some
trajectory, as time progresses, cf. [19, 24]. Approaches that directly attempt to process the spatio-
temporal information and exploit the high temporal resolution of surface EMG are less common.
A notable exception is [20]. The authors consider a regularized least-squares approach for fitting
the EMG signal by a linear combination of a moderate number of analytically predefined and
prelocated waveforms. This enables fast computations in real time with modest accuracy.
In [24], we presented an alternative method using an adjoint approach. We already showed that
the corresponding optimization problem has at least one solution. Furthermore, we derived first-
order optimality conditions building the foundation of the numerical algorithm. Our current
paper discusses the numerical solution of the problem presented in [24].
We organized this paper as follows. First, we shortly recall the identification problem and dis-
cuss the mathematical model, the optimization problem, and its first-order optimality conditions.
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Then we elaborate our algorithm to solve the problem numerically. We rely on well-known algo-
rithmic techniques, specifically an augmented Lagrangian approach to treat the present equality
constraints and an SQP line-search approach, cf., e.g., [22, 1]. However, due to the special
structure of our problem, some algorithmic adjustments are necessary. In particular, we use
an adaptive quadrature rule to evaluate the objective functional, cf. [24], which changes the
evaluation method from step to step. Thus, we interpret the evaluation as an inexact evaluation
of continuous quantities rather than an exact evaluation of discrete quantities. Inexact function
evaluations are not uncommon in nonlinear optimization, and the topic is studied in different
settings, cf., e.g., [13, 14, 3, 6, 7, 28]. Although [3] studies the global convergence aspect in a
Trust-Region framework, we can adapt the presented technique and condition to our setting and
show global convergence. The following section explains the implementation details, in particu-
lar discretization, adaptive quadrature and their role in our SQP-Newton algorithm. Finally, we
discuss a numerical exammple.

2. The Identification Problem. In this section, we define the underlying identification
problem. This is an inverse problem in the following sense: given a surface EMG measurement
at n electrodes, we are interested in the motor unit responsible for the measurement. To iden-
tify this motor unit numerically, we need a mathematical model that simulates a surface EMG
measurement for a given motor unit. We already discussed this model in detail in [24]. Thus, we
only revisit the key aspects of the model and introduce the optimal control problem afterward.
Furthermore, we recall the existence of solutions and the first-order optimality conditions.

2.1. Mathematical Setting. Throughout this paper, Ω ⊂ R3 is a domain with a suffi-
ciently smooth boundary representing some body part. With ΩM , we denote the sub-domain
representing the muscle tissue where the motor unit is located. For simplicity, we assume that
the motor unit consists of only one muscle fiber. We use a regular curve u ∈ H2(−1, 1,Ω) to
represent such a single-fibered motor unit. When a motor unit is activated, two electrical sig-
nals, so-called action potentials, propagate from the neuro-muscular junction towards both ends
of the motor unit. For each time instant t, we model the action potentials by a line measure
ρi(t) ∈ M(Ω̄), where M(Ω̄) is the Banach space of Radon measures on Ω̄ which is isomorphic
to the dual C(Ω̄)∗. These propagating signals generate an electrical potential Φ(t) ∈ W 1,p′(Ω)
which is, for p > 3 and 1/p+ 1/p′ = 1, given as the solution of the following PDE

(ApΦ(t))(v) = ρ(t)(v) =
∫
Ω̄

v dρi(t) ∀v ∈W 1,p(Ω)(2.1)

with

Ap : W 1,p′(Ω) 7→W 1,p(Ω)∗

(ApΦ(t))(v) = ap(Φ(t), v) :=
∫
Ω

(σ(x)∇Φ(x, t))∇v(x) dx+
∫
∂ΩS

σSΦ(s)v(s) ds.(2.2)

Due to the continuous and dense embedding W 1,p(Ω) ↪→ C(Ω̄) we can use the corresponding
adjoint embedding C(Ω̄) ↪→ W 1,p(Ω)∗ to regard ρ(t) as an element of W 1,p(Ω)∗ such that (2.1)
is well defined and has a unique solution, see [25, 21].
Using this approach, we could compute the potential Φ(t) in the whole domain, for example by
finite elements for each t ∈ [0, T ]. But since we are only interested in the potential at a certain
number of electrodes placed on the skin, namely the values

(2.3) yk(t) = Bk(Φ(t)) =
∫
Dk

Φ(s, t) ds, k = 1 . . . n, t ∈ [0, T ]
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such an approach would be computationally wasteful. Therefore, we follow an adjoint approach
(cf. [24]) that reduces the computational effort drastically, which we now briefly recall. First,
we define the so-called impulse response functions ωk ∈ W 1,p(Ω) which are the solution of the
adjoint problem:

(A∗pωk)(φ) = Bk(ϕ) ∀φ ∈W 1,p′(Ω), k = 1 . . . n,(2.4)

then, we compute

yk(t) = Bk(Φ(t)) = (A∗pωk)(Φ(t)) = (ApΦ(t))(ωk) = ρ(t)(ωk).

Hence, after pre-computation of the impulse response functions ωk and using the definition of
the moving charges ρi, cf. [24, Eq. 16], we can simulate for each curve u and each time instant
t a surface EMG measurement at an electrode by evaluating the following line integral:

yk(u, t) =
∫
Ω̄

ωk dρi(t) =
1∫
−1

ωk(u(τ))νρl(τ, t) dτ + ω̃k(u, t).(2.5)

Here ρl is a line measure that describes the propagating part of the action potential im and

ω̃k(u, t) := Im(ν(t0 − t))− (ωk(u(−1)) + ωk(u(1))) Im(ν(t1 − t))

represents stationary sources ensuring that the conservation of charge is fulfilled, see [24, Sec.
2.4] with Im being the antiderivative of im. For a detailed motivation and definition of im we
refer to [24] and the literature, cited there.

2.2. Identification via Optimization. Our task is to find a curve u ∈ H2(−1, 1,Ω), such
that the simulated measurements yk(u, t) and the true measurements ym,k(t) fit well, i.e that the
difference

zk(u, t) := yk(u, t)− ym,k(t)

becomes small for all t. We can formulate this as a least-squares type tracking problem of the
form

(2.6) J1(u) = 1
2

T∫
0

‖z(u, t)‖2n dt = 1
2

T∫
0

‖y(u, t)− ym(t)‖2n dt,

where we collect the measurements and simulations in the vectors y(t) and ym(t) ∈ Rn. Here,
‖ · ‖n is the standard Euclidean norm on Rn and consequently 〈·, ·〉n is the standard Euclidean
scalar product on Rn.
We can make an a priori guess uref for the trajectory of the motor unit by inspecting the
measurement. Furthermore, we enforce H2-regularity of our solution curve. This guarantees that
our identification problem is well posed (c.f. [24]) and reflects the physiological observation that
motor units are smooth in healthy tissue. These two aspects justify the following regularization
term:

J̃2(u) :=
1∫
−1

α1

2 ‖u(τ)− uref (τ)‖22 + α2

2 ‖ü(τ)‖22 dτ,
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where ‖ · ‖2 is the standard Euclidean norm on R3 (consequently 〈·, ·〉2 is the standard Euclidean
scalar product on R3). Next, we define the constraint function

