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2 Summary / Zusammenfassung

2.1 Summary

In the present work, the development of sustainable catalytic synthesis methods using manganese
catalysts and alcohols as starting materials is presented. The catalysts are based on functionalizable
PNssP pincer ligands. New organic syntheses following borrowing hydrogen/hydrogen autotransfer and
acceptorless dehydrogenation condensation were developed using a library of manganese precatalysts
(Scheme 2.1).
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Scheme 2.1: Synthesis of Mn precatalysts used for the development of new reactions.

In 2016, the group of Kempe reported on the use of these Mn precatalysts for the hydrogenation of
carbonyls and, in 2017, on the synthesis of substituted pyrimidines using the concept of Acceptorless
Dehydrogenation Condensation (ADC). In this work, a catalytic system was developed that can switch
between the concept of Borrowing Hydrogen / Hydrogen Autotransfer (BH/HA) and the concept of
Acceptorless Dehydrogenation Condensation (ADC) (Scheme 2.2). By using KO'Bu as metal base to
activate the precatalyst, the reaction follows the concept of BH/HA, while the reaction with NaO'Bu as
metal base follows the concept of ADC. Secondary amines are obtained for N-alkylation according to
the concept of BH/HA, while imines are obtained according to the concept of ADC. After screening all
reaction parameters, the optimal parameters for amine synthesis are 3 mol% precatalyst C, 1 eq. KO'Bu,
alcohol/amine ratio (1.4/1), 80 °C (oil bath temperature), THF, and for imine synthesis 1 mol%
precatalyst C, 1.5 eq. NaO'Bu, alcohol/amine ratio (1.6/1), 110 °C (oil bath temperature), 2-MeTHF.

A total of 20 imines and 20 amines were isolated in yields ranging from 52 - 97 %. The imine-amine
selectivity was always higher than 98 %. A wide variety of functional groups were tolerated, such as
halogen substituents, C-C double bonds or thiophene groups. Mechanistic studies showed a spatially
different coordination of the potassium or sodium cation at the deprotonated amino functions of the
ligand, leading to a significant difference in the hydride transfer rate to the imine. This difference in the

rate of transfer is responsible for the observed imine/amine selectivity.
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Scheme 2.2: Concept for the base-switchable synthesis of imines and amines.

While the first topic of this thesis has focused on the development of a new synthesis concept starting
from alcohols and primary amines, the second topic is based on a new synthesis concept using amino
alcohols and diamines. Consecutive addition of an aldehyde after a certain time to this reaction leads to

a previously undescribed N-hetero polycyclic compound class (Scheme 2.3).
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Scheme 2.3: Consecutive one-pot reaction for the synthesis of an unknown class of N-heterocyclic compounds.

The reaction pathway presented here allows the synthesis of 2,3-dihydro-1H-perimidines bearing an
NHa-functionality (modification degree 1). All 24 of these "amino-dihydro-perimidines™ are presented
for the first time in this work. Consecutive addition of an aldehyde to the reaction leads to a class of
compounds consisting of two six-membered N-heterocycles (modification degree 2). This polycyclic
ring system is a class of compounds that has not been described before. The name fertigine is proposed

for this compound class. The ideal parameters for this consecutive multicomponent reaction were found
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to be 1 mol% precatalyst C, 30 mol% KO'Bu, 1:1:1 ratio amino alcohol:diamine:aldehyde, 2-MeTHF,
100 °C (oil bath temperature). After 2 h, the aldehyde was added, and after about 15 h, the desired
fertigine was obtained. In total, 48 fertigines were isolated in yields of 56 — 95 %. This reaction showed
excellent functional group tolerance, e.g. halogens, N-,0-,S-heterocycles, or ferrocene derivatives could
be introduced (Figure 2.1).

B L0
HN Nw)< HN Nw/% HN Nw/@
6( <\5/NH OH é/NH F NH @ :

90 % 70 % 68 % 75 % 73 %

Figure 2.1 Selected examples of fertigines. Yields of isolated products are shown.

All fertigines can be easily crystallized. Since no structural data exist for this class of compounds, the
molecular structure of several fertigines was investigated by means of single crystal structure analysis.
Nine fertigines were crystallized and the influence of the substitution on the core region around the
nitrogen atoms was investigated. The aminal bond lengths of 1 are with C11-N1: 1.438(2) A and C11-
N2: 1.490(2) A in the same ranges as for reported, structurally similar 2,3-dihydro-1H-perimidines
(Figure 2.2). The C-N bond lengths of C18-N2: 1.463(2) A and C18-N3: 1.452(2) A are in line with

typical values for a C3-Ng,s-bond. The Fertigines crystallized in different conformations, six of nine

structures showed a similar conformation in which all three aromatic planes of the fertigine are nearly
perpendicular to each other. In Figure 2.2 is for example the naphthalene plane (red) oriented with 85.65
° to the plane of the fused phenyl ring (blue) and with 89.69 ° to the plane of the phenyl substituent
(green). At the same time, the plane of the phenyl substituent (green) has an angle of 84.68 ° to the plane
of the fused phenyl ring (blue).
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Figure 2.2: Molecular structure of a fertigine. Single crystal structure analysis shows the orientation of the aromatic regions
(red, blue, green) of one conformation.
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2.2 Zusammenfassung

In der vorliegenden Arbeit wird die Entwicklung von nachhaltigen katalytischen Synthesemethoden
unter Verwendung von Mangan-Katalysatoren und Alkoholen als Ausgangsmaterialien vorgestellt. Die
Katalysatoren basieren auf leicht funktionalisierbaren PNas.sP-Pinzetten-Liganden. Mithilfe der in
Schema 2.1 dargestellten Bibliothek von Mangan-Prakatalysatoren konnten in dieser Arbeit neue
organische Synthesen nach Borrowing-Hydrogen / Hydrogen-Autotransfer und der Akzeptorlosen
Dehydrierenden Kondensation entwickelt werden.

R
R R Py A:X=N,R=H
)\ )§ xI ) B: X =N, R = NEt,
SX  +2CHP(Pr), +2NEt; * rnco)er - AN L ex=NR=P
)\ )\ -2HNEGCl HN NH -3CO o b BfFu, oy DiX=N,R=NH-C3H
HoN P(lPr) P(Pr) (Pl M C':) (Pr)z 5:;(=gl,-|RR= ve
A-G G:X=CH,R=Me

Schema 2.1: Synthese der Mn-Prékatalysatoren, welche fiir die Entwicklung neuer Reaktionen verwendet wurden.

Im Jahr 2016 berichtete die Arbeitsgruppe um Kempe Uber die Verwendung eines dieser
Mn-Prakatalysatoren flir die Hydrierung von Carbonylen und 2017 {iber die Synthese von substituierten
Pyrimidinen nach dem Konzept der Akzeptorlosen Dehydrierenden Kondensation (ADC). Im Rahmen
dieser Arbeit wurde ein katalytisches System entwickelt, das zwischen dem Konzept des Borrowing-
Hydrogen / Hydrogen-Autotransfer (BH/HA) und dem Konzept der Akzeptorlosen Dehydrierenden
Kondensation (ADC) umschalten kann (Schema 2.2). Durch Verwendung von KO'Bu als Metallbase
zur Aktivierung des Prékatalysators folgt die Reaktion dem Konzept des BH/HA, wéhrend die Reaktion
mit NaO'Bu als Metallbase dem Konzept der ADC folgt. Bei der N-Alkylierung nach dem Konzept des
BH/HA erhdlt man sekundare Amine, wéhrend man nach dem Konzept der ADC Imine erhalt. Die
optimalen Reaktionsparameter fiir die Amin-Synthese sind 3 mol% Prakatalysator C, 1 eq. KO'Bu,
Alkohol/Amin-Verhaltnis (1,4/1), 80 °C (Olbadtemperatur), THF, und fur die Imin-Synthese sind es
1 mol% Préakatalysator C, 1,5 eq. NaO'Bu, Alkohol/Amin-Verhaltnis (1,6/1), 110 °C (Olbadtemperatur),
2-MeTHF.

Insgesamt wurden 20 Imine und 20 Amine auf Basis der gleichen Edukte in Ausbeuten von 52 — 97 %
isoliert. Die Imin-Amin-Selektivitat war immer hoher als 98 %. Es wurden verschiedenste funktionellen
Gruppen wéhrend der Katalyse toleriert, wie z.B. Halogensubstituenten, C-C-Doppelbindungen oder
Thiophengruppen. Mechanistische Untersuchungen zeigten eine rdumlich verschiedene Koordination
des Kalium- bzw. Natriumkations an den deprotonierten Aminofunktionen des Liganden, was zu einem
signifikanten Unterschied in der Hydridtransferrate zum Imin fihrt. Dieser Unterschied in der

Geschwindigkeit des Transfers ist fiir die beobachtete Imin-/Amin-Selektivitat verantwortlich.
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Borrowing-Hydrogen / Hydrogen-Autotransfer ~ Akzeptorlose Dehydrierende Kondensation

(BH/HA) (ADC)
.R?
RN R' O oH
H
Mn Mn
- " r B
H ~
: NN g
+KOBu + NaO'Bu (iPr)sP—Mn—P(iPr),
oc” &g
[MnH]H [MnH]H
R1/§N/R2 +H,N—-R? RN +H,N—R? R1“\N/R2
-H,0 -H,0
H
KO®Bu N N.__R? 20 Beispiele,
T» R isolierte Ausbeuten: 66 - 97 %
NH - Hy >
R1M X 2+ Ho. R? [Mn]
! ~
=
NaOBu N NVRZ 20 Beispiele,
Tho R~ P isolierte Ausbeuten: 52 - 93 %
- Ha
-Hy 4

Schema 2.2: Konzept fiir die katalytische Synthese von Iminen und Aminen.

Wahrend das erste Thema dieser Arbeit sich auf die Entwicklung eines neuen Synthesekonzeptes
ausgehend von Alkoholen und primaren Aminen konzentriert hat, basiert das zweite Thema auf einem
neuen Synthesekonzept, welches Aminoalkohole und Diamine als Edukte verwendet. Die konsekutive
Zugabe eines Aldehyds nach einer bestimmten Zeit zu dieser Reaktion fuihrt zu einer bisher noch nicht

beschriebenen N-hetero-polyzyklischen Verbindungsklasse (Schema 2.3).

R! R!
1 [Mn] » B
R HO n
\\ b + NH Ko®Bu " : "
2 HN.__NH o HN.__N
7 R2T 2-MeTHF, 100 °C, 2 h 1007C. 15
NH, NH, §Z - Hy0, - HyA 7 ‘ NH, 2 N ‘ NH
R R
Modifikationsgrad: 1 2

Schema 2.3: Konsekutive Eintopfreaktion fiir die Synthese einer unbekannten Klasse von N-hetero-polyzyklischen
Verbindungen.

Der hier vorgestellte Reaktionsweg ermdglicht die Synthese von 2,3-Dihydro-1H-perimidinen, welche
eine NHa-Funtionalitdt  tragen  (Modifikationsgrad 1). Alle 24  dieser isolierten
,,Amino-dihydroperimidine werden in dieser Arbeit zum ersten Mal vorgestellt. Die konsekutive

Zugabe eines Aldehyds zu der Reaktion fiihrt zu einer Klasse von Verbindungen, die unteranderem aus
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zwei sechsgliedrigen N-Heterocyclen besteht (Modifikationsgrad 2). Bei diesem polycyclischen
Ringsystem handelt es sich um eine neue, bisher nicht beschriebene Verbindungsklasse. Der Name
Fertigine wird fiir diese N-hetero-polyzyklische Verbindungsklasse vorgeschlagen. Nach der
Optimierung aller Reaktionsparameter ergaben sich als ideale Paramater fur diese konsekutive
Multikomponentenreaktion 1 mol% Prakatalysator C, 30 mol% KOBu, 1:1:1-Verhaltnis
Aminoalkohol:Diamin:Aldehyd, 2-MeTHF, 100 °C (Olbadtemperatur). Nach 2 h wurde der Aldehyd zu
der Reaktion gegeben, nach ca. 15 h konnte das gewiinschte Fertigin erhalten werden. Insgesamt wurden
in diesem Projekt 48 Fertigine in Ausbeuten von 56 — 95 % isoliert. Dabei zeigte diese Reaktion eine
exzellente funktionelle Gruppentoleranz, so konnten zum Beispiel verschiedenste Halogene, N-,0-,S-
Heterozyklen, C-C-Doppelbindungen oder Ferrocen-Derivate eingefiihrt werden (Abb. 2.1).

” o, o

90 % 70 % 71 % 79 %
HN N HN Np HN N o w
Fe HN N o
NH
F Cl

68 % 75 % 73 % 68 %

Abb. 2.1 Ausgewéhlte Beispiele der synthetisierten Fertigine. Die Ausbeuten der isolierten Produkte sind angegeben.

Bei allen Fertiginen handelt es sich um Feststoffe, welche sich leicht kristallisieren lassen. Da zu dieser
unbekannten Verbindungsklasse bisher noch keine Strukturdaten existieren, war es von Interesse mittels
Einkristallstrukturanalyse die molekulare Struktur mehrerer Fertigine zu untersuchen. Neun Fertigine
wurden Kristallisiert und der Einfluss der Substitution auf den Kernbereich um die Stickstoffatome
untersucht. Die Aminal Bindungslangen von 1 liegen mit einer Lénge von C11-N1: 1,438(2) A und
C11-N2: 1,490(2) A in den gleichen Bereichen wie fiir bereits berichtete, strukturdhnliche
2,3-Dihydro-1H-perimidine (Abb. 2.2). Die C-N Bindungslangen von C18-N2: 1,463(2) A und C18-
N3: 1,452(2) A entsprechen den typischen Werten fiir eine Csp3-Ngp3 -Bindung. Die Fertigine
kristallisierten in unterschiedlichen Konformationen, dabei zeigten sechs der neun untersuchten
Strukturen eine dhnliche Konformation, bei der alle drei aromatischen Ebenen des Fertigins nahezu
senkrecht zueinander stehen. So ist z.B. bei dem Fertigin in Abb. 2.2 die planare Naphthalinebene (rot)
mit 85,65 ° zu der Ebene des anellierten Phenylrings (blau) und mit 89,69 ° zu der Ebene des
Phenylsubstituenten (griin) orientiert. Gleichzeitig besitzt die Ebene des Phenylsubstituenten (griin)

einen Winkel von 84,68 ° zu der Ebene des anellierten Phenylrings (blau).
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Abb. 2.2: Molekulare Struktur eines Fertigins. Einkristallstrukturanalyse zeigt von einer Konformation die Orientierung der
aromatischen Bereiche (rot, blau, griin) zueinander.



3 Introduction

3.1 Motivation

In the early part of the 19" century, Henry Ford proposed as a logical and unavoidable option for a
wealth and growing civilization the implementation of a bio-based economy.* Due to the uncompetitive
cheap price of fossil fuels compared to any other alternatives, the bio-based approach was postponed a
long time. But this price advantage will shrink in future.2® Furthermore, serious threats for humanity
caused by increasing environmental problems, can be traced back to the mass consumption of fossil
fuels. These growing concerns of the society are, besides the economic considerations, one of the driving
forces to find more sustainable and “greener” approaches. The 12 principles of “green chemistry” as
proposed by Anastas and Warner in 1998, represents a famous approach to a more sustainable chemical
industry (Table 3.1).* In general the principles are about the substitution of hazardous/toxic chemicals

with benign, renewable chemicals and the avoidance of waste in any form.

Table 3.1: The twelve principles of Green Chemistry as proposed by Anastas and Warner.

12 Principles of Green Chemistry

1 2 3
Prevent Waste Atom Economy Less Hazardous Synthesis
4 5 6
Design Benign Chemicals Benign Solvents & Auxiliaries Design for Energy Efficiency
7 8 9
Use of Renewable Feedstock Reduce Derivatives Catalysis
10 11 12
Design for Degradation Real-Time Analysis for Inherently Benign Chemistry for
Pollution Prevention Accident Prevention

Fossil fuels are not only used to generate energy, but also as the starting materials for a tremendous
amount of platform chemicals used in the chemical industry.® To push chemical processes more to the
approaches of a “green chemistry”, it is mandatory to substitute the finite fossil fuels with renewable
resources. (7" principle). One sustainable, abundantly available feedstock, that had come into focus of
research is lignocellulosic biomass.®® It fulfills several promising criteria, as such as it is generated from
available atmospheric carbon dioxide, water and sunlight through photosynthesis and is the only

sustainable source of organic carbon in earth with net zero carbon emission.'® Furthermore, it is
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indigestible (no competition with food production), has no significant application in industrial processes

and it is a worldwide available renewable feedstock with high abundance.**?

With respect to petroleum resources, lignocellulosic biomass has higher amount of oxygen and lower
fractions of carbon and hydrogen. Due to this variety, more classes of products can be obtained from
lignocellulosic biomass compared with fossil sources.! The treatment of the biomass requires a large
range of complex processing technologies, but the (cost-) effectiveness will increase, since the
technologies will overcome the pre-commercial stage.***> Owing to the downstream products from the
petroleum industry, common synthesis methods are based on functionalization chemistry to obtain
products for the chemical industry. Since lignocellulosic biomass provides a mixture of various
alcohols,'® a different approach for the synthesis of chemical products is necessitated. Compared to the
established functionalization-chemistry for olefins, there is a demand for re-functionalization-methods

using alcohols as renewable starting materials (Figure 3.1).

Fossil Fuels m:> @ < Re-functionalization| ngg?:;létg25|c
P

NN HO__O Ho o
OH
P YN Olefin Chemistry vs. Alcohol Chemistry OH OH
N MeO OMe NH, O
W W\ OH on HONOH
Ho_AL_on © o

NN
HOQ/\AOH
HO
Figure 3.1: Resource-depending conversion methods for producing chemical for the industry.

However, alcohols must be activated first to use them efficiently in organic reactions. According to the
12 principles of “green chemistry” (Table 3.1), it is desirable to apply syntheses proceeding in only one
step while producing as less as possible non-toxic by-products. The concept of Borrowing Hydrogen /
Hydrogen Autotransfer (BH/HA) is a popular concept to accomplish alcohol activation in a sustainable

manner.

3.2 Borrowing Hydrogen / Hydrogen Autotransfer

The Borrowing Hydrogen / Hydrogen Autotransfer concept was first presented by Watanabe!” and
Grigg® in 1981. In this concept, an alcohol is first dehydrogenated by a transition-metal catalyst to the
corresponding carbonyl species, while the hydrogen from the alcohol is transferred to the metal complex.
The reactive carbonyl can undergo a condensation reaction with a nucleophile (e.g., an amine or the
anion of a CH-acidic compound) obtaining an unsaturated compound under elimination of water. In a

final step, this unsaturated compound is hydrogenated from the catalyst, using the “borrowed” hydrogen
10
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from the initial dehydrogenation step. This reaction concept proceeds within one single step liberating
water as the only by-product (Scheme 3.1). Due to its atom economy and broad applicability for organic
reactions, this synthesis concept has received a lot of attention. The groups around Beller!®2°,  Fujita?-
30, Williams®40, Grigg* 3, Yus*“® and Kempe*>4 contributed to this topic with several elegant

synthesis routes.

R1/\ RE
dehydrogenation < > hydrogenation
[MH5]
+ HoX-R?
R1 %O —>2 R1 /%X . R2
-H,O

condensation

Scheme 3.1: Concept of the Borrowing Hydrogen / Hydrogen Autotransfer. X = CH, N; [M] = transition-metal catalyst.

3.3 Acceptorless Dehydrogenative Condensation

Like the concept of Borrowing Hydrogen / Hydrogen Autotransfer is the Acceptorless Dehydrogenative
Condensation a “green” and sustainable synthesis route for the conversion of alcohols. In analogy to the
BH/HA-concept, the alcohol is dehydrogenated with a transition-metal catalyst and the active carbonyl
compound reacts with a nucleophile to an unsaturated product releasing one equivalent water as
by-product. But instead of transferring back the “borrowed” hydrogen from the metal complex to the
unsaturated compound, it is released as molecular hydrogen (Scheme 3.2). Since the hydrogenation of
the imine or olefine is suppressed, this concept provides unsaturated compounds like olefins or imines,

which can be used for subsequent cyclisation reactions allowing the synthesis of aromatic compounds.

R' OH !
M] H,
dehydrogenation
[MH,]
2
R1/§O + HoX-R R1&x’R2
-H,O
condensation

Scheme 3.2: Concept of the Acceptorless Dehydrogenative Condensation. X = CH, N; [M] = transition-metal catalyst.

11
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N-Heterocyclic compounds are widely spread in many pharmaceuticals, natural products, and functional
materials.>® About 59 % of the FDA approved small-molecule drugs contain at least one nitrogen
heterocycle, thus it is one of the most frequent motifs in pharmaceuticals.®® The concept of ADC is
especially attractive for the synthesis of N-heterocycles, since alcohols and amino alcohols from
renewable resources can be used as starting materials.® The group of Watanabe first synthesized
benzoxazoles and benzimidazoles with a Ru-catalyst using the concept of ADC.>" The groups of
Crabtree, Beller, Milstein, Saito and Kempe contributed to the development of synthesis concepts of
aromatic N-heterocycles (Figure 3.2). Several groups introduced the catalytic synthesis of pyrroles
following the ADC concept, whereas each group differs in the possibilities of substitution around the
pyrrole: In 2011 Crabtree started using 1,4-diols and primary amines, providing symmetrical pyrroles
with R?2= R°and R3, R* = H. The groups of Kempe, Milstein and Saito synthesized pyrroles with R*=H,
and the group of Beller obtained fully substituted pyrroles using the ADC concept. Subsequently, further
syntheses of aromatic N-heterocycles were reported on, including the synthesis of pyridines®®®°,
quinolines®®%°, 3-aminopyridines®!, benzimidazoles®®?, 2-arylquinazolines®®, quinoxalines®? and

pyrimidines® (Figure 3.2).

1
R R'_N_R® RN R'_N_R®
R2 N RS | | _R4 | .
W RN R R2TNF NS RN R
R3 R4 R3 R3 R3 H

Crabtree group 2011 Kempe group 2013  Milstein group 2013  Kempe group 2017
Kempe group 2013 Milstein group 2013  Kempe group 2014

Milstein group 2013

Saito group 2013

Beller group 2013

H 3
XN 1 NN N N\ R N)QN
10 2 R 1
R'C R A, R P
N N R N R2 RZ R4
Watanabee group 1991 Zhang group 2014 Kempe group 2014 Kempe group 2015

Kempe group 2014

Figure 3.2: Aromatic N-heterocycles synthesized from alcohols as starting materials using the concept of ADC.

All of those presented aromatic N-heterocyclic compound classes were synthesized using alcohols
and / or amino alcohols as renewable starting materials indicating the future viability of the ADC

concept.
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3.4 Base-Metal-Catalyzed Amine Alkylation using BH/HA and ADC

There are several advantages regarding BH/HA and ADC reactions, like high atom-economy, low
formation of by-products, and the use of alcohols as sustainable resources. Nevertheless, the use of
catalysts based on rarely occurring precious metals like Ir and Ru diminishes this advantage, due to their
high costs, toxicity and big impact on the global warming caused by their high energy consumption
during processing and purification.%%” Owing to this, there has recently started the development of
catalysts based on earth-abundant metals improving the overall sustainability of BH/HA and ADC

reactions.

The first explored base-metal for homogeneous catalysis was iron based on a Knoelker-type complex
reported by the group of Feringa and Barta in 2014 (Scheme 3.3).%8 Considerable work on the use of this
iron complexes has been contributed by the groups of Zhao®® and Wills™. The first cobalt complex that
can selectively alkylate primary amines with alcohols was published by the group of Kempe™,
subsequently followed by the groups of Kirchner’?, Zhang” and Balaraman’. In 2016, the group of
Beller reported on a well-defined PNP manganese pincer complex based on a MACHO ligand for the
selective N-alkylation of amines with alcohols. As a special highlight the chemoselective
monomethylation of primary amines with methanol under mild conditions was presented.” The group
of Ke described the first example of a phosphine-free manganese catalyst based on a N-heterocyclic

carbene ligand catalyzing the N-alkylation at room temperature.’™
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Scheme 3.3: Selected examples of base-metal catalysts for amine alkylation using the BH/HA concept.

Reports on ADC reactions for imine synthesis catalyzed by base-metals are rare (Scheme 3.4). In 2013,
the group of Hanson reported on the first homogeneous cobalt catalyst for the synthesis of imines from
alcohols and amines based on a cationic cobalt(Il) alkyl complex.”” Kumar and Singh introduced a
Fe-phthalocyanine complex for imine synthesis using the ADC concept.’® The first manganese catalyst
was published by the group of Milstein allowing the selective synthesis of imines.”® The group of
Kirchner reported on a related PNP ligand-stabilized Mn-complex, catalyzing imines from alcohols and
amines under similar reaction conditions but with shorter reaction time.®
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Scheme 3.4: Selected examples of base-metal catalysts for amine alkylation using the ADC concept.

3.5 Manganese-Catalyzed Synthesis of N-Heterocycles using the ADC

Several manganese catalysts have been developed for the sustainable synthesis of N-heterocycles using
the Acceptorless Dehydrogenative Condensation. The group of Beller used the manganese precatalyst
[Mn-1] synthesizing indole via an intramolecular dehydrogenative coupling of 2-aminophenethyl
alcohol under mild reaction conditions (Scheme 3.5, 1.)).8! The base-metal complex [Mn-2] was
developed by the group of Kirchner. They introduced the environmentally benign synthesis of
quinolines using 2-aminobenzyl alcohols and alcohols as starting materials (Scheme 3.5, 11.)).82 The
same catalyst also allows the synthesis of pyrimidines via a 3-component synthesis consisting of
benzamidine, a secondary alcohol and a primary one (Scheme 3.5, 111.)).82 The variability in the
substitution pattern of pyrimidines is increased through the use of the precatalyst [Mn-3] introduced by
the group of Kempe.® It is achieved by a consecutive 4-component reaction, whereas a B-alkylation
between a primary and a secondary alcohol proceeds in the first part. [Mn-3] was also used for the first
base-metal catalyzed synthesis of pyrroles using alcohols and amino alcohols as renewable resources
(Scheme 3.5, 1V.)).8* In 2018, Srimani and co-workers presented a phosphine-free tridentate NNS
ligand-derived manganese(l) complex ([Mn-4]) for the selective synthesis of 2-substituted and
1,2-disubstituted benzimidazoles by Acceptorless Dehydrogenative Condensation of aromatic diamines
with primary alcohols.®> The observed selectivity is achieved by changing the necessitated base, if
KO'Bu is used, 1,2-disubstituted benzimidazoles were obtained, while 2-substitued ones were isolated
using KOH as base (Scheme 3.6, 1.)).
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Scheme 3.5: Advancements in the synthesis of N-heterocycles using Mn-catalysts.

The group of Milstein developed an acridine-based pincer complex of manganese, [Mn-5], for the
synthesis of substituted quinoxaline derivatives by dehydrogenative coupling of 1,2-diaminobenzene
and 1,2-diols (Scheme 3.6, 11.)).26 Furthermore, Milstein and co-workers used [Mn-5] to catalyze the
synthesis of 2,5-dialkyl substituted symmetrical pyrazine derivatives by the self-coupling of
2-aminoalcohols (Scheme 3.6, 111.)), the only by-products are water and hydrogen.® In 2019, the group
of Srimani synthesized selectively important 2,3-dihydro-1H-perimidines catalyzed by [Mn-4] (Scheme
3.6, 1VV.)). They showed that through the nature and stoichiometry of the applied base the selectivity of

the amino alkylation is controlled.®’
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Scheme 3.6: Manganese-catalyzed synthesis of N-heterocycles via ADC.

The discussed syntheses of N-heterocycles in this section show the high potential for manganese
catalysts for ADC reactions. The use of new manganese catalysts with sustainable starting materials like
alcohols enables new synthesis routes due to different reactivity compared to precious-metal catalysts.
In section 5 one manganese catalyst system is presented, which can selectively switch between the
concept of BH/HA and ADC. In section 6 this catalyst system is used for a consecutive multicomponent

reaction to synthesize an N-hetero polycyclic compound class, that has not been reported yet.
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4 Overview of Thesis Results

This thesis consists of three different projects, which are presented in section 4-6.

4.1 Synopsis

PNssP ligand stabilized complexes have shown a high activity for BH/HA and ADC reactions in
previous works of the Kempe group. First reactions were conducted with catalysts based on Ir, but soon
base-metal catalysts were established deriving from the PNsP ligand type. The modular design of this
ligand class allows to customize the steric and electronic properties of the catalyst system in a unique
way. The Kempe group showed that PNsP cobalt complexes are highly active in the homogeneous
hydrogenation of C=0 bonds as well as in the amino alkylation using alcohols as starting materials.
Subsequently, a library of PNsP ligand-derived Mn(1) complexes was synthesized and their activity in
the hydrogenation of carbonyl bonds was presented (Figure 4.1). During the investigation of those
Mn-precatalyst in the alkylation of primary amines using the BH/HA concept, a unique, base-dependent
reactivity was observed.

R

)\ A X=N,R=H
Xy B: X =N, R = NEt,
)|\ )\ C:X=N,R=Ph
Pz D: X =N, R = NH-C3Hs
HIN N B M E:X=N,R=Me
(iPr)oP Mn P(iPr); F:X=CH,R=H
ocC l G: X=CH,R=Me

CcO

Figure 4.1: General structure of the investigated PNP ligand-stabilized Mn pincer complexes.

4.1.1 Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via
Borrowing Hydrogen or Dehydrogenative Condensation

The development of catalysts based on Mn is of high interest since manganese is the third most abundant
transition metal in earth’s upper crust. The N-alkylation of primary amines by alcohols is an elegant,
broadly applicable and sustainable method for the synthesis of alkyl and aryl amines. A library of
Mn-precatalysts was investigated for the reaction between aniline and benzyl alcohol. The active species
of the catalyst is generated by deprotonation of the amines via addition of a base. Interestingly, an alkali
metal base-dependant product formation was observed (Table 4.1). If LiO'Bu or NaO'Bu were used for

the activation of the catalyst system, the imine 1a was obtained, while the corresponding amine 2a was
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Overview of Thesis Results

received preferentially using KO'Bu or CsO'Bu. The use of related bases led to a similar selectivity
(Table 4.1).

Table 4.1: Base screening for the Mn-catalyzed alkylation of aniline with benzyl alcohol.[®

Nv@ *H0 4 HZ?
NH precatalyst C (5 mol%) ©/ 1a
* Ho base (1 mmol
" ase (1 mmol) - and / or
10
N +H,0
2a

Entry Base Imine 1a [%]™ Amine 2a [%]®
1 LiO'Bu 5 0
2 NaO'Bu 26 6
3 KO'Bu 0 60
4 CsO'Bu 0 62
5 LiIHMDS 4 1
6 NaHMDS 24 19
7 KHMDS 0 95

[a] Reaction conditions: 1 mmol aniline, 1 mmol benzyl alcohol, 5 mol% precatalyst C, 1 mmol base, 5 mL THF,
80 °C (oil bath), 18 h, pressure tube. [b] Yield determined via GC with decane as an internal standard.

We compared the Mn-precatalyst C with six different manganese precatalysts and observed a decrease
in the activity if the ligand backbone is based on a pyridine moiety. The Ir- and Co-precatalyst for amino
alkylation previously described by the Kempe group were selected and tested for comparison. Both
catalysts showed a high activity and selectivity in the amine formation if KO'Bu is used, but the
activation with NaO'Bu led to the imine only in low yields. Next, all reaction parameters for the imine
and the amine synthesis were separately optimized to improve the yield of both reactions. A yield of
>99 % with a selectivity of >99 % was achieved for the amine synthesis using an alcohol/amine ratio of
1.4/1, 3 mol% of precatalyst C, 1 equiv. KO'Bu, 80 °C (oil bath), closed flask in THF. A yield of >99
% with a selectivity of >99 % was obtained for the imine synthesis using an alcohol/amine ratio of 1.6/1,
1 mol% of precatalyst C and 1.5 equiv. NaO'Bu at 110 °C (oil bath). An open flask with a bubble counter
was used for imine synthesis to release the generated molecular hydrogen. Conducted scale-up
experiments for imine and amine synthesis (50 times of the normal scale) showed similar selectivity and

yields.

With these conditions at hand, the addressable product scope was explored by investigating a variety of
alcohols and primary amines for the N-alkylation catalyzed by the PNsP pincer complex. For this, the
same alcohol/amine educt combination was used for imine and amine synthesis. Substrates bearing both
electron-withdrawing and electron-donating substituents on the alcohol as well as on the primary amine

were converted smoothly. The imines were isolated in yields from 52 to 93 % (average yield of 77 %)
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and the corresponding amines were isolated in yields ranging from 66 to 97 % (average Yyield of 86 %).
Some selected examples are shown in Scheme 4.1, indicating the good functional group tolerance for
the conversion into the respective N-alkyl amine or imine. The observed imine/amine selectivity was

always higher than 98%.

e
TR
I
NaO'Bu NS
NaOBu o

-H0 ~ 20 isolated

X NH; HO A precatalyst C -Hy T examples
R1—‘ + ‘ gz ———
! = = H \/@RZ
X

N
KO'Bu - {j/
-H,0 Z 20isolated
examples

............................................................................................................................

........

............................................................................................................................

............................................................................................................................

Scheme 4.1: Selected imines and amines for the base-switchable amino alkylation using the Mn-precatalyst C. Yields of
isolated products are shown.

Finally, mechanistic experiments were conducted to understand the observed selectivity.
Time-conversion plots showed that amine formation can be suppressed if K* is masked with 18-crown-6.
If KO'Bu was added to the manganese hydride [MnH], a change in 3'P NMR spectra from 160.25 ppm
to 157.54 ppm was observed (Figure 4.2). Since the acidic NH protons of the ligand backbone
disappeared after the addition of the respective base, a coordination of the potassium or sodium cation
at the deprotonated amino functions of the ligand is assumed, additionally stabilized via the nitrogen

atoms of the triazine backbone.
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Figure 4.2: 31P NMR-signal of the manganese hydride [MnH] and after activation with KOBu.

The potassium manganate hydride [MnH]K; and the corresponding sodium salt revealed significant
differences in their reactivity. A remarkable different hydride transfer rate to the imine 1a generating
the amine 2a was observed via *H NMR-based time-conversion studies. A fast reaction to the amine 2a
for the in situ generated [MnH]Kwas observed, while under the same reaction conditions the amine
2a was only formed in low amounts and slowly, if [MnH]Na. was reacted with 1a (Figure 4.3). This
hydride transfer rate takes place about 40 times faster for [MnH]K; compared to [MnH]Na,. This key

step is responsible for the selective N-alkyl amine or imine formation.
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Figure 4.3: Reaction of the imine 1a with the manganese hydride [MnH] after deprotonation with two equivalents of KO'Bu
or NaO'Bu. Reaction conditions: 60 umol of [MnH], 60 umol of 1a, 120 umol of base, 800 pmol of THFgs, 80 °C.
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4.1.2 Rational Design of N-Heterocyclic Compound Classes via Regenerative
Cyclization of Diamines

The discovery of reactions is a central topic in chemistry. It is of high interest if the discovered reaction
can be used to reach inaccessible substitution patterns of an existing class of compounds or even permit
the synthesis of an unknown class of compounds. Especially the access to unknown N-heterocyclic
compounds is desirable due to their numerous applications in life and material sciences, for instance as
pharmaceuticals, agro chemicals, dyes and conductive materials. We report here on a concept that could
permit access to various cyclic compound classes. For this, the pair of functional groups required for
ring closure must be formed again after ring closure. Repetition of the ring closure results in an unknown

(hetero-) polycycle after a distinct time (Scheme 4.2).

QQQQ&

Modification degree: 2
R % X
Modification degree: n+3

Scheme 4.2: General concept to design classes of polycyclic compounds via ring closure.

This concept is introduced by synthesizing a class of N-hetero polycycles via a catalytic consecutive
multicomponent reaction. If naphthalene-1,8-diamine reacts selectively with an amino alcohol via
dehydrogenation and condensation, a new pair of diamines is generated that can undergo ring closure
again, for example with an aldehyde, to form an unknown class of N-hetero polycyclic compounds after

the second ring closure (Scheme 4.3).
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Scheme 4.3: Synthesis of an unreported class of N-hetero polycycles via a catalytic consecutive multicomponent reaction.

Interestingly, there is no one-pot reaction for the synthesis of 2,3-dihydro-1H-perimidines bearing a
NH:-functionality (modification degree 1, “aminoperimidine”) reported since now. All these
synthesized aminoperimidines have not been described yet. We started our investigation with an
optimisation of the reaction conditions for the first ring closure leading to 2-(2,3-dihydro-1H-perimidin-
2yl)aniline Al. The optimal reaction parameters for the synthesis of aminoperimidine Al were 1 mol%
precatalyst C, 30 mol% KO'Bu, 2 mmol 1,8-diamino naphthalene and 2-aminobenzyl alcohol, 3 mL
2-MeTHF at 100 °C with a reaction time of 2 h (Scheme 4.4). The reaction proceeded in a tube with a
bubble counter to facilitate the release of hydrogen during the dehydrogenation of the amino alcohol.

i Ph
+ precatalyst C (1 mol%) N)%N

KO'Bu (30 mol%) . ' _
o HN__NH +Hyh +H,0 ! HN)\,}I)B\rNH
NH2 NH, 2-MeTHF, 100 °C, 2 h NH, | (PrzP—Mn—P(Pr),
5 oc” g
1 eq. 1 eq. A1 . precatalyst C

Scheme 4.4: Optimized reaction conditions for the synthesis of Al.

Under optimized reaction conditions 24 unreported aminoperimidines were synthesized with yields
ranging from 69 — 97 % (average isolated yield of 84 %). A high functional group tolerance was observed
during catalysis including substituents like halogens, methoxy-groups and acetals. By means of a fluoro-
and a methyl-substituent, as exemplary electron-withdrawing and electron-donating groups, the
tolerance of a substitution on every position at the phenyl ring was demonstrated for catalysis (Figure
4.4).
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Figure 4.4: Selected examples of isolated aminoperimidines. Isolated yields are shown.

The spatial distance of the primary amine functionality to the NH-groups of the aminoperimidine enables
the access to a second ring closure (modification degree 2). Due to price, easy-handling, sustainability
aspects and broad availability, aldehydes represent the ideal building blocks for condensation reactions
with amines. The second ring closure leads to compounds consisting of two annulated six-membered
N-heterocyclic ring systems with an aminal in each ring. One of these six-membered rings has an
annulated naphthene ring, one an annulated benzene ring. Every compound with this build-up is novel.
The name fertigine is proposed for this class of N-hetero polycyclic compounds. Keeping the synthesis
procedure of the fertigines as simple as possible, they were synthesized via a consecutive
multicomponent one-pot reaction using the conditions optimized for the synthesis of the amino
perimidines followed by the addition of an aldehyde (Scheme 4.5).

1YY, AN

HO RT/ /7R / /
precatalyst C

N

A HN.__NH
1+ —rR? NH KO'Bu
Ry N~ R + = 2 .
NH-NH S F 2-MeTHF, 100°c o6h | ~rNH2  100°c, 15n I SN
2 2 R3 'HQO, H2 // -Hzo //
R3 R3

Scheme 4.5: Consecutive multicomponent one-pot synthesis of fertigines.
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The substrate scope of this reaction was investigated by synthesizing fertigines with several derivatives
of each starting material of this three-component reaction. Halogenated as well as alkylated substrates
were used and reacted smoothly to the respective fertigines. In Figure 4.5 some selected examples of
isolated fertigines are shown. Fertigines were isolated containing a stilbene moiety, N-, S-, or O-
heterocyclic moieties, ferrocene moieties, phenolic or acetalic moieties. This synthesis concept permits
access to multiple substituted fertigines. At all, a total amount of 48 fertigines with various substitutions
was isolated in yields from 56 — 95 % (average yield of 79 %), demonstrating the high applicability of
this synthesis concept.
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Figure 4.5: Selected examples of substituted fertigines. Isolated yields are shown.
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4.1.3 Investigation of the Molecular Structure of Fertigines via X-Ray Crystallography

Recently, we have submitted a work about a synthesis concept that enables the synthesis of an unknown
class of N-hetero polycyclic compounds, named fertigines. N-Heterocyclic compounds are of high
importance as their motifs are found in many pharmaceuticals, natural products, and functional
materials. Since chapter 4.1.2 has described the synthesis and high functionalizability of fertigines, this
work is focused on the description of their molecular structures via X-ray crystallography. Nine different
fertigines were compared with each other and the influence of the substitution on the molecular structure
of the fertigines was investigated. Although the fertigines contain two stereo centers, we did not observe
all diastereomers via *H NMR analysis, indicating a diastereoselectivity for the synthesis of this
N-hetero polycyclic compounds. We started with the determination of the absolute configuration of each
fertigine via X-ray analysis (Figure 4.6).

” NMez
HNE* Nﬁ*/© HNE* wa@/ HN = N s
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Cl NH ClI NH

T:(R)(S)™ 8 (S)(R)™ R)**

Figure 4.6: Absolute configuration of the fertigines found in the crystal analyzed via X-ray crystallography.

The bond lengths and angles of all nine fertigines were determined. In Figure 4.7 the molecular structure
of 1, obtained via X-ray crystallography, is presented. The angles C1-N1-C11:117.4(1)° and
C11-N2-C18: 110.3(1) ° indicate a distorted trigonal pyramidal geometry for N1 and N2. According to
the trigonal planar molecular geometry of N3 (C17-N3-C18: 120.9(1) °) and to the bond length of
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N3-C17 (1.377(2) A), N3 shows more the character of a sp>hybridization than of a sp3-hybridization
(lit.: Carom.— Ngp2: 1.353 £ 0.007 A vs. Carom— Ngp3:1.419 £ 0.017). The influence of the substitution
at C18 was investigated by comparing the core region (i.e., the two six-membered N-heterocyclic ring
systems) of 1 with the structures of 2 — 5. The investigated substituents do not have a significant impact

on bond lengths and angles in the core region.

Figure 4.7: Molecular structure of 1 in the crystal (ORTEP drawing and atom labelling scheme with 50 % probability level).
Selected bond lengths/A and angles/®: N1-C11, 1.438(2); N2-C11, 1.490(2); N2-C18, 1.463(3); N3-C17, 1.377(2);
N3-C18, 1.452(2); C11-C12, 1.52.

Next, the molecular structure of substituted fertigines (6 — 9) was analyzed. The bond lengths and angles
of 6 - 9 are of comparable values like the fertigines 1 — 5. The fertigines 1, 2, 3, 5, 6 and 8 showed a
similar conformation in the crystal, where all three aromatic regions of the molecule are nearly
perpendicular to each other. Regarding fertigine 1 (Figure 4.8), the naphthalene plane (red) is oriented
with 85.65 ° to the plane of the fused phenyl ring (blue) and with 89.69 ° to the plane of the phenyl
substituent (green). The plane of the phenyl substituent (green) has an angle of 84.68 ° to the plane of
the fused phenyl ring (blue).
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Figure 4.8: Orientation of the three aromatic regions (red, blue, green) of fertigine 1 in the crystal (ORTEP drawing and atom
labelling scheme with 50 % probability level).

Fertigine 4, 7 and 9 crystallized in a more flatten conformation, whereby especially the angle between
the naphthene and the fused phenyl plane shrinks to values between 37.71 and 58.81 °.

In Table 2 some crystallographic details about the investigated crystals of the fertigines are presented.
Five of the nine investigated single crystals are based on a monoclinic crystal system with 4 independent
fertigines in the unit cell.

Table 2: Crystallographic details of the investigated fertigines.

