
Influence of electron dynamics and

electromagnetic effects on zonal

flow pattern formation and the

interplay with microturbulence in

fusion plasmas

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Florian Rath
aus Würzburg

1. Gutachter: Prof. Dr. Arthur G. Peeters
2. Gutachter: Assoc. Prof. Dr. Ben F. McMillan

Tag der Einreichung: 18.01.2023
Tag des Kolloquiums: 09.05.2023





Betreut durch Prof. Dr. Arthur G. Peeters





Acknowledgments

First of all, I would like to express my greatest gratitude to my supervisor
Arthur Peeters. I would like to thank him for his guidance and his enduring
support throughout the process of this thesis. The research presented in thesis
benefitted from the many insightful discussions we had.

I would like to thank Arne Weikl for his helpfulness in many situations in and
outside academia. In addition, I would like to thank him for granting me access
to his simulation data and for proofreading one of the publications. I would like
to thank Rico Buchholz for the time we shared the office and for always being
helpful. I thank Stefan Großhauser for his effort in developing diagnostics, which
made this thesis possible. Finally, I would like to thank Lukas Krönert, Felix
Seiferling and Pierluigi Migliano for the time we spent, while working in plasma
physics.

Outside academia, I would like to express my gratitude to my parents, my brother
and Anita Freundorfer for their encouragement and support during the course of
this thesis.

i



ii



Abstract

Influence of electron dynamics and electromagnetic

effects on zonal flow pattern formation and the in-

terplay with microturbulence in fusion plasmas

The realization of the thermonuclear fusion requires a sufficiently good confine-
ment of a hot fusion plasma. The tokamak concept, studied in this thesis, uses
magnetic fields to achieve confinement. Turbulent losses of particles and energy,
partially caused by turbulence on spatial scales comparable to the ion Larmor
radius —so-called microturbulence —, constitute one of the main limitations of
confinement. Future fusion experiments on reactor relevant scales are predicted
to operate close to marginal stability of microturbulence, —a regime that is of-
ten accompanied by zonal flow structure formation. Here, zonal flows refer to a
form of radially sheared plasma rotation that does not contribute to turbulent
losses. On the contrary, they have a positive influence on confinement through
their ability to suppress microturbulence. The interplay of zonal flow structure
formation and microturbulence is therefore assumed to be relevant for future fu-
sion reactors.
In this thesis the interplay of microturbulence and zonal flow pattern formation
is investigated by means of gyrokinetic simulations performed with the Eulerian
gyrokinetic code GKW. In the gyrokinetic framework the Maxwell-Vlasov sys-
tem is solved, exploiting the time scale separation between the fast gyro-motion
and the relatively slow turbulent dynamics. Gyrokinetic simulations represent the
state of the art numerical description of fusion plasmas. This thesis focuses on the
influence of electron dynamics and electromagnetic effects on zonal flow pattern
formation, both extensions of the existing literature about zonal flow structure
formation. Hence, this thesis aims to contribute to a more comprehensive under-
standing of the interplay of zonal flow structure formation and microturbulence.
First, zonal flow pattern formation in electrostatic near marginal turbulence with
inclusion of electron dynamics is studied using director field methods. It is shown
that the dominant fine scale features in the E ×B shearing rate, structures that
are driven by the so-called self-interaction mechanism, do hardly contribute to the
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zonal flow shear induced tilt of turbulent structures. Instead, zonal flow pattern
formation on mesoscales, also known as the E×B staircase pattern, is diagnosed
by demonstrating its role for shear deformation of turbulent structures. Further-
more, the modifications of staircase patterns by electron dynamics are discussed.
Second, electromagnetic microturbulence is investigated with the focus on high
β turbulence runaways, i. e., the lack of turbulence saturation above a critical
βc. Temporally persistent mesoscale zonal flow patterns, developing on long time
scales, are shown to mitigate high β turbulence runaways. These patterns, there-
fore, allow for the access of an improved β-regime, i. e., β > βc. Various aspects
of those mesoscale zonal flow dominated improved states are investigated such
as (i) the stability constraints with respect to the mesoscale zonal flow level for
the triggering of turbulence runaways, (ii) the influence of mesoscale zonal flows
on magnetic stochasticity, and (iii) the transfer processes connected to the drive
and damping of mesoscale zonal flows.
Third, the self-interaction mechanism, i. e., the nonlinear interaction of a parallel
to the magnetic field strongly elongated mode with itself, is studied by means
of nonlinear energy transfer methods. The self-interaction mechanism is a phe-
nomenon that occurs especially in descriptions including electron dynamics. It
is known to be responsible for the generation of fine scale features in the E × B
shearing rate. In this thesis this mechanism is shown to have only a small (of
the order of a few percent) direct influence on the processes governing nonlinear
saturation of ion temperature gradient driven microturbulence for plasma core
parameters. Furthermore, the contribution of self-interaction driven zonal fine
scale structures to the zonal flow mediated nonlinear transfer is also small (of the
order of a few percent), corroborating the outcome of the director field analysis.
Fourth, the influence of modified (by electron dynamics) staircase states on the
stability properties close to marginality is investigated. Various unstable Eigen-
modes are identified that are absent in the primary instability spectrum, i. e.,
without the presence of modified staircase states. These Eigenmodes localize to
disparate scales connected to the modified staircase structures and require a finite
electron background temperature gradient drive. Hence, electron dynamics and
electron temperature gradient drive both modify the stability properties close to
marginality. Their consideration may be required for a proper description of near
marginal microturbulence.
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Zusammenfassung

Influence of electron dynamics and electromagnetic

effects on zonal flow pattern formation and the in-

terplay with microturbulence in fusion plasmas

Die Realisierung der thermonuklearen Fusion erfordert einen ausreichend guten
Einschluss eines heißen Fusionsplasmas. Das Tokamak Konzept, welches Ge-
genstand dieser Arbeit ist, nutzt Magnetfelder, um das Plasma einzuschließen.
Turbulente Verluste von Teilchen und Energie, zum Teil verursacht durch Tur-
bulenz auf räumlichen Skalen vergleichbar mit dem Larmor Radius —sogenannte
Mikroturbulenz —, stellt eine der Haupteinschränkungen des Plasmaeinschlusses
dar. Zukünftige Fusionsexperimente auf reaktorrelevanten Größenskalen werden
voraussichtlich nahe marginaler Stabilität von Mikroturbulenz operieren, —ein
Regime, das oft von Strukturbildung zonaler E × B Strömungen (zonal flows)
geprägt ist. Dabei bezeichnen zonale E × B Strömungen eine bestimmte Form
von radial verscherter Plasmarotation, welche nicht zu den turbulenten Verlusten
beiträgt. Ganz im Gegenteil, durch ihre Fähigkeit Mikroturbulenz zu unter-
drücken, wirken sich zonale E×B Strömungen positiv auf den Plasmaeinschluss
aus. Das Zusammenspiel von Strukturbildung zonaler E × B Strömungen und
Mitroturbulenz birgt daher eine Relevanz für zukünftige Fusionsreaktoren.
Diese Arbeit untersucht das Zusammenspiel von Strukturbildung zonaler E ×B
Strömungen und Mitroturbulenz anhand von gyrokinetischen Simulationen, die
mit dem Euler’schen gyrokinetischen code GKW durchgeführt werden. Der
gyrokinetsiche Ansatz löst das Maxwell-Vlasov System unter Ausnutzen der Zeit-
skalentrennung der schnellen Gyrationsbewegung und der relativ dazu langsamen
turbulenten Dynamik. Gyrokinetische Simulationen stellen den state-of-the-
art Ansatz zur numerischen Beschreibung von Fusionsplasmen dar. Der Fokus
dieser Arbeit liegt auf dem Einfluss von Elektronendynamik und elektromagnet-
ischen Effekten auf Strukturbildung zonaler E×B Strömungen, beides Erweiter-
ungen der dazu existierenden Literatur. Damit trägt diese Arbeit zu einem um-
fassenderen Verständnis des Zusammenspiels von Strukturbildung zonaler E×B
Strömungen und Miktroturbulenz bei.
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Als erstes wird Strukturbildung zonaler E × B Strömungen in elektrostatischer
marginaler Turbulenz unter Berücksichtigung von Elektronendynamik und mit
Hilfe von Direktorfeldmethoden untersucht. Es wird gezeigt, dass dominante
Feinskalenstrukturen in der E × B Scherrate, welche durch die sogenannte Selb-
stinteraktion getrieben werden, kaum zur durch zonaler E × B Strömungen in-
duzierten Deformation von turbulenten Strukturen beitragen. Stattdessen wird
Strukturbildung zonaler E × B Strömungen auf Mesoskalen, auch bekannt als
E × B Treppenmuster (E × B staircase pattern), anhand ihrer Rolle für die
Scherdeformation von turbulenten Strukturen diagnostiziert. Weiterhin werden
die Modifizierungen dieser E × B Treppenstrukturen durch Elektronendynamik
diskutiert.
Als zweites wird elektromagnetische Miktroturbulenz untersucht. Dabei liegt der
Fokus auf sogenannte turbulente Ausreißer im Bereich hoher nomierter Plasma-
drücke β (high β turbulence runwaways), —eine Form von transienter turbulenter
Dynamik oberhalb eines kritischen βc, welche keine Sättigung des Turbulenzlevels
aufweist. Es wird gezeigt, dass zeitlich persistente zonale E ×B Strömungen auf
Mesoskalen, welche sich auf langen Zeitskalen entwickeln, diese turbulenten Aus-
reißer unterdrücken. Dadurch erlauben diese Strukturen den Zugang zu einem β-
Regime mit verbesserten Einschluss, also einem Regime mit β > βc. Verschiedene
Aspekte dieser durch zonalen E×B Strömungen dominierten günstigen Zustände
werden untersucht, wie zum Beispiel (i) die Stabiltätsbedingungen an das Level
der zonalen E × B Strömungen für das Auslösen von turbulenten Ausreißern,
(ii) der Einfluss von zonalen E × B Strömungen auf magnetische Stochastizität,
und (iii) Transferprozesse verknüpft mit dem Treiben und Dämpfen von zonalen
E × B Strömungen.
Als drittes wird die Selbstinteraktion, also die nichtlineare Wechselwirkung von
parallel zum Magnetfeld stark elongierten Moden mit sich selbst, mit Hilfe von
nichtlinearen Energietransfermethoden studiert. Die Selbstinteraktion ist ein
Phänomen, das vor allem in Beschreibungen mit Berücksichtigung von Elektron-
endynamik auftritt. Dabei ist dieser Mechanismus für die Entstehung von Fein-
skalenstrukturen in der E × B Scherrate verantwortlich. In dieser Arbeit wird
gezeigt, dass die Selbstinteraktion lediglich einen kleinen (auf Größenordnung
einiger weniger Prozent) direkten Einfluss auf die Prozesse hat, welche die nicht-
lineare Sättigung von ionentemperaturgetriebener Mikroturbulenz bestimmen.
Weiterhin wird gezeigt, dass der Beitrag von selbwechselwirkungsgetriebenen Fe-
inskalenstrukturen zum durch zonale E×B Strömungen mediierten nichtlinearen
Transfer ebenfalls klein (auf Größenordnung einiger weniger Prozent) ist. Dieses
Ergebnis stützt die Aussage der oben aufgeführten Direktorfeldanalyse.
Als viertes wird der Einfluss von (durch Elektronendynamik) modifizierten E×B
Treppenstrukturen auf die Stabilitätseigenschaften nahe marginaler Stabilität un-
tersucht. Verschiedene instabile Eigenmoden können identifizert werden, welche
im primären Instabilitätsspektrum, also in Abwesenheit von modifizerten E ×B
Treppenstrukturen, nicht vorhanden sind. Diese Eigenmoden sind bezüglich
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unterschiedlicher Skalen lokalisiert, welche direkt mit der modifzierten E × B
Treppenstrukturen verknüpft werden können, und erfordern einen endlichen
Elektronentemperaturgradienten. Da sowohl Elektronendynamik als auch end-
liche Elektronentemperaturgradienten die Stabilitätseigenschaften in der Nähe
von marginaler Stabilität beeinflussen, ist eine Berücksichtigung dieser Effekte
für eine angemessene Beschreibung von marginaler Mikroturbulenz notwendig.
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Chapter 1

Motivation 1: Thermonuclear fusion

The growing world population, global warming and current geopolitical tensions
highlight the need for future reliable and climate-neutral energy sources. Nuc-
lear fusion is a promising candidate due to the existence of a vast abundance of
the required fuel and due to the absence of climate-damaging products. In the
underlying process two light nuclei fuse and thereby release energy in accordance
to the mass defect and the mass-energy equivalence. In order to allow for the
nuclei to fuse, the mutual repulsion associated with their positive charge has to
be overcome. A promising way to provide the necessary energy is to heat the fuel
to sufficiently high temperatures, referred to as thermonuclear fusion.
Since fusion reactions require the reactants to collide, the fusion cross section σ
provides a measure of the probability of such reactions. Fig. 1.1 depicts cross
sections for various fusion reactions involving deuterium (D), tritium (T) and
helium-3 (3He). At low temperatures the cross section is small, since the Cou-
lomb barrier prevents the reactants to approach sufficiently close for the nuclear
strong force to dominate. Due to the combined effect of an increasing relative
velocity with increasing temperature and quantum tunnelling, the cross section
exhibits a maximum at a certain temperature. A comparison of different fusion
reactions involving deuterium (see Fig. 1.1) shows that the the D-T reaction has
the largest maximum cross section at the smallest temperature; —it is, therefore,
the most promising reaction for the realization of thermonuclear fusion. From
Fig. 1.1 it is also clear that fusion relevant collision energies are of the order of
101 − 102 keV. The ionization energy of hydrogen is 13.6 eV and, therefore, the
fuel is completely ionized, i. e., the fuel is in the plasma state.
In the D-T reaction the nuclei of deuterium (D) and tritium (T) fuse and an alpha
particle, i. e., a helium (He) nucleus, and a neutron (n) is produced according to

1D
2 + 1T

3 → 2He
4 + 0n

1. (1.1)

This reaction releases an energy of E = 17.59 MeV, of which one fifth is carried
by the helium nucleus and the remainder by the neutron.
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Figure 1.1: Fusion cross section σ as function of the collision energy E (bottom
axis), i. e., the kinetic energy of the lighter reactant in a frame of reference in
which the heavier reactant is at rest, as well as the temperature T = E/kB (top
axis) for three fusion reactions involving deuterium. The data has been retrieved
from the International Atomic Energy Agency database [2].

For the D-T reaction the thermonuclear power is maximized for nD = nT = n/2
[3], with n = nD + nT , and therefore the fusion power density reads

pfus =
1

4
n2〈σv〉E . (1.2)

Here, 〈σv〉 is the reactivity, defined by

〈σv〉 =
∫ ∞

0

σ(v)vf(v) dv (1.3)

where v is the relative velocity of the reactants and f(v) is the distribution of
relative velocities [4].1 Since the neutrons leave the plasma without interaction
the energy Eα carried by the α-particles remains to heat the plasma. The total
α-particle heating is

Pα =
1

4
n2〈σv〉EαV, (1.4)

where the overbar denotes a volume average.
In a reactor a continuous loss of energy from the plasma occurs and the rate of
energy loss

PL =
W

τE
(1.5)

is typically expressed through the total plasma energy W = 3nTV [3] and the
energy confinement time τE . A stationary plasma requires the energy loss to be

1In this calculation the plasma particles are assumed to obey a Maxwellian distribution [4].
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balanced by the α-particle heating and external heating PH as expressed by the
power balance

PH + Pα = PL. (1.6)

Figure 1.2: Triple product nTτE as function of the temperature for three fu-
sion reactions of the deuterium cycle. The data has been retrieved from the
International Atomic Energy Agency database [2].

When the plasma is heated to fusion relevant conditions, α-particle heating con-
stitutes an increasing fraction of the total heating. Provided the plasma is suffi-
ciently well confined, at a certain point, the energy losses may be entirely balanced
by α-particle heating. This situation is called ignition and fusion reactions then
proceeds in a self-sustained manner.
Assuming, for simplicity, profiles of constant density and temperature, the power
balance equation (1.6) leads to the condition

nTτE >
12

〈σv〉
T 2

Eα
(1.7)

for ignition, where the right-hand side is a function of the temperature only. The
quantity nTτE is the so-called triple product and is shown in Fig. 1.2 for the
three deuterium fusion reactions. In case of the D-T reaction it has a minimum
at T ≈ 13 keV (T ≈ 150× 106 K).
The triple product is a convenient measure for ignition conditions, since it identi-
fies the requirements on typical plasma parameters like density and temperature
as well as the confinement quality. As expressed by inequality (1.7), a critical
aspect of the feasibility of thermonuclear fusion is the confinement of the hot
plasma. In the tokamak device, the configuration investigated in this thesis, the
plasma is confined by strong magnetic fields. Turbulent transport constitutes one
of the main limitations of confinement in a tokamak and the understanding of

3



the processes underlying (micro-) turbulence is, therefore, subject of extensive re-
search. One aspect of microturbulence is the generation of patterns in the plasma
rotation, also referred to as zonal flows, which favor confinement. The interplay
of microturbulence and zonal flow pattern formation is the main subject of this
thesis.
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Chapter 2

Plasma physics background and

magnetic confinement in a tokamak

At fusion relevant temperatures of 150 × 106 K, the fuel is fully ionized and is,
therefore, in the plasma state. This chapter introduces plasma physics concepts
and the magnetic confinement of a plasma in a tokamak device.

2.1 Charged particle motion in the presence of

magnetic and electric fields

In magnetic confinement devices, such as the tokamak, the charged plasma
particles experience magnetic and electric fields. The solution of the equation
of motion, considering the associated forces, results in a distinct particle motion
that will be introduced in this section. This section is based on Ref. [3] and for
more details the reader is referred to this reference.

2.1.1 Gyro-motion

In a homogeneous ambient1 magnetic field, plasma particles with a velocity com-
ponent perpendicular to the magnetic field v⊥,sp execute a circular motion in the
plane perpendicular to the magnetic field due to the Lorentz force. For a plasma
particle with charge qsp and mass msp, the circulation frequency, also referred to

1Here, ambient or equilibrium magnetic field refers to the static part of the magnetic field
in a tokamak device that is generated both by external coils and by toroidal plasma currents
either induced externally or driven self-consistently by the plasma dynamics. By contrast, the
perturbed of fluctuating magnetic field is the time dependent part of the magnetic field resulting
from the turbulent plasma dynamics. It satisfies the gyrokinetic ordering 3.2.
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2.1. CHARGED PARTICLE MOTION IN THE PRESENCE OF MAGNETIC
AND ELECTRIC FIELDS

as cyclotron frequency, is defined by

ωc,sp =
|qsp|B
msp

, (2.1)

where B is the magnetic field strength. The radius of the circular motion, the
so-called Larmor radius, is given by

ρsp =
mspv⊥,sp
|qsp|B

, (2.2)

and its center is usually referred to as gyro-center. Since the Lorentz force de-
pends on the sign of the particle’s charge, the circulation direction of electrons
and ions is opposed.
Due to coulomb collisions the plasma is thermalized and the species velocity dis-
tribution can be approximately described by a Maxwell-Boltzmann distribution.2

A typical velocity is then the species thermal velocity

vth,sp =

√

2Tsp
msp

, (2.3)

where msp denotes the species mass and Tsp is the species temperature. Based
on the thermal velocity it, is convenient to introduce a thermal Larmor radius

ρth,sp =
mspvth,sp
|qsp|B

. (2.4)

Under reactor conditions the thermal Larmor radius of ions is of the order of a
few millimeters, while for electrons it is smaller by two orders of magnitude (see
appendix E).

2.1.2 Particle motion parallel to the magnetic field

Free parallel streaming: While the motion perpendicular to a homogeneous
magnetic field is restricted by the Lorentz force, due to the absence of parallel
forces, particles can stream freely parallel to a homogeneous magnetic field,
also referred to as parallel streaming throughout this thesis. The velocity
connected to this parallel motion is of the order of the thermal velocity vth,sp.
Since electrons are significantly lighter than ions, the parallel streaming of the
electrons is much larger compared to ions.3

2In the course of the thesis the Maxwell-Boltzmann distribution will mostly referred to as
Maxwellian.

3Assuming same ion and electron temperature, in a deuterium plasma the ratio of the
thermal velocities is vth,e/vth,i ≈ 60.
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2.1. CHARGED PARTICLE MOTION IN THE PRESENCE OF MAGNETIC
AND ELECTRIC FIELDS

Parallel acceleration due to an electric field: An electric field with a
component parallel to the magnetic field E‖ accelerates a plasma particle through
the force

F‖,E = qspE‖. (2.5)

The parallel electric field may depend both on the position along the field line
and on time. The parallel motion, then, follows from the solution of the equation
of motion [3].

Parallel acceleration due to a parallel gradient of the magnetic field:

When the magnetic field is inhomogeneous and when its gradient ∇B has a
component parallel to the magnetic field ∇‖B ≡ (B/B) · ∇B, a plasma particle
experiences the force

F‖,∇‖B = −mspv
2
⊥

2B
∇‖B. (2.6)

The force incorporates the magnetic moment

µ =
mspv

2
⊥

2B
. (2.7)

In a slowly varying magnetic field the magnetic moment is an adiabatic invariant,
i. e., it is a constant of motion.4 When a particle moves into a region with
increasing magnetic field, it can be reflected due to the force F‖,∇‖B. This effect
is called the mirror effect and the associated force is called the mirror force.

2.1.3 Gyro-center drifts

In the presence of an inhomogeneous equilibrium magnetic field or perturbed
magnetic as well as (time dependent) electric fields the gyro-center undergoes
various slow drift motions perpendicular to the ambient magnetic field. Here, the
property slow means that the drifts are slow compared to the thermal velocity.5

E × B-drift: If a homogeneous electric field with a component perpendicular
to the magnetic field is present, the action of the Coulomb force leads to a drift
of the gyro-center with a velocity

vE =
E×B

B2
(2.8)

4Here, slowly varying refers to temporal variations that are slow compared to the inverse
cyclotron frequency ω−1

c,sp and spatial variations that are large compared to the Larmor radius
ρsp [3].

5In tokamak devices the equilibrium fields vary on length scales larger then the ion Lar-
mor radius ρi and on time scales slow compared to the inverse ion cyclotron frequency ω−1

c,i .
Furthermore, fluctuations are smaller compared to the equilibrium field by a small parameter
ǫg ≪ 1. The gyro-center drifts then satisfy the ordering vd ∼ ǫgvth,sp.
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2.1. CHARGED PARTICLE MOTION IN THE PRESENCE OF MAGNETIC
AND ELECTRIC FIELDS

called the E×B-drift, where E denotes the electric field. Since both the circula-
tion direction of the gyromotion and the Coulomb force depend on the sign of the
particle’s charge, the direction of the E ×B-drift is equal for ions and electrons.

∇B-drift: When the magnetic field is inhomogeneous, i. e., when it exhibits a
finite gradient ∇B, gyro-centers undergo the so-called ∇B-drift

v∇B =
mspv

2
⊥,sp

2qsp

B×∇B
B3

. (2.9)

The form given in Eq. (2.9) requires the gradient of the magnetic field to vary on
scales that are large compared to the Larmor radius. This condition is usually
well satisfied for tokamak devices, as the magnetic field varies on scales of the
machine size. The ∇B-drift depends on the particle charge and, therefore, its
direction differs among ions and electrons.

Curvature drift: Due to the centrifugal force acting on a particle in a curved
magnetic field, the gyro-center experience the curvature drift

vC =
mspv

2
‖

qsp

B× κ

B2
. (2.10)

The curvature can be written as

κ = −(b · ∇)b = −b×
(

∇× B

B

)

= µ0
J×B

B2
+

∇B
B

= µ0
∇p
B2

+
∇B
B

, (2.11)

where Amperè’s law and the force balance J × B = ∇p for the equilibrium [3]
has been used.
If the ratio of the plasma pressure and the magnetic field pressure is small, the
pressure gradient correction can be neglected and the curvature drift reduces to

vC =
mspv

2
‖,sp

qsp

B×∇B
B3

. (2.12)

In this form the ∇B- and curvature drift can be treated similarly.

Polarization drift: When an electric field perpendicular to the magnetic field
varies temporally the particle’s gyro-center undergoes the drift

vP =
1

ωc,spB

∂E⊥

∂t
. (2.13)

The direction of this drift depends on the species charge and results in a polar-
ization current. Therefore, it is referred to as polarization drift.
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2.2. MAGNETIC CONFINEMENT IN THE TOKAMAK

Parallel motion along perturbed magnetic field lines: The parallel
streaming along a perturbed magnetic field δB = ∇×A‖b ≈ b×∇A‖ results in
the gyro-center drift

vδB = −b×∇v‖A‖

B
, (2.14)

where A‖ is component of the perturbed vector potential parallel to the equilib-
rium magnetic field.

2.2 Magnetic confinement in the tokamak

This section introduces the magnetic confinement of a plasma in a toroidal device
called the tokamak (see Fig. 2.1 for a sketch). The basic properties and geometric
parameters are discussed.
A tokamak device applies strong magnetic fields to confine the hot plasma. As
outlined in Sec. 2.1 a magnetic field constraints the perpendicular particle motion
to a superposition of the gyromotion and slow perpendicular gyrocenter drifts.
The Larmor radius is typically much smaller than the device size, such that
particle and energy loss is associated to the slow gyrocenter drifts.
To avoid particle losses at the end of field lines, the magnetic field of a tokamak
has a torus shape. In such a geometry the magnetic field lines lie on closed nested
surfaces with constant magnetic flux, so-called flux-surfaces.
In order to balance the plasma pressure and for stability reasons [3, 5] the mag-
netic field must have both a toroidal and a poloidal component. The toroidal
component of the magnetic field is the principal component and is imposed by
external coils. A toroidal plasma current, either driven by changing the magnetic
field of a central solenoid or self-consistently by the plasma through the boot-
strap effect [6, 7, 8], provides the poloidal component. The poloidal component
of the confining magnetic field is typically ten times smaller than the toroidal
one [3] and the superposition results in field lines following helical trajectories.
A schematic illustration of this configuration is shown in Fig. 2.1. A parameter
that characterizes the quality of confinement is the so-called plasma beta [3]

β =
nT

µ0B2/2
, (2.15)

which compares the thermal plasma pressure nT (n and T are the plasma density
and temperature, respectively) with the ambient magnetic field pressure µ0B

2/2
(µ0 and B are the permeability of free space and the magnetic field strength,
respectively). In a tokamak reactor the plasma beta is typically of the order of a
few percent.6

6For an ITER core deuterium plasma (see appendix E) one finds β ≈ 0.019.
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2.2. MAGNETIC CONFINEMENT IN THE TOKAMAK

Figure 2.1: Sketch of circular shaped nested flux-surfaces of a tokamak in tor-
oidal coordinates (ψ, ϕ, θ) and reference cylindrical coordinates (z,−ϕ,R). Hel-
ical magnetic field lines are depicted by blue arrows and the magnetic axis is
shown by the red dashed line.

In theoretical studies of the plasma core, as presented in this thesis, the flux-
surfaces are often considered to be circular concentric.7 The coordinate ψ, that
labels the flux-surfaces, then can be chosen the minor radial coordinate r. Below,
geometric parameters characterizing such a toroidal magnetic equilibrium are
introduced.
It is useful to define the inverse aspect ratio of a flux-surface by [3]

ǫ =
r

R0
, (2.16)

where R0 is the major radius of the tokamak.
Additionally, the safety-factor q of a field line denotes the number of toroidal
turns a field line executes per poloidal turn. It is defined by [3]

q =
1

2π

∮
1

R

Bϕ

Bθ
ds, (2.17)

where Bϕ and Bθ specifies the toroidal and poloidal field, respectively, and the
integral is carried out over one poloidal turn around the flux-surface. The safety
factor plays a significant role in determining the stability against magneto hydro-
dynamic instabilities.
While on a fixed flux-surface each field line has the same safety factor, its value
changes with the minor radial coordinate. The radial variation of the safety factor
is quantified by the magnetic shear [5]

ŝ =
r

q

∂q

∂r
. (2.18)

7This approximation is valid for flux-surfaces with small minor radial coordinate r compared
to the major radius R0 and for small β.
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2.2. MAGNETIC CONFINEMENT IN THE TOKAMAK

These geometric parameters are used in Sec. 4.2.4 to define the geometry of the
fluxtube simulation domain.
The magnitude of magnetic field in a tokamak decreases with the coordinate
R away from the central axis of symmetry (z-axis in Fig. 2.1). For circular
concentric flux-surfaces the magnitude B = B0R0/R, with B0 being the strength
of the magnetic field on the magnetic axis, obeys [9]

B =
B0

1 + ǫ cos θ
, (2.19)

where R = R0+ r cos θ and the inverse aspect ratio ǫ [Eq. (2.16)] have been used.
On a given flux-surface the inboard side (θ = ±π) is the location where the mag-
nitude of the magnetic field is largest. It is also referred to as the high field side.
Conversely, the outboard side (θ = 0) is the location with the smallest magnetic
field and is referred to as the low field side.
The inhomogeneous magnetic field of a tokamak and the conservation of the mag-
netic moment µ [Eq. (2.7)] as well as the kinetic energy (msp/2)(v

2
‖ + v2⊥) give

rise to particle trapping on the outboard side. When a particle moves along a
field line from the low field side towards the high field side, its perpendicular ve-
locity increases while its parallel velocity decreases due to the above conservation
properties. Physically, it is the mirror force introduced in Sec. 2.1 that causes
the deceleration parallel to the magnetic field.
If the parallel velocity of a particle is small enough, it is decelerated to zero be-
fore the particle reaches the high field side. This leads to a bounce motion of
certain particles, so-called trapped particles, on the outboard side of the toka-
mak. Particles that reach and pass the high field side, in turn, are called passing
particles.
The trapping condition can be derived from the conservation properties and reads

µB(θ = ±π) = 1

2
mspv

2
‖,L + µB(θ = 0), (2.20)

where B(θ = ±π) and B(θ = 0) denote the magnetic field on the high and low
field side, respectively. In the case of circular concentric flux-surfaces the trapping
condition can be re-formulated using the expression (2.19). For particles to be
trapped the velocities have to satisfy

v2⊥ >

(
1− ǫ

2ǫ

)

v2‖ . (2.21)

Having established charged particle motion and the tokamak, the next sections
will focus on collective phenomena in a tokamak plasma such as microturbulence
and zonal flows.
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2.3. MICROTURBULENCE CAUSED BY THE ION TEMPERATURE
GRADIENT DRIVEN INSTABILITY

2.3 Microturbulence caused by the ion temperat-

ure gradient driven instability

The electromagnetic forces acting in a tokamak plasma give rise to a variety of
collective phenomena. One example are microinstabilities, i. e., instabilities on
spatial scales of the Larmor radius and frequencies much smaller than the cyclo-
tron frequency, that are driven by density and temperature gradients present in
tokamak devices. Turbulence caused by microinstabilities is considered the main
reason for the loss of particles, energy and momentum from a tokamak plasma
[10, 11, 12]. As such, microturbulence is the main reason for the degradation of
confinement and, thereby, limits the confinement time.
Among multiple microinstabilities, the ion temperature gradient (ITG) driven
instability [13, 14, 15] is assumed to dominate in the core of tokamak reactors.
Turbulence caused by the ITG driven instability is subject of this thesis
and, therefore, this section briefly (and qualitatively) reviews the underlying
mechanisms.

Figure 2.2: Sketch of a drift wave: Due to the adiabatic electron response
[Eq. (2.26)] an ion density perturbation (ni ≷ 0) causes an in phase potential
perturbation (φ ≷ 0). The connected electric field E (vertical black arrows)
results in an E × B-drift vE (horizontal black arrows) that is aligned with the
density gradient ∇n0 (horizontal gray arrow). The E × B-drift brings denser
plasma into regions above the positive density perturbation ni > 0 and less dense
plasma into regions above the negative density perturbations ni < 0, causing the
drift wave to propagate in the positive y-direction.
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2.3.1 The drift wave

The ITG driven instability is of the drift wave type and it is convenient to in-
troduces the basic mechanisms behind drift waves first. For a more detailed
discussion the reader is referred to Ref. [12].
Drift waves are low frequency waves, since they evolve on time scales much larger
than the cyclotron frequency ω ≪ ωc,sp. This property motivates the considera-
tion of the slow guiding-center drifts (see Sec. 2.1.3). A simple description of a
drift wave can be obtained within an ion fluid model with the adiabatic electron
approximation [16, 17] as detailed out below.
In what follows a small test volume is considered with the radial coordinate x,
the binormal coordinate y, the parallel coordinate z and a homogeneous magnetic
field B = Bêz (see Fig. 2.2). The plasma shall be non-uniform in the radial direc-
tion and a radial density gradient ∇n0 = −n0êx/Ln is assumed, with the density
gradient length Ln and the equilibrium density n0. A density perturbation with
wave vector k = kyêy is assumed (cells in Fig. 2.2) and is written in the plane
wave form

ni ∝ exp[i(kyy − ωt)], (2.22)

with ni ≪ n0. Note that êx, êy and êz denote unit vectors in the three spatial
direction. Furthermore, kyρth,i ≪ 1 is assumed, to be able to neglect finite Larmor
radius effects (see Sec. 3.5 for a description of finite Larmor radius effects).
Due to their small mass (compared to ions) electrons move rapidly along the field
lines and thereby re-establish quasi-neutrality ni = ne. As a result the electron
pressure is modified and then reads

pe = (n0,e + ne)T0,e, (2.23)

where the background electron temperature T0,e is assumed to be uniform.
With the simplifying assumptions of an isotropic plasma and neglecting friction
the parallel electron force balance may be written as

me(n0,e + ne)
dv‖,e
dt

= −∂pe
∂z

+ e(n0,e + ne)
∂φ

∂z
. (2.24)

Since electrons respond quasi-instantaneously, the inertia term on the left-hand
side can be neglected. As a consequence, the electron pressure needs to be bal-
anced by a parallel electric field. Neglecting second order terms in the perturba-
tions, the force balance is

T0,e
∂ne

∂z
= en0,e

∂φ

∂z
. (2.25)

The above equation can be integrated to obtain the so-called adiabatic electron
response

ne

n0,e

=
eφ

T0,e
. (2.26)
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According to the adiabatic electron response an ion density perturbation causes
an in phase potential perturbation due to quasi-neutrality and electrons estab-
lishing parallel force balance.
The ion density perturbation (2.22), hence, results in an E ×B-drift of the ions
given by vE = −(ikyφ/B)êx (black horizontal arrows in Fig. 2.2). The evolution
of the perturbed ion density due to this E×B-drift is described by the linearized
ion continuity equation

∂ni

∂t
= −vE · ∇n0,i. (2.27)

Noting that the direction of the E×B-drift is parallel to the background density
gradient and using quasi-neutrality together with the adiabatic electron response
one obtains the dispersion relation of the drift wave

ω =
kyT0,e
eBLn

. (2.28)

The frequency of the drift wave is purely real, such that the perturbation
propagates in the y-direction with the velocity vph = ω/ky, but does not grow
or decay in time.8 The phase velocity is equivalent to the so-called electron
diamagnetic velocity and the drift wave, therefore, propagates in the electron
diamagnetic direction (positive y-direction in Fig. 2.2). A conceptual sketch of
the drift wave mechanism is depicted in Fig. 2.2.
In the toroidal geometry of a tokamak the ∇B- and curvature drifts cause a
coupling between temperature and density perturbations. The presence of an
(sufficiently large) ion temperature gradient can then lead to the ITG driven
instability, which is discussed in the next section.

2.3.2 The toroidal ion temperature gradient driven in-

stability

The toroidal ITG driven instability occurs in the presence of a sufficiently large
ion temperature gradient and is driven by the so-called bad curvature on the out-
board side of a tokamak (where the gradient of the magnetic field ∇B and the
temperature ∇T0 are aligned). In this section the underlying mechanism of this
instability is described on the basis of Refs. [18, 17, 16] and Fig. 2.3. The elec-
trostatic limit is considered, in that perturbations in the electrostatic potential
are included, while magnetic field perturbations are neglected (this is equivalent
to the limit β → 0, see Sec. 4.3.2).
A perturbation in the ion temperature Ti with kx ≪ ky is considered (red and blue

8The classical drift wave is driven unstable by collisions and is, therefore, more important
in the edge of a tokamak device.
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Figure 2.3: Sketch of the toroidal ion temperature gradient driven instability
on the outboard low field side of the tokamak: An ion temperature perturbation
(Ti ≷ 0, blue and red cells) causes a modulation of the curvature and ∇B-drift
vd (white arrows). This originates in a compression of the plasma (ni ≷ 0, gray
cells) that relates to a potential perturbation (φ ≷ 0) due to the adiabatic electron
response. The resulting E ×B-drift vE (horizontal black arrows) is aligned with
the temperature gradient ∇T0 (horizontal gray arrow) and brings hot plasma into
hot regions of the perturbation (ni > 0, red cells) and cooler plasma into cold
regions of the perturbation (ni < 0, blue cells), reinforcing the process.

cells in Fig. 2.3), which shall be located on the outboard low field side. Since the
combination of the curvature and ∇B-drift is velocity dependent vd ∝ (v2‖+v

2
⊥/2),

its magnitude is modulated across the temperature perturbation (white arrows in
Fig. 2.3). This pattern in the drift motion has a finite divergence and, therefore,
leads to a compression of the plasma. The resulting density perturbation (gray
cells in Fig. 2.3) is π/2 out of phase compared with the temperature perturbation.
Assuming an adiabatic electron response [Eq. (2.26)], an in phase potential per-
turbation relates to the density perturbation. The resulting E × B-drift (hori-
zontal black arrows in Fig. 2.3) brings cool plasma into regions with negative
temperature perturbation (Ti < 0) and hot plasma into regions with positive
temperature perturbation (Ti > 0), thereby reinforcing the temperature perturb-
ation. This final step closes a feedback loop and, hence, causes the perturbation
to grow in time.
While on the outboard side of the tokamak this mechanism causes the perturb-
ation to grow, on the inboard side the opposing ∇B and ∇T0 results in the per-
turbation to decay. The former region is, therefore, said to have bad curvature
and the instability is localized there. In contrast to the drift wave, the ITG
driven mode propagates in the ion diamagnetic direction (negative y-direction in
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Fig. 2.3), since the ∇B-drift dominates the compression [16, 17].
Linear studies within fluid models (similar to Sec. 2.3.1) or more sophisticated
gyrokinetic models (chapter 3) find a critical temperature gradient above which
instability occurs (see left panel of Fig. 2.4). In this thesis this critical threshold
is referred to as linear threshold. Furthermore, compliant with its classification
as microinstability, the growth rate of the ITG driven instability typically peaks
at perpendicular wave vectors of k⊥ρth,i ∼ 0.4− 0.5 (see right panel of Fig. 2.4).
For k⊥ρth,i & 1 so-called finite (ion) Larmor radius effects (see also Sec. 3.5) re-
duce the growth rate of the ITG driven instability and other instabilities like the
trapped electron mode may occur.
As discussed above, ITG driven Eigenmodes are typically localized at the low
field side of the tokamak. The high mobility of passing electrons, however, leads
to an extension of the mode structure along the field lines covering multiple pol-
oidal turns. This phenomenon is known as giant tails [19] and is the basis for the
self-interaction mechanism [1], which is investigated in greater detail in chapter 8.
With increasing plasma β the Eigenmodes of the ITG driven instability acquire
an electromagnetic character through the coupling to shear Alfvén waves [20].
Beside the electrostatic potential, Eigenmodes then exhibit an perturbed mag-
netic field component as well. In addition, the coupling to shear Alfvén waves
causes the growth rate to decrease with β [20, 21]. Electromagnetic microturbu-
lence is subject of chapter 7.

Beside the ITG driven instability, the trapped electron mode (TEM) is con-
sidered to contribute to the turbulent transport in a tokamak plasma. In the
cases considered in this thesis, however, the TEM occurs as a subdominant in-
stability (see for example the right panel of Fig. 2.3) and is, therefore, of minor
interest. For details about the TEM the reader is referred to Refs. [17, 16].
When the plasma is unstable against microinstabilities a turbulent state may
arise, hereafter referred to as microturbulence. Central to the development of a
saturated turbulent state is the nonlinear interaction of the Eigenmodes driven by
microinstabilities (nonlinear processes responsible for saturation of microturbu-
lence are studied in greater detail within a nonlinear transfer analysis in chapter
8), which, in ITG driven microturbulence, is mainly caused by turbulence driven
zonal flows [22] (see Sec. 2.4 for an introduction to zonal flows). The resulting
perturbations, composed of Eigenmode remnants and nonlinearly generated vor-
tices (see Fig. 6.6 of chapter 6), cause turbulent transport of particles, energy and
momentum through advection by the E × B-drift for example. Moreover, close
to marginality microturbulence and zonal flows often self-organize into patterns
[23, 24, 25]. Turbulent transport is then mediated by avalanches, i. e., radial bal-
listically propagating events, which are closely correlated with zonal flow shear
zones [26, 27].
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Figure 2.4: Linear gyrokinetic study of the ITG driven instability considering
the electrostatic limit, circular concentric flux-surfaces, CYCLONE base case
parameters and electron dynamics. Left: Growth rate γ (blue +-symbols) of the
dominantly growing ITG driven Eigenmode as function of the normalized inverse
background temperature gradient length R0/LT as well as a linear fit (gray solid
line). Above a linear threshold R0/LT |lin ≈ 2.25 the ITG driven instability is
unstable. Right: Growth rate γ (blue +-symbols) and frequency ω (orange ×-
symbols) as function of the perpendicular wave vector k⊥ for the same plasma
parameters but fixed R0/LT = 4.0. The ITG driven instability dominates in the
regime 0 < k⊥ρth,i . 0.8, while the TEM dominates at k⊥ρth,i > 0.8 in this case.

Figure 2.5: Illustration of zonal
flows: Zonal flows are E × B-flows
connected to the part of the electro-
static potential that is constant on
flux-surfaces. The related plasma mo-
tion vZF is tangential to flux-surfaces.
The rotation velocity vZF of zonal
flows exhibits an alternating pattern
with the flux-surface label ψ and ve-
locity shear is, therefore, inherent to
such flows.

17



2.4. ZONAL FLOWS

2.4 Zonal flows

In the tokamak plasma context zonal flows are referred to as E × B-flows
[Eq. (2.8)] connected to the electrostatic potential that is constant on flux-surfaces
[28]. The latter is also denoted by the zonal potential 〈φ〉; a nomenclature that is
adopted in this thesis. Since the zonal potential varies across flux-surfaces only,
zonal flows are tangential to flux-surfaces as illustrated in Fig. 2.5. As a result,
zonal flows do not contribute to the turbulent transport across flux-surfaces usu-
ally connected to E × B-motion. This property renders zonal flows harmless in
view of confinement degradation.
In addition, zonal flows are E × B-flows connected with a radially alternating
zonal potential. Therefore, their rotation velocity vZF alternates with the flux-
surface label ψ as depicted schematically in Fig. 2.5. This differential rotation
necessarily introduces a velocity shear, i. e., a radial variation of the zonal flow
velocity, and therefore allows for the shear deformation of turbulent structures.
Zonal flow shearing is considered to play a significant role in the saturation and
even suppression of turbulence [29]. In this sense, zonal flows are considered be-
neficial for confinement.
When the radial scale of the zonal potential is large compared to the Larmor
radius, the zonal flow velocity can be defined by

vZF =
b×∇〈φ〉

B
. (2.29)

The inhomogeneous magnetic field of a tokamak causes a finite divergence ∇ ·
vZF 6= 0. On time scales larger than the inverse sound frequency a flow parallel
to the magnetic field u‖ emerges to establish incompressibility ∇· (vZF+u‖) = 0
[30]. In addition, trapped particles undergo a toroidal precession [31] coupling
the zonal flow to a parallel flow. As a result, zonal flows in a tokamak plasma
are always accompanied by secondary flows parallel to the magnetic field.

2.4.1 Generation of zonal flows

Zonal flows are linearly stable, but are considered to be driven nonlinearly through
turbulent Reynolds stresses [32]. In drift wave type turbulence zonal flow gener-
ation is based on modulational [33, 34, 35, 36, 37, 33] or equivalently secondary
instabilities [15, 38, 39, 40, 41]. This section briefly reviews the basic zonal flow
generation mechanism within the modified Hasegawa Mima equation (mHME)
[42, 43], which emerges as a 2D limit of the gyrokinetic equation in the cold ion
and adiabatic electron approximation [44, 43, 10].
The mHME is one of the simplest two-dimensional fluid models allowing for
electrostatic drift wave turbulence and nonlinear dynamics associated with the
E × B-nonlinearity. It describes the plasma dynamics in the doubly periodic
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x-y-plane (x and y are the radial and bi-normal direction respectively) perpen-
dicular to a static and homogeneous magnetic field B and in the presence of an
equilibrium density gradient. Its dimensionless form reads [39, 40]

d

dt

(
φ− 〈φ〉 − ∇2φ− x

)
= 0, (2.30)

which describes the conservation of the generalized potential vorticity φ− 〈φ〉 −
∇2φ− x. Here, the electrostatic potential averaged over the y-direction

〈φ〉(x) = 1

Ly

∫ Ly/2

−Ly/2

dy φ (2.31)

(Ly is the bi-normal extend of the considered domain) constitutes the two-
dimensional equivalent of the flux-surface averaged or zonal potential in a toka-
mak. It is then customary to define the turbulent potential by

φ̃ = φ− 〈φ〉. (2.32)

The total time derivative is defined as

d

dt
=

∂

∂t
+ [φ, . . .], (2.33)

with the Possion bracket given by

[G,H ] =
∂G

∂x

∂H

∂y
− ∂G

∂y

∂H

∂x
. (2.34)

Eq. (2.33) represents the advective derivative with the E × B-velocity

vE = (vEx, vEy) =

(

−∂φ
∂y
,
∂φ

∂x

)

(2.35)

being the advecting velocity.
An evolution equation for the zonal flow vZF = ∂x〈φ〉 can be obtained by averaging
Eq. (2.30) over the y−direction and taking the derivative with respect to the
radial coordinate. After some algebra one obtains

∂vZF
∂t

=
∂

∂x

〈
∂φ̃

∂x

∂φ̃

∂y

〉

= −∂Π
∂x

, (2.36)

where Π ≡ 〈ṽExṽEy〉 is the Reynolds stress.
Although the instantaneous value of the Reynolds stress may exhibit strong

positive and negative samples during the turbulent state, without a symmetry
breaking mechanism the ensemble averaged stress is zero. A finite zonal flow shear
induced tilt of turbulent structures, in turn, breaks the symmetry and causes a
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Figure 2.6: Zonal flow induced sym-
metry breaking: The radial velocity
shear connect to the radially varying
zonal flow vZF (bottom) causes a de-
formation of turbulent structures as
illustrated by the radial modulation
of drift wave iso-contour lines in the
x-y-plane perpendicular to the ambi-
ent magnetic field B (top). Due to
the broken symmetry the radial trans-
port of bi-normal momentum ṽExṽEy
exhibits positive values at 1○ as well
as 2○ and negative values at 3○ as well
as 4○.

finite averaged Reynolds stress [31, 45]. This process is depicted schematically
in Fig. 2.6 on the basis of a zonal flow modulated drift wave. Due to the broken
symmetry the radial transport of bi-normal momentum ṽExṽEy exhibits positive
values at positions 1○ as well as 2○ and negative values at 3○ as well as 4○. The
resulting divergence of the Reynolds stress acts to reinforce the zonal flow. This
process is at the basis of the modulational instability.
A more quantitative, albeit greatly simplified, description of the modulational
instability can be obtained within a four wave truncation [34, 36, 37, 46, 40]
of the modes involved in the underlying nonlinear processes. The electrostatic
potential is decomposed into Fourier modes

φ(x, y, t) =
∑

k

φ̂k(t)× exp[i(kxx+ kyy)] (2.37)

with the perpendicular wave vector k = (kx, ky), which allows to express the
mHME in Fourier space

(αk + k2)φ̇k + ikyφk =
∑

k1+k2=k

[ẑ · (k1 × k2)(βk + k22)]φk1
φk2

, (2.38)

with the dot denoting a partial derivative with respect to time. The coefficients
αk and βk are connected to the adiabatic electron response [43] and are defined
by

αk ≡
{

0, if ky = 0

1, otherwise
(2.39)

and

βk ≡
{

0, if k2y = 0

1, otherwise.
(2.40)
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The right-hand side of Eq. (2.38) describes three wave interactions mediated
by the E × B-nonlinearity. The concept of three wave or triad interactions,
satisfying the wave vector addition rule k1 + k2 = k, is generic to quadratic
nonlinearities and applies analogously to the gyrokinetic equation presented in
Sec. 3.4. Therefore, many of the concepts discussed in this section apply similarly
to the nonlinear dynamics emerging from the gyrokinetic model (and will occur
similarly in chapter 8).
The four-wave truncation investigates the evolution of a turbulent pump mode
φ̂q with k = (0, q) and a zonal mode φ̂0 with k = (p, 0) coupled nonlinearly

through sideband modes φ̂± with k = (p,±q). Thereby, the pump drift wave is
considered a constant drive and the ordering φ̂q ∼ O(1) ≫ φ̂0, φ̂+, φ̂− is adopted.
The coupled set of equations describing the time evolution of the considered
modes can be deduced from Eq. (2.38) and is given by [40]

˙̂
φq + iΩqφ̂q = 0 (2.41)

˙̂
φ0 = −qp(φ̂qφ̂− − φ̂∗

qφ̂+) (2.42)

˙̂
φ+ + iΩ+φ̂+ =

qp(1 + q2 − p2)

1 + q2 + p2
φ̂qφ̂0 (2.43)

˙̂
φ− + iΩ−φ̂+ = −qp(1 + q2 − p2)

1 + q2 + p2
φ̂∗
qφ̂0. (2.44)

The above set of equations contains the drift frequencies of the pump wave and
the sideband modes defined by Ωq = q/(1 + q2) and Ω± = ±q/(1 + q2 + p2),
respectively.
From Eq. (2.41)-(2.44) a third order differential equation for the time evolution
of φ̂0 can be obtained. The Ansatz φ̂0 = A0 exp(iγ0t) then yields the instability
growth rate [40]

γ0 =

√

2q2p2(1 + q2 − p2)

1 + q2 + p2
|φ̂q|2 −∆Ω2, (2.45)

with the frequency mismatch ∆Ω = Ωq − Ω+. In the high amplitude limit

|φ̂q|2 ≫ 1 zonal growth is limited to wave vectors 0 < p2 < 1+q2. At small pump
wave amplitudes the frequency mismatch ∆Ω between the interacting pump and
sideband modes reduce the efficiency of the nonlinear interaction.
The mechanism underlying the modulational instability may be understood as
follows: The velocity shear of a seed zonal flow modulates the pump drift wave
as depicted schematically in Fig. 2.6. This modulation is equivalent to the non-
linear generation of sideband modes through the three wave interaction of the
pump wave and the zonal flow as described by Eqs. (2.43) and (2.44). The radial
modulation of the pump wave causes a Reynolds stress that acts to increase the
seed zonal flow closing the feedback loop. Note that the Reynolds stress is given
by the products qpφ̂qφ̂− and qpφ̂∗

qφ̂+ on the right-hand side of Eq. (2.42). As a

21



2.4. ZONAL FLOWS

Figure 2.7: Projection of perturbed
magnetic field lines followed for one
poloidal turn onto the poloidal plane:
A flux-surface preserving field line
(blue dashed) returns to its original
flux-surface (black solid circle) after
one poloidal turn, while a flux-surface
breaking field line (red dotted) exhibit
a radial displacement δψ. The latter
causes magnetic stochasticity.

consequence, the modulation instability directly relates to the shear deformation
of turbulent structures.
The physics behind the generation of zonal flows introduced above is greatly sim-
plified and modifications due to pressure fluctuations [47], toroidal geometry [34],
electromagnetic effects [48] or energetic particles [49, 50] enter a more elaborated
description. Furthermore, in chapter 7 it is demonstrated that in toroidal geo-
metry zonal flows can be driven through the coupling to parallel flow sidebands.

