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Abstract— In optimal control, it is well known that near-
optimal trajectories exhibit a turnpike property if the system is
strictly dissipative at the considered equilibrium and additional
technical conditions are satisfied. In this paper we extend this
result to a system which is merely locally strictly dissipative. For
the special case of locally positive definite stage costs we show
that there exists upper and lower bounds on the optimization
horizon for which a local turnpike property becomes visible.
For locally strictly dissipative costs we show that the same
holds under a condition on the leaving arc of the local turnpike
property. Our theoretical findings are illustrated by numerical
examples.

I. INTRODUCTION

The turnpike property describes the phenomenon that a
near-optimal trajectory of an optimal control problem stays
close to an optimal equilibrium most of the time. Often,
but not always, at the end of the time horizon the optimal
trajectory moves away from the optimal equilibrium. This is
the so-called leaving arc. In recent literature (for surveys see
[5], [6] and for a selection of recent papers in different appli-
cation areas see, e.g., [1], [3], [4], [12]), the turnpike property
has been intensively studied and sufficient conditions for this
property to hold have been provided for different kinds of
optimal control problems. One of these conditions is strict
dissipativity with respect to the stage cost [9].

In this paper we investigate the occurence of local turnpike
behavior, i.e., turnpike behavior for initial conditions near a
local optimal equilibrium, under a local strict dissipativity
assumption. For infinite-horizon discounted optimal control
problems it was recently shown in [8] that a local strict
dissipativity condition implies a local turnpike property.
Adapting Theorem 4.4 from [11] to the local situation, it
is relatively straightforward to prove that the same holds for
finite-horizon discounted optimal control. Yet, the situation
becomes significantly more complex when finite-horizon
non-discounted optimal control problems are considered, as
we do in this paper. The reason for this is the possible oc-
curence of leaving arcs. For this reason, in this paper we first
investigate the case of locally positive definite stage costs, in
which no leaving arcs occur. In this situation, we can show
that there exists a lower bound on the optimization horizon
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for which a local turnpike property occurs for all trajectories
that stay near the optimal equilibrium. In addition, there exist
an upper bound on the optimization horizon until which near-
optimal trajectories stay near the locally optimal equilibrium.
If this upper bound is larger than the aforementioned lower
bound, then an interval of horizons exists for which a local
turnpike property can be observed.

In the general locally strictly dissipative case, we addition-
ally have to take the leaving arc into account. Our results say
that, if the leaving arc moves into a direction where the stage
cost is smaller than in the locally optimal equilibrium, then
the local turnpike property vanishes while if the leaving arc
moves into a region with “expensive” stage cost then the
local turnpike property persists.

The paper is organized as follows: we introduce our
problem class and give basic definitions of strict dissipativity
and the turnpike property for optimal control problems in
Section II. We move on in Section III with investigating
the behavior of near-optimal trajectories. Then, we analyze
the case of local strict dissipativity and use these insights
to obtain a local turnpike property for the general locally
strictly dissipative case in Section IV. Numerical examples
and simulations illustrate our findings.

II. SETTING AND PRELIMINARIES

We consider discrete time nonlinear systems of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0 (1)

with f : Rn×Rm → Rn continuous. We denote the solution
of system (1) for a control sequence u = (u(0), . . . , u(N −
1)) ∈ (Rm)N and initial value x0 ∈ Rn by xu(·, x0), or
short by x(·) if there is no ambiguity about the respective
control sequence and the initial value.

We impose nonempty state and input constraint sets X ⊆
Rn and U ⊆ Rm, respectively, and we define the combined
state and control constraints Z := X × U. The set of
admissible control sequences for x0 ∈ X up to time N ∈ N
is defined by

UN (x0) := {u ∈ UN |xu(k, x0) ∈ X ∀ k = 1, . . . , N − 1}.

We assume controlled forward invariance of X to ensure
feasibility, i.e., UN (x0) 6= ∅ for each initial value x0 ∈ X.

By denoting the stage cost by ` : Z→ R we can formulate
the optimal control problem for horizon N ∈ N

min
u∈UN (x0)

JN (x0,u) =
N−1∑
k=0

`(xu(k, x0), u(k))

x(k + 1) = f(x(k), u(k)), k = 0, . . . , N − 1

x(0) = x0, (2)



where we minimize the cost function along an optimal
trajectory. The optimal value function is defined by

VN (x0) := inf
u∈UN (x0)

JN (x0,u).