Fertigine  Crystal system  Spacegroup Z  Rin R1 CCDC No.
1 monoclinic P 21/c 4 0.0246 0.0433 2083140
2 orthorhombic P212121 4 0.0798 0.0561 2083142
3 monoclinic P 21/n 4 0.0468 0.0544 2083143
4 orthorhombic Pbca 8 0.1330 0.0948 2083141
5 monoclinic Cc 4 0.0256 0.0358 2083149
6 triclinic P-1 2 0.0311 0.0520 2083146
7 orthorhombic Pna2l 4 0.0376 0.0417 2083153
8 monoclinic Cc 4 0.0266 0.0337 2083151
9 monoclinic P21/n 4 0.0611 0.0858 2083155
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4.2 Individual Contributions to Joint Publications

The results presented in this thesis were obtained in collaboration with others and were published as
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ABSTRACT: The use of earth-abundant transition metals as
a noble metal replacement in catalysis is especially interesting
if different catalytic reactivity is observed. We report, here, on
the selective manganese-catalyzed base-switchable synthesis of
N-alkylated amines or imines. In both reactions, borrowing
hydrogen/hydrogen autotransfer (N-alkyl amine formation)
or dehydrogenative condensation (imine formation), we start
from the same amines and alcohols and use the same Mn
precatalyst. The key is the presence of a potassium base to

Ph

Iy
1), — p—N "~ N~ p—(th),
) Wl

H 2
M=K Ny R
» o~ R
P(Pr), e F

!
(Pr);P—Mn—|
Lo , oc’ | co
R + HO R ——————
+ earth-abundant metal M=Na® N. R?
+ imine/amine selectivity =N » N
+ broad product scope “H,0 R >
- functional group tolerance ~Hgb

prefer N-alkylation and a sodium base to permit imine formation. Both bases react with the manganese hydride via
deprotonation. The potassium manganate hydride reacts about 40 times faster with an imine to give the corresponding amine
than the sodium manganate hydride. The selectivity seems unique for manganese complexes. We observe a broad scope with a
complete product overlap, all amine alcohol combinations can be converted into an N-alkyl amine or an imine, and a good

functional group tolerance.

KEYWORDS: amines, base-switchable, borrowing hydrogen, dehydrogenative condensation, imines, manganese, N-alkylation

he “replacement” of noble metals in key technologies,

such as catalysis by earth-abundant metals, is a possible
rare element conservation strategy. It is especially attractive if it
goes beyond a simple replacement and, additionally, different
catalytic reactivity is observed. Manganese catalysts have been
used successfully in hydrogenation and dehydrogenation
reactions since 2016' and an impressive similarity to Ir and
Ru catalysts in the (transfer) hydrogenation of ketones,”
esters,”* amides,’ and CO,,” and dehydrogenative coupling,f'
dehydrogenative condensation,” and borrowing hydrogen/
hydrogen autotransfer’ has been observed. Unfortunately,
examples of catalytic transformations, not yet observed with
noble metals, are rare.” The N-alkylation of amines by
alcohols'®" is an elegant, broadly applicable and sustainable
method for the synthesis of alkyl amines (Scheme 1, top left).
It follows the borrowing hyt:h'ogenl2 or hydrogen autotrans-
fer'® (BH/HA) concept. The dehydrogenative imine synthesis
starting from amines and alcohols introduced by Milstein and
co-workers is of similar conceptional importance."* This
reaction proceeds via H, liberation. Both reactions can be
catalyzed by Mn,”* Co,ls']6 and Fe'”'® complexes.

We report, herein, the manganese-catalyzed selective
synthesis of N-alkyl amines or imines from the same alcohol
amine couples. The presence of the metal base determines the
product with potassium bases giving selectively N-alkyl amines
and sodium bases giving selectively imines. The base-
switchable reaction has a broad scope and an attractive
functional group tolerance. Related Co, Fe, and Ir complexes
are significantly less switchable. Mechanistic investigations
revealed that both bases react with the PNP ligand-stabilized

< ACS Publications @ 2018 American Chemical Society 8525
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Scheme 1. Borrowing Hydrogen/Hydrogen Autotransfer
(BH/HA, Red) and Acceptorless Dehydrogenative
Condensation (ADC, Blue) Concept and the Product
Selectivity Observed for the Mn-Catalyzed Base-Switchable
Amine or Imine Synthesis

Borrowing Hydrogen/Hydrogen
Autotransfer (BH/HA)

Acceptorless Dehydrogenative
Condensation (ADC)

RY™oH
H
[Mn] [Mn]
Ay
+KO'BU +NaO'Bu
[MnH,] [MnHy]
R R0 RN S
-H0

H
KO'Bu S e =
NH; o T T /J
X Mn] NF x
R\ + Ho_re IMN NTEN
& ~ 2 AL
NaO'Bu T x N\\/R HN N NH

1 | |
(Pr),P—Mn—P(Pr),
oc™ &g e

manganese hydride [MnH] via deprotonation. The potassium
manganate hydride reacts about 40 times faster with an imine
via amine formation than the sodium manganate hydride.
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We investigated the reaction between aniline and benzyl
alcohol in the presence of a PNP ligand-stabilized manganese
catalyst and observed an alkali metal base-dependent product
formation (Table 1). If LiO'Bu or NaO'Bu were used for the

Table 1. Base Screening for the Mn-Catalyzed Alkylation of
Aniline with Benzyl Alcohol”
N @ +HO +H,}

1a
and/or

o

H

S

precatalyst C (5 mol%)
base (1 mmol)

NH
o0

+H,0

entry base imine la [%]b amine 2a [%]b
1 LiO'Bu N 0
2 NaO'Bu 26 6
3 KOBu 0 60
4 CsO'Bu 0 62
S LiHMDS 4 1
6 NaHMDS 24 19
7 KHMDS 0 95

“Reaction conditions: 1 mmol aniline, 1 mmol benzyl alcohol, S mol
% precatalyst C, 1 mmol base, 5 mL THF, 80 °C (oil bath), 18 h,
pressure tube. Yield determined via GC with decane as an internal
standard.

activation of the catalyst system, the imine la was obtained,
while the corresponding amine 2a was received preferentially
using KO'Bu or CsOBu. A similar selectivity was observed
using related bases. A library of Mn complexes (A—F) was
tested next to find the best catalyst for these divergent reaction
pathways (Table 2).

Regarding the most selective and highly active catalyst (C),
activation with KO'Bu led to the amine 2a with about a 50%
yield and a selectivity higher than 90%. Using NaO'Bu as the
base, the imine la was received with about a 30% yield and
98% selectivity under same reaction conditions. If the ligand
backbone is a pyridine moiety (precatalyst F), a significantly
lower activity was observed. Our group described previously
the alkylation of amines with alcohols using Ir and Co
catalysts.'”">* Efficient Ir (G) and Co (H) catalysts reported in
these publications were selected and tested for comparison.
The use of G and KO'Bu as the base led to the amine 2a in a
66% yield and 99% selectivity, while the amine was obtained in
a 58% yield and 97% selectivity using the Co precatalyst H. A
very low formation of the imine 1a was observed with the same
precatalysts (G, H) and NaO'Bu. The amine 2a was obtained
with KOBu in a 30% yield and about 90% selectivity using the
Fe precatalyst I,'"’% but negligible conversion was observed if
NaO'Bu instead of KO'Bu was used as a base.

All reaction parameters for the imine and the amine
synthesis were separately optimized to improve the yield in
both reactions (see SI). A yield of >99% with a selectivity of
>99% was achieved for the amine synthesis using an alcohol/
amine ratio of 1.4/1, 3 mol % of precatalyst C, 1 equiv KO'Bu,
80 °C (oil bath), closed flask in THF. A yield of >99% with a
selectivity of >99% was obtained for the imine synthesis using
an alcohol/amine ratio of 1.6/1, 1 mol % of precatalyst C and
1.5 equiv NaO'Bu at 110 °C (oil bath). Because of its higher
boiling point 2-MeTHF was used as solvent for imine
synthesis. To increase the yield, it is important that the
generated hydrogen can be released, thus we changed to an
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Table 2. Precatalyst Screening of the Model Reaction®
©,N§/©
1a
H
KO'Bu ©’N:© +H,0

NaO'Bu 0 +H,

precatalyst (5 mol%)

toluene

satas

R Ph ANM Ph
)(I’I*x N‘AN Nl =N NI*\N
e AT s e
(Pr)P—Mn—P(Pr), (PrP—It—P(Pr); (Pr),P—Co—P(Pr), (Pr,P—Fe—P(Pr),
oc’ | *co / o o | co
By 4 Br
A-F [ H 1
A:X=N, R'=H C:X=N, R'=Ph E:X=N, R'=Me
B:X=N, R'=NEl; D:X=N, R'=NHCiH; F.X=CHR'=H
KO'Bu NaO'Bu
imine 1a” amine 2a” imine 1a” amine 2a”
precatalyst [%]° [9%]° [9]° [%]°

A S 23 28 1
B 2 52 24 0
C 1 53 27 0
D 4 51 27 2
E 4 35 1 5
F 1 8 3 [}
G 0 66 7 0
H 2 58 2 2
I 5 30 0 0

“Reaction conditions: 1 mmol aniline, 1 mmol benzyl alcohol, 1
mmol base, $ mol % precatalyst, $ mL toluene, 80 °C (oil bath), 20 h,
pressure tube. "Yield determined via GC with decane as an internal
standard.

open flask with bubble counter for imine synthesis. The
liberation of one equivalent H, during imine synthesis was
confirmed via GC-analysis (see SI). In the absence of amine,
the formation of benzaldehyde from benzyl alcohol was
observed with precatalyst C and NaO'Bu (see SI). We
investigated scale up experiments for imine and amine
synthesis (50 times of the normal scale) and observed similar
selectivity and comparable yields (see SI).

We next explored the substrate scope. Aniline was alkylated
with various benzyl alcohol derivatives (Table 3). Substrates
bearing both electron-withdrawing (Table 3, entries 2, 3) and
electron-donating (Table 3, entries 4, S) substituents were
converted smoothly. The heteroaromatic 2-thiophenemethanol
led to the imine (1i) and amine (2i) desired with a selectively
higher than 98% in a 91 and 72% isolated yield, respectively.
All imines and amines could be isolated in good to nearly
quantitative yields (75—96%) with an imine/amine selectivity
higher than 98%. We observed the selective formation of
amines under BH/HA and ADC conditions when purely
aliphatic alcohols were used (Table 3, entries 10 and 11).

A representative variety of substituted anilines was
investigated next (Table 4). Halogenated imines (3a—c) and
amines (4a—c) could be isolated in yields up to 97%. When
using 4-iodoaniline, the imine 3¢ and the corresponding amine
4c could still be isolated with a 62% and 68% yield,
respectively. The formation of all products took place with a
selectivity higher than 98%. Sterically demanding groups, such
as tert-butyl (3e, 4e) or phenyl (3f, 4f), were tolerated for
imine and amine synthesis and the products could be isolated
in yields from 66 to 82%. 3,5-Dimethylaniline provided the
corresponding imine 3g and amine 4g with a high selectivity
and nearly quantitative isolated yield. Using substrates, such as

DOI: 10.1021/acscatal.8b02530
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Table 3. Synthesis of Imines la—k” and Amines 2a—k”
Using Aniline and Various Alcohol Derivatives

NaO'Bu Ny R
N Hz? ©/ 1ak
- Hy a
NH; + HOT“R precatalyst C
[ :] H
KO'Bu N_R
- H0
2a-k
entry _alcohol iminel! aminel*!

1 R=CHs 1a (84%) 2a(91%)

2 R=4-CI(CeHs) 1b (90%) 2b (96%)

3 R=4-Br(CeHy) 1c(75%) 2¢(77%)

4 R = 4-fert-Butyl(C<H.) 1d (86%) 2d (81%)

5 R = 4-OMe(CsH,) 1e (80%) 2e (94%)

6 R=3-Me(CsH,) 1£(87%) 2£(88%)

7 R=2-Me(CsH,) 1g(88%) 2g (81%)

8 1h (78%) 2h (93%)

HO
3 . -
9 5 1i (91%) 2i (72%)
HO
10 HO’\)\/\)\ 2 (94%)
11 R=(CH,)sCH; 2k (96%)

“Reaction conditions: 1 mmol aniline, 1.6 mmol benzyl alcohol, 1 mol
% precatalyst C, 1.5 mmol NaO'Bu, 3 mL 2-MeTHF, 110 °C (oil
bath), 6 h, open system. PReaction conditions: 1 mmol aniline, 1.4
mmol benzyl alcohol, 3 mol % precatalyst C, 1 mmol KO'By, 2 mL
THE, 80 °C (oil bath), 18 h, pressure tube. “Yield of isolated product

in parentheses.

4-(thiophen-3-yl) aniline (formation of imine 3h and the
amine 4h), indicated the tolerance of heterocyclic moieties.
Both imine 3i and amine 4i could be isolated in a yield of 90
and 96%, respectively, indicating the tolerance of C—C double
bonds. The use of aliphatic amines led selectively to the
corresponding imines under ADC and BH/HA conditions
(Table 4, entries 10, 11).

We finally conducted mechanistic studies to understand the
selectivity observed. Time—conversion plots were obtained for
both reactions (see SI) and indicate that imine formation is not
kinetically controlled and that amine formation can be
suppressed if K* is masked with 18-crown-6. We concluded
that a coordinative interaction of the K* ions with the catalyst
could play a key role. When KO'Bu or NaO'Bu was added to
the manganese hydride [MnH], a change in *'P NMR spectra
from 160 to 157 ppm was observed (Figure 1). 'H NMR
spectroscopy revealed that the acidic NH protons at 8.14 ppm
disappeared after the addition of the bases (see SI). The
characteristic triplet of the hydride signal was still observed
after activation with each base but shifted from —5.89 to —5.66
ppm. We assume a coordination of the potassium or sodium
cation at the deprotonated amino functions of the ligand,
additionally stabilized via the nitrogen atoms of the triazine
backbone (Figure 1).

Exploration of the reactivity of the potassium manganate
hydride [MnH]K, and the corresponding sodium salt revealed
remarkable differences. "H NMR-based time—conversion plots
of the reaction of manganate hydrides [MnH]K, or [MnH]
Na, generated in situ with imine la showed a drastically
different rate regarding the formation of the amine 2a (Figure
2). A fast reaction was observed for [MnH]K,, delivering an
initial rate of 100.8 gmol-L™"s™! under the conditions given.
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Table 4. Synthesis of Imines 3a—m“ and Amines 4a—m”
Using Primary Amines and Various Benzyl Alcohols

=
NaO'Bu \/@R“
% LN Ay
-H0 R
precatalyst C -Ht 3a-m
NH; + HO N —
R' | g
= Y 3
A Rr2
R? = H (entries 1-11) [kO'Bu R,,H IR
R? = 4-Cl (entries 12-13) -H0
4a-m
entry _amine iminel amine!
1 R'=4-CI(C4Hy) 3a (64%) 4a (97%)
2 R'=4-Br(CsHs) 3b (73%) 4b (86%)
3 R'=4-1(C:H.) 3c(62%) 4c (68%)
4 R'=4-Et(CH,) 3d(83%)“ 4d (85%)
s R = 2-tert-Butyl (CsH.) 3e (779%)4 4e (75%)
6 R' = 2-Phenyl(C¢H.) 3£(66%) 4F (82%)
7 R' = 3,5-Dimethyl(CH.) 3g (93%) 4g (94%)
H
NH Ny Ph NP
) @’G £ A
s 5= 3h(91%) 4h (94%)
H
et ot
? ph/\/g P P
31 (90%) 4i (96%)
10 ©/\"“2 ©\,NQ/"“
3] (79%)

N Ph
©/\/3:(,55%)

c cl
O T
P PhSs

31 (58%) 4 (77%)

3m (52%) 4m (66%)

“Reaction conditions: 1 mmol aniline, 1.6 mmol benzyl alcohol, 1 mol
% precatalyst C, 1.5 mmol NaO'Bu, 3 mL 2-MeTHF, 110 °C (oil
bath), 18 h, open system. bReaction conditions: 1 mmol aniline, 1.4
mmol benzyl alcohol, 3 mol % precatalyst C, 1 mmol KOBu, 2 mL
THE, 80 °C (oil bath), 18 h, pressure tube. “Yield of isolated product

in parentheses. 9Reaction time: 6 h.

T
8 Ph = Ph
h A
NTON (thf)—g— N7~ N—g—(thf)c
AL A T AOL
IN™ N HH +2 KO'Bu, thf NN
(PP—Mn—P(Pr; 5o (Pr)P—Mn—P(Pr),
oc” | co oc’ | ‘co
H H
[MnH] [MnH]K;
160 120 80 40 0 160 120 80 40 0
f1 (ppm) f1 (pom)

Figure 1. 3p NMR-signal of the manganese hydride [MnH] and after
activation with KO'Bu.

The amine 2a was formed only in a low amount and very
slowly, with an initial rate of 2.6 gmol-L™"-s™! under the same
reaction conditions if [MnH]Na, (generated in situ) was
reacted with 1a. This key step seems to take a pace about 40
times faster for [MnH]K, in comparison to [MnH]Na,.

In summary, we report on the manganese-catalyzed base-
switchable synthesis of N-alkylated amines or imines from the

DOI: 10.1021/acscatal 8002530
ACS Catal. 2018, 8, 8525—-8530
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Figure 2. Reaction of the imine la with the manganese hydride
[MnH] after deprotonation with two equivalents of KO'Bu or
NaO'Bu. Reaction conditions: 60 ymol of [MnH], 60 gmol of 1a, 120
pimol of base, 240 pumol of benzyl alcohol, 800 umol of thfys, 80 °C.

same alcohol and amine combinations. Both reactions are
sustainable and very important, since the products are used
diversely. We observed a broad scope, meaning a large variety
of amine/alcohol combinations can be converted selectively
into one or the other product. Furthermore, a very good
functional group tolerance has been observed. Mechanistic
investigations revealed that the manganese hydride is a
precatalyst and reacts with KO'Bu or NaO'Bu via double
deprotonation to form the corresponding potassium or sodium
manganate hydride. The potassium manganate hydride reacts,
under identical conditions, about 40 times faster with the
imine N-benzylideneaniline via amine formation than the
corresponding sodium salt. This difference in rate seems
responsible for the selective N-alkyl amine or imine formation.
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General

All reactions and manipulations with air sensitive compounds being present were performed
under dry argon (Ar 5.0) or nitrogen (N, 5.0), using Schlenk and glove box techniques.
Nonhalogenated solvents were dried over sodium benzophenone, 2-methyltetrahydrofuran (2-
MeTHF) was dried over calcium hydride, and halogenated solvents were dried over P,Os.
Deuterated solvents were bought from Cambridge Isotope Laboratories, distilled accordingly, and
stored over molecular sieves (3 A). Other chemicals were purchased from commercial vendors
and used without further purification. NMR spectra were collected on a Varian INOVA 300 MHz
spectrometer or on a Bruker Avance III HD 500 MHz. Chemical shifts (§) are reported in ppm
relative to residual solvent signal. Coupling constants (J) are given in Hz (coupling patterns: s:
singlet, d: doublet, t: triplet, q: quartet, m: multiplet). GC analyses were carried out using an
Agilent Technologies 6890N system equipped with a Macherey-Nagel (MN) Optima 5 HT
column (30 m, 320 pm, 0.25 pm) or an Agilent Technologies 6850 system equipped with a MN
Optima 17 column (30 m, 320 pm, 0.25 pm). GC/MS analyses were carried out on an Agilent
7890A/MSD 5975C system equipped with a HP-5MS column (30 m, 320 um, 0.25 pm). MN
silica gel 60 (0.040 — 0.063 mm particle size) was used for flash column chromatography. FTIR
measurements were carried out under a nitrogen atmosphere on an Agilent Cary 630 FTIR equipped

with a Diamond ATR unit. UV-Vis analyses were carried out using an Agilent Cary 60 spectrometer.

General procedure for the synthesis of amines

In a nitrogen filled glovebox, a pressure tube was filled with 1 eq. KO'Bu (1 mmol, 112 mg) and
3 mol% precatalyst (0.03 mmol, with respect to the amine). The solution was stirred 5 minutes in
1 mL thf, then 1 eq. amine (1 mmol), 1.4 eq. alcohol (1.4 mmol) and 1 mL thf were added. The
reaction mixture was stirred for 18 h at 80 °C (oil bath). The reaction was stopped by addition of
1 mL water. 100 pL of decane was added as internal standard. The aqueous layer was extracted
using diethyl ether, the organic layers were combined, dried using Na,SOy4 and the solvents were

removed in vacuo. The crude product was purified by column chromatography.

39



Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

General procedure for the synthesis of imines

In a nitrogen filled glovebox, a Schlenk tube was filled with 1.5 eq. NaO'Bu (1.5 mmol, 144 mg)
and 1 mol% precatalyst (0.01 mmol, with respect to the amine). The solution was stirred 5
minutes in 1 mL 2-MeTHF, then 1 eq. amine (1 mmol), 1.6 eq. alcohol (1.6 mmol) and 2 mL 2-
MeTHF were added. The reaction mixture was stirred for 18 h at 110 °C (oil bath). The reaction
was stopped by addition of 1 mL water. 100 pL of decane was added as internal standard. The
aqueous layer was extracted using diethyl ether, the organic layers were combined, dried using
Na,S0O4 and the solvents were removed in vacuo. The crude product was purified by column

chromatography.
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Screening reactions for the synthesis of amines

NH KOBu H\/©
©/ 2 HO/\© precatalyst _ @/ ©/
+
-H,0 2a or/and 1a

Figure S1: General reaction for the synthesis of N-benzylaniline (2a)

Table S1: Precatalyst screening'®

N

)R\ A X=N,R=H /FE] NH Ph
B:X =N, R=NEt, N S S
XTNX C:X=N,R=Ph N NN Ol
o DXENRINRCH MCONSN e ey
(PrP—Nn—p(pr), £ XN R=Me (Prop— —P(Pn, (Pr)P—Co—P(Pn), (P P—Fe—P(P);
oc” | o F:X=CH,R=H o o s | “co
Br v G H Br |
4
Entry Precatalyst Amine 2a [%]™” Imine 1a [%]™
1 A 23 5
2 B 52 2
3 C 53 1
4 D 51 4
5 E 35 4
6 F 8 1
7 G 66 0
8 H 58 2
9 | 30 5
10 [MnBr(CO)s] 0 0

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, 1 mmol KO'Bu, 5 mol% precatalyst, 5 mL toluene, 80 °C
(oil bath), 20 h, pressure tube. [b] Determined by GC with decane as an internal standard.
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Table S2: Solvent screening'“'

Entry Solvent Amine 2a [%]™  Imine 1a [%]™
1 1,4-dioxane 19 0
2 1-methoxy-2-(2-methoxyethoxy)ethane (diglyme) 52 0
3 toluene 53 0
4 thf 59 0
5 2-MeTHF 53 0
6 2-methylene-2-butanol 5 7

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, 1 mmol KO'Bu, 5 mol% precatalyst C, 5 mL solvent,

80 °C (oil bath), 18 h. [b] Determined by GC with decane as an internal standard.

Table S3: Base screening™

Entry Base Amine 2a [%]™ Imine 1a [%]™
1 LiO'Bu 0 5
2 NaO'Bu 0 26
3 KO'Bu 60 0
4 CsO'Bu 77
5 LiHMDS 1 4
6 NaHMDS 19 24
7 KHMDS 95 0
8 LiOH 0 0
9 NaOH 0 11
10 KOH 0 8
11 Cs,CO; 0 2

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, 1 mmol base, 5 mol% precatalyst C, 5 mL thf, 80 °C (oil

bath), 18 h. [b] Determined by GC with decane as an internal standard.
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Table S4: Base amount screening'”]

Entry Amount of KO'Bu Amine 2a [%]™ Imine 1a
(equivalents with respect to the aniline) [%%] (e]
1 0 0 0
2 0.05 0 1
3 0.6 7 2
4 0.8 43 2
5 1 56 3
6 1.5 21 0
7 2 15 l

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, 5 mol% precatalyst C, 5 mL thf, 80 °C (oil bath), 18 h.

[b] Determined by GC with decane as an internal standard.

Table S5: Solvent amount screening'

Entry Amount of thf [mL] Amine 2a [%]™ Imine 1a [%]™
1 1 86 0
2 2 84 0
3 3 76 6
4 4 59 5
5 5 56 4

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, 1 mmol KO'Bu, 5 mol% precatalyst C, thf, 80 °C (oil

bath), 18 h. [b] Determined by GC with decane as an internal standard.
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Table S6: Substrate ratio screening[“]

Entry Aniline [mmol] Benzyl alcohol [mmol]  Amine 2a [%]®"  Imine 1a [%]™
1 1 1 84 0
2 1 1.2 88 0
3 1 1.4 99 0
4 1 1.6 99 0
5 1.2 1 71 0
6 1.4 1 66 0

[a] Reaction conditions: 1 mmol KO'Bu, 5 mol% precatalyst C, 2 mL thf, 80 °C (oil bath), 18 h. [b] Determined by GC

with decane as an internal standard.

Table S$7: Temperature screening'

Entry Temperature [°C] Amine 2a [%][b] Imine 1a [%]“’]
1 50 76 5
2 60 92 0
3 80 99 0
4 100 99 0
5 120 93 0

[a] Reaction conditions: 1.4 mmol benzyl alcohol, 1 mmol aniline, I mmol KO'Bu, 5 mol% precatalyst C, 2 mL thf, 18 h,

oil bath temperature. [b] Determined by GC with decane as an internal standard.
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Table S8: Precatalyst C loading screening[“]

Entry Precatalyst C [mol%]™ Amine 2a [%]™ Imine 1a [%]™
1 5 99 0
2 3 99 0
3 2 82 0
4 1 56 1
5 0.5 23 1
6 0.1 6 1
7 0 0 0

[a] Reaction conditions: 1.4 mmol benzyl alcohol, 1 mmol aniline, 1 mmol KOBu, 2 mL thf, 80 °C (oil bath), 18 h. [b]

With respect to the aniline. [¢] Determined by GC with decane as an internal standard.
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Screening reactions for the synthesis of imines

NaOBu H
HO Precatalyst X
©/ + /\© > or/and ©/
-H,0 1a 2a

-H,t

Figure S2: General reaction for the synthesis of N-benzylideneaniline (1a)

Table S9: Precatalyst screening'“]

N

R A X=N,R=H Ph NH j’\h
B: X =N, R = NEt
X‘*X C-X=NR=Ph )NL\N )NL\)N\ /"]1\\)"‘\
HNJ\N/)\NH D:X=N,R=NH-CoHs  HN" "N"SN HN™ N7 NH HN™ N7 NH
(PraP—Mn—P(Pr); £ % o e (PR2P—I—P(PNz (P P— Co—P(Pr); (PsP—Fe—P(Pr),
| c X=CH,R= Iy cl “al Br | [o]6]
7 G H Br 1
/
Entry Precatalyst Imine 1a [%]™ Amine 2a [%]™
1 A 28 1
2 B 24 0
3 C 27 0
4 D 27 2
5 E 1 5
6 F 3 0
7 G 7 0
8 H 2 2
9 | 0 0
10 [MnBr(CO)s] 0 0

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, 1 mmol NaO'Bu, 5 mol% precatalyst, 5 mL toluene,
80 °C (oil bath), 20 h, pressure tube. [b] Determined by GC with decane as an internal standard.
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Table S10: Solvent screeningIal

Entry Solvent Imine 1a [%]™  Amine 2a [%]™
1 1,4-dioxane 22 0
2 1-methoxy-2-(2-methoxyethoxy)ethane (diglyme) 7 45
3 toluene 24 0
4 thf 27 2
5 2-MeTHF 22 0
6 2-methyl-2-butanol 8 0

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, I mmol NaO'Bu, 5 mol% precatalyst C, 5 mL solvent,

80 °C (oil bath), 18 h, pressure tube. [b] Determined by GC with decane as an internal standard.

Table S11: Base screening'”'

Entry Base Imine 1a[%]™ Amine 2a [%]™
1 LiO'Bu 5 0
2 NaO'Bu 26 0
3 KOBu 0 60
4 CsO'Bu 0 77
5 LiHMDS 4 1
6 NaHMDS 24 19
7 KHMDS 0 95
8 LiOH 0 0
9 NaOH 11 0
10 KOH 8 0
11 Cs,COs 2 0

[a] Reaction conditions: 1 mmol benzyl alcohol, 1 mmol aniline, 1 mmol base, 5 mol% precatalyst C, 5 mL thf, 80 °C (oil

bath), 18 h, pressure tube. [b] Determined by GC with decane as an internal standard.

10
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Table S12: Solvent amount screening[“]

Entry Amount of thf [mL] Imine 1a [%]™ Amine 2a [%]™
1 2 53 4
2 3 57 7
3 4 52 9
4 5 49 4

[a] Reaction conditions: 1 mmol benzyl alcohol, I mmol aniline, 1 mmol NaO‘Bu, 5 mol% precatalyst C, 80 °C (oil bath),

18 h. [b] Determined by GC with decane as an internal standard.

Table S$13: Substrate ratio screening

Entry Aniline [mmol] Benzyl alcohol [mmol]  Imine 1a [%]™  Amine 2a [%]™
1 1 1 52 1
2 1 1.4 61 2
3 1 1.6 68 4
4 1.4 1 50 2

[a] Reaction conditions: 1 mmol NaO'Bu, 5 mol% precatalyst C, 3 mL thf, 80 °C (oil bath), 18 h. [b] Determined by GC

with decane as an internal standard.

Table S14: Temperature screening™!

Entry Temperature [°C] Imine 1a [%]™ Amine 2a [%]™
1 80 48 7
2 100 52 2
3 110 58 3
4 120 58 5
5 130 61 0

[a] Reaction conditions: 1 mmol benzyl alcohol, | mmol aniline, I mmol NaOBu, 5 mol% precatalyst C, 3 mL thf, 18 h,

oil bath temperature. [b] Determined by GC with decane as an internal standard.
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Entry Amount of NaO'Bu (equivalents with respect to Imine 1a Amine 2a [%]™
aniline) [%] bl

1 0 0 0
2 0.05 0 0
3 0.5 17 0
4 1 55 0

1.5 73 7
6 2 60 28

[a] Reaction conditions: 1.6 mmol benzyl alcohol, I mmol aniline, 5 mol% precatalyst C, 3 mL thf, 18 h, 110 °C (oil
bath). [b] Determined by GC with decane as an internal standard.

Table S15: Base amount screening'”]

Entry Precatalyst C [mol%]" Imine 1a [%]™ Amine 2a [%]™
1 0 2 0
2 0.5 69 1
3 1 84 3
4 2 77 3
5 3 64 5
6 5 73 10

[a] Reaction conditions: 1.6 mmol benzyl alcohol, 1 mmol aniline, 1.5 mmol NaO'Bu, precatalyst C, 3 mL thf, 18 h, 110
°C (oil bath). [b] With respect to aniline. [c] Determined by GC with decane as an internal standard.

Table S16: Precatalyst C loading screeningIal

Table S$17: Final solvent screening!
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Entry Solvent Imine 1a [%]™ Amine 2a [%]™
1 thf 81 10
2 1,4-dioxane 69 5
3 2-MeTHF 95 0
4 toluene 65 0
5 tert-amyl alcohol 34 0
6 1-methoxy-2-(2-methoxyethoxy)ethane (diglyme) 48 6

[a] Reaction conditions: 1.6 mmol benzyl alcohol, 1 mmol aniline, 1.5 mmol NaO'Bu, 1 mol% precatalyst C, 3 mL

solvent, 18 h, 110 °C (oil bath). [b] Determined by GC with decane as an internal standard.
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Additional screening reactions

For imine synthesis, the release of one equivalent hydrogen was proofed by analysing the gas
mixture with methane as an internal standard in the Schlenk tube after reaction. The gas mixture
was analyzed using an Agilent Technologies 6890N equipped with a TCD and an Agilent special
plot and molsieve capillary column (30 m, 320 pm, 0.25 pm). Reaction conditions: 0.2 mmol
aniline, 0.32 mmol benzyl alcohol, 1 mol% precatalyst C, 0.3 mmol NaO'Bu and 800 uL 2-
MeTHF were added to a closed Schlenk tube (150 mL) and heated at 110 °C (oil bath) for 13 h.

In the absence of aniline, the formation of benzaldehyde from benzyl alcohol was observed using
precatalyst C and NaO'Bu. Reaction conditions: 1 mmol benzyl alcohol, 1.5 mmol NaO'Bu,
1 mol% precatalyst C and 3 mL 2-MeTHF were added to a Schlenk tube and heated at 110 °C
(oil bath) in an open system (bubble counter) for 13 h. The reaction mixture was analyzed with

GC giving benzaldehyde in yield of 78 %.

Control experiments using aniline and benzaldehyde instead of benzyl alcohol in the presence of
precatalyst C and KO'Bu showed a formation of the imine 1a. To obtain the amine 2a a source to

generate the hydrogen for the reduction step is needed.

Table S18: Comparison of imine and amine synthesis using closed and opened systems.

Entry System Imine 1a  Amine 2a

(%l %)

KO'BUE! 1 closed 0% 99 %
—

2 open 3% 2%

NH, HO precatalyst C
©/ + /\© — 3 closed 41% 5%

NaOBul?!
e

4 open 99 % 1%

[a] Reaction conditions: 1 mmol aniline, 1.4 mmol benzyl alcohol, 3 mol% precatalyst C, 1 mmol KO'Bu, 2 mL thf, 80 °C

(oil bath), 18 h. [b] Reaction conditions: 1 mmol aniline, 1.6 mmol benzyl alcohol, 1 mol% precatalyst C, 1.5 mmol
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NaO'Bu, 3 mL 2-MeTHF, 110 °C (oil bath),18 h. [¢] Yield determined via GC with decane as an internal standard.

Scale up experiments

Reaction conditions for upscaling the amine synthesis:

Aniline (50 mmol, 4.57 mL), benzyl alcohol (70 mmol, 7.3 mL), KO'Bu (50 mmol, 5.6 g) and
precatalyst C (2 mol%, 600 mg) were added in THF (120 mL) and heated at 80 °C for 18 h. The
reaction was stopped by adding 30 mL H,O, extracted with Et,O and analysed via GC with

decane as internal standard, obtaining the amine 2a in 96 % GC-yield.
Reaction conditions for upscaling the imine synthesis:

Aniline (50 mmol, 4.57 mL), benzyl alcohol (80 mmol, 8.3 mL), NaO'Bu (75 mmol, 7.2 g) and
precatalyst C (1 mol%, 300 mg) were added in 2-MeTHF (180 mL) and heated at 110 °C in an
open system (bubble counter). After 18 h the reaction was stopped by adding 30 mL H-O,
extracted with Et,O and analysed via GC with decane as internal standard, obtaining the imine 1a

in 85 % GC-yield.

Table S19: Effects on the reaction in the presence of 18-crown-6

Entry 18-crown-6 Imine la Amine 2a

[%]" [%]
KOBUl! 1 - 0% 70 %
——
@N“Z H0A© precatalystC 2 + 4% 2%
+
Nao'Bull 3 - 92 % 0%
—
4 + 84 % 12 %

[a] Reaction conditions: 1 mmol aniline, 1.4 mmol benzyl alcohol, 3 mol% precatalyst C, 1 mmol KO'Bu, 1.1 mmol
18-crown-6, 2 mL thf, 80 °C (oil bath), 4 h, pressure tube. [b] Reaction conditions: 1 mmol aniline, 1.6 mmol benzyl

alcohol, 1 mol% precatalyst C, 1.5 mmol NaOBu, 1.7 mmol 18-crown-6, 3 mL 2-MeTHF, 110 °C (oil bath), 4 h, open
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system. [c] Yield determined via GC with decane as an internal standard.

Time-conversion plots for imine and amine synthesis

precatalyst C precatalyst C H \/@
o o, o B o
1a -HQO -H20 2a

- H2
4 Amount of aniline 4 Amount of aniline
16]v v Amount of benzyl alcohol 16 v Amount of benzyl alcohol
= Amount of N-benzylideneaniline 1a = Amount of N-benzylideneaniline 1a
144 * Amount of N-benzylaniline 2a T4 e Amount of N-benzylaniline 2a
2] 7 124 v < Amount of 2a after 18-crown-6 addition after 1 h
T 10 M Sk 7
04 v . ] e o e o
£ vy L o=t - £ LT ve o °
= 08 =y = 08 .
€ A - v v €
E " v o, g A
g 06 - v v E 06+ v
& + 5 v
04 ‘i 04 vY v ¥
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Figure S3: Time-conversion plots for imine (left) and amine (right) synthesis. Reaction conditions for imine la
synthesis (left): 1 mmol aniline (black), 1.6 mmol benzyl alcohol (green), 1.5 mmol NaO'Bu, 1 mol% precatalyst C,
3 mL 2-MeTHF, 110 °C (oil bath), open system. Reaction conditions for amine 2a synthesis (right): 1 mmol aniline
(black), 1.4 mmol benzyl alcohol (green), | mmol KO'Bu, 3 mol% precatalyst C, 2 mL thf, 80 °C (oil bath). Amount
determined via GC with decane as an internal standard.
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Table S20: Amino alkylation with the hydride complex of precatalyst C in dependence of
the base

A X
e e
(PrzP—Mn="P(Pr)2 NaO'Bu ©/N\ i
OoC” co™H > 1a +H0 +H,
NH; HO [MnH]
©/ * /\© H\/@
OBy ©/N +Hy0
2a
Entry Base Amount of base [mmol] Imine 1a [%]  Amine 2a [%]"
1% KO'Bu 0 0 0
2 KO'Bu 0.05 0 0
30 KO'Bu 0.25 0 18
4 KO'Bu 1 0 41
50T NaO'Bu 0 0 0
6! NaO'Bu 0.05 0 0
70 NaO'Bu 0.25 0 0
gL NaO'Bu 1.5 71 0

[a] Reaction conditions: 1 mmol aniline, 1.4 mmol benzyl alcohol, KO'Bu, 3 mol% [MnH], 2 mL thf, 80 °C (oil
bath), 3.5 h. [b] Reaction conditions: 1 mmol aniline, 1.6 mmol benzyl alcohol, NaOBu, 1 mol% [MnH], 3 mL 2-
MeTHEF, 110 °C (oil bath), 3.5 h. [c] Determined via GC with decane as an internal standard.

Activation of the manganese hydride [MnH] with KO'Bu

To a solution of manganese hydride [MnH] (1 eq., 60 umol, 31.88 mg) in thfys, a solution of
KOBu (2 eq., 120 pmol, 13.44 mg) in thfss was added. The resulting solution was stirred for
10 minutes and analyzed via 'H and *'P NMR spectroscopy. The 'H NMR-spectra of [MnH]
showed the characteristic signal of both NH-protons at 8.16 ppm (Figure S4) while in *'P NMR-
spectra one signal at 160.25 ppm (Figure S5) was observed. After addition of KO'Bu the NH-
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signal disappeared in 'H NMR-spectra (Figure S6) and the *'P signal shifted to 157.25 ppm
(Figure S7).
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Figure S4: 'H NMR of the manganese hydride [MnH]. "H NMR (500 MHz, 296.15 K, thfys): 8.27-8.25 (d, J=7.5
Hz, 2 H, CHyom), 8.16 (s, 2 H, NH), 7.43-7.35 (m, 3 H, CHyom ), 2.56-2.51 (m, 2 H, CH), 2.37-2.33 (m, 2 H, CH),

1.45-138 (m, 12 H, CH,), 1.31-1.25 (m, 6 H, CHs), 1.20-1.15 (m, 6 H, CH,), -5.78 - -5.99 (t, /= 50.9 Hz, 1 H,
thdnde) ppm.
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Figure S5: *'P NMR of the manganese hydride [MnH]. *'P NMR (202 MHz, 296.15 K, thfys): 160.25 ppm.
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Figure S$6: 'H NMR of [MnH] activated with KO'Bu. "H NMR (500 MHz, 296.15 K, thfys): 8.04 (s, 2 H, CHaom )
7.19 (s, 3 H, CHyrom ), 2.12 (s, 2 H, CH), 1.90 (s, 2 H, CH), 1.31-1.09 (m, 63 H, CHj3), -5.56 - -5.76 (t, J = 48.0 Hz,

1 H, Hiyariae) ppm.
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Figure S7: *'P NMR of the manganese hydride [MnH] activated with KO'Bu. *'P NMR (202 MHz, 296.15 K, thfy):
157.54 ppm.

Activation of the manganese hydride [MnH] with NaO‘Bu

To a solution of manganese hydride [MnH] (1 eq., 60 pumol, 31.88 mg) in thfys, a solution of
NaO'Bu (2 eq., 120 umol, 11.5 mg) in thfys was added. The resulting solution was stirred for
10 minutes and analyzed via 'H and *'P NMR spectroscopy. Analog to the activation with KO'Bu
the NH-signals disappeared in 'H NMR-spectra (Figure S8), when the [MnH] was activated with
NaO'Bu and the *'P NMR-signal shifted from 160.25 ppm to 157.46 ppm (Figure S9).
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Figure S8: "H NMR of [MnH] activated with NaO'Bu. "H NMR (500 MHz, 296.15 K, thfy): 8.06 (s, 2 H, CHurom.)»

7.21 (s, 3 H, CHyom), 3.37 (s, 2 H, OH), 2.10 (s, 2 H, CH), 1.87 (s, 2 H, CH), 1.33-1.10 (m, 64 H, CH;), -5.51 - -5.70
(t,J=48.4 Hz, 1 H, Hhyarige) ppm.
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Figure S9: *'P NMR of the manganese hydride [MnH] activated with NaO'Bu. >'P NMR (202 MHz, 296.15 K, thfy):
157.46 ppm.
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Figure S10: IR-spectra of the manganese hydride [MnH] (red) and of the manganese hydride [MnH] activated with
KH (black) and NaH (blue), respectively.
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Figure S11: UV-VIS-spectra of the manganese hydride [MnH] (red) and of the manganese hydride [MnH] activated
with KH (black) and NaH (blue), respectively.
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Base-dependant hydrogenation of the imine 1a using the manganese hydride
[MnH] analyzed via NMR-studies
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Figure S12: Reaction conditions: 60 pmol imine 1a, 60 pmol [MnH], 120 pmol/60 pmol base, 800 pL thfyg, 80 °C.
NMR-studies were carried out on a Varian INOVA 300 MHz spectrometer. The reaction is cooled first in liquid
nitrogen to prevent an immediate start of the reaction, before the base is added. Regions chosen for the integration
are the CH,-group of the amine 2a (4.3 ppm) and the characteristic C-H of the imine 1a (8.4 ppm). The formation of
the amine 2a is calculated via the change of the relative integrals and referenced on the imine integral.
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Base-dependant hydrogenation of the imine 1a in the presence of benzyl
alcohol using the manganese hydride [MnH]| analyzed via NMR-studies

100 = KOBu(2eq.): 1eq. MnH
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Figure S13: Reaction conditions: 60 pmol imine la, 60 pmol [MnH], 120 pmol base, 800 pL thfys, 80 °C.
NMR-studies were carried out on a Varian INOVA 300 MHz spectrometer. The reaction is cooled first in liquid
nitrogen to prevent an immediate start of the reaction, before the base is added. Regions chosen for the integration
are the CH,-group of the amine 2a (4.3 ppm) and the characteristic C-H of the imine 1a (8.4 ppm). The formation of
the amine 2a is calculated via the change of the relative integrals and referenced on the imine integral.
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Initial rates for the base-dependant transfer hydrogenation of the imine 1a to

the amine 2a with the manganese hydride [MnH]

Equation y=a+b*x
| Weight No Weighting
Residual Sum ~ 2.80207E-5
of Squares
0.02 | Pearson's r 0.9635
Adj. R-Square 0.92281
= | Value Standard Error
[e] | \ Intercept 0.00284 6.00875E-4
.g. P8OP:A=1 Slope 1.00826E-4  7.77023E-6
]
N
g
= Equation y=a+b"x
% 0.01 + Weight No Weighting
Y Residual Sumof ~ 7.14889E-7
o Squares
c Pearson's r 0.8677
g Adj. R-Square 0.73917
E A Value Standard Error
T [ neqp.ar Intercept -5.4137E-4 7.212E-5
8 750P:A=1 Slope 2.60029E-6 3.51116E-7
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Figure S14: Reaction conditions: 60 pmol imine 1a, 60 pmol [MnH], 120 pumol base, 240 pmol benzyl alcohol,
800 pL thfyg, 80 °C. NMR-studies were carried out on a Varian INOVA 300 MHz spectrometer. The reaction is
cooled first in liquid nitrogen to prevent an immediate start of the reaction, before the base is added. Regions chosen
for the integration are the CH,-group of the amine 2a (4.3 ppm) and the characteristic C-H of the imine 1a (8.4 ppm).
The formation of the amine 2a is calculated via the change of the relative integrals and referenced on the imine

integral.
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Base-dependant formation of the manganese hydride [MnH] using
precatalyst C and benzyl alcohol
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Synthesis of ligands and complexes

The ligands and precatalysts A-EM F.GEY HEY 117 and J® were synthesized according to
published procedures.

