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Abstract

High-dimensional approximation problems appear naturally in many
applications and they all suffer from the curse of dimensionality. The Smol-
yak algorithm gives a deterministic and easily analyzable way to alleviate
that curse. Its construction allows the use of well-known low-dimensional
approximation operators and combines them in a predefined way to obtain a
reconstruction of an unknown, high-dimensional target function.

In the context of mesh-free approximation, rescaled kernel-based methods
are proven to have desirable properties, e.g., they are fast and stable as long
as the set of sites satisfies minimal requirements. However, they do not
converge if the scaling parameter is coupled linearly to the fill distance of the
set of sites. A way to circumvent this trade-off principle is to thin out the
point set in a controlled way and solve a stationary approximation problem
on every level. This gives rise to the kernel-based multilevel method.

This thesis combines the Smolyak algorithm with the ideas of kernel-
based multilevel approach to obtain the tensor product multilevel method.
In contrast to reconstruction approaches built upon polynomials or splines,
this is a new approximation method for moderately high-dimensional target
functions that is capable of combining arbitrary low-dimensional domains.
This new method is introduced for different settings, its convergence is
analyzed and numerical examples are given to support the theoretical results.
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Zusammenfassung

Hochdimensionale Approximationsprobleme treten in vielen Anwendun-
gen auf und sie leiden alle unter dem Fluch der Dimensionalität. Der
Smolyak-Algorithmus bietet eine deterministische und leicht zu analysierende
Möglichkeit, diesen Fluch zu mildern. Seine Konstruktion ermöglicht die
Verwendung bekannter niedrigdimensionaler Approximationsoperatoren und
kombiniert diese in einer vordefinierten Weise, um eine Rekonstruktion einer
unbekannten, hochdimensionalen Zielfunktion zu erhalten.

Im Zusammenhang mit der netzfreien Approximation haben reskalierte
kernelbasierte Verfahren nachweislich wünschenswerte Eigenschaften, z. B.
sind sie schnell und stabil, solange die Menge der Stützstellen minimale
Anforderungen erfüllt. Sie konvergieren jedoch nicht, wenn der Skalierungspa-
rameter linear an die Fülldichte der Menge der Stützstellen gekoppelt ist.
Eine Möglichkeit zur Umgehung dieses trade-off principles besteht darin,
die Punktmenge kontrolliert auszudünnen und auf jedem Level ein sta-
tionäres Approximationsproblem zu lösen. Daraus ergibt sich die kernbasierte
Multilevel-Methode.

In dieser Arbeit wird der Smolyak-Algorithmus mit den Ideen der kern-
basierten Multilevel-Methode kombiniert, um die Tensorprodukt-Multilevel-
Methode zu erhalten. Im Gegensatz zu Rekonstruktionsansätzen, die auf
Polynomen oder Splines aufbauen, handelt es sich hierbei um eine neue Ap-
proximationsmethode, die in der Lage ist, höherdimensionale Zielfunktionen
auf Gebieten zu rekonstruieren, die Kombinationen von beliebigen niedrigdi-
mensionalen Gebieten sind. Diese neue Methode wird für verschiedene Situa-
tionen vorgestellt, ihre Konvergenz wird analysiert und numerische Beispiele
zur Unterstützung der theoretischen Ergebnisse gegeben.
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CHAPTER 1

Introduction

The numerical simulation of complex systems is gaining more and more
importance. One of the main reasons for this is the continuous improvement of
numerical tools, which make it possible to simulate large and thus practically
relevant processes. Nowadays, numerical simulations are not only used in
classical technical or engineering applications, but also in social sciences or
finance. Furthermore, the field of life sciences also offers manifold applications
of computer-aided simulations.

The first fundamental step towards a simulation is mathematical modeling.
Here, it is important to capture the underlying processes in formulas. Usually,
the result is a system of partial differential equations. One example is the
subsurface flows in porous media, such as rocks, which is modeled as an
elliptic boundary value problem, see, e.g., [19, 22, 56]. A good model to
describe this subsurface flow is Darcy’s law, c.f., [17]. The key ingredient
is the hydraulic conductivity a that enters the system of equations as a
coefficient function. This parameter measures the transmissivity of a fluid
through an aquifer. It depends on the permeability of the heterogeneous
media and on the dynamic viscosity of the fluid. Darcy’s law states that the
flow velocity v is proportional to the gradient of the hydraulic head u times
the hydraulic conductivity parameter a. The subsurface flow can then be
modeled by the following system of partial differential equations:

v + a∇u = F , in D,
div v = 0, in D,

where D ⊆ Rn denotes an n ∈ N-dimensional spatial domain and the vector
field F describes a forcing term, i.e., sources and sinks in the domain D. The
second equation is simply the law of mass conservation, see, e.g., [14]. To
get a well-defined problem this system has to be equipped with appropriate
boundary conditions which are usually, for simplicity, homogeneous Dirichlet
conditions of the hydraulic head u.

The system above can now be transformed into an elliptic boundary value
problem for u by applying the divergence operator and setting f = −divF .
This leads to the system

−∇ · (a∇u) = f, in D,
u = 0, in ∂D.(1.0.1)

These kinds of elliptic boundary value problems are well understood and
there are different black-box solvers, see, e.g., [10, 77], which solve them with
high accuracy, but only if the input data is known exactly. Unfortunately,
in most cases, the coefficient function a is not given exactly and has to
be determined from measurements. This leads to a limited accuracy of the
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2 1. INTRODUCTION

model since we have to assume that we only have a discrete number of
measurements of the hydraulic conductivity.

Assuming that the porous media is heterogeneous we can follow a different
approach. We can model the coefficient function a as a random field over
a probability space (Ω,A, P ), see, e.g., [22, 60], where Ω denotes a set, A
a σ-algebra on Ω and P a probability measure on A. Following this idea
further the equations in (1.0.1) become an elliptic boundary value problem
with random diffusion coefficient. It is given by

−∇ · (a(x, ω)∇u(x, ω)) = f(x), in D × Ω,

u(x, ω) = 0, in ∂D × Ω,
(1.0.2)

where the function u is now also a random field.
In recent years this problem has been studied extensively, see, e.g., [4,

5, 14, 15, 79]. The usual method to simplify the problem in (1.0.2) is to
assume that (x, ω) 7→ a(x, ω) represents a certain stochastic process, e.g., a
Gaussian one. In these cases we can express the coefficient function as an
infinite sum, i.e., a(x, ω) allows for each x ∈ D and ω ∈ Ω the expansion

a(x, ω) =

∞∑
j=0

√
λjej(x)Yj(ω).(1.0.3)

This is known as the Karhunen-Loève expansion of a stochastic process, see,
e.g., [47, 59, 80]. With this ansatz we already achieved a separation of the
spatial variable x and the stochastic variable ω. Without going into more
detail this expansion is achieved by spectral expansion of the covariance
operator of the stochastic process. Then λj denotes the j-th eigenvalue, ej
the j-th eigenvector of this operator and the (Yj)j∈N0 are certain independent
random variables, whose distributions are given by density functions.

The next step is now to replace the random variables (Yj)j∈N0 by random
parameters (yj)j∈N0 which are defined on the image of the corresponding
random variables, see, e.g., [24], usually we assume that yj ∈ [−1, 1], j ∈ N0.
Additionally we cut the expansion in (1.0.3) after d ∈ N summands. Usually
d is large to give a good approximation to a(x, ω). This then yields a new,
parameter-dependent coefficient function a : D × [−1, 1]d → R given by

a(x,y) =
d−1∑
j=0

√
λjej(x)yj

and the problem in (1.0.2) becomes a parametric partial differential equation

−∇ · (a(x,y)∇u(x,y)) = f(x), in D × [−1, 1]d,

u(x,y) = 0, in ∂D × [−1, 1]d.
(1.0.4)

Although it is known that the solution u is smooth as a function of the
parameter y, see, e.g., [15], the computational cost to solve the problem
(1.0.4) by, e.g., a polynomial chaos expansion, c.f., [28, 34], or stochastic
collocation methods, c.f., [67, 68], suffers from the curse of dimensionality.
This term was coined by Bellman in [9] and can be interpreted that in order
to approximate a d-variate continuous function to accuracy ε < 1 we need
O(ε−d) samples.
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We choose a set of samples (yk)1≤k≤N in the d-dimensional parameter
space [−1, 1]d and solve for each sample yk the now deterministic problem

−∇ · (a(x,yk)∇u(x,yk)) = f(x), in D,
u(x,yk) = 0, in ∂D.

(1.0.5)

Often, we are not only interested in the solution u(x,y), x ∈ D, y ∈ [−1, 1]d

of (1.0.4) but rather in a derived value, the quantity of interest, which is
modeled as a function on the parameter space, i.e., it is given as mapping
Q : [−1, 1]d → R defined by Q(y) = q(u(·,y)) with a linear functional q
which operates on the solution of (1.0.5) seen as a function of the spatial
variable. The main task is to recover the mapping Q from sampled values
Q(yk) = q(u(·,yk)), 1 ≤ k ≤ N , see, e.g., [41, 55]. This is a high-dimensional
scattered data reconstruction problem. Additionally, the data may contain
noise since we obtain it by a numerical solution of (1.0.5).

The setting discribed above, the parametric partial differential equation
(1.0.4) and the possible reconstruction of a high-dimensional quantity of
interest of the solution of this equation, is the starting point of many papers,
see, e.g., [4, 15, 39, 41, 55, 62, 67, 68], among others. In this thesis, we leave
this motivational example and possible applications behind and focus only
on methods to solve high-dimensional reconstruction problems with possibly
noisy data. There are several approaches to solve this problem. In recent years
the method that garnered the most attention is approximation by neural
networks, see, e.g., [21, 49, 52, 96]. Neural networks yield remarkable results
in some applications, such as image or speech recognition, some even claiming
that they beat the curse of dimensionality, e.g., [37]. Once they are fully
trained the approximations can be computed very fast, however, the training
needs a lot of training data which may be expensive to obtain. Furthermore,
their black-box like nature makes it hard to derive error estimates or even to
understand how the approximation was obtained.

Another approach to high-dimensional reconstruction processes, in par-
ticular in the context of quadrature rules, are Monte Carlo methods, see,
e.g., [44]. Once we distributed an arbitrary number of points according to a
given probability distribution the method simply averages the evaluations of
the integrand at these sample points. This method has the advantage that
it convergences independently of d if the integrand satisfies low regularity
requirements. However, the convergence rate is of low algebraic order and
there are no deterministic error bounds available since the Monte Carlo
estimator itself is a random variable. Nevertheless, the law of large numbers
states that the estimator converges with high probability and several other
convergence properties are known, c.f., [13, 87].

Following the same idea as Monte Carlo methods but, instead of dis-
tributing the sample points randomly, using certain deterministic sequences
of points yields the quasi-Monte Carlo method, c.f., [25, 57]. Clearly, the
method now depends on the chosen sequence of points and there are known
quasi-Monte Carlo methods that exhibit dimension-independent convergence
rates in certain weighted settings, see, e.g., [48, 51].
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In this thesis however, we use a fourth approach. The idea is attributed
to Smolyak [83]. This method uses sequences of low-dimensional approx-
imation operators and combines them in an orderly fashion to obtain a
high-dimensional reconstruction operator which exhibits nearly the same
approximation features as the low-dimensional schemes. The main tools for
this construction are tensor products which are very well understood, see,
e.g., [42, 76, 81], and allow deterministic, a-priori error estimates, c.f., [71,
72]. The main advantage of the Smolyak method is that we have a lot of
freedom to choose the low-dimensional approximation operators. The best
studied reconstruction schemes use polynomial or spline interpolation, see,
e.g., [6, 11, 30], but it is also possible to use low-dimensional quadrature
rules, c.f., [69]. This was the original motivation in [83].

We combine Smolyak’s algorithm with kernel-based multilevel operators
with compactly supported radial basis functions, see, e.g., [27, 91, 92]. These
methods allow stable and fast high-order approximations of functions using
scattered data in general low-dimensional domains. The construction of the
Smolyak method is perfectly suited for use with multilevel methods. This
was already discussed in [11, 30] for the context of spline interpolation. The
idea to use kernel-based multilevel methods is not entirely new, e.g., in [32,
89] Gaussians are used in this context. However, these papers are purely
numerical. We derive the method, provide several representations of the
multivariate approximation operator and give rigorous error estimates.

This new tensor product multilevel method has several advantages com-
pared to the methods using polynomials or splines. While polynomials become
more and more expensive if larger and larger data sets are used, they provide
easily even spectral convergence. However, the possible point sets are usually
restricted to Chebyshev or Clenshaw-Curtis points. In contrast, splines are
computationally more efficient but usually only produce low approximation
orders. Both have in common that a generalisation to other low-dimensional
domains than intervals are not straight forward. This, however, might be de-
sirable. Using the kernel-based multilevel method has none of these drawbacks
since they can be used for arbitrary sets of sites in nearly any domain.

The outline of this thesis is structured as follows. In Chapter 2 we
repeat the most important results from functional analytics and give a
short introduction into reproducing kernels where we also briefly discuss the
construction of Wendland functions, the class of compactly supported radial
basis functions we have in mind throughout this thesis. We also review results
concerning the approximation power of these kernels in their original and
rescaled form. To prepare for Chapter 3 we also study different properties of
the resulting kernel matrix.

We use the properties of the kernel matrix to derive an alternative basis of
the approximation space. Its members are known as Lagrange functions. The
introduction of these functions is necessary to derive the representation of
the tensor product multilevel method in its most general form. Additionally,
we modify these Lagrange functions such that they satisfy the Lagrange
condition on a subset of the sites. The construction and study of these
localized Lagrange functions in the context of Wendland functions is original
work, however, follows closely known ideas.
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Then, in Chapter 4, we introduce the kernel-based multilevel method and
provide error estimates for different approximation schemes. We will use these
error bounds later in Chapter 7. One caveat in those error estimates is that
there is an unknown constant which can potentially spoil the convergence.
We give numerical estimates of this constant in different parameter settings.
Additionally, we introduce two adaptive versions of the multilevel method
and derive an alternative representation using the Lagrange functions. To
finish this chapter we also derive a convergence result in the case that we
use the localized Lagrange functions.

Next, we give a thorough introduction into tensor products in Chapter 5.
Starting with the purely algebraic construction of the tensor product spaces
then we study tensor product norms and tensor products of operators. The
results obtained here are the main ingredients to understand Smolyak’s
algorithm and to derive needed, preliminary error estimates.

We give a general introduction into the Smolyak method in Chapter 6.
We study the resulting operator in its most general form before restricting
ourselves to a special class of index set and refine some of the general
statements for this special case. To end the chapter, we introduce the idea of
an adaptive version of the Smolyak algorithm.

Finally, we combine Smolyak’s method and the kernel-based multilevel
method in Chapter 7 to obtain the tensor product multilevel method. We
discuss this new approximation operator in detail and give several represen-
tations. Then we use the error bounds of Chapter 4 and combine them with
estimates obtained in Chapter 6 to obtain a thorough error analysis. We also
provide numerical examples to support these theoretical results. To finish,
we discuss the possibility to combine the adaptive version of the Smolyak
method with the adaptive version of the multilevel method which yields the
double-adaptive tensor product multilevel method.





Notation and Terminology

In the most part the notation in this work is standard and chosen in
a self-explanatory way. In addition, the less frequently used notation is
introduced or repeated at the respective point. Nevertheless, we will give a
small overview of the notation here, in case there should be any ambiguities
at some point.

As usual N and R denote the set of all natural and real numbers. R+

denotes the set of all positive real numbers. We denote N0 = N ∪ {0}. The
Cartesian product of two (or more) sets X and Y will be denoted by X × Y ,
while, as usual, a superscript of a respective set denotes the dimension of
the Cartesian power, for example, Rn is the n-dimensional real space and
Rm×n is the space of real values matrices with m rows and n columns. In
general, the letters n and d are fixed as natural numbers.

For better readability elements of higher-dimensional objects are written
in bold. The i-th entry of a vector x ∈ Rn is denoted by xi ∈ R for 1 ≤ i ≤ n.
For 1 ≤ p ≤ ∞, ‖x‖p denotes the p-norm of a vector. For a multiindex

λ ∈ Nd ‖λ‖1 denotes the 1-norm, i.e., ‖λ‖1 :=
∑d

j=1 |λj |.
For a set Ω ⊆ Rn and a k ∈ N0, Ck(Ω) denotes the space of all k-times

continuously differentiable functions f : Ω → R. If k = 0 we simply write
C(Ω). For a 1 ≤ p ≤ ∞ and measurable Ω ⊆ Rn, Lp(Ω) denotes the Lebesgue
space.

Let f : Rn → R be continuously or weakly differentiable. The i-th partial
(weak) derivative of f is denoted by ∂if . For a multi-index α ∈ Nn0 , the α-th
(weak) derivative of f is denoted by Dαf = ∂α1

1 · · · ∂αnn f . The Laplacian is
denoted by ∆f :=

∑n
i=1 ∂

2
i f .

We also encounter mappings where we keep a certain argument fixed. As
an example, given a function f : R × R → R, for some fixed x ∈ R, f(x, ·)
is seen as a mapping R → R, y 7→ f(x, y). Here, the dot symbol is a free
argument.

If (V, ‖ · ‖V ) and (W, ‖ · ‖W ) are normed spaces we denote the norm of
an operator A : V →W by

‖A‖V→W := sup
x∈V
‖x‖V =1

‖Ax‖W .

We will use the Fourier transform, denoted by ·̂, as an operator L2(Rn)→
L2(Rn). For f ∈ L1(Rn) the transform is defined by

f̂(ξ) = (2π)−n/2
∫
Rn
f(x)e−ix

Tξ dx

and then extended to elements of L2(Rn) in the usual way.

7



8 NOTATION AND TERMINOLOGY

In the later chapters of this thesis we have to distinguish between di-
mensions and directions. We will denote the dimensions with n and the
number of directions by d. It will occur that we encounter sets of the kind
Ω = Ω(1) × · · · × Ω(d) ⊆ Rn1 × · · · × Rnd , where each Ω(j) ⊆ Rnj is a nj-

dimensional set and Ω is of dimension n =
∑d

j=1 nj . If we have to denote

objects in different directions we use the superscript (j) for the respective
object in direction j.

Finally, the letters c > 0 and C > 0 denote arbitrary constants which
can vary from line to line within each calculation.



CHAPTER 2

Kernel-based Approximation

This chapter repeats important results in the context of kernel-based
approximation. After recalling well-known tools from analysis in Section 2.1
we investigate the relation between positive definite kernels and native spaces
in Section 2.2. There we also repeat the basic construction of the class of
radial basis functions we are most interested in, the Wendland functions.
Next, we study different approximation schemes in Section 2.3. We start by
looking at interpolation of functions that lie in the native space, but also show
that we can interpolate continuous functions that are rougher. The second
approximation scheme we introduce is the penalized least squares method
that allows us to cope with noise on the data. Although we see that those
schemes converge with hX.Ω → 0 they become numerically more and more
expensive, hence, in Section 2.4 we study a way to rescale kernels such that
the resulting kernel matrix is well-behaved. There are several other classes of
basis functions, such as Gaussians, (inverse) multiquadrics or Matérn kernels,
to name a few, that can be used in these approximation methods and that
may fit the assumptions of some theoretical results, but we are have mainly
the Wendland functions in mind. To end this chapter, in Section 2.5, we
study the kernel matrix of these compactly supported rescaled kernels in
greater detail. The results obtained there lead directly into the next chapter.

2.1. Some Fundamental Information on Sobolev Spaces

We start this chapter with providing some general functional analytical
results we will use throughout this text. Although most statements can be
made using more general assumptions, we restrict ourselves on domains, i.e.,
subsets of Rn that satisfy the following definition.

Definition 2.1.1. We call Ω ⊆ Rn domain if Ω is non-empty, open and
connected.

First, we give the definition of certain subspaces of Lp(Ω)-spaces.

Definition 2.1.2. Let Ω ⊆ Rn be a domain, k ∈ N0 and 1 ≤ p ≤ ∞. We
define the Sobolev space W k

p (Ω) by

W k
p (Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all 0 ≤ ‖α‖1 ≤ k}

and its norm by

‖f‖Wk
p (Ω) :=

 ∑
0≤‖α‖1≤k

‖Dαf‖pLp(Ω)

 1
p

9



10 2. KERNEL-BASED APPROXIMATION

for 1 ≤ p <∞. For p =∞ the norm is defined by

‖f‖Wk
∞(Ω) := max

0≤‖α‖1≤k
‖Dαf‖L∞(Ω).

Usually, k ∈ N is called the smoothness of f ∈W k
p (Ω). It is well known

that Sobolev spaces are complete, see, e.g., [10, Theorem 1.3.2].

Lemma 2.1.3. Let Ω ⊆ Rn be a domain, k ∈ N0 and 1 ≤ p ≤ ∞. Then(
W k
p (Ω), ‖ · ‖Wk

p (Ω)

)
is a Banach space.

If p = 2, the space
(
W k

2 (Ω), ‖ · ‖Wk
2 (Ω)

)
is a Hilbert space and its norm

is induced by the scalar product

〈f, g〉Wk
2 (Ω) :=

 ∑
0≤‖α‖1≤k

〈Dαf,Dαg〉L2(Ω)

 1
2

.

There are several approaches to generalize Sobolev spaces to non-integer
smoothnesses, see, e.g., [1, Chapter VII]. We are most interested in a con-
struction using the Fourier transform of the Bessel potential, i.e., the Fourier
transform of functions of the kind (ι−∆)sf with a real number s ≥ 0, where ι
denotes the identity operator and ∆ the Laplace operator. This construction
requires us to first consider only Ω = Rn. Furthermore, we restrict ourselves
to the Hilbert space case, i.e., Sobolev spaces with p = 2.

Definition 2.1.4. Let 0 ≤ s <∞. Then the space Hs(Rn) is defined as

Hs(Rn) :=
{
f ∈ L2(Rn) : ξ 7→

(
1 + ‖ξ‖22

) s
2 |f̂(ξ)| ∈ L2(Rn)

}
.

Its norm is given by

‖f‖Hs(Rn) :=

(∫
Rn

(
1 + ‖ξ‖22

)s |f̂(ξ)|2 dξ
) 1

2

.(2.1.1)

For integer smoothness, i.e., s = k ∈ N0, the spaces Hk(Rn) and W k
2 (Rn)

coincide, however the associated norms are only equivalent.

Definition 2.1.5. Let V be a linear space. Then two norms ‖ · ‖1 and ‖ · ‖2
on V are called equivalent if there are constants c1, c2 > 0 such that

c1‖v‖1 ≤ ‖v‖2 ≤ c2‖v‖1, v ∈ V.(2.1.2)

Since we used the Fourier transform for the definition of the Sobolev
Hilbert space of fractional smoothness it was necessary to set Ω = Rn.
However, we can canonically restrict the elements of Hs(Rn) to Ω and obtain
the Sobolev space Hs(Ω) this way. This restriction can be done without any
assumptions on Ω.

It is also possible to extend elements from Hs(Ω) to functions in Hs(Rn)
in a controlled way. But in contrast to the restriction, the extension requires
the boundary of Ω to be smooth in the sense that it can be parameterized
by countably many Lipschitz maps. We quote the precise definition from [10,
Definition 1.4.4].
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Definition 2.1.6. We say a domain Ω has a Lipschitz boundary ∂Ω provided
there exists a collection of open sets Oi, a positive parameter ε, an integer N
and a finite number M , such that for all x ∈ ∂Ω the ball of radius ε centered
at x is contained in some Oi, no more than N of the sets Oi intersect
nontrivially, and each domain Oi ∩ Ω satisfies Oi ∩ Ω = Oi ∩ Ωi, where
Ωi is a domain whose boundary is a graph of a Lipschitz function φi, i.e.,
Ωi = {(x, y) ∈ Rn : x ∈ Rn−1, y < φi(x)}, satisfying ‖φi‖Lip(Rn−1) ≤ M ,
where ‖ · ‖Lip(Rn−1) denotes the Lipschitz norm, defined by

‖f‖Lip(Rn−1) = ‖f‖L∞(Rn−1) + sup

{
|f(x)− f(y)|
|x− y|

: x,y ∈ Rn−1,x 6= y

}
.

We often call domains Ω which have a Lipschitz boundary Lipschitz
domains. The simplest and, in the context of approximation, most often used
Lipschitz domains are polytopal domains, such as the hypercube [−1, 1]n.

With this, we are now able to discuss a way to extend functions from
Hs(Ω) to functions in Hs(Rn). The extension operator was first introduced
in [85] for the case of integer smoothness k and later, e.g., in [10, Section
14.2] and references therein, generalized to real s ≥ 0.

Theorem 2.1.7. Let Ω ⊆ Rn be a Lipschitz domain. Let s ≥ 0. Then there
exists a linear operator E : Hs(Ω)→ Hs(Rn) such that

(1) Ef |Ω = f , and
(2) ‖Ef‖Hs(Rn) ≤ CE‖f‖Hs(Ω)

holds for all f ∈ Hs(Ω).
The constant CE = CE(Ω, s) depends only on the domain Ω and the

smoothness s.

Property (2) implies that the extension operator E is bounded. Further-
more, we can use the same operator E for every s ≥ 0, however the constant
CE grows with s. Unfortunately, the norm of the extension operator is in
most cases unknown. We give an example where we can derive bounds if Ω
is a one-dimensional interval, that is, Ω = (a, b). We have to distinguish two
cases, depending on the length of the interval.

To obtain bounds for the norms of extension operators on Hs(Ω) we
introduce another useful tool, the operator interpolation. The next result is a
special version of, e.g., [10, Proposition 14.1.5] and uses, in its original form,
a norm-equivalent version of Hs(Ω).

Theorem 2.1.8. Let Ω ⊆ Rn be a Lipschitz domain. Let s1 ≥ s0 and t1 ≥ t0.
For 0 ≤ θ ≤ 1 let

sθ = (1− θ)s0 + θs1 and tθ = (1− θ)t0 + θt1.

If T is linear and bounded as an operator mapping Hs0(Ω)→ Ht0(Ω) and
Hs1(Ω)→ Ht1(Ω) simultaneously, then it is also bounded as a linear operator
mapping Hsθ(Ω)→ Htθ(Ω) with

‖T‖Hsθ (Ω)→Htθ (Ω) ≤ ‖T‖
1−θ
Hs0 (Ω)→Ht0 (Ω)

‖T‖θHs1 (Ω)→Ht1 (Ω).(2.1.3)

Theorem 2.1.8 allows us to generalize the statements of [12, Section 6.1,
Lemma 9, Lemma 10]. There, only Sobolev spaces of integer smoothness
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are considered. Again, we are only interested in the Sobolev Hilbert space
Hs((a, b)).

Lemma 2.1.9. Let s ≥ 1 and −∞ < a < b <∞. Then there exists a linear
extension operator E : Hs((a, b))→ Hs(R), such that we have for b− a ≤ 1,

‖E‖Hs((a,b))→Hs(R) ≤ c4(64(1 + 256e))s
ss

(b− a)s−
1
2

(2.1.4)

and for b− a ≥ 1,

‖E‖Hs((a,b))→Hs(R) ≤ C max
(
b− a, 2s+2

)
(80 + 1024e)s

(
1 +

ss

(b− a)s−
1
2

)
,

(2.1.5)

where c, C > 0 depend on the equivalence constants of Definition 2.1.5.

Proof. We only give a proof for b− a ≥ 1 as the same ideas apply to
the other case b− a ≤ 1. For b− a ≥ 1 we have by [12, Section 9.1, Lemma
10] the bound for the norm of the extension operator for k ∈ N,

‖E‖Hk((a,b))→Hk(R) ≤ c2c
k

(
1 +

kk

(b− a)k−
1
2

)
,(2.1.6)

with the constant c = 80 + 1024e. For any s ∈ R with s ≥ 1 there is a k ∈ N
such that k ≤ s ≤ k + 1. Hence we use (2.1.6) for k and k + 1 and apply the
operator interpolation of Theorem 2.1.8 with θ = s− k ≥ 0. This yields

1

C
‖E‖Hs((a,b))→Hs(R) ≤ ‖E‖1−θHk((a,b))→Hk(R)

‖E‖θHk+1((a,b))→Hk+1(R)

≤ ck(1−θ)

(
1 +

kk

(b− a)k−
1
2

)1−θ

· c(k+1)θ

(
1 +

(k + 1)(k+1)

(b− a)(k+1)− 1
2

)θ
= ck+θ(b− a)−(k− 1

2
)(1−θ)(b− a)−(k+ 1

2
)θ
(

(b− a)k−
1
2 + kk

)1−θ
·

·
(

(b− a)k+ 1
2 + (k + 1)(k+1)

)θ
≤ cs(b− a)−(s− 1

2
)
(

(b− a)s−
1
2 + ss

)1−θ (
(b− a)k+ 1

2 + (k + 1)k+1
)θ
.

We now investigate the term(
(b− a)k+ 1

2 + (k + 1)k+1
)θ

separately. We first find that

(b− a)k+ 1
2 = (b− a)(b− a)k−

1
2

≤ (b− a)(b− a)k+θ− 1
2 ,
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Additionally, we have with 0 ≤ θ ≤ 1

(k + 1)k+1 = (k + θ + (1− θ))k+1 ≤ (k + θ)k+1

(
1 +

1− θ
k + θ

)k+1

≤ (k + θ)k+θ+(1−θ)
(

1 +
1− θ
k + θ

)k+θ+(1−θ)

= (k + θ)k+θ · (k + θ)1−θ ·
(

1 +
1− θ
k + θ

)k+θ

·
(

1 +
1− θ
k + θ

)1−θ

≤ ss · s · 2s · 2 ≤ 2s+2ss.

Putting these two estimates back yields

1

C
‖E‖Hs((a,b))→Hs(R) ≤ cs(b− a)−(s− 1

2
)
(

(b− a)s−
1
2 + ss

)1−θ
·

·
(

(b− a)k+ 1
2 + (k + 1)(k+1)

)θ
≤ cs(b− a)−(s− 1

2
)
(

(b− a)s−
1
2 + ss

)1−θ
·

·
(

(b− a)(b− a)s−
1
2 + 2s+2ss

)θ
≤ cs max(b− a, 2s+2)(b− a)−(s− 1

2
)
(

(b− a)s−
1
2 + ss

)
.

That is (2.1.5). �

We also quote [12, Section 9.1, Lemma 11] which gives a lower bound
for the norm of the extension operator, however only for integer smoothness.
Again, we are only interested in the case p = 2.

Lemma 2.1.10. Let k ∈ N and a, b ∈ R such that −∞ < a < b <∞. Then
the norm of any extension operator E : Hk((a, b))→ Hk(R) can be bounded
from below by

‖E‖Hk((a,b))→Hk(R) ≥ c1
1

8
√
k

(
4

e

)k
kk(b− a)−k+ 1

2 ,(2.1.7)

where c1 > 0 is the equivalence constant from Definition 2.1.5.

The interval Ω = (−1, 1) will be of special interest later. Hence, we give
the specific bounds.

Proposition 2.1.11. For a = −1, b = 1 and s > 1 the norm of the extension
operator E : Hs((−1, 1))→ Hs(R) satisfies

‖E‖Hs((−1,1))→Hs(R) ≤ 4c2(80 + 1024e)s
(

2s +
√

2ss
)
.(2.1.8)

If s = k ∈ N, the norm of the extension operator E : Hk((−1, 1))→ Hk(R)
satisfies the lower bound

‖E‖Hs((−1,1))→Hs(R) ≥ c12k−1 1

ek
√
k
kk.(2.1.9)

Extension in the pure operator setting is much easier. The following
theorem is well-known, see, e.g., [42, Chapter 4].
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Theorem 2.1.12. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces. Let
V0 ⊆ V be a dense subspace. Let A0 : V0 →W be a bounded linear operator.
Then there exists a unique bounded linear operator A : V →W such that

(1) A0(v0) = A(v0) holds for all v0 ∈ V , and
(2) ‖A0‖V→W = ‖A‖V→W .

The operator A in Theorem 2.1.12 is called the extension of A0. Often,
we use the same symbol for both operators.

To end this section, we give a special case of the Sobolev embedding
theorem. For more general cases see, e.g., [10, Theorem 1.4.6]. This theorem
gives us an easy criterion to check whether a given Sobolev space can be
imbedded into the space of continuous functions and hence allows us to
use point-evaluations of Sobolev functions. We note that we use the same
notation for the embedding operator as for the identity operator.

Theorem 2.1.13. Let Ω ⊆ Rn be a Lipschitz domain. Let s > n/2. Then
there is a linear and bounded embedding operator ι : Hs(Ω)→ C(Ω).

We emphasize that the condition s > n/2 means that for large dimensions
n only very smooth Sobolev spaces can be imbedded into the space of
continuous functions.

2.2. Kernel Functions and Native Spaces

We now give a short survey over the wide field of kernel functions and their
native spaces. This theory originated early, see [2], and is the fundamental
basis for meshfree or scattered data approximation.

We start by giving the definition of special functions in Hilbert spaces.

Definition 2.2.1. Let Ω ⊆ Rn be a domain. Let (H, 〈·, ·〉H) be a real Hilbert
space of functions f : Ω→ R. A function K : Ω×Ω→ R is called reproducing
kernel for H if

(1) K(·,y) ∈ H for all y ∈ Ω, and
(2) f(y) = 〈f,K(·,y)〉H for all f ∈ H and all y ∈ Ω.

We call a Hilbert space H with such a kernel K a reproducing kernel
Hilbert space. In the next theorem, we collect some important properties of
these spaces and their reproducing kernel.

Theorem 2.2.2. Let Ω ⊆ Rn be a domain. Let (H, 〈·, ·〉H) be a Hilbert space
of functions f : Ω→ R. Then H is a reproducing kernel Hilbert space if and
only if the point-evaluation functionals δx are continuous for every x ∈ Ω.
In this case, the following properties hold:

(1) The reproducing kernel K is unique.
(2) K(x,y) = 〈K(·,x),K(·,y)〉H = 〈δx, δy〉H∗ for all x,y ∈ Ω.
(3) K(x,y) = K(y,x) for x,y ∈ Ω.

Proof. The proof is a combination of the proofs of [94, Theorem 10.2
and Theorem 10.3]. �

There is a strong connection between reproducing kernel Hilbert spaces
and positive definite kernels. We define this property first, before we specify
this connection.
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Definition 2.2.3. Let Ω ⊆ Rn be a domain. A continuous function K :
Ω × Ω → R is called positive semi-definite if for all N ∈ N, all sets of
pairwise distinct centers X := {x1, . . . ,xN} ⊆ Ω and all α ∈ RN , the
quadratic form

N∑
i,j=1

αiαjK(xi,xj)

is non-negative. The kernel K is called positive definite if the quadratic form
is positive for all α ∈ RN \ {0}.

The connection between reproducing kernel Hilbert spaces and positive
definite kernels is easily proven, see, e.g., [94, Theorem 10.4].

Theorem 2.2.4. Let Ω ⊆ Rn be a domain. Let (H, 〈·, ·〉H) be a reproducing
kernel Hilbert space with reproducing kernel K : Ω × Ω → R. Then K is
positive semi-definite. Furthermore, K is positive definite if and only if the
point-evaluation functionals are linearly independent in H∗.

The first property of Definition 2.2.1 means in particular that H contains
functions of the form f =

∑N
j=1 αjK(·,xj) with arbitrary, pairwise distinct

points x1, . . . ,xN ∈ Ω, N ∈ N. The norm of these functions is given as

‖f‖2H =
N∑

i,j=1

αiαj〈K(·,xi),K(·,xj)〉H =
N∑

i,j=1

αiαjK(xi,xj).

Theorem 2.2.4 yields, in particular, that positive definite kernels appear
naturally in the context of reproducing kernel Hilbert spaces. However, the
other direction is also true. We can construct a Hilbert space from a given
positive definite kernel.

We assume that K : Ω× Ω→ R is a symmetric, positive definite kernel.
Motivated by the consideration above, we define a linear space

FK(Ω) := span{K(·,y) : y ∈ Ω}

and equip it with the bilinear form 〈·, ·〉K : FK(Ω) × FK(Ω) → R which is
defined as 〈

N∑
i=1

αiK(·,xi),
M∑
j=1

βjK(·,xj)

〉
K

:=
N∑
i=1

M∑
j=1

αiβjK(xi,xj).(2.2.1)

This bilinear mapping is a candidate for an inner product on FK(Ω). For a
proof of the next theorem, we refer to, e.g., [94, Theorem 10.7].

Theorem 2.2.5. Let Ω ⊆ Rn be a domain. If K : Ω×Ω→ R is a symmetric,
positive definite kernel then 〈·, ·〉K as in (2.2.1) defines an inner product on
FK(Ω). Furthermore, (FK(Ω), 〈·, ·〉K) is a pre-Hilbert space with reproducing
kernel K.

The next step is then to complete FK(Ω).

Definition 2.2.6. The completion of FK with respect to the norm induced
by 〈·, ·〉K of (2.2.1) is called native space of K and is denoted by NK(Ω).
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The technical nuances how this completion is done can be found in, e.g.,
[94, pp. 137]. There, we also see that the native space is a reproducing kernel
Hilbert space.

Theorem 2.2.7. Let Ω ⊆ Rn be a domain. Let K : Ω × Ω → R be a
symmetric, positive definite kernel. Then its associated native space NK(Ω)
is a Hilbert space with reproducing kernel K.

In conclusion, there is a one-to-one relation between positive definite
kernels and reproducing kernels of Hilbert spaces. We can start with either the
space or the kernel and obtain the other one as described above. Additionally,
the native space is unique. For a proof we refer to [94].

Theorem 2.2.8. Let Ω ⊆ Rn be a domain. Let K : Ω × Ω → R be a
symmetric, positive definite kernel. Let G be a Hilbert space of functions
f : Ω → R with reproducing kernel K. Then G is the native space NK(Ω)
and the inner products are the same.

From a numerical point of view it is preferable to use as easy a kernel as
possible.

Definition 2.2.9. Let Ω = Rn. We call the kernel K : Rn × Rn → R
translation invariant if there is a function Φ : Rn → R such that K(x,y) =
Φ(x − y) for all x,y ∈ Rn. If K is additionally symmetric and positive
definite, we denote its native space by NΦ(Rn).

Note that we initially have to use Ω = Rn. We will discuss extensions
and restrictions of native space functions to domains Ω ( Rn later in this
section.

Characterizations and properties of translation invariant kernels in rela-
tion to positive definiteness are well known, see, e.g., [94, Chapter 6], and
will not be addressed further in this text. We only give one possible charac-
terization of the native space of a translation invariant kernel, see, e.g., [94,
Theorem 10.12].

Theorem 2.2.10. Let Φ ∈ C(Rn)∩L1(Rn) be a real-valued, positive definite
function. Define

G :=

{
f ∈ L2(Rn) ∩ C(Rn) :

f̂√
Φ̂
∈ L2(Rn)

}
and equip this space with the bilinear form

〈f, g〉G :=

〈
f̂√
Φ̂
,
ĝ√
Φ̂

〉
L2(Rn)

=

∫
Rn

f̂(ξ)ĝ(ξ)

Φ̂(ξ)
dξ.

Then G is a real Hilbert space with inner product 〈·, ·〉G and reproducing kernel
Φ. Hence, G is the native space NΦ(Rn) and the inner products are the same.

If the Fourier transform of the kernel Φ decays sufficiently fast we can
even connect its native space to a Sobolev Hilbert space. The proof of the
following corollary can also be found in [94].
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Corollary 2.2.11. Let Φ ∈ L1(Rn) ∩ C(Rn) and assume that its Fourier
transform satisfies

c1(1 + ‖ξ‖22)−s ≤ Φ̂(ξ) ≤ c2(1 + ‖ξ‖22)−s, ξ ∈ Rn,(2.2.2)

with s > n/2 and two positive constants c1 ≤ c2. Then the native space
NΦ(Rn) of Φ coincides with the Sobolev space Hs(Rn), and the native space
norm and the Sobolev norm are equivalent.

Next we want to transfer the result of the preceding corollary to native
spaces which are defined only on a domain Ω ⊂ Rn. We will see that this is
possible with a weak assumption on Ω. To do this we first need to discuss
the restriction of functions in a native space NΦ(Ω2) to a domain Ω1, where
Ω1 ⊆ Ω2 ⊆ Rn. We have the following theorem whose proof is given in the
discussion before [94, Theorem 10.47].

Theorem 2.2.12. Let Ω1 ⊆ Ω2 ⊆ Rn. Then the restriction f |Ω1 of any
function f ∈ NΦ(Ω2) is contained in NΦ(Ω1) with a norm that is less than
or equal to the norm of f .

This theorem can be used to prove the analogue of Corollary 2.2.11.
However first, we introduce a result on the extension of native space functions,
taken from [94, Theorem 10.46].

Theorem 2.2.13. Each function f ∈ NΦ(Ω1) has a natural extension to a
function Ef ∈ NΦ(Ω2). Furthermore, ‖Ef‖NΦ(Ω2) = ‖f‖NΦ(Ω1).

We are now in the position to give the desired analogue of Corollary 2.2.11,
see, e.g., [94, Corollary 10.48].

Corollary 2.2.14. Suppose that Φ ∈ L1(Rn) has a Fourier transform that
satisfies (2.2.2), i.e., for s > n/2 there are constants 0 < c1 ≤ c2 such that

c1(1 + ‖ξ‖22)−s ≤ Φ̂(ξ) ≤ c2(1 + ‖ξ‖22)−s, ξ ∈ Rn.
Suppose further that Ω ⊆ Rn has a Lipschitz boundary. Then NΦ(Ω) coincides
with Hs(Ω) and the norms are equivalent.

To conclude this section, we construct the specific family of positive
definite kernels whose elements not only satisfy (2.2.2) but also have compact
support and are radial.

Definition 2.2.15. We call a function Φ : Rn → R radial if there exists a
function φ : [0,∞)→ R such that Φ(x) = φ(‖x‖2) for all x ∈ Rn.

For more details, especially in the context of positive definiteness, on
radial functions we refer to [94, Chapter 6.3]. We only remark that we always
assume the univariate function φ : [0,∞)→ R to be defined on all of R by
even extension, i.e., by setting φ(r) := φ(−r) if r < 0.

The starting point of the construction of the desired kernels is the
following compactly supported univariate function.

Definition 2.2.16. For ν ∈ N the truncated power function φν : R→ R is
defined as

φν(r) = (1− r)ν+, r ≥ 0(2.2.3)

and even extension to R. We used the notation (x)+ = max(0, x).
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It is known that these functions are positive definite on Rn, if ν ≥ bn/2c+1
[94, Theorem 6.20]. However, they are even for large ν only continuous.
To construct positive definite functions of given smoothness and spatial
dimension n, we need to define an operator which transports properties
between dimensions.

Definition 2.2.17. Let φ : [0,∞) → R be given so that the mapping t 7→
φ(t)t is in L1([0,∞)), then we define for r ≥ 0 the dimension walk operator
I as

Iφ(r) :=

∫ ∞
r

tφ(t) dt.

Again, we obtain by even extension a function Iφ defined on R. Now we
apply this integral operator k-times to the truncated power function φν for
a specifically chosen ν and obtain the functions of our choice.

Definition 2.2.18. The Wendland function of smoothness 2k for space
dimension n is defined as

(2.2.4) φn,k(r) := Ikφbn2 c+k+1(r), 0 ≤ r ≤ 1.

These Wendland functions have several remarkable properties. We collect
some of these in the next theorem, c.f., [94].

Theorem 2.2.19. The functions φn,k are positive definite on every Rm, with
m ≤ n and are of the form

φn,k(r) =

{
pn,k(r), 0 ≤ r ≤ 1,

0, r > 1,

with a univariate polynomial pn,k of degree bn/2c + 3k + 1. They possess
continuous derivatives up to order 2k. The degree of pn,k is minimal for a
given space dimension n and smoothness 2k and are up to a constant factor
uniquely determined by this setting.

We give a selection of Wendland functions φn,k for different space di-
mensions n in Table 1. We used the notation

.
= to denote equality up to

a multiplicative constant. Additionally, we give the explicit smoothness
following Theorem 2.2.19.

Finally, we transfer these results to the kernel Φn,k : Rn → R and find
that the Fourier transform of this (compactly supported) radial basis function,
or in short (C)RBF, exhibits an algebraic decay of certain order. We collect
the results in the following theorem, see [94, Theorem 10.35].

Theorem 2.2.20. Let Φn,k = φn,k(‖ · ‖2) denote the compactly supported

RBF of minimal degree that is positive definite on Rn and in C2k(Rn). Let
n ≥ 3 if k = 0. Then there exist constants c1, c2 > 0 depending only on n
and k such that

c1(1 + ‖ξ‖2)−n−2k−1 ≤ Φ̂n,k(ξ) ≤ c2(1 + ‖ξ‖2)−n−2k−1

for all ξ ∈ Rn. This means in particular that

NΦn,k(Rn) ∼= H
n
2

+k+ 1
2 (Rn),
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Space dimension Function Smoothness

n = 1
φ1,0(r) = (1− r)+ C0

φ1,1(r)
.
= (1− r)3

+(3r + 1) C2

φ1,2(r)
.
= (1− r)5

+(8r2 + 5r + 1) C4

n ≤ 3

φ3,0(r) = (1− r)2
+ C0

φ3,1(r)
.
= (1− r)4

+(4r + 1) C2

φ3,2(r)
.
= (1− r)6

+(35r2 + 18r + 3) C4

φ3,3(r)
.
= (1− r)8

+(32r3 + 25r2 + 8r + 1) C6

n ≤ 5
φ5,0(r) = (1− r)3

+ C0

φ5,1(r)
.
= (1− r)5

+(5r + 1) C2

φ5,2(r)
.
= (1− r)7

+(16r2 + 7r + 1) C4

Table 1. Specific Wendland functions φn,k for different spa-
tial dimensions n

i.e., the native space of Φn,k coincides with a classical Sobolev space of

smoothness s = n
2 + k + 1

2 and the native space norm and the Sobolev norm
are equivalent.

Because of this connection of the native space NΦ(Rn) of the Wendland
function and the Sobolev space we often call Φn,k the reproducing kernel of
Hs(Rn).

The theorem above directly implies that we can use Wendland functions
as reproducing kernels for Sobolev spaces of order n/2 +k+ 1/2 in dimension
n. However, this means that we do not cover Sobolev spaces of integer
smoothness if the spacial dimension n is even. Although there is an explicit
construction for these missing Wendland functions given in [75], we can and
will simply take the traditional Wendland functions for larger n.

2.3. Approximation with Compactly Supported RBFs

We introduce now the basics of approximation by compactly supported
RBFs. This method allows us to reconstruct unknown functions from point-
wise data. In comparison to other popular approximation methods we require
no additional information like meshes.

2.3.1. General Setup for Scattered Data Approximation. We
start by giving the general setup for scattered data approximation and
introduce the specific notation we use for the rest of this thesis.

The main goal is to approximate an unknown function f : Ω→ R, defined
on a domain Ω ⊆ Rn, from only unstructured point data. To this end, we
fix a discrete set of sites X := {x1, . . . ,xN} ⊂ Ω. For this point set X we
define two characteristic quantities.

Definition 2.3.1. Let Ω ⊆ Rn be a bounded domain. For a discrete set of
sites X := {x1, . . . ,xN} ⊂ Ω the mesh size or fill distance hX,Ω is given by

hX,Ω := sup
x∈Ω

min
1≤j≤N

‖x− xj‖2.(2.3.1)
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This is the radius of the largest ball whose center is an element of Ω and
which does not contain an element of X.

Definition 2.3.2. Let Ω ⊆ Rn be a domain. For a discrete set of sites
X := {x1, . . . ,xN} ⊂ Ω the separation radius qX is given by

qX :=
1

2
min
i 6=j
‖xi − xj‖2.(2.3.2)

The separation radius gives the largest radius for two balls centered at
different elements of X to be disjoint.

In order to obtain a good approximation to the function f , we have to
assume that the set of sites X is well distributed in Ω.

Definition 2.3.3. We call a set of sites X ⊂ Ω quasi-uniform if there is a
constant cqu > 0 such that

qX ≤ hX,Ω ≤ cquqX .(2.3.3)

We need to discuss this definition in more detail. We see that the first
inequality always holds with the definitions of the fill distance and the
separation radius. Also, for a single set X, we can always find a constant
cqu > 0 such that hX,Ω ≤ cquqX . Hence, in applications, the definition of
quasi-uniformity has to be understood in the context of more than one set
of sites. In the error analysis the idea is that we have a sequence of sample
points which fills Ω more and more. Then it is important that every member
of this sequence satisfies (2.3.3) with the same constant cqu.

Next, we give an error estimate established in [95], which is a generaliza-
tion of the results in [65]. These estimates are called sampling inequalities
and allow us to bound a weak norm by a weighted sum of a Sobolev norm
and a discrete `∞-norm on the set of sites.

Theorem 2.3.4. Let s > n/2. Let Ω ⊆ Rn be a bounded Lipschitz do-
main. Then there are constants C > 0 and h0 > 0 such that for all
X = {x1, . . . ,xN} ⊆ Ω with hX,Ω ≤ h0 and all u ∈ Hs(Ω) the inequali-
ties

‖u‖L∞(Ω) ≤ C
(
h
s−n

2
X,Ω ‖u‖Hs(Ω) + ‖u‖`∞(X)

)
,(2.3.4)

and

‖u‖L2(Ω) ≤ C
(
hsX,Ω‖u‖Hs(Ω) + ‖u‖`∞(X)

)
(2.3.5)

hold. If, in addition, u|X = 0, then

‖u‖Ht(Ω) ≤ Chs−tX,Ω‖u‖Hs(Ω)(2.3.6)

holds for all 0 ≤ t ≤ s.

Next, we introduce the notation for the function space in which we
search for the approximation to the unknown function f . In the theory of
approximation with RBFs, it is usual to use finite-dimensional subspaces of
Sobolev Hilbert spaces.

Definition 2.3.5. Let Φ : Rn → R be a reproducing kernel of Hs(Rn),
s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2). Let X :=
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{x1, . . . ,xN} ⊆ Ω be a discrete set of sites. Then we define the (kernel-
based) approximation space by

VN := span{Φ(· − xi) : xi ∈ X}.(2.3.7)

Clearly, the assumption on the smoothness s is necessary since the
approximation methods will rely on point-evaluations and we know by Theo-
rem 2.1.13, that for s > n/2 we can embed Hs(Ω) into C(Ω).

We now introduce three examples of approximation methods. First, we
give the basics of interpolation of a function f ∈ Hs(Ω), s > n/2. Then, we
discuss how to interpolate a function f ∈ Ht(Ω) with n/2 < t < s, i.e., a
function which does not lie in the native space of Φ. And finally, we introduce
a method to approximate a function without forcing interpolation. This
method is particularly useful if we know that the data is only close to f(xj)
and only disturbed by relatively small noise from, e.g., numerical errors.

2.3.2. Interpolation. The easiest example for an approximation pro-
cess is interpolation, where we want to find an element of VN which attains
the values f(xj) of the target function f in every xj ∈ X.

Definition 2.3.6. Let Ω ⊆ Rn be a domain. Let X = {x1, . . . ,xN} ⊂ Ω
be a set of sites. Let VN be the kernel-based approximation space defined in
Definition 2.3.5. For f ∈ Hs(Ω), s > n/2, the interpolation problem is given
as:

Find sf,X ∈ VN such that sf,X(xj) = f(xj) for every xj ∈ X.

In our setting the interpolation problem is well-posed. This allows us to
define the corresponding operator, which maps the function f to the solution
of the interpolation problem sf,X .

Definition 2.3.7. With the notation and assumptions of Definition 2.3.6
we define the interpolation operator IX,Φ : Hs(Ω)→ VN by

IX,Φf := sf,X .

IX,Φf is called the interpolant of f in X.

Clearly, we can express the interpolant as a linear combination of shifts
of Φ, i.e., we have

IX,Φf = sf,X =
N∑
j=1

αjΦ(· − xj).

To compute the coefficient vector α ∈ RN we enforce the interpolation
condition sf,X(xj) = f(xj), 1 ≤ j ≤ N , and arrive at the linear system

MX,Φα = f .

The N × N -matrix is called the kernel matrix of the kernel Φ on X. Its
entries are given by (MX,Φ)ij := Φ(xi−xj). Clearly, if Φ is a positive definite
kernel then the corresponding kernel matrix is positive definite and there
exists a unique solution α for every right-hand side f = (f(xj))1≤j≤N .

Indeed, we see that the interpolant IX,Φf is the best-approximation of f
from VN with respect to the native space norm, see, e.g., [94, Theorem 13.1].
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Theorem 2.3.8. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let Φ : Rn → R
be the reproducing kernel of NΦ(Ω). Let X = {x1, . . . ,xN} ⊆ Ω be a set
of sites and f ∈ NΦ(Ω). Then the interpolant IX,Φf ∈ VN is the best-
approximation to f with respect to the native space norm, i.e., the estimate

‖f − IX,Φf‖NΦ(Ω) ≤ ‖f − s‖NΦ(Ω)

holds for every s ∈ VN .
Hence, IX,Φf is the orthogonal projection of f on VN .

We can choose s = 0 in the theorem above and obtain the estimate

‖f − IX,Φf‖NΦ(Ω) ≤ ‖f‖NΦ(Ω).(2.3.8)

The next lemma transfers this estimate to Sobolev norms, see, e.g., [94,
Corollary 11.33].

Lemma 2.3.9. Let Ω ⊆ Rn be a bounded Lipschitz domain and let X =
{x1, . . . ,xN} ⊂ Ω be a set of sites. Let Φ : Rn → R be a reproducing kernel
of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2). Then
there exists a constant C = C(Ω,Φ, s) > 0, depending only on Ω, Φ and s,
such that

‖f − IX,Φf‖Hs(Ω) ≤ C‖f‖Hs(Ω)

holds for all f ∈ Hs(Ω).

Furthermore, the interpolant IX,Φf is norm-minimal. The proof can be
found in, e.g., [94, Proof of Theorem 13.2].

Theorem 2.3.10. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let Φ : Rn →
R be the reproducing kernel of NΦ(Ω). Let X = {x1, . . . ,xN} ⊆ Ω be a set of
sites and f ∈ NΦ(Ω). Then the interpolant IX,Φf has minimal NΦ(Ω)-norm
of all functions s ∈ NΦ(Ω) that interpolate the data {f(xj)}, i.e.,

‖IX,Φf‖NΦ(Ω) = min
{
‖s‖NΦ(Ω) : s ∈ NΦ(Ω) with s(xj) = fj , 1 ≤ j ≤ N

}
.

We now use these general results, together with the sampling inequalities
of Theorem 2.3.4, to derive error bounds for the interpolation process in
terms of the fill distance hX,Ω.

Corollary 2.3.11. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let Φ :
Rn → R be a reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier
transform of Φ satisfies (2.2.2). Let X = {x1, . . . ,xN} ⊆ Ω be a set of sites
with sufficiently small fill distance hX,Ω. Let IX,Φ : Hs(Ω) → VN be the
interpolation operator of Definition 2.3.7. Then there is a constant C > 0
such that the estimates

‖f − IX,Φf‖L∞(Ω) ≤ Ch
s−n

2
X,Ω ‖f‖Hs(Ω),(2.3.9)

and

‖f − IX,Φf‖Ht(Ω) ≤ Chs−tX,Ω‖f‖Hs(Ω), 0 ≤ t ≤ s,(2.3.10)

hold for every f ∈ Hs(Ω).

Proof. The claim follows from the inequalities of Theorem 2.3.4. We
use that IX,Φf interpolates f in the points of X, which leads to ‖f −
IX,Φf‖`∞(X) = 0. Finally, we use the estimate of Lemma 2.3.9, which finishes
the proof. �
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The second estimate yields for t = 0 the L2(Ω)-error estimate of the
interpolation process

‖f − IX,Φf‖L2(Ω) ≤ ChsX,Ω‖f‖Hs(Ω).(2.3.11)

2.3.3. Interpolating Rougher Functions. At first glance it seems
that we can only recover functions which lie in the native space of the chosen
kernel Φ, which is norm-equivalent to the Sobolev space Hs(Rn), s > n/2. In
fact however, the authors of [65] showed that we can even recover functions
which are rougher and lie only in a Sobolev space Ht(Ω) with n/2 < t ≤ s.
This method is sometimes refered to as escaping the native space. It turns
out that the essential tool are so-called band-limited functions, i.e., functions
whose Fourier transforms have compact support. Again, we have to use
Ω = Rn.

Definition 2.3.12. For σ > 0 the space of band-limited functions Bσ ⊂
L2(Rn) is defined as

Bσ :=
{
f ∈ L2(Rn) : supp f̂ ⊆ Bσ(0)

}
.

This space Bσ is a closed subspace of L2(Rn), see, e.g., [18], and this
closedness allows us to measure the distance of a function f ∈ Ht(Rn) to Bσ.

Definition 2.3.13. We define the distance of a function f ∈ Ht(Rn) to the
space Bσ measured in the Ht(Rn)-norm by

distHt(Rn)(f,Bσ) := inf
g∈Bσ

‖f − g‖Ht(Rn).

The following auxiliary result, taken from [65, Theorem 3.4], gives a first
error estimate.

Theorem 2.3.14. Let X := {x1, . . . ,xN} ⊆ Rn be a set of sites. Let s, t ∈ R
with n/2 < t ≤ s. If f ∈ Hs(Rn) then there exists an fσ ∈ Bσ such that
fσ|X = f |X and

‖f − fσ‖Ht(Rn) ≤ 5 distHt(Rn)(f,Bσ) ≤ 5κ−s+tqs−tX ‖f‖Hs(Rn),

with σ = κ/qX , where κ ≥ 1 depends only on n and t.

With the extension operator from Theorem 2.1.7 we can also use this
theorem for functions f ∈ Hs(Ω), if Ω ⊂ Rn is a Lipschitz domain. First we
extend this f to Ef ∈ Hs(Rn) and find an fσ ∈ Bσ. Then, by the preceding
theorem, we have fσ|X = Ef |X = f |X and the estimate

‖f − fσ‖Ht(Ω) = ‖Ef − fσ‖Ht(Ω)

≤ ‖Ef − fσ‖Ht(Rn) ≤ Cqs−tX ‖Ef‖Hs(Rn)(2.3.12)

≤ Cqs−tX ‖f‖Ht(Ω).

The inequality in (2.3.12) has an interesting consequence. If we set s = t we
obtain the estimate

‖fσ‖Ht(Rn) ≤ ‖Ef − fσ‖Ht(Rn) + ‖Ef‖Ht(Rn) ≤ C‖Ef‖Ht(Rn)

≤ C‖f‖Ht(Ω).

We collect these remarks in the next corollary.
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Corollary 2.3.15. With the assumptions and notation of Theorem 2.3.14,
there exists an fσ ∈ Bσ such that

‖f − fσ‖Ht(Ω) ≤ Cqs−tX ‖f‖Hs(Ω)

holds for a constant C > 0.
In addition, we have

‖fσ‖Ht(Rn) ≤ C‖f‖Ht(Ω).

This allows us to show that we can interpolate functions f ∈ Ht(Ω)
although the RBF we choose is the reproducing kernel of Hs(Rn), n/2 < t ≤ s.
The proof of the next theorem is taken from [65] and repeated for the sake
of completeness.