Further, we denote the set of all admissible equilibria by
E = {(xe, ue) ∈ Z | xe = f(xe, ue)} and, if it exists,
(xeg, u

e
g) denotes the strictly globally optimal equilibrium,

i.e. `(xeg, u
e
g) < `(xe, ue) holds for all (xe, ue) ∈ E with

(xe, ue) 6= (xeg, u
e
g).

In the following we will make use of comparison-
functions, see [13], defined by

K := {α : R+ → R+ | α is continuous and
strictly increasing with α(0) = 0}

K∞ := {α : R+ → R+ | α ∈ K, α is unbounded}
L := {δ : R+ → R+ | δ is continuous and

strictly decreasing with lim
t→∞

δ(t) = 0}.

Moreover, with Bε(x0) ⊆ Rn we denote the open ball
with radius ε > 0 around x0.

In this paper, we focus on the question of for which
horizons we can observe a local turnpike behavior of near-
optimal solutions. A key ingredient for our investigation is
strict dissipativity, which goes back to [15]. The following
definition provides the strict dissipativity definitions for the
global and the local case.

Definition 1: (i) The system (1) is strictly (x, u)–
dissipative for the stage cost ` at an equilibrium
(xe, ue) if there exists a storage function λ : X → R
bounded from below, and a function α ∈ K∞ such that
for all (x, u) ∈ Z the inequality˜̀(x, u) := `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u))

≥ α(‖x− xe, u− ue‖) (3)

holds, where ˜̀ is called the rotated stage cost.
(ii) The system (1) is locally strictly (x, u)–dissipative for

the stage cost ` at an equilibrium (xe, ue) if strict
dissipativity holds for all x in a neighborhood XN (xe)
of xe, i.e. the inequality (3) holds for all (x, u) ∈
XN (xe)× U with f(x, u) ∈ X.

The connection between strict dissipativity and trajectory
behavior is well studied, see, for instance, [11], [15], [16].
We remark that often in definitions of strict dissipativity the
class K∞–function α does not depend on the control u.
Throughout this paper we use this stronger definition, but
we will usually drop the “(x, u)” in what follows.

The following proposition is Proposition 8.15 in [10],
which shows that strict dissipativity implies the turnpike
property.

Proposition 1: Assume that system (1) is strictly dissipa-
tive for the stage cost ` at the global optimal equilibrium
(xeg, u

e
g) with bounded storage function λ. Then, for each

δ > 0 there exists σδ ∈ L such that for all N,P ∈ N,
x0 ∈ X and u ∈ UN (x0) with JN (x0,u) ≤ N`(xeg, u

e
g) +

δ the set Q(x0,u, P,N) := {k ∈ {0, . . . , N − 1} |∥∥xu(k, x0)− xeg
∥∥ ≥ σδ(P )} has at most P elements.

A similar technique as used for the proof of this proposition
in [10] is used in the proof of Theorem 1 below.

We note that while the proposition makes a statement for
any N ≥ 1, it only becomes meaningful if N > P and σδ(P )
is reasonably small. This yields an implicit lower bound
for the time horizons N for which the turnpike property
can actually be observed. In the case of `(xeg, u

e
g) = 0,

the condition on the trajectories is JN (x0,u) ≤ δ. To
guarantee the existence of such a u, a reachability condition
on trajectories starting in a neighborhood of the equilibrium
can be used, see [7, Theorem 5.6] for details.

III. THE LOCAL TURNPIKE PROPERTY FOR LOCALLY
POSITIVE DEFINITE STAGE COSTS

We start our consideration with the relation between the
original and the rotated cost function

J̃N (x0,u) :=
N−1∑
k=0

˜̀(xu(k, x0), u(k)) (4)

= JN (x0,u)−N`(xe, ue) + λ(x0)− λ(xu(N, x0)).

We like to stress that the optimal trajectories of the optimal
control problem (2) with objective JN and J̃N do not
coincide since the term λ(xu(N, x0)) depends on the control
sequence u. The storage function λ(xu(N, x0)) measures the
cost of the last state. If we assume w.l.o.g. that `(xe, ue) = 0
and λ(xe) = 0, then a negative value λ(xu(N, x0)) <
0 indicates the presence of a leaving arc, which makes
the analysis technical and complex. In order to simplify
the analysis, we proceed step by step, beginning in this
section with locally positive definite stage costs, for which
no leaving arc occurs. We first consider trajectories that
stay in a neighborhood of the local equilibrium and then
analyze conditions under which near-optimal trajectories stay
in such a neighborhood. In Subsection III-C, we develop
such conditions for locally positive definite stage costs and
illustrate our results numerically in Subsection III-D.