G : H2(−1, 1,R3) 7→ H1(−1, 1,R)
[G(u)] (τ) := ‖u̇(τ)‖22 − ν2,

and demand that [G(u)] (τ) = 0 for almost every τ ∈ [−1, 1]. This shall ensure that the signal
passes the motor unit with constant speed ν > 0, as assumed in [24]. We also request that the
solution is located in the muscle tissue ΩM , as condition, which is, however, satisfied automati-
cally at the optimal solution in practical problems. These two constraints lead to the following
admissible set

Uad := {v ∈ H2(−1, 1,R3) | v(τ) ∈ ΩM , [G(v)](τ) = 0, for a. e. τ ∈ [−1, 1]},

which is well-defined, since H2(−1, 1,R3) ↪→ C1(−1, 1,R3).
We can then formulate the optimization problem as follows

min
u∈Uad

J(u) := J1(u) + J̃2(u)(2.7)

As shown in [24], problem (2.7) has at least one solution, and we get the following first-order
optimality conditions:

0 =
T∫

0

〈z(u, t), z′(u, t)δu〉n dt+ 〈λ, 〈u̇, δu̇〉2)〉1,2

+
1∫
−1

α1〈u(τ)− uref (τ), δu(τ)〉2 + α2〈ü(τ), δü(τ)〉2dτ ∀δu ∈ H2(−1, 1,R3)

0 =‖u̇(τ)‖22 − ν2 for a.e. τ ∈ [−1, 1], λ ∈ H1(−1, 1,R)

with

z′(u, t)v = y′(u, t)v =
1∫
−1

ρ̂l(τ, t)νω′(u(τ))(v(τ)) dτ + w̃′(u, t)v.

In contrast to [24], we replace λ̃(〈u̇, δu̇〉2) with 〈λ, 〈u̇, δu̇〉2〉1,2. This is possible since we know
from the Riesz-Fréchet representation theorem, see [2, Theorem 5.5], that for λ̃ ∈ H1(−1, 1,R)∗
there exists a λ ∈ H1(−1, 1,R) such that

λ̃(v) = 〈λ, v〉1,2 ∀v ∈ H1(−1, 1,R).

We denote with 〈·, ·〉k,p the standard scalar product on W k,p and consequently ‖ · ‖k,p is the
standard norm on W k,p. We also define the following dual norms for linear and bilinear forms
on H2(−1, 1,Ω):

‖`‖2,2∗ := sup
‖v‖2,2=1

|`(v)|, ‖b‖2,2∗ := sup
‖v‖2,2=1,‖w‖2,2=1

|b(v, w)|.

For brevity of notation, we drop the temporal variables t and τ if they are unnecessary. The
following section discusses how we can solve the optimal control problem numerically.
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3. Algorithmic Framework. The optimization problem (2.7) is posed on an infinite-
dimensional function space, and we will derive a numerical algorithm for its solution. We rely
on well-known algorithmic concepts, but there are a couple of non-standard features of (2.7)
requiring special treatment.
We will treat the constraint G(u) = 0 by an augmented Lagrangian approach, and the resulting
unconstrained subproblems are solved by a Newton line-search method. Computing the difference
between the simulated and actual measurements z(u, t) requires for each t the evaluation of the
integral (2.5), which cannot be performed exactly. Instead, adaptive numerical quadrature is
used, resulting in an inexact evaluation of z(u, t) and its derivatives and, thus, also of J(u) and
its derivatives via (2.6). Therefore, we will derive criteria for inexact function evaluations, which
keep the computational effort low, but still guarantee global convergence.

3.1. Augmented Lagrangian Method. We use an augmented Lagrangian method to
transform the constrained problem (2.7) into an unconstrained problem. We proceed in a stan-
dard way with the exception that the employed norms reflect the functional analytic structure
of the problem. Therefore, we add a penalty term to J̃2 and define

J2(u, ξ) := J̃2(u) + 〈λ+ µ

2G(u), G(u)〉1,2,

where ξ := (λ, µ) ∈ H1(−1, 1,R) × R+ combines the Lagrangian multiplier λ and the penalty
parameter µ. We can then define for any given ξ the unconstrained problem

(3.1) min
u∈H2(−1,1,R3)

L(u, ξ) := J1(u) + J2(u, ξ).

The function L is called the augmented Lagrangian function of problem (2.7). It is known that
for increasing µ and with a suitable update strategy for λ the solution of (3.1) converges to the
solution of the constrained problem (2.7), see [1, Proposition 4.2.2]. We can achieve this with
the following algorithm:
Algorithm 1: Augmented Lagrangian Algorithm
Input: ũ0, µ0 = 1, 0 < c1 < 1, 1 < c2, and λ0 ≡ 0;
do

ũj+1 ← Solve (3.1) with an SQP-Newton method;
if ‖G(ũj+1)‖1,2 < c1‖G(ũj)‖1,2 then

update λj+1 and set µj+1 = µj ;
else

set µj+1 = c2µj and λj+1 = λj ;
end

while ‖L′(ũj+1, ξj)‖2,2∗ > ε1 and ‖G(ũj+1)‖1,2 > ε2;
Output: ũj and λj

Concerning the outer loop of the augmented Lagrangian method, it remains to define an update
strategy for the Lagrangian multiplier λj . To define an update that generalizes the well-known
least squares Lagrange multiplier update to our functional analytic setting, we take a look at the
following quadratic optimization problem

min
w∈H1(−1,1,R3)

1
2 〈w,w〉1,2 + J ′(ũj)w s.t. G′(ũj)w = 0,

which yields, with λ ∈ H1(−1, 1,R3), the following first-order optimality conditions

0 = 〈w, v〉1,2 + J ′(ũj)v + 〈λ,G′(ũj)v〉1,2 ∀v ∈ H1(−1, 1,R3)
0 = G′(ũj)w.

(3.2)
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Testing (3.2) with v ∈ kerG′(ũj)⊥ := {v ∈ H1(−1, 1,R3) : 〈v, w〉1,2 = 0 ∀w ∈ kerG′(ũj)}
transforms the first equation of (3.2) into

0 = J ′(ũj)v + 〈λ,G′(ũj)v〉1,2 ∀v ∈ kerG′(ũj)⊥.

We observe that this Lagrangian multiplier removes slopes that areH1-orthogonal to kerG′(ũj)⊥,
and at an optimal solution ũj = u?, we see that λ̄, computed via (3.2) is equal to the original
Lagrangian multiplier λ?. Defining ∇H1J(ũj) by 〈∇H1J(ũj), v〉1,2 = J ′(ũj)v for all v we observe
that λ̄ is indeed the solution of the minimization problem

min
λ∈H1

‖∇H1J(ũj)−G′(ũj)∗λ‖21,2,

where G′(ũj)∗ is the Hilbert space adjoint of G′(ũj) in H1.