The synthesis of [MnH] follows published procedures.’”? To prevent base contamination of the
precatalyst, the hydride complex was made once with KO'Bu (Table S20, entries 1-4) and once
with NaO'Bu (Table S20, entries 5-8).

Synthesis of amines

Synthesis of N-benzylaniline (2a)

H
Cr
Chemical Formula: C13H3N
Molecular Weight: 183.25

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 uL) and benzyl alcohol (1.4 mmol, 146 pL) are added consecutively to a pressure
tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The
product was isolated via column chromatography over SiO; (pentane/diethyl ether: 20/1) as a

white solid (167 mg, 0.913 mmol, 91 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): = 7.42-7.32 (m, 5 H, CHyrom ), 7.25-7.20 (t, J = 7.61
Hz, 2 H, CHyom), 6.80-6.75 (t, J=7.03 Hz, 1 H, CHaom), 6.70-6.67 (d, J=7.61 Hz, 2 H,
CH,om), 4.37 (s, 2 H, CHy), 4.08 (s, 1 H, NH) ppm.

BC NMR (CDCl;, 75.41 MHz, 296.15 K): & = 148.17, 139.46, 129.31, 128.67, 127.56, 127.27,
117.61, 112.88, 48.35 ppm.
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Synthesis of N-(4-chlorobenzyl) aniline (2b)

Cl
H
©/N\/©/
Chemical Formula: C13H12CIN
Molecular Weight: 217.70

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 uL) and 4-chlorobenzyl alcohol (1.4 mmol, 200 mg) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/1) as a light yellow oil (208 mg, 0.958 mmol, 96 %).

'H NMR (CDCl, 299.86 MHz, 296.15 K): § = 7.35 (s, 3 H, CHyrom), 7.26-7.21 (t, J=7.61 Hz, 2
H, CHurom,), 6.82-6.77 (t, J=7.61 Hz, | H, CHyom.), 6.67-6.65 (d, J=7.61 Hz, 2 H, CHyrom,), 4.35
(s, 2 H, CH), 4.09 (s, 1 H, NH) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 147.88, 138.07, 132.88, 129.37, 128.79, 128.75,
117.84, 112.94, 47.62 ppm.
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Synthesis of N-(4-bromobenzyl) aniline (2¢)

Br
H
©/N\/©/
Chemical Formula: C43H,BrN
Molecular Weight: 262.15

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 pL) and 4-bromobenzyl alcohol (1.4 mmol, 262 mg) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL

water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/0.5) as a yellow oil (201 mg, 0.767 mmol, 77 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.52-7.49 (m, 2 H, CHyom.), 7.30-7.20 (m, 4 H,
CHarom), 6.81-6.76 (t, J=7.61 Hz, 1 H, CHarom.), 6.67-6.65 (d, J=7.03 Hz, 2 H, CHarom.), 4.34 (s,
2 H, CH,), 3.97 (s, 1 H, NH) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 147.84, 138.60, 131.74, 129.34, 129.08, 120.97,
117.87, 112.94, 47.68 ppm.
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Synthesis of N-(4-tert-butylbenzyl) aniline (2d)

H
Cr
Chemical Formula: Cy7Hy¢N

Molecular Weight: 239.36

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (I mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 puL) and 4-fert-butylbenzyl alcohol (1.4 mmol, 248 uL) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/0.4) as a white solid (193 mg, 0.807 mmol, 81 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.41-7.32 (m, 4 H, CHyom), 7.20-7.18 (m, 2 H,
CHaurom), 6.76-6.65 (m, 3 H, CHurom ), 4.31 (s, 2 H, CHy), 4.01 (s, | H, NH), 1.35 (s, 9 H, CHs)

BC NMR (CDCls, 75.41 MHz, 296.15 K): & = 129.27, 127.39, 125.56, 117.49, 112.80, 48.02,
31.39 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of NV-(4-methoxybenzyl) aniline (2e)

OMe
H
©/ N\/©/
Chemical Formula: C14H{5NO
Molecular Weight: 213.28

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 pL) and 4-methoxybenzyl alcohol (1.4 mmol, 174 pL) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/1) as a white solid (200 mg, 0.94 mmol, 94 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.33-7.31 (d, J = 8.20 Hz, 2 H, CHarom), 7.23-
7.18 (t, J = 7.61 Hz, 2 H, CHyomm ), 6.92-6.89 (d, J= 8.20 Hz, 2 H, CHyrom), 6.77-6.72 (t, J = 7.61
Hz, 1 H, CHaom), 6.68-6.65 (d, J=7.61 Hz, 2 H, CHyom), 4.28 (s, 2 H, CH,), 3.97 (s, 1 H, NH),
3.83 (s, 3 H, CHs) ppm.

BC NMR (CDCls, 75.41 MHz, 296.15 K): & = 158.87, 148.22, 131.42, 129.27, 128.84, 117.50,
114.02, 112.83, 110.00, 55.33, 47.80 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of V-(3-methylbenzyl) aniline (2f)

H

Cr

Chemical Formula: C14HsN
Molecular Weight: 197.28

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 pL) and 3-ethylbenzyl alcohol (1.4 mmol, 165 pL) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL

water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/0.5) as a yellow oil (174 mg, 0.881 mmol, 88 %).

'H NMR (CDCly, 299.86 MHz, 296.15 K): & = 7.39-7.31 (m, 5 H, CHyeom), 7.26-7.24 (d,
J=7.03Hz, 1 H, CHarom), 6.91-6.86 (t, J=7.03 Hz, 1 H, CHyrom ), 6.79-6.76 (d, J=7.61 Hz 2 H,
CHurom), 441 (s, 2 H, CHy), 4.09 (s, 1 H, NH), 2.51 (s, 3 H, CH;) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 148.38, 139.53, 138.41, 129.40, 128.43, 128.14,
124.73, 117.62, 112.97, 48.44, 21.59 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(2-methylbenzyl) aniline (2g)

H
ol
Chemical Formula: C14HsN
Molecular Weight: 197.28
Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 pL) and 2-methylbenzyl alcohol (1.4 mmol, 171 mg) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL

water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

12/1) as a colorless oil (159 mg, 0.807 mmol, 81 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.44-7.42 (d, J = 6.44 Hz, 1 H, CHaom), 7.30-
7.26 (m, 5 H, CHarom), 6.85-6.80 (t, J = 6.44 Hz, 1 H, CHyom ), 6.74-6.71 (d, J = 7.61 Hz, 2 H,
CHurom), 4.35 (s, 2 H, CHy), 3.99 (s, 1 H, NH), 2.47 (s, 3 H, CH;) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 148.37, 137.09, 136.42, 130.50, 129.37, 128.34,
127.51, 126.26, 117.53, 112.77, 46.45, 19.04 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-phenyl-1-naphtalenemethanamine (2h)

Slan®

Chemical Formula: C17HsN
Molecular Weight: 233.31

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 pl) and 1-naphthalenemethanol (1.4 mmol, 221 mg) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

10/0.5) as a colorless solid (217 mg, 0.930 mmol, 93 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 8.23-8.09 (m, 1 H, CHyqpn.), 8.08-8.07 (m, 1 H,
CHurom), 8.01-7.99 (d, J = 8.2 Hz, 1 H, CHuom), 7.72-7.67 (m, 3 H, CHuom), 7.63-7.58 (t,
J=7.61 Hz, | H, CHyom), 7.44-7.39 (m, 2 H, CHyrom.), 7.00-6.95 (m, 1 H, CHyrom ), 6.84-6.82 (d,
J=17.61 Hz, 2 H, CHyom), 4.85 (s, 2 H, CH,), 4.08 (s, 1 H, NH) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 148.29, 134.39, 133.94, 131.60, 129.39, 128.84,
128.24, 126.40, 126.11, 125.91, 125.62, 123.65, 117.64, 112.79, 46.49 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-phenyl-2-thiophenemethanamine (2i)

i E

Chemical Formula: C44H44NS
Molecular Weight: 189.28

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline (1
mmol, 91.3 pL) and 2-thiophenemethanol (1.4 mmol, 133 pL) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL

water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

10/0.5) as a yellow oil (137 mg, 0.724 mmol, 72 %).

'"H NMR (CD,Cl, 299.86 MHz, 296.15 K): § = 7.32-7.22 (m, 3 H, CHurom.), 7.10-7.04 (m, 2 H,
CHaurom,), 6.83-6.72 (m, 3 H, CHyrom), 7.72-7.67 (m, 3 H, CHyrom), 4.58 (s, 2 H, CHy), 4.23 (s, 1
H, NH) ppm.

13C NMR (CD:Cly, 75.41 MHz, 296.15 K): & = 147.79, 143-46, 129.21, 126.86, 124.98, 124.48,
117.88, 113.09, 43.33 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(3,7-dimethyl-6-octen-1yl)-benzenamine (2j)

H
©/N\A(\/Y
Chemical Formula: C4gH5sN
Molecular Weight: 231,38
Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline
(1 mmol, 91.3 pL) and citronellol (1.4 mmol, 254 pL) are added consecutively to a pressure tube.
After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The product
was isolated via column chromatography over SiO, (pentane/diethyl ether: 20/0.8) as a light
orange oil (218 mg, 0.944 mmol, 94 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.28-7.23 (t, J = 7.23 Hz, 2 H, CHarom ), 6.80-6.78
(t, J=7.23 Hz, 1 H, CHyom), 6.70-6.67 (d, J=8.25 Hz, 2 H, CHaom), 5.22-5.17 (t, J=7.23 Hz,
1 H, CHyiny1), 3.61 (s, 1 H, NH), 3.24-3.17 (m, 2 H, CH,), 2.12-2.07 (m, 2 H, CH>), 1,79 (s, 1 H,
CH;), 1.75-1.63 (m, 5 H, CH,jipp, ), 1.58-1.43 (m, 2 H, CHgjpn), 1.36-1.29 (m, 1 H, CHgjipp), 1.05-
1.03 (d, J=7.23 Hz, 3 H, CH3) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 149.07, 131.84, 129.74, 125.20, 117.61, 113.21,
42.46, 37.64, 37.24, 30.96, 26.29, 26.02, 20.15, 18.23 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-octylaniline (2k)

H

@N\/\/\/\/

Chemical Formula: Cy4Ho3N
Molecular Weight: 205,35

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, aniline
(1 mmol, 91.3 pL) and 1-octanol (1.4 mmol, 223 pL) are added consecutively to a pressure tube.
After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The product

was isolated via column chromatography over SiO, (pentane/diethyl ether: 20/1) as a light orange

oil (197 mg, 0.961 mmol, 96 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.31-7.23 (m, 2 H, CHyom ), 6.83-6.64 (m, 3 H,
CHurom), 3.58 (s, 1 H, NH), 3.25-3.13 (m, 2 H, CH,), 1.75-1.67 (m, 2 H, CH,), 1.44-1.39 (m,
10 H, CHy), 1.04-0.97 (m, 3 H, CH3) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 148.19, 128.85, 116.68, 112.19, 43.65, 31.53,
29.25,29.12, 28.97, 25.83, 22.36, 13.80 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-4-chloroaniline (4a)

A

Chemical Formula: C43H4,CIN
Molecular Weight: 217.70

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, 4-chloroaniline
(1 mmol, 128 mg) and benzyl alcohol (1.4 mmol, 146 pL) are added consecutively to a pressure
tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The
product was isolated via column chromatography over SiO, (pentane/diethyl ether: 20/1) as a

light yellow oil (210 mg, 0.968 mmol, 97 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.43-7.36 (m, 5 H, CHuyom), 7.20-7.16 (m, 2 H,
CHurom ), 6.61-6.57 (m, 2 H, CHyrom ), 4.35 (s, 2 H, CHy), 4.11 (s, 1 H, NH) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 146.74, 139.03, 129.14, 128.79, 127.50, 122.11,
114.01, 48.37 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-4-bromeaniline (4b)

S

Chemical Formula: C13H,BIN
Molecular Weight: 262.15
Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, 4-bromoaniline
(1 mmol, 172 mg) and benzyl alcohol (1.4 mmol, 146 pL) are added consecutively to a pressure
tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The
product was isolated via column chromatography over SiO, (pentane/diethyl ether: 20/1) as a

yellow oil (225 mg, 0.862 mmol, 86 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.39-7.27 (m, 7 H, CHyrom), 6.55-6.52 (d, J =
8.97 Hz, 2 H, CHyom ), 4.33 (s, 2 H, CHy), 4.11 (s, 1 H, NH) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 147.10, 138.92, 131.98, 128.76, 127.45, 114.48,
109.14, 48.25 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-4-iodoaniline (4c)
1)
jon
I

Chemical Formula: C43H4,IN
Molecular Weight: 309.15

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (I mmol, 112 mg), 2 mL thf, 4-iodoaniline
(1 mmol, 219 mg) and benzyl alcohol (1.4 mmol, 146 pL) are added consecutively to a pressure
tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The

product was isolated via column chromatography over SiO» (pentane/diethyl ether: 20/0.8) as a

yellow solid (209 mg, 0.676 mmol, 68 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): § = 7.47-7.43 (d, J = 7.03 Hz, 2 H, CHurom), 7.40-
7.33 (m, 5 H, CHyom.), 6.46-6.43(d, J = 7.03 Hz, 2 H, CHyon.), 4.34-4.32 (d, J = 4.34 Hz, 2 H,
CH), 4.13 (s, 1 H, NH) ppm.

BC NMR (CDCl;, 75.41 MHz, 296.15 K): & = 147.68, 138.88, 137.84, 128.78, 127.44, 115.14,
48.08 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-4-ethylaniline (4d)

U

Chemical Formula: C15H7N
Molecular Weight: 211.31

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, 4-ethylaniline
(1 mmol, 125 pL) and benzyl alcohol (1.4 mmol, 146 pL) are added consecutively to a pressure
tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The

product was isolated via column chromatography over SiO» (pentane/diethyl ether: 20/0.4) as a

yellow oil (179 mg, 0.849 mmol, 85 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.43-7.34 (m, 5 H, CHyem), 7.10-7.08 (d, 2 H,
CHurom), 6.67-6.64 (d, 2 H, CHuom), 4.37 (s, 2 H, CHy), 3.97 (s, 1 H, NH), 2.65-2.58 (q,
J=17.61Hz, 2 H, CH,), 1.29-1.23 (t, J=7.61 Hz, 3 H, CH:) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 146.19, 139.72, 133.46, 128.66, 127.59, 127.22,
113.03, 48.70, 28.01, 16.07 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-2-tert-butylaniline (4e)
H\/@
N

Chemical Formula: C47H24N
Molecular Weight: 239.36

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (I mmol, 112 mg), 2 mL thf,
2-tert-butylaniline (1 mmol, 156 pL) and benzyl alcohol (1.4 mmol, 146 pul) are added
consecutively to a pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by

adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/0.1) as a yellow oil (179 mg, 0.749 mmol, 75 %).

"H NMR (CDCl, 299.86 MHz, 296.15 K): & = 7.59-7.42 (m, 6 H, CHyom), 7.29-7.26 (m, 1 H,
CHarom.), 6.90-6.84 (m, 2 H, CHarom.), 4.58-5.56 (d, J = 6.44 Hz, 2 H, CH,), 4.45 (s, 1| H, NH),
1.62 (s, 9 H, CH3) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 146.16, 139.66, 133.25, 128.75, 127.53, 127.24,
126.24, 117.26, 111.95, 48.87, 34.24, 29.98 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-2-phenylaniline (4f)
1)
CL

Chemical Formula: C1gH7N
Molecular Weight: 259.35

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, 2-phenylaniline
(1 mmol, 169 pL) and benzyl alcohol (1.4 mmol, 146 pL) are added consecutively to a pressure
tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The

product was isolated via column chromatography over SiO» (pentane/diethyl ether: 10/0.08) as a
white solid (211 mg, 0.815 mmol, 82 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.78-7.76 (d, J = 7.03 Hz, 2 H, CHurom), 7.72-
7.67 (t,J = 7.03 Hz, 2 H, CHyrom.), 7.61-7.40 (m, 7 H, CHaom.), 7.09-7.04 (t, J=7.03 Hz, 1 H,
CHurom), 6.95-6.93 (d, J=18.20 Hz, 1 H, CHyrom ), 4.69 (s, 1 H, NH), 4.55 (s, 2 H, CHs) ppm.

13C NMR (CDCls, 75.41 MHz, 296.15 K): & = 145.18, 139.79, 130.55, 129.69, 129.27, 129.05,
128.88, 127.94, 127.57, 127.31, 117.52, 111.09, 48.35 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-3,5-dimethylaniline (4g)
H\/@
N

Chemical Formula: C45H47N
Molecular Weight: 211.31

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (I mmol, 112 mg), 2 mL thf,
3,5-dimethylaniline (1 mmol, 125 pL) and benzyl alcohol (1.4 mmol, 146 pL) are added
consecutively to a pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by
adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 10/0.4) as a yellow oil (199 mg, 0.943 mmol, 94 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.63-7.54 (m, 5 H, CHuom), 6.67-6.66 (d,
J=3.50 Hz, | H, CHyrom), 6.55-6.53 (d, J = 4.10 Hz, 2 H, CHaom), 4.55-4.54 (d, J = 4.10 Hz, 2
H, CH,), 4.12 (s, | H, NH), 2.51-2.49 (d, J = 4.10 Hz, 6 H, CH;) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 148.45, 139.81, 139.02, 128.72, 127.66, 127.27,
119.71, 110.90, 48.47, 21.65 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-4-(thiophen-3-yl) aniline (4h)

Y

/\
S

Chemical Formula: C47H5NS
Molecular Weight: 265.37
Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (I mmol, 112 mg), 2 mL thf,
4-(thiophen-3-yl) aniline (1 mmol, 175 mg) and benzyl alcohol (1.4 mmol, 146 pL) are added
consecutively to a pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by
adding 1| mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/1) as a white solid (252 mg, 0.951 mmol, 94 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): 8 = 7.46-7.28 (m, 11 H, CHyon), 6.70-6.68 (d,
J=7.61Hz, 2 H, CHyom), 4.39 (s, 2 H, CHs), 4.21 (s, 1 H, NH) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 147.35, 142.54, 139.31, 128.70, 127.51, 127.45,
127.33, 126.14, 125.80, 125.67, 117.75, 113.08, 48.32 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyl-4-aminostilbene (4i)

H
Cr
(J

Chemical Formula: Cy1HqgN
Molecular Weight: 285.39

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, 4-aminostilbene
(1 mmol, 195 mg) and benzyl alcohol (1.4 mmol, 146 pL) are added consecutively to a pressure
tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL water. The
product was isolated via column chromatography over SiO, (pentane/diethyl ether: 20/3) as a

light yellow solid (277 mg, 0.971 mmol, 96 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): & = 7.52-7.49 (d, J = 7.61 Hz, 2 H, CHurom.), 7.41-
7.34 (m, 9 H, CHyrom), 7.27-7.21 (m, 1 H, CHyom ), 7.09-7.04 (d, J = 15.82 Hz, 1 H, CHj)), 6.96-
691 (d, /= 15.82 Hz, 1 H, CH,), 6.67-6.65 (d, J = 8.20 Hz, 2 H, CHaom), 4.39 (s, 2 H, CH,),
4.24 (s, 1 H, NH) ppm.

13C NMR (CDCls, 75.41 MHz, 296.15 K): & = 147.77, 139.15, 138.10, 128.81, 128.72, 128.61,
127.80, 127.50, 127.34, 127.07, 126.08, 124.63, 112.99, 48.23 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of 4-chloro-N-[4-[2-phenylethenyl|phenyl] benzenemethanamine (41)

Cl
H
N\/©/
D

Chemical Formula: C24H1gCIN
Molecular Weight: 319.83

Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, 4-aminostilbene
(1 mmol, 195 mg) and 4-chlorobenzyl alcohol (1.4 mmol, 200 mg) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

9/1) as a light yellow solid (245 mg, 0.773 mmol, 77 %).

'"H NMR (CDCl;, 299.86 MHz, 296.15 K): & = 7.44-7.41 (d, J = 8.20 Hz, 2 H, CHyonm ), 7.32-
7.27 (m, 8 H, CHyrom), 7.22-7.16 (m, 1 H, CHyom ), 7.01-6.96 (d, J = 16.4 Hz, 1 H, CH,), 6.89-
6.83 (d, /= 16.40 Hz, 1 H, CH,), 6.57-6.55 (d, J = 8.20 Hz, 2 H, CHarom.), 4.30 (s, 2 H, CHb),
4.22 (s, 1 H, NH) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 147.42, 137.97, 137.68, 132.92, 128.76, 128.62,
128.56, 127.75, 126.79, 126.03, 124.76, 122.95, 47.44 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of 4-chloro-/V-(4-iodophenyl) benzenemethanamine (4m)

o

Chemical Formula: C43H44CIIN
Molecular Weight: 343.59
Precatalyst C (0.03 mmol, 3 mol%, 18 mg), KO'Bu (1 mmol, 112 mg), 2 mL thf, 4-iodoaniline
(1 mmol, 219 mg) and 4-chlorobenzyl alcohol (1.4 mmol, 200 mg) are added consecutively to a
pressure tube. After heating at 80 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

10/0.8) as a white solid (227 mg, 0.664 mmol, 66 %).

"H NMR (CD,Cl,, 299.86 MHz, 296.15 K): & = 7.41-7.39 (d, J=8.20 Hz, 2 H, CH,onm.), 7.34-
7.28 (t, J=9.96 Hz, 4 H, CHyrom ), 06.42-6.39 (d, J=7.61 Hz, 2 H, CHarom), 4.29 (s, 2 H, CH,),
4.29 (s, 1 H, NH) ppm.

BC NMR (CDsCly, 75.41 MHz, 296.15 K): 8 = 148.05, 138.30, 138.24, 133.27, 129.18, 115.63,
78.44, 47.65 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of imines

Synthesis of N-benzylideneaniline (1a)

©/Nv©

Chemical Formula: Cy3H4N
Molecular Weight: 181.24

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 uL) and benzyl alcohol (1.6 mmol, 166 pL) are added consecutively to a Schlenk
tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL water. The
product was isolated via column chromatography over SiO; (pentane/diethyl ether: 20/1) as a

white solid (152 mg, 0.839 mmol, 84 %).

"H NMR (CDCls, 299.86 MHz, 296.15 K): 8 = 8.48 (s, 1 H, CH;), 7.95-7.92 (m, 2 H, CHarom),
7.53-7.50 (m, 3 H, CHyrom ), 7.43-7.41 (m, 2 H, CHurom ), 7.26-7.24 (m, 3 H, CHarom) ppm.

BC NMR (CDCls, 75.41 MHz, 296.15 K): & = 160.42, 152.11, 136.24, 131.40, 129.17, 128.84,
128.79, 125.95, 120.89 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(4-chlorobenzylidene) aniline (1b)

©/W©f

Chemical Formula: C43HoCIN
Molecular Weight: 215.68

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 4-chlorobenzyl alcohol (1.6 mmol, 308 mg) are added consecutively to a
Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/0.8) as a yellow solid (194 mg, 0.903 mmol, 90 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 8.44 (s, 1 H, CH,), 7.88-7.85 (d, J = 8.20 Hz, 2
H, CHyom), 7.48-7.46 (d, J = 8.20 Hz, 2 H, CHuom), 7.42-7.40 (d, J = 7.03 Hz, 2 H, CHaom),
7.29-7.22 (m, 3 H, CHyrom) ppm.

BC NMR (CDCls, 75.41 MHz, 296.15 K): § = 158.82, 151.66, 137.38, 134.71, 129.97, 129.22,
129.08, 126.21, 129.86 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(4-bromobenzylidene) aniline (1¢)

QWO

Chemical Formula: C43HoBrN
Molecular Weight: 260.13

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 4-bromobenzyl alcohol (1.6 mmol, 299 mg) are added consecutively to a
Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/0.8) as a light yellow solid (194 mg, 0.746 mmol, 75 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): 6 = 8.42 (s, 1 H, CH;), 7.81-7.78 (d, J = 8.20 Hz, 2
H, CHyom), 7.64-7.61 (d, J = 8.20 Hz, 2 H, CHyom), 7.45-7.40 (t, J = 7.61 Hz, 2 H, CH,rom),
7.27-7.22 (t,J="7.61 Hz, 3 H, CHarom ) ppm.

BC NMR (CDCl;, 75.41 MHz, 296.15 K): & = 158.91, 151.66, 135.13, 132.06, 130.17, 129.24,
126.26, 125.91, 120.87 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(4-tert-butylbenzylidene) aniline (1d)

(j@@*

Chemical Formula: C47H1gN
Molecular Weight: 237.35

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 4-tert-butylbenzyl alcohol (1.6 mmol, 283 pL) are added consecutively to
a Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:
20/0.4) as an orange oil (203 mg, 0.857 mmol, 86 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): 8 = 8.48 (s, 1 H, CH,), 7.92-7.89 (d, J = 8.20 Hz, 2
H, CHyom), 7.57-7.54 (d, J = 8.20 Hz, 2 H, CHyom), 7.44-7.42 (t, J = 7.03 Hz, 2 H, CHyom),
7.27-7.25 (t,J = 8.20 Hz, 3 H, CHarom), 1.41 (s, 9 H, CHs) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 160.33, 154.99, 152.40, 133.68, 129.17, 128.72,
125.80, 120.94, 35.08, 31.28 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(4-methoxybenzylidene) aniline (1e)

@va@

Chemical Formula: C4H3NO
Molecular Weight: 211.26

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 4-methoxybenzyl alcohol (1.6 mmol, 199 pL) are added consecutively to
a Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/4) as a yellow solid (168 mg, 0.796 mmol, 80 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 8.41 (s, 1 H, CH;), 7.90-7.88 (d, J = 8.20 Hz, 2
H, CHuom), 7.45-7.40 (t, J = 8.79 Hz, 2 H, CHuom), 7.27-7.23 (t, J = 8.20 Hz, 3 H, CHuom),
7.03-7.00 (d, /= 8.20 Hz, 2 H, CH3), 3.88 (s, 3 H, CH;) ppm.

BC NMR (CDCls, 75.41 MHz, 296.15 K): § = 162.27, 159.72, 152.40, 130.56, 129.30, 129.17,
125.62, 120.95, 114.22, 55.45 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of V-(3-methylbenzylidene) aniline (1f)

QNVQ

Chemical Formula: C14H13N
Molecular Weight: 195.27

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 3-methylbenzyl alcohol (1.6 mmol, 189 pL) are added consecutively to a
Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/1) as an orange oil (170 mg, 0.872 mmol, 87 %).

'"H NMR (CDCl;, 299.86 MHz, 296.15 K): 3 = 8.47 (s, | H, CH,), 7.83 (s, 1 H, CHarom), 7.74-
7.71 (d,J=7.61 Hz, 1 H, CHuom), 7.45-7.26 (m, 7 H, CHagom.), 2.48 (s, 3 H, CHz) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 160.71, 152.21, 138.59, 136.22, 132.32, 129.20,
129.02, 128.72, 126.50, 125.94, 120.95, 21.38 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(2-methylbenzylidene) aniline (1g)

o5

Chemical Formula: C14H13N
Molecular Weight: 195.27

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 2-methylbenzyl alcohol (1.6 mmol, 195 mg) are added consecutively to a
Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/1) as an orange oil (172 mg, 0.882 mmol, 88 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 8.81 (s, 1 H, CH)), 8.18-8.15 (d, J=7.03 Hz, 1
H, CHyrom), 7.50- 7.27 (m, 8 H, CHyom ), 2.65 (s, 3 H, CHs) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 159.14, 152.78, 138.66, 134.18, 131.08, 129.22,
127.91, 126.44, 125.88, 120.98, 19.50 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(1-naphthylmethylene) aniline (1h)

o %
Chemical Formula: C47H3N
Molecular Weight: 231.30

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 1-naphthalenemethanol (1.6 mmol, 253 mg) are added consecutively to a
Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/0.6) as a yellow solid (181 mg, 0.782 mmol, 78 %).

'H NMR (CDCl;, 299.86 MHz, 296.15 K): & = 9.13 (s, 1 H, CH,), 9.09-9.06 (d, J=8.20 Hz, 1
H, CHarom), 8.15-8.12 (d, J=7.03 Hz, 1 H, CHyom), 8.02-7.94 (dd, J= 16.99 Hz, J=8.20 Hz, 2
H, CHarom), 7.68-7.56- 7.27 (m, 3 H, CHyrom), 7.50-7.47 (d, J = 8.20 Hz, 1 H, CHarom ), 7.44 (s, 1
H, CHarom), 7.34-7.27 (dd, J = 13.47 Hz, J = 8.20 Hz, 3 H, CHarom.) ppm.

13C NMR (CDCls, 75.41 MHz, 296.15 K): & = 160.13, 152.67, 133.95, 132.00, 131.54, 131.48,
129.89, 129.27, 128.81, 127.53, 126.28, 125.99, 125.36, 124.26, 120.98 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of /N-(2-thienylmethylene) aniline (1i)
$TN
©/N§)Q

Chemical Formula: Cq1HgNS
Molecular Weight: 187.26
Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, aniline
(1 mmol, 91.3 pL) and 2-thiophenemethanol (1.6 mmol, 152 pL) are added consecutively to a
Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

10/0.7) as a yellow oil (171 mg, 0.914 mmol, 91 %).

'"H NMR (CD,Cl,, 299.86 MHz, 296.15 K): 8 = 8.60 (s, 1 H, CH,), 7.56-7.52 (m, 2 H, CHgyom.),
7.46-7.41 (t, J=7.64 Hz, 2 H, CHyom), 7.30-7.24 (m, 3 H, CHyom), 7.18-7.16 (m, 1 H,
CHarom.) ppm.

BC NMR (CDsCly, 75.41 MHz, 296.15 K): 8 = 153.01, 151.42, 143.06, 132.46, 130.32, 129.27,
127.91, 126.11, 121.01, 113.12 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-4-chloroaniline (3a)

o

Chemical Formula: C3H4oCIN
Molecular Weight: 215.68

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-chloroaniline (1 mmol, 128 mg) and benzyl alcohol (1.6 mmol, 166 pL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/0.1) as a light yellow solid (138 mg, 0.642 mmol, 64 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): 6 = 8.45 (s, 1 H, CH;), 7.93-7.91 (d, J=4.96 Hz, 2
H, CHuom.), 7.51-7.50 (m, 3 H, CHyrom.), 7.39-7.36 (d, J = 8.79 Hz, 2 H, CHyon ), 7.19-7.16 (d,
J=28.79 Hz, 2 H, CHyrom.) ppm.

BC NMR (CDCl;, 75.41 MHz, 296.15 K): & = 160.73, 150.52, 135.95, 131.65, 131.48, 129.25,
128.90, 128.84, 122.23 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-4-bromoaniline (3b)

o

Chemical Formula: C13H4oBrN
Molecular Weight: 260.13

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-bromoaniline (1 mmol, 172 mg) and benzyl alcohol (1.6 mmol, 166 plL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/0.2) as an orange solid (189 mg, 0.727 mmol, 73 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): & = 8.44 (s, | H, CHy), 7.93-7.91 (d, J = 5.70 Hz, 2
H, CHarom), 7.54-7.51 (m, 5 H, CHarom ), 7.13-7.10 (d, J = 8.79 Hz, 2 H, CHayom ) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 160.79, 150.98, 135.92, 132.21, 131.69, 128.92,
128.85, 122.61, 119.33 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-4-iodoaniline (3¢)

o

Chemical Formula: C3HgIN
Molecular Weight: 307.13

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-iodoaniline (1 mmol, 219 mg) and benzyl alcohol (1.6 mmol, 166 pL) are added consecutively
to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over

Si0; (pentane/diethyl ether: 20/0.6) as a white solid (189 mg, 0.616 mmol, 62 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): 8 = 8.43 (s, 1 H, CH,), 7.93-7.91 (m, 2 H, CHarom),
7.74-7.71 (d, J = 8.20 Hz, 2 H, CHyom), 7.52-7.50 (m, 3 H, CHyom), 7.01-6.98 (d, J = 8.79 Hz,
2 H, CHarom.) ppm.

BC NMR (CDCls, 75.41 MHz, 296.15 K): & = 160.79, 151.68, 138.22, 135.96, 131.74, 128.99,
128.90, 123.09, 90.50 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-4-ethylaniline (3d)

VONVG

Chemical Formula: Cy5H5N
Molecular Weight: 209.29

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-ethylaniline (1 mmol, 124 mg) and benzyl alcohol (1.6 mmol, 166 pL) are added consecutively
to a Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

20/0.8) as an orange oil (173 mg, 0.828 mmol, 83 %).

'"H NMR (CDCls, 299.86 MHz, 296.15 K): 8 = 8.52 (s, 1 H, CH,), 7.96-7.93 (m, 2 H, CHarom),
7.52-7.50 (m, 3 H, CHapom.), 7.29-7.26 (d, J = 8.20 Hz, 2 H, CHyeom), 7.23-7.21 (d, J = 8.20 Hz, 2
H, CHarom)) 2.76-2.68 (q, J = 7.61 Hz, 2 H, CH,.), 1.33-1.29 (t, /= 7.61 Hz, 3 H, CH3) ppm.

BC NMR (CDCls, 75.41 MHz, 296.15 K): & = 159.63, 149.71, 142.25, 136.42, 131.23, 128.78,
128.63, 120.95, 28.49, 15.73 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-2-fert-butylaniline (3e)

EIN?@
Chemical Formula: C47H{gN
Molecular Weight: 237.35

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
2-tert-butylaniline (1 mmol, 156 pL) and benzyl alcohol (1.6 mmol, 166 pL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 6 hours, the reaction was stopped by
adding 1 mL water. The product was isolated via column chromatography over SiO

(pentane/diethyl ether: 20/0.1) as an orange oil (183 mg, 0.772 mmol, 77 %).

'H NMR (CDCl;, 299.86 MHz, 296.15 K): 8 = 8.63 (s, 1 H, CH,), 8.23-8.20 (m, 2 H, CHarom),
7.79-7.77 (m, 3 H, CHyom), 7.72-7.69 (m, 1 H, CHuyom), 7.53-7.47 (m, 2 H, CHaom), 7.17-7.14
(m, 1 H, CHarom), 1.77 (s, 9 H, CH3) ppm.

13C NMR (CDCls, 75.41 MHz, 296.15 K): & = 158.06, 151.54, 143.09, 136.82, 131.14, 128.85,
127.10, 126.09, 125.70, 119.26, 35.72, 30.55 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-2-phenylaniline (3f)

0
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Chemical Formula: CgH{sN
Molecular Weight: 257.34

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
2-phenylaniline (1 mmol, 169 mg) and benzyl alcohol (1.6 mmol, 166 pL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/0.2) as a yellow oil (169 mg, 0.658 mmol, 66 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): & = 8.51 (s, 1 H, CH}), 7.86-7.84 (d, J = 7.03 Hz, 2
H, CHarom), 7.58-7.36 (m, 11 H, CHaeom ), 7.15-7.13 (d, J=7.61 Hz, 1 H, CHyrom) ppm.

13C NMR (CDCls, 75.41 MHz, 296.15 K): & = 160.36, 149.74, 139.53, 136.48, 135.38, 131.25,
130.40, 130.29, 128.90, 128.75, 128.43, 127.74, 126.81, 126.06, 118.95 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-3,5-dimethylaniline (3g)

We
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Chemical Formula: Cy5H45N
Molecular Weight: 209.29

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
3,5-dimethylaniline (1 mmol, 125 pL) and benzyl alcohol (1.6 mmol, 166 pL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/0.5) as a yellow oil (194 mg, 0.928 mmol, 93 %).

'H NMR (CDCls, 299.86 MHz, 296.15 K): 8 = 8.53 (s, 1 H, CH,), 8.00-7.97 (m, 2 H, CHarom),
7.57-7.55 (m, 3 H, CHyrom.), 6.98 (s, 1 H, CHarom.), 6.94 (s, 2 H, CHyrom,), 2.44 (s, 6 H, CH3) ppm.

3C NMR (CDCls, 75.41 MHz, 296.15 K): & = 159.97, 152.14, 138.79, 136.38, 131.25, 128.76,
127.65, 118.66, 21.35 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-4-(thiophen-3-yl) aniline (3h)

W
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Chemical Formula: C47H;3NS
Molecular Weight: 263.36

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-(thiophen-3-yl) aniline (1 mmol, 175 mg) and benzyl alcohol (1.6 mmol, 166 uL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/1) as a light yellow solid (238 mg, 0.905 mmol, 91 %).

'"H NMR (CD,Cl,, 299.86 MHz, 296.15 K): § = 8.57 (s, 1 H, CH,), 7.97-7.96 (m, 2 H, CHyrom.),
7.71-7.69 (d, J = 8.20 Hz, 2 H, CHarom), 7.54 (m, 4 H, CHarom.), 7.47 (m, 2 H, CHarom.), 7.33-7.30
(d, J=8.20 Hz 2 H, CHarom.) ppm.

13C NMR (CDsCl,, 75.41 MHz, 296.15 K): 8 = 159.87, 150.86, 141.73, 136.38, 133.60, 131.34,
128.76, 127.10, 126.35, 126.12, 121.42, 119.99 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-benzyliden-4-aminostilbene (3i)
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Chemical Formula: CoqH17N
Molecular Weight: 283.37

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'‘Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-aminostilbene (1 mmol, 195 mg) and benzyl alcohol (1.6 mmol, 166 pL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/3) as a yellow solid (254 mg, 0.898 mmol, 90 %).

'H NMR (CDxCla, 299.86 MHz, 296.15 K): 6 = 8.56 (s, 1 H, CH,), 7.97-7.95 (m, 2 H, CHarom.),
7.63-7.54 (m, 7 H, CHyrom.), 7.43-7.33 (m, 2 H, CHyrom.), 7.33-7.27 (m, 3 H, CHyom.), 7-19 (s, 2
H, CHgrom.) ppm.

3C NMR (CD:Cly, 75.41 MHz, 296.15 K): 8 = 159.77, 151.25, 137.37, 136.36, 135.29, 131.34,
128.73, 128.69, 128.12, 127.98, 127.57, 127.31, 126.61, 125.91, 121.36 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(phenylmethylene)-benzenmethanamine (3j))

Seve

Chemical Formula: C14H¢3N

Molecular Weight: 195,27
Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF, benzyl
amine (1 mmol, 109 pL) and benzyl alcohol (1.6 mmol, 166 pL) are added consecutively to a
Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped by adding 1 mL
water. The product was isolated via column chromatography over SiO, (pentane/diethyl ether:

10/0.2) as a light orange oil (154 mg, 0.791 mmol, 79 %).

'H NMR (CD-Cls, 299.86 MHz, 296.15 K): & = 8.4 (s, 1 H, CH), 7.85-7.82 (m, 2 H, CHarom),
7.49-7.30 (m, 8 H, CHyrom.), 4.83 (s, 2 H, CH, ppm.

BC NMR (CD,Cly, 75.41 MHz, 296.15 K): 8 = 162.54, 140.60, 137.30, 131.58, 129.49, 129.33,
129.07, 128.89, 127.81, 65.95 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-(phenylmethylene)-benzenebutanamine (3k)

©/\/\/N§/Ph

Chemical Formula: C47HgN

Molecular Weight: 237,35
Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
benzenebutanamine (1 mmol, 158 pl) and benzyl alcohol (1.6 mmol, 166 pL) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 20/0.03) as a light orange oil (131 mg, 0.553 mmol, 55 %).

'"H NMR (CD>Cl,, 299.86 MHz, 296.15 K): & = 8.36 (s, | H, CH), 7.84-7.81 (m, 2 H, CHyrom ),
7.52-2.27 (m, 8 H, CHyom), 3.73-3.70 (t, J= 6.87 Hz, 2 H, CH), 2.78-2.75 (t, /= 6.87 Hz, 2 H,
CHamm.)s 183'180 (ms 4 Hs CHZ) ppm

BC NMR (CDxCly, 75.41 MHz, 296.15 K): 8 = 160.98, 143.29, 137.17, 130.90, 129.08, 128.99,
128.79, 128.50, 126.18, 62.02, 36.30, 31.18, 29.91 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-[(4-chlorophenyl)methylene]-4-[2-phenylethenyl] benzenamine

(3D
Cl
0 Nv©/
o
Chemical Formula: Co1H16CIN

Molecular Weight: 317.82

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-aminostilbene (1 mmol, 195 mg) and 4-chlorobenzyl alcohol (1.6 mmol, 228 mg) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 10/0.8) as a yellow solid (184 mg, 0.583 mmol, 58 %).

'H NMR (CD,Cl,, 299.86 MHz, 296.15 K): & = 8.49 (s, 1 H, CH,), 7.89-7.86 (d, J = 7.03 Hz, 2
H, CHaom), 7.59-7.53 (t, J = 8.20 Hz, 4 H, CHuom), 7.49-7.47 (d, J = 8.20 Hz, 2 H, CHarom),
7.40-7.35 (m, 2 H, CHarom), 7.29-7.23 (m, 3 H, CHarom), 7.15 (5, 2 H, CHarom.) ppm.

3C NMR (CD,Cl,, 125.76 MHz, 296.15 K): & = 158.77, 151.37, 137.87, 137.71, 136.10, 135.50,
130.50, 129.58, 129.25, 128.83, 128.45, 128.15, 127.89, 126.97, 121.95 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

Synthesis of N-[(4-chlorophenyl)methylene]-4-iodobenzenamine (3m)

Chemical Formula: C43HgCIIN
Molecular Weight: 341.58

Precatalyst C (0.01 mmol, 1 mol%, 6 mg), NaO'Bu (1.5 mmol, 144 mg), 3 mL 2-MeTHF,
4-iodoaniline (1 mmol, 175 mg) and 4-chlorobenzyl alcohol (1.6 mmol, 228 mg) are added
consecutively to a Schlenk tube. After heating at 110 °C for 18 hours, the reaction was stopped
by adding 1 mL water. The product was isolated via column chromatography over SiO,

(pentane/diethyl ether: 10/0.3) as a white solid (177 mg, 0.524 mmol, 52 %).

'H NMR (CD,Cl,, 299.86 MHz, 296.15 K): & = 8.41 (s, 1 H, CH}), 7.87-7.84 (d, J = 8.20 Hz, 2
H, CHuom), 7.73-7.70 (d, J = 8.79 Hz, 2 H, CHaom), 7.49-7.45 (d, J = 8.20 Hz, 2 H, CHarom),
7.00-6.96 (d, J = 8.79 Hz, 2 H, CHom ) ppm.

