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Microplastic (MP) contamination of freshwater ecosystems is still in the focus

of research and public attention, as aquatic environments have a high

ecological, economic, and recreational value. We now know that rivers do

not only function as pathways of MPs into oceans but may also act as

temporary MP sinks. However, due to methodological differences, the

comparability of studies on MP contamination of rivers is still limited. To

compare MP contamination between different river systems, to analyze if

there is a constant increase in MP contamination from the upper to the lower

course of the river, and to investigate if there are distinct MP distribution

patterns, we set up a large-scale survey. We chose two large river systems,

the Rhine and Danube catchments with their tributaries and sampled

23 rivers of different sizes at 53 sampling locations in southwest

Germany. Surface water sampling, sample processing, and analysis were

performed with the same methodology to obtain comparable results on MP

number, polymer type, and particle’s size and shape. Fully quantitative data

were generated down to 300 μm by using a manta trawl net with a 300-μm

mesh size for sampling. Nevertheless, we also included the non-quantitative

sampled fraction of particles down to a size of 20 μm in our FTIR analysis

after plastic-friendly sample purification by enzymatic oxidative treatment.

Plastic concentrations recorded in surface water at the sampling locations

ranged from 0.7 to 354.9 particles/m³. Concerning all samples, the number

of particles increased toward lower size classes (61.0 ± 34.2% below

300 μm), and fragments were the prevailing shape (90.7 ± 13.6%).

Polyethylene (49.2 ± 25.9%) and polypropylene (33.2 ± 22.6%) were the

most frequent polymer types. Our survey did not reveal distinct MP

distribution patterns or a constant increase of MP abundance within river

courses in the investigated river systems. Next, to provide a large-scale

dataset of microplastic contamination in surface waters of southwest

Germany, our study shows that a representative sampling of MPs in rivers

is challenging. MP particles are not homogeneously distributed in rivers, and

this indicates that spatial and temporal changes in MP abundance should

always be considered in MP monitoring approaches.
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1 Introduction

Products made from plastics are of great importance in our

modern daily life. This is one of the reasons why the history of

plastic is an economic success story. Due to this fact, global

plastic production is still on the rise and so is, simultaneously, the

demand for single-use plastic products for packaging. As a

consequence, large amounts of plastic waste are generated. In

2018, 29.1 million tons of plastic litter was introduced into the

official European waste streams (Plastics Europe, 2020).

However, not all post-consumer products are currently

recycled. In Europe, the proportion used for recycling was

estimated to account for 32.5% in 2018. The remainder of

plastic waste is used for energy recovery by incineration or

dumped in landfills. In addition to these managed end-of-life

routes, a considerable proportion of plastic waste is carelessly

discarded into the environment. In this context, the World

Economic Forum, 2016 has calculated that globally every year

approximately 32% of plastic packaging material alone is

improperly disposed into the environment. However, littering

is only one pathway by which plastic debris enters terrestrial and

aquatic environments. Other sources are, for example, wind

transport from landfills or construction sites, industrial or

agricultural run-offs, wastewater treatment plant (WWTP)

effluents, combined sewer overflows, or stormwater run-offs

(Dris et al., 2018; Eerkes-Medrano and Thompson, 2018)—

and this list is still incomprehensive.

Once in the environment, larger plastic items fragment by

physical, chemical, and biological weathering into ever smaller

particles called microplastics (MPs), which are, by current

definition, smaller than 5 mm (Wagner and Lambert, 2018).

As these MPs originate from larger items, they are also

referred to as secondary MPs (Hartmann et al., 2019). Fibers

from clothing fall into this category as well (Dris et al., 2017). By

contrast, primary MPs are produced in the MP size range, for

example, raw plastic pellets, particles used in cosmetic products

such as toothpaste and peelings, or air-blasting media (Fendall

and Sewell, 2009; Gregory, 2009; Zitko and Hanlon, 1991). There

is still no common definition of MPs, and there is an ongoing

debate on which materials besides commodity plastics are to be

included and if paint particles or tire wear have to be numbered

among MPs (Hartmann et al., 2019). Due to the extremely

heterogeneous nature of MPs, concerning size, shape, polymer

chemistry, additives, and weathering state, the ecological effects

can be highly diverse; thus, the potential risks of MPs entering the

environment are still barely understood and discussed

controversially (Imhof et al., 2013; Rochman et al., 2016;

Koelmans et al., 2017; Bucci et al., 2020). Nevertheless, to

assess the risk of MP, it is indispensable to know the

environmental exposure of organisms and therefore also to

quantify environmental contamination.

Initially, MP research focused on the contamination of the

marine environment, but during the last years, studies revealed

that limnetic systems are affected to a similar level (e.g. Xu et al.,

2020; Dris et al., 2018; Eerkes-Medrano and Thompson, 2018;

Imhof et al., 2018; Jiang, 2018; Wagner et al., 2014). Numerous

studies dealing with plastic waste in rivers in general have mainly

addressed the fact that they play a crucial role as transport routes

for plastic into the oceans (Siegfried et al., 2017; Jambeck et al.,

2015; Acha et al., 2003). In this context, it has been estimated that

every year between 1.15 and 2.41 million tons or more of plastic

are introduced via rivers into the oceans (Lebreton et al., 2017;

Schmidt C. et al., 2017), and a large amount of marine beach litter

originates from riverine input (Veerasingam et al., 2016; Araújo

and Costa, 2007). However, rivers are not only vectors for MPs to

the marine system but also they represent important

environments per se and act, at least temporarily, as a sink

when MPs are deposited in riverbed sediments (Hurley et al.,

2018; Kooi et al., 2018). Therefore, as reflected in Skalska et al.

(2020), the number of studies with bare focus on MP

contamination of rivers is increasing, but a large picture is

still missing.

The available data on MPs reported for rivers cover mainly

MP numbers in surface water and span a wide range of

contamination levels; however, they are often reported in

different units. Mani et al. (2015), for instance, normalized

their data to the surface area and reported 892,777 particles/

km2 in the surface water of the Rhine River with a maximum

concentration of 3.9 million particles/km2, and Di and Wang

(2018) normalized to volume and reported 1,597 to

12,611 particles/m3 on average in the 2,516.7 ± 911.7

particles/m3 for the Yangtze River. Leslie et al. (2017) detected

48–187 MP particles/L in surface water samples in a canal in

Amsterdam, and Scherer et al. (2020) reported a mean MP

number of 5.57 particles/m3 in surface water of the Elbe

River. As indicated by the given examples, the comparability

of data is often limited due to the differences in reported units,

extraction, purification, analysis, and the reportedMP size classes

often differ between studies (Hidalgo-Ruz et al., 2012; Driedger

et al., 2015; Löder and Gerdts, 2015; Hale et al., 2020). This issue

has been addressed early in MP research by many scientists;

however, standardized protocols are still lacking.