A. Turnpike for trajectories in a neighborhood of local
equilibria

First, we consider trajectories that stay in a neighborhood
of a local equilibrium (xe, ue). The following theorem is
based on Theorem 4.3 in [8] and on Proposition 1.

Theorem 1: Consider an optimal control problem (2). Let
(xe, ue) ∈ E and assume that system (1) is locally strictly
dissipative for the stage cost ` at (xe, ue) with storage
function λ. Let N1 and N2 be neighborhoods of xe with
xe ∈ N1 ⊂ N2 ⊆ XN such that λ is bounded on N1.

Then, for all sufficiently small δ > 0 there exists
σδ ∈ L such that for all solutions x(·, x0) with x0 ∈
N1, N ∈ N, and u ∈ UN (x0) satisfying JN (x0,u) ≤
N`(xe, ue) + δ and x(k, x0) ∈ N2 for all k = 0, . . . , N −
1 the set Q(x0,u, P,N) := {k ∈ {0, . . . , N − 1} |
‖(xu(k, x0), u(k))− xe‖ ≥ σδ(P )} has at most P elements.

Proof: We follow the proof in [10] and note that the
trajectories under consideration stay in the subset N2.

First, we fix δ > 0 and claim that the assertion holds with
σδ(P ) := σδ(P ) := α−1((2C + δ)/P ) where C > 0 is



such that λ(x) ≤ C for all x ∈ N1 and λ(x) ≥ −C for all
x ∈ X. We prove this claim by contradiction, i.e. we assume
N,P, x0,u are such that JN (x0,u) ≤ N`(xe, ue) + δ but
Q(x0,u, P,N) contains at least P +1 elements. Then, from
the relation (4) we can estimate

J̃N (x0,u) ≤ JN (x0,u)−N`(xe, ue) + 2C ≤ 2C + δ.

Next, we use the strict dissipativity at the equilibrium
(xe, ue) and the fact that the set Q(x0,u, N, P ) contains
at least P + 1 elements. This implies

J̃N (x0,u) =
N−1∑
k=0

˜̀(xu(k, x0), u(k))

≥
N−1∑
k=0

α(‖xu(k, x0)− xe‖) ≥
∑

k∈{0,...,N−1}
‖xu(k,x0)−xe‖≥σδ(P )

α(σ(P ))

≥ (P + 1)α(σδ(P )) ≥ (P + 1)
2M + δ

P
> 2M + δ,

which is a contradiction.

B. Trajectory behavior

In order to examine the solution behavior of an optimal
control problem with a horizon large enough to reach the
globally optimal equilibrium, we first need to investigate
properties of trajectories that stay near a localy optimal
equilibrium for a certain time and then move out of a
neighborhood of this equilibrium. To this end, we use [8,
Lemma 5.1], noting that its statement also holds in the non-
discounted setting of this paper.

Lemma 1 ( [8]): Consider the optimal control problem
(2) with f continuous and assume that system (1) is locally
strictly (x, u)–dissipative for the stage cost ` at the local
equilibrium (xe, ue) ∈ E . Let ρ > 0 be such that Bρ(xe) ⊂
XN (xe).

Then, there exists η > 0 such that for each K ≥ 1 and any
trajectory xu(·, x0) with x0 = x(0) ∈ Bη(xe), u ∈ UN (x0),
and x(K) /∈ Bρ(xe) there is M ∈ {0, . . . ,K − 1} such that
x(0), . . . , x(M) ∈ Bη(xe) and

(i) x(M + 1) ∈ Bρ(xe) \ Bη(xe)
or (ii) ‖u(M)− ue‖ ≥ η

holds.

C. Locally positive definite stage costs

We use the trajectory behavior from Lemma 1 to derive
conditions to observe a local turnpike property. Before deal-
ing with the challenges of a local leaving arc in Section IV,
we begin our analysis by avoiding this problem by assuming
that the stage cost is locally positive definite, i.e., that it
is locally strictly dissipative with λ ≡ 0. The following as-
sumption ensures, on the one hand, locally strictly dissipative
positive definite stage costs and, on the other hand, a bound
on the optimal value function near xe.