3.2. Inexact Function Evaluation by Adaptive Quadrature. While the outer loop of
the augmented Lagrangian method is fairly standard, our particular problem structure requires
some algorithmic adjustments for the inner SQP-Newton method solving (3.1).
In this algorithm, we must compute the Lagrangian function L and its derivatives. To do this
numerically, we replace the integrals in J1 and J2 with quadrature rules. Thereby, we note that
after FE discretization, the integrands in J2 are piecewise polynomials of some fixed order. Thus,
we can evaluate these integrals exactly with a piecewise quadrature rule of sufficient order.
It remains to compute the functional J1, given by (2.6). We observe that the integrand of (2.6)
requires the evaluation of z(u, t) which, in turn, can only be computed by an evaluation of an
integral, namely (2.5). This nested integral structure is the most challenging and time-consuming
part of the computation.
For the outer integral in (2.6), we can use any piecewise quadrature rule as long as the segmen-
tation of the time interval is fine enough. The inner integral in (2.5) is more difficult to compute.
As shown in [24], the action potential is a propagating signal, with only small support on the
motor unit u. Furthermore, the action potential shows large oscillations in this area. These
oscillations make a standard piecewise quadrature rule on uniform intervals inefficient. Thus, an
adaptive quadrature rule is appropriate to compute z(u, t) up to a certain accuracy. Due to this
adaptive procedure, which changes from step to step, the computed result cannot be interpreted
as an exact evaluation of a discrete quantity, but as an inexact evaluation of a continuous quan-
tity. Thus, a deliberate adjustment of accuracy requirements is necessary to avoid interference of
the introduced errors with the global convergence of our algorithm. Inexact function evaluations
are not uncommon in nonlinear optimization, and the topic is studied in different settings, cf.,
e.g., [13, 14, 3, 6, 7, 28]. Our approach resembles [3], where a Trust-Region algorithm is shown
to converge globally under a condition, similar to (3.4), below. Using a sufficient error bound,
cf. Lemma 3.1 below, we can ensure that our algorithm satisfies this condition, which we then
use to modify a classical global convergence result for backtracking line search algorithms, cf.,
e.g., [22, Theorem 3.2].
To indicate that J1 and thus also L are computed via a quadrature rule, we use an index Q and
write J1,Q respective LQ. We don’t use an index for J2 since we can compute it exactly. By LQ
we denote the version of the Lagrangian functional with J1,Q evaluated inexactly and all other
addends evaluated exactly. The following Lemma connects the accuracy of the computation of
z with the relative error in the computation of differences of L:

Lemma 3.1. Let 0 < ς < 1 and assume that the following error bound for z(·, t) holds pointwise
6



for every t and two trajectories u, v:

|〈z(v, t)− zQ(v, t), z(v, t) + zQ(v, t)〉n − 〈z(u, t)− zQ(u, t), z(u, t) + zQ(u, t)〉n|

≤2ς
T
|LQ(v, ξ)− LQ(u, ξ)|.

(3.3)

Then the Lagrangian function can be evaluated with the following accuracy estimate:

(3.4) | (L(v, ξ)− L(u, ξ))− (LQ(v, ξ)− LQ(u, ξ)) | ≤ ς|LQ(v, ξ)− LQ(u, ξ)|.

Proof. As mentioned above, we can compute J2 exactly by choosing a quadrature rule of a
sufficiently high order. Therefore:

|(L(v, ξ)− L(u, ξ))− (LQ(v, ξ)− LQ(u, ξ)) | = | (J1(v)− J1(u))− (J1,Q(v)− J1,Q(u)) |

≤ 1
2

T∫
0

∣∣(‖z(v, t)‖2n − ‖zQ(v, t)‖2n
)
−
(
‖z(u, t)‖2n − ‖zQ(u, t)‖2n

)∣∣ dt

= 1
2

T∫
0

|〈z(v, t)− zQ(v, t), z(v, t) + zQ(v, t)〉n − 〈z(u, t)− zQ(u, t), z(u, t) + zQ(u, t)〉n| dt

(3.3)
≤ ς|LQ(v, ξ)− LQ(u, ξ)|.

3.3. Newton Line-Search with Inexact Function Evaluations. Using a Newton method,
we attempt to find a stationary point of (3.1). We will employ a Hessian modification strategy
to ensure that only directions of sufficient descent are computed. Further, we consider that we
evaluate all required quantities inexactly by adaptive quadrature.
To compute an update step δuk we minimize the following quadratic model of LQ(uk, ξ):

min
δuk∈H2(−1,1,Ω)

L′Q(uk, ξ)δuk + 1
2HQ(uk; Λ)(δuk, δuk)

where HQ is a modified hessian with respect to some Λ ≥ 0:

HQ(uk; Λ)(v, v) := L′′Q(uk, ξ)(v, v) + Λ〈v, v〉2,2.

This is equivalent to solving the linear equation:

(3.5) 0 = L′Q(uk, ξ)v +HQ(uk,Λ)(δuk, v) ∀v ∈ H2(−1, 1,Ω).

We will choose Λ ≥ 0 such that for some γ > 0:

(3.6) γ‖v‖22,2 ≤ HQ(v; Λ)(v, v),

implying

L′Q(uk, ξ)(δuk) = −HQ(uk,Λ)(δuk, δuk) ≤ −γ‖δuk‖22,2.(3.7)

We choose Λ by a standard strategy: starting with Λ = 0 we compute δuk and test if (3.7) holds.
If not, we use some increasing sequence of Λ > 0 until (3.7) is satisfied. Since ‖L′′Q(uk, ξ)‖2,2∗ is
bounded, this loop will terminate at the latest if Λ ≥ γ + ‖L′′Q(uk, ξ)‖2,2∗ and we obtain

‖HQ(uk,Λ)‖2,2∗ ≤ Λ + ‖L′′Q(uk, ξ)‖2,2∗ .
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As usual, the iterate uk is then updated via uk+1 := uk + βkuk, where the damping factor βk is
computed by a standard back-tracking line search, which terminates if an Armijo condition of
the form

(3.8) LQβ (uk + βδuk, ξ) ≤ LQβ (uk, ξ) + ηL′Qβ (uk, ξ)(βδuk) β ∈]0, 1]

is fulfilled. Note that (3.8) is evaluated by a possibly different quadrature rule Qβ than the
quadrature rule Q, used to compute δuk. Nevertheless, under certain conditions, we can show
that the back-tracking line search terminates with some β that is above a certain lower bound:

Lemma 3.2. Let η ∈]0, 1[, σ > 0 and assume that δuk fulfills (3.7) and

(3.9) L′Qβ (uk, ξ)δuk ≤ σL′Q(uk, ξ)δuk

for all quadrature rules employed during the line-search back-tracking. Additionally, we assume
that L′Qβ (uk, ξ) satisfies the following Lipschitz condition:

∣∣∣[L′Qβ (uk, ξ)− L′Qβ (uk + βδuk, ξ)
]

(δuk)
∣∣∣ ≤ βL‖δuk‖22,2.

Then there exists a β̄(η, L, γ, σ) such that for all β < β̄ the Armijo condition (3.8) is fulfilled.