Although the behavior of the extremely heterogeneous group

of MP particles within highly dynamic fluvial systems is poorly

understood, some of the present studies (Scherer et al., 2020;

Leslie et al., 2017) potentially hint toward patterns or trends with,

for example, higher or lower abundances, within the course of the

river. Nevertheless, we still do not really understand the general
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role of different point (e.g., WWTPs and sewer overflows) and

diffuse (e.g., industrial or agricultural run-offs and cities) MP

sources in the catchment area of a river on MP contamination

and if these lead to distinct contamination patterns, which

explain differences between rivers. Furthermore, with respect

to spatial variation, it is unclear if there is a constant increase of

MP numbers from the headwaters to the lower reaches of a river.

Furthermore, temporal variation patterns of MP contamination

at a fixed location are also largely unknown. An attempt to

address these questions can only be made by utilizing larger and

comparable datasets.

In order to generate such a larger and intra-survey

comparable MP dataset, we chose two large river systems, the

Rhine and Danube catchments with its tributaries, and

conducted a large-scale MP survey at 23 rivers of different

size at 53 sampling locations in southwest Germany. Our

research aims were (I) to compare MP contamination

between different river systems; (II) to investigate if there

are distinct MP distribution patterns with respect to urban

input, WWTP inlets, or inflow of tributaries in the respective

catchment; (III) to analyze if there is a constant increase in

MP contamination from the upper to the lower course of a

river; and (IV) to address potential temporal variation of MP

concentration at selected locations of three rivers. Best

possible comparability with other studies was facilitated

by sampling with a frequently applied manta trawl with a

mesh size of 300 μm (Mani and Burkhardt-Holm, 2020;

Kataoka et al., 2019; Faure et al., 2015). We chose a

plastic conserving purification approach via enzymatic-

oxidative treatment and FTIR spectroscopy for MP

FIGURE 1
Large-scale MP survey at 53 sample locations of 23 rivers in five federal states in the southwestern part of Germany.
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analyses to ensure reliable identification of a wide range of

plastic types (Löder et al., 2017; Möller et al., 2021).

2 Methods

2.1 Sampling the water surface

2.1.1 Large-scale MP survey
In total, 53 water surface samples were collected from

23 rivers in the Rhine and Danube catchment areas in

southwestern Germany (Figure 1) from 2014 to 2017 using a

manta trawl. This large-scale survey has been conducted in

collaboration with five German federal environmental state

offices and resulted in a first pilot report (Heß et al., 2018).

The pilot report does, however, not include the whole dataset as

presented here; therefore, values reported might deviate slightly.

For detailed information concerning the recorded data, sampling

dates, and coordinates, please refer to the Supplementary

Table S1.

The manta trawl used for sampling had a net opening of 30 ×

15 cm and a net with a mesh size of 300 μm (HYDRO-BIOS

Apparatebau GmbH, Kiel–Altenholz, Germany). The manta

trawl sampled the upper 15 cm of the water surface. A

stainless steel flowmeter (OTT HydroMet GmbH, Kempten,

Germany) was mounted in the net opening of the manta

trawl to determine the sampled water volume. The manta

trawl was trawled beside a boat with the help of a crane or an

outrigger. Where no boat was available or the river was too small

for a boat, the manta trawl was launched from the middle of a

bridge on a rope. Due to handling reasons, a net length of 1 mwas

used for smaller rivers or stationary sampling points and a net

length of 2 m was used for larger rivers. The duration of trawling

was between 15 and 20 min, depending on the flow velocity of the

river and the suspended matter concentration. On rare occasions,

longer trawling times (up to 35 min) were conducted for rivers

with a lower flow velocity. Shorter trawls (down to 8 min) were

conducted for streams or rivers with a high flow velocity or with a

high content of suspended matter to avoid clogging of the net.

Trawl location, trawl length (GPS track), duration of sampling,

and sampled volume were recorded. Sampled water volumes

ranged between 7.0 and 74.9 m³ with a mean sampling volume of

31.5 ± 17.2 m³. After trawling, the concentrated samples were

rinsed with Milli-Q® into glass jars (J. Weck GmbH u. Co. KG,

Germany). All samples were stored in cool and dark place until

further processing. Before sample processing, larger items of

natural origin (e.g., leaves, insects, and wood sticks) were

removed with tweezers and thoroughly rinsed using a self-

designed pressure-driven rinsing bottle (plastic-free) in the

sequence 1) Milli-Q®, 2) ethanol (35%), and 3) Milli-Q® to

ensure that attached MPs were not lost. All liquids for rinsing

were filtered with 0.2-μm pore size as described later in detail.

2.1.2 Repeated sampling for temporal variation
of MPs

Selected locations of the Rivers Schwäbische Rezat, Rhine,

and Ruhr were sampled repeatedly to investigate the temporal

variation of MP concentrations. Please refer to the

Supplementary Table S3 for detailed information

concerning dates, coordinates, and sampled volume. The

small Schwäbische Rezat River was sampled at two

locations up and downstream of a WWTP outlet

(Rez_01 and Rez_02) during the large-scale sampling

program in 2015. A repeated sampling took place at both

locations in 2016 when three consecutive replicate samples

(each with 20 min trawl duration) were collected, always with

a temporal distance of ca. 0.5 h in between. The river mouth of

the Ruhr River (Ruh_04) was already sampled in 2015 during

the large-scale sampling program. In 2017, this location

(Ruh_04) and two new selected locations of the Rhine

River, upstream (Rhe_09) and downstream (Rhe_10) of the

river mouth of the Ruhr, were sampled at four different time

points each (Figure 2). In total, three samples were taken

during 1 day (0 h, 5 h, and 22 h) to address daily variation in

MP abundance. The fourth sampling at these three points was

conducted after 141 days. The sampling procedure during the

repeated sampling studies was equal to the large-scale

FIGURE 2
Repeated sampling program at two locations of the Rhine
River (Rhi_09 upstream of the Ruhr River and Rhi_10 downstream
of the Ruhr River) and one location at the mouth of the Ruhr River
(Ruh_04).
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sampling program and sampled water volumes ranged from

3.2 to 50.5 m³ (mean: 27.9 ± 15.2 m³, Supplementary

Table S3).