3C NMR (CD,Cl, 125.76 MHz, 296.15 K): § = 159.81, 151.89, 138.78, 138.00, 135.17, 130.59,
129.62, 123.49, 90.93 ppm.
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra
NMR-Spectra of N-benzylaniline (2a)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-(4-chlorobenzyl) aniline (2b)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-(4-bromobenzyl) aniline (2c)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-(4-tert-butylbenzyl) aniline (2d)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-(4-methoxybenzyl) aniline (2e)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of V-(3-methylbenzyl) aniline (2f)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-(2-methylbenzyl) aniline (2g)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-phenyl-1-naphtalenemethanamine (2h)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-phenyl-2-thiophenemethanamine (2i)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-(3,7-dimethyl-6-octen-1yl)-benzenamine (2j)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-octylaniline (2k)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyl-4-chloroaniline (4a)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyl-4-bromoaniline (4b)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-benzyl-4-iodoaniline (4¢)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-benzyl-4-ethylaniline (4d)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyl-2-tert-butylaniline (4e)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyl-2-phenylaniline (4f)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyl-3,5-dimethylaniline (4g)

RFM75_1_PROTON_20170531_01

T T T T
1“3 12 M 1 0 - 2
RFM75_1_CARBON_20170531_01

Yo

©

—

N

T
e et e e e e T
220 200 180 160 140 120 100 80 60 40 20 0 20

Chemical Shift (ppm)

89

126



Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyl-4-(thiophen-3-yl) aniline (4h)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyl-4-aminostilbene (4i)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of 4-chloro-/N-[4-[2-phenylethenyl]phenyl]
benzenemethanamine (41)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of 4-chloro-/N-(4-iodophenyl) benzenemethanamine (4m)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzylideneaniline (1a)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-(4-chlorobenzylidene) aniline (1b)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-(4-bromobenzylidene) aniline (1¢)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
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NMR-Spectra of N-(4-tert-butylbenzylidene) aniline (1d)
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NMR-Spectra of N-(4-methoxybenzylidene) aniline (1e)
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NMR-Spectra of NV-(3-methylbenzylidene) aniline (1f)
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NMR-Spectra of V-(2-methylbenzylidene) aniline (1g)
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NMR-Spectra of N-(1-naphthylmethylene) aniline (1h)
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NMR-Spectra of V-(2-thienylmethylene) aniline (1i)
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NMR-Spectra of NV-benzyliden-4-chloroaniline (3a)
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NMR-Spectra of NV-benzyliden-4-bromoaniline (3b)
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NMR-Spectra of N-benzyliden-4-iodoaniline (3¢)
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NMR-Spectra of N-benzyliden-4-ethylaniline (3d)
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NMR-Spectra of N-benzyliden-2-fert-butylaniline (3e)
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NMR-Spectra of NV-benzyliden-2-phenylaniline (3f)
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NMR-Spectra of N-benzyliden-3,5-dimethylaniline (3g)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-benzyliden-4-(thiophen-3-yl) aniline (3h)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-benzyliden-4-aminostilbene (3i)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of N-(phenylmethylene)-benzenmethanamine (3j)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
or Dehydrogenative Condensation

NMR-Spectra of NV-(phenylmethylene)-benzenebutanamine (3k)
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or Dehydrogenative Condensation

NMR-Spectra of N-[(4-chlorophenyl)methylene]-4-[2-phenylethenyl]
benzenamine (31)
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Manganese-Catalyzed and Base-Switchable Synthesis of Amines or Imines via Borrowing Hydrogen
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NMR-Spectra of N-[(4-chlorophenyl)methylene|-4-iodobenzenamine (3m)
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The discovery of reactions is a central topic in chemistry and especially
interesting if access to compound classes, which have not yet been synthe-
sized, is permitted. N-Heterocyclic compounds are very important due to their
numerous applications in life and material science. We introduce here a con-
secutive three-component reaction, classes of N-heterocyclic compounds, and
the associated synthesis concept (regenerative cyclisation). Our reaction starts
with a diamine, which reacts with an amino alcohol via dehydrogenation,
condensation, and cyclisation to form a new pair of amines that undergoes
ring closure with an aldehyde, carbonyldiimidazole, or a dehydrogenated
amino alcohol. Hydrogen is liberated in the first reaction step and the dehy-

Published online: 03 February 2023

™ Check for updates

drogenation catalyst used is based on manganese.

Reaction discovery is a central topic in chemistry' and especially inter-
esting if access to classes of compounds, which have not yet been
synthesized, can be provided. Unfortunately, concepts permitting a
rational design of compound classes are rare. Iterative synthesis, the
regeneration of the functional group(s) originally modified (Fig. 1A), is a
suitable tool to introduce chemical diversity, which might be beneficial
to address function or global challenges’. Recently, metal catalysed
reactions have been in focus’ and used for automated C-C bond
formation® and selective olefin syntheses employing ethylene’. The ring
closure of two functional groups generating a new pair of the same
functional groups seems an option for synthesizing cyclic compounds
(Fig. 1B)**”". N-Heterocyclic compounds are very important fine and
bulk chemicals due to their numerous applications in life and material
sciences, for instance, as pharmaceuticals, agro chemicals, dyes, and
conductive materials®. Classes of N-heterocyclic compounds might be
accessible if the pair of functional groups that will be regenerated
during cyclization are amines (Fig. 1C). We introduce here a catalytic
consecutive three-component reaction and classes of N-heterocyclic
compounds. Our reaction starts with a diamine, which reacts with an
amino alcohol via dehydrogenation, condensation, and cyclisation to
form a new pair of amines that undergoes ring closure with an aldehyde
(Fig. 1C), carbonyldiimidazole or an amino alcohol. Hydrogen is liber-
ated in the first reaction step”” and the dehydrogenation catalyst used
is based on the Earth-abundant metal manganese” ™. Our reaction

proceeds diastereoselectively, has a large scope, and many functional
groups can be tolerated, including hydrogenation-sensitive examples,
despite the presence of hydrogen and a hydrogenation catalyst".
Upscaling is easily accomplished and a catalytic amount of base is
required. All N-heterocyclic compounds synthesized here have not yet
been reported'.

Results

Reaction optimization

We started our investigations with an optimisation of the reaction
conditions of the reaction of 18-diaminonaphthalene with
2-aminobenzyl alcohol to form the 2-(2,3-dihydro-1H-perimidin-2yl)
aniline Al (Fig. 2). The synthesis of 2,3-dihydro-1H-perimidines from 1,8-
diaminonaphtalene and aldehydes is a classic reaction and has been
reported already in 1964". Recently, the catalytic generation of the
aldehyde for such a coupling via dehydrogenation catalysis employing a
phosphine free manganese complex has been reported'®. The key to our
synthesis is the use of amino alcohols to regenerate the set of two
amines and we started our investigation with 2-aminobenzyl alcohol. In
case of amino alcohols, the corresponding aldehyde can undergo self-
condensation and the catalytic generation via dehydrogenation cata-
lysis seems an elegant way to address this issue. Different Earth-
abundant metal (Mn, Fe, Co) complexes stabilized by pincer ligands
were tested as precatalysts for the dehydrogenation step. Manganese

'Lehrstuhl Anorganische Chemie Il—Katalysatordesign, Sustainable Chemistry Centre, Universitat Bayreuth, 95440 Bayreuth, Germany.

e-mail: kempe@uni-bayreuth.de
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A. [lterative Synthesis
s & &
B. Regenerative Cyclization
[-\ . Ii. ] i.
—_— _—
Modification degree: 1 2
—_
Termination
C. This Work: Synthesis of N-Heterocyclic Compounds
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Lo, @@ . @@
-Haf -H,0
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(™ @
HO.
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Fig. 1| Rel, [ pts and work introduced here. A Regenerating the func-  (poly)cyclic compounds, which have not yet been synthesized, at some stage or

tional group again that has been modified originally (iterative synthesis) can lead to
chemical diversity if different building blocks are used B Classes of (poly)cyclic
compounds can be conceived via ring closure chemistry. The set of functional
groups originally used has to be formed again during the ring closure reaction
(regenerative cyclization). Repeating ring closure steps should lead to classes of

modification degree. C N-Heterocyclic compounds introduced here with amines
being the key functional groups, applying a modification degree of two, and a
catalytic amino alcohol dehydrogenation-based ring closure reaction as the

first step.

catalysts stabilized by a PNsP-pincer ligand (Fig. 2. top right) showed the
highest activity, determined by the yield of the product obtained under
the given conditions. Such ligands are easy to synthesize from 2,6-dia-
minotriazines and dialkyl- or diarylphosphine chlorides. A significantly
lower activity was observed if the ligand backbone of the manganese
precatalysts was changed from a triazine (PNsP) to a pyridine (PNsP)
moiety, (precatalysts Mn-VI, Mn-VII, Supplementary Table 1), Other
reaction parameters, such as temperature, precatalyst loading, type and
amount of solvent, and base were optimised—see Supplementary
Tables 1-7 for details. The optimal reaction parameters for the synthesis
of Al (Fig. 2) were 1 mol% precatalyst [Mn-I], 30 mol% KO'Bu, 3mL
2-MeTHF at 100 °C with a reaction time of 2 h. The reaction proceeded

in a tube with a bubble counter to facilitate the release of hydrogen
during the dehydrogenation of the amino alcohol.

Substrate scope

Regarding the exploration of the functional group tolerance, we
used 21 aminobenzyl alcohol derivatives and isolated the corre-
sponding 2,3-dihydro-1H-perimidines A1-A21, referred to here as
amino perimidines for simplification (Fig. 2). The model reaction led
to the product Al in an isolated yield of 90%. Single crystals were
obtained via recrystallization from ethyl acetate/pentane (2:1) at
-18°C and analysed by X-ray diffraction confirming the molecular
structure of Al (Fig. 2; for more details, see Supplementary Data 1).
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Fig. 2 | Synthesis of 2,3-dihydro-1H-perimidines A1-A21 via liberation of H,. Reaction conditions: 2 mmol 1,8-diaminonaphthalene, 2 mmol amino alcohol, 0.6 mmol
KOBu, 1mol% [Mn-I] (0.02 mmol), 3 mL 2-MeTHF, 100 °C (oil bath), 2 h, open system (anaerobic conditions). Isolated yields in brackets.

The products A2-A6 were obtained in yields of 77-97%, demon-
strating the tolerance of electron-donating groups on every posi-
tion at the phenyl substituent. The tolerance of electron with-
drawing substituents was shown by using fluoro- (A7-A10), chloro-
(A13-A15), and bromo-aminobenzyl (Al1, A12) alcohols. The corre-
sponding products were isolated in yields ranging from 71-95%. The
fluoro substituent was used as an example to show the tolerance at
each position of the phenyl substituent. Substrates containing

methoxy (A16), dimethoxy (A17), or trifluormethoxy (A18) groups
were converted smoothly to the products desired and could be
isolated in yields up to 82%. An amino perimidine bearing an acetal
(A19) could be isolated in a yield of 69%. Using a polycyclic aromatic
amino alcohol provided A20 in a yield of 77%. The use of a N-het-
erocyclic amino alcohol led to A21in a nearly quantitative yield. The
amino perimidines (A1-A24) were isolated as solids in colours from
white to yellow. Each product was not described at that stage. The
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Fig. 3 | Synthesis of fertigines Bla-Blq: 2 vari
Reaction conditions: 2 mmol 1,8-diaminonaphthalene, 2 mmol amino alcohol,
0.6 mmol KO‘Bu, 1 mol% [Mn-I] (0.02 mmol), 3 mL 2-MeTHF, 100 °C (oil bath),

2h+15h, open system (anaerobic conditions). After 2 h: addition of 2 mmol ben-
zaldehyde. Isolated yields in brackets.

amino perimidines generally showed a good solubility in polar
solvents, were air-stable, and easy to crystallize (e.g., in ethyl acet-
ate/pentane).

The primary amine functionality of the modification degree 1
and its spatial distance to the NH-groups can be used for a second
ring closure (modification degree 2). Aldehydes represent simple,
easy-to-handle, inexpensive, diversely available and green or
sustainable””* building blocks and can undergo condensation
reactions with amines. This modification degree 2 leads to a class of
compounds consisting of two six-membered N-heterocyclic ring
systems (Fig. 3). We propose the name fertigines for this class of N-
heterocycles. Keeping the synthesis procedure of the fertigines as

simple as possible, we synthesized them via a consecutive multi-
component one-pot reaction using the conditions optimised for the
synthesis of the amino perimidines followed by the addition of
aldehyde (Fig. 3). The addition of benzaldehyde led to the fertigine
Bla in an isolated yield of 93% after a reaction time of 15h. Blais a
white solid that is soluble in polar solvents. Crystals for single
crystal X-ray analysis were obtained by recrystallization of Bla
(Fig. 3) in ethyl acetate/pentane at —18 °C. The molecular structure
of Bla is shown in Fig. 3 (for more details, see Supplementary
Data 2). The second ring closure proceeded smoothly to the pro-
ducts Blb-Ble in yields of 78-92%, indicating no significant influ-
ence of the position of electron-donating groups attached to the
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Fig. 4 | Synthesis of fertigines B2a-B2p and B3a-B3e: aldehyde variations.
Reaction conditions: 2 mmol 1,8-diaminonaphthalene, 2 mmol 2-aminobenzyl
alcohol derivatives, 0.6 mmol KO'Bu, 1 mol% [Mn-I] (0.02 mmol), 3 mL 2-MeTHF,

100°C, 2 h+15 h, open system (anaerobic conditions). After 2 h: addition of 2 mmol
aldehyde. Isolated yields in brackets.

aminobenzyl alcohol moiety. Analogously, we investigated the
position-dependent influence of electron-withdrawing groups on
the outcome of the reaction. We chose the fluoro substituent and
could not observe any significant impact on the second ring closure,
obtaining the corresponding fertigines B1f-Bli in isolated yields
of up to 87%. The use of further halogenated substrates, such
as S5-bromo- (Blj), 6-chloro- (B1k), 4-chloro- (B1l) or 3-chloro-2-
aminobenzyl alcohol (Blm), for fertigine synthesis led to the
products desired in yields between 75 and 89%. Bln, bearing a tri-
fluoromethoxy-group, could be obtained in an isolated yield of 70%.
A fertigine with an acetal group (B1o) on the former amino alcohol
moiety was isolated in a yield of 79%. Applying an amino alcohol
with a polycyclic aromatic backbone provided the product Blp in an
isolated yield of 73%. The use of 2-amino-pyridylmethanol resulted
in the corresponding product Blq in an isolated yield of 86%.

We next investigated the substrate scope of fertigines by using
various aldehydes (Fig. 4). After adding benzaldehydes with chloro-
substituents in the para- and ortho-position, we obtained the corre-
sponding fertigines (B2a—B2b) in isolated yields of 70 - 75%. Other
halogenated benzaldehydes, such as para-fluorobenzaldehyde or
ortho-bromobenzaldehyde, reacted smoothly to the corresponding
products (B2c¢ and B2d) and could be isolated in yields of 93 and 84%,
respectively. The addition of 3-methylbenzaldehyde to the model
reaction (Fig. 2) led to the product B2e in a yield of 87%. Methoxy-
substituted benzaldehyde provided the corresponding fertigine B2f,
respectively, in isolated yield of 78%. According to these results, no
coherence between the electronic properties of the substituents on
benzaldehyde and the efficiency of the second ring closure was
observed. Using benzaldehydes for the synthesis of fertigine with a
C-C double bond (B2g) or an acetoxy group (B2h) in the para-
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Fig. 5| Variation of the diamine for the synthesis of amino perimidines and
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100 °C, 6 h, open system (anaerobic conditions). In order to synthesize the ferti-
gines, 1 mmol aldehyde is added after 6 h. Isolated yields in brackets.

position, the yields decreased to 68 and 69%, respectively, but no
notable side reactions occurred. We next investigated several alde-
hydes with heterocyclic moieties for the synthesis of the correspond-
ing fertigines such as piperonal (B2i), thiophen-2-carbaldehyde (B2j),
2-formylpyridine (B2k) and 4-formylpyridine (B2l) and obtained those
products in isolated yields up to 79%. The use of ortho-vanillin pro-
vided B2m in an isolated yield of 70%. We also tested an aldehyde
based on a metal organic compound, namely, ferrocenaldehyde, and
could isolate the fertigine B2n in a yield of 72%. The addition of ali-
phatic aldehydes to the reaction led to fertigines B2o and B2p in yields
of 95 and 68%, respectively. The solubility properties of the fertigines
changed using these aldehydes and a good solubility in pentane was
observed. There was almost no limitation on the type of aldehyde that
could be used for the second ring closure, indicating a very broad
scope of our consecutive 3-component reaction. Using an aldehyde
and an amino alcohol with a pyridine-backbone, we obtained the fer-
tigine B3a in a yield of 90%. Double halogenated fertigines, such as
B3b or B3c, could be isolated in yields of up to 78% by using the
corresponding educts. The synthesis of fluorinated fertigines with an
O-heterocycle (B3d) or a metal organic compound (B3e) proceeded in
yields of 85 and 75%, respectively.

We next addressed the flexibility of the naphthalene diamine in
order to achieve a high degree of functionalisation in the resulting
fertigines (Fig. 5). Firstly, we investigated the influence of sub-
stituted 1,8-diaminonaphthalenes and isolated the resulting amino
perimidines A22-A24 (Fig. 5). The use of 3,6-di-tert-butyl-1,8-diami-
nonaphthalene led to the corresponding product A22 in an isolated
yield of 76%. Applying 5,6-diaminoacenaphthene for the catalytic
step, an ethylene-bridged naphthalene moiety was achieved and the
amino perimidine A23 was isolated in a yield of 86%. Using 2-chloro-
1,8-naphthalenediamine, no decrease in the catalytic activity was
observed and the product A24 was obtained in a yield of 91%. The
second modification degree using this 1,8-diaminonaphthalene
derivative (B4a-B4c; B5a-B5c) was achieved by adding the respec-
tive aldehyde after 6 h reaction time. The addition of benzaldehyde
led to the products B4a-B4c desired inyields of up to 78%, observing
no significant impact of the naphthalene substitution on the second
ring closure. The yield of B4b decreased to 56% due to solvation
problems. The products BS5a-BSc were isolated in yields
from 68-73%.

Upscaling experiments of the model reaction revealed similar
yields for amino perimidine as well as fertigine synthesis, obtaining the
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Fig. 6 | Synthesis of amino alkyl perimidines A25-A27* and imidazo[1,5-a]peri-
midin-10-ones (kuenstlerines) C1-C3. Reaction conditions: 2 mmol 1,8-diami-
nonaphthalene, 2.2 mmol amino alcohol, 0.6 mmol KOBu, 1 mol% [Mn-I]

(0.02 mmol), 12 mL 1,4-Dioxane, 100 °C (oil bath), 4 h, open system (anaerobic

conditions). Isolated yields in brackets. "Reaction conditions: 2 mmol perimi-
dine A25-27, 2.3 mmol CDI, 0.6 mmol KO‘Bu, 10 mL 1,4-Dioxane, 130 °C (oil
bath), 2 h, pressure tube (anaerobic conditions). Isolated yields in brackets.

products Al and Bla desired in multigram scale (Supplementary
Information Section 4).

We also examined the reaction of the amino perimidines starting
from aliphatic amino alcohols to obtain amino alkyl perimidines
(Fig. 6). For this, the reactions of L-alaninol or L-phenylalaninol with
1,8-diaminonaphthalene derivatives were carried out under the
optimized conditions for the amino perimidines with only changing
the solvent from 2-MeTHF to 1,4-dioxane. The resulting amino alkyl
perimidines A25-A27 were obtained in yields of 91-94% as brown
viscous oils and showed a good solubility in polar solvents. Com-
pared to the amino perimidines A1-A21, the amino alkyl perimidines
A25-A27 are not air stable. Afterwards it was not possible to perform
aring closure reaction between the amino alkyl perimidines A25-A27
and aldehydes. Therefore we used N,N-carbonyldiimidazole (CDI) as
coupling agent and C1 building block to achieve a five-membered N-
heterocyclic ring. By using a base for the reaction of A25-A27 with
CDI we obtained the corresponding kuenstlerines C1-C3 (Fig. 6). The
optimized reaction parameters for the synthesis of C1-C3 are 30 mol
% KO'Bu, 1,4-dioxane as solvent, 1.15 eq. CDI at 130 °C with a reaction
time of 2h in a pressure tube (Supplementary Tables 8-13). We
obtained the products desired in yields between 76-91% as light
brown to reddish brown solids, which are air sensitive. After the
second ring closure, diastereomers were obtained, which can be
separated by column chromatography. The diastereomeric ratios
varied between 71:29 (C1), 88:12 (C2), and 61:19 (C3). The amino alkyl
perimidines A25-A27 and kuenstlerienes C1-C3 synthesized here
have not yet been reported.

We were also interested in the possibility of synthesizing amino
fertigines, from which degree of modification 3 could be achieved.
Therefore, we carried out the reactions without further optimization as
consecutive one-pot reactions such as for the synthesis of the

fertigines BI-B5, and used 2-aminobenzyl alcohols instead of alde-
hydes for the second ring closure step (Fig. 7). The amino fertigines
Bé6a-B6c were obtained in yields of 38 - 79% as green solids, are poorly
soluble in polar solvents and air-stable.

Mechanistic studies

The mechanism proposed for the catalytic cycle and the ring closure
cascade is shown in Fig. 8. The catalyst [Mn-Ia] was obtained by adding
KOBu to the precatalyst complex [Mn-11?°, The triazine permits the
deprotonation of the ligand backbone by strong metal bases, which
has been shown to be beneficial in hydrogenation'®”” and dehy-
drogenation catalysis’*>. The manganese-catalysed dehydrogenation
of 2-aminobenzyl alcohol proceeds via the liberation of one equivalent
of hydrogen, as analysed by GC-analysis. In the absence of naphthalene
diamine, self-condensation of the 2-aminobenzaldehyde generated
in situ took place (Supplementary Fig. 19). We propose the formation
of an imine with a subsequent intramolecular ring closure for the
amino perimidine synthesis, as revealed by time-dependent 'H NMR
studies. Interestingly, no reaction was observed in the absence of
KO'Bu, indicating a base-mediated cyclization (Supplementary
Figs. 22-24). As the next step, we proposed the in situ deprotonation of
one amino functionality of the aminoperimidine obtained by KO'Bu
(Fig. 8). A yellow crystalline solid (A1K) precipitated if KO'Bu was
added to the amino perimidine Alin THF (Supplementary Figs. 25-27).
If water was added to AIK, it was transformed back to the amino
perimidine A1 accompanied by the formation of KOH (Supplementary
Fig. 28). Time-dependent 'H NMR studies indicate that AIK is an
intermediate of the second ring closure step (Fig. 8). AIK is able to
react to the fertigine with benzaldehyde in the absence of KO'Bu
(Supplementary Figs. 29 and 30) and Al doesn’t (under analogous
conditions).
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Conclusion added to a Schlenk tube. 0.5 mL of a 0.04 mmol/mL stock solution of

The regeneration of a set of diamines via cyclisation of the original set  the Mn-precatalyst Mn-I1 and 0.5mL of a 1.2 mmol/mL KO'Bu stock
of diamines (regenerative cyclization) permits rational design and the  solution are added to the Schlenk tube. 1 mL 2-MeTHF is added, and
synthesis of novel classes of N-heterocyclic compounds. Catalytic the reaction mixture is heated at 100 °C using an open system con-
amino alcohol dehydrogenation via liberation of hydrogen seems a  sisting of a reflux condenser and a bubble counter. (1): After 2 h, the
suitable protocol to accomplish regenerative cyclization of diamines  reaction is stopped by cooling down to room temperature and the
extending the existing amino alcohol dehydrogenation based N-het- addition of 2mL H,0. Depending on the product, two different
erocycle syntheses, for instance, the synthesis of pyrroles®?® and methods for purification were performed: 1. The mixture is extracted
pyridines””. Recent work of cyclization of diamines employing with dichloromethane (3 x 10 mL), the organic layers are dried with
methanol® holds promises for the generalization of the concept Na,SO, and the solvent is removed in vacuo. The crude product is

introduced here. purified by column chromatography using Alox N as stationary

phase. 2. H,O (5mL) is added, the product is precipitated with pen-
Methods tane, filtrated, and washed with pentane. Finally, it is dried in vacuo.
General procedure for the synthesis 2-aminophenyl-2,3-dihydro-  (2): After 2 h, 2 mmol of various aldehydes (dissolved in 0.5mL 2-
perimidines (1) and fertigines (2) MeTHF) are added to the reaction. After 15 h, the reaction is stopped

In a glovebox, 2mmol 18-naphthalenediamin and 2mmol by cooling down to room temperature. The work-up depends on the
2-aminobenzyl alcohol derivatives are dissolved in 1 mL 2-MeTHF and  substrates used. Usually, 2 mL H,0 is added, and the reaction mixture

Nature Communications | (2023)14:595 8

162



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Article

https://doi.org/10.1038/s41467-023-36220-w

is extracted with dichloromethane (3 x10 mL). The organic layers
were dried with Na,SO,4 and the solvent is removed in vacuo. The
crude product is purified by column chromatography using Alox N as
stationary phase.

General procedure for the synthesis of 7,7a,8,9-tetrahydro-10H-
imidazo[1,5-a]-perimidin-10-one derivatives

In a glovebox, 2mmol perimidine derivatives, 30 mol% KO‘Bu
(0.6 mmol, dissolved in 1.5mL 1,4-dioxane), and 2.3 mmol carbo-
nyldiimidazol (CDI) are added to a pressure tube, and dissolved in
8.5 mL1,4-dioxane. The sealed pressure tube is heated at 130 °C for 2 h.
After cooling down to room temperature 30 mL water is added and the
product is extracted with diethyl ether (4 x 50 mL). The organic layers
are dried with Na,SO4 and the solvent was removed in vacuo. The
crude product is purified via gradient column chromatography using
Alox N as stationary phase.

Data availability

Crystallographic data for compounds Al and Bla are available free of
charge from the Cambridge Crystallographic Data Centre under
references CCDC 2084882 and CCDC 2083140, respectively. Materials
and methods, experimental procedures, mechanistic studies, char-
acterization data, and spectral data are available in the Supplementary
Information. Correspondence and requests for materials should be
addressed to RK.
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Supplementary Methods

1. Materials and Methods
All reactions and manipulations with air sensitive compounds being present were performed under
dry argon (Ar 5.0) or nitrogen (N2 5.0), using Schlenk and glove box techniques. Nonhalogenated
solvents were dried over sodium benzophenone, 2-methyltetrahydrofuran (2-MeTHF) was dried
over calcium hydride, and halogenated solvents were dried over P2Os. Deuterated solvents were
bought from Cambridge Isotope Laboratories, distilled accordingly, and stored over molecular
sieves (3 A). 1,8-Diaminonaphthalene was sublimated before use. Other chemicals were purchased
from commercial vendors and used without further purification. NMR spectra were collected on a
Varian INOVA 400 MHz spectrometer or on a Bruker Avance 111 HD 500 MHz. Chemical shifts
(8) are reported in ppm relative to residual solvent signal (CDCl3: 7.26 ppm (‘H), 77.16 ppm ('3C),
DMSO-ds: 2.50 ppm ('H), 39.51 ppm (*C), CéDs: 7.16 ppm ('H), 128.39 ppm ('*C), thf-ds:
1.72 ppm, 3.58 ppm (‘H), 67.21 ppm, 25.31 ppm (*3C), CDsCN: 1.94 ppm (‘H), 1.32 ppm,
118.26 ppm (*3C)). Coupling constants (J) are given in Hz (coupling patterns: s: singlet, d: doublet,
t: triplet, q: quartet, m: multiplet). GC analyses were carried out using an Agilent Technologies
6890N system equipped with a Macherey-Nagel (MN) Optima 5 HT column (30 m, 320 pm,
0.25 pm) or an Agilent Technologies 6850 system equipped with a MN Optima 17 column (30 m,
320 pm, 0.25 pm). GC/MS analyses were carried out on an Agilent 7890A/MSD 5975C system
equipped with a HP-5MS column (30 m, 320 um, 0.25 um). For column chromatography, Alox N
(90 A pore withdraw, 50 — 200 um particle size) from Macherey-Nagel was used. All organic
compounds were characterized by 'H and '*C NMR analysis. Unknown compounds or compounds
with incomplete spectroscopic literature data were further analysed via elemental analysis
(Elementar Unicube or LC-HRMS). Hydrogenations were conducted in PARR Instrument
stainless steel autoclaves N-MT5 300 mL equipped with heating mantles and temperature
controllers. Liquid chromatography-high resolution mass spectra (LC-HRMS) were obtained from
a Thermo Fisher scientific Q-Exactive instrument with a hybrid quadrupole orbitrap analyser in
EST+ mode. For liquid chromatography a Luna Omega PS C18 (100x2.1 mm, 1.6 pm) column was
used with a solvent gradient from 30:70 MeCN/water to 90:10 MeCN/water. The samples were
dissolved in ethanol or DMSO. The obtained single crystals were mounted on a cryoloop
(MiTeGen) with a layer of fomblin YR-1800 (CAS: 69991-67-9). All measurements were
performed on a STOE STADIVARI [A(Mo Ko)) = 0.71073 A] equipped with a dectris (Pilatus

200 K — 20 Hz) detector and an Oxford Cryostream low temperature unit. Structure solution and
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refinement was accomplished with OlexSys2! SHELXL-2014% and Mercury 2020.1°. Non-
hydrogen atoms were anisotropically refined, hydrogen atoms were included in the refinement on

calculated positions riding on their carrier atoms.

2. Screenings for the synthesis of 2-aminophenyl-2,3-dihydro-perimidines (A)

HO precatalyst
OO + NH, e HN__NH

% H2o
NH, NH, H NH,
-2

NDA 2-ABA A1
Supplementary Figure 1 Synthesis of A1 starting from naphthalene-1,8-diamine (NDA) and 2-

aminobenzyl alcohol (2-ABA).

Supplementary Table 1 Precatalyst screening.[¥

Entry  Precatalyst Al [%]]

4 1 Mn-1 75

)Ri NH 2 Mn-II 41
X7 X NTSN 3 Mn-I1I 68
P —
" A
N Wy AR 4 Mn-1V 37
(’Pr),P——Mn—~P(Pr), (Pr);P—Co——P(Pr),
oc” | "co a? 5 Mn-V 64
r
Mn-1 - Mn-VII Co-l 6 Mn-VI 5
i 7 Mn-VII 7
Mn-l: X=N, R'=Ph N7 N 3 Col 0
Mnll: X=N, R'=H | 0~
Mn-lll: X =N, R'=NH-CzHs HN)\N/)\NH
MndV: X=N, R1=Ph-4-CFy) oy dpo e ? Fed I
Mn-V: X=N, R'=Me ? q - ?
Mn-VI: X = CH, R: =Me " B 10  [MnBr(CO)s] 6
Mn-VIL:X = CH, RY = H Fe-l 11 no catalyst 0

|a] Reaction conditions: 1 mmol NDA, 1 mmol 2-ABA, 1 mmol KO'Bu, 1 mol% precatalyst, 4 mL 2-MeTHF,
100 °C (oil bath), 1.5 h. [b]| Determined by GC with dodecane as an internal standard.
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Supplementary Table 2 Base screening.®!

Entry Base Al [%]"!
1 KO'Bu 78
2 NaO'Bu 40
3 KOH 82
4 NaOH 29
) KH 49
6 NaHMDS 5
T KHMDS 79
8 Cs2C03 5
9 no base 0

|a] Reaction conditions: 1 mmol NDA, 1 mmol 2-ABA, 1 mmol base, 1 mol% precatalyst Mn-I, 4 mL 2-
MeTHF, 100 °C (oil bath), 1.5 h. [b] Determined by GC with dodecane as an internal standard.

Supplementary Table 3 Solvent screening./!

Entry Solvent Al [%]"
1 2-MeTHF 78
2 THF 65
3 Diglyme 0
4 Dioxan 49
5 Toluene 47
6 Pyridine 20
7 tert-Amylalcohol 21
8 DME 64

[a] Reaction conditions: 1 mmol NDA, 1 mmol 2-ABA, 1 mmol KO'Bu, 1 mol% precatalyst Mn-I, 4 mL
solvent, 100 °C (oil bath), 1.5 h. [b] Determined by GC with dodccanc as an internal standard.
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Supplementary Table 4 Temperature screening.®!

Entry Temperature [°C] Al [%]"]
1 50 0
2 60 74
3 80 43
4 100 79
5 120 88
6 140 85

[a] Reaction conditions: 1 mmol NDA, 1 mmol 2-ABA, 1 mmol KO'Bu, 1 mol% precatalyst Mn-I, 4 mL 2-
MeTHEF, 1.5 h. [b] Determined by GC with dodecane as an internal standard.

Supplementary Table 5 Base loading screening. [

Entry Amount of KO'Bu [mmol] Al [%]®]

1 0 0

2 0.1 51

3 0.3 80
4 0.5 88
5 0.7 90
6 1 89
7 1.5 100
8 2 100

[a] Reaction conditions: 1 mmol NDA, 1 mmol 2-ABA, KOBu, 1 mol% precatalyst Mn-I, 4 mL 2-MeTHF,
100 °C (oil bath), 1.5 h. [b]| Determined by GC with dodecanc as an internal standard.

Supplementary Table 6 Precatalyst Mn-I loading.[*!

Entry Amount of precatalyst Mn-I [mol%] Al [%]]
1 0 0
2 0.1 41
3 0.2 65
4 0.5 69
5 1 82
6 1.5 96
7 2 100

|a] Reaction conditions: 1 mmol NDA, 1 mmol 2-ABA, 0.3 mmol KO'Bu, precatalyst Mn-1, 4 mL 2-McTHF,
100 °C (oil bath), 1.5 h. [b] Determined by GC with dodecane as an internal standard.
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Supplementary Table 7 2-MeTHF amount screening. [

Entry 2-MeTHF [mL] Al [%]!
1 2 88
2 3 96
3 4 79
4 5 73

[a] Reaction conditions: 1 mmol NDA, 1 mmol 2-ABA, 0.3 mmol KO'Bu, 1 mol% precatalyst Mn-I, 2-McTHF,
100 °C (oil bath), 1.5 h. [b] Determined by GC with dodccanc as an internal standard.
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3. Screenings for the synthesis of 7,7a,8,9-tetrahydro-10H-imidazo[1,5-a]-
perimidin-10-ones (C)

o

base
+ I~ )J\ K - HN N + 2 N
HN NH 7 "N NN
@\I Mozl O =
NH
NH,
A26 CDI c2

Supplementary Figure 2 Synthesis of C2 starting from aliphatic aminoperimidin A26 and
carbonyldiimidazol (CDI).

Supplementary Table 8 Base screening.[4]

Entry Base C2 [%]™
1 KO'Bu 91
2 NaO'Bu 86
3 KOH 89
4 NaOH 74
5 DBU 64
6 NaHMDS 83
7 K2CO3 59
8 no base 0

|a] Reaction conditions: 0.5 mmol A26, 0.6 mmol CDI, 0.15 mmol basc, 10 mL 1,4-dioxanc, 130 °C (oil bath),
16 h, pressure tube, nitrogen atmosphere. [b| Determined by NMR.

Supplementary Table 9 Solvent screening.[*!

Entry Solvent C2 [%]"!
1 1,4-Dioxane 92
2 THF 82
3 2-MeTHF 84
4 Toluol 86
5 tert-Amyl alcohol 72
6 Cyclopentyl methyl ether 89

[a] Reaction conditions: 0.5 mmol A26, 0.6 mmol CDI, 0.15 mmol KO'Bu, 10 mL solvent, 130 °C (oil bath),
16 h, pressure tube, nitrogen atmosphere. [b] Determined by NMR.
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Supplementary Table 10 Temperature screening.!?!

Entry Temperature [°C] C2 [%]®)
1 80 81
2 90 81
3 100 85
4 110 87
5 120 93
6 130 95
q 140 94

[a] Reaction conditions: 0.5 mmol A26, 0.6 mmol CDI, 0.15 mmol KOBu, 10 mL 1.,4-dioxane, 16 h, pressure
tube, nitrogen atmosphere. [b] Determined by NMR.

Supplementary Table 11 Base loading screening [

Entry Amount of KO'Bu [mmol] C2 [%]™!
1 0 0
2 0.05 71
3 0.1 86
4 0.15 92
3) 0.2 91
6 0.25 92

[a] Reaction conditions: 0.5 mmol A26, 0.6 mmol CDI, x mmol KOBu, 10 mL 1,4-dioxane, 130 °C (oil bath),
16 h, pressure tube, nitrogen atmosphere. [b] Determined by NMR.

Supplementary Table 12 Amount of CDI screening.!

Entry Amount of CDI [mmol] C2 [%]™
1 0.5 68
2 0.525 74
3 0.55 73
4 0.575 77
5 0.6 70
6 0.625 66
7 0.65 66

[a] Reaction conditions: 0.5 mmol A26, x mmol CDI, 0.15 mmol KOBu, 10 mL 1.,4-dioxane, 130 °C (oil bath),
30 min, pressure tube, nitrogen atmosphere. [b] Determined by NMR.
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Supplementary Table 13 Time screening.®!

Entry Time [h] C2 [%]"
1 0.5 76
2 1 85
3 1.5 84
4 2 95
5 3 95
6 4 98
7 5 98
8 6 98

[a] Reaction conditions: 0.5 mmol A26, 0.575 mmol CDI, 0.15 mmol base, 10 mL 1,4-dioxane, 130 °C (oil
bath), pressure tube, nitrogen atmosphere. [b] Determined by NMR.

4. Scale up experiments

Reaction conditions for upscaling the 2,3-dihydroaminoperimidine synthesis:

In a glovebox, 1,8-naphthalenediamin (15 mmol, 2373 mg) and 2-aminobenzyl alcohol (15 mmol,
1847 mg) are dissolved in 15 mL 2-MeTHF and added to a Schlenk tube. Mn-precatalyst Mn-I
(0.15 mmol, 90 mg, 1 mol%), KO'Bu (4.5 mmol, 504 mg, 30 mol%) and 30 mL 2-MeTHF are
added to the Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 6 h reaction time, it is cooled down to
room temperature, 15 mL H>O is added, and the product is precipitated with pentane. The product
Al is obtained in 96 % isolated yield (3.752 g) after filtration with pentane and subsequently drying

in vacuo.

Reaction conditions for upscaling the fertigine synthesis:

In a glovebox, 1,8-naphthalenediamin (15 mmol, 2373 mg) and 2-aminobenzyl alcohol (15 mmol,
1847 mg) are dissolved in 15 mL 2-MeTHF and added to a Schlenk tube. Mn-precatalyst Mn-I
(0.15 mmol, 90 mg, 1 mol%), KO'Bu (4.5 mmol, 504 mg, 30 mol%) and 30 mL 2-MeTHF are
added to the Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 6 h reaction time, benzaldehyde
(15 mmol, 1516 pL) is added to the reaction using a syringe via a septum. The reaction is stirred

overnight (15 h) at 100 °C, cooled down to room temperature and 10 mL H>O is added. For
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precipitation, pentane is added, the product is filtrated and washed with pentane, obtaining Bla in

93 % yield (4.868 g).

5. Synthesis of ligands and complexes

The ligands and precatalysts Mn-I/IVITI/IV/V*, Mn-VI/VIT*®, Co-1"® and Fe-I° were synthesized

according to published procedures.

6. Synthesis of 2-aminobenzyl alcohol derivatives

15 mmol of anthranilic acid derivatives are dissolved in THF and cooled with an ice bath to 0 °C.
33 mmol LiAlH4 is added in portions under rigorous stirring. After the addition, the reaction is led
to warm up to room temperature and stirred overnight (15 h). The reaction is stopped following
the Fieser workup: The reaction is cooled to 0 °C, diluted with diethyl ether and 1.25 mL water
and 1.25 mL 15% aqueous NaOH solution are added slowly. Water (3.75 mL) is added, and the
reaction is stirred for 15 min. Na2SOy is added and the reaction is filtrated to remove the salts. The
organic solvent is removed, and the crude product is purified by sublimation (60 — 100 °C). All 2-

aminobenzyl alcohol derivatives were checked by 'H NMR spectroscopy and GC/MS before use.

HO.__O H

(@)
: THF
N NH, + LiAIHy —m8 N NH, +H,0 +H,
R—1 1.0°C R—
=z 2.RT =z

Supplementary Figure 3 General reaction conditions for the synthesis of 2-aminobenzyl alcohols.
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HO HO HO HO HO HO
F\Ej/ NH, NH, NH, NH, cl NH, NH,
F F
F Cl

HO HO HO HO HO HO

(E[NHz NH, /gj/NHz NH, NH, NH,
cl Br F3CO

HO HO HO HO HO HO

E:LNHZ NH; NH, NH; NH; O NH,
OMe MeO

Br
OMe

NH,

~

OH

Supplementary Figure 4 Overview of the synthesized 2-aminobenzyl alcohols by reduction with
LiAlH,.

Synthesis of (6-amino-1,3-benzodioxol-5-yl)methanol

(6-Nitrobenzo[d][1,3]dioxol-5-yl)methanol (30 mmol) is dissolved in 30 mL methanol and a spade
point of Pd@C is added. The hydrogen is stored in a rubber balloon, leading to a hydrogen
atmosphere (ca. 1 atm) in the reaction flask. The reaction is stirred at room temperature for 24 h,
Na»SOs4 is added, and the reaction is filtrated. After removing the solvent, the crude product is

purified by sublimation at 100 °C.

HO HO
Pd@C
NO, Hp NH,
MeOH, RT e g
o) o)
o -0

Supplementary Figure § Synthesis of (6-amino-1,3-benzodioxol-5-yl)methanol.
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7. Synthesis of 1,8-diaminonaphthalene derivatives

Synthesis of 2-chloronaphthalene-1,8-diamine

CIZI
0= N 20
nialiivol
NH, NH, isopropyl alcohol NH, NH,
Supplementary Figure 6 Synthesis of 2-chloronaphthalene-1,8-diamine.
1,8-Diaminonaphthalene (9.97 g, 63 mmol) is dissolved in 100 mL isopropyl alcohol and N-
chlorosuccinimide (8.41 g, 63 mmol) is added in small portions. The reaction is stirred at 80 °C
with reflux for 2 h. After cooling down to room temperature, the solvent is removed and the
reaction mixture is extracted with diethyl ether and water (3 x 30 mL). The organic layer is dried
with NaxSOs and the crude product is purified by column chromatography with Alox N
(pentane/ethyl acetate: 4:2 - 2:3) obtaining 3.38 g of a white solid (17.5 mmol, 28 %). The purity
is proofed via GC/MS and NMR analysis.

Synthesis of 5,6-diaminoacenaphthene

OO Cu(NO3), Oe Raney nickel, 30 bar H; OO
e E—
Ac,0 dioxan, EtOH
NO,

NO, NO, NH, NH,

Supplementary Figure 7 Synthesis of 5,6-diaminoacenaphthene.

5-Nitroacenaphthene (6.98 g, 35 mmol) is dissolved in 150 mL Ac2O and Cu(NOs)2 (6.56 g,
35 mmol) is added under rigorous stirring in small portions to the solution. The reaction is stirred
at room temperature for 15 h, then the Ac20 is removed in vacuo. 100 mL Water were added, and
the mixture is stirred for ca. 30 minutes until the remaining Cu-salts are dissolved. 5,6-
Dinitroacenaphthene precipitates, it is filtrated and dried. For further purification,
5,6-dinitroacenaphthene is recrystallized in a 2/1 mixture of dioxane and thf at 70 °C and obtained

as white crystals in 38 % yield (3.28 g) after 3 days. The reduction is conducted by dissolving 1 g
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of 5,6-dinitroacenaphthene in a 1/1 mixture of dioxan and EtOH and adding 1 mL of a Raney
nickel suspension to it. The mixture is stirred at 50 °C and 30 bar H» for 15 h. After cooling down
to room temperature, the pressure is released, and the mixture is filtrated. Precipitation with HCI
in Et20, filtration of the HCl-salt and neutralisation with NaHCOs led to the product in 76 % yield
(562 mg, 3.05 mmol). The purity is proofed by GC/MS and NMR analysis.

Synthesis of 3,6-di-fert-butylnaphthalene-1,8-diamine

Cu(NO3), OO Raney nickel, 30 bar H, Oe
——
ACzo

EtOH, thf
NO, NO, NH, NH,

Supplementary Figure 8 Synthesis of 3,6-di-tert-butylnaphthalene-1,8-diamine.

2,7-Di-tert-butylnaphthalene (5 g, 20.7 mmol) is dissolved in 100 mL Ac2O and copper(ll) nitrate
(7.88 g, 42 mmol) is added in small portions at 0 °C within 15 minutes. After stirring the mixture
at room temperature for 2 hours, the reaction is stopped by pouring it in 500 mL ice water. The
formed precipitate is filtrated, washed with water and dried in vacuo. The obtained yellow solid
(5.62 g, 17 mmol) is used without further purification. 3,6-Di-fert-butyl-1,8-dinitronaphthalene is
dissolved in a 1/1 mixture of EtOH/thf and 1 mL of a Raney nickel suspension is added. The
mixture is stirred at 50 °C and 30 bar H» for 15 h. After cooling down to room temperature, the
pressure is released, and the mixture is filtrated. The crude product is purified via column
chromatography over Alox N (pentane/ethyl acetate 5:1 = 3:2) and obtained as a red solid
(1244 mg, 4.61 mmol). The purity is proofed by GC/MS and NMR analysis.
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8. Synthesis of 2-aminophenyl-2,3-dihydro-perimidines (A)

General reaction conditions for the synthesis 2-aminophenyl-2,3-dihydro-perimidines: In a
glovebox, 2 mmol 1,8-naphthalenediamin and 2 mmol 2-aminobenzyl alcohol derivatives are
dissolved in 1 mL. 2-MeTHF and added to a Schlenk tube. 0.5 mL of a 0.04 mmol/mL stock
solution of the Mn-precatalyst Mn-I and 0.5 mL of a 1.2 mmol/mL KO'Bu stock solution is added
to the Schlenk tube. 1 mL 2-MeTHF is added, and the reaction mixture is heated at 100 °C using
an open system consisting of a reflux condenser and a bubble counter. After 2 h, the reaction is
stopped by cooling down to room temperature and the addition of 2 mL H20O. Depending on the
product, we performed two different methods for purification: 1.) The mixture is extracted with
dichloromethane (3 x 10 mL), the organic layers are dried with Na>SO4 and the solvent is removed
in vacuo. The crude product is purified by column chromatography using Alox N as stationary
phase. 2.) 5 mL H>O is added, the product is precipitated with pentane, filtrated, and washed with

pentane. Finally, it is dried in vacuo overnight.