2.4.2 Damping of zonal flows

Zonal flows may be subject to various damping mechanism such as collisions
[51, 52, 53], tertiary instabilities [54], turbulent parallel viscous stresses [30] and
toroidal momentum transport [55], geodesic transfer [56, 45] and radial charge
loss associated with magnetic stochasticity [57, 58]. Saturation of zonal flows
then occurs, when the driving Reynolds stress is balanced by the combined effect
of damping mechanisms.
Due to its relevance for this thesis (chapter 7) the damping of zonal flows through
magnetic stochasticity is outlined below. Magnetic perturbations associated with
microturbulence can destroy the intactness of magnetic flux-surfaces [57]. More in
detail, perturbed magnetic field lines that depart from their original flux-surface
after one poloidal turn allow for a radial displacement of particles streaming
along such field lines (see Fig. 2.7). This radial transport process is also referred
to as magnetic flutter. The radial electric field connected to zonal flows may
accelerate electrons along such flux-surface breaking field lines, causing a radial
charge current density that reduces the radial electric field and, thereby, damps
the zonal flow.
Since electrons respond much faster along (perturbed) field lines than ions an
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electrons-only calculation is invoked [58], while the ions are assumed at rest. The
electron response parallel to the perturbed magnetic field δB and in the presence
of a radial electric field Eψ = −∇〈φ〉 can be estimated by

me

∆v‖
∆t

∼ e
δB

B0
· ∇〈φ〉 = −eδBψ

B0
Eψ. (2.46)

Provided the perturbed field line is flux-surface breaking, the velocity increment
∆v‖ resulting from the acceleration by the radial electric field can be estimated
by assuming that ∆t is determined by the electron thermal velocity vth,e and the
length of the perturbed field line lm

9, and reads

∆v‖ = − elm
vth,eme

δBψ

B0
Eψ. (2.47)

Since ions are assumed to rest, this electron motion leads to a radial current
density

δJψ = −ene∆v‖

(
δBψ

B0

)

=
e2nelm
vth,eme

(
δBψ

B0

)2

Eψ, (2.48)

and, considering surface charge continuity and Poisson equation [58], to an
associated decay of the radial electric field ∂tEψ ∝ −δJψ. In the case of
flux-surface preserving magnetic perturbations the acceleration of electrons
during the first poloidal half-turn is canceled by a deceleration during the second
half-turn, as δBψ changes sign, and zonal flow damping does not occur.
The above discussed physics picture of zonal flow damping due to magnetic
stochasticity is greatly simplified. More sophisticated studies [58, 59, 60], taking
into account the full kinetic response of zonal flows to magnetic perturbations,
however, confirm zonal flow damping due to flux-surface breaking magnetic
perturbations.
Under certain circumstances the damping associated with magnetic stochasticity
may inhibiting the development of zonal flows. The consequence are turbulence
runaways [21, 61, 60], i. e., a transient growth of turbulence to indeterminate
levels, since zonal flows as the main regulation mechanism of microturbulence
driven by the ITG [22] are disabled. Turbulence runaways and the influence of
magnetic perturbations on zonal flows are subject of chapter 7.

2.4.3 Influence of zonal flows on microturbulence

Zonal flows have a stabilizing effect on turbulence driven by microinstabilities
[62, 29]. They play a dominant role in the nonlinear saturation of ion tem-
perature gradient driven turbulence [22, 63, 64, 65, 66] and may even suppress

9An estimate of the length of a perturbed field line followed for one poloidal turn may be
provided by the connection length lm ∼ qR.
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Figure 2.8: Zonal flow shear decorrelation: A turbulent vortex (blue) that is
subject to a homogeneously sheared flow (red arrows) gets deformed over time
until it breaks up into smaller vortices.

microturbulence [29, 67]. As such, the nonlinear generation of zonal flows leads
to an upshift of the critical temperature gradient for the development of ion tem-
perature gradient driven turbulence known as the Dimits shift [67]. This section
introduces basic concepts connected to shear stabilization and nonlinear mode
coupling related to zonal flows.
The stabilization of turbulence stems from their shearing action and, therefore,
is also referred to as shear stabilization. Early works on this topic describe shear
stabilization as a decorrelation process [29, 68, 28], which is depicted schematic-
ally in the case of a homogeneously sheared flow vs = αψ (α > 0) in Fig. 2.8.
A turbulent eddy that is subject to this shear flow gets deformed over time. It
is tilted and stretched until it breaks up into smaller eddies with reduced radial
correlation length. Turbulent transport is reduced in the latter case [68] com-
pared to the initial state.
Sufficiently strong zonal flows can also suppress turbulence completely through

shear stabilization. Ref. [69] introduces an empirical rule for shear stabilization
ωExB ∼ γ based on the so-called E ×B shearing rate

ωExB =
1

B

∂2〈φ〉
∂ψ2

(2.49)

and the growth rate γ of the most unstable ITG driven mode and is referred
to as the Waltz rule. According to this rule turbulence is suppressed when the
E × B-shearing rate exceeds the dominant linear growth rate of the underly-
ing microinstability. Gyrokinetic studies of ITG driven turbulence support this
simple rule [70, 71, 25].
Zonal flow shearing can also be described by a mode coupling process [72, 73]

in analogy to sideband generation within the modulational instability framework
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Figure 2.9: Zonal flow shearing as
a nonlinear mode coupling process:
A zonal flow kZF couples to an ITG
driven mode kITG and produces a
sideband mode kSB = kZF + kITG.
Successively, energy is transferred to
the large radial wave vector regime.

(see Sec. 2.4.1). For simplicity, modes are defined as Fourier modes of the electro-
static potential φ on a doubly periodic domain perpendicular to the magnetic field
with perpendicular wave vector k = (ky, kx). The coupling of a zonal mode φ̂ZF

with kZF = (0, kZF) and an ITG driven mode φ̂ITG with kITG = (ky, 0) through the

quadratic E×B-nonlinearity produces a sideband mode φ̂SB with kSB = (ky, kZF)
in agreement with the wave vector addition rule kSB = kZ + kITG. This process
is illustrated in Fig. 2.9. Sophisticated nonlinear energy transfer studies [22, 66]
show that the zonal flow acts as a mediator for the nonlinear transfer of energy
from the unstable ITG mode to the sideband mode. Zonal flows, therefore, in-
troduce an anisotropic transfer of energy to modes with increasing radial wave
vector kx. Energy dissipation is enhanced for large radial wave vectors, such
that zonal flow shearing contributes to establish an energy balance and thereby
a statistically stationary state.
Recent studies focusing on the effect of stable Eigenmodes on ITG driven turbu-
lence [74, 75, 63, 66] revealed that a significant fraction of energy is transferred
to stable Eigenmodes through the above discussed zonal flow shearing process.
Therein, zonal flow mediated transfer is found to dominate the nonlinear processes
leading to the nonlinear saturation of ITG driven turbulence. These studies con-
firm the importance of zonal flows for the regulation of ion temperature gradient
driven turbulence on the basis of mode coupling processes.

2.4.4 Zonal flow pattern formation

Close to marginal stability zonal flows and microturbulence often self-organize
into patterns [23, 24, 25, 76, 77]. Such patterns, also known as E × B-staircases
[23], exhibit the following properties: (i) They occur on a radial mesoscale of
the order of 101 ρth,i, i. e., a scale larger than the Larmor radius but smaller
than the machine size. (ii) The structures are quasi-stationary, in that the radial
position varies on a time scale much longer than typical turbulent times scales.
(iii) They exhibit a typical amplitude in terms of the E ×B-shearing rate of the
order of 10−1 vth,i/R0. (iv) Turbulent transport occurs through avalanches, whose
propagation direction is strongly linked to the local E × B-shearing rate.
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Figure 2.10: Pattern formation in the radial profile of the E×B shearing rate:
Shown are temporally averaged radial profiles of the E×B shearing rate in near
marginal ion temperature gradient driven turbulence with adiabatic electrons
(left) and kinetic electrons (right). In the adiabatic case two variants of the
mesoscale E×B staircase pattern known as fully- (blue) and partially-developed
(red) staircase do occur. Mesoscale pattern formation is absent in the case of
kinetic electrons. Instead, dominant radial fine scale features can be observed
with an order of magnitude increased amplitude (note the difference in the axis
range).

Experimental evidence of mesoscale pattern formation has been reported in sev-
eral tokamak devices such as JET [78], Tore Supra [79], HL-2A [80], KSTAR [81]
and DIII-D [82] including the observation of stationary mesoscale structures in
the radial electric field and organization of turbulence in form of avalanches on
similar mesoscales. Those observations point towards a potential importance of
mesoscale pattern formation for the turbulence dynamics and energy confinement
in tokamak fusion devices.
The E × B-staircase pattern is robustly reproduced in gyrokinetic studies that
apply the adiabatic electron closure [23, 24, 25, 76, 77]. The left panel of Fig. 2.10
shows the two variants known as fully- (blue) and partially-developed (red) stair-
case emerging in ITG driven turbulence with the adiabatic electron approxim-
ation [25]. The latter type allows for turbulence mediated by avalanches. Ava-
lanches are triggered at the zero crossing with a flattened flank (close to the
inner radial edge of the simulation domain) and propagate radially outwards
(inwards) through regions with negative (positive) shearing rate consistent with
other gyrokinetic turbulence studies [26, 27]. The fully-developed type leads to
almost completely quenched turbulence. Its development results in a discontinu-
ous step in the dependency of the turbulent fluxes on the temperature gradient,
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also referred to as finite heat flux threshold [25, 77]. The mesoscale character and
the typical amplitude is clearly apparent in Fig. 2.10.
By contrast, gyrokinetic studies that consider electrons as kinetic species report of
dominant radial fine scale structures in the E×B-shearing rate [83, 1, 84, 85, 86].
Such structures organize on radial scales of the Larmor radius ∼ ρth,i and exhibit
amplitudes (in terms of the shearing rate) of the order of ∼ 100 vth,i/R0. An
exemplary case is shown in the right panel of Fig. 2.10. In Ref. [1] the fine scale
structures have been demonstrated to be driven by the nonlinear self-interaction
of parallel to the magnetic field elongated turbulent modes. In the aforementioned
reference mesoscale structures have been recovered only in specific parameter re-
gimes with weakened self-interaction. These findings led to the speculation that
the development of mesoscale staircase structures may be inhibited by the pres-
ence of the dominant fine scale features.
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Chapter 3

Gyrokinetic theory

The dynamics of a plasma may be completely described by the Newton-Maxwell
system. However, the large number of ions and electrons of ∼ 1020 m−3 in a fusion
plasma [11] renders this approach infeasible, even on todays most powerful su-
percomputers. Instead, a statistical approach is pursued and, through averaging
over the fast gyro-motion, is provided by the gyrokinetic approach [87, 44, 88].
This chapter gives an introduction to the gyrokinetic framework. For further
details the reader is referred to the review articles [10, 11, 89, 90].

3.1 Vlasov-Maxwell system

In kinetic theory the plasma is described by a particle density distribution func-
tion FV,sp(x,v, t) [91] on the six-dimensional phase space (x,v), with x and v

being the particle’s position and velocity, respectively. Short range two particle
interactions may be described by a collision operator C[F ′

V,sp, FV,sp]. However,
since the collision frequency is typically much smaller than the characteristic
frequencies connected to microturbulence [11] a collisionless model is often con-
sidered. This simplification is adopted also in this thesis. In this case the evolu-
tion of the one particle distribution function is governed by the Vlasov equation

∂FV,sp
∂t

+
dx

dt
· ∂FV,sp

∂x
+

dv

dt
· ∂FV,sp

∂x
= 0. (3.1)

In a magnetized plasma the time derivative of both the particle position x and
velocity v are determined by electromagnetic fields and can be obtained from the
appropriate single particle Hamiltonian or Lagrangian [11].
To obtain a closed system, the electric and magnetic fields have to be obtained
self-consistently through Maxwell’s equations. This is achieved by taking velocity
moments of the distribution function to express the particle density nsp and
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current density jsp through

nsp =

∫

d3v FV,sp (3.2)

jsp = qsp

∫

d3v vFV,sp, (3.3)

which are then substituted into Maxwell’s equations

∇× E = −∂B
∂t

(3.4)

∇ · E =
1

ǫ0

∑

sp

qspnsp (3.5)

∇×B = µ0

(
∑

sp

jsp + ǫ0
∂E

∂t

)

(3.6)

∇ ·B = 0. (3.7)

Eq. (3.1) and Eqs. (3.4)-(3.7) constitute the Valsov-Maxwell system that is at the
basis of the gyrokinetic model.

3.2 Gyrokinetic ordering

The plasma dynamics in tokamak devices is characterized by a large variety of
spatio-temporal scales. This scale separation is exploited by the gyrokinetic or-
dering described in this section.
Due to the strong external magnetic field, the time scale of the fast gyro-motion
is much shorter than the time scale connected with turbulent dynamics. For the
ratio of the turbulence characteristic frequency ω and the ion cyclotron frequency
ωc,i typical parameters yield ω/ωc,i ∼ 10−3 [10, 90].1

Furthermore, the perpendicular length scales associated with microturbulence is
of the order of the ion thermal Larmor radius k−1

⊥ ∼ ρth,i, where k⊥ = |k × b|
defines the perpendicular component of wave vector k of turbulent perturbations
and b is the unit vector parallel to the ambient magnetic field. With a few milli-
meters the ion thermal Larmor radius ρth,i, in turn, is significantly smaller than
the scales on which the equilibrium density n0 varies. The latter can be expressed
through the gradient length Ln = |∇ lnn0|−1 and compares with the machine size
of the order of a few meters. This scale separation is quantified by the normalized
Larmor radius ρ∗ = ρth,i/R0, where R0 is the major radius of the tokamak, which
is of the order of ρ∗ = 10−3 − 10−4.2

1Alternatively, considering that the turbulence dynamics occurs on the transit time τ =
vth,i/R0, one finds τωc,i = mivth,i/(eBR0) = ρth,i/R0 = ρ∗ ≪ 1.

2ASDEX Upgrade: ρ∗ ≈ 3.0× 10−3, ITER: ρ∗ ≈ 7.2× 10−4 (see appendix E)
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Figure 3.1: Transformation
to guiding-center phase space
(X, v‖, µ, ξ): The particle dynamics
is expressed through the position of
the guiding-center X = x−ρsp with
the Larmor radius vector ρsp, the
magnetic moment µ = mspv

2
⊥/(2B)

with v⊥ = |v × b|, the parallel velo-
city v‖ = v · b and the gyro-phase
angle ξ.

Another typical scale relates to the high mobility of particles along the field
lines that causes turbulent perturbations to be significantly extended parallel to
the magnetic field. The parallel length scale of turbulent fluctuations k−1

‖ , with
k‖ = b · k, is, therefore, of the order of the machine size.
In addition, a clear separation of magnitudes connected to equilibrium and fluc-
tuating quantities does occur. Experimental measurements of core plasmas show
that the relative fluctuation amplitude of both density perturbations δn/n0 and
magnetic field fluctuations δB/B0, where B0 is the magnitude of the equilibrium
magnetic field, is of the order of ∼ 10−4 [10].
Consequently, the ordering [11]

ω

ωc,i
∼ k‖
k⊥

∼ ρth,i
Ln

∼ δn

n0

∼ δB

B0

∼ vd
vth,i

∼ ǫg (3.8)

with ǫg ≪ 1 applies to the typical dynamics of a fusion core plasma. This
ordering, also referred to as the gyrokinetic ordering, allows for the development
of a reduced set of dynamical equations as outlined below.

3.3 Guiding- and gyrocenter transformation

The gyrokinetic ordering [Eq. (3.8)] motivates the elimination of the fast gyro-
motion from the Vlasov-Maxwell system since it is dynamically not relevant for
the description of low frequency microturbulence. In early gyrokinetic theory
this has been realized by averaging the Vlasov equation over the gyro-orbit, also
referred to as gyro-averaging. In modern gyrokinetic theory phase-space trans-
formation based on the Hamiltonian or Lagrangian formalism and the Lie per-
turbation theory [92, 93] and an asymptotic expansion in the smallness parameter
ǫg is applied, which retains symmetry and conservation properties of the physical
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system.
Starting from the conventional particle phase space (x,v), in a first transforma-
tion —the guiding-center transformation [94] —the particle motion is described
in guiding-center phase space (X, µ, v‖, ξ). As sketched in Fig. 3.1 the particles
position is expressed through the guiding-center position X = x − ρsp with the
Larmor radius vector ρsp and the gyro-phase angle ξ, taking into account circular
gyro-orbits3. The particle’s velocity is decomposed into a component parallel to
the ambient magnetic field v‖ = b·v and a perpendicular component v⊥ = |v×b|.
The latter relates to the magnetic moment µ = mspv

2
⊥/(2B), which is an approx-

imate adiabatic invariant in guiding-center phase space and in the considered low
frequency limit [11].
A second transformation —the gyro-center transformation [44] —is then con-
structed such that the gyro-phase dependence is eliminated from the Hamilto-
nian or Lagrangian in lowest order of ǫg [10]. This transformation also deals with
gyro-phase dependent perturbations in the electromagnetic fields that particles
experience on the gyro-orbit. It is, therefore, suitable for the description of mi-
croturbulence that introduces fluctuations on spatial scales of the order of the
Larmor radius. The gyro-phase dependent part of fluctuations is absorbed in the
gauge freedom of the transformation [17] and, hence, enters the description when
transforming between gyro- and guiding-center phase space. In the lowest order
gyro-center phase space (X, v‖, µ, ξ) the magnetic moment µ is an exact invariant

leaving the gyro-phase ξ an ignorable viarable [11].
The guiding- and gyro-center transformations allow to formulate a reduced kinetic
equation —the gyrokinetic equation —that makes numerical studies of microtur-
bulence feasible because of two reasons: (i) The fast gyro-motion is removed from
the problem enabling the use of a much larger time step to resolve the dynamics
relevant for low frequency microturbulence. (ii) The equations are independent
of the gyro-phase angle, which reduces the dimensionality of the problem from six
to five dimensions. In the subsequent sections the five-dimensional gyro-center
phase space is denoted by (X, v‖, µ), omitting the overlines for simplicity.

3.4 Gyrokinetic equation

Based on the Vlasov equation [E. (3.1)], the gyrokinetic ordering (Sec. 3.2) and
the guiding- and gyro-center transform (Sec. 3.3) an equation for the time evolu-
tion of the gyro-center distribution function Fsp(X, v‖, µ, t) of a given species ’sp’

3The gyro-orbits are, in general, not circular due to spatial variations in the magnetic field
and perpendicular velocity. Circular orbits emerge at lowest order in an expansion in the small
parameter ǫg based on the gyrokinetic ordering [90].
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can be formulated [17]

∂Fsp

∂t
+
∂X

∂t
· ∂Fsp

∂X
+
∂v‖
∂t

· ∂Fsp

∂v‖
= 0. (3.9)

Eq. (3.9) is called the gyrokinetic equation.
Below, the gyrokinetic equation is discussed for the case of a non-rotating plasma
and in the presence of electromagnetic perturbations. For the purpose of this
thesis it is sufficient to consider perpendicular (to the background magnetic field)
magnetic perturbations only. This simplification is valid for small β [17, 10],
which applies to this thesis.4 Extensions of the gyrokinetic equation due to plasma
rotation and parallel magnetic perturbations can be found in Refs. [95] and [17],
respectively.
Since the magnetic moment is an exact invariant of motion in gyro-center phase
space, i. e., ∂tµ = 0, its time derivative is absent in Eq. (3.9). The remaining
equations of motion can be obtained from the Lagrangian in gyro-center phase
space and read [17]

∂X

∂t
= v‖b+ vD + vχ (3.10)

∂v‖
∂t

=
dX

dt
· [qspE− µ∇B]. (3.11)

Eq. (3.10) describes the motion of gyro-centers in the presence of electromagnetic
fields. It consists of the motion parallel to the ambient magnetic field v‖b, the
gyro-center drift due to the inhomogeneous ambient magnetic field

vD =
1

qsp

[
mspv

2
‖

B
+ µ

]
B×∇B
B2

+
mspv

2
‖

2qspB
β ′b×∇ψ (3.12)

and

vχ =
b×∇χ
B

(3.13)

with the modified potential

χ = 〈φ〉ga,sp − v‖〈A‖〉ga,sp. (3.14)

The drift vχ is a combination of the E × B-drift

vE =
b×∇〈φ〉ga,sp

B
(3.15)

4For the perturbed magnetic field the ordering |δB⊥|/B0 ∼ ǫg and |δB‖|/B0 ∼ βǫg applies
[17, 10]. In this thesis β ∼ 1 % and parallel magnetic field perturbations can therefore be
neglected compared to perpendicular perturbations.
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and the parallel motion along perturbed magnetic field lines

vδB = −b×∇v‖〈A‖〉ga,sp
B

, (3.16)

arising from perturbations in the electrostatic potential φ and the parallel com-
ponent of the magnetic vector potential A‖. The operator 〈...〉ga,sp denotes a
gyro-average (see Sec. 3.5).
The first term on the right-hand side of Eq. (3.12) is the combination of the
∇B-drift and the curvature drift, while the second term is the correction to the
curvature drift due to the modification of the equilibrium magnetic field in the
presence of a normalized plasma pressure gradient

β ′ =
2µ0

B2

∂p

∂ψ
. (3.17)

In the above equations ψ is a radial coordinate (flux-surface label).
Eq. (3.11) describes the parallel acceleration of gyro-centers due to electromag-
netic fields with

E = −∇〈φ〉ga,sp −
∂〈A‖〉ga,sp

∂t
b (3.18)

being the gyro-averaged perturbed electric field.

3.5 Gyro-average

One consequence of the dynamical reduction introduced through the gyro-center
transformation is the occurrence of the gyro-averaged fields 〈φ(x)〉ga,sp and
〈A‖(x)〉ga,sp entering the drift vχ and the perturbed electric field E. During
the (slow) dynamics described by the gyrokinetic equation, the gyro-centers ex-
perience effective electromagnetic fields. The latter relate to the sampling of
the electromagnetic fields on the gyro-orbit during the course of the (fast) gyro-
motion. Here, the terms slow and fast are based on the gyrokinetic ordering
ω/ωc,i ≪ 1.
The gyro-average is the spatial average over an orbit x = X+ ρsp(ξ) defined by
a full cycle of the gyro-phase ξ ∈ [0, 2π] at fixed gyro-center position X (dotted
circle in Fig. 3.1). Using the Fourier space representation of a quantity

G(x) =

∫

Ĝ(k)eik·x dk (3.19)
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it reads [17]

〈G(x)〉ga,sp = 〈G(X+ ρsp)〉ga,sp = 〈
∫

Ĝ(k)eik·(X+ρsp) dk〉ga,sp (3.20)

=
1

2π

∫ 2π

0

∫

Ĝ(k)eik·(X+ρsp) dk dξ (3.21)

=

∫

Ĝ(k)eik·X
1

2π

∫ 2π

0

eik⊥ρsp cos(ξ) dξ

︸ ︷︷ ︸

J0(ρspk⊥)

dk (3.22)

=

∫

J0(ρspk⊥)Ĝ(k)e
ik·X dk = J0(λsp)G(X), (3.23)

where J0 is the zeroth order Bessel function of the first kind, k⊥ is the com-
ponent of the wave vector k perpendicular to the ambient magnetic field and
λsp = iρsp∇⊥ with ∇⊥ being the component of the gradient perpendicular to the
ambient magnetic field. Motivated by the calculation above, the Bessel function
J0 is sometimes referred to as gyro-average operator.
When the electromagnetic field varies on spatial scales of the Larmor radius, the
gyro-average results in a reduction of the field’s amplitude commonly referred to
as finite Larmor radius (FLR) effects [89]. Fields that vary rapidly with x are
effectively smoothed in gyro-center phase space X after gyro-averaging. This
effect influences the turbulence - zonal flow interplay, when zonal structures oc-
cur on scales comparable to the Larmor radius as shown in chapter 6 of this thesis.

3.6 Gyrokinetic field equations

A closed set of equations requires to relate the electromagnetic fields to the distri-
bution function. This is achieved by expressing the charge and current densities,
entering the Maxwell’s equations, through the gyro-center distribution function.
The resulting gyrokinetic field equations are presented in this section which is
based on Ref. [96].
In a plasma a small relative displacement in the ion and electron particle density
causes a strong electric field and an associated high frequency oscillation with
the plasma frequency ωp = [e2n0/(ǫ0me)]

1/2 [97]. Furthermore, on spatial scales
larger than the Debye length λD = [ǫ0Te/(nee

2)]1/2 electric fields caused by the
charged particles are shielded [97]. On time scales long compared to the inverse
plasma frequency and spatial scales larger than the Debye length a plasma can
be considered quasi-neutral. The Gauss law [Eq. (3.5)] is then replaced by the
quasi-neutrality condition [17]

∑

sp

qspnsp(x) = 0, (3.24)
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Figure 3.2: Connection between
density of particles and density of
guiding-centers: Gyro-orbits with
different guiding-center X (gray +-
symbols) can cross in x, such that
the respective gyrating particles add
to the particle density nsp(x) there.
For a fixed Larmor radius ρsp = |ρsp|
(red) the particle density at x is
obtained by collecting the contribu-
tions of all guiding-centers on a circle
with radius ρsp centered at x (blue
dashed).

where nsp(x) is the species particle density in particle space x.
The particle density is a velocity moment of the Vlasov distribution func-

tion FV,sp(x,v) in particle phase space [Eq. (3.2)]. However, the solution of
the gyrokinetic equation provides one with the gyro-center distribution function
Fsp(X, v‖, µ) in gyro-center phase space. As a consequence, the Vlasov distri-
bution function in Eq. (3.2) has to be expressed through the gyro-center distri-
bution function making use of the guiding- and gyro-center transforms. This is
realized by first transforming the Valsov distribution function FV,sp to guiding-
center phase space and then expressing the resulting guiding-center distribution
function Fgc,sp through the gyro-center distribution function Fsp. Within Lie per-
turbation theory the latter step is performed through the action of the so-called
pull-back operator T [17] and reads

Fgc,sp = TFsp = Fsp + (T − 1)Fsp = Fsp + PFsp, (3.25)

where P = T − 1. Applying the above steps to Eq. (3.2) yields

nsp(x) =
B

msp

∫

δ[X+ ρsp(ξ)− x]Fgc,sp(X, v‖, µ) dXdv‖dµdξ (3.26)

=
B

msp

∫

δ[X+ ρsp(ξ)− x]

[

Fsp(X, v‖, µ) + PFsp(X, v‖, µ)

]

dXdv‖dµdξ

(3.27)

≡ nsp(x) + nsp,P (x). (3.28)

The delta-function δ[X+ρsp(ξ)−x] enters due to the transformation from particle
to gyro-center phase space. Physically, it expresses that gyro-orbits with different
guiding-center X can cross in x, such that the respective gyrating particles add
to the particle density there (see Fig. 3.2). The prefactor B/msp represents the
velocity space Jacobian in guiding-center phase space.
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The first term on the right-hand side of expression (3.28) is the contribution of
the gyro-center density at x defined by

nsp(x) =
2πB

msp

∫

J0(λsp)Fsp(x, v‖, µ) dv‖dµ. (3.29)

Analogously to the argumentation above nsp(x) collects the contributions of the
gyro-center distribution function for all gyro-centers X on a circle with radius ρsp
centered at x (blue dashed circle in Fig. 3.2). This operation is equivalent to a
gyro-average over the orbit X = x−ρsp(ξ) with fixed x and introduces the Bessel
function J0 in Eq. (3.29). In chapter 6 these FLR effects are shown to influence
the ability of small scale zonal structures in shear-stabilizing microturbulence.
The second term on the right-hand side of expression (3.28) is the contribution
of the variations on the gyro-orbit to the particle density at x. It describes the
polarization effects of the fluctuating fields on the gyro-orbit [10]. In the δf -
approximation (see Sec. 4.1) the polarization density relates to the electrostatic
potential through [17]

nsp,P (x) =
qspn0,sp

Tsp
[Γ0(bsp)− 1]φ(x), (3.30)

where n0,sp is a background density, Tsp is a background temperature and
Γ0(bsp) = I0(bsp)e

−bsp with the modified Bessel function of the first kind I0 and
bsp = −ρ2th,sp∇2

⊥ with the thermal Larmor radius ρth,sp = mspvth,sp/(qspB0). The
electrostatic potential, hence, enters the quasi-neutrality condition due to polar-
ization effects, which describe the difference between the real particle density and
the gyro-center density.
In this thesis perturbations in the perpendicular component of the magnetic field
δB⊥ = ∇×A‖ = ∇× bA‖ are considered exclusively. Due to the low frequency
phenomena under consideration, the displacement current can be neglected [11].
Using the Coulomb gauge ∇ · A = 0, the parallel component of Ampère’s law
[Eq. (3.6)]

∇2A‖ = µj‖ (3.31)

then relates the parallel component of the vector potential to the particles current
density

j‖ = b
∑

sp

j‖,sp. (3.32)

The latter can be expressed as a velocity moment of the Vlasov particle distribu-
tion function [Eq. (3.3)].
Again the species current densities have to be expressed through the gyrocenter
distribution function making use of the pull-back operator. The species current
density can be formulated by [17]

j‖,sp(x) = qsp
B

msp

∫

v‖J0(λsp)Fsp(x, v‖, µ) dv‖dµ. (3.33)
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The gyrokinetic equation [Eq. (3.9)], the quasi-neutrality condition [Eq. (3.24)]
and the parallel component of Ampère’s law [Eq. (3.31)] constitute the gyrokinetic
Vlasov-Maxwell system. This set of governing equations is suitable for the study
of low frequency phenomena and is exploited in this thesis to investigate the
interplay of zonal flows and microturbulence in tokamak plasmas.
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Chapter 4

Gyrokinetic practice

This section introduces concepts that are required to bring the gyrokinetic Valsov-
Maxwell equation into a form that is suitable for numerical simulations. The ma-
terial presented in this section is based on the documentation [98] of the gyrokin-
etic solver Gyrokinetic Workshop (GKW) [95].

4.1 The δf-approximation and the local limit

All simulations presented in this thesis apply two approximations known as the
δf -approximation and the local limit. These approximations further simplify the
governing equations and, thereby, reduce the computational costs. In GKW the
normalize Larmor radius ρ∗ = ρth,i/R0 is considered as basic expansion parameter
in both approximations.
The δf -approximation is based on the amplitude separation between fluctuations
and equilibrium as expressed by the gyrokinetic ordering [Eq. (3.8)]. In the δf -
approximation the gyro-center distribution function is split into a constant in
time equilibrium F0,sp and a fluctuation perturbed part fsp according to

Fsp = F0,sp + fsp, (4.1)

with the ordering
fsp ∼ ρ∗F0,sp. (4.2)

Variations of the perturbed distribution function perpendicular to the ambient
magnetic field are considered to be of the order of the Larmor radius, while the
background changes on scales of the system size. Hence, the ordering

∇⊥fsp ∼ ∇⊥F0,sp. (4.3)

applies. Finally, the ordering

∂fsp
∂v‖

= ρ∗
∂F0,sp

∂v‖
(4.4)
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is adopted, which removes the so-called velocity nonlinearity from the gyrokinetic
equation in first order of ρ∗.

1 Although strict energy conservation is lost, this
simplification does not introduce noticeable effects on microturbulence over a
wide range of ρ∗ as shown in the gyrokinetic study of Ref. [99].
The δf -approximation is suitable for global and local descriptions. In the former
case the equilibrium distribution function F0,sp includes the profile variation over
the plasma minor radius and, hence, is a function of the radial coordinate ψ,
while in the latter case it is taken to be constant in the radial direction. It is the
local approach that is applied in this thesis and is, therefore, discussed below.
The local limit exploits the spatial scale separation of equilibrium and perturba-
tions. In this limit the perpendicular length scale of the perturbations, which is
of the order of the Larmor radius ρth,i, is assumed to be much smaller than the
equilibrium length scale, which is of the order of the device size R0. Hence, it
assumes ρ∗ ≪ 1 and is, therefore, compliant with the gyrokinetic ordering.
The local limit implies that all equilibrium and geometry quantities can be
taken constant over the radial extent of the simulation volume, given the latter
covers only a thin radial extent compared to the scale of the equilibrium profile
variation. This applies to the equilibrium density n0,sp and temperature T0,sp,
and therefore to F0,sp, but also to the perpendicular gradient ∇⊥F0,sp entering
the gyrokinetic equation through the advection by vχ [see Eq. (3.9)].
Also the ambient magnetic field geometry varies on the scale of the device
size rather than the Larmor radius. The equilibrium magnetic field and any
geometric factors, entering the gyro-center drifts [Eq. (3.10)] for example, are
therefore assumed to be constant in the radial direction as well. Due to the
toroidal symmetry of the tokamak, all equilibrium quantities are also constant
in the toroidal direction. The dependency of the equilibrium magnetic field on
the poloidal angle, however, is retrained in general.

4.2 Geometry

In this section basic concepts associated with the geometry are introduced. First,
a coordinate system is discussed in which the background magnetic field lines are
straight with one coordinate being aligned to the field. Then the coordinates are
given explicitly for two analytical magnetic field equilibria. Finally, the considered
plasma volume is constraint to a flux-tube allowing for the introduction of the
spectral representation.

1The velocity nonlinearity is the combination of the electromagnetic fields and the velocity
space derivative of the distribution function [combination of the third term on the left-hand
side of Eq. (3.9) and parts of Eq. (3.11)].
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Figure 4.1: Coordinate transformation from intermediate (ψ, ν, γ) to field-
aligned (ψ, ζ, s) coordinates sketched for a flux-surface with safety factor q = 1.5.
In both coordinate systems the field line (red solid) is straight. A flux-surface in
the intermediate coordinate system is given by the rectangle ABCD (gray dotted
rectangles depict periodic copies by successive toroidal mappings γ → γ − 1). In
the field-aligned coordinates the flux-surface is mapped (one-to-one and onto)
onto the parallelogram ABC ′D′ (blue area). Solid arrows are tangential to co-
ordinate curves and point into the direction of an increasing coordinate, while
dashed arrows depict coordinate gradients.

4.2.1 Straight field-aligned Hamada coordinates

As discussed within the gyrokinetic ordering (Sec. 3.2) the spatial structures
connected to microturbulence are highly anisotropic with respect to the ambi-
ent magnetic field. While microturbulence varies rapidly perpendicular to the
magnetic field, its parallel scale is of the order of the device size. For an efficient
discretization of the spatial grid it is therefore advantageous to align one coordin-
ate with the field. The number of grid points in the field-aligned coordinate can
then be chosen much smaller than the number of grid points perpendicular to
it, thereby saving computational resources. GKW applies field-aligned Hamada
coordinates [100]. The transformation from basic toroidal coordinates (ψ, θ, ϕ)
to field-aligned Hamada coordinates (ψ, ζ, s) is achieved through intermediate
straight field line coordinates (ψ, ν, γ), as outlined below.
Starting point is the orthogonal coordinate system (ψ, θ, ϕ), with ψ the radial
coordinate, −π ≤ θ ≤ π the poloidal angle and −π ≤ ϕ ≤ π the toroidal angle.
Here, ’radial’ means that the coordinate gradient ∇ψ is orthogonal to the flux-
surfaces and, hence, B · ∇ψ = 0. In this coordinates a toroidally symmetric but
otherwise arbitrarily shaped equilibrium magnetic field can be written as

B = sBRBt∇ϕ+ sj∇ϕ×∇Ψ, (4.5)

where Bt > 0 is the toroidal magnetic field strength, R is the major radius
and Ψ is the poloidal magnetic flux. The parameters sB ≡ sign(B · ∇ϕ) and
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sj ≡ sign(j · ∇ϕ) define the sign of the equilibrium magnetic field and current
density with respect to the toroidal direction.
In a first transformation the field lines are made straight. The poloidal angle is
transformed by

ν =

∫ θ

0

dθ′

∇θ′ ·B
/∮

dθ′

∇θ′ ·B , (4.6)

and the toroidal angle by

γ =
ϕ

2π
+
RBt

2π

∫ θ

0

dθ′

∇θ′ ·B

[∮
ds

R2
− 1

R2

]

. (4.7)

In the new coordinate system the safety factor is defined by

q =

∮
B · ∇γ
B · ∇ν dν. (4.8)

Fig. 4.1 depicts a full flux surface (ABCD, gray solid rectangle) in the interme-
diate coordinate system (ψ, ν, γ) and two toroidal periodic copies (gray dotted
rectangles). A field line with q = 1.5 (red line) and the coordinate curves2 (par-
allel to gray arrows) are shown as well
A second coordinate transformation

s = ν (4.9)

ζ = qν − γ (4.10)

aligns one coordinate with the field. At fixed ζ , the position along the field line is
then specified by s, which will also be referred to as the parallel coordinate. The
above transformations ensure that B · ∇ζ = 0 and the coordinate ζ , therefore,
labels field lines on a given flux-surface. As shown in Fig. 4.1 a flux-surface in
the intermediate coordinate system (ABCD) is mapped (one-to-one and onto)
to a parallelogram (ABC ′D′) by this transformation. The so defined coordinates
−1/2 ≤ ζ ≤ 1/2 and −1/2 ≤ s ≤ 1/2 are dimensionless, while the coordinate ψ
has the dimension of a spatial length.
A tokamak is periodic both in the toroidal as well as poloidal direction, which
is now discussed on the basis of Fig. 4.1. Poloidal periodicity holds between the
points A ↔ D, B ↔ C and E ↔ D′, for example. Toroidal periodicity applies
between the points A ↔ B, D ↔ C and D′ ↔ C ′. In field aligned Hamada
coordinates the poloidal and toroidal periodicity constraints on a full flux-surface
can be formulated for an arbitrary function f(ψ, ζ, s) by [101]

f(ψ, ζ, s± 1) = f(ψ, ζ ± q, s) (4.11)

f(ψ, ζ ± 1, s) = f(ψ, ζ, s). (4.12)

2Coordinate curves follow from the variation of one coordinate (label of arrows in Fig. 4.1)
while holding the other coordinates fixed.
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The poloidal periodicity constraint [Eq. (4.11)] is applied at point D′ with respect
to point A and causes a toroidal displacement DD′ (or equivalently AE) equals q.
It expresses the fact that s is an extended angle, moving poloidally but following
the field line at the same time. The toroidal periodicity constraint [Eq. (4.12)] is
trivially applied at B with respect to A, for example.
The periodicity in ζ allows to define a Fourier decomposition

f(ψ, ζ, s) =
∑

l

f̂l(ψ, s)e
2πilζ , (4.13)

where l is an integer mode number and f̂l(ψ, s) is a complex Fourier coefficient.
From the poloidal periodicity constraint a condition for the Fourier coefficient

f̂l(ψ, s± 1) = f̂l(ψ, s)e
±2πilq (4.14)

can be derived. A displacement of ∆s = ±1, hence, induces a phase shift de-
pending on l and q. Only when lq is an integer, i. e., when q is rational, the
s domain is periodic and the flux-surface is called resonant for the mode with
wave number l. A general structure of the Fourier coefficients allowed on a full
flux-surface and in field-aligned Hamada coordinates is given by [101]

f̂l(ψ, s) =
∑

m

f̂lm(ψ)e
2πi(lq+m−m0)s (4.15)

and adds an arbitrary number of periodic modes on s ∈ [0, 1]. The wave number
m0 = NINT(lq) is the nearest integer to lq and defines the longest wavelength
satisfying the periodicity constraint for a given l.
Eqs. (4.13) and (4.15) define the discrete set of allowed wavelengths on a
full toroidal flux-surface in straight field-aligned Hamada coordinates. This
formulation is globally consistent, since the safety factor q is allowed to be an
arbitrary function of ψ.3 A truncation of the number of modes due to the
consideration of a reduced flux-tube domain is discussed in Sec. 4.2.4.

4.2.2 Circular geometry

Although in GKW it is possible to use experimental MHD equilibria obtained
from an interface with the CHEASE MHD code [102], it is common to work with
simple analytical equilibria. One basic model assumes circular concentric flux-
surfaces [9] (see Fig. 4.2). The assumption of circular concentric flux-surfaces is
valid for a small inverse aspect ratio ǫ and normalized plasma pressure β, which

3The formulation of the flux-tube model (see Sec. 4.2.4) is based on Eqs. (4.13) and (4.15). In
the context of a flux-tube global consistency also refers to the fact that a flux-tube can describe
the whole flux-surface without limitations, provided enough toroidal modes are retained.
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Figure 4.2: Circular concentric
flux-surface (blue) centered at R =
R0 and Z = 0 in the coordinate sys-
tem (r, θ, ϕ). The unit vectors êr, êθ
and êϕ form a local orthogonal base.

allows to neglect the Shafranov shift.4 This simple equilibrium is applied also in
this thesis, where it is referred to as circular geometry.
In this geometry model the flux-surfaces are parametrized by (see Fig. 4.2)

R = R0 + r cos θ (4.16)

Z = r sin θ (4.17)

and the coordinate gradients relate to the unit vectors through

∇r = êr ∇θ = 1

ǫR0
êθ ∇ϕ =

1

R
êϕ. (4.18)

Furthermore, the radial derivative of the poloidal flux is given by

∂Ψ

∂r
=
rB0

q
, (4.19)

with
q = sBsj

√
1− ǫ2q (4.20)

and
ǫ =

r

R0

. (4.21)

The expressions above uniquely determine the equilibrium magnetic field
[Eq. (4.5)], which allows to derive the field-aligned Hamada coordinates [95]:

ψ = r (4.22)

ζ = − ϕ

2π
+ sBsj

|q|
π

arctan

[√

1− ǫ

1 + ǫ
tan

(
θ

2

)]

(4.23)

s =
1

2π
[θ + ǫ cos θ]. (4.24)

The above coordinates describe exact circular concentric flux-surfaces, in that all
orders of ǫ are kept in their definition. Further simplifications of this geometry
type through the neglect of finite ǫ contributions are discussed in the next section.

4The Shafranov shift is the radial shift of the centers of consecutive flux-surfaces due to the
presence of a radial pressure gradient [3]. Here, it is considered to be of the order of ǫ2 and the
approximation of the physcis is, therefore, valid up to order ǫ.
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4.2.3 s-α geometry

The circular geometry introduced in Sec. 4.2.2 can be further simplified in the
limit of an infinitely small inverse aspect ratio ǫ≪ 1 by retaining only the lowest
order terms of an expansion in ǫ. This leads to the simplified s− α model [103],
where s and α relate to the magnetic shear and the pressure gradient, respectively.
In this thesis, the Shafranov shift is neglected by setting the pressure gradient
parameter α = −q20R0β

′ to zero [9].
The field-aligned Hamada coordinates follow from the expansion of Eq. (4.22)-
(4.24) and read [95]

ψ = r (4.25)

ζ =
sBsj
2π

[|q|θ − ϕ] (4.26)

s =
θ

2π
. (4.27)

In order to retain trapping effects, finite inverse aspect ratio terms are kept in
the definition of the magnitude of the magnetic field

B =
B0

1 + ǫ cos θ
, (4.28)

that introduce the poloidal variation of the magnetic field. Although the sim-
plified s − α model is inconsistent in the ǫ ordering of individual terms [9], it is
applied in this thesis for comparability with previous studies [21].

Figure 4.3: Truncation of the full flux-surface (ABC ′D′) to a reduced flux-tube
domain (AA′′D′′D′) with truncation number l0 = 2. The flux-tube follows a
reference field line (red solid line). Gray rectangles depict toroidal copies of full
flux-surfaces in (ψ, ν, γ) coordinates (compare Fig. 4.1).

4.2.4 The flux-tube

The flux-tube represents a minimum plasma volume sufficient for the description
of microturbulence. Here, it is defined as a domain with a perpendicular extent
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sufficiently large compared with the perpendicular correlation length connected to
microturbulence5 and a parallel extent of the machine size, following a reference
field line around the torus [104]. In straight field-aligned Hamada coordinates
the reference field line is uniquely defined by the pair of coordinates (ψ0, ζ0).
The flux-tube model is closely related to the local limit (see Sec. 4.1). The
local limit implies that geometry quantities are constant over the radial extent
of the simulation volume. Constant values are defined at the position of the
reference field line, such as the safety-factor q(ψ0) ≡ q0 and the inverse aspect
ratio ǫ(ψ0) ≡ ǫ0. An exception is the radial variation of the safety factor6, which
is taken into account through a Taylor expansion up to first order in ρ∗

q(ψ) = q0 +
∂q

∂ψ

∣
∣
∣
ψ0

(ψ − ψ0) +O(ρ2∗), (4.29)

with
∂q

∂ψ

∣
∣
∣
ψ0

=
q0ŝ0
ǫ0R0

(4.30)

defining the magnetic shear ŝ0, which is considered constant as well. In the local
limit the safety factor, hence, varies linearly with the radial coordinate. The
radial variation of the safety-factor causes a twist of the flux-tube domain (see
Fig. 4.4).
Any numerical treatment requires the specification of boundary conditions. In the
local limit the turbulence becomes homogeneous in the perpendicular direction,
which demands periodicity in the spatial directions ψ and ζ . The twist of the
flux-tube domain renders the boundary condition parallel to the magnetic field
non-trivial, which is further elaborated on below.
A flux-tube is equivalent to a thinning of the set of allowed wave numbers on the
full surface l ∈ [±1,±2, ...] to l ∈ [±l0,±2l0, ...] with a truncation wave number
l0 ≫ 1. In contrast to the full surface domain size ζ ∈ [0, 1] the extent of the flux-
tube is reduced to ζ ∈ [0, l−1

0 ] (see Fig. 4.3). On the reduced domain a function
f can be Fourier decomposed by

f(ψ, ζ, s) =
∑

l′

f̂l′(ψ, s)e
i2πl′l0(ζ−ζ0) (4.31)

with l′ an integer mode number. A full flux-surface description is then recovered
for l0 = 1.
Furthermore, it is convenient to define local coordinates

x− x0 = ψ − ψ0 (4.32)

y − y0 = R0 · (ζ − ζ0) (4.33)

5Since the scale connected to microturbulence is of the order of the Larmor radius ρth,i, a
typical perpendicular domain size, hence, is of the order of 101 − 102 ρth,i.