2.2 Sample preparation

All samples underwent a size fractionation using a 500-μm

stainless steel sieve before particle identification, as described by

Löder et al. (2017). The sample size fraction >500 μm was

transferred to a plankton counting chamber (Bogorov type),

and all potential plastic particles were conservatively sorted

out, photo-documented, and measured under a

stereomicroscope (Leica M50, Leica Microsystems GmbH,

Germany) equipped with a digital camera for microscopy

(Olympus DP26, 5 Megapixel, Olympus Corporation, Japan)

and the software CellSens Dimension (Olympus Corporation,

Japan). All potential plastic particles were afterwards analyzed

via attenuated total reflection (ATR)-FTIR spectroscopy.

The MP size fraction <500 μm was purified from the organic

and inorganic sample matrix, according to Löder et al. (2017),

with a step-wise enzymatic-oxidative purification protocol

consisting of sequential enzymatic steps, wet peroxide

oxidation using the Fenton protocol, and a density separation

step. This approach secures reliable focal plane array (FPA)–

based micro-FTIR imaging data with minimal matrix

interferences. In addition, the sequential enzymatic-

purification protocol is a very gentle purification method for

MP (Schrank et al., 2022). The purified samples were filtered

using anodisc filters (Whatman, 0.2-μm pore size, 25-mm

diameter, GE Healthcare, Chalfont St Giles, United Kingdom)

with a custom-made round glass filter funnel of 10-mm diameter

for the subsequent micro-FTIR measurement. Because an

excessive amount of particulate material on the filter can

hamper an accurate spectroscopic analysis, subsampling was

performed to obtain a sufficiently small subsample. In this

context, two strategies have been applied: A) if the original

concentrated water sample had a high load of suspended

material, the sample was homogenized by stirring and a

custom-made stainless steel quartering cross was placed into

the glass jars (~850 ml, J. Weck GmbH u. Co. KG, Germany)

containing the sample (Supplementary Figure S1). Then the

sample was frozen at −20°C. When frozen, one random

quarter of the sample was obtained and further processed. B)

If too much particulate material remained after the enzymatic-

oxidative purification, the sample was homogenized, and only a

subsample was filtered on the anodisc filter for analysis.

2.3 Contamination prevention measures

Sample contamination was prevented according to the

precautions described in Löder et al. (2017). All liquids used

for rinsing were filtered with appropriate filters with 0.2-μm pore

size (Merck KGaA, Germany). Blank samples were generated

with filtered (0.2-μm pore size) Milli-Q® water and underwent

the same laboratory processes and analysis as the environmental

samples. As not all samples could be processed at once, they were

processed consecutively in batches. For each processed batch, one

blank sample was generated. A total of eight blanks reflecting

eight batches were generated for the large-scale sampling

program. Furthermore, four blanks reflecting four processed

batches were generated each for the short-term intervals (0 h,

5 h, 22 h) and for the long-term interval (141 days) of the time-

scale sampling program.

2.4 Measurement and analysis

The identification of all potential plastic particles of the size

fraction >500 μm was performed with ATR-FTIR spectroscopy,

and the size fraction <500 μm was analyzed with FPA-based

micro-FTIR analysis using anodisc filters-both methods were

applied according to Löder et al. (2015). ATR-FTIR spectroscopy

of each potential plastic particle >500 μm was performed using a

“Tensor 27” FTIR spectrometer with a platinum ATR unit

(Bruker Optik GmbH, Ettlingen, Germany), internal

L-alanine–doped deuterated triglycine sulfate (DLaTGS) single

detector, and silicon carbide globar as IR source. IR spectra were

recorded in the wavenumber range 4000–400 cm−1 with a

resolution of 8 cm−1 and 16 co-added scans. The background

measurement against air was conducted before each sample

measurement with the same settings.

FPA-based micro-FTIR analysis of the filters containing the

MP particles <500 μm was conducted with a “Hyperion 3000”

FTIR microscope (Bruker Optik GmbH, Ettlingen, Germany)

equipped with a 64 x 64 detector pixel FPA detector coupled to

the Tensor 27 FTIR spectrometer. The whole 10-mm diameter

sample area of each anodisc filter was measured on CaF2 filter

holders in a transmission mode with a ×15 IR objective lens. IR

spectra were recorded in the wavenumber range 3600–1250 cm−1

with a resolution of 8 cm−1, a binning of 4 × 4 resulting in a final

pixel size of ca. 11 μm, and 6 co-added scans. The background

measurement was conducted against the blank anodisc filter with

32 co-added scans. The software OPUS 7.5 (Bruker Optik

GmbH, Ettlingen, Germany) was used to operate the whole

FTIR system and the analysis.

The spectral analysis has been conducted similarly as

described by Löder et al. (2015). The spectra of all particles

(single ATR-FTIR measured particles in the fraction >500 μm,

particles marked by FPA-based imaging in the fraction <500 μm)

were compared to a polymer library generated by the Alfred

Wegener Institute, Helgoland, Germany (Löder et al., 2015) to

verify the polymer types. Polymer particles were categorized into

13 different categories according to the polymer type: PE

(polyethylene), PP (polypropylene), PS (polystyrene), SAN/
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ABS (styrene–acrylonitrile/acrylonitrile–butadiene–styrene),

PMMA (polymethyl methacrylate), PUR (polyurethane), PA

(polyamide), PVC (polyvinylchloride), PVA (polyvinyl

alcohol), PET/PES (polyethylene terephthalate/polyester), PAN

(polyacrylonitrile), paint, and “others”. Furthermore, the

identified particles were categorized into the five different

shapes: fragment, fiber, film, bead, and pellet (Supplementary

Figure S2).

Measurement of the maximum length and width was

performed using CellSens Dimensions (Olympus Corporation,

Japan) for the size fraction >500 μm or OPUS 7.5 (Bruker Optik

GmbH, Ettlingen, Germany) for the size fraction <500 μm.

According to the maximum length, particles were categorized

into four different size classes: macroplastics (>5 mm), large MPs

(5–1 mm), small MPs I (1000–300 μm), and small MPs II

(20–300 μm). The size classes given here were chosen due to

practical reasons, adapted to our sampling, and sample

processing design and are not a further suggestion for a size

categorization of MPs.

The correction of potential laboratory contamination of the

samples was performed as follows: the average particle number

per polymer of the eight blank samples of the large-scale

sampling program, the four blank samples of the short-term

intervals (0 h, 5 h, and 22 h) or the four blank samples of the

long-term interval (141 days) of the time-scale sampling

program was calculated for each of the four size classes,

rounded up to the next integer and subtracted from the

results of the environmental filters. Finally, the corrected data

were normalized to sampled water volume resulting in MP

number concentrations.

Statistical analyses were performed using the R-based

software Jamovi version 2.2.3 (R package 4.0). Parametric tests

were applied for datasets that meet the assumptions of

homogeneity of variance and normal distribution (Student’s

t test). The non-parametric variant was performed for all

other cases (Mann–Whitney U test). In addition, linear

regressions were performed to analyze a potential increase of

microplastic abundance in the course of the studied rivers with

five to nine consecutive samples (Rhine, Neckar, Inn, Danube).