Proof. Using the Lipschitz condition for L′Qβ (·, ξ), we can compute

LQβ (uk + βδuk, ξ)− LQβ (uk, ξ)− L′Qβ (uk)(βδuk)

=
1∫

0

[
L′Qβ (uk + tβδuk, ξ)− L′Qβ (uk, ξ)

]
(βδuk) dt ≤

1∫
0

tLβ2‖δuk‖22,2 dt ≤ Lβ2

2 ‖δuk‖
2
2,2.

Together with (3.7) and (3.9) this implies

LQβ (uk + βδuk, ξ)− LQβ (uk, ξ) ≤ L′Qβ (uk)(βδuk, ξ) + Lβ2

2 ‖δuk‖
2
2,2

≤ηL′Qβ (uk)(βδuk, ξ) + (1− η)σL′Q(uk)(βδuk, ξ) + Lβ2

2 ‖δuk‖
2
2,2

≤ηβL′Qβ (uk)(δuk, ξ) + β

(
Lβ

2 − (1− η)σγ
)
‖δuk‖22,2.

The last term is negative if we choose 0 < β < 2(1−η)σγ
L , and thus the result follows.

Thus, a line-search algorithm (which we will elaborate on in Alg. 5, below) can terminate with
two different outcomes: either (3.8) holds eventually, or (3.9) is violated at some point. In the
latter case, the step δuk should be rejected and recomputed with tighter tolerance, because the
predicted decrease L′Q(uk, ξ)δuk may have been too optimistic for this direction.
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We can now connect these parts to the following conceptual algorithm:
Algorithm 2: SQP-Newton
Input: u0 = ũj , tol0 = 10−5, ε1 = 10−6 ;
do

Λ = 0;
do

δuk ← solve (3.5) with Alg. 4 (see below) and tolerance tolk;
increase Λ ; // only if (3.6) is violated

while (3.6) is violated;
βk ← apply line search Alg. 5 (see below), until (3.8) holds or (3.9) is violated;
if (3.9) is violated then

tighten tolk and set uk+1 = uk;
else

uk+1 = uk + βkδuk;
end

while ‖L′(uk+1, ξ)‖2,2∗ ≥ 0.9ε1;
Output: ũj+1 = uk ;

To formulate a global convergence result that takes into account inexactness by adaptive quadra-
ture, let us introduce δvk as the solution of the following equation using the exact derivative:

(3.10) 0 = L′(uk, ξ)v +HQ(uk,Λ)(δvk, v) ∀v ∈ H2(−1, 1,Ω),

satisfying the inequality

(3.11) ‖L′(uk, ξ)‖2,2∗ ≤ ‖HQ(uk,Λ)‖2,2∗‖δvk‖2,2.

Additionally we assume that δuk satisfies

(3.12) ‖δvk‖2,2 ≤ Θ‖δuk‖2,2.

This can be fulfilled uniformly if the quadrature rule is kept sufficiently accurate. The main
result of this section is then
Theorem 3.3. Let 0 < γ ≤ Γ, ς, η ∈]0, 1[, σ,Θ > 0 be fixed constants. Assume that numerical
quadrature rules are used, such that the inequalities (3.4), (3.7), (3.9), and (3.12) are satisfied
in each step, and such that ‖HQ(uk,Λ)‖2,2∗ ≤ Γ. Then algorithm 2 converges globally, i.e.,

lim
k→∞

‖L′(uk, ξ)‖2,2∗ = 0.

Proof. Lemma 3.2 implies that there exists β̄ > 0 such that β̄ < βk ∀k. Thus, we can compute:

L(uk+1, ξ)− L(uk, ξ)
= L(uk+1, ξ)− L(uk, ξ)−

(
LQβk (uk+1, ξ)− LQβk (uk, ξ)

)
+
(
LQβk (uk+1, ξ)− LQβk (uk, ξ)

)
(3.4)
≤ (1− ς)

(
LQβk (uk+1, ξ)− LQβk (uk, ξ)

) (3.8)
≤ (1− ς)ηβkL′Qβk (uk, ξ)δuk

(3.9)
≤ (1− ς)ησβkL′Q(uk, ξ)δuk

(3.7)
≤ −(1− ς)ησβ̄γ‖δuk‖22,2 ≤ 0.
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Since G is continuous, see [24, Lemma 3.1], and uk(τ) ∈ Uad for all k and all τ , it follows that
‖G(uk)‖1,2 is bounded and thus L(uk, ξ) is bounded from below, more precisely

L(uk, ξ) = J(uk)︸ ︷︷ ︸
≥0

+ 〈λ,G(uk)〉1,2︸ ︷︷ ︸
≥−‖λ‖1,2‖G(uk)‖1,2

+ µ

2 〈G(uk), G(uk)〉1,2︸ ︷︷ ︸
≥0

≥ −‖λ‖1,2‖G(uk)‖1,2 =: L.

Therefore,
∞∑
k=0
L(uk+1, ξ)− L(uk, ξ) ≥ L − L(u0, ξ) implying |L(uk+1, ξ)− L(uk, ξ)| → 0. Thus,

we can conclude that ‖δuk‖2,2∗ → 0. Finally (3.11) and (3.12) imply:

0 ≤ ‖L′(uk, ξ)‖2,2∗ ≤ Γ‖δvk‖2,2 ≤ ΓΘ‖δuk‖2,2 → 0.

Local Convergence of the SQP-Newton method. It is well known that the local convergence
rate of an SQP method depends on accurate search directions, e.g., the better the preconditioner
approximates the Hessian of the objective function, the faster the SQP method converges locally.
For our problem, the search direction additionally depends on the accuracy of the adaptive
quadrature. To achieve fast linear convergence we require for some ε > 0 that

(3.13) ‖δuk − δvk‖H ≤ ε‖δvk‖H

is satisfied for all k. Here, ‖ · ‖H is the following energy norm:

‖v‖H := H(uk,Λ)(v, v) ∀v ∈ H2(−tA, tA,ΩM ).

Unfortunately, we can not include this requirement directly in the adaptive quadrature algorithm.
But the following result gives us an applicable condition.
Lemma 3.4. Assume that the error bound∣∣〈z(uk, t), z′(uk, t)(δuk − δvk)〉n − 〈zQ(uk, t), z′Q(uk, t)(δuk − δvk)〉n

∣∣ ≤ ε2

T
‖δvk‖2H(3.14)

is satisfied for all t ∈ [0, T ]. Then ‖δuk − δvk‖H ≤ ε‖δvk‖H .
Proof. With δek := δuk − δvk, (3.5), and (3.10) we compute

‖δek‖2H = H(uk; Λ)(δek, δek) =
∣∣[J ′1(uk)− J ′1,Q(uk)

]
(δek)

∣∣
≤

T∫
0

∣∣〈z(uk, t), z′(uk, t)(δek)〉n − 〈zQ(uk, t), z′Q(uk, t)(δek)〉n
∣∣ dt ≤ ε2‖δvk‖2H .