R! R?
R R? I\\ 7
X / HO 30 mol% KOBu N
9 -l
| A Ny, mol% Mn >  HN. NH +H,0 +H,
N 2
* el 3 mL 2-MeTHF, 100 °C, 2 h
NH, NH, L o2 o NH2
3_1
2.0 mmol 2.0 mmol R =
A1-A24

Supplementary Figure 9 Synthesis of 2,3-dihydroaminoperimidines A1-A24.

General reaction conditions for the synthesis of 1-(2,3-dihydro-1H-perimidin-2-
yl)methanamines: In a glovebox, 1 mol% Mn-precatalyst Mn-I (0.02 mmol, dissolved in 1.5 mL
1,4-dioxane), 30 mol% KO'Bu (0.6 mmol, dissolved in 1.5 mL 1,4-dioxane), 2 mmol 1,8-
diaminonaphthalene and 2.2 mmol 2-aminopropan-1-ol derivatives are added to a Schlenk tube
and dissolved in 9 mL 1,4-dioxane. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. The mixture is stirred for 4 hours, cooled
down to room temperature, the 1,4-dioxane is evaporated under vacuo and 6 mL water are added.
The reaction mixture is extracted with ethyl acetate (3 x 50 mL), the organic layers are dried with

Na2SO4 and the solvent is removed in vacuo. The crude product is purified via gradient column

S15

179



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

chromatography using Alox N as stationary phase. To the product are 10 mL of an aqueous
saturated solution of NaHCO; added, the product was extracted with ethyl acetate, dried with
Na;SOs and the solution was narrowed. At the end the product is purified via column

chromatography over Silica C18 ec with ethyl acetate.

R! R2
i . N IR
R\ R 30 mol% KO'Bu |
XA R3 NP
| HO\)\ 1 mol% [Mn-1]
AN +H,0 +H
NH, 12 mL 1,4-dioxane EN NH : .
NH, NH, 100 °C,4 h
R3 NH2
2.0 mmol 2.2 mmol A25-A27

Supplementary Figure 10 Synthesis of 1-(2,3-dihydro-1H-perimidin-2-yl)methanamines A25-
A27.

9. Synthesis of fertigines (B)

General reaction conditions for the synthesis of fertigines BI-B5: In a glovebox, 2 mmol
1,8-diaminonaphthalene and 2 mmol 2-aminobenzyl alcohol derivatives are dissolved in 1 mL
2-MeTHF and added to a Schlenk tube. 0.5 mL of a 0.04 mmol/mL stock solution of Mn-I and
0.5 mL of a 1.2 mmol/mL KO'Bu stock solution is added to the Schlenk tube. 1 mL 2-MeTHF is
added, and the reaction mixture is heated at 100 °C using an open system consisting of a reflux
condenser and a bubble counter. After 2 hours reaction time, 2 mmol of various aldehydes are
added to the reaction. For this, the aldehyde is dissolved in at least 0.5 mL 2-MeTHF and added to
the reaction mixture through a septum with a syringe. After 15 h, the reaction is stopped by cooling
down to room temperature. The work-up depends on the substrates used. Usually, 2 mL H>O is
added, and the reaction mixture is extracted with dichloromethane (3 x 10 mL). The organic layers
were dried with Na2SOs and the solvent is removed in vacuo. The crude product is purified by
column chromatography using Alox N as stationary phase. Using some substrates, the product
precipitates during reaction. If this is the case, 5 mL water is added, the reaction mixture is diluted
with pentane and filtrated. After washing the residue with H2O and cold pentane, it is dried in

vacuo at 70 °C to obtain the product.

S16

180



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

R1 RZ R1 R2
i . I\\ R . |\ XA
R
I\ K HO 30 mol% KO'Bu NG J AN
0 . +2.0 mmol R*
NS+ A\ NH2 1/mol% Mn-| HN.__NH HN._N__R*
T re-L 3mL 2-MeTHF, 100 °C, 2 h 100°C, 15 h e
2 2 = - Hy, - H,0 N N NHy | _ H,0 o NH
2.0 mmol 2.0 mmol R R
A B1-B5

Supplementary Figure 11 Synthesis of fertigines B1-BS.

General reaction conditions for the synthesis of amino-fertigine derivatives B6a-Béc: In a
glovebox, 1 mol% Mn-precatalyst Mn-I (0.02 mmol, dissolved in 0.5 mL 2-MeTHF), 30 mol%
KO'Bu (0.6 mmol, dissolved in 0.5 mL 2-MeTHF), 2 mmol 1,8-diaminonaphthalene and 2 mmol
2-aminobenzyl alcohol are added to a Schlenk tube and dissolved in 3 mL 2-MeTHF. The reaction
mixture is heated at 100 °C using an open system consisting of a reflux condenser and a bubble
counter. After 2 hours reaction time, 2.0 or 2.2 mmol 2-aminobenzyl alcohol derivatives are
dissolved in 1.0 mL 2-MeTHF and added to the reaction mixture through a septum with a syringe.
After 15 hours, the reaction is stopped by cooling down to room temperature and 4 mL water are
added. The reaction mixture is diluted with pentane, the precipitate is filtrated and washed with
water and pentane. The dried solid is slurred with ethanol and stirred for 10 min at 100 °C. After

filtration, the product is dried in vacuo.
HoN

HO.

+ HO
s (OO e
E>/NH 30 mol% KO'Bu _200r22mmol mmol
+

4mL2 MeTHF 100 °C,15h p
NH, NH 100°C,2h
% e ikt NHy| ~HeO:-He NH NH,
SN2 T2
2.0 mmol 2.0 mmol

NDA B6a-Béc

Supplementary Figure 12 Synthesis of amino-fertigines B6a-B6c.
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10. Synthesis of 7,7a,8,9-tetrahydro-10H-imidazo[1,5-a]-perimidin-10-ones (C)
General reaction conditions for the synthesis of 7,7a,8,9-tetrahydro-10H-imidazo[1,5-af-
perimidin-10-one derivatives C1-C3: In a glovebox, 2 mmol perimidine derivatives, 30 mol%
KO'Bu (0.6 mmol, dissolved in 1.5 mL 1,4-dioxane) and 2.3 mmol carbonyldiimidazol (CDI) are
added to a pressure tube and dissolved in 8.5 mL 1,4-dioxane. The sealed pressure tube is heated
at 130 °C for 2 hours in an oil bath. After cooling down to room temperature 30 mL water are
added and the product is extracted with diethyl ether (4 x 50 mL). The organic layers are dried
with Na;SO4 and the solvent was removed in vacuo. The crude product is purified via gradient

column chromatography using Alox N as stationary phase.

(0]
1 2 //\N/U\N/\\ 1 2
R R N N R R
N = N
A 2.3 mmol P
o t
HN. _NH 30 mol% KO'Bu HN. N o * 2 HN/\\N
I 10 mL 1,4-dioxane i ?5 =
° 7—NH
R ONH, 130°C,2h RS
2.0 mmol C1-C3

Supplementary Figure 13 Synthesis of 7,7a,8,9-tetrahydro-10H-imidazo[1,5-a]-perimidin-10-
ones C1-C3.

T T T
55 5.0 45 4.0
Chemical Shift (ppm)

Supplementary Figure 14 Excerpt from 'H NMR-spectrum (500 MHz, 293 K) of the crude C2 in
DMSO-ds to determine the diastereomeric ratio based on the integrals of the main and minor
isomer.
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11. Characterization of fertigines (B)
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Supplementary Figure 15 IR-spectrum of Bla.
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Supplementary Figure 16 '"H NMR (500 MHz, 293 K) of Bla in CDsCN and after the addition
of D>0.
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100 Aads
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Supplementary Figure 17 Time-conversion plot for the synthesis of fertigine Bla (red) over the
intermediate product 2,3-dihydroaminoperimidin A1 (blue). Reaction conditions: 15 mmol NDA
(black), 15 mmol 2-aminobenzyl alcohol (green), 4.5 mmol KO'Bu, 0.15 mmol Mn-I, 45 mL 2-
MeTHF, 100 °C (oil bath). After 190 min. 15 mmol benzaldehyde (orange) is added.
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Supplementary Figure 18 'H NMR (500 MHz, 293 K) of B6a in DMSO-d and after the addition
of D20.
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12. Mechanistic investigations

In absence of diaminonaphthalene during catalysis, self-condensation of the aminobenzyl alcohol
was observed via 'H NMR analysis. Reaction conditions: 60 pmol 2-aminobenzyl alcohol,
0.6 pumol Mn-1, 18 umol KOBu and 700 pL thf-ds were heated at 90 °C using an open system for

hydrogen release. After 24 h 'H NMR measurement was conducted.

RF_K_MnH2_PROTON_20210317%01
RF_K_MnH2 £

8.51 ppm ba

b LJJMJ\_JML I.A.J \ .

-1

S8 11.0 10.5 10.0 9.5 9.0 85 8.0 6.5 6.0 5.5 5.0 45 4.0 35 3.0 25

7.5 7.0

f1 (ppm)
Supplementary Figure 19 'H NMR spectra showing the self-condensation of the aminobenzyl
alcohol in the absence of naphthalene diamine.
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Qualitative and quantitative analyses of evolved hydrogen

1 mol% Mn-1 ,‘ ,‘

_ KOBU  HN__NH . Hoh
2MeTHF, 100°C. 13h NH,
NH2 NH,

0.2 mmol 0.2 mmol A1

yield: 89 % yield: 81 %

Supplementary Figure 20 Control experiment for the qualitative and quantitative determination
of hydrogen.

The release of one equivalent hydrogen was proofed by analyzing the gas mixture with methane
as an internal standard in the Schlenk tube after reaction. The gas mixture was analyzed using an
Agilent Technologies 6890N equipped with a TCD and an Agilent special plot and molsieve
capillary column (30 m, 320 pm, 0.25 pm). Reaction conditions: 0.2 mmol diaminonaphthalene,
0.2 mmol aminobenzyl alcohol, 1 mol% Mn-I, 0.06 mmol KO'Bu and 1 ml 2-MeTHF were added
to a Schlenk tube (150 mL), closed and heated at 100 °C (oil bath) for 13 h. A yield of 89 % of the

perimidine A1 formed was determined and 81% of hydrogen was detected.

250 ~
200
150

100

signal [arb.units]

50

retention time [min]

Supplementary Figure 21 Chromatogram of the gas-chromatographic analysis from the upper
gas layer over the reaction mixture after 13 h reaction time.
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Investigation of the reaction with 2-aminobenzaldehyde via '"H NMR analysis

HN
NH, + — A .
thf-dg, 80 °C, 18 h 2
NH; NH, dg, 80 °C, 18

Supplementary Figure 22 Control experiment without KO'Bu.

In absence of KO'Bu no reaction between 2-aminobenzaldehyde and diaminonaphthalene was
observed. Reaction conditions: 60 umol 2-aminobenzaldehyde and 60 umol diaminonaphthalene
were dissolved in 700 pL thf-ds and were heated at 80 °C for 18 h. Time-dependant amount of
2-aminobenzaldehyde (referred to the aldehyde signal) and of the diamine (referred to the NH»-

signal) were determined with mesitylene as internal standard.

Control experiment 2: with KO'Bu

Reaction conditions: 120 pmol 2-aminobenzaldehyde, 60 pmol diaminonaphthalene, 9 pmol
KO'Bu (15 mol%, stock solution of 30 mg/2 mL thf-ds), 61 pL stock solution of mesitylene
(15pL /1 mL thf-dg), 700 pL thf-dg at RT. Time-dependant amount of 2-aminobenzaldehyde
(referred to the aldehyde signal) and of the diamine (referred to the NH2-signal) with mesitylene
(2.22 ppm) as internal standard:

OO 1
15 mol% KO'Bu
NH, + o T . | N NHy | — HN
thf-dg, RT, 24 h
NH2 NH,

1eq. 0.74 eq.

Supplementary Figure 23 Control experiment with KO'Bu.

t=0h: 100 % aldehyde (2 eq. compared to 1 eq. diamine), 100 % diamine
t=0.2 h: 71 % aldehyde (1.4 eq. related to 1 eq. diamine), 38 % diamine

t=24 h: 37 % aldehyde (0.74 eq. related to 1 eq. diamine), 0 % diamine
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Supplementary Figure 24 Time-dependant 'H NMR studies of the reaction of 2-aminobenz-
aldehyde with diaminonaphthalene in the presence of KO'Bu (time: before addition of KO'Bu, after
0.2 h and after 24 h).

In addition to the time-dependent consumption of the 2-aminobenzaldehyde, the characteristic
imine signal at 8.48 ppm indicates the formation of an imine intermediate, as it differs slightly
from the observed imine signal (8.51 ppm) of the self-condensation product of the

2-aminobenzaldehyde in Supplementary Figure 19.
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Synthesis and characterisation of A1K

Synthesis of A1K: 5 mmol A1 (1306.7 mg) is dissolved in 30 mL dry thf in a Schlenk tube, 5 mL
of a 1 M solution of KO'Bu (5 mmol) in thf is added to the Schlenk tube under argon. A yellow
solid precipitate. After 30 min, the thf is filtrated, the yellow solid washed with thf and again
filtrated. After drying in vacuo over night the solid is used for further studies.

(S]
K
HN N
HN NH + KO'Bu m, + HO'BuU
NH, , RT, Ar NH,
A1 A1K
1eq. 1eq.
Supplementary Figure 25 Synthesis of A1K.
Characterisation of A1K:
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I 240
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140
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Supplementary Figure 26 'H NMR of A1K (thf-ds, 400 MHz, 293 K): 6 = 7.30 (s, 1H), 7.16 (d,
J=7.0 Hz, 1H), 7.06 (dd, J = 16.8, 9.7 Hz, 3H), 6.94 (d, ] = 7.8 Hz, 1H), 6.64 (d,J = 7.3 Hz, 1H),
6.54 (t, ] = 8.0 Hz, 1H), 6.38 (d, J = 7.6 Hz, 2H), 5.51 (s, 3H), 5.38 (s, IH) ppm.
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Supplementary Figure 27 *C NMR of A1K (thf-ds, 125 MHz, 293 K): § = 130.96, 129.98,
127.01,116.73, 116.33, 115.94, 105.38, 31.45 ppm.

Elemental analysis calculated (A1K + 2 thf): C 68.09, H 7.25, N 9.16
Elemental analysis found: C 68.34, H 6.95, N 9.49
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Control experiments with A1K

Addition of D20 to A1K in thf-dg in the NMR-tube led to the back reaction of A1K to Al.

RF_APK1_THF_PROTON_20210409_02
RF_APKL_THF 5.38 bpm

ax] | | ‘U;

m;npx1jw<r,mu,vauw,zmqu,m‘
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yual |
2

‘n‘ ‘\"Jl\l}' ‘\ ‘lf‘ (!\.\}"‘ | ”

RF_AP1_THF_RT_PROTON_20210412_02
RF_AP1_THF_RT
f |

[
m“ “‘k H
b ; A
"‘IJ‘M“" i \J“ “ H Il !

62 60 5
f1 (opm)

Supplementary Figure 28 Addition of D>O (green) to A1K (blue); the bottom spectra show Al
(red) as reference.

Additionally, the extraction of A1K with ethyl acetate/water led to the isolation of Al in the
organic phase, while a pH-change of the water phase from 7 to 14 is observed. The use of sodium
tetraphenylborate for analyzing the potassium amount in the aqueous phase proofed the formation
of 1 eq. KOH per 1 eq. A1K. Reaction conditions: 0.2 mmol A1K (63 mg) is extracted with ethyl
acetate/water. To the combined water phases is added an excess of a solution of NaB(Ph)a. After
centrifugation, decantation, and drying in vacuo, 81 mg (0.22 mmol) of a white precipitation of

KB(Ph)4 was obtained.
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'H NMR control experiments show the reaction of A1K to Bla after the addition of benzaldehyde:

RF_APKL_THF_PROTON_20210409_02
RF_APKL_THF
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[
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RF_K_Bfg

- rm\» JU MJL I
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Supplementary Figure 29 '"H NMR of the formation of Bla after the addition of benzaldehyde to
AIK (green). Reaction conditions: To a suspension of 10 mg A1K (ca. 31 umol) in 700 pL thf-ds
is added 40 pmol benzaldehyde at room temperature. '"H NMR of A1K (blue) and Bla (red) for
reference.
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Investigation of the condensation of A1 with benzaldehyde via "H NMR analysis

Reaction conditions: 60 umol A1, 60 pumol benzaldehyde, 6 pmol KO'Bu (10 mol%, stock solution
30 mg/3 mL thf-dg), 61 pL stock solution of mesitylene (15 uL / 1 mL thf-dg), 700 pL thf-ds at RT.
Without base no reaction is observed (t =0 h), after addition of base an instant (< 30 s at RT)
consumption of the benzaldehyde to 59 % (9.98 ppm), A1 to 67 % (5.40 ppm) and formation of
Bla (5.29 ppm) is observed. Mesitylene (2.22 ppm) is used as internal standard.
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Supplementary Figure 30 'H NMR spectra showing the instant formation of Bla after addition
of KO'Bu to a solution of A1 and benzaldehyde.
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13. Isolation and characterization of products

Synthesis of Al

HN.__NH

NH,

Chemical Formula: C47H5N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the mixture is cooled
down to room temperature and 2 mL H>O is added. The aqueous phase is extracted with
dichloromethane (3 x 10 mL), the organic layers were dried with Na>SO4 and the solvent was
removed in vacuo. The crude product was purified via column chromatography over Alox N

(pentane/ethyl acetate: 5:1) and obtained as a white solid (470 mg, 1.8 mmol, 90 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): 8 =7.27 (d, J = 7.4 Hz, 1H), 7.15 (t, J = 7.7 Hz, 2H), 7.09
(t,J=7.6 Hz, 1H), 7.00 (d, ] = 7.0 Hz, 2H), 6.72 (d, ] = 6.4 Hz, 1H), 6.64 (s, 2H), 6.58 (t, ] = 7.2
Hz, 1H), 6.53 (d, J = 5.5 Hz, 2H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.66, 143.93, 134.47, 130.08, 129.19, 126.75,
122.30, 115.75, 115.46, 115.34, 112.70, 104.69, 66.45, 39.52 ppm.

Elemental analysis calculated: C 78.13, H 5.79, N 16.08
Elemental analysis found: C 78.03, H 5.78, N 15.94
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Synthesis of A2

HN NH

NH,

Chemical Formula: C4gH17N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-6-methylbenzyl alcohol
(2 mmol, 275 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a grey solid (512 mg, 1.86 mmol, 93 %).

TH NMR (DMSO-dg, 500 MHz, 293 K): § = 7.15 (t, ] = 7.8 Hz, 2H), 7.01 (d, J = 8.1 Hz, 2H), 6.95
(t, J=17.7 Hz, 1H), 6.64 (s, 2H), 6.55 (d, ] = 8.0 Hz, 1H), 6.52 (d, ] =7.4 Hz, 2H), 6.40 (d,J =7.4
Hz, 1H), 5.65 (s, 1H), 5.50 (s, 2H), 2.31 (s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 148.87, 144.34, 134.54, 128.83, 126.67, 119.17,
118.05, 115.41, 114.44, 112.74, 104.93, 63.48, 20.25 ppm.

Elemental analysis calculated: C 78.52, H 6.22, N 15.26
Elemental analysis found: C 77.84, H 5.96, N 15.93
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Synthesis of A3

HN NH

NH,

Chemical Formula: C4gH17N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-methylbenzyl alcohol (2
mmol, 275 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a grey solid (479 mg, 1.74 mmol, 87 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.14 (t, ] = 7.8 Hz, 1H), 7.10 (s, 1H), 6.99 (d,
J=8.1Hz, 1H), 691 (d, ] = 8.1 Hz, 1H), 6.62 (d, ] = 8.1 Hz, 1H), 6.59 (s, 1H), 6.51 (d,J =74
Hz, 1H), 5.34 (s, 1H), 5.14 (s, 1H), 2.18 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & =145.11, 143.97, 134.46, 130.38, 129.63, 126.73,
123.85, 122.39, 116.01, 115.29, 112.67, 104.63, 66.16, 20.10 ppm.

Elemental analysis calculated: C 78.52, H 6.22, N 15.26
Elemental analysis found: C 78.52, H6.15, N 15.16
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Synthesis of A4

HN NH

Chemical Formula: CgH47N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4-methylbenzyl alcohol
(2 mmol, 275 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SOs and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a grey solid (424 mg, 1.54 mmol, 77 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): 6 =7.14 (t, ] = 7.6 Hz, 3H), 6.98 (d, ] = 8.1 Hz, 2H), 6.56
(s, 2H), 6.55 — 6.48 (m, 3H), 6.40 (d, J = 7.7 Hz, 1H), 5.33 (s, 1H), 5.27 (s, 2H), 2.19 (s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.46, 144.00, 138.29, 134.47, 130.05, 126.73,
119.71, 11637, 116.13, 115.27, 112.70, 104.63, 66.27, 21.00 ppm.

Elemental analysis calculated: C 78.52, H 6.22, N 15.26
Elemental analysis found: C 78.12, H 6.05, N 14.88
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A5

HN NH

NH,

Chemical Formula: C4gH17N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-methylbenzyl alcohol
(2 mmol, 275 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a grey solid (534 mg, 1.94 mmol, 97 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.14 (dd, J = 15.3, 7.4 Hz, 3H), 7.02 (dd, J = 13.8,
7.8 Hz, 3H), 6.68 (s, 2H), 6.53 (dd, T = 15.2, 7.5 Hz, 3H), 5.37 (s, 1H), 5.19 (s, 2H), 2.12 (s, 3H)
ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 145.65, 143.96, 134.48, 130.33, 128.37, 126.75,
122,51, 121.74, 115.40, 115.33, 112.73, 104.72, 67.79, 17.72 ppm.

Elemental analysis calculated: C 78.52, H 6.22, N 15.26
Elemental analysis found: C 77.94, H 6.07, N 15.08
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A6

HN NH
N

Ha

Chemical Formula: CqgHgN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3,4-dimethylbenzyl alcohol
(2 mmol, 303 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SOs and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a white solid (544 mg, 1.88 mmol, 94 %).

1H NMR (DMSO-ds, 500 MHz, 293 K):  =7.15 (t, ] = 7.8 Hz, 2H), 7.06 — 6.97 (m, 3H), 6.63 (s,
2H), 6.51 (d,J=7.4 Hz, 2H), 6.47 (d, ] = 7.6 Hz, 1H), 5.32 (s, 1H), 5.15 (s, 2H), 2.22 (s, 3H), 2.02
(s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 145.54, 144.00, 136.59, 134.49, 127.56, 126.74,
120.70, 119.93,117.44, 115.37, 112.74, 104.69, 68.12, 20.46, 12.91 ppm.

Elemental analysis calculated: C 78.86, H 6.62, N 14.52
Elemental analysis found: C 78.17, H 6.32, N 14.19
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A7

HN__NH

F NH,

Chemical Formula: C47H44FN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-6-fluorobenzyl alcohol
(2 mmol, 282 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a white solid (530 mg, 1.90 mmol, 95 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 6 =7.17 (t, ] = 7.8 Hz, 1H), 7.09 (dd, J = 14.8, 8.1 Hz,
1H), 7.04 (d, J = 8.1 Hz, 1H), 6.73 (s, 1H), 6.57 — 6.49 (m, 2H), 6.35 (dd, ] = 10.4, 8.4 Hz, 1H),
5.81 (s, 1H), 5.70 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 162.79, 160.87, 150.53, 150.49, 143.95, 134.48,
130.24, 130.14, 126.73, 115.78, 112.76, 111.58, 108.24, 108.14, 105.10, 101.51, 101.32, 59.66,
59.58, 39.52 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): 8 =-120.53 (dd, J; = 10.6 Hz, J» = 6.6 Hz) ppm.

Elemental analysis calculated: C 73.10, H 5.05, N 15.04
Elemental analysis found: C 73.19, H5.15, N 15.04
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A8

Chemical Formula: C47H14FN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-fluorobenzyl alcohol
(2 mmol, 282 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 7 mL H»O is added. After adding 10 mL pentane
the precipitation is filtered and washed with pentane. The crude product was purified by filtration
with dichloromethane over an Alox N plug and obtained as a white solid (469 mg, 1.68 mmol, 84
%).

TH NMR (DMSO-ds, 500 MHz, 293 K):  =7.21 —7.09 (m, 1H), 7.01 (d, ] = 7.2 Hz, 1H), 6.95 (s,
1H), 6.71 (s, 1H), 6.65 (s, 1H), 6.52 (d, ] = 6.3 Hz, 1H), 5.41 (s, 1H), 5.23 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 154.91, 153.08, 143.88, 143.53, 134.41, 126.78,
123.96, 12391, 116.71, 116.65, 115.69, 115.62, 115.49, 112.62, 104.78, 64.56 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): & = -129.58 (m) ppm.

Elemental analysis calculated: C 73.10, H 5.05, N 15.04
Elemental analysis found: C 73.26, H 5.01, N 14.66
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A9

Chemical Formula: C47H4FN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4-fluorobenzyl alcohol
(2 mmol, 282 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature 7 mL H>O is added. After adding 10 mL pentane the
precipitation is filtered and washed with pentane. The crude product was purified by filtration with

dichloromethane over an Alox N plug and obtained as a white solid (491 mg, 1.76 mmol, 88 %).

TH NMR (DMSO-de, 500 MHz, 293 K): 8=7.28 (t, ] = 7.6 Hz, 1H), 7.15 (t, J = 7.8 Hz, 2H), 7.00
(d, J = 8.1 Hz, 2H), 6.62 (s, 2H), 6.52 (d, ] = 7.3 Hz, 2H), 6.48 (d, J = 11.8 Hz, 1H), 6.35 (t,
J=8.4Hz, 1H), 5.70 (s, 2H), 5.38 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 164.27, 162.35, 149.76, 149.66, 143.87, 134.45,
131.93, 131.84, 126.75, 118.63, 11544, 112.70, 104.75, 101.60, 101.43, 101.30, 101.11,
65.73 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): 8 =-114.25 (dt, J; = 11.9 Hz, J, = 7.9 Hz) ppm.

Elemental analysis calculated: C 73.10, H 5.05, N 15.04
Elemental analysis found: C 72.99, H 5.07, N 15.12
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A10

Chemical Formula: C47H44FN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-fluorobenzyl alcohol
(2 mmol, 282 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H20 is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a white solid (508 mg, 1.82 mmol, 91 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): § = 7.15 (dd, J = 14.0, 6.2 Hz, 3H), 7.08 (dd, J = 11.4,
8.1 Hz, 1H), 7.02 (d, ] = 8.2 Hz, 2H), 6.71 (s, 2H), 6.64 — 6.55 (m, 1H), 6.52 (d, ] = 7.4 Hz, 2H),
5.45 (s, 1H), 5.33 (s, 2H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 152.24, 150.36, 143.59, 135.75, 135.64, 134.42,
126.77, 125.63, 125.13, 125.10, 115.55, 115.00, 114.94, 114.87, 114.72, 112.67, 104.81,
65.92 ppm.

15F NMR (DMSO-ds, 376 MHz, 293 K): & = -135.02 (dd, J1 = 11.9 Hz, J» = 5.3 Hz) ppm.

Elemental analysis calculated: C 73.10, H 5.05, N 15.04
Elemental analysis found: C 72.97, H 5.09, N 14.55

S40

204



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A1l

HN__NH

NH,

Br
Chemical Formula: C47H14BrN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-bromobenzyl alcohol
(2 mmol, 404 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H20 is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a white solid (640 mg, 1.88 mmol, 94 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.42 (d, J = 2.3 Hz, 1H), 7.22 (dd, J = 8.6, 2.4 Hz,
1H), 7.16 (t, ] = 7.8 Hz, 2H), 7.01 (d, J = 8.2 Hz, 2H), 6.71 — 6.63 (m, 3H), 6.52 (d, ] = 7.4 Hz,
2H), 5.55 (s, 2H), 5.39 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 146.85, 143.58, 134.40, 132.04, 131.46, 126.77,
124.61, 117.63, 115.52, 112.61, 105.95, 104.79, 64.77 ppm.

Elemental analysis calculated: C 60.02, H 4.15, N 12.35
Elemental analysis found: C 59.79, H 4.03, N 12.09

S41

205



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A12

Chemical Formula: C1gH1¢BrN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-bromo-5-methylbenzyl
alcohol (2 mmol, 432 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1
mol%) and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C
using an open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h,
the mixture is cooled down to room temperature and 2 mL H»O is added. The aqueous phase is
extracted with dichloromethane (3x10 mL), the organic layers were dried with Na>SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a yellow solid (503 mg, 1.42 mmol, 71 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 =7.32 (s, 1H), 7.22 — 7.12 (m, 3H), 7.04 (d, = 8.1 Hz,
2H), 6.74 (s, 2H), 6.54 (d, ] = 7.4 Hz, 2H), 5.38 (s, 1H), 5.36 (s, 1H), 2.20 (s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.56, 142.07, 134.43, 132.60, 130.68, 126.79,
125.64, 124.09, 115.67, 112.70, 109.51, 104.91, 67.38, 19.55 ppm.

Elemental analysis calculated: C 61.03, H4.55, N 11.86
Elemental analysis found: C 61.01, H 4.55, N 11.53
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A13

HN_ _NH
cl NH,

Chemical Formula: C47H4CIN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-6-chlorobenzyl alcohol
(2 mmol, 315 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1->5:3) as a white solid (479 mg, 1.62 mmol, 81 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.17 (t, J = 7.8 Hz, 2H), 7.05 (dd, ] = 10.6, 8.2 Hz,
3H), 6.78 (s, 2H), 6.67 (d, ] = 8.2 Hz, 1H), 6.62 (d, ] = 7.8 Hz, 1H), 6.54 (d, J = 7.3 Hz, 2H),
5.97 - 5.86 (m, 3H) ppm

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 150.60, 143.87, 134.47, 13427, 130.17, 126.73,
117.16,115.97, 115.77, 114.91, 112.69, 105.16, 64.29 ppm.

Elemental analysis calculated: C 69.04, H 4.77, N 14.21
Elemental analysis found: C 68.93, H4.63 N 13.91
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A14

HN__NH

Cl
Chemical Formula: C47H44CIN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4-chlorobenzyl alcohol
(2 mmol, 315 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature 7 mL H2O is added. After adding 10 mL pentane the
precipitation is filtered and washed with pentane. The crude product was purified by filtration with

dichloromethane over an Alox N plug and obtained as a white solid (479 mg, 1.62 mmol, 81 %).

TH NMR (DMSO-de, 500 MHz, 293 K): 6 = 7.27 (d, J = 8.0 Hz, 1H), 7.15 (t, ] = 7.6 Hz, 2H), 7.01
(d, J =8.0 Hz, 2H), 6.75 (s, 1H), 6.63 (s, 2H), 6.58 (d, J = 7.6 Hz, 1H), 6.52 (d, ] = 7.2 Hz, 2H),
5.68 (s, 2H), 5.38 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 149.12, 143.71, 134.43, 133.58, 131.66, 126.76,
121.18, 115.49, 114.75, 114.44, 112.69, 104.79, 65.44 ppm.

Elemental analysis calculated: C 69.04, H4.77, N 14.21
Elemental analysis found: C 68.73, H4.45, N 13.79
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A15

Chemical Formula: C17H44CIN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-chlorobenzyl alcohol
(2 mmol, 315 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H20 is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a white solid (509 mg, 1.72 mmol, 86 %).

!H NMR (DMSO-ds, 500 MHz, 293 K): § = 7.29 (dd, J = 16.7, 7.7 Hz, 2H), 7.17 (t, ] = 7.8 Hz,
2H), 7.03 (d, J = 8.1 Hz, 2H), 6.75 (s, 2H), 6.63 (t, ] = 7.7 Hz, 1H), 6.53 (d, J = 7.3 Hz, 2H), 5.59
(s, 2H), 5.43 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.53, 134.42, 129.34, 129.30, 126.78, 124.07,
118.59, 116.03, 115.66, 112.69, 104.91, 67.10, 39.52 ppm.

Elemental analysis calculated: C 69.04, H4.77, N 14.21
Elemental analysis found: C 68.93, H 4.63, N 13.91
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A16

HN__NH

NH,

OMe
Chemical Formula: C4gH47N30

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-methoxybenzyl alcohol
(2 mmol, 306 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H20 is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1) as a yellow solid (472 mg, 1.62 mmol, 81 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): = 7.14 (t, J = 7.8 Hz, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.94
(d,J=7.5Hz, 1H), 6.89 (d, ] = 7.9 Hz, 1H), 6.64 (s, 2H), 6.59 (t, J = 7.8 Hz, 1H), 6.51 (d,] = 7.4
Hz, 2H), 5.40 (s, 1H), 4.9 (s, 2H), 3.81 (s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.02, 143.83, 136.82, 134.46, 126.74, 122.49,
122.24, 115.36, 115.21, 112.68, 110.75, 104.68, 66.39, 55.75 ppm.

Elemental analysis calculated: C 74.20, H 5.88, N 14.42
Elemental analysis found: C 73.69, H 5.72, N 14.09

S46

210



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A17

MeO
OMe

Chemical Formula: C4gH1gN30,

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4,5-dimethoxybenzyl alcohol
(2 mmol, 367 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na>2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1->5:4) as a white solid (463 mg, 1.44 mmol, 72 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): §=7.14 (t, J = 7.8 Hz, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.94
(s, 1H), 6.51 (d, T = 9.4 Hz, 1H), 6.40 (s, 1H), 5.34 (s, 1H), 4.98 (s, 1H), 3.71 (s, 1H), 3.64 (s, 1H)
13C NMR (DMSO-ds, 125 MHz, 293 K): & = 150.17, 144.10, 142.10, 139.79, 134.47, 126.72,
115.42, 115.24, 114.02, 112.69, 104.59, 101.05, 65.06, 56.66, 55.41 ppm.

Elemental analysis calculated: C 71.01, H 5.96, N 13.08
Elemental analysis found: C 70.71, H 5.66, N 12.83
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A18

Chemical Formula: C4gH4F3N30

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-(trifluoromethoxy)benzyl
alcohol (2 mmol, 414 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1
mol%) and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C
using an open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h,
the mixture is cooled down to room temperature and 7 mL H>O is added. After adding 10 mL
pentane the precipitation is filtered and washed with pentane. The crude product was purified by
filtration with dichloromethane over an Alox N plug and obtained as a white solid (593 mg,

1.72 mmol, 86 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): 6 = 7.28 (d, ] = 2.5 Hz, 1H), 7.16 (t, J = 7.8 Hz, 2H), 7.09
(d,]=8.7Hz, 1H), 7.01 (d, ] = 8.0 Hz, 2H), 6.75 (d, J = 8.8 Hz, 1H), 6.68 (s, 2H), 6.52 (d,J = 7.3
Hz, 2H), 5.59 (s, 2H), 5.42 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 146.94, 143.61, 143.59, 138.07, 134.40, 126.81,
126.76, 123.01, 122.72, 122,31, 121.43, 119.41, 116.15, 115.56, 112.64, 104.84, 64.87 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): & = -57.24 (s) ppm.

Elemental analysis calculated: C 62.61, H4.09, N 12.17
Elemental analysis found: C 62.23, H 3.75, N 12.48
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A19

O\_,o
Chemical Formula: C4gH45N305
In a glovebox, 1,8-diaminonaphthalene 2 mmol, 316 mg),
(6-aminobenzo[d][1,3]dioxol-5-yl)methanol (2 mmol, 335 mg), KO'Bu (0.6 mmol, 67 mg,
30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-MeTHF are added to a Schlenk tube.
The reaction mixture is heated at 100 °C using an open system consisting of a reflux condenser
and a bubble counter. After stirring for 2 h, the mixture is cooled down to room temperature and 7
mL H20 is added. After adding 10 mL pentane the precipitation is filtered and washed with
pentane. The crude product was purified by filtration with dichloromethane over an Alox N plug

and obtained as an orange solid (420 mg, 1.38 mmol, 69 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): 6 = 7.14 (t, J = 7.8 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.87
(s, 1H), 6.54 — 6.48 (m, 4H), 6.37 (s, 1H), 5.85 (s, 2H), 5.33 (s, 1H), 5.09 (s, 2H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.73, 143.96, 142.87, 137.97, 134.45, 126.74,
115.28, 114.69, 112.62, 109.35, 104.62, 100.13, 97.48, 64.85 ppm.

Elemental analysis calculated: C 70.81, H 4.95, N 13.76
Elemental analysis found: C 70.31, H 5.04, N 13.33
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A20

Chemical Formula: C,1H47N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), (3-aminonaphthalen-2-yl)methanol
(2 mmol, 346 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 7 mL H>O is added. After adding 10 mL pentane
the precipitation is filtered and washed with pentane. The crude product was purified by filtration
with dichloromethane over an Alox N plug and obtained as a grey solid (479 mg, 1.54 mmol,
77 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): & = 7.87 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.55 (d,
J=83Hz, 1H), 7.32(t, I = 7.5 Hz, 1H), 7.18 (t, ] = 7.8 Hz, 2H), 7.13 (t, ] = 7.4 Hz, 1H), 7.03 (d,
J=8.1Hz, 2H), 7.00 (s, 1H), 6.77 (s, 2H), 6.55 (d, ] = 7.3 Hz, 2H), 5.63 (s, 2H), 5.58 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 145.76, 143.55, 134.80, 134.46, 129.58, 127.76,
126.81, 126.37, 125.93, 124.68, 121.31, 115.55, 112.73, 108.19, 104.84, 66.72 ppm.

Elemental analysis calculated: C 81.00, H 5.50, N 13.49
Elemental analysis found: C 80.94, H 5.42, N 13.13
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A21

HN NH

_ NH,

|
N

Chemical Formula: C4gH14N4

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), (2-aminopyridin-3-yl)methanol
(2 mmol, 248 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 2 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with dichloromethane (3 x 10 mL), the organic layers were dried with Na2SO4 and the
solvent was removed in vacuo. The crude product was purified via column chromatography over

Alox N (pentane/ethyl acetate: 5:1 =5:3) as a white solid (503 mg, 1.92 mmol, 96 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 8.01 (s, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.18 (t,
J=7.7Hz, 2H), 7.04 (d, J = 8.1 Hz, 2H), 6.72 (s, 2H), 6.64 — 6.58 (m, 1H), 6.55 (d, J = 7.3 Hz,
2H), 6.11 (s, 2H), 5.38 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 158.08, 148.06, 143.54, 137.79, 134.42, 126.79,
117.43,115.65, 112.68, 111.93, 104.90, 65.72 ppm.

Elemental analysis calculated: C 73.26, H 5.38, N 21.36
Elemental analysis found: C 73.07, H 5.44, N 21.30
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A22

HN__NH

NH,

Chemical Formula: C5H31N3

In a glovebox, I1,8-diamino-4,6-di-fert-butyl-naphthalene (I  mmol, 270.5 mg),
2-aminobenzyl alcohol (1 mmol, 123 mg), KO'Bu (0.3 mmol, 3 mg, 30 mol%), Mn-I (0.01 mmol,
12 mg, 1 mol%) and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated
at 100 °C using an open system consisting of a reflux condenser and a bubble counter. After stirring
for 6 h, the mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous
phase is extracted with ethyl acetate (3 x 10 mL), the organic layers were dried with Na;SO4 and
the solvent was removed in vacuo. The crude product was purified via column chromatography
over Alox N (pentane/ethyl acetate: 5:1 =5:3) and obtained as a white solid (283 mg, 0.76 mmol,
76 %).

IH NMR (DMSO-dg, 500 MHz, 293 K): § = 7.24 (d, ] = 6.6 Hz, 1H), 7.07 (t, ] = 7.6 Hz, 1H), 6.94
(d,J=14Hz, 1H), 6.70 (d, ] = 7.9 Hz, 1H), 6.59 (d, ] = 1.4 Hz, 1H), 6.38 (s, 1H), 5.36 (s, 1H),
5.35(s, 1H), 1.29 (s, 1H) ppm.

13C NMR (DMSO-dg, 125 MHz, 293 K): § = 149.00, 147.71, 143.20, 134.12, 130.09, 129.11,
122.39, 115.72, 115.40, 111.32, 109.94, 102.88, 34.48, 31.23 ppm.

Elemental analysis calculated: C 80.39, H 8.37 N 11.25
Elemental analysis found: C 79.99, H 8.31, N 11.50

S52

216
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Synthesis of A23

HN___NH

NH,

Chemical Formula: C4gH47N3

In a glovebox, 5,6-acenaphthenediamine (1 mmol, 184.3 mg), 2-aminobenzyl alcohol (1 mmol,
123 mg), KO'Bu (0.3 mmol, 3 mg, 30 mol%), Mn-I (0.01 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After stirring for 6 h, the mixture is cooled
down to room temperature and 2 mL H>O is added. The aqueous phase is extracted with ethyl
acetate (3 x 10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in
vacuo. The crude product was purified via column chromatography over Alox N

(pentane/ethyl acetate: 5:3) and obtained as a yellow solid (247 mg, 0.86 mmol, 86 %).

H NMR (DMSO-de, 500 MHz, 293 K): § =7.24 (d,J = 7.5 Hz, 1H), 7.08 (t, ] = 7.7 Hz, 1H), 6.95
(d,J=73Hz, 1H),6.70 (d, J=8.1 Hz, 1H), 6.56 (t,J=7.4 Hz, 1H), 6.42 (d, ] =7.2 Hz, 1H), 6.38
(s, 1H), 5.34 (s, 1H), 5.30 (s, 1H), 3.20 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.64, 140.59, 139.82, 132.13, 130.04, 129.06,
122.59,119.58, 115.71, 115.43, 111.47, 105.29, 67.77, 29.96 ppm.

Elemental analysis calculated (product + 1 ethyl acetate): C 73.57, H 6.71, N 11.19
Elemental analysis found: C 73.86, H6.32, N 11.11
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A24

O

HN NH

Chemical Formula: C17H14CIN3

In a glovebox, 2-choro-1,8-diamino-naphthalene (I mmol, 192.6 mg), 2-aminobenzyl alcohol
(1 mmol, 123 mg), KO'Bu (0.3 mmol, 3 mg, 30 mol%), Mn-I (0.01 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After stirring for 6 h, the
mixture is cooled down to room temperature and 2 mL H>O is added. The aqueous phase is
extracted with ethyl acetate (3 x 10 mL), the organic layers were dried with Na>2SO4 and the solvent
was removed in vacuo. The crude product was purified via column chromatography over Alox N

(pentane/ethyl acetate: 5:2) and obtained as a grey solid (269 mg, 0.91 mmol, 91%).

TH NMR (DMSO-ds, 500 MHz, 293 K): § = 7.24 (dd, J = 17.3, 8.3 Hz, 2H), 7.07 (dd, J = 14.2,
8.5 Hz, 2H), 6.91 (s, 1H), 6.72 (dd, J = 8.0, 0.9 Hz, 1H), 6.67 — 6.62 (m, 1H), 6.56 (td, ] = 7.5, 1.0
Hz, 1H), 5.81 (s, 1H), 5.55 (s, 1H), 5.32 (s, 1H) ppm.

B3C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.06, 142.82, 138.39, 132.90, 129.07, 128.87,
127.47,127.01, 122.89, 116.97, 115.92, 115.81, 115.53, 112.85, 107.98, 105.97, 64.31 ppm.