3 Results and discussion

This study provides an extensive dataset on the MP pollution

of the surface waters of the Rhine and Danube river systems and

their tributaries, thus covering a large geographical extent and

including a variety of river systems with different characteristics

(23 large and small rivers). In total, 53 samples were collected and

analyzed. The comparability within the dataset was ensured by

applying the same methods for sample collection, sample

processing, and analysis throughout the whole study. In

addition, the generated data are based on a strict FTIR

spectroscopic identification of all samples down to a particle

size of 20 μm and thus provide reliable information about the

polymer type, size, and shape of every single MP particle found.

Due to the high amount of data, we refrain from elaborating

on every result, instead focusing on general patterns and

unexpected results. However, complete information is given in

the supporting information (Supplementary Tables S1–S4). After

discussing the potential influence of the sampling methodology

on the found particle size distribution, the main aspects

addressed are as follows: (I) spatial differences in MP

contamination between the different investigated river

systems, including a comparison of MP contamination to

other river systems reported in the literature; (II) signs for

constant increase in MP contamination from the upper to the

lower course of a river; (III) distinct spatial MP distribution

patterns with respect to MP sources such as WWTPS; and (IV)

potential temporal variation of MP concentration at selected

locations of three rivers.

3.1 Influence of sampling method on MP
particle size distribution

The abundance of larger plastic pieces (macroplastic >5 mm)

was not the main focus of this study, and we are aware that using

a manta net with a relatively small net opening is not suitable for

monitoring macroplastics, especially not for larger pieces.

However, we report the macroplastic abundance data here for

completeness. Although reasonable volumes of water were

sampled (Pasquier et al., 2022), ranging from 7.0 to 74.9 m³

(mean 31.5 ± 17.2 m³), only a limited amount of macroplastic

(0.3 ± 0.6 macroplastic/m³, 0.5 ± 0.8% of the total particle

number) was detected. In total, 307 macroplastic particles

were found in the samples, but only three out of 53 samples

contained more than one macroplastic particle/m³ (please see

Supplementary Table S1). The identified macroplastic particles

were in a size range of 5.0–52.8 mm with a mean of 10.4 ±

7.4 mm and a median of 7.8 mm. Macroplastic abundance that

we found was comparable to other studies reporting macroplastic

in water surface samples. For example, in the Great Lakes

tributaries, particles of a similar size range, namely, larger

than 4750 μm, took a minor portion of only 2% (Baldwin and

Mason, 2016).

The most remarkable pattern concerning all samples was an

increase of detected particles with decreasing size of the particles

(Figure 3). In the size class microplastic (MP, particles <5 mm),

large MPs (1–5 mm) took up an average of 12.8 ± 14.1% (mean ±

SD). Microplastic (<1000 μm) accounted for 87.2 ± 14.1%

(mean ± SD) and was further divided into the size classes

300–1000 μm (small MP I: 26.0 ± 24.5%), and the non-

quantitative samples size class of particles 20–300 μm (small

MP II, 61.2 ± 34.2%) which was the most abundant one, although

those particles should have passed the net with a mesh size of

300 μm. There are two possible explanations for this observation.
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On the one hand, this high number of particles could potentially

result from the fragmentation of MPs during laboratory

handling. However, this possibility was minimized by gentle

sample preparation and purification techniques (Schrank

et al., 2022) and is therefore unlikely. More likely is that most

particles smaller than 300 μm were entrapped in or attached to

larger organic aggregates and thus captured as “bycatch” by the

300 μm net. The fact that we detected a high number of

MPs <300 μm makes it highly probable that the

environmental concentrations of particles in this size class

(20–300 μm, small MP II) may be much higher. Therefore, we

anticipate that the data presented here represent only the “tip of

the iceberg”. Independent of the limitations regarding the particle

abundance of the size class 20–300 μm, several other studies

examining the water surface or the water column observed such

dominance in the recorded number of small MPs. For example,

in a study by Leslie et al. (2017), five out of six urban canal surface

water samples contained the most significant particles in the size

range of 10–300 μm. Likewise, Di and Wang (2018) and Stanton

et al. (2020), who sampled bulk water, detected the highest

number of MP particles in the size class <500 μm. Finally,

Mintenig et al. (2020), who used a quantitative sampling

approach for particles down to 20 μm, found that 67.1% of all

MP items were even below 100 μm in their longest dimension.

Even in aquatic sediments, where no bias of mesh sizes occurs,

similar size distribution patterns could be observed (Klein et al.,

2015; Imhof et al., 2016; Mani et al., 2019b; Scherer et al., 2020).

Though a potential bias toward the underestimation of the

particle abundance <300 μm exist in this study, the increase of

particle abundance with decreasing size of the MP in the aquatic

environment can be considered a fact.

The mesh size of 300 μm for the manta net was chosen as a

compromise to sample comparably large water volumes (mean

31.5 ± 17.2 m³) without clogging. Doing so also addresses the

rarer fraction of larger MPs as representatively as possible.

Retrospectively and considering the high abundance of smaller

particles (e.g., <300 μm), lower sample volumes would be

sufficient (Koelmans et al., 2019). Therefore, samples can be

pumped through cascades of filter cartridges (Mintenig et al.,

2020; Mintenig et al., 2017) or large area stainless steel mesh

filters if the quantification of small-sized particles is the

primary goal of a study. Typically, water volumes of <1 m³

can be reached using pressure filtration and 10-μm filters. Such

a reduction of sample volume will prevent the problem of fast

clogging during sampling with small-meshed nets due to the

high load of organic/inorganic suspended material in most

riverine waters. Furthermore, a combined approach sampling

with a 300-μm manta net (for larger MPs) in parallel with 10-

μm pressure filtration (for smaller MPs) opens up the

opportunity to sample the whole size range of MPs from

5 mm to 10 μm quantitatively and addressing the expected

abundance by a representative sample volume for both size

classes.