Taking the square root on both sides provides the result.
By our choice of Λ we may assume that the energy norm ‖ · ‖H and the H2-norm are equivalent,
i.e. there exist 0 < γ ≤ Γ such that γ‖v‖2,2 ≤ ‖v‖H ≤ Γ‖v‖2,2. Then (3.13) implies (3.12),
so that it is sufficient to test for (3.13). The details of our step computation algorithm will be
elaborated in Alg 4 below.

4. A Practical Optimization Algorithm. Up to now, we discussed our algorithmic
approach in a somewhat idealized setting, leaving away the details of implementation.
In this section, we discuss these details and turn the above-described algorithmic concept into
a practical algorithm. We thereby split the discussion into three parts. First, we discuss the
discretization and the evaluation of the required quantities, second adaptive quadrature, and
finally, we discuss the implementation of our inexact SQP method with line search.
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4.1. Discretization of the problem. To solve the problem numerically, we must discretize
and evaluate the required quantities. This includes the discretization of the motor unit u and
the computation of the impulse response functions ωk.

Discretization of Signal Trajectories. To discretize u ∈ H2(−1, 1,ΩM ) in a conformal way,
we choose a segmentation TFE of the interval [−1, 1] and employ cubic Hermite Finite Elements
on TFE see [12, Section 8.6.2]. We thus obtain the following ansatz space:

Vh := {u ∈ C1(−1, 1,Ω) : u|I ∈ P3(I) ∀I ∈ TFE} ⊂ H2(−1, 1,ΩM ).

Discretization of Impulse Response Functions. Computing J1,Q via (2.5) requires evaluating
the impulse response functions ωk and their derivatives along the trajectory. These evaluations
are well defined in the continuous setting since ωk ∈ C∞(ΩM ) ∩W 1,p(Ω), see [24, Lemma 2.2].
The impulse response functions do not change during the optimization, so we can compute
them a-priory, using finite elements on Ω. To this end, we use standard Lagrange elements
on a triangulation K of Ω. On K, we use continuous piecewise polynomial ansatz functions to
discretize W 1,p(Ω) and W 1,p′(Ω) by

Wh := {wh ∈ C(Ω,R) : wh|K ∈ Pm(K) ∀K ∈ K}.

For the computation of our hession approximation HQ(u,Λ), we need the second spatial deriva-
tives of the ωk,h, which cannot be represented by linear finite elements. Therefore, we must use
at least polynomials of order m = 2 or, more accurately, m = 3 as ansatz functions.
We compute approximations ωk,h for each ωk with a Galerkin method, applied to the adjoint
problem (2.4). This leads to the discrete problem

find ωk,h ∈Wh s.t. (A∗pωk,h)(φh) = B(φh) ∀φh ∈Wh

with Ap and B defined in (2.2) and (2.3). After finite element discretization, we end with a sparse
linear system of equations, which we solve with a standard preconditioned conjugate gradient
method. Since grid hierarchies are usually not available in practical problems, we use a standard
incomplete Cholesky decomposition, see [17], as a preconditioner.

4.2. Adaptive Quadrature Algorithm. The crucial and most involved step of computing
L(uk, ξ) at an iterate uk is the computation of the difference between simulated and actual
measurement z(uk, t). Here we will use adaptive quadrature of the integral (2.5), based on
Gauß-Kronrod quadrature rules [15]. In section 3.3, we have defined the two error bounds (3.3)
and (3.14) to ensure that the SQP-Newton converges globally and locally with a reasonable rate.
These two bounds need to be met by computation of z(uk, t) via adaptive quadrature, which has
to be performed for each electrode and for each time instance where the simulated signal has to
be evaluated. Thus, most of the computing time is spent during the quadrature algorithm. Our
algorithm 3 is based on standard ideas, and similar versions can be found, e.g., in [4, 23].
The two error bounds (3.3) and (3.14) require slightly different versions of our adaptive quadra-
ture algorithm. However, their general structure stays the same. Thus, we will first explain the
general structure for some global error bound E that has to satisfy a given global tolerance tol
and then discuss the specific details when we talk about the computation of the step and the
line search.
Adaptive quadrature uses a partition of the domain of integration, which is gradually refined with
the help of error indicators. Consider a given partition T of the integration interval [−1, 1], which
consists of |T | sub-intervals. We start with computing the contribution to z on each sub-interval
I ∈ T , once with the Gauß rule (zGI ) and once with the corresponding Kronrod rule (zKI ).
Using these quantities, we then compute zK(u, t) =

∑
I∈T zKI (u, t), zG(u, t) =

∑
I∈T zGI (u, t),
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Algorithm 3: Adaptive Quadrature
Input: uk, T0, tol ;
Variable Input: uk+1 or δek ; // depends on the choice of E
Set TR = T0 ;
while |Tj | < maxIntervals do

compute zKI , zGI , and EI for all I ∈ TR ;
compute zK , zG and E ; // possibilities for E, see (4.3) and (4.2)
if E < tol then

break ;
else

choose TR ⊂ Tj such that (4.1) is satisfied ;
Tj+1 ← refine all intervals in TR ;

end
end
Output: zK , zG, and Tj ;

and a global error estimate E (to be specified below). Simultaneously, we can evaluate local error
estimates EI , which are the portions of the global error on the interval I. If E > tol is violated,
we choose TR ⊂ T such that TR is the smallest subset with

(4.1)
∑
I∈TR

EI ≥ χ
∑
I∈T

EI .

Here, χ is a parameter that shall ensure that TR is not too small, i.e., such that the adaptive
quadrature does not need too many iterations. To find the smallest subset TR, we sort the local
error estimates EI by value and choose the intervals with the highest magnitude. We choose
χ = 0.75. However, frequently the errors are concentrated in only a few intervals. We choose a
safety parameter εS to avoid the unnecessary refinement of too many intervals with very small
contributions, i.e., an interval I is not refined if EI < εS . One possible choice is εS = tol/|T |,
which corresponds to the magnitude of an average error distribution.
Next, we refine all intervals in TR, and on this new partition, we reevaluate the integral. Since
function evaluations are, in general, expensive, we store the local values zGI (u, t), zKI (u, t), and
EI and only recompute the local values on the refined intervals.

Evaluation of ωk,h. During our quadrature routine, we have to evaluate the FE approxima-
tions ωk,h of the impulse response functions at all quadrature points. For a given quadrature
point xi = u(τi), the evaluation of ωk,h(u(τi)) is

ωk,h(u(τi)) =
∑

supp(pl)⊂Ki

pl(xi)cl.

Here, the cl are the coefficients of FE function ωk,h, pl are the Lagrange basis functions, and
Ki is the tetrahedron for which xi ∈ Ki. In general, it is easy to decide, if xi is contained in a
given tetrahedron, but identifying Ki for given xi is numerically expensive without additional
information, because a full search through all tetrahedra of the grid may be necessary to find Ki

To find Ki efficiently, we exploit that the quadrature points are ordered along the trajectory
of u. Thus, we can use a neighborhood search: if Ki−1 3 xi−1 is known, and xi is the next
quadrature point, we test all neighbors of Ki−1 if they contain xi. If that fails, we compute the
distance between the center of the neighbors and the quadrature point xi. We then choose the
neighbor with the lowest distance to the quadrature point and test its neighbors. We repeat
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this procedure until we find the tetrahedron that contains xi or a maximal number of tetrahedra
tested. In the latter outcome, or if an initial inclusion xi−1 ∈ Ki−1 is not known, we fall back to
a full search (or hierarchic search if possible) over the whole grid.