Elemental analysis calculated: C 69.04, H4.77, N 14.21
Elemental analysis found: C 69.12, H4.52, N 14.34
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A25

HNJ:NH
NH,

Chemical Formula: C43H5N3

In a glovebox, Mn-precatalyst Mn-I (0.02 mmol, 12.3 mg, dissolved in 1.5 mL 1,4-dioxane),
KO'Bu (0.6 mmol, 67 mg, dissolved in 1.5 mL 1,4-dioxane), 1,8-diaminonaphthalene (2.0 mmol,
316 mg) and L-alaninol (2.2 mmol, 165 mg, 172 uL) are added to a Schlenk tube and dissolved in
9 mL 1,4-dioxane. The reaction mixture is heated at 100 °C under light argon counter flow using
an open system consisting of a reflux condenser and a bubble counter. The mixture is stirred for 4
h, cooled down to room temperature and the 1,4-dioxane is evaporated under vacuo. 6 mL water
are added and the organic compounds were extracted with ethyl acetate (3 x 50 mL). The combined
organic layers were dried with NaxSO4 and the solvent was removed in vacuo. The crude product
was purified via gradient column chromatography over Alox N using solvent mixtures beginning
with ethyl acetate/pentane 1:1 and switching to ethanol/pentane 1:2. To the product 10 mL of an
aqueous saturated solution of NaHCO3 were added, the product was extracted with ethyl acetate
and after drying with Na2SOy the solution was narrowed. At the end the product was purified via
column chromatography over Silica C18 ec with ethyl acetate and obtained as brown viscous oil

(392 mg, 1.84 mmol, 92 %).

"H NMR (DMSO-ds, 500 MHz, 293 K): 8= 7.11 (t, ] = 7.6 Hz, 2H), 6.91 (d, ] = 8.2 Hz, 2H), 6.47
(dd, J1 = 7.5 Hz, J» = 0.8 Hz, 1H), 6.45 (dd, J1 = 7.4 Hz, J» = 0.7 Hz, 1H), 6.32 (s, 1H), 6.21 (s,
1H), 4.09 (d, J = 4.4 Hz, 1H), 2.94 — 2.89 (m, 1H), 1.79 (s, broad, 2H), 1.09 (d, J = 6.6 Hz, 3H)
13C NMR (DMSO-ds, 125 MHz, 293 K): & = 143.02, 142.91, 134.40, 126.89, 114.76, 114.71,
112.46, 104.01, 68.85, 49.64, 17.85 ppm.

LC-HRMS (ESI+) m/z calculated for [C13H16N3] ': 214.13387, found: 214.13420.
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A26
HN NH
Chemical Formula: C4gH4gN3
In a glovebox, Mn-precatalyst Mn-I (0.02 mmol, 12.3 mg, dissolved in 1.5 mL 1,4-dioxane),
KO'Bu (0.6 mmol, 67 mg, dissolved in 1.5 mL 1,4-dioxane), 1,8-diaminonaphthalene (2.0 mmol,
316 mg) and L-phenylalaninol (2.2 mmol, 333 mg) are added to a Schlenk tube and dissolved in 9
mL 1,4-dioxane. The reaction mixture is heated at 100 °C under light argon counter flow using an
open system consisting of a reflux condenser and a bubble counter. The mixture is stirred for 4 h,
cooled down to room temperature and the 1,4-dioxane is evaporated under vacuo. 6 mL water are
added and the organic compounds were extracted with ethyl acetate (3 x 50 mL). The combined
organic layers were dried with NaxSO4 and the solvent was removed in vacuo. The crude product
was purified via gradient column chromatography over Alox N using solvent mixtures beginning
with ethyl acetate/pentane 1:1 and switching to ethanol/pentane 1:2. To the product 10 mL of an
aqueous saturated solution of NaHCO3 were added, the product was extracted with ethyl acetate
and after drying with Na2SOy the solution was narrowed. At the end the product was purified via

column chromatography over Silica C18 ec with ethyl acetate and obtained as yellowish brown

viscous oil (544 mg, 1.88 mmol, 94 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 6 =7.31 — 7.27 (m, 4H), 7.21 — 7.17 (m, 1H), 7.14 (td, J;
=7.8Hz, Ja=1.5Hz, 2H), 6.94 (d, ] = 8.2 Hz, 2 H), 6.51 (m, 2H), 6,44 (s, 1H), 6.35 (s, 1H), 4.24
(d,7=3.8 Hz, 1H), 3.11 —3.02 (m, 2H), 2.56 — 2.51 (m, 1H), 1.53 (s, broad, 2H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.05, 142.98, 140.38, 134.43, 129.25, 128.19,
126.91, 125.80, 114.92, 112.51, 104.24, 104.16, 67.74, 55.90, 37.60 ppm.

LC-HRMS (ESI+) m/z calculated for [C1oH20N3]™: 290.16517, found: 290.16551.
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of A27

HN/\[NH
NH,

Chemical Formula: C45H47N3

In a glovebox, Mn-precatalyst Mn-I (0.02 mmol, 12.3 mg, dissolved in 1.5 mL 1,4-dioxane),
KO'Bu (0.6 mmol, 67 mg, dissolved in 1.5 mL 1,4-dioxane), 5,6-diaminoacenaphthene (2.0 mmol,
369 mg) and L-alaninol (2.2 mmol, 165 mg, 172 pL) are added to a Schlenk tube and dissolved in
9 mL 1,4-dioxane. The reaction mixture is heated at 100 °C under light argon counter flow using
an open system consisting of a reflux condenser and a bubble counter. The mixture is stirred for 4
h, cooled down to room temperature and the 1,4-dioxane is evaporated under vacuo. 6 mL water
are added and the organic compounds were extracted with ethyl acetate (3 x 50 mL). The combined
organic layers were dried with Na>SOa and the solvent was removed in vacuo. The crude product
was purified via column chromatography over Alox N using solvent mixtures beginning with ethyl
acetate/pentane 1:1 and switching to ethanol/pentane 1:2. To the product 10 mL of an aqueous
saturated solution of NaHCO; were added, the product was extracted with ethyl acetate and after
drying with Na;SOy the solution was narrowed. At the end the product was purified via column
chromatography over Silica C18 ec with ethyl acetate and obtained as brown viscous oil (435 mg,

1.82 mmol, 91 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 6.92 (d, ] = 7.2 Hz, 2H), 6.39 (d, ] = 7.3 Hz, 1H),
6.37(d,J=7.2 Hz, 1H), 6.07 (s, 1H), 5.97 (s, 1H), 4.05 (d, J =4.3 Hz, 1H), 3.16 (s, 4H), 2.93 (m,
1H), 1.68 (s, broad, 2H), 1.10 (d, J = 6.4 Hz, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 139.83, 139.78, 139.72, 131.60, 131.55, 119.69,
111.45, 104.71, 70.20, 49.58, 29.90, 18.09 ppm.

LC-HRMS (ESI+) m/z calculated for [C1sH sN3]*: 240.14952, found: 240.14922.
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Bla

reds

HN__N
NH

Chemical Formula: Cp4HgN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, benzaldehyde
(2 mmol, 203 pl) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the reaction mixture
via a septum. After stirring for 15 h, the mixture is cooled down to room temperature and 2 mL
H»0 is added. The aqueous phase is extracted with dichloromethane (3 x 10 mL), the organic layers
were dried with Na>SO4 and the solvent was removed in vacuo. The crude product was purified
via column chromatography over Alox N (pentane/ethyl acetate: 5:1) and obtained as a white solid
(648 mg, 1.86 mmol, 93 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.50 (d, ] = 7.6 Hz, 2H), 7.43 (t, ] = 7.5 Hz, 2H), 7.36
~7.31 (m, 2H), 7.24 (t, ] = 7.9 Hz, 1H), 7.16 (t, ] = 7.7 Hz, 1H), 7.10 (d, ] = 8.1 Hz, 1H), 7.06 (dd,
1=7.3,4.0 Hz, 2H), 6.98 — 6.94 (m, 2H), 6.87 (t, ] = 7.6 Hz, 1H), 6.64 — 6.55 (m, 3H), 6.38 (t, ] =
7.4 Hz, 1H), 5.09 (d, J = 3.4 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.20, 142.38, 141.15, 139.97, 134.28, 128.60,
127.95, 127.74, 126.94, 126.90, 126.62, 125.37, 121.62, 117.87, 115.46, 115.33, 113.78, 113.33,
105.59, 105.30, 65.48, 60.00 ppm.

Elemental analysis calculated: C 82.49, H 5.48, N 12.03

Elemental analysis found: C 82.68, H 5.39, N 11.99
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1b

Chemical Formula: Cp5H¢N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-6-methylbenzyl alcohol
(2 mmol, 275 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (669 mg, 1.84 mmol, 92 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): 3 =7.31 — 7.19 (m, 7H), 7.08 (d, ] = 8.0 Hz, 1H), 7.01 —
6.91 (m, 2H), 6.76 (s, 1H), 6.73 (s, 1H), 6.68 (d, ] = 7.4 Hz, 1H), 6.59 (d, ] = 8.0 Hz, 1H), 6.46 (d,
J=7.4Hz, 1H), 6.03 (d, ] = 7.4 Hz, 1H), 5.63 (s, 1H), 5.47 (s, 1H), 2.31 (s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 143.51, 142.45, 141.59, 141.15, 135.69, 134.41,
128.65, 128.38, 128.26, 128.03, 126.72, 125.51, 120.74, 118.64, 117.44, 117.06, 115.59, 114.64,
112.24, 105.12, 68.11, 64.12, 18.40 ppm.

Elemental analysis calculated: C 82.61, H 5.82, N 11.56
Elemental analysis found: C 82.11, H 5.81, N 11.45
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Ble

Chemical Formula: Cp5H¢N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-methylbenzyl alcohol
(2 mmol, 275 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (603 mg, 1.66 mmol, 83 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): = 7.49 (d, ] = 7.6 Hz, 2H), 7.41 (t,J = 7.6 Hz, 2H), 7.33
(t,J=7.3 Hz, 1H),7.29 (d,J =3.6 Hz, 1H), 7.24 (t,J = 7.9 Hz, 1H), 7.17 (t, ] = 7.8 Hz, 1H), 7.10
(d,J=8.2Hz, 1H), 7.03 (d,J = 7.7 Hz, 1H), 6.96 (d, ] = 8.1 Hz, 1H), 6.89 (s, 1H), 6.76 (d, I = 4.5
Hz, 1H), 6.70 (d, ] = 8.0 Hz, 1H), 6.57 (d, J = 7.4 Hz, 1H), 6.55 — 6.50 (m, 2H), 5.07 (d, ] = 3.6
Hz, 1H), 2.01 (s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 142.40, 141.22, 140.81, 140.03, 134.29, 128.60,
128.55, 127.67, 126.95, 126.63, 125.67, 123.89, 121.71, 117.74, 115.25, 113.65, 105.52, 105.20,
65.48, 60.03, 20.35 ppm.

Elemental analysis calculated: C 82.61, H 5.82, N 11.56
Elemental analysis found: C 82.83 H 5.83, N 11.47
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1d

L0

HN__N
NH

Chemical Formula: Co5H¢N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4-methylbenzyl alcohol
(2 mmol, 275 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H2O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (596 mg, 1.64 mmol, 82 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): § = 7.50 (d, J = 7.6 Hz, 2H), 7.42 (t, ] = 7.5 Hz, 2H), 7.34
(t,J=7.2Hz, 1H), 7.30 - 7.21 (m, 2H), 7.15 (t, ] = 7.7 Hz, 1H), 7.10 (d, ] = 8.2 Hz, 1H), 7.05 (d,
J=78Hz, 1H), 6.95 (t, ] = 7.7 Hz, 2H), 6.86 (d, J = 4.3 Hz, 1H), 6.59 — 6.52 (m, 2H), 6.41 (s,
1H), 6.19 (d,J = 7.7 Hz, 1H), 5.06 (d, J = 3.2 Hz, 1H), 2.05 (s, 3H) ppm.

13C NMR (DMSO-de, 125 MHz, 293 K): § = 143.00, 142.36, 141.23, 140.02, 137.02, 134.29,
128.58, 127.70, 126.96, 126 87, 126.60, 125.36, 118.95, 117.81, 116.53, 115.28, 113.82, 113.76,
105.60, 105.27, 65.50, 59.95, 20.92 ppm.

Elemental analysis calculated: C 82.61, H 5.82, N 11.56
Elemental analysis found: C 82.96 H 5.82, N 11.70
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Ble

Chemical Formula: Cp5H¢N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-methylbenzyl alcohol
(2 mmol, 275 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (567 mg, 1.56 mmol, 78 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): = 7.51 (d, ] = 7.6 Hz, 2H), 7.43 (t, ] = 7.6 Hz, 2H), 7.34
(t, J=6.1 Hz, 2H), 7.25 (t,J = 7.9 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.10 (d, ] = 8.1 Hz, 1H), 7.06
(d,J=7.7 Hz, 1H), 6.96 (t, ] = 8.4 Hz, 2H), 6.78 (d, J = 7.3 Hz, 1H), 6.60 (d, ] = 5.0 Hz, 1H), 6.57
(d, J=7.3 Hz, 1H), 6.34 (dd, ] = 14.4, 6.6 Hz, 2H), 5.12 (d, ] = 3.7 Hz, 1H), 2.10 (s, 3H) ppm.
13C NMR (DMSO-ds, 125 MHz, 293 K): § = 142.26, 141.16, 141.00, 139.97, 134.28, 128.99,
128.61, 127.73, 126.94, 126.91, 126.68, 123.15, 121.55, 121.03, 117.81, 115.33, 115.23, 113.72,
105.29, 105.23, 65.48, 60.02, 17.22 ppm.

Elemental analysis calculated: C 82.61, H 5.82, N 11.56
Elemental analysis found: C 81.99 H 5.81, N 11.22

S62

226



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1f

Chemical Formula: Cp4H4gFN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-6-fluorobenzyl alcohol
(2 mmol, 282 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (639 mg, 1.73 mmol, 87 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.41 — 7.29 (m, 6H), 7.20 (t, ] = 7.2 Hz, 2H), 7.13 (t,
J=7.8Hz, 1H), 7.04 (d,J = 8.1 Hz, 1H), 6.97 (dd, J = 14.6, 7.8 Hz, 1H), 6.82 (s, 1H), 6.61 (t, ] =
7.7 Hz, 2H), 6.51 (d, ] = 8.1 Hz, 1H), 6.30 — 6.21 (m, 1H), 6.20 (d, J = 2.5 Hz, 1H), 5.43 (s, 1H)
ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 161.66, 159.73, 145.53, 145.47, 141.06, 141.00,
140.83, 134.22, 129.36, 129.27, 128.48, 128.15, 127.63, 126.90, 126.15, 119.46, 115.61, 114.92,
109.82, 109.74, 107.48, 107.35, 105.18, 102.61, 102.43, 66.43, 60.08 ppm.

1F NMR (DMSO-ds, 376 MHz, 293 K): 8 =-119.89 (s) ppm.

Elemental analysis calculated: C 78.45, H 4.94, N 11.44
Elemental analysis found: C 77.82, H 5.01, N 11.55
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1g

L0

HN___N
NH

F

Chemical Formula: Cy4H1gFN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-fluorobenzyl alcohol
(2 mmol, 282 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (602 mg, 1.64 mmol, 82 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8= 7.50 (d, J = 7.5 Hz, 2H), 7.43 (t, ] = 7.6 Hz, 2H), 7.39
—7.32 (m, 2H), 7.26 (t, ] = 7.9 Hz, 1H), 7.18 (t, ] = 7.8 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 7.09 (d,
1=17.7Hz, 1H), 6.99 (d, ] = 8.0 Hz, 1H), 6.95 (d, ] = 4.6 Hz, 1H), 6.91 (dd, ] = 9.4, 2.8 Hz, 1H),
6.74 (td, ] = 8.7, 2.9 Hz, 1H), 6.62 (dd, J = 9.1, 5.6 Hz, 3H), 5.06 (d, J = 3.7 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 154.85, 153.01, 142.18, 140.84, 139.73, 139.60,
134.25, 128.67, 127.79, 126.94, 126.91, 126.68, 122.99, 122.95, 118.05, 115.64, 114.89, 114.71,
114.46, 114.41, 113.71, 111.94, 111.76, 105.82, 105.49, 65.52, 59.83 ppm.

1F NMR (DMSO-ds, 376 MHz, 293 K): § = -128.59 (m) ppm.

Elemental analysis calculated: C 78.45, H 4.94, N 11.44
Elemental analysis found: C 78.81, H4.47, N 11.30
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Blh

L0

HN N
NH

F
Chemical Formula: Co4H1gFN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4-fluorobenzyl alcohol
(2 mmol, 282 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na>SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (625 mg, 1.70 mmol, 85 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.49 (d, ] = 7.5 Hz, 2H), 7.44 (t, ] = 7.6 Hz, 2H), 7.39
—7.30 (m, 2H), 7.26 (t, J = 7.9 Hz, 2H), 7.20 — 7.11 (m, 2H), 7.08 (d, ] = 7.7 Hz, 1H), 7.07 — 7.02
(m, 1H), 6.98 (d, T=8.1 Hz, 1H), 6.64 (d, ] = 4.0 Hz, 1H), 6.57 (d, T = 7.3 Hz, 1H), 6.39 (dd, ] =
11.3,2.4 Hz, 1H), 6.16 (td, ] = 8.7, 2.4 Hz, 1H), 5.05 (d, J = 3.6 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 163.30, 161.39, 144.86, 144.77, 141.97, 140.88,
139.67, 134.27, 128.68, 127.87, 127.14, 127.06, 126.94, 126.88, 126.62, 118.15, 117.71, 115.52,
113.77, 105.79, 105.47, 101.86, 101.68, 99.29, 99.09, 65.49, 59.73 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): § = -114.85 (m) ppm.

Elemental analysis calculated: C 78.45, H 4.94, N 11.44
Elemental analysis found: C 77.88, H4.99, N 11.28
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1i

L0

HN N
NH

F

Chemical Formula: Cy4H4gFN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-fluorobenzyl alcohol
(2 mmol, 282 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na,SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5)

and obtained as a yellow solid (580 mg, 1.58 mmol, 79 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): §="7.51 (d, J = 7.5 Hz, 2H), 7.45 (t, ] = 7.6 Hz, 2H), 7.40
(d,J=3.9 Hz, 1H), 7.36 (t,J = 7.2 Hz, 1H), 7.27 (t, ] = 7.9 Hz, 1H), 7.20 — 7.11 (m, 2H), 7.07 (d,
J=7.7Hz, 1H), 6.98 (d, ] =8.1 Hz, 1H), 6.92 (d, ] = 7.2 Hz, 2H), 6.84 (t, 1H), 6.63 (d, ] = 4.7 Hz,
1H), 6.58 (d,J = 7.3 Hz, 1H), 6.37 (dd, ] = 12.9, 7.9 Hz, 1H), 5.11 (d, ] = 3.8 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 150.57, 148.67, 141.74, 140.71, 139.56, 134.25,
131.33,131.23,128.72, 127.90, 126.98, 126.86, 126.65, 124.64, 121.10, 118.23, 115.53, 114.56,
114.51,113.73, 113.66, 113.59, 105.57, 105.51, 65.10, 59.58 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): & = -136.37 (dd, J1 = 11.9 Hz, J» = 5.3 Hz) ppm.

Elemental analysis calculated: C 78.45, H 4.94, N 11.44
Elemental analysis found: C 77.99, H 5.06, N 11.39
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1j

Chemical Formula: Co4H1gBrN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-bromobenzyl alcohol
(2 mmol, 404 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na,SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:1)
and obtained as an orange solid (745 mg, 1.74 mmol, 87 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 5 = 7.48 (d, J = 7.5 Hz, 2H), 7.44 (t, ] = 7.5 Hz, 2H), 7.36
(d,J=4.6 Hz, 2H), 7.27 (t, J = 7.9 Hz, 1H), 7.20 (dd, J = 12.7, 5.2 Hz, 3H), 7.15 (d, J = 8.1 Hz,
1H), 7.10 (d, J = 7.7 Hz, 1H), 7.04 — 6.97 (m, 2H), 6.64 (d, J = 3.9 Hz, 1H), 6.62 — 6.56 (m, 2H),
5.05(d, J=3.6 Hz, 1H) ppm.

13C NMR (DMSO-de, 125 MHz, 293 K): § = 142.55, 141.97, 140.69, 139.42, 134.26, 130.61,
128.71, 127.89, 127.79, 127.02, 126.84, 126.66, 123.82, 118.24, 115.68, 115.35, 113.65, 10624,
105.84, 105.52, 65.41, 59.62 ppm.

Elemental analysis calculated: C 67.30, H 4.24, N 9.81
Elemental analysis found: C 67.17, H 4.34, N 9.84
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1k

Chemical Formula: C4H1gCIN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-6-chlorobenzyl alcohol
(2 mmol, 315 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:1)

and obtained as a yellow solid (683 mg, 1.78 mmol, 89 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.35 — 7.26 (m, 4H), 7.24 (dd, ] = 9.3, 6.1 Hz, 4H),
7.11 (t,]=8.5 Hz, 2H), 6.93 (t, ] = 7.8 Hz, 1H), 6.78 — 6.70 (m, 3H), 6.68 (d, ] = 7.8 Hz, 1H), 6.03
(d,J=7.4Hz, 1H), 5.60 (s, 1H), 5.48 (s, IH) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 145.31, 141.98, 140.80, 140.35, 134.26, 132.13,
129.91, 128.96, 128.63, 128.09, 126.75, 125.36, 121.89, 117.38, 116.75, 116.40, 115.99, 115.66,
112.81, 105.63, 68.39, 64.66 ppm.

Elemental analysis calculated: C 75.09, H 4.73, N 10.95
Elemental analysis found: C 75.28, H 4.78, N 11.37
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B1l

L0

HN N

NH

Cl
Chemical Formula: Cp4H1gCINg

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4-chlorobenzyl alcohol
(2 mmol, 315 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:1)

and obtained as a yellow solid (683 mg, 1.78 mmol, 89 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.49 (d, J = 7.5 Hz, 2H), 7.44 (t, ] = 7.6 Hz, 2H), 7.38
—7.31 (m, 2H), 7.29 — 7.22 (m, 2H), 7.20 — 7.08 (m, 3H), 7.03 (d, ] = 8.1 Hz, 1H), 6.98 (d, ] = 8.0
Hz, 1H), 6.65 (dd, J = 8.1, 3.0 Hz, 2H), 6.57 (d, J = 7.3 Hz, 1H), 6.39 (d, ] = 8.1 Hz, 1H), 5.04 (d,
J=3.9Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 144.59, 141.92, 140.78, 139.54, 134.26, 132.35,
128.71, 127.90, 127.14, 126.93, 126.86, 126.62, 120.40, 118.22, 115.60, 114.88, 113.74, 112.20,
105.83, 105.53, 65.47, 59.67 ppm.

Elemental analysis calculated: C 75.09, H 4.73, N 10.95
Elemental analysis found: C 75.19, H 4.95, N 10.99
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Blm

rods

HN__N
NH

Cl
Chemical Formula: C4H4gCIN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-chlorobenzyl alcohol
(2 mmol, 315 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product is purified by recrystallization in ethyl acetate/pentane and obtained as orange
crystals (575 mg, 1.50 mmol, 75 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): 8 =7.51 — 7.40 (m, 5H), 7.37 (d, J = 6.7 Hz, 1H), 7.28 (t,
J=7.8Hz, 1H), 7.23 - 7.10 (m, 2H), 7.07 (dd, J = 14.1, 7.4 Hz, 3H), 6.98 (d, J = 8.0 Hz, 1H), 6.84
(d,7=4.4Hz, 1H), 6.68 (d, = 4.0 Hz, 1H), 6.59 (d, ] = 7.2 Hz, 1H), 6.42 (t, ] = 7.7 Hz, 1H), 5.10
(s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 141.64, 140.60, 139.41, 139.16, 134.25, 128.77,

128.05, 127.94, 127.02, 126.75, 126.69, 124.29, 123.84, 118.31, 116.71, 115.77, 115.56, 113.65,
105.56, 105.49, 65.30, 59.75 ppm.

Elemental analysis calculated: C 75.09, H 4.73, N 10.95
Elemental analysis found: C 74.86, H 4.79, N 11.20
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Bln

LL0

HN_ _N

NH
FsCu
3o

Chemical Formula: Cy5H4gF3N3O

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-(trifluormethoxy)benzyl
alcohol (2 mmol, 414 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1
mol%) and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C
using an open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction
time, benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to
the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 7 mL H>O is added. After adding 10 mL pentane the precipitation is filtered and
washed with pentane. The product is obtained as a yellow solid after drying in vacuo overnight
(606 mg, 1.40 mmol, 70 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.50 (d, J = 7.5 Hz, 1H), 7.45 (t, ] = 7.6 Hz, 1H), 7.41
~7.32 (m, 1H), 7.27 (dd, ] = 9.6, 6.2 Hz, 1H), 7.19 (t, ] = 7.8 Hz, 1H), 7.13 (dd, J=11.9, 8.0 Hz,
1H), 7.04 (s, 1H), 6.99 (d, ] = 8.1 Hz, 1H), 6.87 (dd, J = 8.7, 2.3 Hz, 1H), 6.70 — 6.64 (m, 1H), 6.60
(d,7=7.3 Hz, 1H), 5.06 (d, J = 3.8 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 142.48, 141.99, 140.67, 139.36, 138.09, 134.24,
128.75, 127.89, 126.97, 126.84, 126.65, 122.45, 121.35, 118.59, 118.25, 115.73, 113.92, 113.70,
105.85, 105.57, 65.46, 59.67 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): 8 = -57.31 (s) ppm.

Elemental analysis calculated: C 69.28, H 4.19, N 9.69
Elemental analysis found: C 69.62, H 4.23, N 10.02

S71

235



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Blo

Lo

HN__N
NH

OLo
Chemical Formula: Cy5H1gN305
In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), (6-aminobenzo[d][1,3]dioxol-5-
yl)methanol (2 mmol, 334 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1
mol%) and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C
using an open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction
time, benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to
the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x 10
mL), the organic layers were dried with Na>xSO4 and the solvent was removed in vacuo. The crude
product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:2) and

obtained as a yellow solid (621 mg, 1.58 mmol, 79 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.48 (d, J = 7.6 Hz, 2H), 7.42 (t, ] = 7.6 Hz, 2H), 7.33
(t, T=7.2 Hz, 1H), 7.28 —7.20 (m, 2H), 7.17 (t, ] = 7.8 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 7.05 (d,
J=7.8 Hz, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.67 (s, 2H), 6.56 (d, J = 7.3 Hz, 1H), 6.52 (d, I = 3.7
Hz, 1H), 6.26 (s, 1H), 5.74 (s, 1H), 5.68 (s, 1H), 4.99 (d, ] = 3.4 Hz, 1H) ppm.

13C NMR (DMSO-dg, 125 MHz, 293 K): § = 146.91, 142.18, 141.13, 139.86, 138.15, 138.13,
134.26, 128.58, 127.68, 126.95, 126.87, 126.66, 117.80, 115.44, 113.84, 113.74, 105.73, 105.61,
105.28, 99.89, 95.69, 65.61, 60.03 ppm.

Elemental analysis calculated: C 76.32, H 4.87, N 10.68
Elemental analysis found: C 75.96 H 4.87 N 10.39
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Blp

Chemical Formula: CogHy¢N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), (3-aminonaphthalen-2-yl)methanol
(2 mmol, 347 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature. The product precipitates during reaction. For purification, it was filtrated, washed
with H20 and cold diethyl ether and dried at 70 °C in vacuo. The product is obtained as a colourless
solid (583 mg, 1.46 mmol, 73 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): § = 7.60 — 7.54 (m, 3H), 7.53 (d, ] = 3.9 Hz, 1H), 7.44
(dd, J=14.1, 7.2 Hz, 4H), 7.35 (dd, J = 9.7, 5.7 Hz, 2H), 7.27 — 7.15 (m, 3H), 7.11 (dd, J = 13.9,
8.0 Hz, 2H), 7.01 (t, ] = 7.5 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.91 (s, 1H), 6.70 (d, J = 4.0 Hz,
1H), 6.67 (d, ] = 7.4 Hz, 1H), 5.27 (d, J = 3.6 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 142.34, 141.90, 140.83, 139.80, 134.26, 134.14,
128.64, 127.84, 127.34, 126.99, 126.61, 125.89, 125.64, 125.44, 124.76, 124.51, 121.30, 118.08,
115.51, 113.79, 105.78, 105.57, 65.58, 60.19 ppm.

Elemental analysis calculated: C 84.18, H 5.30, N 10.52
Elemental analysis found: C 83.78, H 5.02, N 10.34
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of Blq

reds

HN__N

= NH

|
N

Chemical Formula: Cp3HgN4

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-pyridinecarboxaldehyde
(2 mmol, 225 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
benzaldehyde (2 mmol, 203 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature. The product precipitates during reaction. For purification, it was filtrated, washed
with H20 and cold diethyl ether and dried at 70 °C in vacuo. The product is obtained as a light
pink solid (603 mg, 1.72 mmol, 86 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.76 (d, J = 4.2 Hz, 1H), 7.69 (d, ] = 4.4 Hz, 1H),
7.47 (dt, ] =20.0, 7.6 Hz, 5H), 7.36 (dd, ] = 16.0, 7.5 Hz, 2H), 7.27 (d,] = 7.9 Hz, 1H), 7.22 - 7.12
(m, 2H), 7.10 (d, J = 7.7 Hz, 1H), 6.99 (d, J = 8.1 Hz, 1H), 6.66 (d, J = 4.3 Hz, 1H), 6.61 (d,
J=7.3Hz, 1H), 6.43 — 6.37 (m, 1H), 5.06 (d, ] =3.7 Hz, 1H) ppm.

3C NMR (DMSO-de, 125 MHz, 293 K): 5 = 154.30, 147.20, 141.73, 140.46, 139.35, 134.25,

132.94, 128.74, 127.95, 126.99, 126.85, 126.66, 118.41, 116.96, 115.68, 113.58, 112.17, 105.74,
64.95, 59.61 ppm.

Elemental analysis calculated: C 78.83, H 5.18, N 15.99
Elemental analysis found: C 78.52, H 5.41, N 16.01
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2a

Chemical Formula: C4H1gCIN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
4-chlorobenzaldehyde (2 mmol, 281 mg) is diluted in 0.7 mL 2-MeTHF and added with a syringe
to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H2O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na>SO4 and the solvent was removed in vacuo. The
crude product was purified by recrystallization in ethyl acetate and obtained as yellow crystals
(537 mg, 1.40 mmol, 70 %).

TH NMR (CD;CN, 500 MHz, 293 K): 8= 7.54 (d, ] = 8.3 Hz, 2H), 7.54 (d, ] = 8.3 Hz, 2H), 7.42
(d,J=8.5 Hz, 2H), 7.42 (d, ] = 8.5 Hz, 2H), 7.27 (t, ] = 7.9 Hz, 1H), 7.27 (t, ] = 7.9 Hz, 1H), 7.22
(t, ]=7.8 Hz, 1H), 7.22 (t, 1= 7.8 Hz, 1H), 7.17 (d, ] = 8.2 Hz, 1H), 7.17 (d, ] = 8.2 Hz, 1H), 7.07
(t,]=6.5 Hz, 2H), 6.99 (d, ] = 7.7 Hz, 1H), 6.93 (t, ] = 7.7 Hz, 1H), 6.67 (d, ] = 7.4 Hz, 1H), 6.67
(d,J =74 Hz, 1H), 6.62 (d, ] = 8.0 Hz, 1H), 6.62 (d, ] = 8.0 Hz, 1H), 6.54 (d, J = 4.8 Hz, 1H),
6.48 (t, ] =7.5 Hz, 1H), 6.48 (t, J=7.5 Hz, 1H), 5.91 (d, ] =3.2 Hz, 1H), 5.65 (d, ] = 4.4 Hz, 1H),
5.19(d, ] = 3.9 Hz, 1H) ppm.

13C NMR (CD3CN, 125 MHz, 293 K): 5= 143.87, 142.28, 142.08, 140.71, 135.85, 134.29, 130.04,
129.79, 129.54, 128.11, 127.78, 126.59, 123.21, 119.85, 117.89, 117.75, 115.58, 115.11, 107.48,
66.85,61.77 ppm

Elemental analysis calculated: C 75.09, H 4.73, N 10.95

Elemental analysis found: C 74.82, H 5.04, N 10.80
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2b

HN___N

Chemical Formula: C4H1gCIN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
2-chlorobenzaldehyde (2 mmol, 225 pL) is diluted in 0.7 mL 2-MeTHF and added with a syringe
to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:1)

and obtained as an orange solid (575 mg, 1.50 mmol, 75 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): & = 7.58 — 7.49 (m, 2H), 7.46 — 7.39 (m, 2H), 7.36 (d, J
=3.9Hz, 1H), 7.27 (t, J =79 Hz, 1H), 7.17 (t, ] = 7.8 Hz, 1H), 7.11 (d, ] = 8.0 Hz, 2H), 7.06 (d,
J=7.8 Hz, 1H), 6.96 (d, J = 8.1 Hz, 1H), 6.90 (t,J = 7.6 Hz, 1H), 6.81 (d, ] = 4.6 Hz, 1H), 6.74
(d, J =4.5 Hz, 1H), 6.59 (dd, J = 10.5, 7.8 Hz, 2H), 6.42 (t, ] = 7.4 Hz, 1H), 5.14 (d, J = 3.8 Hz,
1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 143.32, 140.36, 139.69, 138.73, 134.36, 131.99,
130.14, 129.82, 129.77, 128.15, 126.96, 126.71, 125.31, 121.47, 117.90, 115.69, 115.44, 113.72,
113.06, 105.49, 105.23, 63.94, 59.58 ppm.

Elemental analysis calculated: C 75.09, H 4.73, N 10.95

Elemental analysis found: C 75.58, H4.51, N 11.02
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2¢

C
550

Chemical Formula: C4H1gFN3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
4-fluorobenzaldehyde (2 mmol, 215 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe
to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:1)

and obtained as a yellow solid (683 mg, 1.85 mmol, 92 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): § = 7.96 (dd, J = 8.5, 5.6 Hz, 2H), 7.77 (d, ] = 3.7 Hz,
1H), 7.72 — 7.65 (m, 3H), 7.61 (t, ] = 7.8 Hz, 1H), 7.58 — 7.46 (m, 3H), 7.45 — 7.38 (m, 2H), 7.32
(t,J=7.6 Hz, 1H), 7.09 — 7.00 (m, 3H), 6.83 (t, ] = 7.4 Hz, 1H), 5.52 (d, J = 3.1 Hz, 1H) ppm.

3C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.47, 141.45, 140.39, 138.97, 134.73, 129.53,
129.46, 128.45, 127.37, 127.05, 125.86, 122.05, 118.46, 116.07, 115.92, 115.84, 115.75, 114.25,
113.88, 106.20, 105.84, 65.47, 60.41 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): § = -115.19 (m) ppm.

Elemental analysis calculated: C 78.45, H 4.94, N 11.44
Elemental analysis found: C 77.87, H5.15, N 11.41
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2d

HN__N

Chemical Formula: Cp4HgBrN;

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
2-bromobenzaldehyde (2 mmol, 234 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe
to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via recrystallization in ethyl acetate at -4 °C and obtained as orange

crystals (719 mg, 1.67 mmol, 84 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.70 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H),
7.45(t,J =7.5 Hz, 1H), 7.38 = 7.30 (m, 2H), 7.27 (t,J =8.0 Hz, 1H), 7.17 (t, ] = 7.8 Hz, 1H), 7.11
(d, J=8.0 Hz, 2H), 7.07 (d, ] = 7.8 Hz, 1H), 6.96 (d, ] = 8.1 Hz, 1H), 6.90 (t, ] = 7.4 Hz, 1H), 6.83
(d,J=4.7 Hz, 1H), 6.63 (d, ] = 4.5 Hz, 1H), 6.59 (t, ] = 8.1 Hz, 2H), 6.42 (s, 1H), 5.13 (d, ] = 3.9
Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.31, 140.30, 140.10, 139.67, 134.36, 133.45,
130.10, 129.98, 128.17, 127.51, 126.94, 126.71, 125.33, 122.17, 121.53, 117.92, 115.70, 115.44,
113.76, 113.02, 105.49, 105.37, 66.08, 59.50 ppm.

Elemental analysis calculated: C 67.30, H 4.24, N 9.81
Elemental analysis found: C 67.68, H 3.97, N 9.83
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2e

HN__N
NH

Chemical Formula: Cy5H4N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 2-
methylbenzaldehyde (2 mmol, 233 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to
the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane
(3 x 10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in vacuo.
The crude product was purified via column chromatography over Alox N (pentane/ethyl acetate:

5:1) and obtained as a yellow solid (660 mg, 1.82 mmol, 91 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.39 (d, ] = 6.3 Hz, 1H), 7.34 (s, 1H), 7.25 (s, 3H),
7.19—7.03 (m, 4H), 6.95 (d, ] = 7.6 Hz, 1H), 6.91 — 6.84 (m, 1H), 6.78 (s, 1H), 6.65 (s, 1H), 6.60
(d,J=7.4Hz, 1H), 6.56 (d, ] = 6.6 Hz, 1H), 6.41 — 6.34 (m, 1H), 5.08 (s, 1H), 2.35 (s, 3H) ppm.
13C NMR (DMSO-ds, 125 MHz, 293 K): & = 143.71, 140.68, 139.86, 139.51, 135.80, 134.38,
130.92, 128.02, 127.83, 127.60, 126.93, 126.75, 125.50, 125.24, 121.39, 117.72, 115.33, 115.27,
113.79, 112.92, 105.34, 105.14, 63.91, 59.70, 18.30 ppm.

Elemental analysis calculated: C 82.61, H 5.82, N 11.56
Elemental analysis found: C 82.32, H 5.87, N 11.70
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2f

o

HN__N
NH

Chemical Formula: C5H,1N3O

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, p-anisaldehyde
(2 mmol, 244 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the reaction mixture
via a septum. After stirring for 15 h, the mixture is cooled down to room temperature and 2 mL
H>0 is added. The aqueous phase is extracted with dichloromethane (3 x 10 mL), the organic layers
were dried with NaxSO4 and the solvent was removed in vacuo. The crude product was purified
via recrystallization in ethyl acetate at -4 °C and obtained as yellow crystals (592 mg, 1.56 mmol,
78 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.40 (d, ] = 8.5 Hz, 1H), 7.32 (d, ] = 3.4 Hz, 1H),
723 (t, =79 Hz, 1H), 7.16 (t, ] = 7.8 Hz, 1H), 7.08 (dd, J = 14.5, 7.9 Hz, 1H), 7.03 (d,J = 7.7
Hz, 1H), 6.97 (dd, J = 13.5, 8.4 Hz, 1H), 6.91 (d, ] = 4.0 Hz, 1H), 6.86 (t, ] = 7.5 Hz, 1H), 6.58 (t,
J=82Hz, 1H), 6.52 (d, ] =3.7 Hz, 1H), 6.38 (t, ] = 7.3 Hz, 1H), 5.10 (d, ] = 3.2 Hz, 1H), 3.76 (s,
1H) ppm.

BC NMR (DMSO-ds, 125 MHz, 293 K): 6 = 158.83, 143.23, 141.19, 140.05, 134.29, 134.14,
128.13, 127.92, 126.88, 126.62, 125.36, 121.63, 117.80,1115.39, 115.30, 113.94, 113.82, 113.31,
105.63, 105.26, 65.08, 59.89, 55.12 ppm.

Elemental analysis calculated: C 79.13, H 5.58, N 11.07
Elemental analysis found: C 78.70, H 5.58, N 10.89
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2g

sePe

Chemical Formula: C35H,5N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, trans-4-
stilbenecarboxyaldehyde (2 mmol, 416 mg) is diluted in 2 mL 2-MeTHF and added with a syringe
to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature. The product precipitates during reaction. For purification it was filtrated, washed with
H20 and cold diethyl ether and dried at 70 °C in vacuo. The product is obtained as a white solid
(614 mg, 1.36 mmol, 68 %).

'"H NMR (DMSO-ds, 500 MHz, 293 K): § = 7.67 (d, ] = 8.0 Hz, 1H), 7.61 (d, ] = 7.5 Hz, 1H),
7.51(d, J=17.9 Hz, 1H), 7.41 — 7.34 (m, 2H), 7.31 — 7.23 (m, 2H), 7.17 (t, ] = 7.7 Hz, 1H), 7.13 —
7.04 (m, 2H), 6.97 (t,J = 6.7 Hz, 1H), 6.88 (t, J = 7.5 Hz, 1H), 6.65 — 6.57 (m, 2H), 6.39 (t, ] =7.3
Hz, 1H), 5.14 (d, J = 3.0 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.18, 141.79, 141.11, 140.00, 137.01, 136.58,
134.30, 128.75, 128.60, 128.02, 127.97, 127.71, 127.36, 126.91, 126.73, 126.62, 126.50, 125.40,
121.66, 117.90, 115.51, 115.35, 113.80, 113.38, 105.64, 105.35, 65.40, 60.09 ppm.

Elemental analysis calculated: C 85.11, H 5.58, N 9.31
Elemental analysis found: C 84.77, H 5.37, N 9.03
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2h

p°r

Chemical Formula: CygH21N30,

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 4-(acetyloxy)-
benzaldehyde (2 mmol, 278 uL) is added with a syringe to the reaction mixture via a septum. After
stirring for 15 h, the mixture is cooled down to room temperature and 2 mL H>O is added. The
aqueous phase is extracted with ethyl acetate (3 x 10 mL), the organic layers were dried with
Na2SO4 and the solvent was removed in vacuo. The crude product was purified via column
chromatography over Alox N (pentane/ethyl acetate: 5:1) and obtained as an orange-brown solid

(562 mg, 1.38 mmol, 69 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.52 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 3.5 Hz, 1H),
7.25(t,J=17.9 Hz, 1H), 7.21 — 7.14 (m, 1H), 7.11 (d, = 8.1 Hz, 1H), 7.06 (t, J = 9.0 Hz, 1H), 6.97
(t, ] = 6.3 Hz, 1H), 6.87 (t, ] = 7.4 Hz, 1H), 6.59 (dd, ] = 14.4, 8.1 Hz, 1H), 6.39 (t, ] = 7.3 Hz,
1H), 5.10 (d, J = 3.2 Hz, 1H), 2.27 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 169.27, 149.96, 143.05, 141.03, 139.93, 139.82,
134.28, 128.07, 127.98, 126.92, 126.60, 125.41, 121.99, 121.59, 117.96, 115.58, 115.36, 113.78,
113.41, 105.66, 105.34, 65.15, 59.98, 20.87 ppm.

Elemental analysis calculated: C 76.64, H 5.19, N 10.31
Elemental analysis found: C 76.76, H 5.36, N 9.95
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2i

ﬁ?

Chemical Formula: C5H1gN30,

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, piperonal (2
mmol, 301 mg) is diluted in 0.7 mL 2-MeTHF and added with a syringe to the reaction mixture
via a septum. After stirring for 15 h, the mixture is cooled down to room temperature and 2 mL
H>O0 is added. The aqueous phase is extracted with dichloromethane (3 x 10 mL), the organic layers
were dried with NaxSO4 and the solvent was removed in vacuo. The crude product was purified
via recrystallization in ethyl acetate at -4 °C and obtained as yellow crystals (621 mg, 1.58 mmol,
79 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8= 7.32 (d, J = 3.8 Hz, 1H), 7.23 (t, ] = 7.9 Hz, 1H), 7.16
(t,]=7.8 Hz, 1H), 7.08 (dd, J = 13.7, 7.9 Hz, 2H), 7.01 (d, J = 7.8 Hz, 1H), 6.98 — 6.92 (m, 4H),
6.86 (t, ] = 7.5 Hz, 1H), 6.58 (d, ] = 7.7 Hz, 2H), 6.47 (d, ] = 4.3 Hz, 1H), 6.38 (, ] = 7.4 Hz, 1H),
6.03 (d, ] =5.2 Hz, 2H), 5.13 (d, ] = 3.7 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.62, 146.82, 143.05, 141.07, 140.00, 136.25,
134.26, 127.94, 126.88, 126.59, 125.37, 121.63, 120.35, 117.86, 115.50, 115.35, 113.81, 113.30,
108.11, 106.95, 105.65, 105.34, 101.15, 65.28, 59.94 ppm.