3.2 Spatial distribution patterns of MPs

3.2.1 MP abundance in the large-scale survey
All 53 samples contained plastic particles (>20 μm) with

abundances ranging from 0.7 particles/m³ up to 354.9 particles/

m³ with an average load of 49.8 ± 68.7 particles/m3 (median:

22.7 particles/m³). Mean values reported here are always shown

with standard deviation. An overview of the particle

concentrations per size class at every sample location of the

large-scale program is shown in Figure 4. If only the fully

quantitative size classes (>300 μm) would be considered the

abundances range from 0 particles/m³ up to 214.8 particles/m³

with an average load of 17.7 ± 39.3 particles/m3 (median:

FIGURE 3
Size distribution and shares of polymer types and shapes of MPs in the whole sample set. (A) Particle concentration per size class. The non-
quantitatively sampled size class small MP II (20–300 μm) is marked with a red box to highlight the potential underestimation of particle abundance
<300 μm. Percentage of (B) polymer type and (C) shape. Detailed information for each sample location is given in the Supplementary Information.
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5.9 particles/m³). Please note that we consistently report the

numbers in the following, including the non-quantitatively

sampled size class (20–300 μm). Therefore, the numbers have

to be seen as minimum values. For clear differentiation in the

presented maps and figures, the non-quantitatively sampled size

class small MP II (20–300 μm) is marked with a red box to

highlight the potential underestimation of particle

abundance <300 μm. When comparing to other studies, we

adjust the size classes of our own results to ensure better

comparability; however, such cases are clearly declared in

the text.

If directly compared among each other, the MP

(5 mm–20 μm) concentration of the Rhine (average: 11.5 ±

6.3 particles/m³, median: 10.0 particles/m³) and the Danube

rivers (average: 48.7 ± 53.7 MP/m³, median: 37.7 MP/m³) both

exhibited a similar concentration without statistically

significant differences (p=0.606, N=9/5, Mann–Whitney U

test). Dris et al. (2018) reported MP abundances between

0.1 and 2,933 particles/m3 with a median of 2.6 particles/m3

in their review on MP contamination of surface water samples

of rivers. In contrast, Di and Wang (2018) found high

contamination in the Yangtze River with abundances

ranging between 1,597 and 12,611 particles/m3. Therefore,

given all uncertainties in comparison with former studies, the

MP particle concentration of the Rhine and Danube rivers can

be evaluated as low or moderate compared to other rivers

worldwide (Hidalgo-Ruz et al., 2012; Dris et al., 2018; Eerkes-

Medrano and Thompson, 2018). Moreover, the abundance we

FIGURE 4
Plastic particle concentrations (number of particles/m3) per size of all large-scale sampling program sample locations. The non-quantitatively
sampled size class small MP II (20–300 μm) is marked with a red box to highlight the potential underestimation of particle abundance <300 μm.
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report here reaches the same level as the Elbe River, which has

a comparable catchment (Scherer et al., 2020).

3.2.1.1 MP in the Rhine River catchment area

A further study on microplastics along the Rhine River was

performed by Mani et al. (2015), who sampled 11 locations along

the course of the Rhine River and, a few years later, three

locations with temporal replication (Mani and Burkhardt-

Holm, 2020). As the datasets of different studies often vary in

units, size classes, analyzed parameters, and applied methods

(Driedger et al., 2015), an exact comparison of our data with

other studies is still difficult. However, both studies can be

compared to our results after excluding the size class below

300 μm and converting the particles/area to particles/volume.

Normalized to cubic meters, Mani et al. (2015) reported a

maximum of 22 particles/m3 and 5 particles/m3 on average.

Mani and Burkhardt-Holm (2020) detected MP

concentrations between 1.1 ± 1.5 and 6.32 ± 2.6 MP/m3. Our

values showed a maximum of 10.8 particles/m3 and an average of

5.9 ± 3.0 MP/m³. Thus, our results are similar to those reported

by both former studies. However, only a subfraction of potential

MP was verified via FTIR spectroscopy by Mani et al. (2015) and

Mani and Burkhardt-Holm (2020).

Remarkably, the tributaries often contained higher

concentrations than the Rhine River. We found the second,

third, and fourth highest values measured in the large-scale

sampling of our study in the estuaries of two tributaries. The

increased particle amount in the Emscher River (Emr_01:

213 MP/m3) may arise because the Emscher River carries high

amounts of wastewater, especially in its lower and middle course

(Heß et al., 2018). Although WWTPs effluents have not been

explicitly investigated here, WWTPs are reported as potentially

important MP point sources (Mintenig et al., 2017; Schmidt et al.,

2018; Schmidt et al., 2020) The sampling spots in the confluence

of the Ruhr and Rhine rivers (Ruh_02 and Ruh_04) could show

increased particle numbers due to the backwater behind the

Rhine River (Ruh_04) and a lock (Ruh_02) where plastic

particles can potentially accumulate (Mao et al., 2020). Such

an accumulation might be responsible for the relatively high

numbers detected (Ruh_02: 278 MP/m3, Ruh_04: 171 MP/m³).

The Neckar is a more significant tributary of the Rhine River and

was sampled at eight locations and reached an MP

contamination from 8.0 to 58.8 MP/m3 and a mean of 23.7 ±

18.2 MP/m3 (median: 13.3 particles/m3). Comparing the

averaged particle numbers of the Neckar River (23.7 ±

18.2 MP/m3) and the Rhine River (11.5 ± 6.3 MP/m³) both

reached a similar concentration (p=0.272, N=9/8,

Mann–Whitney U test). The five sampled tributaries to the

Neckar River showed only low numbers of MPs ranging from

5.0 to 22.7 MP/m³

3.2.1.2 MP in the Danube River catchment area

In the Danube River, the MP abundances at the five locations

ranged from 0.7 to 150.8 MP/m3 with an average of 48.7 ±

53.7 MP/m³ (median: 37.7 MP/m³). Therefore, the MP particle

concentration can be evaluated as moderate contamination

compared to international studies. Lechner et al. (2014)

sampled the Austrian stretch of the Danube River and

detected only 0.3 ± 4.7 items/m3 in this river. However, they

applied a submerged driftnet for sampling with a mesh size of

500 μm and analyzed MP only visually. Using visual instead of

spectrometric methods can bias MP numbers as significantly

smaller plastic particles can be overlooked or misidentified

(Löder & Gerdts, 2015). A second study assessing the

microplastic contamination of the Danube River did not

consider particle concentrations per volume and reported total

MP weight per volume and is therefore not comparable (Lechner,

2020). The Inn River and the Isar River are significant tributaries

of the Danube River and were sampled at five and two locations,

respectively. The Inn River reached comparable concentrations

to the Danube River, with a MP contamination ranging from

47.0 to 104.7 MP/m3 and a mean of 75.2 ± 22.5 MP/m3 (median:

79.3 MP/m³). However, without statistically significant

differences (p=0.680, N=5 Student’s t test). The Isar River

showed an MP contamination ranging from 8.3 to 87.8 MP/m3.