Theorem 2.3.16. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let Φ : Rn →
R be a reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier transform
of Φ satisfies (2.2.2). Let X = {x1, . . . ,xN} ⊆ Ω be a set of sites with
sufficiently small fill distance hX,Ω. Then there is a constant C > 0 such that

‖f − IX,Φf‖Hr(Ω) ≤ Cht−rX,Ω

(
hX,Ω
qX

)s−r
‖f‖Ht(Ω), 0 ≤ r ≤ t

holds for all f ∈ Ht(Ω) with n/2 < t ≤ s.
Proof. We start by using the sampling inequality (2.3.6) for f − IX,Φf

with 0 ≤ r ≤ t. This yields

‖f − IX,Φf‖Hr(Ω) ≤ Cht−rX,Ω‖f − IX,Φf‖Ht(Ω).(2.3.13)

Hence, we need to bound ‖f − IX,Φf‖Ht(Ω). We first use Theorem 2.3.14
which gives a κ ≥ 1 such that, with σ = κ/qX , we find an fσ ∈ Bσ such that
fσ|X = f |X and the estimate

‖f − fσ‖Ht(Ω) ≤ C‖f‖Ht(Ω)(2.3.14)

holds with a constant C > 0. Since fσ(xj) = f(xj) for all xj ∈ X we have
IX,Φfσ = IX,Φf . This, together with (2.3.14), yields

‖f − IX,Φf‖Ht(Ω) ≤ ‖f − fσ‖Ht(Ω) + ‖fσ − IX,Φf‖Ht(Ω)

≤ C‖f‖Ht(Ω) + ‖fσ − IX,Φfσ‖Ht(Ω).(2.3.15)

Next, we use Corollary 2.3.11 and estimate

‖fσ − IX,Φfσ‖Ht(Ω) ≤ Chs−tX,Ω‖fσ‖Hs(Ω).(2.3.16)

Additionally, we have by the Bernstein theorem for band-limited functions,
see, e.g., [66], with σ = κ/qX , the bound

‖fσ‖Hs(Rn) ≤ Cqt−sX ‖fσ‖Ht(Rn).

Inserting this into (2.3.16) yields

‖fσ − IX,Φfσ‖Hs(Ω) ≤ Chs−tX,Ωq
t−s
X ‖fσ‖Ht(Rn).(2.3.17)

From Corollary 2.3.15, we have ‖fσ‖Ht(Rn) ≤ C‖f‖Ht(Ω), with a constant
C > 0 independent of f . Using this, together with (2.3.17), in (2.3.15) yields
the bound

‖f − IX,Φf‖Ht(Ω) ≤ C
(
hX,Ω
qX

)s−t
‖f‖Ht(Ω).
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Putting this back into (2.3.13) finishes the proof. �

Setting r = 0 in Theorem 2.3.16 and using a quasi-uniform set of sites
yields the following interesting corollary.

Corollary 2.3.17. With the notation and assumptions of Theorem 2.3.16,
where we additionally assume that X is quasi-uniform, there is a constant
C > 0 such that the estimate

‖f − IX,Φf‖L2(Ω) ≤ ChtX,Ω‖f‖Ht(Ω)

holds for every f ∈ Ht(Ω), n/2 < t ≤ s.

The estimate in Corollary 2.3.17 means that the interpolation error
converges with the expected, optimal order, the smoothness of the target
function f ∈ Ht(Ω). Hence, from a theoretical point of view, there is no harm
in choosing a kernel that is the reproducing kernel of a smoother Sobolev
Hilbert space.

2.3.4. Penalized Least-Squares Approximation. Usually, we want
to use interpolation if we can be sure that the data is exact. But if the data
contains noise, because, e.g., it is generated by real-life measurement or as a
consequence of numerical errors, we do not want to force an exact fit to the
data but rather give the reconstruction some leeway to cope with the noise.
This leads to the penalized least-squares method which is a special case of the
Tikhonov regularization and also plays a role in kernel-based learning theory.
For further information we refer to, e.g., [86]. Instead of searching a solution
to the interpolation problem Definition 2.3.6, i.e., a function sf,X ∈ VN ,
which satisfies sf,X(xj) = f(xj) for every xj ∈ X, we look for the solution
of the following problem.

Definition 2.3.18. Let Ω ⊆ Rn be a domain. Let X = {x1, . . . ,xN} ⊆ Ω
be a set of sites. Let Φ : Rn → R be the reproducing kernel of NΦ(Ω). Define
the functional Jλ,f : NΦ(Ω)→ R by

Jλ,f (s) =

N∑
j=1

|s(xj)− f(xj)|2 + λ‖s‖2NΦ(Ω).(2.3.18)

Then the penalized least-squares problem is defined as:

Find sλ,f ∈ NΦ(Ω) such that sλ,f = argmin
s∈NΦ(Ω)

Jλ,f (s).(2.3.19)

The functional in (2.3.18) consists of two terms. In addition to the usual

least-squares term
∑N

j=1 |s(xj) − f(xj)|2, which penalizes the lack of fit

to the data, we introduce another term, ‖s‖NΦ(Ω), which penalizes a large
native space norm of the approximation. This term ensures a smoother
approximation. The smoothing parameter λ > 0 serves as a moderator
between these two conflicting terms. The best choice of λ is still part of
ongoing research, see, e.g., [50, 95], but is of no concern for this text.

At first glance we have to solve an optimization problem on the whole,
infinite dimensional Hilbert space NΦ(Ω). As it turns out, we can limit the
optimization space to the kernel-based approximation space VN to find the
unique solution. This general result is known as representer theorem.
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Theorem 2.3.19. Let Ω ⊆ Rn be a domain. Let Φ : Rn → R be the repro-
ducing kernel of NΦ(Ω) and X = {x1, . . . ,xN} ⊆ Ω be a set of sites. Then,
for all λ > 0, there exists a unique solution sλ,f of the penalized least-squares
problem (2.3.19).

In addition, there exists a coefficient vector α ∈ RN such that

sλ,f =

N∑
j=1

αjΦ(· − xj),(2.3.20)

i.e., sλ,f ∈ span{Φ(· − xj) : xj ∈ X}.

Proof. Existence and uniqueness follows primarily from the convexity
of the functional Jλ,f and the strict convexity of the native space norm.
The representation of the minimizer can be proved by splitting NΦ(Ω) into
span{Φ(· − xj) : xj ∈ X} and its orthogonal complement.

Details of the proof can be found in, e.g., [86]. �

The representation of the minimizer directly leads to the way to compute
the coefficient vector α. Inserting the representation (2.3.20) into the single
parts of Jλ,f yields on the one hand

‖sλ,f‖2NΦ(Ω) =

〈
N∑
j=1

αjΦ(· − xj),
N∑
i=1

αiΦ(· − xi)

〉
NΦ(Ω)

=
N∑
j=1

N∑
i=1

αiαj 〈Φ(· − xj),Φ(· − xi)〉NΦ(Ω)

=

N∑
i,j=1

αiαjΦ(xj − xi) = αTMX,Φα,

and on the other hand
N∑
j=1

|sλ,f (xj)− f(xj)|2 = (f −MX,Φα)T(f −MX,Φα),

where we again used the kernel matrix MX,Φ = (Φ(xi − xj)). Combining
these two terms and taking the derivative with respect to α leads to the
linear system

(MX,Φ + λI)α = f ,

where I denotes the N ×N identity matrix and f is again given component-
wise by f j = f(xj), 1 ≤ j ≤ N .

Next, we consider kernel functions Φ that are reproducing kernels of
Hs(Rn) and derive error estimates similar to those in Corollary 2.3.11 and
Theorem 2.3.16. Again, we use the sampling inequalities of Theorem 2.3.4,
but this time, we do not have (f − sλ,f )|X = 0. However, we can still control
this error with the help of the following two preliminary estimates.

Proposition 2.3.20. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let
Φ : Rn → R be a reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier
transform of Φ satisfies (2.2.2). Let X = {x1, . . . ,xN} ⊆ Ω be a set of sites
with sufficiently small fill distance hX,Ω. Assume that f ∈ Hs(Ω). Then the
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following two estimates hold for the unique minimizer sλ,f of the penalized
least-squares problem in Definition 2.3.18:

‖sλ,f‖NΦ(Ω) ≤ ‖f‖NΦ(Ω)

and

|f(xi)− sλ,f (xi)| ≤
√
λ‖f‖NΦ(Ω), xi ∈ X.

Proof. We know that the interpolant IX,Φf of f satisfies

N∑
j=1

|f(xj)− IX,Φf(xj)|2 = 0 and ‖IX,Φf‖NΦ(Ω) ≤ ‖f‖NΦ(Ω).

This leads directly to

max
{
|f(xi)− sλ,f (xi)|2, λ‖sλ,f‖2NΦ(Ω)

}
≤

≤
N∑
j=1

|f(xj)− sλ,f (xj)|2 + λ‖sλ,f‖2NΦ(Ω)

≤
N∑
j=1

|f(xj)− IX,Φf(xj)|2 + λ‖IX,Φf‖2NΦ(Ω)

≤ λ‖f‖2NΦ(Ω).

�

With these estimates the proof of the next theorem is straight forward.

Theorem 2.3.21. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let Φ : Rn →
R be a reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier transform
of Φ satisfies (2.2.2). Let X = {x1, . . . ,xN} ⊆ Ω be a set of sites with
sufficiently small fill distance hX,Ω. Assume that f ∈ Hs(Ω). Then there is a
constant C > 0 such that the error estimates for the unique minimizer sλ,f
of the penalized least-squares problem

‖f − sλ,f‖L∞(Ω) ≤ C
(
h
s−n

2
X,Ω +

√
λ
)
‖f‖Hs(Ω),

and

‖f − sλ,f‖L2(Ω) ≤ C
(
hsX,Ω +

√
λ
)
‖f‖Hs(Ω),

hold.

Proof. The proof is an easy application of the sampling inequalities of
Theorem 2.3.4 with the help of the estimates of Proposition 2.3.20. �

2.4. Rescaled Compactly Supported RBFs

The preceding subsections show that we can expect convergence of the
approximation error as hX,Ω approaches zero in different settings. Although
similar results hold for other radial basis functions we are mainly interested in
the compactly supported Wendland functions introduced in Definition 2.2.18.
The support is, by definition, the closed unit ball in Rn, i.e.,

supp Φn,k = B1(0).
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From a numerical point of view, the main difficulty in all approximation
methods introduced above is the solution of a linear system, either with
matrix MX,Φ = (Φ(xi − xj))1≤i,j≤N , or with matrix (MX,Φ + λI). In both
cases the matrix is sparse, however the number of non-zero entries in the
j-th row depends on how many sampling points xi are in the support of
Φn,k(·−xj). As hX,Ω gets small more and more points will be in this support
and the matrix fills more and more. This makes working with a fixed support
radius unattractive and we now introduce a way to rescale the RBF such
that only a constant number of sites are in the support of each translate of
the kernel. This number can even be made independent of hX,Ω. The idea of
rescaling can also be applied to other RBFs.

Definition 2.4.1. Let Φ : Rn → R be a radial basis function and let δ > 0
be a scaling parameter. Then we define the rescaled radial basis function
Φδ : Rn → R by

Φδ(x) = δ−nΦ
(x
δ

)
, x ∈ Rn.

If the support of the kernel Φ is the closed unit ball B1(0), then the
support of the rescaled kernel satisfies

supp Φδ = Bδ(0).

Furthermore, if the Fourier transform of the basis kernel Φ exhibits algebraic
decay, i.e., Φ satisfies (2.2.2) with constants c1, c2 and exponent −s, then
the Fourier transform of the rescaled RBF satisfies

c1(1 + δ2‖ξ‖22)−s ≤ Φ̂δ(ξ) ≤ c2(1 + δ2‖ξ‖22)−s, ξ ∈ Rn,(2.4.1)

with the same constants c1 and c2.
This allows us to show the following norm-equivalence of the native

space NΦδ(Rn) of the rescaled RBF and the Sobolev space Hs(Rn). To avoid
cluttered notation, we will from here on write ‖ · ‖Φδ for the norm of the
native space NΦδ(Rn). The proof of the next lemma can be found in, e.g.,
[91].

Lemma 2.4.2. Let Φ : Rn → R be a reproducing kernel of Hs(Rn), s > n/2,
i.e., the Fourier transform of Φ satisfies (2.2.2). For δ ∈ (0, 1] let Φδ be
defined by Φδ = δ−nΦ(·/δ). Then Φδ is also a reproducing kernel of Hs(Rn)
and the norm equivalence

√
c1‖g‖Φδ ≤ ‖g‖Hs(Rn) ≤

√
c2δ
−s‖g‖Φδ(2.4.2)

holds for every g ∈ Hs(Rn).

We see that Φδ is also a reproducing kernel of Hs(Rn). That means that
the space itself is independent of the scaling parameter δ ∈ (0, 1]. This is
no contradiction to the uniqueness of the reproducing kernel since the norm
of the native space NΦδ(Rn) depends on δ. In (2.4.2) we also see that the
equivalence constants depend on the scaling parameter.

While we always get the lower bound ‖g‖Φδ ≤ C‖g‖Hs(Rn) with C > 0

independent of δ, we have for the upper estimate ‖g‖Hs(Rn) ≤ cδ−s‖g‖Φδ .
Here the equivalence constant cδ−s tends to infinity as δ → 0. This can be
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explained by the fact that ‖ · ‖Φδ → ‖ · ‖L2(Rn) as δ approaches zero and the
constant has to balance this loss of derivative in the norm [92].

Additionally, we immediately have the following estimates for the norms
of the scaled kernel.

Lemma 2.4.3. Let Φ : Rn → R be a reproducing kernel of Hs(Rn), s > n/2,
i.e., the Fourier transform of Φ satisfies (2.2.2), and let Φδ = δ−nΦ(·/δ)
be the rescaled kernel with scaling parameter δ ∈ (0, 1]. Then the following
estimate holds for 0 ≤ t ≤ s

‖Φδ‖Ht(Rn) ≤ δ−
n
2
−t‖Φ‖Ht(Rn).(2.4.3)

Additionally, we have

‖Φδ‖L∞(Rn) ≤ δ−n‖Φ‖L∞(Rn).(2.4.4)

and, for 0 < δ′ < δ,

‖Φδ‖Φδ′ ≤ C(Φ)δ−
n
2 .(2.4.5)

Proof. We only show (2.4.5). Using (2.4.1) for Φδ and Φδ′ , respectively,
we have

Φ̂δ(ξ) ≤ c2(1 + δ2‖ξ‖22)−s, , ξ ∈ Rn,
and

Φ̂δ′(ξ) ≥ c1(1 + (δ′)2‖ξ‖22)−s, ξ ∈ Rn.

These estimates give for δ′ < δ the upper bound

Φ̂δ(ξ)

Φ̂δ′(ξ)
≤ c2

c1

(1 + δ2‖ξ‖22)−s

(1 + (δ′)2‖ξ‖22)−s
≤ c2

c1
.

This, together with the definition of the native space norm in Theorem 2.2.10,
yields

‖Φδ‖Φδ′ = (2π)−
n
2

∫
Rn

(
|Φ̂δ(ξ)|2

Φ̂δ′(ξ)
dξ

) 1
2

≤
(
c2

c1

) 1
2

(2π)−
n
2

(∫
Rn

Φ̂δ(ξ) dξ

) 1
2

= C(Φ)δ−
n
2 .

�

The results of Lemma 2.4.3 hold also for translated kernels Φ(· − x),
x ∈ Rn.

We motivated the use of rescaled kernels by a loss of sparseness of the
kernel matrix MX,Φ for data sites X ⊂ Ω with small hX,Ω. To avoid this we
now couple the scaling parameter δ to the fill distance hX,Ω in the following
way: For fixed overlap parameter ν > 1 and constant cν ∈ (0, 1) we choose
the scaling parameter δ such that

cννhX,Ω ≤ δ ≤ νhX,Ω(2.4.6)

holds. This setting is generally called stationary. By varying ν we can control
how many sites xi are in the support of the rescaled kernel Φδ(· − xj),
centered at xj . This number can be bounded by a constant independent of
N , the number of sites.
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Lemma 2.4.4. Let Ω ⊆ Rn be a bounded domain. Let X ⊆ Ω be a quasi-
uniform set of sites with fill distance hX,Ω and separation radius qX . Let
δ > 0 be coupled to hX,Ω as in (2.4.6) with overlap parameter ν > 1. Then
the estimate

#
(
X ∩Bδ(xj)

)
≤ (1 + νcqu)n(2.4.7)

holds for every xj ∈ X.

Proof. The claim follows from a standard comparison of volumes. For
fixed xj ∈ X we have the inclusion⋃

xi∈X∩Bδ(xj)

BqX (xi) ⊆ Bδ+qX (xj).

Next we compare the volumes of the two sets. We see that, by the definition
of the separation radius, the balls BqX (xi) with radius qX centered in every

xi ∈ X ∩Bδ(xj) are disjoint. This yields

vol

 ⋃
xi∈X∩Bδ(xj)

BqX (xi)

 =
∑

xi∈X∩Bδ(xj)

vol(BqX (xi))

= #
(
X ∩Bδ(xj)

)
vol(B1(0))qnX

≤ vol(Bδ+qX (xj)) = vol(B1(0))(δ + qX)n.

Using the upper bound on δ in (2.4.6) and the assumption that X is quasi-
uniform yields

#
(
X ∩Bδ(xj)

)
≤ (δ + qX)n

qnX
≤ (1 + νcqu)n.

�

From a numerical point of view using the rescaled kernel Φδ is advan-
tageous. First, we have seen in the previous sections that we have to solve
a linear system in order to compute either the interpolant or the penalized
least-squares approximation. If we use the rescaled kernel the matrix now
becomes MX,Φδ = (Φδ(xi − xj))1≤i,j≤N , which is, by Lemma 2.4.4, a sparse
matrix whose sparseness we can control by varying the overlap parameter
ν. We will study this matrix in more detail in Section 2.5. There we will be
particularly focused on its condition number and norms of its inverse.

The second advantage is that, for example in the case of interpolation,
the solution of the approximation problem can be written as

IX,Φδf(x) =

N∑
i=1

αiΦδ(x− xi) =
∑

i : ‖x−xi‖≤δ

αiΦδ(x− xi), x ∈ Ω.

This means that, if the relevant indices are known, point-evaluations of the
interpolant can be done in constant time, independent of the number of sites.

However, a negative consequence is that in the stationary setting we
cannot expect convergence of the approximation process. The following
theorem, taken from [92], handles the case of interpolation, however the same
holds true for the other approximation schemes.
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Theorem 2.4.5. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let Φ : Rn → R
be a reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier transform of
Φ satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) be the rescaled kernel with scaling
parameter δ < 1. Let X = {x1, . . . ,xN} ⊆ Ω be a set of sites. Then there
exists a constant C > 0 such that

‖f − IX,Φδf‖L2(Ω) ≤ C
(
hX,Ω
δ

)s
‖f‖Hs(Ω)

holds for all f ∈ Hs(Ω).

If we couple δ and hX,Ω as in (2.4.6), we see that we can not expect
convergence of the method for hX,Ω → 0.

We will introduce a method to overcome this trade-off principle in
Chapter 4.

2.5. The Kernel Matrix MX,Φδ

We now study the properties of the kernel matrix MX,Φδ of the rescaled,
compactly supported RBF Φδ in more detail. The results given here are
mostly taken from [88].

We assume that Φδ is a reproducing kernel of Hs(Rn), s > n/2. Addi-
tionally, we assume that X is quasi-uniform, i.e., the fill distance hX,Ω and
the separation radius qX are coupled according to (2.3.3). Furthermore, we
assume that the scaling parameter δ is coupled to hX,Ω according to (2.4.6)
with overlap parameter ν > 1. For this subsection we omit the indices of the
matrix and use the notation

M := MX,Φδ .

The first properties are straight forward and follow directly from the
properties of the kernel Φδ.

Corollary 2.5.1. Let Ω ⊆ Rn be a bounded domain and let X ⊆ Ω be
a quasi-uniform set of sites with fill distance hX,Ω. Let Φ : Rn → R be a
compactly supported reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier
transform of Φ satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) be the rescaled kernel
where δ is coupled to hX,Ω as in (2.4.6) with overlap parameter ν > 1. Then
the following statements hold:

(1) The kernel matrix M = (Φδ(xi − xj)) is a symmetric, positive
definite and sparse matrix.

(2) The number of non-zero entries per row can be bounded from above
by (1 + νcqu)n.

We emphasize that M is invertible and the next goal is to investigate this
inverse M−1. We start by estimating the to the 2-norm associated matrix
norm. To do this we give bounds on the smallest eigenvalue λmin and the
largest eigenvalue λmax of M separately. The proofs of these classical results
can be found in, e.g., [64, 74] for the estimate on λmin and in [88] for the
estimate on λmax.

Theorem 2.5.2. Let Ω ⊆ Rn be a bounded domain and X ⊆ Ω be a quasi-
uniform set of sites with fill distance hX,Ω. Let Φ : Rn → R be a compactly
supported reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier transform
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of Φ satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) be the rescaled kernel where δ is
coupled to hX,Ω as in (2.4.6) with overlap parameter ν > 1. Let the matrix
M be defined by Mik = Φδ(xi − xk), 1 ≤ i, k ≤ N . Then there is a constant
C = C(Φ, n, s) such that the bound for the smallest eigenvalue λmin of M

λmin ≥ C(νcqu)n−2sδn

holds. The largest eigenvalue λmax of M can be bounded from above by

λmax ≤ (1 + νcqu)nδ−nΦ(0).

These bounds directly yield estimates on the 2-norm of M−1 and on the
associated condition number cond2(M) of M .

Corollary 2.5.3. With the notation and assumptions of Theorem 2.5.2 we
have

‖M−1‖2 ≤ C(νcqu)2s−nδ−n.

We can then estimate the corresponding condition number cond2(M) by

cond2(M) ≤ C(νcqu)2s−n(1 + νcqu)n.(2.5.1)

The bound in (2.5.1) shows in particular that the condition number of
M is independent of number of sampling points N and the scaling parameter
δ.

Next, we derive an estimate on the absolute value of the entries of M−1,
denoted by M−1

ik . To do so, we have to interpret M as a special kind of
banded matrix. The kernel matrix M is in general not a banded matrix in
the traditional sense and the structure of non-zero entries is highly dependent
on the order of the centers in X. That can be seen with an easy one-
dimensional example. Suppose that X = {x1, x2, x3, x4} = {0, 1/3, 2/3, 1}
and that X̃ = {x̃1, x̃2, x̃3, x̃4} = {0, 1, 1/3, 2/3}. Note that X and X̃ contain
the same sites, we only changed the order. Take Φ = φ1,0, the one-dimensional
Wendland function with k = 0, see Table 1 for the precise form of the function.
We rescale Φ with δ = 0.4. This means that Φ0.4 is a hat function with at
most three sites in the support of Φ0.4(· − xi) and Φ0.4(· − x̃i), 1 ≤ i ≤ 4,

respectively. We can easily see that the kernel matrices for X and X̃ then
have the form

MX,Φ0.4 =


∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

 and M
X̃,Φ0.4

=


∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗

 ,

where ∗ denotes an non-zero entry. This means that a simple permutation in
the set of sites leads to a completely different structure of the kernel matrix.

However, if we change the indexing of M from pairs (i, k) ∈ N2 to pairs
of multi-indices (α,β) ∈ Zn × Zn, where n denotes the dimension of the
ambient space Ω ⊆ Rn, we are able to use the geometric structure of the
points in Ω, rather than the order of indexing in X.

Definition 2.5.4. We call a mapping M : Zn × Zn → R with finite support
a multivariate matrix.
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Additionally, we have the following natural extensions of terms for classi-
cal to multivariate matrices, see [7, Definition 3.2].

Definition 2.5.5. We call a multivariate matrix M : Zn × Zn → R
(1) symmetric, if M(i,k) =M(k, i), for all i,k ∈ Zn,
(2) positive definite, if∑

i,k∈Zn
αiαkM(i,k) > 0

for every finitely supported, non-zero sequence (αi)i∈Zn ⊂ R such
that the support of the multivariate matrix (αiαk)i,k∈Zn is contained
in the support of M.

Before we study these multivariate matrices in more detail we demonstrate
how we transform the kernel matrix M = (Φδ(xi − xk)) into a multivariate
matrixM. The idea is to assign to each xi ∈ X a unique multi-index yi ∈ Zn
such that

M(yi,yk) = Φδ(xi − xk), 1 ≤ i, k ≤ N.

It is easy to see that, if such an identification is possible, the multivariate
matrix is symmetric and positive definite.

To achieve this transformation we will make use of the following lemma,
taken from [7, Lemma 3.7].

Lemma 2.5.6. Let {z1, . . . ,zN} be any subset of Rn such that ‖zi−zk‖2 ≥√
n for i 6= k. Define for 1 ≤ i ≤ N ,

yi := (bzi,1c , . . . , bzi,nc)T ,(2.5.2)

where zi,m denotes the m-th component of zi.
Then the points {yi}1≤i≤N are all different. Further, if ‖yi − yk‖2 ≥ R

and R ≥ 4
√
n, then

‖zi − zk‖2 ≥
R

2
.

From the definition of the separation radius of X we have 1
2‖xi−xk‖2 ≥

qX , for every i 6= k. If we set

zi :=

√
n

2qX
xi, 1 ≤ i ≤ N,(2.5.3)

we have ‖zi − zk‖2 ≥
√
n. Defining yi as in (2.5.2) then yields that these

yi are pairwise distinct. These are indeed the multi-indices required for the
identification of M as a multivariate matrix M.

Next we show that this M satisfies the following definition.

Definition 2.5.7. A multivariate matrix M : Zn × Zn → R is called R-
banded with R > 0, if M(yi,yk) = 0 if ‖yi − yk‖2 > R.

We reiterate that in our case R-bandedness is preferable to classical
bandedness of matrices since it describes the geometry of the points in Ω
rather than the order in X. We now show that the multivariate matrix M
which is derived from the kernel matrix M is indeed R-banded, see also [88].
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Theorem 2.5.8. Let Ω ⊆ Rn be a bounded domain and let X ⊆ Ω be a
quasi-uniform set of sites with fill distance hX,Ω. Let Φ : Rn → R be a
compactly supported reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier
transform of Φ satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) be the rescaled kernel
where δ is coupled to hX,Ω as in (2.4.6) with overlap parameter ν > 1. Let
the matrix M be defined by Mik = Φδ(xi − xk), 1 ≤ i, k ≤ N .

Then the multivariate matrix M derived from the kernel matrix M is
R-banded with

R = max(νcqu, 4)
√
n.

Proof. For fixed xi ∈ X and associated zi ∈ Rn as in (2.5.3) we set
yi ∈ Zn as in (2.5.2).

We need to show that if ‖yi − yk‖2 ≥ R we have M(yi,yk) = 0. With
the relations of yi and xi we see that it suffices to show that ‖xi−xk‖2 ≥ δ.
Then the compact support of Φδ implies

0 = Φδ(xi − xk) =M(yi,yk).

Clearly, with Lemma 2.5.6, (2.5.3), (2.5.2) and the choice of R we have

‖xi − xk‖2 =
2qX√
n
‖zi − zk‖2 ≥

2qX√
n

R

2
≥ 2qX√

n

cγcqu
√
n

2
≥ δ.

This finishes the proof. �

This allows us to use the following theorem and derive an estimate on
|M−1

ik |. This result is taken from [7] and is a direct extension of the respective
result for symmetric, positive definite matrices to symmetric, positive definite
multivariate matrices.

Theorem 2.5.9. Let M : Zn × Zn → R be a symmetric, positive definite
multivariate matrix. Assume that M is R-banded with R > 0. Then

|M−1(α,β)| ≤ 2‖M−1‖2η̃‖α−β‖2 , α,β ∈ Zn,(2.5.4)

where

η̃ =

(√
cond2(M)− 1√
cond2(M) + 1

) 1
R

.(2.5.5)

For the kernel matrix M we then have the following estimate.

Theorem 2.5.10. Let Ω ⊆ Rn be a bounded domain and let X ⊆ Ω be
a quasi-uniform set of sites with fill distance hX,Ω. Let Φ : Rn → R be a
compactly supported reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier
transform of Φ satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) be the rescaled kernel
where δ is coupled to hX,Ω as in (2.4.6) with overlap parameter ν > 1. Let
the matrix M be defined by Mik = Φδ(xi − xk), 1 ≤ i, k ≤ N . Then there
exists a constant C > 0 such that estimate

|M−1
ik | ≤ Cq

n
Xe
−η ‖xi−xk‖2

qX(2.5.6)

holds with

η = − 1

2 max(νcqu, 4)
√
n

log

(√
cond2(M)− 1√
cond2(M) + 1

)
.(2.5.7)
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Proof. With yi and zi as in (2.5.2) and (2.5.3), respectively, we have,
together with the relation |bac − bbc| ≥ |a− b| − 1 for a, b ∈ R the estimate

‖yi − yk‖2 ≥
1√
n
‖yi − yk‖1 ≥

1√
n
‖zi − zk‖2 −

√
n

=
1

2qX
‖xi − xk‖2 −

√
n

for i 6= k. Furthermore, we have with Theorem 2.5.8

|M−1
ik | = |M

−1(yi,yk)| ≤ 2‖M−1‖2η̃‖yi−yk‖2

≤ C2(cγcqu)2s−nδ−nη̃
1
2

‖xi−xk‖2
qX η̃−

√
n

≤ CqnXe
−η ‖xi−xk‖2

qX

with η = − log η̃ > 0. �

This theorem will prove to be an essential tool in the next chapter.
Another result we need in the next chapter is the following, uniform bound
on the entries of the inverse of M . The proof follows the same ideas as the
ones that lead to an analguous result in [46, Section 3.1].

Lemma 2.5.11. With the notation and assumptions of Theorem 2.5.10
there is a constant C > 0 such that the estimate∣∣M−1

ik

∣∣ ≤ Cqn−2s
X(2.5.8)

holds for all 1 ≤ i, k ≤ N .

We remark that the bound in (2.5.8) also holds for kernel matrices on

subsets of X, i.e., if X̃ ⊆ X and we set M̃ = (Φδ(xi − xk))xi,xk∈X̃ then∣∣∣M̃−1
i,k

∣∣∣ ≤ Cqn−2s
X(2.5.9)

holds with a potentially different constant C > 0.
We note that the estimates in (2.5.8) and (2.5.9) still depend on the

scaling parameter δ, although this dependence is implicit since we assume
that the set of sites X is quasi-uniform and we couple δ to the fill distance
hX,Ω and hence, the occurring terms that involve the scaling parameter can
be rephrased into terms of the separation radius qX .





CHAPTER 3

Lagrange Functions and their Localization

In Section 2.3 we introduced the kernel based approximation space as the
set of linear combinations of the translates of a chosen (rescaled) RBF. This
yields the most obvious basis for this space, however, the question arises if it
is the best basis. The question has been the topic of several papers, see, e.g.,
[8, 26]. In this chapter we derive different bases for the approximation spaces
of rescaled Wendland kernels. We start with studying full Lagrange functions
in Section 3.1 and prove that they are a stable basis. Then we introduce
intermediate functions in Section 3.2. These, too, are an alternative basis
for the approximation space. Finally, in Section 3.3, we introduce and study
localized Lagrange functions. These are functions that satisfy the Lagrange
condition only on a subset of the set of sites but can be shown to be also a
basis. This chapter is motivated by [29, 46], where similar results are derived
for different kernel functions. The proofs in Section 3.1 are taken from [20]
and [93], an internal communication paper.

3.1. Full Lagrange Functions

We start by deriving and investigating a new basis for the kernel-based
approximation space

VN = span{Φδ(· − x) : x ∈ X}

of the rescaled, compactly supported RBF introduced in Section 2.4. The first
corollary we obtain is straight-forward, since the kernel matrix is positive
definite.

Corollary 3.1.1. Let Ω ⊆ Rn be a bounded domain. Let X = {x1, . . . ,xN}
be a quasi-uniform set of sites in Ω with fill distance hX,Ω. Let Φ : Rn → R be a
compactly supported reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier
transform of Φ satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) be the rescaled kernel
where δ is coupled to hX,Ω as in (2.4.6). Let M = (Φδ(xi − xk))1≤i,k≤N ∈
RN×N be the kernel matrix. Then the linear system

M

χ1(x)
...

χN (x)

 =

Φδ(x− x1)
...

Φδ(x− xN )

(3.1.1)

has for every x ∈ Rn a unique solution (χ1(x), . . . , χN (x))T ∈ RN .

37
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The solution vector (χ1(x), . . . , χN (x))T is given point-wise. We can use
this to define for 1 ≤ k ≤ N functions χk : Rn → R by

χk =

N∑
i=1

M−1
ki Φδ(· − xi),(3.1.2)

where M−1
ik denotes the entries of the inverse of the kernel matrix M . This

already yields that χk ∈ VN . Additionally, if we investigate the system in
(3.1.1) closer we see that, if we set x = x1, an immediate solution is the
vector 

χ1(x1)
χ2(x1)

...
χN (x1)

 =


1
0
...
0


and since the solution to (3.1.1) is unique this allows us to derive the defining
condition of the functions χk.

Corollary 3.1.2. The functions χk ∈ VN defined by (3.1.2) satisfy for all
xi ∈ X the Lagrange condition

χk(xi) = δki :=

{
1, k = i,

0, k 6= i.

Indeed, the set of these functions is our candidate for the desired alter-
native basis of VN .

Definition 3.1.3. We call the function χk ∈ VN , 1 ≤ k ≤ N , defined by
(3.1.2) Lagrange or cardinal function. We call the point xk ∈ X the anchor
of χk.

We now need to check that the Lagrange functions are a basis.

Lemma 3.1.4. With the notation and assumptions of Corollary 3.1.1 the
set of Lagrange functions {χk}1≤k≤N is a basis of VN .

Proof. We only have to show linear independence, i.e.,

N∑
k=1

αkχk(x) = 0(3.1.3)

for every x ∈ Rn implies αk = 0 for every 1 ≤ k ≤ N . This can be seen by
setting x = xi and using the Lagrange condition of Corollary 3.1.2 in (3.1.3).
This leads to αi = 0. Repeating this for every 1 ≤ i ≤ N leads to the linear
independence of the set {χk}1≤k≤N . �

Often we call {χk}1≤k≤N the Lagrange basis of VN . We can now use the
properties of the kernel matrix M , in particular the exponential decay of
the entries of its inverse M−1, (2.5.6), to derive further properties of the
Lagrange functions. First, we see that the Lagrange functions, too, decay
exponentially away from their anchor. This behavior is often called local,
see, e.g., [29, 45, 46]. The proof of the following theorem is taken from [20].
However, since this is one of the key estimates that enables us to derive the
results in Sections 3.2 and 3.3, we repeat the proof here.
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Theorem 3.1.5. Let Ω ⊆ Rn be a bounded domain. Let X = {x1, . . . ,xN}
be a quasi-uniform set of sites in Ω with fill distance hX,Ω and separation
radius qX . Let Φ : Rn → R be a compactly supported reproducing kernel
of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2). Let
Φδ = δ−nΦ(·/δ) be the rescaled kernel where δ is coupled to hX,Ω as in (2.4.6).

Let M = (Φδ(xi−xk))1≤i,k≤N ∈ RN×N be the kernel matrix. For 1 ≤ k ≤ N
let χk be given by

χk =
N∑
i=1

M−1
ik Φδ(· − xi).

Then there is a constant C = C(Φ, n, s, η) > 0 such that, for every 1 ≤ k ≤ N ,

|χk(x)| ≤ Ce−η
‖x−xk‖2

qX , x ∈ Rn,(3.1.4)

where

η = −1

2

1

max(νcqu, 4)
√
n

log

(√
cond2(M)− 1√
cond2(M) + 1

)
.(3.1.5)

Proof. We recall from Theorem 2.5.10 that the entries of the inverse of
the kernel matrix satisfy ∣∣M−1

ik

∣∣ ≤ CqnXe−η ‖xi−xk‖2
qX

with η as in (3.1.5). Additionally, we have, for 1 ≤ i 6= k ≤ N and x ∈ Bδ(xi),

‖xi − xk‖2 ≥ ‖x− xk‖2 − ‖x− xi‖2 ≥ ‖x− xk‖2 − δ.

Using these two estimates in the representation of χk, (3.1.2), yields for
x ∈ Rn the chain of inequalities

|χk(x)| ≤
N∑
i=1

∣∣M−1
ik

∣∣ |Φδ(x− xi)|

=
∑

i : ‖x−xi‖2≤δ

∣∣M−1
ik

∣∣ |Φδ(x− xi)|

≤ C(Φ, n, s)‖Φ‖L∞(Rn)

∑
i : ‖x−xi‖2≤δ

e
−η ‖xi−xk‖2

qX

≤ C(Φ, n, s)
∑

i : ‖x−xi‖2≤δ

e
−η ‖x−xk‖2

qX e
η δ
qX

≤ C(Φ, n, s)(1 + νcqu)neνcquηe
−η ‖x−xk‖2

qX .

In the last estimate we used Corollary 2.5.1 and that for quasi-uniform sets
X the inequalities

cννqX ≤ δ ≤ νcquqX
hold, if δ is coupled to hX,Ω as in (2.4.6). �

We can use this local behavior of the Lagrange functions to show the
next result. For a proof we refer to [20, Corollary 2.4].
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Corollary 3.1.6. With the notation and assumptions of Theorem 3.1.5 the
Lagrange function χk, 1 ≤ k ≤ N , is Lipschitz continuous, i.e., there is a
constant CL > 0 such that

|χk(x)− χk(y)| ≤ CL
‖x− y‖2

qX
, x,y ∈ Rn.

Furthermore, the Lagrange functions are uniformly bounded. This follows
from a more general result, taken from [20].

Corollary 3.1.7. With the notation and assumptions of Theorem 3.1.5 there
is a constant C > 0 such that for ` ∈ N0 the estimate

N∑
k=1

‖x− xk‖`2|χk(x)| ≤ Ch`X,Ω

holds for all x ∈ Rn.

Setting ` = 0 shows that

N∑
k=1

|χk(x)| ≤ C, x ∈ Rn.(3.1.6)

This also implies the boundedness of the Lebesgue constant.
Next, we follow [45] and use the Lagrange condition, Corollary 3.1.2, the

local behavior, Theorem 3.1.5, and the Lipschitz continuity, Corollary 3.1.6,
to show that the Lagrange basis is stable. The proof given here is taken from
the internal communication paper [93].

Theorem 3.1.8. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let X =
{x1, . . . ,xN} ⊆ Ω be a quasi-uniform set of sites with fill distance hX,Ω and
separation radius qX . Let Φ : Rn → R be a compactly supported reproducing
kernel of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2).
Let Φδ = δ−nΦ(·/δ) be the rescaled kernel where δ is coupled to hX,Ω as
in (2.4.6) with overlap parameter ν > 1. For 1 ≤ k ≤ N let the Lagrange
function χk be defined as in (3.1.2). Then, for 1 ≤ p ≤ ∞, there exist
constants c1, c2 > 0 such that the bounds

c1q
n
p

X‖a‖p ≤

∥∥∥∥∥
N∑
k=1

akχk

∥∥∥∥∥
Lp(Ω)

≤ c2

(
qX
η

)n
p

‖a‖p(3.1.7)

hold for a ∈ RN , where η is given by (3.1.5).

Proof. We start by deriving the easier, upper bound. For p = ∞ we
have immediately∣∣∣∣∣

N∑
k=1

akχk(x)

∣∣∣∣∣ ≤ ‖a‖∞
N∑
k=1

|χk(x)| ≤ C∞‖a‖∞,

where C∞ is the constant from (3.1.6). For p = 1 we see that∫
Ω

∣∣∣∣∣
N∑
k=1

akχk(x)

∣∣∣∣∣ dx ≤
N∑
k=1

|ak| max
1≤k≤N

∫
Ω
|χk(x)| dx.
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Although the integrals on the right-hand side are already bounded we can
do better. Using (3.1.4) yields∫

Ω
|χk(x)| dx ≤

∫
Rn
|χk(x)| dx ≤ C

∫
Rn
e
−η ‖x−xk‖2

qX dx

= C

∫ ∞
0

e
−η ‖x‖2

qX dx = C

∫ ∞
0

e
−η r

qX rn−1 dr

= C

(
qX
η

)n ∫ ∞
0

e−ttn−1 dt,

where we increased the integration domain and introduced polar coordinates.
We can compute the last integral analytically and arrive at∫

Ω

∣∣∣∣∣
N∑
k=1

akχk(x)

∣∣∣∣∣ dx ≤ CΓ(n)

(
qX
η

)n
‖a‖1.

The result for general p then follows by operator interpolation, see Theo-
rem 2.1.8. To be precise, we have∥∥∥∥∥

N∑
k=1

akχk

∥∥∥∥∥
Lp(Ω)

≤
(
C

(
qX
η

)n) 1
p

C
1− 1

p
∞ ‖a‖p.

Next, we prove the lower bound in (3.1.7). For p = ∞, the estimate
follows directly from the Lagrange condition of χk. We have∥∥∥∥∥

N∑
k=1

akχk

∥∥∥∥∥
L∞(Ω)

≥

∥∥∥∥∥
N∑
k=1

akχk

∥∥∥∥∥
`∞(X)

= max
1≤k≤N

|ak| = ‖a‖∞.

For 1 ≤ p <∞, the bound is significantly harder to obtain. The ideas of the
proof follow mainly those of [45, Section 3.2]. However they are modified to
fit our setting.

First, we note that we assume that Ω has a Lipschitz boundary. That
means it also satisfies an interior cone condition, see, e.g., [1, Section 4.11].
Hence, we find for each x ∈ Ω a cone Cr(x) ⊆ Ω with a fixed opening angle
θ and a radius r ≤ r0, where r0 > 0 is a fixed radius. This allows us to find
a constant γ > 0 such that for all x ∈ Ω and all r ≤ r0 we have

vol(Cr(x)) ≥ γ vol(Br(x)) = γ vol(B1(0))rn.(3.1.8)

Furthermore, if we set r = εqX , with a free constant ε ∈ (0, 1), all cones
CεqX (xi), xi ∈ X, are disjoint. This immediately yields the lower bound∥∥∥∥∥

N∑
k=1

akχk

∥∥∥∥∥
p

Lp(Ω)

=

∫
Ω

∣∣∣∣∣
N∑
k=1

akχk(x)

∣∣∣∣∣
p

dx

≥
N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣
N∑
k=1

akχk(x)

∣∣∣∣∣
p

dx.(3.1.9)

One main tool in the following will be the inequality∣∣∣∣∣
M∑
i=1

αi

∣∣∣∣∣
p

≤Mp−1
M∑
i=1

|αi|p,(3.1.10)



42 3. LAGRANGE FUNCTIONS AND THEIR LOCALIZATION

which holds for 1 ≤ p <∞ and all α1, . . . , αM ∈ R, M ∈ N. For M = 2 we
have in particular

|α1|p ≥ 21−p|α1 + α2|p − |α2|p.(3.1.11)

We introduce the shorthand notation, for fixed 1 ≤ k ≤ N ,

∑
i 6=k

:=
N∑
i=1
i 6=k

.

Using (3.1.11) with α1 =
∑N

k=1 akχk(x) and α2 = −
∑

i 6=k aiχi(x), we
obtain for all x ∈ Ω

∣∣∣∣∣
N∑
k=1

akχk(x)

∣∣∣∣∣
p

≥ 21−p|aiχi(x)|p −

∣∣∣∣∣∣
∑
m 6=i

amχm(x)

∣∣∣∣∣∣
p

.(3.1.12)

Inserting (3.1.12) into (3.1.9) yields

∥∥∥∥∥
N∑
k=1

akχk

∥∥∥∥∥
p

Lp(Ω)

≥
N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣
N∑
k=1

akχk(x)

∣∣∣∣∣
p

dx

≥
N∑
i=1

∫
CεqX (xi)

21−p|aiχi(x)|p −

∣∣∣∣∣∣
∑
m6=i

amχm(x)

∣∣∣∣∣∣
p dx

= 21−p
N∑
i=1

|ai|p
∫
CεqX (xi)

|χi(x)|p dx−
N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣∣
∑
m6=i

amχm(x)

∣∣∣∣∣∣
p

dx.

Now, we bound first term

21−p
N∑
i=1

|ai|p
∫
CεqX (xi)

|χi(x)|p dx

from below. We use the Lagrange condition, Corollary 3.1.2, and the Lipschitz
continuity, Corollary 3.1.6, to derive for x ∈ CεqX (xi)

|χi(x)− χi(xi)| = |χi(x)− 1| ≤ CL
‖x− xi‖2

qX
≤ CLε.
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Hence, for such x we have χi(x) ≥ 2/3 if we choose ε < 1
3CL

. This leads to∥∥∥∥∥
N∑
k=1

akχk

∥∥∥∥∥
p

Lp(Ω)

≥

≥ 21−p
N∑
i=1

|ai|p
∫
CεqX (xi)

|χi(x)|p dx−
N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣∣
∑
m6=i

amχm(x)

∣∣∣∣∣∣
p

dx

≥ 21−p
N∑
i=1

|ai|p
∫
CεqX (xi)

(
2

3

)p
dx−

N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣∣
∑
m 6=i

amχm(x)

∣∣∣∣∣∣
p

dx

=
2

3p

N∑
i=1

|ai|p
∫
CεqX (xi)

1 dx−
N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣∣
∑
m6=i

amχm(x)

∣∣∣∣∣∣
p

dx

≥ 2γ vol(B1(0))

3p
(εqX)n

N∑
i=1

|ai|p −
N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣∣
∑
m6=i

amχm(x)

∣∣∣∣∣∣
p

dx,

(3.1.13)

where we used (3.1.8) to arrive at the last inequality. It remains to bound

N∑
i=1

∫
CεqX (xi)

∣∣∣∣∣∣
∑
m 6=i

amχm(x)

∣∣∣∣∣∣
p

dx

from above. We show that the term

1

2

(
2γ vol(B1(0))

3p
(εqX)n

N∑
i=1

|ai|p
)

is a valid bound. We look at each summand of the outer sum and employ
(3.1.10) with M = 2, some constant Γ > 1, which is independent of ε and
qX , and

α1 =
∑
m6=i

‖xm−xi‖2≤ΓqX

amχm(x) and α2 =
∑
m 6=i

‖xm−xi‖2>ΓqX

amχm(x).

This gives

∫
CεqX (xi)

∣∣∣∣∣∣
∑
m 6=i

amχm(x)

∣∣∣∣∣∣
p

dx

≤ 2p−1

∫
CεqX (xi)

∣∣∣∣∣∣∣∣
∑
m 6=i

‖xm−xi‖2≤ΓqX

amχm(x)

∣∣∣∣∣∣∣∣
p

+

∣∣∣∣∣∣∣∣
∑
m 6=i

‖xm−xi‖2>ΓqX

amχm(x)

∣∣∣∣∣∣∣∣
p

dx

=: 2p−1(Ii + IIi).
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We deal with both terms, Ii and IIi, separately. We start by estimating IIi
and define the annuli Ej(xj) to be

Ej(xi) = {x ∈ Rn : 2jΓqX < ‖x− xi‖2 ≤ 2j+1ΓqX}

for xi ∈ X and 1 ≤ j ≤ N . A standard comparison of volumes shows that
the number of centers in such an annulus is bounded by

#(X ∩ Ej(xi)) ≤ 2nn
(
Γ2j+1

)n
.(3.1.14)

Next, we note that inductively applying (3.1.11) yields the estimate∣∣∣∣∣
M∑
i=1

αi

∣∣∣∣∣
p

≤
M∑
i=1

2i(p−1)|αi|p.(3.1.15)

This, together with the definition of the annuli, allows us to bound IIi.
We have

IIi =

∫
CεqX (xi)

∣∣∣∣∣∣∣∣
∑
m6=i

‖xm−xi‖2>ΓqX

amχm(x)

∣∣∣∣∣∣∣∣
p

dx

=

∫
CεqX (xi)

∣∣∣∣∣∣
∞∑
j=0

∑
xm∈Ej(xi)

amχm(x)

∣∣∣∣∣∣
p

dx

≤
∫
CεqX (xi)

∞∑
j=0

2(j+1)(p−1)

∣∣∣∣∣∣
∑

xm∈Ej(xi)

amχm(x)

∣∣∣∣∣∣
p

dx

≤
∞∑
j=0

2(j+1)(p−1)

∫
CεqX (xi)

(#(X ∩ Ej(xi)))p−1
∑

xm∈Ej(xi)

|amχm(x)|p dx

≤
∞∑
j=0

2(j+1)(p−1)
(

2nn
(
Γ2j+1

)n)p−1 ∑
xm∈Ej(xi)

|am|p
∫
CεqX (xi)

|χm(x)|p dx,

where we used (3.1.10) with M = #(X ∩ Ej(xi)) in the second to last
estimate.

Next, we use the exponential decay of the Lagrange functions. To be
more precise, we have for x ∈ CεqX (xi)

‖x− xm‖2 ≥ ‖xm − xi‖2 − ‖xi − x‖2 ≥ Γ2jqX − εqX

and hence, by (3.1.4) and for ε ∈ (0, 1),

|χm(x)| ≤ CEe
−η ‖x−xm‖2

qX ≤ CEe−ηΓ2jeηε

≤ CEeηe−ηΓ2j
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for all x ∈ CεqX (xi). This, together with (3.1.8), yields

IIi ≤

≤
∞∑
j=0

2(j+1)(p−1)
(

2nn
(
Γ2j+1

)n)p−1
γ(εqX)nCpEe

ηpe−ηpΓ2j
∑

xm∈Ej(xi)

|am|p

= CII(εqX)nΓn(p−1)
∞∑
j=0

2j(n+1)(p−1)e−ηpΓ2j
∑

xm∈Ej(xi)

|am|p

with CII = CpEγe
ηpnp−12(2n+1)(p−1). Now, we can sum up over all i, exchange

the summation and use (3.1.14) to derive

N∑
i=1

IIi ≤ CII(εqX)nΓn(p−1)
∞∑
j=0

2j(n+1)(p−1)e−ηpΓ2j
N∑
i=1

∑
xm∈Ej(xi)

|am|p

= CII(εqX)nΓn(p−1)
∞∑
j=0

2j(n+1)(p−1)e−ηpΓ2j
N∑
m=1

∑
xi∈Ej(xm)

|am|p

≤ CII(εqX)nΓn(p−1)
∞∑
j=0

2j(n+1)(p−1)e−ηpΓ2j2nn
(
Γ2j+1

)n N∑
m=1

|am|p

= CII2
2nn(εqX)nΓnp

∞∑
j=1

2j(p(n+1)−1)e−ηpΓ2j
N∑
m=1

|am|p.

To simplify the term in the last line, we can use that

e−ηpΓ2j = eηpΓ2j−1
e−ηpΓ2j−1 ≤ eηp

Γ
2 e−ηp2

j−1

holds for Γ ≥ 1. This yields the bound

Γnp
∞∑
j=0

2j(p(n+1)−1)e−ηpΓ2j ≤
(

Γnpe−ηp
Γ
2

) ∞∑
j=0

2j(p(n+1)−1)e−ηp2
j−1

 .

The infinite sum in the second bracket is independent of Γ and using, e.g., the
quotient criterion, can easily be seen to converge. The first factor converges
to zero with Γ → ∞. This means that we can find a Γ∗ > 1, which only
depends on n, η, p, CE and γ but not on ε and qX such that

2p−1
N∑
i=1

IIi ≤
1

2

γ

3p
(εqX)n

N∑
i=1

|ai|p(3.1.16)

holds for all Γ > Γ∗, qX , ε and ai.
After fixing Γ∗ and bounding the sum over all IIi terms, we turn now to

the sum over all Ii terms. We can use Corollary 3.1.6 to bound the Lagrange
functions by

|χm(x)| = |χm(x)− χm(xi)| ≤ CL
‖x− xi‖2

qX
≤ CLε,

for all x ∈ CεqX (xi), since xi 6= xm. Then, (3.1.8), (3.1.10) and

#(X ∩BΓqX (xi)) ≤ vol(B1(0))(Γ + 1)n(3.1.17)
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yield

Ii =

∫
CεqX (xi)

∣∣∣∣∣∣∣∣
∑
m 6=i

‖xi−xm‖2≤ΓqX

amχm(x)

∣∣∣∣∣∣∣∣
p

dx

≤
∫
CεqX (xi)

(#(X ∩BΓqX (xi)))
p−1

∑
m6=i

‖xi−xm‖2≤ΓqX

|am|p|χm(x)|p dx

≤ CpLε
p (vol(B1(0)))p−1 (Γ + 1)n(p−1)

∫
CεqX (xi)

∑
m 6=i

‖xi−xm‖2≤ΓqX

|am|pdx

≤ CpLε
p (vol(B1(0)))p−1 (Γ + 1)n(p−1)γ vol(B1(0))(εqX)n

∑
m6=i

‖xi−xm‖2≤ΓqX

|am|p

= CIε
p(εqX)n

∑
m6=i

‖xi−xm‖2≤ΓqX

|am|p

with CI = CpL (vol(B1(0)))p γ(Γ + 1)n(p−1). Now, we can sum up over all i,
exchange the summation and use (3.1.17) to obtain

N∑
i=1

Ii ≤ CIεp(εqX)n
N∑
i=1

∑
m 6=i

‖xi−xm‖2≤ΓqX

|am|p

≤ CIεp(εqX)n vol(B1(0))(Γ + 1)n
N∑
i=1

|ai|p.

We can now choose ε > 0 so small that this expression satisfies

2p−1
N∑
i=1

Ii ≤
1

2

γ

3p
(εqX)n

N∑
i=1

|ai|p

for all qX and ai. Together with (3.1.13) and (3.1.16) this finally gives the
bound ∥∥∥∥∥

N∑
k=1

akχk

∥∥∥∥∥
Lp(Ω)

≥ γεn

3p
qnX

N∑
k=1

|ak|p

with a fixed, sufficiently small ε which does not depend on X nor a. �

This stability result for the Lagrange basis of VN allows us to prove a
Nikolskii inequality. This allows us to bound the Lp-norm of elements of VN
by their Lq-norm.

Corollary 3.1.9. With the notation and assumptions of Theorem 3.1.8 and
1 ≤ p ≤ q ≤ ∞, there is a constant C > 0 such that the estimate

‖s‖Lp(Ω) ≤ Cq
−n
(

1
q
− 1
p

)
+

X ‖s‖Lq(Ω)

holds for all s ∈ VN , where (x)+ = max(x, 0).
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Proof. Using the Lagrange basis, we can write s ∈ VN as

s =
N∑
k=1

akχk,

where, for the coefficient vector a ∈ RN , we have the estimate

‖a‖p ≤ N
(

1
p
− 1
q

)
+‖a‖q.

Applying (3.1.7) twice, once for p and once for q, yields

‖s‖Lp(Ω) ≤ c2q
n
p

X‖a‖p ≤ c2q
n
p

XN

(
1
p
− 1
q

)
+‖a‖q

≤ c2

c1
C(Ω)q

n
p

Xq
−n
(

1
p
− 1
q

)
+

X q
−n
q

X ‖s‖Lq(Ω),

where the assumption that X is quasi-uniform allowed us to estimate N ≤
C(Ω)q−nX . Collecting the qX -terms and using x − (x)+ = −(−x)+ finishes
the proof. �

Using the Lagrange functions {χk}1≤k≤N instead of {Φδ(· − xk)}1≤k≤N
as a basis of VN has several advantages. First, we see that we can express
the interpolant in an explicit way.

Proposition 3.1.10. We can express the interpolant IX,Φδf to f ∈ Hs(Ω),
s > n/2, in VN as

IX,Φδf(x) =
N∑
k=1

f(xk)χk(x), x ∈ Ω.(3.1.18)

Second, we do not have to use the point-wise definition of χk as in (3.1.1).
The Lagrange condition χk(xi) = δki, 1 ≤ k, i ≤ N , allows us to compute for

every 1 ≤ k ≤ N the coefficients α
(k)
i , 1 ≤ i ≤ N , in the expansion

χk =
N∑
i=1

α
(k)
i Φδ(· − xi)

by solving the linear system

Mα(k) = ek,(3.1.19)

where ek denotes the k-th unit vector in Rn. This means that we have to
solve N -many N ×N sparse linear systems in order to obtain the Lagrange
basis of VN . This is clearly more expensive than computing the interpolant

IX,Φδf(x) =
∑

i : ‖x−xi‖≤δ

αiΦδ(x− xi), x ∈ Ω,(3.1.20)

where α is the unique solution of the linear system

Mα = f .

However, the Lagrange functions are independent of the data f(xi), 1 ≤ i ≤
N , and only depend on the set of sites X = {x1, . . . ,xN}. This separation of
data and sites means that we can compute the solutions to (3.1.19) a-priori,
store them and use them for several data sets, as long as X stays the same.
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In the case of (3.1.20) we have to solve a linear system every time we change
the data.

Using the Lagrange basis has a major downside. Numerical tests show
that evaluations of the interpolant (3.1.18) are expensive since the support of
Lagrange functions χk is too large. Nevertheless, in the next sections, using
the local behavior of χk in (3.1.4), we derive a modification of the Lagrange
functions which have a smaller, compact support. Additionally, the size of
this support can be chosen by us.

For the sake of completeness we briefly discuss Lagrange functions for
penalized least-squares approximation. We recall that we can write the
interpolant as

IX,Φδf(x) =
N∑
k=1

αkΦδ(x− xk), x ∈ Ω,

where the coefficient vector is given as α = M−1f with fk = f(xk). Intro-
ducing the notation r(x)T ∈ RN with (r(x))k = Φδ(x − xk), 1 ≤ k ≤ N ,
this yields for x ∈ Ω

IX,Φδf(x) =

N∑
k=1

αkΦδ(x− xk) = r(x)Tα

= r(x)TM−1f =
N∑
k=1

f(xk)χk(x).

Hence, we can express the Lagrange function χk point-wise as

χk(x) = r(x)TM−1ek, x ∈ Rn.

This idea also carries over to the penalized least-squares setting. In Sec-
tion 2.3.4 we saw that the coefficient vector α is the unique solution of
(M + λI)α = f , with the smoothing parameter λ > 0 and I ∈ RN×N
the identity matrix. Following the same ideas as above we can write the
approximant as

sλ,f (x) = r(x)T(M + λI)−1f =:
N∑
k=1

f(xk)χ
LS,λ
k (x), x ∈ Ω.

This motivates the following definition.

Definition 3.1.11. For λ > 0 and 1 ≤ k ≤ N we define the modified

Lagrange or modified cardinal functions χLS,λk ∈ VN by

χLS,λk (x) = r(x)T(M + λI)−1ek, x ∈ Rn,(3.1.21)

with (r(x))i = Φδ(x− xi).

Although the functions {χLS,λk }1≤k≤N do not satisfy the Lagrange condi-
tion of Corollary 3.1.2, we choose the name modified Lagrange functions to
emphasize the connection to the full Lagrange functions {χk}1≤k≤N .

Definition 3.1.11 allows us to use the Lagrange representation of the
penalized least-squares approximant. However, for the rest of the chapter we
will focus on the Lagrange functions χk.
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3.2. Cut-Off Lagrange Functions

On the way to Lagrange functions with smaller compact support we have
to introduce an intermediate function. The idea is to use the exponential
decay of the coefficients M−1

ki and to not use the indices 1 ≤ i ≤ N in the
expansion

χk =
N∑
i=1

M−1
ki Φδ(· − xi)

for which ∣∣M−1
ki

∣∣ ≤ CqnXe−η ‖xi−xk‖2
qX < ε

for a given threshold ε > 0. Omitting the constant C > 0 and rearranging
the second inequality means that we choose to ignore those xi ∈ X which
satisfy

‖xi − xk‖2 >
qX
η

∣∣∣∣log

(
ε

qnX

)∣∣∣∣ .
This gives the cut-off radius

r(ε) :=
qX
η

∣∣∣∣log

(
ε

qnX

)∣∣∣∣(3.2.1)

With this in mind we have the next definition.