Computation of L(u, ξ). The last quantity to compute is the Lagrange functional L(u, ξ)
and its derivatives. If we inspect the terms in L, we notice that J2 and the regularization term
of H are only compositions of parts of the H2 scalar product. The only exception is J1, why we
treat the computation of J1 separately.
Since u is, after FE discretization, a polynomial, we can compute J2 and the regularization term
〈v, v〉1,2 and their derivatives exactly, using a Gauss rule of sufficiently high order on each interval
of the segmentation TFE .
To evaluate J1, we compute the outer integral over time which defines the tracking problem by
the midpoint rule. The measured values ym(t) are, in general, also given at discrete equidistant
time points ti. Thus, this is naturally the best method if we choose the quadrature points at
ti. This determines the times steps ti for which we compute z(u, ti) with the above-described
adaptive quadrature algorithm, starting with TFE as initial segmentation. We use the resulting
Tδv to compute z′G, z′K , and z′′G.

4.3. Details of the inexact SQP-method. In section 3.3, we proved that the SQP-
Newton method converges globally if the error bound (3.4) for the numerical quadrature is
fulfilled and if in addition (3.7), (3.9), and (3.12) hold. Additionally, we require the error bound
(3.13) to ensure that the SQP-Newton method converges locally at a reasonable speed. In
this section, we devise algorithmic measures to enforce these error bounds by customizing the
numerical quadrature.
The exact evaluation of (3.4) would require the computation of the exact values of the integrals,
which are not available. Thus, we have to replace the exact quantities with estimates. A standard
method to derive such estimates is to replace the integrals with quadrature rules of higher order.
In the following, we will use, as already mentioned, the Gauß-Kronrod quadrature formula. These
quadrature rules consist of a Gauß quadrature rule, denoted by an index G, and an extended
quadrature rule of higher order (called Kronrod extension), denoted by the index K. With their
help, we define the quantities:

E(u, v, t) := |〈(zK − zG) (u, t), (zK + zG) (u, t)〉n − 〈(zK − zG) (v, t), (zK + zG) (v, t)〉n|
E(u, v, t) := |〈zK(u, t), z′K(u, t)v〉n − 〈zG(u, t), z′G(u, t)v〉n|

tolE,k := 2ς
T
|LK(utry, ξ)− LK(uk, ξ)|

tolE,k := ε2

T
‖δvk‖2H

where utry is a trial candidate for the next iterate uk+1. The error bounds (3.3) and (3.14) are
then replaced by their computable counterparts:

E(uk, utry, t) ≤ tolE,k ∀t ∈ [0, T ](4.2)
E(uk, δek, t) ≤ tolE,k ∀t ∈ [0, T ].(4.3)

Here δek := δuk − δvk. To compute the directions δuk and δvk, we apply a Galerkin method to
(3.5) and (3.10), which lead to the discrete problems:

HG(uk,Λk)(δuk, w) + L′G(uk, ξj)w = 0 ∀w ∈ Vh.(4.4)
HG(uk,Λk)(δvk, w) + L′K(uk, ξj)w = 0 ∀w ∈ Vh.(4.5)
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Observe that (4.5) differs from (3.10), since the computationally unavailable quantity L′(uk, ξj)
is replaced by its computable approximation L′K(uk, ξj).
We incorporate these error bounds in two parts of our algorithm. First, when computing the
direction δuk where we use (4.3) together with the adaptive quadrature to ensure that the
algorithm converges quickly, locally, i.e., that (3.13) is satisfied. And secondly, we use the error
bound (4.2) to enforce global convergences, cf. Theorem 3.3, when applying the line search.

Computation of Search Directions. When computing the directions of descent δuk and δvk,
defined by (4.4) and (4.5), respectively, we need to ensure that they satisfy condition (3.13) and
thus also (3.12).
We use the following correction loop, as specified in Algorithm 4. First, we compute L′G(uk, ξj),
L′K(uk, ξj) and HG(uk,Λ) as described above, cf. Section 4.2. The J1 part of L′ is computed
adaptively up to the required accuracy. Second, we solve (4.4) and (4.5), if necessary with
regularization, as described below (3.7). Having computed δuk and δvk, we test if they satisfy
(3.13). If this is not the case, we tighten the given error bound and restart the computation.
Otherwise, Algorithm 4 terminates successfully and returns δuk and δvk. Since δvk is more
accurate than δuk, we will use δvk as input for the following line-search procedure.

Algorithm 4: Computation of SQP-Newton direction
Input: uk, tolk−1 and T0 ; // in general T0 = TFE
compute J ′2 and J ′′2 on TFE ;
for i=1,2,... do

if i == 1 then
z′G, z

′
K , z

′′
G, Ti ← Alg. 3 (Input: uk, T0, tolE,k−1, (4.6)) ;

else
z′G, z

′
K , z

′′
G, Ti ← Alg. 3 (Input: uk, δek, Ti−1, tolE,k, (4.3));

end
compute J ′1,G, J ′1,K , J ′′1,G,L′G and L′K ;
do

choose Λ and compute HG ; // choice of Λ, see Sec. 3.3
δuk, δvk ← solve (4.4) resp. (4.5) ;

while (3.7) is not satisfied;
if ‖δek‖H ≤ ε‖δvk‖H then

terminate “accuracy requirement (4.3) fulfilled“;
else

update tolE,k;
end

end
Output: δvk and Tδvk = Tk ;

Let us now explain some features of Algorithm 4 in more detail. As described in Section 4.2,
we can split the computation of L′G(uk, ξj), L′K(uk, ξj) and HG(uk,Λ) into two parts. Since
J ′2(uk, ξj) and J ′′2 (uk, ξj) can be evaluated exactly, these computations can be performed prior
to the loop. Second, we compute J ′1,G(uk), J ′1,K(uk), and J ′′1,G(uk) requiring the adaptive com-
putation of z′G(uk, t), z′K(uk, t), and z′′G(uk, t) as described in the previous section.
When computing z(uk, t) adaptively with Algorithm 3, we use, in general, the error criterion
(4.3). This, however, is only possible for i ≥ 2, since (4.3) requires an approximation of the
difference δuk − δvk which is only available after the first pass of the loop. Thus, in the first
pass of the loop, we have to replace (4.3) by an alternative criterion. A reasonable choice would
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be using (4.2) used in the line search, see below. But this error bound depends on uk+1 and
tolE,k which are unavailable. Thus, we drop the quantities requiring uk+1 and replace tolE,k
with tolE,k−1 resp. 10−5 if k = 0. These modifications lead to the following error bound:

|〈(zK − zG) (uk, t), (zK + zG) (uk, t)〉n| ≤ tolE,k−1.(4.6)

Beginning with the second pass of the loop, we can use δuk and δvk from the previous pass to
apply the error bound (3.13) when adaptively computing z(uk, t).
When solving (4.4) and (4.5), we first choose Λ = 0 and compute HG(uk,Λ). Then we solve the
resulting systems of linear equations with the help of a Cholesky decomposition and test if (3.7)
is satisfied. If this test fails, we increase Λ, i.e., set Λ = 0.1 and multiply it with 2 after each
failed test. Next, we update HG(uk,Λ) and recompute δuk and δvk until they fulfill (3.7).