3.2.1.3 MP spatial distribution patterns

Although Mani and Burkhardt-Holm (2020) detected an

increase of MP over the course of the Rhine River, the initial

hypothesis of an increase in microplastic abundance from the

source to the mouth of a large river cannot be confirmed by this

study. Rhine, Danube, Neckar, and Inn exhibited a variable MP

concentration, and no relationship between sample location and

MP concentration was visible (Figure 5; Table 1). Meanwhile,

Mani and Burkhardt-Holm, (2020) found 1.1 ± 1.5–3.3 ±

2.1 MP/m³ (n = 3) in the upper course of the Rhine River in

the vicinity of the city Basel; the MP concentration increased to

2.7 ± 0.4–6.3 ± 2.6 MP m³ at the sites in Germany (Bad Honnef

and Rees) for MP between 5 mm and 300 μm in 2016 and 2017.

The sites are comparable with this study’s sample locations

Rhi_7 and Rhi_11. If the MP <300 μm were excluded from

our dataset for a more realistic comparison, the Rhine River

exhibited a highly variable MP concentration. MP concentrations

during the sampling campaign in 2015 ranged from 1.7 to

10.8 MP/m³ with the third-highest value (8.7 MP/m³) close to

Basel. In addition, during a second sampling campaign in 2017,

two locations of the Rhine River (Rhi_9 and Rhi_10) were

sampled in a distance of 5 h, 22 h, and 141 days. Again, a

high variation in MP concentration was found at this time

but with higher values (17.5–127.1 MP/m³) than the sampling

in 2015.
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3.2.1.4 WWTPs as potential MP point sources

One suspected reason for the high temporal and spatial

variation of MP could be point sources such as wastewater

treatment plants (WWTPs). WWTPs were shown to be an

essential point source for the introduction of MP (Mintenig

et al., 2017). Especially fibers, fragments, and beads are

introduced by WWTP discharge (Talvitie et al, 2017; Dris

et al., 2018; Schmidt et al, 2018; Imhof et al, 2018; Lechner,

2020; Schmidt et al., 2020; Stanton et al., 2020; Ben-David

et al., 2021). To explicitly investigate the influence of WWTP

effluent on MP abundance in a river, the small Bavarian river

Schwäbische Rezat River, a tributary of the Altmühl River,

which again is a tributary of the Danube River, was sampled at

two locations, upstream and downstream of the outlet of a

wastewater treatment plant (WWTP). The MP values found

here were the highest recorded in the large-scale survey.

Interestingly, the highest values (354.0 MP/m3) were

recorded upstream of the WWTP outlet and, surprisingly,

lower MP concentrations (68.7 MP/m3) were recorded at the

station after the inlet of the WWTP. Therefore, at least in

FIGURE 5
Large-scale sampling survey. Particle concentrations (number of particles/m3) per size class (green scale) in the course of four rivers: (A) Rhine
River and (C) it’s tributary Neckar River and (B) Danube River and (D) its tributary Inn River. The non-quantitatively sampled size class small MP II
(20–300 μm) is marked with a red box to highlight the potential underestimation of particle abundance <300 μm. Please note that the different
scaling of y-axis changes to increase the readability.

TABLE 1 Statistical results of the linear regression performed using the R-based software Jamovi version 2.2.3 (R package 4.0) to analyze a potential
increase of microplastic abundance in the course of the studied rivers with five to nine consecutive samples (Rhine, Neckar, Inn, and Danube) for
the size class MP (5 mm–20 µm).

Size class Rhine Danube Inn Neckar

5 mm–20 μm R2 = 0.0222, p=0.702 R2 = 0.418, p=0.238 R2 = 0.138, p=0.538 R2 = 0.00690, p=0.845

Sample locations (N) 9 5 5 8
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this case, a correlation between wastewater and MP

abundance could not be verified here. Instead, the

relatively high discharge of the WWTP compared to the

discharge of the Schwäbische Rezat River at this specific

location could lead to a dilution of MP. For verification of

this unexpected result, the Schwäbische Rezat River was

sampled repeatedly during a second sampling program

concerning temporal variation. This is discussed in more

detail below.

3.2.2 MP particle shape and polymer type in
riverine samples

In addition to MP particle concentration and size, we

assessed MP polymer type and particle shape during the

large-scale sampling survey. An overview of data on both

parameters based on all samples of the large-scale sampling

program is given in Figures 3B,C. See Supplementary Figures

S3, S4 and Supplementary Tables S1–S4 for detailed

information.

3.2.2.1 MP shapes

Fragments were the dominant shape (90.7 ± 13.6%) and

were found in all samples of the large-scale sampling survey

(Figure 4). Fibers contributed to 6.5 ± 12.6% on average and

were the second most detected type of shape, whereas beads

(1.7 ± 5.3%), films (1.0 ± 2.1%), and pellets (0.02 ± 0.16%)

were present only in minor shares (Figure 3 and

Supplementary Figure S3). In correspondence with our

study, fragments were most often detected in four Swiss

rivers (Faure et al., 2015) and at the German Rhine River

sample locations of Mani and Burkhardt-Holm (2020),

followed by beads and films. In many other studies, fibers

instead of fragments were the most dominant particle shape

(e.g., Mani et al., 2015; Baldwin and Mason, 2016; Lahens

et al., 2018; Napper et al., 2021). In the Danube River, beads

and pellets were most frequently recorded (Lechner et al.,

2014).

However, the applied methods and the analyzed size classes

strongly differed between studies. Methodological differences

may cause a shift toward specific shapes. Fibers and small

fragments are expected to appear in higher proportions when

smaller mesh sizes are used. In contrast, larger fragments, films,

pellets, or beads might be found in higher ratios when larger

mesh sizes are applied, where fibers and small fragments can pass

through. In addition to the sampling method, the identification

method may also lead to different ratios of the detected shapes.

Relatively large fibers, pellets, or beads could be identified with

less doubt than small irregular fragments during visual

identification, which actually might be overseen. Spectroscopic

methods can identify such small irregular fragments, and

consequently, lead to more fragments identified as MPs. This

could explain the higher ratio of fragments found in our study

than in studies using visual identification where fibers dominated

(Baldwin and Mason. 2016; Leslie et al., 2017; Di and Wang,

2018; Scherer et al., 2020; Napper et al., 2021). On the other hand,

the low proportion of fibers we recorded can result from

difficulties identifying MPs with a small diameter close to the

lower limit of resolution (~10 μm) with FTIR methods (Mintenig

et al., 2017).

Fragments can be expected to originate from larger plastic

pieces that disintegrate into secondary MPs and are therefore

introduced frequently into the environment as well as fibers,

which may enter waters via WWTPs or by atmospheric input

(Dris et al., 2016; Dris et al., 2017; Klein and Fischer, 2019; Zhang

and Kang, 2019). In contrast, pre-production pellets and beads

might be released accidentally and locally during processing,

packaging, and transport. Therefore, they are not expected to

be found regularly in large amounts in river samples. This is

supported by our study, where bead shares higher than 5%

were only found at two locations of the large-scale sampling

and three locations of the time-scale sampling. Here, beads

were found at two locations of the Rhine River with up to

51.4% (Rhi_09, repeated sampling) and up to 37.3% (Rhi_10,

repeated sampling). Pellets were found only in two samples,

one from the Neckar River (Nec_07) and one from the Main

River (Mai_01). However, in both cases the shares are smaller

than 2%.