Elemental analysis calculated: C 76.32, H 4.87, N 10.68
Elemental analysis found: C 76.01, H 4.82, N 10.60
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2j

;\
N

HN s
NH

Chemical Formula: Cy,H47N3S

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
2-thiophenecarboxaldehyde (2 mmol, 187 pL) is diluted in 0.5 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to
room temperature and 2 mL H»O is added. The aqueous phase is extracted with dichloromethane
(3 x 10 mL), the organic layers were dried with Na>SO4 and the solvent was removed in vacuo.
The crude product was purified via column chromatography over Alox N (pentane/ethyl acetate:
5:0.5) and obtained as a yellow solid (547 mg, 1.54 mmol, 77 %).

TH NMR (DMSO-ds, 400 MHz, 293 K): 8 = 7.51 (d, ] = 4.9 Hz, 1H), 7.37 (d, J = 3.6 Hz, 1H),
7.24(t,J =79 Hz, 1H), 7.19 (t,J = 7.8 Hz, 1H), 7.15 — 7.08 (m, 4H), 7.07 — 6.99 (m, 2H), 6.98 (d,
J=8.1Hz, 1H), 6.89 (t, J= 7.5 Hz, 1H), 6.78 (d, J = 4.4 Hz, 1H), 6.62 (dd, J = 10.0, 7.9 Hz, 2H),
6.44 (t,J=7.4 Hz, 1H), 5.36 (d, ] = 3.5 Hz, 1H) ppm.

13C NMR (DMSO-ds, 101 MHz, 293 K): § = 147.26, 142.65, 140.32, 140.17, 134.32, 127.98,
127.19, 126.96, 126.52, 126.34, 125.65, 125.38, 121.42, 118.18, 116.08, 115.46, 113.84, 113.76,
105.73, 105.56, 62.98, 60.58 ppm.

Elemental analysis calculated: C 74.34, H 4.82, N 11.82
Elemental analysis found: C 73.93, H 4.88, N 11.36
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2k

O

HN__N N
N

NH

Chemical Formula: Cp3HgN4

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
2-pyridinecarboxaldehyde (2 mmol, 191 pL) is diluted in 0.5 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to
room temperature. The product precipitates during reaction. For purification it was filtrated,
washed with H2O and cold diethyl ether and dried at 70 °C in vacuo. The product is obtained as a
light pink solid (470 mg, 1.34 mmol, 67 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): 5= 8.59 (d,J = 4.1 Hz, 1H), 7.84 (t, ] = 7.2 Hz, 1H), 7.57
(d,J=7.8 Hz, 1H), 7.34 (dd, J = 7.0, 5.0 Hz, 1H), 7.28 — 7.15 (m, 4H), 7.12 (d, J = 8.1 Hz, 1H),
7.00 (d, J = 8.1 Hz, 1H), 6.98 — 6.88 (m, 3H), 6.64 (d, J = 7.0 Hz, 2H), 6.53 — 6.41 (m, 2H), 5.32
(d, J=2.7 Hz, 1H) ppm.

3C NMR (DMSO-ds, 125 MHz, 293 K): § = 160.39, 149.37, 143.07, 141.23, 140.43, 137.00,
134.34, 128.03, 126.91, 126.59, 125.51, 123.02, 122.09, 121.44, 117.74, 115.77, 115.53, 113.81,
113.61, 105.52, 105.26, 67.17, 60.79 ppm.

Elemental analysis calculated: C 78.83, H 5.18, N 15.99
Elemental analysis found: C 78.35, H 5.11, N 15.70
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B21

HN___N N

NH

Chemical Formula: Cp3H4gN4

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
4-pyridinecarboxaldehyde (2 mmol, 189 pL) is diluted in 0.5 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to
room temperature. The product precipitates during reaction. For purification it was filtrated,
washed with H>O and cold diethyl ether and dried at 70 °C in vacuo. The product is obtained as a
light pink solid (554 mg, 1.58 mmol, 79 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 8.63 (d, ] = 4.1 Hz, 2H), 7.51 (d, J = 4.4 Hz, 2H),
7.34(d, ] =3.1 Hz, 1H), 7.25 (t, ] = 7.9 Hz, 1H), 7.18 (t,J = 7.7 Hz, 1H), 7.13 (d, ] = 8.1 Hz, 1H),
7.07 (t,J = 6.8 Hz, 2H), 7.02 (d, J = 4.2 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.89 (t, ] = 7.4 Hz, 1H),
6.66 — 6.57 (m, 3H), 6.41 (t, ] = 7.3 Hz, 1H), 5.04 (d, ] = 2.8 Hz, 1H) ppm.

3C NMR (DMSO-ds, 125 MHz, 293 K): § = 151.42, 150.12, 142.79, 140.76, 139.83, 134.28,
128.08, 126.97, 126.56, 125.44, 122.18, 121.53, 118.20, 115.94, 115.50, 113.73, 113.64, 105.66,
105.57, 64.88, 60.36 ppm.

Elemental analysis calculated: C 78.83, H 5.18, N 15.99
Elemental analysis found: C 78.79, H 5.10, N 15.53
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2m

Chemical Formula: Co5H,1N30,

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, o-vanilin (2
mmol, 304 mg) is diluted in 1 mL 2-MeTHF and added with a syringe to the reaction mixture via
a septum. After stirring for 15 h, the mixture is cooled down to room temperature and 2 mL H>O
is added. The aqueous phase is extracted with dichloromethane (3 x 10 mL), the organic layers
were dried with Na2SO4 and the solvent was removed in vacuo. The crude product is purified by
recrystallization in ethyl acetate at -4 °C. The product is obtained as yellow crystals (554 mg, 1.40
mmol, 70 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 8.84 (s, 1H), 7.32 (d, ] = 3.8 Hz, 1H), 7.23 (d,1 = 7.9
Hz, 1H), 7.15 (t,J = 7.8 Hz, 1H), 7.08 (dd, J = 14.3, 7.9 Hz, 2H), 7.01 — 6.91 (m, 3H), 6.86 (d, ] =
7.5 Hz, 2H), 6.78 (t, ] = 7.9 Hz, 1H), 6.72 (s, 2H), 6.55 (dd, J = 14.2, 7.6 Hz, 2H), 6.39 (s, 1H),
5.32(d, ] = 3.7 Hz, 1H), 3.81 (s, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 147.60, 143.68, 143.37, 140.89, 140.06, 134.33,
128.30, 127.99, 126.85, 126.64, 125.31, 121.34, 120.23, 118.19, 117.48, 115.31, 115.27, 113.77,
112.91, 111.50, 105.41, 105.25, 61.54, 59.90, 55.94 ppm.

Elemental analysis calculated: C 75.93, H 5.35, N 10.63
Elemental analysis found: C 75.79, H 5.05, N 10.55
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2n
HN._N ;
Fe

NH@

Chemical Formula: CygHpsFeNs

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
ferrocenecarboxaldehyde (2 mmol, 428 mg) is diluted in 1.5 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to
room temperature. The product precipitates during reaction. For purification it was filtrated,
washed with H2O and cold diethyl ether and dried at 70 °C in vacuo. The product is obtained as a
pink solid (659 mg, 1.44 mmol, 72 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): § = 7.30 (d, J = 3.6 Hz, 1H), 7.25 (t, J=7.9 Hz, 1H), 7.14
(t,J=7.8 Hz, 1H), 7.07 (t, ] = 7.0 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.93 (d, ] = 8.1 Hz, 1H), 6.86
(t,J=7.5Hz, 1H), 6.79 (d, J =4.2 Hz, 1H), 6.60 (d, ] =8.0 Hz, 1H), 6.55 (d, J = 7.3 Hz, 1H), 6.44
(d, J=4.1 Hz, 1H), 6.36 (t, ] = 7.4 Hz, 1H), 5.30 (d, J = 3.4 Hz, 1H), 4.35 (s, 3H), 4.21 (s, 1H),
4.13 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.34, 140.53, 140.02, 134.29, 127.86, 126.84,
126.52, 125.25, 121.15, 117.63, 115.22, 115.15, 113.61, 113.10, 105.45, 105.20, 89.74, 68.99,
68.72, 68.14, 66.83, 66.20, 63.43, 59.66 ppm.

Elemental analysis calculated: C 73.53, H 5.07, N 9.19
Elemental analysis found: C 72.85, H 5.07, N 8.99
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2o

rode

HN__N
NH

Chemical Formula: Cy4Ho5N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol,
247 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-
MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
cyclohexanecarboxaldehyde (2 mmol, 242 pL) is diluted in 0.5 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to
room temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane
(3 x 10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in vacuo.
The crude product was purified via column chromatography over Alox N (pentane/ethyl acetate:
5:0.1) and obtained as a yellow solid (675 mg, 1.90 mmol, 95 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): & = 7.45 (d, ] = 3.5 Hz, 1H), 7.21 — 7.09 (m, 2H), 7.00
(d,1=8.1 Hz, 1H), 6.91 (d, ] = 8.1 Hz, 1H), 6.78 (dd, J = 16.1, 7.7 Hz, 2H), 6.62 (d, ] = 7.3 Hz,
1H), 6.58 (d, ] =4.2 Hz, 1H), 6.42 (d, ] =7.9 Hz, 1H), 6.33 (t, ] = 7.3 Hz, 1H), 5.54 (d, ] =3.5 Hz,
1H), 4.86 (dd, ] = 9.2, 4.2 Hz, 1H), 2.09 (d, ] = 11.7 Hz, 1H), 1.91 (d, J = 12.8 Hz, 1H), 1.83 —
1.60 (m, 4H), 1.30 — 1.06 (m, 4H), 1.02 — 0.92 (m, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 143.20, 141.54, 139.98, 134.32, 127.65, 126.79,
126.62, 125.17, 121.39, 116.98, 115.22, 114.64, 113.79, 113.02, 105.20, 104.58, 68.05, 59.65,
41.33,29.29,27.51, 26.13, 25.38, 25.29 ppm.

Elemental analysis calculated: C 81.09, H 7.09, N 11.82
Elemental analysis found: C 80.49, H 7.16, N 10.99

S89

253



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B2p

HN Nw/k

NH

Chemical Formula: Cy,H,3N3

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-aminobenzyl alcohol (2 mmol, 247
mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and 3 mL 2-MeTHF
are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, pivalaldehyde
(2 mmol, 125 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the reaction mixture
via a septum. After stirring for 15 h, the mixture is cooled down to room temperature and 2 mL
H»0 is added. The aqueous phase is extracted with dichloromethane (3 x 10 mL), the organic layers
were dried with Na2SO4 and the solvent was removed in vacuo. The crude product is purified by
recrystallization in dichloromethane/pentane at -4 °C. The product is obtained as green crystals
(451 mg, 1.37 mmol, 68 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): §=7.41 (d, ] = 3.7 Hz, 1H), 7.21 (t, ] = 7.8 Hz, 1H), 7.12
(t, ] =8.0 Hz, 1H), 7.01 —6.91 (m, 3H), 6.87 (t, J = 7.5 Hz, 1H), 6.75 (d, ] = 7.9 Hz, 1H), 6.70 (d,
J=74Hz 1H), 6.66 (d, ] = 8.0 Hz, 1H), 6.41 (t, ] = 7.4 Hz, 1H), 6.10 (d, J = 4.2 Hz, 1H), 5.29
(d,J=3.6 Hz, 1H), 4.89 (d, ] =4.3 Hz, 1H), 1.11 (s, 9H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 145.35, 142.45, 140.58, 134.52, 127.31, 126.97,
126.83, 126.08, 123.28, 116.46, 115.81, 115.41, 113.95, 113.27, 105.11, 103.85, 73.64, 61.07,
37.95,26.05 ppm.

Elemental analysis calculated: C 80.21, H 7.04, N 12.76
Elemental analysis found: C 80.09, H 6.79, N 12.57
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B3a

HN N A
> | NH
N

Chemical Formula: CpoH¢7N5

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-pyridinecarboxaldehyde
(2 mmol, 225 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 4-
pyridinecarboxaldehyde (2 mmol, 189 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe
to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature. The product precipitates during reaction. For purification, it was filtrated, washed
with H20 and cold diethyl ether and dried at 70 °C in vacuo. The product is obtained as a light
pink solid (632 mg, 1.80 mmol, 90 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): & = 8.65 (d, ] = 5.1 Hz, 2H), 7.77 (dd, J = 12.8, 4.4 Hz,
2H), 7.52 (d, J = 5.2 Hz, 2H), 7.40 (d, ] = 3.9 Hz, 1H), 7.34 (d, ] = 7.3 Hz, 1H), 7.28 (t, ] = 7.9 Hz,
1H), 7.19 (dd, J = 16.8, 8.3 Hz, 2H), 7.11 (d, J = 7.7 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.69 (d, J
=43 Hz, 1H), 6.64 (d, ] = 7.4 Hz, 1H), 6.43 (dd, J = 7.2, 5.0 Hz, 1H), 5.02 (d, J = 3.8 Hz, 1H)
ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 5 = 154.05, 150.73, 150.22, 147.33, 140.05, 139.16,
134.23, 133.03, 127.05, 126.59, 122.06, 118.76, 116.82, 115.89, 113.57, 112.57, 106.02, 105.93,
64.39, 60.02 ppm.

Elemental analysis calculated: C 75.19, H 4.88, N 19.93
Elemental analysis found: C 74.66 H 4.85 N 19.27
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B3b

Chemical Formula: Co4H17BrCIN;

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-5-bromobenzyl alcohol
(2 mmol, 404 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 2-
chlorobenzaldehyde (2 mmol, 225 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to
the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H2O is added. The aqueous phase is extracted with dichloromethane (3 x 10
mL), the organic layers were dried with Na2SO4 and the solvent was removed in vacuo. The crude
product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:2) and
obtained as an orange solid (721 mg, 1.56 mmol, 78 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.56 — 7.52 (m, 1H), 7.50 — 7.46 (m, 1H), 7.44 — 7.41
(m, 2H), 7.38 (d,J=3.8 Hz, 1H), 7.29 (t, J=7.9 Hz, 1H), 7.24 - 7.18 (m, 2H), 7.15 (d, J = 8.2 Hz,
1H), 7.10 (d, J = 7.7 Hz, 1H), 7.05 (d, J = 5.5 Hz, 2H), 7.01 (d, J = 8.1 Hz, 1H), 6.77 (d,J = 4.3
Hz, 1H), 6.61 (t, ] = 7.5 Hz, 2H), 5.11 (d, J = 3.7 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 142.67, 139.92, 139.19, 138.27, 134.34, 131.95,
130.80, 130.22, 129.97, 129.69, 127.75, 127.07, 126.77, 123.64, 118.24, 115.80, 115.18, 113.57,
106.54, 105.73, 105.42, 63.88, 59.26 ppm.

Elemental analysis calculated: C 62.29, H 3.70, N 9.08
Elemental analysis found: C 62.30, H 3.67, N 8.94
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B3¢

Chemical Formula: Cy4H47CloNg

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-6-chlorobenzyl alcohol
(2 mmol, 315 mg), KOBu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 2-
chlorobenzaldehyde (2 mmol, 225 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to
the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na;SOj4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:2)

and obtained as a yellow solid (594 mg, 1.42 mmol, 71 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.85 (d, ] = 7.5 Hz, 1H), 7.47 (t, = 7.5 Hz, 1H), 7.40
~7.34 (m, 2H), 7.23 (dd, J = 15.5, 7.8 Hz, 2H), 7.13 (dd, = 13.9, 5.5 Hz, 3H), 6.92 (t, ] = 7.8 Hz,
1H), 6.81 (s, 1H), 6.77 — 6.69 (m, 3H), 6.11 (s, 1H), 5.93 (d, ] = 7.1 Hz, 1H), 5.45 (s, 1H) ppm.
13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 145.25, 141.84, 140.24, 137.25, 134.23, 132.15,
131.46, 130.29, 129.97, 128.98, 127.22, 126.69, 125.12, 122.93, 116.42, 116.03, 115.54, 112.72,
105.71, 65.08, 64.38 ppm.

Elemental analysis calculated: C 68.91, H 4.10, N 10.05
Elemental analysis found: C 68.91, H4.11, N 10.04

S93

257



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B3d

e

HN__N o

NH

F
Chemical Formula: CooH41gFN3O

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-4-fluorobenzyl alcohol
(2 mmol, 228 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.02 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHEF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
furfural (2 mmol, 166 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the reaction
mixture via a septum. After stirring for 15 h, the mixture is cooled down to room temperature and
2 mL H20 is added. The aqueous phase is extracted with dichloromethane (3 x 10 mL), the organic
layers were dried with Na>SOj4 and the solvent was removed in vacuo. The crude product was
purified via column chromatography over Alox N (pentane/ethyl acetate: 5:0.5) and obtained as an

orange solid (607 mg, 1.80 mmol, 85 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 =7.71 (s, 1H), 7.32 (d, J= 3.4 Hz, 1H), 7.24 (, ] = 7.9
Hz, 1H), 7.17 (it, T = 15.2, 7.5 Hz, 4H), 6.99 (dd, ] = 12.0, 8.0 Hz, 2H), 6.63 (d, ] = 7.4 Hz, 1H),
6.60 (d, ] = 3.8 Hz, 1H), 6.47 (s, 1H), 6.42 (d, ] = 3.0 Hz, 1H), 6.37 (d, T = 11.2 Hz, 1H), 6.24 (t, ]
=8.7 Hz, 1H), 5.25 (d, ] = 3.0 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 163.25, 161.34, 153.54, 144.56, 144.47, 143.29,
140.08, 140.02, 134.30, 127.25, 127.17, 126.95, 126.52, 118.31, 117.23, 115.71, 113.90, 110.55,
109.45, 105.77, 102.37, 102.20, 99.70, 99.50, 61.29, 60.90 ppm.

1F NMR (DMSO-ds, 376 MHz, 293 K): § = -114.72 (m) ppm.

Elemental analysis calculated: C 73.94, H4.51, N 11.76
Elemental analysis found: C 73.49 H4.43 N 11.70
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B3e

HN__N

. éﬁ
F
Chemical Formula: CygHooFFeN;

In a glovebox, 1,8-diaminonaphthalene (2 mmol, 316 mg), 2-amino-3-fluorobenzyl alcohol
(2 mmol, 228 mg), KO'Bu (0.6 mmol, 67 mg, 30 mol%), Mn-I (0.01 mmol, 12 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time,
ferrocenecarboxaldehyde (2 mmol, 428 mg) is diluted in 0.5 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to
room temperature and 2 mL H20 is added. The aqueous phase is extracted with dichloromethane
(3 x 10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in vacuo.
The crude product was purified via column chromatography over Alox N (pentane/ethyl acetate:

5:1->5:3) and obtained as an orange solid (713 mg, 1.50 mmol, 75 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 =7.39 (d, ] = 4.0 Hz, 1H), 7.26 (t, ] = 7.9 Hz, 1H), 7.18
—7.08 (m, 1H), 7.07 (d, ] = 24.0 Hz, 1H), 6.99 — 6.91 (m, 1H), 6.88 — 6.80 (m, 1H), 6.78 (d, ] =
5.2 Hz, 1H), 6.55 (d, ] = 7.4 Hz, 1H), 6.50 (d, ] = 5.1 Hz, 1H), 6.36 (dd, ] = 12.8, 7.8 Hz, 1H), 5.36
(d,7=3.8 Hz, 1H), 4.38 (s, 1H), 4.35 (s, 2H), 4.23 (s, 1H), 4.14 (d, ] = 11.9 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): 8 = 150.45, 148.55, 140.09, 139.61, 134.24, 131.50,
131.40, 126.92, 126.54, 124,31, 124.28, 121.10, 118.02, 115.40, 114.31, 114.25, 113.63, 113.50,
105.64, 105.39, 89.45, 69.03, 68.81, 68.02, 66.97, 66.28, 63.13, 59.33, 39.52 ppm.

19F NMR (DMSO-ds, 376 MHz, 293 K): & =-136.35 (dd, J1 = 11.2 Hz, J» = 4.6 Hz) ppm.

Elemental analysis calculated: C 70.75, H 4.67, N 8.84
Elemental analysis found: C 70.55, H 4.66, N 8.84
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B4a

HN Np

NH

Chemical Formula: C35H35N3

In a glovebox, 1,8-diamino-4,6-di-fert-butyl-naphthalene (1 mmol, 270.5 mg), 2-aminobenzyl
alcohol (1 mmol, 123 mg), KO'Bu (0.3 mmol, 33 mg, 30 mol%), Mn-I (0.01 mmol, 6 mg, 1 mol%)
and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using
an open system consisting of a reflux condenser and a bubble counter. After 6 hours reaction time,
benzaldehyde (1 mmol, 108 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane
(3x10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:1)

and obtained as an orange solid (360 mg, 0.78 mmol, 78 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): 8 =7.48 (d, ] = 7.5 Hz, 1H), 7.40 (t, ] = 7.6 Hz, 1H), 7.32
(t,J=7.3 Hz, 1H), 7.08 (d,J = 7.5 Hz, 1H), 7.04 (dd, ] = 4.5, 2.3 Hz, 1H), 6.95 — 6.86 (m, 1H),
6.63 (d,J =10.4 Hz, 1H), 6.49 (d, J =3.9 Hz, 1H), 6.42 (t,J = 7.4 Hz, 1H), 5.11 (d, J = 3.2 Hz,
1H), 1.30 (s, 1H), 1.28 (s, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 149.10, 148.69, 143.36, 142.45, 140.37, 139.66,
133.97, 128.48, 128.01, 127.75, 127.27, 125.59, 121.48, 115.44, 114.01, 113.36, 111.51, 111.34,
105.40, 103.16, 99.54, 65.70, 61.19, 34.74, 34.39, 31.23, 31.13 ppm.

Elemental analysis calculated: C 83.26, H 7.64, N 9.10

Elemental analysis found: C 83.61, H 7.87, N 9.19
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B4b

HN.__N

NH

Chemical Formula: CygHy¢N3

In a glovebox, 5,6-acenaphthenediamine (1 mmol, 184.3 mg), 2-aminobenzyl alcohol (1 mmol,
123 mg), KO'Bu (0.3 mmol, 33 mg, 30 mol%), Mn-I (0.01 mmol, 6 mg, 1 mol%) and 3 mL 2-
MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open system
consisting of a reflux condenser and a bubble counter. After 6 hours reaction time, benzaldehyde
(1 mmol, 108 uL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the reaction mixture
via a septum. After stirring for 15 h, the mixture is cooled down to room temperature and 2 mL
H>0 is added. The aqueous phase is extracted with dichloromethane (3 x 10 mL), the organic layers
were dried with Na2SOj and the solvent was removed in vacuo. The crude product was isolated by
precipitation in pentane and subsequent washing with water and drying in vacuo. A brown solid

was obtained (210 mg, 0.56 mmol, 56 %).

IH NMR (DMSO-ds, 500 MHz, 293 K): 8= 7.50 (d, J = 7.5 Hz, 1H), 7.42 (t, ] = 7.6 Hz, 1H), 7.34
(t,J=7.3 Hz, 1H), 7.11 — 7.00 (m, 1H), 6.98 — 6.88 (m, 1H), 6.84 (t, ] = 7.2 Hz, 1H), 6.58 (d,J =
7.6 Hz, 1H), 6.49 (t,J = 6.4 Hz, 1H), 6.35 (t, ] = 7.1 Hz, 1H), 5.06 (d, J = 3.8 Hz, 1H), 3.15 (dd, J
=356, 13.0 Hz, 1H) ppm.

3C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.40, 142.55, 139.55, 138.08, 136.72, 134.58,
132.17, 128.53, 127.79, 127.68, 127.01, 125.64, 121.64, 119.88, 119.47, 115.28, 113.17, 112.55,
106.57, 106.17, 65.72, 60.96, 29.80, 29.73 ppm.

Elemental analysis calculated: C 83.17, H 5.64, N 11.19

Elemental analysis found: C83.15, H 5.81, N 11.25
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B¢

Chemical Formula: Cy4HgCINg

In a glovebox, 2-choro-1,8-diamino-naphthalene (1 mmol, 192.6 mg), 2-aminobenzyl alcohol
(1 mmol, 123 mg), KO'Bu (0.3 mmol, 33 mg, 30 mol%), Mn-I (0.01 mmol, 6 mg, 1 mol%) and
3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an
open system consisting of a reflux condenser and a bubble counter. After 6 hours reaction time,
benzaldehyde (1 mmol, 108 uL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the
reaction mixture via a septum. After stirring for 15 h, the mixture is cooled down to room
temperature and 2 mL H>O is added. The aqueous phase is extracted with dichloromethane (3 x
10 mL), the organic layers were dried with Na>SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:2)

and obtained as a yellow solid (272 mg, 0.71 mmol, 71 %).

'H NMR (DMSO-ds, 500 MHz, 293 K): § = 7.53 (d, J = 7.3 Hz, 2H), 7.45 (t, ] = 7.6 Hz, 2H), 7.40
—7.23 (m, 4H), 7.18 (dd, J = 18.9, 7.9 Hz, 2H), 7.05 — 6.96 (m, 2H), 6.91 (d, J = 7.6 Hz, 1H), 6.87
(dd,J=11.8,4.5Hz, 1H), 6.65 (d, ] =4.4 Hz, 1H), 6.61 (d, J=7.5 Hz, 1H), 6.37 (dd, J = 10.8, 4.0
Hz, 1H), 5.23 (d, J=4.5 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 143.11, 142.25, 140.56, 135.34, 132.80, 128.67,
128.13, 127.81, 127.14, 126.98, 126.92, 125.15, 120.96, 118.12, 116.34, 115.51, 114.23, 113.34,
108.67, 106.83, 65.42, 59.89 ppm.

Elemental analysis calculated: C 75.09, H 4.73, N 10.95

Elemental analysis found: C 75.19, H4.58, N 11.15
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B5a

R
HN N

O
NH

Cl
Chemical Formula: C3oH3,CIN;O

In a glovebox, 1,8-diamino-4,6-di-fert-butyl-naphthalene (I  mmol, 270.5 mg),
2-amino-4-chloro-benzyl alcohol (1 mmol, 157 mg), KOBu (0.3 mmol, 33 mg, 30 mol%), Mn-I
(0.01 mmol, 6 mg, 1 mol%) and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture
is heated at 100 °C using an open system consisting of a reflux condenser and a bubble counter.
After 6 hours reaction time, furfural (1 mmol, 83 pL) is diluted in 0.5 mL 2-MeTHF and added
with a syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled
down to room temperature and 2 mL H>O is added. The aqueous phase is extracted with ethyl
acetate (3 x 10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in
vacuo. The crude product was purified via column chromatography over Alox N (pentane/ethyl

acetate: 5:2) and obtained as an orange solid (354 mg, 0.73 mmol, 73 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): 8 = 7.68 (d, ] = 0.7 Hz, 1H), 7.15 (dd, J = 9.9, 6.0 Hz,
2H), 7.09 (d, J = 0.8 Hz, 1H), 7.03 (d, J = 3.0 Hz, 1H), 6.97 (d, ] = 1.5 Hz, 1H), 6.89 (s, 1H), 6.67
(dd,J=10.2, 1.8 Hz, 2H), 6.56 (d, J=3.6 Hz, 1H), 6.50 (dd, J =8.2, 2.0 Hz, 1H), 6.45 (dd, J=3.1,
1.8 Hz, 1H), 6.40 (d, J = 3.2 Hz, 1H), 5.24 (d, ] = 2.9 Hz, 1H), 1.30 (s, 20H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 153.56, 149.17, 148.71, 144.38, 143.14, 139.67,
139.39, 133.99, 132.44, 127.47, 119.69, 115.40, 114.36, 112.60, 111.99, 111.42, 110.51, 109.41,
105.37, 103.78, 61.93, 61.12, 34.80, 34.42, 31.21, 31.11 ppm.

Elemental analysis calculated: C 74.13, H 6.64, N 8.65

Elemental analysis found: C 74.33, H 6.63, N 8.42
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of BSb

Chemical Formula: Co4H4gCIN;O

In a glovebox, 5,6-acenaphthenediamine (1 mmol, 184.3 mg), 2-amino-4-chloro-benzyl alcohol
(1 mmol, 157 mg), KO'Bu (0.3 mmol, 33 mg, 30 mol%), Mn-I (0.01 mmol, 6 mg, 1 mol%) and 3
mL 2-MeTHF are added to a Schlenk tube. The reaction mixture is heated at 100 °C using an open
system consisting of a reflux condenser and a bubble counter. After 6 hours reaction time, furfural
(1 mmol, 83 pL) is diluted in 0.5 mL 2-MeTHF and added with a syringe to the reaction mixture
via a septum. After stirring for 15 h, the mixture is cooled down to room temperature and 2 mL
H0 is added. The crude product was purified by precipitation in pentane and subsequent washing

with water and drying in vacuo. An orange solid was obtained (272 mg, 0.68 mmol, 68 %).

1H NMR (DMSO-ds, 500 MHz, 293 K): 6 =7.71 (s, 1H), 7.14 (d, J = 4.1 Hz, 1H), 7.11 — 7.06 (m,
1H), 7.02 (d, J = 7.4 Hz, 1H), 6.98 (d, J = 7.3 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 6.57 (d, ] = 2.0
Hz, 1H), 6.54 (t, ] = 5.7 Hz, 1H), 647 (dd, J = 3.1, 1.8 Hz, 1H), 6.42 — 6.35 (m, 1H), 5.21 (d, ] =
3.7 Hz, 1H), 3.23 — 3.04 (m, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 153.73, 144.45, 143.28, 139.55, 136.83, 136.46,
135.15, 132.71, 132.22, 127.42, 119.99, 119.42, 115.13, 112.35, 110.53, 109.43, 106.82, 106.77,
67.03,61.71, 61.55,29.79, 29.72, 25.14 ppm.

Elemental analysis calculated: C 72.09, H 4.54, N 10.51

Elemental analysis found: C 72.26, H 4.52, N 10.73
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of BS¢

Eeoe
[ N\

HN N o
NH

Cl
Chemical Formula: C,,H45CI;N3;0

In a  glovebox, 2-choro-1,8-diamino-naphthalene (1 mmol, 1926  mg),
2-amino-4-chloro-benzyl alcohol (1 mmol, 157 mg), KO'Bu (0.3 mmol, 33 mg, 30 mol%), Mn-I
(0.01 mmol, 6 mg, 1 mol%) and 3 mL 2-MeTHF are added to a Schlenk tube. The reaction mixture
is heated at 100 °C using an open system consisting of a reflux condenser and a bubble counter.
After 6 hours reaction time, furfural (1 mmol, 83 pL) is diluted in 0.5 mL 2-MeTHF and added
with a syringe to the reaction mixture via a septum. After stirring for 15 h, the mixture is cooled
down to room temperature and 2 mL H>O is added. The aqueous phase is extracted with DCM
(3x10 mL), the organic layers were dried with Na2SO4 and the solvent was removed in vacuo. The
crude product was purified via column chromatography over Alox N (pentane/ethyl acetate: 5:3)

and obtained as a dark-orange solid (298 mg, 0.73 mmol, 73 %).

TH NMR (DMSO-ds, 500 MHz, 293 K): & = 7.76 (s, 1H), 7.35 (d, J = 4.6 Hz, 1H), 7.30 (dd,
J=16.4,84Hz, 2H), 7.24 (d,] =4.3 Hz, 1H), 7.19 (d, ] = 8.1 Hz, 1H), 7.15 (d, ] = 7.8 Hz, 1H),
7.05(d, J=8.8 Hz, 1H), 6.91 (d, ] =8.2 Hz, 1H), 6.73 (d,J=4.2 Hz, 1H), 6.60 (d, J = 2.0 Hz, 1H),
6.51 (dd, J =3.2, 1.8 Hz, 1H), 6.48 (d, ] = 3.2 Hz, 1H), 6.43 (dd, J = 8.2, 2.0 Hz, 1H), 5.36 (d,
J=4.6 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): § = 153.39, 144.21, 143.61, 139.24, 134.98, 132.80,
132.52, 127.09, 127.07, 126.83, 119.47, 118.63, 116.76, 115.35, 114.22, 112.51, 110.64, 109.79,
109.17, 107.02, 61.52, 60.39 ppm.

Elemental analysis calculated (product + 1 ethyl acetate): C 62.91, H4.67, N 8.47

Elemental analysis found: C 62.81, H4.54, N, 8.67
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B6a

HN N

NH NH,

Chemical Formula: Co4HyoN4

In a glovebox, Mn-I (0.02 mmol, 12.3 mg, dissolved in 0.5 mL 2-MeTHF), KO'Bu (0.6 mmol, 67
mg, dissolved in 0.5 mL 2-MeTHF), 1,8-diaminonaphthalene (2.0 mmol, 316 mg) and 2-
aminobenzyl alcohol (2.0 mmol, 247 mg) are added to a Schlenk tube and dissolved in 3 mL 2-
MeTHE. The reaction mixture is heated at 100 °C under light argon counter flow using an open
system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 2-
aminobenzyl alcohol (2.0 mmol, 247 mg) is dissolved in 1.0 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After 15 hours, the reaction is stopped by cooling to
room temperature and 4 mL water are added. The reaction mixture is diluted with 15 mL pentane,
the precipitate is filtrated and washed with water and pentane. The dried solid is mortared, slurred
with ethanol and stirred for 10 min at 100 °C. After filtration, the product is dried in vacuo and

obtained as light green solid (424 mg, 1.16 mmol, 58 %).

'"H NMR (DMSO-ds, 500 MHz, 293 K): = 7.43 (d, ] = 3.7 Hz, 1H), 7.28 (d, ] = 7.8 Hz, 1H),
7.19—7.11 (m, 4H), 7.10 — 7.04 (m, 2H), 6.97 (d, ] = 8.1 Hz, 1H), 6.89 — 6.82 (m, 2H), 6.78 (d, J
=7.8 Hz, 1H), 6.63 (t,J = 7.4 Hz, 1H), 6.58 (d, ] = 7.0 Hz, 2H), 6.40 — 6.35 (m, 2H), 5.20 (d, J =
3.7 Hz, 1H), 4.97 (s, 2H) ppm.

13C NMR (DMSO-dg, 125 MHz, 293 K): 8 = 145.53, 143.35, 140.26, 139.82, 134.35, 128.59,
128.20, 128.10, 126.99, 126.63, 125.35, 124.40, 120.96, 118.33, 116.41, 115.94, 115.50, 115.39,
114.13, 113.05, 106.14, 105.49, 63.73, 60.44 ppm.

LC-HRMS (ESI+) m/z calculated for [C24H21N4]™: 365.17607, found: 365.17610.
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B6b

HN N

NH NH,

Chemical Formula: Cy5H25Ny

In a glovebox, Mn-I (0.02 mmol, 12.3 mg, dissolved in 0.5 mL 2-MeTHF), KO'Bu (0.6 mmol, 67
mg, dissolved in 0.5 mL 2-MeTHF), 1,8-diaminonaphthalene (2.0 mmol, 316 mg) and 2-
aminobenzyl alcohol (2.0 mmol, 247 mg) are added to a Schlenk tube and dissolved in 3 mL 2-
MeTHE. The reaction mixture is heated at 100 °C under light argon counter flow using an open
system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 2-amino-
4-methylbenzyl alcohol (2.2 mmol, 302 mg) is added to the reaction mixture via a funnel under
argon counter flow and diluted with 1.0 mL 2-MeTHF. After 15 hours, the reaction is stopped by
cooling to room temperature and 4 mL water are added. The reaction mixture is diluted with 15
mL pentane, the precipitate is filtrated and washed with water and pentane. The dried solid is
mortared, slurred with ethanol and stirred for 10 min at 100 °C. After filtration, the product is dried

in vacuo and obtained as dark green solid (287 mg, 0.76 mmol, 38 %).

'TH NMR (DMSO-dg, 500 MHz, 293 K): 8 = 7.42 (d, ] =3.7 Hz, 1H), 7.29 — 7.26 (m, 1H), 7.18 —
7.10 (m, 3H), 7.04 (d, ] = 7.6 Hz, 2H), 6.96 (d, J = 8.1 Hz, 1H), 6.85 (t,J = 7.6 Hz, 1H), 6.81 (d, J
=4.0, 1H), 6.61 — 6.55 (m, 3H), 6.44 (d, J = 7.5 Hz, 1H), 6.38 — 6.33 (m, 2H), 5.19 (d, ] =3.4 Hz,
1H), 4.88 (s, 2H), 2.19 (s, 3H) ppm.

13C NMR (DMSO-dg, 125 MHz, 293 K): § = 145.33, 143.37, 140.33, 139.86, 137.66, 134.34,
128.22, 128.05, 126.96, 126.63, 125.33, 121.79, 120.98, 118.25, 117.28, 116.51, 115.42, 115.36,
114.13, 113.03, 106.10, 105.44, 63.59, 60.35, 20.93 ppm.

LC-HRMS (ESI+) m/= calculated for [CasH23Na]: 379.19172, found: 379.19267.
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of B6c

HN N

NH NH,

Chemical Formula: Cy5H25Ny

In a glovebox, Mn-I (0.02 mmol, 12.3 mg, dissolved in 0.5 mL 2-MeTHF), KO'Bu (0.6 mmol, 67
mg, dissolved in 0.5 mL 2-MeTHF), 1,8-diaminonaphthalene (2.0 mmol, 316 mg) and 2-
aminobenzyl alcohol (2.0 mmol, 247 mg) are added to a Schlenk tube and dissolved in 3 mL 2-
MeTHE. The reaction mixture is heated at 100 °C under light argon counter flow using an open
system consisting of a reflux condenser and a bubble counter. After 2 hours reaction time, 2-amino-
3-methylbenzyl alcohol (2.2 mmol, 302 mg) is dissolved in 1.0 mL 2-MeTHF and added with a
syringe to the reaction mixture via a septum. After 15 hours, the reaction is stopped by cooling to
room temperature and 4 mL water are added. The reaction mixture is diluted with 15 mL pentane,
the precipitate is filtrated and washed with water and pentane. The dried solid is mortared, slurred
with ethanol and stirred for 10 min at 100 °C. After filtration, the product is dried in vacuo and

obtained as greyish green solid (602 mg, 1.59 mmol, 79 %).

'TH NMR (DMSO-ds, 500 MHz, 293 K): § = 7.43 (s, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.20 — 7.13 (m,
3H), 7.07 (dd, J1 = 11.7 Hz, Jo = 8.0 Hz, 2H), 7.02 (d, J = 6.9 Hz, 1H), 6.98 (d, J = 8.1 Hz, 1H),
6.90 — 6.83 (m, 2H), 6.59 (d, J = 7.0 Hz, 3H), 6.43 — 6.35 (m, 2H), 5.21 (s, 1H), 4.75 (s, 2H), 2.15
(s, 3H) ppm.

13C NMR (DMSO-dg, 125 MHz, 293 K): 8 = 143.35, 143.19, 140.21, 139.78, 134.35, 129.85,
128.11, 127.02, 126.62, 126.16, 125.33, 123.89, 122.36, 120.89, 118.42, 116.10, 115.46, 115.39,
114.12, 113.00, 106.09, 105.49, 63.91, 60.47, 17.53 ppm.

LC-HRMS (ESI+) m/z calculated for [CasH23Na]™: 379.19172, found: 379.19234/ 379.19238.
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of C1

HN b N\FO
7—NH
Chemical Formula: C44H43N30

In a glovebox, A25 (2.0 mmol, 426 mg), KOBu (0.6 mmol, 67 mg, dissolved in 1.5 mL 1,4-
dioxane) and carbonyldiimidazol (2.3 mmol, 373 mg) are added to a pressure tube and dissolved
in 8.5 mL 1,4-dioxane. The sealed pressure tube is heated at 130 °C for 2h in an oil bath. After
cooling down to room temperature 30 mL water were added and the product is extracted with
diethyl ether (4 x 50 mL). The combined organic phases are dried with Na>SO4 and the solvent
was removed in vacuo. The crude product was purified via gradient column chromatography over
Alox N (pentane/ethyl acetate 1:1 — pure ethyl acetate) and obtained as light brown solid (406

mg, 1.7 mmol, 85 %, contains ~ 2 % 1,4-dioxane). Diastereomeric ratio: 71:29.

Main isomer: tH NMR (DMSO-d¢, 500 MHz, 293 K): 8 = 7.62 (dd, J1 = 7.3 Hz, Jo = 1.2 Hz, 1H),
7.44-7.36 (m, 3H), 7.29 — 7.25 (m, 1H), 7.19 (dd, J; =8.2 Hz, ], = 0.7 Hz, 1H), 6.98 (s, 1H), 6.64
(dd, J1 = 7.3 Hz, Jo= 0.9 Hz, 1H), 4.68 (d. ] = 4.1 Hz, 1H), 3.63 — 3.57 (m, 1H), 1.31 (d,J = 6.3
Hz, 3H) ppm.

3C NMR (DMSO-ds, 125 MHz, 293 K): & = 156.53, 141.37, 134.06, 132.68, 126.14, 121.25,
116.96, 114.72, 111.70, 106.87, 70.83, 51.41, 19.91 ppm.

Minor isomer: 'H NMR (DMSO-ds, 500 MHz, 293 K): =7.71 (dd, J1 = 7.3 Hz, J, = 1.2 Hz, 1H),
7.44 —7.36 (m, 1H), 7.36 — 7.34 (m, 1H), 7.33 (s, 1H), 7.29 — 7.25 (m, 1H), 7.18 (dd, J; = 8.2 Hz,
J2=0.7 Hz, 1H), 6.73 (dd, J, = 7.5 Hz, J» = 0.9 Hz, 1H), 6.63 (s, 1H), 5.07 (d. J = 7.2 Hz, 1H),
3.95 (quin. J = 6.6 Hz, 1H), 1.25 (d, J = 6.6 Hz, 3H) ppm.

3C NMR (DMSO-ds, 125 MHz, 293 K): § = 156.63, 141.79, 133.96, 133.16, 126.92, 120.97,
116.80, 114.03, 110.92, 107.26, 66.20, 47.92, 15.52 ppm.

LC-HRMS (ESI+) m/z calculated for [C1aH14N30]": 240.11314, found: 240.11347.
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Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

Synthesis of C2

Chemical Formula: CyoH17N30

In a glovebox, A26 (2.0 mmol, 578 mg), KO'Bu (0.6 mmol, 67 mg, dissolved in 1.5 mL 1,4-
dioxane) and carbonyldiimidazol (2.3 mmol, 373 mg) are added to a pressure tube and dissolved
in 8.5 mL 1,4-dioxane. The sealed pressure tube is heated at 130 °C for 2h in an oil bath. After
cooling down to room temperature 30 mL water were added and the product is extracted with
diethyl ether (4 x 50 mL). The combined organic phases are dried with Na;SO4 and the solvent
was removed in vacuo. The crude product was purified via gradient column chromatography over
Alox N (pentane/ethyl acetate 1:1 — pure ethyl acetate) and obtained as reddish brown solid (573

mg, 1.82 mmol, 91 %, contains ~ 5% ethyl acetate). Diastereomeric ratio: 88:12.

Main isomer: '"H NMR (DMSO-ds, 500 MHz, 293 K): 3 =7.49 (s, 1H), 7.46 — 7.42 (m, 2H), 7.36
(t,J = 7.8 Hz, 1H), 7.34 — 7.30 (m, 4H), 7.27 — 7.23 (m, 2H), 7.20 — 7.18 (m, 1H), 6.83 (s, 1H),
6.62 (d, J=7.3 Hz, 1H), 4.78 (d, ] = 3.1 Hz, 1H), 3.84 — 3.78 (m, 1H), 3.03 — 2.88 (m, 2H) ppm.
3C NMR (DMSO-ds, 125 MHz, 293 K): § = 156.84, 141.29, 136.92, 134.01, 132.40, 129.62,
128.42, 126.88, 126.53, 126.05, 121.66, 116.98, 115.07, 113.01, 106.95, 68.20, 56.30, 39.64 ppm.
LC-HRMS (ESI+) m/z calculated for [C20HisN3O]*: 316.14444, found: 316.14440.