Definition 3.2.1. Let Ω ⊆ Rn be a domain. Let X := {x1, . . . ,xN} ⊆ Ω
be a discrete set of sites. Let χk ∈ VN be the Lagrange function anchored in
xk ∈ X. Then the set Xr(xk) ⊆ X, defined by

Xr(xk) := X ∩Br(xk),(3.2.2)

is called the footprint of χk with radius r > 0.

We can use the same proof ideas which led to Lemma 2.4.4 to show that
the following estimate for the cardinality of the footprint holds.

Corollary 3.2.2. Let Ω ⊆ Rn be a domain. Let X = {x1, . . . ,xN} ⊆ Ω be
a discrete set of sites with separation radius qX and let r(ε) be as in (3.2.1)
with sufficiently small ε > 0. Then the cardinality of the footprint Xr(ε)(xk)
satisfies, for every 1 ≤ k ≤ N ,

#Xr(ε)(xk) ≤
(

2

η

)n ∣∣∣∣log

(
ε

qnX

)∣∣∣∣n .(3.2.3)

Definition 3.2.3. Let Ω ⊆ Rn be a domain. Let X = {x1, . . . ,xN} ⊆ Ω
be a discrete set of sites. For 1 ≤ k ≤ N let Xr(xk) be the footprint of the
Lagrange function χk ∈ VN with cut-off radius r > 0. We define the cut-off
Lagrange function χ̃k : Rn → R by

χ̃k =
∑

i : xi∈Xr(xk)

M−1
ki Φδ(· − xi).(3.2.4)

Clearly, we have still χ̃k ∈ VN for all 1 ≤ k ≤ N . We emphasize that we
use the same coefficients M−1

ki in the expansion (3.2.4) as in the definition
of the full Lagrange functions χk in (3.1.2). We only change the number
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of summands. This has several important consequences. First, the cut-off
Lagrange functions do not satisfy the Lagrange condition χ̃k(xi) = δki for
xi ∈ X and not even for xi ∈ Xr(xk). However, the Lagrange condition holds
for points of X in a smaller ball centered in xk, i.e., we have χ̃k(xi) = δki
for xi ∈ X ∩Br−δ(xk), if we assume that r ≥ δ.

Furthermore, the cut-off Lagrange functions χ̃k has compact support in
Br+δ(xk), which follows simply from the expansion (3.2.4) and the fact that

Φδ(· − xi) has compact support in Bδ(xi).
It turns out that the set of cut-off Lagrange functions {χ̃k}1≤k≤N is also a

stable basis of the approximation space VN if the cut-off radius is sufficiently
large. First, we have to show linear independence of the functions, which is,
again, equivalent to invertibility of the matrix T = (χ̃k(xi)). To prove this
we quote a general perturbation result from [7].

Lemma 3.2.4. Let (V, ‖ · ‖) be a normed space and let S : V → V be an
invertible, bounded and linear operator whose inverse is also bounded. If
T : V → V is a linear operator such that

‖S − T‖V→V ≤
1

C‖S‖V→V

with a constant C > 1. Then T is invertible and

‖T−1‖V→V ≤
C

C − 1
‖S−1‖V→V .

In our setting we have V = RN . We set ‖ · ‖ = ‖ · ‖∞ and use for the
operator norm the matrix norm associated to the ∞-norm. Finally, we use
S = I = (χk(xi))ki the identity. Then we have

‖S − T‖∞ = max
1≤k≤N

N∑
i=1

|χk(xi)− χ̃k(xi)|

≤ N max
1≤k≤N

‖χk − χ̃k‖L∞(Ω).(3.2.5)

Hence, if we can bound the error ‖χk − χ̃k‖L∞(Ω) then T = (χ̃k(xi)) is
invertible. Additionally, if this error is small enough we can carry over the
stability of {χk}1≤k≤N to the cut-off Lagrange functions. We summarize our
findings in the following theorem.

Theorem 3.2.5. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let X =
{x1, . . . ,xN} ⊆ Ω be a quasi-uniform set of sites with fill distance hX,Ω and
with sufficiently small separation radius qX . Let Φ : Rn → R be a compactly
supported reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier transform
of Φ satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) be the rescaled kernel where δ is
coupled to hX,Ω according to (2.4.6). Let {χk}1≤k≤N be the Lagrange basis
of VN with χk defined as is (3.1.2). For 1 ≤ k ≤ N let χ̃k be the cut-off
Lagrange function defined in (3.2.4) with general footprint Xr(xk). Assume
that there are constants C > 0 and J > n such that

‖χk − χ̃k‖L∞(Ω) ≤ CqJX , 1 ≤ k ≤ N.(3.2.6)
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Then {χ̃k}1≤k≤N is a stable basis of VN and the stability estimate

C1q
n
p

X‖a‖p ≤

∥∥∥∥∥
N∑
k=1

akχ̃k

∥∥∥∥∥
Lp(Ω)

≤ C2q
n
p

X‖a‖p(3.2.7)

holds for all 1 ≤ p ≤ ∞ with constants C1, C2 > 0.

Proof. We assume that the separation radius qX of X is sufficiently
small, i.e., there is a constant q0 < 1 such that qX < q0. Then we have with
Lemma 3.2.4, in particular (3.2.5) and the assumption(3.2.6), that

‖S − T‖∞ ≤ N max
1≤k≤N

‖χk − χ̃k‖L∞(Ω)

≤ Cq−nX qJX ≤ CqJ−n0

≤ 1

C̃‖I−1‖∞

with C̃ = 1
CqJ−n0

> 1 for sufficiently small q0 and sufficiently large J .

To derive the stability estimate (3.2.7) we first fix an a ∈ RN and set

s =
∑N

k=1 akχk and s̃ =
∑N

k=1 akχ̃k. To obtain the upper bound in (3.2.7)
we bound s− s̃ in the L1(Ω)- and L∞(Ω)-norm and use again the operator
interpolation Theorem 2.1.8. For the L1(Ω)-estimate we use the Hölder
inequality and (3.2.6). We have

‖s− s̃‖L1(Ω) =

∥∥∥∥∥
N∑
k=1

ak(χk − χ̃k)

∥∥∥∥∥
≤ ‖a‖1‖χk − χ̃k‖L∞(Ω) ≤ CqJX‖a‖1.

We can bound the L∞(Ω)-norm directly.

‖s− s̃‖L∞(Ω) ≤ ‖a‖∞max
x∈Ω

N∑
k=1

|χk(x)− χ̃k(x)|

≤ ‖a‖∞N max
1≤k≤N

‖χk − χ̃k‖L∞(Ω)

≤ CqJ−nX ‖a‖∞,

where we used that X is assumed to be quasi-uniform, i.e., N ≤ Cq−nX . Using
operator interpolation yields finally

‖s− s̃‖Lp(Ω) ≤ CqJ−nX q
n
p

X‖a‖p.(3.2.8)

The inverse triangle inequality for ‖s− s̃‖Lp(Ω) yields the chain of inequalities

‖s‖Lp(Ω) − ‖s− s̃‖Lp(Ω) ≤ ‖s̃‖Lp(Ω) ≤ ‖s‖Lp(Ω) + ‖s− s̃‖Lp(Ω),

which gives with the stability estimate for the full Lagrange basis (3.1.7) and
(3.2.8)

c1q
n
p

X‖a‖p(1− Cq
J−n
X ) ≤ ‖s̃‖Lp(Ω) ≤ c2q

n
p

X‖a‖p(1 + CqJ−nX ).

This is (3.2.7) if qX is small enough such that CqJ−nX < 1/2 and if we set
C1 = c1/2 und C2 = (3c2)/2. �
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Now we have to make sure that the assumption (3.2.6) holds if we
construct the cut-off Lagrange functions with the cut-off radius r(ε) =
qX
η

∣∣∣log
(

ε
qnX

)∣∣∣. We will see that the main tool is an upper bound for the sum

of the tail of coefficients, ∑
i : xi∈X\Xr(ε)(xk)

M−1
ki , 1 ≤ k ≤ N.

Hence, we give the estimate before we bound the error χk − χ̃k in different
norms.

Lemma 3.2.6. Let M−1
ki be the i-th coefficient in the expansion of χk as in

(3.1.2) Then, after cutting with r(ε), there exists a constant C > 0 such that
the estimate ∑

i : xi∈X\Xr(ε)(xk)

∣∣M−1
ki

∣∣ ≤ C eη
ηn
q
n
2
X

√
ε,(3.2.9)

holds for all 1 ≤ k ≤ N .

Proof. We begin the proof with considering a general cut-off radius r >
0 and associated footprint Xr(xk). The exponential decay of the coefficients
M−1
ki in (2.5.6) yields∑

i : xi∈X\Xr(xk)

∣∣M−1
ki

∣∣ ≤ C ∑
i : ‖xi−xk‖2>r

qnXe
−η ‖xi−xk‖2

qX .

We now want to control the sum by an integral. Therefore, we note that for
xi ∈ X \Xr(xk) the estimate qnX ≤ C(n) vol(BqX (xi) \Br(xk)) holds. With
this we have for 1 ≤ k ≤ N∑
i : xi∈X\Xr(xk)

∣∣M−1
ki

∣∣ ≤ C ∑
i : ‖xi−xk‖2>r

qnXe
−η ‖xi−xk‖2

qX

≤ C
∑

i : ‖xi−xk‖2>r

e
−η ‖xi−xk‖2

qX

∫
BqX (xi)\Br(xk)

1 dy

≤ Ceη
∫
Rn\Br(xk)

e
−η ‖y−xk‖2

qX dy.

In the last estimate we have used that the sets (BqX (xi) \ Br(xk)) are
disjoint since we assumed that xi ∈ X \Xr(xk), and that for y ∈ BqX (xi)
the estimate

‖xk − y‖2 ≤ ‖xk − xi‖2 + ‖xi − y‖2 ≤ ‖xk − xi‖2 + qX ,

and consequently

−‖xk − xi‖2 ≤ −‖xk − y‖2 + qX

holds. This leads to the constant factor eη.
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Now, changing to polar coordinates and splitting η = η/2 + η/2 yields∑
i : xi∈X\Xr(xk)

∣∣M−1
ki

∣∣ ≤ Ceη ∫
Rn\Br(xk)

e
−η ‖y−xk‖2

qX dy

≤ Ceη
∫ ∞
r

e
−η ρ

qX ρn−1 dρ

≤ Ceηe−
η
2
r
qX

∫ ∞
r

e
− η

2
ρ
qX ρn−1 dρ.

Next, we bound the integral by increasing the integration domain from [r,∞)
to [0,∞) and then compute the integral explicitly. We have∫ ∞

0
e
− η

2
ρ
qX ρn−1 dρ = 2n(n− 1)!

(
qX
η

)n
.

This then yields the general bound∑
i : xi∈X\Xr(xk)

∣∣M−1
ki

∣∣ ≤ Ceη (qX
η

)n
e
− η

2
r
qX .

Finally, inserting the specific cut-off radius r(ε) = qX
η

∣∣∣log
(

ε
qnX

)∣∣∣ gives

∑
i : xi∈X\Xr(ε)(xk)

∣∣M−1
ki

∣∣ ≤ C eη
ηn
q
n
2
Xε

1
2 .

�

This estimate allows us now to bound the error between the full Lagrange
functions and their cut-off versions.

Theorem 3.2.7. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let X =
{x1, . . . ,xN} ⊆ Ω be a quasi-uniform set of sites with fill distance hX,Ω and
separation radius qX . Let Φ : Rn → R be a compactly supported reproducing
kernel of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2).
Let Φδ = δ−nΦ(·/δ) be the rescaled kernel where δ is coupled to hX,Ω according
to (2.4.6). For 1 ≤ k ≤ N let χk be the Lagrange function anchored in
xk ∈ X and χ̃k be the cut-off Lagrange function with footprint Xr(ε)(xk) with

r(ε) = qX
η

∣∣∣log
(

ε
qnX

)∣∣∣. Then there exists a constant C = C(Ω,Φ, n, s) such

that for 0 ≤ t ≤ s the estimate

‖χk − χ̃k‖Ht(Ω) ≤ C
eη

ηn
q−tX
√
ε(3.2.10)

holds for all 1 ≤ k ≤ N . Furthermore, there exists a constant C = C(Ω,Φ, n)
such that the estimate

‖χk − χ̃k‖L∞(Ω) ≤ C
eη

ηn
q
−n

2
X

√
ε(3.2.11)

holds for all 1 ≤ k ≤ N .
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Proof. We begin with the Ht(Ω)-norm estimate. For 1 ≤ k ≤ N we
have

‖χk − χ̃k‖Ht(Ω) =

=

∥∥∥∥∥∥
N∑
i=1

M−1
ki Φδ(· − xi)−

∑
i : xi∈Xr(ε)(xk)

M−1
ki Φδ(· − xi)

∥∥∥∥∥∥
Ht(Ω)

=

∥∥∥∥∥∥
∑

i : xi∈X\Xr(ε)(xk)

M−1
ki Φδ(· − xi)

∥∥∥∥∥∥
Ht(Ω)

,

since we use the same coefficients M−1
ki for both functions. Using the estimate

on ‖Φδ(· −xi)‖Ht(Ω) in Lemma 2.4.3 we obtain, with the help of the triangle
inequality,

‖χk − χ̃k‖Ht(Ω) =

∥∥∥∥∥∥
∑

i : xi∈X\Xr(ε)(xk)

M−1
ki Φδ(· − xi)

∥∥∥∥∥∥
Ht(Ω)

≤
∑

i : xi∈X\Xr(ε)(xk)

∣∣M−1
ki

∣∣ ‖Φδ(· − xi)‖Ht(Ω)

≤ δ−
n
2
−t‖Φ‖Ht(Rn)

∑
i : xi∈X\Xr(ε)(xk)

∣∣M−1
ki

∣∣ .
Next, we use (3.2.9) and the assumption that X is quasi-uniform. This yields

‖χk − χ̃k‖Ht(Rn) ≤ δ−
n
2
−t‖Φ‖Ht(Ω)

∑
i : xi∈X\Xr(ε)(xk)

∣∣M−1
ki

∣∣
≤ C(Ω,Φ, n, s)

eη

ηn
q
−n

2
−t

X q
n
2
X

√
ε.

The same ideas lead to the estimate in (3.2.11). �

This result, in particular the error estimate in (3.2.11), together with
Theorem 3.2.5 proves the next lemma.

Corollary 3.2.8. With the notation and assumptions of Theorem 3.2.7,
the set of cut-off Lagrange functions {χ̃k}1≤k≤N is a stable basis of VN if

ε ≤ q2J+n
X with a free constant J > n.

Inserting ε = q2J+n
X into the cut-off radius r(ε) yields a radius

r(q2J+n
X ) = 2J

qX
η
|log(qX)| .

We note that for quasi-uniform X this is similar to the radius the authors of
[29, 46] use.

Although we know from Corollary 3.2.8 that the cut-off Lagrange func-
tions are, with the right choice of ε, a stable basis of VN their construction
still requires to set up an N ×N linear system and to solve it N -times.



3.3. LOCALIZED LAGRANGE FUNCTIONS 55

3.3. Localized Lagrange Functions

We now construct yet another basis of VN by enforcing the Lagrange
condition as in Corollary 3.1.2 only on the footprint Xr(ε)(xk).

Definition 3.3.1. Let Ω ⊆ Rn be a bounded domain. Let X = {x1, . . . ,xN}
be a quasi-uniform set of sites in Ω with fill distance hX,Ω. Let Φ : Rn → R
be a compactly reproducing kernel of Hs(Rn), s > n/2, i.e., its Fourier
transform satisfies (2.2.2). Let Φδ = δ−nΦ(·/δ) the rescaled kernel, where
δ is coupled to hX,Ω according to (2.4.6). For 1 ≤ k ≤ N let Xr(xk) be a
general footprint defined in (3.2.2) with cut-off radius r > 0. For 1 ≤ k ≤ N
we define the localized Lagrange function χlock : Rn → R by

χlock :=
∑

i : xi∈Xr(xk)

α
(k)
i Φδ(· − xi),(3.3.1)

where the coefficient vector α(k) is the unique solution of the linear system

M |Xr(xk)α
(k) = ek.

The matrix M |Xr(xk) ∈ R#Xr(xk)×#Xr(xk) is given by

M |Xr(xk) = (Φδ(xi − xj))xi,xj∈Xr(xk)

and ek ∈ R#Xr(xk) denotes the k-th unit vector.

Again, we see that χlock ∈ VN , 1 ≤ k ≤ N and, with the same reasoning
as in Corollary 3.1.2, we see that the localized Lagrange functions satisfy the
Lagrange condition χlock (xi) = δki for xi ∈ Xr(xk), 1 ≤ k ≤ N .

We now work towards error estimates for χk − χlock . Using these allows

us, similar to Section 3.2, to show that the set {χlock }1≤k≤N is a stable basis
of VN , depending on the right choice for the cut-off radius r. To this end, we
fix xk ∈ X and introduce for xi ∈ Xr(xk) the vector y ∈ R#Xr(xk), which is
given component-wise as

yi := χlock (xi)− χ̃k(xi) = δki − χ̃k(xi).(3.3.2)

Additionally, we observe that

χlock − χ̃k =
∑

i : xi∈Xr(xk)

(α
(k)
i −M

−1
ki )Φδ(· − xi)

=:
∑

i : xi∈Xr(xk)

βiΦδ(· − xi).(3.3.3)

We see that the vector β = (βi)i ∈ R#Xr(xk) is the solution of the linear
system

M |Xr(xk)β = y.

Next, we derive a bound for the matrix norm associated to the 1-norm
of M |−1

Xr(xk). We recall Lemma 2.5.11 which gives us the following uniform

bound on the entries of this matrix,∣∣∣(M |−1
Xr(xk)

)
ik

∣∣∣ ≤ Cqn−2s
X ,
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for all 1 ≤ i, k ≤ #Xr(xk) with a constant C > 0. With this, we obtain the
bound ∥∥∥M |−1

Xr(xk)

∥∥∥
1
≤ C(#Xr(xk))q

n−2s
X .(3.3.4)

Recalling the component-wise definition of y in (3.3.2), yi = δki − χ̃k(xi),
and using the fact that the full Lagrange function satisfies the Lagrange
condition χk(xi) = δki for xi ∈ Xr(xk) ⊆ X, we can estimate

‖y‖∞ = ‖χlock − χ̃k‖`∞(Xr(xk)) = ‖χk − χ̃k‖`∞(Xr(xk))

≤ ‖χk − χ̃k‖L∞(Ω).(3.3.5)

Combining (3.3.4) and (3.3.5) with ‖y‖1 ≤ (#Xr(xk))‖y‖∞ yields finally
the estimate ∑

i : xi∈Xr(xk)

|βi| ≤
∥∥∥M |−1

Xr(xk)

∥∥∥
1
‖y‖1

≤ C(#Xr(xk))
2qn−2s
X ‖χk − χ̃k‖L∞(Ω).(3.3.6)

With this we can now obtain bounds for the error χlock −χk for general cut-off
radius r > 0. After that we refine the estimate by using the specific cut-off

radius r(ε) = qX
η

∣∣∣log
(

ε
qnX

)∣∣∣.
Theorem 3.3.2. Let Ω ⊆ Rn be a bounded Lipschitz domain. Let X =
{x1, . . . ,xN} ⊆ Ω be a quasi-uniform set of sites with fill distance hX,Ω and
separation radius qX . Let Φ : Rn → R be a compactly supported reproducing
kernel of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2).
Let Φδ = δ−nΦ(·/δ) be the rescaled kernel where δ is coupled to hX,Ω according
to (2.4.6). For 1 ≤ k ≤ N let χk ∈ VN be the full Lagrange function anchored
in xk ∈ X and χlock be the localized Lagrange function as in (3.3.1) with
general footprint Xr(xk) and cut-off radius r > 0. Then there exists a
constant C = C(Ω,Φ, n) > 0 such that the estimate

‖χlock − χk‖L∞(Ω) ≤
(
1 + C(#Xr(xk))

2q−2s
X

)
‖χk − χ̃k‖L∞(Ω)(3.3.7)

holds for all 1 ≤ k ≤ N . Furthermore, for 0 ≤ t ≤ s there is a constant
C = C(Ω,Φ, n, t) > 0 such that the estimate

‖χlock − χk‖Ht(Ω) ≤
(

1 + C(#Xr(xk))
2q

n
2
−2s−t

X

)
‖χk − χ̃k‖Ht(Ω)(3.3.8)

holds for all 1 ≤ k ≤ N .

Proof. With the triangle inequality we have

‖χlock − χk‖L∞(Ω) ≤ ‖χlock − χ̃k‖L∞(Ω) + ‖χ̃k − χk‖L∞(Ω).

We bound the first term by

‖χlock − χ̃k‖L∞(Ω) ≤
∑

i : xi∈Xr(xk)

|βi|‖Φδ(· − xi)‖L∞(Ω)

≤ C(Ω, n)‖Φ‖L∞(Rn)q
−n
X

∑
i : xi∈Xr(xk)

|βi|

≤ C(Ω,Φ, n)q−nX (#Xr(xk))
2qn−2s
X ‖χk − χ̃k‖L∞(Ω).
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We employed the help of the estimate for the norm of the rescaled kernel in
Lemma 2.4.3, (3.3.3) and (3.3.6).

The estimate in (3.3.8) can be obtained with the same approach. �

Next, we derive a refined bound for the specific cut-off radius r(ε) in
(3.2.1). The proof uses the estimate on the cardinality of the footprint in
(3.2.3) and the error estimates of Theorem 3.2.7.

Theorem 3.3.3. With the notation and assumptions of Theorem 3.3.2,
where we additionally assume that the localized Lagrange functions use the

footprint Xr(ε)(xk) with cut-off radius r(ε) = qX
η

∣∣∣log
(

ε
qX

)∣∣∣ with an ε > 0,

there is a constant C = C(Ω,Φ, n) > 0 such that the estimate

‖χlock − χk‖L∞(Ω) ≤ C
eη

η3n

∣∣∣∣log

(
ε

qnX

)∣∣∣∣2n q−n2−2s

X

√
ε(3.3.9)

holds for all 1 ≤ k ≤ N . Furthermore, for 0 ≤ t ≤ s there is a constant
C = C(Ω,Φ, n, t) > 0 such that the estimate

‖χlock − χk‖Ht(Ω) ≤ C
eη

η3n

∣∣∣∣log

(
ε

qnX

)∣∣∣∣2n q n2−2s−2t

X

√
ε(3.3.10)

holds for all 1 ≤ k ≤ N .

These error estimates, in particular (3.3.9), allow us to prove that the
set {χlock }1≤k≤N is a stable basis of the kernel-based approximation space
VN . It is easy to see that we can apply Theorem 3.2.5 in this setting and
obtain the stability of the localized Lagrange basis.

Lemma 3.3.4. With the notation and assumptions of Theorem 3.3.3 the set
of localized Lagrange functions {χlock }1≤k≤N is a stable basis of VN if ε > 0
is chosen sufficiently small such that the inequality

C
eη

η3n

∣∣∣∣log

(
ε

qnX

)∣∣∣∣2n q−n2−2s

X

√
ε ≤ qJX ,

holds with a constant C > 0 and a free J > n.

Lemma 3.3.4 implies that, assuming we chose the cut-off radius r(ε) cor-
rectly, we can express elements of VN as a linear combination of {χlock }1≤k≤N .
In particular, for a given f ∈ Hs(Ω), s > n/2, we have that

I loc(f) :=

N∑
k=1

f(xk)χ
loc
k ∈ VN .(3.3.11)

This motivates the next definition.

Definition 3.3.5. With the notation and assumptions of Theorem 3.3.3,
where we choose ε > 0 such that Lemma 3.3.4 holds, we define the local
Lagrange approximation operator I loc : Hs(Ω)→ VN by (3.3.11).

Clearly, the operator in Definition 3.3.5 is not an interpolation operator.
Approximations of the form (3.3.11) are often called quasi-interpolation,
see, e.g., [94, Chapter 3]. However, we usually require quasi-interpolants
to reproduce polynomials up to a certain degree. We can not expect the
local Lagrange approximation to have this property. Furthermore, with the
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same reasoning as in Section 2.4, we do not expect convergence of I loc(f)
towards f for hX,Ω → 0. However, in the next chapter we will work towards
a convergent method using local Lagrange approximation operators.

Nevertheless, using the localized Lagrange basis has an advantage. To
compute the basis we need to solve only an #Xr(ε)(xi)×#Xr(ε)(xi) linear
system for every xi ∈ X. Each of these N -many systems will be sparse if the
cut-off radius r(ε) is sufficiently larger than δ and depending on this cut-off
radius the computational cost will be lower than the solution of N -many
N × N sparse systems to compute the full Lagrange basis introduced in
Section 3.1.



CHAPTER 4

The Kernel-based Multilevel Method

We use this chapter to study a way to beat the trade-off principle
discussed at the end of Section 2.4. The idea of the kernel-based multilevel
method can be traced back to [73] and became publicly known through [27].
However, these early contributions only observe numerical convergence. The
first theoretical error analysis was given in [63], but for a different multilevel
scheme, where the basis functions for each level are not obtained by scaling
but rather by convolution of the RBF for the finest level. A first convergence
theorem for the multilevel method in the setting we use in this thesis was
provided in [36] if the domain is the sphere. This result was then generalized
to general bounded domains in [91]. We also refer to the survey paper [92].

We first introduce the setting of multiscale analysis in Section 4.1. This
can be seen as the transfer of the multiresolution analysis to the theory
of RBFs. In Section 4.2 we formally introduce the kernel-based multilevel
method before, in Section 4.3, we derive convergence results for the different
approximation methods introduced in Section 2.3. In all those error estimates
there appears a constant that potentially can spoil the convergence. In
Section 4.4 we give the results of numerical simulations and show that for
the, in the context of this thesis important, cases the analytically unknown
constant has no negative effects. Next, we briefly discuss two adaptive
versions of the multilevel method in Section 4.5. To close this chapter we
use the functions introduced in Section 3.1 to first derive an alternative
representation of the approximation operator and then the functions of
Section 3.3 to potentially speed up point-evaluations of approximations using
this representation. Additionally, we provide a convergence estimate.

4.1. Multiscale Analysis

We start by fixing a sequence of sets of sites X1, X2, X3, · · · ⊆ Ω, with

Xi := {xi,1, . . . ,xi,Ni},
in a bounded domain Ω ⊆ Rn. In many applications these sets will be nested,
that is, Xi ⊆ Xi+1, however for the analysis of the multilevel method this
is not necessary. Nevertheless, we require that the sets become denser in Ω,
which we quantify in the following way: We assume that the associated fill
distances hi := hXi,Ω, i = 1, 2, 3, . . . , decrease in a uniform way, i.e., we fix a
refinement parameter µ ∈ (0, 1) independent of the level i and assume that
there is a constant c ∈ (0, 1] such that

cµhi ≤ hi+1 ≤ µhi, i ∈ N.(4.1.1)

Although it is useful to have the leeway the constant c gives in the
coupling of hi+1 and hi it makes some discussions unnecessarily cumbersome.

59
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Hence, for the following we assume that c = 1 and we have hi+1 = µhi. In
some way the parameter µ determines the growth of the cardinality of the
Xi. If we recall that for quasi-uniform Xi we have N−ni ∼ hi we see that
µ ≈ (Ni/Ni+1)n. Hence the choice of a small value of µ, close to 0, leads to
a fast growth of the cardinality of Xi and a value close to 1 ensures that the
Xi fill out Ω slowly. For practical considerations both of these extremes is
not preferable, we would rather choose a moderate value, e.g., µ = 1/2.

Next, we follow the ideas of Chapter 2 and fix a radial basis function
Φ : Rn → R and scale this mother kernel with a level dependent scaling
parameter δi > 0, i.e., we define level-dependent rescaled RBFs by

Φi := Φδi := δ−ni Φ

(
·
δi

)
.(4.1.2)

This way, we obtain a basis function for every level i ∈ N. In principle, the
fixing and rescaling of one single mother kernel Φ is not necessary and we
can choose a different kernel for each level. However, we want to follow [91,
92] and use the setup above.

On each level i ∈ N, we use the stationary setting of Section 2.4, i.e.,
we couple δi to hi. To be precise and recalling (2.4.6), we have constants
cν ∈ (0, 1] and ν > 1 such that

cννhi ≤ δi ≤ νhi, i ∈ N.

Note that neither cν nor ν depend on the level i. In applications we often
couple the refinement parameter µ to the overlap parameter ν.

We define now the approximation spaces of the multilevel method.

Definition 4.1.1. Let Ω ⊆ Rn be a bounded domain. Let X1, X2, X3, · · · ⊆ Ω
be a sequence of sets of sites. Let Φ : Rn → R be a radial basis function. For
i ∈ N let Φi be the rescaled kernel with level-dependent scaling parameter δi.
The local approximation or detail space on level i is given by

Wi = span{Φi(· − x) : x ∈ Xi}

and the global approximation space on level L ∈ N is defined as

VL = W1 + · · ·+WL.

In the error analysis we are interested in the approximation power of the
space VL as L→∞, but in the numerical reality we fix a level L ∈ N and
compute the approximation in VL.

If we assume that the mother kernel Φ, and hence the level-dependently
rescaled kernel Φi, is a reproducing kernel of Hs(Rn) we have the following
proposition for the local and global approximation spaces.

Proposition 4.1.2. Let Ω ⊆ Rn be a bounded domain. For i ∈ N let Xi ⊆ Ω
be a sets of sites with fill distance hi. Let Φ : Rn → R be a reproducing kernel
of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2). For
i ∈ N let Φi = δ−ni Φ(·/δi) be the rescaled kernel where the scaling parameter
δi is coupled to hi as in (2.4.6). Set V0 := {0}.

Then, for every i ∈ N0, the global approximation space Vi is a closed and
finite dimensional subspace of Hs(Ω) and therefore of L2(Ω). Furthermore,
the following statements hold:
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(1) Vi ⊆ Vi+1, i ∈ N0,

(2)
⋃∞
i=0 Vi = L2(Ω) if we take the closure with respect to the L2(Ω)-

norm.

Additionally, for every i ∈ N, the sum

Vi = Vi−1 ⊕Wi

is direct, i.e., we have

∞⊕
i=1

Wi = L2(Ω).

Proof. The proof for the case that Ω = Sn−1 is the unit sphere can
be found in [36]. The ideas there can be directly transferred to the case of
general bounded domains Ω ⊆ Rn. �

The properties of the local and global approximation spaces in Proposi-
tion 4.1.2 are the usual setup for the multiresolution analysis in the context
of, e.g., wavelets [18]. However, the setting for kernel-based spaces misses any
kind of refinement property, i.e., we can not expect that f ∈ Vi if and only if
f(·/δi) ∈ V1 which would mean that the spaces Vi are scaled versions of V1.

4.2. Description of the Method

We now discuss the algorithmic approach to the kernel-based multilevel
method. The main idea is similar to the one of wavelets: We compute a
rough approximation on a coarse point set and then fill in the details which
we compute on finer and finer sets of sites. This section follows closely [91,
Section 2].

The general procedure is given in Algorithm 1 which we now discuss in
greater detail. We assume that we already know the family of point sets
(Xi)1≤i≤L. How to determine this set itself is part of ongoing research in
computer science and of no further concern in this thesis.

As input we expect the maximum number of levels L and the tuples
{(xi,k, f(xi,k)} ⊆ Xi × R, 1 ≤ i ≤ L, 1 ≤ k ≤ Ni. If the sites are nested, i.e.,
Xi ⊆ Xi+1 it suffices to know the data on the highest level L.

For every level 0 ≤ i ≤ L we keep track of two functions. The global
approximation fi ∈ Vi and the residual ei, which represents the remaining
error.

We initialize the global approximation on level zero as the zero function,
f0 = 0, and the residual of the zeroth level as the target function e0 =
f . In the i-th step we compute the local approximation si ∈ Wi as the
approximation to the residual ei−1 of the preceding level using the sites
Xi of level i, i.e., we compute a coefficient vector α(i) ∈ RNi according to
the chosen approximation method. The local approximation si then has the
representation

si =

Ni∑
k=1

α
(i)
k Φi(· − xi,k).
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Next, we update the global approximation, fi = fi−1 + si, and the residual,
ei = ei−1 − si. To be more precise we have for the i-th level

fi = s1 + · · ·+ si,(4.2.1)

ei = f − (s1 + · · ·+ si).(4.2.2)

We follow this procedure until we arrive at level L and return the global
approximation fL.

Algorithm 1: Multilevel approximation

Data: Number of levels L, right-hand side f
Result: Approximate solution fL ∈ VL = W1 + · · ·+WL

Set f0 = 0, e0 = f ;

for i = 1, 2, . . . , L do
Determine a local approximant si ∈Wi to ei−1 on Xi;

Set fi = fi−1 + si;

Set ei = ei−1 − si;
end

The algorithm can also be put in an alternative, matrix form. If we
assume that the approximation methods we use for computing the local
approximations si are linear, we can find matrices Mi ∈ RNi×Ni , i ∈ N, such
that the coefficients α(i) can be expressed as

α(i) = M−1
i ei−1,

where ei−1 = ei−1|Xi . For instance, in the case of interpolation we have
Mi = MXi,Φi and in the case of penalized least-squares approximation we
have Mi = MXi,Φi + λiI. Note that we can, and we will see later that we
have to choose a level-dependent penalization parameter λi. In addition to
Mi we introduce the evaluation matrix

Bik = (Φk(xi,m − xk,p)) ∈ RNi×Nk

which represents the evaluation of the kernel of the k-th level, centered in
points of Xk at points of Xi. With these matrices we can express ei|Xi as in
(4.2.2) by

Miα
(i) = f (i) −

i−1∑
k=1

Bikα
(k)

with f (i) = f |Xi ∈ RNi , 1 ≤ i ≤ L. Collecting these equations in one large(∑L
i=1Ni

)
×
(∑L

i=1Ni

)
linear system yields a block-triangular system of

the form


M1

B21 M2

B31 B32 M3
...

... · · · . . .

BL1 BL2 · · · BL(L−1) ML




α(1)

α(2)

α(3)

...

α(L)

 =


f (1)

f (2)

f (3)

...

f (L)

 .
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The method described in Algorithm 1 simply solves this system by
mimicking forward substitution, however since the entries are matrices, we
have to solve a linear system with a growing number of unknowns in every
step. At first glance this seems expensive, however from a numerical point of
view this scheme and the whole multilevel method is extremely efficient as
the matrices Mi, 1 ≤ i ≤ L, are essentially the kernel matrices discussed in
Section 2.5. With Corollary 2.5.1 we immediately obtain the next corollary.

Corollary 4.2.1. With the notation and assumptions of Proposition 4.1.2 let
Mi ∈ RNi×Ni be defined by either Mi = (Φi(xi,j − xi,k)) or Mi = (Φi(xi,j −
xi,k) + λiI). Then

(1) The number of non-zero entries per row of Mi is independent of the
level i.

(2) The number of steps required by a non-preconditioned CG method
is independent of the level i.

(3) The computational cost to solve the approximation problem on level
i is O(Ni).

From an operator point of view we can express the multilevel method
with the help of the following lemma.

Lemma 4.2.2. With the notation and assumptions of Proposition 4.1.2
let the local approximations si ∈ Wi be computed with specific operators
Ii : Hs(Ω)→Wi, i.e., we have si = Ii(ei−1). Then, for each L ∈ N, there is
an operator AL : Hs(Ω)→ VL defined by

AL(f) :=
L∑
i=1

Ii(ei−1)(4.2.3)

such that fL = AL(f).

Proof. This is a direct consequence of (4.2.1) and (4.2.2). �

Definition 4.2.3. For i ∈ N the operator Ii of Lemma 4.2.2 is called local
approximation operator and the operator AL is called global approximation
or multilevel operator.

Later, we will call the multilevel operator AL in the form (4.2.3) residual
correction scheme.

4.3. Convergence of the Method

Now, we investigate the kernel-based multilevel method further and
derive convergence results for the three different approximation methods
introduced in Section 2.3, interpolation, interpolation of rougher function
and penalized least-squares approximation. We will see that the key for the
convergence results is a recursion formula of the form

‖Eei+1‖Φi ≤ α‖Eei‖Φi−1

with a constant α < 1. With the right choice of the occurring parameters
this will lead to linear convergence of the method in all three cases.

The ideas of the proofs for all three approximation methods are taken
from [91], however, we keep meticulous track of the occuring constants.
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4.3.1. Interpolation. We start by investigating interpolation, i.e., the
local approximation operator Ii on level i is the interpolation operator IXi,Φi .
This means we have

Ii(ei−1) = si = IXi,Φi(ei−1).

First, we have to make sure that AL(f) =
∑L

i=1 IXi,Φi(ei−1) is indeed an
interpolant of f on XL.

Lemma 4.3.1. For every 1 ≤ i ≤ L the function fi =
∑i

k=1 IXk,Φk(ek−1)
interpolates f on Xi.

Proof. We have by induction that ek|Xk ≡ 0 for 1 ≤ k ≤ i. Furthermore,
for these k we have by (4.2.2) the relation f − fk = ek between the residuals
and the interpolants. Hence, fi|Xi = f |Xi − ei|Xi = f |Xi holds. �

We find the following recursion inequality which allows us to bound the
Φi+1-norm of the residual ei of level i by the Φi-norm of ei−1.

Theorem 4.3.2. Let Ω ⊆ Rn be a bounded Lipschitz domain. For i ∈ N let
Xi ⊆ Ω be a set of sites with fill distance hi. Assume that cµhi ≤ hi+1 ≤ µhi
holds for i ∈ N with fixed constants µ ∈ (0, 1), c ∈ (0, 1] and h1 sufficiently
small. Let Φ : Rn → R be a reproducing kernel of Hs(Rn), s > n/2, i.e.,
the Fourier transform of Φ satisfies (2.2.2). Let Φi = δ−ni Φ(·/δi) be the
rescaled kernel where the scaling parameter δi is coupled to hi according to
(2.4.6). Assume that the overlap parameter ν satisfies 1

h1
≥ ν. Assume that

f ∈ Hs(Ω). Then there exists a constant C1 = C1(Ω,Φ, s) > 0 such that

‖Eei‖Φi+1 ≤ C1(µs + ν−s)‖Eei−1‖Φi , i ∈ N,(4.3.1)

where E : Hs(Ω) → Hs(Rn) is the extension operator introduced in Theo-
rem 2.1.7.

Proof. We start by estimating

δi+1 = νhi+1 ≤ νµhi = µδi < δi.

This means that δi+1 < δ1 = νh1 and with the assumption 1
h1
≥ ν we have

δi+1 < 1. Hence, we can use the norm equivalence for the rescaled RBFs in
(2.4.2) and obtain the bound

‖Eei‖2Φi+1
=

∫
Rn

|Êei(ξ)|2

Φ̂i+1(ξ)
dξ

≤ 1

c1

∫
Rn
|Êei(ξ)|2

(
1 + δ2

i+1‖ξ‖22
)s

dξ

=:
1

c1
(I1 + I2)

with

I1 :=

∫
‖ξ‖2≤ 1

δi+1

|Êei(ξ)|2
(
1 + δ2

i+1‖ξ‖22
)s

dξ,

I2 :=

∫
‖ξ‖2≥ 1

δi+1

|Êei(ξ)|2
(
1 + δ2

i+1‖ξ‖22
)s

dξ.
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We bound these two integrals separately.
First, we observe that the interpolants IXi,Φiei−1 and IXi,Φi(Eei−1) co-

incide, since the interpolant is uniquely determined by the values on Xi ⊆ Ω.
Then we have with the properties of the extension operator and Lemma 2.4.2

‖ei‖Hs(Ω) = ‖ei−1 − IXi,Φi(ei−1)‖Hs(Ω)

= ‖Eei−1 − IXi,Φi(Eei−1)‖Hs(Ω)

≤ ‖Eei−1 − IXi,Φi(Eei−1)‖Hs(Rn)

≤ c
1
2
2 δ
−s
i ‖Eei−1 − IXi,Φi(Eei−1)‖Φi

≤ c
1
2
2 δ
−s
i ‖Eei−1‖Φi .(4.3.2)

To arrive at the last inequality we used the Φi-norm minimality of the
interpolant (2.3.8).

To bound I1 we use that δi+1‖ξ‖2 ≤ 1 and then the sampling inequality
(2.3.11), since ei vanishes on Xi. This yields

I1 =

∫
‖ξ‖2≤ 1

δi+1

|Êei(ξ)|2
(
1 + δ2

i+1‖ξ‖22
)s

dξ

≤ 2s
∫
‖ξ‖2≤ 1

δi+1

|Êei(ξ)|2 dξ

≤ 2s
∫
Rn
|Êei(ξ)|2 dξ

= 2s‖Eei‖2L2(Rn)

≤ 2sC2
E‖ei‖2L2(Ω)

= 2sC2
E‖ei−1 − IXi,Φi(ei−1)‖2L2(Ω)

≤ c̃(Ω, s)2sC2
Eh

2s
i ‖ei−1‖2Hs(Ω)

≤ c̃(Ω, s)2sC2
Ec2

(
hi
δi

)2s

‖Eei−1‖2Φi

≤ c(Ω, s)2sC2
Ec2ν

−2s‖Eei−1‖2Φi ,

where c̃(Ω, s) is the constant appearing in the sampling inequality (2.3.11)
and c(Ω, s) := c̃(Ω, s)cν . The constant cν is the constant from (2.4.6). The
application of the sampling inequality is possible since h1 assumed to be
sufficiently small.

To bound I2 we first observe that δi+1‖ξ‖2 ≥ 1. This yields

(
1 + δ2

i+1‖ξ‖22
)s ≤ 2sδ2s

i+1‖ξ‖2s2 ≤ 2sδ2s
i+1

(
1 + ‖ξ‖22

)s
.
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Together with (4.3.2), we have

I2 =

∫
‖ξ‖2≥ 1

δi+1

|Êei(ξ)|2
(
1 + δ2

i+1‖ξ‖22
)s

dξ

≤ 2sδ2s
i+1

∫
Rn
|Êei(ξ)|2

(
1 + ‖ξ‖22

)s
dξ

= 2sδ2s
i+1‖Eei‖2Hs(Rn)

≤ 2sδ2s
i+1C

2
E‖ei‖2Hs(Ω)

≤ 2sC2
Ec2

(
δi+1

δi

)2s

‖Eei−1‖2Φi

= 2sC2
Ec2µ

2s‖Eei−1‖2Φi .

Putting these bounds together gives the estimate (4.3.1) with

C1 = max(c(Ω, s), 1)2
s
2CEc

1
2
2 .(4.3.3)

�

In the proof of Theorem 4.3.2 we made an effort to keep track of the
constants appearing in the estimates. Unfortunately, although we can track
the individual factors contributing to C1 quite precisely, sharp bounds are
not known. However, we will give numerical estimates of this constant in
Section 4.4.

We now use the estimate in (4.3.1) to derive convergence estimates for
the error f − fL in the L2(Ω)-norm. We use again the sampling inequalities
of Theorem 2.3.4 and recall that eL|XL = 0. This then yields

‖f − fL‖L2(Ω) = ‖eL‖L2(Ω) ≤ ChsL‖eL‖Hs(Ω)

≤ ChsL‖EeL‖Hs(Rn)

≤ ChsLδ−sL+1‖EeL‖ΦL+1

= C

(
1

νµ

)s
‖EeL‖ΦL+1

,

and since we assume that cµhi ≤ hi+1, with c ∈ (0, 1], we obtain

hL
δL+1

=
hL

νhL+1
≤ 1

cνµ
.

Applying (4.3.1) L times, we obtain

‖f − fL‖L2(Ω) ≤ C
(

1

νµ

)s [
C1µ

s + C1ν
−s]L ‖Ef‖Φ1

≤ C
(

1

νµ

)s [
C1µ

s + C1ν
−s]L ‖Ef‖Hs(Rn)

≤ C
(

1

νµ

)s [
C1µ

s + C1ν
−s]L ‖f‖Hs(Ω).

This proves the following lemma.
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Lemma 4.3.3. With the notation and assumptions of Theorem 4.3.2 there
exists a constant C > 0 such that

‖f − fL‖L2(Ω) ≤ C
(

1

νµ

)s [
C1µ

s + C1ν
−s]L ‖f‖Hs(Ω)(4.3.4)

holds for L ∈ N.

The bounds in Theorem 4.3.2 and Lemma 4.3.3 are in the most general
form. However, we usually couple the two critical parameters µ and ν, i.e.,
we assume that there is a fixed γ > 0 such that

1

h1
≥ ν ≥ γ

µ
.(4.3.5)

With this, we can restate Theorem 4.3.2 and combine it with the specific
result of Lemma 4.3.3, see also [91, Theorem 1].

Theorem 4.3.4. Let Ω ⊆ Rn be a bounded Lipschitz domain. For i ∈ N let
Xi ⊆ Ω be a set of sites with fill distance hi. Assume that cµhi ≤ hi+1 ≤ µhi
holds for i ∈ N with fixed constants µ ∈ (0, 1), c ∈ (0, 1] and h1 sufficiently
small. Let Φ : Rn → R be a reproducing kernel of Hs(Rn), s > n/2, i.e., the
Fourier transform of Φ satisfies (2.2.2). Let Φi = δ−ni Φ(·/δi) be the rescaled
kernel where the scaling parameter δi is coupled to hi according to (2.4.6).
Assume that the overlap parameter ν satisfies 1

h1
≥ ν. Assume that there is

a constant γ > 0 such that µ is coupled to ν according to (4.3.5). Assume
that f ∈ Hs(Ω). Then there exists a constant C1 = C1(Ω,Φ, s, γ) > 0 such
that, with α = C1µ

s, the estimate

‖Eei‖Φi+1 ≤ α‖Eei−1‖Φi ,(4.3.6)

holds for i ∈ N. E : Hs(Ω) → Hs(Rn) denotes the extension operator
introduced in Theorem 2.1.7.

Let fL = AL(f) denote the multilevel interpolant. Then there exists a
constant C > 0 such that the error bound

‖f − fL‖L2(Ω) ≤ C(C1µ
s)L‖f‖Hs(Ω)(4.3.7)

holds for all L ∈ N. Thus fL converges linearly to f in the L2-norm if
α = C1µ

s < 1.

Proof. We use the notation of the proof of Theorem 4.3.2. With the
assumptions on µ and ν we can bound I1 by

I1 =

∫
‖ξ‖2≤ 1

δi+1

|Êei(ξ)|2
(
1 + δ2

i+1‖ξ‖22
)s

dξ

≤ c(Ω, s)2sC2
Ec2ν

−2s‖Eei−1‖2Φi

≤ c(Ω, s)2sC2
Ec2

(
µ

γ

)2s

‖Eei−1‖2Φi

The bound for

I2 =

∫
‖ξ‖2≥ 1

δi+1

|Êei(ξ)|2
(
1 + δ2

i+1‖ξ‖22
)s

dξ

≤ 2sC2
Ec2µ

2s‖Eei−1‖2Φi
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is unchanged. Putting these estimates into

‖Eei‖2Φi+1
≤ 1

c1
(I1 + I2)

yields (4.3.6). Keeping track of the occurring constants means that we can
express C1 = C1(Ω,Φ, s, γ) as

C1 = 2
s
2CEc

1
2
2

(
1 + c(Ω, s)γ−2s

) 1
2 .(4.3.8)

We obtain the estimate in (4.3.7) the same way we proved Lemma 4.3.3.
�

Similarly, we get the L∞(Ω)-norm error estimate if we use (2.3.4).

Lemma 4.3.5. With the notation and assumptions of Theorem 4.3.4 there
exists a constant C > 0 such that the error bound

‖f − fL‖L∞(Ω) ≤ C
(
C1µ

s−n
2

)L
‖f‖Hs(Ω)(4.3.9)

holds for all L ∈ N. The constant C1 = C1(Ω,Φ, s, γ) can be expressed as in
(4.3.8).

4.3.2. Interpolating Rougher Functions. Next we investigate the
multilevel scheme applied to the escaping the native space method introduced
in Section 2.3.3. We recall that we derived error estimates for interpolation
when the target function is not in the native space of the kernel we use.

For briefness we omit the technical preparations for the proof of the
following convergence result. They can be found in [91, Section 5]. The main
idea is to use a recursion inequality as in (4.3.1), but not in the native space
norm of the rescaled kernel used to compute the interpolant but rather use
the rescaled kernel of the space the target function is an element of. The rest
of the proof is very much the same as the proof of Theorem 4.3.2

Theorem 4.3.6. Let Ω ⊆ Rn be a bounded Lipschitz domain. For i ∈ N
let Xi ⊆ Ω be a quasi-uniform set of sites with fill distance hi. Assume
that cµhi+1 ≤ hi ≤ µhi+1 holds for i ∈ N with fixed constants µ ∈ (0, 1),
c ∈ (0, 1] and h1 sufficiently small. Let Φ : Rn → R be a reproducing kernel
of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (2.2.2). Let
Φi = δ−ni Φ(·/δi) be the rescaled kernel where the scaling parameter δi is
coupled to hi according to (2.4.6). Assume that the overlap parameter ν
satisfies 1

h1
≥ ν. Assume that there is a constant γ > 0 such that µ is

coupled to ν according to (4.3.5). Let Ψ be a reproducing kernel of Ht(Rn),
n/2 < t ≤ s, and let Ψi = δ−ni Ψ(·/δi) be the rescaled RBF with the same
scaling parameter δi. Assume that f ∈ Ht(Ω). Then there exists a constant
C1 = C1(Ω,Φ, s, γ) such that, with α = C1µ

t, the estimate

‖Eei‖Ψi+1 ≤ α‖Eei−1‖Ψi
holds for i ∈ N.

Let fL = AL(f) denote the multilevel interpolant. Then there exists a
constant C > 0 such that the error bounds

‖f − fL‖L2(Ω) ≤ C(C1µ
t)L‖f‖Ht(Ω),
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and

‖f − fL‖L∞(Ω) ≤ C
(
C1µ

t−n
2

)L
‖f‖Ht(Ω),

hold for all L ∈ N.

4.3.3. Penalized Least-Squares Approximation. To close this sec-
tion we now give a convergence result for the multilevel method using
penalized least-squares approximation in every level. That means that the
local approximation operators Ii : Hs(Ω)→Wi are given by

Ii(ei−1) = argmin
s∈Hs(Ω)

∑
x∈Xi

|ei−1(x)− s(x)|2 + λi‖s‖2Φi

 .(4.3.10)

Again, the proof of the convergence result is very much the same as in
Section 4.3.1. However, we have to use the error estimates of Theorem 2.3.21
which in turn leads to the assumption on λi. We omit the proof and only
give the following theorem.

Theorem 4.3.7. Let Ω ⊆ Rn be a bounded Lipschitz domain. For i ∈ N let
Xi ⊆ Ω be a set of sites with fill distance hi. Assume that cµhi+1 ≤ hi ≤ µhi+1

holds for i ∈ N with fixed constants µ ∈ (0, 1), c ∈ (0, 1] and h1 sufficiently
small. Let Φ : Rn → R be a reproducing kernel of Hs(Rn), s > n/2, i.e., the
Fourier transform of Φ satisfies (2.2.2). Let Φi = δ−ni Φ(·/δi) be the rescaled
kernel where the scaling parameter δi is coupled to hi according to (2.4.6).
Assume that the overlap parameter ν satisfies 1

h1
≥ ν. Assume that there is

a constant γ > 0 such that µ is coupled to ν according to (4.3.5). Assume
that f ∈ Hs(Ω). Let si be the unique solution of (4.3.10) with smoothing

parameters λi such that λi ≤ κ (hi/δi)
2s with a fixed constant κ > 0. Then

there exists a constant C1 = C1(Ω,Φ, s, γ) > 0 such that, with α = C1µ
s the

estimate

‖Eei‖Φi+1 ≤ α‖Eei−1‖Φi
holds for i ∈ N.

Let fL = AL(f) denote the multilevel penalized least-squares approxima-
tion. Then there exists a constant C > 0 such that the error bounds

‖f − fL‖L2(Ω) ≤ C(C1µ
s)L‖f‖Hs(Ω)(4.3.11)

and

‖f − fL‖L∞(Ω) ≤ C
(
C1µ

s−n
2

)L
‖f‖Hs(Ω)(4.3.12)

holds for all L ∈ N.

We note that in Theorem 4.3.7 we have to choose the smoothing parameter
level-dependent and sufficiently small.

4.4. Numerical Estimate of C1

In the convergence results of the previous section, most importantly
Theorem 4.3.4, we see that the multilevel method converges if α = C1µ

s
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is less than one. This can be achieved by choosing a suitable refinement
parameter µ ∈ (0, 1) such that

µ < C
− 1
s

1 .

Unfortunately, we cannot derive any analytic bounds on C1 = C1(Ω,Φ, s, γ)
because of the unknown constants c2 and c(Ω, s) appearing in (4.3.8). Fur-
thermore, we know bounds for CE only in very specific settings, see, e.g.,
Lemma 2.1.9. However, in this section, we will give numerical estimates for
C1.

Before we come to the results we first discuss the setup of the experiment.
Following (4.3.7) we have the error at level L

Err(L) := ‖f − fL‖L2(Ω) ≤ C(C1µ
s)L‖f‖Hs(Ω).

Assuming equality and taking the quotient of the errors of two consecutive
levels yields

Err(L+ 1)

Err(L)
=

(C1µ
s)L+1

(C1µs)L
= C1µ

s.

Hence, the estimated constant can be computed by the formula given in the
next definition.

Definition 4.4.1. For f ∈ Hs(Ω), s > n/2, let Err(L) = ‖f − fL‖L2(Ω)

denote the multilevel approximation error on level L. We define the estimated
multilevel constant as

Cest1 :=
Err(L+ 1)

Err(L)
µ−s,(4.4.1)

where µ ∈ (0, 1) is the refinement parameter used to compute the multilevel
approximation.

Although the theoretical constant C1 as in (4.3.8) is clearly independent of
µ, the estimated constant Cest1 in (4.4.1) depends explicitly on µ−s. However,
this dependence seems to be very mild as the numerical tests we give next
show. We suspect that this explicit dependence is partly compensated by the
implicit dependence of the error Err(L+ 1) and Err(L) on µ.

Looking at (4.3.8) we see that C1 depends on the domain Ω, the smooth-
ness of the target function s and the parameter γ, which couples the re-
finement parameter µ to the overlap parameter ν, see (4.3.5). Hence, our
numerical tests should cover different values for γ and s on several domains.
Furthermore, to obtain as good of an estimate on C1 as possible it is impor-
tant to choose settings that yield approximations as close to the theoretical
bound C(C1µ

s)L as possible.
In the following we focus on one-dimensional domains, i.e., Ω is an

interval, since those will be the main examples for the numerical tests done
in Section 7.3. Furthermore, we use target functions fs : Ω → R given by
f(x) = |x− x0|s−0.4, where x0 is an offset chosen such that the kink is the
midpoint of the interval. We can control the smoothness of fs with the
parameter s ∈ N. We see that fs ∈ Hs(Ω) and f /∈ Hs+1(Ω). To each of the
values of s we pick a reproducing kernel of the corresponding Sobolev Hilbert
space Hs(R), to be more precise we choose the parameter k in the definition
of the Wendland functions Φ1,k, defined in Definition 2.2.18, to be k = s− 1.
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For a given refinement parameter µ we construct the sets of sites Xi ⊆ Ω
as equidistant grids such that, for level 0 ≤ i ≤ L, the cardinality of Xi is

given as #Xi =
⌈

1
µ

⌉i+2
.

4.4.1. Ω = [−1, 1]. We start by looking at the domain Ω = [−1, 1] and
test two refinement parameter, µ = 0.4 and µ = 0.5. The first choice leads to
a tripling where the second one leads to a doubling of the number of points
per level. To keep this section brief we provide here only the values of the
estimated multilevel constant Cest1 . The corresponding errors can be found
in Appendix A.1.

In Tables 2 to 4 we fix µ = 0.4 and vary the parameter k = 1, 2, 3 in the
Wendland function Φ1,k, and hence the smoothness of the target function.
In each of the Tables 2 to 4 we give a selection of values of the parameter γ,
which couples the overlap parameter ν to the refinement parameter µ.

Similarly, we fix for Tables 5 to 7 the refinement parameter to be µ = 0.5
and again vary k and γ.

Taking a closer look at each of the tables we can see the dependencies
of Cest1 on the parameters γ and k. First, we see that in most rows of most
tables the value of the estimated multilevel constant decreases with growing
γ. We attribute the occuring exceptions to numerical artifacts we can not
explain. To check if this decrease is indeed with the right speed we would
have to conduct more thorough simulations. We limit ourselves to values of
γ between 1.5 and 4, since these values are used in applications and follow
[91].

Second, comparing the same entries in Tables 2 to 4 or in Tables 5 to 7
we can see the dependence on the smoothness. It is does not matter that we
approximate different functions since the constant Cest1 is independent of the
target function.

Third, comparing the entries in Table 2 with those in Table 5, and
similarly those in Table 3 with Table 6 and Table 4 with Table 7, we see
that the estimated multilevel constant Cest1 exhibits a dependence on the
refinement parameter µ, however it is less than an order of magnitude going
from µ = 0.4 to µ = 0.5.

And finally, we remark on the magnitude of Cest1 . We started this section
with the observation that a large value of C1 can potentially spoil the con-
vergence of the multilevel method or forces us to use a very small refinement
parameter µ. However, all of the estimated values in Tables 2 to 7 suggest
that C1 is reasonably small. We even see that in Tables 2 and 5 Cest1 < 1
which would lead to a speed up in the convergence of the method.

4.4.2. Ω = [0, 1]. We now consider the domain Ω = [0, 1]. Partly, because
we will use this interval later in this text and partly because we want to test
how much the estimated multilevel constant Cest1 depends on the domain.
Again, we provide the error tables separately in Appendix A.2.

We give the tables for the Cest1 for µ = 0.4 in Tables 8 to 10 and for
µ = 0.5 in Tables 11 to 13, where we again use k = 1, 2, 3 for each table
respectively and vary in each table the parameter γ.