Inexact Line Search. When computing the damping factor β, we must ensure that the La-
grangian functional satisfies (3.4). Therefore, it is necessary to evaluate z(uk, t) and z(utry, t)
adaptively with the error bound (4.2). This error bound depends on tolE,k, which is not a priori
known. Thus, we cannot use the error bound directly. Instead, we add a feedback loop to a
standard backtracking line search algorithm and use tolE,k−1 as the initial tolerance. As initial
segmentation for the adaptive quadrature algorithm, we use the final segmentation Tδvk of the
step computation. This leads to the modified backtracking algorithm 5, which we describe now.

Algorithm 5: Computation of the damping factor β
Input: uk, δvk, J2(uk, ξ), J ′2(uk, ξ)δvk, Tδvk , tolE,k = tolE,k−1 ;
Parameter: ς = 0.9, η = 10−3, σ = 0.01, β = 2;
do

do
β ← 0.5β and utry ← uk + βδvk;
compute J2(utry, ξ) on TFE ;
zG(uk, t), zK(uk, t), zG(utry, t), zK(utry, t), Tβ ← Alg. 3

(Input: uk, utry, Tδvk , tolE,k, and error bound (4.2));
compute z′K(uk, t)δvk on Tβ ;
compute J1,G(uk), J1,K(uk), J ′1,K(uk)δvk, J1,G(utry), and J1,K(utry);
compute LG(uk, ξ),LK(uk, ξ), L′K(uk, ξ)δvk, LG(utry, ξ) and LK(utry, ξ);

while LK(utry, ξ)− LK(uk, ξ) > βηL′K(uk, ξ)δvk;
tolE,k = 2ς

T |LK(utry)− LK(uk)|;
if L′Qβ (uk, ξ)δvk ≥ σL′Qδvk (uk, ξ)δvk then

terminate “(3.9) violated”;
end

while | (LK(utry, ξ)− LK(uk, ξ))− (LG(utry, ξ)− LG(uk, ξ)) | ≥ tolE,k;
terminate “(3.8) and estimated (3.4) fulfilled”;
Output: β;

We start with β = 1 and set utry = uk + βδvk. As before, we can compute J2(utry, ξ) without
resorting to adaptive quadrature. Furthermore, we can reuse J2(uk, ξ) and J ′2(uk, ξ) computed
during the computation of δuk. To obtain J1,G(utry), J1,K(utry), J1,G(uk), and J1,K(uk), we com-
pute z(uk, t) and z(utry, t) with the adaptive quadrature algorithm 3. Thereby, we must ensure
that both quantities must satisfy the error bound (4.2). Thus, we slightly modify the adaptive
quadrature algorithm such that it computes z(uk, t) and z(utry, t) simultaneously with the same
Gauss-Kronrod rule. The modifications read as follow: Since z(uk, t) and z(utry, t) are inde-
pendent, we can compute the local quantities zG,I(uk, t), zK,I(uk, t), zG,I(utry, t), zK,I(utry, t),
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(a) Cylindrical domain with 65 electrodes
(b) Simulated measurement for a reference motor unit at 65
electrodes

Figure 1: Geometric setting and simulated measurements

and EI(uk, utry, t) separately while iterating over the segmentation Tj (starting with Tδvk). Af-
ter computing the global values as usual, we test if (4.2) is satisfied. If this is not the case, we
choose a refinement partition TR such that (4.1) is satisfied. As usual, we refine Tj and recompute
zG,I(uk, t), zK,I(uk, t), zG,I(utry, t), and zK,I(utry, t) on the refined intervals.
As before we can compute z′K(uk, t)δvk on the final segmentation Tβ and then all other quantities
needed for evaluation of the Armijo condition. If the latter is violated, we multiply β by 0.5
and repeat the process until the Armijo condition is met. When we have found an acceptable
β, we update tolE,k and test if (3.4) is still satisfied. If this is not the case, we recompute the
tolerance-dependent quantities and continue with the line search. This final test ensures that
(3.4) is satisfied at termination. It seldom fails since we already used the adaptive quadrature
to control this error.

5. Numerical Example. In the final chapter of this paper, we study a numerical example
to observe the behavior of our algorithm. Additionally, we discuss the influence of the quality of
impulse response functions on the convergence. Our algorithm was implemented in C++, using
the DUNE library, see [5], for mesh-related operations and Eigen for the linear algebra, see [8].
We used the FE toolbox Kaskade 7, see [10], to precompute the impulse response functions.

5.1. General Setup. For our numerical test, we use a cylindrical domain representing a
part of a limb, e.g., the middle part of an upper arm, consisting of three layers. The inner layer
represents a bone (white), the middle layer represents muscle tissue (orange), and the outer layer
is fat tissue (red). Furthermore, we consider a grid of 5 × 13 = 65 electrodes (black circles) on
the skin (beige). The cylinder has a length of 18cm and a diameter of 8cm. The bone has a
diameter of 2cm, the muscle tissue has a diameter of 7cm, and the fat layer has a depth of 0.5cm.
As shown in Figure 1a, we shifted the bone and placed the electrodes on the opposite boundary.
We used gmsh, see [9], to create a FE conforming mesh from the geometry.
Concerning the triangulation, there are two domains of interest where we want the mesh to be
sufficiently fine. The first region is the domain where the electrodes are placed. Due to the
circular shape of the electrodes and a possible curved skin, the mesh must be sufficiently fine in
this region. The second region is that part of the muscle tissue, where the motor unit is roughly
known to be located. This area was chosen as a cylinder with a radius of 0.5cm around the
axis (x, 0., 0.029). We refined the mesh inside this cylinder two resp. three times resulting
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in two different meshes containing 82581 resp. 181084 tetrahedra, which we will use later for
comparison purposes.
For the approximation of a motor unit an FE discretization of [−1, 1] that consists of 19 subinter-
vals is sufficient. Therefore, the matrix representation of H(u,Λ) is only a 120×120 matrix, such
that we can use a direct solver, i.e., a Cholesky decomposition, to solve (3.5). The matrix for
computing the update of the Lagrange multiplier is similarly small, but, in contrast to H(u,Λ),
it is sparse.
We created synthetic measurement data by simulating measurements for a given reference motor
unit. Analytically our reference motor unit is given through

u(t) =

cos(π/90) sin(0.38t)− 0.02 sin(π/90)
0.1 cos(0.38t)

sin(π/90) sin(0.38t) + 0.02 cos(π/90)

 for t ∈ [−1, 1].