6This is a consequence of Eq. (4.14) where q and l appear together, with the latter scaling
as ρ−1

∗ .
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Figure 4.4: Top: Twist of the flux-tube domain due to sheared ambient mag-
netic field. Two radially displaced surfaces with q = 1.5 and q = 2.0 are shown.
A rectangle cross section (blue dots connected by blue lines) deforms to a paral-
lelogram (turquoise dots connected by lines) during a displacement ∆s = 1 along
the field lines (red lines). Light blue rectangles depict physically periodic toroidal
copies of the initial cross section. The light turquoise parallelogram depict the
physically periodic poloidal copy of the deformed cross section. Toroidal copies
of full flux-surfaces in the coordinates (ψ, ν, γ) are indicated by black and gray
rectangles (compare Fig. 4.1). Bottom: Mapping of the deformed cross section
onto the initial cross section by periodic extension (gold dashed) according to the
shifted parallel boundary conditions in a flux-tube.

and the local wave vector

ky =
2πl′l0
R0

. (4.34)

Both x and y then have the dimension of a spatial length and the box sizes Lx
and Ly will be chosen of the order of several 101 ρth,i throughout this thesis.
Furthermore, x0 = Lx/2 and y0 = Ly/2 defining the center (reference field line)
of the flux-tube.
Applying a Fourier decomposition in the radial direction as well, the representa-
tion of a spatial function in the local coordinates f(x, y, s) becomes

f(x, y, s) =
∑

kx,ky

f̂(kx, ky, s)e
i[kx·(x−x0)+ky·(y−y0)]. (4.35)

The above Fourier decomposition is applied to all perturbed quantities in GKW
such as the perturbed distribution function fsp, the electrostatic potential φ and

47



4.2. GEOMETRY

the magnetic vector potential A‖. This approach is referred to as the spectral
representation.
Using the spectral representation [Eq. (4.35)] and the expansion of q [Eq. (4.29)],
in the local limit the ploidal periodicity constraint [Eq. (4.14)] can be formulated
by

∑

kx,ky

f̂(kx, ky, s± 1)ei[kx·(x−x0)+ky·(y−y0)]

=
∑

kx,ky

f̂(kx, ky, s)e
iky·(y−y0)±iky(q0ŝ0/ǫ0)·(x−x0)+ikx·(x−x0) × e±i2πl′l0q0. (4.36)

For an integer l0q0 the exponential factor exp(±2πil′l0q0) = 1. In this case
q0 = n/l0, with n an integer, is rational on the reference flux-surface and the
truncation mode l0 is said to be resonant there. This applies also to full flux-
surface descriptions (l0 = 1), provided q0 is an integer. Due to l0 ≫ 1 in the flux-
tube limit, it is usually assumed that l0q0 can be made an integer by very small
corrections to the safety-factor [95]. The safety factor q0 is then quasi-rational
and the truncation mode l0 is quasi-resonant on the reference flux-surface.
To proceed, the periodicity constraint (4.36) can then be recast into a condition
for the Fourier coefficients at the parallel domain boundary s = ±1/2 of the
flux-tube

f̂(kx, ky,±1/2) = f̂(kx ±∆kx, ky,∓1/2), (4.37)

with the radial wave vector shift defined by

∆kx = ky
q0ŝ0
ǫ0

. (4.38)

The expression above is called the shifted periodic boundary condition and is
commonly applied in local flux-tube simulations.
A visualization of the shifted periodic parallel boundary conditions is given in
Fig. 4.4 in the coordinates (ψ, ζ, s). Due to the sheared ambient magnetic field a
rectangular cross section deforms into a parallelogram, when following the field
lines for one poloidal turn ∆s = 1. Toroidal periodicity is indicated by the light
blue copies while poloidal periodicity is depicted by the light turquoise copy. The
overlap of the rightmost light blue rectangle and the light turquoise parallelogram
clearly brings out the points that are physically equal in the double periodic
tokamak.
If only a part of the flux-surface is considered (l0 6= 1), there is no full (or even
any) overlap and consequently in a flux-tube the poloidal periodicity constraint
has to be modelled appropriately. First, the assumption of q0 being quasi-resonant
amounts for shifting the deformed cross section such that side at ψ0 is aligned
with the initial rectangle (solid gold). Second, periodic boundary conditions in ζ
then allow to extend the domain periodically (dashed gold) and to map out the
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entire cross section. This mapping in position space is equivalent to the radial
wave vector shift in Fourier space as expressed through Eqs. (4.37) and (4.38).
Form Eq. (4.36) it is also seen that the poloidal periodicity constraint is equivalent
to a radially dependent phase shift exp[i∆ϕ(x)] with ∆ϕ(x) = ∆kx · (x− x0). A
wave is defined to be resonant, if ∆ϕ = 2πn, with n an integer (including zero).
Clearly, all allowed waves in the simulation domain are resonant at x = x0. At
the reference surface the simulation domain, hence, is strictly periodic in s. This
is a direct consequence of q0 being quasi-rational and the truncation mode l0
(and all higher order harmonics l′ > 1) being quasi-resonant there. The location
x = x0 is therefore referred to as lowest order rational or resonant layer (LORL).
Due to the radially varying safety factor there may exist multiple resonant layers
(RL) per mode in the simulation domain with the radial spacing

∆xRL(l
′) =

2π

ky(l′)

ǫ0
q0ŝ0

=
R0

l′l0

ǫ0
q0ŝ0

(4.39)

depending on the mode’s wave number l′. The positions xLORL = x0+n·∆xRL(l
′ =

1), with n an integer, represent locations of high symmetry, since all allowed waves
are resonant there. At xLORL the simulation domain, again, is strictly periodic
in the coordinate s.

4.2.5 Spatial grid setup

Having established the basic concept of the local flux-tube approach in Sec. 4.2.4,
this section will be more specific about the discretization of the spatial grid
required for a numerical simulation. A length scale is ascribed to the simulation
domain and its relation to the truncation wave number l0 is discussed within the
local limit.
It is common to restrict the field-aligned coordinate to the interval −1/2 < s <
1/2 representing one poloidal turn. Here, s = 0 defines the low field side and
s = ±1/2 the high field side. This is a convenient choice since it leads to a
full flux-surface description, if l0 = 1, and since it does not introduce unphysical
modes which would be present for multiple poloidal turns [101].
Next, the wave vector grid in x and y is to be discussed. A discrete set of
wave vectors may be defined through an odd number of wave vectors Nk and a
minimum wave vector kmin = kmax/[(Nk − 1)/2] by ki = i · kmin with the integer
−(Nk−1)/2 ≤ i ≤ (Nk−1)/2 and kmax the maximum resolved wave vector. The
reality of any physical quantity f demands f̂(kx, ky, s) = f̂ ∗(−kx,−ky, s), where
the asterik denotes the complex conjugate. The complete information of f is
therefore retained on the half grid 0 ≤ ky ≤ ky,max and −kx,max ≤ kx ≤ kx,max. In
this thesis the number of the former modes is denoted by Nkθ , while the number of
the latter modes is referred to as Nkx . The full set of wave vectors then is defined
by ky = iyky,min with the integer 0 ≤ iy ≤ (Nkθ − 1) and kx = ixkx,min with the
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integer −(Nkx − 1)/2 ≤ ix ≤ (Nkx − 1)/2.
In order to introduce a length scale into the system, the maximum resolved wave
vector ky,max is specified in units of the Larmor radius ρth,i. Considering a wave
with kx = 0 the perpendicular gradient

∇y∂f
∂y

=
∑

ky

i∇ykyf̂(ky, kx, s)eiky·(y−y0) ≡
∑

ky

ikf̂(ky, kx, s)e
iky·(y−y0) (4.40)

may be used to assign

(kθ,maxρth,i)
2 = gyy|s=0(ky,maxρth,i)

2, (4.41)

where gyy|s=0 = ∇y · ∇y|s=0 is the y-y-component of the metric tensor at s = 0.
The right-hand side of Eq. (4.41) is the squared magnitude of the wave vector of
a perpendicular mode at the low field side normalized by ρth,i. It is sometimes
referred to as the poloidal wave vector kθ. In GKW kθ,maxρth,i and Nkθ are input
parameters which determine the ky-grid setup entirely. Once the grid is defined
the box size Ly = 2π/ky,min = 2π(Nkθ − 1)/ky,max is determined.
Based on the shifted parallel boundary condition [Eq. (4.37)] a convenient choice
of the minimum radial wave vector is

kx,min =
ky,min

ik

q0ŝ0
ǫ0

, (4.42)

where ik is a positive integer. The equation above expresses that the wave length
2π/∆kx connected to the radial wave vector shift ∆kx needs to be an integer
fraction of the radial box size Lx = 2π/kx,min. For ky,min the former wavelength is
equivalent to ∆xRL as defined in Eq. (4.39). The input parameter ik, therefore,
defines the number of lowest order resonant layers in the simulation domain.
In a turbulence simulation the parameter ik is contraint by the requirement of
the numerics to resolve turbulent eddies that tend to form circular structures,
i. e., kx,min ∼ ky,min. For the CYCLONE base case parameters (see Sec. 4.4),
considered throughout this thesis, the condition kx,min ∼ ky,min then demands
ik ∈ [5, 6].
A normalized Lamor radius can be assigned to the simulated surface through
equating Eq. (4.34) and ky = l′ky,max/(Nkθ − 1) to obtain

ρ∗ =
kθ,maxρth,i

2π
√

gyy|s=0

1

l0(Nkθ − 1)
≈ (kθ,maxρth,i)ǫ0

q0

1

l0(Nkθ − 1)
(4.43)

In the latter step the large aspect ratio limit
√

gyy|s=0 ≈ q0/(2πǫ0) is adopted. For
typical simulation parameters (kθ,maxρth,i, Nkθ , ǫ0, q0) = (1.4, 21, 0.19, 1.4) compli-
ant to most of the simulations presented in this thesis and for a full flux-surface
description l0 = 1 one finds ρ∗ ≈ 1.0 × 10−2.7 For the local model to describe a

7In the case of exact circular concentric flux-surfaces and the given standard parameters
ρ∗ ≈ 2.7× 10−2.
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full surface compliant to present day tokamaks [ρ∗ ∼ O(10−3)] a ten-fold increase
of Nkθ at fixed kθ,maxρth,i would be required. This is equivalent to an increase of
the box size Ly by an order of magnitude.

4.3 Gyrokinetic Workshop (GKW)

The flux-tube version of the Eulerian gyrokinetic code GKW [95], applied in this
thesis, solves the gyrokinetic equation in the δf -approximation and in flux-tube
geometry. This section summarizes the equations implemented in GKW and in
the form used throughout this work. Finally, the diagnostics applied in the body
of this work are briefly discussed.

4.3.1 Gyrokinetic equation

The gyrokinetic equation implemented in the flux-tube version of GKW is ob-
tained by applying the δf -approximation and retaining only first order terms in
ρ∗. This procedure provides an evolution equation for the perturbed distribution
function.
In the present work the equilibrium distribution function is chosen to be a max-
wellian

F0,sp = FM,sp =
n0,sp

(2πT0,sp/msp)3/2
exp

(

−
mspv

2
‖/2 + µB

T0,sp

)

, (4.44)

with n0,sp and T0,sp denoting the species equilibrium density and temperature,
respectively, and B is the equilibrium magnetic field. Modifications of the equi-
librium distribution by fast particles [105] or neoclassical effects [106] are not
considered.
Since the term on the right-hand side of the gyrokinetic equation [Eq. (3.9)] con-
taining the time derivative of the parallel vector potential8 is numerically difficult
to handel, a modified perturbed gyrocenter distribution function

gsp = fsp +
Zspev‖
T0,sp

〈A‖〉ga,spFM,sp (4.45)

is defined, where Zsp is the (signed) species charge number, e is the elementary
charge, A‖ is the parallel component of the perturbed vector potential and 〈...〉ga,sp
denotes the gyro-average.
The evolution equation for the modified perturbed distribution function in first

8The time derivative of the parallel vector potential enters through the equation of motion
∂tv‖ [Eq. (3.11)] together with the expression for the gyro-averaged perturbed electric field E

[Eq. (3.18)].

51



4.3. GYROKINETIC WORKSHOP (GKW)

order of ρ∗ then reads [95]

∂gsp
∂t

+ (v‖b+ vD) · ∇fsp + (vE + vδB) · ∇gsp −
µb · ∇B
msp

∂fsp
∂v‖

= Ssp +Dsp

(4.46)

with the source term

Ssp = −(vE + vδB) · ∇pFM,sp −
FM,sp

T0,sp
(v‖b+ vD) · Zspe∇〈φ〉ga,sp. (4.47)

The inverse radial density and temperature gradient lengths L−1
n,sp = −∂ψ ln(n0,sp)

and L−1
T,sp = −∂ψ ln(T0,sp) enter the source term through

∇pFM,sp = −∇ψ
[

1

Ln,sp
+

(
mspv

2
‖/2 + µB

T0,sp
− 3

2

)
1

LT,sp

]

FM,sp. (4.48)

Energy injection and hence instability drive is provided by the above term. Due
to the periodic boundary conditions in the radial direction the radially averaged
gradients cannot change in time, i. e., they are fixed in time. Therefore, this
formalism is also referred to as the gradient-driven approach. In GKW the in-
verse gradient lengths can be specified as input parameters and allow to control
the level of instability and consequently the turbulence level.
In GKW both the parallel derivatives b · ∇ and the parallel velocity derivative
∂v‖ are approximated by finite differences. Numerical stability, therefore, requires
numerical dissipation which is incorporated into Dsp [11]. Details about the dis-
sipation operator Dsp can be found in appendix B. In a collisionless description,
as pursued in this thesis, numerical dissipation also provides the energy sink that
balances energy injection by the background gradients [107].
The product of vE and vδB with ∇gsp represent the only nonlinearities of
Eq. (4.46) and are referred to as the E × B- and magnetic flutter nonlinear-
ity, respectively. These terms can be switched off and a simulation is then called
a linear simulation, while calculations which retain the nonlinearities are referred
to as nonlinear simulations.

4.3.2 Gyrokinetic field equations

The gyrokinetic field equations implemented in GKW are formulated in terms of
the modified perturbed distribution function gsp based on the Lie-perturbation
technique described in Sec. 3.6.
In the δf -approximation and the local limit, the gyrokinetic Poisson equation
reads

∑

sp

Zspe

[
2πB

msp

∫

dv‖

∫

dµ J0(λsp)gsp +
Zspen0,sp

T0,sp
[Γ0(bsp)− 1]φ

]

= 0, (4.49)
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with the Bessel functions J0 and Γ0 as well as their arguments being discussed
in Sec. 3.6. The above Poisson equation is linear in the perturbed distribution
function gsp and the perturbed electrostatic potential φ, since the background
distribution function FM,sp has been considered in the pull-back operator from
gyro- to guiding-center phase space only [96].
The gyrokinetic Ampère’s law for the parallel component of the perturbed vector
potential is given by

[

∇2
⊥ + µ0

∑

sp

Z2
spe

2n0,sp

msp
Γ0(bsp)

]

A‖ = µ0

∑

sp

Zspe
2πB

msp

∫

dv‖

∫

dµ v‖J0(λsp)gsp.

(4.50)

When the equation above is written in normalized form (see Sec. 4.3.4 for the
details about the normalization)

[

∇2
⊥,N + β

∑

sp

Z2
spnR,sp

mR,sp

Γ0(bsp)

]

A‖,N = (4.51)

β
∑

sp

Zsp
2πBN

mR,sp

∫

dv‖,N

∫

dµN v‖,NJ0(λsp)gsp,N, (4.52)

the normalized plasma pressure

β =
n0T0

B2
0/(2µ0)

(4.53)

enters. In the case of a finite β, the perturbed gyro-center current density on the
right-hand side of Eq. (4.52) couples to the parallel component of the perturbed
vector potential. The quantity β can be specified as input parameter in GKW.
A simulation is called electromagnetic, if β 6= 0 and, hence, if perturbations
in A‖ are introduced. Otherwise a simulation is referred to as electrostatic with
perturbations in the electrostatic potential then contribute to the electromagnetic
field exclusively. The strength of electromagnetic effects increases with β, which
is typically of the order of ∼ 1 % in a tokamak device [10, 11].

4.3.3 Spectral representation and semi-spectral approach

Throughout this thesis the spectral version of GKW is employed. In the spectral
version all perturbed quantities are Fourier decomposed in the coordinates x and
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y. The perturbed distribution function, for example, reads

fsp(x, y, s) =
∑

kx

f̂k(kx, ky = 0, s) (4.54)

+
∑

ky>0

∑

kx

{

f̂k(kx, ky, s)× exp[ikx · (x− x0) + iky · (y − y0)] (4.55)

+ f̂ ∗
k(kx, ky, s)× exp[−ikx · (x− x0)− iky · (y − y0)

}

, (4.56)

where the asterik denotes the complex conjugate. Since the distribution function
is a real quantity the Fourier coefficients satisfy f̂−k(−kx,−ky, s) = f̂ ∗

k(kx, ky, s).
Consequently some Fourier coefficients are redundant and in the code the evol-
ution of modes with ky ≥ 0 is calculated exclusively, while both positive and
negative kx are kept. The wave vector grid setup as well as the boundary condi-
tions are described in Sec. 4.2.5 and Sec. 4.2.4, respectively.
The spectral approach is beneficiary for numerical computations since spatial
derivatives in x and y become multiplicative operations

∂

∂xα
→ ikα, (4.57)

where xα ∈ [x, y] and kα ∈ [kx, ky]. Furthermore, in Fourier space the gyro-
average is equivalent to a multiplication with the Bessel function (see Sec. 3.5),
rather than a nonlocal spatial average over the Larmor orbit as it would be in
position space. A summary of the governing equations in the spectral represent-
ation is given in appendix B
The evaluation of the quadratic nonlinearity of the gyrokinetic equation in Four-
ier space, however, is inefficient. Instead, the nonlinearity is evaluated according
to T (T −1(Â)T −1(B̂)), where Â and B̂ are the Fourier coefficients of the products
entering the E × B- and magnetic flutter nonlinearity [see Eq. (4.46)] and T as
well as T −1 denote a direct and inverse Fourier transform, respectively. This
procedure is known as the semi-spectral approach.

4.3.4 Normalizations

The set of governing equations (4.46), (4.49) and (4.50) is given in dimensional
form. In the code, however, they are implemented in dimensionless form. This
section summarizes the normalization convention applied throughout this thesis.
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First a set of reference quantities is defined:

ρth,0 : reference thermal Lamor radius (4.58)

vth,0 : reference thermal velocity (4.59)

m0 : reference mass (4.60)

n0 : reference density (4.61)

T0 : reference temperature (4.62)

B0 : reference magetic field strength (4.63)

R0 : reference major radius (4.64)

Some of the reference quantities are related through

T0 =
1

2
m0v

2
th,0 ρth,0 =

m0vth,0
eB0

β =
n0T0

B2
0/(2µ0)

. (4.65)

The latter represents a constraint on the reference quantities in electromagnetic
simulations, when the normalized plasma pressure β is specified.
Equilibrium quantities are normalized according to

T0,sp = TR,spT0 msp = mR,spm0 n0,sp = nR,spn0 vth,sp = vR,spvth,0,
(4.66)

with the index ’R’ referring to normalized background quantities with species
dependence. The perturbed fields are normalized by

φ = ρ∗
T0
e
φN A‖ = B0R0ρ

2
∗A‖,N, (4.67)

where the index ’N’ denotes normalized quantities. The parameters time t, equi-
librium magnetic field strength B and major radius R are normalized by

t = R0tN/vth,0 B = B0BN R = R0RN. (4.68)

The distribution functions are normalized by

fsp = ρ∗
n0,sp

v3th,sp
fsp,N FM,sp =

n0,sp

v3th,sp
FM,sp,N. (4.69)

The background gradient lengths are normalized by

1

Ln,sp,N
=

R0

Ln,sp

1

LT,sp,N
=

R0

LT,sp
(4.70)

The spatial coordinates are normalized with the reference Larmor radius

ψ = ψN/ρth,0 x = xN/ρth,0 y = yN/ρth,0 (4.71)

and the velocity space coordinates are normalized by

v‖ = vth,spv‖,N µ =
mspv

2
th,sp

B0
µN. (4.72)

Throughout this work TR,i = mR,i = nR,i = 1 and hence ρth,0 = ρth,i as well as
vth,0 = vth,i. The latter (ion-) quantity is therefore always chosen to specify the
units in the body of this thesis.
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4.3.5 Diagnostics

The solution of the gyrokinetic Valsov-Maxwell system provides one with
the trajectory of the perturbed distribution function fsp(x, y, s, v‖, µ, t) in
five-dimensional gyrocenter phase space and the fields φ(x, y, s, t) as well as
A‖(x, y, s, t) in three-dimensional position space. In order to allow for physical
interpretations of the outcome of a numerical simulation the above quantities
have to be further processed. This is done by diagnostics.
One of the main focus of this thesis is the development and application of dia-
gnostics that allow for a proper interpretation of the interplay of zonal flows and
microturbulence. Several diagnostics have been developed and the reader is re-
ferred to the respective chapters for a more detailed description.
In chapter 6 director field diagnostics (see Refs. [108, 27] for more details) are
applied in postprocessing to obtain a direct measure of the zonal flow shear in-
duced tilt of turbulent structures.
In chapter 7 a field line tracing diagnostic9 (see Refs. [57, 59] for more details)
is applied in postprocessing to identify the influence of mesoscale zonal flow pat-
terns on magnetic stochasticity. Note, that the original version of the field line
tracing diagnostic has not been implemented by the author. The authors work
covered debugging and testing of this diagnostic.
Both in chapter 7 and 8 a zonal flow intensity evolution diagnostic10 is applied
that has been implemented in GKW by the author to be able to study zonal flow
driving and damping mechanisms. A description of this diagnostic is available in
the GKW documentation [98].
In chapter 8 energetics and nonlinear transfer diagnostics11 (see Refs. [72, 99,
73, 110, 74, 111, 22, 63, 64, 65, 66, 112] for more details) are applied to obtain
a direct measure of the role of the self-interaction mechanism and the resulting
zonal fine scale structures for the nonlinear saturation of ion temperature gradi-
ent driven turbulence. Note, that the original version of these diagnostics has
not been implemented by the author. The authors work covered an extension
of the diagnostics suitable for the study of electromagnetic turbulence as well as
debugging and testing. A description of these diagnostics has been added to the
GKW documentation [98].

9The octave code FL_Tracing.m can be found on the gkw git repository [109] in the directory
/octave.

10This diagnostic is implemented in the Fortran module file diagnos_zonal_evo.f90, which
can be found in the gkw git repository [109] in the directory /src

11These diagnostics are implemented in the Fortran module files diagnos_energy_evo.f90

and diagnos_nonlin_transfer.f90, which can be found in the gkw git repository [109] in the
directory /src
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4.3.6 Background E × B-shear flow

In chapter 6 a sheared background E×B shear flow is applied through the wave
vector re-mapping method [103]. This section briefly introduces the underlying
concepts.
A sheared equilibrium E × B flow

vs(x) =
b×∇Φ

B
(4.73)

is assumed, where Φ(x) is the perturbed electrostatic potential connected to this
flow, such that the background E × B shearing rate

γE =
1

B0

∂2Φ

∂x2
= const. (4.74)

is constant. Eq. (4.74) requires vs to vary linearly with the coordinates x.
The background E × B flow contributes to the gyrokinetic equation in form of
an additional convective term for the distribution function

∂ĝsp
∂t

+
= −vs · ∇gsp = −γEx

∂gsp
∂y

, (4.75)

where

γE =
∇x×∇y

B

∂2Φ

∂x2
= γE

∇x×∇y
BN

. (4.76)

In the coordinates that move with the flow vs

x′ = x (4.77)

y′ = y − xγEt (4.78)

the radial wave vector becomes time dependent [95]

k′y = ky (4.79)

k′x = kx − kyγEt. (4.80)

In a gyrokinetic code, the time dependent wave vector would require the re-
evaluation of the linear terms and the Bessel functions at every time-step, which
would be computationally expensive. Instead, in GKW the solution ĝsp(kx, ky, s)
is re-mapped between the fixed wave vectors of the original wave vector grid. In
practice for γE > 0 the re-mapping

ĝsp(kx, ky, s) → ĝsp(kx − δkx, ky, s) (4.81)

is applied, when the inequality

NINT(kyγEt/δkx) > ir(ky) (4.82)
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is satisfied, where NINT is a function that returns the nearest integer, δkx is the
radial wave vector grid spacing and ir is an integer counting the number of times
the solution has been remapped during the time t. The re-mapping is applied
for each ky independently.

4.4 CYCLONE base case

Given the large parameter space a tokamak plasma provides, it is useful to
define some form of reference parameter set. The CYCLONE base case (CBC)
parameters defined in Ref. [67] represent such a set that is widely used in the
microturbulence community for the study of a typical tokamak core plasma.
CBC parameters are local parameters taken from a DIII-D high-confinement
shot (shot#81499) [113] at t = 4000 ms and minor radius r = 0.5a, where
a is the minor radius of the last closed flux-surface. Equal ion and electron
temperature Ti = Te and equal ion and electron density ni = ne are assumed.
The normalized inverse ion temperature gradient length is R/LT i = 6.92, where
R is the major radius, and the ratio of the ion density to temperature gradient
length is ηi ≡ Ln/LT = 3.114. The geometry parameters are fixed by the safety
factor q = 1.4, the inverse aspect ratio ǫ ≡ r/R = 0.18 and the magnetic shear
ŝ ≡ (r/q)dq/dr = 0.776− 0.796.
In the original work [67] further simplifying assumptions were made, such as the
consideration of electrostatic fluctuations, the adiabatic electron closure and a
single ion species. In the present thesis CBC parameters serve as base case for
any parameter study, while two of the simplifying assumptions are relaxed in
that electrons are treated as a kinetic species and electromagnetic fluctuations
are included. The former modification requires a specification of the normalized
electron inverse temperature and density gradient lengths which are set to
R/LT e = R/LT i and ηe = ηi. Electromagnetic fluctuations are included through
the choice of a finite β.
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Chapter 5

Motivation 2: Interplay of

microturbulence and zonal flow

patterns —Why considering

electron dynamics and

electromagnetic effects?

This chapter motivates the work presented in the body of this thesis by asking
the question: Why should one consider the impact of electron dynamics and
electromagnetic effects on the interplay of microturbulence and zonal flow
patterns? First, zonal flow pattern formation, a phenomenon often observed in
near marginal turbulence, can be considered relevant for future fusion reactors,
since they are likely to operate close to marginality [114, 115]. Second, the
inclusion of electron dynamics and electromagnetic effects represents a crucial
step towards a realistic description of the interplay of microturbulence and zonal
flow patterns. Below, the authors intentions and aims behind the chapters 6 - 9
are outlined.

Chapter 6: Analysis of zonal flow pattern formation and the modification of
staircase states by electron dynamics in gyrokinetic near marginal turbulence

Chapter 6 is based on the author’s wish to improve the understanding of the
apparent discrepancy between adiabatic and kinetic electron studies concerning
zonal flow pattern formation in near marginal turbulence (i. e., difference
in spatial scale and amplitude of ’zonal flow’ patterns; see also Sec. 2.4.4).
This chapter approaches this issue by means of a different (and somewhat
unconventional) view on zonal flows based on the direct measurement of the
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zonal flow induced tilt of turbulent structures through director field methods,
instead of the often considered E × B shearing rate. In addition, the need for
resolving long-term dynamics, often observed close to marginality in connection
with mesoscale zonal flow pattern formation, is addressed. This chapter aims to
improve the understanding of near marginal microturbulence;—a regime that is
expected to be relevant for future reactors [114, 115].

Chapter 7: Transport hysteresis in electromagnetic microturbulence caused by
mesoscale zonal flow pattern induced mitigation of high β turbulence runaways

Most of the research on near marginal microturbulence and mesoscale zonal flow
pattern formation considers the electrostatic limit.1 To the best knowledge of
the author an investigation of electromagnetic microturbulence with the focus on
mesoscale zonal flow pattern formation has not been addressed so far and, there-
fore, is subject of chapter 7. This chapter builds on the authors experience with
mesoscale ZF pattern formation and long-term dynamics (Refs. [24, 25, 77] and
especially chapter 6) and addresses the questions: Given that magnetic flutter
may deplete zonal flows ([58, 60, 59], and Sec. 2.4.2), does mesoscale zonal flow
pattern formation occur in near marginal electromagnetic microturbulence (it
turns out that it does)? What consequence does mesoscale ZF pattern formation
have on turbulence runaways and magnetic stochasticity (both being inherently
electromagnetic effects)? These questions are approached through gyrokinetic
long-term simulations complemented by diagnostics suitable for the study of
magnetic stochasticity and zonal flow drive and damping processes. This chapter
envisages to improve the understanding of (near marginal) electromagnetic
microturbulence and, hence, may be relevant to future steady state tokamak
scenarios [116, 117].

Chapter 8: Energetics and nonlinear transfer analysis of the self-interaction
mechanism in local gyrokinetic fluxtube simulations of ion temperature gradient
driven turbulence

The author’s main intention of chapter 8 was a confirmation of the outcome
of the director field study2 by means of a well accepted additional nonlinear

1This has multiple reasons: (i) In a tokamak plasma β is typically small and, hence, elec-
tromagnetic effects are often neglected. (ii) Inclusion of electromagnetic effects compels the
inclusion of electron dynamics which is computationally expensive; especially due to the occur-
rence of long-term dynamics in near marignal turbulence. (iii) The accessible β-range is limited
due to the occurrence of turbulence runaways, which complicates the study of electromagnetic
microturbulence.

2As one of the main results of chapter 6, self-interaction driven zonal fine scale structures
are shown to hardly contribute to the zonal flow induced tilt of turbulent structures. Chapter 8
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energy transfer study. With an energetics and nonlinear transfer diagnostic
at hand one is capable to study nonlinear saturation processes, which motiv-
ated the author to investigate the self-interaction mechanism3, and its role
for nonlinear saturation, more in detail. This chapter aims to contribute to
the current debate on the role of self-correlations in local fluxtube simulations
[104, 85], with the focus being on the self-interaction parallel to the magnetic field.

Chapter 9: Stability analysis of toroidally symmetric secondary modified staircase
equilibria.

The analysis presented in chapter 9 is motivated by the difference in the near
marginal flux-gradient relation among adiabatic and kinetic electron studies.4

The (dynamical) relevance of zonal flow patterns in near marginal turbulence
and the tertiary instiability formalism [54]5 motivated the author to investigate
the influence of such patterns on the stability properties. Here, the focus lies
on the role of patterns directly related to electron dynamics as well as the role
of electron instabilities. This chapter aims to improve the understanding of the
role of electron dynamics and electron temperature gradient drive for turbulence
generating instabilities close to marginality.

supports this statement by showing that self-interaction driven zonal structures do hardly
contribute to the zonal flow mediated nonlinear transfer of generalized energy.

3The self-interaction mechanism is considered to affect studies that include electron dynam-
ics in particular, since passing electrons lead to a significant extent of Eigenmodes along the
magnetic field [19].

4Adiabatic electron studies show a discontinuous flux-gradient relation due to the formation
of fully-developed staircase structures [24, 25], while kinetic electron studies find a smooth
transition to turbulence [1] (and chapter 6).

5The tertiary instability formalism states that zonal structures (i. e., structures driven
through secondary instabilities) may drive tertiary instabilities beside the primary instabilities
driven by the background density and temperature gradients.
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Chapter 6

Analysis of zonal flow pattern

formation and the modification of

staircase states by electron

dynamics in gyrokinetic near

marginal turbulence

This chapter is based on the publication [118].

6.1 Introduction

A rich body of literature demonstrates the significance of radially sheared zonal
flows (ZFs), i. e., toroidally symmetric plasma flows due to the E × B-drift, for
both the nonlinear saturation [119, 120, 22, 65] as well as the nonlinear stabil-
ization [62, 29, 69, 67] of microturbulence in tokamak plasmas. The underlying
process is mediated by the E × B nonlinearity and can be understood either
as resulting from the deformation or equivalently tilting of turbulent structures
through the advection by the sheared ZFs [29, 121, 68], or as a ZF mediated spec-
tral transfer of energy to larger radial wave vectors [120, 22, 65]. As a consequence
of ZF shearing turbulent structures exhibit an anisotropy or equivalently a tilt in
position space; an property robustly observed in experiments [122, 123, 124] and
simulations [68, 119].
A metric that characterizes the strength of this shearing process is the E × B
shearing rate ωExB, i. e., the radial derivative of the advecting ZF velocity
[121, 125]. Shear stabilization of microturbulence is then often expressed in form
of the empirical Waltz rule ωExB ∼ γ [69, 125], where γ denotes the maximum
linear growth rate of the underlying microinstabilities. Gyrokinetic studies sup-
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port this condition [70, 71].
Since the nonlinear threshold for turbulence generation is directly related to shear
stabilization [67], the stabilization rule ωExB ∼ γ suggests the shearing rate con-
nected to ZFs close to marginality being of the order of typical growth rates.
Indeed, the more recently discovered mesoscale ZF states in near margnial tur-
bulence, also known as E ×B staircases [23], exhibit amplitudes in terms of the
E×B shearing rate satisfying the stabilization criterion remarkably well [25, 24].
The development of mesoscale staircase states is a robust phenomenon close to
marginality when electrons are treated adiabatically [23, 25, 24, 76, 77]. By
contrast, recent gyrokinetic studies that include electron dynamics report the de-
velopment of dominant radial fine scale zonal structures [83, 126, 1]. Not only
is the radial scale of such structures one order of magnitude smaller than the
mesoscale of E ×B staircases, also their E ×B shearing rate is found to be one
order of magnitude larger than typical growth rates [1]. Although the shearing
rate connected to fine scale features exceeds typical growth rates significantly,
turbulence is not quenched by such ZF structures. Most notably, in contrast to
the adiabatic electron case, E×B-staircase structures cannot be identified in the
radial profile of ωExB for Cyclone Base Case (CBC) parameters [67] when kinetic
electrons are included. Specific parameter choices, i. e., an increased magnetic
shear compared to CBC parameters, have been necessary for the re-occurrence
of E × B staircase structures also in kinetic electron models [1].
The above observations and discrepancies lead to the following questions: Do
zonal fine scale structures prevent the development of mesoscale staircase struc-
tures? Why do fine scale features not result in shear stabilization although they
over-satisfy the stabilization rule? Questions which will be addressed to in this
work.
This work continues on from the work presented in Ref. [1] which uses the E×B
shearing rate ωExB for the characterization of ZF pattern formation. Here, how-
ever, director field techniques [108] are applied to study zonal flow structure
formation; a technique that has found application in the microturbulence con-
text in Ref. [27]. This method is based on the ZF induced tilting of turbulent
structures and, therefore, represents a more direct way of quantifying the ZF
shearing compared to the E × B shearing rate. The focus lies on the detection
of mesoscale ZF signatures and a comparison with fine scale structures. The re-
mainder is organized as follows: In Sec. 6.2 the simulation set-up and the director
field technique is described. The numerical results are presented in Sec. 6.3, con-
sisting of an investigation of mesocscale zonal potential signatures in Sec. 6.3.1,
the director field analysis in Sec. 6.3.2 and a study of the interplay of staircase
states (detected in Sec. 6.3.2) with background E ×B shear flows and turbulent
heat transport in Sec. 6.3.3. Concluding remarks are given in Sec. 6.4.
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6.2 Numerical set-up and diagnostics

6.2.1 Gyrokinetic simulation set-up

Nonlinear gradient-driven gyrokinetic simulations performed with the flux-tube
version of GKW [95] under the δf -approximation are investigated. The plasma
parameters are those of the CYCLONE base case (see Sec. 4.4). No plasma
rotation and no collisions are considered. Both a single ion species (deuterium)
and electrons are treated as separate kinetic species with an electron to ion mass
me/mi = 2.72 × 10−4. A small normalized pressure β = 3 × 10−4 is applied to
include shear Alfvén wave physics. This allows for larger time steps and reduces
the numerical cost. Furthermore, an ad-hoc circular geometry (see Sec. 4.2.2)
is chosen. The numerical set-up, i. e., grid resolution, boundary conditions and
numerical dissipation, is identical to the set Gcirc

1 summarized in Tab. 7.1 of
chapter 7.

6.2.2 Director field diagnostic

In this work the orientation of tilted turbulent structures is measured by means
of the director field [108]. This technique has already been applied to gyrokinetic
turbulence in order to detect zonal flow shear zones [27]. Furthermore, measure-
ments of eddy tilting in connection with sheared E×B flows also find application
in various machines such as DIII-D [122], Tore Supra [79], MAST [123] and AS-
DEX Upgrade [124].
The director field of a two dimensional field G(x, y) is defined by

kG = ϕ(kG/|kG|), (6.1)

where

kG =

(
∂G

∂y

)2

−
(
∂G

∂x

)2

− 2i
∂G

∂y

∂G

∂x
(6.2)

and ϕ is the angle of the complex number kG/|kG| = A exp(iϕ) with A,ϕ ∈ R.
The director field maps the local orientation of structures in the morphology of G
onto an angle with kG ∈ [−π,+π]. It is reasonable to define turbulent structures
in a 2D field G(x, y) as structures formed by contour lines. The local tilting
angle Θ of a turbulent structure may then be defined through the angle formed
by the x-axis and the tangent to the contour line. This allows for a descriptive
interpretation of the director field in terms of the tilting angle by noting the
relation Θ = kG/2 with Θ ∈ [−π/2,+π/2]. The validity of the tilting angle on
the half circle mirrors the invariance of the orientation under rotation by π.
In this work the director field of the turbulent part of the electrostatic potential

φ̃ = φ(x, y, s ≈ 0)− 1

Ly

∫ Ly/2

−Ly/2

dy φ(x, y, s ≈ 0), (6.3)
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normalized by ρ∗T0/e (ρ∗ = ρth,i/R0 is the normalized Larmor radius, ρth,i is the
ion thermal Larmor radius and T0 is the background temperature) and taken
at the low field side (LFS) s ≈ 0 is investigated (unless stated otherwise). The
characterization of turbulent eddies through structures in φ̃ at the LFS is justified
by both the E×B-drift being approximately tangential to contours in φ̃ [45] and
the turbulence intensity peaking at the LFS. Since the zonal E × B flow, and
equivalently its shearing rate, is constant in y per definition, the director field is
always averaged over y which is denoted by KG = 〈kG〉y.

6.3 Numerical results

6.3.1 Investigation of mesoscale zonal potential signatures

In this section an investigation of mesoscale zonal potential signatures in
turbulent states close to marginality is presented. The mesoscale is defined by
the radial scale of the box size Lx = 76.27 ρth,i and therefore relates to the
zonal flow mode number nZF = 1 (the zonal flow wave vector is kZF = 2πnZF/Lx).

Temporal longterm evolution

Although the turbulent ion heat flux Qes,i typically saturates nonlinearly within
an initial time period of a few 102 transit times R0/vth,i, a transition to quasi-
stationary stages with reduced flux [e. g. the time inteval t ∈ [2250, 3900] R0/vth,i
for R0/LT = 4.0 (blue) in the top panel of Fig. 6.1] occurs at late times for cases
close to marginality. Here, the species heat flux is defined by

Qes,sp =

∫

d3v
1

2
mspv

2(vE · ∇x) fsp, (6.4)

where msp is the species mass, ∇x · vE is the radial component of he E ×B drift
and the flux being normalized by ρ2∗n0T0v

2
th,i with the background density n0.

The heat flux during both the periods with high and reduced turbulence level is
mediated by avalanches (see also Sec. 6.3.3). The time scales connected to both
the point of transition as well as the duration of the quasi-stationary stage can be
large, i. e., up to several 103 R0/vth,i, introducing a temporal long-term behavior.
The transition in Qes,i is correlated with a temporal long term evolution of the

mesoscale zonal potential component. The saturation of the shear in the nZF = 1
zonal mode to its maximum value agrees with the transition in the turbulent
level (see mid panel of Fig. 6.1). Here, the E × B shear rate is defined through
[21, 24, 1]

ωExB =
1

2

∂2〈φ〉
∂x2

(6.5)
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Figure 6.1: Time trace of the volume averaged ion electrostatic heat flux Qes,i

(top), the shear carried by the nZF = 1 zonal mode |〈ω̂ExB〉|nZF=1 in terms of
vth,i/R0 (mid) and its radial phase ϕZF in terms of radiants (bottom) for cases with
R0/LT,i = R0/LT,e = 4.0 (blue, solid), R0/LT,i = R0/LT,e = 3.5 (green, dotted)
and R0/LT,i = 3.5 and R0/LT,e = 0 (orange, dashed). Mind the periodicity of
ϕZF on [−π, π].

where the zonal electrostatic potential is estimated by

〈φ〉 = 1

Ly

∫ Ly/2

−Ly/2

dy φ(x, y, s ≈ 0). (6.6)

Note that only normalized quantities enter the definitions above. The mesoscale
shear |〈ω̂ExB〉|nZF=1 is defined by the Fourier coefficient connected to the zonal
flow wave vector kZF = 2πnZF/Lx with nZF = 1 and is obtained by a radial Four-
ier transform of the zonal flow shearing rate. Estimated times scales on which
the nZF = 1 zonal mode saturates to its quasi-stationary maximum value vary
between several 102−103 R0/vth,i and show no systematic dependence on R0/LT .
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R0/LT ∆T1 ∆T2 Qes,i|∆T1 Qes,i|∆T2
4.0 225− 1800 2250− 3900 9.48 6.80
3.5 75− 2025 3825− 6979.5 3.09 1.93

Table 6.1: Temporally and volume averaged ion electrostatic heat flux Qes,i

(in terms of ρ2∗n0T0v
2
th,i) during high turbulent states ∆T1 and reduced turbulent

states ∆T2 after the transition (both time intervals in terms of R0/vth,i) for two
cases which exhibit clearly separated turbulent periods.

The observed long-term behavior requires a long time integration to accurately
describe the turbulent transport levels, since a reduction of 28− 37 % can occur
as summarized in Tab. 6.1. The existence of this long term behavior is not always
appreciated in literature.
A similar temporal long term behavior close to the nonlinear threshold is typic-
ally observed in studies that apply the adiabatic electron closure. In those cases a
staircase state develops, quenching the turbulence after considerable time scales
up to 103 − 104 R0/vth,i. The result is a non-monotonic dependence of the heat
flux on R0/LT , referred to as the finite heat flux threshold [25], which expresses
the inability of the local gradient-driven approach (with adiabatic electrons) to
correctly access near marginal turbulence. It is therefore justified to ask whether
(i) the present simulations are temporally converged and (ii) the local gradient-
driven approach is appropriate to access near marginal turbulence.
In the present simulations with kinetic electrons and CBC parameters a trans-
ition from finite turbulence to suppressed states similar to Ref. [25] has not been
observed. As reported in the aforementioned reference the onset of this transition
is parameter dependent and occurs at earlier times with reduction of R0/LT . Al-
though the case with R0/LT = 3.5 has been run up to 10000 R0/vth,i (see green
dotted data in Fig. 6.1) no significant time evolution of both the turbulence and
mesoscale shear level can be observed in the long time limit. The present simu-
lations are, hence, considered temporally converged.
The flux-gradient relation (see Fig. 6.4) shows a smooth transition to turbulence,
demonstrating that the local gradient-driven approach with kinetic electrons is
able to access near marginal turbulence with arbitrary heat flux levels (at least
for the plasma parameters compliant to the data shown). Indeed, the inclusion
of electron physics results in a different overall turbulence regime. In order to
elucidate this statement further a case with R0/LT,i = 3.5 but R0/LT,e = 0 has
been investigated (see orange dashed data in Fig. 6.1). This case features turbu-
lence - mesoscale zonal flow dynamics similar to gradient-driven simulations with
the adiabatic electron approximation just below the finite heat flux threshold
[25]; —transitions between extended phases with finite intermittent turbulence
and suppressed states are clearly visible. This outcome indicates that the ability
of the local gradient-driven approach (with kinetic electrons and CBC paramet-
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ers) in accessing arbitrary near marginal turbulent states is related to electron
instabilities that are not included into an adiabatic electron description. Due to
this outcome the local gradient-driven approach with kinetic electrons is valued
an appropriate (and computationally feasible) approach to access near marginal
turbulence.

Radial lock-in of mesoscale structures

The long-term evolution of the mesoscale zonal potential mode exhibit a concom-
itant reduction in its radial variability. Here, the radial orientation is diagnosed
through the use of the radial phase ϕZF defined by

ω̂ExB(kZF) = ω̂AExB(kZF) exp[iϕZF(kZF)], (6.7)

with ω̂AExB, ϕZF ∈ R and ω̂ExB being the complex Fourier coefficient of the E ×B
shear [Eq. (6.5)] connected to the ZF mode with wave vector kZF. A striking

Figure 6.2: Distribution of the radial phase ϕZF of the nZF = 1 mode in the
E × B shear [Eq. (6.7)] with respect to its domain of validity ϕZF ∈ [0, 2π[ (full
circle) during the stationary state for various realizations of R0/LT . The five
(ik = 5) radial grey rays depict the orientations to which the nZF = 1 zonal mode
locks in (compare bottom panel of Fig. 6.1). The individual distributions are
normalized to the respective maximum.

observation is the lock-in of the longest wavelength zonal mode at distinct radial
locations. This mode keeps its radial orientation for long time periods as indic-
ated by the restriction of ϕZF to specific values highlighted by horizontal dotted
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lines in the bottom panel of Fig. 6.1. Extended phases with lock-in behavior are
dispersed by intermittent phases with increased turbulent level, reduced meso-
scale zonal potential level and elevated radial variability. The latter allow for
the radial migration of the mesoscale zonal potential component pattern among
different lock-in positions.
This outcome holds for a wider range in R0/LT as shown by the temporal distribu-
tion of the radial phase PDF(ϕZF) normalized to the maximum of the respective
distribution (see Fig. 6.2). An ik-fold symmetry is found, where ik = 5 specifies
the number of lowest order rational layers (LORLs) in the simulation domain.
LORLs are radial locations with high symmetry, in that all ky-modes project
onto itself when connected over the radial boundary leading to strict parallel
periodicity, and are determined by the geometry of the confining magnetic field.
The radial lock-in behavior, therefore, demonstrates an interplay of mesoscale
zonal potential structures with lowest order rational surfaces. Furthermore, the
radial variability increases with R0/LT . While the radial orientation in cases with
R0/LT ∈ [3.25, 3.5, 4.0] is strongly tied to LORLs, the radial phase distribution
indicates an increased mobility around LORLs for R0/LT = 5.0 and an almost
random phase distribution at R0/LT = 6.9.

Figure 6.3: Temporally averaged spike intensity in the E × B shearing rate
∆ωExB (blue ’×’, left axis) and shear carried by the mesoscale nZF = 1 zonal flow
mode |〈ω̂ExB〉|nZF=1 (red ’+’, right axis) against R0/LT . Shaded regions represent
the temporal distribution and boxes indicate the upper and lower quartiles. The
growth rate of the most unstable mode is depicted by a thin grey line (with
respect to right axis).

70



6.3. NUMERICAL RESULTS

Spatial scale dependence of the E ×B shear

Here, a quantitative analysis of the E ×B shearing rate connected to meso- and
fine scale zonal structures is provided. The shear carried by the mesoscale zonal
potential component |〈ω̂ExB〉|nZF=1 (red ’+’ in Fig. 6.3) is a further characteristic
of the above mentioned late quasi-stationary states. In general, the mesoscale
shear level is of the order of 10−1 vth,i/R0 and, hence, agrees with typical values
of the growth rate as well as staircase amplitudes [24, 25]. A striking observation
is the linear increase in the interval R0/LT = 2.9−3.5 following the rule ωExB ∼ γ.
For inverse temperature gradient lengths around R0/LT = 3.5 the mesoscale ZF
level is limited to an amplitude of ωExB ≈ 0.15 vth,i/R0. Narrow quartiles indicate
the temporal persistence of this typical mesoscale level, which is confirmed by the
time traces in Fig. 6.1. Further increase of R0/LT results in a slight decrease of
the averaged mesoscale ZF level. And although the temporal distribution is
somewhat broadened the upper and lower quartiles show that 75 % of the time
the ZF state still resides at amplitudes of ω̂ExB ∼ 0.1− 0.15 vth,i/R0. In Ref. [77]
similar observations have been made in connection to E ×B staircase states.
The above discussed characteristics of the mesoscales have to be contrasted to
the shear carried by fine scale features (blue ’x’ in Fig. 6.3) that significantly
exceeds the shear carried by the mesoscale component. Here, an estimate of the
amplitude of fine scale features is provided by the spike intensity

∆ωExB =
1

Nspikes

Nspikes∑

i=1

|ωExB(xi)|, (6.8)

where ωExB(xi) is the shearing rate taken at the radial position of a spike xi and
Nspikes denotes the number of spikes in the radial profile of ωExB at a fixed point
of time. A spike is defined by a local extremum in the radial profile of ωExB (blue
profiles in Fig. 6.6). In contrast to the averaged mesoscale shear, the averaged
spike intensity increases monotonically with R0/LT .
Both the large spike intensity and the linear increase is in contradiction with
the obtained turbulent level (see Fig. 6.4) when the Waltz stabilization rule
γ ∼ ωExB is considered. The dependence of the shear carried by mesoscale zonal
potential structures, however, appears to be consistent with the increase of the
turbulent level for R0/LT > 3.5. This suggests that the fine scale features in
ωExB are less relevant for the shear stabilization of turbulence.