Comparing the respective tables for Ω = [−1, 1] and Ω = [0, 1] we can see
the influence of the domain on the estimated multilevel constant and then
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Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 0.31607 0.32947 0.23046 0.18635 0.15303 0.13762
2 0.95800 0.58130 0.54252 0.49704 0.48660 0.43240
3 0.65534 0.57147 0.51464 0.47583 0.46317 0.44478
4 0.62960 0.55811 0.50894 0.47424 0.46142 0.44817
5 0.62923 0.55711 0.50835 0.47418 0.46262 0.44779
6 0.62779 0.55705 0.50817 0.47452 0.46337 0.45011
7 0.62748 0.55706 0.50812 0.47484 0.46421 0.45207
8 0.62717 0.55685 0.50791 0.47505 0.46520 0.45569
9 0.60645 0.53746 0.48984 0.46070 0.45721 0.46031

10 0.20988 0.26422 0.24527 0.29639 0.38110 0.50423

Table 2. Table of Cest1 with Ω = [−1, 1], µ = 0.4 and k = 1.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 0.82799 1.63520 1.52119 1.16660 0.85756 0.68003
2 5.68928 2.08084 1.55917 1.30715 1.22586 1.13442
3 1.92980 1.80891 1.57349 1.37658 1.24928 1.15059
4 2.17771 1.81606 1.58209 1.38714 1.25858 1.15707
5 2.11381 1.81312 1.58387 1.38871 1.25999 1.15758
6 2.12176 1.81196 1.58421 1.38885 1.26016 1.15747
7 2.12110 1.81155 1.58427 1.38882 1.26016 1.15738
8 2.12081 1.81071 1.58366 1.38821 1.25959 1.15682
9 2.04177 1.75246 1.53297 1.34048 1.21471 1.11519

10 0.26095 0.91406 0.92893 0.80302 0.72147 0.67056

Table 3. Table of Cest1 with Ω = [−1, 1], µ = 0.4 and k = 2.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 2.26544 2.48169 3.87432 4.43881 4.28929 3.76967
2 7.83229 8.72575 4.75761 3.44157 2.98691 2.75450
3 5.78067 3.46119 2.92972 2.77065 2.60023 2.42737
4 4.45609 3.51350 3.02509 2.76465 2.55332 2.35799
5 4.06979 3.27020 2.96055 2.74283 2.54067 2.34963
6 3.95914 3.29986 2.96274 2.73522 2.53661 2.34830
7 3.91723 3.27702 2.95957 2.73194 2.53525 2.34825
8 3.90170 3.28426 2.95929 2.73048 2.53478 2.34840
9 3.89133 3.28456 2.95908 2.72981 2.53460 2.34853

10 3.88397 3.28690 2.95904 2.72949 2.53453 2.34861

Table 4. Table of Cest1 with Ω = [−1, 1], µ = 0.4 and k = 3.
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Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 0.22279 0.34330 0.39828 0.30307 0.26954 0.29154
2 2.29454 1.10363 0.78488 0.72231 0.64636 0.46929
3 0.79579 0.76777 0.64880 0.62576 0.63196 0.66408
4 0.83834 0.71410 0.63988 0.61081 0.60489 0.61174
5 0.79146 0.70560 0.64169 0.61404 0.61107 0.59566
6 0.79081 0.70187 0.64063 0.61406 0.60853 0.59918
7 0.78879 0.70163 0.64120 0.61270 0.60898 0.60103
8 0.78870 0.70092 0.64135 0.61322 0.60986 0.59971
9 0.78868 0.70119 0.64145 0.61243 0.61050 0.60109

10 0.78873 0.70101 0.64150 0.61282 0.61102 0.60135

Table 5. Table of Cest1 with Ω = [−1, 1], µ = 0.5 and k = 1.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 0.93686 0.94794 1.36523 1.37125 1.14448 0.91606
2 3.86615 3.50889 1.91807 1.52262 1.37418 1.28471
3 2.13099 1.49701 1.39912 1.30027 1.20697 1.13139
4 1.97838 1.58321 1.40092 1.27868 1.17609 1.10645
5 1.79629 1.52290 1.39165 1.27627 1.17535 1.10492
6 1.80196 1.52998 1.38873 1.27559 1.17566 1.10383
7 1.77513 1.52780 1.38729 1.27530 1.17571 1.10317
8 1.77863 1.52851 1.38658 1.27518 1.17567 1.10276
9 1.77427 1.52865 1.38623 1.27511 1.17564 1.10255

10 1.77535 1.52881 1.38606 1.27508 1.17561 1.10243

Table 6. Table of Cest1 with Ω = [−1, 1], µ = 0.5 and k = 2.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 2.26544 2.48169 3.87432 4.43881 4.28929 3.76967
2 7.83229 8.72575 4.75761 3.44157 2.98691 2.75450
3 5.78067 3.46119 2.92972 2.77065 2.60023 2.42737
4 4.45609 3.51350 3.02509 2.76465 2.55332 2.35799
5 4.06979 3.27020 2.96055 2.74283 2.54067 2.34963
6 3.95914 3.29986 2.96274 2.73522 2.53661 2.34830
7 3.91723 3.27702 2.95957 2.73194 2.53525 2.34825
8 3.90170 3.28426 2.95929 2.73048 2.53478 2.34840
9 3.89133 3.28456 2.95908 2.72981 2.53460 2.34853

10 3.88397 3.28690 2.95904 2.72949 2.53453 2.34861

Table 7. Table of Cest1 with Ω = [−1, 1], µ = 0.5 and k = 3.
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make assumptions for the constant C1. Clearly, we see that there is only a
slight influence of the domain, since halving the length of the interval leads
to less than halving of Cest1 . However, we do not expect to be able to derive
any analytical connection other than the one in (4.3.8).

We conclude from the results discussed in this section that even choices
of 0.5 < µ < 1 are numerically justifiable.

4.5. Adaptive Versions of the Multilevel Method

We now briefly introduce two variations of the multilevel method, taken
from [92]. We focus on the case where the local approximation operators
Ii are interpolation operators although it is also possible to use the ideas
presented here for the penalized least-squares approximation.

The first version we want to investigate was first used in [35] in the
context of spheres and can be understood as a data compression scheme.

The main idea is that on each level i ∈ N we discard all coefficients α
(i)
k of

the local interpolation

si =

Ni∑
k=1

α
(i)
k Φi(· − xi,k)

whose absolute value is less than a given level-dependent threshold εi ∈ R.
That means, in particular, that we have to compute these coefficients first.
Hence, we do not reduce any computational cost, only the cost for storing the
coefficients is lower since we discard those with small absolute value. Further-
more, potential evaluations of the global approximation fL = s1 + · · ·+sL can
be significantly cheaper. Since the discarding of the unnecessary coefficients
is done during each level this method is named discarding dynamically. We
give the formal algorithm in Algorithm 2.

Algorithm 2: Multilevel approximation with dynamical discarding

Data: Number of levels L, right-hand side f , thresholds εi
Result: Approximate solution f̃L ∈ VL = W1 + · · ·+WL

Set f̃0 = 0, ẽ0 = f ;

for i = 1, 2, . . . , L do
Determine a local interpolant si ∈Wi to ẽi−1 on Xi;

Drop all coefficients |α(i)
k | ≤ εi to define s̃i;

Set f̃i = f̃i−1 + s̃i;

Set ẽi = ẽi−1 − s̃i;
end

Clearly, we cannot expect the global approximation f̃L to be an inter-
polant to f in the centers XL. However, it is still possible to show convergence
if the thresholds εi are chosen in a specific way. The proof of the next theorem,
which we quote from [92, Theorem 11], is similar to those in Section 4.3. For
details we refer to [35].

Theorem 4.5.1. With the notation and assumptions of Theorem 4.3.2 let

ε > 0 be given. For i ∈ N let εi > 0 such that εi ≤ cεδ
n
2
i holds with a constant
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Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 0.18267 0.11634 0.08871 0.07532 0.05430 0.05973
2 0.46695 0.45887 0.44441 0.42353 0.42907 0.41261
3 0.47645 0.45255 0.44859 0.44910 0.46948 0.44107
4 0.47135 0.43988 0.42583 0.41590 0.39829 0.39123
5 0.47671 0.45508 0.46042 0.47035 0.49797 0.49390
6 0.47042 0.43478 0.41858 0.41115 0.38654 0.37682
7 0.47844 0.46522 0.48514 0.50647 0.56504 0.57141
8 0.46913 0.42831 0.40816 0.40034 0.37095 0.36109
9 0.46265 0.47031 0.51618 0.55219 0.64077 0.66191

10 0.20057 0.19736 0.20151 0.19976 0.19048 0.18353

Table 8. Table of Cest1 with Ω = [0, 1], µ = 0.4 and k = 1.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 1.02056 0.59261 0.42169 0.29271 0.24651 0.18069
2 1.30313 1.12281 0.93785 0.86576 0.77084 0.73705
3 1.37591 1.14995 0.99473 0.88906 0.80929 0.76183
4 1.38703 1.15695 1.00137 0.89424 0.81778 0.76471
5 1.38869 1.15756 1.00230 0.89542 0.81889 0.76497
6 1.38885 1.15747 1.00239 0.89559 0.81895 0.76468
7 1.38882 1.15738 1.00238 0.89562 0.81896 0.76465
8 1.38821 1.15682 1.00189 0.89518 0.81854 0.76420
9 1.34048 1.11519 0.96440 0.86089 0.78668 0.73435

10 0.80302 0.67056 0.57374 0.51060 0.47695 0.50754

Table 9. Table of Cest1 with Ω = [0, 1], µ = 0.4 and k = 2.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 5.17231 3.10048 1.94825 1.36621 0.97020 0.76782
2 4.42539 3.35325 2.78487 2.34507 2.05810 1.80285
3 4.55747 3.55093 2.91917 2.46844 2.14527 1.89765
4 4.58447 3.57766 2.93735 2.48278 2.15452 1.90677
5 4.58956 3.58171 2.94010 2.48436 2.15522 1.90731
6 4.59063 3.58231 2.94052 2.48442 2.15511 1.90714
7 4.59085 3.58237 2.94056 2.48435 2.15500 1.90702
8 4.58911 3.58068 2.93903 2.48292 2.15370 1.90592
9 4.44359 3.44865 2.82131 2.37720 2.05975 1.84432

10 2.83234 2.12802 1.70690 1.42198 2.18957 7.56504

Table 10. Table of Cest1 with Ω = [0, 1], µ = 0.4 and k = 3.
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Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 0.30307 0.29154 0.21912 0.16619 0.14380 0.13096
2 0.72231 0.46929 0.60096 0.66218 0.50144 0.52124
3 0.62576 0.66408 0.62556 0.48702 0.70708 0.49862
4 0.61081 0.61174 0.58110 0.63628 0.55657 0.66738
5 0.61404 0.59566 0.59461 0.59785 0.56521 0.58586
6 0.61406 0.59918 0.59823 0.59551 0.59465 0.58734
7 0.61270 0.60103 0.59942 0.59982 0.59560 0.60164
8 0.61322 0.59971 0.59918 0.60015 0.60193 0.61039
9 0.61243 0.60109 0.60136 0.60355 0.60693 0.61664

10 0.61282 0.60135 0.60218 0.60645 0.61278 0.62447

Table 11. Table of Cest1 with Ω = [0, 1], µ = 0.5 and k = 1.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 1.37125 0.91606 0.71151 0.59491 0.48975 0.40856
2 1.52262 1.28471 1.18565 0.99618 1.07347 1.06061
3 1.30027 1.13139 0.98395 0.98509 0.87005 0.86797
4 1.27868 1.10645 1.00642 0.94166 0.88644 0.86079
5 1.27627 1.10492 1.00652 0.93744 0.89111 0.85664
6 1.27559 1.10383 1.00565 0.93620 0.89105 0.85535
7 1.27530 1.10317 1.00504 0.93557 0.89070 0.85476
8 1.27518 1.10276 1.00466 0.93515 0.89047 0.85448
9 1.27511 1.10255 1.00446 0.93492 0.89033 0.85433

10 1.27508 1.10243 1.00435 0.93479 0.89025 0.85421

Table 12. Table of Cest1 with Ω = [0, 1], µ = 0.5 and k = 2.

Constant Cest1

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 4.43881 3.76967 2.71233 2.08448 1.70679 1.44576
2 3.44157 2.75450 2.40305 2.24953 1.97158 1.83393
3 2.77065 2.42737 2.12771 1.86877 1.74893 1.60265
4 2.76465 2.35799 2.05424 1.84096 1.68030 1.54839
5 2.74283 2.34963 2.04634 1.83343 1.66832 1.54206
6 2.73522 2.34830 2.04341 1.83065 1.66477 1.53859
7 2.73194 2.34825 2.04227 1.82954 1.66332 1.53714
8 2.73048 2.34840 2.04178 1.82908 1.66268 1.53651
9 2.72981 2.34853 2.04156 1.82888 1.66238 1.53622

10 2.72949 2.34861 2.04146 1.82879 1.66224 1.53608

Table 13. Table of Cest1 with Ω = [0, 1], µ = 0.5 and k = 3.
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c > 0. Then there is a constant C > 0 such that, with α = C1(µσ + ν−σ), the
estimate

‖ẽi‖Φi+1 ≤ α‖ẽi−1‖Φi + Cε

holds for i ∈ N.

Let f̃L denote the approximant from Algorithm 2. Then there exists a
constant C > 0 such that

‖f − f̃L‖L2(Ω) ≤ CαL‖f‖Hσ(Ω) + Cε
1− αL

1− α

holds for all L ∈ N.

The second version we discuss is a truly adaptive one, again taken from
[92]. It checks if the absolute value of the residual on level i evaluated on
the points of the upcoming level Xi+1 is larger than a given threshold. Only
these points will be used for the local interpolation problem on level i+ 1.

We now go into more detail. We deal with two point sets. First, we
assume that the family of sets of sites (Xi)i∈N are given and satisfy the usual
assumptions for the multilevel method, i.e., there is a uniform refinement
parameter µ ∈ (0, 1) such that cµhi ≤ hi+1 ≤ µhi with a constant c ∈ (0, 1].
The other parameters of the multilevel method, in particular the overlap
parameter ν and therefore also the scaling parameter δi, are all fixed relative
to these sets. The second family of sets are the adaptive point sets which are
actually used for the local interpolation. We denote these sets by (Xi)i∈N.
We now discuss the general approach which is given in Algorithm 3. After
computing the local interpolant si on Xi to ei−1 we check the error ei =
ei−1 − si on the upcoming point set Xi+1. However, instead of interpolating
ei on all of Xi+1 we use only those points of Xi+1 in which ei has an absolute
value larger than a given level-dependent threshold εi > 0. These points
define the adaptive set of sites Xi+1 on level i+ 1. Clearly, for all i ∈ N we
have the inclusion Xi ⊆ Xi. However, even if the original sets of sites (Xi) are
nested we can not expect the adaptive point sets (Xi) to satisfy Xi ⊆ Xi+1,
i ∈ N.

An error analysis of the adaptive method in this setting is problematic
since the techniques of Section 4.3 require us to control ‖ei‖`∞(Xi). However,
we only know that

ei(x) = ei−1(x)− IXi,Φi(ei−1)(x) = 0, x ∈ Xi,

and we have no information about ei on Xi \ Xi.
A way to remedy this situation is to create another loop in which we

check ei on Xi and add those x to Xi for which |ei(x)| is still too large.
We then compute the new local interpolant and residual using this new Xi
[92]. This way we can potentially control the residual ei on the whole set of
sites Xi, which potentially enables us to derive a convergence result. A more
thourough exploration of this idea has to be done in the future.
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Algorithm 3: Adaptive multilevel approximation

Data: Number of levels L, right-hand side f , thresholds εi, point
sets X1, . . . , XL

Result: Approximate solution fL ∈ VL = W1 + · · ·+WL

Set f0 = 0, e0 = f , X1 = X1;

for i = 1, 2, . . . , L do
Determine a local interpolant si = IXi,Φi(ei−1) ∈Wi;

Set fi = fi−1 + si;

Set ei = ei−1 − si;
for x ∈ Xi+1 do

if |ei(x)| > εi then
Xi+1 = Xi+1 ∪ {x};

end

end

end

4.6. Multilevel Method Using Lagrange Functions

In Section 4.2 we introduced the multilevel operator AL : Hs(Ω)→ VL
in its residual correction representation

AL(f) =
L∑
i=1

Ii(ei−1), f ∈ Hs(Ω),

where the Ii : Hs(Ω)→Wi are the local approximation operators of level i
applied to the residuals of the preceding level. For the later application in
Chapter 7 however, we need a better understanding of the operator AL in
general and how it depends on the target function f in particular. This is the
goal of this section. First, we derive a different representation, eliminating
the residuals of the representation of AL. And then, we show one possible
way to deal with the downside of this representation using the localized
Lagrange functions of Section 3.3.

4.6.1. A Different Representation. We first derive a general, new
view on the multilevel method. First, we introduce a special kind of set of
integers.

Definition 4.6.1. We call a finite set u = {u1, . . . , u#u} ⊂ N an ordered
set if u1 < u2 < · · · < u#u.

With this we can define a special combination of operators.

Definition 4.6.2. Let V be a linear space and L ∈ N. Let W1, . . . ,WL ⊆ V
be subspaces. For 1 ≤ i ≤ L let Ii : V → Wi be given operators. Let
u = {u1, . . . , uk} ⊆ {1, . . . , L} be an ordered set. Then the combined operator
Iu : V →Wuk is defined by

Iu := IukIuk−1
· · · Iu1 .(4.6.1)

We note that is crucial that the elements of u in the definition of Iu
are ordered since the operators Ii usually do not commute. Additionally,
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we stress that in the definition of Iu we first apply the operator with the
smallest index then the one with next bigger index and so on.

We can now express the multilevel operator AL with the help of the
combined operators.

Theorem 4.6.3. Let Ω ⊆ Rn be a domain, let s > n/2 and let L ∈ N. Let
W1, . . . ,WL be the local and VL = W1 + · · ·+WL be the global approximation
spaces defined in Definition 4.1.1. For 1 ≤ i ≤ L let Ii : Hs(Ω) → Wi be
the local approximation operator. Let u = {u1, . . . , uk} ⊆ {1, . . . , L} be an
ordered set. Let Iu : Hs(Ω) → Wuk be the combined operator defined in
Definition 4.6.2. Then the multilevel operator AL : Hs(Ω) → VL has the
general representation

AL =
∑

u⊆{1,...,L}
1≤#u≤L

(−1)#u+1Iu =
L∑
i=1

(−1)i+1
∑

u⊆{1,...,L}
#u=i

Iu.(4.6.2)

Proof. We recall that we denote the identity operator by ι. The def-
inition of the residual ei in level i, see (4.2.2), yields the recursion ei =
(ι− Ii)ei−1. This means that the identity

eL = (ι− IL)(ι− IL−1) · · · (ι− I1)f

holds, since we set e0 = f . By induction we see that we can express the
operator on the right-hand side as

(ι− IL)(ι− IL−1) · · · (ι− I1) = ι+
∑

u⊆{1,...,L}
u6=∅

(−1)#uIu.

Finally, together with the identity AL(f) = fL = f − eL, this yields the
stated representation. �

This general representation allows us now to derive specific representa-
tions for the multilevel approximation operator for both, the interpolation
and the penalized least-squares approximation. We use the general setup of
the kernel-based multilevel method in Section 4.2.

We start by investigating interpolation. Following the ideas of Section 3.1
we can express the local approximation operator Ii, i ∈ N, as

Ii(f) =

Ni∑
k=1

f(xi,k)χi,k, f ∈ Hs(Ω), s > n/2,(4.6.3)

where for each i and 1 ≤ k ≤ Ni the function χi,k ∈Wi denotes the Lagrange
function anchored in xi,k ∈ Xi, i.e., χi,k satisfies the Lagrange condition
χi,k(xi,m) = δkm, 1 ≤ k,m ≤ Ni.

Using this representation in (4.6.2) yields the following result.

Theorem 4.6.4. Let Ω ⊆ Rn be a bounded domain. For i ∈ N let Xi ⊆ Ω be a
quasi-uniform set of sites with fill distance hi. Assume that cµhi ≤ hi+1 ≤ µhi
holds for i ∈ N with fixed constants µ ∈ (0, 1), c ∈ (0, 1]. Let Φ : Rn → R be
a reproducing kernel of Hs(Rn), s > n/2, i.e., the Fourier transform of Φ
satisfies (2.2.2). Let Φi = δ−ni Φ(·/δi) be the rescaled kernel where the scaling
parameter δi is coupled to hi according to (2.4.6). For every 1 ≤ k ≤ Ni let
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χi,k ∈ Wi := span{Φi(· − x) : x ∈ Xi} be the Lagrange function anchored
in xi,k as in (3.1.2). Let Ii : Hs(Ω)→Wi be the local interpolation operator
of the form (4.6.3). Let u = {u1, . . . , u#u} be an ordered set. Then, using the

notation k = (k1, . . . , k#u)
T ∈ N#u and N u = (Nu1 , . . . , N#u)

T ∈ N#u, the
combined operator Iu : Hs(Ω)→W#u has the representation

Iu(f) =
∑
k≤Nu

a(u,k)f(xu1,k1)χu#u,k#u
,

where the coefficients are given by a(u,k) = 1 if #u = 1 and

a(u,k) =

#u−1∏
m=1

χum,km(xum+1,km+1)

if #u > 1.
Moreover, the multilevel interpolation operator AL : Hs(Ω)→ VL has the

representation

AL(f) =
∑

u⊆{1,...,L}
1≤#u≤L

∑
k≤Nu

(−1)#u+1a(u,k)f(xu1,k1)χu#u,k#u
.(4.6.4)

Proof. We want to use the second identity of the general representation
of AL from (4.6.2). Hence, we fix an ordered set u = {u1, . . . , ui} with #u = i
and derive for the combined operator Iu
Iuf = Iui · · · I1f

= Iui · · · I2

Nu1∑
k1=1

f(xu1,k1)χu1,k1

= Iui · · · I3

Nu2∑
k2=1

Nu1∑
k1=1

χu1,k1(xu2,k2)f(xu1,k1)χu2,k2

=

Nui∑
kui=1

· · ·
Nu1∑
k1=1

χui−1,ki−1
(xui,ki) · · ·χu1,k1(xu2,k2)f(xu1,k1)χui,ki

=
∑
k≤Nu

[
i−1∏
m=1

χum,km(xum+1,km+1)

]
f(xu1,k1)χui,ki .

Inserting this into (4.6.2) and some easy manipulation gives the representation
for the multilevel operator. �

At first glance it seems strange that only the function values f(xu1,k1)
appear in the representation of AL in (4.6.4). These are the function values
of points of the coarsest point set Xu1 . However, in (4.6.3) we sum over all
possible ordered sets u ⊆ {1, . . . , L} and therefore, one specific u is {L}, the
last level with the associated finest point set XL. Hence, we indeed use point
data from every level.

We get a similar result for penalized least-squares approximation. To find
a representation for the multilevel approximation operator like the one in
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Theorem 4.6.4, we have to replace the Lagrange function χi,k by the modified

Lagrange functions χLSi,k . We recall their point-wise definition, (3.1.21), to be

χLSi,k (x) = ri(x)T(Mi + λiI)−1ek, x ∈ Ω, 1 ≤ k ≤ Ni,

where ri(x) = (Φi(x,xi,1), . . . ,Φi(x,xi,Ni))
T ∈ RNi .

This, together with the representation (4.6.2), gives the following result.

Corollary 4.6.5. With the assumptions and notation of Theorem 4.6.4,
where we replace the full Lagrange functions χi,k with the modified Lagrange

functions χLSi,k defined in Definition 3.1.11 and use the local approximation
operator at level i

Ii(f) =

Ni∑
k=1

f(xi,k)χ
LS
i,k , f ∈ Hs(Ω).

The multilevel penalized least-squares operator AL : Hs(Ω) → VL has the
representation (4.6.4), where we replace the full Lagrange functions with the
modified Lagrange functions.

Although Theorem 4.6.4 and Corollary 4.6.5 provide a valid alternative
representation of the multilevel operator AL, and they are essential for
some results in Chapter 7, we stress that using them should be avoided
unless it is absolutely necessary. Even though all major computations for
the approximation with this representation can be done beforehand, as
soon as the point sets X1, . . . , XL are fixed, numerical tests show that point
evaluations of the approximation AL(f) to f are very expensive. We can
identify two reasons. On the one hand in (4.6.4) we have to sum over all
ordered sets u ⊆ {1, . . . , L} and on the other hand, for every point-evaluation
of AL(f), we have to evaluate every χi,k, 1 ≤ i ≤ L, 1 ≤ k ≤ Ni, since the
Lagrange functions have global support.

In the next subsection we will replace the full with the localized Lagrange
functions derived in Section 3.3 to deal with the second downside described
above.

4.6.2. Convergence of the Multilevel Method using Localized
Lagrange Functions. We already discussed at the end of Chapter 3 the
possibility to use the localized Lagrange functions in the approximation
operator defined in Definition 3.3.5. We recall that the defining identity is
given by

I loc(f) =
N∑
k=1

f(xk)χ
loc
k .

Similar to the discussion at the end of Section 2.4 we can not expect con-
vergence of I loc(f) towards f if N → ∞. However, we can, similar to the
ideas presented in Section 4.2 use these local approximation operators in the
residual correction scheme, i.e., we set f0 = 0 and eloc0 = f and on the i-th
level we have

sloci = I loci (eloci−1)
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and we update

fi = sloc1 + · · ·+ sloci(4.6.5)

eloci = f −
(
sloc1 + · · ·+ sloci

)
.(4.6.6)

Again, we define the corresponding multilevel operator.

Definition 4.6.6. Let Ω ⊆ Rn be a bounded domain. For i ∈ N let Xi =
{xi,1, . . . ,xi,Ni} ⊆ Ω be a quasi-uniform set of sites with fill distance hi. Let
Φ : Rn → R be a compactly supported reproducing kernel of Hs(Rn), s > n/2,
i.e., the Fourier transform of Φ satisfies (2.2.2). For i ∈ N let Φi = δ−ni Φ(·/δi)
be the rescaled kernel where the scaling parameter δi is coupled to hi as in
(2.4.6). For every 1 ≤ k ≤ Ni let χloci,k ∈Wi be the localized Lagrange function

anchored in xi,k defined as in (3.3.1) with general footprint Xi,ri(xi,k) as in

(3.2.2) and level-dependent cut-off radius ri > 0. Let I loci : Hs(Ω)→ Wi be
the local approximation operators defined in Definition 3.3.5.

Then we define the local Lagrange multilevel operator QlocL : Hs(Ω)→ VL
by

QlocL (f) =
L∑
i=1

I loci
(
eloci−1

)
.

We remark that we have to use a set of localized Lagrange functions for
every level. Clearly, we can also use Theorem 4.6.4 to obtain an equivalent
definition of the local Lagrange multilevel operator.

Also, we do not expect that the operators I loci , 1 ≤ i ≤ L, or the
operator QlocL to be interpolation operators. However, we can still prove
convergence of local Lagrange multilevel method, for the level-dependent
footprints Xr(εi)(xi,k), 1 ≤ i ≤ L, 1 ≤ k ≤ Ni, if we choose εi sufficiently
small. But we can not employ the techniques we used in the proofs of
Section 4.3 because we can not use estimates of the form (2.3.11).

For the following proof we need an equivalent formulation of the algebraic
decay of the Fourier decay of the chosen kernel function (2.2.2). The proof
of the lemma is straight-forward, see, e.g., [92].

Lemma 4.6.7. Let Φ : Rn → R be a reproducing kernel of Hs(Rn), s > n/2.

Then its Fourier transform Φ̂ satisfies (2.2.2) with constants c1, c2 > 0 if and
only if it satisfies

c̃1(1 + ‖ξ‖2s2 )−1 ≤ Φ̂(ξ) ≤ c̃2(1 + ‖ξ‖2s2 )−1, ξ ∈ Rn,(4.6.7)

with constants c̃1 = c12−s and c̃2 = c2.

That also means that, if we assume that the Fourier decay of the kernel
Φ satisfies (4.6.7), the norm equivalence (2.4.2) between the Sobolev space
Hs(Rn) and the native space NΦδ of the rescaled kernel Φδ = δ−nΦ(·/δ)
holds with constants c̃1 and c̃2.

We are now in the position to state the convergence theorem for the
multilevel method using localized Lagrange functions.

Theorem 4.6.8. Let Ω ⊆ Rn be a bounded Lipschitz domain. For i ∈ N let
Xi = {xi,1, . . . ,xi,Ni} ⊆ Ω be a quasi-uniform set of sites with fill distance
hi and separation radius qi. Assume that cµhi ≤ hi+1 ≤ µhi holds for all
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i ∈ N with fixed constants µ ∈ (0, 1), c ∈ (0, 1] and h1 sufficiently small such
that q1 < 1. Let Φ : Rn → R be a compactly supported reproducing kernel of
Hs(Rn), s > n/2, i.e., the Fourier transform of Φ satisfies (4.6.7). For i ∈ N
let Φi = δ−ni Φ(·/δi) be the rescaled kernel where the scaling parameter δi is
coupled to hi as in (2.4.6). Assume that the overlap parameter ν satisfies
1
h1
≥ ν. Assume that there is a constant γ > 0 such that µ is coupled to ν

according to (4.3.5).
For i ∈ N and for every 1 ≤ k ≤ Ni let χloci,k ∈Wi be the localized Lagrange

function anchored in xi,k defined as in (3.3.1) with footprint Xi,r(εi)(xi,k)
as in (3.2.2) and cut-off radius r(εi) > 0 and εi > 0. For target a function
f ∈ Hs(Ω) let eloc0 = f and the residual of level i ∈ N be given by eloci =
eloci−1 − I loci (eloci−1).

If εi is chosen small enough such that

C(Ω,Φ, n)
eηi

η3n
i

∣∣∣∣log

(
εi
qni

)∣∣∣∣2n q−n2−4s

i

√
εi ≤ 1(4.6.8)

then the recursion estimate

‖Eeloci ‖Φi+1 ≤ αloc‖Eeloci−1‖Φi(4.6.9)

holds for all i ∈ N with

αloc := C loc1 µs,

where C loc1 = C(Ω,Φ, n, s, γ) > 0 is a constant.

Proof. Similar to the proof of Theorem 4.3.2 we split ‖Eeloci ‖Φi+1 into
two separate parts. However, here, we follow the approach of [92]. We have
with the norm equivalence, which follows from (4.6.7),

‖Eeloci ‖2Φi+1
≤ 1

c̃1

∫
Rn
|Êeloci (ξ)|2

(
1 + (δi+1‖ξ‖2)2s

)
dξ =:

1

c̃1
(I1 + I2),

(4.6.10)

with

I1 =

∫
Rn
|Êeloci (ξ)|2 dξ and I2 = δ2s

i+1

∫
Rn
|Êeloci (ξ)|2‖ξ‖2s2 dξ.

We start with bounding I1. With Plancharel’s theorem and the properties
of the extension operator, Theorem 2.1.7, we have

I1 =

∫
Rn
|Êeloci (ξ)|2 dξ = ‖Eeloci ‖2L2(Rn)

≤ C2
E‖eloci ‖L2(Ω) = C2

E‖eloci−1 − I loci (eloci−1)‖L2(Ω).

We introduce the interpolation operator IXi,Φi which uses the full Lagrange
functions, and obtain

I1 ≤ C2
E‖eloci−1 − I loci (eloci−1)‖L2(Ω)

≤ C2
E

(
‖eloci−1 − IXi,Φi(eloci−1)‖L2(Ω) + ‖IXi,Φi(eloci−1)− I loci (eloci−1)‖L2(Ω)

)2
.

(4.6.11)
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We bound the two norms in the bracket of (4.6.11) separately. For the
first term we have, with the sampling inequality (2.3.11), since IXi,Φi(e

loc
i−1)

interpolates eloci−1 on Xi, and (2.4.2), the estimate

‖eloci−1 − IXi,Φi(eloci−1)‖L2(Ω) ≤ c(Ω, s)hsi‖eloci−1‖Hs(Rn) ≤ c(Ω, s)
(
hi
δi

)s
‖eloci−1‖Φi

≤ c(Ω, s)ν−s‖eloci−1‖Φi .

To bound the second norm in the bracket in (4.6.11) we use that

IXi,Φi(e
loc
i−1) = IXi,Φi(Ee

loc
i−1) and I loci (eloci−1) = I loci (Eeloci−1),

since both approximation processes only use Xi ⊆ Ω. This yields

‖IXi,Φi(eloci−1)− I loci (eloci−1)‖L2(Ω) = ‖IXi,Φi(Eeloci−1)− I loci (Eeloci−1)‖L2(Ω)

=

∥∥∥∥∥
Ni∑
k=1

Eeloci−1(xi,k)χi,k −
Ni∑
k=1

Eeloci−1(xi,k)χ
loc
i,k

∥∥∥∥∥
L2(Ω)

≤ ‖Eeloci−1‖`∞(Xi)

Ni∑
k=1

‖χi,k − χloci,k‖L2(Ω).

(4.6.12)

To bound this further we see that the estimate

‖Eeloci−1‖`∞(Xi) ≤ ‖Ee
loc
i−1‖L∞(Ω) ≤ c(Ω, s)‖Eeloci−1‖Hs(Ω)

≤ c(Ω,Φ, s)δ−si ‖Ee
loc
i−1‖Φi(4.6.13)

holds.
Using (4.6.13) in (4.6.12) leads to

‖IXi,Φi(eloci−1)− I loci (eloci−1)‖L2(Ω) ≤ ‖Eeloci−1‖`∞(Xi)

Ni∑
k=1

‖χi,k − χloci,k‖L2(Ω)

≤ c(Ω,Φ, s)δ−si ‖Ee
loc
i−1‖Φi

Ni∑
k=1

‖χi,k − χloci,k‖L2(Ω).

This yields for I1

I1 ≤ C2
E

(
‖eloci−1 − IXi,Φi(eloci−1)‖L2(Ω) + ‖IXi,Φi(eloci−1)− I loci (eloci−1)‖L2(Ω)

)2

≤ c(Ω,Φ, s)

(
ν−s + δ−si

Ni∑
k=1

‖χi,k − χloci,k‖L2(Ω)

)2

‖Eeloci−1‖2Φi

≤ c(Ω,Φ, s)

(
1 + h−si

Ni∑
k=1

‖χi,k − χloci,k‖L2(Ω)

)2

ν−2s‖Eeloci−1‖2Φi

≤ c(Ω,Φ, s, γ)

(
1 + h−si

Ni∑
k=1

‖χi,k − χloci,k‖L2(Ω)

)2

µ2s‖Eeloci−1‖2Φi

≤ c(Ω,Φ, s, γ)µ2s‖Eeloci−1‖2Φi ,
(4.6.14)
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where we have used that µ is coupled to ν according to (4.3.5). To arrive at
(4.6.14) we used that we have, with (3.3.10),

h−si

Ni∑
k=1

‖χi,k − χloci,k‖L2(Ω) ≤ C(Φ,Ω, n)h−si Ni
eηi

η3n
i

∣∣∣∣log

(
εi
qni

)∣∣∣∣2n q n2−2s

i

√
εi

≤ C(Φ,Ω, n)
eηi

η3n
i

∣∣∣∣log

(
εi
qni

)∣∣∣∣2n q−n2−3s

i

√
εi

≤ 1,

since we assumed that Xi is quasi-uniform, that εi is chosen such that (4.6.8)

holds and q
−n/2−3s
i ≤ q−n/2−4s

i , since qi < 1.
Using similar ideas for I2 leads to

I2 = δ2s
i+1

∫
Rn
|Êeloci−1(ξ)|2‖ξ‖2s2 dξ ≤ δ2s

i+1

∫
Rn
|Êeloci−1(ξ)|2(1 + ‖ξ‖22)s dξ

= δ2s
i+1‖Eeloci−1‖2Hs(Rn) ≤ C2

Eδ
2s
i+1‖eloci−1‖2Hs(Ω)

≤ C2
Eδ

2s
i+1

(
‖eloci−1 − IXi,Φi(eloci−1)‖Hs(Ω)+

(4.6.15)

+‖IXi,Φi(eloci−1)− I loci (eloci−1)‖Hs(Ω)

)2
.

Again, we bound the two norms in (4.6.15) separately. The first norm can
be estimated as in (4.3.2). We have

‖eloci−1 − IXi,Φi(eloci−1)‖Hs(Ω) ≤ c(Ω,Φ, s)
1
2 δ−si ‖Ee

loc
i−1‖Φi .

To bound the second norm we use the same ideas that led to (4.6.13), using
(4.6.12). We have

‖IXi,Φi(eloci−1)− I loci (eloci−1)‖Hs(Ω) ≤

≤ C(Φ,Ω, s)δ−si ‖Ee
loc
i−1‖Φi

Ni∑
k=1

‖χi,k − χloci,k‖Hs(Ω).

Putting these two estimates back into (4.6.15) yields the bound for I2

I2 ≤ C2
Eδ

2s
i+1

(
‖eloci−1 − IXi,Φi(eloci−1)‖Hs(Ω)+

+‖IXi,Φi(eloci−1)− I loci (eloci−1)‖Hs(Ω)

)2

≤ C2
E

(
c(Ω,Φ, s)

(
δi+1

δi

)s
+ c(Φ,Ω, s)

(
δi+1

δi

)s Ni∑
k=1

‖χi,k − χloci,k‖Hs(Ω)

)2

·

· ‖Eeloci−1‖2Φi

≤ C(Ω,Φ, s)

(
1 +

Ni∑
k=1

‖χi,k − χloci,k‖Hs(Ω)

)2

µ2s‖Eeloci−1‖2Φi

≤ C(Ω,Φ, s)µ2s‖Eeloci−1‖2Φi .
(4.6.16)
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Again, we used that we can bound

Ni∑
k=1

‖χi,k − χloci,k‖Hs(Ω) ≤ C(Ω,Φ, n, s)Ni
eηi

η3n
i

∣∣∣∣log

(
εi
qni

)∣∣∣∣2n q n2−4s

i

√
εi

≤ C(Ω,Φ, n, s)
eηi

η3n
i

∣∣∣∣log

(
εi
qni

)∣∣∣∣2n q−n2−4s

i

√
εi

≤ 1,

since we assumed that Xi is quasi-uniform and with the help of (3.3.10) and
our choice of εi such that (4.6.8) holds.

Putting the bound on I1, (4.6.14), and the bound on I2, (4.6.16), back
into (4.6.10) yields the claim with a constant C loc1 := C(Ω,Φ, n, s, γ) > 0. �

Clearly, we need to discuss this result in greater detail. We see that the
recursion estimate (4.6.9) has the same form as the one in Theorem 4.3.4,
only with a different constant C loc1 . Again, this will allow us to show the
convergence of the local Lagrange multilevel method. In order for the recursion
estimate to hold, we have to choose εi for every i ∈ N small enough. On first
sight, that is a restriction. However, recalling Lemma 3.3.4, there is already
an upper bound for εi such that {χloci,k}1≤k≤Ni is a stable basis of Wi. It reads
as

C
eη

η3n

∣∣∣∣log

(
εi
qni

)∣∣∣∣2n q−n2−2s−J
i

√
εi ≤ 1,

with a free J > n. Comparing this to (4.6.8) we see that these are the same
conditions for εi if J = 2s > n, since s > n/2. Hence, (4.6.8) does not
seem to be a restriction at all, since we want to work with a stable basis
{χloci,k}1≤k≤Ni ⊆Wi anyway.

To end this chapter, we use Theorem 4.6.8 to obtain the analogue to
Theorem 4.3.4 for the local Lagrange multilevel method.

Corollary 4.6.9. With the assumptions and notation of Theorem 4.6.8 there
is a constant C > 0 such that the estimate

‖f −QlocL (f)‖L2(Ω) ≤ C
(
αloc

)L
‖f‖Hs(Ω)(4.6.17)

holds for all L ∈ N. Thus, QlocL (f) converges linearly to f if αloc < 1.

The idea to use the localized Lagrange functions in the multilevel scheme
came to mind when we studied the alternative representation of the multilevel
operator in Section 4.6.1. Numerically, there is no advantage using this new
representation compared to the standard one in Section 4.2. However, in
our application in Chapter 7, it is necessary to use Lagrange functions.
Unfortunately, numerical tests show that this new representation is much
more costly. Although further research has to be done, we hope that the
local Lagrange functions will help in reducing the costs.



CHAPTER 5

Tensor Products

We give now an introduction into tensor products, an essential tool for
the rest of this thesis. This introduction is, in parts, more thorough than
necessary, however it provides a solid, theoretical basis for the applications
in Chapters 6 and 7. The groundwork provided here is mainly a synthesis of
[42], on the one hand, and [58, 76] on the other hand.

The chapter is organized as follows. In Section 5.1 we introduce the tensor
product as a bilinear mapping and study its codomain, the algebraic tensor
product space, and its elements, tensors. Then, in Section 5.2, we equip
the algebraic tensor product spaces with norms, where we are particularly
interested in crossnorms and their properties. In this section we provide
several examples of tensor Banach spaces which we will use in chapters to
come. Finally, we define the tensor product of operators in Section 5.3. This
will open the door to the main topic of this thesis in Chapters 6 and 7, the
construction of high-directional approximation operators by taking the tensor
product of approximation operators defined for each direction.

5.1. Algebraic Tensor Product Space

We start by giving the definition of a special property of bilinear map-
pings.

Definition 5.1.1. Let V , W and T be linear spaces. The bilinear mapping
ϕ : V ×W → T has the universal property if

(1) ϕ generates T , i.e.,

Im(ϕ) := span{ϕ(v, w) : v ∈ V,w ∈W} = T,

(2) for every other bilinear mapping ψ from V ×W into another linear
space S, there exists a linear map f : T → S such that the diagram

(5.1.1)

V ×W S

T

ϕ

ψ

f

commutes. This means we have f ◦ ϕ = ψ.

We can combine (1) and (2) in Definition 5.1.1 into one single condition.
The proof can be found in [38].

Theorem 5.1.2. Let V , W , T and S be linear spaces. The bilinear mapping
ϕ has the universal property, if for every bilinear mapping ψ : V ×W → S
there exists a unique linear map f : T → S such that (5.1.1) commutes.

87
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From this we can immediately show that the linear space T is uniquely
determined up to an isomorphism.

Theorem 5.1.3. Let V , W , T and T̃ be linear spaces. If ϕ : V ×W → T

and ϕ̃ : V ×W → T̃ are bilinear maps that have the universal property then

there is a linear isomorphism f : T → T̃ .

Proof. By using Theorem 5.1.2 for ϕ and ϕ̃, respectively, we have the

existence of unique linear maps f : T → T̃ and f̃ : T̃ → T such that ϕ̃ = f ◦ϕ
and ϕ = f̃ ◦ ϕ̃. Here, we set S := T̃ and ψ := ϕ̃, when using (5.1.1) for ϕ
and S := T and ψ := ϕ for ϕ̃.

This shows that ϕ = f̃ ◦ f ◦ϕ and that ϕ̃ = f ◦ f̃ ◦ ϕ̃. This means indeed

that f and f̃ are bijective and the inverse of each other. �

We can now use the result of Theorem 5.1.3 to define the algebraic tensor
product space.

Definition 5.1.4. Let V , W and T be linear spaces. Let ϕ : V ×W → T be a
bilinear map that has the universal property. Then T is the (algebraic) tensor
product or (algebraic) tensor product space of V and W and is denoted by
V ⊗W .

The mapping ϕ is called the tensor product and denoted by ⊗. The
elements of T are called (algebraic) tensors. Tensors of the form v ⊗ w :=
⊗(v, w) = ϕ(v, w) are called elementary tensors or dyads.

We have only shown that if an algebraic tensor product space exists it
is, up to an isomorphism, unique without checking if there even exists a
linear map that has the universal property. This, however, is always true for
arbitrary linear spaces V and W . For details we refer to, e.g., [38, Chapter 1.7].

We introduced the algebraic tensor product space as the tensor product
of two linear spaces. However, we can generalize the statements above to the
d-fold tensor product, d ∈ N, in the following way: Let V (1), . . . , V (d) be linear
spaces. Then define the (algebraic) tensor product space of order d, denoted

by
⊗d

j=1 V
(j) := V (1)⊗ · · · ⊗ V (d), by iteratively applying Definition 5.1.1 to

V = (V (1) ⊗ · · · ⊗ V (k)) and W = V (k+1), k = 1, . . . , d− 1. This then yields
the algebraic tensor product space

(· · · (V (1) ⊗ V (2))⊗ V (3))⊗ · · · ⊗ V (d−1))⊗ V (d).

At first glance it seems that the order of the V (j) is important. However we
see next that the tensor product is commutative and associative. This also
justifies in some sense the term product.

Lemma 5.1.5. Let U , V , W be linear spaces.

(1) The tensor product is commutative in the sense that V ⊗W and
W ⊗ V are isomorphic, i.e.,

V ⊗W ∼= W ⊗ V.

(2) The tensor product is associative, i.e.,

U ⊗ V ⊗W ∼= (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ).
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Proof. To show (1) we use the universal property. Consider two bilinear
mappings

ψ : V ×W →W ⊗ V and ψ̃ : W × V → V ⊗W

given by

ψ(v, w) = w ⊗ v and ψ̃(w, v) = v ⊗ w,

respectively. By Definition 5.1.1 (2) there are linear maps

f : V ⊗W →W ⊗ V and g : W ⊗ V → V ⊗W,

such that the corresponding diagrams (5.1.1)

V ×W W ⊗ V

V ⊗W

⊗

ψ

f
and

W × V V ⊗W

W ⊗ V

⊗

ψ̃

g

commute. We now need to show, that f and g are inverse isomorphisms. For
v ∈ V and w ∈W we have on the left-hand side

w ⊗ v = ϕ(v, w) = f(v ⊗ w)

and on the right-hand side, accordingly,

v ⊗ w = ψ(w, v) = g(w ⊗ v).

This implies on the one hand

w ⊗ v = f(v ⊗ w) = f(g(w ⊗ v)).

On the other hand, we have

v ⊗ w = g(w ⊗ v) = g(f(v ⊗ w)).

This shows immediately that f and g are indeed inverse isomorphisms and
therefore the commutativity of the tensor product.

The proof of (2) follows the same ideas and can be found in, e.g., [38,
Proposition 1.10.1]. �

These results justify that, for this chapter, we only consider tensor
product spaces of order d = 2. Generalizations to higher orders are mostly
straightforward inductions over the number of factors d.

Until now, we studied properties of the tensor product ⊗ as a mapping
from V ×W to V ⊗W . Now, we want to investigate the tensor space V ⊗W
and its elements closer. For later references we first collect several features
of elementary tensors. They all follow directly from the bilinearity of ⊗ and
the universal property Definition 5.1.1.

Proposition 5.1.6. Let V and W be linear spaces.

(1) Every tensor t ∈ V ⊗W has a representation

t =

n∑
i=1

vi ⊗ wi,
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with vi ∈ V , wi ∈ W and an n ∈ N. Here, the order of the terms
does not matter, i.e., for any permutation π : {1, . . . n} → {1, . . . , n}
we have

t =
n∑
i=1

vi ⊗ wi =
n∑
i=1

vπ(i) ⊗ wπ(i).

(2) To formally define the linear space structure of V ⊗W , we charac-
terize the addition of two tensors by

n∑
i=1

vi ⊗ wi +

m∑
i=n+1

vi ⊗ wi =

m∑
i=1

vi ⊗ wi,

for m > n.
The multiplication by a scalar a ∈ K is described by

a
n∑
i=1

vi ⊗ wi =
n∑
i=1

(avi)⊗ wi =
n∑
i=1

vi ⊗ (awi).

(3) Finally, the zero element 0V⊗W is determined by the equation

0V ⊗ w = v ⊗ 0W = 0V⊗W , v ∈ V,w ∈W.
Here, we used the index to clearify, which zero element of which
vector space we use. We will omit it, if there is no risk of confusion.

Now, we want to construct a basis of the tensor product space V ⊗W by
using bases of the vector spaces V and W . To do this we need the following,
preliminary corollary, taken from [38, Lemma 1.5.1].

Corollary 5.1.7. Let V and W be linear space. If v 6= 0V and w 6= 0W ,
then v ⊗ w 6= 0V⊗W .

Or, equivalently, if v ⊗w = 0, then at least one of the v and w has to be
the zero vector of the respective space.

This allows us to state the theorem which describes how to obtain a basis
of the tensor product space.

Theorem 5.1.8. Let V and W be linear spaces with tensor product space
V ⊗W . Let I and J be, not necessarily finite, index sets. Let {vi}i∈I be a
basis of V and {wj}j∈J a basis of W . Then the set

B := {vi ⊗ wj : i ∈ I, j ∈ J}
is a basis of V ⊗W .

Proof. First, we prove that B is linearly independent. We need show
that

∑n
i=1

∑m
j=1 αijvi⊗wj = 0 implies αij = 0 for every finite n and m such

that {1, . . . , n} ⊆ I and {1, . . . ,m} ⊆ J .
With Proposition 5.1.6(2), we have

0 =

n∑
i=1

m∑
j=1

αijvi ⊗ wj =
n∑
i=1

vi ⊗

 m∑
j=1

αijwj


=:

n∑
i=1

vi ⊗ w̃i.(5.1.2)
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Now, we associate to every tensor
∑n

i=1 xi ⊗ yi ∈ V ⊗ W an operator
A∑n

i=1 xi⊗yi : V ∗ →W , defined by

A∑n
i=1 xi⊗yi(φ) =

n∑
i=1

φ(xi)yi.(5.1.3)

Clearly, such an operator is linear and A0(φ) = 0 for all φ ∈ V ∗.
Let {φi}i∈{1,...,n} ⊂ V ∗ be the dual basis to {vi}i∈{1,...,n}, i.e., φi(vk) = δik

holds for all 1 ≤ i, k ≤ n. Using (5.1.2) we see that for k ∈ {1, . . . , n} we
have

0 = A0(φk) = A∑n
i=1 vi⊗w̃i(φk) =

n∑
i=1

φk(vi)w̃i = w̃k.(5.1.4)

We recall that we set w̃k =
∑m

j=1 αkjwj and that the set {wj}j∈{1,...,m} is,

as a subset of the basis of W , linearly independent. This, together with (5.1.4),
yields αkj = 0 for all j ∈ {1, . . . ,m}. Furthermore, since k ∈ {1, . . . , n} was
arbitrarily chosen, we have αkj = 0 for all k ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
which is the linearly independence of B.

To finish the proof, we need to show that span(B) = V ⊗W . We consider
a tensor t ∈ V ⊗W , with representation t =

∑n
k=1 vk ⊗ wk. Each vk itself

admits a representation in the basis, i.e., vk =
∑

i∈Ik α
k
i vi, and similarly

wk =
∑

j∈Jk β
k
jwj with finite sets Ik ⊆ I and Jk ⊆ J .

The representation for t becomes, by Proposition 5.1.6,

t =

n∑
k=1

∑
i∈Ik

αki vi

⊗
∑
j∈Jk

βkjwj


=
∑
i,j

(
n∑
k=1

αki β
k
j

)
vi ⊗ wj ,

where the length of the outer sum is finite for i and j. Hence, we have
V ⊗W = span(B). �

We will later see that the operator introduced in (5.1.3) plays an impor-
tant role in representing tensors of V ⊗W . We also remark that we can just
as well define a corresponding operator as a mapping from W ∗ to V without
any significant change in the proof.

Before we discuss these points further, we use the preceding theorem to
introduce the first examples of algebraic tensor product spaces.

Theorem 5.1.9. The tensor product space R⊗ R is isomorphic to R.

Proof. {1} is a basis of R. This means by Theorem 5.1.8 that {1⊗ 1} is
a basis of R⊗R. Assume that t ∈ R⊗R has a representation t =

∑n
i=1 ai⊗bi,

with ai, bi ∈ R, 1 ≤ i ≤ n. Then we have

t =
n∑
i=1

ai ⊗ bi =
n∑
i=1

ai ⊗ (1 · bi) =
n∑
i=1

(ai · bi)⊗ 1

=

n∑
i=1

(ai · bi · 1)⊗ 1 =

n∑
i=1

(ai · bi)1⊗ 1.
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Hence, we define the linear map f : R⊗ R→ R given by

f

(
n∑
i=1

ai ⊗ bi

)
=

n∑
i=1

aibi.

It is easy to see that Im(f) = R and Kern(f) = 0. That means that f is the
isomorphism between R⊗ R and R. �

The proof of the preceding theorem implies that we can identify tensors
t ∈ R⊗R with representation t =

∑n
i=1 ai ⊗ bi with real numbers

∑n
i=1 aibi.

We will meet more of these kinds of identifications later on.
The next example concerns the tensor product of functions.

Theorem 5.1.10. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be given non-
empty sets. Assume that V (S) = {v : S → R} and W (T ) = {w : T → R} are
linear spaces of functions on S and T , respectively. Define the elementary
tensors v ⊗ w : S × T → R by

(v ⊗ w) (s, t) := v (s) · w (t) .(5.1.5)

Then the tensor product space V ⊗W is given by

V (S)⊗W (T ) = span{v ⊗ w : v ∈ V (S), w ∈W (T )}.(5.1.6)

Proof. We omit the full proof here and just summarize the main ideas.
Clearly, for V (S) ⊗ W (T ) defined in (5.1.6) we find a bilinear map ϕ :
V (S)×W (T )→ V (S)⊗W (T ) defined by ϕ(v, w) = v ⊗ w, where v ⊗ w is
defined point-wise as in (5.1.5). This ϕ satisfies V (S)⊗W (T ) = Im(ϕ).

All that is left is to show that ϕ has the universal property. To this end,
it is necessary to show that the set {v ⊗ w : v ∈ BV , w ∈ BW }, where
BV ⊆ V and BW ⊆ W are bases of their respective spaces, is a basis of
V (S)⊗W (T ). Here, we can not directly quote Theorem 5.1.8 since we have
to use the specific definition of v ⊗ w in (5.1.5). However, the ideas of the
proof of Theorem 5.1.8 carry over.

Having the basis of V (S)⊗W (T ) then allows us to finish the proof since
for any linear space U and any linear map ψ : V (S) ×W (T ) → U we can
define the linear map f : V (S) ⊗W (T ) → U by its values on the basis to
show that f(v ⊗ w) = ψ(v, w). This then shows that ϕ(v, w) = v ⊗ w with
v ⊗ w defined in (5.1.5) has the universal property and V (S) ⊗W (T ) is
indeed a tensor product space. �

This allows us to easily evaluate the elements of algebraic tensor product
function spaces.

After these two examples we now study representations of tensors in
more detail. From Proposition 5.1.6 we know that we can express a tensor
t ∈ V ⊗W as t =

∑n
i=1 vi ⊗ wi. However one of the most important results

is that this representation is not unique. This fact will lead to an alternative
way to represent tensors, used in, e.g., [58, 76]. First, we find that for tensors
t 6= 0 we always find a representation with a minimal number of summands.
This number is sometimes called the rank of the tensor.

Lemma 5.1.11. Let V and W be linear spaces with algebraic tensor product
space V ⊗W . Every tensor t ∈ V ⊗W is either 0V⊗W or there is an r ∈ N
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and a representation

t =

r∑
i=1

vi ⊗ wi,

where {v1, . . . , vr} ⊆ V and {w1, . . . , wr} ⊆W are linearly independent.

Proof. Let t ∈ V ⊗W with representation t =
∑n

i=1 vi ⊗ wi. If one of
the sets {vi}1≤i≤n or {wi}1≤i≤n is not linearly independent, we may assume
without restriction that {vi}1≤i≤n is not linearly independent. Then we
can express at least one vi by a linear combination of the others. Without
restriction we assume that

vn =

n−1∑
i=1

αivi.

Then, with the rules of Proposition 5.1.6, we have

vn ⊗ wn =

(
n−1∑
i=1

αivi

)
⊗ wn =

n−1∑
i=1

vi ⊗ (αiwn),

which leads to

t =

(
n−1∑
i=1

vi ⊗ wi

)
+ vn ⊗ wn =

n−1∑
i=1

vi ⊗ w̃i,

with w̃i = wi+αiwn ∈W . This is a shorter representation of t. We can repeat
this process until we either arrive at a representation in which {v1, . . . , vr} and,
after doing the same for the set {wi}, {w1, . . . , wr} are linearly independent
or we end up at one of the representations 0 ⊗ wk or vk ⊗ 0 and so, by
Proposition 5.1.6, t = 0. �

Both, Theorem 5.1.8 and Lemma 5.1.11, have an immediate very im-
portant consequence. They both show that the representation of a tensor
t ∈ V ⊗W is not unique. If we have t =

∑n
i=1 vi ⊗ wi for some vi ∈ V and

wi ∈ W and an n ∈ N, we can always add a dyad vn+1 ⊗ wn+1, with vn+1

and wn+1 a linear combination of {vi}1≤i≤n and {wi}1≤i≤n, respectively, and
obtain a new representation for the same tensor t.

We now work towards a better way to represent tensors. We need the
following definition formalizing (5.1.3).

Definition 5.1.12. Let V and W be linear spaces with algebraic tensor
product space V ⊗W . We define a linear operator A∑n

i=1 vi⊗wi : V ∗ → W

associated to a representation t =
∑n

i=1 vi ⊗ wi of t ∈ V ⊗W by

A∑n
i=1 vi⊗wi(φ) :=

n∑
i=1

φ(vi)wi.

We will see this operator provides a way to represent tensors in a unique
way. However, first we need to discuss how a linear mappings φ(1) : V → R
and φ(2) : W → R act on the corresponding components of tensors.
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Lemma 5.1.13. Let V and W be linear spaces with algebraic tensor product
V ⊗W . Let φ(1) ∈ V ∗ and φ(2) ∈W ∗. Assume that

n∑
i=1

vi ⊗ wi =
m∑
j=1

xj ⊗ yj(5.1.7)

for vi, xj ∈ V , wi, yj ∈W and n,m ∈ N. Then the identities

n∑
i=1

φ(1)(vi)wi =
m∑
j=1

φ(1)(xj)yj(5.1.8)

and
n∑
i=1

φ(1)(vi) · φ(2)(wi) =
m∑
j=1

φ(1)(xj) · φ(2)(yj)(5.1.9)

hold.

Proof. We start by showing (5.1.8). A fixed φ(1) ∈ V ∗ induces a bilinear
map

ψ(1) : V ×W →W, (v, w) 7→ φ(1)(v)w.

By the universal property of Definition 5.1.1, there is a unique linear map
f : V ⊗W →W with

f(v ⊗ w) = ψ(1)(v, w) = φ(1)(v)w.

Applying this to the identity in (5.1.7) we find

n∑
i=1

φ(1)(vi)wi = f

(
n∑
i=1

vi ⊗ wi

)
= f

 m∑
j=1

xj ⊗ yj


=

m∑
j=1

φ(1)(xj)yj .

We used the linearity and bijectivity of f .
The second equality (5.1.9) follows simply from the linearity of φ(2) and

(5.1.8). �

Next, we see that only the zero operator is associated to representations
of the zero tensor.

Lemma 5.1.14. Let V and W be linear spaces with algebraic tensor product
space V ⊗W . Then A∑n

i=1 vi⊗wi = 0 if and only if,
∑n

i=1 vi ⊗ wi = 0V⊗W .

Proof. Assume that
∑n

i=1 vi⊗wi 6= 0. Then, by Lemma 5.1.11, there is
an r ∈ N such that

∑n
i=1 vi⊗wi =

∑r
i=1 xi⊗yi with {xi}1≤i≤r and {yi}1≤i≤r

linearly independent sets and x1 6= 0. Consequently, we can find a φ ∈ V ∗
such that φ(x1) 6= 0. The linearly independence of {yi}1≤i≤r then implies that∑r

i=1 φ(xi)yi 6= 0. Applying Lemma 5.1.13 leads then to
∑n

i=1 φ(vi)wi 6= 0
and therefore

A∑n
i=1 vi⊗wi 6= 0.

The other implication follows from the definition of the operator. �
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We combine Lemmas 5.1.13 and 5.1.14 to obtain the required theorem,
which gives a way to identify if two finite sums of dyads are representations
of the tensor t ∈ V ⊗W .

Theorem 5.1.15. Let V and W be linear spaces with algebraic tensor product
space V ⊗W . Two expressions

∑n
i=1 vi ⊗wi and

∑m
k=1 xk ⊗ yk are represen-

tations for the same tensor t ∈ V ⊗W if and only if, the associated linear
operators A∑n

i=1 vi⊗wi and A∑m
j=1 xj⊗yj as in Definition 5.1.12 are equal.

For further information on algebraic tensor product spaces and the role
of the operators of Definition 5.1.12 we refer to [76].

5.2. Norms on Tensor Product Spaces

We now extend the concept of tensor product spaces form the purely
algebraic setting to normed spaces. We recall that the algebraic tensor
product space of the linear spaces V and W is given by

V ⊗W = span{v ⊗ w : v ∈ V,w ∈W}.
We start by giving the definition of a norm on the tensor product space.

We follow [76, Definition 2.1] and account for the non-uniqueness of the
representations of an element of the algebraic tensor product space directly
in the definition. This is necessary because we define the tensor product
norm as a function on the representation of a tensor.

Definition 5.2.1. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with
algebraic tensor product space V ⊗W . We call a mapping α : V ⊗W → [0,∞)
a norm on the tensor space V ⊗W if the following conditions hold:

(1) α(
∑n

i=1 vi ⊗ wi) = 0 if and only if,
∑n

i=1 vi ⊗ wi = 0.