3.2.2.2 MP polymer types

Regarding the polymer types found, PE and PP were

dominant in almost all samples of the large-scale sample

survey with an average proportion of 49.2 ± 25.9% and 33.2 ±

22.6%, respectively (Figure 4 and Supplementary Figure S4). PE

occurred at every sampled location and PP in 98% of the sampled

locations. High rates of both polymers are expected to be found in

water surface samples, as their density is lower than water

(Skalska et al, 2020), and both polymers have a high market

share (Plastics Europe, 2020). Most studies of riverine MP

contamination reveal similar patterns as our large-scale survey

(Zhang et al., 2015; Rodrigues et al., 2018; Mani and Burkhardt-

Holm, 2020; Scherer et al., 2020; Skalska et al., 2020). Due to the

variety of different entry routes, both polymers could not be

assigned to a specific source. However, both synthetic polymers

are commonly used for single-use packaging purposes and thus

have the highest production rates in Europe, with 29.8% for PE

and 19.4% for PP (Plastics Europe, 2020). These products mostly

reach the environment by inappropriate disposal, that is,

littering. Those larger plastic pieces degrade in the

environment (Meides et al., 2021; Meides et al., 2022; Menzel

et al., 2022), and may reach aquatic environments via diffuse

terrestrial run-off and atmospheric transport. Furthermore, PE

and PP are still included in cosmetics and cleaning products as

primary MPs (e.g., beads and fragments, Bertling et al., 2018).

Secondary MPs from our daily life generated through abrasion

reach the wastewater and may also be introduced via WWTP

effluents (Mintenig et al., 2017).
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3.2.2.3 Deviations from the general picture

Deviations from this general picture related to particle

shape and polymer type occurred only locally in our study

(Supplementary Figures S3, S4). For example, one Rhine River

sample (Rhi_1, near Basel) contained 43.8% PET/PES, mainly

fibers. Although PET/PES is commonly used in single-use

plastics and textile fibers, only 4.4 ± 7.7% of the particles found

in the whole study were PET/PES. At an overall low MP

contamination, PS, mainly beads, was found with a share of

48.5% in the sample of the small river Würm. Such beads are,

for example, used as ion exchange material (Mani et al., 2019a)

and could be introduced via industry sewage or WWTP

effluents. The Würm River can contain more than 50%

treated wastewater (Heß et al., 2018), which could explain

this observation. Although PVC was rarely found in the

samples of the large-scale survey, some locations reached

higher values. For example, at one location of the Neckar

River (Nec_01), 30.8%, and two locations of the river Inn,

25.9% (Inn_02) and 65% (Inn_03) of all measured plastic

particles were PVC. One sampling location at the Schwäbische

Rezat River (Rez_01), upstream of a WWTP, contained 24.5%

PVC particles. About 1 year later, during the repeated

sampling program, ratios between 70.5% and 94.2% of PVC

were detected at the same location. PVC particles have a

density of 1.20–1.44 g/cm3 (Hellerich et al., 2010) and are

therefore not necessarily expected to be found on the water

surface. This pattern could either speak for point sources in the

vicinity of the sample location or might result from the

“particles” behavior in the environment. Next to biofouling

which can prevent the settling of heavier particles (Kooi et al.,

2018), turbulence can keep MP particles in the water column

or even force them to the surface. Therefore, it is not unlikely

to find PVC particles on the water surface despite their high

density.

FIGURE 6
Detected MP particle concentration (MP/m³) per size class during the repeated sampling survey. The Rhine and the Ruhr rivers were sampled at
four different points of time (0 h, 5 h, 22 h, and 141 days): (A) Rhi_09 (upstream of the Ruhr River), (B) Rhi_10 (downstream of the Ruhr River) and (C)
the Ruhr River (Ruh_04) at themouth of the river. (D) In the sameway, the Schwäbische Rezat River was sampled at three different points of time (0 h,
0.5 h, and 1 h) at two locations: Rez_01 (upstream of a WWTP) and Rez_02 (downstream of a WWTP) during the repeated sampling survey in
2016 (mean ± SD) and at a single time point during the large-scale sampling survey in 2015. The non-quantitatively sampled size class small MP II
(20–300 μm) is marked with a red box to highlight the potential underestimation of particle abundance <300 μm. Please note that the scaling of the
y-axis changes to increase the readability. *p=0.027; Student’s t test.
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3.3 MP abundance in a temporal context

The results from the Schwäbische Rezat River found

during the large-scale MP survey were unexpected. Higher

MP abundance was detected above the WWTP than below the

WWTP. However, a similar pattern was found in the repeated

sampling program for temporal variation, which was

performed 1 year later. Upstream of the WWTP, a higher

MP abundance (276.4 ± 80.4 MP/m3) was measured than

downstream (68.5 ± 35.4 MP/m3) of the WWTP outlet

(Student’s t test, N=3, p=0.027, Figure 6, Supplementary

Table S3). This decreased abundance below the WWTP is

contradictory. Other studies including Mintenig et al. (2017)

proved WWTP “effluents” partially high MP contamination.

However, the MP abundance depends strongly on the

techniques used in a WWTP. Although studies have

indicated an increase of microplastic quantity by WWTPs

(Schmidt et al., 2018), other studies could not confirm an

increase of MP particles in surface water after the inlet of

WWTPs (Watkins et al, 2019; Stanton et al., 2020).

These contrasting results underline that potential

sources such as WWTPs and their influence on

environmental concentrations of MP in the aqueous

environment are not always predictable and have to be

investigated in more detail for a better understanding (Kooi

et al., 2018). In rare cases, the introduction of less

contaminated water via WWTP effluent could lead to the

dilution of MP concentration. Especially in small streams

such as the Schwäbische Rezat with a mean discharge of

0.149 m³/s.

In addition to the two spots of the river Schwäbische Rezat,

repeated sampling was done exemplarily at two sampling

locations of the Rhine River and one sampling location of

the river Ruhr (Figure 2). Sampling was performed at four

different time points (0 h, 5 h, 22 h and 141 days) to gain

insight into the temporal variation of MP abundance.