6.3.2 Director field analysis

In this section the director field diagnostic introduced in Sec. 6.2.2 is applied in
order to investigate ZF pattern formation through the shear induced tilting of
turbulent structures.
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Figure 6.4: Time and volume averaged electrostatic heat flux Qes of ions (blue)
and electrons (red) against the background inverse temperature gradient length.

Director field in the presence of a homogeneously sheared background

E × B flow

Before the director field method is applied to turbulence generated radially peri-
odic ZFs, here, the connection between the E × B flow shearing rate and the
director field is established using a constant (both in time and space) sheared
background E × B flow. In GKW the background shear is implemented using
the wave vector remapping method of Ref. [103] that has been benchmarked in
Ref. [71] (see Sec. 4.3.6 for a description of the background E × B shear flow).
The strength of the shear flow is controlled by the constant shearing rate γE.
Without external sources of shear as well as persistent ZFs symmetry properties
of the gyrokinetic equation require the turbulent structures at the LFS (s = 0)
to be radially symmetric in a statistically sense [123]. As a consequence, the en-
semble averaged local orientation of turbulent structures and, hence, the director
field have to vanish. However, even in the presence of periodic ZFs the director
field can be made to vanish when averaging over the radial direction, since neg-
ative and positive shear zones cancel. Eddies that experience an E × B shear
being constant over the simulation domain, in turn, exhibit a preferential tilt.
The radially averaged director field 〈Kφ〉x (〈...〉x denotes a radial average) is then
finite and is, therefore, measured in the analysis below.
Due to the even number of grid points along the field line (Ns = 32) and the
finite magnetic shear ŝ of the chosen numerical parameters the 2D slice of the
potential φ̃(x, y, s ≈ 0) used in the director field diagnostic is slightly off the LFS.
This results in a small radially constant positive tilt of turbulent eddies due to
the alignment of turbulent modes along the sheared magnetic field [15]. It has
been verified that an odd number of s-grid points, and consequently the position-
ing of the potential slice at s = 0, removes this offset. In order to mitigate this
effect, the radially averaged director field at arbitrary background shear 〈Kφ〉x
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Figure 6.5: Temporally and radially averaged corrected director field 〈Kφ〉x −
〈Kφ〉x|γE=0 against the background E × B shearing rate γE for various values of
the inverse background temperature gradient length. Only stationary turbulent
states are depicted and dashed lines represent fits of the model Eq. (6.9).

is corrected by the radially averaged director field at zero shear 〈Kφ〉x|γE=0, i. e.,
〈Kφ〉x − 〈Kφ〉x|γE=0, at fixed value of R0/LT . It has been ensured that the radi-
ally averaged director field at finite background shear is always significantly larger
than the radially averaged director field at zero shear (the latter is summarized
in Tab. 6.2).
Since already a small level of background shear is known to result in complete
stabilization in the linear regime [125, 127], late nonlinearly saturated states
without background shear are used as initial conditions for realizations with fi-
nite background shear. This procedure is required to access stationary turbulent
states at finite background shear. Furthermore, only cases with well defined, i. e.,
non-quenched, turbulence are considered, since it will be evident below that the
director field depends on the turbulent level.
In general, the averaged director field and, hence, the level of eddy tilt increases
with the background shear (see Fig. 6.5) as expected [123]. The sign sensitivity
has been ensured through a sample point with R0/LT = 6.9 and γE = −0.1 (not
shown) which results in a negative averaged director field. Fig. 6.5 makes clear
that the mapping between the shearing rate γE and the director field 〈Kφ〉x is
not unique. An increase of R0/LT and therefore the turbulence level (see also
Fig. 6.12) at same level of background shear results in a reduction of the aver-
aged director field and equivalently the averaged tilt of eddies. This observation
is partly interpreted as a reduction of the eddy life time, i. e., the time during
which turbulent structures can be tilted by the sheared E×B flow, with increas-
ing turbulence level [123]. Furthermore, the velocity shear connected to turbulent
structures itself, i. e., turbulent mixing, might compete the background E × B
shear with increasing turbulence strength and thereby lead to an isotropization
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R0/LT 3.5 4.0 5.0 6.9
〈Kφ〉x|γE=0 [rad] 0.009 0.047 0.055 0.118
αcal [rad · R0/vth,i] 9.25 8.21 7.70 4.80

Table 6.2: Radially and time averaged director field without background shear
〈Kφ〉x|γE=0 and fit parameter αcal of the linear model Eq. (6.9) corresponding to
individual R0/LT -realizations in Fig. 6.5.

as the E × B nonlinearity tend to produce isotropic eddies [45]. It is noted,
however, that this dependency poses no problem for the director field analysis of
turbulence generated zonal flows in the subsequent sections, since a fixed value
of R0/LT ensures a roughly constant turbulence level during the stationary state
(see top panel of Fig. 6.3).
Given the complex interplay of sheared ZFs and turbulence, the development of
a general model describing the averaged director field response on the E × B
shearing rate is not further investigated here. Motivated by the outcome shown
in Fig. 6.5 and for simplicity a linear dependence

Kφ = αcalγE (6.9)

is adopted with the constant αcal having the unit rad ·R0/vth,i. The linear model
applies satisfactory well (dashed lines in Fig. 6.5) within the considered range
of γE and provides a proxy for the conversion of the averaged director field into
an E × B shearing rate. The corresponding fit parameter αcal is summarized in
Tab. 6.2.
To conclude, this numerical experiment demonstrates that the level of eddy tilt
(∼ Kφ) provides information about the zonal flow induced shear (∼ γE). This
motivates the application of director field techniques for the investigation of the
shearing action provided by turbulence generated sheared zonal flows below.

Director field analysis of turbulence generated radially periodic zonal

flows

In this section the director field method is applied to investigate the deformation
of turbulent structures induced by self-consistently generated radially periodic
ZFs. None of the simulations presented here and in the remainder of Sec. 6.3.2
apply background E×B shear, such that the considered sheared ZFs evolve self-
consistently, i. e., with back-reaction to the turbulence. In order to separate the
deformation induced by radially periodic ZFs from the constant tilt due to the
alignment along the sheared background magnetic field (see also Sec. 6.3.2), the
radially averaged director field 〈KG〉x is always subtracted from the total director
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field KG in the remainder of Sec. 6.3.2. The focus lies on the role of fine- and
mesoscale ZFs for the shear induced tilting.
The case selection in this analysis is representative for three distinct regimes
with respect to mesoscale nZF = 1 structure development in ωExB (see Fig. 6.3)
as well as turbulent transport level (see Fig. 6.4): Case (A) with R0/LT = 3.25
lies in the regime with linearly increasing shear in the mesoscale ZF and ex-
hibits a small turbulence level. Case (B) with R0/LT = 4.0 represents the
transition to a linearly and more strongly increasing heat flux and is situated
in the regime with saturated mesoscale ZF shear. Case (C) with R0/LT = 6.9
is a strong turbulent reference case with highly variable mesoscale ZF (see
Fig. 6.2) at a level of 〈|〈ω̂ExB〉|nZF=1〉t = 0.11 vth,i/R0 and high turbulent level
〈〈Qes〉ψ〉t = 74.33 ρ2∗n0T0vth,i.
Evidence of fine scale features in the radial profiles of Kφ can only be observed in
case (A) (red profile in top left panel of Fig. 6.6). The level of fine scale features
in the director field, however, does not reflect the respective structures in ωExB

(blue profile). While the profile of the shearing rate ωExB is clearly dominated
by fine scale features, it is the nZF = 1 mesoscale variation that prevails over
the fine scale features in the director field. The actual shearing action, i. e.,
the ability of tilting turbulent structures, of spikes in ωExB, hence, appears to
be significantly reduced. This observation is in agreement with structures in the
spatial morphology of the turbulent electrostatic potential φ̃ (bottom left panel
of Fig. 6.6). Therein, the tilting by fine scale features is only faintly visible by
radially periodic vertically coherent zig-zag structures (see bottom left panel of
Fig. 6.6).
In cases with increasing turbulent level, i. e., case (B) and (C), the fine scale sig-
natures in the director field disappear (mid and right top panels of Fig. 6.6). This
stands in contrast to the increase of the spike intensity in the shearing rate ωExB

(see also ∆ωExB in Fig. 6.3) and is therefore conjectured to be directly related
to the increasing turbulence level. Note that both the turbulence correlation
length and the scale on which turbulence spreading acts is of the order of several
Larmor radii [128]. The zonal flow shear induced tilting on scales of the spike
structures is therefore in particular susceptible to turbulent mixing. The above
observation is confirmed by the absence of vertically aligned zig-zag structures
and the appearance of small scale and more irregular eddies for R0/LT = 4.0 and
R0/LT = 6.9 (mid and right bottom panels of Fig. 6.6). To conclude, despite the
large amplitude (∼ 1 vth,i/R0) of fine scale features in ωExB their contribution
to shear deformation of turbulent structures is marginal in the cases considered
here.
A striking observation is the development of mesoscale pattern in the director
field (top panels of Fig. 6.6), occurring on two distinct disparate scales:
(i) Close to LORLs (vertical black dotted lines) the radial profile of Kφ features
corrugations. Radial intervals with ∂xKφ < 0 are always centered at LORLs
introducing an ik-fold mesoscale pattern in Kφ.
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Figure 6.6: Top panels: Radial profiles of the temporally averaged shearing rate ωExB (blue, left vertical axis) and the
director field Kφ − 〈Kφ〉x (red, right vertical axis) for cases (A), (B) and (C) described in the text. Vertical black dotted
lines indicate LORLs. Bottom panels: Snapshots of the turbulent part of the electrostatic potential φ̃ in the x-y-plane at
the LFS. The data is taken from the same time intervals used for time averaging of the respective radial profile in the top
panels. Bicubic interpolation is applied to enhance the visibility of structures on grid scale. The potential is normalized
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It has been verified that this period length changes accordingly with varying ik.
In case (B) the corrugations result in zero crossings and reduced averaged de-
formation in the vicinity of LORLs. In the strong turbulent reference case (C)
signatures of the nZF = 1 mesoscale ZF average out due to its quasi-random
phase distribution (see Fig. 6.2), leaving signatures of the corrugations visible in
form of bipolar shear layers centered at LORLs. These spatially fixed corrug-
ations feature amplitudes of Kφ ∼ π/4 that can be related to a shearing rate
of γE ∼ 0.15 vth,i/R0 (see Fig. 6.5). The formation of zonal flow corrugations
emerging at low order rational surfaces has been reported in Ref. [129] and is
distinct from the fine scale features in ωExB that are not restricted to LORLs [1].
(ii) The subset of cases with radial lock-in of the mesoscale zonal mode, i. e.,
R0/LT ∈ [3.25, 3.5, 3.75, 4.0], exhibits a nZF = 1 mesoscale variation in the dir-
ector field when averaging over a locked-in phase. The spatial morphology of
turbulent structures confirms the significance of this mesoscale structure in the
ZF induced tilting (left and mid bottom panels of Fig. 6.6). The zero crossing
of the nZF = 1 modulation satisfying Kφ < 0 → Kφ > 0 with increasing radial
coordinate is always centered in between two LORLs, while the opposite zero
crossing always coincides with a LORL. It has been verified that this behavior
translates to even values of ik. As a result, an uneven number of LORLs al-
lows for an even radial symmetry of the structure in Kφ. This restriction on
the mesoscale pattern is a manifestation of the interplay of the nZF = 1 ZF
component with LOLRs as observed in Sec. 6.3.1. In case (B) the director field
exhibits intervals with finite and almost constant eddy tilt in between the cor-
rugations, indicating a finite shearing rate there. The overall shape resembles a
fully-developed staircase [25, 77] (this nomenclature follows the aforementioned
references and denotes the staircase state emerging in gradient-driven simulations
with adiabatic electrons just below the non-monotonic finite heat flux threshold)
with the modification of ik−1 additional corrugations close to LORLs. Since the
development of the corrugations in the present study requires electron dynamics
the overall structure will be referred to as a modified staircase state hereafter.
Structures of this type occur for R0/LT ∈ [3.5, 3.75, 4.5, 5.0] as well (a case with
R0/LT = 3.5 is shown in the top left panel of Fig. 6.7). In the latter two cases
the spatial persistence is significantly reduced, which is consistent with a higher
radial variability of the largest scale zonal flow mode (see Fig. 6.2). The amp-
litudes of modified staircases of Kφ ∼ π/2 can be roughly related to shearing
rates of γE ∼ 0.15 − 0.2 vth,i/R0 through extrapolation of Kφ(γE) obtained in
the director field calibration (Fig. 6.5). It is, therefore, comparable to the shear
carried by the mesoscale component of zonal potential (see Fig. 6.3).
The above observations are somewhat surprising and deserve further clarifica-
tions. Especially the following questions are raised: (i) Why do the fine scale
features in ωExB hardly contribute to the tilting of turbulent structures? (ii)
Can the modified staircase pattern in the director field, and especially the cor-
rugations, be related to physically meaningful perturbations in the distribution
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function? (iii) Do modified staircase share similarities with their adiabatic coun-
terpart? Questions that will be addressed to in the next sections.

Role of finite Larmor radius effects for the shearing action of fine scale

structures in the shearing rate ωExB

A fundamental aspect of the gyrokinetic framework is the dynamical reduction
through the average over the fast gyro-motion. The so introduced gyro-average
(GA) appears at various places as for example in form of the gyro-averaged po-
tential entering the E × B nonlinearity of the gyrokinetic equation, or the gyro-
averaged distribution function entering the integral part of the Poisson equation
[95]. While the gyro-average can be neglected on scales significantly larger than
the Larmor radius, it is relevant on scales comparable to it and introduces so-
called finite Larmor radius (FLR) effects. The shearing of turbulent structures
by zonal E ×B flow is mediated by the E ×B nonlinearity and due to the small
radial scale of the spike structures of a few Larmor radii (see Fig. 6.6), their
shearing action might be susceptible to FLR effects in particular.
In order to test if FLR effects mitigate the shearing through small scale features

in ωExB, the gyrokinetic as well as the Poisson equation are manipulated in two
steps. First, the gyro-average is neglected in the E × B nonlinearity in case it
acts on the ky = 0 mode of the electrostatic potential. This is realized by the
modification

J0φ̂|ky=0 → φ̂|ky=0, (6.10)

with J0 being the zeroth order Bessel function and φ̂ being the Fourier trans-
formed electrostatic potential.
A well saturated base case with R0/LT = 3.5 is used as initial condition for the
cases considered below. The base case is restarted both with and without the
GA in the E × B nonlinearity and the influence on the deformation of turbu-
lent structures in the electrostatic potential φ̃ and the ion gyro-center density
δñi = δni − 〈δni〉, with

δnsp =

∫

d3v fsp (6.11)

is characterized by the respective temporally averaged director field (top panels of
Fig. 6.7). Clear fine scale features can be observed in the director field of the ion
gyro-center density when the GA is removed (blue) in contrast to the unmodified
reference case (red). The spike intensity in the shearing rate ωExB is not found to
be influenced by this modification. This demonstrates that FLR effects mitigate
the shearing action of fine scale structures in the shearing rate ωExB efficiently by
filtering fine scale features in the zonal electrostatic potential.
Although the removal of the GA in the E × B nonlinearity has profound influ-

ences on the ion gyro-center density, its influence on the deformation of turbulent
structures in the electrostatic potential is found to be less pronounced (top left
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Figure 6.7: Radial profiles of the temporally averaged director field KG−〈KG〉x
of the electrostatic potential G = φ̃ (left panels), the ion gyro-center density
G = δñi (right panels). Shown are an unmodified reference case (red) and cases
without GA in the E×B nonlinearity (blue top panels) as well as without GA in
both the E ×B nonlinearity as well as the integral part of the Poisson equation
(blue bottom panels). All cases have R0/LT = 3.5 and vertical black dotted lines
indicate LORLs.

panel). The above outcome is confirmed by the spatial morphology of turbulent
structures in the electrostatic potential and gyro-center density (top panels of
Fig. 6.8). Now, clear vertically coherent small scale deformations are visible in
the turbulent gyro-center density field (right), while being considerably fainter in
the electrostatic potential (left).
The discrepancy relates to polarization effects entering the gyrokinetic Poisson
equation due to the pull-back transformation from gyro-center to particle phase
space [11]. This involves a further GA in the integral part of Poisson equation [95]
and, hence, introduces a second smoothing of small scale features, now however
of the turbulent structures itself. In order to clarify the above effect, the GA in
the integral part of the Poisson equation is neglected when acting on turbulent
ky 6= 0 modes of the distribution function. This second manipulation is realized
by the substitution

∫

J0ĝ|ky 6=0 dµdv‖ →
∫

ĝ|ky 6=0 dµdv‖ (6.12)
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Figure 6.8: Turbulent part of the electrostatic potential φ̃ (left) and the ion
gyro-center density (right) in the x-y-plane with the gyro-average removed in
the E × B nonlinearity (top) and both the E × B nonlinearity as well as the
integral part of the Poisson equation (bottom). All cases have R0/LT = 3.5.
Bicubic interpolation is applied to enhance the visibility of structures on grid
scale. Both quantities are normalized to the maximum value and the color scale
ranges linearly ∈ [−1.05,+1.05] → [blue, red].

in the integral part of Poisson equation (see Eq. (73) of Ref. [95]). As a result
similar profiles of Kφ andKδni

are obtained with Kφ now exhibiting spike features
as well (bottom panels of Fig. 6.8). It is noted, that the structures in Kφ do not
show the same strong spikes as occurring in ωExB around LORLs (see top panels
of Fig. 6.6). This fact is attributed to the extreme values of the shear at these
points for which the validity of the linear model anticipated in Sec. 6.3.2 cannot
be guaranteed. Clear signatures of sheared fine scale structures are now visible
also in the spatial morphology of φ̃ (bottom panel of Fig. 6.8). This numerical
experiment, hence, demonstrates a significant reduction of the shearing action
connected to fine scale structures in ωExB due to FLR effects.
While the role of FLR effects for the deformation of turbulent structures has
been considered before, now its influence on shear stabilization [62, 29, 69] is
investigated. Fig. 6.9 shows time traces of the ion and electron electrostatic heat
flux for the same cases discussed above. Both manipulations of the gyrokinetic
set of equations result in a reduction of the turbulent transport level. In the case
without the GA in both the zonal E×B nonlinearity as well as the integral part of
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Poisson equation an extended phase with almost zero heat flux is observed. The
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Figure 6.9: Time traces of the ion- (top) and electron (bottom) electrostatic
heat flux Qes,sp (in units of ρ2∗n0T0v

2
th,i) for the unmodified reference case (blue), a

case without GA in the zonal E×B nonlinearity (orange) and a case without GA
both in the zonal E × B-nonliniarity as well as the integral part of the Poisson
equation (violet). All cases have R0/LT = 3.5.

spike features in the shearing rate ωExB, therefore, have the potential to stabilize
turbulence through decorrelation. In practice, FLR effects on ion Larmor radius
scales render this potential ineffective.

Connection of zonal flow corrugations to perpendicular ion pressure

corrugations

In this section the corrugations in the director field close to LORLs (see Fig. 6.6)
are related to perpendicular ion pressure corrugations making use of both the
parallel electron and the radial ion force balance. Below, only toroidally constant
quantities, i. e., ky = 0 components, are considered.
Neglecting the electron inertia term and the gyroviscous pressure tensor the paral-
lel electron force balance in lowest order of ρ∗ can be formulated by (see appendix
A)

0 = ∇‖φ− [K‖(p‖,e, p⊥,e) +∇‖p‖,e], (6.13)

where ∇‖ = b · ∇ is the gradient along the magnetic field, K‖ expresses mag-
netic curvature effects entering through the divergence of the gyrotropic pressure
tensor and p‖,e as well as p⊥,e are the parallel and perpendicular electron pressure
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respectively given by moments of the gyro-center distribution function

p‖,sp =

∫

d3v mspv
2
‖fsp (6.14)

p⊥,sp =

∫

d3v Bµfsp, (6.15)

where µ = mspv
2
⊥/2B is the magnetic moment. Eq. (6.13) can be shown to apply

well to the modified staircase states (see Fig. A.1 in appendix A). Given profiles
of p‖,e and p⊥,e determine the parallel dependence of the electrostatic potential
through Eq. (6.13). Curvature effects entering through K‖ have similar magnitude
compared to the parallel pressure and parallel electric field term (see Fig. A.1)
and, therefore, might introduce a variation of the electrostatic potential along s.
The amplitude of the pressure and curvature terms, however, is small enough to
introduce only a small relative variation of the electrostatic potential along s of

∆φ =
maxs(δφ)−mins(δφ)

maxx(〈φ〉)
∼ 3− 4 %, (6.16)

in the case of a modified staircase, where δφ = φ − 〈φ〉 defines the s-varying
part of φ and maxα/minα denotes maximum/minimum with respect to α. The
electrostatic potential can, therefore, be considered constant on a flux surface
in good approximation. And as a consequence, ZF structures deduced from
the director field diagnostic at the LFS represent the zonal E × B-flow on the
whole flux surface. The solution of the parallel electron force balance φ(x, s) =
δφ(x, s)+C determines the electrostatic potential up to a constant C with respect
to s and, hence, leaves the zonal part of the electrostatic potential C = 〈φ〉
undetermined.
The zonal potential is related to plasma rotation and pressure through the radial
ion force balance, which has found application in gyrokinetic studies [130, 129,
131]. In the local limit (ρ∗ → 0) the flux surface averaged form can be written
(see appendix A)

0 = ∇x〈φ〉+ [∇x〈p⊥,i〉+ 〈(∇ ·Πi)x〉]− 〈(2ui ×B)x〉, (6.17)

where ∇x = ∂x is the radial gradient, ui is the perturbed ion velocity and (∇·Πi)x
is the radial component of the divergence of the ion gyroviscous pressure tensor.
The radial gradient of the ion perpendicular pressure exhibits a distinct corrug-
ated structure [see the exemplary cases with R0/LT = 3.75 (left panels) and
R0/LT = 6.9 (right panels) in Fig. 6.10], with the radial location of the corrug-
ations correlating with LORLs (vertical dotted lines) similar to Refs. [132, 129].
A variation along s is apparent, manifesting itself in positive radial corrugations
at the LFS (orange dashed line in the mid panels) and negative mesoscale cor-
rugations when averaging over the flux surface (blue solid line). This observation
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Figure 6.10: Top panels: Radial gradient of the ion perpendicular pressure
∇xp⊥,i (ky = 0 component) in the x-s-plane. The data is normalized to its
maximum value and the color scale ranges linearly ∈ [−1.05,+1.05] → [blue, red].
Mid panels: Radial profiles of the same quantity averaged over the flux surface
(FSA) and at the low field side (LFS). Bottom panels: Flux-surface and time
averaged radial profiles of ∇x〈φ〉 (blue), ∇x〈p⊥,i〉 (green), ∇x〈φ〉 (violet dotted)
and ∇x〈φ〉 + ∇x〈p⊥,i〉 (orange). The left panels represent a modified staircase
state at R0/LT = 3.75 and the right panels the strong turbulence reference case
at R0/LT = 6.9.

might relate to the perpendicular pressure component of Rosenbluth-Hinton re-
siduals with reduced radial scale showing a similar poloidal variation [131], or
to the ballooning nature of the underlying ITG turbulence [15]. A further char-
acteristic of the pressure corrugations is the radial asymmetry in the case of
R0/LT = 3.75 and the more symmetric appearance in the strong turbulent case
with R0/LT = 6.9 with respect LORLs.
Now, individual terms of the radial force balance [Eq. (6.17)] are evaluated for
the cases depicted in Fig. 6.10. The ∇x〈φ〉 term exhibits fine scale variations (vi-
olet dotted lines in the bottom panels of Fig. 6.10), in accordance with the spike
features in ωExB, which cannot be balanced by the smoother pressure gradient
profile (green solid). It is the gyroviscous pressure tensor that becomes relevant
on scales comparable to the Larmor radius [133] and it will therefore be as-
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sumed that fine scale variations in the radial electric field term are compensated
by the 〈(∇ · Πi)x〉-term. This assumption is supported by the observation that
the gyroaverage mitigates the E × B-flow connected to fine scale features (see
Sec. 6.3.2) and motivates the formal introduction of a corrected electrostatic po-
tential through

∇x〈φ〉 ≡ ∇x〈φ〉+ 〈(∇ ·Πi)x〉. (6.18)

The corrected zonal potential 〈φ〉 is estimated using the director field under the
following assumptions: (i) The director field is assumed to be proportional to the
radial gradient of the advecting ZF velocity, i. e., Kφ − 〈Kφ〉x ∝ ∇xvZF, which is
justified by the director field calibration (Fig. 6.5). (ii) The spike features in the
electrostatic potential do hardly contribute to the advection by the E × B-drift
and therefore the advecting ZF velocity is assumed to result from the corrected
electrostatic potential vZF ∝ ∇x〈φ〉/2. Through radial integration of the director
field one then obtains

∫

Kφ(x
′)− 〈Kφ(x

′)〉x′ dx′ = αsim∇x〈φ〉(x)/2, (6.19)

where αsim is a proportionality constant which is determined by fitting a linear
function to Eq. (6.19) with the potential on the right hand side being replaced
by the unmodified zonal electrostatic potential 〈φ〉. Hence, αsim serves as a res-
caling factor ensuring the corrected and unmodified electrostatic potential being
of the same order, i. e., 〈φ〉 ∼ 〈φ〉 (compare blue solid and violet dotted line
in the bottom left panel of Fig. 6.10). Comparison of the proportionality con-
stants obtained in the director field calibration (Tab. 6.2) and the here obtained
αsim = 8.18 rad ·R0/vth,i demonstrates that αcal ≈ αsim as expected.
When applying the above procedure a connection of the corrugations in Kφ to
’bump-dip’-like modulations of the estimated zonal flow velocity vZF ∝ ∇x〈φ〉/2
(see blue line in Fig. 6.10) is identified. Summation of the estimated corrected
electric field term and the ion pressure term of the radial force balance (orange
solid line) eliminates these structures remarkably well, despite the crude approx-
imations made above. This demonstrates that corrugations in Kφ are related to
flux surface averaged perpendicular pressure corrugations.
Some cautious words are in order regarding the evaluation of the pressure through
the gyrocenter distribution function f [see Eq. (6.14)-(6.15)] instead of the form-
ally correct evaluation with the Vlasov particle distribution function FV [see
Eq. (A.6)-(A.7)]. This approach requires the considered length scales to be sig-
nificantly larger than the Larmor radius; which is also a requirement for valid-
ity of the here applied gyrotropic pressure tensor [133]. It is, therefore, jus-
tified in the description of the mesoscale corrugations with a spatial scale of
∼ Lx/ik ∼ 101 ρth,i.
A similar overall conclusion can be drawn in the case of R0/LT = 6.9 (right panels
of Fig. 6.10). Since the random phase distribution of the mesoscale ZF component
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in this case (see Fig. 6.2) results in a strongly reduced amplitude of the nZF = 1
component in ∇x〈φ〉 when averaging over time, the fitting procedure introduced
above is not applicable here. Instead, it is reasonable to set αsim = αcal = 4.8
(compare Tab. 6.2). This choice again successfully eliminates the corrugations in
∇x〈φ〉 (orange solid line).
Finally, it is noted that the quantitative agreement of the force balance under
utilization of the reasonably rescaled director field and a physically meaningful
moment of the distribution function can be considered a validation of the director
field method applied to radially varying zonal E × B flows.

Mesoscale pattern decomposition

The previous section suggests that modified staircase structures can be under-
stood as a superposition of a mesoscale nZF = 1 component and pressure gradient
related ZF corrugations. This section provides a decomposition of the modified
staircase structure into the staircase (sc) and corrugation (corr.) component and
aims to estimate the shear related to both components of the pattern.
The decomposition 〈φ〉 = 〈φ〉sc + 〈φ〉corr. is defined by

∇x〈φ〉corr. = −∇x〈pi,⊥〉 (6.20)

and the identification of 〈φ〉 with the estimated corrected potential of Eq. (6.19).
The shearing rate ωExB connected to the so obtained staircase and corrugation
component is computed using Eq. (6.5) and is depicted by thin dashed lines in
Fig. 6.11. Small scale variations in the pressure gradient (see mid and bottom
panels of Fig. 6.10) result in spike structures in ωExB after radial derivation and
a radial midpoint average is applied (solid lines) to allow for some degree of
smoothing. The midpoint average of a quantity G is defined by

〈G〉W (xi) =
1

N
W∑

j=−W

WjG(xi+j) (6.21)

with the normalization N = W + 1 + 2
∑W

j=1 j and the weighting factor
Wj =W+1−|j|. Here, W = 2 is chosen as a compromise between the smoothing
of small scale variations, while retaining the corrugated structures.
The modified staircase state (left panel) is composed of a conventional staircase
like structure (blue profile), i. e., a mesoscale structure in the shearing rate with
extended radial intervals exhibiting a characteristic shearing rate and steep flanks
at the zero crossings [25], and corrugations in the shearing rate in the vicinity
of LORLs (orange profile). Most notably, the characteristic mesoscale shear of
∼ 0.15 vth,i/R0 discussed in Sec. 6.3.1, here, agrees with the amplitude of both
the staircase and the corrugated structures (horizontal grey line in Fig. 6.11).
This structure composition and characteristic amplitude is observed over a wide
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Figure 6.11: Decomposition of the corrected shearing rate ωExB into the stair-
case (blue dashed) and corrugation (orange dashed) part for R0/LT = 3.75 (left)
and R0/LT = 6.9 (right). Solid lines depict the respective midpoint averaged pro-
files 〈ωE×B〉W . The typical shearing rate of 0.15 vth,i/R0 is denoted by horizontal
grey lines while vertical dotted lines depict LORLs.

range R0/LT ∈ [3.5, 3.75, 4.0, 4.5, 5.0].
In the strong turbulence case (right panel) the staircase component is absent and
the corrugations now appear as symmetric bipolar shear layers centered about
LORLs. Hence, a qualitative change from asymmetric corrugations observed
close to the threshold (left panel) to symmetric shear layers far away from the
threshold (right panel) is found in agreement with the director field profiles shown
in Fig. 6.6. This outcome highligths that the shear provided by corrugations and
the underlying staircase structures is not merely additive. Rather, the shape
of electrostatic potential around rational layers is changed in the presence of a
staircase.
Finally, it is stressed that the shearing rate connected to the corrugations dis-
cussed here is directly related to a physically meaningful moment of the distri-
bution function rather than to a quantity like the director field that requires a
calibration.

6.3.3 Interplay of modified staircase structures, E×B back-

ground shear flows and turbulent heat transport

The previous sections demonstrate the emergence of mesoscale modified staircase
structures whose interplay with a constant background E × B shear is now in-
vestigated. Here, the background shear flow is intended to model sheared mean
E×B flows varying on the radial scale of the machine size rather than that of the
modified staircase structure. A sufficiently high time and radial resolution, re-
quired when applying a background shear [71], has been ensured in a convergence
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study. Furthermore, the spatio-temporal organization of turbulent heat transport
in the presence of sheared E × B flows, i. e., both the modified staircase state
and background shear, is discussed.

Non-monotonic dependence of the turbulent heat transport on the

background shear

Sheared background E × B flows are considered to have a stabilizing effect on
turbulence [29]. By contrast, here, an increase of the background shear γE does

Figure 6.12: Volume and time averaged electrostatic ion heat conductivity
χes,i = Qes,i/(R0/LT ) against the background E ×B shearing rate γE for various
values of R0/LT . Horizontal dotted lines depict the zero shear transport level.

not necessarily reduce the transport level (see Fig. 6.12). Instead, two regimes
with respect to γE can be identified:
(I) In the limit of small background shear the dependence of the heat conductiv-
ity on the background shear is non-monotonic. After an initial increase with γE
it eventually decreases and crosses the zero shear transport level (horizontal dot-
ted lines). In this regime a sheared background flow does not cause stabilization
with respect to the zero shear limit. Similar results have been obtained recently
in a flux driven adiabatic model [134] and is interpreted as resulting from the
interplay of staircase structures with a torque induced sheared rotation in the
aforementioned reference. Indeed, some aspects of this effect might be present in
recent studies in the ASDEX Upgrade experiment, reporting that an increase of
the E × B shear did not result in a confinement improvement [135].
(II) In a subsequent regime the heat conductivity decreases monotonically with
γE. However, not all R0/LT -realization depicted in Fig. 6.12 exhibit this second
regime. In the case of R0/LT = 4.0 rather a sharp drop to zero transport level
is found introducing a bivalent behavior of χes,i(γE). The transport level in the
case of R0/LT = 3.5 is too small to allow for a clear sharp drop.
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The critical shearing rate γcE ≈ 0.1−0.15 vth,i/R0 connected to both the transition
from regime (I) to (II) as well as the drop in the transport level agrees well with
typical shearing rates in the mesoscale (nZF = 1) ZF component (see Fig. 6.3 and
Fig. 6.11) and the ZF corrugations (Fig. 6.11). In agreement with Ref. [134],
the above observation is therefore interpreted as a manifestation of an interplay
of modified staircase structures with the background shear flow.
This interpretation is supported by an investigation of zonal flow structures ana-
lyzed through the director field Kφ (orange data in the right panels of Fig. 6.13).
In regime (I) of R0/LT = 4.0 a finite shear of γE = 0.1 vth,i/R0 [panel (b)] res-
ults in regions with positive director field developing at the expense of negative
plateaus of the modified staircase in the zero shear limit [panel (a)]. Similar to
Ref. [134] the imposed background shear does not simply add to the shear con-
nected to the modified staircase structures, i. e., the structure in the right panel
of Fig. 6.6 (b) does not result from a shift of the structure displayed in the right
panel of (a) by a positive constant. Rather a transformation in the overall struc-
ture occurs with the maximum local value of the director field and, hence, the
maximum shearing rate, being preserved. The most prominent observation is the
occurrence of mesoscale structures with zero crossings in the director field for the
γE = 0.1 vth,i/R0 case and their absence in the quenched state at γE = 0.2 vth,i/R0

[panel (c)]. This observation suggests that the reduced shear at zero crossings
of the director field allow for instabilities to grow locally [127, 54] leading to the
finite turbulent level. In the latter case the level of background shear exceeds
typical shearing rates connected to modified staircase structures. As a result no
zero crossings in Kφ are found and the radially finite positive shear is sufficient
to suppress instabilities. Note that in this quenched case Kφ does not exhibit ZF
corrugations close to LORLs, showing that turbulence has to be active to sustain
such structures.
At sufficiently large R0/LT zero crossings of the shearing rate are, however, not
necessary for a finite turbulent level [see panel (d) in Fig. 6.13]. In the case of
R0/LT = 5 and γE = 0.2 vth,i/R0 which is representative for regime (II) the dir-
ector field is always larger than zero. Although signatures of ZF corrugations are
visible, the shearing rate connected to those structures does not drop to zero.

Spatio-temporal organization of avalanche like transport events in the

presence of modified staircase states and background shear flows

Turbulence close to marginal stability is often connected to avalanche like
transport [136, 137, 138]. Avalanches are ballistically propagating transport
events which organize spatially in the presence of an E × B-staircase [23, 24]
as their propagating direction is anti-correlated to the sign of the local E × B
shearing rate [26, 27, 81].
Due to their ballistical propagation, such transport events appear as inclined
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Figure 6.13: Left: Flux-surface averaged electrostatic ion heat flux Qes,i in
the x-t-plane for R0/LT = 4.0 and γE = 0 (a), γE = 0.1 vth,i/R0 (b) and
γE = 0.2 vth,i/R0 (c) and for R0/LT = 5.0 and γE = 0.2 vth,i/R0 (d). Right:
Corresponding temporally averaged radial profiles of the director fields KQes,i

(blue) and Kφ (orange). Horizontal black dotted lines indicate LORLs.

structures in the spatio temporal representation (x-t-plane) of turbulent fields.
Treating avalanches as local pattern with the orientation representing the
propagation direction and speed, allows for their detection through director field
methods. Since heat avalanches are considered here the director field of the
flux-surface averaged turbulent ion electrostatic heat flux KQes,i

is investigated
(blue profiles in right panels of Fig. 6.13). Its definition follows Sec. 6.2.2 with
y → t as well as G = Qes,i and positive (negative) values denote preferential
outward (inward) propagation. An error is estimated by the standard deviation
of KQes,i

calculated for six equally long temporal sub intervals from the total
time interval (thin blue dotted lines).
Although avalanche like transport events are visible in the spatio temporal
evolution of Qes,i corresponding to a modified staircase state [panel (a) in
Fig. 6.13], the spatial scale over which single events correlate appears signific-
antly smaller than the nZF = 1 mesoscale as usually observed in connection to
staircases in local gradient-driven simulations with adiabatic electrons [25, 77].
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The propagation pattern especially lacks the clear radial location with respect
to the nZF = 1 mesoscale where avalanches are initiated. More in detail,
Refs. [24, 25, 77] find avalanches starting at the zero crossing of the nZF = 1
structure where the shearing rate changes sign ωExB > 0 → ωExB < 0 with
increasing radial coordinate and a subsequent inward (outward) propagation
through regions with positive (negative) E × B shear. The director field KQes,i

,
however, demonstrates that there is an organization of the averaged avalanche
propagation direction with respect to the nZF = 1 mesoscale ZF [see right panel
(a)]. The anti-correlation of KQes,i

and Kφ is in agreement with literature and
so is the preferential triggering of avalanches close to the zero crossing of the
director field satisfying Kφ > 0 → Kφ < 0 with increasing radial coordinate (note
that Kφ is proportional to the local shearing rate). Therefore, both disparate
mesoscales that are characteristic for the modified staircase state are manifest
in the spatial organization of avalanches. This outcome confirms that avalanche
like transport in connection with modified staircase states share similarities with
their adiabatic counterpart.
The finite background shear cases [panel (b) and (d)] both exhibit preferentially
inward propagating avalanches in agreement with the director field Kφ being
positive over almost the entire radial domain. The fact that KQes,i

approaches
zero close to LORLs in case of R0/LT = 4.0 and γE = 0.1 vth,i/R0 suggests
that avalanche like transport dynamics is significantly organized with respect
to the ZF corrugations. This claim is supported by the avalanche events visible
in panel (b) of Fig. 6.13 being organized on a lengths scale of Lx/ik with the
triggering of individual events close to LORLs. In the case of R0/LT = 5.0 and
γE = 0.2 vth,i/R0 [panel (d)], by contrast, the radial structuring of avalanches on
corrugation scale is less obvious. Single avalanches rather travel (multiple times)
over the entire radial domain, which manifests itself in a clear non-zero negative
profile of KQes,i

. Although, the triggering of individual avalanches close to
LORLs cannot be identified, an interaction of avalanches with ZF corrugations
in this case is nevertheless visible in form of an ik-fold modulation in KQes,i

.
The above observations support the hypothesis that instabilities and the
resulting turbulence is influenced by modified staircase in regime (I) but less
in regime (II). In order to clarify the role of modified staircase for turbulence
generating instabilities a stability analysis of modified staircase equilibria would
be necessary, which is beyond the scope of this chapter.

6.4 Conclusion

Microturbulence close to marginality with inclusion of kinetic electrons [1] has
been revisited. This chapter focused on the detection of mesoscale sheared zonal
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E × B flow structures and on the comparison of such structures with fine scale
features typically dominating the E × B shearing rate when including electron
dynamics [83, 1]. The main results are summarized below.
Mesoscale modes in the zonal potential develop on considerable time scales of
the order of ∼ 102 − 103 vth,i/R0. An interplay of those mesocscale modes with
lowest order rational layers is observed in the form of a radial lock-in behavior
with ik-fold symmetry. In contrast to fine scale features in the E × B shearing
rate whose amplitudes exceed typical growh rates by an order of magnitude, the
E × B shearing rate conntected to the mesoscale modes follows the Waltz rule
ωExB ∼ γ [69, 125] and is therefore physical meaningful.
In this chapter the director field method [108] has been used to directly obtain a
measure of the tilting of the eddy structures. It has been shown that the director
field can be used to estimate the E ×B shearing rate provided the latter is con-
nected to structures with a sufficient radial extent. The diagnostic shows that
small scale E × B shearing does not result in eddy tilting and, therefore, not in
turbulence suppression. This observation is mainly attributed to finite Larmor
radius effects that mitigate the ability of fine scale features to efficiently shear tur-
bulent structures. The director field method reveals zonal flow mesoscale pattern
formation on two distinct scales; namely (i) mesoscale corrugations in the vicinity
of lowest order rational layers and (ii) a mesoscale variation on the length scale
of the radial boxsize. The lock-in of mesoscale zonal potential signatures is mani-
fest in a distinct radial orientation of the latter structure. The amplitude of both
structures can be related to typical shearing rates of a few ∼ 10−1 vth,i/R0. Par-
allel and radial force balance relate the mesoscale corrugations occurring close
to lowest order rational layers to perpendicular ion pressure corrugations. A
structure decomposition based on the radial force balance demonstrates that the
mesoscale pattern in the director field can be understood as being composed of a
fully-developed type staircase [25, 77] and pressure related zonal E×B flow cor-
rugations. The shape of the electrostatic potential around lowest order rational
layers is influenced by the presence of a modified staircase, manifesting itself in
a radial asymmetry of the zonal flow corrugations.
The combined effect of modified staircase structures and a background E × B
shear flow result in a non-monotonic dependence of the turbulent level on the
background E × B shearing rate. No shear stabilization is observed when the
background shearing rate is smaller or comparable to the shearing rate connec-
ted to modified staircase structures. Similar observations in connection to the
E×B-staircase state have been made within a flux-driven model in Ref. [134]. A
director field analysis of the turbulent heat flux demonstrates a spatio-temporal
organization of heat avalanches with respect to the modified staircase structure.
The averaged propagation direction of avalanches is anticorrelated with the local
sign of the E × B shearing rate [26, 27, 81] and the resulting averaged propaga-
tion pattern within the modified staircase is in agreement with heat avalanches
in connection to the conventional E × B-staircase state [23, 24].
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The implications of this work are now briefly discussed. (i) The longterm dynam-
ics introduced by slowly evolving mesoscale modified staircase states requires long
time integration to accurately describe turbulent states close to the threshold.
This requirement is computationally highly demanding when treating electrons
as a kinetic species. The understanding of turbulence close to the threshold is,
however, necessary since future reactors will operate close to marginal stability
[115]. (ii) The E × B shearing rate ωExB, i. e., the second radial derivative of
the electrostatic potential, that is often applied to characterize the shearing ac-
tion of zonal flows, fails when structures on length scales of the Larmor radius
dominate this observable. In this case director field methods provide a more ac-
curate characterization of the shearing action of zonal E × B flows since they
are not biased by finite Larmor radius effects. (iii) Mesoscale E × B staircase
structures do develop in kinetic electron descriptions close to marginality even
for CBC parameters. Hence fine scale features do not prevent staircases from
developing. (iv) In contrast to the fully and partially developed variants of the
E × B staircase state observed in adiabatic electron models [25], the modified
form does not clearly exhibit a structure bifurcation. In particular, it does not
allow for the transition of avalanche governed turbulent periods (partially de-
veloped staircase) to almost quenched periods (fully developed staircase) when
CBC parameters are chosen. This type of turbulence dynamics, also observed in
flux-driven near marginal turbulence with adiabatic electrons [24], however, is re-
covered with the choice of a vanishing electron background temperature gradient.
Inclusion of electron dynamics, therefore, bears additional physics that impacts
near marginal turbulence and is therefore required to accurately describe such
states.

92



Chapter 7

Transport hysteresis in

electromagnetic microturbulence

caused by mesoscale zonal flow

pattern induced mitigation of high

β turbulence runaways

This chapter is based on the publication [139].

7.1 Introduction

An advantageous regime for fusion devices is the operation at high normalized
pressure β, where β = n0T0/(B

2
0/2µ0) compares the thermal plasma pressure to

the background magnetic field pressure with n0, T0 and B0 being the equilibrium
density, temperature and magnetic field, respectively, and µ0 is the permeability
of free space. A high β is favorable for the fusion power [140, 141] as well as
a large non-inductive bootstrap current fraction [6, 7, 8] and constitutes a key
ingredient for future steady state tokamak scenarios [116, 117].
With increasing β plasma turbulence responsible for the anomalous particle, heat
and momentum transport acquires an electromagnetic character. Perturbed elec-
tric current densities then start to couple to perturbations in the magnetic vector
potential through Ampère’s law. This gives rise to additional plasma dynamics
such as shear Alfvén waves and the streaming of particles along perturbed mag-
netic field lines; —the so-called magnetic flutter.
Several aspects of microturbulence, the mechanism that dominates energy losses
from the plasma, are influenced by electromagnetic effects [142]. Beginning with
the linear properties, the growth rate of primarily electrostatic microinstabilit-
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ies, such as the ion temperature gradient (ITG) driven instability [13, 14, 15],
reduces with increasing β due to free energy being diverted into field line bend-
ing [20, 21]. Furthermore, additional electromagnetic instabilities like the kinetic
ballooning mode (KBM) occur once a threshold in β is exceeded [143, 20, 144].
Proceeding with the nonlinear dynamics, electromagnetic perturbations are able
to destroy the intactness of magnetic flux-surfaces resulting in magnetic stochasti-
city [57, 145]. The streaming along such stochastic magnetic field lines give rise
to radial turbulent transport [146, 21, 147, 148]. Finally, zonal flows, i. e., E×B
flows connected with a poloidally and toroidally constant electrostatic potential,
are influenced by electromagnetic effects. Most notably, the charge loss associ-
ated with magnetic flutter can damp zonal flows [58] and, hence, may impact the
nonlinear saturation of electromagnetic (ITG-) mictroturbulence which is medi-
ated by zonal flows [65]. On the other hand, the efficiency of zonal flow mediated
nonlinear transfer of free energy to higher radial wave vector modes has been re-
ported to increase with β resulting in the so-called electromagnetic stabilization
[65, 66]. And finite β effects also impact zonal flow production through modula-
tional instability [48, 149]. In addition, energetic particle driven modes can add
to the zonal flow generation at high β in a reactor relevant burning plasma via
force-driven excitation [49, 50].
In view of fusion performance, an important objective is the understanding of the
mechanisms determining the maximum achievable β in electromagnetic microtur-
bulence. Extensive gyrokinetic studies [21, 61, 60, 59, 148] revealed a limitation
in β caused by the occurrence of turbulence runaways: once a critical βc is ex-
ceeded the turbulence does not saturate at reasonable levels anymore but rise to
indeterminately values. While Ref. [61] proposes pressure corrugation driven sub-
critical KBMs being responsible for this phenomenon, Ref. [60] relates it to the
depletion of zonal flows through field line decorrelation aided magnetic stochasti-
city. Dependent on the plasma parameters, this upper β limit can be situated
below the KBM threshold and is, therefore, regarded as a new nonlinear critical β
[60]. It is also referred to as the nonzonal transition (NZT) in the aforementioned
reference.
Ref. [21] indicates the possibility of turbulence to saturate at reasonable levels for
values of β exceeding the above discussed threshold, if specific initial conditions
are chosen (see also comments in Refs. [150, 59]). In most of those cases, however,
the saturation has been of limited duration with turbulence runaways occurring
at later simulation times. In Ref. [59] this saturation has then been interpreted as
being a transient phenomenon, such that it does not reflect the proper stationary
state in the long time limit.
This issue motivates the analysis presented in this chapter, that focuses on
the question whether (self-consistent) initial conditions can be found that al-
low for stationary states above the nonlinear critical βc limit, i. e., above the
NZT. Moreover, the recent development in the understanding of mesoscale
zonal flow structure formation and the long-term development of such struc-
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tures [23, 24, 25, 76, 77, 151, 118] motivates the analysis presented in this paper.
Indeed, it is shown that proper stationary states are accessible through the ap-
plication of mesoscale zonal flow dominated states as initial conditions. Such
states develop self-consistently on long time scales of ∼ 102 − 103 R0/vth,i (R0

is the major radius and vth,i is the ion thermal velocity) in specific parameter
regimes. This finding is gained by means of an extensive (long-term integration)
nonlinear gradient-driven gyrokinetic study, complemented by field line tracing
methods [57, 59] and a zonal flow energy transfer study. Once this improved
β-regime is established, several aspects of it, such as the stability against turbu-
lence runaways, the role of magnetic stochasticity and zonal flow energy transfer
processes, are discussed.
The remainder of this chapter is structured as follows: In Sec. 7.2 the governing
equations, the gyrokinetic simulation setup, the field line tracing diagnostic and
the zonal flow intensity evolution diagnostic are described. The numerical res-
ults are presented in Sec. 7.3 including a description of the transport hysteresis
phenomenon in Sec. 7.3.1, an investigation of mesoscale zonal flows in Sec. 7.3.2,
a numerical convergence study in Sec. 7.3.3, a stability analysis of the improved
β-regime in Sec. 7.3.4, a field line tracing analysis in Sec. 7.3.5, a zonal flow in-
tensity transfer study in Sec. 7.3.6 and a confirmation of the transport hysteresis
phenomenon using an exact circular concentric geometry model in Sec. 7.3.7. A
summary of the main results, a brief discussion and an outlook are presented in
Sec. 7.4.