Assumption 1: Let (xe, ue) ∈ E , and assume that

(i) system (1) is locally strictly (x, u)–dissipative for the
stage cost ` at the local equilibrium (xe, ue) with
storage function λ ≡ 0;

(ii) `(xe, ue) = 0;
(iii) for all ε > 0 there exists a neighborhood of the

equilibrium N (xe) such that for all x0 ∈ N (xe),
and all N ∈ N, the optimal value function satisfies
VN (x0) ≤ ε.

In the following, for an arbitrary neighborhood of the local
equilibrium N , we denote by K(N ) the minimal time
instant when the stage cost may become negative after
the trajectory has left the neighborhood N , i.e., it holds
that `(xu(K(N ), x0), u(K(N ))) < 0 for some x0 ∈ N ,
u ∈ UN (x0) but `(xu(k, x0), u(k)) ≥ 0 for all k ∈
{0, . . . ,K(N )− 1}, all x0 ∈ N and all u ∈ UN (x0).

Note that Assumption 1 (iii) can be achieved by a reacha-
bility assumption as discussed after Proposition 1. Moreover,
Assumption 1 (ii) is satisfied w.l.o.g. since it can be achieved
by adding a constant to the stage cost. Hence, the stage
cost and the rotated stage cost coincide in a neighborhood
XN (xe).

For optimal control problems satsfying Assumption 1, we
can derive a positive lower bound for the cost of solutions
leaving a neighborhood of xe within a certain time N .

Lemma 2: Let Assumption 1 (i), (ii) hold and assume that
the stage cost ` is bounded from below.

Then, there exist a horizon N? ∈ N, neighborhoods N1,
N2 with xe ∈ N1 ⊂ N2 ⊆ XN (xe) and γ > 0 such
that for all trajectories xu(·, x0) with x0 ∈ N1, N ≤ N?,
and u ∈ UN (x0) satisfying xu(P, x0) /∈ N2 for some
P ∈ {1, . . . , N − 1} the cost function satisfies

JN (x0,u) ≥ γ.

Here N? depends on the problem data and is constructed in
the proof.

Proof: The cost function can be split into three parts
depending on the trajectory behavior. For this, we define
N1 := Bη(xe) and N2 := Bρ(xe) with η, ρ > 0 from
Lemma 1. Then, the trajectory under consideration satisfies
the assumptions of Lemma 1 and, thus, there exists M ∈
{0, . . . , P} such that either x(M + 1) ∈ Bρ(xe) \ Bη(xe)
or ‖u(M)− ue‖ ≥ η holds. Due to the strict (x, u)–
dissipativity we obtain in both cases

˜̀(xu(M,x0), u(M)) ≥ α(‖xu(M,x0)− xe‖) ≥ α(η),˜̀(xu(M,x0), u(M)) ≥ α(‖u(M)− ue‖) ≥ α(η),

respectively, and we abbreviate α(η) =: θ. Further, Lemma 1
implies `(xu(k, x0), u(k)) ≥ 0, for all k = 0, . . . ,M − 1,
because xu(k, x0) ∈ Bη(xe), where `((xu(k, x0), u(k))) ≥ 0
due to Assumption 1 (i). We set K := K(Bη(xe)) as defined



after Assumption 1. Hence, the transition costs

K−1∑
k=M

`(xu(k, x0), u(k))

= `(xu(M,x0), u(M)) +

K−1∑
k=M+1

`(xu(k, x0), u(k))

≥ `(xu(M,x0), u(M)) ≥ α(η) = θ

are bounded from below by the cost generated at the time
step at which the trajectory leaves Bη(xe).

Next, we observe that boundedness from below implies
the existence of `min < 0 with `(xu(k, x0), u(k)) ≥ `min for
all k = K, . . . , N − 1. Together this yields

JN (x0,u) =
N−1∑
k=0

`(xu(k, x0), u(k))

=

M−1∑
k=0

`(xu(k, x0), u(k)) +

K−1∑
k=M

`(xu(k, x0), u(k))

+

N−1∑
k=K

`(xu(k, x0), u(k))

≥ θ + (N −K)`min

We now show that the assertion holds for any γ ∈ (0, θ).
For this purpose, we show the existence of N? with

θ + (N −K)`min ≥ γ

for all N ∈ N with N ≤ N?. This is equivalent to

N`min ≥ γ − θ +K`min ⇔ N ≤ γ − θ
`min

+K

since `min < 0. Hence, N? =
⌊
γ−θ
`min

⌋
+K(Bη(xe)) satisfies

the assertion.
Remark 1: (i) Estimating the transition costs with the

lower bound θ may seem like a rough estimate. How-
ever, it provides the advantage that we do not need
to know the exact behavior of the trajectory when
leaving the neighborhood of the local equilibrium.
Hence, θ provides a bound for the transition costs that
is independent of the number of steps and the reason
that causes these costs. Nevertheless, we need to know
the time instant K after which the trajectory may be
in a region with negative stage cost, to give an upper
bound on the horizon N .