(2) α(a
∑n

i=1 vi ⊗ wi) = |a|α(
∑n

i=1 vi ⊗ wi) for any a ∈ R.

(3) α(
∑n

i=1 vi⊗wi+
∑m

j=1 xj⊗yj) ≤ α(
∑n

i=1 vi⊗wi)+α(
∑m

j=1 xj⊗yj).
(4) α(

∑n
i=1 vi⊗wi) = α(

∑m
j=1 xj⊗yj), if

∑n
i=1 vi⊗wi =

∑m
j=1 xj⊗yj.

For given normed spaces V and W there are several ways to construct
a norm on V ⊗W . To make clear which normed space we investigate, we
introduce the notation V ⊗αW for the normed space (V ⊗W,α).

A first candidate for a norm as in Definition 5.2.1 uses the operator of
Definition 5.1.12.

Definition 5.2.2. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with
algebraic tensor product space V ⊗W . The λ- or injective norm λ : V ⊗W →
[0,∞) is defined by

λ

(
n∑
i=1

vi ⊗ wi

)
:= sup

{∥∥∥∥∥
n∑
i=1

φ(vi)wi

∥∥∥∥∥
W

: φ ∈ V ∗, ‖φ‖V ∗ = 1

}
.(5.2.1)

We check that this mapping satisfies Definition 5.2.1.

Theorem 5.2.3. The λ-norm is a norm.

Proof. We have to verify the four conditions of Definition 5.2.1. (4)
follows immediately by Lemma 5.1.13, i.e., the norm is independent of the
representation of the tensor. (1) follows from Lemma 5.1.14.
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(2) and (3) fare a consequence of the linearity of φ and the fact that
‖ · ‖W is a norm. �

If we take the λ-norm of a dyad v ⊗ w ∈ V ⊗W we have

λ(v ⊗ w) = sup{‖φ(v)w‖W : φ ∈ V ∗, ‖φ‖V ∗ = 1}
= sup{|φ(v)|‖w‖W : φ ∈ V ∗, ‖φ‖V ∗ = 1}
= ‖v‖V ‖w‖W .(5.2.2)

This means the norm of the dyad equals the product of the respective norms
of the components of the dyad. This is a desired property of norms on tensor
product spaces. We study these norms in the next subsection.

5.2.1. Crossnorms. We formalize (5.2.2) in the following definition.

Definition 5.2.4. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with
algebraic tensor product space V ⊗W . Let α be a norm on V ⊗W . We say
that α is a crossnorm if, for all v ∈ V and w ∈W ,

α(v ⊗ w) = ‖v‖V ‖w‖W(5.2.3)

holds.

We are mostly interested in working with crossnorms. Hence, we introduce
the notation ‖ · ‖α if the norm of the normed space V ⊗αW is a crossnorm.
If we want to emphasize the linear space we will write ‖ · ‖α,V⊗W .

We have already proven the next statement in (5.2.2).

Lemma 5.2.5. The λ-norm of Definition 5.2.2 is a crossnorm.

Another example for a crossnorm is the next mapping.

Definition 5.2.6. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with
algebraic tensor product space V ⊗W . The γ- or projective norm γ : V ⊗W →
[0,∞) is defined by

γ(t) := inf

{
n∑
i=1

‖vi‖V ‖wi‖W : vi ∈ V,wi ∈W, t =

n∑
i=1

vi ⊗ wi

}
.(5.2.4)

Again, we see that γ is indeed a norm and a crossnorm.

Theorem 5.2.7. The γ-norm is a norm and a crossnorm.

Proof. First we need to show that γ is a norm. To show Property (1)
in Definition 5.2.1 we first see that γ(t) = 0 if t = 0. Assume that t 6= 0.
Then we find a representation

t =

n∑
i=1

vi ⊗ wi, n ∈ N, vi ∈ V \ {0}, wi ∈W \ {0}.

By Lemma 5.1.14 the to t associated linear operator At : V ∗ →W is not the
zero operator. Hence, for any φ ∈ V ∗ with ‖φ‖V ∗ = 1 we have

0 < ‖At(φ)‖W =

∥∥∥∥∥
n∑
i=1

φ(vi)wi

∥∥∥∥∥
W

≤
n∑
i=1

|φ(vi)|‖wi‖W ≤
n∑
i=1

‖vi‖V ‖wi‖W .
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We recall Theorem 5.1.15 which states that the operator At is independent
of the representation. Hence, taking the infimum of all representations of t
in the inequality above, yields

0 < ‖At‖V ∗→W ≤ γ(t).

Property (2) in Definition 5.2.1 is obviously satisfied since ‖ · ‖V and ‖ · ‖W
are norms. Property (4) is also fulfilled since we take the infimum of all
representations of t. To show the triangle inequality we choose an ε > 0 and
representations t =

∑n
i=1 vi ⊗ wi and u =

∑m
j=1 xj ⊗ yj with

n∑
i=1

‖vi‖V ‖wi‖W ≤ γ(t) +
ε

2
and

m∑
j=1

‖xj‖V ‖yj‖W ≤ γ(u) +
ε

2

for tensors t,u ∈ V ⊗W .
For t+ u we have a representation

t+ u =

n∑
i=1

vi ⊗ wi +

m∑
j=1

xj ⊗ yj

and, the definition of the γ norm gives

γ(t+ u) ≤
n∑
i=1

‖vi‖V ‖wi‖W +
m∑
j=1

‖xj‖V ‖yj‖W

≤ γ(t) + γ(u) + ε.

As ε > 0 was arbitrary, this yields (3) of Definition 5.2.1. Hence, γ is indeed
a norm.

To complete the proof we need to show that γ satisfies Definition 5.2.4,
i.e., it is a crossnorm. Suppose that t ∈ V ⊗ W has one the hand the
representation v ⊗w and on the other hand the representation

∑n
i=1 vi ⊗wi.

First, we obviously have

γ(t) = γ(v ⊗ w) ≤ ‖v‖V ‖w‖W .
We have to prove the reverse inequality. We have, by Lemma 5.1.13, for all
φ ∈ V ∗

φ(v)w =
n∑
i=1

φ(vi)wi.

This holds for a particular φ̃ ∈ V ∗ with φ̃(v) = ‖v‖V and ‖φ̃‖V ∗ = 1. Such a
functional exists as a consequence of the Hahn-Banach theorem [3]. For this

φ̃, the norm properties of ‖ · ‖W give

‖v‖V ‖w‖W =
∥∥∥φ̃(v)w

∥∥∥
W

=

∥∥∥∥∥
n∑
i=1

φ̃(vi)wi

∥∥∥∥∥
W

≤
n∑
i=1

‖vi‖V ‖w‖W .

As this holds for all possible representations of t, we see

‖v‖V ‖w‖W ≤ γ(t).

�

We will see that the λ- and γ-norms are particularly important. However
first we need to discuss tensor products of functionals on normed spaces.
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Definition 5.2.8. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with

algebraic tensor product V ⊗W . For φ(1) ∈ V ∗ and φ(2) ∈ W ∗ we define a
linear mapping φ(1) ⊗ φ(2) : V ⊗W → R by(

φ(1) ⊗ φ(2)
)

(v ⊗ w) := φ(1)(v) · φ(2)(w)

and more generally, for t =
∑n

i=1 vi ⊗ wi,(
φ(1) ⊗ φ(2)

)
(t) :=

n∑
i=1

(
φ(1) ⊗ φ(2)

)
(vi ⊗ wi) =

n∑
i=1

φ(1)(vi) · φ(2)(wi)

In Lemma 5.1.13 we have already proven that the value
(
φ(1) ⊗ φ(2)

)
(t)

is independent of the representation of t ∈ V ⊗W . Furthermore, this inde-
pendence also guarantees the linearity of the mapping. In turn, this means
that φ(1) ⊗ φ(2) is an element of the algebraic dual space of V ⊗W . We can
also equip this space with a norm.

Definition 5.2.9. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with
normed tensor product space (V ⊗W,α). We define the to α dual norm
α∗ : V ∗ ⊗W ∗ → [0,∞) by

α∗
(
φ(1) ⊗ φ(2)

)
= sup
t∈V⊗W
α(t)=1

∣∣∣(φ(1) ⊗ φ(2)
)

(t)
∣∣∣ .(5.2.5)

We have by definition that φ(1) ⊗ φ(2) ∈ V ∗ ⊗ W ∗, if φ(1) ∈ V ∗ and
φ(2) ∈W ∗. However, that does not mean that φ(1) ⊗ φ(2) is a bounded linear
functional on (V ⊗W,α) and this will be in general not the case. The next
definition gives a sufficient condition on the tensor product norm such that
φ(1) ⊗ φ(2) ∈ (V ⊗W )∗.

Definition 5.2.10. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with
algebraic tensor product V ⊗W . A norm α : V ⊗W → R is reasonable if

α∗
(
φ(1) ⊗ φ(2)

)
=
∥∥∥φ(1)

∥∥∥
V ∗

∥∥∥φ(2)
∥∥∥
W ∗

, φ(1) ∈ V ∗, φ(2) ∈W ∗.

This definition is given for general norms α. However, we are mainly
interested in crossnorms, hence we now give a way to check if a given norm
is a reasonable crossnorm.

Lemma 5.2.11. Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed spaces with algebraic
tensor product V ⊗W . Assume that the norm α : V ⊗W → [0,∞) satisfies

α(v ⊗ w) ≤ ‖v‖V ‖w‖W , v ∈ V,w ∈W,(5.2.6)

and its dual norm α∗ : V ∗ ⊗W ∗ → [0,∞) satisfies

α∗
(
φ(1) ⊗ φ(2)

)
≤
∥∥∥φ(1)

∥∥∥
V ∗

∥∥∥φ(2)
∥∥∥
W ∗

, φ(1) ∈ V ∗, φ(2) ∈W ∗.(5.2.7)

Then α is a reasonable crossnorm.

Proof. For any φ(1) ∈ V ∗, φ(2) ∈W ∗, v ∈ V and w ∈W we have

φ(1)(v)φ(2)(w) =
(
φ(1) ⊗ φ(2)

)
(v ⊗ w)

≤ α∗
(
φ(1) ⊗ φ(2)

)
α(v ⊗ w).(5.2.8)



5.2. NORMS ON TENSOR PRODUCT SPACES 99

We use this to show the reverse inequalities to (5.2.6) and (5.2.7). This proves
that α is a reasonable crossnorm.

We start by deriving the reverse inequality to (5.2.6). Using (5.2.7) in
(5.2.8) gives the bound∣∣∣φ(1)(v)φ(2)(w)

∣∣∣ ≤ ∥∥∥φ(1)
∥∥∥
V ∗

∥∥∥φ(2)
∥∥∥
W ∗

α(v ⊗ w).(5.2.9)

We recall that we can always express the norm on V by its dual norm. We
have

‖v‖V = sup
φ∈V ∗
‖φ‖V ∗=1

|φ(v)|.

This allows us to estimate

‖v‖V ‖w‖W = sup
φ(1)∈V ∗
‖φ(1)‖V ∗=1

|φ(1)(v)| sup
φ(2)∈W ∗
‖φ(2)‖W∗=1

|φ(2)(w)|

= sup
‖φ(1)‖V ∗=‖φ(2)‖W∗=1

|φ(1)(v)||φ(2)(w)|

≤ α(v ⊗ w),

where we used (5.2.9) to obtain the last bound.
Similarly, combining (5.2.8) with (5.2.6) yields the bound∣∣∣φ(1)(v)φ(2)(w)

∣∣∣ ≤ ‖v‖V ‖w‖Wα∗ (φ(1) ⊗ φ(2)
)
,

which leads, with the definition of the dual norm α∗ in (5.2.5), to

‖φ(1)‖V ∗‖φ(2)‖W ∗ = sup
v∈V
‖v‖V =1

|φ(1)(v)| sup
w∈W
‖w‖W=1

|φ(2)(w)|

= sup
‖v‖V =‖w‖W=1

|φ(1)(v)||φ(2)(w)|

≤ α∗
(
φ(1) ⊗ φ(2)

)
.

�

We now come back to the λ- and γ-norms and see that they both are
reasonable crossnorms. Additionally, the λ-norm is the strongest and the
γ-norm is the weakest reasonable crossnorm.

Theorem 5.2.12. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be normed spaces with
algebraic tensor product space V ⊗W .

(1) The λ- and γ-norms are reasonable crossnorms.

(2) If ‖ · ‖ : V ⊗W → [0,∞) is a reasonable crossnorm, then

‖t‖λ ≤ ‖t‖ ≤ ‖t‖γ
holds for all t ∈ V ⊗W .

Proof. The proof can be found in, e.g., [42]. �

We will revisit both the λ- and the γ-norm for examples later on. But
first we come back to the tensor product space R⊗ R from Theorem 5.1.9.
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Theorem 5.2.13. Let ‖ · ‖R⊗R be a reasonable crossnorm on the tensor
product space R⊗ R. Then∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥
R⊗R

=

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣
holds for all ai, bi ∈ R, 1 ≤ i ≤ n, n ∈ N.

Proof. We show that∥∥∥∥∥
n∑
i=1

ai ⊗ bi

∥∥∥∥∥
λ

=

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≥
∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥
γ

,

which together with Theorem 5.2.12 (2) yields the stated identity. We first
note that we have for every φ ∈ R∗

‖φ‖R∗ = sup
|a|=1

|φ(a)| = sup
|a|=1

|φ(1)a| = |φ(1)|.

This yields for t =
∑n

i=1 ai ⊗ bi the lower bound

‖t‖λ = sup
‖φ(j)‖R∗=1
j=1,2

∣∣∣∣∣
n∑
i=1

φ(1)(ai)φ
(2)(bi)

∣∣∣∣∣
= sup
‖φ(j)‖R∗=1
j=1,2

∣∣∣∣∣
n∑
i=1

φ(1)(1)φ(2)(1)aibi

∣∣∣∣∣
= sup
‖φ(j)‖R∗=1
j=1,2

∣∣∣φ(1)(1)φ(2)(1)
∣∣∣ ∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣
≥ inf

{∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ |1| · |1| : t =
n∑
i=1

(aibi)1⊗ 1

}

=

∥∥∥∥∥
n∑
i=1

(aibi)1⊗ 1

∥∥∥∥∥
γ

= ‖t‖γ .

�

5.2.2. Tensor Product Banach Spaces. We now return to general
norms α and investigate the normed space V ⊗α W further, especially
regarding completeness. In general, even if we start with two Banach spaces
(V, ‖ · ‖V ) and (W, ‖ · ‖W ) the tensor product space (V ⊗W,α) will not be
complete. However, we can always complete the algebraic tensor product
space V ⊗W with respect to the norm α.

Definition 5.2.14. Let V and W be linear spaces with algebraic tensor
product space V ⊗W . Let α : V ⊗W → [0,∞) be a norm on V ⊗W . Then
the tensor product space (V⊗W,α) is the completion of V ⊗W under the
norm α.

Again, if α is a crossnorm write V⊗‖·‖W instead of V⊗αW . This is the
case we are most interested in.
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First we see that we do not necessarily have to take the closure of the
algebraic tensor product space of the Banach spaces (V, ‖·‖V ) and (W, ‖·‖W ).
Completing the tensor product of dense subspaces V0 ⊂ V and W0 ⊂ W
suffices. We obtain the same Banach space either way.

Theorem 5.2.15. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be Banach spaces with
algebraic tensor product space V ⊗ W . Let ‖ · ‖ : V ⊗ W → [0,∞) be a
crossnorm on V ⊗W . Let V0 and W0 be dense subspaces of (V, ‖ · ‖V ) and
(W, ‖ · ‖W ). Then the algebraic tensor product space V0 ⊗ W0 is a dense
subspace of V⊗‖·‖W , i.e.,

V0 ⊗‖·‖W0 = V⊗‖·‖W.

Proof. We have to show that for any ε > 0 and any t ∈ V⊗‖·‖W there
is a tε ∈ V0 ⊗W0 such that ‖t− tε‖ ≤ ε.

Since V⊗‖·‖W is the closure of V ⊗W with respect to the crossnorm
‖ · ‖ we find a t′ ∈ V ⊗W such that ‖t− t′‖ ≤ ε/2. By Lemma 5.1.11 it has
a representation t′ =

∑n
i=1 v

′
i ⊗ w′i with v′i ∈ V , w′i ∈ W and n ∈ N. Next,

we fix

Cmax := max
1≤i≤n

{
‖v′i‖V , ‖w′i‖W

}
and choose δ > 0 small enough such that

nδ(2Cmax + δ) <
ε

2
.(5.2.10)

Because V0 and W0 are dense in V and W , respectively, we can find
elements vi ∈ V0 and wi ∈W0 with ‖v′i − vi‖V < δ and ‖w′i − wi‖W < δ and
set

tε :=
n∑
i=1

vi ⊗ wi.

Finally, we have, together with Proposition 5.1.6, the bound

‖t′ − tε‖ =

∥∥∥∥∥
n∑
i=1

(v′i ⊗ w′i − vi ⊗ wi)

∥∥∥∥∥
=

∥∥∥∥∥
n∑
i=1

[(v′i − vi)⊗ w′i + v′i ⊗ (w′i − wi) + (vi − v′i)⊗ (w′i − wi)]

∥∥∥∥∥
≤

n∑
i=1

[
‖v′i − vi‖‖w′i‖+ ‖v′i‖‖w′i − wi‖+ ‖vi − v′i‖‖w′i − wi‖

]
≤ nδ(2Cmax + δ) ≤ ε

2
,

where we have used the triangle inequality, the fact that ‖ · ‖ is a crossnorm
and finally (5.2.10). This allows us to estimate

‖t− tε‖ ≤ ‖t− t′‖+ ‖t′ − tε‖ ≤ ε/2 + ε/2 = ε.

�

These statements also hold in a more general setting, see, e.g., [42, Lemma
4.40], but since we are only interested in crossnorms this version suffices.
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We now come back to the two examples of crossnorms we discussed
before and connect them to two important function spaces. We will see
that the completion of C(S) ⊗ C(T ) with respect to the λ-norm, defined
in Definition 5.2.2, leads to the space C(S × T ). Similarly we can interpret
L1(S×T ) as the space L1(S)⊗L1(T ), completed with respect to the γ-norm
of Definition 5.2.6. The proofs have two steps: First, we will see that we
have an isomorphism between certain Banach space valued mappings and
the tensor product of the corresponding spaces. In the second step we use
the right function space for the Banach space in step one and obtain the
required isomorphism.

We start by looking at continuous functions. We introduce the notation
C(S,W ) of the Banach space of all continuous maps f from a compact
S ⊆ Rn1 , n1 ∈ N, to a Banach space (W, ‖ · ‖W ) with norm defined by

‖f‖∞ := sup
s∈S
‖f(s)‖W .

On C(S) we use the L∞(S)-norm defined by

‖g‖L∞(S) = sup
s∈S
|g(s)|, g ∈ C(S).

Theorem 5.2.16. Let S ⊆ Rn1, n1 ∈ N, be compact and non-empty. Let
(W, ‖·‖W ) be a Banach space and let λ be the norm defined in Definition 5.2.2.
Then we have

(C(S)⊗W, ‖ · ‖λ) ∼= (C(S,W ), ‖ · ‖∞) .

Proof. Consider an element t of the algebraic tensor product space
C(S) ⊗λ W with representation t =

∑n
i=1 vi ⊗ wi, vi ∈ C(S) and wi ∈ W .

For this t we define a Ft ∈ C(S,W ) by

Ft(s) =
n∑
i=1

vi(s)wi, s ∈ S.

Obviously, Ft is linear in t.
Next, we take the λ-norm of t, however we use it as a mapping W ⊗

C(S)→ [0,∞). This yields

λ(t) = sup
ψ∈W ∗
‖ψ‖=1

∥∥∥∥∥
n∑
i=1

ψ(wi)vi

∥∥∥∥∥
∞

= sup
ψ∈W ∗
‖ψ‖=1

sup
s∈S

∣∣∣∣∣
n∑
i=1

ψ(wi)vi(s)

∣∣∣∣∣
= sup

s∈S
sup
ψ∈W ∗
‖ψ‖=1

∣∣∣∣∣ψ
(

n∑
i=1

vi(s)wi

)∣∣∣∣∣ = sup
s∈S

sup
ψ∈W ∗
‖ψ‖=1

|ψ(Ft(s))|

= sup
s∈S
‖Ft(s)‖W = ‖Ft‖∞.

We used in the second to last step that we can express a norm on a linear
space by

‖ · ‖W = sup
ψ∈W ∗
‖ψ‖W∗=1

|ψ(·)|.
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This shows that the linear map t 7→ Ft is an isometry from the algebraic
tensor product space C(S) ⊗λ W to C(S,W ) that can be continuously
extended to a map from C(S)⊗λW into C(S,W ).

Next, we show that the image of C(S)⊗λW under Ft is dense in C(S,W ).
Completion with respect to the λ-norm then yields the claim.

Let f ∈ C(S,W ) and let ε > 0. The continuity of f and the compactness
of S yield that K := f(S) is also compact and thus totally bounded. Therefore
there exist finitely many w1, . . . , wn ∈ K such that the open balls Bε(wi)
with radius ε and center wi cover K. Hence, we can find a partition of unity
on K, i.e., a family of smooth functions g1, . . . , gn : K → [0, 1] such that

gi(x) = 0, x ∈ K \Bε(wi) and
n∑
i=1

gi = 1.

Next, for 1 ≤ i ≤ n, define vi := gi ◦ f . Then we have

vi ∈ C(S), 0 ≤ vi ≤ 1 and

n∑
i=1

vi(s) = 1, s ∈ S.

We use these vi in the representation of t, t :=
∑n

i=1 vi ⊗ wi. If s ∈ S we
have ∥∥∥∥∥f(s)−

n∑
i=1

vi(s)wi

∥∥∥∥∥
W

=

∥∥∥∥∥
n∑
i=1

vi(s)[f(s)− wi]

∥∥∥∥∥
W

≤
n∑
i=1

vi(s)‖f(s)− wi‖W < ε,

because vi(s) = 0, if ‖f(s)− wi‖W ≥ ε. Therefore, we have ‖f − Ft‖∞ < ε,
which completes the proof. �

With this result we can now show that the tensor product of spaces of
continuous functions can be identified with the space of continuous functions
on the Cartesian product of the domains.

Corollary 5.2.17. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be com-
pact and non-empty. Consider the Banach spaces

(
C(S), ‖ · ‖L∞(S)

)
and(

C(T ), ‖ · ‖L∞(T )

)
. Then we have

(C(S)⊗C(T ), ‖ · ‖λ) ∼=
(
C(S × T ), ‖ · ‖L∞(S×T )

)
.

Proof. We use Theorem 5.2.16 with W := C(T ) and have

C(S)⊗λC(T ) ∼= C(S,C(T )).

Hence, we need to find an isomorphism mapping C(S,C(T )) into C(S × T ).

Associate to any f ∈ C(S × T ) a function f̃ by setting

f̃(s) = f(s, ·), s ∈ S.

Then, this function satisfies f̃ ∈ C(S,C(T )) and is the required identification.
�
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This result makes working with elements of the tensor product of spaces
of continuous functions easy as we can always interpret them as two-variate
continuous functions.

The situation is slightly more complex for differentiable functions. Con-
sider compact, non-empty intervals S, T ⊆ R. The standard norm on C1(S)
is

‖f‖C1(S) = max{‖f‖L∞(S), ‖f ′‖L∞(S)}.

It is well-known that the normed space (C1(S), ‖ · ‖C1(S)) is a Banach space.

Similarly, the standard norm on C1(S × T ) is given as

‖f‖C1(S×T ) := max
α∈R2

‖α‖1≤1

‖Dαf‖L∞(S×T ).

However, by constructing a counter example, we can show that this norm
is not a crossnorm on C1(S) ⊗ C1(T ). This means that the Banach space
(C1(S×T ), ‖ · ‖C1(S×T )) can not be identified with (C1(S)⊗C1(T ), ‖ · ‖λ). It

turns out that we have to take the mixed derivatives Dαf with α = (1, 1)T

into account which then yields the mixed regularity space. We formalize this
in the next definition.

Definition 5.2.18. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be compact and

non-empty. Let K := S × T . For f : K → R and α(j) := (α
(j)
1 , . . . , α

(j)
nj )T ∈

Nnj0 , j = 1, 2, we will write

D(α(1),α(2))f :=
∂‖α

(1)‖1+‖α(2)‖1f

∂(x(1))α
(1)
∂(x(1))α

(1)

=
∂‖α

(1)‖1+‖α(2)‖1f

(∂x
(1)
1 )α

(1)
1 · · · (∂x(1)

n1 )α
(1)
n1 (∂x

(2)
1 )α

(2)
1 · · · (∂x(2)

n2 )α
(2)
n2

,

where x(j) = (x
(j)
1 , . . . , x

(j)
nj )T ∈ Rnj , j = 1, 2. Then, for m ∈ N2

0, the mixed
regularity space Cmmix(K) is given by

Cmmix(K) :=
{
f ∈ C(K) :

D(α(1),α(2))f ∈ C(K) for α(j) ∈ Nnj0 , ‖α(j)‖1 ≤ mj , j = 1, 2
}
,

i.e., the normed space Cmmix(K) consists of all functions f ∈ C(K) which,
together with all their relevant derivatives, are continuous. The norm on
Cmmix(K) is defined by

‖f‖Cm
mix(K) := max

j=1,2
max

‖α(j)‖1≤mj
‖D(α(1),α(2))f‖L∞(K).(5.2.11)

If m1 = m2 = m we also simply write Cmmix(K).

One can show that the space (Cmmix(K), ‖ · ‖Cm
mix(K)) is a Banach space.

The special case m1 = m2 = m and n1 = n2 = 1 is widely used. In that
situation we simply have

Cmmix(K) = {f ∈ C(K) : Dαf ∈ C(K), ‖α‖∞ ≤ m}.
Here, we see also that the mixed regularity space controls far more derivatives
than the classical space of continuously differentiable functions.
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We will see in the next corollary that the mixed regularity space coincides
with the tensor product space Cm1(S)⊗λCm2(T ).

Corollary 5.2.19. Let S ⊆ Rn1 and T ⊆ Rn2 be compact and non-empty.
Let K := S × T . Let m ∈ N2

0 be given and consider the direction-wise
Banach spaces V = Cm1(S), with norm ‖v‖V = max‖α‖≤m1

‖Dαv‖L∞(S)

and W = Cm2(T ), with norm ‖w‖W = max‖α‖≤m2
‖Dαw‖L∞(T ).

Then the norm ‖ · ‖Cm
mix(K) defined in (5.2.11) is a crossnorm on the

algebraic tensor product space Cm1(S)⊗ Cm2(T ). The identity

‖f‖λ = ‖f‖Cm
mix(K)

holds for all f ∈ Cm1(S)⊗ Cm2(T ).
Furthermore, the space Cmmix(K) is the corresponding tensor product

space, i.e.,

(Cm1(S)⊗Cm2(T ), ‖ · ‖λ) ∼=
(
Cmmix(K), ‖ · ‖Cm

mix(K)

)
.

Proof. The proof follows the same ideas of and the same techniques as
the proofs of Theorem 5.2.16 and Corollary 5.2.17. �

We now come to the space of integrable functions. We follow the same
ideas as for the space of continuous functions and will see that we can
identify the Banach space (L1(S)⊗L1(T ), ‖ · ‖γ) with the well-known space
(L1(S×T ), ‖·‖L1(S×T )). Since the proof ideas are virtually the same, however
require some technical preparation, we omit the proofs here and refer the
reader to, e.g., [58]. We only state the final theorem.

Theorem 5.2.20. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be measurable.
Then

(L1(S)⊗L1(T ), ‖ · ‖γ) ∼=
(
L1(S × T ), ‖ · ‖L1(S×T )

)
.

On the basis of these examples we have seen that we can interpret popular
function spaces on sets, which are Cartesian products of lower-dimensional
sets, as the tensor product of the functions spaces on the single sets. There
are several other examples, most importantly the class of the p-nuclear norms
αp, 1 < p < ∞. These norms would allow us to extend the results above
to Lp-spaces. For further information on these norms we refer to [58, 1.45
Definition, ff.].

The given examples and this discussion motivates that we can interpret
the γ-norm as the tensor product L1-norm, the p-nuclear norms as tensor
product Lp-norms and the λ-norm as the L∞-norm. Consequently, we could
expect an identification of L∞(S×T ) as L∞(S)⊗λL∞(T ). However, in general
this is not possible as the next theorem, taken from [58, 1.53 Theorem], shows.

Theorem 5.2.21. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be measurable.
Then the space L∞(S)⊗λL∞(T ) is a subspace of L∞(S × T ). This subspace
is usually proper.

This circumstance will make the L∞-error analysis in the later chapters
more involved as we first have to embed this space in a suitable tensor
product space, the mixed regularity space of Definition 5.2.18. The existence
of such an embedding will be discussed in Theorem 5.3.9.
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5.2.3. Tensor Product Hilbert Spaces. The rest of this section is
devoted to the tensor product of (pre-)Hilbert spaces. We will see that in
this setting things are much easier than in the case of general normed spaces.
First, we see that the inner product on the algebraic tensor product space of
pre-Hilbert spaces is easily constructed.

Definition 5.2.22. Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be pre-Hilbert spaces.
Then the induced inner product on the algebraic tensor product space V ⊗W
is the bilinear mapping 〈·, ·〉V⊗W : (V ⊗W )× (V ⊗W )→ R defined by

〈t, s〉V⊗W := 〈v, x〉V 〈w, y〉W , t = v ⊗ w, s = x⊗ y(5.2.12)

and more generally, for t =
∑n

i=1 vi ⊗ wi and s =
∑m

k=1 xk ⊗ yk

〈t, s〉V⊗W :=

n∑
i=1

m∑
k=1

〈vi, xk〉V 〈wi, yk〉W .(5.2.13)

Next, we establish that the mapping in (5.2.13) is indeed an inner product
and that the definition is independent of the representations of t and s.

Lemma 5.2.23. Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be pre-Hilbert spaces. Then
the induced inner product of Definition 5.2.22 is well-defined and an inner
product on the algebraic tensor product space V ⊗W .

Proof. We start by showing that the definition is independent of the
representation of the tensors. Assume that t ∈ V ⊗W has two representations

t =
∑n

i=1 vi ⊗ wi and t =
∑ñ

i=1 ṽi ⊗ w̃i, with n, ñ ∈ N, vi, ṽi ∈ V and
wi, w̃i ∈W . The inner product with an elementary tensor s = x⊗ y is then
given by 〈

n∑
i=1

vi ⊗ wi, x⊗ y

〉
V⊗W

=

n∑
i=1

〈vi, x〉V 〈wi, y〉W

and 〈
ñ∑
i=1

ṽi ⊗ w̃i, x⊗ y

〉
V⊗W

=
ñ∑
i=1

〈ṽi, x〉V 〈w̃i, y〉W .

With the Riesz representer theorem we find two functionals φ(1) ∈ V ∗ and
φ(2) ∈W ∗ such that φ(1) = 〈·, x〉V and φ(2) = 〈·, y〉W . This yields〈

n∑
i=1

vi ⊗ wi, x⊗ y

〉
V⊗W

=

n∑
i=1

φ(1)(vi)φ
(2)(wi)

and 〈
ñ∑
i=1

ṽi ⊗ w̃i, x⊗ y

〉
V⊗W

=

ñ∑
i=1

φ(1)(ṽi)φ
(2)(w̃i).

Following Lemma 5.1.13 the right-hand sides of both equations are equal,
hence we have the independence of the actual representation of t. The general
case, in which s is also a linear combination of elementary tensors follows
accordingly. This shows that the induced inner product is well-defined.

To see that it is a proper inner product on the algebraic tensor product
space V ⊗W we only need show definiteness. Bilinearity and symmetry follow
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directly from the definition. From Lemma 5.1.11 we know that, for a tensor
t 6= 0, we find a representation t =

∑r
i=1 vi ⊗ wi with a minimal r ∈ N and

linear independent {vi}1≤i≤r and {wi}1≤i≤r. We have

〈t, t〉V⊗W =

r∑
i,k=1

〈vi, vk〉V 〈wi, wk〉W .

Hence, we define the symmetric, positive definite matrix A = (〈vi, vk〉V ) ∈
Rr×r. There is a symmetric and positive definite root B ∈ Rr×r such that
A = B2. We see that

〈t, t〉V⊗W =
r∑

i,k=1

〈vi, vk〉V 〈wi, wk〉W =
r∑

i,k=1

Aik〈wi, wk〉W

=

r∑
i,k=1

r∑
p=1

BipBpk〈wi, wk〉W

=

r∑
p=1

〈
r∑
i=1

Bipwi,

r∑
k=1

Bpkwk

〉
W

> 0,

since {wi}1≤i≤r is linearly independent. �

Hence, the induced inner product induces a norm on the algebraic tensor
space V ⊗W .

Definition 5.2.24. Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be pre-Hilbert spaces with
algebraic tensor product space V ⊗W . The β- or induced norm β : V ⊗W →
[0,∞) is defined by

β(t) :=
√
〈t, t〉V⊗W .

For a t ∈ V ⊗W with representation t =
∑n

i=1 vi ⊗ wi we have

β

(
n∑
i=1

vi ⊗ wi

)
:=

 n∑
i,k=1

〈vi, vk〉V 〈wi, wk〉W

 1
2

.

For a dyad v ⊗ w we immediately have

β(v ⊗ w) = (〈v, v〉V 〈w,w〉W )1/2 = ‖v‖V ‖w‖W .

This already proves part of the next lemma.

Lemma 5.2.25. The β-norm is a reasonable crossnorm.

Proof. It remains only to show that β is a reasonable norm. We use
Lemma 5.2.11 and only have to show that

‖φ(1) ⊗ φ(2)‖β∗ ≤ ‖φ(1)‖V ∗‖φ(2)‖W ∗

for φ(1) ∈ V ∗ and φ(2) ∈ W ∗. Assume that t ∈ V ⊗W is given and has
a representation t =

∑n
i=1 vi ⊗ wi. Assume further that φ(1) ∈ V ∗ and

φ(2) ∈ W ∗ are also given. By the Riesz representation theorem there are



108 5. TENSOR PRODUCTS

elements v ∈ V such that φ(1)(vi) = 〈v, vi〉V , ‖φ(1)‖V ∗ = ‖v‖V and w ∈ W
such that φ(2)(wi) = 〈w,wi〉W and ‖φ(2)‖W ∗ = ‖w‖W . Thus,∣∣∣(φ(1) ⊗ φ(2)

)
(t)
∣∣∣ =

∣∣∣∣∣
n∑
i=1

φ(1)(vi)φ
(2)(wi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

〈v, vi〉V 〈w,wi〉W

∣∣∣∣∣
= |〈t, v ⊗ w〉V⊗W | ≤ ‖t‖β‖u⊗ w‖β

= ‖t‖β‖v‖V ‖w‖W = ‖t‖β
∥∥∥φ(1)

∥∥∥
V ∗

∥∥∥φ(2)
∥∥∥
W ∗

,

which shows ‖φ(1) ⊗ φ(2)‖β∗ ≤ ‖φ(1)‖V ∗‖φ(2)‖W ∗ . �

We emphasize that, contrary to the normed space setting, induced norms
on the algebraic tensor product space are always reasonable crossnorms.

We can extend Theorem 5.1.8 to the pre-Hilbert space setting, i.e., we
obtain an orthogonal system on the algebraic tensor product space V ⊗W
by taking the tensor product of the orthogonal systems of V and W .

Lemma 5.2.26. Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be pre-Hilbert spaces with
algebraic tensor product V ⊗W . Let I and J be, not necessarily finite, index
sets. Let {vi}i∈I and {wj}j∈J be orthogonal (orthonormal) systems in V and
W , respectively. Then

B := {vi ⊗ wj : i ∈ I, j ∈ J}

is an orthogonal (orthonormal) system in V ⊗W .
If {vi}i∈I and {wj}j∈J are orthonormal bases, B is an orthonormal basis

of V ⊗W .

We can now formalize the definition of the algebraic tensor product
pre-Hilbert space.

Definition 5.2.27. Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be pre-Hilbert spaces with
algebraic tensor product space V ⊗W . Then (V ⊗W, 〈·, ·〉V⊗W ) is called the
algebraic tensor product pre-Hilbert space.

We will also use the notation V ⊗β W .

Again, in general, the algebraic tensor product pre-Hilbert space V ⊗W
will not be complete, even if V and W are Hilbert spaces. However, as in
Section 5.2.2, we can complete the tensor product pre-Hilbert space V ⊗βW
with respect to the β-norm to obtain a Hilbert space V⊗βW .

We now give some examples of popular tensor product Hilbert spaces.
We start by looking at the tensor product of L2-spaces. First we show that
we can associate a function f : S × T → R to a tensor t ∈ L2(S)⊗ L2(T ).

Lemma 5.2.28. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be measurable.
Let t ∈ L2(S) ⊗ L2(T ) have a representation t =

∑n
i=1 vi ⊗ wi and define

f : S × T → R by

f(s, t) =

n∑
i=1

vi(s)wi(t).

Then f ∈ L2(S × T ) and if t = 0 then f = 0 almost everywhere.
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Proof. Let µ and ν be the measures on S and T , respectively. Let
σ = µ⊗ ν be the product measure. With t =

∑n
i=1 vi ⊗ wi we have

‖f‖2L2(S×T ) =

∫
S×T

f2(s, t) dσ(s, t) =

∫
S

∫
T
f2(s, t) dµ(s)dν(t)

=

∫
S

∫
T

n∑
i,j=1

vi(s)wi(t)vj(s)wj(t) dµ(s)dν(t)

=
n∑

i,j=1

∫
S
vi(s)vj(s) dµ(s)

∫
T
wi(t)wj(t) dν(s)

=
n∑

i,j=1

〈vi, vj〉L2(S)〈wi, wj〉L2(T )

= 〈t, t〉L2(S)⊗βL2(T ) = β2(t).

This already shows that f ∈ L2(S × T ). To show the second claim, assume
that t =

∑n
i=1 vi ⊗ wi = 0, this means its norm is also zero, β(t) = 0, and

therefore, by the equations above ‖f‖L2(S×T ) = 0. Hence, f = 0 almost
everywhere. �

Note, that the proof above is more general than necessary. In the proof
we use different measures on L2(S) and L2(T ). However, in our application
both spaces use the Lebesgue-measure.

Lemma 5.2.28 has several consequences. First, it implies that the function
f ∈ L2(S×T ) associated to the tensor t does not depend on the representation
of t. Second, the mapping t 7→ f is linear and by the main equation in the
proof,

‖f‖2L2(S×T ) = β2(t),(5.2.14)

it is norm-preserving. We will use these facts to prove the main theorem,
which states that the completion of L2(S) ⊗ L2(T ) with respect to the
β = ‖ · ‖L2(S)⊗L2(T )-norm is isomorphic to L2(S × T ).

Theorem 5.2.29. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be measurable.
Let β be the norm induced by the L2(S)⊗L2(T ) induced inner product. Then
we have

(L2(S)⊗L2(T ), ‖ · ‖β) ∼=
(
L2(S × T ), ‖ · ‖L2(S×T )

)
.

Proof. With Lemma 5.2.28 we have that L2(S)⊗ L2(T ) ⊆ L2(S × T )
with equality of norms on the subset. Thus, the closure of the normed space
(L2(S)⊗ L2(T ), ‖ · ‖β) is a closed subspace of L2(S × T ).

To complete the proof we show that the only f ∈ L2(S × T ) that is
orthogonal on L2(S)⊗ L2(T ) is f = 0. To this end, suppose that

〈f, v ⊗ w〉L2(S×T ) = 0, v ⊗ w ∈ L2(S)⊗ L2(T ).

By Fubini’s theorem, we write this as

〈f, v ⊗ w〉L2(S×T ) =

∫
T
w(t)

∫
S
v(s)f(s, t) dsdt = 0.



110 5. TENSOR PRODUCTS

Since w ∈ L2(T ) is arbitrary we conclude that for almost all t ∈ T ,∫
S
v(s)f(s, t) ds = 0.

Since v ∈ L2(S) is in turn arbitrary, we conclude that for almost all t
f(·, t) = 0 in L2(S). Hence∫

S
f2(s, t) ds =

∫
T

∫
S
f(s, t)2 dsdt = 0.

�

Similar to the spaces of mixed regularity introduced in Definition 5.2.18
it is possible to generalize this result to Sobolev Hilbert spaces.

Definition 5.2.30. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be measurable.
Let Ω = S × T and m ∈ N2

0. Then the Sobolev Hilbert space of mixed
regularity or anisotropic Sobolev Hilbert space Hm

mix(Ω) is defined as

Hm
mix(Ω) :=

{
f ∈ L2(Ω) :

D(α1,α2)f ∈ L2(S × T ),αj ∈ Nnj , ‖αj‖1 ≤ mj , j = 1, 2
}

with norm given by

‖f‖Hm
mix(Ω) :=

 ∑
‖α1‖1≤m1

∑
‖α2‖1≤m2

‖D(α1,α2)f‖2L2(Ω)

1/2

.

Similar to the discussion in Chapter 2 we are not restricted to integer
smoothness. However we have to define the resulting space on the whole
Rn1 × Rn2 .

Definition 5.2.31. Let s ∈ [0,∞)2. Then the Sobolev Hilbert space of
mixed regularity or anisotropic Sobolev Hilbert space Hs

mix(Rn1 × Rn2) is
defined as

Hs
mix(Rn1 × Rn2) :=

{
f ∈ L2(Rn1 × Rn2) :

(ξ(1), ξ(2)) 7→
2∏
j=1

(
1 + ‖ξ(j)‖22

) sj
2 |f̂(ξ(1), ξ(2))| ∈ L2(Rn1 × Rn2)


with norm given by

‖u‖Hs
mix(Rn1×Rn2 ) :=

=

∫
Rn1×Rn2

2∏
j=1

(
1 + ‖ξ(j)‖22

)sj
|f̂(ξ(1), ξ(2))|2 d(ξ(1), ξ(2))

 1
2

.

As in Chapter 2 we can restrict function in Hs
mix(Rn1 × Rn2) to a mea-

surable subset Ω = S × T ⊆ Rn1 × Rn2 and obtain the anisotropic Sobolev
Hilbert space Hs

mix(Ω) for non-integer smoothness s ∈ [0,∞)2.
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Proposition 5.2.32. Both versions of the anisotropic Sobolev Hilbert space,
(Hm

mix(Ω), ‖ · ‖Hm
mix(Ω)) and (Hs

mix(Ω), ‖ · ‖Hs
mix(Ω)), are Hilbert spaces.

Again, as in the situation of continuous functions, Theorem 5.2.29 gener-
alizes to the mixed regularity Sobolev Hilbert spaces.

Corollary 5.2.33. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be measurable.
Let Ω = S × T , m ∈ N2

0 and s ∈ [0,∞)2. Then, with the respective β-norms
on the tensor product spaces, we have

(Hm1(S)⊗Hm2(T ), ‖ · ‖β) ∼=
(
Hm
mix(Ω), ‖ · ‖Hm

mix(Ω)

)
and

(Hs1(S)⊗Hs2(T ), ‖ · ‖β) ∼=
(
Hs
mix(Ω), ‖ · ‖Hs

mix(Ω)

)
.

We will see in the next section that these mixed regularity Sobolev Hilbert
spaces have an additional advantage over classical Sobolev Hilbert spaces on
high-dimensional domains: We have much lower requirements for an analogue
of the embedding as in Theorem 2.1.13. This advantage, however, is bought
with a stricter norm.

Before we discuss this embedding and operators on tensor product spaces
in general, we give another example. It concerns the tensor product of native
spaces that were introduced in Section 2.2. The proof of the following theorem
can be found in, e.g., [61, Satz V 6].

Theorem 5.2.34. Let S ⊆ Rn1 and T ⊆ Rn2 be domains. Let the Hilbert
spaces (NK(1)(S), 〈·, ·〉K(1)) and (NK(2)(T ), 〈·, ·〉K(2)) be the native spaces of

the continuous, symmetric and positive definite kernels K(1) and K(2). Let β
be the norm induced by the inner products 〈·, ·〉K(1) and 〈·, ·〉K(2). Then

(NK(1)(S)⊗NK(2)(T ), ‖ · ‖β) ∼= (NK(S × T ), ‖ · ‖K)

holds with K : (S × S)× (T × T )→ R given as

K(x,y) = K(1)
(
x(1),y(1)

)
·K(2)

(
x(2),y(2)

)
for x = (x(1),x(2))T, y = (y(1),y(2))T and x(1), x(2) ∈ S and y(1), y(2) ∈ T .

This means that the tensor product of native spaces NK(1) and NK(2) is
again a native space with reproducing kernel that is the point-wise product
of the respective kernels K(1) and K(2).

5.3. Tensor Products of Operators

To finish this chapter we study tensor products of operators. We start
by defining the purely algebraic construction.

Definition 5.3.1. Let V , W , S and T be linear spaces with algebraic tensor
product spaces V ⊗W and S ⊗ T . Let A : V → S and B : W → T be linear.
Then the tensor product operator A⊗B : V ⊗W → S ⊗ T is defined by

(A⊗B)(t) :=
n∑
i=1

A(vi)⊗B(wi),(5.3.1)

where t ∈ V ⊗W has a representation t =
∑n

i=1 vi ⊗ wi.
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Theorem 5.3.2. The tensor product operator A ⊗ B defined by (5.3.1) is
independent of the representation of the argument and if there is a second
tensor product operator (A⊗B)′ defined by (5.3.1), then

A⊗B = (A⊗B)′,

i.e., the tensor product operator is unique for fixed A and B.

Proof. We start by showing that the definition of the tensor product
operator is independent of the representation of the argument. Hence, assume
that t ∈ V ⊗W has two representations

t =
n∑
i=1

vi ⊗ wi =
m∑
j=1

ṽj ⊗ w̃j .(5.3.2)

Next, let {b(1)
` : ` ∈ I(1)} be a basis of V and {b(2)

` : ` ∈ I(2)} be a basis of
W . Then we have the representations

vi =
∑
`∈I(1)

αi,`b
(1)
` , ṽj =

∑
`∈I(1)

α̃j,`b
(1)
`

and

wi =
∑
`∈I(1)

αi,`b
(2)
` , w̃j =

∑
`∈I(2)

α̃j,`b
(2)
` ,

where in each of the sums all but finitely many of the coefficients are zero.
Setting I = I(1) × I(2), it follows from (5.3.2) and the multilinearity of the
tensor product that

n∑
i=1

∑
`∈I

αi,`1αi,`2b
(1)
`1
⊗ b(2)

`2
=

m∑
j=1

∑
`∈I

α̃j,`1α̃j,`2b
(1)
`1
⊗ b(2)

`2
.

Exchanging in both sides the inner and outer sum and using the linear

independence of the b
(1)
`1
⊗ b(2)

`2
shows

n∑
i=1

αi,`1αi,`2 =

m∑
j=1

α̃j,`1α̃j,`2 .

From this we have immediately that
n∑
i=1

Av1 ⊗Bwi =
∑
`∈I

n∑
i=1

αi,`1αi,`2b
(1)
`1
⊗ b(2)

`2

=
∑
`∈I

m∑
j=1

α̃j,`1α̃j,`2b
(1)
`1
⊗ b(2)

`2

=
m∑
j=1

Aṽj ⊗Bw̃j ,

i.e., the independence of the representation of t.
Uniqueness then follows from the fact that a linear mapping is uniquely

determined by its values on a basis. �

If V , W , S and T are spaces of real-valued functions we have an especially
easy way to evaluate functions in the codomain of A⊗B.
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Proposition 5.3.3. Let V (Ω(1)) = {v : Ω(1) → R}, S(Ω(1)) = {s : Ω(1) →
R} and W (Ω(2)) = {w : Ω(2) → R}, T (Ω(2)) = {t : Ω(2) → R} be linear

spaces of real-valued functions on domains Ω(1) and Ω(2). Denote by V (Ω(1))⊗
W (Ω(2)) and S(Ω(1))⊗T (Ω(2)) the respective algebraic tensor product spaces.

Let A : V (Ω(1))→ S(Ω(1)) and B : W (Ω(2))→ T (Ω(2)) be linear. Then the

tensor product operator A⊗B : V (Ω(1))⊗W (Ω(2))→ S(Ω(1))⊗ T (Ω(2)) is
given by

((A⊗B)(t))(x) := ((A⊗B)(t))(x(1),x(2)) =

n∑
i=1

(Av)(x(1)) · (Bw)(x(2)),

where x(1) ∈ Ω(1), x(2) ∈ Ω(2) and t ∈ V (Ω(1))⊗W (Ω(2)) has a representation
t =

∑n
i=1 vi ⊗ wi.

We now consider normed spaces. Assume that we equip the algebraic
tensor spaces V ⊗W and S ⊗ T with the γ-norm from Definition 5.2.6 using
the respective norms of V and W or S and T . We recall that, in order
to avoid any confusion, we denote the norm on V ⊗W by γV⊗W and the
norm on S ⊗ T , accordingly, by γS⊗T . Consider a tensor t ∈ V ⊗W with
representation t =

∑n
i=1 vi ⊗ wi. Taking the γS⊗T -norm of its image under

the tensor product operator A⊗B yields

γS⊗T

(
n∑
i=1

Avi ⊗Bwi

)
≤

n∑
i=1

‖Avi‖S‖Bwi‖T

≤ ‖A‖V→S‖B‖W→T
n∑
i=1

‖vi‖V ‖wi‖W .

Now take the infimum on both sides over all representations of t. We obtain
the inequality

γS⊗T ((A⊗B)(t)) ≤ ‖A‖V→S‖B‖W→T · γV⊗W (t).

These types of inequalities are important for the error analysis in the later
chapters, especially if we use different norms the domain and codomain of
the tensor product operator. Note that we assume in the next definition that
the involved operators are linear and bounded.

Definition 5.3.4. Let V , W , S and T be normed spaces with algebraic tensor
product spaces V ⊗W and S ⊗ T . Two norms αV⊗W : V ⊗W → [0,∞) and
αS⊗T : S ⊗ T → [0,∞) are called uniformly compatible if

‖A⊗B‖V⊗W→S⊗T ≤ ‖A‖V→S‖B‖W→T ,(5.3.3)

for all A ∈ L(V, S) and B ∈ L(W,T ).
If V ⊗ W = S ⊗ T , a norm which is compatible to itself, is called a

uniform norm.

Definition 5.3.4 yields immediately that a tensor product operator of
bounded operators that is a mapping between two normed algebraic tensor
product space with uniformly compatible norms is bounded.

If the norms on V ⊗W and S ⊗ T are crossnorms, the situation gets
even better.
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Theorem 5.3.5. Let V , W , S and T be normed spaces with algebraic tensor
product spaces V ⊗ W and S ⊗ T . Let ‖ · ‖V⊗T : V ⊗ W → [0,∞) and
‖ · ‖S⊗T : S ⊗ T → [0,∞) be crossnorms. Then the norms are uniformly
compatible if and only if

‖A⊗B‖V⊗W→S⊗T = ‖A‖V→S‖B‖W→T ,(5.3.4)

for all A ∈ L(V, S) and B ∈ L(W,T ).

Proof. Clearly, if (5.3.4) holds, then (5.3.3) also holds. Now assume
that (5.3.3) holds. We need to show

‖A⊗B‖V⊗W→S⊗T ≥ ‖A‖V→S‖B‖W→T .
We use the usual definition of the operator norm

‖A⊗B‖V⊗W→S⊗T := sup
t∈V⊗W
‖t‖V⊗W=1

‖(A⊗B)(t)‖S⊗T

and estimate

‖A⊗B‖V⊗W→S⊗T = sup
t∈V⊗W
‖t‖V⊗W=1

‖(A⊗B)(t)‖S⊗T

≥ sup
v⊗w∈V⊗W
‖v⊗w‖V⊗W=1

‖(A⊗B)(v ⊗ w)‖S⊗T

= sup
v⊗w∈V⊗W
‖v⊗w‖V⊗W=1

‖Av‖S‖Bw‖T

≥ sup
v∈V
‖v‖V =1

‖Av‖S sup
w∈W
‖w‖W=1

‖Bw‖T

= ‖A‖V→S‖B‖W→T .
�

Before we show that the examples for crossnorms given in the previous
section are uniformly compatible, we remark that the construction of the
tensor product operator is purely algebraic. Hence, we need to discuss the
case when the domain and codomain are tensor product spaces, e.g., closures
of algebraic tensor spaces with respect to certain norms. This, however, is
an easy corollary of Theorem 2.1.12.

Corollary 5.3.6. Let V , W , S and T be normed spaces with algebraic tensor
product spaces V ⊗W and S⊗T . Let αV⊗W and αS⊗T be uniformly compatible
norms. Let A ∈ L(V, S) and B ∈ L(W,T ). Then the tensor product operator
A⊗B : V ⊗W → S⊗T has a unique extension A⊗B : V⊗W → S⊗T , such
that ‖A⊗B‖V⊗W→S⊗T = ‖A⊗B‖V⊗W→S⊗T .

We now come back to the examples of crossnorms introduced in Sec-
tion 5.2. We will see that all these norms are pairwise uniformly compatible.
We recall that the λ-norm is defined in Definition 5.2.2 and the γ-norm is
defined in Definition 5.2.6.

Theorem 5.3.7. Let V , W , S and T be normed spaces with algebraic tensor
product spaces V ⊗W and S ⊗ T . Then the following relations hold between
the λ-, γ- and any other reasonable crossnorms ‖ · ‖V⊗W and ‖ · ‖S⊗T .
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(1) ‖ · ‖λ,V⊗W and ‖ · ‖λ,S⊗T are uniformly compatible.

(2) Every reasonable crossnorm ‖ · ‖V⊗W is uniformly compatible with
‖ · ‖λ,S⊗T .

(3) ‖ · ‖γ,V⊗W and ‖ · ‖γ,S⊗T are uniformly compatible.

(4) ‖ · ‖γ,V⊗W is uniformly compatible with every crossnorm ‖ · ‖S⊗T .

Proof. The theorem is a generalization of a result given in [58], however
the proof ideas there can be applied in the same way. �

This means in particular that the λ-, γ- and β-norms are uniformly
compatible. Additionally, we see that all induced norms are compatible.

Theorem 5.3.8. Let V , W , S and T be pre-Hilbert spaces with algebraic
tensor product spaces V ⊗W and S ⊗ T . Then the induced norms ‖ · ‖β,V⊗W
and ‖ · ‖β,S⊗T are uniformly compatible.

Proof. Assume that A ∈ L(V, S), B ∈ L(W,T ). Let t ∈ V ⊗ W .
Following Lemma 5.1.11 we find an r ∈ N and linearly independent sets
{vi}1≤i≤r ⊆ V and {wi}1≤i≤r ⊆ W such that t has the representation
t =

∑r
i=1 vi ⊗ wi.

We define an r×r matrix C = (〈Bwi, Bwk〉W ). This matrix is symmetric
and positive-definite and can therefor be written as C = DDT with a
symmetric and positive-definite r × r matrix D.

With this, we can bound∥∥∥∥∥
r∑
i=1

Avi ⊗Bwi

∥∥∥∥∥
2

β,S×T

=

r∑
i,k=1

〈Avi, Avk〉S〈Bwi, Bwk〉T

=

r∑
i,k=1

〈Avi, Avk〉S
r∑
`=1

di`d`k

=

r∑
`=1

〈
r∑
i=1

di`Avi,

r∑
k=1

d`kAvk

〉
S

=
r∑
`=1

∥∥∥∥∥
r∑
i=1

di`Avi

∥∥∥∥∥
2

S

=
r∑
`=1

∥∥∥∥∥A
(

r∑
i=1

di`vi

)∥∥∥∥∥
2

S

≤ ‖A‖2V→S
r∑
`=1

〈
r∑
i=1

di`vi,

r∑
k=1

d`kvk

〉
V

= ‖A‖2V→S
r∑

i,k=1

〈vi, vk〉V
r∑
`=1

di`d`k

= ‖A‖2V→S
r∑

i,k=1

〈vi, vk〉V 〈Bwi, Bwk〉W .

Next, we use that the r× r matrix C̃ = (〈vi, vk〉W ) is symmetric and positive

definite and can hence be written as C̃ = D̃D̃T. Using the same trick as
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before yields

r∑
i,k=1

〈vi, vk〉V 〈Bwi, Bwk〉W =
r∑
`=1

∥∥∥∥∥
r∑
i=1

d̃i`Bwi

∥∥∥∥∥
2

T

≤ ‖B‖2W→T
r∑

i,k=1

〈vi, vk〉V 〈wi, wk〉W

= ‖B‖2W→T

∥∥∥∥∥
r∑
i=1

vi ⊗ wi

∥∥∥∥∥
2

β,V⊗W

.

Hence, we have shown that∥∥∥∥∥
r∑
i=1

Avi ⊗Bwi

∥∥∥∥∥
2

β,S⊗T

≤ ‖A‖2V→s‖B‖2W→T

∥∥∥∥∥
r∑
i=1

vi ⊗ wi

∥∥∥∥∥
2

β,V⊗W

,

which means that the norms are uniformly compatible. �

The whole next chapter will be dedicated to an application of the theory
presented here. Before we discuss this special tensor product operator in detail,
we come back to the anisotropic Sobolev Hilbert spaces Hm

mix(Ω) defined
in Definition 5.2.30 and its generalization introduced in Definition 5.2.31
Hs
mix(Ω). For these spaces we give now an analogous result to the Sobolev

embedding theorem in Theorem 2.1.13.

Theorem 5.3.9. Let S ⊆ Rn1 and T ⊆ Rn2, n1, n2 ∈ N, be Lipschitz
domains. Let s ∈ R2 such that s1 > n1/2 and s2 > n2/2. Then there exists a
bounded, linear embedding operator ι : Hs

mix(S × T )→ C(S × T ).

Proof. From Theorem 2.1.13 we know, under the assumptions on s1

and s2, that there are continuous, linear operators ι(1) : Hs1(S) → C(S)

and ι(2) : Hs2(T ) → C(T ). Taking the tensor product of these operators

yields an operator ι(1) ⊗ ι(2) mapping the algebraic tensor product space
Hs1(S) ⊗β Hs2(T ) into the algebraic tensor product space C(S) ⊗λ C(T ),
i.e.,

ι(1) ⊗ ι(2) : Hs1(S)⊗Hs2(T )→ C(S)⊗ C(T ).

By Theorem 5.3.7 the norms on Hs1(S) ⊗ Hs2(T ) and C(S) ⊗ C(T ) are

compatible, hence ι(1)⊗ ι(2) is bounded. This means it can be extended to an
bounded and linear operator ι, which maps Hs

mix(S × T ) into C(S × T ). �

Theorem 5.3.9 allows us to embed mixed regularity Sobolev spaces
into spaces of continuous functions with much lower assumptions on the
smoothness, in particular, if the dimension of the domain, n1 + n2 is large.
This, however, is paid with a stronger norm.



CHAPTER 6

The Smolyak Method

We are now able to introduce and examine a special tensor product
operator in detail. This Smolyak operator allows us to handle high-directional
approximation problems by solving approximation problems in the single
directions and then combining these approximations in an orderly fashion.
In Section 6.1 we study this method in the most basic setting. Next, we
follow the literature and restrict ourselves to a special kind of index set which
we first study in more detail in Section 6.2 and then use it in the Smolyak
method in Section 6.3, where we also repeat and refine the results obtained
in the first section of this chapter. Finally, we briefly introduce a general way
to adaptively obtain an index set for a fixed target function in Section 6.4.

6.1. Basic Smolyak Algorithm

The Smolyak method uses two tools. First, tensor products which we
studied in detail in Chapter 5 and second, special subsets of Nd. We discuss
these sets in the next subsection.