7.2 Numerical experiment and diagnostics

Electromagnetic microturbulence is investigated by means of nonlinear gyrokin-
etic simulations performed with the fluxtube version of the gyrokinetic solver
Gyrokinetic Workshop (GKW) [95]. The set of governing equations solved by
GKW is composed of the gyrokinetic equation, the gyrokinetic Poisson equa-
tion and the parallel component of the gyrokinetic Ampère’s law introduced in
Sec. 4.3.1 and 4.3.2, respectively.

7.2.1 Plasma parameters and numerical setup

Plasma parameters

In this chapter CBC parameters (see Sec. 4.4) are chosen and (background)
plasma rotation and collisions are neglected. Stationary plasma rotation evolving
self-consistently with the turbulence in the form of zonal flows, however, can and
will develop. Both a single ion species (deuterium) and electrons are treated as
separate kinetic species with the electron to ion mass ratio me/mi = 2.72× 10−4.
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Nkx Nkθ Ns Nµ Nv‖ kx,maxρth,i kθ,maxρth,i geometry

G1 83 21 32 9 64 2.8 1.4 s− α
G1-s 83 21 64 9 64 2.8 1.4 s− α
G1-x 165 21 32 9 64 5.6 1.4 s− α
G2 125 21 48 9 64 4.2 1.4 s− α
G3 125 31 48 9 64 4.2 2.1 s− α
S1 43 11 32 9 64 2.8 1.4 s− α
L1 125 31 32 9 64 2.8 1.4 s− α
Gcirc

1 83 21 32 9 64 3.4 1.4 circular

Table 7.1: Summary of the numerical resolution setups applied in this chapter.

Electromagnetic effects are considered by including perturbations in the parallel
component of the magnetic vector potential A‖, while neglecting magnetic field
compression effects. The strength of electromagnetic effects is controlled by the
normalized plasma pressure β. The plasma beta enters the parallel component
of Ampere’s law [95] and is varied in the range β = 0.03 ∼ 1.4 %.
Magnetic equilibria with circular concentric flux-surfaces are considered ex-
clusively in this chapter. For comparability purposes most of the simulations
apply a simplified s − α geometry [103] with α = 0. This model approximates
circular concentric flux-surfaces by retaining only the lowest order terms in an
expansion in the inverse aspect ratio ǫ = r/R0 of the geometry tensors. Note
that r is the minor radial coordinate of the circular flux-surfaces. Additional
simulations with exact circular concentric flux surfaces [9] are performed
as well. The latter geometry model retains all orders of ǫ in the defini-
tion of the geometry tensors. The influence of the normalized plasma pressure
gradient β ′ on the the magnetic field equilibrium is not considered in this chapter.

Numerical setup

The different sets of numerical resolution, applied in this chapter, are summar-
ized in Tab. 7.1 listing the number of radial modes Nkx , the number of poloidal
modes Nkθ , the number of grid points along the field line Ns, the number of mag-
netic moment grid points Nµ, the number of parallel velocity grid points Nv‖ ,
the maximum resolved radial wave vector kx,maxρth,i and the maximum resolved
poloidal wave vector kθ,maxρth,i. The poloidal wave vector relates to the y-wave
vector through Eq. (4.41). Note that the term ’poloidal’ wave vector is historical
and kept for consistency with Ref. [95].
The velocity space (v‖, µ) is always resolved up to v‖,max,sp = 3.0 vth,sp and
µmax,sp = 4.5 mspv

2
th,sp/B0.
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Below, the sets G1 and Gcirc
1 will be referred to as the standard sets of the re-

spective geometry model. The latter has been shown to produce converged results
in the electrostatic limit [1]. Since the rapid parallel motion of electrons along
perturbed magnetic field lines may impose more stringent requirements on the
spatial resolution [21] additional sets with increased parallel (G1-s), radial (G1-
x), parallel and radial (G2) and overall spatial resolution (G3) are applied.
Finally, numerical (hyper-) dissipation, required for numerical stability, is ap-
plied. For a detailed description of the dissipation schemes the reader is referred
to appendix B. Note that the 6th-order zonal flow dissipation scheme introduced
in Ref. [25] is applied here, since zonal flow physics, the main essence of this
work, has been shown to be sensitive to numerical dissipation in this reference.
The dissipation scheme is fixed by the coefficients Dx = Dy = 0.1, Dv‖ = 0.2,
Ds = 1.0 throughout the work (unless stated otherwise).

7.2.2 Field line tracing diagnostic

In order to gain insights into the level of magnetic stochasticity it is necessary
to trace the trajectories of perturbed magnetic field lines [57, 145]. Let x(τ)
represent the field line with τ a scalar parametrizing the field line. Then

dx

dτ
= B, (7.1)

where the total magnetic field B = B+ δB is composed of the equilibrium mag-
netic field B and the perturbed magnetic field δB = ∇×A‖b ≈ ∇A‖ × b. For
the latter approximation it has been used that the equilibrium magnetic field
varies on spatial scales larger than the perturbations so that A‖∇ × b can be
neglected.
The equations describing the perturbed field line trajectories are obtained by the
taking the inner product of Eq. (7.1) with the base vectors ∇s, ∇x and ∇y. In
straight field aligned Hamada coordinates ∇x ·B = 0 as well as ∇y ·B = 0 and
one finds

∂y

∂s
=

(∇y ×∇x) · b
∇s ·B

∂A‖

∂x
(7.2)

∂x

∂s
= −(∇y ×∇x) · b

∇s ·B
∂A‖

∂y
. (7.3)

The factors preceding the spatial derivatives of A‖ are directly determined by
the chosen geometry and are related to predefined tensors in GKW that can be
found in Ref. [95].
In this chapter 3D spatial grid data of A‖ is self-consistently obtained through
nonlinear simulations and output each transit time R0/vth,i. An integration
algorithm similar to the one described in Ref. [59] is then applied in postpro-
cessing. The following steps are executed per time step:
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(i) A‖ and the geometric tensors are refined in the s-direction by a factor of
two through cubic spline inter- and extrapolation. In addition, A‖ is refined in
the y-direction through zero padding in the ky wave vector space to obtain an
equal number of x- and y-grid points in real space. (ii) NFL = 1024 field lines
are seeded equidistantly in x on the LFS midplane (s ≈ 0 and mid position
on the y-grid). (iii) Eq. (7.2) and Eq. (7.3) are integrated numerically for 100
poloidal turns (unless stated otherwise) and for increasing s using a second order
midpoint technique with the refined s-points serving as midpoints. The first
order spatial derivatives in x and y on the right hand side (RHS) of the field line
equations are approximated by 4−th order central differences. In the evaluation
of the RHS the local values of ∂xA‖ and ∂yA‖ at the continuous field line
position [x(s), y(s)] are approximated by two dimensional linear interpolation
on the x-y-plane. (iv) Periodic boundary conditions are applied in the x- and
y-direction, while the shift ∆y = −(q0ŝ0/ǫ0)× (x− x0) applies in the s-direction
at s = +0.5 → −0.5 as a consequence of the shifted parallel boundary conditions.

7.2.3 Zonal flow intensity evolution diagnostic

A key aspect of this work are zonal flows, which enter the gyrokinetic equation
through the E × B nonlinearity [the vE · ∇gsp term in Eq. (4.46)]. Zonal flows
are E ×B flows connected to the zonal part of the electrostatic potential

〈φ〉 = 1

Ly

∫

dy

∫

ds φ (7.4)

=
∑

kZF

∫

ds φ̂k(kZF, ky = 0, s)
︸ ︷︷ ︸

〈φ̂k〉

exp(ikZFx). (7.5)

The spectral reprentation Eq. (4.35) has been used to obtain the second expres-
sion, which defines the zonal flow wave vector kZF and the Fourier amplitude of
the zonal potential 〈φ̂k〉. In order to obtain a measure of the zonal flow level the
zonal flow intensity is defined by

EZ = k2ZF|〈φ̂k〉|2. (7.6)

Strictly speaking EZ quantifies the intensity of the radial electric field connected
to the zonal potential with wave vector kZF. In the case of mesoscale zonal
structures with (kZFρth,i)

2 ≪ 1, investigated exclusively throughout this work, the
gyroaverage entering vE [Eq. (2.35)] can be neglected. Therefore, the zonal flow
velocity is directly proportional to the radial electric field in good approximation.
An evolution equation for the zonal flow intensity EZ can be derived from the
spectral representation of the gyrokinetic Poisson equation [Eq. (B.8)]. The time
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derivative of the inverted and flux-surface averaged ky = 0 part of this equation
reads

∂〈φ̂k〉
∂t

= −
∫

ds
1

P
∑

sp

Zspe
2πB

msp

∫

dv‖

∫

dµ

[

J0(λsp)
∂ĝsp,k
∂t

]

k=(kZF,0)

, (7.7)

where

P =
∑

sp

n0,spZ
2
spe

2

T0,sp
[Γ0(bsp)− 1]. (7.8)

The time derivative of the perturbed modified distribution function ∂tĝsp,k enter-
ing the RHS of Eq. (7.7) is substituted by the right hand side of the gyrokinetic
equation (B.8). Finally, Eq. (7.7) is multiplied by 2k2ZF〈φ̂k〉∗, where 〈φ̂k〉∗ denotes

the complex conjugate of 〈φ̂k〉, and is recast into the form

∂EZ
∂t

= R+M+ L‖,f + L‖,FM
+ LD,f + LD,FM

+ Ltr + Lχ,FM
+D. (7.9)

The individual terms on the RHS result from the individual terms of the gyrokin-
etic equation (B.8): the E × B nonlinearity NE → R, the magnetic flut-
ter nonlinearity NδB → M, parallel streaming L‖,f → L‖,f , Landau damping
L‖,FM

→ L‖,FM
, magnetic drift in the perturbed distribution LD,f → LD,f , mag-

netic drift in the Maxwellian LD,FM
→ LD,FM

, trapping term Ltr → Ltr, advection
of background gradients by the E × B-drift and magnetic flutter Lχ → Lχ,FM

,
and numerical dissipation Dsp → D. The contribution from the trapping term
(Ltr) and the advection of background gradients by the E×B-drift and magnetic
flutter (Lχ,FM

) are mentioned for completeness, but can be shown to vanish. The
first two terms on the right hand side of Eq. (7.9) are the only nonlinear terms
and are the Reynolds- and Maxwell stress transfer respectively.

7.3 Numerical results

7.3.1 Transport hysteresis with normalized plasma pres-

sure

In this section the transport hysteresis phenomenon is introduced with the tur-
bulent transport level being characterized by the heat conductivity

χj,sp = Qj,sp/n0,spT0,spL
−1
T,sp. (7.10)

The volume averaged radial electrostatic (j = es) and electromagnetic (j = em)
heat flux is defined by

Qj,sp =
1

V

∫

d3X

∫

d3v
1

2
mspv

2(vj · ∇x)fsp, (7.11)
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where (1/V )
∫
d3X denotes the volume averaging operator,

∫

d3v =
2πB

msp

∫

dv‖

∫

dµ, (7.12)

v2 = v2‖ + 2µB/msp, and ves = vE [Eq. (3.15)] and vem = vδB [Eq. (3.16)]
represent the E × B drift and the parallel motion along perturbed field lines,
respectively. The heat flux is always given in terms of ρ2∗n0T0vth,i.
A simplified s − α geometry with α = 0 is chosen for comparability reasons
throughout section 7.3.1. For a confirmation of the transport hysteresis phe-
nomenon within an exact circular geometry the reader is referred to Sec. 7.3.7.
The essence of the transport hysteresis is a multiplicity of the transport level,
depending on the initial conditions. Two regimes can be identified in the con-
sidered β-range.
In agreement with Refs. [21, 59] the electrostatic ion heat transport decreases

Figure 7.1: Dependence of the time and volume averaged ion electrostatic heat
conductivity χes,i (solid lines) and electron electromagnetic flutter heat conduct-
ivity χem,e (dotted line) on the plasma β with fixed R0/LT = 6.9 and s − α
geometry. Shown are results with initialization in the linear regime (blue stars)
as well as restarted from the late stationary state at β = 0.8 % (orange circles).
The blue shaded region indicates the occurrence of turbulence runaways to ex-
treme levels (see description in the text). The specified statistical errors are
determined through six-part time averaging (see appendix C).

and the electromagnetic electron heat transport increases with β (blue data in
Fig. 7.1). Above a threshold value of βc = (0.85± 0.05) % (blue shaded area),
however, the turbulent fluxes undergo a temporal runaway to extreme values
right after the initial linearly growing eigenmodes have saturated nonlinearly.
In the case of β = 0.9 %, for example, initial nonlinear saturation occurs at
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t ≈ 20 R0/vth,i with Qes,i ∼ 101 ρ2∗n0T0vth,i. In the subsequent runaway Qes,i in-
creases by several orders of magnitude. This high β runaway has been confirmed
by various gyrokinetic codes [152, 21, 61, 148] and is referred to as the nonzonal
transition (NZT) in Ref. [60]. The extreme flux levels resulting from this runaway
are not included in Fig. 7.1, since for the fixed numerical resolution no physically
meaningful solution can be guaranteed in this high amplitude regime. Due to the
disruptive nature of this runaway phenomenon, it restricts the accessible regime
in terms of plasma parameters β and R0/LT . In Ref. [60] it is, therefore, proposed
to set a new critical (nonlinear) limit in β.
Significant computational effort has been dedicated to confirm the physical nature
of this runaway phenomenon [59]. The threshold βc = (0.85± 0.05) %, obtained
with standard parameters G1 in the present work, agrees well with the afore-
mentioned reference. Furthermore, its value has been reproduced (within the
uncertainty given by the scan increment of ∆β = 0.1 %) when doubling the res-
olution in either of the spatial directions. The physics involved in the runaway
is, therefore, sufficiently resolved with the standard resolution set G1.
To proceed, the threshold βc represents an upper limit in β for which proper
stationary turbulent states can be obtained, when the simulation is initialized
in the linear regime. In the presented simulations this is realized by initial-
izing the turbulent modes (ky 6= 0) of the modified distribution function by
ĝk,sp(kx, ky, s, v‖, µ) = A× [cos(2πs) + 1] with A = 10−4, while the ky = 0 modes
are set to zero.
However, states with reasonable turbulence level are reported to be accessible for
β > βc, if modified initial conditions are applied [21, 150] (orange data in Fig. 7.1).
Here, the entire 5D distribution function gsp in the end of the β = 0.8 % case (at
t = 2991.6 R0/vth,i of ref#1 in Fig. 7.1) is stored and then loaded as initial con-
dition for all cases of the orange data series. This procedure allows for stationary
turbulence up to β ≤ 1.1 %.
While a similar approach has already been applied in Ref. [21] (see also com-
ments in Refs. [150, 59]), some of the simulations in this reference suffered from
turbulence runaways after time scales of several ∼ 102 R0/vth,i. Therefore, the
saturation of the turbulence to reasonable levels for realizations with β > βc
has been interpreted as being a transient phenomenon [59], and is assumed not
to reflect the proper stationary state in the long time limit. By contrast, all
simulations with standard resolution G1 depicted in Fig. 7.1 ran stable for at
least 3000 R0/vth,i. Cases with increased spatial resolution G1-x and G1-s at
β = 1.1 % have been realized through the same restart method as described
above. Stationary turbulence during their full duration of 3868 R0/vth,i and
1750 R0/vth,i respectively is confirmed. In the case of standard resolution G1

and β = 1.1 % stationary turbulence up to 7500 R0/vth,i has been ensured. The
cases with βc < β ≤ 1.1 % are, therefore, suggested to be stable with respect to
turbulence runaways being triggered after a sufficiently long time. This regime
will be denoted as the improved β regime hereafter.
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The above discussion demonstrates a path dependence —a hysteresis —of the
turbulent transport level with respect to the plasma β. Furthermore, it suggests
that the choice of proper initial conditions allows for proper stationary states. In
this context proper initial conditions refers to mesoscale ZF saturated states with
amplitudes above a critical ZF level (see Sec. 7.3.4) and proper stationary states
denotes stationary turbulent states with the absence of turbulence runaways. In
the following sections key aspects of this hysteresis behavior are elucidated.

7.3.2 Long-term dynamics caused by mesoscale zonal flow

patterns

This section aims for a characterization of the late stationary states that are
applied as initial conditions to access the improved β regime. Here, stationary
mesoscale zonal flow patterns, developing on long time scales, are shown to play
the key role. In this context the term mesoscale refers to zonal flows with a radial
scale of the box size Ls−αx = 91.58 ρth,i (kZFρth,i = 0.07) and Lcirc

x = 76.27 ρth,i
(kZFρth,i = 0.08).

Long-term development of mesoscale zonal flow patterns

In order to clarify the difference between the phase just after initial nonlinear
saturation and the state in the long-term limit, it is illuminating to study the
temporal evolution of observables characterizing the zonal flow as well as the
turbulence level. Here, the zonal flow shearing rate

ωExB =
1

B0

∂2〈φ〉y
∂x2

, (7.13)

is considered, where the zonal potential is estimated at the low field side

〈φ〉y(x) =
1

Ly

∫

φ(x, y, s ≈ 0) dy (7.14)

=
∑

kZF

〈φ̂k〉y(kZF)× exp(ikZFx). (7.15)

Note hat Eq. (7.15) defines the Fourier amplitude of the estimated zonal potential
connected to the wave vector kZF = 2πnZF/Lx, with the integer −(Nx − 1)/2 ≤
nZF ≤ (Nx − 1)/2. The shearing rate connected to a zonal mode with mode
number nZF is then defined by

|〈ω̂ExB〉nZF
| = 2k2ZF

B0

|〈φ̂k〉y(kZF)| (7.16)
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Figure 7.2: Time traces of the mesoscale zonal flow shear |〈ω̂ExB〉nZF=1| (a),
the electrostatic ion heat flux Qes,i (b), the electromagnetic electron heat flux
Qem,e (c), the electrostatic turbulence intensity Ies (d) and the electromagnetic
turbulence intensity Iem (e) for G1 resolution, R0/LT = 6.9 and β = 0.2 % (blue),
β = 0.8 % (violet) and β = 0.9 % (gray dotted). The black vertical line roughly
marks the transition from the initial transient phase to the final proper stationary
state (of the β = 0.8 % case).

and is always given in terms of vth,i/R0.
Furthermore, the electrostatic (j = es) and electromagnetic (j = em) turbulence
intensities are considered, which are defined by

Ij =
∑

ky 6=0

∑

kx

∫

ds |Ĝk,j|2 (7.17)
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where Gk,es = φ̂k and Ĝk,em = Â‖,k represent the Fourier amplitudes of electro-
static and parallel vector potential respectively. Throughout this work the elec-
trostatic and electromagnetic turbulence intensities are given in units of ρ2∗T

2
0 /e

2

and ρ4∗B
2
0R

2
0 respectively.

Below, the reference case with β = 0.8 %, R0/LT = 6.9 and s − α geometry is
focused on (red lines in Fig. 7.2). In the initial phase of this simulation the zonal
flow shear carried by the mesoscale zonal mode |〈ω̂ExB〉nZF=1| develops slowly [see
panel (a)]. It requires a time period of ∼ 102 − 103 R0/vth,i until the mesoscale
zonal flow reaches saturation, i. e., until it reaches a proper statistically stationary
state. Since this time scale is large compared to typical turbulent times scales of
a few ∼ 101 R0/vth,i [see individual turbulent fluctuations in panels (b)-(e)], the
slow development of the mescoscale ZF will be referred to as long-term evolution.
Moreover, since the long-term evolution does not reflect a proper statistically
stationary state, the time period bounded by the initial nonlinear saturation of
the eigenmodes and the saturation of the mesoscale ZF will be referred to as the
initial transient phase.
Note that the time scale connected to the ZF long-term development is also large
compared to the time scale on which the initially growing linear eigenmodes satur-
ate nonlinearly ∼ 101−102 R0/vth,i. Since the turbulence runaway at βc typically
occurs right after this initial nonlinear saturation process [see gray dotted lines
in panels (b)-(c)], it is triggered well before the mesoscale ZF has completely
evolved. —These two events are, therefore, temporally separated.
The relevance of attaining the proper final stationary state becomes clear from
the significant reduction in the turbulence level, when the mesoscale ZF reaches
saturation (see Fig. 7.2). The smaller scale ZF modes with nZF > 1 reach sat-
uration before the mesoscale ZF does, suggesting that it is the mesoscale ZF
mode nZF = 1 that causes the decline in the turbulence level. Note that the
reduction pertains to the electrostatic and electromagnetic turbulence intensit-
ies in a similar way [panels (d) and (e)]. The same outcome also applies to the
ion electrostatic and electron electromagnetic heat flux [panels (b) and (c)]. In
terms of the turbulence level, the final mesoscale zonal flow dominated state is,
hence, clearly distinct from the initial transient phase. It should be stressed
that the above described long-term behavior requires a long time integration of
a few ∼ 103 R0/vth,i in order to resolve the long-term dynamics and to access the
proper stationary state. Due to the stringent time step constraint imposed by
kinetic electrons an analysis of cases close below βc is, therefore, computationally
demanding.
The key role of ZFs for the nonlinear saturation of electromagnetic ITG tur-
bulence has been demonstrated in Refs. [65, 66]. The finding that the slowly
evolving mesoscale ZF stabilizes turbulence on long times scales, however, is a
new aspect in finite β microturbulence. It represents the key ingredient of the
hysteresis phenomenon as will be shown below. At this point it should also be
emphasized that the awareness of long-term dynamics and the influence of meso-
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scale zonal flow structures on turbulence close to marginality has grown over the
recent years [23, 24, 25, 76, 77, 151].
However, not all cases exhibit the same initial long-term evolution as discussed
above. For example, in the case of β = 0.2 % (blue data in Fig. 7.2) a stat-
istically stationary state is established shortly after the linear eigenmodes have
saturated. Although the mesoscale ZF shear exhibits long-term dynamics dur-
ing the statistically stationary state, its amplitude is unsteady and time periods
with reduced shearing rate can be observed. The turbulence is found to fluctuate
homogeneously and a transition to a low turbulence state is not observed.

Parametric dependence of persistent mesoscale zonal flow patterns

Figure 7.3: Self-consistent mesoscale zonal flow shearing rate |〈ω̂ExB〉nZF=1|
(blue) in the stationary state as function of β for R0/LT = 6.9, s − α geo-
metry and G1 resolution. The cases with β ≤ 0.8 % have been initialized in the
linear regime, while all cases with β > 0.8 % have been started from the late
mesoscale ZF saturated state of the β = 0.8 % realization. Shaded regions indic-
ate the temporal distribution during the stationary state, +-symbols the mean
value and errorbars the extremal values. Also shown is the critical zonal flow
shearing rate |〈ω̂ExB〉nZF=1|c (red circles), obtained through the zonal flow scaling
scan described in Sec. 7.3.4.

Now that it has been clarified that the state used as initial condition to access
the improved β-regime is dominated by persistent mesoscale zonal flows, this
section will focus on the parameter dependence of such flows. Fig. 7.3 shows
the mesoscale shearing rate |〈ω̂ExB〉nZF=1| during the stationary state (excluding
initial transient phases) for various values of β. Here, the cases with β ≤ 0.8 %
have been initialized in the linear regime, while all cases with β > 0.8 % have
been started from the late mesoscale ZF saturated state of the β = 0.8 %
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realization. The characteristics of the mesoscale ZF level undergo a qualitative
change with variation of β:
A sufficiently large normalized pressure, i. e., β & 0.6 %, is required for mesoscale
ZFs to have a finite (nonzero) amplitude during the entire stationary state. Note
that the interval β ≈ 0.6 ∼ 0.8 % is also the regime where simulations feature an
initial long-term evolution of the mesoscale ZF and a subsequent low turbulence
state with a steady saturated ZF amplitude (not shown in Fig. 7.3, but similar
to the β = 0.8 % case in Fig. 7.2). The steady saturated ZF amplitude during
the latter phase manifests itself as narrow temporal distributions of |〈ω̂ExB〉nZF=1|
(blue shaded regions in Fig. 7.3). Furthermore, the temporal spread around the
most likely amplitude decreases with increasing β, demonstrating an increase in
the temporal persistence.
Contrary to this, cases with β . 0.4 % exhibit broad distributions of |〈ω̂ExB〉nZF=1|
with variations down to zero zonal flow level. In those cases no initial long-term
ZF evolution is observed and transient periods with vanishing mesoscale ZF
amplitude exist throughout the entire stationary state (similar to the β = 0.2 %
case in Fig. 7.2).
Against the expectations, the averaged mesoscale ZF shearing rate first increases
with β and shows a maximum of a few ∼ 10−1 vth,i/R0 around β ≈ 0.8 %. For
β & 0.8 % it slightly decreases with β. From the decreasing electrostatic and
increasing electromagnetic turbulence level in the region β . 0.8 % (see χes,i

and χem,e in Fig. 7.1) one would at first anticipate a decreasing ZF intensity,
since ZFs are known (i) to be driven by the electrostatic Reynolds stress [32]
and (ii) to be depleted by electromagnetic flutter [58]. However, it is well
established that the proximity of the microturbulence state to marginality is an
additional key parameter for the existence of stationary mescoscale ZF pattern
[24, 25, 77, 118]. In addition, Refs. [77, 118] report about both a reduction of
the averaged mesoscale ZF level and an increase in the temporal variability with
increasing distance to marginality.

The hypothesis of the proximity to marginality being partly responsible for
the existence of persistent mesoscale ZF pattern is now addressed by two
data sets obtained with circular geometry and standard resolution Gcirc

1 (see
Tab. 7.1). Fig. 7.4 depicts the dependence of the mesoscale zonal flow shearing
rate |〈ω̂ExB〉nZF=1| on β for two values of R0/LT . While the R0/LT = 6.9 cases
exhibit strong turbulence, the R0/LT = 5.5 cases are closer to marginal stability
(compare the heat conductivity in Fig. 7.15). All cases with R0/LT = 6.9 have
been initialized in the linear regime. The cases with R0/LT = 5.5 and β ≤ 1.2 %
have been initialized in the linear regime, while the realization with β = 1.4 %
is started from the late mesoscale ZF saturated state of the β = 1.2 % case.
In the R0/LT = 6.9 case (blue), i. e., a realization with high turbulence level,
persistent mesoscale ZFs are not observed in the accessible β-range. Instead,
highly unsteady mesoscale ZF states are present, as found in the weak elec-
tromagnetic limit and for s − α geometry. Contrary to this the R0/LT = 5.5
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Figure 7.4: Self-consistent mesoscale zonal flow shearing rate |〈ω̂ExB〉nZF=1| in
the stationary state as function of β for circular geometry, Gcirc

1 resolution and
R0/LT = 6.9 (blue, +-symbols) as well as R0/LT = 5.5 (violet, ×-symbols). All
cases with R0/LT = 6.9 have been initialized in the linear regime. The cases
with R0/LT = 5.5 and β ≤ 1.2 % have been initialized in the linear regime, while
the realization with β = 1.4 % is started from the late mesoscale ZF saturated
state of the β = 1.2 % case. Shaded regions indicate the temporal distribution
during the stationary state, +- and ×-symbols the mean value and errorbars the
extremal values.

realization (violet), a case with lower turbulence level, exhibit similar meso-
scale ZF properties compared to the s − α case: (i) In the electrostatic limit
β = 0.03 % the mesoscale ZF is temporally unsteady with variations down
to zero amplitude. (ii) Persistent mesoscale ZFs occur for sufficiently high β
with an increase in the averaged ZF amplitude compared to the electrostatic
limit. This implies that the proximity to marginality is a key control parameter
for persistent mesoscale ZF pattern formation also in electromagnetic turbulence.

7.3.3 Convergence study

Since the long-term evolution of mesoscale zonal flows in electromagnetic mi-
croturbulence has been unrecognized before, one might critically question its
numerical robustness. This issue is addressed through grid scale and box size
convergence tests.
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Figure 7.5: Time traces of the mesoscale zonal flow shear |〈ω̂ExB〉nZF=1| (a),
the electrostatic ion heat flux Qes,i (b) and the electromagnetic electron heat flux
Qem,e (c) for parameters of the reference case ref#1 in Fig. 7.1, i. e., R0/LT = 6.9,
β = 0.8 % and s − α geometry, and for standard resolution G1 (gray), double
radial resolution G1-x (blue) and double s-resolution G1-s (red).

Grid scale convergence

This section focuses on the grid scale convergence through doubling of either
the radial or the parallel resolution similar to Ref. [21] (see G1-x and G1-s in
Fig. 7.5). While the level of the turbulent bursts during the initial transient
phase is subject to an unsystematic variation, both the long-term evolution and
a similar saturated level of mesoscale ZFs (see left panel of Fig. 7.9) is robustly
reproduced independent of the modifications made.
Although the general physics picture is qualitatively converged, a satisfactory
judgment of the quantitative convergence is computationally rather prohibitive.
Therefore, the numerical error of individual quantities can be large. This applies
especially to cases with β & 0.8 %, since (i) the proximity to the NZT and the
high value of β renders those points numerically delicate and (ii) the relatively
small heat flux results in a large relative error.
For R0/LT = 6.9, β = 0.8 % and s − α geometry the doubling of the radial res-
olution (G1-x) results in the turbulence to be somewhat more bursty, while the
doubling of the parallel resolution (G1-s) renders it more steady (see Fig. 7.5).
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Figure 7.6: Time traces of the mesoscale zonal flow shear |〈ω̂ExB〉nZF=1| (a),
the electrostatic ion heat flux Qes,i (b) and the electromagnetic electron heat flux
Qem,e (c) for parameters R0/LT = 6.9, β = 1.1 %, s−α geometry and for standard
resolution G1 (gray), double radial resolution G1-x (blue) and double s-resolution
G1-s (red). The simulations have been started using late mesoscale ZF saturated
states from realizations with β = 0.8 % and the respective numerical resolution.

This qualitative trend is confirmed by the ion electrostatic heat flux temporally
averaged over the stationary state, for example, which increases by 31 % for
double radial resolution and reduces by 8 % for double parallel resolution (cf.
Tab. 7.2).
The issue of convergence is also complicated by the occurrence of metastable
quasi-stationary states in the case of doubled radial resolution existing for
∼ 102−103 R0/vth,i. Note that the existence of metastable states with a relatively
long duration is often related to mesoscale ZF structure formation, as reported in
adiabatic electron frameworks [24, 25, 77] and in a recent kinetic electron study
[118]. The fourth and fifth column of Tab. 7.2 summarize observables that are
temporally averaged over the two sub-intervals ∆t1 = [750.0, 1580.2] R0/vth,i and
∆t2 = [1580.2, 3068.8] R0/vth,i that are characteristic for two metastable states.
In the former interval the averaged ion electrostatic heat flux, for example, is
increased by 48 % compared to the realization with standard resolution, while in
the latter by 18 %.
A similar outcome is found in realizations with R0/LT = 6.9, β = 1.1 % and
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s − α geometry (see Fig. 7.6). The simulations are satisfactory converged with
resolution in s. In the case of double radial resolution a transition between meta-
stable quasi-stationary states can be observed. Both metastable states persist
for ∼ 103 R0/vth,i. The electromagnetic electron heat flux averaged over the two
intervals ∆t1 = [500.0, 2428.6] R0/vth,i and ∆t2 = [2428.6, 3595.7] R0/vth,i, for ex-
ample, differs by 98 % (see Tab. 7.3). While in the former interval its value is
reduced by 59 % compared to standard resolution, in the latter interval it is
reduced by 18 %. The average over the entire simulation is reduced by 44 %
compared to standard resolution.
Based on the discussion above the present work cannot raise the claim of a grid
scale convergence within ∼ 10 %, as usually specified in the microturbulence con-
text. It highlights that for the plasma parameters and the physical framework
chosen, the occurrence of long-term dynamics requires a time integration for at
least several ∼ 103 R0/vth,i to be able to properly judge numerical convergence.
Simulations with a duration of several ∼ 102 R0/vth,i are too short to specify the
numerical error. In the remainder of this work convergence tests are continu-
ally provided that aim for a balance between a proper resolution of the relevant
long-term dynamics and computational feasibility.
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R0/LT = 6.9, β = 0.8 % and s− α geometry
G1 G1-x G1-s

t1 400.0 750.0 750.0 1580.2 500.0
t2 2991.5 3619.5 1580.2 3068.8 1750.1
|〈ω̂ExB〉nZF=1| 0.230± 0.006 0.233± 0.007 0.223± 0.006 0.241± 0.004 0.234± 0.003
Qes,i 12.58± 1.06 16.50± 1.59 18.80± 1.00 14.85± 0.81 11.47± 0.45
Qem,e 10.32± 1.01 10.03± 1.37 11.94± 0.77 8.61± 0.55 8.81± 0.39
Ies 73.46± 7.47 101.38± 11.14 118.29± 7.22 89.80± 5.93 66.92± 3.47
Iem 0.44± 0.07 0.71± 0.10 0.87± 0.07 0.62± 0.06 0.35± 0.03

Table 7.2: Summary of observables temporally averaged over [t1, t2] R0/vth,i for different sets of numerical resolution and
for R0/LT = 6.9, β = 0.8 % and s − α geometry. The specified statistical errors are determined through six-part time
averaging (see appendix C).
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R0/LT = 6.9, β = 1.1 % and s− α geometry
G1 G1-x G1-s

t1 500.0 500.0 500.0 2428.6 500.0
t2 7500.0 3868.1 2428.6 3595.7 1750.0
|〈ω̂ExB〉nZF=1| 0.191± 0.001 0.210± 0.002 0.212± 0.003 0.206± 0.003 0.192± 0.001
Qes,i 4.17± 0.09 3.98± 0.63 3.25± 0.38 5.34± 0.18 4.43± 0.28
Qem,e 7.47± 0.16 4.16± 0.91 3.09± 0.44 6.12± 0.30 7.55± 0.53
Ies 23.29± 0.60 23.14± 4.06 18.27± 2.41 32.20± 1.49 25.83± 2.02
Iem 0.24± 0.01 0.33± 0.06 0.25± 0.03 0.47± 0.04 0.26± 0.03

Table 7.3: Summary of observables temporally averaged over [t1, t2] R0/vth,i for different sets of numerical resolution and
for R0/LT = 6.9, β = 1.1 % and s − α geometry. The specified statistical errors are determined through six-part time
averaging (see appendix C).
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Box size convergence

Since zonal flows with a radial scale of the box size are responsible for the reduced
turbulence state in the long-term limit, it is justified to critically question the
robustness of the presented results with respect to the box size. In this section
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Figure 7.7: Time traces of the E × B shear |〈ω̂ExB〉nZF
| carried by zonal mode

number nZF [panels (a) and (b)], the electrostatic ion heat flux Qes,i [panels (c)
and (d)], and the electromagnetic electron heat flux Qem,e [panels (e) and (f)] for
parameters of the reference case ref#1 in Fig. 7.1, i. e., R0/LT = 6.9, β = 0.8 %
and s−α geometry. The left panels compare realizations with standard box size
G1 (gray), half box size S1 (blue) and 1.5-fold box size L1 (red). The right panels
compare realizations with different initial conditions init#1 (red) and init#2
(blue) for the 1.5-fold box size realization L1.

the time evolution of |〈ω̂ExB〉nZF
| (for nZF ∈ [1, 2]), the ion electrostatic heat

flux Qes,i and the electron electromagnetic heat flux Qem,e is investigated for
R0/LT = 6.9, β = 0.8 %, s−α geometry and three realizations with different box
size (Lx, Ly): G1 with the standard box size (91.58, 89.76) ρth,i, S1 with half the
box size (45.79, 44.88) ρth,i and L1 with 1.5-fold box size (137.36, 134.64) ρth,i. In
the latter case the dissipation coefficient Ds = 2.0 had to be adapted to ensure
numerical stability.
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In addition to the standard initial conditions described in Sec. 7.3.1,
here referred to as init#1, simulations with modified initial conditions,
referred to as init#2, are considered as well. In the latter case the
turbulent modes (ky 6= 0) of the distribution function are initialized by
ĝk,sp(kx, ky, s, v‖, µ) = A× [cos(2πs)+ 1]× exp[−Ck2x]× exp[−(v2‖ +2µB)], where

C = 5gyy|s=0/18 with gyy|s=0 defined in Sec. 4.2.5 and A = 10−4. Analogously
to init#1 the ky = 0 mode is set to zero.
Panel (a) of Fig. 7.7 compares the shear carried by the box scale zonal mode
nZF = 1 for S1, G1 and L1 with standard initial conditions init#1. In the latter
two cases the box scale zonal flow evolves slowly and converges towards the
same saturated E × B shearing rate. In the half box size case S1 the box scale
zonal mode reaches saturation shortly after the linear eigenmodes have saturated
and then fluctuates significantly with time. In general, the box scale zonal flow
becomes more steady with increasing box size.
Panel (c) and (e) compare the turbulent fluxes of the same cases shown in panel
(b). In the case of G1 and L1 the turbulence is reduced by the evolving box scale
zonal flow and converges towards a similar level. In the case of S1 the turbulence
is bursty and eventually transitions to a runaway.
This convergence test implies that a minimum box size is required for a proper
description of the physics behind the long-term dynamics. Furthermore the
box size in the standard case G1 yields converged results. We would also like
to stress that despite the different spatial scale in the G1 and L1 case the box
scale zonal flow converges towards the same saturated shearing rate of a few
∼ 10−1 R0/vth,i.
Panel (b) of Fig. 7.7 compares the shearing rate carried by the largest (nZF = 1,
solid lines) and second largest (nZF = 2, dotted lines) zonal flow mode for two
L1 realizations with different initial conditions. In the case of init#2 (blue)
the second largest zonal flow mode dominates over the box scale mode in the
quasi-stationary state. The saturated shearing rate of this mode agrees with the
box scale zonal flow both in the L1 and init#1 realization (red) as well as in the
G1 case (gray, left panels). Note that the presented simulations are too short to
assess whether a transition to a quasi-stationary state with the dominance of
the box scale zonal mode occurs at later times in the init#2 case.
Panel (d) and (f) compare the turbulent fluxes. In both cases a reduction of the
turbulence level is observed, when the respective dominant mesoscale zonal flow
reaches saturation. In the case of init#2 the turbulence level is somewhat larger
than in the case of init#1. This indicates that larger scale zonal flows stabilize
turbulence more efficiently.
The above convergence test demonstrates that it is not necessarily the box scale
zonal flow that is required for establishing a mesoscale ZF saturated low turbu-
lence state. Rather, the scale of the zonal flow, and therefore the box size, has
to be sufficiently large. A zonal flow scale of 68.68 ρth,i (nZF = 2 in the L1 case)
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is sufficient, while LZF = 45.79 ρth,i (S1) is insufficient. Hence, the general phys-
ics picture is found to be converged with the box size for standard parameters G1.

Beside the above discussed grid scale and box size convergence tests, an increase of
the numerical dissipation on the zonal flow (slow mesoscale ZF evolution close to
marginal can be sensitive to numerical dissipation [25]) and a hydrogen plasma as
studied in Refs. [21, 61, 150, 59] instead of the here considered deuterium plasma
have been investigated. Both the long-term mesoscale ZF evolution as well as
the reduced turbulence state have been confirmed in those tests.

7.3.4 Stability constraints for β > βc

In this section the role of mesoscale zonal flows for the stability in the improved
β-regime, i. e., β > βc, is investigated. Here, the term stable refers to the stability
against the triggering of turbulence runaways. The aims of this section are (i) to
clarify if mesoscale ZFs are required for the stability and (ii) to assess if the cases
with β > βc are stable against a turbulence runaway being triggered in the long
time limit.
Those issues are addressed through the following stability analysis: The distribu-
tion function taken from the late saturated state of cases with β > βc is used as
initial condition. The so defined initial zonal flow state is manipulated through
scaling the ky = 0 box scale (nZF = 1) mode of the distribution function by a
real number 0 ≤ SZ ≤ 1. The turbulent modes (ky 6= 0) are not modified. The
response of the system to this scaling of the mesoscale zonal mode is investigated
with the focus on the triggering of a runaway.

Since the turbulence runaway is an inherently transient phenomenon, a tem-
porally resolved analysis is necessary. An exemplary case with β = 1.1 %,
R0/LT = 6.9, s − α geometry and G1 resolution is concentrated on first (see
Fig. 7.8). The initial reduction of the mesoscale ZF results in the turbulence
level increasing temporally, as would be expected from the stabilizing effect of
the mesoscale ZF. The rate by which the turbulence level increases in time de-
pends on the degree of ZF reduction. Furthermore, after restart all realizations
represent environments in which the mesoscale ZF is driven and, hence, grows in
time. This temporal growth, however, is slow, as observed earlier in connection
to mesoscale ZFs evolution (see Fig. 7.5). The outcome of this experiment in the
long-term limit, in turn, depends crucially on the initial ZF reduction:
(i) If the ZF reduction is moderate (SZ = 0.7, 0.8) the system relaxes towards the
stationary levels of the reference case (gray line and shaded region). During this
process the turbulence level can exceed the reference value. (ii) If the reduction
is sufficiently large (SZ = 0.4, 0.6) the system enters a second transient phase
during which the ZF decays and a turbulent runaway occurs —properties of a
NZT.
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Figure 7.8: Time traces of the mesoscale zonal flow shearing rate |〈ω̂ExB〉nZF=1|
(top), the electrostatic turbulence intensity Ies (mid) and the electromagnetic
turbulence intensity Iem (bottom) for β = 1.1 %, R0/LT = 6.9, s − α geometry
and G1 resolution. Shown are four realizations of the zonal flow scaling scan with
a scaling factor SZ of 0.4 (blue, solid), 0.6 (orange, dashed), 0.7 (green, dotted)
and 0.8 (violet, dash-dotted). A thin horizontal gray line depicts the respective
quantity temporally averaged over the stationary reference case, while the gray
shaded region spans the respective extremal values.

In addition to the above mesoscale zonal flow stability study the two second
largest zonal modes with nZF = 2 and nZF = 3 have been zeroed out individually,
while keeping the other zonal modes (including the mesoscale nZF = 1) unmod-
ified. These modifications did not result in turbulence runaways confirming the
importance of the mesoscale ZF for the mitigation of turbulence runaways. It
should be noted, however, that the mesoscale ZF level is not the sole parameter
controlling the triggering of a turbulence runaway. Despite a similar |〈ω̂ExB〉nZF=1|
at t ≈ 60 R0/vth,i the realization with SZ = 0.7 relaxes towards equilibrium, while
the one with SZ = 0.6 passes into a runaway (see Fig. 7.8).
In summary, a critical mesoscale ZF level can be found below which turbulence
runaways are triggered. Hence, temporally persistent mesoscale ZFs with suffi-
ciently large amplitude are a requirement for the accessibility of the improved
β-regime. The time scale connected to both the onset of the runaway phase be-
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Figure 7.9: Self-consistent mesoscale zonal flow shearing rate |〈ω̂ExB〉nZF=1|
(blue, ×-symbols) during the stationary state for R0/LT = 6.9, s − α geometry
and β = 0.8 % (left) and β = 1.1 % (right). Shown are realizations with dif-
ferent numerical resolution (see Tab. 7.1). Shaded regions indicate the temporal
distribution, ×-symbols the mean value and errorbars the extremal values. The
critical mesoscale zonal flow level in case of β = 1.1 % is depicted as well (red
circles).

low, as well as the relaxation to equilibrium above the threshold increases with
proximity to criticality. Furthermore, the clear separation of the self-consistent
ZF level (gray line + shaded region) from the threshold in the above considered
case demonstrates some degree of resilience: Even if the state is perturbed out-
side the stationary statistics, it relaxes back towards the proper stationary state.
The critical mesoscale ZF level is now determined in the entire improved β-regime.
The critical curve and its uncertainty are defined by

|〈ω̂ExB〉nZF=1|c = 0.5× (S−
Z + S+

Z )× |〈ω̂ExB〉nZF=1|ref (7.18)

σ = 0.5× |S−
Z − S+

Z | × |〈ω̂ExB〉nZF=1|ref , (7.19)

where S
−/+
Z denotes the ZF scaling factor just below (−) and above (+) the trig-

gering of a turbulence runaway and |〈ω̂ExB〉nZF=1|ref is the reference mesoscale
zonal flow shearing rate taken from the last time step of the reference case used
as initial condition. Due to its high temporal persistence the self-consistent ZF
level is always found to be well separated from the critical curve (see Fig. 7.3).
Hence, the states in the improved β-regime are considered stable against a run-
away being triggered in the long time limit due to the mesoscale zonal flow falling
below the critical level. Since the critical ZF level increases with β, however, it
may become harder to access saturated states at higher β.
As discussed in Sec. 7.3.3 the standard resolution G1 is insufficient to accurately
resolve individual observables numerically. It is, therefore, legitimate to critic-
ally question the validity of the critical mesoscale zonal flow level obtained with
standard resolution in the analysis above. In order to strengthen the soundness
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of this outcome, the above stability analysis is repeated at β = 1.1 % and for
double radial (G1-x) and double parallel (G1-s) resolution. Both the existence
of a critical mesoscale ZF level and its value is confirmed in this convergence
test (see right panel of Fig. 7.9). Since the β = 1.1 % case appears to be most
susceptible for the triggering of a runaway, i. e., the distance between the critical
curve and the self-consistent level is minimal (see Fig. 7.3), the outcome of this
convergence test is assumed to hold equally for β < 1.1 %.
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Figure 7.10: Top: Time traces of the electromagnetic turbulence intensity Iem (blue +-symbols) and the electromagnetic
poloidal wave vector centroid 〈k2θ〉em (orange ×-symbols, right axis). Bottom: Time traces of the absolute value of the
radial full turn displacement 〈|δx|〉 ensemble averaged over poloidal turns and field lines (blue +-symbols) and the model
m× (〈k2θ〉emIem)1/2 (violet Y-symbols). Shown are cases with R0/LT = 6.9, β = 0.8 %, s− α geometry and G1 resolution
during the initial phase (left) and restarted from the late mesoscale ZF dominated state (right).
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7.3.5 Investigation of magnetic stochasticity through field

line tracing methods

This section investigates magnetic stochasticity. It is motivated by the theory
behind the NZT [60], that is based on field line decorrelation aided magnetic
stochasticity. In the aforementioned reference field line decorrelation is proposed
to result in a sudden increase of electrons shortening out flux-surfaces at βc and
thereby disabling zonal flows [58]. Here, the field line tracing diagnostic (see
Sec. 7.2.2) is applied to a second data set for which 3D spatial data of A‖ is
available each transit time R0/vth,i, to investigate the influence of the mesoscale
zonal flow evolution on magnetic stochasticity.