Minor isomer: "H NMR (DMSO-ds, 500 MHz, 293 K): §=7.76 (dd, J1 = 7.4 Hz, J,= 1.1 Hz, 1H),
742 (dd, J1 =8.2 Hz, J» = 1.1 Hz, 1H), 7.39 — 7.35 (m, 1H), 7.34 — 7.31 (m, 4H), 7.29 (d, T = 7.5
Hz, 1H), 7.26 — 7.23 (m, 2H), 7.21 (d,J = 7.6 Hz, 1H), 6.77 (dd, J1 = 7.4 Hz, ], = 0.8 Hz, 1H), 6.76
(s, 1H), 5.22 (d, J = 7.2 Hz, 1H), 4.15 —4.09 (m, 1H), 3.23 (dd, J: = 14.0 Hz, J, = 3.4 Hz, 1H), 2.76
(dd, J1 = 14.0 Hz, J = 10.0 Hz, 1H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 156.56, 141.58, 138.14, 133.97, 133.19, 129.36,
128.45, 126.94, 126.29, 126.20, 120.98, 116.97, 114.03, 110.74, 107.41, 66.50, 53.46, 35.81 ppm.

LC-HRMS (ESI+) m/z calculated for [C20HisN30]': 316.14444, found: 316.14431.
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Synthesis of C3

HN__N
* >;o
7—NH
Chemical Formula: C4gH15N30

In a glovebox, A27 (2.0 mmol, 478 mg), KO'Bu (0.6 mmol, 67 mg, dissolved in 1.5 mL 1,4-
dioxane) and carbonyldiimidazol (2.3 mmol, 373 mg) are added to a pressure tube and dissolved
in 8.5 mL 1,4-dioxane. The sealed pressure tube is heated at 130 °C for 2h in an oil bath. After
cooling down to room temperature 30 mL water were added and the product is extracted with
diethylether (4 x 50 mL). The combined organic phases are dried with Na2SO4 and the solvent was
removed in vacuo. The crude product was purified via gradient column chromatography over Alox
N (pentane/ethyl acetate 1:1 — pure ethyl acetate) and obtained as light brown solid (403 mg, 1.52

mmol, 76 %, contains ~ 5% ethyl acetate). Diastereomeric ratio: 81:19.

Main isomer: 'H NMR (DMSO-ds, 500 MHz, 293 K): & =7.50 (d, J = 7.5 Hz, 1H), 7.28 (s, 1H),
7.15(d, J = 7.5 Hz, 1H), 7.07 (d, ] = 7.2 Hz, 1H), 6.76 (s, 1H), 6.5 (d, ] = 7.3 Hz, 1H), 4.64 (dd,
J1=5.0Hz,J, =09 Hz, 1H), 3.63 —3.57 (m, 1H), 3.29 — 3.21 (m, 4H), 1.32 (d, J = 6.4 Hz, 3H)
13C NMR (DMSO-ds, 125 MHz, 293 K): & = 156.48, 139.34, 138.04, 137.95, 133.88, 129.49,
120.05, 119.27, 113.18, 111.39, 107.68, 72.21, 51.72, 30.13, 29.68, 19.76 ppm.

LC-HRMS (ESI+) m/z calculated for [C16H16N30]": 266.12879, found: 266.12865.

Minor isomer: 'TH NMR (DMSO-ds, 500 MHz, 293 K): § = 7.56 (d, ] = 7.5 Hz, 1H), 7.23 (s, 1H),
7.14(d,J=7.3 Hz, 1H), 7.07 (d, J =7.3 Hz, 1H), 6.61 (d, ] =7.3 Hz, 1H), 6.47 (s, 1H), 5.03 (d, J
=17.3 Hz, 1H), 3.95 (quin, J = 6.7 Hz, 1H), 3.29 —3.20 (m, 4H), 1.23 (d, ] = 6.4 Hz, 3H) ppm.

13C NMR (DMSO-ds, 125 MHz, 293 K): & = 156.56, 139.23, 138.38, 137.76, 133.55, 129.98,
120.05, 119.22, 112.44, 110.79, 107.80, 67.45, 48.20, 30.13, 29.68, 15.69 ppm.

LC-HRMS (ESI+) m/z calculated for [C16H16N3O]": 266.12879, found: 266.12852.
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14. NMR spectra of isolated products
NMR spectra of Al
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Supplementary Figure 31 'H NMR spectrum of compound Al. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 32 '*C NMR spectrum of compound Al. (125 MHz, 293 K, DMSO-de).
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NMR spectra of A2
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Supplementary Figure 33 'H NMR spectrum of compound A2. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 34 3C NMR spectrum of compound A2. (125 MHz, 293 K, DMSO-ds).
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NMR spectra of A3
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Supplementary Figure 35 '"H NMR spectrum of compound A3. (500 MHz, 293 K, DMSO-dp).
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Supplementary Figure 36 '*C NMR spectrum of compound A3. (125 MHz, 293 K, DMSO-de).
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NMR spectra of A4
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Supplementary Figure 37 'H NMR spectrum of compound A4. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 38 1*C NMR spectrum of compound A4. (125 MHz, 293 K, DMSO-ds).
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NMR spectra of AS
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Supplementary Figure 39 'H NMR spectrum of compound AS. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 40 '*C NMR spectrum of compound A5. (125 MHz, 293 K, DMSO-ds).
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NMR spectra of A6
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Supplementary Figure 41 '"H NMR spectrum of compound A6. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 42 *C NMR spectrum of compound A6. (125 MHz, 293 K, DMSO-d).
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NMR spectra of A7
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Supplementary Figure 43 '"H NMR spectrum of compound A7. (500 MHz, 293 K, DMSO-dp).
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Supplementary Figure 44 13C NMR spectrum of compound A7. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 45 '’F NMR spectrum of compound A7. (376 MHz, 293 K, DMSO-d).
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NMR spectra of A8
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Supplementary Figure 46 '"H NMR spectrum of compound A8. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 47 '*C NMR spectrum of compound A8. (125 MHz, 293 K, DMSO-de).

S116

280



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

2
8
a
23 T
&2
1
M
8 /' n.
io\s
\
|
r‘J \i
-
-
| \ 3
/ w g
/ =
A WAl :
N WA~ S M A~ A,
Y <129.30 129.40 ! «129.50 J —TZé 60 ¥ 129.70 t |2§ 80 J

Chemical Shift (ppm)

R T

e vy T T T . P ' n T
24 16 8 o 8 16 24 32 40 -48 -5 64 12 8 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 -192

80 -8
Chemical Shift (ppm)

Supplementary Figure 48 '°F NMR spectrum of compound A8. (376 MHz, 293 K, DMSO-d).
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NMR spectra of A9
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Supplementary Figure 49 'H NMR spectrum of compound A9. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 50 '*C NMR spectrum of compound A9. (125 MHz, 293 K, DMSO-de).
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Supplementary Figure 51 '°F NMR spectrum of compound A9. (376 MHz, 293 K, DMSO-d).
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NMR spectra of A10
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Supplementary Figure 52 'H NMR spectrum of compound A10. (500 MHz, 293 K, DMSO-de).

~

Jz1ib
Group AK Kempe

65.92

170
r160
150
140
130
120
110
100
90
80
r70
| i 60
50
40
30

L] l( | ,ll | | .

T T T T T T T T T T T T
10 200 190 180 170 160 150 140 130 120 110“ (100 ) 9 8 70 60 50 40 30 20 10 O
ppm

Supplementary Figure 53 '>*C NMR spectrum of compound A10. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 54 '°F NMR spectrum of compound A10. (376 MHz, 293 K, DMSO-db).
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NMR spectra of A1l
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Supplementary Figure 55 'H NMR spectrum of compound A11. (500 MHz, 293 K, DMSO-de).
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Supplementary Figure 56 >*C NMR spectrum of compound A11. (125 MHz, 293 K, DMSO-d).
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NMR spectra of A12
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Supplementary Figure 57 '"H NMR spectrum of compound A12. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 58 '*C NMR spectrum of compound A12. (125 MHz, 293 K, DMSO-d).
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NMR spectra of A13
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Supplementary Figure 59 'H NMR spectrum of compound A13. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 60 '*C NMR spectrum of compound A13. (125 MHz, 293 K, DMSO-dg).
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NMR spectra of A14
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Supplementary Figure 61 '"H NMR spectrum of compound A14. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 62 3*C NMR spectrum of compound A14. (125 MHz, 293 K, DMSO-dg).

0

S125

289



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

NMR spectra of A15
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Supplementary Figure 63 'H NMR spectrum of compound A15. (500 MHz, 293 K, DMSO-de).
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Supplementary Figure 64 °C NMR spectrum of compound A15. (125 MHz, 293 K, DMSO-ds).

S126

290



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

NMR spectra of A16
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Supplementary Figure 65 '"H NMR spectrum of compound A16. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 66 *C NMR spectrum of compound A16. (125 MHz, 293 K, DMSO-ds).
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Supplementary Figure 67 'H NMR spectrum of compound A17. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 68 >*C NMR spectrum of compound A17. (125 MHz, 293 K, DMSO-dg).
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Supplementary Figure 69 '"H NMR spectrum of compound A18. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 70 '*C NMR spectrum of compound A18. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 71 '°F NMR spectrum of compound A18. (376 MHz, 293 K, DMSO-ds).
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Supplementary Figure 72 'H NMR spectrum of compound A19. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 73 1*C NMR spectrum of compound A19. (125 MHz, 293 K, DMSO-ds).
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Supplementary Figure 75 *C NMR spectrum of compound A20. (125 MHz, 293 K, DMSO-dg).
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Supplementary Figure 76 '"H NMR spectrum of compound A21. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 77 *C NMR spectrum of compound A21. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 78 'H NMR spectrum of compound A22. (500 MHz, 293 K, DMSO-de).
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Supplementary Figure 79 3C NMR spectrum of compound A22. (125 MHz, 293 K, DMSO-dg).
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Supplementary Figure 80 'H NMR spectrum of compound A23. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 81 *C NMR spectrum of compound A23. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 83 '*C NMR spectrum of compound A24. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 84 'H NMR spectrum of compound A25. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 85 '>*C NMR spectrum of compound A25. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 86 'H NMR spectrum of compound A26. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 87 '*C NMR spectrum of compound A26. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 88 'H NMR spectrum of compound A27. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 89 '*C NMR spectrum of compound A27. (125 MHz, 293 K, DMSO-dg).
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Supplementary Figure 90 'H NMR spectrum of compound Bla. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 91 *C NMR spectrum of compound Bla. (125 MHz, 293 K, DMSO-ds).

S140

304



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

NMR spectra of Blb

RF525_3i SRNIINYRSCREAIRRNIZIRLLITEL & 2n
B em N NN NN R G058 88 eecsasnn o 58
roup p T | | e 9000
| S R ;
|
A 1 8000
HN Np 2 7000
NH Lilw T |
-
6000
Chemical Formula: C,5H;: N | S000
4000
3000
2000
l ‘ F 1000
‘u‘ . \ 1
AL L
0. = P 0 |1 LA 0
I s i
CEEEE TR &
s2 o
1135 10.5 9.5 8.5 75 7.0 65 4.5 4.0 35 25 1.5 0.5 -0.5

5.5
f1 (ppm)

Supplementary Figure 92 "H NMR spectrum of compound B1b. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 93 3C NMR spectrum of compound B1b. (125 MHz, 293 K, DMSO-dg).
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Supplementary Figure 94 'H NMR spectrum of compound Blc. (500 MHz, 293 K, DMSO-de).
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Supplementary Figure 95 *C NMR spectrum of compound Blec. (125 MHz, 293 K, DMSO-ds).
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Supplementary Figure 96 'H NMR spectrum of compound B1d. (500 MHz, 293 K, DMSO-de).
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Supplementary Figure 97 *C NMR spectrum of compound B1d. (125 MHz, 293 K, DMSO-d).
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Supplementary Figure 99 *C NMR spectrum of compound Ble. (125 MHz, 293 K, DMSO-dp).
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Supplementary Figure 101 *C NMR spectrum of compound B1f. (125 MHz, 293 K, DMSO-ds).
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Supplementary Figure 102 '°F NMR spectrum of compound B1f. (376 MHz, 293 K, DMSO-ds).
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Supplementary Figure 103 '"H NMR spectrum of compound Blg. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 104 *C NMR spectrum of compound Blg. (125 MHz, 293 K, DMSO-
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Supplementary Figure 107 '3*C NMR spectrum of compound B1h. (125 MHz, 293 K, DMSO-
ds).
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Supplementary Figure 108 '’F NMR spectrum of compound B1h. (376 MHz, 293 K, DMSO-
de).
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Supplementary Figure 109 'H NMR spectrum of compound B1i. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 110 *C NMR spectrum of compound B1i. (125 MHz, 293 K, DMSO-ds).
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Supplementary Figure 114 'H NMR spectrum of compound B1k. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 116 'H NMR spectrum of compound B11. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 117 *C NMR spectrum of compound B11. (125 MHz, 293 K, DMSO-ds).
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Supplementary Figure 118 'H NMR spectrum of compound B1m. (500 MHz, 293 K, DMSO-
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Supplementary Figure 119 *C NMR spectrum of compound B1m. (125 MHz, 293 K, DMSO-
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Supplementary Figure 120 "H NMR spectrum of compound B1n. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 123 '"H NMR spectrum of compound Ble. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 124 '*C NMR spectrum of compound Ble. (125 MHz, 293 K, DMSO-
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Supplementary Figure 125 'H NMR spectrum of compound B1p. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 126 *C NMR spectrum of compound Blp. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 127 'H NMR spectrum of compound B1q. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 128 *C NMR spectrum of compound Blq. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 130 '*C NMR spectrum of compound B2a. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 131 'H NMR spectrum of compound B2b. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 132 '*C NMR spectrum of compound B2b. (125 MHz, 293 K, DMSO-

de).

S163

327



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

NMR spectra of B2¢

=293
—2.50

- 14000

= H [ 13000

hoss
N | F ‘:‘ | 12000
HN._ N = ‘m“‘ﬁ [ 11000
| 1l |
Bl I 10000

F9000
8000
Chemical Formula: Co4HzFN+

= 7000
6000
5000

| 4000

3000

2000
l i 1000
;

r-1000

T T T T T T T T T T T T

11.5 10.5 9.5 8.5 75 7.0 65 45 40 35 25 1.5 0.5 -0.5

5.5
f1 (ppm)
Supplementary Figure 133 '"H NMR spectrum of compound B2e¢. (500 MHz, 293 K, DMSO-dé).
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Supplementary Figure 134 3C NMR spectrum of compound B2¢. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 135 '’F NMR spectrum of compound B2c. (376 MHz, 293 K, DMSO-
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Supplementary Figure 136 'H NMR spectrum of compound B2d. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 137 3C NMR spectrum of compound B2d. (125 MHz, 293 K, DMSO-

de).
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Supplementary Figure 138 'H NMR spectrum of compound B2e. (500 MHz, 293 K, DMSO-db).
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Supplementary Figure 139 '*C NMR spectrum of compound B2e. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 140 '"H NMR spectrum of compound B2f. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 141 *C NMR spectrum of compound B2f. (125 MHz, 293 K, DMSO-do).
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Supplementary Figure 142 '"H NMR spectrum of compound B2g. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 143 '*C NMR spectrum of compound B2g. (125 MHz, 293 K, DMSO-

de).
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Supplementary Figure 144 'H NMR spectrum of compound B2h. (500 MHz, 293 K, DMSO-db).
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Supplementary Figure 145 '*C NMR spectrum of compound B2h. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 146 '"H NMR spectrum of compound B2i. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 147 1*C NMR spectrum of compound B2i. (125 MHz, 293 K, DMSO-dg).
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Supplementary Figure 148 'H NMR spectrum of compound B2j. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 149 3C NMR spectrum of compound B2j. (125 MHz, 293 K, DMSO-dg).
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Supplementary Figure 150 'H NMR spectrum of compound B2k. (500 MHz, 293 K, DMSO-de).
RF509_2i 2 ~ o2 |
Group AK Kempe 2 z g L 800
i [
~750
~700
650
~600
550
~500
450
400
350
-300
~250
~200
: [
— T | F150
11, [
~ 100
-50
i I L Lo
10 200 190 180 1‘70 160 150 140 130 120 U.Df 100 )90 80 70 60 50 40 30 20 10 0 -10
ppm
Supplementary Figure 151 '3C NMR spectrum of compound B2k. (125 MHz, 293 K, DMSO-

de).
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NMR spectra of B21
RF508_di 23 & 2 L
Group AK Kempe U ? T 4500
4000
‘ ‘w |
| ‘M‘HH‘, ‘ ‘ r 3500
A [
HiERERRLLAL |
/ LI
PN N 3000
l
HN__ N S
2500
= | NH
2000
\
Chemical Formula: CooHysNy | vesi
1000
|
: ! ! 500
} m"‘* R ; 1
'l =, M'i A ‘ Al J Fo
& gEeastiten &
115 105 9.5 8.5 75 7.0 6.5 5.5 45 40 35 25 15 05 0.5
f1 (ppm)

Supplementary Figure 152 'H NMR spectrum of compound B2l. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 153 3C NMR spectrum of compound B2l1. (125 MHz, 293 K, DMSO-ds).
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Supplementary Figure 154 'H NMR spectrum of compound B2m. (500 MHz, 293 K, DMSO-
do).
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Supplementary Figure 155 *C NMR spectrum of compound B2m. (125 MHz, 293 K, DMSO-
ds).
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Supplementary Figure 156 'H NMR spectrum of compound B2n. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 157 '*C NMR spectrum of compound B2n. (125 MHz, 293 K, DMSO-

de).
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NMR spectra of B2o
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Supplementary Figure 158 'H NMR spectrum of compound B2o. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 159 *C NMR spectrum of compound B2o. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 160 '"H NMR spectrum of compound B2p. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 161 '3C NMR spectrum of compound B2p. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 162 'H NMR spectrum of compound B3a. (500 MHz, 293 K, DMSO-de).
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Supplementary Figure 163 '*C NMR spectrum of compound B3a. (125 MHz, 293 K, DMSO-
de).
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o A R R R R R e L R P 8 8
ﬁnnnvxnrwrk&"?‘g:\x\vx:\r\r\v\:\:\v\:\r\r\r\v\:?;\\‘n/w_\nl? Invln r? ~ 5500
5000
u\‘ ‘ 4500
\M |
; i ‘ I 4000
3500
3000
Chemical Formula: C,,H . -BrCIN,
F 2500
2000
F 1500
1000
¥ 4
Al
l“l ‘ dihoromethane i 500
‘
MU | A | L
gﬁﬁ%ﬁm &
e SO0
15 105 95 8.5 75 7.0 65 5.5 45 40 35 25 15 05 05
f1 (ppm)

Supplementary Figure 164 'H NMR spectrum of compound B3b. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 165 1°C NMR spectrum of compound B3b. (125 MHz, 293 K, DMSO-

de).
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Supplementary Figure 166 '"H NMR spectrum of compound B3c¢. (500 MHz, 293 K, DMSO-dé).
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Supplementary Figure 167 '*C NMR spectrum of compound B3c. (125 MHz, 293 K, DMSO-
ds).
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Supplementary Figure 168 'H NMR spectrum of compound B3d. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 169 '3C NMR spectrum of compound B3d. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 170 °F NMR spectrum of compound B3d. (376 MHz, 293 K, DMSO-
de).
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Supplementary Figure 171 'H NMR spectrum of compound B3e. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 172 '*C NMR spectrum of compound B3e. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 173 "’F NMR spectrum of compound B3e. (376 MHz, 293 K, DMSO-
de).
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Supplementary Figure 174 'H NMR spectrum of compound B4a. (500 MHz, 293 K, DMSO-dp).
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Supplementary Figure 175 '>*C NMR spectrum of compound B4a. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 176 'H NMR spectrum of compound B4b. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 177 '3C NMR spectrum of compound B4b. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 178 'H NMR spectrum of compound B4c. (500 MHz, 293 K, DMSO-dg).
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Supplementary Figure 179 *C NMR spectrum of compound B4e. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 180 'H NMR spectrum of compound B5a. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 181 '*C NMR spectrum of compound B5a. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 182 'H NMR spectrum of compound B5b. (500 MHz, 293 K, DMSO-d).
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Supplementary Figure 183 '*C NMR spectrum of compound B5b. (125 MHz, 293 K, DMSO-
de).
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NMR spectra of BSc
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Supplementary Figure 184 '"H NMR spectrum of compound B5e. (500 MHz, 293 K, DMSO-dé).
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Supplementary Figure 185 '*C NMR spectrum of compound BSe. (125 MHz, 293 K, DMSO-
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NMR spectra of B6a
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Supplementary Figure 186 'H NMR spectrum of compound B6a. (500 MHz, 293 K, DMSO-dp).
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Supplementary Figure 187 '3C NMR spectrum of compound B6a. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 188 'H NMR spectrum of compound B6b. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 189 '*C NMR spectrum of compound Béb. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 190 "H NMR spectrum of compound Bé6c. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 191 *C NMR spectrum of compound B6e¢. (125 MHz, 293 K, DMSO-
de).
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Supplementary Figure 192 'H NMR spectrum of compound C1. (500 MHz, 293 K, DMSO-ds).
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Supplementary Figure 193 *C NMR spectrum of compound C1. (125 MHz, 293 K, DMSO-ds).
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NMR spectra of C2
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Supplementary Figure 194 '"H NMR spectrum of the main isomer of compound C2. (500 MHz,
293 K, DMSO-ds).
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Supplementary Figure 195 *C NMR spectrum of the main isomer of compound C2. (125 MHz,
293 K, DMSO-ds).
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Supplementary Figure 196 DEPT 135 NMR spectrum of the main isomer of compound C2.
(500 MHz, 293 K, DMSO-ds).
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Minor isomer of C2:
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Supplementary Figure 197 'H NMR spectrum of the minor isomer of compound C2. (500 MHz,
293 K, DMSO-dg).
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Supplementary Figure 198 '*C NMR spectrum of the minor isomer of compound C2. (125 MHz,
293 K, DMSO-dg).
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NMR spectra of C3

Main isomer of C3:
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Supplementary Figure 199 '"H NMR spectrum of the main isomer of compound C3. (500 MHz,
293 K, DMSO-ds).
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Supplementary Figure 200 1*C NMR spectrum of the main isomer of compound C3. (125 MHz,
293 K, DMSO-ds).
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Minor isomer of C3:
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Supplementary Figure 201 'H NMR spectrum of the minor isomer of compound C3. (500 MHz,
293 K, DMSO-dg).
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Supplementary Figure 202 '*C NMR spectrum of the minor isomer of compound C3. (125 MHz,
293 K, DMSO-ds).
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15. LC-HRMS spectra

General conditions

Liquid chromatography-high resolution mass spectra (LC-HRMS) were obtained from a Thermo
Fisher scientific Q-Exactive instrument with a hybrid quadrupole orbitrap analyser in ESI+ mode.
For liquid chromatography a Luna Omega PS C18 (100x2.1 mm, 1.6 pm) column was used with
a solvent gradient from 30:70 MeCN/water to 90:10 MeCN/water. The samples were dissolved in
ethanol or DMSO.

Due to the air sensitivity of most substances and specimen preparation under air the formation of

nitrosamines occurred after short period of time, which is visible in traces in some of the spectra.
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Supplementary Figure 203 LC-HRMS spectrum of compound A25.
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LC-HRMS of A26
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Supplementary Figure 204 LC-HRMS spectrum of compound A26.
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LC-HRMS of A27
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Supplementary Figure 205 LC-HRMS spectrum of compound A27.
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LC-HRMS of B6a
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Supplementary Figure 206 LC-HRMS spectrum of compound Béa.
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LC-HRMS of B6b
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Supplementary Figure 207 LC-HRMS spectrum of compound B6b.

S205

369

)
415

2

W
29666

221010ac2_ful7241415-1433
W 782181 AV 19 S8 30

7.98.805 T.ITMS
s (80 00-1700 00]

"
75105
GasHza N o1t
Cos Haa N
parvg 1



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

LC-HRMS of B6c
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Supplementary Figure 208 LC-HRMS spectrum of compound B6c.
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LC-HRMS of C1
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Supplementary Figure 209 LC-HRMS spectrum of compound C1.
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LC-HRMS of C2

Chemical Formula: CogH17N30
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Supplementary Figure 210 LC-HRMS spectrum of the main isomer of compound C2.

S208

372



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

minor isomer of C2:
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Supplementary Figure 211 LC-HRMS spectrum of the minor isomer of compound C2.
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LC-HRMS of C3
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Supplementary Figure 212 LC-HRMS spectrum of the main isomer of compound C3.
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minor isomer of C3:
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Supplementary Figure 213 LC-HRMS spectrum of the minor isomer of compound C3.
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Blind sample of ethanol
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Supplementary Figure 214 LC-HRMS spectrum of the used solvent ethanol.
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Supplementary Figure 215 LC-HRMS spectrum of the used solvent DMSO.
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16. Crystallographic data

Supplementary Data 1: Crystallographic details of A1 (CCDC number: 2084882).

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) sv481_1_te_i41_2

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE
FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED
CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: sv481_1_te_i41_2

Bond precision: C-C = 0.0051 A Wavelength=0.71073
Cell: a=22.690(3) b=22.690(3) c=10.320(2)
alpha=90 beta=90 gamma=90
Temperature: 133 K
Calculated Reported
Volume 5313.1(17) 5313.1(18)
Space group I 41 I .41
Hall group I 4bw I 4bw
Moiety formula C17 H15 N3 1.143(C17 H15 N3)
Sum formula C17 H15 N3 C19.43 H17.14 N3.43
Mr 261.32 298.65
Dx,g cm-3 1.307 1.307
Z 16 14
Mu (mm-1) 0.079 0.079
F000 2208.0 2208.0
F000" 2208.70
h, k, lmax 30,30,13 27,30,13
Nref 6770[ 3568] 4150
Tmin, Tmax 0.998,1.000
Tmin’ 0.996

Correction method= Not given

Data completeness= 1.16/0.61

R(reflections)= 0.0507( 3042)

S =0.974

Theta (max)= 28.529

wR2 (reflections)= 0.1234( 4150)

Npar= 369

The following ALERTS were generated.

test-name_ALERT_ alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Each ALERT has the format
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@ Alert level B
PLAT417_ALERT_2_B Short Inter D-H..H-D Hnl . .Hn3B . 1.94 Ang.
-1/2+y,1-x,-1/4+z = 4_464 Check

¥ Alert level C

STRVAO1_ALERT_2_C Chirality of atom sites is inverted?

From the CIF: _refine_ls_abs_structure Flack 5.000

From the CIF: _refine_ls_abs_structure_Flack_su 4.000
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds .......ccceeeen 0.00508 Ang.
PLAT420_ALERT_2_C D-H Bond Without Acceptor N2 ——Hn2 . Please Check
PLAT420_ALERT_2_C D-H Bond Without Acceptor N4 --Hn4 % Please Check
PLAT420_ALERT_2_C D-H Bond Without Acceptor N1 --Hnl - Please Check
PLAT420_ALERT_2_C D-H Bond Without Acceptor N5 --Hn5 . Please Check
PLAT420_ALERT_2_C D-H Bond Without Acceptor N3 --Hn3B % Please Check
PLAT420_ALERT_2_C D-H Bond Without Acceptor N3 ——Hn3A . Please Check
PLAT420_ALERT_2_C D-H Bond Without Acceptor N6 --Hn6B & Please Check
PLAT601_ALERT_2_C Unit Cell Contains Solvent Accessible VOIDS of . 32 Ang**3
PLAT907_ALERT_2_C Flack x > 0.5, Structure Needs to be Inverted? . 5.00 Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 21 Report

¥ Alert level G
CELLZO1_ALERT_1_G Difference between formula and atom_site contents detected.
CELLZ01_ALERT_1_G ALERT: check formula stoichiometry or atom site occupancies.
From the CIF: _cell formula_units_2 14
From the CIF: _chemical_ formula_sum C€19.43 H17.14 N3.43
TEST: Compare cell contents of formula and atom_site data

atom Z*formula cif sites diff

C 272.02 272.00 0.02

H 239.96 240.00 -0.04

N 48.02 48.00 0.02
PLATO07_ALERT_S5_G Number of Unrefined Donor-H Atoms .... 5 e 6 Report
PLATO032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 4.000 Report
PLAT042_ALERT_1_G Calc. and Reported Moiety Formula Strings Differ Please Check
PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 1.14 Check
PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3 Note
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 8 Note
PLAT870_ALERT_4_G ALERTS Related to Twinning Effects Suppressed .. ! Info
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 1 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 173 Note
PLAT916_ALERT_2_G Hooft y and Flack x Parameter Values Differ by . 5.60 Check
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity . . 3.5 Low
PLAT950_ALERT_5_G Calculated (ThMax) and CIF-Reported Hmax Differ 3 Units

0 ALERT level A = Most likely a serious problem - resolve or explain

1 ALERT level B = A potentially serious problem, consider carefully

12 ALERT level C = Check. Ensure it is not caused by an omission or oversight
14 ALERT level G = General information/check it is not something unexpected

4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low

5 ALERT type 4 Improvement, methodology, query or suggestion

2 ALERT type 5 Informative message, check
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It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the
minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement
strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more
serious problems it may be necessary to carry out additional measurements or structure
refinements. However, the purpose of your study may justify the reported deviations and the more
serious of these should normally be commented upon in the discussion or experimental section of a
paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify
outliers and unusual parameters, but every test has its limitations and alerts that are not important
in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no
aspects of the results needing attention. It is up to the individual to critically assess their own
results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs
submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied
Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta
Crystallographica Section C or E or IUCrData, you should make sure that full publication checks
are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to
CIF submission.

PLATON version of 16/05/2021; check.def file version of 13/05/2021

Datablock sv481_1_te_i41_2 - cllipsoid plot
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Supplementary Figure 216 Molecular structure of Al.
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Supplementary Data 2: Crystallographic details of Bla (CCDC number: 2083140)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) sv499_1_m_p2lc

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE
FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED
CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: sv499_1_m_p2lc

Bond precision: C-C = 0.0020 A Wavelength=0.71073
Cell: a=5.7600(12) b=11.550(2) c=25.410(5)
alpha=90 beta=90.70(3) gamma=90
Temperature: 133 K
Calculated Reported
Volume 1690.4(6) 1690.4(6)
Space group P 21/¢ P I 21/l
Hall group -P 2ybc -P 2ybc
Moiety formula C24 H19 N3 C24 H19 N3
Sum formula C24 H19 N3 C24 H19 N3
Mr 349.42 349.42
Dx,g cm-3 1.373 1.373
Z 4 4
Mu (mm-1) 0.082 0.082
F000 736.0 736.0
F000’ 736.24
h, k, lmax 7,15,34 7,15,33
Nref 4271 4090
Tmin, Tmax 0.995,0.997
Tmin’ 0.985

Correction method= Not given

Data completeness= 0.958 Theta (max)= 28.448
R(reflections)= 0.0433( 2915) wR2 (reflections)= 0.1155( 4090)
S =1.039 Npar= 320

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

S216

380



Rational Design of N-Heterocyclic Compound Classes via Regenerative Cyclization of Diamines

¥ Alert level C
CRYSCO1_ALERT_1_C The word below has not been recognised as a standard

identifier.

yellowish
PLAT222_ALERT_3_C NonSolvent Resd 1 H Uiso (max) /Uiso (min) Range 7.0 Ratio
PLAT245_ALERT_2_C U(iso) H24 Smaller than U(eq) C24 by 0.015 Ang**2
PLAT410_ALERT_2_C Short Intra H...H Contact H1 ..H8 P 1.96 Ang.

X, ¥,z = 1_555 Check

PLAT420_ALERT_2_C D-H Bond Without Acceptor N1 --Hnl . Please Check
PLAT420_ALERT_2_C D-H Bond Without Acceptor N3 --H5 . Please Check
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance ...... 2.149 Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 7 Report

¥ Alert level G

PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 4 Note
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 1 Note
PLAT793_ALERT_4_G Model has Chirality at Cl1 (Centro SPGR) S Verify
PLAT793_ALERT_4_G Model has Chirality at C18 (Centro SPGR) R Verify
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 1 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 171 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity ........... 3.2 Low
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 17 Info
PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by 2 Check

0 ALERT level A = Most likely a serious problem - resolve or explain

0 ALERT level B = A potentially serious problem, consider carefully

8 ALERT level C = Check. Ensure it is not caused by an omission or oversight
9 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

5 ALERT type 2 Indicator that the structure model may be wrong or deficient
5 ALERT type 3 Indicator that the structure quality may be low

5 ALERT type 4 Improvement, methodology, query or suggestion

1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the
minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement
strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more
serious problems it may be necessary to carry out additional measurements or structure
refinements. However, the purpose of your study may justify the reported deviations and the more
serious of these should normally be commented upon in the discussion or experimental section of a
paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify
outliers and unusual parameters, but every test has its limitations and alerts that are not important
in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no
aspects of the results needing attention. It is up to the individual to critically assess their own
results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs
submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied
Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta
Crystallographica Section C or E or IUCrData, you should make sure that full publication checks
are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to
CIF submission.

PLATON version of 22/03/2021; check.def file version of 19/03/2021
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Datablock sv499_1_m_p21e - ellipsoid plot
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Supplementary Figure 217 Molecular structure of Bla.
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Structure Investigations of Fertigines via X-Ray Crystallography

Robin Fertig, Torsten Irrgang, and Rhett Kempe

Inorganic Chemistry II-Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany

Abstract

We reported here on the molecular structures of an unknown class of N-heterocycles, named
fertigines. We gave an overview of their synthesis and crystallization method. Nine different fertigines
have been crystallized and analyzed via single-crystal X-ray diffraction analysis. The influence of the
substitution on the structural properties on the aminal-groups in the core region was investigated and
the observed conformations in the crystal were discussed. The via 'H-NMR analysis observed
diastereoselectivity during synthesis was specified by determining the absolute configuration of the

fertigines in the crystal.

Introduction

Recently, we have reported about a synthesis concept that enables the synthesis of an unknown class
of N-heterocyclic compounds, named fertigines.!! N-Heterocyclic compounds are of high importance
as their motifs are found in many pharmaceuticals, natural products, and functional materials.? About
59 % of the FDA approved small-molecule drugs contain at least one nitrogen heterocycle, thus it is
one of the most frequent motifs in pharmaceuticals.?! One way to reduce the CO,-emissions und to
conservate the finite fossil carbon resources, is the development of reactions in which alcohols are
converted into important chemical compounds, since they can be obtained from indigestible and
abundantly available lignocellulose biomass.!* The acceptorless dehydrogenative condensation (ADC)
represents a concept that permits the catalytic synthesis of imines using alcohols and amines.!® The
selective linkage of these imine functionalities can lead to N-heterocycles. Relating to this concept,
various noble-metal catalysts based on Ir or Ru have been developed for the synthesis of
N-heterocycles like pyridines, pyrroles, pyrimidines, quinolines, indoles and quinazolines.**? In recent
years, there is the trend to a more sustainable catalysis by substitute these rare noble metals with
abundantly available 3d metals like Fe,'3-%5 Co,116%% and Mn.[?*?2! Several groups showed the high
applicability of such base-metal catalyst for the synthesis of N-heterocycles like pyrrole,2324
pyrimidine,?>?%! or benzimidazoles.?” To overcome future challenges, it is important, not only to rest
on the synthesis of already known (N-heterocyclic) compounds, but also to develop and investigate

unreported N-heterocyclic compounds. Since previous work has intensively described the synthesis
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and high functionalizability of fertigines, this work will focus on the description of their molecular
structures. We will give better insights in the structure of nine different fertigines via single-crystal
X-ray analysis and investigate the influence of different aldehyde substituents on the molecular

structure of the fertigines.

Results and discussion

Figure 1 gives an overview of the reaction pathway for the synthesis of fertigines catalyzed by a
Mn-precatalyst. Nine different fertigines were synthesized by using various aldehyde derivatives,

substituted amino alcohols and 1,8-diaminonaphthalene derivatives.

N ;
R! R R R! : :
o e e oy

o) | NN H

R! R! \ NH, Mn-{precalalyst \”/ 3U \”/ ‘ HN/”\N/)\NH
+R2A- KOBu .| HN__NH LR HNGNCR ‘(Pr) P—NMn—P(Pr) :
'/ 100 °C, 15 h 2 S
‘ ¥ — |

2-MeTHF, 100 °C, 2 h : | “co
NH, NH, “H,0, - Hy N -H0 N | Br

Mn-precatalyst

Do P s
@f ér“g Fa @

NH CI

6 7 8 9

Figure 1: General procedure for the synthesis of the discussed fertigines 1 —9.

The synthesis of 1 was achieved by stirring a solution of 1,8-diaminonaphthalene, 2-aminobenzyl
alcohol, KO'Bu and Mn-precatalyst in 2-MeTHF at 100 °C (Figure 1). After heating the mixture for 2 h,
benzaldehyde was added, and the reaction was stirred at 100 °C for 15 h. After workup, we obtained
a white, air stable solid in 93 % yield (for detailed information see SI). This fertigine was previously
characterized by elemental analysis, IR-spectroscopy and NMR-spectroscopy.!! Ithough the fertigine
contains two stereo centers, we did not observe all diastereomers via 'H-NMR analysis (see SI),
indicating a diastereoselectivity for the synthesis of fertigines. We determined the obtained pair of
enantiomers by investigation of the molecular structure via X-ray crystallography. Crystals of 1 were

obtained by dissolving 1 in a mixture of ethyl acetate and pentane (3/1) and storing the solution at -
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8°C for 2 days. Figure 2 shows the molecular structure of 1 determined by single-crystal X-ray analysis

with selected bond distances and angles in the caption.

Fertigine 1

Figure 2: Molecular structure of 1 in the crystal (ORTEP drawing and atom labelling scheme with 50 % probability level).
Selected bond lengths/f\ and angles/°: N1-C11, 1.438(2); N2-C11, 1.490(2); N2-C18, 1.463(3); N3-C17, 1.377(2);
N3-C18, 1.452(2); C11-C12, 1.525(2); C18-C19, 1.527(2). NI-C11-N2, 111.9(1); C11-N2-C18, 110.2(1); N2-C18-
N3, 110.2(1); C18-N3-C17, 121.5(1).

The fertigine 1 crystallized in the monoclinic space group P 21/c¢ having four independent molecules in

the unit cell. The 3-dimensional molecular structure in the crystal shows an interesting shape, where

all three aromatic regions of this molecule are almost perpendicular to each other (Figure 3). The angle

between the naphthalene (red) and the annulated phenyl (blue) plane is a =85.65 °, between the

naphthalene (red) and the substituted phenyl (green) plane is § = 89.69 ° and between the annulated

phenyl and the substituted phenyl plane is y = 84.68 ° (for details see Sl).

HN_11_N_18

1 2\\/
NH
3

\
\y

[,

/ \
—/

¢

Figure 3: Orientation of the three aromatic regions (red, blue, green) of 1 in the crystal (ORTEP drawing and atom labelling
scheme with 50 % probability level).
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The absolute configuration of the molecular structure of 1 is (S)ci1, (R)cis. Next, we investigated the
structural properties of the core region around the nitrogen atoms of the fertigine. In literature,?® the
overall bond lengths of Cs.ps — N5p3 is 1.469 + 0.014 A. The bond lengths in 1 of the aminal belonging
to C11 (C11-N1: 1.438(2) A, C11-N2: 1.490(2) A) are comparable to the values of a typically Copz —
Ngp3-bond and are within the range of reported structures of 2,3-dihydro-1H-perimidines./?3% The
C11-C12 bond length (1.525(2) A) and C18-C19 bond length (1.527(2) A ) agree with reported
Carom.— C3p3 bond length.?® The C.mina-N lengths of C18 (C18-N2: 1.463(2) A, C18-N3, 1.452(2) A) are
in line with the value in literature.?® The angles C1-N1-C11:117.4(1) ° and C11-N2-C18: 110.3(1) °
indicate a distorted trigonal pyramidal geometry for N1 and N2. According to the trigonal planar
geometry of N3 (C17-N3-C18: 120.9(1) °) and to the bond length of N3-C17 (1.377(2) A), N3 shows
more the character of a sp>-hybridization than of a sp3-hybridization (lit.: Carom.— Nspz: 1.353 + 0.007

A vs. Corom— Np3: 1.419 +0.017).128

Table 1: Comparison of selected bond lengths, angles, and plane angles'® of the fertigines 1 - 5.

| T G
Distances/A 1 2 3 4 5
N1-C11 1.438(2) 1.450(4) 1.442(2) 1.461(5) 1.432(4)
N2-C11 1.490(2) 1.466(4) 1.475(2) 1.466(5) 1.479(4
N2-C18 1.463(2) 1.461(4) 1.469(2) 1.437(5) 1.469(4)
N3-C17 1.377(2) 1.377(5) 1.379(2) 1.381(5) 1.384(4)
N3-C18 1.452(2) 1.452(5) 1.448(2) 1.454(5) 1.459(4)
c11-c12 1.525(2) 1.532(5) 1.530(3) 1.513(5) 1.529(6)
€18-C19 1.527(2) 1.525(5) 1.516(3) 1.521(6) 1.506(4)
Angles/°

N1-C11-N2 111.9 (1) 108.8(3) 108.68(2) 106.5(3) 108.7(3)
C11-N2-C18 110.20(1) 110.2(3) 109.01(1) 115.3(3) 109.8(2)
N2-C18-N3 110.2 (1) 110.5(3) 109.56(1) 108.5(3) 110.9(3)
C17-N3-C18 121.5(1) 121.4(3) 120.40(2) 117.4(3) 120.3(3)
Plane angles/°

a 85.65 86.68 82.16 37.71 88.76
B 89.69 82.98 77.96 67.40 81.67
y 84.68 80.34 89.85 79.38 89.09

[a] ais the angle between the planes of the naphthalene and the annulated phenyl plane. B is the angle between the planes of
the naphthalene and the substituted phenyl moiety. v is the angle between the planes of the annulated and the substituted
phenyl moiety.

Next, we investigated the influence of the substituent at C18 on the molecular structure of the core
region of the fertigines (Table 1, for atom labelling see structure on the top left side). Using
4-chloro-benzaldehyde for fertigine synthesis, we obtained the fertigine 2 (Figure 4a). It crystallized in
the orthorhombic space group P 21 21 21 with 4 fertigines plus 4 acetonitriles in the unit cell (for more

crystallographic details of 2 see Sl). The aminal bond length of C11 and C18 are of comparable values

388



Structure Investigations of Fertigines via X-Ray Crystallography

to 1, only the bond length difference on C11 diminishes. Regarding the other bond lengths and angles
of 2, no significant difference to 1 could be observed, the almost orthogonality of the conformation
remains. While the measured crystals of 1,2 and 4,5 are the (S)ci1,(R)cis-enantiomers, the molecular
structure of 3, a fertigine with an electron-donating substituent at C18, is the only example in table 1
showing the (R)c11,(S)cis-enantiomer. It crystallized in the monoclinic space group P 21/n containing of
4 independent molecules in the unit cell (for more crystallographic details see Sl). The structural
properties (bond lengths, angles) of 3 are similarto 1, only B shrinks to 77.96°, leading to a more pincer-
shaped structure of 3. Using furfural as aldehyde for synthesis, we obtained the fertigine 4. There are
8 independent molecules in the unit cell, the orthorhombic space group is P b ¢ a. Interestingly, the
obtained molecular structure in the crystal has a different conformation than the fertigines before.
Instead of an almost perpendicular orientation of the aromatic regions, especially the values of o and
B shrink (Table 1), leading to a more flatten-twisted structure of the core region (Figure 5a). The aminal
bond lengths and the Carom.— Csps length are within the range of before reported fertigines (1 - 3). The
angles in the core region are of same values compared to 1, remaining the distorted trigonal pyramidal
geometry of N1 and N2, as well as the trigonal planar geometry of N3. If C18 is substituted with
ferrocene (fertigine 5), it crystallized in the monoclinic space group Cc with 4 independent molecules
(for more crystallographic details of 5 see Sl). Regarding the bond lengths and angles, no significant
impact on the structural properties could be observed, only the C18-C19-length is shorter (1.506(4) A).
The plane angles a, B and y proof the almost perpendicular conformation, which is observed in two
thirds of the investigated crystals. The N3-C17 bond length of all discussed fertigines vary between
1.377(2) - 1.384(4) A, the C17-N3-C18 angle vary between 117.4(3)-121.5(1)°. Thus, the

hybridization of the N3 of all discussed fertigines is somewhere between sp? and sp?, but closer to sp?.
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Structure Investigations of Fertigines via X-Ray Crystallography

a.) Fertigine 2 o] o* b.) Fertigine 3

Figure 4: Molecular structure of 2 and 3 in the crystal (ORTEP drawing and atom labelling scheme with 50 % probability level).
Both structures clearly show a co