(ii) The value γ > 0 can be seen as an upper bound for the
cost of all trajectories that stay in a neighborhood of the
local equilibrium for all time steps k = 0, . . . , N − 1.

We are now able to formulate a local turnpike property.
Theorem 2: Consider the optimal control problem (2)

with continuous f and stage cost ` bounded from below.
Let Assumption 1 hold.

Then, there exists a neighborhood of the equilibrium
N (xe) and a horizon N? ∈ N, specified in the proof, such
that for all sufficiently small δ > 0 there exists σδ ∈ L
such that for all solutions xu(·, x0) with x0 ∈ N (xe),

N ≤ N?, and u ∈ UN (x0) satisfying JN (x0,u) ≤
VN (x0)+δ the set Q(x0,u, P,N) := {k ∈ {0, . . . , N −1} |
‖(xu(k, x0), u(k))− xe‖ ≥ σδ(P )} has at most P elements.

Proof: Let δ > 0, ε > 0 from Assumption 1, and γ > 0
from Lemma 2 such that ε + δ < γ. Then, by Assumption
1 (iii) there exists a neighborhood Ñ of xe such that for
all x0 ∈ Ñ , N ∈ N it holds that VN (x0) ≤ ε. We set
N (xe) := Ñ ∩ N1 with N1 from Lemma 2, and conclude
for N? from Lemma 3 and for trajectories with x0 ∈ N (xe),
N ≤ N?, u ∈ UN (x0) additional satisfying xu(P, x0) /∈ N2

for some P ∈ {1, . . . , N − 1}, that JN (x0,u) ≥ γ which
is a contradiction to VN (x0) ≤ ε < γ − δ. Hence, these
trajectories cannot leave N2 from Lemma 2, i.e., xu(k, x0) ∈
N2 for all k ∈ {0, . . . , N}. For these trajectories Theorem 1
is applicable since strict (x, u)–dissipativity and JN (x0,u) ≤
ε+ δ < γ holds. Thus, we can deduce the required turnpike
property.

As discussed after Proposition 1, the turnpike property
will only become visible for sufficiently large N , determined
by σδ . In addition, here the upper bound N? on N from
Lemma 3 occurs. Hence, it depends on the interplay of these
two bounds whether the local turnpike property will visibly
occur. The example in the next section shows that this may
indeed happen. We note that this is similar to the situation
for discounted optimal control problems, where analogous
lower and upper bounds on the discount rate exist, see [8].

D. A numerical example

In this section we illustrate our theoretical findings from
above by a numerical example. We used the nMPyC–
package, see [14], for solving optimal control problems
numerically. The following example shows that the local
turnpike property may indeed occur before N is so large that
the solutions leave the neighborhood of xe and turn towards
the global equilibrium.

Example 1: Consider the dynamics x+ = x+u with Z =
R× R and stage cost

`(x, u) = 0.1315x4 − 1.299x3 + 3.1675x2 + 5u2.

The corresponding optimal control problem has a local
equilibrium at (xe, ue) = (0, 0) and the global one at
(xeg, u

e
g) = (1, 0). Moreover, the stage cost exhibits local

strict (x, u)–dissipativity at the equilibrium (xe, ue) = (0, 0)
with λ ≡ 0 since in a neighborhood of (xe, ue) the stage
cost has a convex quadratic behavior.

0 2 4 6 8 10
0
1
2
3
4
5

Fig. 1. Example 1 for different horizons N and x0 = 0.2



Further, we remark that the globally optimal equilibrium
(1, 0) is reachable for each horizon N ∈ N and for each
initial value x0 ∈ R. When setting x0 = 0.2, Assumption 1
is fulfilled.

In Figure 1, the optimal trajectories of the optimal control
problem are visualized for different horizons N . There, we
observe that the local turnpike property appears for the
horizons N = 2, . . . , 6, while it is favorable to go to the
global equilibrium for N ≥ 7.