Influence of mesoscale zonal flow evolution on magnetic stochasticity

An exemplary case with parameters compliant to the reference case R0/LT = 6.9,
β = 0.8 %, s− α geometry and standard parameters G1 is concentrated on first
(Fig. 7.10). Initial nonlinear saturation occurs at t ≈ 20 R0/vth,i and, therefore,
the subsequent phase is of interest. The electromagnetic turbulence intensity ex-
hibits a temporal long-term evolution (top left panel), which is correlated with
the mesoscale ZF reaching saturation in the interval t ≈ 150 ∼ 300 R0/vth,i (not
shown) as observed earlier.
During both the initial transient and final mesoscale ZF dominated state wide-
spread magnetic stochasticity occurs, as shown by the two Poincaré surface-of-
section plots in Fig. 7.11. Here, a Poincaré surface-of-section is constructed by
recording the field lines penetration points through the x-y-plane at the low field
side for 300 poloidal turns. Individual field lines are colored according to their
seeding position (horizontal line) and a mixing of colors, hence, indicates flux-
surface breaking or equivalently magnetic stochasticity. While in both cases the
perturbed magnetic field is stochastic, in the initial transient phase the level of
stochasticity is significantly larger compared to the final mesoscale ZF dominated
phase.
This observation is consistent with the temporal evolution of the ensemble av-
eraged radial full turn displacement 〈|δx|〉 (see bottom left panel of Fig. 7.10).
Here, angle brackets denote an ensemble average. The full turn displacement of
a field line is defined by the radial displacement it exhibits after executing one
poloidal turn from HFS to HFS, i. e., s = −0.5 → +0.5. At a fixed point in
time 〈|δx|〉 is defined as the ensemble average over all 1024 seeded field lines and
100 poloidal turns. In the initial transient phase, field lines feature a large ra-
dial excursion, while a significant reduction is found when the mesoscale ZF has
developed. In addition, a simulation has been restarted from the late saturated
state of the reference case (ref#1 in Fig. 7.1) to verify that this low level of mag-
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netic stochasticity is expected throughout the entire final stationary mesoscale
dominated state (right panels of Fig. 7.10).
To proceed, the physical mechanism behind the reduction in the magnetic
stochasticity is further elucidated through a simple model. The analysis be-

Figure 7.11: Poincaré surface-of-section plots during the initial transient phase
at t = 97 R0/vth,i (top) and the final stationary phase at t = 300 R0/vth,i of a case
with R0/LT = 6.9, β = 0.8 %, s− α geometry and G1 resolution (cf. left panels
of Fig. 7.10).

low concentrates on cases with β < βc exclusively. The following assumptions
are made: (i) It is assumed that the typical structure of perturbed magnetic field
lines does not change substantially with time and β. Variations in the averaged
radial displacement are then determined by the electromagnetic field fluctuation
level, i. e., the amplitude of the perturbed magnetic field, and not by changes
in the structural properties of field lines. (ii) The electromagnetic turbulence
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intensity Iem together with the squared poloidal wave vector centroid

〈k2θ〉em =

∫

ds
∑

kx,kθ 6=0

k2θ |Â‖,k(kx, kθ, s)|2

/

∫

ds
∑

kx,kθ 6=0

|Â‖,k(kx, kθ, s)|2, (7.20)

where the poloidal wave vector is defined through Eq. (4.41), are assumed
to provide a reasonable estimate of the radial magnetic field fluctuation level
δBx = δB · ∇x ∝ (〈k2θ〉emIem)1/2. Throughout this work the symbol ’∝’ means
proportional to. The radial field line equation [Eq. (7.3)] then motivates the model

〈|δx|〉 = m× (〈k2θ〉emIem)1/2, (7.21)

with m an arbitrary constant.
Indeed, the averaged full turn displacement 〈|δx|〉 shows approximately the same
linear trend over a wide range of (〈k2θ〉emIem)1/2 and for various values of β (see
bottom panel of Fig. 7.12), supporting the above proposed model. The black
dashed line shows a fit of the model Eq. (7.21) with m = 3.39 fitted to the data
points of the case with β = 0.8 % and G1 resolution (blue ×-symbols). The large
spread in this case is a manifestation of the temporal long-term evolution during
the initial transient phase and justifies the application of the model to this stage.
This is also confirmed by the respective time traces (see violet ’Y’-symbols in the
bottom panels of Fig. 7.10).
Since the spectral centroid 〈k2θ〉em varies only moderately for t & 50 R0/vth,i (see
top left panel of Fig. 7.10), the long-term variation of the magnetic turbulence
intensity can be identified as dominant reason for the reduction of the averaged
radial displacement. This outcome allows for the conclusion that the reduction of
the magnetic stochasticity in the final proper stationary state is directly related to
the stabilizing effect of the mesoscale ZF on the turbulence level. As the above
applied model suggests, this outcome is based on the reduction of the radial
excursion amplitude rather than on a change of the overall structural properties
of perturbed field lines.

Field line decorrelation

So far, cases below βc have been discussed exclusively, for which field line
decorrelation is not expected to be present. The assumption made above, that
the typical structure of perturbed magnetic lines does not change with β and
time, has been based on this fact. The onset of field line decorrelation around
βc, in turn, implicates a sudden change in the structural properties of field lines
and a concomitant increase in the radial displacement as discussed below.
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Figure 7.12: Absolute value of the radial displacement perturbed field lines
execute during the first- 〈|δx1/2|〉 and second 〈|δx2/2|〉 poloidal half turn (top)
and during a complete poloidal turn 〈|δx|〉 (bottom) against (〈k2θ〉emIem)1/2 for
β ∈ [0.03, 0.2, 0.4, 0.6] % (+-symbols), β = 0.8 % (×-symbols) and β = 0.9 %
(circles). Each point depicts the ensemble average of the respective quantity over
all 1024 seeded field lines and 100 poloidal turns at a fixed point in time. Shown
are results for standard resolution G1 (gray and blue), simultaneously elevated x-
and s-resolution G2 (orange) and increased overall spatial resolution G3 (violet).
The black dashed line is a fit of the model Eq. (7.21) to the data points with
β = 0.8 % and standard resolution G1 (blue ×-symbols).

For β < βc the total ensemble of perturbed field lines is assumed to be composed
of two classes: (i) field lines that preserve flux-surfaces (δx = 0) and, hence,
do not contribute to magnetic stochasticity, and (ii) field lines that break
flux-surfaces (δx 6= 0) and, therefore, contribute to magnetic stochasticity. In
the former case the radial displacement of the field line trajectory after the first
poloidal half turn δx1/2 (from s = −0.5 to s = 0) cancels the displacement of the
second half turn δx2/2 (from s = 0 to s = +0.5), i. e., δx = δx1/2+ δx2/2 = 0 [60].

123



7.3. NUMERICAL RESULTS

Around βc field lines of the former class are proposed to decorrelate from their
original flux-surface, as their half turn displacement becomes comparable to the
radial correlation length of the pertubed magnetic field. The trajectory during
the second half turn is then statistically independent from the first half turn and
the field line does therefore not necessarily return to its original flux-surface. It
is then reasonable to assume that 〈|δx|〉 ∝ 〈|δx1/2|〉, 〈|δx2/2|〉 for decorrelated
field lines. The sudden onset of field line decorrelation around βc implicates that
a larger class of field lines exhibits a finite δx and, hence, a sudden increase in
〈|δx|〉 is expected. Here, the term sudden refers to a narrow interval of β around
βc, as the threshold effect described in Ref. [60] suggests.
As indicated by Fig. 7.2 and Fig. 7.12 the magnetic field fluctuation level
increases with β. In addition to the linear scaling of 〈|δx|〉 with (〈k2θ〉emIem)1/2,
observed below βc, we expect an additional sudden increase induced by field
line decorrelation around βc = (0.85 ± 0.05) %. In Fig. 7.12 a sudden increase
(positive offset) of 〈|δx|〉 with respect to (〈k2θ〉emIem)1/2 is therefore expected
when comparing the datasets with β = 0.8 % (×-symbols) and β = 0.9 %
(circles). Instead, rather a negative offset can be observed. Note that the data
for β = 0.9 % covers the initial phase of the turbulence runaway, i. e., excluding
the extreme turbulence levels for which no proper numerical solution can be
guaranteed any more. Field line decorrelation should have occurred in this case.
Furthermore, the ensemble averaged half turn displacements 〈|δx1/2|〉 and
〈|δx2/2|〉 scale linearly with the magnetic fluctuation level (see top panel of
Fig. 7.12). Therefore, the contribution of decorrelated field lines to 〈|δx|〉
is expected to scale linearly with (〈k2θ〉emIem)1/2 as well. Since above βc a
larger number of field lines contributes to 〈|δx|〉 one expects a stronger (linear)
scaling of 〈|δx|〉 with (〈k2θ〉emIem)1/2. Although the ensemble averaged full turn
displacement 〈|δx|〉 is a linear function of the magnetic field fluctuation level
for β = 0.9 % (circles), the constant of proportionality appears to be somewhat
smaller compared to cases with β ≤ 0.8 %.
The findings above are based on turbulence in the initial transient phase, which
is observed to be sensitive to variations of the resolution in both the x- and
s-direction (see Sec. 7.3.2 and Fig. 7.5). In order to verify numerical convergence,
the analysis is repeated for β = 0.8 % as well as β = 0.9 % with increased
(by a factor of 1.5) resolution in the x- and s-direction (G2, orange) and in all
spatial directions (G3, violet). Excellent agreement is found, indicating that the
observations made above are numerically sound.

Based on the analysis presented in Sec. 7.3.5, we are unable to relate the mit-
igation of turbulence runaways to a mitigation of the sudden onset of field line
decorrelation, as would be expected from previous theories. Yet, a significant
reduction of the magnetic stochasticity through the development of mesoscale
zonal flows is found, which is likely to contribute to the mitigation of turbulence
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runaways.
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R0/LT = 6.9, β = 0.8 % (s− α) R0/LT = 5.5, β = 1.2 % (circ)
G1 G1-x G1-s Gcirc

1

trans. stat. trans. stat. trans. stat. trans. stat.
t1 21.8 400.0 24.5 750.0 21.9 500.0 23.5 360.3
t2 331.9 2991.6 605.7 3619.6 397.9 1750.1 115.6 1482.9
R 0.149 0.223± 0.017 0.169 0.326± 0.010 0.199 0.221± 0.011 0.214 0.335± 0.024
M −0.148 −0.084± 0.011 −0.186 −0.150± 0.028 −0.184 −0.073± 0.024 −0.255 −0.230± 0.035
L 0.032 −0.138± 0.012 0.033 −0.174± 0.021 0.017 −0.148± 0.022 0.115 −0.113± 0.044
L‖,f 0.264 0.446± 0.024 0.152 0.332± 0.016 0.202 0.262± 0.013 0.138 0.195± 0.023
LD,f −0.209 −0.639± 0.039 −0.111 −0.446± 0.028 −0.176 −0.392± 0.018 −0.022 −0.295± 0.049
Ies 287.285 73.457± 7.475 299.525 101.382± 11.139 192.92 66.923± 3.467 321.459 112.285± 23.935
Iem 2.650 0.444± 0.071 3.099 0.714± 0.098 1.650 0.354± 0.028 3.843 1.068± 0.341

Table 7.4: Time averaged Reynolds stress transfer R, Maxwell stress transfer M, transfer mediated by linear terms of the
gyrokinetic equation L, transfer due to parallel streaming along unperturbed field lines L‖,f , transfer due to drift motion
LD,f , electrostatic turbulence intensity Ies and electromagnetic turbulence intensity Iem for R0/LT = 6.9, β = 0.8 %, s−α
geometry and G1, G1-x and G1-s resolution as well as R0/LT = 5.5, β = 1.2 %, circular geometry and Gcirc

1 resolution.
Both the temporal average over the initial transient phase (trans.) and the final stationary mesoscale ZF dominated state
(stat.) is given, with the averaging intervals specified by [t1, t2] R0/vth,i. The transfer into / out of the mesoscale ZF mode
nZF = 1 is considered only. The specified statistical errors are determined through six-part time averaging (see appendix
C).
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7.3.6 Zonal flow transfer study

Mesoscale ZFs have been proven crucial for the mitigation of high β turbulence
runaways and the accessibility of the improved β-regime. This section focuses on
the transfer mechanisms behind the drive and damping of such flows through the
use of the zonal flow intensity evolution diagnostic (see Sec. 7.2.3). The transfer
into / out of the mesoscale zonal flow mode nZF = 1 is studied exclusively
throughout this section.

Cancellation of the Reynolds- and Maxwell stress close to βc

The analysis starts with an investigation of the reference case, i. e., R0/LT = 6.9,
β = 0.8 % and s − α geometry, which features an initial long-term evolution of
the mesoscale zonal flow and a late mesoscale zonal flow saturated stationary
state (see Sec. 7.3.2). In general, the zonal intensity evolution equation is
well satisfied as demonstrated in Fig. 7.13. The initial transient phase ranging
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Figure 7.13: Time traces of individual terms of the zonal flow intensity evolution
[Eq. (7.9)] for ZF mode number nZF = 1 and parameters of the reference case
ref#1 in Fig. 7.1 with R0/LT = 6.9, β = 0.8 %, s−α geometry and G1 resolution.
Shown are the Reynolds stress R (blue), the Maxwell stress M (orange), the
contribution L mediated by linear terms of the gyrokinetic equation (gray) and
the sum of all terms subtracted by the time derivative of the zonal flow intensity
R+M+L−∂tEZ (green). Solid lines depict a moving box average with window
length ∆t = 7.5 R0/vth,i, while dashed lines represent the unmodified time traces.

up to t ≈ 300 ∼ 400 R0/vth,i is characterized by an increased fluctuation level
compared to the final stationary state, which is consistent with the time
evolution of the turbulence intensities (see Fig. 7.2). In agreement with the
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basic zonal flow paradigm [32] the Reynolds stress drives the mesoscale ZF.
The Maxwell stress transfer, in turn, represents a damping mechanism. Similar
findings are reported from gyrofluid studies of edge turbulence [153, 45]. Note
that M directly measures the influence of magnetic flutter on the mesoscale
zonal flow. The negative Maxwell stress transfer is, therefore, consistent with
the residual flow calculations discussed in [60, 58].
The initial transient phase features a comparable amplitude of the Reynolds
and Maxwell stress with opposing sign (see also Tab. 7.4), demonstrating a
vanishing nonlinear transfer into the mesoscale ZF. In the initial transient
phases just below βc the mesoscale zonal flow is therefore nonlinearly marginal
stable. Here, nonlinearly marginal refers to the vanishing nonlinear ZF drive.
This cancellation might relate to the understanding of the turbulence runaway
in terms of a nonzonal transition [60]. It is emphasized, however, that beside
the nonlinear transfer terms R and M, a finite transfer mediated by the linear
terms of the gyrokinetic equation L is possible. Indeed, a positive transfer L
occurs during the initial transient phase (see Tab. 7.4) consistent with the slow
ZF evolution in this period. This finding is reproduced by the increased spatial
resolution sets G1-x and G1-s.
A cancellation of the nonlinear stresses just below βc is also confirmed for
the R0/LT = 6.9 data set, circular geometry and Gcirc

1 resolution. The time
averaged (over the stationary state) nonlinear transfer terms cancel just below
the corresponding critical βc = (0.9± 0.1) % and, again, a finite positive transfer
L balances the negative nonlinear transfer (see left bottom panel of Fig. 7.14).
Mesoscale zonal flows, therefore, appear to be nonlinear marginal stable in the
vicinity of turbulence runaways at βc in general.
It is noted that the temporally averaged Maxwell stress transfer term (orange
squares in the left bottom panel of Fig. 7.14) increases continuously in magnitude
by approximately ∼ β2.8 (gray dotted line). The mechanism the Maxwell stress
is based on, hence, scales continuously with β and eventually results in a
cancellation of Maxwell and Reynolds stress. The field line decorrelation theory,
by contrast, implies a sharp transition in the Maxwell stress, caused by a sudden
increase in the flux-surface breaking field lines. The zonal flow transfer study,
hence, supports the outcome of the field line tracing analysis of Sec. 7.3.5 that
lacked signatures of a sudden onset of field line decorrelation.
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Figure 7.14: Temporally averaged terms of the zonal flow intensity evolution equation [see Eq. (7.9) and discussion
below] for zonal flow mode number nZF = 1 and against β. Shown are data sets for R0/LT = 6.9, s− α geometry and G1

resolution (top) as well as circular geometry and Gcirc
1 resolution (bottom). The left panels depict the nonlinear transfer

terms R and M as well as the transfer mediated by linear terms of the gyrokinetic equation L, while the right panels
show the individual contributions to L. The time averaged is always performed over the stationary state excluding initial
transient phases. The specified statistical errors are determined through six-part time averaging (see appendix C).
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Positive feedback mechanism

The above analysis demonstrates that just below βc the nonlinear generation
of mesoscale ZFs is hindered through magnetic flutter induced damping. Cases
that feature an initial long-term mesoscale ZF evolution, however, exhibit a
transition in the transfer processes when reaching the proper final mesoscale
ZF saturated stationary state. This can be readily seen by the time traces of
the reference case, i. e., R0/LT = 6.9, β = 0.8 %, s − α geometry and G1,
in Fig. 7.13. The averaged Reynolds stress transfer increases by 50 % while
the averaged Maxwell stress transfer is reduced by 43 % (cf. Tab. 7.4). As a
result the total nonlinear transfer in the final stationary state is positive and,
hence, supports the nonlinear sustain of mesoscale ZFs (see also top left panel
of Fig. 7.14). This finding is confirmed by the increased spatial resolution sets
G1-x and G1-s. Since the evolution of the mesoscale ZF directly influences the
nonlinear transfer in a favorable way, this process can be regarded as a positive
feedback mechanism.
The finding that the Maxwell stress transfer decreases when the mesoscale
ZF reaches saturation is in agreement with the reduction of electromagnetic
turbulence level in the latter phase [see time trace of Iem in panel (e) of Fig. 7.2].
As discussed in Sec. 7.3.5 the magnetic stochasticity decreases correspondingly
and a reduction of the the magnetic stochasticity induced damping of zonal
flows [60, 58] is therefore expected. However, the fact that the Reynolds stress
transfer increases although the electrostatic turbulence level is found to decrease
similarly to the electromagnetic one [see time trace of Ies in panel (d) of Fig. 7.2]
is, at first, unexpected and deserves further discussion.
The favorable effect of the mesoscale ZF evolution on the Reynolds stress
transfer is interpreted as resulting from the well known modulational instability
[33, 34, 35, 46, 36, 37, 40]. This instability is based on the generation of
sidebands through the nonlinear coupling of pump drift waves with the zonal
flow. The favorable effect of ZFs, hence, is assumed to enter through an increase
of the rate by which sidebands are generated. It mirrors the fact that a positive
Reynolds stress transfer into the ZF can be caused by the ZF itself through ZF
shear induced tilting of turbulent eddies as discussed in Ref. [45].
To proceed, a transition in the total nonlinear transfer due to mesoscale ZF
evolution, similar to the above discussed case, can also be found for circular
geometry. The exemplary case with R0/LT = 5.5, β = 1.2 % and Gcirc

1 resolution
lies just below the turbulence runaway at βc = (1.3 ± 0.1) %. It features an
initial long-term mesoscale ZF evolution and a subequent mesoscale zonal flow
saturated stationary state. A similar qualitative trend of the Reynolds- and
Maxwell stress as well as the turbulence intensities is observed (see Tab. 7.4).
Especially, the favorable effect of mesoscale ZFs on the Reynolds stress transfer
is reproduced. As a result, the temporally averaged nonlinear transfer changes
sign (negative to positive) when the mesoscale ZF has evolved. Again, the
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mesoscale ZF is nonlinearly driven in the final stationary state, while a vanishing
nonlinear transfer indicates nonlinear marginality in the initial transient phase;
—a similar positive feedback process occurs.
Now that the influence of persistent mesoscale ZF evolution on the transfer
processes into the nZF = 1 mode has been studied, the transfer mechanisms
in the proper final stationary states for R0/LT = 6.9 and s − α geometry are
investigated (see top left panel of Fig. 7.13). Over the entire β-range considered
here the Reynolds stress drives the ZF, while the Maxwell stress acts as a
damping mechanism. The favorable positive feedback effect of the mesoscale ZF
allows for positive nonlinear transfer R +M (green dashed, ’+’ symbols) up to
β = 1.1 %. The latter observation is interpreted as basis for the accessibility of
the improved β regime.

Coupling of the zonal flow to energy and parallel flow sidebands

The remainder of this section concentrates on transfer mechanisms incorporated
into L, which act to balance the nonlinear stresses in the stationary state (violet
stars in the left panels of Fig. 7.14). Throughout most of the considered β-range
L constitutes a ZF damping mechanism, while it plays a driving role close to βc.
In order to identify the transfer mechanisms behind this damping and drive, L is
disaggregated into its individual components (right panels of Fig. 7.14).
In general, numerical dissipation represented by D plays only a minor role. The
dominant damping mechanism is provided by the magnetic drift term LD,f (see
appendix D.1 for more details about this term). In the limit of mesoscale ZFs,
i. e., (kZFρsp)

2 . (kZFρth,i)
2 ≪ 1, this term relates to the coupling of odd parity

(in s with respect to s = 0) energy sidebands to the zonal potential via geodesic
curvature. Here, a sideband is defined by a toroidally symmetric perturbation
with poloidal dependency, i. e., a perturbation with ky = 0 that varies along s.
LD,f is the kinetic counterpart of the magneto hydrodynamic geodesic transfer
[56, 45]. While in the aforementioned references geodesic transfer has been shown
to play a significant role in edge turbulence, the present study confirms its relev-
ance in core turbulence.
The transfer due to parallel streaming along unperturbed field lines L‖,f exhibits
a finite contribution as well (see appendix D.2 for more details about this term).
Since L‖,f > 0 this transfer mechanism acts to increase the zonal potential. It
is therefore a zonal flow driving mechanism. In the limit of mesoscale ZFs this
term relates to the coupling of the zonal potential to odd parity (in s with re-
spect to s = 0) sidebands of the parallel flow. Physically, the divergence of the
parallel motion generates a polarization density perturbation, which results in a
zonal potential as described by the gyrokinetic Poission equation (4.49). Hence,
perpendicular motion in form of a zonal flow arises due to the coupling to parallel
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motion.
Note, although L‖,f results from a linear term of the gyrokinetic equation, the
zonal potential cannot directly tap energy from the background maxwellian
through it. By contrast, the parallel flow sidebands, necessary for L‖,f 6= 0,
have to be generated nonlinearly by the turbulence. Since both the zonal poten-
tial and the parallel flow sidebands are modes with ky = 0, L‖,f describes the
coupling of different poloidal modes of axisymmetric perturbations.
To our knowledge, this zonal flow driving mechanism has not been described in
literature so far. Note, however, that it plays a non-negligible role here, since
the contributions of both the geodesic transfer and the coupling to parallel flow
sidebands are of similar magnitude. Furthermore, L‖,f contributes over the entire
considered range in β. This mechanism, therefore, occurs both in electrostatic
and electromagnetic microturbulence.
While for most values of β considered in this study mesoscale ZFs are damped
through geodesic transfer, the coupling to parallel flow sidebands dominate just
below βc. Most notably, the latter transfer mechanism allows for the long-term
evolution of mesoscale ZFs just below βc in the case of R0/LT = 6.9, β = 0.8 %
and s − α geometry and R0/LT = 5.5, β = 1.2 % and circular geometry (cf.
Tab. 7.4). This outcome is supported by the elevated spatial resolution sets G1-x
and G1-s.

7.3.7 Transport hysteresis in circular geometry

The transport hysteresis phenomenon has been introduced in the framework
of a simplified s − α geometry with α = 0 for comparability with previous
studies [60, 59] and one might therefore critically question its broader validity.
Especially since turbulent transport levels are known to be sensitive to the
geometry model [9].
In order to confirm a more general relevance of the transport hysteresis phe-
nomenon the dependence of the heat conductivity on β is explored for circular
geometry and with R0/LT = 6.9 as well as R0/LT = 5.5 (see Fig. 7.15).
Both R0/LT -realizations exhibit turbulence runaways at respective βc, when
initializing the simulation in the linear regime. The corresponding values are
indicated by shaded regions and are denoted by β

(6.9)
c and β

(5.5)
c respectively.

Consistent with Ref. [60] the threshold βc is shifted to larger values for smaller
R0/LT .
Despite the application of the restart procedure described in Sec. 7.3.1, no
stationary state can be achieved for β & 1.0 % in the series with R0/LT = 6.9.
The fact that an improved β-regime cannot be accessed is consistent with
the lack of temporally persistent mesoscale ZF states developing in this case:
From the statistical analysis of Sec. 7.3.2 a highly unsteady mesoscale ZF can
be anticipated for β > β

(6.9)
c (blue data in Fig. 7.4). It is then reasonable
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Figure 7.15: Dependence of the time and volume averaged ion electrostatic heat
conductivity χes,i and electron electromagnetic flutter heat conductivity χem,e on
the plasma β for R0/LT = 6.9 (blue) and R0/LT = 5.5 (orange and green),
circular geometry and Gcirc

1 resolution. The green data points are obtained by
restarting the late mesoscale ZF dominated state at β = 1.2 % (violet diamond).
Shaded regions indicate the occurrence of turbulence runaways to extreme levels
(see description in the text).

to assume that time intervals with very small mesoscale ZF amplitude occur
regularly during the stationary state such that the condition for the triggering
of a runaway |〈ω̂ExB〉nZF=1| < |〈ω̂ExB〉nZF=1|c is satisfied evenually.
In the case of R0/LT = 5.5, however, stationary states at sufficiently high β
feature a steady saturated mesoscale ZF amplitude (violet data in Fig. 7.4).

And not surprisingly an improved regime with β > β
(5.5)
c can be accessed when

restarting the late mesoscale ZF dominated state of the case with R0/LT = 5.5
and β = 1.2 % (ref#2, violet diamond in Fig. 7.15). The so obtained case
at β = 1.4 % exhibits stationary turbulence during the full duration of this
simulation of 3060.9 R0/vth,i. Due to the higher persistence of the mesoscale ZF
in this case, the mesoscale shearing rate |〈ω̂ExB〉nZF=1| can be conjectured to stay
above the critical level |〈ω̂ExB〉nZF=1|c throughout the entire stationary state.

7.4 Conclusion

This work investigates microturbulence at finite normalized plasma pressure
within a local gradient-driven gyrokinetic framework. Aspects of high β tur-
bulence runaways [152, 21, 61, 148] and their mitigation are focused on. The
main results are summarized below:
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The well known high β turbulence runaway, also referred to as nonzonal transition
(NZT) [60], is reproduced in the present work when simulations are initialized
in the linear regime. Consistent with literature this threshold, here denoted by
βc, features a runaway to indeterminately turbulence levels just after nonlinear
saturation of the initially growing linear eigenmodes.
As main result, however, persistent mesoscale zonal flow patterns are shown to
mitigate this turbulence runaway, allowing for the access of an improved regime
β > βc. More in detail, the application of mesoscale zonal flow dominated states,
developing naturally just below βc for certain parameters, as initial conditions for
realizations with β > βc yields stable stationary turbulent states in the improved
regime. Here, the term stable refers to the stability against the triggering of tur-
bulence runaways. This dependence of the turbulence level above βc on the initial
conditions, i. e., the history of the system, constitutes a transport hysteresis.
The development of persistent mesoscale zonal flows is parameter dependent and
is shown to occur for large β and small R0/LT . As a consequence, although real-
izations with large R0/LT exhibit the usual turbulence runway at a respective
βc, they do not necessarily feature an improved β-regime. The hysteresis phe-
nomenon, hence, requires the turbulence to be sufficiently close to marginality,
a condition that can be assumed to apply to the experimental conditions. A
distinct property of the mesoscale zonal flow pattern is the long time scale of
∼ 102 − 103 R0/vth,i connected to its development. As a result, sufficiently long
simulations are required to access the proper stationary mesoscale zonal flow
dominated states. Turbulence runaways at βc, and when initializing the simu-
lation in the linear regime, occur well before such zonal flows reach saturation.
This temporal separation is at the basis of the hysteresis phenomenon.
When the mesoscale ZF reaches saturation a low turbulence state is induced. A
box size scan shows that the radial scale of the ZF flow has to exceed a scale of
46− 69 ρth,i to allow for this long-term transition to a reduced turbulence state.
A striking observation is the convergence of the mesoscale ZF amplitude towards
the same value of the E × B shearing rate independent of the radial scale. This
ascribes a physical relevance to both the E×B shearing rate and the correspond-
ing value of a few ∼ 10−1 R0/vth,i.
The mesoscale zonal flow level is a key quantity for the stability in the improved
β-regime. Turbulence runaways can be triggered when the mesoscale ZF falls
below a critical level; —a mechanism that potentially sets the upper threshold in
β. The depletion of zonal flows due to application of resonant magnetic perturb-
ations [154], for example, could constraint the improved β-regime.
A field line tracing analysis demonstrates that the magnetic stochasticity in the
final mesoscale zonal flow dominated states is reduced compared to the initial
transient phase in which mesoscale zonal flow still evolve. The reason is a re-
duction of the radial excursion of perturbed magnetic field lines due to the sta-
bilizing effect of mesoscale zonal flows on the electromagnetic turbulence level.
Furthermore, signatures of a sudden onset of field line decorrelation close to βc,
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as anticipated in the decorrelation theory behind the NZT [60], are not observed.
A zonal flow transfer analysis reveals a positive feedback effect of mesoscale zonal
flows just below βc: During the evolution of such zonal flows a transition from
vanishing to positive nonlinear transfer occurs, allowing for the nonlinear drive
of mesoscale zonal flows beyond βc in the improved β-regime. When the Reyn-
olds stress transfer is balanced by the Maxwell stress, the coupling of the zonal
potential to parallel flow sidebands allows for mesoscale zonal flows to be further
driven. In the present work such a cancellation occurs just below βc.
The implications of this study are now discussed:
(i) The main result of this work implies that βc is not necessarily the upper limit
in the normalized plasma pressure for stationary operation in the plasma core,
provided persistent mesoscale zonal flow pattern can develop. In tokamak dis-
charges the normalized plasma pressure evolves on time scales of the energy con-
finement time ∼ 100 s, which is large compared to the ion transit time ∼ 10−5 s.
The time scale connected to mesoscale zonal flow evolution of 102 − 103 transit
times, hence, is significantly smaller than the energy confinement time. There-
fore, the zonal flow dominated branch, i. e., the improved β-regime, is assumed to
represent the experimentally relevant branch. Note that experimental evidence
of persistent mesoscale zonal flow patterns has been reported in JET [78] and
Tore Supra [79].
(ii) Evidence is provided that the onset of field line decorrelation, as a threshold
phenomenon, is not the reason for the triggering of turbulence runaways. This
highlights the need for a more nuanced view of high β turbulence runaways. A
link to zonal flow physics as proposed in Refs. [60, 59, 58], such as the cancellation
of the Reynolds- and Maxwell stress transfer just below βc or the correlation of
turbulence runaways and the depletion of zonal flows, is nevertheless observed.
(iii) The coupling of the zonal flow to parallel flow sidebands has been demon-
strated to be relevant in high β core turbulence, since it directly influence the
zonal flow dynamics when the nonlinear Reynolds- and Maxwell stress cancel. A
clarification of the physical mechanism behind the ZF drive through this coupling
process is a rewarding topic for future work.
(iv) Finally, the present work encourages to look beyond time scales of 103 R0/vth,i
even when dealing with kinetic electrons. Long-term dynamics bears relevant
physics that has been shown to allow for the transport hysteresis phenomenon,
but also might impact the judgment of numerical convergence.

135



7.4. CONCLUSION

136



Chapter 8

Energetics and nonlinear transfer

analysis of the self-interaction

mechanism in local gyrokinetic

fluxtube simulations of ion

temperature gradient driven

turbulence

8.1 Introduction

The fluxtube approach [104] is widely utilized for the study of plasma microtur-
bulence, such as ion temperature gradient (ITG) driven turbulence [13, 14, 15],
in fusion devices due to its advantage in terms of computational costs. Being
a local description, the fluxtube requires appropriately modeled boundary con-
ditions, which are periodic transverse to the magnetic field and shifted periodic
parallel to it [101]. However, the authors of Ref. [104] pointed at the possibility
of artificial correlations introduced by such boundary conditions, when the cor-
relation length of turbulent structures exceeds the size of the fluxtube domain.
Due to the high mobility of electrons along the field lines turbulent structures
can correlate over multiple poloidal turns, also known as giant tails [19], and,
thereby, can introduce correlations through the parallel boundary in a fluxtube.
Indeed, local gyrokinetic studies, treating electrons as a kinetic species, report
of the self-correlation of such extended modes [64, 155, 148, 156]. For example,
Ref. [64] discusses the role of this self-correlation mechanism for the nonlinear
saturation of kinetic ballooning mode turbulence in a flat electron temperature
gradient setup.
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More recently, the self-interaction (SI) mechanism has been shown to be respons-
ible for the generation of fine scale structures in the radial electric field shear [1],
also known as the E×B shearing rate; —structures that are commonly observed
to dominate the E × B shearing rate in gyrokinetic studies including electron
dynamics [83, 84, 85, 86].
In principle, a fluxtube can be considered a proper description of an entire
flux-surface with a corresponding value of the normalized Larmor radius ρ∗ =
ρth,i/R0 ∼ (2πǫ0/q0) × (ρth,i/Ly) [1, 85] (see Sec. 4.2.5). The self-interaction
mechanism, therefore, bears some physical relevance that scales with the domain
size Ly as shown in Refs. [1, 85, 84] and is, hence, understood as a finite ρ∗ effect.
The binormal domain size required for a full flux-surface description compliant to
current day tokamaks, however, is one order of magnitude larger than the typical
domain size chosen in literature [85]. This constraint alleviates the computa-
tional benefits of the fluxtube approach compared to more expensive full surface
descriptions.
When correlations over the parallel boundary are eliminated in ITG driven tur-
bulence, turbulent fluxes are reported to increase by up to several ten percent in
strong turbulent situations [155, 85], but to be hardly influenced near marginality
[85]. In addition, a recent director field analysis of zonal flow pattern formation in
ion temperature gradient driven turbulence with inclusion of electron dynamics
[118] shows that zonal fine scale features driven by SI hardly contribute to the
zonal flow shear induced deformation of turbulent structures. Note that zonal
flows usually play a dominant role in the nonlinear saturation of ITG driven tur-
bulence [22, 75, 63, 65, 66].
The aforementioned observations leave the role of self-interaction in ITG driven
turbulence unclear and, therefore, motivate the analysis presented in this chapter.
Since the self-interaction process is inherently nonlinear, energetics and nonlin-
ear transfer techniques [72, 107, 73, 110, 74, 111, 22, 63, 64, 65, 66, 156, 112]
are applied to obtain a direct measure of the influence of self-interaction on the
nonlinear saturation physics. CYCLONE base case (CBC) parameters [67] with
inclusion of electron dynamics and a standard box size are chosen; —a case which
shows clear signatures of self-interaction [1, 85, 118]. This chapter focuses on (i)
the direct role of the nonlinear self-interaction process and (ii) the role of self-
interaction driven zonal structures for the nonlinear saturation of ion temperature
gradient driven turbulence and is structured as follows: In Sec. 8.2 the gyrokin-
etic simulation setup and the diagnostics are described. In Sec. 8.3 the results are
presented, including an energetics description of the generation of twisted modes
in Sec. 8.3.1, a nonlinear transfer analysis of the self-interaction mechanism in
Sec. 8.3.2, and a study of the role of self-interaction driven zonal modes for the
nonlinear transfer of generalized energy in Sec. 8.3.3. Concluding remarks are
given in Sec. 8.4.
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8.2 Numerical setup and diagnostics

8.2.1 Gyrokinetic simulation setup

In this chapter local nonlinear gradient-driven gyrokinetic simulations are studied.
The simulations are performed with the fluxtube version of Gyrokinetic Workshop
(GKW) [95] in the δf -approximation. The plasma parameters are compliant to
the well known CYCLONE base case [67] (see Sec. 4.4). Background plasma
rotation and collisions are not considered. Both a single ion species and electrons
are treated as kinetic species with the electron to ion mass ratio me/mi = 2.72×
10−4 of deuterium. A small plasma beta β = 3 × 10−4 is chosen to include
shear Alfvén wave physics, which allows for a larger time step, while keeping
the turbulent dynamics essentially electrostatic. A geometry with exact circular
concentric flux surfaces is chosen [9] (see Sec. 4.2.2). The numerical resolution and
dissipation scheme is equivalent to the Gcirc

1 set of Ref. [139] (see also Tab. 7.1)
and reader is referred to the aforementioned reference for more details. GKW
utilizes straight field-aligned Hamada coordinates (x, y, s) [100], where x is the
radial coordinate, y is the binormal coordinate and s is the parallel coordinate
(for more details see Refs. [95, 139] and Sec. 4.2). Both the radial and binormal
direction are represented by Fourier modes and the parallel extent of the box
covers one poloidal turn. For the parameters chosen, the box size is (Lx, Ly) =
(76.72, 87.67) ρth,i, which represents a size usually chosen in literature. The self-
interaction mechanism is expected to be strong for this realization of the box
size.

8.2.2 Energetics and nonlinear transfer diagnostic

The Fourier decomposition of the perturbed gyrocenter distribution function fsp
reads

fsp(x, y, s) =
∑

kx

∑

ky

f̂sp,k(kx, ky, s) exp[ikx(x− x0)

+ iky(y − y0)], (8.1)

where x0 = −Lx/2 and y0 = −Ly/2 are related to the radial and binormal box size
Lx and Ly, respectively. This applies analogously to the perturbed electrostatic
potential φ and parallel vector potential A‖. It is then natural to refer to Fourier
modes with wave vector k = (kx, ky) as modes or perpendicular modes in the local
description [74, 64, 148]. In this chapter wave vectors are always given in units
of ρ−1

th,i, where the ion thermal Larmor radius is defined by ρth,i = mivth,i/(eB0)

with the ion thermal velocity vth,i = (2T0,i/mi)
1/2, the elementary charge e and

the reference background magnetic field strength B0.
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The generalized energy of a mode with mode label k = (kx, ky) is defined by
[59, 65, 66]

Ek =
1

2
Re

∑

sp

T0,sp

∫

ds

∫

d3v
ĥ∗sp,k
FM,sp

ĝsp,k, (8.2)

with the modified distribution function

ĝsp,k = f̂sp,k +
Zspe

T0,sp
v‖〈Â‖,k〉ga,spFM,sp (8.3)

and the nonadiabatic part of the distribution function

ĥsp,k = f̂sp,k +
Zspe

T0,sp
〈φ̂k〉ga,spFM,sp. (8.4)

Several quantities enter the above equations: Zsp is the signed species charge
number, FM,sp is the maxwellian (see Ref. [95] or Sec. 4.3.1 for a definition), v‖ is
velocity parallel to the ambient magnetic field, 〈...〉ga,sp denotes the gyro-average
and T0,sp is the species background temperature. The generalized energy is often
split into an entropy-like quantity, with a distribution and an electric field contri-
bution, and the magnetic field energy [64, 148]. Related effects like field particle
interaction [111] and the resulting transfer of entropy among species [64] are, how-
ever, of minor interest in the context of this chapter. The generalized energy Ek

in gyrokinetic turbulence, also referred to as the free energy [111, 59, 148, 65, 66]
or generalized grand canonical potential [30], is considered to play a similar role
compared to the kinetic energy in fluid turbulence [110], as it is conserved by
the nonlinearity. In the aforementioned references nonlinear transfer techniques
based on the generalized energy have been well established and proven successful
for the study of nonlinear processes involved in the saturation of microturbulence.
Therefore, working with the generalized energy is well suited for the purpose of
this work.
An equation for the evolution of the generalized energy at wave vector k is
obtained by multiplying the gyrokinetic equation, formulated in terms of the
Fourier transformed modified distribution function ĝsp,k (see appendix B), by

T0,spĥ
∗
sp,k/FM,sp, integrating over velocity space as well as the parallel coordinate

s and summing over species [99]. It formally reads

∂Ek

∂t
= Nk +Qk +Dk + Tk, (8.5)

with the individual terms on the right-hand side representing the net nonlinear
transfer Nk, the energy source Qk, energy dissipation Dk and transfer to twisted
modes due to parallel streaming Tk.
The net nonlinear transfer with respect to mode k results from the energy transfer
within all possible wave vector triplet interactions [112]

Nk =
∑

q

∑

p

δk+q+pS
k
q,p (8.6)
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satisfying the wave vector matching rule

k+ q + p = 0. (8.7)

In Eq. (8.6), δk+q+p denotes the Kronecker delta. Energy transfer within triplets
is mediated by the E×B- and magnetic flutter nonlinearity and can be formulated
in terms of a symmetrized transfer function [22, 112]

Sk
q,p =

1

2
[Ak

q,p + Ak
p,q] (8.8)

with the primitive transfer function

Ak
q,p =Re

∑

sp

∫

ds

∫

d3v
T0,sp
FM,sp

Exy × (qxpy − qypx)× ĥkχ̂sp,qĝsp,p, (8.9)

where χ̂sp,k = 〈φ̂k〉ga,sp−v‖〈Â‖,k〉ga,sp, Exy = [(∇x×∇y)·b]/B, b is the unit vector
parallel to the ambient magnetic field and B is the magnitude of the background
magnetic field. The symmetrized transfer function measures the gain (Sk

q,p > 0)
or loss (Sk

q,p < 0) of generalized energy of mode k due to the nonlinear interaction
of the modes q and p. Within a triplet the energy is nonlinearly conserved as
expressed by the detailed triplet energy balance

Sk
q,p + Sp

k,q + Sq

p,k = 0. (8.10)

Furthermore, the symmetrized transfer function satisfies the symmetry property

Sk
q,p = Sk

p,q. (8.11)

Note that in order to keep the amount of output data within a reasonable level
while preserving sufficiently information about the nonlinear dynamics, the non-
linear transfer function Sk

q,p is output every 0.375 R0/vth,i only throughout this
work.
Energy injection is provided through the advection of the background gradients
by the E ×B-drift and magnetic flutter and reads

Qk =Re
∑

sp

T0,sp

∫

ds

∫

d3v f̂ ∗
sp,kExyikyχ̂sp,k

×
[

1

Ln,sp
+

(
mspv

2
‖/2 + µB

T0,sp
− 3

2

)
1

LT,sp

]

, (8.12)

where 1/Ln,sp = −∂x ln(n0,sp) and 1/LT,sp = −∂x ln(T0,sp) are the inverse
background density and temperature gradient lengths, respectively, and µ =
mspv

2
⊥/(2B) is the magnetic moment with v⊥ the velocity perpendicular to the

ambient magnetic field and the species mass msp. Qk is closely related to the
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turbulent gyro-center density and energy fluxes [99, 22, 64].
Energy dissipation Dk = D‖,k+Dv‖,k+D⊥,k is provided by numerical dissipation
in this work. The dissipation scheme applied in GKW is discussed in Ref. [25]
and consists of parallel dissipation

D‖,k = −Re
∑

sp

T0,sp

∫

ds

∫

d3v
ĥ∗sp,k
FM,sp

× Ds∆s
3

12

v‖,max,sp√
3

b · ∇s∂
4f̂sp,k
∂s4

, (8.13)

if ky 6= 0,

D‖,k = −Re
∑

sp

T0,sp

∫

ds

∫

d3v
ĥ∗sp,k
FM,sp

× Ds∆s
5

60

v‖,max,sp√
3

b · ∇s∂
6f̂sp,k
∂s6

, (8.14)

if ky = 0, parallel velocity space dissipation

Dv‖,k = −Re
∑

sp

T0,sp

∫

ds

∫

d3v
ĥ∗sp,k
FM,sp

×
Dv‖∆v‖

3

12

µmax,sp√
3msp

b · ∇B∂
4f̂sp,k
∂v‖4

(8.15)

and perpendicular dissipation

D⊥,k = −Re
∑

sp

T0,sp

∫

ds

∫

d3v
ĥ∗sp,k
FM,sp

× vth,i
R0

[

Dx

(
kx
kmax
x

)4

−Dy

(
ky
kmax
y

)4]

f̂sp,k.

(8.16)

Here, Ds, Dv‖ , Dx and Dy are dimensionless dissipation coefficients, v‖,max,sp and
µmax,sp is the maximum resolved parallel velocity and magnetic moment respect-
ively, kmax

x as well as kmax
y is the maximum resolved radial and binormal wave

vector respectively, and R0 is the major radius of the magnetic axis.
The transfer to twisted modes results from parallel streaming along unperturbed
field lines and can be recast into the form

Tk = −Re
∑

sp

T0,sp

∫

ds

∫

d3v v‖b · ∇s× ∂

∂s

[

f̂ ∗
sp,k

(
f̂sp,k
2FM,sp

+
Zspe

T0,sp
〈φ̂k〉ga,sp

)]

.

(8.17)

A finite Tk is the consequence of the shifted parallel boundary conditions [64].
This term is further discussed in Sec. 8.3.1.
The individual terms of the energy balance equation (8.5) are given in units of
ρ2th,iT0n0vth,i/R

3
0 throughout this chapter. For the nominal parameters the energy

balance Eq. (8.5) is well satisfied as shown exemplary for the modes k = (0, 0.22)
and k = (1.28, 0.22) in Fig. 8.1 and Fig. 8.2 respectively. In both cases the sum
∂tEk − Qk −Dk − Tk (gray line) agrees well with the net nonlinear transfer Nk

(violet dots).
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8.2.3 Radial electric field intensity diagnostic

The radial electric field intensity connected to the zonal potential is defined by

EZ = k2ZF|〈φ̂k〉|2, (8.18)

where the zonal potential reads

〈φ〉(x) = 1

Ly

∫

dy

∫

ds φ(x, y, s) (8.19)

=
∑

kZF

〈φ̂k〉(kZF)× exp[ikZF · (x− x0)], (8.20)

which defines the Fourier amplitude of the zonal potential 〈φ̂k〉 and the zonal
wave vector kZF. Throughout this work EZ is given in terms of T 2

0 /(e
2R2

0).
The evolution equation of the radial electric field intensity EZ follows from the
time derivative of the inverted and flux-surface averaged ky = 0 part of gyrokinetic
Poisson equation

∂〈φ̂k〉
∂t

= −
∫

ds
1

P
∑

sp

Zspe
2πB

msp

∫

dv‖

∫

dµ

[

J0(λsp)
∂ĝsp,k
∂t

]

k=(kZF,0)

, (8.21)

where

P =
∑

sp

n0,spZ
2
spe

2

T0,sp
[Γ0(bsp)− 1]. (8.22)

J0 (Γ0) is the zeroth order (modified) Bessel function of the first kind. The ar-
guments are defined by λ2sp = −ρ2sp∇2

⊥ and bsp = −0.5 × [mspvth,sp/(ZspeB)]2∇2
⊥,

with the species thermal velocity vth,sp = (2T0,sp/msp)
1/2 and the species Larmor

radius radius ρsp =
√

2mspµ/B/(e|Zsp|). Note that ∇⊥ denotes the component
of the gradient perpendicular to the equilibrium magnetic field.
As described in Ref. [139] the time derivative of the perturbed modified distribu-
tion function ∂tĝsp,k entering the right-hand side of Eq. (8.21) is substituted by
the individual terms on the right-hand side of the gyrokinetic equation. Finally,
Eq. (8.21) is multiplied by 2k2ZF〈φ̂k〉∗, where 〈φ̂k〉∗ denotes the complex conjugate

of 〈φ̂k〉, and is formally recast into the form

∂EZ
∂t

= R+M+ L, (8.23)

where R originates from the E × B-noninearity and is denoted by the Reynolds
stress, M results from the magnetic flutter nonlinearity and is referred to as
Maxwell stress, and L combines all linear terms of the gyrokinetic equation (for
more details see Sec. 7.2.3). The individual terms on the RHS of Eq. (8.23) are
given in units of vth,iT

2
0 /(e

2R3
0) in this chapter. Note that EZ is a positive definit
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quantity that provides information about the intensity (amplitude) of the zonal
potential 〈φ̂k〉 of the mode k = (kZF, 0). A positive (negative) sign of the RHS
terms of Eq. (8.23), hence, corresponds to the increase (decrease) of the modes
intensity.
The self-interaction mechanism is a nonlinear effect that enters the evolution
of the radial electric field intensity through R and M. The contribution of
individual non-zonal (ky 6= 0) modes to the Reynolds stress can be isolated by
exploiting the hermitian symmetry of the spectrum. A kZF-k′y-spectrum of the
nonlinear stresses, i. e., R(kZF, k

′
y) and M(kZF, k

′
y), is obtained by substituting

[

J0(λsp)
∂ĝsp,k
∂t

]

k=(kZF,0)

= −2k′ykZFExyJ0(λsp)×
∑

k′x

χ̂sp,k′ ĝ∗sp,k′−kZ
(8.24)

into Eq. (8.21), where kZ = (kZF, 0). Note that k′ and k distinguish between the
nonlinearly interacting non-zonal modes (with prime) and the generated zonal
mode (without prime). At fixed k′y the nonlinear interaction of modes with radial
wave vectors separated by the zonal wave vector kZF, i. e., k′x and k′x − kZF,
contribute to the nonlinear evolution of EZ at kZF only. This requirement is
equivalent to the wave vector matching rule [Eq. (8.7)] introduced in Sec. 8.2.2
and represents the interaction of a turbulent mode and a sideband mode. Note
that the Reynolds stress R relates to the electrostatic potential part of χ̂sp,k′

(see Sec. 8.2.2 for a definition of this quantity) and is considered exclusively
throughout this chapter. Due to the small β chosen in this chapter, the Maxwell
stress M related to the parallel vector potential part of χ̂sp,k′ is negligible.
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Figure 8.1: Time trace of individual terms of the energy balance Eq. (8.5) for
the maximum transport driving mode k = (0, 0.22) and nominal parameters.
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Figure 8.2: Time trace of individual terms of the energy balance Eq. (8.5) for the
first order connection of the maximum transport driving mode k = (1.24, 0.22)
and nominal parameters.