6.1.1. Monotone Index Sets. We start by introducing and studying
non-empty subsets of Nd which exhibit a special structure. The restriction
to these special index sets is necessary for the Smolyak method to be well-
defined.

Definition 6.1.1. A non-empty index set Λ(d) ⊆ Nd is called monotone if
λ ∈ Λ(d) and ν ∈ Nd with ν ≤ λ implies that ν ∈ Λ(d).

Sometimes monotone index sets are also called downwards closed. We
can reformulate this definition in a way that makes it easier to check if an
index set is monotone.

Proposition 6.1.2. The non-empty index set Λ(d) ⊆ Nd is monotone if
and only if for each λ ∈ Λ(d) with λj ≥ 2, 1 ≤ j ≤ d, also λ − ej ∈ Λ(d),

1 ≤ j ≤ d. Here, ej denotes the j-th unit vector in Rd.

In Fig. 1 we give two examples of index sets. Although Λ(d) is defined
as a subset of Nd it has become customary to display the set as is done
here. The elements of Λ(d) are the respective right upper corners of the gray
boxes. The left depicted index set is monotone. However, the right one is an
example of a non-monotone set. The index (2, 4)T is an element of this index
set but (2, 3)T is not. This is a violation of the condition in Proposition 6.1.2.

For every direction 1 ≤ j ≤ d we find a unique value λj,max which is the
maximum value of the j-th component of any multi-index in Λ(d).

117
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Figure 1. Example of a monotone index set (left) and a
non-monotone index set (right).

Definition 6.1.3. Let Λ(d) ⊆ Nd be a bounded index set. Then the maximum
value of the j-th component of any multi-index λ ∈ Λ(d) is defined as

λj,max := max{λj : λ ∈ Λ(d)}.(6.1.1)

Clearly, for bounded index sets this value always exists and is for every
1 ≤ j ≤ d unique. However, there is not necessarily only one λ ∈ Λ(d) which
has λj,max as its j-th entry. Indeed, as we see in in the left set of Fig. 1
there are two multi-indices, (1, 4)T and (2, 4)T, whose second components
are λ2,max = 4.

The special structure of the monotone index set Λ(d) allows us to incre-
mentally build it direction by direction. To do this, we need to introduce two
further sets, which are subsets of Λ(d).

Definition 6.1.4. Let Λ(d) ⊆ Nd, d ∈ N, be a monotone index set. Define

for 1 ≤ i ≤ d the set Λ̃(i) ⊆ Λ(d) by

Λ̃(i) :=
{
λ̃ ∈ Ni : there is a λ ∈ Λ(d) such that λ̃m = λm, 1 ≤ m ≤ i

}(6.1.2)

and for 1 ≤ i ≤ d− 1 and 1 ≤ k ≤ λi+1,max the set Λ̃(k, i) ⊆ Λ(d) by

Λ̃(k, i) :=
{
λ̃ ∈ Ni : there is a λ ∈ Λ(d) such that λ̃m = λm, 1 ≤ m ≤ i,

(6.1.3)

and λi+1 = k
}
.

The index set Λ̃(i) ⊆ Ni in (6.1.2) is the restriction of the monotone

index set Λ(d) to the first i directions. The set Λ̃(k, i) in (6.1.3) is a special
restriction to the first i directions where we only take elements of Λ(d) whose
(i+ 1)st entry is equal to k. We give examples of these sets in Fig. 2.

From Definition 6.1.4, the following proposition is straight forward.

Proposition 6.1.5. Let Λ(d) ⊆ Nd, d ∈ N, be a monotone index set. Then
the following statements hold.

(1) For fixed 1 ≤ i ≤ d − 1, the sets Λ̃(k, i) are nested for 2 ≤ k ≤
λi+1,max, i.e.,

Λ̃(k, i) ⊆ Λ̃(k − 1, i).
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Figure 2. Examples of Λ(3) (top) and the associated subsets

Λ̃(2), the restriction of Λ(3) to the first 2 directions defined

in (6.1.2) (bottom left) and Λ̃(3, 2), the restriction of Λ(3)
to the first 2 directions using those λ ∈ Λ(3) with λ3 = 3,
defined in (6.1.3) (bottom right).

(2) We can construct Λ(d) inductively. We have Λ(1) = {1, . . . , λ1,max}
and for i = 2, . . . , d we have

Λ̃(i) =

λi,max⋃
k=1

Λ̃(k, i− 1)× {k}.(6.1.4)

And obviously, Λ̃(d) = Λ(d).

In Fig. 3 we give three examples of two-directional monotone index
sets. The one on the left is usually called isotropic, i.e., it is extended in
all directions uniformly, and the one in the middle is most often called
anisotropic, i.e., the extension of the set in each direction can be different. We
will see in Section 6.2 that isotropic index sets can be seen as special cases
of anisotropic ones. We will study anisotropic index sets in more detail there.
The right most set is an example of a full product set. This set is, for fixed
λ1,max, . . . , λd,max, the index set with the most elements of all monotone sets
and usually an undesired extremal case.

6.1.2. Definition of the Basic Smolyak Operator. We now give
the precise definition of the Smolyak operator. We assume that we have
two families of linear spaces, V (1), . . . , V (d) and S(1), . . . , S(d). These spaces
may coincide, i.e., V (i) = V (j), S(i) = S(j) or even V (i) = S(j), for some
1 ≤ i, j ≤ d, however we do not require them to. Usually these spaces are
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Figure 3. Three examples of a monotone index set: Isotropic
(left), anisotropic (middle) and full product (right).

either Sobolev spaces on lower-dimensional domains Ω(j) ⊆ Rnj , 1 ≤ j ≤ d
and nj = 1, 2, 3, i.e., V (j) = W

σj
pj (Ω(j)) and S(j) = W

τj
qj (Ω(j)) with 1 ≤

pj , qj ≤ ∞ and 0 ≤ σj , τj ≤ ∞ for every 1 ≤ j ≤ d, or spaces of continuously

differentiable functions Ckj (Ω(j)), kj ∈ N0 ∪ {∞} on Ω(j). Another suitable

choice is S(j) = R, if we are interested in quadrature rules, see, e.g., [83].
On these spaces we define special operators.

Definition 6.1.6. Let V (1), . . . , V (d) and S(1), . . . , S(d) be linear spaces. For

1 ≤ j ≤ d, k ∈ N let A
(j)
k : V (j) → S(j) be linear operators and set A

(j)
0 = 0.

For 1 ≤ j ≤ d and k ∈ N we define the difference operators ∆
(j)
k : V (j) → S(j)

by

∆
(j)
k := A

(j)
k −A

(j)
k−1.(6.1.5)

Definition 6.1.6 means that we can express A
(j)
k as a telescoping sum

A
(j)
k =

k∑
i=1

∆
(j)
i , 1 ≤ j ≤ d, k ∈ N,(6.1.6)

with, again, A
(j)
0 = 0.

In the original construction of Smolyak in [83] the operators A
(j)
k were

univariate quadrature rules. Later on, e.g., in [11, 90], different interpolation

and approximation operators have been used. In this thesis we will set A
(j)
k

to be different kernel-based approximation operators. Special interest lies

in the choice of multi-level operators A
(j)

L(j) of certain, direction dependent

levels L(j). We studied these operators Chapter 4 in detail.
The original idea of Smolyak was to combine tensor products of the

difference operators to obtain an operator which maps the algebraic tensor
product space V (1) ⊗ · · · ⊗ V (d) into the algebraic tensor product space
S(1) ⊗ · · · ⊗ S(d). This combination is done in such a way that the resulting
tensor product operator retains the approximation properties of the direction-

wise operators (A
(j)
k )k∈N but is also not too expensive to compute. The idea

is that this combination is done according to a given monotone index set
Λ(d) ⊆ Nd.

Definition 6.1.7. Let V (1), . . . , V (d) and S(1), . . . , S(d) be linear space with

algebraic tensor product spaces
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j). Let Λ(d) ⊆ Nd be a
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monotone index set. For linear operators A
(j)
k : V (j) → S(j), 1 ≤ j ≤ d, k ∈ N,

let ∆
(j)
k = A

(j)
k −A

(j)
k−1 be the difference operators defined in Definition 6.1.6.

Then the (basic) Smolyak operator AΛ(d) :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j) is
defined as the tensor product operator

AΛ(d) :=
∑
λ∈Λ(d)

∆λ :=
∑
λ∈Λ(d)

d⊗
j=1

∆
(j)
λj
.(6.1.7)

We will also call this operator (basic) Smolyak method or (basic) Smolyak
algorithm. The definition of AΛ(d) makes it obvious why we require the index

set Λ(d) to be monotone, otherwise the difference operators ∆
(j)
k would not

be well-defined.
Following Corollary 5.3.6 we can extend AΛ(d) to an operator on the

closure of the algebraic tensor product spaces.

Proposition 6.1.8. For 1 ≤ j ≤ d let (V (j), ‖ · ‖V (j)) and (S(j), ‖ · ‖S(j)) be

normed spaces. Let
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j) be the respective algebraic tensor

product spaces. Assume that the tensor product norms α :
⊗d

j=1 V
(j) → [0,∞)

and α̃ :
⊗d

j=1 S
(j) → [0,∞) are uniformly compatible and let V (1)⊗ · · ·⊗V (d)

and S(1)⊗ · · ·⊗S(d) be the closures of the algebraic tensor product spaces with

respect to α and α̃. Assume further that the operators A
(j)
k : V (j) → S(j) are

bounded for all 1 ≤ j ≤ d and k ∈ N.
Then there exists a unique extension of the Smolyak operator to an

operator V (1)⊗ · · ·⊗V (d) → S(1)⊗ · · ·⊗S(d).
We write for this extension again AΛ(d).

We now derive some alternative, but equivalent, representations of the
Smolyak operator AΛ(d). First, we note that for d = 1 we have, with (6.1.6),

AΛ(1) =
∑
λ∈Λ(1)

∆λ =

λ1,max∑
k=1

∆
(1)
k = A

(1)
λ1,max

.

This is simply the one-directional operator of the highest index.

Next, we follow [90] and express AΛ(d) in terms of the operators A
(j)
k . To

do so, we need to resolve the tensor products of the difference operators in
(6.1.7). We find that, for a fixed λ ∈ Λ(d), the identity

∆λ =
d⊗
j=1

∆
(j)
λj

=
∑

β∈{0,1}d
λ−β≥1

(−1)‖β‖1
d⊗
j=1

A
(j)
λj−βj

holds. Here, we used that we set A
(j)
0 = 0, 1 ≤ j ≤ d. Inserting this represen-

tation into (6.1.7) yields a formula which is universally called combination
technique.
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Proposition 6.1.9. With the notation and assumptions of Definition 6.1.7
the Smolyak operator can be expressed as

AΛ(d) =
∑
λ∈Λ(d)

∑
β∈{0,1}d
λ+β∈Λ(d)

(−1)‖β‖1
(
A

(1)
λ1
⊗ · · · ⊗A(d)

λd

)
.(6.1.8)

This representation allows us to use the operators A
(j)
k directly instead

of having to compute the difference operators first. This makes an imple-
mentation of the Smolyak operator particularly simple. It also allows us to
derive an explicit formula for the point-evaluation of the codomain of AΛ(d).
This is an easy conclusion of Theorem 5.1.10.

Proposition 6.1.10. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a domain.

Assume that V (j)(Ω(j)) = {v(j) : Ω(j) → R} and S(j)(Ω(j)) = {s(j) : Ω(j) →
R} are linear spaces of functions defined on Ω(j) with algebraic tensor product

spaces
⊗d

j=1 V
(j)(Ω(j)) and

⊗d
j=1 S

(j)(Ω(j)). For all 1 ≤ j ≤ d and k ∈ N
let A

(j)
k : V (j)(Ω(j)) → S(j)(Ω(j)) be linear operators. Let Λ(d) ⊆ Nd be a

monotone index set.
Let AΛ(d) :

⊗d
j=1 V

(j)(Ω(j))→
⊗d

j=1 S
(j)(Ω(j)) be the Smolyak operator.

Then the identity

AΛ(d)(v
(1) ⊗ · · · ⊗ v(d))(x) =

∑
λ∈Λ(d)

∑
β∈{0,1}d
λ+β∈Λ(d)

(−1)‖β‖1
d∏
j=1

(
A

(j)
λj
v(j)
)

(x(j)),

holds for all v(1) ⊗ · · · ⊗ v(d) ∈
⊗d

j=1 V
(j)(Ω(j)) and x = (x(1), . . . ,x(d))T ∈

×d
j=1 Ω(j).

Another way to represent the Smolyak operator is by means of a recursion
formula, i.e., expressing the d-directional operator AΛ(d) using a d − 1-
directional Smolyak operator and a one-directional difference operator. The
key is to use the recursive representation of the monotone index set in (6.1.4).

That is, we can express Λ(d) as a union of sets (Λ̃(k, d− 1)×{k})1≤k≤λd,max .
We have

AΛ(d) =
∑
λ∈Λ(d)

d⊗
j=1

(
A

(j)
λj
−A(j)

λj−1

)

=

λd,max∑
k=1

∑
λ̃∈Λ̃(k,d−1)

d−1⊗
j=1

(
A

(j)

λ̃j
−A(j)

λ̃j+1

)
⊗
(
A

(d)
k −A

(d)
k−1

)

=

λd,max∑
k=1

A
Λ̃(k,d−1)

⊗
(
A

(d)
k −A

(d)
k−1

)
.

Hence, we have a second alternative to express the basic Smolyak operator.
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Proposition 6.1.11. With the notation and assumptions of Definition 6.1.7
the Smolyak operator can be expressed as

AΛ(d) =

λd,max∑
k=1

A
Λ̃(k,d−1)

⊗
(
A

(d)
k −A

(d)
k−1

)
.(6.1.9)

This representation will prove essential when we show some of the prop-
erties of the Smolyak operator in Section 6.1.4.

The last representation we give follows the same ideas but uses recursion
in a different way. It is based on the following observation.

Proposition 6.1.12. Let Λ(d) ⊆ Nd be a monotone index set and Λ̃(i) be
the restriction of Λ(d) to the first i, 1 ≤ i ≤ d − 1, directions. For every

λ̃ ∈ Λ̃(i) we find a unique λi+1(λ̃) ∈ N with

λi+1(λ̃) = max
{
k ∈ {1, . . . , λi+1,max} : (λ̃, k)T ∈ Λ̃(i+ 1)

}
.

This allows us to express the Smolyak operator in a different recursive
way.

Proposition 6.1.13. With the notation and assumptions of Definition 6.1.7
the Smolyak operator can be expressed as

AΛ(d) =
∑

λ̃∈Λ̃(d−1)

d−1⊗
j=1

∆
(j)

λ̃j
⊗A(d)

λd(λ̃)
,(6.1.10)

where λd(λ̃) is as in Proposition 6.1.12.

Proof. With λd(λ̃) as in Proposition 6.1.12 we have

AΛ(d) =
∑
λ∈Λ(d)

d⊗
j=1

∆
(j)
λj

=
∑

λ̃∈Λ̃(d−1)

λd(λ̃)∑
k=1

d−1⊗
j=1

∆
(j)

λ̃j
⊗
(
A

(d)
k −A

(d)
k−1

)

=
∑

λ̃∈Λ̃(d−1)

d−1⊗
j=1

∆
(j)

λ̃j
⊗

λd(λ̃)∑
k=1

(
A

(d)
k −A

(d)
k−1

) .

In the last step we used the multilinearity of the tensor product. Resolving
the telescope sum

λd(λ̃)∑
k=1

(
A

(d)
k −A

(d)
k−1

)
= A

(d)

λd(λ̃)

yields the claim. �

We will use this form of the Smolyak operator to derive error representa-
tions of ι − AΛ(d). We note that for general monotone index sets Λ(d) we

can not give an explicit formula for λd(λ̃). However, later, we discuss the
anisotropic Smolyak operator and there we can give a closed form for this
quantity.
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6.1.3. Sparse Grids. Sparse grids are inseparably linked to Smolyak
operators. This goes even so far that the corresponding methods are often used
as synonyms, see, e.g., [70, Chapter 15]. Assume that the low-dimensional

operators (A
(j)
i )i∈N, 1 ≤ j ≤ d, are approximation operators that use point

data of the target functions. Then the point sets the Smolyak operator of
(6.1.7) uses are called sparse grids. We now go into more detail.

We assume that every low-dimensional domain Ω(j) ⊆ Rnj , nj ∈ N,

1 ≤ j ≤ d, contains a sequence of point sets (X
(j)
i )i∈N with cardinality

#X
(j)
i = N

(j)
i , i.e., for i ∈ N, we have

X
(j)
i :=

{
x

(j)
i,1 , . . . ,x

(j)

i,N
(j)
i

}
⊆ Ω(j).

We assume that these X
(j)
i get denser and denser in Ω(j), i.e., N

(j)
i ≤ N (j)

i+1,
1 ≤ j ≤ d, i ∈ N, and, although in applications this will often be the case,
we do not require them to be nested.

We assume further that for every 1 ≤ j ≤ d we have spaces of functions
V (j)(Ω(j)) and S(j)(Ω(j)) defined on Ω(j). We assume further that for every

i ∈ N we find in S(j)(Ω(j)) a set of Lagrange functions {χ(j)
i,m}1≤m≤N(j)

i

:

S(j)(Ω(j))→ R corresponding the set X
(j)
i . We recall that Lagrange functions

are mappings that satisfy χ
(j)
i,k (x

(j)
i,m) = δk,m for all 1 ≤ k,m ≤ N (j)

i .

We then define operators A
(j)
i : V (j)(Ω(j))→ S(j)(Ω(j)) by

A
(j)
i (f (j)) =

N
(j)
i∑

k=1

f (j)(x
(j)
i,k )χ

(j)
i,k , f (j) ∈ V (j)(Ω(j)), x

(j)
i,k ∈ X

(j)
i .

Examples for these operators are approximation operators using piece-wise
linear splines, see, e.g., [11], Lagrange polynomials of certain degree, see, e.g.,
[90], or, in the case of this thesis, kernel-based (multilevel) operators using
Lagrange functions, see Chapters 3 and 4.

Using these operators in the formula of the combination technique, (6.1.8),

with a monotone index set Λ(d) ⊆ Nd yields for f ∈
⊗d

j=1 V
(j)(Ω(j))

AΛ(d)(f) =

=
∑
λ∈Λ(d)

∑
β∈{0,1}d
λ+β∈Λ(d)

(−1)‖β‖1

N
(1)
λ1∑

k1=1

· · ·
N

(d)
λd∑

kd=1

f
(
x

(1)
λ1,k1

, . . . ,x
(d)
λd,kd

) d⊗
j=1

χ
(j)
λj ,kj

.

Investigating this identity closely yields that the Smolyak operator only

uses functions values of f ∈
⊗d

j=1 V
(j)(Ω(j)) on special combinations of the

point sets X
(j)
i .

Definition 6.1.14. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be low-

dimensional domains and let (X
(j)
i )i∈N ⊆ Ω(j) be a sequence of sets of

sites. Let Λ(d) ⊆ Nd be a monotone index set. Then the sparse grid HΛ(d) ⊆
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×d
j=1 Ω(j) is defined by

HΛ(d) =
⋃

λ∈Λ(d)

(
X

(1)
λ1
× · · · ×X(d)

λd

)
.(6.1.11)

In Fig. 4 we give examples of two-directional sparse grids in [−1, 1]2. In
each column we use the corresponding index set depicted in Fig. 3 and for
each row we use a different direction-independent family of one-dimensional
point sets (Xi)1≤i≤4. Here we omit the superscript. In each of the three

families the sets have cardinality N1 = 1 and Ni = 2i−1 + 1, i = 2, 3, 4. In
any of the three cases we set X1 = {0}.

On the top row we discretized the interval [−1, 1] uniformly with fill

distance hi = 2−i+1 for 2 ≤ i ≤ 4, i.e., the point sets Xunif
i are defined as

Xunif
i := {−1.0 + k · hi : 0 ≤ k ≤ 2i−1}, 2 ≤ i ≤ 4.

In the middle row we use the extrema of the i-th Chebyshev polynomial.
These can be computed to be

xCCi,k = − cos

(
π · (k − 1)

Ni − 1

)
, 1 ≤ k ≤ Ni, 2 ≤ i ≤ 4

−1 0 1
−1
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1

−1 0 1
−1

0

1

−1 0 1
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1

−1 0 1
−1

0

1

Figure 4. Examples of sparse grids for the index sets of
Fig. 3 for uniformly distributed points (top row), Clenshaw-
Curtis points (middle row) and i.i.d. drawn points (bottom
row).
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yielding the Clenshaw-Curtis points

XCC
i := {xCCi,k : 1 ≤ k ≤ Ni}.

In the bottom row we have drawn Ni independent and identically dis-
tributed points using the C++ -class std::uniform_real_distribution<>

to obtain the point sets (Xrdm
i ).

The first two families, (Xunif
i ) and (XCC

i ), are examples for nested point
sets. Another often used example for a nested point set are the Leja-points

defined recursively in the following way, see, e.g., [53]: Define XLeja
1 = {x0}

for a given point x0, and for i = 2, 3, . . . , define the Leja point set XLeja
i by

XLeja
i = XLeja

i−1 ∪

{
xi : xi = argmax

x∈[−1,1]

i−1∏
k=0

|x− xk|, xk ∈ XLeja
i−1

}
.

While the cardinality of uniformly distributed and Clenshaw-Curtis point
sets doubles from i to i+ 1, the growth of the cardinality of the Leja point
sets is just 1.

The point sets (Xrdm
i ) are with high probability not nested. This leads

to sparse grids with higher numbers of points.
For each if these families of point sets we see the influence of the index

set Λ(2) on the sparse grid. In the first column of Fig. 4 we used the isotropic
index set which leads to the isotropic sparse grid, which in turn is a special
case of the anisotropic sparse grid in the second column. The grids in the
third column do not exhibit any sparseness and are full tensor product grids.
Although the underlying index sets fit the theory presented so far we do
not study these kinds of product grids further and focus in Section 6.2 on
anisotropic index sets.

In early works on Smolyak methods, see, e.g., [11, 30], give error estimates
in terms of the fill distance of the sparse grid, h

HΛ(d),×d
j=1 Ω(j) , to allow a

comparison to already known, classical results in approximation theory.
However, the development went away from it, as this quantity is not suitable
to represent sparse grids. In more recent works error estimates are given in
the total number of points #HΛ(d) of the sparse grid, see, e.g., [16, 43, 69].
This has also drawbacks. Primarily, we lose information about the potential
anisotropy of the problem as there are many sparse grids with the same
number of points but completely different families of direction-wise point

sets (X
(j)
k ) or with different index sets Λ(d).

Additionally, for given X
(j)
i , 1 ≤ j ≤ d, i ∈ N, and monotone index set

Λ(d) we know only for very few exceptions the exact number of distinct
points in the corresponding sparse grid HΛ(d). This makes finding an answer
to the question which sparse grid to use to achieve a certain error bound
hard.

Nevertheless, we give now two examples where we do know the exact
value of #HΛ(d).
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First, if Λ(d) is the full product index set and therefore HΛ(d) the full
tensor product grid, the cardinality is simply

#HΛ(d) =
d∏
j=1

λj,max∑
λj=1

(
#X

(j)
λj
−#X

(j)
λj−1

)
.

We used again the convention that X
(j)
0 = ∅. This means that the cardinality

of HΛ(d) grows exponentially with the number of directions d. We reiterate
that this set plays a subordinate role.

The second example is more interesting. If Λ(d) is the isotropic index set

and the families of low-dimensional point sets (X
(j)
i )i∈N are independent of

the directions 1 ≤ j ≤ d and nested, i.e., Xi ⊂ Xi+1, we know by [78, Section
3.3] that the cardinality of the corresponding isotropic sparse grid can be
computed according to the following theorem.

Theorem 6.1.15. Let Λ(d) be an isotropic index set with uniform largest
possible entry in any component of any multi-index λmax. Then the cardinality
of the sparse grid HΛ(d) constructed with a nested, uniform family of low-
dimensional point sets (Xi)i∈N satisfies

#HΛ(d) =
∑

(h1,...,hλmax )∈Jλmax,d

d!

h1! · · · · · hλmax !

λmax∏
λ=1

(#Xλ −#Xλ−1)hλ ,

where we set #X0 = 0 and used the index set

Jm,d =

{
h ∈ {0, . . . , d}m : ‖h‖1 = d and

m∑
n=2

(n− 1)hn ≤ m− 1

}
.

Although this theorem gives a formula how to compute the exact number
of #HΛ(d) it is only valid for a very restricted case. We note that in the setting
Theorem 6.1.15 and even in the case of non-nested, direction independent
Xi there is a more easily computable upper bound on #HΛ(d), see, e.g., [70,
Lemma 15.5]. For more general monotone index sets or non-uniform point
sets we know of no analogue.

6.1.4. Selected Properties of AΛ(d). One important aspect of the
construction of the Smolyak algorithm is that it carries over certain nice
properties of the low-dimensional approximation operators.

The first of these properties we want to study in more detail is exactness.
We recall that we denote the embedding operator by ι.

Definition 6.1.16. Let V and S be linear spaces. Let Π ⊆ V be a subspace.
We call the operator A : V → S exact on Π, if

A(f) = ι(f), f ∈ Π.

We see that if the family of operators (A
(j)
i )i∈N, 1 ≤ j ≤ d, is exact then

the Smolyak operator is also exact in a specific subspace of
⊗d

j=1 V
(j).

Theorem 6.1.17. Let V (1), . . . , V (d) and S(1), . . . , S(d) be linear spaces with

algebraic tensor product spaces
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j). Let (Π
(j)
i )i∈N ⊆
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V (j), 1 ≤ j ≤ d, be a sequence of nested subspaces, i.e.,

∅ := Π
(j)
0 ⊆ Π

(j)
1 ⊆ Π

(j)
2 ⊆ · · · ⊆ V

(j) 1 ≤ j ≤ d.

Assume that, for 1 ≤ j ≤ d and i ∈ N, the operator A
(j)
i : V (j) → S(j) is

exact on Π
(j)
i . Then the Smolyak operator AΛ(d) :

⊗d
j=1 V

(j) →
⊗d

j=1 S
(j) is

exact on
∑
λ∈Λ(d) Π

(1)
λ1
⊗ · · · ⊗Π

(d)
λd

, i.e.,

AΛ(d)(f) = ι(f), f ∈
∑
λ∈Λ(d)

Π
(1)
λ1
⊗ · · · ⊗Π

(d)
λd
.

The operator ι =
⊗d

j=1 ι
(j) :

⊗d
j=1 V

(j) →
⊗d

j=1 S
(j) denotes the tensor

product embedding operator.

Proof. The main idea of the proof is to use the recursion identity
(6.1.9) and to do an induction over the number of directions d. Since all
operators involved are linear it suffices to show exactness for elementary
tensors f = f (1) ⊗ · · · ⊗ f (d). Assume there is a multi-index λ∗ such that

f ∈
⊗d

j=1 Π
(j)
λ∗j

. Hence, for 1 ≤ j ≤ d, we have

A
(j)
λ∗j

(f (j)) = ι(j)(f (j)), f (j) ∈ Π
(j)
λ∗j
,

since we assume that A
(j)
λ∗j

is exact on Π
(j)
λ∗j

. We now need to show that if

λ∗ ∈ Λ(d) then the Smolyak operator AΛ(d) is exact on
⊗d

j=1 Π
(j)
λ∗j

.

First, consider d = 1. We have AΛ(1) = A
(1)
λ1,max

and λ1,max ≥ λ∗1. The

nestedness of Π
(1)
k . in particular Π

(1)
λ∗1
⊆ Π

(1)
λ1,max

, yields for f (1) ∈ Π
(1)
λ∗1

AΛ(1)(f
(1)) = A

(1)
λ1,max

(f (1)) = A
(1)
λ∗1

(f (1)) = ι(1)(f (1)).

For the induction step d− 1 d we recall the recursion formula of the
Smolyak operator

AΛ(d) =

λd,max∑
k=1

A
Λ̃(k,d−1)

⊗ (A
(d)
k −A

(d)
k−1).(6.1.12)

In direction d we know that A
(d)
λ∗d

is exact on Π
(d)
λ∗d

and by the nestedness

of the Π
(d)
k we know that as long as k − 1 ≥ λ∗d we have, for f (d) ∈ Π

(d)
λ∗d

,

A
(d)
k (f (d)) = A

(d)
k−1(f (d)) = ι(d)(f (d)).

This means that

A
(d)
k (f (d))−A(d)

k−1(f (d)) = 0

holds for k − 1 ≥ λ∗d. Hence, we can truncate the sum in (6.1.12) at λ∗d and
obtain

AΛ(d) =

λ∗d∑
k=1

A
Λ̃(k,d−1)

⊗
(
A

(d)
k −A

(d)
k−1

)
.(6.1.13)
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We assume that λ∗ ∈ Λ(d). This means that (λ∗1, . . . , λ
∗
d−1)T ∈ Λ̃(λ∗d, d− 1).

And by Proposition 6.1.5(1) this also implies that (λ∗1, . . . , λ
∗
d−1)T ∈ Λ̃(k, d−1)

for every k ≤ λ∗d. Hence, the induction hypothesis guarantees that

A
Λ̃(k,d−1)

(f (1) ⊗ · · · ⊗ f (d−1)) =

d−1⊗
j=1

ι(j)

 (f (1) ⊗ · · · ⊗ f (d−1)).

Putting this in the recursive representation of the Smolyak operator of

(6.1.13) and applying it to f ∈
⊗d

j=1 Π
(j)
λ∗j

yields

AΛ(d)f =

λ∗d∑
k=1

A
Λ̃(k,d−1)

(f (1) ⊗ · · · ⊗ f (d−1))⊗
(
A

(d)
k −A

(d)
k−1

)
(f (d))

=

d−1⊗
j=1

ι(j)

 (f (1) ⊗ · · · ⊗ f (d−1))⊗A(d)
λ∗d

(f (d))

=

d−1⊗
j=1

ι(j)

 (f (1) ⊗ · · · ⊗ f (d−1))⊗ ι(d)(f (d))

= ι(f).

�

The proof has been given for different contexts in several publications,
see, e.g., [23, 69]. The proof given above follows [16], which also investigates
the case of general index sets and operators.

Next we see that if the operators A
(j)
i are interpolation operators on sets

X
(j)
i , 1 ≤ j ≤ d, i ∈ N, the Smolyak method yields an interpolation operator

on the corresponding sparse grid.

Theorem 6.1.18. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a domain. Let

V (1)(Ω(1)), . . . , V (d)(Ω(d)) and S(1)(Ω(1)), . . . , S(d)(Ω(d)) be linear spaces of

functions such that for every 1 ≤ j ≤ d the inclusion V (j), S(j) ⊆ C(Ω(j))

holds. Let
⊗d

j=1 V
(j)(Ω(j)) and

⊗d
j=1 S

(j)(Ω(j)) be the respective algebraic ten-

sor product spaces. For 1 ≤ j ≤ d let ι(j) : V (j) → S(j) and ι :
⊗d

j=1 V
(j) →⊗d

j=1 S
(j) be the respective embedding operators.

For every 1 ≤ j ≤ d let (X
(j)
i )i∈N ⊆ Ω(j) be a nested sequence of sets of

sites, i.e.,

∅ =: X
(j)
0 ⊆ X(j)

1 ⊆ X(j)
2 ⊆ · · · ⊆ Ω(j).

Assume further that for every 1 ≤ j ≤ d and i ∈ N the operators A
(j)
i :

V (j)(Ω(j))→ S(j)(Ω(j)) are interpolation operators on X
(j)
i , i.e., they satisfy

A
(j)
i (f (j))(x(j)) = ι(j)(f (j))(x(j)), f (j) ∈ V (j)(Ω(j)), x(j) ∈ X(j)

i

Let Λ(d) ⊆ Nd be a monotone index set.
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Then the Smolyak operator AΛ(d) :
⊗d

j=1 V
(j)(Ω(j)) →

⊗d
j=1 S

(j)(Ω(j))
satisfies

AΛ(d)(f)(x) = ι(f)(x), f ∈
d⊗
j=1

V (j)(Ω(j))

for all x ∈ HΛ(d), the sparse grid defined in (6.1.11), i.e., AΛ(d) is an
interpolation operator on HΛ(d).

Proof. The idea of the proof is similar to the one of Theorem 6.1.17.
We again use the recursion identity of the Smolyak operator in (6.1.9) for an
induction over the number of directions d.

For d = 1 we again have AΛ(1) = A
(1)
λ1,max

. This is by assumption an

interpolation operator on the point set X
(1)
λ1,max

. Since we assumed the X
(j)
k

to be nested, we have HΛ(1) = X
(1)
λ1,max

and therefore the claim for d = 1.

For the induction step d− 1 d we use the recursion formula

AΛ(d) =

λd,max∑
k=1

A
Λ̃(k,d−1)

⊗
(
A

(d)
k −A

(d)
k−1

)
.

And again, since all occurring operators are linear, we assume without

restriction of generality that f = f (1) ⊗ · · · ⊗ f (d) ∈
⊗d

j=1 V
(j)(Ω(j)) is an

elementary tensor. We fix an x∗ =
(
x

(1)
∗ , . . . ,x

(d)
∗

)T
∈ HΛ(d) and find a

1 ≤ λ∗d ≤ λd,max such that x
(d)
∗ ∈ X

(d)
λ∗d
\ X(d)

λ∗d−1. This λ∗d is the index for

which the point x
(d)
∗ occurs for the first time in the sequence (X

(d)
k )k∈N. The

remaining d− 1 components of x∗ satisfy(
x

(1)
∗ , . . . ,x

(d−1)
∗

)T
∈ H

Λ̃(λ∗d,d−1)
.

Additionally, we have for all λ∗d ≤ k ≤ λd,max − 1(
A

(d)
k −A

(d)
k−1

)
(f (d))(x

(d)
∗ ) = 0,

since the operators are assumed to be interpolation operators.
Together with the induction hypothesis this then yields for the Smolyak

operator

AΛ(d)(f)(x∗) =

=

λd,max∑
k=λ∗d

A
Λ̃(k,d−1)

(f (1) ⊗ · · · ⊗ f (d−1))(x
(1)
∗ , . . . ,x

(d−1)
∗ )·

·
(
A

(d)
k −A

(d)
k−1

)
(f (d))(x

(d)
∗ )

=

 d⊗
j=1

ι(j)f (j)

 (x
(1)
∗ , . . . ,x

(d−1)
∗ ) ·

λ∗d∑
k=1

(
A

(d)
k −A

(d)
k−1

)
(f (d))(x

(d)
∗ ).

Resolving the telescope sum yields the claim. �
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6.1.5. Approximation Error Estimates. We now derive a represen-
tation of the approximation error for the Smolyak operator. We can use
this representation, together with the theory introduced in Section 5.3 and
minimal assumptions, to obtain basic approximation error estimates.

Theorem 6.1.19. Let V (1), . . . , V (d) and S(1), . . . , S(d) be linear spaces with

algebraic tensor product spaces
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j). For 1 ≤ j ≤ d let

ι(j) : V (j) → S(j) and ι :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j) be the respective embedding

operators. For every 1 ≤ j ≤ d and k ∈ N let A
(j)
k : V (j) → S(j) be linear

operators. Let Λ(d) ⊆ Nd be a monotone index set. Then the error operator

ι−AΛ(d) :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j) can be expressed as

ι−AΛ(d) =
(
ι(1) −A(1)

λ1,max

)
⊗

d⊗
j=2

ι(j) +
d∑
j=2

R(j)⊗ ι(j+1) ⊗ · · · ⊗ ι(d)

(6.1.14)

where

R(j) =
∑

λ̃∈Λ̃(j−1)

j−1⊗
k=2

∆
(k)

λ̃k
⊗
(
ι(j) −A(j)

λj(λ̃)

)
.(6.1.15)

Proof. We use the representation of the Smolyak operator (6.1.10)

and recall Proposition 6.1.12. We find for every λ̃ ∈ Λ̃(i) a λi+1(λ̃) ∈
{1, . . . , λi+1,max} such that

(
λ̃, λi+1(λ̃)

)T
∈ Λ̃(i+ 1).

We have with the multilinearity of the tensor product

ι−AΛ(d) = ι−
∑

λ̃∈Λ̃(d−1)

d−1⊗
j=1

∆
(j)

λ̃j
⊗A(d)

λd(λ̃)

=
d⊗
j=1

ι(j) −
∑

λ̃∈Λ̃(d−1)

d−1⊗
j=1

∆
(j)

λ̃j
⊗
(
A

(d)

λd(λ̃)
− ι(d)

)
−

∑
λ̃∈Λ̃(d−1)

d−1⊗
j=1

∆
(j)

λ̃j
⊗ ι(d)

=
∑

λ̃∈Λ̃(d−1)

d−1⊗
j=1

∆
(j)

λ̃j
⊗
(
ι(d) −A(d)

λd(λ̃)

)
+

+

d−1⊗
j=1

ι(j) −
∑

λ̃∈Λ̃(d−1)

d−1⊗
j=1

∆
(j)

λ̃j

⊗ ι(d)

=
(
ι(1) −A(1)

λ1,max

)
⊗

d⊗
j=2

ι(j) +
d∑
j=2

R(j)⊗ ι(j+1) ⊗ · · · ⊗ ι(d),

with R(j) as in (6.1.15). �

This representation of the error operator ι − AΛ(d) is remarkable. It
allows us to express the operator by a combination of the low-dimensional

error operators ι(j) − A(j)
i and the difference operators ∆

(j)
i for 1 ≤ j ≤ d

and suitable 1 ≤ i ≤ λd,max. Additionally, we see the exact influence of each
direction on the tensor product error operator.
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With the theory introduced in Section 5.3 we obtain the following general
error estimate.

Theorem 6.1.20. For 1 ≤ j ≤ d let (V (j), ‖ · ‖V (j)) and (S(j), ‖ · ‖S(j))

be normed spaces. Let
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j) be the respective algebraic
tensor product spaces. Assume that these spaces are equipped with uniformly
compatible crossnorms ‖ · ‖V (1)⊗···⊗V (d) and ‖ · ‖S(1)⊗···⊗S(d) . For 1 ≤ j ≤ d let

ι(j) : V (j) → S(j) and ι :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j) be the respective embedding

operators. For 1 ≤ j ≤ d and i ∈ N let A
(j)
i : V (j) → S(j) be linear operators.

Assume that the following estimates hold for all 1 ≤ j ≤ d with constants

B(j), C
(j)
1 , C

(j)
2 , D(j) > 0:

‖ι(j)‖V (j)→S(j) ≤ B(j)(6.1.16)

‖ι(j) −A(j)
i ‖V (j)→S(j) ≤ C(j)

1 D(j)i, i ≥ 0(6.1.17)

‖∆(j)
i ‖V (j)→S(j) ≤ C(j)

2 D(j)i, i ≥ 1.(6.1.18)

Let Λ(d) ⊆ Nd be a monotone index set and AΛ(d) :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j)

be the Smolyak operator.
Then estimate for the tensor product error operator

‖ι−AΛ(d)‖⊗d
j=1 V

(j)→
⊗d
j=1 S

(j) ≤

C(1)
1

d∏
j=2

B(j)

(D(1)
)λ1,max

+

+
d∑
j=2

(j−1∏
k=2

C
(k)
2

)
C

(j)
1

d∏
k=j+1

B(j)

 ∑
λ̃∈Λ̃(j−1)

(
j−1∏
k=2

(
D(k)

)λ̃k)(
D(j)

)λj(λ̃)

holds.

Proof. In this proof we omit the indices of the occurring norms. We
use the representation of the tensor product error ι − AΛ(d) in (6.1.14).

By assumption the crossnorms on
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j) are uniformly
compatible. This means that we have, with the help of the triangle inequality

‖ι−AΛ(d)‖ ≤ ‖ι(1) −A(1)
λ1,max

‖ ·
d∏
j=2

‖ι(j)‖+
d∑
j=2

‖R(j)‖ ·
d∏

k=j+1

‖ι(k)‖.

To bound ‖R(j)‖ we use the representation of R(j) in (6.1.15) to obtain

‖R(j)‖ ≤
∑

λ̃∈Λ̃(j−1)

j−1∏
k=2

‖∆(k)

λ̃k
‖ ·
∥∥∥∥ι(j) −A(j)

λj(λ̃)

∥∥∥∥ .
Hence, we have with the assumptions (6.1.16), (6.1.17) and (6.1.18)

‖ι−AΛ(d)‖ ≤ C
(1)
1

(
D(1)

)λ1,max

·
d∏
j=2

B(j)+

+
d∑
j=2

∑
λ̃∈Λ̃(j−1)

(
j−1∏
k=2

C
(k)
2

(
D(k)

)λ̃k)
C

(j)
1

(
D(j)

)λ̃j(λ̃)
d∏

k=j+1

B(k).
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Rearranging the right-hand side yields the claim. �

We note that the assumptions in (6.1.16), (6.1.17) and (6.1.18) are rea-
sonable. (6.1.16) means that for all 1 ≤ j ≤ d the embedding operators

ι(j) are continuous. The assumption (6.1.17) means that the operators A
(j)
i ,

1 ≤ j ≤ d, i ∈ N, approximate the corresponding embeddings. Clearly, we

are only interested in operators A
(j)
i with D(j) < 1.

In this most general setting the error estimate of the preceding theorem
is hard to interpret. However, depending on the application the constants

C
(j)
1 , C

(j)
2 and D(j) do not explicitly depend on the direction j. Furthermore,

we often work with function spaces which have a canonical embedding, i.e.,
B(j) = B = 1. In this case, the estimate of Theorem 6.1.20 reduces to the
following corollary.

Corollary 6.1.21. With the assumptions and notation of Theorem 6.1.20 we

additionally assume that the constants C
(j)
1 , C

(j)
2 and D(j) to be independent

of the direction j, that B(j) = 1, 1 ≤ j ≤ d and that D < 1. Then the error
estimate

‖ι−AΛ(d)‖ ≤ C1 max(1, Cd−2
2 )dDdmin(λ1,max,...,λd,max)#Λ(d).

holds.

Proof. We use the error estimate of Theorem 6.1.20 and obtain

‖ι−AΛ(d)‖ ≤

≤ C1D
λ1,max +

d∑
j=2

Cj−2
2 C1

∑
λ̃∈Λ̃(j−1)

Dλ̃2+···+λ̃j−1Dλj(λ̃)

≤ C1D
λ1,max +

d∑
j=2

Cj−2
2 C1

∑
λ̃∈Λ̃(j−1)

D(j−1) min(λ2,max,...,λj,max)

≤ C1D
λ1,max + C1 max(1, Cd−2

2 )D(d−1) min(λ2,max,...,λd,max)(d− 1)#Λ(d)

≤ C1 max(1, Cd−2
2 )dDdmin(λ1,max,...,λd,max)#Λ(d).

�

In contrast to the error bound obtained in Theorem 6.1.20 the estimate
in Corollary 6.1.21 is far easier to interpret. However, we only obtain a
convergence order of dmin(λ1,max, . . . , λd,max). This can be understood in
the sense that only the worst low-dimensional approximation determines the
convergence order and the approximations in the other directions do not
matter at all.

The convergence results in Theorem 6.1.20 and Corollary 6.1.21 can be
seen as two extremes. The former retains as much information of the problem
as possible but is hard to interpret while the latter gives a closed form but
loses generality. We have to keep this in mind in the convergence results we
give later and find a way to moderate these two extremal cases.
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6.2. Anisotropic Index Set

We now study the anisotropic index set in more detail. This special set
got a lot of attention in the most recent publications, see, e.g., [40, 43, 71]
and is the index set we want to use for the rest of this thesis. We already
mentioned this set as an example of monotone sets in Section 6.1.2 and
showed an example in Fig. 3.

6.2.1. Definition and First Properties. We start with giving the
definition of the anisotropic index set and then derive alternative representa-
tions.

Definition 6.2.1. For given weight vector ω ∈ Rd+ and threshold ` ∈ N we

define the anisotropic index set Iω(`, d) ⊆ Nd by

Iω(`, d) :=

λ ∈ Nd :

d∑
j=1

(λj − 1)ωj ≤ ` min
1≤j≤d

ωj

 .(6.2.1)

The vector ω allows us to assign different importance to different direc-
tions. The larger ωj the less important direction j is for us and Iω(`, d) is
less extended in this direction. In the special case that ω1 = ω2 = · · · = ωd
the set is called isotropic. Without loss of generality we can assume that
ω is ascendingly ordered, i.e., ω1 ≤ ω2 ≤ · · · ≤ ωd. We can always achieve
this by permuting the single directions. It is also possible to normalize the
weight vector such that, if we assume an ascendingly ordered ω, we have
min1≤j≤d ωj = ω1 = 1, This will not change the anisotropy, i.e., the quotient
of the weight in direction j and direction k, but it will change the geometric
shape of Iω(`, d).

We will use the following recursive representation of the anisotropic index
set.

Proposition 6.2.2. Let ω ∈ Rd+ be a weight vector and ` ∈ N a threshold.
Recall that λd,max is defined by (6.1.1). Set ωmin := min1≤j≤d ωj. Then we
can express the anisotropic index set Iω(`, d) as

Iω(`, d) =

λd,max⋃
k=1

Iω̃
(
`− (k − 1)

ωd
ωmin

, d− 1

)
× {k},(6.2.2)

with ω̃ ∈ Rd−1 such that ω̃j = ωj, 1 ≤ j ≤ d− 1.

Proof. We have

Iω(`, d) =

λ ∈ Nd :

d∑
j=1

(λj − 1)ωj ≤ `ωmin


=

λ ∈ Nd :

d−1∑
j=1

(λj − 1)ωj ≤ `ωmin − (λd − 1)ωd


=

λ ∈ Nd :
d−1∑
j=1

(λj − 1)ωj ≤
(
`− (λd − 1)

ωd
ωmin

)
ωmin

 .
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We see that λd can only take values in {1, . . . , λd,max}. This then leads to

Iω(`, d) =

λ ∈ Nd :
d∑
j=1

(λj − 1)ωj ≤
(
`− (λd − 1)

ωd
ωmin

)
ωmin


=

λd,max⋃
k=1

λ ∈ Nd−1 :
d−1∑
j=1

(λj − 1)ωj ≤
(
`− (k − 1)

ωd
ωmin

)
ωmin

× {k}.
�

To use the anisotropic index set of Definition 6.2.1 in the Smolyak
operator we need to show that it is indeed a monotone set.

Proposition 6.2.3. For every weight vector ω ∈ Rd+ and threshold ` ∈ N
the anisotropic index set Iω(`, d) is a monotone index set.

Proof. We use Proposition 6.1.2 to check that for λ ∈ Iω(`, d) the
multi-index λ − ej , 1 ≤ j ≤ d, is also an element of Iω(`, d). Take λ ∈
Iω(`, d) such that λj∗ ≥ 2 for a 1 ≤ j∗ ≤ d. Then λ − ej∗ satisfies, with

ωmin := min1≤j≤d ωj and 1 := (1, . . . , 1)T ∈ Rd,
d∑

k=1

(λ− ej∗ − 1)kωk =

d∑
k=1

(λk − δkj∗ − 1)ωk ≤
d∑

k=1

(λk − 1)ωk ≤ `ωmin.

Hence, λ− ej∗ ∈ Iω(`, d). �

Next, we can explicitly compute the largest possible j-th component
λj,max.

Proposition 6.2.4. For any weight vector ω ∈ Rd+ and threshold ` ∈ N
the largest possible value in the j-th component of any multi-index in the
anisotropic index set Iω(`, d) can be expressed as

λj,max =

⌊
`ωmin
ωj

⌋
+ 1,(6.2.3)

with ωmin := min1≤j≤d ωj.

We see that if the weights in direction j and j + 1, ωj and ωj+1 differ
not too much we can still have λj,max = λj+1,max. This means that those
two directions are isotropic although the weights are not. This can lead to
numerical artifacts. We will quantify how much ωj and ωj+1 have to differ
such that λj,max 6= λj+1,max in Section 6.2.3.

6.2.2. Cardinality of Iω(`, d). The cardinality of the index set occurs
in some error estimates for the Smolyak operator, e.g., in the estimate given
in Corollary 6.1.21. We now give an estimate on #Iω(`, d) for every ω ∈ Rd+
and ` ∈ N.

There are several papers, see, e.g., [40, 43, 71], which give bounds on
#Iω(`, d). They all exhibit the similar behavior of `d as ` → ∞. However,
the upper bound given in [43, Lemma 5.4] seems to be the sharpest one yet
obtained. For this result it is essential that the weight vector is ordered.
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Lemma 6.2.5. Let ω ∈ Rd+ be an ascendingly ordered weight vector and
let ` ∈ N. Then the cardinality of the anisotropic index set Iω(`, d) can be
bounded by

#Iω(`, d) ≤
d∏
j=1

(
`ω1

jωj
+ 1

)
.(6.2.4)

Proof. We use an induction over the number of directions d. We start
with d = 1. Here, we have with (6.2.3)

#Iω(`, 1) =

λ1,max∑
k=1

1 = λ1,max = `+ 1.

For the induction step d− 1 d we recall (6.2.2) and use that we can
express the set Iω(`, d) by

Iω(`, d) =

λd,max⋃
k=1

Iω̃
(
`− (k − 1)

ωd
ω1
, d− 1

)
× {k},

with ω̃ ∈ Rd−1 such that ω̃j = ωj , 1 ≤ j ≤ d− 1. Hence, we have

#Iω(`, d) =

λd,max∑
k=1

#Iω̃
(
`− (k − 1)

ωd
ω1
, d− 1

)
.

Inserting the induction hypothesis for d − 1 and some easy manipulation
leads to

#Iω(`, d) ≤
λd,max∑
k=1

d−1∏
j=1

(
(`− (k − 1)ωdω1

)ω1

jωj
+ 1

)

=

d−1∏
j=1

(
`ω1

jωj
+ 1

) λd,max∑
k=1

d−1∏
j=1

`ω1−(k−1)ωd
jωj

+ 1

`ω1
jωj

+ 1

=

d−1∏
j=1

(
`ω1

jωj
+ 1

) λd,max∑
k=1

d−1∏
j=1

1− (k − 1)
ωd

`ω1 + jωj
.(6.2.5)
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By assumption, the vector ω is ascendingly ordered, i.e., ωd ≥ ωj for every
1 ≤ j ≤ d. This yields for the sum in (6.2.5)

λd,max∑
k=1

d−1∏
j=1

1− (k − 1)ωd
`ω1 + jωj

≤

≤
λd,max∑
k=1

d−1∏
j=1

1− (k − 1)
ωd

`ω1 + jωd

=

d−1∏
j=1

(
ωd

`ω1 + jωd

) λd,max∑
k=1

d−1∏
j=1

(
`ω1 + jωd

ωd
− (k − 1)

)

=
d−1∏
j=1

(
ωd

`ω1 + jωd

) λd,max∑
k=1

d−1∏
j=1

(
j +

`ω1

ωd
− k + 1

)
.(6.2.6)

Again, we need to bound the sum in (6.2.6). Here we use [43, Lemma 5.3],
which states that for all L ∈ N, d ∈ N and δ ∈ R+ the estimate

L−1∑
k=0

d−1∏
j=1

(j + δ + k) ≤ 1

d

d−1∏
j=0

(L+ δ + j)

holds. In our case we set L := λd,max and δ := `ω1
ωd

+ 1− L ≥ 0. Substituting

k̃ := L− k and changing the direction of summation yields

λd,max∑
k=1

d−1∏
j=1

(
j +

`ω1

ωd
− (k − 1)

)
=

L−1∑
k̃=0

d−1∏
j=1

(j + δ + k̃)

≤ 1

d

d−1∏
j=0

(L+ δ + j).

Hence, we have in (6.2.6)

λd,max∑
k=1

d−1∏
j=1

1− (k − 1)ωd
`ω1 + jωj

≤
d−1∏
j=1

(
ωd

`ω1 + jωd

) λd,max∑
k=1

d−1∏
j=1

(
j +

`ω1

ωd
− k + 1

)

≤
d−1∏
j=1

(
ωd

`ω1 + jωd

)
1

d

d−1∏
j=0

(L+ δ + j)

=
1

d

d−1∏
j=1

(
j +

`ω1

ωd

)−1 d−1∏
j=0

(L+ δ + j)

≤ 1

d

d−1∏
j=1

(L+ δ + j)−1
d−1∏
j=0

(L+ δ + j)

=
1

d
(L+ δ) =

`ω1

dωd
+

1

d

≤ `ω1

dωd
+ 1.
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Inserting this in (6.2.5) yields

#Iω(`, d) ≤
d−1∏
j=1

(
`ω1

jωj
+ 1

) λd,max∑
k=1

d−1∏
j=1

1− (k − 1)
ωd

`ω1 + jωj

≤
d−1∏
j=1

(
`ω1

jωj
+ 1

)(
`ω1

dωd
+ 1

)
=

d∏
j=1

(
`ω1

jωj
+ 1

)
.

�

For the isotropic case, i.e., ω1 = ω2 = · · · = ωd the bound in (6.2.4)
becomes

d∏
j=1

(
`ω1

jωj
+ 1

)
=

d∏
j=1

(
`

j
+ 1

)
=

1

d!

d∏
j=1

(`+ j)

=
(`+ d)!

d! `!
=

(
`+ d

d

)
,

which is the exact number of elements in the isotropic index set, see, [43].
This means that the estimate (6.2.4) is sharp for isotropic index sets. The
question arises naturally how much the given bound overestimates #Iω(`, d)
in the general, anisotropic setting.

We give the results of numerical tests for different choices of the weight
vector ω. For every given d and choice for the weight vector we can generate
the index set Iω(`, d) and compare its cardinality to the bound (6.2.4). We
tested three different kinds of weights.

For the first test we chose ω ∈ Rd+ such that ω1 = 1 and ωj+1 = ωj + 1,
1 ≤ j ≤ d − 1. We plot the resulting value of the bound and the actual
cardinality of Iω(`, d) in Fig. 5 for d = 2, 5, 7, 10. We see that for small
d the estimate is quite sharp however for growing d the bound starts to
overestimate the actual number of multi-indices in Iω(`, d) significantly. This
can be explained by the fact that for small d the anisotropy in ω is not yet
important and also not large enough. However, for, e.g., d = 10, the weight
for the first direction and the last differ a lot.

For the second example we chose ω ∈ Rd+ such that ω1 = · · · = ωd−1 = 1
and ωd = d+ 5. This means the corresponding index set Iω(`, d) is in nearly
all directions isotropic. Investigating Fig. 6 we see that we have we an effect
similar to the one in the first case but with the opposite result. For small d
the anisotropy in ω is large and hence the actual cardinality of Iω(`, d) and
the bound differ. As the number of directions grows the index set is nearly
isotropic and therefore the bound given in (6.2.4) is almost sharp.

In Fig. 7 we give the plots for the third test case where we chose the
weight vector ω ∈ Rd+ such that ω1 = 1 and ωj = d+ 5 for 2 ≤ j ≤ d. Here
we can see that the estimate in (6.2.4) overestimates #Iω(`, d) more and
more as d grows.

Additionally, we have an interesting effect in the upper left plot in Fig. 6
and all four cases in Fig. 7. Apparently the growth of cardinality of Iω(`, d)
exhibits in some cases significant kinks. These can be explained if we recall
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Figure 5. Plots of the actual number of elements in Iω(`, d)
and the upper bound given in (6.2.4) for ω = (1, 2, 3, ..., d)T

as a function of ` and for different numbers of directions:
d = 2 (upper left), d = 5 (upper right), d = 7 (lower left) and
d = 10 (lower right).

that we can compute λj,max by

λj,max =

⌊
`ω1

ωj

⌋
+ 1.

This term itself does not grow linearly in ` and most often the growth curve
will be piece-wise constant. This then affects #Iω(`, d) as we can see in the
mentioned plots. For example, looking at the upper right diagram in Fig. 7,
this is the case d = 5, we see that the kink appears from ` = 9 going to
` = 10. We see that for ` = 9 and ω = 1 and ωj = d+ 5 = 10, 2 ≤ j ≤ d we
have

λj,max =

⌊
`ω1

ωj

⌋
+ 1 =

⌊
9

10

⌋
+ 1 = 1

and for ` = 10

λj,max = 2.

While λ1,max = ` + 1 grows linearly with ` we see that for 2 ≤ j ≤ d the
corresponding λj,max changes abruptly. The weight is chosen in such a way
that this change happens in all directions simultaneously which leads to the
described kinks.
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Figure 6. Plots of the actual number of elements in Iω(`, d)
and the upper bound given in (6.2.4) for ω = (1, 1, 1, ..., d+5)T

as a function of ` and for different numbers of directions: d = 2
(upper left), d = 5 (upper right), d = 7 (lower left) and d = 10
(lower right).

6.2.3. Robustness towards Perturbation. From the discussion to-
wards the end of the preceding subsection we see that the anisotropic index
set Iω(`, d) exhibits some erratic behavior. This is mainly caused by λj,max,
1 ≤ j ≤ d. From

λj,max =

⌊
`ω1

ωj

⌋
+ 1

we see that small perturbations in the weight in direction j, ωj , have no
influence on the value of λj,max. We now derive bounds on these perturbations.

We fix a direction j and the weight ωj ∈ R+. For a perturbation τ ∈ R
set ω̃j := ωj + τ . To derive bounds on τ such that

λj,max =

⌊
`ω1

ωj

⌋
+ 1 =

⌊
`ω1

ω̃j

⌋
+ 1 = λ̃j,max(6.2.7)

we have to distinguish whether τ ≥ 0 or τ ≤ 0.
If τ ≥ 0 we have ωj ≤ ω̃j = ωj + τ . Hence, (6.2.7) is equivalent to⌊

`ω1

ωj

⌋
≤ `ω1

ω̃j
≤ `ω1

ωj
.
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Figure 7. Plots of the actual number of elements in Iω(`, d)
and the upper bound given in (6.2.4) for ω = (1, d+ 5, ..., d+
5)T as a function of ` and for different numbers of directions:
d = 2 (upper left), d = 5 (upper right), d = 7 (lower left) and
d = 10 (lower right).

This is in turn equivalent to(⌊
`ω1

ωj

⌋)−1

≥ ω̃j
`ω1
≥ ωj
`ωj

,

or, in other words,

0 ≤ τ = ω̃j − ωj ≤
(⌊

`ω1

ωj

⌋)−1

`ω1 − ωj

=
`ω1

λj,max − 1
− ωj .

Similarly, if τ ≤ 0 we have ω̃j = ωj + τ ≤ ωj . In this case (6.2.7) is
equivalent to

`ω1

ωj
≤ `ω1

ω̃j
≤
⌊
`ω1

ωj

⌋
+ 1.

With the same arguments as above we obtain

0 ≥ τ = ω̃j − ωj ≥
(⌊

`ω1

ωj

⌋
+ 1

)−1

`ω1 − ωj

=
`ω1

λj,max
− ωj .
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We summarize this in the next lemma.

Lemma 6.2.6. Let ω ∈ Rd+ be an ascendingly ordered weight vector and
` ∈ N. Let 1 ≤ j∗ ≤ d be a fixed direction. Set ω̃j∗ := ωj∗ + τ , with a
perturbation τ ∈ R. Then

λj∗,max =

⌊
`ω1

ωj∗

⌋
+ 1 =

⌊
`ω1

ω̃j∗

⌋
+ 1 = λ̃j,max

if and only if

`ω1

λj∗,max
− ωj∗ ≤ τ ≤

`ω1

λj∗,max − 1
− ωj∗ .

Later we will couple the weight vector to the smoothness of the function
we want to reconstruct. With this lemma we can make sure to correctly
translate the anisotropy in the smoothness to the index set. Or, if a choice
of weights is not possible, explain the numerical artifacts.