IV. THE LOCAL TURNPIKE PROPERTY FOR LOCALLY
STRICTLY DISSIPATIVE STAGE COSTS

We now proceed with locally strictly dissipative stage
costs, i.e., with general continuous storage functions λ 6≡ 0.
We adapt the result from Theorem 2 to this class of optimal
control problems. It turns out that the result is generally
not transferable since the local leaving arc and especially
the costs of the leaving arc are of fundamental importance.
Therefore, it is no longer sufficient to consider only the
horizon N and the initial value. Rather, we also need to
consider the local leaving arc behavior. To illustrate this
issue, we consider first a globally strictly dissipative problem,
which we modify to be locally dissipative in Example 3.

Example 2: Consider the dynamics x+ = x/2 + u with
Z = R × R and stage cost `(x, u) = (x − 1)2 + u2 − 0.2
with the optimal equilibrium (xeg, u

e
g) = (0.8, 0.4) and

`(xeg, u
e
g) = 0. The corresponding optimal control problem

is strictly dissipative with λ(x) = 0.8x − 0.64 (cf. [2,
Proposition 4.3]), and, thus, exhibits the turnpike property.

0 2 4 6 8 10

0.4
0.5
0.6
0.7
0.8

Fig. 2. Example 2 for different horizons N and x0 = 0.75

Figure 2 visualizes the optimal trajectories for different
horizons N and initial value x0 = 0.75. We can observe
a global turnpike property and that all optimal trajectories
have a leaving arc tending towards 0 because the costs of
keeping with control effort the trajectory at the equilibrium
are higher than the costs of the leaving arc, which is also
reflected in the negative cost functions, i.e., JN (x0,u) ≈
−0.14 for all horizons N = 2, . . . , 10. Looking at relation
(4), one sees that λ(x(N, x0)) must be negative for this to
happen. Indeed, the last state of the optimal trajectories for
all horizons N is approximate x(N, x0) ≈ 0.347 and, thus,
λ(0.347) = −0.3624 < 0.
Example 2 shows that if we start in a neighborhood of
the optimal equilibrium, the optimal trajectories leave this
neighborhood and have a negative cost. This means that

Lemma 2 does no longer hold. We will thus now aim at
a replacement for this lemma when λ 6≡ 0.

To this end, we will use the following assumption, which
relaxes Assumption 1.

Assumption 2: Let (xe, ue) ∈ E and assume that
(i) the system (1) is locally strictly (x, u)–dissipative for

the stage cost ` at the local equilibrium (xe, ue) with
continuous storage function λ bounded from below, and
it holds that λ(xe) = 0.

(ii) the stage cost ` is bounded from below, and satisfies
`(xe, ue) = 0.

The next lemma shows that the statement of Lemma 2 still
holds if λ is nonnegative along the considered trajectory.

Lemma 3: Consider an optimal control problem (2) with
f continuous. Let Assumption 2 and Assumption 1 (iii) hold.

Then, there exist a horizon N? ∈ N, neighborhoods N1,
N2 with xe ∈ N1 ⊂ N2 ⊆ XN (xe) and γ > 0 such that
for all trajectories x(·, x0) with x0 ∈ N1, N ≤ N?, and u ∈
UN (x0) satisfying x(P, x0) /∈ N2 for some P ∈ {1, . . . , N−
1} and λ(xu(k, x0)) ≥ 0 for all k = 0, . . . , N − 1 the cost
function

JN (x0,u) ≥ γ

is bounded from below.
Proof: To show the existence of N?, we proceed as

in the proof of Lemma 2: we define N1 := Bη(xe) and
N2 := Bρ(xe) with η, ρ > 0 from Lemma 1 and conclude
that there exists a time instant M ∈ {0, . . . , P} such that
either x(M + 1) ∈ Bρ(xe) \ Bη(xe) or ‖u(M)− ue‖ ≥ η
holds. Until this time instant M the strict (x, u)–dissipativity
holds such that we can consider the modified costs, i.e.,
M∑
k=0

`(xu(k, x0), u(k))

= −λ(x0) +
M∑
k=0

˜̀(xu(k, x0), u(k)) + λ(xu(M + 1, x0)).