8.3 Numerical results

8.3.1 Definition of the extended mode and generation of

twisted modes

This section aims for an energetics description of the excitation of twisted modes,
which represents the basis for the nonlinear self-interaction mechanism.
Passing electron dynamics can result in extended modes with a parallel cor-
relation length of multiple poloidal turns [19, 83, 85]. In the present local
fluxtube description the parallel extent of the simulation domain, however,
is limited to one poloidal turn s ∈ [−0.5, 0.5]. As a result, at the parallel
boundaries s = ±0.5, an extended mode is therefore mapped back into the
simulation domain according to shifted periodic parallel boundary conditions
f̂k(kx, ky, s = ±0.5) = f̂k(kx ±∆kx, ky, s = ∓0.5), with the radial wave vector
shift [1]

∆kx = ky
q0ŝ0
ǫ0

(8.25)

accounting for the twist of the mode due to the sheared background magnetic
field. As a consequence of the extended mode structure, a central (perpendic-
ular) mode k0 = (kx, ky) may correlate with its twisted (perpendicular) modes
k±n = (kx ± n ·∆kx, ky), where the order n specifies the number of poloidal
turns the extended mode is correlated over. Below, the modes k±n will also
be referred to as ±n-th order connection of the central mode k0. Note that in the
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(kx, ky) Nk NSI
k Qk Dk Tk Ek

(0, 0.22) −17.790 −0.144 21.042 −0.925 −2.347 34.337
(+1.24, 0.22) −0.758 −0.113 0.052 −0.430 1.136 1.125
(−1.24, 0.22) −0.682 −0.1 0.045 −0.418 1.050 1.068
(+2.47, 0.22) 0.136 −0.016 0.002 −0.203 0.062 0.281
(−2.47, 0.22) 0.153 −0.017 0.001 −0.203 0.059 0.280
∑ −18.940 −0.388 21.142 −2.179 −0.039 37.091

Table 8.1: Individual terms of the energy balance Eq. (8.5) temporally averaged
over the stationary state, for various perpendicular modes (kx, ky) of the same
extended mode with central mode k0 = (0, 0.22) and for nominal parameters.
The last row specifies the sum over the individual perpendicular modes of the
extended mode.

local description the extended mode is defined as the complete set composed of
the central (perpendicular) mode k0 and its twisted (perpendicular) modes k±n.
The term Tk of the energy balance Eq. (8.5) describes the conservative transfer of
generalized energy from the central mode k0 to the parallel connected modes k±n

within an extended mode and is further elucidated through solving the s-integral
in Eq. (8.17) explicitly

T ′
k = −Re

∑

sp

T0,sp

∫

d3v v‖b · ∇s×
[

f̂ ∗
sp,k

(
f̂sp,k
2FM,sp

+
Zspe

T0,sp
〈φ̂k〉ga,sp

)]s=+0.5

s=−0.5

.

(8.26)

Note that
∫
ds and b · ∇sd2v = 2πBb · ∇sdµdv‖ commute, since Bb · ∇s is

constant with respect to s. Due to the shifted parallel boundary conditions, the
evaluation of the integrand of T ′

k0
at the upper boundary s = +0.5 agrees with

the evaluation of T ′
k+1

at the lower boundary s = −0.5 (and analogously for T ′
k0

at s = −0.5 and T ′
k−1

at s = +0.5). The net energy transfer Tk0
with respect

to mode k0 is, hence, compensated by T ′
k±1

. The above calculation highlights
that a central mode k0 and its twisted modes k±n are directly correlated as a
consequence of the spreading of energy along the field line.
Fig. 8.3 demonstrates the generation of twisted modes through the transfer of
energy out of modes with kx ≈ 0 (Tk < 0) into modes with radial wave vector kx ≈
±n ·∆kx (Tk > 0) for the nominal parameters. In the considered ITG turbulence
the spectrum of the turbulent electrostatic heat flux Qes,k = Qes,i,k +Qes,e,k (and
also the energy source Qk), where

Qes,sp,k = 2kyExy
∫

d3v
mspv

2

2
Im[〈φ̂k〉∗ga,spf̂sp,k] (8.27)
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and Im[G] denotes the imaginary part of the complex quantity G, has its max-
imum at k = (0, 0.22) in agreement with previous studies [22, 65]. This mode
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Figure 8.3: Transfer to twisted modes Tk against kx and ky averaged over the
stationary state and for nominal parameters. The white ×-symbol depicts the
maximum transport driving mode k = (0, 0.22), black ×-symbols and gray +-
symbols its first and second order connections over the parallel boundary. Black
and gray dotted lines depict kx = ±n · ∆kx [Eq. (8.25)] with n = 1 and n = 2
respectively.

(white ×-symbol in Fig. 8.3) transfers Tk(0, 0.22) = −2.35 to its twisted modes.
The first order connections (black ×-symbols) receive Tk(1.24, 0.22) = 1.14 and
Tk(−1.24, 0.22) = 1.05 and the second order connections (gray +-symbols) re-
ceive Tk(2.47, 0.22) = 0.06 and Tk(−2.47, 0.22) = 0.06. In agreement with
Ref. [84] first order connections are dominant. Despite being much smaller, cor-
relations to second order connections, however, do exist, demonstrating that ex-
tended ITG driven modes indeed correlate over multiple poloidal turns.
In the case of the maximum transport driving mode k = (0, 0.22) the energy
injection is provided by the energy source Qk (see Fig. 8.1 and Tab. 8.1), as ex-
pected for an unstable ITG driven mode [74, 22, 63]. The energy source is mainly
balanced by a negative net nonlinear transfer Nk. However, since the transfer Tk
has a magnitude of roughly 11 % of the energy source Qk, the transfer to parallel
connected modes represents a non-negligible contribution to the energy balance.
Energy dissipation balances roughly 4 % of the energy injection.
The first order twisted modes k±1 = (±1.28, 0.22), in turn, are dominantly driven
through Tk (see Fig. 8.2 and Tab. 8.1). As part of the perpendicular wave vector
spectrum in the local approach, twisted modes are, therefore, directly excited by
unstable ITG modes through the spreading of energy within an extended mode.
Both the nonlinear transfer Nk and energy dissipation Dk contribute similarly to
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the energy balance.
From a global point of view the central unstable ITG driven mode k0 = (0, 0.22)
and its twisted modes k±1 = (±1.24, 0.22) as well as k±2 = (±2.47, 0.22) rep-
resent one extended mode. The nonlinear transfer and dissipation of free energy
connected to the twisted modes, therefore, directly add to the saturation of the
central unstable ITG driven mode. This is outlined in the last row of Tab. 8.1,
which summarizes terms of the energy balance summed over the individual modes
of the same extended mode. While twisted modes constitute only a small con-
tribution to the drive Qk of the entire extended mode (< 1 %), they make up
58 % of the energy dissipation. The nonlinear transfer summed over the twisted
modes represent 6 % of the total net nonlinear transfer with respect to the ex-
tended mode. The nonlinear saturation of the extended mode, hence, is mostly
determined by nonlinear processes involving the central mode.

8.3.2 Nonlinear self-interaction

Having established the energetics behind the twisted mode generation in
Sec. 8.3.1, now the nonlinear self-interaction is focused on. First, this section
introduces the wave vector triplets connected to the nonlinear self-interaction.
Then, the SI mediated energy transfer is compared to the total net nonlinear
energy transfer to obtain a measure of the direct influence of the self-interaction
on the nonlinear saturation processes in ITG driven turbulence.

Self-interaction triplets

As discussed in Sec. 8.3.1 a central unstable ITG mode with a wave vector
k0 = (kx, ky) correlates with the twisted modes ka±n = (−kx ∓ n · ∆kx, −ky)
and kb±n = (kx ± n · ∆kx, ky). Note that the reality of physical quantities such

as the distribution function f requires f̂k = f̂ ∗
−k. A perturbation of the central

unstable ITG driven mode f̂k0
, therefore, determines the mirror mode f̂−k0

= f̂ ∗
k0

entirely. Any wave vector combination of ±k0 with (±n ·∆kx, 0), where n being
an integer, labels a valid mode within the same extended mode.
Although, ±k0 and its twisted modes k

a/b
±n are parts of the same extended mode

structure, in the local approach they are treated as independent modes. This
pertains especially to the evaluation of the E × B-nonlinearity, which allows for
their nonlinear interaction —referred to as self-interaction [1].

Any combination of two modes out of the set [±k0; k
a/b
±n ] forms a valid nonlinear

self-interaction triplet defined by the matching rule Eq. (8.7). Since the cent-
ral ITG unstable mode k0 usually has the largest amplitude (see last column of
Tab. 8.1), self-interaction triplets including k0 are particularly strong and will be
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explicitly defined below.
The central unstable ITG mode and its twisted modes form triplets with two
classes of modes kaSI,±n = (±n ·∆kx, 0) and kbSI,±n = (−2kx ∓ n ·∆kx,−2ky) ac-
cording to the wave vector matching rule Eq. (8.7):

k0 + ka±n + kaSI,±n = 0 (8.28)

k0 + kb±n + kbSI,±n = 0 (8.29)

The modes kaSI,±n and kbSI,±n will also be denoted by matching modes throughout
this work. The tripplet Eq. (8.28) describes the interaction with a toroidally
symmetric ky = 0 (sometimes referred to as zonal) mode as already discussed in
Refs. [64, 1]. Note that the resulting zonal matching mode kaSI,±n is independent
of the radial wave vector kx of the central mode. At fixed ky all unstable ITG
driven modes, i. e., independent of kx, drive the same zonal modes with zonal
wave vector kZ = (±n · ∆kx, 0). Hereafter, such modes will be referred to as
self-interaction driven zonal modes.
Exploiting the symmetry properties of the symmetrized nonlinear transfer
function [Eq. (8.8)] allows for the quantification of the detailed triplet energy
balance [Eq. (8.10)] through the graph of Sk

q,p as function of k at fixed q

[see Fig. 8.4 for q = (0, 0.22)]. The triplets connected to the nonlinear
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Figure 8.4: Symmetrized nonlinear transfer function Sk
q,p|k with fixed q =

(0, 0.22) (black ×-symbol) and as function of k. Arrows indicate the triplets
k0 +ka+1+kaSI,+1 = 0 (black solid), k0 +kb−1 +kbSI,−1 = 0 (gray solid), k0 +ka+2+
kaSI,+2 = 0 (black dashed) and k0 + kb−2 + kbSI,−2 = 0 (gray dashed) connected to
the self-interaction of the central mode k0 = (0, 0.22) ↔ q. The violet dotted
arrow indicates the sideband mode kS = (−1.67,−0.22) ↔ k generated through
the nonlinear interaction of the central unstable ITG mode k0 ↔ q with the
zonal mode kZ = (1.67, 0) ↔ p (see also the discussion in Sec. 8.3.3).
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Figure 8.5: (A)-(E): Detailed energy balance of triplets connected to the non-
linear self-interaction mechanism of a central unstable ITG mode k0 = (0, 0.22)
with (A) ka±1 = (∓1.24, −0.22) as well as kaSI,±1 = (±1.24, 0), (B) ka±2 =
(∓2.47, −0.22) as well as kaSI,±2 = (±2.47, 0), (C) kb±1 = (±1.24, 0.22)
as well as kbSI,±2 = (∓1.28, 0.43) and (D) kb±2 = (±2.47, 0.22) as well as
kbSI,±2 = (∓2.47, 0.43). The numbers specify values of the symmetrized transfer
function Sk

q,p with k given by the wave vector the respective arrow is pointing
to/away from. The sign and direction of the arrow indicate, if energy is removed
from (negative) or injected into (positive) the mode through the nonlinear inter-
action with the remaining two modes. (E): Detailed energy balance for a triplet
of the unstable ITG mode kITG = (0, 0.22) with a zonal mode kZ = (±0.08, 0)
and the sidebands kS = (∓0.08,−0.22).

self-interaction involving the central mode k0 = (0, 0.22) ↔ q [Eq. (8.28) and
(8.29)] are indicated by black and gray arrows respectively.1 Solid arrows depict
first order (n = 1) self-interaction triplets, while dashed arrows correspond to
second order (n = 2) self-interactions. Note that for visibility reasons only one of
the two (sign-) combinations per triplet is depicted. The self-interaction triplets
stand out due to the relatively small contributions of Sk

q,p for modes k in the
vicinity of such triplets. It is also evident that the self-interaction with first
order twisted modes dominate over interactions with higher order (here second
order) twisted modes.
In addition, a schematic summary of the detailed energy balance of the self-
interaction triplets (summed over both signs) is depicted in Fig. 8.5. Energy
is removed from the central ITG unstable mode k0 = (0, 0.22) by all possible

triplet interactions. Also from the respective twisted modes k
a/b
±n energy is

removed. The self-interaction mechanism, hence, directly adds to the nonlinear
saturation of the extended mode. Since the nonlinear transfer is conservative,
the matching modes, in turn, k

a/b
SI,±n gain energy. This finding is consistent with

the drive of zonal structures through self-interaction [64, 1], which is represented
by panels (A) and (B) in Fig. 8.5. It is emphasized that in the cases (A), (B)
and (C) roughly two thirds of the energy gain is provided by the twisted mode.

1Here, the notation ′k0 ↔ q′ means that the mode q in the symmetrized transfer function
is substituted by k0 and is applied analogously to q and k.
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Furthermore, the self-interaction drive of zonal structures [panels (A) and (B)]
represents the dominant triplet interaction.

Self-interaction mediated nonlinear transfer of generalized energy

The nonlinear dynamics of a mode k is determined by the sum of all nonlinear
triplet interactions satisfying the matching condition [112], as expressed through
the net nonlinear transfer Nk [Eq. (8.6)]. Insight into the contribution of indi-
vidual triplet interactions to the net nonlinear transfer with respect to the mode
k is obtained by the graph of Sk

q,p as function of q at fixed k [see Fig. 8.6 for
k = (0, 0.22)].
The contribution of the above discussed self-interaction triplets to the net non-
linear transfer is negligibly small (see black and gray arrows). Instead, dominant
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Figure 8.6: Symmetrized nonlinear transfer function Sk
q,p|k with fixed k =

(0, 0.22) (black ×-symbol) and as function of q and averaged over the sta-
tionary state for nominal parameters. Black and gray arrows depict the same
self-interaction triplets as described in the caption of Fig. 8.4 with k0 ↔ k. Ana-
logously, the violet dotted arrow indicates the sideband mode kS ↔ q generated
through the nonlinear interaction of the unstable ITG mode k0 ↔ k with the
zonal mode kZ ↔ p.

band structures at qy = 0 and qy = −0.22 and |qx| < 1.0 occur, demonstrating
a significant anisotropic nonlinear transfer of generalized energy. The connected
triplets represent nonlinear interactions of the considered ITG mode with zonal
flows, which are known to dominate the nonlinear saturation of ITG driven tur-
bulence [22, 63, 66]. This process is characterized by the transfer of free energy
to larger radial wave vector regions (at fixed ky) through zonal flow shearing [22],
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thereby allowing for the effective transfer to stable Eigenmodes [74, 63, 65].
The self-interaction mediated nonlinear transfer with respect to mode k can be
formally defined by

NSI
k =

∑

q∈ΩSI

Sk
q,−k−q, (8.30)

where ΩSI denotes the subset of modes (wave vectors) related to any valid
self-interaction triplet. For example in the case of k ↔ k0, q runs both over the
twisted modes and the matching modes of the individual self-interaction triplets
defined in Eq. (8.28) and Eq. (8.29). In the case of the maximum transport
driving mode k = (0, 0.22) one finds NSI

k /Nk = 0.81 %. The direct contribution
of the self-interaction to the nonlinear saturation of the maximum transport
driving mode, hence, is negligible.
As discussed in Sec. 8.3.1 the central unstable ITG driven mode and its twisted
modes represent the same extended mode. A proper evaluation of the role of self-
interaction, hence, requires the inclusion of the twisted modes into the nonlinear
transfer considerations. Fig. 8.7 and Fig. 8.8 depict Sk

q,p as function of q at fixed
first order k = (−1.24, −0.22) and second order k = (−2.47, −0.22) twisted
mode, respectively, along with the self-interaction triplets (black solid and gray
dashed arrows) involving the central unstable ITG mode k0 = (0, ±0.22) only.
Clearly, self-interaction mediated nonlinear transfer constitutes a non-negligible
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Figure 8.7: Symmetrized nonlinear transfer function Sk
q,p|k with fixed k =

(−1.24, −0.22) (black ×-symbol) and as function of q and averaged over the
stationary state for nominal parameters. Black solid and gray dashed arrows
depict the self-interaction triplets involving the central mode k0+ka+1+kaSI,+1 = 0
[k0 = (0, 0.22), ka+1 ↔ k] and k0 + kb+1 + kbSI,+1 = 0 [k0 = (0, −0.22), kb+1 ↔ k],
respectively. Black dotted arrows indicate a triplet involving two twisted modes
ka+1 + kb−1 + kaSI,+2 = 0, with ka+1 ↔ k and kb−1, k

a
SI,+2 ↔ q, p.
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Figure 8.8: Symmetrized nonlinear transfer function Sk
q,p|k with fixed k =

(−2.47, −0.22) (black ×-symbol) and as function of q and averaged over the
stationary state for nominal parameters. Black and gray arrows depict the self-
interaction triplets k0 + ka+2 + kaSI,+2 = 0 [k0 = (0, 0.22), ka+2 ↔ k] and k0 +
kb+2 + kbSI,+2 = 0 [k0 = (0, −0.22), kb+2 ↔ k], respectively.

contribution to the net nonlinear transfer of the twisted modes. Especially,
the excitation of zonal modes through the self-interaction with the central
mode (black solid arrows) exhibits a strong contribution. In the case of first
order twisted mode (Fig. 8.7) the SI mediated nonlinear transfer NSI

k represents
roughly 15 % of the net nonlinear transfer Nk (see Tab. 8.1). Note that in
determining NSI

k all possible self-interaction triplets have been considered, i. e.,
not only the self-interaction of the considered twisted mode with the central
mode ±k0. The self-interaction of different order twisted modes within the same
extended mode is included as well. The contribution of such triplets (see black
dotted arrows in Fig. 8.7 for one exemplary triplet), however, is small.
The relevance of self-interaction for the nonlinear saturation of the global exten-
ded mode can be quantified by summing both Nk and NSI

k over all perpendicular
modes within the extended mode structure, i. e., k running over the central
mode and all order twisted modes (see penultimate row of Tab. 8.1). In this
case self-interaction mediated nonlinear transfer constitutes approximately 2 %
of the total net nonlinear transfer. Even when considering the entire extended
mode, the influence of nonlinear self-interaction on the nonlinear saturation is
found to be relatively small.
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N

U
M

E
R

IC
A

L
R

E
S
U

L
T

S

(kx, ky) Nk NSI
k ηSIk [%] NZ

k NZ,SI
k Qk Dk Tk Qes,k ntriplet nSI

triplet

(0, 0.07) +0.157 +0.051 32.69 −1.364 −0.018 3.820 −3.959 −0.014 1.110 42006 816
(0, 0.14) −10.861 −0.174 1.60 −6.099 −0.117 13.895 −2.859 −0.012 4.026 21315 216
(0, 0.22) −18.940 −0.388 2.05 −10.464 −0.227 21.142 −2.179 −0.389 6.137 12340 60
(0, 0.29) −12.036 −0.194 1.62 −6.008 −0.159 13.726 −1.676 −0.040 3.963 10905 60
(0, 0.36) −5.853 −0.057 0.97 −2.533 −0.091 6.765 −0.792 −0.109 1.964 7158 20
(0, 0.43) −2.243 −0.031 1.38 −1.084 −0.050 2.930 −0.623 −0.060 0.842 6609 20
(0, 0.5) −0.559 −0.001 0.21 −0.358 −0.027 1.180 −0.579 −0.056 0.339 6080 20
(0.08, 0.22) −14.614 −0.302 2.07 −7.427 −0.172 16.442 −1.991 −0.148 4.757 12302 60
(0.16, 0.22) −8.384 −0.159 1.89 −2.604 −0.129 10.009 −1.669 0.092 2.860 12264 64
(0.25, 0.22) −3.484 −0.043 1.23 +0.587 −0.066 4.897 −1.358 −0.032 1.395 12226 64
(0.33, 0.22) −0.752 −0.008 1.05 +1.808 −0.046 2.219 −1.441 −0.027 0.628 13782 84
(0.41, 0.22) +0.158 +0.003 1.07 +2.360 −0.043 1.268 −1.365 −0.064 0.358 13782 84

Table 8.2: Total net nonlinear transfer Nk, self-interaction mediated nonlinear transfer NSI
k , the fraction ηSIk = NSI

k /Nk,
zonal flow mediated nonlinear transfer NZ

k , self-interaction driven zonal flow mediated transfer NZ,SI
k , energy source Qk,

energy dissipation Dk, transfer to twisted modes Tk and electrostatic heat flux Qes,k summed over the extended mode
with central mode k0 specified by (kx, ky). Also given is the total number of possible nonlinear triplet interactions ntriplet

the extended mode can participate in and the contained subset of self-interaction triplets nSI
triplet.
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The analysis presented above concentrates on the extended mode with the
maximum transport driving mode k = (0, 0.22) being the central mode
exclusively. In order to generalize the above finding a comparison of the total
net nonlinear transfer and the self-interaction mediated transfer, summed over
the entire extended mode, is repeated for two subset of central modes (see
Tab. 8.2): (i) The binormal wave vector ky is varied at fixed radial wave vector
kx = 0. (ii) The radial wave vector kx is varied at fixed binormal wave vector
ky = 0.22. These subsets cover the region in the perpendicular wave vector space
that contributes most to the turbulent heat flux (see tenth column of Tab. 8.2).
In general, the magnitude of the net nonlinear transfer Nk is largest for the
maximum transport driving mode and decreases with both de- and increasing
binormal wave vector ky and with increasing radial wave vector kx. This
behavior follows closely, and thereby balances, the spectral dependency of the
positive energy source Qk. As two exceptions, the modes k = (0, 0.07) and
k = (0.41, 0.22) exhibit a positive nonlinear transfer that balances the negative
dissipation dominated sum Qk +Dk + Tk. In most of the cases, i. e., excluding
the two exceptions above, the self-interaction mediated nonlinear transfer NSI

k

is negative and, hence, contributes to the nonlinear saturation of the respective
extended mode. In agreement with the analysis above NSI

k /Nk ≈ 1 ∼ 2 %
mostly, confirming that the influence of self-interaction, indeed, is relatively
small for a larger class of extended modes.
The mode with the smallest binormal wave vector k = (0, 0.07) repres-
ents an exception, since the self-interaction mechanism appears to be strong
(NSI

k /Nk ≈ 33 %) and, therefore, deserves further discussion. For this purpose
individual quantities summarized in Tab. 8.2 are broken down into the contribu-
tions of individual modes within the extended mode (see Fig. 8.9). The small
positive net nonlinear transfer Nk given in Tab. 8.2 result from the balance of a
strong negative nonlinear transfer out of the central mode as well as the first order
twisted modes (|n| ≤ 1) and a strong cumulative positive nonlinear excitation of
higher order twisted modes (|n| ≥ 2). Furthermore, the self-interaction mediated
nonlinear transfer NSI

k is negligible except for |n| ≤ 1. In these cases, the first
order self-interaction triplets which involve a zonal mode [Eq. (8.28) with n = 1]
constitute a nonlinear transfer of +0.066 (NSI

k=(−0.41, −0.07) = 0.054; n = +1),

−0.143 (NSI
k=(0, 0.07) = −0.184; n = 0) and +0.099 (NSI

k=(+0.41, −0.07) = 0.071;

n = −1). As given in parentheses, the SI-mediated transfer summed over all
possible self-interaction triads is comparable to the transfer connected to the
first order SI-triplet involving zonal modes only. Hence, NSI

k shown in the top
panel of Fig. 8.9 is dominated by this coupling process. This is also confirmed
by the graph of Sk

q,p at fixed k = (−0.41, −0.07) (see Fig. 8.10). The SI-triplet
involving a zonal mode (black arrows) clearly dominates.
Having kx = ±0.41, the first order twisted modes n = ±1 lie within a radial
wave vector range where zonal flow shearing has a large influence on the
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Figure 8.9: Several energetics terms (see caption of Tab. 8.2 for more details) as
function of the order n of individual perpendicular modes of the same extended
mode. The central mode (n = 0) is k0 = (0, 0.07).

nonlinear transfer of energy (see discussion in Sec. 8.3.3). In addition, as
shown in Figs. 8.5, 8.7 and 8.8, self-interaction usually removes energy from
the twisted modes, while here the first order twisted modes are clearly driven
as demonstrated by the postivie NSI

k for n = ±1 in the top panel of Fig. 8.9.
Hence, the negative SI mediated transfer out of the central mode (n = 0) and
the positive SI mediated transfer into the first order twisted modes (n = ±1) is
interpreted as a zonal flow shearing process. Within a shearing process most of
the energy is typically transferred from the central mode to the twisted modes
[22, 66], also referred to as sidebands. As a result, the nonlinear transfer balances
when summing over n = −1, 0, +1. The large fraction NSI

k /Nk ≈ 33 % is,
therefore, flawed in the case of k = (0, 0.07) and instead the self-interaction is
found not to play a significant role.

At least three arguments can be invoked to explain the general outcome of this
section that self-interaction plays only a minor role in the considered ITG driven
turbulence: (i) Self-interaction triplets represent only a small (discrete) subset
of possible triad interactions. For example, the extended mode with central
mode k0 = (0, 0.22) is susceptible to a total number of 12340 nonlinear triplet
interactions representable by the numerical grid. Only 60 of which are related to
self-interaction. This pertains to a larger class of extended modes as summarized
in the last two columns of Tab. 8.2. (ii) Based on amplitude arguments only a
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small fraction of self-interaction triplets exhibit a significant contribution to the
net nonlinear transfer; —that are self-interactions involving the central mode and
lower order twisted modes. Self-interaction processes involving the central mode
and higher order twisted modes (see Fig. 8.4 and discussion) or twisted modes
only (see Fig. 8.7 and discussion), in turn, are in general relatively weak. This
is interpreted to result from the small amplitudes of twisted modes compared to
the central mode (see last row of Tab. 8.1). (iii) Free energy transfer mediated
by zonal flows is the preferred transfer channel in ITG driven turbulence (see
Fig. 8.4 and Sec. 8.3.3). Nonlinear transfer due to interactions with (mesoscale)
ZFs typically dominates over the transfer related to self-interaction.

8.3.3 Role of self-interaction driven zonal structures for the

nonlinear transfer of generalized energy

One consequence of the self-interaction mechanism is the generation of zonal
structures [64, 1] (see also Sec. 8.3.2). Being manifest as fine scale structures in
the radial electric field shear [83, 1, 84], such zonal structures may contribute
to the zonal flow mediated saturation of ITG driven turbulence [22, 63, 65, 66].
This section aims for a clarification of the role of self-interaction driven zonal
structures for the nonlinear transfer of generalized energy.
The zonal flow enters the gyrokinetic equation (and the energy balance) through
the E × B-nonlinearity in form of the E ×B-drift

vZF =
∇x× b

B

∂〈〈φ〉〉ga,sp
∂x

(8.31)

connected to the zonal part of the radial electric field 〈Ex〉 = −∂x〈φ〉. In Sec. 8.3.3
the role of self-interaction for the generation of structures in the zonal part of the
radial electric field is discussed through the application of the zonal electric field
intensity diagnostic (see Sec. 8.2.3). Then, the zonal flow mediated nonlinear
transfer of generalized energy is discussed in Sec. 8.3.3.

Self-interaction drive of zonal structures in the radial electric field

In this section the radial electric field intensity diagnostic (see Sec. 8.2.3) is util-
ized to study the generation of zonal structures in the radial electric field. The
SI mechanism acts through the nonlinearity which is composed of the electro-
static Reynolds stress transfer R (E × B nonlinearity) and the electromagnetic
Maxwell stress transfer M (magnetic flutter nonlinearity). The latter arises due
to perturbations in the parallel vector potential A‖ being present at finite values
of the normalized plasma pressure and can be neglected for the small plasma β
chosen in this chapter.
Clear signatures of the self-interaction drive can be identified in the spectrum
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Figure 8.10: Symmetrized nonlinear transfer function Sk
q,p|k with fixed k =

(−0.41, −0.07) (black ×-symbol) as function of q and averaged over the sta-
tionary state for nominal parameters. Black and gray arrows depict first order
self-interaction triplets with the central mode k0 = (0, ±0.07).

R(kZF, k
′
y) (see Fig. 8.11): Discrete positive peaks occur at wave vector com-

binations that are susceptible to self-interaction (black symbols highlight mode
combinations involving different order connections), as they satisfy the matching
condition

ksiZF = n ·∆kx(k′,match
y ). (8.32)

The above expression in combination with Eq. (8.25) defines the SI-driven zonal
modes ksiZF and the corresponding matching modes kmatch

y .
For certain ksiZF the Reynolds stress resulting from the self-interaction with higher

order connections (n ≥ 2) can dominate the drive. Consider, for example, the
zonal mode with wave vector ksiZF = 2.47 (fourth vertical stripe viewed from left
in Fig. 8.11). It is driven by the self-interaction of k′y = 0.07 with its 6th-order
connection (diamond), k′y = 0.14 with its 3th-order connection (circle), k′y = 0.22
with its second order connection (× symbol) and k′y = 0.43 with its first order
connection (+ symbol). The Reynolds stress connected to the penultimate self-
interaction process (second order, × symbol) exceeds the stress due to the last
self-interaction (first order, + symbol).
The cumulative effect of self-interactions of different order may explain the com-
position of the spectrum of the E ×B shearing rate

|〈ω̂ExB〉kZF| =
2k2ZF
B0

|〈φ̂k〉(kZF)|, (8.33)

shown in Fig. 8.12. The shear carried by the zonal modes with ksiZF = 1.65 and
ksiZF = 2.47, which are subject to multiple self-interactions of different order, is re-
latively stronger than the shear in the adjacent modes ksiZF = 1.24 and ksiZF = 2.24.
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Figure 8.11: Reynolds stress R as function of kZF and k′y temporally averaged
over the stationary state and for nominal parameters. Black symbols highlight
mode combinations that are susceptible to self-interaction involving first- (+),
second- (×), third- (circles), fourth- (squares), fifth- (triangles) and sixth- (dia-
monds) order connections.
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Figure 8.12: Time averaged E ×B shearing rate |〈ω̂ExB〉kZF| as function of the
zonal flow wave vector kZF. Vertical dotted lines depict self-interaction driven
zonal modes ksiZF.
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While the drive through SI dominates the radial electric field excitation at re-
latively small scales, the spectral contributions to the Reynolds stress that are
not susceptible to self-interaction, i. e., kZF 6= n · ∆kx(k′y), peaks in the interval
0 < kZF . 0.75 and 0 < ky . 0.75 (see Fig. 8.11). Furthermore, in contrast to
the SI mediated Reynolds stress having a discrete spectrum, the Reynolds stress
that is not related to SI exhibits a continuous spectrum. Both observations high-
light the difference of the underlying physical mechanisms, which will be further
elaborated on below through an energetics consideration.
Note that the nonlinear energy transfer within triplets involving zonal modes
differ between SI and non-SI driven zonal modes as shown in Fig. 8.4 and pan-
els (A) and (E) of Fig. 8.5. For example, in the case of the box scale zonal
mode kZ = (−0.08, 0) the sideband kS = (0.08, −0.22), necessary to couple the
zonal mode to the maximum transport driving mode kITG = (0, 0.22) through
kITG+kZ+kS = 0, is nonlinearly excited by the interaction of kITG and kZ , i. e.,
SkS

kZ ,kITG
> 0. Physically, the nonlinear generation of the sideband mode reflects

the shearing of the turbulent mode by the zonal flow [72, 73] and is at the basis
of the modulational instability [33, 34, 35, 46, 36, 37, 40].
In the case of the SI-driven zonal mode kZ = (−1.24, 0) the twisted mode
kT = (−1.24, −0.22) plays the role of the sideband mode in the nonlinear coup-
ling process kITG + kZ + kT = 0. However, energy is removed nonlinearly from
the twisted mode, i. e., SkT

kZ ,kITG
< 0, within this triple. A nonlinear generation

of the sideband, i. e., the zonal flow shearing process, does, therefore, not occur.
The difference between the zonal mode generation through SI and non-SI, hence,
is based on a difference in the sideband generation: In the case of SI, sidebands
result from the twisted mode generation through parallel streaming, while in the
case of non-SI it is a consequence of the shearing of turbulent modes by the zonal
flow.
To proceed, the net Reynolds stress Rtot(kZF) =

∑

k′y
R(kZF, k

′
y) with respect to

the zonal mode kZF is split into contributions from modes contributing to the SI
RSI(k

si
ZF) =

∑

k′,match
y

R(ksiZF, k
′,match
y ) and the residual Rres = Rtot − RSI. Note

that at fixed ksiZF multiple matching modes are possible due to the self-interaction
with higher order connections as discussed above. The decomposition of R al-
lows for the evaluation of the relative importance of the SI for the drive of zonal
structures in the radial electric field.
SI is found to dominate the electric field generation for kZF ≥ 0.82 (see Fig. 8.13).
Although the zonal mode with kZF = 0.41 is susceptible to SI, the Reynolds stress
not related to SI significantly exceeds the SI drive. Hence, SI plays only a neg-
ligible role for the generation of zonal modes with kZF < 0.82 for the nominal
parameters. This finding may be interpreted as follows:
(i) The zonal mode kZF = 0.41 is subject to one self-interaction only, namely
the interaction of k = (0, 0.07) with its first order twisted mode (see Fig. 8.11).
Hence, it does not benefit from multiple self-interactions of higher order connec-
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Figure 8.13: Total (k′y summed) Reynolds stress Rtot (blue +-symbols), Reyn-
olds stress due to self-interaction RSI (orange ×-symbols) as well as the residual
Rres (violet stars) as function of kZF temporally averaged over the stationary state
and for nominal parameters.

tions.
(ii) Motivated by its definition [Eq. (8.24)], the Reynolds stress transfer may be
roughly approximated (neglecting gyro-average effects) by R ∼ kZFk

′
yφ̂kS

φ̂∗
k0

∼
kZFk

′
yC|φ̂k0

|2, where φ̂kS
is the potential perturbation of the sideband kS =

(kZF, k
′
y), φ̂k0

denotes the potential perturbation of the central mode k0 = (0, k′y)
and C is a coefficient describing the correlation between the central mode and
the twisted mode. Note that the expression after the second ′ ∼ ′ symbol relates
to the self-interaction, since φ̂kS

is taken to be a twisted mode of the central

mode φ̂k0
. The small self-interaction drive at kZF = 0.41 may then relate to the

dependence of R on k′y and kZF, both being minimal. In addition, the spectrum

of
∫
ds

∑

kx
|φ̂k(kx, k

′
y, s)|2 peaks at k′y = 0.22 (not shown) and is found to decay

for smaller k′y. In summary, the generation of zonal structures by self-interaction,
hence, can be assumed to be small in case of the smallest k′y.

Zonal flow mediated nonlinear transfer of generalized energy

This section investigates the zonal flow mediated nonlinear transfer of generalized
energy. It aims to clarify whether SI-driven zonal structures contribute to the
zonal flow mediated transfer and, thereby, add to the nonlinear saturation of ITG
driven turbulence.
The nonlinear interaction of a mode k = (kx, ky) with a zonal mode kZ = (kZF, 0)
involves the coupling to a sideband kS = (−kx − kZF, −ky) consistent with the
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wave vector matching rule k + kZ + kS = 0. The net nonlinear transfer with
respect to the mode k due to the coupling to a zonal mode then reads [see
Eq. (8.6)]

NkZ

k = Sk
kZ ,kS

+ Sk
kS ,kZ

. (8.34)

In the case of the maximum transport driving mode k = (0, 0.22) the first term
on the right-hand side of the expression above represents the horizontal band
with qy = 0 in Fig. 8.6, while the second term corresponds to the band with
qy = −0.22.
Consistent with previous studies [22, 65, 66] nonlinear couplings with the zonal
mode predominantly extract energy from the maximum transport driving mode
(see Fig. 8.14). Here, the net nonlinear transfer due to zonal couplings

−3 −2 −1 0 1 2 3

kZF [ρ−1
th,i]

−2.0

−1.5

−1.0

−0.5

0.0

N
Z k

k = (0, 0.22)
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kZ ,kS

Ak
kS ,kZ NZ

k

Figure 8.14: Zonal mode mediated nonlinear transfer NZ
k [Eq. (8.34)] with

respect to the maximum transport driving mode k = (0, 0.22) due to the coupling
with a zonal mode kZ = (kZF, 0) temporally averaged over the stationary state for
nominal parameters. Also shown is the decomposition into zonal flow mediated
Ak

kZ ,kS
(orange solid) and sideband flow mediated Ak

kS ,kZ
(violet solid) transfer

defined by Eq. (8.36). Vertical black dotted lines indicate zonal modes that are
driven by SI, the violet dashed lines depict zonal modes that are driven by the
first order self-interaction of k and the green dashed dotted lines specify SI driven
zonal modes that are not susceptible to the self-interaction of k.

NZ
k =

∑

kZF

NkZ

k (8.35)

represents 60 % of the total nonlinear transfer Nk and, hence, contributes signi-
ficantly to the saturation of the considered ITG driven turbulence [22, 63, 65].
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90 % of the zonal mode mediated transfer occurs within a radial wave vector
range kZF ∈ [−0.58, 0.58]. This region corresponds to intermediate to mesoscale
zonal modes. As discussed in Sec. 8.3.3, the SI drive of zonal structures is negli-
gible in this wave vector regime.
Strictly speaking zonal flow mediated transfer constitutes only a part of NkZ

k

defined in Eq. (8.35). Expressing NkZ

k through the primitive nonlinear transfer
function [Eq. (8.9)]

NkZ

k = Ak
kZ ,kS

+ Ak
kS ,kZ

, (8.36)

allows for the splitting into zonal flow mediated transfer Ak
kZ ,kS

and sideband

flow mediated transfer Ak
kS ,kZ

. In the former case the zonal part of the modified
potential χ̂sp,kZ

determines the advecting E×B-drift, while in the latter case it is
the sideband mode χ̂sp,kS

. Fig. 8.14 shows that the zonal flow mediated transfer
(orange) causes most of the zonal mode mediated transfer (blue, +-symbols),
justifying the terminology zonal flow mediated transfer here.
To proceed, the nonlinear transfer mediated by zonal modes that are dominantly
driven by SI (vertical black dotted lines, violet dashed lines and green dashed
dotted lines in Fig. 8.14)

NZ,SI
k =

∑

|ksi
ZF

|≥0.82

NkZ

k (8.37)

contributes only 2 % to the total transfer due to zonal couplings NZ
k . The

maximum contribution within this subset is provided by the zonal mode
kZ = (±1.24, 0) and relates to the drive of this zonal mode due to the self-
interaction with the considered maximum transport driving mode k = (0, 0.22).
As discussed in Sec. 8.3.3 the underlying nonlinear transfer mechanism does not
reflect a zonal flow shearing process. Hence, in this case the nonlinear transfer
cannot be interpreted as being zonal flow mediated.
Now, the SI driven zonal mode with kZ = (±1.67, 0) is considered more in detail
(green dashed dotted line in Fig. 8.14). It is driven through the self-interaction of
modes with ky ∈ [0.07, 0.14, 0.29] (see Fig. 8.11), explicitly excluding ky = 0.22.
Since this SI driven zonal mode exhibits a significant contribution to the E × B
shearing rate (see Fig. 8.12), this specific example allows to study the zonal flow
mediated nonlinear transfer with respect to the fixed mode k = (0, 0.22), while
making sure that the nonlinear transfer is not biased by any self-interaction
process (as encountered in the previous paragraph). In this case the generation
of sidebands kS = (∓1.67, −0.22) through zonal flow shearing SkS

kITG,kZ
> 0

occurs to some extent (see violet dotted arrow in Fig. 8.4). Its contribution to
the total zonal flow mediated nonlinear transfer NZ

k , however, is negligible (see
green dashed dotted lines in Fig. 8.14).
Tab. 8.2 summarizes NZ

k [Eq. 8.35] and NZ,SI
k [Eq. (8.37)] for the two subsets

of extended modes, already discussed in Sec. 8.3.2. The SI-driven zonal mode
related nonlinear transfer is always negative and, therefore, adds to the nonlinear
saturation of the extended modes. In most of the cases |NZ,SI

k | is small compared
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to the zonal flow mediated transfer |NZ
k |, generalizing the above finding to a

larger class of modes.
The analysis presented in this section demonstrates that the role of self-
interaction driven zonal structures for the zonal flow mediated transfer of
generalized energy is negligible. This finding supports our recent result that SI
driven zonal fine scale structures do hardly contribute to the zonal flow mediated
deformation of turbulent structures [118] and question their importance for the
nonlinear saturation physics of ITG driven turbulence.

8.4 Conclusion

This chapter investigates the self-interaction mechanism in gyrokinetic ion tem-
perature gradient driven turbulence by means of an energetics and nonlinear
transfer analysis. As an exemplary case CYCLONE base case (CBC) parameters
[67] are chosen; —parameters for which clear signatures of self-interaction have
been reported of in Refs. [1, 85, 118].
First, the self-interaction mechanism, that is, the nonlinear interaction of an
elongated (parallel to the magnetic field) mode with itself [104, 64, 1, 85], is
found to have only a small direct influence, of the order of a few percent, on the
nonlinear saturation processes. Here, the term direct refers to the contribution
of the nonlinear self-interaction of a mode to the total net nonlinear transfer of
generalized energy out of / into the mode. Although individual self-interaction
processes exhibit finite or even dominant contributions to the net nonlinear trans-
fer of free energy out of / into individual perpendicular modes, the small number
of self-interaction triplets compared to the total number of possible nonlinear
triplet interactions of an extended mode renders self-interaction processes insig-
nificant. The direct influence of self-interaction, however, may increase for mag-
netic geometries with smaller magnetic shear, since the reduced twist of modes
then results in an increase of the relative number of self-interaction triplets.
Second, the contribution of self-interaction driven zonal structures, commonly
observed in form of dominant radial fine scale structures in the zonal part of the
radial electric field shear [83, 1, 84, 85, 86], to the zonal flow mediated nonlinear
transfer of generalized energy is small (of the order of a few percent). Here, fine
scale refers to wave lengths comparable to the ion thermal Larmor radius. This
finding corroborates our recent director field analysis [118], which demonstrates
that the self-interaction driven radial fine scale features do hardly contribute to
the zonal flow shear induced deformation of turbulent eddies. Although zonal
flow mediated transfer is a preferred saturation process in ITG driven turbulence
[74, 22, 65], also in the present study, most of the transfer is caused by mesoscale
zonal flows, i. e., zonal flows with wave lengths significantly larger than the ion
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thermal Larmor radius. The self-interaction drive is shown to be negligible in the
case of mesoscale flows.
The overall outcome of this chapter suggests that the self-interaction mechanism
hardly influences the turbulence (-zonal flow) dynamics in ITG driven turbulence
with CBC parameters. Since the self-interaction mechanism can be assumed to
scale with the turbulence level [1] and since zonal flow dynamics typically dom-
inates close to marginal stability [67, 25, 118], the findings of this chapter are
expected to apply also to experimentally more relevant cases close to marginal-
ity. Indeed, our recent director field study [118] mainly investigated cases close
to marginality. Whether the self-interaction mechanism plays some role in para-
meter regimes with increased mode extent along the field line (e. g., electromag-
netic ITG turbulence [149]) is unclear and needs further studies.
The results presented in this chapter suggest that self-interaction is not respons-
ible for the variation of several ten percent in the turbulent fluxes when eliminat-
ing correlations over the parallel boundary as found in Ref. [85] for the same
strong turbulence CBC parameter setup investigated in the present chapter.
Other mechanisms have to be active which allow for correlations to influence
the turbulence dynamics in this case. In strong turbulence correlations may
propagate nonlinearily, for example; —a hypothesis that is left for future work.
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Chapter 9

Stability analysis of toroidally

symmetric secondary modified

staircase equilibria

9.1 Introduction

As demonstrated in chapters 6 and 7, close to marginality microturbulence typ-
ically self-organizes through the generation of quasi-stationary secondary zonal
flow patterns [23, 24, 25]. Here, the term secondary refers to perturbations that
are generated nonlinearly by the turbulence, with the latter being driven by
primary instabilities such as the ITG driven instability. These zonal structures
(zonal flow but also zonal perturbations in the density or temperature), in turn,
may modify the primary instabilities driven by the background density and tem-
perature gradients, or may even drive instabilities. The idea of this dynamical
hierarchy is embodied in the tertiary instability formalism [54] and instabilities
being driven by secondary zonal structures are referred to as tertiary instabilities.1

In the aforementioned reference tertiary instabilities are considered to determine
the nonlinear critical temperature gradient for turbulence generation.
This chapter investigates (tertiary) instabilities in the presence of modified stair-
case patterns; —structures that develop close to marginality with inclusion of
electron dynamics (see chapter 6). The presented study represents a modific-
ation of previous (adiabatic electron) studies [54, 127], in that, (i) it considers
electron dynamics and (ii) it considers zonal patterns, featuring structures that

1Note that although tertiary instabilities are driven by secondary structures such as zonal
flows, the background temperature and density gradients may add to the tertiary instability
drive. For example, the tertiary instabilities discussed in Ref. [54] explicitly require a finite tem-
perature gradient beside the zonal flow. Consequently the growth rate of the tertiary instabil-
ities found in the aforementioned reference increase with increasing background temperature
gradient.
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are directly related to electron dynamics. The following questions will be ad-
dressed:

• How do instabilities in the presence of secondary modified staircase states
compare to primary instabilities?

• What is the role of patterns with disparate spatial scales connected to a
modified staircase state [i. e., (i) the basic zonal flow mode on the scale of
the radial box size, (ii) the corrugations close to LORLs and (iii) the fine
scale features driven by self-interaction]?

• What is the influence of the electron drive, i. e., the perturbations in the
electron distribution function fe and the inverse electron background tem-
perature gradient length R0/LT,e, on tertiary instabilities?

To address these questions secondary modified staircase equilibria are extracted
from nonlinear gyrokinetic simulations. The stability properties are then studied
by prescribing those equilibria (i. e., setting them constant in time) in separate
simulations and by determining the dominantly growing Eigenmodes through for-
ward time integration. Several properties of those Eigenmodes such as the growth
rates, the mode structure and the influence of amplitude variations of the second-
ary modified staircase equilibria are investigated. In general, modified staircase
structures and electron dynamics are found to have a significant influence on the
stability properties close to marginality.

9.2 Numerical experiment

9.2.1 Gyrokinetic simulation setup

The gyrokinetic simulation setup applied in this chapter is equivalent to the Gcirc
1

set introduced in chapter 7 (see also Tab. 7.1). For more details the reader is
referred to the aforementioned chapter.