6.3. Anisotropic Smolyak Method

We now introduce the specific version of the Smolyak operator we want
to use in Chapter 7. For this version we use the anisotropic index set Iω(`, d)
of Section 6.2 in Definition 6.1.7.

Definition 6.3.1. Let V (1), . . . , V (d) and S(1), . . . , S(d) be linear spaces with

algebraic tensor product spaces
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j). Let ω ∈ Rd+ be an

ascendingly ordered weight vector and ` ∈ N. Let Iω(`, d) be the anisotropic

index set defined in Definition 6.2.1. For linear operators A
(j)
k : V (j) → S(j),

1 ≤ j ≤ d, k ∈ N, let ∆
(j)
k = A

(j)
k −A

(j)
k−1 be the difference operators. Then the

anisotropic Smolyak operator AIω(`,d) :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j) is defined
as the tensor product operator

AIω(`,d) :=
∑

λ∈Iω(`,d)

∆λ :=
∑

λ∈Iω(`,d)

d⊗
j=1

∆
(j)
λj
.(6.3.1)

In comparison to (6.1.7) we only replaced the general monotone index
set Λ(d) with the anisotropic index set Iω(`, d). The changes are more
significant if we investigate the analogue to the general combination technique
respresentation in Proposition 6.1.9.

Proposition 6.3.2. With the notation and assumptions of Definition 6.3.1
the anisotropic Smolyak operator AIω(`,d) can be expressed as

AIω(`,d) =
∑

λ∈Jω(`,d)

∑
β∈{0,1}d

λ+β∈Iω(`,d)

(−1)‖β‖1
(
A

(1)
λ1
⊗ · · · ⊗A(d)

λd

)
,(6.3.2)

with the index set

Jω(`, d) := Iω(`, d) \ Iω
(
`− ‖ω‖1

ω1
, d

)
.(6.3.3)
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Proof. We can use (6.1.8) with the anisotropic index set Iω(`, d) and
obtain the representation of the anisotropic Smolyak operator

AIω(`,d) =
∑

λ∈Iω(`,d)

∑
β∈{0,1}d

λ+β∈Iω(`,d)

(−1)‖β‖1
(
A

(1)
λ1
⊗ · · · ⊗A(d)

λd

)
.

We now need to show that for all λ ∈ Iω
(
`− ‖ω‖1ω1

, d
)

the inner sum∑
β∈{0,1}d

λ+β∈Iω(`,d)

(−1)‖β‖1
(
A

(1)
λ1
⊗ · · · ⊗A(d)

λd

)
(6.3.4)

is zero.
Hence, we assume that λ∗ ∈ Iω(`, d) is an element of Iω

(
`− ‖ω‖1ω1

, d
)

.

This means that for any β ∈ {0, 1}d the multi-index λ∗ + β is an element of
Iω(`, d). From combinatorics we see that the set {β ∈ {0, 1}d} has precisely
2d−1 elements with a ‖ · ‖1-norm that is even and 2d−1 elements with an
uneven ‖ · ‖1-norm. Consequently,∑

β∈{0,1}d
λ∗+β∈Iω(`,d)

(−1)‖β‖1
(
A

(1)
λ1
⊗ · · · ⊗A(d)

λd

)
= 0,

which finishes the proof. �

In the case of the isotropic index set we can simplify this respresentation
even further. Here, we can give an explicit expression for (6.3.4).

Proposition 6.3.3. For the isotropic case, that is, if the weight vector
ω ∈ Rd+ is given as ω = (ω, . . . , ω)T, with ω > 0, the isotropic Smolyak
operator can be written as

AIisoω (`,d) =
∑

λ∈J isoω (`,d)

(−1)`+d−‖λ‖1
(

d− 1

`+ d− ‖λ‖1

)(
A

(1)
λ1
⊗ · · · ⊗A(d)

λd

)
with the index set

J isoω (`, d) =
{
λ ∈ Nd : `+ 1 ≤ ‖λ‖1 ≤ `+ d

}
.

The set Jω(`, d) can be understood as the surface of the index set Iω(`, d)
in the sense that it contains all λ ∈ Iω(`, d) whose neighbor λ+ 1 is not in
Iω(`, d). In Fig. 8 we give three illustrations of these surfaces.

The refinements of the results given in Section 6.1.4 are straight forward
and we omit stating them here. We only restate the error representation of
Theorem 6.1.19. With the special choice of Λ(d) = Iω(`, d) we can give an

explicit representation of λj(λ̃). This result is well-known and can be found
in, e.g., [43, 68].

Theorem 6.3.4. Let V (1), . . . , V (d) and S(1), . . . , S(d) be linear spaces with

algebraic tensor product spaces
⊗d

j=1 V
(j) and

⊗d
j=1 S

(j). For 1 ≤ j ≤ d let

ι(j) : V (j) → S(j) and ι :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j) be the respective embedding

operators. For every 1 ≤ j ≤ d and k ∈ N let A
(j)
k : V (j) → S(j) be linear

operators. Let ω ∈ Rd+ be an ascendingly ordered weight vector and ` ∈ N. Let
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Figure 8. Examples of the surface Jω(`, d) for different d
and ω in green: J1(3, 2) (top left), J(1,2)T(3, 2) (top right)

and J1(3, 3) (bottom).

Iω(`, d) ⊆ Nd be the anisotropic index set defined in Definition 6.2.1. Then

the error operator ι−AIω(`,d) :
⊗d

j=1 V
(j) →

⊗d
j=1 S

(j) can be expressed as

ι−AIω(`,d) =
(
ι(1) −A(1)

λ1,max

)
⊗

d⊗
j=2

ι(j)+

+
d∑
j=2

∑
λ̃∈Iω(`,j−1)

j−1⊗
k=1

∆
(k)

λ̃k
⊗
(
ι(j) −A(j)

λj(λ̃)−1

)
⊗

d⊗
k=j+1

ι(k)(6.3.5)

where for λ̃ ∈ Iω(`, j − 1) the index λj(λ̃) is defined as

λj(λ̃) :=

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋
.(6.3.6)

We will use this version of the error representation to show the conver-
gence of the newly developed approximation method in Chapter 7.

6.4. Direction Adaptive Smolyak Method

Before we introduce this new method we discuss an adaptive version of the
Smolyak method. In the construction of the anisotropic Smolyak method we
have to a-priori choose the monotone index set Λ(d) which greatly determines
the performance of the corresponding Smolyak operator. A wrong choice
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of this set, and especially the weight vector ω ∈ Rd+, leads either to a bad
approximation or to an operator that is too expensive to compute numerically.
In the setting of the anisotropic Smolyak operator, a way to determine the
weight vector ω is to inspect the problem, e.g., the smoothness of the target
function f , and choose the weights accordingly. Such a strategy has at least
two drawbacks. First, we need information of f we may not have, and second,
more generally, the class of anisotropic index sets itself may be inadequate
for the given reconstruction problem. This can happen, e.g., if more or less
multi-indices in mixed directions are required.

The basic idea of the direction adaptive Smolyak method was first
introduced for sparse grid quadrature in [33]. We give a generalized version
of the method in Algorithm 4 and discuss it in greater detail. To this end
we define a special mapping which helps us to decide in which direction we
have to adapt.

Definition 6.4.1. Let V (1), . . . , V (d) be a linear space with (possibly com-

plete) tensor product space
⊗d

j=1 V
(j). For f ∈

⊗d
j=1 V

(j) let errorf :

Nd → R a decreasing and costf : Nd → R be an increasing mapping. Let

q : R × R → R. For f ∈
⊗d

j=1 V
(j) and weight ω ∈ [0, 1] we define the

weighted error estimator gf ,ω : Nd → R by

gf ,ω(λ) := q

(
ω errorf (λ), (1− ω)

1

costf (λ)

)
.(6.4.1)

The value errorf (λ) in (6.4.1) should be chosen such that it represents
the expected (relative) error of the chosen tensor product approximation
method at the multi-index λ ∈ Nd. Similarly, costf (λ) should expresses the
(relative) cost to compute the approximation ∆λf for λ. The function q
should moderate between these two values. A suitable choice is, e.g.,

q(·, ·) = max(·, ·).

The weight ω ∈ [0, 1] is introduced to moderate between comparatively too
high work and comparatively too small error. Choosing ω = 1 leads to a
greedy approach, disregarding the cost completely. This should be the choice
if the target function is very smooth and f can usually be approximated
well. In this case the error estimate decays with increasing λ anyway. For
ω = 0 only the costs are included in the error estimate and this leads to a
classical sparse grid approach [33].

The general procedure of Algorithm 4 is the following: We iteratively
build a monotone index set A∪O, where A represents the active indices and
O the set of indices that are offline. In every iteration, these sets are disjoint
and precisely one multi-index λ∗ ∈ A goes offline, i.e., it gets removed from A
and is put into O. This is precisely the multi-index with the largest weighted
error indicator gf ,ω(λ∗). In the same iteration we add those neighbors of
λ∗, λ∗ + ek, 1 ≤ k ≤ d, to A such that, for all 1 ≤ j ≤ d, the multi-index
λ∗ + ek − ej is already offline. This leads to the fact that the resulting index
set A ∪ O ∪ {λ∗ + ek} is monotone. Omitting the check if λ∗ + ek − ej is
already offline can, in the worst case, lead to non-monotone sets in later
iterations.



146 6. THE SMOLYAK METHOD

Algorithm 4: Direction-adaptive Smolyak Algorithm

Data: Error tolerance ε, right-hand side f , weighted error estimator
gf ,ω

Result: Adaptive Smolyak Approximation f ε
Initialize λ := (1, . . . , 1)T ∈ Nd;
Initialize O := ∅;
Initialize A := {λ};
Initialize f ε := ∆λf ;

Compute gf ,ω(λ);

Set η := gf ,ω(λ);

while η > ε do
Select λ∗ from A with largest gf ,ω(λ∗);

A = A \ {λ∗};
O = O ∪ {λ∗};
η = η − gf ,ω(λ);

for j = 1, . . . , d do
Set τ := λ∗ + ej ;

Compute gf ,ω(τ );

if τ − ek ∈ O for all k = 1, . . . , d then
A = A ∪ {τ};
f ε = f ε + ∆τf ;

η = η + gf ,ω(τ );

end

end

end

Adding and removing multi-indices increases and decreases the global
error estimate η ∈ R by the value of the error indicator of the added or
removed multi-index. The algorithm terminates if η is smaller than a given
error tolerance ε.

Clearly, in every iteration the approximation f ε has the form

f ε =
∑

λ∈A∪O
∆λf =

∑
λ∈A∪O

 d⊗
j=1

∆
(j)
λj

 (f).

In Fig. 9 we give a two-directional example of the iterative emergence
of an monotone index set following the algorithm presented in Algorithm 4.
The active indices are colored in green, the offline indices in gray and the
multi-index with the largest error indicator is the one having the arrows
attached, indicating the new candidates of multi-indices to be added to the
active index set. We remark that in the example in the middle the index
(2, 3)T will not be added to the active set since its neighbor (2, 2)T is not
offline.

We emphasize that the resulting index set in the right-most picture is not
an anisotropic index set Iω(`, 2). There is no combination of weight vector
ω ∈ R2

+ and threshold ` ∈ N such that Iω(`, 2) has this appearance.
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Figure 9. A few snapshots of the evolution of the direction-
adaptive Smolyak algorithm. Active indices are green, offline
indices are gray. The active indices with the arrows have the
largest error indicators and are thus selected for insertion into
the offline index set.





CHAPTER 7

The Tensor Product Multilevel Method

We are now in the position to introduce the tensor product multilevel
method. This is a new method to compute approximations of high-directional
target functions by combining the anisotropic Smolyak method of Section 6.3
with the kernel-based multilevel method introduced in Chapter 4.

In Section 7.1, after recalling the general setup, we introduce the new
method in two different representations, depending on whether we have
access to the direction-wise information or not. In Section 7.2 we then derive
convergence estimates for different kinds of reconstruction processes, interpo-
lation, penalized least squares and local Lagrange multilevel approximation.
We give numerical examples that support these theoretical results in Sec-
tion 7.3, at least for interpolation. To finish this chapter we introduce the
idea of the double-adaptive tensor product multilevel method which not only
constructs a monotone index set but also chooses the direction-wise point
sets adaptively.

The ideas and results presented here are also part of [54] which is currently
under review.

7.1. The Method and its Representations

We start by describing the new tensor product multilevel method by
first repeating the setup, especially for the now direction-dependent kernel-
based multilevel method, and then discussing the algorithmic structure
of the new high-directional approximation method. We will see that it is
advantageous to distinguish two cases. First, we assume that we have access to

the direction-wise data
(
x

(j)
m , f (j)(x

(j)
m )
)

1≤m≤N
and second, if we only know

the high-directional data (xm,f(xm))1≤m≤N without any further knowledge

on eventually existing low-dimensional functions f (j) or no access to the

values f (j)(x
(j)
m ). We emphasize that in any case we have to have access to

the components of xm = (x
(1)
m , . . . ,x

(d)
m )T.

First, we recall the notation introduced in the previous chapters and
adapt it to fit the high-directional setting.

7.1.1. The General Setup. We have to assume that the domain Ω ⊆
Rn, n ∈ N, has cartesian product structure, i.e., there are low-dimensional
domains Ω(j) ⊆ Rnj , nj ∈ N, 1 ≤ j ≤ d, such that

Ω = Ω(1) × · · · × Ω(d).

The effective dimension of Ω is therefore n =
∑d

j=1 nj ≥ d. We use linear

spaces of functions on these low-dimensional domains, V (j)(Ω(j)) ⊆ C(Ω(j)),

149
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1 ≤ j ≤ d, and denote the corresponding algebraic tensor product space as

V (Ω) =
⊗d

j=1 V
(j)(Ω(j)) ⊆ C(Ω).

The goal is to recover a function f ∈ V (Ω) by only using point-wise
information (xm,f(xm))1≤m≤N ⊆ Ω× R.

Next, we recall the setting of the kernel-based multilevel method of
Chapter 4. Although the ideas stay basically the same the notation gets
significantly more convoluted since the main terms are now all direction-
dependent.

For each 1 ≤ j ≤ d and each Ω(j) ⊆ Rnj we fix a sequence of discrete

point sets (X
(j)
i )i∈N ⊆ Ω(j) with cardinality #X

(j)
i = N

(j)
i . To be precise we

assume that we can write X
(j)
i , i ∈ N, as

X
(j)
i :=

{
x

(j)
i,1 , . . .x

(j)

i,N
(j)
i

}
.

Associated to these point sets we have the fill distance and the separation
radius, defined in (2.3.1) and (2.3.2), respectively. However, they are also
direction-dependent, i.e., we write for every 1 ≤ j ≤ d

h
(j)
i := h

X
(j)
i ,Ω(j) and q

(j)
i := q

X
(j)
i

, i ∈ N.

As before, we assume that the relation between the fill distances of the
point sets of two consecutive levels can be expressed with a, now direction-
dependent, refinement parameter µ(j) ∈ (0, 1). That means we assume that,

for every 1 ≤ j ≤ d, there is a constant c(j) ∈ (0, 1] such that

c(j)µ(j)h
(j)
i ≤ h

(j)
i+1 ≤ µ

(j)h
(j)
i , i ∈ N.

Next, we choose for every direction 1 ≤ j ≤ d a continuous, compactly
supported radial basis function Φ(j) : Rnj → R. This mother kernel is then

rescaled with a level- and direction-dependent scaling parameter δ
(j)
i > 0

which is coupled to the mesh norm h
(j)
i of the point set X

(j)
i on level i.

This means we have a direction-dependent overlap parameter ν(j) > 1 and a
constant cν(j) ∈ (0, 1] such that

cν(j)ν(j)h
(j)
i ≤ δ

(j)
i ≤ ν

(j)h
(j)
i , i ∈ N.

This then leads to direction- and level-dependent rescaled kernels Φ
(j)
i defined

by

Φ
(j)
i :=

(
δ

(j)
i

)−nj
Φ(j)

(
·
δ

(j)
i

)
, i ∈ N.

With these kernels we define the direction-dependent local approximation
spaces as

W
(j)
i := span

{
Φ

(j)
i (· − x(j)) : x(j) ∈ X(j)

i

}
, i ∈ N,(7.1.1)

and the direction-dependent global approximation space up to a level L(j) ∈ N
by

V
(j)

L(j) := W
(j)
1 ⊕ · · · ⊕W (j)

L(j) .(7.1.2)
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Following the ideas of Chapter 4 further, we use local approximation operators

I(j)
i : V (j)(Ω(j))→W

(j)
i , i ∈ N

and the multilevel approximation operator of level L(j) in direction j

(7.1.3) A
(j)

L(j) : V (j)(Ω(j))→ V
(j)

L(j) .

The specific form of the local approximation operators I(j)
i now not only

depends on the approximation process we want to use but also on the type
of information available. We will go into more detail in the next subsections.

Finally, for the Smolyak method introduced in Chapter 6, we use the
anisotropic index set in d directions Iω(`, d) with ascendingly ordered weight
vector ω ∈ Rd+ and threshold ` ∈ N. Then the Smolyak operator is given as
a mapping

AIω(`,d) :

d⊗
j=1

V (j)(Ω(j))→ VIω(`,d),

where VIω(`,d) is an approximation space we have to characterize further.
Following (6.1.7), the operator has the representation

AIω(`,d) :=
∑

λ∈Iω(`,d)

d⊗
j=1

(
A

(j)
λj
−A(j)

λj−1

)
=

∑
λ∈Jω(`,d)

∑
β∈{0,1}d

λ+β∈Iω(`,d)

(−1)‖β‖1A
(1)
λ1
⊗ · · · ⊗A(d)

λd
,

where

Jω(`, d) = Iω(`, d) \ Iω
(
`− ‖ω‖1

ω1
, d

)
is the surface of Iω(`, d) defined in (6.3.3).

The form of the direction-wise operators A
(j)
i depends on the kind of

information we have at our disposal. However, what we can do already is
to characterize the tensor product approximation space of the method, the
codomain of the operator.

Lemma 7.1.1. For 1 ≤ j ≤ d let the local and global approximation space

W
(j)
i and V

(j)

L(j) be defined as in (7.1.1) and (7.1.2). Let ω ∈ Rd+ an ascendingly

ordered weight vector and ` ∈ N. Let Iω(`, d) ⊆ Nd be the anisotropic index
set. Then the approximation space of the tensor product multilevel method is
given by

VIω(`,d) =
⊕

λ∈Iω(`,d)

d⊗
j=1

W
(j)
λj
.(7.1.4)

Proof. We have

VIω(`,d) =

d⊗
j=1

V
(j)
λj,max

=

d⊗
j=1

λj,max⊕
i=1

W
(j)
i .
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The representation in (7.1.4) follows form the multilinearity of the tensor
product. �

7.1.2. Simple Representation. To introduce the ideas of the tensor
product multilevel method we first investigate the simple case, that is, we

assume that we are given the direction-wise information
(
x

(j)
m , f (j)(x

(j)
m )
)

,

1 ≤ m ≤ N and 1 ≤ j ≤ d, or evaluable functions f (j) ∈ V (j)(Ω(j)). The goal

is still to reconstruct the high-directional function f ∈
⊗d

j=1 V
(j)(Ω(j)).

Given this kind of data we can use the residual correction scheme we
introduced in Chapter 4 for every direction 1 ≤ j ≤ d. That means we set

the residual e
(j)
0 on level 0 to f (j), e

(j)
0 = f (j), and compute for i = 1, 2, 3, . . .

the local approximation I(j)
i (e

(j)
i−1) to the residual of the previous level e

(j)
i−1

on the data sites on level i, X
(j)
i . The residual on level i is then given by

e
(j)
i = f (j) −

i∑
k=1

I(j)
k (e

(j)
k−1).

The global approximation on level L(j) ∈ N to f (j) is, following Section 4.2,
then given as

A
(j)

L(j)(f
(j)) =

L(j)∑
i=1

I(j)
i (e

(j)
i−1).(7.1.5)

These are the operators the Smolyak algorithm uses to build the tensor
product operator AIω(`,d). To be more precise it uses the difference operators

∆
(j)
i =

(
A

(j)
i −A

(j)
i−1

)
which have, with (7.1.5), the form

∆
(j)
i =

(
A

(j)
i −A

(j)
i−1

)
=

i∑
k=1

I(j)
k (e

(j)
k−1)−

i−1∑
k=1

I(j)
k (e

(j)
k−1)

= I(j)
i (e

(j)
i−1).(7.1.6)

This is simply the local approximation operator of level i, applied to the
residual of level i− 1. This means that the tensor product multilevel method
has the following easy representation.

Theorem 7.1.2. For every 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a domain

and let V (j)(Ω(j)) ⊆ C(Ω(j)) be a linear space of functions on Ω(j). Let
ω ∈ Rd+ be an ascendingly ordered weight vector and ` ∈ N. Let Iω(`, d) be
the anisotropic index set defined in Definition 6.2.1 and let λj,max be given

by (6.2.3). For 1 ≤ j ≤ d and 1 ≤ i ≤ λj,max let Ii : V (j)(Ω(j)) → W
(j)
i

be local approximation operators and let A
(j)
i : V (j)(Ω(j)) → V

(j)
i be the

multilevel operators given in (7.1.5). Assume that f ∈
⊗d

j=1 V
(j)(Ω(j)) has

a representation

f = f (1) ⊗ · · · ⊗ f (d).
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Then the tensor product multilevel operator AIω(`,d) :
⊗d

j=1 V
(j)(Ω(j)) →

VIω(`,d) is given by

AIω(`,d)(f) =
∑

λ∈Iω(`,d)

d⊗
j=1

I(j)
λj

(e
(j)
λj−1).(7.1.7)

Clearly, all operators in the theorem above are linear. That means we can

extend the result to functions f ∈
⊗d

j=1 V
(j)(Ω(j)) that have a representation

f =
r∑

k=1

f
(1)
k ⊗ · · · ⊗ f

(d)
k .

Following Theorem 5.1.10, point-evaluations of the approximation are
particularly easy.

Lemma 7.1.3. With the notation and assumptions of Theorem 7.1.2 the
evaluation of AIω(`,d)(f) in x ∈ Ω(1) × · · · × Ω(d) with x = (x(1), . . . ,x(d))T

is given by

AIω(`,d)(f)(x) =
r∑

k=1

∑
λ∈Iω(`,d)

d∏
j=1

I(j)
λj

(e
(j)
λj−1,k)(x

(j)).(7.1.8)

Algorithm 5: Tensor-product Multilevel Algorithm

Data: Right-hand sides f (1), . . . , f (d), weight vector ω, threshold `,

sets of sites {X(j)
i }

Result: Smolyak approximation AIω(`,d)(f)

Generate Iω(`, d) and determine (λ1,max, . . . , λd,max);

for j = 1, . . . , d do

Compute multilevel approximation A
(j)
λj,max

(f (j)) to f (j) on

X
(j)
1 , . . . , X

(j)
λj,max

;

end

Combine the
(
A

(j)
λj,max

(f (j))
)

1≤j≤d
to AIω(`,d)(f) according to

(7.1.7);

In Algorithm 5 we see how easy it is to compute the tensor product
multilevel approximation in its simple representation. Since the direction-wise

approximations A
(j)
i (f (j)) are independent of each other. We note also that

we do not need to construct high-directional sparse grids. Although the
operator AIω(`,d) implicitly approximates f on the sparse grid HIω(`,d), it
is a Smolyak operator after all, we only use the low-dimensional point sets

X
(j)
i ⊆ Ω(j), 1 ≤ j ≤ d, 1 ≤ i ≤ λj,max, to compute the approximation.

We remark that if we have access to the f (j) there is no advantage to
use the combination technique representation of AIω(`,d). Indeed inserting

the multilevel operators A
(j)
i into the combination technique representation

of Proposition 6.3.2 yields (7.1.7).
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7.1.3. General Representation. The situation is significantly worse
if we have no access to the low-dimensional functions f (j) ∈ V (j)(Ω(j)),
1 ≤ j ≤ d. This is the case if, e.g., the high-dimensional target function f is

not in the algebraic tensor product space
⊗d

j=1 V
(j)(Ω(j)) but rather in a

complete tensor space. Then we know from Chapter 5 that f may not even

allow a representation f =
∑r

k=1 f
(1)
k ⊗· · ·⊗f

(d)
k . Another example where we

cannot use the simple representation of the previous subsection is, if we are
only given information (xm,f(xm))1≤m≤N ⊆ Ω×R, and we have no further

knowledge about f (j)(x
(j)
m ), even if the functions f (j) ∈ V (j)(Ω(j)) exist.

However, we have to assume that the xm are points of a sparse grid

HIω(`,d) =
⋃
λ∈Iω(`,d)X

(1)
λ1
× · · · ×X(d)

λd
and we have access to the direction-

wise point families (X
(j)
i ), 1 ≤ j ≤ d, 1 ≤ i ≤ λj,max.

The fact that we can not identify the direction-wise functions f (j) has
two consequences. First we can not use the multilevel method in its basic
representation as a residual correction scheme anymore. We rather have
to use the alternative representation of Section 4.6. And second, this time
we have to use the combination technique representation of the Smolyak
operator.

We recall the basics of Section 4.6. There, we introduced combined

operators I(j)

u(j) : V (j)(Ω(j))→W
(j)

#u(j) given by

I(j)

u(j) := I(j)

u
(j)

#u(j)

I(j)

u
(j)

#u(j)−1

· · · I(j)

u
(j)
1

,(7.1.9)

where u(j) = {u(j)
1 , . . . , u

(j)

#u(j)} is an ordered set and I(j)
i : V (j)(Ω(j))→W

(j)
i

are local approximation operators. These combined operators allowed us
in Theorem 4.6.3 to find a new representation for the multilevel operator

A
(j)

L(j) : V (j)(Ω(j))→ V
(j)

L(j) in direction j up to level L(j),

A
(j)

L(j) =
∑

u(j)⊆{1,...,L(j)}
1≤#u(j)≤L(j)

(−1)#u(j)+1I(j)

u(j) .(7.1.10)

Inserting this in the combination technique representation of the anisotropic
Smolyak operator,

AIω(`,d) =
∑

λ∈Jω(`,d)

∑
β∈{0,1}d

λ+β∈Iω(`,d)

(−1)‖β‖1
(
A

(1)
λ1
⊗ · · · ⊗A(d)

λd

)
,(7.1.11)

then yields the following representation of the tensor product multilevel
operator.

Theorem 7.1.4. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a domain and let

V (j)(Ω(j)) ⊆ C(Ω(j)) be a linear space of functions on Ω(j). Let ω ∈ Rd+ be
an ascendingly ordered weight vector and ` ∈ N. Let the anisotropic index set
Iω(`, d) be defined by (6.2.1) and let λj,max be given by (6.2.3).

For 1 ≤ j ≤ d and 1 ≤ i ≤ λj,max let I(j)
i : V (j)(Ω(j))→W

(j)
i be the local

approximation operators and assume that the operators A
(j)
i : V (j)(Ω(j))→

V
(j)
i are given by the multilevel operators in (7.1.10) with the combined
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operators I(j)

u(j) : V (j)(Ω(j)) → W
(j)

#u(j), where u(j) = {u(j)
1 , . . . , u

(j)

#u(j)} is an

ordered set.
Then the Smolyak operator AIω(`,d) :

⊗d
j=1 V

(j)(Ω(j))→ VIω(`,d) has the
representation

AIω(`,d) =
∑

λ∈Jω(`,d)

∑
β∈{0,1}d

λ+β∈Iω(`,d)∑
u(1)⊆{1,...,λ1}
1≤#u(1)≤λ1

· · ·
∑

u(d)⊆{1,...,λd}
1≤#u(d)≤λd

cβ(u(1), . . . , u(d))I(1)

u(1) ⊗ · · · ⊗ I
(d)

u(d) ,(7.1.12)

where Jω(`, d) denotes the surface of Iω(`, d) defined in (6.3.3) and

cβ(u(1), . . . , u(d)) = (−1)‖β‖1+d+#u(1)+···+#u(d)
.

Proof. We only have to find a representation for the tensor product

operator A
(1)
λ1
⊗ · · · ⊗ A

(d)
λd

for a given multi-index λ ∈ Nd. We use the

representation of A
(j)
λj

in (7.1.10) for every direction 1 ≤ j ≤ d and have

A
(1)
λ1
⊗ · · · ⊗A(d)

λd
=

=
∑

u(1)⊆{1,...,λ1}
1≤#u(1)≤λ1

· · ·
∑

u(d)⊆{1,...,λd}
1≤#u(d)≤λd

(−1)#u(1)+···+#u(d)I(1)

u(1) ⊗ · · · ⊗ I
(d)

u(d) .

Inserting this into (7.1.11) then yields the claimed respresentation. �

We immediately obtain the similar representation for the isotropic Smol-
yak operator. Again, we can explicitly compute the coefficients.

Corollary 7.1.5. With the notation and assumptions of Theorem 7.1.4,
however the weight vector ω ∈ Rd+ satisfies ω1 = · · · = ωd = ω, with an

ω > 0, the isotropic Smolyak operator AIisoω (`,d) :
⊗d

j=1 V
(j)(Ω(j))→ VIisoω (`,d)

has the representation

AIisoω (`,d) =

=
∑

λ∈J isoω (`,d)

∑
u(1)⊆{1,...,λ1}
1≤#u(1)≤λ1

· · ·
∑

u(d)⊆{1,...,λd}
1≤#u(d)≤λd

bλ(u(1), . . . , u(d))I(1)

u(1) ⊗ · · · ⊗ I
(d)

u(d) ,

where J isoω (`, d) = {λ ∈ Nd : ` + 1 ≤ ‖λ‖1 ≤ ` + d} is the surface of the
isotropic index set and

bλ(u(1), . . . , u(d)) = (−1)`+d−‖λ‖1+#u(1)+···+#u(d)

(
d− 1

`+ d− ‖λ‖1

)
.

Following Theorem 7.1.4 we only have to find a representation of(
I(1)

u(1) ⊗ · · · ⊗ I
(d)

u(d)

)
(f)

for a given f ∈
⊗d

j=1 V
(j)(Ω(j)) without using direction-wise functions

f (j) ∈ V (j)(Ω(j)). The tool that allows us to do this are the Lagrange functions
introduced in Chapter 3 and then in Theorem 4.6.4 used in the context of
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multilevel approximation. We recall that in every local approximation space

W
(j)
i , 1 ≤ j ≤ d, i ∈ N, we find a basis

{
χ

(j)
i,k

}
1≤k≤N(j)

i

⊆W (j)
i such that the

Lagrange condition χ
(j)
i,k (x

(j)
i,m) = δkm is satisfied for all x

(j)
i,m ∈ X

(j)
i .

Theorem 7.1.6. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a bounded domain

and let V (j)(Ω(j)) ⊆ C(Ω(j)) be a linear space of functions on Ω(j). Let

(X
(j)
i )i∈N be sets of sites in Ω(j) with fill distances hi, satisfying h

(j)
i+1 ≤ h

(j)
i ,

i ∈ N. Let {χ(j)
i,k}1≤k≤N(j)

i

⊆W (j)
i be Lagrange functions for X

(j)
i .

For every 1 ≤ j ≤ d let u(j) = {u(j)
1 , . . . , u

(j)

#u(j)} be an ordered set. Let

I(j)
i : V (j)(Ω(j)) → W

(j)
i be local approximation operators and let Iu(j) :

V (j)(Ω(j)) → W
(j)

#u(j) be the combined operator. Then the tensor product

combined operator

I(1)

u(1) ⊗ · · · ⊗ I
(d)

u(d) :
d⊗
j=1

V (j)(Ω)→
d⊗
j=1

W
(j)

#u(j)

has the form

(
I(1)

u(1) ⊗ · · · ⊗ I
(d)

u(d)

)
(f) =

(7.1.13)

=
∑

k(1)≤N
u(1)

· · ·
∑

k(d)≤N
u(d)

 d∏
j=1

a(j)(u(j),k(j))

f (x(1)

u
(1)
1 ,k

(1)
1

, . . . ,x
(d)

u
(d)
1 ,k

(d)
1

)
·

· χ(1)

u
(1)

#u(1)
,k

(1)

#u(1)

⊗ · · · ⊗ χ(d)

u
(d)

#u(d)
,k

(d)

#u(d)

,

where N
(j)

u(j) =

(
N

(j)

u
(j)
1

, . . . , N
(j)

u
(j)

#u(j)

)T

∈ N#u(j)
denotes the vector of car-

dinalities of the sets X
(j)

u
(j)
i

and the coefficients a(j)(u(j),k(j)) are given by

a(j)(u(j),k(j)) = 1, if #u(j) = 1, and else by

a(j)(u(j),k(j)) =

#u(j)−1∏
m=1

χ
(j)

u
(j)
m ,k

(j)
m

(
x

(j)

u
(j)
m+1,k

(j)
m+1

)
.

Proof. We know from Theorem 4.6.4 that we have for every 1 ≤ j ≤ d
and ordered u(j)

I(j)

u(j)(f
(j)) =

∑
k(j)≤N

u(j)

a(j)(u(j),k(j))f (j)

(
x

(j)

u
(j)
1 ,k

(j)
1

)
χ

(j)

u
(j)

#u(j)
,k

(j)

#u(j)

.

Using the multilinearity of the tensor product and then Theorem 5.1.10 leads
to the claim. �

We note that, similar to the simple representation of the tensor product
multilevel method in Section 7.1.2, point-evaluations of the approximation
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AIω(`,d)(f) follows directly from Theorem 5.1.10. We only give the formula
for the evaluation of the tensor product of the combined operators.

Lemma 7.1.7. With the notation and assumptions of Theorem 7.1.6 the eval-

uation of I(1)

u(1)⊗· · ·⊗I
(d)

u(d)(f) in x ∈ Ω(1)×· · ·×Ω(d) with x = (x(1), . . . ,x(d))T

is given by

(
I(1)

u(1) ⊗ · · · ⊗ I
(d)

u(d)

)
(f)(x) =

(7.1.14)

=
∑

k(1)≤N
u(1)

· · ·
∑

k(d)≤N
u(d)

d∏
j=1

a(j)(u(j),k(j))f

(
x

(1)

u
(1)
1 ,k

(1)
1

, . . . ,x
(d)

u
(d)
1 ,k

(d)
1

)
·

·
d∏
j=1

χ
(j)

u
(j)

#u(j)
,k

(j)

#u(j)

(x(j)).

We have several remarks. First, we emphasize that this representation of
the tensor product multilevel method can also be used in the simple case,

that is, if we have the direction-wise information (f (j)(x
(j)
m ))1≤m≤N . However,

since the numerical costs are much higher we would advise against it.
Second, the representation in (7.1.13) together with (7.1.12) is indepen-

dent of the approximation method we use. The specific choice of reconstruc-
tion process, e.g., interpolation, penalized least-squares approximation or
approximation with local Lagrange functions, only enters the tensor product

multilevel method through the Lagrange functions χ
(j)
i,k , χ

LS,(j)
i,k or χ

loc,(j)
i,k .

And finally, although the formulas in (7.1.13) and (7.1.12) may seem
complicated, the algorithmic procedure is easy to implement and most of
the computations can be made in an offline phase, as soon as the input

parameters, in particular the direction-wise point sets X
(j)
i , are fixed. We

give a brief idea of the algorithmic approach in Algorithm 6. Once the
Lagrange functions are computed we only have to combine the resulting
operators.

Algorithm 6: Tensor-product Multilevel Algorithm, Version 2

Data: Right-hand side f , weight vector ω, threshold `, sets of sites

{X(j)
i }

Result: Smolyak approximation AIω(`,d)(f)

Generate Iω(`, d) and determine (λ1,max, . . . , λd,max);

for j = 1, . . . , d do
for i = 1, . . . , λj,max do

Compute Lagrange functions
(
χ

(j)
i,k

)
1≤k≤N(j)

i

;

end

end

Use (7.1.13) in (7.1.12) to construct AIω(`,d)(f);
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7.2. Convergence Results

Now, we analyze the approximation power of the new tensor product mul-
tilevel method and give convergence results for the different approximation
methods introduced in Section 2.3. We combine the representation of Theo-
rem 6.3.4 with the error estimates of Section 4.3 and Section 4.6.2. We have to
make sure that the spaces involved are equipped with uniformly compatible
crossnorms. First, we have to refine the assumptions of Section 7.1.

We assume now that for every 1 ≤ j ≤ d the domains Ω(j) ⊆ Rnj , nj ∈ N,
are bounded Lipschitz domains. Furthermore, we switch from general linear
spaces of functions on Ω(j) to specific normed spaces. We set V (j)(Ω(j)) :=

Hsj (Ω(j)), the Sobolev Hilbert space of smoothness sj > nj/2, and equip
this space with the induced norm, see Definition 2.1.4. We know from
Theorem 2.1.13 that the assumption on sj implies that there is a continuous

embedding operator ι(j) : Hsj (Ω(j)) → C(Ω(j)). Following Theorem 5.3.9
these give rise to a continuous embedding operator ι : Hs

mix(Ω) → C(Ω),

where s := (s1, . . . , sd)
T and Ω := Ω(1) × · · · × Ω(d). We recall that Hs

mix(Ω)
is the anisotropic Sobolev Hilbert space of Definition 5.2.31, which we equip
with the induced crossnorm ‖ · ‖β,Hs

mix(Ω).

Additionally, we assume that the direction-wise mother kernels Φ(j) :
Rnj → R are reproducing kernels of Hsj (Ω(j)), 1 ≤ j ≤ d. Consequently,

the level-dependently scaled kernels Φ
(j)
i are also reproducing kernels of this

space.
We are now interested in estimating different operator norms of the error

operator ι−AIω(`,d). We distinguish again different approximation methods,
however we can combine the two types of interpolation into one case.

7.2.1. Interpolation. We start with deriving error estimates in the
case that the local approximation operator are kernel-based interpolation

operators on X
(j)
i , i.e., we have, for 1 ≤ j ≤ d,

I(j)
i = I

X
(j)
i ,Φ

(j)
i

, i ∈ N.

We remark that in this case, the tensor product multilevel operator is indeed
an interpolation operator. This follows directly from Theorem 6.1.18.

It turns out that we can treat both the classical interpolation, i.e., the
target function is an element of the native space, and the escaping the
native space case, see Section 2.3.3, simultaneously. In the former case we
understand that tj = sj , the order with which the Fourier transform of the

reproducing kernel Φ
(j)
i decays, and for the escaping the native space case

we have tj such that sj > tj > nj/2. With this, the local approximation

operators are mappings I(j)
i : Htj (Ω(j)) → W

(j)
i , 1 ≤ j ≤ d, i ∈ N, and we

can express the multilevel interpolation operator A
(j)
i : Htj (Ω(j))→ V

(j)
i as

A
(j)
i (f (j)) =

i∑
k=1

I(j)
k (e

(j)
k−1) =

i∑
k=1

I
X

(j)
k ,Φ

(j)
k

(e
(j)
k−1).(7.2.1)
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First, we focus on L2(Ω)-estimates. Recalling Theorem 4.3.4, we have
the direction-wise error estimate

‖ι(j) −A(j)
i ‖Htj (Ω(j))→L2(Ω(j)) ≤ C

(j)

(
C

(j)
1

(
µ(j)

)tj)i
, i ∈ N.(7.2.2)

We also recall the representation of the error operator of Theorem 6.3.4,

ι−AIω(`,d) =
(
ι(1) −A(1)

λ1,max

)
⊗

d⊗
j=2

ι(j)+

+
d∑
j=2

∑
λ̃∈Iω(`,j−1)

j−1⊗
k=1

∆
(k)

λ̃k
⊗
(
ι(j) −A(j)

λj(λ̃)−1

)
⊗

d⊗
k=j+1

ι(k)

=:
(
ι(1) −A(1)

λ1,max

)
⊗

d⊗
j=2

ι(j) +

d∑
j=2

R(`, j)⊗
d⊗

k=j+1

ι(k),

where for λ̃ ∈ Iω(`, j − 1) the index λj(λ̃) is defined as

λj(λ̃) =

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋

and we set

R(`, j) :=
∑

λ̃∈Iω(`,j−1)

j−1⊗
k=1

∆
(k)
λk
⊗
(
ι(j) −A(j)

λj(λ̃)−1

)
.(7.2.3)

To simplify the notation, we will from now on suppress the index at
the occurring norms. Essentially, we are only dealing with operator norms
‖ · ‖Htj (Ω(j))→L2(Ω(j)) or ‖ · ‖Ht

mix(Ω)→L2(Ω) and it should be clear from the

context, which norm is meant.
We set C := max1≤j≤dC

(j), the maximum of the constants appearing in
(7.2.2). Furthermore, we use the notation

α(j) = C
(j)
1

(
µ(j)

)tj
< 1

and recall that ‖ι(j)‖ = 1, 1 ≤ j ≤ d. We know from Theorem 5.3.8 that the
induced crossnorms on Ht

mix(Ω) and L2(Ω) are uniformly compatible. This
then yields∥∥∥∥∥∥

(
ι(1) −A(1)

λ1,max

)
⊗

d⊗
j=2

ι(j)

∥∥∥∥∥∥ = ‖ι(1) −A(1)
λ1,max

‖ ≤ C
(
α(1)

)λ1,max

(7.2.4)
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and for 2 ≤ j ≤ d also∥∥∥∥∥∥R(`, j)⊗
d⊗

k=j+1

ι(j)

∥∥∥∥∥∥ = ‖R(`, j)‖ ≤
∑

λ̃∈Iω(`,j−1)

j−1∏
k=1

∥∥∥∆
(k)

λ̃k

∥∥∥∥∥∥∥ι(j) −A(j)

λj(λ̃)−1

∥∥∥∥
≤

∑
λ̃∈Iω(`,j−1)

j−1∏
k=1

(
2C
(
α(k)

)λ̃k−1
)
C
(
α(j)

)λj(λ̃)−1

= 2j−1Cj
∑

λ̃∈Iω(`,j−1)

(
j−1∏
k=1

(
α(k)

)λ̃k−1
)(

α(j)
)λj(λ̃)−1

.(7.2.5)

This motivates the first, general theorem. It covers both the classical
interpolation and the escaping the native space case.

Theorem 7.2.1. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a bounded

Lipschitz domain and let sj ≥ tj > nj/2. Set Ω = Ω(1) × · · · × Ω(d). Let

ω ∈ Rd+ be an ascendingly ordered weight vector and ` ∈ N. Let Iω(`, d) ⊆ Nd
be the anisotropic index set of Definition 6.2.1.

Assume that, for 1 ≤ j ≤ d and i ∈ N, the low-dimensional reconstruction

A
(j)
i : Htj (Ω(j))→ V

(j)
i is given by the multilevel interpolant (7.2.1). Assume

further that this multilevel interpolant is built using a rescaled, compactly

supported reproducing kernel of Hsj (Rnj ) with scaling parameter δ
(j)
i and set

of sites X
(j)
i as outlined in Section 7.1.

For 1 ≤ j ≤ d let ι(j) : Htj (Ω(j))→ L2(Ω(j)) be the canonical embedding
operator and ι : Ht

mix(Ω)→ L2(Ω) the tensor product embedding operator of
Theorem 5.3.9.

Then the interpolation error operator ι − AIω(`,d) : Ht
mix(Ω) → L2(Ω)

satisfies the bound

‖ι−AIω(`,d)‖ ≤
d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,j−1)

(
j−1∏
k=1

(
α(k)

)λ̃k−1
)
·
(
α(j)

)λj(λ̃)−1
,

(7.2.6)

where for j = 1 we set Iω(`, j − 1) := {1} and λ1(λ̃) = λ1,max + 1 and for

2 ≤ j ≤ d and λ̃ ∈ Iω(`, j − 1) the index λj(λ̃) is given by

λj(λ̃) =

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋
.

Furthermore, we use the notation C = max1≤j≤dC
(j) and

α(j) = C
(j)
1

(
µ(j)

)tj
.
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Proof. All involved norms are uniformly compatible. Hence, we have,
with (7.2.4) and (7.2.5),

‖ι−AIω(`,d)‖ ≤

∥∥∥∥∥∥
(
ι(1) −A(1)

λ1,max

)
⊗

d⊗
j=2

ι(j)

∥∥∥∥∥∥+
d∑
j=2

∥∥∥∥∥∥R(`, j)⊗
d⊗

k=j+1

ι(j)

∥∥∥∥∥∥
≤ C

(
α(1)

)λ1,max

+

d∑
j=2

2j−1Cj
∑

λ̃∈Iω(`,j−1)

(
j−1∏
k=1

(
α(k)

)λ̃k−1
)(

α(j)
)λj(λ̃)−1

.

Setting, for j = 1, the index set Iω(`, j − 1) = Iω(`, 0) := {1} and defining

λ1(λ̃) = λ1,max + 1 allows us to write(
α(1)

)λ1,max

=
∑

λ̃∈Iω(`,0)

(
0∏

k=1

(
α(k)

)λ̃k−1
)
·
(
α(1)

)λ1(λ̃)−1
.

This then yields the claim. �

Similar to the error estimate for the general Smolyak method in Theo-
rem 6.1.20 the estimate in its most general form (7.2.6) shows the contribution
of each direction j and, in particular, preserves information of anisotropy, but
is difficult to interpret. We will now trade this information for readability.

First, we look at the exponent in (7.2.6),

λj(λ̃)− 1 =

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋
− 1,

for a λ̃ ∈ Iω(`, j − 1), 2 ≤ j ≤ d. Since we assume that α(j) ∈ (0, 1) we want
to bound it from below. We assume in Theorem 7.2.1 that the weight vector
ω is ascendingly ordered, i.e., ωj−1 ≤ ωj for all 2 ≤ j ≤ d. Hence, we have

λj(λ̃)− 1 =

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋
− 1

≥
⌊
`
ω1

ωj

⌋
+ 1−

j−1∑
k=1

(λ̃k − 1).

Inserting this in (7.2.6) yields

‖ι−AIω(`,d)‖ ≤
d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,j−1)

(
j−1∏
k=1

(
α(k)

)λ̃k−1
)
·
(
α(j)

)λj(λ̃)−1

≤
d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,j−1)

j−1∏
k=1

(
α(k)

α(j)

)λ̃k−1
 · (α(j)

)⌊`ω1
ωj

⌋
+1

=

d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,j−1)

j−1∏
k=1

(
α(k)

α(j)

)λ̃k−1
 · (α(j)

)λj,max
,(7.2.7)
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where we used (6.1.1),

λj,max =

⌊
`ω1

ωj

⌋
+ 1.

To simplify this further we assume that we choose the direction-wise refine-
ment parameters µ(j) in such a way that α(j) = α for all 1 ≤ j ≤ d. Such
a choice is reasonable since it reflects the different smoothness tj in every
direction. The larger tj is, the easier the reconstruction problem and hence

we can use a larger refinement parameter µ(j) ∈ (0, 1). With this, the error
bound in (7.2.7) becomes

‖ι−AIω(`,d)‖ ≤
d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,j−1)

j−1∏
k=1

(
α(k)

α(j)

)λ̃k−1
 · (α(j)

)λj,max

=
d∑
j=1

2j−1Cjαλj,max
∑

λ̃∈Iω(`,j−1)

1

≤
d∑
j=1

2j−1Cj#Iω(`, j − 1)αλj,max .

This is the statement of the next corollary.

Corollary 7.2.2. With the notation and assumptions of Theorem 7.2.1 we
choose the direction-wise refinement parameters µ(j) ∈ (0, 1) such that there

is a uniform α < 1 such that α = α(j) = C
(j)
1

(
µ(j)

)tj
, 1 ≤ j ≤ d. Then

the interpolation error operator ι−AIω(`,d) : Ht
mix(Ω)→ L2(Ω) satisfies the

bound

‖ι−AIω(`,d)‖ ≤ #Iω(`, d)
d∑
j=1

2j−1Cjαλj,max .(7.2.8)

Going from (7.2.6) to (7.2.8), we lose some information about the
anisotropy. However, we still see the contribution of every direction 1 ≤ j ≤ d
to the error in form of the direction-dependent exponent λj,max =

⌊
`ω1
ωj

⌋
+ 1,

which is the maximum number of levels in direction j.
Going even further, with the assumption ω1 ≤ ω2 ≤ · · · ≤ ωd, we can use

the bound on #Iω(`, d) given in Lemma 6.2.5 and obtain

#Iω(`, d) ≤
d∏
j=1

(
`ω1

jωj
+ 1

)
≤

d∏
j=1

(
`

j
+ 1

)
=

(
`+ d

`

)
≤ (`+ d)d

d!
.(7.2.9)

Furthermore, we can bound for every 1 ≤ j ≤ d

αλj,max = α

⌊
`ω1
ωj

⌋
+1
≤ α

⌊
`ω1
ωd

⌋
+1
,(7.2.10)
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since we assume that α < 1. Inserting (7.2.9) and (7.2.10) into (7.2.8) yields

‖ι−AIω(`,d)‖ ≤ #Iω(`, d)
d∑
j=1

2j−1Cjαλj,max

≤ (`+ d)dα

⌊
`ω1
ωd

⌋
+1

d∑
j=1

2j−1Cj

j!
.

Corollary 7.2.3. With the notation and assumptions of Corollary 7.2.2
the interpolation error operator ι−AIω(`,d) : Ht

mix(Ω)→ L2(Ω) satisfies the
bound

‖ι−AIω(`,d)‖ ≤ e2C(`+ d)dα

⌊
`ω1
ωd

⌋
+1
.(7.2.11)

The bound in (7.2.11) is much easier to interpret compared to the ones
of (7.2.6) and (7.2.8). However, we lost nearly all information about the
anisotropy, encoded in the weight vector ω. We have only the exponent of

the convergence generating term α

⌊
`ω1
ωd

⌋
+1

, where we see the quotient of the
weight in the first direction and the last, ω1/ωd, with no influence of the
directions 2 ≤ j ≤ d− 1 on the convergence. However, (7.2.11) allows us to
see the asymptotic behavior for `→∞.

Corollary 7.2.4. With the notation and assumptions of Corollary 7.2.2 the
asymptotic behavior of the error bound for the interpolation error ι−AIω(`,d)

for `→∞ is given by

‖ι−AIω(`,d)‖ ≤ c(d)`dα

⌊
`ω1
ωd

⌋
+1
.(7.2.12)

Before we give analogous results for the isotropic case, we make a brief
remark. So far, we have not coupled the smoothness s of the target function,
which, for this discussion, we assume is ascendingly ordered, to the anisotropic
index set, in particular to the weight vector ω. However, our arguments
above suggest we should choose ω = s. This leads on the one hand to
λ1,max ≥ · · · ≥ λd,max, which means that we use more levels in the direction

of the least smoothness. On the other hand, because α(j) = C
(j)
1

(
µ(j)

)sj
= α

we also have µ(1) ≤ · · · ≤ µ(d). As the number of points #X
(j)
i is proportional

to
(
µ(j)

)−i/nj
, this means that we have more points in those directions of

lower smoothness.
Again, the situation is much easier if we consider the isotropic case. We

consider a constant weight vector ω ∈ Rd+, i.e., there is a ω > 0 such that

ω = (ω, . . . , ω)T. Furthermore, we assume that all other occurring terms are
uniform in every direction. This then yields the following theorem.

Theorem 7.2.5. Let Ω(1) ⊆ Rn1, n1 ∈ N, be a bounded Lipschitz domain
and let s ≥ t > n1/2. Set Ω = Ω(1)×· · ·×Ω(1). Let ω > 0 and ω ∈ Rd+ be the

constant vector ω = (ω, . . . , ω)T. For a threshold ` ∈ N let Iisoω (`, d) ⊆ Nd be
the isotropic index set.

Assume that, for 1 ≤ j ≤ d and i ∈ N, the low-dimensional reconstruction
Ai : Ht(Ω(1)) → Vi is given by the multilevel interpolant (7.2.1). Assume
further that this multilevel interpolant is built using a rescaled, compactly
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supported reproducing kernel of Hs(Rn1) with scaling parameter δi and set
of sites Xi as outlined in Section 7.1.

Let ι : Ht(Ω(1))→ L2(Ω(1)) be the canonical embedding operator and ι :
Ht
mix(Ω)→ L2(Ω) the tensor product embedding operator of Theorem 5.3.9.

Then the interpolation error operator ι−AIisoω (`,d) : Ht
mix(Ω)→ L2(Ω)

satisfies the bound

‖ι−AIisoω (`,d)‖ ≤ 2d−1 max(Cd, 1)

(
`+ d

d

)
α`+1.(7.2.13)

Finally, before coming to the case where the local approximation is
done by penalized least-squares operators, we note that we also can derive
L∞-error estimates. We use the direction-wise error estimate of Lemma 4.3.5,

‖ι(j) −A(j)
i ‖Htj (Ω(j))→L∞(Ω(j)) ≤ C

(j)

(
C

(j)
1

(
µ(j)

)tj−nj2 )i
.(7.2.14)

We see that we can use the same techniques as in the L2-case above, if we

set α(j) = C
(j)
1

(
µ(j)

)tj−nj2 . That is, as long as we make sure that we use
tensor spaces with uniformly compatible norms. This can be achieved if the
operator ι(j) is now the embedding operator Htj (Ω(j))→ C(Ω(j)). Then we

obtain the similar convergence estimates, however with the changed α(j).

Theorem 7.2.6. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a bounded

Lipschitz domain and let sj ≥ tj > nj/2. Set Ω = Ω(1) × · · · × Ω(d). Let

ω ∈ Rd+ be an ascendingly ordered weight vector and ` ∈ N. Let Iω(`, d) ⊆ Nd
be the anisotropic index set of Definition 6.2.1.

Assume that, for 1 ≤ j ≤ d and i ∈ N, the low-dimensional reconstruction

A
(j)
i : Htj (Ω(j))→ V

(j)
i is given by the multilevel interpolant (7.2.1). Assume

further that this multilevel interpolant is built using a rescaled, compactly

supported reproducing kernel of Hsj (Rnj ) with scaling parameter δ
(j)
i and set

of sites X
(j)
i as outlined in Section 7.1.

For 1 ≤ j ≤ d let ι(j) : Htj (Ω(j)) → C(Ω(j)) be the bounded embedding
operator of Theorem 2.1.13 and let ι : Ht

mix(Ω) → C(Ω) be the bounded
tensor product embedding operator of Theorem 5.3.9.

Then the interpolation error operator ι − AIω(`,d) : Ht
mix(Ω) → C(Ω)

satisfies the bound

‖ι−AIω(`,d)‖Ht
mix(Ω)→L∞(Ω) ≤

≤
d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,j−1)

(
j−1∏
k=1

(
α(k)

)λ̃k−1
)
·
(
α(j)

)λj(λ̃)−1
,

where for j = 1 we set Iω(`, j − 1) = ∅ and λ1(λ̃) = λ1,max + 1 and for

2 ≤ j ≤ d the index λj(λ̃) is given by

λj(λ̃) =

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋
,
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Furthermore, we use the notation C = max1≤j≤dC
(j) and

α(j) = C
(j)
1

(
µ(j)

)sj−nj2
.

With the same ideas as in the L2-case we arrive at the analogue of
Corollary 7.2.2.

Corollary 7.2.7. With the notation and assumption of Theorem 7.2.6 we
choose the direction-wise refinement parameters µ(j) ∈ (0, 1) such that there

is a uniform α < 1 such that α = α(j) = C
(j)
1

(
µ(j)

)sj−nj2 , 1 ≤ j ≤ d. Then

the interpolation error operator ι−AIω(`,d) : Ht
mix(Ω)→ C(Ω) satisfies the

bound

‖ι−AIω(`,d)‖Ht
mix(Ω)→L∞(Ω) ≤ #Iω(`, d)

d∑
j=1

2j−1Cjαλj,max .

And finally the most closed form of the error bound, the analogue of
Corollary 7.2.3.

Corollary 7.2.8. With the notation and assumption of Corollary 7.2.7 the
interpolation error operator ι − AIω(`,d) : Ht

mix(Ω) → C(Ω) satisfies the
bound

‖ι−AIω(`,d)‖Ht
mix(Ω)→L∞(Ω) ≤ e2C(`+ d)dα

⌊
`ω1
ωd

⌋
+1
.

7.2.2. Penalized Least-Squares Approximation. We now give sim-
ilar error estimates for the case that we do not use interpolation but rather
penalized least-squares approximation operators as building blocks for the
tensor product multilevel method. To be precise, we assume that the local

approximation operators I(j)
i : Hsj (Ω(j))→W

(j)
i are given by

I(j)
i (e

(j)
i−1) = argmin

s(j)∈Hsj (Ω(j))


N

(j)
i∑

k=1

∣∣∣e(j)
i−1(x

(j)
i,k )− s(j)(x

(j)
i,k )
∣∣∣2 + λ

(j)
i ‖s

(j)‖2
Φ

(j)
i


where λ

(j)
i > 0 is the now direction- and level-dependent smoothing parameter.

As pointed out in Theorem 2.3.19, this minimization problem has for every

λ
(j)
i a unique solution, which is an element of W

(j)
i .

Again, the direction-wise multilevel operators A
(j)
i : Hsj (Ω(j)) → V

(j)
i

are given as

A
(j)
i (f (j)) =

i∑
k=1

I(j)
k (e

(j)
k−1), i ∈ N(7.2.15)

and we have the following direction-wise L2-error estimate, see Theorem 4.3.7,

‖ι(j) −A(j)
i ‖Hsj (Ω(j))→L2(Ω(j)) ≤ C

(j)
(
C

(j)
1

(
µ(j)

)sj)i
,

where the smoothing parameter λ
(j)
i has to satisfy

λ
(j)
i ≤ κ

(j)

(
h

(j)
i

δ
(j)
i

)2sj

, i ∈ N,(7.2.16)
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with a level-independent κ(j) > 0.
Following the same ideas as in Section 7.2.1 we obtain the following main

theorem and series of corollaries which, again, trade information about the
anisotropy for readability.

Theorem 7.2.9. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be bounded Lipschitz

domains and let sj > nj/2. Set Ω = Ω(1) × · · · × Ω(d). Let ω ∈ Rd+ be

an ascendingly ordered weight vector and ` ∈ N. Let Iω(`, d) ⊆ Nd be the
anisotropic index set of Definition 6.2.1.

Assume that, for 1 ≤ j ≤ d and i ∈ N, the low-dimensional reconstruction

A
(j)
i : Hsj (Ω(j)) → V

(j)
i is given by the multilevel approximation (7.2.15).

Assume further that this multilevel approximation is built using a rescaled,
compactly supported reproducing kernel of Hsj (Rnj ) with scaling parameter

δ
(j)
i and set of sites X

(j)
i as outlined in Section 7.1 and assume that the

smoothing parameters λ
(j)
i is chosen such that λ

(j)
i < κ(j)

(
h

(j)
i

δ
(j)
i

)2sj

, 1 ≤ j ≤

d, i ∈ N, with a fixed constant κ(j) > 0.
For 1 ≤ j ≤ d let ι(j) : Hsj (Ω(j))→ L2(Ω(j)) be the canonical embedding

operator and ι : Hs
mix(Ω)→ L2(Ω) the tensor product embedding operator of

Theorem 5.3.9.
Then the error operator ι − AIω(`,d) : Hs

mix(Ω) → L2(Ω) satisfies the
bound

‖ι−AIω(`,d)‖ ≤
d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,j−1)

(
j−1∏
k=1

(
α(k)

)λ̃k−1
)
·
(
α(j)

)λj(λ̃)−1
,

(7.2.17)

where, for j = 1, we set Iω(`, j − 1) = ∅ and λ1(λ̃) = λ1,max + 1 and, for

2 ≤ j ≤ d, the index λj(λ̃) is given by

λj(λ̃) =

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋
,

Furthermore, we use the notation C = max1≤j≤dC
(j) and

α(j) = C
(j)
1

(
µ(j)

)sj
.

Again, using a uniform α we obtain the next corollary.