Simultaneously, such a replication gives an impression of

the representativity of single-time point measurements

(Figure 5, Supplementary Table S3). During the repeated

sampling, no clear pattern could be identified, neither on a

temporal nor a spatial level. On the other hand, MP particles

were detected in all samples of the repeated sampling alike in

the 53 large-scale survey samples. Interestingly the high

contamination of the River Ruhr (Ruh_4) found in the

large scale sampling in 2015 could be confirmed with an

even higher concentration. However, the MP concentration

of the Rhine River upstream and downstream of the

confluence was also higher during this time. But no

difference between Rhi_9, Rhi_10, and Ruh_4 was detected

(ANOVA, df=2, F=1.02, p=0.398). Particle abundances varied

within the three short-term intervals (0 h, 5 h, and 22 h) and

between them and the long-term interval (141 days). In the

short-term interval samples, comparable MP concentrations

were detected at all locations of the Rhine (Rhi_09, Rhi_10)

and the river Ruhr (Ruh_04). The highest difference between

the short-term interval and the long-term interval was a

12.2 fold difference from the lowest to the highest detected

abundance at Ruh_04: The highest MP concentration

measured in this study was measured after 141 days with an

MP concentration of 754.9 MP/m3. However, only 144.6 ±

87.3 MP/m³ were found during the short-term repeated

sampling with a time distance of 0 h, 5 h and 22 h. Two

years before, 170.94 MP/m3 were found during the large-

scale sampling survey at this location. The results

demonstrate that MP concentration may change

significantly at a single sampling location during longer

intervals and within 1 day.

3.4 Factors responsible for spatial and
temporal variation of MP concentration

Multiple potential contamination sources such as WWTPs, the

influence of big cities, industry, agricultural areas, and other tributaries

contaminated with MP were anticipated to cause increasing MP

numbers at the water surface with the course of the investigated rivers.

Therefore, we sampled consecutive locations in the stretch of the rivers

the Danube, Rhine, and their tributaries Inn and Neckar. Although

our large-scale survey data were collected at single time points without

addressing temporal variation, it clearly shows the ubiquitous presence

of MPs in the investigated rivers. However, no clear picture of MP

contamination concerning differences between river systems in

general or the main rivers and their tributaries was recognizable.

However, our large-scale survey, which allows the comparisons of

many river systems, gives rise towhether surfacewater sampling alone

is suitable to enlighten the “real”MP contamination of a river and if

snapshot sampling allows such a comparison.

We observed for all investigated rivers that the

concentration of MPs did not constantly increase but

fluctuated over their courses and showed a random pattern.

Similarly, other studies investigating the MP load over the

course of rivers did neither find a stringent increasing gradient

(Mani et al, 2015; Zhang et al., 2015; Di and Wang, 2018;

Scherer et al., 2020). However, there are indications that a

steady increase along the river’s course does not manifest at

the water surface or in the water column but in the sediments

(Scherer et al., 2020). In contrast to our findings, MP

concentrations in the surface water increased along the

river’s course in the Ganges River. Seasonal changes

occurred with higher MP concentrations during pre-

monsoon and lower MP concentrations during post-

monsoon periods (Napper et al., 2021). Also, MP

concentrations were positively correlated with distance

from the source, water discharge and catchment size of

three naval tributaries and the Rhine River itself (Mani &

Burkhardt-Holm, 2020). However, compared to our study, the
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increase from the source to the mouth is much smaller than

the temporal and geographical variation of MP abundance at

the Rhine River.

In this context, onemust remember thatMPs are non-soluble

compounds and do not behave like soluble pollutants. Instead,

they are a very heterogeneous group of particles and thus non-

homogenously distributed in the water body of a river due to

differences in polymer density, size, shape, aging state, biofouling

and aggregation. Therefore, even within one cross section of a

river, high local heterogeneity of MP abundance can occur

(Liedermann et al., 2018). Consequently, particle numbers

may vary depending on the manta trawl position in the river.

The conducted sampling methods partly addressed this as for all

rivers where a boat was available for sampling; the manta net was

deployed on the left, in the middle and on the right side of the

river during one sample event. However, the replicated sampling

clearly showed that the surface water of rivers is a highly dynamic

system and microplastic abundance is highly variable on small

but also large time scales.

Furthermore, turbulences depending on river morphology and

water velocitywill influence the distributionpatterns ofMPs. The same

is true for, for example, interaction with river vegetation or

installations. Areas with a low flow velocity can enhance the

sedimentation rate and temporal storage of MP in sediments

(Nizzetto et al., 2016; Hoellein et al., 2019), and the composition of

the riverbed sediment plays a crucial role in entrapping and releasing

MP under certain flow conditions (Hurley et al., 2018; Ockelford et al.,

2020). Furthermore, microplastic is trapped in the hyporheic zone

(Frei et al., 2019) and transported within it (Boos et al., 2021).

Precipitation can alter the MP particle concentration due to

overflowing water from rainwater overflows (Liu and Borregaard,

2019), stormwater retention ponds, sewer discharge (Piehl et al., 2018;

Ory et al., 2020) or run-off from terrestrial systems, such as agricultural

lands contaminated with MPs (Piehl et al., 2018; Weithmann et al.,

2018). This inflow of water, contaminated with microplastics, can

increase microplastic concentration after rain events. The vicinity of

point sources such asWWTP or industrialized areas can similarly lead

to local hotspots. On the other side, the introduction of less

contaminated water via tributaries could lead to dilution effects and

lower the MP concentration.

Considering all these factors together, it is likely that the

abundance of plastic particles in the surface water of rivers does

not follow a strict predictable pattern such as a supposed increase over

the course of a river. Instead, patchy distribution, current patterns,

turbulent mixing, flow velocity, and river morphologymay play a role

in high variations of MP abundances on one location at small time

(Kooi et al., 2018; Watkins et al., 2019) and small spatial scales

(Liedermann et al., 2018). In addition, the different densities of the

polymers, aggregation of particles with other plastic but also natural

particles or colloids, and the growth of biofilms can influence plastic

transport (Liedermann et al., 2018).

Moreover, riverine plastic transport is not limited to the surface

layer. Therefore, microplastic contamination should be examined

within the whole water column and suspended sediments

(Liedermann et al., 2018; Frei et al., 2019; Scherer et al., 2020).

Therefore, multipoint measurements would be necessary to address

spatial and temporal heterogeneity. These findings may have

significant implications for MP monitoring approaches since

single point measurements have only snap-shot character and

might impede the evaluation of MP mitigation measures.

The implementation of repeated one-location multipoint MP

surveys for sampling simultaneously at the water surface, in the

water column, water/sediment interphase, and in the sediment

promise a mechanistic understanding of spatial MP distribution

and are essential to identify potential contamination sources.

However, such a survey design also confronts researchers with a

huge amount of samples that is hard tomanage, especially when a

high qualitative resolution is to be achieved and microplastic in

the lower micron size range are to be analyzed.
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