9.2.2 Definition of toroidally symmetric secondary equilib-

ria and measurement of the growth rate

In this chapter toroidally symmetric secondary equilibria refer to the station-
ary ky = 0 component of both the perturbed distribution function fsp and the
electrostatic potential φ that develop self-consistently in a nonlinear turbulent
state. Therefore, secondary equilibria contain gradients of the plasma rotation
(ZFs and parallel rotation) as well as gradients in the perturbed plasma pressure,
both capable to add to the free energy budget provided by the constant inverse
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background gradient lengths R0/Ln and R0/LT . Note that, below, the so defined
toroidal equilibria are sometimes referred to as ZF equilibria.
The self-consistent equilibria are extracted from the saturated simulations by av-
eraging the ky = 0 part of the perturbed distribution function over a time interval
of ∆t = 750 R0/vth,i. Influences of turbulent fluctuations occurring on time scales
of a few 101 R0/vth,i are successfully averaged out for this choice of averaging in-
terval. In separate simulations the so obtained averaged toroidal equilibria are
then set persistent in time, while the response of the turbulent (ky 6= 0) modes
of f and φ is solved for through forward time integration.
In general, the toroidal equilibria are functions of the two spatial coordinates x
and s and, hence, the Eigenmodes have the form

G(x, y, s, t) = Ĝ(x, s, [v‖, µ], t) exp(ikyy) + c.c. (9.1)

with
Ĝ(x, s, [v‖, µ], t) = ĜA(x, [v‖, µ], s) exp(σt) (9.2)

and G ∈ [δf, φ]. In the above expressions ĜA ∈ C and σ = γ − iω with γ, ω ∈ R

being the linear growth rate and frequency respectively. Furthermore, the nota-
tion [v‖, µ] denotes the velocity space dependence of the Eigenmodes, if G = δf .
The large number of degrees of freedom introduced by the four dimensional space
(x, s, v‖, µ) results in a vast amount of possible Eigenmodes whose detailed de-
composition requires an Eigenvalue solver approach [74]. The forward time integ-
ration applied in this chapter allows for a discussion of the dominantly growing
mode only.
In order to allow for the coupling of modes with ky 6= 0 to the prescribed sec-
ondary equilibrium, the E × B-nonlinearity is kept while integrating forward in
time. Rescaling the amplitudes of the turbulent modes to a small level of O(ε)
with ε ∼ 10−10 makes the coupling among turbulent ky 6= 0 modes negligible and
forces the state to the linear regime. More in detail, with the decomposition of a
quantity G into its turbulent ky 6= 0 part G̃ and its toroidally symmetric ky = 0
part 〈G〉, i. e.,

G = 〈G〉+ G̃ (9.3)

and the ordering

〈G〉 ∼ O(1) (9.4)

G̃ ∼ O(ε) (9.5)

the E × B-nonlinearity can be linearized

vE · ∇gsp ≈ ρ2∗Exy
(
∂ ˜〈φ〉ga,sp
∂y

∂〈gsp〉
∂x

− ∂g̃sp
∂y

∂〈〈φ〉ga,sp〉
∂x

)

. (9.6)

In the above expression 〈...〉ga,sp denotes a gyro-average and Exy = [(∇x ×∇y) ·
b]/B. The secondary equilibrium enters both terms within parenthesis on the
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right-hand side (RHS) of the above expression: (i) The first term includes the
radial derivative of the distribution function ∂x〈gsp〉. (ii) The second term intro-
duces the radial derivative of the zonal electrostatic potential ∂x〈〈φ〉ga,sp〉. Hence,
both gradients in the moments of the perturbed distribution like density, bulk
velocity and kinetic energy etc. as well as the E × B-drift (including the zonal
flow) connected to the toroidal equilibrium can influence the stability behavior.
The rescaling of turbulent modes is applied after each integration time step and
for each ky mode individually. This allows for an accurate determination of the

saturated growth rate γ and mode structure |ĜA(x, s)| of the dominantly growing
Eigenmode for each ky-mode.
Individual cases exhibit a time dependent growth rate: (i) In some cases the
growth rate oscillates around a well defined mean value with the mean value
being of the order of typical growth rates

γtypical = 10−1 vth,i/R0. (9.7)

(ii) Close to the instability threshold, i. e., for small growth rates, extremely
long time traces are necessary for the dominant Eigenmode to reach saturation
in the sense that oscillations around the saturated growth rate are negligible. In
order to save computational resources those cases are not run until saturation,
but a statistical approach is applied instead. In all cases the temporally averaged
growth rate 〈γ〉t is determined and its quality is quantified by its error (see
appendix C for a definition of the statistical error). Furthermore, the degree
of oscillations around the averaged growth rate is quantified by the temporal
standard deviation over the interval ∆t

std(γ) =

√
√
√
√ 1

Nt

Nt∑

i=1

[〈γ〉t − γ(ti)]2, (9.8)

where Nt denotes the number of time samples in the interval ∆t and ti represents
the time of the i-th sample. Only proper growing cases are selected by discarding
realizations for which either the error of the mean value is larger than 10 % of the
order of typical growth rates γtypical [Eq. (9.7)] or the temporal standard deviation
exceeds typical growth rates.

9.3 Numerical results

9.3.1 Characterization of a toroidally symmetric secondary

modified staircase equilibrium

Before the stability properties of secondary equilibria are studied, here, a charac-
terization of one of such equilibria is presented. Radial profiles of the primitive
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zonal flow velocity

vZF =
1

B0

∂〈φ〉
∂x

, (9.9)

the estimated ZF velocity deduced from the director field

vZF = α

∫

dx′ Kφ(x
′), (9.10)

with α a proportionality constant (see chapter 6), the director field Kφ, the prim-
itive shearing rate ωExB and the perturbed electron density and energy gradient
lengths are depicted in Fig. 9.1 for an exemplary case with R0/LT = 3.75. The

−2

0

2

α
∫
d
x
K
φ
,
∂
x
〈φ
〉/
2

A BC DD D D

α
∫
dx Kφ ∂x〈φ〉/2

−2

0

2

K
φ
,
ω
E
x
B

Kφ ωExB

−30 −20 −10 0 10 20 30

x [ρth,i]

−4

−2

0

2

4

δR
/L

α
,e

δR/Ln,e δR/LE,e

Figure 9.1: Radial profiles of several characteristic quantities connected to a
secondary equilibrium extracted from a nonlinear simulation with R0/LT = 3.75
and CBC parameters. Vertical lines indicate mode centers of mode Type A, B,
C and D (see Fig. 9.4).

perturbed gradient lengths are defined by

δR/LG,e = − R0

G0,e

∂δGe

∂x
(9.11)
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with

δGe =
2πB

me

∫

dv‖

∫

dµ αG,eδfe (9.12)

and

αG,e =

{

1, if Ge ≡ ne

mev
2
‖/2 + µB, if Ge ≡ Ee

, (9.13)

As discussed in chapter 6 the secondary modified staircase equilibrium features
pattern formation on three distinct scales: (i) The estimated zonal flow velocity
exhibits a structure on the scale of the box size (see top panel of Fig. 9.1). In
this chapter the zero crossings of this structure are referred to as main zero
crossings.2 (ii) On the scale of LORLS the director field features cut-ins (see mid
panel of Fig. 9.1). These cut-ins constitute radial locations with reduced zonal
flow shear. (iii) Fine scale structures on scales of a few ρth,i occur in the profiles
of the primitive zonal flow velocity and the perturbed electron inverse gradient
lengths. The following sections discuss the role of each pattern for the stability
close to marginality.

9.3.2 Comparison of primary instabilities and instabilities

in the presence of secondary equilibria

First, the stability properties of self-consistent toroidally symmetric equilibria
(ZF) are compared to unmodified states driven by background gradients only
(w/o ZF). This comparison is undertaken for a representative case with R0/LT =
3.75 by means of dominant growth rate spectra γ(kθ) (see Fig. 9.2), where the
’poloidal’ wave vector is defined by

kθ = ky/
√

gyy(s = 0) (9.14)

and
√

gyygζζ(s = 0) is the y-y-component of the metric tensor evaluated at the
LFS.
The toroidal equilibrium allows for a finite growth rate (blue circles) with the

maximum growth rate (maximized over the kθ-spectrum), however, being signi-
ficantly reduced compared to the maximum primary growth rate (black stars).
Especially the dominant primary ITG mode residing at kθρth,i ≈ 0.4 ∼ 0.5 is sub-
ject to a strong stabilization which is interpreted to be related to the stabilizing
effect of sheared ZFs on the ITG instability [127].
A striking feature is the occurrence of unstable modes at poloidal wave vectors

2This nomenclature is adopted both in the case of the zonal flow velocity (∼ α
∫
dx Kφ) as

well as the shearing rate (∼ Kφ). Note, however, that the respective main zero crossings are
shifted by Lx/4 due to the different order of the radial derivative (see α

∫
dx Kφ in the top

panel and Kφ in the mid panel of Fig. 9.1 ).
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Figure 9.2: Growth rate γ against the poloidal wave vector kθ for R0/LT =
3.75. Shown are primary instabilities driven by background gradients only (black
stars), modified instabilities in the presence of a toroidally symmetric secondary
equilibrium (blue circles) and the latter with the modification R0/LT,e = 0 (red
squares).

satisfying kθρth,i & 1. Those modes are absent from the primary instability spec-
trum and, therefore, can be identified as tertiary modes directly driven by the
toroidal symmetric secondary equilibrium.
The fact that the tertiary modes observed here are driven unstable in a wave
vector regime in which the TEM dominates the primary spectrum (although the
primary TEM instability being unstable at larger R0/LT for CBC parameters as
shown in Fig. 2.4 for example) and in which finite Larmor radius effects suppress
the primary ITG mode suggests that the underlying physics is carried by elec-
trons. In order to test this hypothesis a similar stability study is carried out,
i. e., prescribing the same ZF equilibrium, with the temperature gradient drive
of electron modes being reduced by zeroing out the electron background temper-
ature gradient (R0/LT,e = 0). This modification removes the tertiary modes in
the high kθ regime from the spectrum (red squares) strengthening the conjecture
of electron physics being responsible for the tertiary modes.
Not only does the choice of zero R0/LT,e remove the electron modes, it also mod-
ifies the modes properties in the interval with kθρth,i < 1. A slight increase in the
growth rate is observed, demonstrating that a finite electron temperature gradient
can act stabilizing. Note, however, that while the prescribed toroidal equilibria
are self-consistently obtained for CBC parameters, i. e., R0/LT,i = R0/LT,e, the
self-consistent equilibrium for the pure ITG case (R0/LT,e = 0) might differ as
well as the linear response to it.

Second, the dependence of the above discussed instability in the ITG wave
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Figure 9.3: Growth rate γ against the background inverse temperature gradient
length R0/LT for the two modes kθρth,i = 0.42 and kθρth,i = 0.84. Blue ×- and
red +-symbols represent results obtained from different toroidal equilibria at
the same R0/LT . Blue squares and red circles depict the ensemble average of
different realizations at fixed R0/LT . The growth rate obtained in the presence
of background gradients only, i. e., in the absence of toroidal equilibria, is shown
by black stars and triangles with black dotted lines representing linear fits.

vector regime and the tertiary electron mode with the main control parameter
R0/LT is investigated. Since kinetic electrons render the numerical calculations
computationally demanding, not the full kθ-spectrum is considered but individual
modes are concentrated on only. Both instability regimes are accounted for by
considering two modes with kθρth,i = 0.42 and kθρth,i = 0.84. Those modes dom-
inate the respective stability balloons for R/LT = 3.75 in the full-kθ study (see
Fig. 9.2). At fixed R0/LT the growth rate is obtained for an ensemble of toroidal
symmetric equilibria taken from disjunct time intervals of the respective nonlin-
ear simulation.
Several observations can be made: (i) The growth rate of the mode kθρth,i = 0.84
in the presence of toroidal equilibria (blue ×-symbols and squares) always exceeds
the growth rate of the primary instability (black triangles). Secondary toroidal
equilibria, hence, contribute to the instability drive in this wave vector regime.
In the interval 2.9 . R0/LT . 3.5 the growth rate of this mode is approximately
constant and instability occurs although the mode is stable in the presence of
background gradients only. For R0/LT & 3.5 the growth rate shows a similar
increase compared with the primary instability with a positive offset. (ii) In the
presence of secondary equilibria the growth rate of the mode kθρth,i = 0.42 (red
+-symbols and circles) is always smaller compared to the primary growth rate
(black stars). The smooth transition from a vanishing to a finite growth rate is
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similar to the dependence of the heat flux on R0/LT (see Fig. 6.4 of chapter 6).
To summarize, the above outcome shows that modified staircase states signific-
antly influence the stability properties close to marginality. Both a stabilization
in the regime kθρth,i . 1 and a destabilization in the regime kθρth,i & 1 is observed.

9.3.3 Mode structure in the presence of secondary equilib-

ria

In contrast to the homogeneous background gradients driving the primary in-
stabilities, the toroidally symmetric equilibria are radially structured. A radially
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Figure 9.4: Mode structure |φ̂A| normalized to the maximum value as function of
x and s for kθρth,i = 0.21 (top left, A), kθρth,i = 0.42 (top right, B), kθρth,i = 0.63
(bottom left, C) and kθρth,i = 0.84 (bottom right, D) and for R0/LT = 3.75.
Vertical lines indicate mode centers with respect to the radial direction. The
color range scales as [0, 1] → [black, yellow].

dependent equilibrium is known to result in a radial localization of the mode
structure [54, 127]. In this section the mode localization with respect to the sec-
ondary toroidal symmetric equilibria is studied.
Here, the mode structure of an Eigenmode with wave vector kθ is defined by
|φ̂A(x, s)| [see Eq. (9.2) for a definition of this quantity]. Fig. 9.4 depicts the

175



9.3. NUMERICAL RESULTS

mode structure of the four modes kθρth,i = 0.21 (top left, A), kθρth,i = 0.42 (top
right, B), kθρth,i = 0.63 (bottom left, C) as well as kθρth,i = 0.84 (bottom right,
D) and for R0/LT = 3.75. In the cases A, B, and C a radial mode center is
determined by fitting a gaussian to the radial profile 〈|φ̂A(x, s)|〉s, where 〈...〉s
denotes a spatial average with respect to s. In case D the mode structure ex-
hibits radial fine scale features and the radial mode centers are defined by the
local maxima connected to the spikes in the above defined radial profile. The
radial mode centers are depicted by vertical white dotted lines in Fig. 9.4 and by
vertical gray solid and dashed lines in Fig. 9.1 and are labeled accordingly. Four
distinct modes can be distinguished when considering the modes orientation with
respect to the underlying secondary equilibrium:

(A) For kθρth,i = 0.21 the mode is broadly (i. e., having a width of several
ρth,i) centered at the zero crossing of the structure in Kφ varying on the
scale of the box size, where Kφ < 0 → Kφ > 0 with increasing radial
coordinate. This location corresponding to the negative maximum of the
box scale variation in the estimated zonal flow velocity vZF (see blue profile
in the top panel of Fig. 9.1) and is a location of zero E ×B shear.

(B) For kθρth,i = 0.42 the mode is broadly centered at the cut-ins in Kφ

with a mirror symmetry with respect to the same main zero crossing of Kφ

mentioned under type (A).

(C) For kθρth,i = 0.63 the mode is localized to the radial position where Kφ

exhibits a plateau like maximum. At this radial position the estimated ZF
velocity amplitude vZF connected to the box size variation crosses zero (see
blue profile in the top panel of Fig. 9.1).

(D) For kθρth,i = 0.84 the mode exhibit multiple sharply localized fine
scale features being correlated with spike features in the perturbed electron
gradient lengths.

The localization of the mode type A close to the main zero crossing of the director
field Kφ is in agreement with the localization of instabilities at positions with zero
zonal flow shear as reported of in the adiabatic electron studies of Refs. [54, 127].
However, the additional orientations of Eigenmodes B, C and D demonstrate a
degree of delocalization with respect to the zonal flow equilibrium, which is likely
to be related to electron physics.
This conjecture is now further tested through setting the electron background

temperature gradient to zero R0/LT,e = 0, while retaining the same second-
ary equilibrium as shown in Fig. 9.1. Fig. 9.5 depicts the corresponding mode
structure of the four modes kθρth,i = 0.21 (top left), kθρth,i = 0.42 (top right),
kθρth,i = 0.63 (bottom left) as well as kθρth,i = 0.84 (bottom right) and for
R0/LT = 3.75. All of the cases shown are of mode type A, corroborating the
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Figure 9.5: Mode structure |φ̂A| normalized to the maximum value as function
of x and s for kθρth,i = 0.21 (top left), kθρth,i = 0.42 (top right), kθρth,i = 0.63
(bottom left) and kθρth,i = 0.84 (bottom right) and for R0/LT = 3.75 as well
as R/LT e = 0. Vertical lines indicate mode centers with respect to the radial
direction. The color range scales as [0, 1] → [black, yellow].

above hypothesis.
To summarize, electron dynamics allows for various Eigenmodes to grow in the
presence of modified staircase structures, which are absent with reduced electron
drive. The localization of those Eigenmodes at specific structures connected to
the modified staircase state shows that structure formation on disparate scales
directly influences the stability properties.

9.3.4 Tertiary instability analysis

This section considers the parametric dependence of the instabilities discussed
in the previous sections on amplitude variation of the ZF equilibria. Since the
extracted equilibria represent the averaged ZF state, the amplitude variations
can be interpreted as possible realizations due to temporal fluctuations around
the mean value. Again, the two modes with kθρth,i = 0.42 and kθρth,i = 0.84 are
concentrated on exclusively.
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Figure 9.6: Growth rate γ against the amplitude scaling factor AZ used for
scaling of the full toroidally symmetric equilibrium. Shown is the data of the
kθρth,i = 0.42 mode (solid lines + circles) and of the kθρth,i = 0.84 mode (dashed
lines + squares) and for R0/LT ∈ [3.25, 3.5, 3.75, 4.0, 4.5].

Variation of the full equilibrium

The full toroidally symmetric equilibrium consisting of both the distribution fsp as
well as the potential φ is scaled by a real factor AZ resulting in a variation of both
the perturbed moments as well as the zonal E×B-flow. Fig. 9.6 shows the growth
rate γ as function of the scaling factor AZ for secondary equilibria extracted from
simulations with various values of R0/LT . The following observations can be
made:
(i) In the case of kθρth,i = 0.42 (circles, solid lines) the growth rate increases
with decreasing AZ for AZ . 1, demonstrating a stabilizing effect of the zonal
flow equilibria in this amplitude regime. For inverse background temperature
gradient lengths of R0/LT . 4.0 the growth rate exhibits a minimum at AZ ≈ 1
and increases slightly with increasing scaling factor. This suggests that tertiary
instabilities are driven by the secondary equilibrium for amplitudes larger than
the self-consistent value. The self-consistent amplitude (AZ = 1) minimizes the
instability drive and, hence, represents the optimal zonal flow state. For R0/LT =
4.5 the growth rate decreases monotonically with increasing AZ in general. This
suggests that the instability drive by the secondary equilibrium is less important
further away from marginality.
(ii) In the case of kθρth,i = 0.84 (squares, dashed lines) the growth rate increases
with AZ in general. This confirms that the fine scale modes are directly driven by
the secondary equilibrium. For inverse background temperature gradient lengths
of R0/LT . 3.75 the growth rate is independent of R0/LT , in agreement with the
outcome shown in Fig. 9.3.

178



9.3. NUMERICAL RESULTS

0.0 0.5 1.0 1.5 2.0

AZ

0.00

0.05

0.10

0.15

γ
[v

th
,i
/R

0
]

ref el. dist. (SI)

0.0 0.5 1.0 1.5 2.0

AZ

el.− stat. pot.

Figure 9.7: Growth rate γ against the amplitude scaling factor AZ for scaling of
the SI-driven radial modes in the electron distribution function (left panels) and
the full electrostatic potential (right panels). R0/LT = 3.75 always and gray data
depicts the reference case with variation of the full equilibrium. Solid lines with
circles correspond to kθρth,i = 0.42, while dashed lines with squares correspond
to kθρth,i = 0.84.

Variation of the electron distribution function or the electrostatic po-

tential

This section investigates the role of zonal fine scale features in the electron dis-
tribution function and the zonal flow in general for the instabilities drive. The
former is realized by scaling the self-interaction driven modes [see Eq. (8.32) of
chapter 8 for a definition of those modes] of the electron distribution function fe
by a real factor AZ , while keeping the remainder of the secondary equilibrium
fixed. The latter is achieved by scaling the electrostatic potential part of the
secondary equilibrium only, while holding the distribution part fixed. Since the
potential is coupled to the distribution function via the gyrokinetic Poisson equa-
tion the resulting states have to be valued artificial.
The left panel of Fig. 9.7 compares the growth rate of the full equilibrium scaling
scan (gray) with the electron distribution scaling scan (blue) for a toroidal equilib-
rium with R0/LT = 3.75. While the growth rate of the mode with kθρth,i = 0.42 is
hardly affected by the amplitude scaling, the fine scale modes having kθρth,i = 0.84
scale with AZ similarly to the full equilibrium scan. This experiment demon-
strates that the fine scale modes in the large wave vector regime are, indeed,
driven by the electron distribution part of the secondary equilibrium and are
hereafter referred to as tertiary electron modes.
The right panel of Fig. 9.7 compares the growth rate of the full equilibrium scan
(gray) with the zonal flow scaling scan (red) for the same equilibrium as discussed
above. Here, the growth rate of the mode kθρth,i = 0.42 (red circles and solid
line) closely tracks the outcome of the full equilibrium scan, suggesting that it
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is the zonal flow that determines the instability in this case. By contrast, the
tertiary electron mode with kθρth,i = 0.84 (red squares and dashed line) varies
only moderately with the scaling factor.
In summary, this section confirms that the fine scale modes in the wave vector
regime kθρth,i & 1 are driven by fine scale structures in the electron distribution.
Also in the kθρth,i . 1 regime the modes are driven by the secondary equilibrium,
when the amplitude of the latter exceeds the self-consistent amplitude.

9.4 Conclusion

This chapter investigated instabilities in the presence of toroidally symmetric sec-
ondary modified staircase equilibria that have been directly extracted from the
nonlinear gyrokinetic turbulence simulations presented in chapter 6. The focus
has been on the role of electron dynamics as well as on the influence of patterns
on disparate scales connected with modified staircase structure.
In general, modified staircase structures and electron dynamics influence the sta-
bility behavior close to marginal stability significantly:

• The growth rate of Eigenmodes with poloidal wave vectors kθ in the regime
in which the primary ITG instability dominates is significantly reduced
compared to the primary growth rate. Here the term primary refers to
instabilities driven by background gradients only. The zonal flow part of
the modified staircase structure is responsible for the stabilization.

• In the wave vector region kθρth,i & 1 where the primary ITG is stabilized
due to finite Larmor radius effects, in turn, secondary staircase equilibria
are found to drive instabilities. Several tests demonstrate that these tertiary
instabilities are driven by fine scale features in the electron distribution and
are, therefore, referred to as tertiary electron modes.

• An investigation of the mode structures shows that in the presence of modi-
fied staircase structures Eigenmodes are radially localized. The localization
can be related to patterns on disparate scales connected to the modified
staircase structure and four distinct modes are discernible: (i) In the small
wave vector regime kθρth,i . 1 modes are typically broad with respect to
the radial direction (i. e., the radial width is of the order of several ρth,i).
Those modes are centered at distinct radial locations with respect to meso-
scale structures in the zonal flow, i. e., either at the zero crossing or the
maximum of the zonal flow mode varying on the radial box size or at the
corrugations at lowest order resonant layers (also referred to as cut-ins in
chap. 6). The latter structure is a direct consequence of electron dynam-
ics. (ii) In the wave vector regime kθρth,i & 1 the Eigenmodes are sharply

180



9.4. CONCLUSION

localized to maxima of fine scale features in the inverse perturbed electron
gradient lengths. Such fine scale features are driven by self-interaction and,
again, are a direct consequence of electron dynamics.

• A reduction of the electron drive (i. e. setting R0/LT,e = 0) removes three
of the observed modes, i. e., (i) the tertiary electron modes, (ii) the modes
localized to the ’cut-ins’ in the director field and (iii) the modes localized
to the zero crossing of the structure in the zonal flow velocity that varies
on the scale of the box size. Only the mode that is localized to the main
zero crossing of the director field (zonal flow shearing rate) remains.

Given that zonal flow patterns typically occur in microturbulence close to
marginal stability [67, 23, 25] (and chapter 6), the outcome of this chapter
suggests that the inclusion of electron dynamics may be required for a proper
description of near marginal microturbulence as it modifies various aspects of
instabilities in the presence of such patterns.
Since the high kθ fine scale tertiary electron modes become unstable just above
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[see Eq. (8.27) for a definition] as function of the poloidal wave vector kθ and for
R0/LT,i = R0/LT,e = 3.75 and CBC parameters.

the primary instability threshold and since those modes are rather unaffected
by zonal flows, one might speculate that they cause the smooth transition
to turbulence in the case of CBC parameters with kinetic electrons (see the
flux-gradient relation in Fig. 6.4). Although signatures of those modes are
visible in the spectrum of the electron electrostatic heat flux (see Fig. 9.8), both
the electron and the ion heat flux are dominated by contributions from low kθ
modes. The tertiary instabilities of type B and C (see Sec. 9.3.3), hence, may be
responsible for the smooth transition, which is further supported by the smooth
transition in the corresponding growth rate as shown in Fig. 9.3.
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The occurrence of tertiary instabilities localized to the ’cut-ins’ at lowest order
resonant layers (type B) may also explain the finite turbulence level despite the
application of a background E×B shear as found in Sec. 6.3.3 of chapter 6. Such
modes, growing locally, could be responsible for the triggering of avalanches,
which are then able to travel through regions with finite E × B shear [26, 27]
thereby maintaining turbulent transport.
Finally, the change of tertiary modes in the case of R0/LT,e = 0 may relate
to the difference in the near marginal turbulence dynamics among cases with
equal ion- and electron background temperature gradient (R0/LT,i = R0/LT,e)
compared to cases with R/LT e = 0 as observed in Sec. 6.3.1 of chapter 6. The
clarification of this hypothesis is a rewarding topic for future work.
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Chapter 10

Conclusion

The interplay of microturbulence and zonal flow pattern has been investigated in
this thesis within a gyrokinetic framework. The focus has been on the influence
of electron dynamics and electromagnetic effects. This chapter summarizes the
main results and provides a short discussion and outlook.

10.1 Summary of the main results

Chapter 6: Analysis of zonal flow pattern formation and the modification of stair-
case states by electron dynamics in gyrokinetic near marginal turbulence

• Fine scale structures in the E × B shearing rate, that typically dominate
this quantity when including electron dynamics [83, 1], do hardly contribute
to the zonal flow. The E ×B shearing rate is therefore unable to diagnose
zonal flow structure formation in this case. Other diagnostics, such as the
director field techniques applied in this thesis, may be chosen instead.

• Self-interaction driven fine scale features in the E × B shearing rate do
not prevent staircase pattern form developing as anticipated in Ref. [1]. A
director field analysis shows that mesoscale staircase structures do develop
close to marginality for Cyclone base case parameters with inclusion of
electron dynamics.

• The conventional staircase pattern (here conventional staircase pattern
refers to structures observed in adiabatic electron studies [25]) is modified
by electron dynamics: (i) A radial lock-in of the staircase pattern correl-
ated with lowest order resonant layers occurs. (ii) Additional zonal flow
corrugations at lowest order rational layers do develop.
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• Long-term dynamics associated with mesoscale staircase structure forma-
tion highlights the need for sufficiently long simulation time traces. This
requirement renders gyrokinetic studies of near marginal microturbulence
with inclusion of electron dynamics computationally demanding.

Chapter 7: Transport hysteresis in electromagnetic microturbulence caused by
mesoscale zonal flow pattern induced mitigation of high β turbulence runaways

• Temporally persistent mesoscale zonal flow patterns do develop also in elec-
tromagnetic near marginal microturbulence. The averaged amplitude and
the temporal persistence of mesoscale zonal flows increases for moderate
normalized plasma pressure β (i. e.,β . 1 %) compared to the electrostatic
limit (β → 0).

• Mesoscale zonal flow dominated states feature an enhanced stability against
the triggering of turbulence runaways. The application of such states as
initial conditions in gyrokinetic simulations mitigate turbulence runaways,
which occur above a critical plasma beta βc when small amplitude noise is
chosen as initial condition. Hence, mesoscale zonal flow pattern formation
allows for the access of an improved regime with β > βc and introduces a
transport hysteresis.

• Beside the Reynolds stress, mesoscale zonal flows are driven by the coupling
to parallel flow sidebands;—a zonal flow driving mechanism that has not
been identified so far (to the best knowledge of the author). This mechanism
may be of greater relevance for microturbulence (i) since it is of the order
of the Reynolds stress and (ii) since it is active in the electrostatic limit
as well as in electromagnetic turbulence. It plays a significant role for the
zonal flow dynamics at high β in particular, when the driving Reynolds
stress is canceled by the damping Maxwell stress just below βc.

• Provided persistent mesoscale zonal flow pattern do develop, a positive
feedback effect occurs just below βc, i. e., during the evolution of such flows
the net nonlinear transfer R+M changes sign (from negative to positive).
As a result, mesoscale zonal flows are nonlinearly sustained beyond βc; —a
mechanism that is interpreted to allow for the access of the improved regime
β > βc.

Chapter 8: Energetics and nonlinear transfer analysis of the self-interaction
mechanism in local gyrokinetic fluxtube simulations of ion temperature gradient
driven turbulence

• Within a proper nonlinear energy transfer analysis the self-interaction
mechanism [1] is demonstrated to have a negligible effect on the nonlinear
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saturation of ion temperature gradient driven turbulence and for Cyclone
base case parameters.

• The contribution of self-interaction driven zonal fine scale features to the
zonal flow mediated nonlinear transfer of energy is shown to be negligible.
This supports the finding of the director field analysis presented in chapter 6
that fine scale features in the E ×B shearing rate do hardly contribute to
shear deformation of turbulent structures.

Chapter 9: Stability analysis of toroidally symmetric secondary modified staircase
equilibria.

• Electron dynamics introduce unstable Eigenmodes in the presence of modi-
fied staircase states that are absent both in the primary instability spectrum
(here primary instability refers to instabilities in the presence of background
gradients only) and when the electron background temperature gradient
R0/LT,e is set to zero.

• Disparate scales connected to the modified staircase state are found to drive
tertiary instabilities: (i) Self-interaction driven fine scale features in the
perturbed electron distribution function drive tertiary electron modes with
a radial fine scale mode structure. These modes occur in a poloidal wave
vector regime kθρth,i & 1 in which the trapped electron mode dominates
the primary instability spectrum. (ii) In the wave vector regime kθρth,i . 1
Eigenmodes are found that grow locally at corrugations close to lowest order
resonant layers. Both modes are absent when the electron temperature
gradient drive is reduced.

10.2 Discussion and Outlook

This section discusses the implications of this thesis and motivates future research.

• This thesis suggests that mesoscale zonal flow pattern formation may be
ubiquitous in near marginal ion temperature gradient driven turbulence, as
it persists with inclusion of electron dynamics and electromagnetic effects.
Since future fusion reactors will operate close to marginality1, mesoscale
zonal flow pattern formation and associated turbulent dynamics is likely to
influence core energy confinement in a fusion reactor. In addition, a typical
value of the E × B-shearing rate has been demonstrated to constraint the
saturation of the mesoscale zonal flow amplitude, rather than the zonal flow

1Predictive modeling of ITER scenarios [114, 115] suggest that microturbulence will be close
to marginality and that zonal flow activity plays a major role.

185



10.2. DISCUSSION AND OUTLOOK

velocity or the electrostatic potential amplitude (see Fig. 7.7 of chapter 7).
An explanation for this observation has not been attempted and is left as
a rewarding task for future work. Furthermore, since energetic particles
influence the zonal flow dynamics through force-driven excitation [49, 50],
with regard to burning fusion plasmas, the influence of energetic particles
on mesoscale zonal flow pattern formation close to marginality may be
investigated in future work.

• The finding that electron dynamics and instabilities (i. e. instabilities in
the presence of zonal flow structures that require an electron temperature
gradient drive) may be relevant in mesoscale zonal flow pattern dominated
near marginal (primary) ITG driven turbulence has been gained within a
gradient-driven gyrokinetic approach. An investigation of this outcome
within a more realistic flux-driven study2 is highly desirable, especially
since flux-driven studies robustly report of zonal flow structure formation
[26, 23, 157, 76, 158] while mostly being based on the adiabatic electron
approximation.

• The interplay of mesoscale zonal flow patterns with a large scale background
flow needs further study both in terms of simulation technique and physical
interpretation. The wave vector re-mapping method, applied in this thesis,
is known to introduce fictitious nonlinear interactions3 and more advanced
approaches as introduced in Ref. [159], for example, may be used in future.
Future work may address the questions: Does the typical shearing rate
connected to mesoscale zonal flow structures play a role for the plateau
behavior of the heat flux as function of the background shearing rate, as
found in Sec. 6.3.3 of chapter 6? What is the role of zero crossings in the
radial profile of the total E × B shearing rate (background shear flow +
self-consistent mesoscale structures) for turbulence generating instabilities
and turbulent transport?

• Electromagnetic turbulence favors mesoscale zonal flow pattern develop-
ment (at moderate β and sufficiently close to marginality) in that the tem-
poral persistence and the (temporally averaged) amplitude of such patterns
increase with β. Steady state tokamak scenarios require high β [116, 117],
suggesting that mesoscale zonal flow pattern formation may play a role in

2In a flux-driven approach energy and particles are injected in and removed from the simu-
lation domain through (spatially localized) sources and sinks, respectively. The radial profiles
of temperature and density adjust self-consistently as a balance of source, turbulent transport
and sink and, hence, flux-driven simulations properly account for mean profile dynamics.

3The re-mapping method causes fictitious nonlinear interactions, when the interacting modes
are non-zonal modes, while interactions including a zonal mode are unaffected [159]. Since
the cases of interest are dominated by mesoscale zonal flow patterns the error introduced by
fictitious nonlinear interactions may be small.
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such scenarios. The above finding raises the questions: Is the favorable
effect of finite β on mesoscale zonal flow pattern formation a consequence
of the turbulence approaching marginality with increasing β?4 Or is this
outcome related to the direct influence of electromagnetic effects on zonal
flow generation [149] and saturation mechanisms?

• The dependence of transport caused by ion temperature gradient driven
microturbulence on β has been subject of various studies. In Refs. [21,
150, 65, 66] the turbulence level has been reported to decrease with β,
also referred to electromagnetic stabilization, while Ref. [156] reports of
the persistence of ion temperature gradient driven turbulence with β when
including the Shafranov shift. This thesis reports of another aspect of the
β-dependence: The functional relation of the microturbulence level on β is
found to depend on the proximity to marginality, i. e., close to marginality
the turbulence level decrease with β, while far away from it increases with
β (see Fig. 7.15). Aspects of this scaling dependence may apply to the
experimental studies [160, 161, 162, 163, 164] that find discrepant trends
of the energy confinement with β. Since temporal persistent mesoscale
zonal flow pattern formation is found to occur close to marginality but is
absent far away from it (see Fig. 7.4 of chapter 7), the above outcome raise
the question: Is the dependence of the turbulence level on β related to
(persistent) mesoscale zonal flow pattern formation?

• The electromagnetic transport hysteresis has been described within a
gradient-driven approach with β being a constant background parameter.
In flux-driven descriptions, which allow for the temporal evolution of the
pressure profile (and therefore β), this phenomenon may introduce (theoret-
ically) unexplored dynamical effects.5 Several questions could be addressed
in flux-driven studies: Can the mesoscale zonal flow pattern develop fast
enough to mitigate turbulence runaways? How does this depend on the
heating rate? If the system enters the mesoscale zonal flow dominated
branch, what happens at the threshold of the kinetic ballooning mode?

• The analysis presented in chapter 7 suggests that the sudden onset of field
line decorrelation is not responsible for high β turbulence runaways. Al-
though the cancellation of Reynolds- and Maxwell stress close below βc (see
Fig. 7.14 of chapter 7) indicates that turbulence runaways are, indeed, re-
lated to the depletion of zonal flows by magnetic flutter, the present work

4The growth rate of the ITG driven instability decreases with β [20, 21].
5For example, aspects of the electromagnetic transport hysteresis described in this thesis

may apply to the observation of so-called "grassy" ELMs in DIII-D [82], i. e., a transport
bifurcation correlated with the emergence of staircase structures in the pedestal top of a high-
confinement shot. This connection, however, needs further studies due to the different plasma
parameters in the edge compared to the typical core parameters chosen in this thesis.
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is unable to provide a consistent alternative explanation. Furthermore, the
role of the transfer mechanisms based on the coupling of zonal flows to
pressure and energy sidebands for the zonal flow dynamics close to βc is
left unclear. Hence, a consistent description of high β turbulence runaways
remains elusive and is a rewarding subject for future research.

• In this thesis the Shafranov shift, the pressure gradient correction of the
drift and parallel magnetic perturbations have been neglected. All those
effects may influence microturbulence at sufficiently high β [156, 165]. An
investigation of the electromagnetic transport hysteresis phenomenon with
inclusion of such effects may be addressed in future work.
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Appendix A

Parallel and radial force balances in

the presence of a strong and curved

ambient magnetic field

Here, parallel electron and radial ion force balance that are used in Sec. 6.3.2 are
discussed. Starting point is the momentum density evolution equation following
from taking moments of the Vlasov equation [166, 133, 167]

∂mspnspusp

∂t
+∇ · (mspnspuspusp) +∇ ·Psp

−qspnsp(E+ usp ×B) = 0, (A.1)

where the index sp denotes the species. The stress tensor

Psp = msp

∫

(v − usp)(v− usp)FV,spd
3v, (A.2)

the bulk velocity

usp =
1

nsp

∫

vFV,spd
3v (A.3)

and the density

nsp =

∫

FV,spd
3v (A.4)

enter Eq. (A.1), where FV,sp is the Vlasov particle distribution function, msp is
the species mass and v is the velocity space coordinate. In a strong ambient
magnetic field the pressure tensor can be written as [168, 133]

Psp = p⊥,sp1 + (p‖,sp − p⊥,sp)bb+Π, (A.5)

with the first two terms on the right hand side constitute the gyrotropic pressure
tensor Pg

sp, and the last term, the gyroviscous stress tensor Π, including finite

I



Larmor radius effects.
The parallel and perpendicular pressure can be obtained from the pressure tensor
by double contraction and read [133]

p‖,sp = msp

∫

(v‖ − u‖)
2FV,spd

3v (A.6)

p⊥,sp =
msp

2

∫

|v⊥ − u⊥|2FV,spd3v, (A.7)

with v‖ and v⊥ being the velocity coordinates parallel and perpendicular to the
magnetic field and u‖ and u⊥ the respective bulk velocity components. It is the
divergence of the pressure tensor

∇ ·Psp =∇p⊥ + (p‖ − p⊥)[b(∇ · b) + (b · ∇)b] (A.8)

+ b(b · ∇)(p‖ − p⊥) +∇ ·Π (A.9)

that enters the momentum equation. The terms within the squared brackets
describe magnetic curvature effects.
The δf -approximation applied in this work splits the distribution function into
a background Maxwellian and a perturbed distribution F = FM + f with FM ∼
O(1) and f ∼ O(ρ∗). Only the perturbed distribution f is evolved in the δf -
approximation and the pressure entering the force balance equations below is
formulated in terms of this latter distribution. The usual ordering usp, φ, nsp ∼
O(ρ∗) and n0,sp,B ∼ O(1) is adopted, where n0,sp is the species background
density, i. e., the zeroth order moment over FM. The equations below will be
formulated in first order of ρ∗ and therefore the second term of Eq. A.1 as well
as the bulk velocity usp contributions in Eq. A.2 are neglected.
The parallel electron force balance is obtained by the inner product of Eq. (A.1)
with the unit vector tangential to the ambient magnetic field b together with
qe = −e. Its dimensionless and first order in ρ∗ form reads

0 = ∇‖φ− [K‖(p‖,e, p⊥,e) +∇‖p‖,e], (A.10)

with normalization in units of ρth,in0T0/R
2
0. The divergence of the gyroviscous

pressure tensor has been neglected due to the small electron Larmor radius. Fur-
thermore, the parallel gradient is

∇‖ = b · ∇ =
B · ∇s
B

∂

∂s
(A.11)

as well as

K‖(p‖,e, p⊥,e) =(p‖,e − p⊥,e)(∇ · b) (A.12)

=− (p‖,e − p⊥,e)
B · ∇B
B2

, (A.13)
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which defines the curvature term. Curvature effects enter the lowest order electron
parallel force balance since the scales connected to both the ambient magnetic
field and the variation of perturbed quantities parallel to the magnetic field are
of the machine size ∼ R0. The parallel force balance is well satisfied for the
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Figure A.1: Temporally averaged terms of the parallel electron force balance for
a modified staircase state with R0/LT = 3.75. Shown are radial profiles averaged
over a poloidal half turn s ∈ [−0.5, 0] (left) and s-profiles (right) for the radial
location indicated by the vertical line in the left panel.

modified staircase state (Fig. A.1). Note that parallel and perpendicular electron
pressure are evaluated through the gyro-center distribution function fsp accord-
ing to Eq. (6.14).
The radial ion force balance is obtained by the inner product of the momentum
equation [Eq. (A.1)] with the radial unit vector êr as well as qi = +e. Its dimen-
sionless and first order in ρ∗ form reads

0 = ∇xφ+ [∇xp⊥,i + (∇ ·Πi)x]− 2(ui ×B)x, (A.14)

with normalizations in units of n0T0/R0. The normalized radial coordinate x =
r/ρth,i and the notation ∇x = ∂x have been introduced. The radial curvature
term ρ∗Kr(p‖,i, p⊥,i) = ρ∗(p‖,i−p⊥,i)êr(b ·∇)b is of higher order in ρ∗. The factor
ρ∗ results from the ambient magnetic field varying on the machine size ∼ R0,
while the radial variation of the perturbed quantities is of the size of the Larmor
radius ∼ ρth,i. In the local limit ρ∗ → 0 the curvature term is negligible.

III



IV



Appendix B

Governing equations in the spectral

representation

B.1 Gyrokinetic equation

In the representation Eq. (4.56) the gyrokinetic equation (4.46) reads

∂ĝsp,k
∂t

= −v‖b · ∇f̂sp,k
︸ ︷︷ ︸

L‖,f

− i

Zspe

[
mspv

2
‖

B
+ µ

]
B×∇B
B2

· ∇xαkαf̂sp,k
︸ ︷︷ ︸

LD,f

−ZspeFM,sp

T0,sp
v‖b · ∇〈φ̂k〉ga,sp

︸ ︷︷ ︸

L‖,FM

+
µb · ∇B
msp

∂f̂sp,k
∂v‖

︸ ︷︷ ︸

Ltr

+
∇x×∇y

B
· b

∑

k′

∑

k′′

δk′+k′′,k(k
′′
yk

′
x − k′′xk

′
y)〈φ̂k′〉ga,spĝsp,k′′

︸ ︷︷ ︸

NE

−∇x×∇y
B

· b
∑

k′

∑

k′′

δk′+k′′,k(k
′′
yk

′
x − k′′xk

′
y)v‖〈Â‖k′〉ga,spĝsp,k′′

︸ ︷︷ ︸

NδB

− iFM,sp

T0,sp

[
mspv‖
B

+ µ

]
B×∇B
B2

· ∇xαkα〈φ̂k〉ga,sp
︸ ︷︷ ︸

LD,FM

+iky
∇y ×∇x

B
· bχ̂sp ×

[
1

Ln,sp
+

(
mspv

2
‖/2 + µB

T0,sp
− 3

2

)
1

LT,sp

]

FM,sp

︸ ︷︷ ︸

Lχ,FM

+Dsp, (B.1)
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B.2. FIELD EQUATIONS

where ∇xαkα = ∇xkx +∇yky,
∑

k′ =
∑

k′x

∑

k′y
(and analogously for

∑

k′′) and

χ̂sp = 〈φ̂k〉ga,sp − v‖〈Â‖,k〉ga,sp. Furthermore, δk′+k′′,k = 1, if k′x + k′′x = kx and
k′y+k

′′
y = ky, δk′+k′′,k = 0 otherwise. The numerical dissipation scheme is defined

by Dsp = Ds,sp +Dv‖,sp +D⊥,sp with

Ds,sp = −Ds(∆s)
3

12

v‖,max,sp√
3

b · ∇s∂
4f̂sp,k
∂s4

, (B.2)

(B.3)

if ky 6= 0, and

Ds,sp = −Ds(∆s)
5

60

v‖,max,sp√
3

b · ∇s∂
6f̂sp,k
∂s6

, (B.4)

(B.5)

if ky = 0 (6th-order zonal flow scheme), and

Dv‖,sp = −
Dv‖(∆v‖)

3

12

µmax,sp√
3msp

b · ∇B∂
4f̂sp,k
∂v‖4

(B.6)

and

D⊥,sp = −vth,i
R0

[

Dx

(
kx

kx,max

)4

+Dy

(
ky

ky,max

)4]

f̂sp,k. (B.7)

The maximum resolved radial wave vector is kx,max = [(Nkx − 1)/2] · kx,min, with
kx,min defined in Eq. (4.42). The parallel dissipation and the parallel velocity
dissipation include the grid spacing ∆s = 1/Ns and ∆v‖ = 2v‖,max,sp/Nv‖ , where
Ns and Nv‖ specify the number of grid points in the s- and v‖ direction and
v‖,max,sp and µmax,sp denote the maximum resolved parallel velocity and magnetic
moment respectively.

B.2 Field equations

In the representation Eq. (4.56) the gyrokinetic Poisson equation equation (4.49)
reads

∑

sp

Zspe

[
2πB

msp

∫

dv‖

∫

dµ J0(λsp,k)ĝsp,k +
Zspen0,sp

T0,sp
[Γ0(bsp,k)− 1]φ̂k

]

= 0,

(B.8)

with λ2sp,k = ρ2spk
2
⊥ and bsp,k = 0.5 × [mspvth,sp/(ZspeB)]2k2⊥. The perpendicular

wave vector is defined by k2⊥ = gx
αxβkαkβ (Einstein sum convention is applied),
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B.2. FIELD EQUATIONS

where gx
αxβ = ∇xα · ∇xβ is the metric tensor and xα, xβ ∈ [x, y].

Similarly, the Fourier space representation of the parallel component of the
gyrokinetic Ampère’s law [Eq. (4.50)] reads

[

k2⊥ + µ0

∑

sp

Z2
spe

2n0,sp

msp
Γ0(bsp,k)

]

Â‖,k =

µ0

∑

sp

Zspe
2πB

msp

∫

dv‖

∫

dµ v‖J0(λsp,k)ĝsp,k. (B.9)
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Appendix C

Statistical error estimate

Throughout this work the quality of time averages is specified by a statistical
error determined through six-part time averaging. More in detail, the statistical
error of the time average of a quantity G is defined by

σ =

√
√
√
√ 1

Nsub

Nsub∑

i=1

(

〈G〉∆T − 〈G〉∆Ti
)2

, (C.1)

where the averaging time interval ∆T is divided into Nsub = 6 subintervals of
same length ∆Ti and 〈G〉∆T as well as 〈G〉∆Ti denote the time averages over the
entire interval and the i-th subinterval respectively.
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Appendix D

Zonal flow transfer mechanisms

LD,f and L‖,f

This section provides details about the two transfer terms LD,f and L‖,f of the
zonal flow intensity evolution equation [Eq. (8.23)] that dominate the transfer L
in this work (see Fig. 7.14). To this end, a sideband is defined as an axisymmetric
(ky = 0) perturbation in the perturbed distribution function fsp that varies pol-
oidally (along s). Furthermore, zonal potential perturbations with a wavelength
of the box size are considered exclusively. In this case (kZFρsp)

2 . (kZFρth,i)
2 ≪ 1

and, hence, J0(kZFρsp) = 1 +O(k2ZFρ
2
sp) ≈ 1.

D.1 Transfer due to coupling to energy sidebands

Using the spectral representation of the gyrokinetic equation (B.8) the term LD,f
reads

LD,f ≈2ik3ZF〈φ̂k〉∗
∫

ds
Dx

P ×
∑

sp

[

2Ê‖,sp,k + Ê⊥,sp,k

]

k=(kZF,0)

, (D.1)

where Dx = (B×∇B) · ∇x/B3 is the geodesic part of the magnetic drift tensor
and

Ê‖,sp,k =
2πB

msp

∫

dv‖

∫

dµ
1

2
mspv

2
‖ f̂sp,k (D.2)

Ê⊥,sp,k =
2πB

msp

∫

dv‖

∫

dµ µBf̂sp,k (D.3)

defines the perturbed parallel and perpendicular energy respectively. In the con-
sidered magnetic geometry P has even parity in s (with respect to s = 0), while
Dx has odd parity. Therefore, the occurrence of odd parity sidebands of the
perturbed energies is a necessary condition for a finite LD,f .

XI



D.2. TRANSFER DUE TO COUPLING TO PARALLEL FLOW
SIDEBANDS

D.2 Transfer due to coupling to parallel flow side-

bands

Using the spectral representation of the gyrokinetic equation (B.8) the term L‖,f

reads

L‖,f ≈2k2ZF〈φ̂k〉∗
∫

ds
BF
P

∂

∂s

[
1

B

∑

sp

Zspeû‖,sp,k

]

k=(kZF,0)

, (D.4)

where F = B · ∇s/B and

û‖,sp,k =
2πB

msp

∫

dv‖

∫

dµ v‖f̂sp,k (D.5)

defines the parallel flow. Here, BF is constant with respect to s (flux function)
and B−1 has even parity with respect to the low field side midplane (s = 0).
The occurrence of odd parity sidebands of the parallel flow û‖,sp,k is, therefore, a
necessary condition for a finite L‖,f .
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Appendix E

ASDEX Upgrade and ITER

reference parameters

This section summarizes reference parameters and typical plasma parameters for
a deuterium plasma based on the technical details of the ASDEX Upgrade [169]
and the ITER [170] tokamaks.

ASDEX Upgrade ITER
R0 [m] 1.6 6.2
B0 [T] 3.9 5.3
n0 [m−3] 2× 1020 1× 1020

T0 [K] 100× 106 150× 106

vth,i [m/s] 0.91× 106 1.11× 106

vth,e [m/s] 55.06× 106 67.32× 106

ρi [mm] 4.87 4.38
ρe [mm] 0.08 0.07
ωc,i [s

−1] 1.87× 108 2.49× 108

ωc,e [s
−1] 6.86× 1011 9.15× 1011

ρ∗ 3.04× 10−3 7.21× 10−4

β [%] 4.56 1.92

Table E.1: Technical details of the ASDEX Upgrade [169] and the ITER [170]
tokamak and typcial plasma parameters assuming a deuterium plasma.
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