Corollary 7.2.10. With the notation and assumptions of Theorem 7.2.9
we choose the direction-wise refinement parameters µ(j) ∈ (0, 1) such that

there is a uniform α < 1 such that α = α(j) = C
(j)
1

(
µ(j)

)sj
, 1 ≤ j ≤ d. Then

the error operator ι−AIω(`,d) : Hs
mix(Ω)→ L2(Ω) satisfies the bound

‖ι−AIω(`,d)‖ ≤ #Iω(`, d)
d∑
j=1

2j−1Cjαλj,max .

And finally the closest form of the error estimate.
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Corollary 7.2.11. With the notation and assumptions of Corollary 7.2.10
the error operator ι−AIω(`,d) : Hs

mix(Ω)→ L2(Ω) satisfies the bound

‖ι−AIω(`,d)‖ ≤ e2C(`+ d)dα

⌊
`
ω1
ωd

⌋
+1
.

We obtain the same error bounds as in Theorem 7.2.9, Corollary 7.2.10
and Corollary 7.2.10 for the case, if ι : Hs

mix(Ω)→ C(Ω) is the embedding
operator and the error operator maps Hs

mix(Ω)→ C(Ω) and C(Ω) is equipped

with the L∞(Ω)-norm. In this case we have to use α(j) = C
(j)
1

(
µ(j)

)sj−nj2 .
This is again completely analogous to Section 7.2.1, therefore, we do not
elaborate on it further.

7.2.3. Local Lagrange Multilevel Method. Finally, we give similar
convergence estimates if we use the local Lagrange multilevel operators,
introduced in Definition 4.6.6, as low-dimensional approximation operators.
The key to derive the error bounds is, again, to use the direction-wise estimate
(4.6.17) in the error representation for the Smolyak method of Theorem 6.3.4.

We recall Section 3.3. For a fixed set of sites X, we construct the localized
Lagrange function χi anchored in xi ∈ X with cut-off radius r by enforcing the
Lagrange condition Corollary 3.1.2 on those xk ∈ X such that ‖xi−xk‖2 ≤ r.
Following this construction for every X

(j)
i , 1 ≤ j ≤ d, 1 ≤ i ≤ L(j) yields the

direction-dependent local Lagrange multilevel operator Q
loc,(j)

L(j) given by

Q
loc,(j)

L(j) (f (j)) =
L(j)∑
i=1

I loc,(j)(eloc,(j)i−1 ), f (j) ∈ Hsj (Ω(j)), sj >
nj
2
,(7.2.18)

where the local approximation operators I loc,(j)i are given by

I loc,(j)i (f (j)) =

N
(j)
i∑

k=1

f (j)(x
(j)
i,k )χ

loc,(j)
i,k .(7.2.19)

Using the same ideas that led to the convergence results in Sections 7.2.1
and 7.2.2 we obtain the following general theorem and series of corollaries,
where we trade, again, generality for readability. Similar to Section 4.6.2 we
are only interested in localized Lagrange functions that use the footprint

X
(j)

i,r(ε
(j)
i )

with cut-off radius r(ε
(j)
i ), whose size we control with the now

direction- and level-dependent parameter ε
(j)
i > 0.

Theorem 7.2.12. For 1 ≤ j ≤ d let Ω(j) ⊆ Rnj , nj ∈ N, be a bounded

Lipschitz domain and let sj > nj/2. Set Ω = Ω(1) × · · · × Ω(d). Let ω ∈ Rd+
be an ascendingly ordered weight vector and ` ∈ N. Let Iω(`, d) ⊆ Nd be the
anisotropic index set of Definition 6.2.1.

For 1 ≤ j ≤ d and i ∈ N let X
(j)
i be a quasi-uniform set of sites

with fill-distance h
(j)
i sufficiently small such that q

(j)
i < 1 and assume that

the local approximation operator I loc,(j)i in (7.2.19) is built using localized

Lagrange functions
{
χ
loc,(j)
i,k

}
1≤k≤N(j)

i

⊂ W
(j)
i defined as in (3.3.1) with
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footprint X
(j)

i,r(ε
(j)
i )

(xi,k) as in (3.2.2) and cut-off radius r(ε
(j)
i ) > 0. Assume

that ε
(j)
i > 0 small enough such that (4.6.8), i.e.,

C(Ω,Φ, n)
eη

(j)
i(

η
(j)
i

)3nj

∣∣∣∣∣∣log

 ε
(j)
i(

q
(j)
i

)nj
∣∣∣∣∣∣

2nj (
q

(j)
i

)−nj
2
−4sj

√
ε

(j)
i ≤ 1,

holds.
For 1 ≤ j ≤ d and i ∈ N, the low-dimensional reconstruction Q

loc,(j)
i :

Hsj (Ω(j)) → V
(j)
i is given by the local Lagrange multilevel approximation

(7.2.18).

For 1 ≤ j ≤ d let ι(j) : Hsj (Ω(j))→ L2(Ω(j)) be the canonical embedding
operator and ι : Hs

mix(Ω)→ L2(Ω) the tensor product embedding operator of
Theorem 5.3.9.

Then the approximation error operator ι−AIω(`,d) : Hs
mix(Ω)→ L2(Ω)

satisfies the bound

‖ι−AIω(`,d)‖ ≤
d∑
j=1

2j−1Cj
∑

λ̃∈Iω(`,d)

(
j−1∏
k=1

(
αloc,(k)

)λ̃k−1
)
·
(
αloc,(j)

)λj(λ̃)−1
,

where for j = 1 we set Iω(`, j − 1) := {1} and λ1(λ̃) = λ1,max + 1 and for

2 ≤ j ≤ d and λ̃ ∈ Iω(`, j − 1) the index λj(λ̃) is given by

λj(λ̃) =

⌊
2 + `

ω1

ωj
−

j−1∑
k=1

(λ̃k − 1)
ωk
ωj

⌋
We use the notation

αloc,(j) = C
loc,(j)
1

(
µ(j)

)sj
.

and C = max1≤j≤dC
(j).

Similar to the ideas in Section 7.2.1 we can now try to obtain a more uni-
form estimate. Again, we have to choose the direction-dependent refinement
parameter µ(j) such that there is a uniform α < 1.

Corollary 7.2.13. With the notation and assumptions of Theorem 7.2.12,
we choose the refinement parameter µ(j), 1 ≤ j ≤ d, such that there is a
uniform αloc < 1 such that αloc = αloc,(j) for every 1 ≤ j ≤ d.

Then the approximation error operator ι−AIω(`,d) : Hs
mix(Ω)→ L2(Ω)

satisfies the bound

‖ι−AIω(`,d)‖ ≤
d∑
j=1

2j−1Cj#Iω(`, j − 1)
(
αloc

)λj,max
.

Finally, we use the bound on the cardinality of the anisotropic index set
(7.2.9) to obtain the analogue of Corollary 7.2.3.

Corollary 7.2.14. With the notation and assumptions of Corollary 7.2.13
approximation error operator ι − AIω(`,d) : Hs

mix(Ω) → L2(Ω) satisfies the
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bound

‖ι−AIω(`,d)‖ ≤ e2C(`+ d)d
(
αloc

)⌊ `ω1
ωd

⌋
+1
.

7.3. Numerical Examples

We now provide numerical examples to support the theoretical results
of Section 7.2. We only focus on interpolation since we want to verify the
convergence results and the estimates for the penalized least-squares method
are virtually the same as the ones for interpolation. In all cases discussed

below we will use uniformly distributed point sets X
(j)
i ⊆ Ω(j), 1 ≤ j ≤ d,

i ∈ N, such that, for numerical reasons,

#X
(j)
i =

⌈
1

µ(j)

⌉offset +i

.(7.3.1)

We introduce the parameter offset ∈ N to control the cardinality of the set

of sites on the first level X
(j)
1 .

7.3.1. Algebraic Tensor Product Functions. We start with testing
functions that are elements of algebraic tensor product spaces. This allows us
to use the simple representation of the new tensor product multilevel method
introduced in Section 7.1.2.

The first example is based on a well-known problem in rational approx-
imation, see, e.g., [84] and has already been used in the context of sparse
grid approximation in [72]. We set the direction-wise univariate functions

f (j) : [−1, 1] → R to be f (j)(x) = |x|βj , 1 ≤ j ≤ d with βj > 0. These
functions are Hölder-continuous with exponent βj and hence are elements

of Hdβje((−1, 1)). We also recall that we used these functions already in
Section 4.4.

Following Chapter 5, the function f = f (1) ⊗ · · · ⊗ f (d) : [−1, 1]d → R
can be represented by

f(x) =
d∏
j=1

f (j)(x(j)) =
d∏
j=1

|x(j)|βj ,

where x = (x(1), . . . , x(d))T and it is an element of the algebraic tensor

product space Hdβ1e((−1, 1))⊗ · · · ⊗Hdβde((−1, 1)).
Throughout Section 7.2 we emphasized that certain results retain more

information about the anisotropy of the problem than others. However,
here, we will restrict ourselves to two-directional anisotropic problems and
compare the numerical results to the bound (7.2.11). Using this bound in
the low-directional case is reasonable since it already incorporates the whole
anisotropy.

Now, we describe the setup of the first experiment in more detail. We
choose the exponent vector β to be β = (1.6, 3.6)T. This means that f (1) ∈
H2((−1, 1)) but f (1) /∈ H3((−1, 1)). Similarly, f (2) ∈ H4((−1, 1)) but f (2) /∈
H5((−1, 1)). This yields that f ∈ Hs

mix((−1, 1)2), with s = (2, 4)T, but not
in any Sobolev space of mixed, higher-order regularity.
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Figure 10. Plot of the target function f .

Next, we fix the weight vector ω ∈ R2
+. It should represent the anisotropy

in Hs
mix((−1, 1)2) and hence, we set ω = s and normalize it such that ω1 = 1.

This yields the weight vector ω = (1, 2)T.
To fix the parameters for the multilevel method we first look at the

functions f (1) and f (2). We chose these functions such that they are elements
of the native spaces of the Wendland kernels φ1,1 and φ1,3, respectively. We
recall that these functions are given as

φ1,1(r) = (1− r)3
+(3r + 1)

φ1,3(r) = (1− r)7
+(21r3 + 19r2 + 7r + 1).

We fix the refinement parameter in the first direction to be µ(1) = 0.4 and
compute µ(2) such that the assumption of Corollary 7.2.3 is satisfied. That
means, the refinement parameter in the second direction has to be computed
such that there is a uniform α < 1 such that

α = α(1) = C
(1)
1

(
µ(1)

)s1
= C

(2)
1

(
µ(2)

)s2
= α(2).(7.3.2)

To determine µ(2) from (7.3.2) we have to know the constants C
(1)
1 and C

(2)
1 .

Unfortunately, these constants are unknown and we have to rely on the
numerical estimates presented in Section 4.4. In the first direction we are in
the setting which lead to Table 2. We choose to use γ(1) = 3.5 which then

leads to C
est,(1)
1 ≈ 0.46. However, we use a more conservative estimate and

set C
num,(1)
1 = 1.0.
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Inserting the choice for C
num,(1)
1 and µ(1) into (7.3.2) and rearranging

for µ(2) yields

µ(2) =

(
C
num,(1)
1

C
num,(2)
1

(
µ(1)

)s1) 1
s2

=

(
1

C
num,(2)
1

(0.4)2

) 1
4

,(7.3.3)

with C
num,(2)
1 still to determine. We recall that this constant depends strongly

on γ(2), whose choice we justify next.
First, we recall that one of the remarkable properties of the tensor product

multilevel method is that it has two ways to deal with anisotropy. First, by
using the anisotropic index set and second, using different sets of sites in
each direction. In (7.3.1) we fixed the growth of the cardinality of these sets.
In this first experiment, the function in the second direction is smoother
than in the first and hence, we would expect that we need less points in
this direction to get a good approximation and therefore, we should be able

to use a larger µ(2). We fixed µ(1) = 0.4, which leads to #X
(1)
i = 3offset +i,

a tripling of the number of points per level. Following the idea above, in
direction two, it should suffice to use µ(2) ≥ 0.5. The cardinality of the set

of sites then behaves like #X
(2)
i = 2offset +i, which leads to a doubling of

the number of points per level. As discussed in Section 2.5, for fixed point

set X
(j)
i , this number depends on the overlap parameter ν(j). In the first

direction, this parameter is fixed to be

ν(1) ≥ γ(1)

µ(1)
=

3.5

0.4
= 8.75.

In this experiment, we choose to use ν(2) ≈ ν(1) = 8.75. This, together with
the ideas above yield, that

γ(2) ≈ 8.75µ(2) ≥ 8.75 · 0.5 = 4.375.

Hence, the choice γ(2) = 4.5 is reasonable. Using Table 7, with reservations,
since we neither know µ(2) nor is our choice for γ(2) in this table, suggests

that C
num,(2)
1 ≈ 2.1 is a sensible value for the unknown constant. Inserting

this choice into (7.3.3) then leads to

µ(2) ≈ 0.52.

Direction j γ(j) µ(j) ν(j) ωj sj βj α(j)

1 3.5 0.4 8.75 1.0 2 1.6 0.16
2 4.5 0.52 8.65 2.0 4 3.6 0.155

Table 14. Choices for the different parameters for f(x) =
|x1|1.6 · |x2|3.6.
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For the convenience of the reader we repeat our choices for the parameters
in Table 14. There we also see that we achieved that α(1) ≈ α(2) ≈ 0.16 and
ν(2) ≈ ν(1) = 8.75.

After introducing and explaining our choices for the parameters in the
first experiment in detail we now discuss the numerical result. In Fig. 11 we
provide an `2-error plot of the tensor product multilevel interpolation error,
evaluated on a uniform grid with 15000× 15000 points in [−1, 1]2. The error
is depicted as a function of the threshold `, which determines the anisotropic
index set I(1,2)(`, 2), and therefore, the maximum number of levels per
direction λj,max. As the solid green graph we give the interpolation error and

as the dashed green graph we provide the bound (7.2.11), (`+ 2)20.16b0.5`c+1.
We can see the solid graph exhibits plateaus where the interpolation error
stays constants. These are caused by the robustness towards perturbation of
λj,max which we discussed in Section 6.2.3. This led also to the kinks seen
in the examples provided in Section 6.2.2. Here, this robustness causes the
anisotropic index set to change only every odd `. These plateaus make it also
hard to compare the error to the theoretical bound and therefore, we also
provide a linear fit to the two graphs in orange. Comparing the slope of the
two orange lines suggests that the tensor product multilevel interpolation
converges slightly faster than expected.

Although these results look promising, the question arises if it is necessary
to pay this meticulous attention that the parameters of Table 14 representing
the anisotropy in f . Hence, we also computed the tensor product multilevel
interpolations for three other parameter settings. First, we forewent the
anisotropy in the sets of sites, i.e., we used the same refinement parameters
µ(1) = µ(2) = 0.4 in both directions but kept on using the anisotropic index
set. We denote this setting as isotropic µ. Second, we used different sets of
points for each direction but set ω = (1, 1)T, i.e., we used the isotropic index
set, denoted as isotropic ω. And third, we combined these two cases and used

0 2 4 6 8 10 12

10−4

10−3

10−2

10−1

100

Threshold `

` 2
-e

rr
or

Interpolation error

Bound (7.2.11)

Figure 11. Error plot for the tensor product multilevel
interpolation of f with parameters as in Table 14.
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`2-Error

` theory isotropic µ isotropic ω fully isotropic

1 6.7421e−02 1.3593e−02 6.7421e−02 1.3593e−02
2 6.4081e−02 1.0730e−02 1.6698e−02 9.2063e−04
3 1.6558e−02 7.4758e−04 3.7867e−03 7.1249e−05
4 1.6677e−02 7.0332e−04 8.4628e−04 5.8777e−06
5 3.7791e−03 5.0826e−05 1.8833e−04 5.0076e−07
6 3.8022e−03 4.8318e−05 4.1854e−05 4.3428e−08
7 8.4518e−04 3.5061e−06 9.2975e−06 3.7381e−09
8 8.5022e−04 3.3372e−06 2.0651e−06 3.1656e−10
9 1.8810e−04 2.4226e−07 4.5865e−07 1.7636e−11

10 1.8923e−04 2.3063e−07 1.0184e−07 1.2145e−12
11 4.1803e−05 1.6736e−08 2.2522e−08 8.1582e−14

Table 15. The `2-interpolation errors of f for different pa-
rameter settings.

102 103 104 105 106 107 108
10−14

10−11

10−8

10−5

10−2

#HIω(`, 2)

` 2
-e

rr
or

Theory
isotropic µ
isotropic ω

fully isotropic

Figure 12. The `2-interpolation errors for different parame-
ter settings as functions of the points of the sparse grid.

the fully isotropic setting, i.e., µ(1) = µ(2) = 0.4 and ω = (1, 1)T. We call this
setting fully isotropic. We give the corresponding errors in Table 15, where
we also included the values of the interpolation in the parameter setting of
Table 14 in the second column, theory. Not surprisingly, the fully isotropic
setting performs the best since it uses the most information.

To make a fair comparison of the parameter settings we computed the
corresponding sparse grids and map the error as a function of the points
in the sparse grids in Fig. 12. Surprisingly, we see that even here the fully
isotropic case performs much better than all others in the sense that for
a fixed number of points the error is the smallest. Furthermore, even the
cases were we used only one uniform parameter, either the weights or the
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refinements, perform better than the case where we used the parameters
according to the convergence results.

We have two reasons for this, at the first glance, negative result. First,
we believe that the problem simulated here is simply not anisotropic enough
which means that computing the interpolant in any of the three isotropic
settings, isotropic refinement parameter, isotropic weights or fully isotropic
is just not expensive enough to compensate for the lower approximation
error. And indeed, adding more and more directions with parameters set
as in direction 2 and computing the interpolation suggests that the theory
case begins to deliver better results. However, for these high-directional
problems the available memory is insufficient and we can not compute
more than a few levels. This is a problem intrinsic to the method and
there is no real way to avoid it, since approximation schemes derived from
Smolyak’s construction still need memory that grows exponential in the
number of directions, albeit with a smaller base than full-grid methods, see,
e.g., the discussion in Sections 6.1.3 and 6.2.2. The second justification we
can think of, ties in with the discussion of Section 6.1.3. In classical numerical
approximation we measure the error in terms of the fill distance of the set
of sites. For higher-directional problems and in particular with Smolyak
methods this is not reasonable. One way out is to use the cardinality of the
used index set or, in this case, the number of sparse grid points. However, it
is still unclear if these numbers are the right tools and if they lead to the
best results.

7.3.2. Testing Package of Genz. After the thorough tests of Sec-
tion 7.3.1 we now briefly provide numerical results for a package of test
functions established in [31]. The examples presented here serve only as a
proof of concept that the tensor product multilevel method works in higher
dimensions and for a wide variety of target functions. The testing package
was originally designed for numerical integration, see also [82] but in [6]
these functions are also used for high-dimensional interpolation. The package
consists of a family of six functions f1, . . . ,f6 : [0, 1]d → R, in arbitrary
dimension d ∈ N. Each is given a name or attribute by which we will refer
them as. The functions are defined as follows:

(1) OSCILLATORY:

f1(x) = cos

2πθ1 +

d∑
j=1

c(j)xj

 ,

(2) PRODUCT PEAK:

f2(x) =
d∏
j=1

(c−2
j + (xj − θj)2)−1,

(3) CORNER PEAK:

f3(x) =

1 +

d∑
j=1

cjxj

−(d+1)

,



7.3. NUMERICAL EXAMPLES 175

(4) GAUSSIAN:

f4(x) = exp

− d∑
j=1

c2
j (xj − θj)2

 ,

(5) CONTINUOUS:

f5(x) = exp

− d∑
j=1

cj |xj − θj |

 ,

(6) DISCONTINUOUS:

f6(x) =

{
0, if x1 > θ1 or x2 > θ2,

exp
(∑d

j=1 cjxj

)
, otherwise.

Each function depends on one or two parameter vectors, c and θ ∈ Rd+.
The parameter θ acts as a shift parameter and c determines the difficulty
of the function [31]. Our examples are for d = 7. We follow the ideas of [6]:
For each function we generate θ and c′ randomly but independently and
uniformly distributed in [0, 1]7. To obtain c we normalize c′ such that

7∑
j=1

c′j = bk, 1 ≤ k ≤ 6,

where bk depends on the function fk and is given in Table 16.
Independently of the values of the parameters θ and c we see that the

functions PRODUCT PEAK, GAUSSIAN and CONTINUOUS are elements
of a smooth algebraic tensor space and the functions OSCILLATORY and
CORNER PEAK are elements of a smooth tensor space. The functions
named DISCONTINUOUS is not continuous in the first two but smooth in
the other directions.

The interpolations to f1, . . . ,f6 were all computed in the fully uniform
setting. In part, because the numerical results in [6] were obtained in this
setting and in part, because the functions do not exhibit significant anisotropic
properties. Hence, we use an isotropic index set, i.e., we set the weight vector
to be ω = 1 and for the multilevel method we use in every direction the
uniform refinement parameter µ = µ(j) = 0.5, 1 ≤ j ≤ 7. This leads to a
doubling of points from level to level. For the overlap parameter ν(j) we
choose the uniform value ν = ν(j) = 4.0. Additionally, we use the Wendland
kernel φ1,1 for every direction.

Error computations for problems in higher directions is difficult itself
since the set of sites used for the evaluation of the error function should be
finer than the point set used for the interpolation. This leads to a potentially
numerically unfeasible effort. Hence, it is custom to follow the idea of the

k 1 2 3 4 5 6
bk 9.0 7.25 1.85 7.03 20.4 4.3

Table 16. Choices for the normalizations bk, 1 ≤ k ≤ 6
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Monte Carlo method and randomly distribute an arbitrary number of sample
points in the domain and average the error function at these points. We use
this approach and generate one houndred random points x1, . . . ,x100 ∈ [0, 1]7

and compute the discrete `∞-error.

`∞-Error

` f1 f2 f3 f4 f5 f6

1 1.3465e−02 4.0097e−04 1.5206e−03 6.7757e−02 2.8715e−02 1.5620e+02
2 3.9069e−03 7.3510e−05 1.9847e−04 8.5338e−03 1.4227e−02 1.0296e+02
3 6.5404e−04 1.2211e−05 4.8816e−05 2.8317e−03 3.9765e−03 2.4964e+01
4 1.7643e−04 4.2503e−06 8.4589e−06 4.3021e−04 1.8163e−03 7.5011e+01
5 4.3791e−05 1.1884e−06 2.7708e−06 1.1511e−04 2.5722e−03 2.3303e+01
6 3.3497e−06 1.6768e−07 2.1714e−08 5.3655e−05 5.5128e−04 2.0630e+01

Table 17. The `∞-interpolation errors for the functions of
the testing package of Genz.

In Table 17 we give the respective `∞ interpolation errors. Similar to the
observations in [6], we see convergence of the method for f1, . . . ,f5. For the
target function DISCONTINUOUS we observe slow to no convergence at all.
That is not surprising since f6 is not even continuous.

All the results in Table 17 were obtained by using an implementation
of the tensor product multilevel method in general representation, see Sec-
tion 7.1.3, i.e., we used only the high-directional data (xi,fk(xi))1≤i≤N ⊆
[0, 1]7 × R, 1 ≤ k ≤ 6. In Table 18 we provide the number of information N
used per threshold `. These are the numbers of sparse grid points with index
set I1(`, 7) and one-dimensional sets of sites (Xi)1≤i≤`+1. We use the sets of
sites to construct the Lagrange functions.

Additionally, we provide a comparison of computation times of the two
representations of the tensor product multilevel method. At the end of
Section 4.6.1, we already remarked on the high cost of a point evaluation
of the multilevel approximation if we use Lagrange functions. These costs
are even higher for the tensor product multilevel approximation in general
representation. To give an indication of this, we show in Table 19 the
computation time of the one-houndred point evaluations of the approximation
to the target function GAUSSIAN, f5. The times were taken on a Linux
workstation with using an Intel Xeon Silver CPU with 2.2 GHz and the
C++-class std::chrono without any parallelization. We choose this target
function since the tensor product multilevel method can be used in both
representations to compute the approximation to this function. We can see
that the evaluation of the approximation operator in general representation
takes several orders of magnitude longer than the one in simple represenation.
This is a problem inherent of the representation by Lagrange functions and

` 1 2 3 4 5 6
N 2187 12393 53217 198369 676161 2163969

Table 18. Number of information N per threshold `.
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Time for 100 point evaluations (s)

` general representation simple representation

1 3.1581e+00 3.9870e−03
2 2.6251e+01 1.4082e−02
3 1.8862e+02 4.5716e−02
4 1.2655e+03 1.6535e−01
5 7.7446e+03 3.0210e−01
6 4.4451e+04 6.9959e−01

Table 19. Times for 100 point evaluations of the tensor prod-
uct multilevel interpolant to the target function GAUSSIAN
in seconds, for threshold ` = 1, . . . , 6, using the general and
simple representations introduced in Section 7.1.

suggests that a naive implementation of (7.1.12) quickly becomes numerically
infeasible. We hope that in the future we find a better way to represent the
tensor product multilevel method and that the use of the localized Lagrange
functions will help in reducing the computational costs.

7.4. Double-Adaptive Tensor Product Multilevel Method

To finish this chapter we introduce a double-adaptive version of the
tensor product multilevel method. We restrict ourselves to the easy case, i.e.,
the target function is an element of an algebraic tensor product space and we
have access to the direction-wise information. For the general case it would
be necessary to do a thorough cost analysis of the tensor product multilevel
method in its general representation.

We start by refining the ideas discussed in Section 6.4 for the new tensor
product multilevel method. In Definition 6.4.1 we introduced, for a fixed
target function f , the weighted error estimator gf ,ω : Nd → R given by

gf ,ω(λ) := q

(
ω errorf (λ), (1− ω)

1

costf (λ)

)
,

with two mappings errorf : Nd → R and costf : Nd → R which should
represent the expected (relative) approximation error and the expected
(relative) cost to compute the approximation. The mapping q : R× R→ R
moderates these two values for each multi-index λ ∈ Nd. We fix

q(·, ·) = max(·, ·)

and discuss our choices for the remaining two mappings.
Since we assume that we use the simple representation we have access to

the direction-wise data (x
(j)
k , f (j)(x

(j)
k )), 1 ≤ j ≤ d. Hence, we can use the

residual correction representation of the multilevel operator, described in
Section 4.2, for every direction independently. That means in particular that

we can compute the residuals e
(j)
i , i ∈ N, 1 ≤ j ≤ d.
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First, we fix the mapping errorf . An obvious choice would be to use the
recursion inequality (4.3.6),

‖E(j)e
(j)
i ‖Φ(j)

i+1

≤ α(j)‖E(j)e
(j)
i−1‖Φ(j)

i

,

with α(j) < 1, for every direction 1 ≤ j ≤ d and therefore we would like to
set

errorf (λ) :=

d∏
j=1

∥∥∥E(j)e
(j)
λj

∥∥∥
Φ

(j)
λj+1

.

This way we guarantee monotonicity of the mapping errorf . However, in
numerical reality the residual is only known point-wise and computing a
continuous norm is therefore hard.

Hence, our idea is to use a discrete norm. We take a closer look at the
multilevel method in Algorithm 1 and briefly omit the superscript for the
dependence on the direction. We implicitly have to evaluate the residual
of level i, ei, on the data sites of the next level Xi+1 to prepare for the
approximation on level i + 1. This is computational work that is usually
done at the beginning of the for-loop with index ĩ = i+ 1, however we can
also move this work to the end of the loop, which means that we obtain the
data (ẽi−1(xĩ,k))1≤k≤Nĩ at the end of the for-loop with index i as long as

the current level is not the last. Thus, in levels 1 ≤ i < L we can obtain the
value ‖ei‖`∞(Xi+1) with minimal additional computational cost, we only have
to find the maximum of the values (ei(xi+1,k)) which we already computed.
This idea motivates our choice for errorf ,

errorf (λ) =
d∏
j=1

‖e(j)
λj−1‖`∞(X

(j)
λj

)

‖e(j)
0 ‖`∞(X

(j)
1 )

,

for λ ∈ Nd. We also introduced an optional relativation with ‖e(j)
0 ‖`∞(X

(j)
1 )

=

‖f (j)‖
`∞(X

(j)
1 )

.

We already noted that this choice leads to minimal additionally compu-
tational costs, however, there is a larger downside of this choice of errorf .
Unfortunately, we can not guarantee that this mapping is monotonously
decreasing. Nevertheless, we will use it in applications.

Second, we have to fix the mapping costf , which represents the costs that
arise when computing the approximation corresponding to the respective
multi-index. Again, we recall Chapter 4, in particular Corollary 4.2.1. We
know that the computational cost to solve the direction-wise approximation
problem is linear and hence, we fix costf by

1

costf (λ)
=

d∏
j=1

N
(j)
1

N
(j)
λj

.

This yields the following definition.

Definition 7.4.1. In the case of the simple representation of the tensor
product multilevel method Section 7.1.2 we define the weighted error estimator
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gf ,ω : Nd → R by

gf ,ω(λ) = max

ω d∏
j=1

‖e(j)
λj−1‖`∞(X

(j)
λj

)

‖e(j)
0 ‖`∞(X

(j)
1 )

, (1− ω)
d∏
j=1

N
(j)
1

N
(j)
λj


for fixed f and ω ∈ [0, 1].

The combination with the truly adaptive version of the multilevel method
of Section 4.5 is now straight forward. We recall that in this version we
evaluate the residual on level i in the sites of the upcoming level and use
only these points for which the absolute value of the evaluated residual is
larger than a given threshold. That means that we can also use the weighted
error estimator of Definition 7.4.1 in this case if we keep in mind that we

do not use the original direction-wise sequence of sets of sites X
(j)
i , i ∈ N,

but rather the adaptive point sets X (j)
i . Clearly, we then have to also use

the cardinality of X (j)
i for costf .

To test these two adaptive methods we revisit the problem from Sec-
tion 7.3.1, i.e., the interpolation of the two-dimensional target function

f : [−1, 1]2 → R, f(x) = |x(1)|1.6 · |x(2)|3.6.

First, we use the standard kernel-based multilevel method in both direc-
tions with parameters as in Table 14 however, we construct the index set of
the Smolyak method adaptively using the error estimator of Definition 7.4.1.
We test only the two extremal cases, ω = 0.0 and ω = 1.0.

We recall our discussion in Section 7.3.1, in particular the phenom
encountered in studying Fig. 12. We saw that the tensor product multilevel
method with fully isotropic parameter setting performs much better than the
one in the fully anisotropic setting, in the sense that the error as a function of
the number of sparse grid points decays a lot faster. In Fig. 13, we added the
interpolation errors of the single-adaptive tensor product multilevel method.
At the end of every iteration of the while-loop in Algorithm 4 we evaluated the
interpolant on a uniform grid with 15000×15000 points and also computed the
number of points in the sparse grid associated to the inductively constructed
index set. We see that the single adaptive tensor product multilevel method
performs as good as the fully isotropic one, independent of the value of the
weight ω. Clearly, in every iteration of Algorithm 4, the change of the number
of points in the sparse grid changes much less than in the non-adaptive tensor
product multilevel method since at most two, the number of directions, multi-
indices are added to the adaptive index set. We see also that, depending
on the indices that are added, i.e., there may be not a large decay in the
interpolation error.

In Fig. 14 we show snapshots of the evolution of the adaptively constructed
index set for the single adaptive tensor product multilevel method with weight
ω = 1.0. We note that the evolution of the index set for ω = 0.0 looks similar.
Again, the active indices are marked in green, the offline indices in grey and
the index with the largest local error estimator is the one that has the arrows
attached. We remark two things: First, we see that the index sets at iterations
9, 12 and 14 are not anisotropic index sets according to Definition 6.2.1, there



180 7. THE TENSOR PRODUCT MULTILEVEL METHOD

102 103 104 105 106 107 108
10−14

10−11

10−8

10−5

10−2

# Sparse Grid

` 2
-e

rr
or

fully anisotropic
fully isotropic

single adaptive ω = 0.0
single adaptive ω = 1.0

Figure 13. The `2-interpolation errors of f(x) = |x(1)|1.6 ·
|x(2)|3.6 for different versions of the tensor product multilevel
method, as functions of the number of points in the, to the
used index sets, associated sparse grids.

is no combination of weight vector ω and threshold ` such that Iω(`, 2) has
this shape. And second, more importantly, in this example, the algorithm
for the adaptive Smolyak method, Algorithm 4, seems to prefer the direction
in which the target function f is smoother, in the sense that it chooses to
extend the adaptive index set further into the second direction than the
first. This is remarkable, since our intuition suggests that we need more
levels in the direction where the target function is rough to obtain a better
approximation. This is the reason why, in Theorem 7.2.1 and all following
convergence results for the tensor product multilevel method, we assume that
the weight vector ω is ascendingly ordered. This means that the theoretical
results in Section 7.2 can not be applied for the adaptive tensor product
multilevel method and have to be revised to obtain convergence results for
this adaptive method.

For the sake of completeness we give the values of the global error estimate
η for weights ω = 0.0 and 1.0 in Fig. 15. We recall that this value determines if
the adaptive Smolyak method, described in Algorithm 4, terminates. Because
of the relativation, η is set in the initialization phase to 1 and, in our examples,
decays monotonously towards zero. This has not always to be the case and
is highly dependent on the problem at hand. However, we expect that after
enough iterations the value of η becomes sufficiently small for the algorithm
to terminate.

Next, we demonstrate the double-adaptive version of the tensor product
multilevel method. We use the same setting as before, i.e., the parameters
given in Table 14 and the same target function as above. Again, we construct
the index set adaptively following Algorithm 4 with the already discussed
changes to the weighted error estimator of Definition 7.4.1. However, in this
version of the method we use the refinement parameters µ(1) and µ(2) to
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Figure 14. Evolution of the adaptively constructed index
set for weight ω = 1.0 at iterations 0, 3, 6, 9, 12 and 14 (left to
right, top to bottom), for the single-adaptive tensor product
multilevel method.
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Figure 15. The global error estimate η as a function of
the number of iterations of the adaptive Smolyak algorithm
Algorithm 4, using the weighted error estimator gf ,ω as in
Definition 7.4.1 for weights ω = 0.0 and 1.0.

obtain the direction-wise sets of sites (X
(1)
i ) and (X

(2)
i ), respectively, and

choose among their elements the adaptive point sets (X (1)
i ) and (X (2)

i ) as is
described in Algorithm 3. We then use these as data sites for the interpolation

problem. We recall that we add an x ∈ X(j)
i+1 to X (j)

i+1 if |e(j)
i (x)| > ε

(j)
i with

a threshold ε
(j)
i that we can choose. We follow the ideas of [92] and set

ε
(j)
i := 10−3 · max

x∈X(j)
i+1

|e(j)
i (x)|, i ∈ N, j = 1, 2.(7.4.1)

We emphasize that we use different refinement parameters in the two direc-
tions but the same thresholding strategy. If this is the right strategy should
be explored in the future.

Applying the double-adaptive tensor product multilevel method to the
model problem of Section 7.3.1 leads to the `2-errors plotted in Fig. 16, again
computed on a uniform grid with 15000 × 15000 points. We compare the
errors to the fully isotropic and fully anisotropic setting of the standard tensor
product multilevel method. We see that the double adaptive tensor product
multilevel method again performs as good as the fully isotropic setting if we
choose the weight ω = 0.0 in the weighted error estimator. We recall that for
ω = 0.0 we adapt the index set on the basis of the relative costs. Surprisingly,
for ω = 1.0, the behavior of the error is much more erratic with a quasi
constant error for a number of iterations, a sharp drop and then again quasi
constant error. Looking for an explanation, we start by studying the evolution
of the index set in Fig. 17. We see that that the drop in the error happens
when the algorithm of the adaptive Smolyak method decides to extend the
adaptive index set in the first direction and the error stagnates when the
index set is extended into the second direction. Furthermore, looking at the
evolution of the global error estimator η in Fig. 18, for ω = 1.0, we can again
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observe this behavior with two distinct peaks. These are at the number of
iterations where the sharp decay of the graph in Fig. 16 happens. Again, for
ω = 0.0, the global error estimate decays monotonously. The final explanation
for this phenom comes from Fig. 19. There, we plotted the maximum of the

residual e
(j)
i on level i, evaluated on the upcoming point set X

(j)
i+1 for both

directions. We recall that for ω = 1.0, we only refine on the basis of the
residuals. We can see that the residual in the second direction grows from the
start before it begins to fall monotonously from level three onward. This ties
in with the beginning of the chapter where we discussed the choice for errorf .
In general and particularly for the adaptive multilevel method, we can not

guarantee that ‖e(j)
i ‖`∞(X

(j)
i+1)

or ‖e(j)
i ‖`∞(X (j)

i+1)
and therefore our choices for

errorf decay monotonously or even decay at all. The behavior of e
(2)
i stems

from the adaptive multilevel method. Obviously, we need a deeper theoretical
understanding of this method to incorporate it into the thresholding strategy
in (7.4.1) to hopefully avoid this behavior in the future.
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Figure 16. The `2-interpolation errors of f(x) = |x(1)|1.6 ·
|x(2)|3.6 for different versions of the tensor product multilevel
method, as functions of the number of points in the, to the
used index sets, associated sparse grids.
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Figure 17. Evolution of the adaptively constructed index
set for weight ω = 1.0 at iterations 0, 3, 6, 9, 12 and 14 (left to
right, top to bottom), for the double-adaptive tensor product
multilevel method.
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Figure 18. The global error estimate η as a function of the
number of iterations of the adaptive Smolyak algorithm, Algo-
rithm 4, used in the double-adaptive tensor product method,
using the weighted error estimator gf ,ω as in Definition 7.4.1,
with the necessary changes for the double-adaptive method,
for weights ω = 0.0 and 1.0.

2 4 6 8

10−17

10−16

10−15

10−14

10−13

Level i

‖e
(j

)
i
‖ `
∞

(X
(j

)
i+

1
)

j = 1
j = 2

Figure 19. Largest values of the residuals e
(j)
i , evaluated

on the upcoming point set X
(j)
i+1, per level i, of the adaptive

multilevel method with thresholding strategy (7.4.1).





CHAPTER 8

Conclusions and Outlook

Motivated by a model problem, the reconstruction of a quantity of
interest of the solution of a parameteric partial differential equation, the aim
of this thesis was the development of a new method to solve high-dimensional
approximation problems. We achieved this goal by combining two well-
known methods. Our idea was to use the Smolyak method which enabled us
to construct an high-dimensional approximation operator from families of
arbitrary low-dimensional ones. This method is known to be flexible enough to
use different reconstruction schemes in different directions. This is helpfull if
the target function exhibits, e.g., different smoothnesses in different direction.
Additionally, the construction of the Smolyak operator done such that the
new reconstruction method exhibits nearly the same approximation features
as the building-block operators and is perfectly suited for use with multilevel
schemes.

This motivated us to use kernel-based multilevel methods as the low-
dimensional approximation operators. These methods are based on a residual
correction scheme and are known to be fast and stable if it uses compactly
supported radial basis functions and have the advantage that we can use
scattered data in nearly general domains.

The combination of these two methods, the Smolyak algorithm on the one
hand and the kernel-based multilevel method on the other yielded the tensor
product multilevel method. It is a scheme that allows us to recover unknown,
anisotropic tensor product functions from meshless high-dimensional data
in arbitrary Lipschitz domains using different reconstruction schemes such
as interpolation and penalized least squares approximation. For working
with tensor product functions it is reasonable to differentiate two cases,
whether we have access to the low-dimensional, factor functions or not. In
the former case we employed the residual correction representation of the
multilevel method in each direction and obtained an easy representation of
the tensor product multilevel method, see Section 7.1.2. In the latter case,
it was necessary to derive a different representation of the low-dimensional
approximation method in Section 4.6.1 and to get a better understanding
how the reconstruction operator depends on the target function, thereby
getting rid of the residuals altogether by introducing Lagrange functions.
This way we obtained the tensor product multilevel method in its general
representation in Section 7.1.3 which is also easy to implement.

Following the introduction of the tensor product multilevel method we
gave a rigorous error analysis. The key was that the Smolyak operators allows
us to use direction-wise error estimates if we use Banach spaces as domain
and codomain of the operator that have uniformly compatible tensor product
norms, see Section 6.1.5. With these results the error estimates of Section 7.2
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were straight forward since the convergence of the multilevel method for
interpolation and penalized least squares approximation are well-known, see
Section 4.3. However, the results in their most general form are hard to
interpret, see, e.g., Theorem 7.2.1 for interpolation, since they contain a
maximum amount of information about the anisotropy of the target function.
That is why we gave a series of lemmas in which we traded this information
for readability of the estimate. The resulting results, e.g., in (7.2.11), are in
a very closed form, however only contain information about the first and last
direction.

Preliminary numerical tests indicated that the tensor product multilevel
method in its general representation is very expensive but we have to use
this version of the reconstruction scheme if we have no information about the
target function. The cost became already numerically unfeasible for moderate
dimensions and moderate numbers of levels. This can be attributed to the
necessity to use the Lagrange functions and the exponential growth of the
number of evaluations per level. This was the motivation to establish another
basis of the approximation space, the localized Lagrange functions. The idea is
to enforce the Lagrange condition only on a small subset of the set of sites and
we derived conditions under which these localized Lagrange functions form a
basis of the kernel-based approximation space, see Lemma 3.3.4. This allowed
us to introduce a quasi-interpolation-like approximation scheme, which we
also used in the multilevel scheme. This yielded the local Lagrange multilevel
method. The estimates derived in Section 3.3 allowed us to obtain convergence
results for this new method, which in turn were used in Section 7.2.3 to
derive error bounds for the high-dimensional approximation problem.

Although inspired by previous results the introduction and study of
localized Lagrange functions in the context of Wendland functions is original
work and the results presented in Section 3.3 are still crude. In particular
the practical use in the multilevel method should be studied in more detail
in the future. We introduced them as a first way to make the tensor product
multilevel method in its general representation feasible. Another possible
way to speed up this method is a closer look at the new representation of
the multilevel operator in Theorem 4.6.4. At least for a nested sequence of
sets of sites we know that many of the coefficients a(u,k) are zero and we
should be able to significantly reduce the number of point evaluations.

Furthermore, we want to take a more thorough look at the adaptive
versions of the multilevel method in Section 4.5 and their combination with the
direction-adaptive Smolyak method in Section 7.4. The former method clearly
lacks a proof of convergence and the latter needs to be studied in greater
depth. Obviously, we need to generalize the discussion held in Section 7.4
to the case that we do not have the direction-wise information. Again, this
requires a better understanding of the tensor product multilevel method in
its general representation. Additionally, a more thorough investigation of the
version given here is in order. However, initial numerical results give us hope
that the double-adaptive version of the tensor product multilevel method
can resolve the numerical phenomenon encountered in Section 7.3.1.



APPENDIX A

Error Tables to Section 4.4

We provide here the error tables of the numerical simulation which leads
to the estimated multilevel constant in Section 4.4.

A.1. Ω = [−1, 1]

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 4.8796e−01 4.8796e−01 4.8796e−01 4.8796e−01 4.8796e−01 4.8796e−01
2 2.9681e−02 3.0939e−02 2.1642e−02 1.7499e−02 1.4370e−02 1.2924e−02
3 5.4722e−03 3.4612e−03 2.2596e−03 1.6739e−03 1.3457e−03 1.0754e−03
4 6.9015e−04 3.8067e−04 2.2379e−04 1.5328e−04 1.1995e−04 9.2056e−05
5 8.3623e−05 4.0886e−05 2.1919e−05 1.3990e−05 1.0652e−05 7.9398e−06
6 1.0126e−05 4.3836e−06 2.1444e−06 1.2767e−06 9.4834e−07 6.8423e−07
7 1.2234e−06 4.6994e−07 2.0972e−07 1.1659e−07 8.4569e−08 5.9270e−08
8 1.4774e−07 5.0380e−08 2.0508e−08 1.0654e−08 7.5552e−09 5.1565e−09
9 1.7832e−08 5.3990e−09 2.0045e−09 9.7401e−10 6.7640e−10 4.5221e−10

10 2.0812e−09 5.5844e−10 1.8896e−10 8.6358e−11 5.9516e−11 4.0060e−11
11 8.4063e−11 2.8396e−11 8.9196e−12 4.9259e−12 4.3650e−12 3.8873e−12

Table 20. Table of errors for k = 1 and µ = 0.4.

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 4.0162e−01 4.0162e−01 4.0162e−01 4.0162e−01 4.0162e−01 4.0162e−01
2 2.1332e−02 4.2129e−02 3.9192e−02 3.0056e−02 2.2094e−02 1.7520e−02
3 7.7855e−03 5.6236e−03 3.9200e−03 2.5203e−03 1.7375e−03 1.2750e−03
4 9.6382e−04 6.5258e−04 3.9568e−04 2.2256e−04 1.3924e−04 9.4108e−05
5 1.3465e−04 7.6025e−05 4.0158e−05 1.9805e−05 1.1242e−05 6.9852e−06
6 1.8258e−05 8.8426e−06 4.0803e−06 1.7643e−06 9.0868e−07 5.1871e−07
7 2.4851e−06 1.0279e−06 4.1467e−07 1.5719e−07 7.3457e−08 3.8515e−08
8 3.3815e−07 1.1945e−07 4.2143e−08 1.4005e−08 5.9382e−09 2.8596e−09
9 4.6005e−08 1.3875e−08 4.2814e−09 1.2472e−09 4.7982e−10 2.1221e−10

10 6.0257e−09 1.5598e−09 4.2103e−10 1.0725e−10 3.7390e−11 1.5182e−11
11 1.0087e−10 9.1461e−11 2.5090e−11 5.5247e−12 1.7305e−12 6.5306e−13

Table 21. Table of errors for k = 2 and µ = 0.4.
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`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 3.4923e−01 3.4923e−01 3.4923e−01 3.4923e−01 3.4923e−01 3.4923e−01
2 2.3306e−02 4.4288e−02 5.1376e−02 4.5944e−02 3.6961e−02 2.8228e−02
3 1.2226e−02 7.4969e−03 5.9601e−03 4.3588e−03 2.9607e−03 2.0287e−03
4 1.7556e−03 9.2141e−04 6.6342e−04 4.2522e−04 2.5243e−04 1.5420e−04
5 3.0099e−04 1.1624e−04 7.3812e−05 4.1691e−05 2.1696e−05 1.1799e−05
6 4.6721e−05 1.4586e−05 8.2025e−06 4.0917e−06 1.8676e−06 9.0367e−07
7 7.3208e−06 1.8286e−06 9.1110e−07 4.0166e−07 1.6081e−07 6.9223e−08
8 1.1311e−06 2.2916e−07 1.0118e−07 3.9430e−08 1.3848e−08 5.3027e−09
9 1.7423e−07 2.8704e−08 1.1232e−08 3.8693e−09 1.1919e−09 4.0601e−10

10 2.6359e−08 3.4635e−09 1.2080e−09 3.6765e−10 9.9048e−11 2.9941e−11
11 3.1046e−09 1.4745e−10 7.7261e−11 2.2267e−11 5.1707e−12 1.3624e−12

Table 22. Table of errors for k = 3 and µ = 0.4.

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 4.8796e−01 4.8796e−01 4.8796e−01 4.8796e−01 4.8796e−01 4.8796e−01
2 3.8436e−02 5.9225e−02 6.8711e−02 5.2285e−02 4.6501e−02 5.0296e−02
3 3.1181e−02 2.3109e−02 1.9067e−02 1.3352e−02 1.0626e−02 8.3451e−03
4 8.7728e−03 6.2729e−03 4.3737e−03 2.9541e−03 2.3743e−03 1.9593e−03
5 2.6002e−03 1.5837e−03 9.8947e−04 6.3794e−04 5.0776e−04 4.2377e−04
6 7.2761e−04 3.9509e−04 2.2448e−04 1.3849e−04 1.0970e−04 8.9244e−05
7 2.0344e−04 9.8041e−05 5.0845e−05 3.0068e−05 2.3601e−05 1.8906e−05
8 5.6734e−05 2.4320e−05 1.1527e−05 6.5133e−06 5.0816e−06 4.0174e−06
9 1.5820e−05 6.0268e−06 2.6136e−06 1.4121e−06 1.0957e−06 8.5180e−07

10 4.4112e−06 1.4941e−06 5.9274e−07 3.0576e−07 2.3650e−07 1.8102e−07
11 1.2301e−06 3.7030e−07 1.3444e−07 6.6248e−08 5.1090e−08 3.8487e−08

Table 23. Table of errors for k = 1 and µ = 0.5.

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 4.0162e−01 4.0162e−01 4.0162e−01 4.0162e−01 4.0162e−01 4.0162e−01
2 6.6514e−02 6.7300e−02 9.6927e−02 9.7355e−02 8.1254e−02 6.5037e−02
3 4.5459e−02 4.1746e−02 3.2865e−02 2.6204e−02 1.9739e−02 1.4770e−02
4 1.7125e−02 1.1047e−02 8.1286e−03 6.0233e−03 4.2115e−03 2.9541e−03
5 5.9891e−03 3.0919e−03 2.0130e−03 1.3615e−03 8.7560e−04 5.7781e−04
6 1.9018e−03 8.3238e−04 4.9523e−04 3.0717e−04 1.8193e−04 1.1286e−04
7 6.0580e−04 2.2513e−04 1.2158e−04 6.9266e−05 3.7810e−05 2.2022e−05
8 1.9010e−04 6.0803e−05 2.9816e−05 1.5616e−05 7.8583e−06 4.2947e−06
9 5.9771e−05 1.6429e−05 7.3082e−06 3.5201e−06 1.6332e−06 8.3722e−07

10 1.8747e−05 4.4396e−06 1.7909e−06 7.9346e−07 3.3942e−07 1.6318e−07
11 5.8837e−06 1.1998e−06 4.3881e−07 1.7885e−07 7.0538e−08 3.1801e−08

Table 24. Table of errors for k = 2 and µ = 0.5.
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`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 3.4923e−01 3.4923e−01 3.4923e−01 3.4923e−01 3.4923e−01 3.4923e−01
2 6.9928e−02 7.6603e−02 1.1959e−01 1.3702e−01 1.3240e−01 1.1636e−01
3 4.8410e−02 5.9081e−02 5.0290e−02 4.1679e−02 3.4954e−02 2.8330e−02
4 2.4735e−02 1.8074e−02 1.3023e−02 1.0207e−02 8.0336e−03 6.0782e−03
5 9.7422e−03 5.6131e−03 3.4821e−03 2.4942e−03 1.8130e−03 1.2668e−03
6 3.5045e−03 1.6224e−03 9.1118e−04 6.0468e−04 4.0715e−04 2.6309e−04
7 1.2264e−03 4.7322e−04 2.3861e−04 1.4619e−04 9.1286e−05 5.4608e−05
8 4.2462e−04 1.3707e−04 6.2419e−05 3.5300e−05 2.0456e−05 1.1334e−05
9 1.4644e−04 3.9789e−05 1.6327e−05 8.5194e−06 4.5830e−06 2.3527e−06

10 5.0366e−05 1.1552e−05 4.2702e−06 2.0556e−06 1.0267e−06 4.8837e−07
11 1.7291e−05 3.3560e−06 1.1169e−06 4.9592e−07 2.3001e−07 1.0138e−07

Table 25. Table of errors for k = 3 and µ = 0.5.
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A.2. Ω = [0, 1]

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 1.8148e−01 1.8148e−01 1.8148e−01 1.8148e−01 1.8148e−01 1.8148e−01
2 6.3800e−03 4.0653e−03 3.0983e−03 2.6309e−03 1.8963e−03 2.0862e−03
3 5.7334e−04 3.5901e−04 2.6499e−04 2.1444e−04 1.5659e−04 1.6566e−04
4 5.2571e−05 3.1268e−05 2.2876e−05 1.8534e−05 1.4148e−05 1.4062e−05
5 4.7687e−06 2.6469e−06 1.8748e−06 1.4834e−06 1.0844e−06 1.0588e−06
6 4.3750e−07 2.3182e−07 1.6612e−07 1.3428e−07 1.0393e−07 1.0064e−07
7 3.9608e−08 1.9397e−08 1.3382e−08 1.0625e−08 7.7311e−09 7.2981e−09
8 3.6469e−09 1.7366e−09 1.2494e−09 1.0356e−09 8.4069e−10 8.0255e−10
9 3.2926e−10 1.4315e−10 9.8139e−11 7.9799e−11 6.0016e−11 5.5770e−11

10 2.9317e−11 1.2957e−11 9.7491e−12 8.4801e−12 7.4010e−12 7.1044e−12
11 1.1316e−12 4.9211e−13 3.7808e−13 3.2601e−13 2.7130e−13 2.5093e−13

Table 26. Table of errors for k = 1 and µ = 0.4.

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 8.5701e−02 8.5701e−02 8.5701e−02 8.5701e−02 8.5701e−02 8.5701e−02
2 5.6108e−03 3.2580e−03 2.3183e−03 1.6092e−03 1.3552e−03 9.9340e−04
3 4.6904e−04 2.3467e−04 1.3948e−04 8.9374e−05 6.7014e−05 4.6970e−05
4 4.1399e−05 1.7311e−05 8.9003e−06 5.0973e−06 3.4791e−06 2.2955e−06
5 3.6836e−06 1.2848e−06 5.7173e−07 2.9241e−07 1.8252e−07 1.1261e−07
6 3.2816e−07 9.5406e−08 3.6761e−08 1.6796e−08 9.5879e−09 5.5260e−09
7 2.9237e−08 7.0841e−09 2.3639e−09 9.6498e−10 5.0371e−10 2.7107e−10
8 2.6048e−09 5.2597e−10 1.5200e−10 5.5442e−11 2.6463e−11 1.3297e−11
9 2.3197e−10 3.9032e−11 9.7694e−12 3.1838e−12 1.3895e−12 6.5185e−13

10 1.9947e−11 2.7923e−12 6.0440e−13 1.7583e−13 7.0124e−14 3.0708e−14
11 1.0276e−12 1.2012e−13 2.2245e−14 5.7592e−15 2.1456e−15 9.9979e−16

Table 27. Table of errors for k = 2 and µ = 0.4.

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 4.3772e−02 4.3772e−02 4.3772e−02 4.3772e−02 4.3772e−02 4.3772e−02
2 4.8413e−03 2.9020e−03 1.8236e−03 1.2788e−03 9.0811e−04 7.1868e−04
3 4.5813e−04 2.0809e−04 1.0859e−04 6.4125e−05 3.9965e−05 2.7706e−05
4 4.4646e−05 1.5800e−05 6.7785e−06 3.3847e−06 1.8333e−06 1.1243e−06
5 4.3767e−06 1.2088e−06 4.2576e−07 1.7970e−07 8.4462e−08 4.5839e−08
6 4.2953e−07 9.2577e−08 2.6767e−08 9.5461e−09 3.8925e−09 1.8695e−09
7 4.2164e−08 7.0915e−09 1.6831e−09 5.0714e−10 1.7938e−10 7.6241e−11
8 4.1392e−09 5.4323e−10 1.0583e−10 2.6941e−11 8.2660e−12 3.1090e−12
9 4.0618e−10 4.1594e−11 6.6510e−12 1.4304e−12 3.8068e−13 1.2671e−13

10 3.8595e−11 3.0673e−12 4.0125e−13 7.2710e−14 1.6767e−14 4.9971e−15
11 2.3375e−12 1.3957e−13 1.4645e−14 2.2109e−15 7.8502e−16 8.0835e−16

Table 28. Table of errors for k = 3 and µ = 0.4.
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`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 1.6097e−01 1.6097e−01 1.6097e−01 1.6097e−01 1.6097e−01 1.6097e−01
2 1.7247e−02 1.6592e−02 1.2470e−02 9.4578e−03 8.1833e−03 7.4527e−03
3 4.4046e−03 2.7528e−03 2.6496e−03 2.2142e−03 1.4508e−03 1.3735e−03
4 9.7447e−04 6.4633e−04 5.8604e−04 3.8126e−04 3.6268e−04 2.4213e−04
5 2.1044e−04 1.3979e−04 1.2040e−04 8.5768e−05 7.1367e−05 5.7131e−05
6 4.5686e−05 2.9440e−05 2.5312e−05 1.8129e−05 1.4261e−05 1.1834e−05
7 9.9186e−06 6.2365e−06 5.3536e−06 3.8169e−06 2.9984e−06 2.4573e−06
8 2.1486e−06 1.3252e−06 1.1346e−06 8.0944e−07 6.3180e−07 5.2271e−07
9 4.6583e−07 2.8099e−07 2.4035e−07 1.7175e−07 1.3446e−07 1.1280e−07

10 1.0086e−07 5.9715e−08 5.1101e−08 3.6650e−08 2.8852e−08 2.4593e−08
11 2.1854e−08 1.2696e−08 1.0880e−08 7.8588e−09 6.2508e−09 5.4297e−09

Table 29. Table of errors for k = 1 and µ = 0.5.

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 6.6242e−02 6.6242e−02 6.6242e−02 6.6242e−02 6.6242e−02 6.6242e−02
2 1.6058e−02 1.0727e−02 8.3318e−03 6.9664e−03 5.7351e−03 4.7843e−03
3 4.3221e−03 2.4362e−03 1.7463e−03 1.2268e−03 1.0883e−03 8.9701e−04
4 9.9347e−04 4.8724e−04 3.0375e−04 2.1364e−04 1.6739e−04 1.3764e−04
5 2.2456e−04 9.5303e−05 5.4041e−05 3.5563e−05 2.6230e−05 2.0944e−05
6 5.0665e−05 1.8615e−05 9.6155e−06 5.8934e−06 4.1319e−06 3.1716e−06
7 1.1425e−05 3.6323e−06 1.7094e−06 9.7534e−07 6.5084e−07 4.7956e−07
8 2.5756e−06 7.0836e−07 3.0370e−07 1.6131e−07 1.0248e−07 7.2463e−08
9 5.8060e−07 1.3809e−07 5.3938e−08 2.6667e−08 1.6132e−08 1.0946e−08

10 1.3087e−07 2.6915e−08 9.5775e−09 4.4072e−09 2.5389e−09 1.6531e−09
11 2.9499e−08 5.2452e−09 1.7004e−09 7.2829e−10 3.9957e−10 2.4963e−10

Table 30. Table of errors for k = 2 and µ = 0.5.

`2-Error

level γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 3.5 γ = 4

1 2.8800e−02 2.8800e−02 2.8800e−02 2.8800e−02 2.8800e−02 2.8800e−02
2 1.1300e−02 9.5961e−03 6.9045e−03 5.3063e−03 4.3448e−03 3.6804e−03
3 3.4372e−03 2.3363e−03 1.4665e−03 1.0551e−03 7.5715e−04 5.9658e−04
4 8.4176e−04 5.0126e−04 2.7580e−04 1.7427e−04 1.1704e−04 8.4509e−05
5 2.0569e−04 1.0447e−04 5.0078e−05 2.8357e−05 1.7383e−05 1.1566e−05
6 4.9867e−05 2.1697e−05 9.0577e−06 4.5954e−06 2.5633e−06 1.5764e−06
7 1.2056e−05 4.5035e−06 1.6360e−06 7.4358e−07 3.7718e−07 2.1438e−07
8 2.9112e−06 9.3473e−07 2.9531e−07 1.2024e−07 5.5453e−08 2.9127e−08
9 7.0259e−07 1.9402e−07 5.3295e−08 1.9440e−08 8.1494e−09 3.9558e−09

10 1.6952e−07 4.0276e−08 9.6170e−09 3.1425e−09 1.1974e−09 5.3713e−10
11 4.0899e−08 8.3608e−09 1.7353e−09 5.0796e−10 1.7593e−10 7.2927e−11

Table 31. Table of errors for k = 3 and µ = 0.5.
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