Since the storage function λ is continuous, x0 ∈ N1, and
λ(xe) = 0 holds, due to Assumption 2 (i), we can conclude
that λ(x0) ≤ ε̂ with ε̂ > 0 arbitrary small if we choose N1

sufficiently small. Further, we know λ(xu(M + 1, x0)) ≥ 0,
which leads to the same setting as in Lemma 2 if we replace
γ by γ − ε̂ > 0. This yields the existence of the required
upper bound N? with the same construction as in the proof
of Lemma 2.

Combining the techniques from Section III with the lemma
above and the trajectory behavior, we can show that for
horizons small enough, either the near-optimal trajectories
stay in a neighborhood of the local equilibrium, or they must
have an incentive to leave this neighborhood in the form of
a negative storage function.

Corollary 1: Consider an optimal control problem (2)
with f continuous. Let Assumption 2 and Assumption 1 (iii)
hold.

Then, there exist a horizon N? ∈ N from Lemma 3,
neighborhoods N1, N2 with xe ∈ N1 ⊂ N2 ⊆ XN (xe) and
γ > 0 such that for all trajectories x(·, x0) with x0 ∈ N1,



N ≤ N?, and u ∈ UN (x0) satisfying JN (x0,u) < γ at least
one of the following two properties holds:

(i) x(k, x0) ∈ N2 for all k = 0, . . . , N − 1;
(ii) there exists Ñ < N such that λ(xu(Ñ , x0)) < 0.

Proof: We use the notation and setting from Lemma 3
and assume that (ii) does not hold. Then λ(xu(Ñ , x0)) ≥ 0
holds for all Ñ < N and thus Lemma 3 implies (i).

If case (i) holds in Corollary 1, then by applying Theo-
rem 1 we can conclude that the trajectories under considera-
tion exhibits a local turnpike property. A special case of this
situation is the locally positive definite case we discussed in
Section III-C.

In contrast, in case (ii) it depends on the interplay between
λ and ` whether a local turnpike property can occur. If λ ≥ 0
holds along the solution that leads from the local equilibrium
to the region where ` < 0, then we can again follow the
proof of Theorem 1 and can conclude that local turnpike
property occurs. If, however, ` happens to be negative along
this solution, then the leaving arc may directly link to the
approaching arc of the globally optimal equilibrium.

To illustrate these two situations, we modify, Example 2
to the following example. Because of the one-dimensional
state space, we can construct two stage costs that illustrate
the two cases in which directions the local leaving arc can
tend.

Example 3: Consider the dynamics and the stage cost of
Example 2 and combine the stage cost ` with

l1(x, u) = (x+ 2)2 + u2 − 1.2,

l2(x, u) = (x− 2)2 + u2 − 1.2,

respectively, from which we construct the new stage costs

`1(x, u) = min(`(x, u), l1(x, u)),

`2(x, u) = min(`(x, u), l2(x, u)).

For both problems, we set Z = R × R and the initial state
x0 = 0.75. Constructing the optimal control problems in
this way, we end up with global equilibria at (−1.6,−0.8)
or (1.6, 0.8), respectively, and the local equilibrium at
(0.8, 0.4). In case of `1, the global equilibrium lies in the
direction of the local leaving arc, which extends into negative
direction, see Example 2. As such, there is no incentive for
the optimal trajectory to stay in the local equilibrium. In
contrast, in case of `2, the global equilibrium is exactly in
the other direction, i.e., λ > 0 holds along all paths from
the local to the global optimal equilibrium. Hence, for small
horizons it is more favorable to stay in the local equilibrium.

In Figure 3, we observe that the optimal trajectories
corresponding to the optimal control problem with stage cost
`1 exhibit a global turnpike property at xeg = −1.6 as soon as
it is reachable, i.e., for N ≥ 3. In comparison, the trajectories
corresponding to the problem with stage cost `2 exhibit a
local turnpike property at approximately 0.8 for N small
enough, i.e., N ≤ 4. Only for N ≥ 5 it is rewarding to pay
the transfer costs to the global optimal equilibrium.
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Fig. 3. Illustration of Example 3 for different horizons N , x0 = 0.75

V. CONCLUSION

We have shown that local strict dissipativity implies a
local turnpike property if the initial value is close enough
to the local equilibrium, the horizon N is short enough,
and the local leaving arc does not extend into a region with
lower stage cost than in the local equilibrium. For optimal
trajectories without leaving arc, we essentially recover the
results for discounted optimal control problems from [8], in
which the discount factor plays a similar role as the horizon
length in this paper.
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