Figure 2 shows two views of the reference motor unit (cyan). The left picture visualizes the
positions relative to the electrodes, and the right picture shows the change of depth, i.e., the
distance change away from the electrodes. This setting combines two critical difficulties, which
are usually encountered separately in practice: the change of depth (e.g., in facial muscles) or a
curved motor unit (e.g., in the biceps). It is thus slightly more complicated than most practical
use cases.
To simulate the measurements, we divided the time interval [0, 2]ms into 200 equidistantly dis-
tributed measure points ti and computed for each measure-point y(u, ti) with (2.5). We used
the adaptive quadrature algorithm 3 with a standard relative error criterion and tolerance 10−9

to compute the integral. To create a realistic measurement, we finally added white noise with a
data-to-noise ratio of 5%. Figure 1b shows the 65 simulated measurements in a grid. The mea-
surements contained in the red boxes are depicted in detail in Figure 3 as reference measurements
in the discussion of the example.
Looking at the grid of simulated measurements in Figure 1b we can already guess roughly the
trajectory of the motor unit visually. This yields an initial guess for our algorithm, which we
have chosen as a straight line in the region of the reference trajectory. In Figure 2, the initial
trajectory is visualized in red. We then used the presented algorithm to identify the reference
motor unit from the simulated measurement.
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Figure 2: Comparison of the computed solution with the reference trajectory

5.2. Numerical Results. We start with a qualitative discussion of the identification, using
impulse response functions computed with cubic ansatz polynomials on a grid that was refined
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three times in the area of the motor unit. Figure 2 compares the reference motor unit, shown
in cyan, with the computed solution, shown in blue. The right picture shows that the changing
depth is identified very well. As seen in the left picture, the curved trajectory is also identified
well with a slight deviation at the left side where the motor unit is further away from the
electrodes. Figure 3 compares the measurement produced by the reference trajectory with the
measurement generated from the computed solution for two selected electrodes. We can see that
both measurements fit well and mainly differ in the added noise. This observation underlines
that the algorithm is suitable to identify a motor unit from a given sEMG measurement.

Electrode in row 3 and column 4 Electrode in row 3 and column 10

Figure 3: Comparison of simulated (black) and identified measurement (red).

Performance study. Figure 4 shows that the algorithm needs 33 Newton steps distributed
over 7 augmented Lagrangian steps. The first augmented Lagrangian step requires the most
Newton steps, since it has the least accurate initial guess, and thus globalization is active. After
this first iteration, all other augmented steps require 2 to 5 Newton iterations, but we do not
see superlinear convergence. We attribute for this observation to the non-smoothness of the
discretized impulse response functions ωk,h. Therefore, small jumps in the first derivative, occur
at the boundary between two adjacent tetrahedra. We will later observe the influence of the
impulse response functions in more detail.
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Figure 4: Energy norm of ‖δvk‖H during all augmented Lagrangian steps

Figure 5 visualizes the properties of the augmented Lagrangian method. We see that ‖G(u)‖2,2
converges linearly to zero. To achieve this, the algorithm alternates between increasing the
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penalty parameter µ and updating the Lagrange multiplier λ.
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Figure 5: Key data of the augmented Lagrangian algorithm

Lastly, Figure 6 compares the tolerance, given to the adaptive quadrature, with the size of the
resulting segmentation of the integration domain. For the sake of brevity we visualize the aver-
age and maximal number of points among all used segmentations in each step and concentrate
our discussion on the first augmented Lagrangian loop. Since both tolerances depend on dif-
ferences that get very small during the algorithm, the adaptive quadrature algorithm refines
the segmentation more for the last steps of the algorithm. Next, we notice that the average
number of grid points is much lower than the maximal. This observation indicates that the
adaptive quadrature needs only a fine segmentation for a few measure points and underlines the
theoretical considerations in Section 3.2 and justifies using adaptive quadrature.
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Figure 6: Comparison of the average and maximal size of adaptive quadrature grids.

Influence of Impulse Response Functions. Next, we discuss the influence of the discretiza-
tion of the impulse response functions ωk,h by finite elements. Discretization introduces small
discontinuities of the derivatives ω′k,h at the facets of the triangulation, which may affect the
performance of our algorithm. To assess the situation, we solve the above problem using two
different grid resolutions and, on each grid, finite elements of degrees two and three.
In our numerical experience the inner Newton method behaves, after the first augmented La-
grangian step, similarly for all impulse response functions and only differs in the first augmented
Lagrangian step, as shown in Figure 7. We see that the inner SQP-Newton method requires
more iterations using the coarse grid (2 refinements) and polynomials of order 2. After the first
Newton iteration, the trajectory is already identified quite well and the remaining augmented
Lagrangian steps mainly optimize the parameterization, which needs 2 to 7 Newton steps per
augmented Lagrangian step.
Size and order of the finite element space also influence the computational times for each step.
Here, we notice that increasing the polynomial degree from two to three approximately doubles

19



0 5 10 15 20 25 30 35 40 45

10−2

10−3

10−4

10−510−5

10−6

10−7

# ref.: 2, pol. order: 2

# ref.: 2, pol. order: 3

# ref.: 3, pol. order: 2

# ref.: 3, pol. order: 3

Figure 7: Comparison of the energy norms of δvk for different impulse response functions

the computation time. Since changing the polynomial degree from two to three, increases the
degrees of freedom per tetrahedron from 10 to 20, we could expect this behavior. Refining the
grid increases the computation times only abount 50%.

ref./ Newton avg. points avg. time avg. time total time to
degree steps in [−1, 1] simulation [s] Newton step [s] time [s] compute ωk,h [s]

2/2 69 88.7 1.33 4.47 299 158.72
2/3 35 84.1 2.54 8.85 285 1135.22
3/2 40 134 1.81 6.54 246 557.04
3/3 33 78.4 2.69 8.15 249 4664.88

Table 1: Comparing results for different impulse response functions ωk,h

Including the times needed to compute the impulse response functions in our discussion, we
observe that increasing the polynomial degree increases the computation time by a factor of 7,
whereas refining the domain increases the computation time only by a factor of 3.5. Thus, if
the optimization problem is solved only once, the computation of the impulse response function
is possibly too time-consuming when using polynomials of degree 3. But if the optimization
problem is solved multiple times, e.g., when identifying different motor units in one muscle, then
polynomials of higher degrees are the better choice. In addition, higher-degree finite elements
may yield more accurate identification results.

6. Conclusion. We conclude that our optimization algorithm is capable of identifying mo-
tor units from sEMG measurements in an efficient way, at least in the context of synthetically
generated measurements. This was made possible by exploiting the specific problem structure
and the use of adaptive quadrature for efficient computation.
Still, there are a few open questions. As the example has shown, the quality of the impulse
response functions has a non-negligible influence on the convergence of the SQP-Newton method.
Thus, their influence should be examined in more detail and the computation of higher order
functions should be accellerated, e.g., by using a hierarchical basis in the polynomial degree with
a suitable preconditioner (cf. e.g. [16]). Finally, testing the algorithm with real measurements
should be the objective of further studies.
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