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The peripheral setting of cold drylands in Asian mountains makes remote sensing tools
essential for respective monitoring. However, low vegetation cover and a lack of
meteorological stations lead to uncertainties in vegetation modeling, and obstruct
uncovering of driving degradation factors. We therefore analyzed the importance of
promising variables, including soil-adjusted indices and high-resolution snow metrics,
for vegetation quantification and classification in Afghanistan’s Wakhan region using
Sentinel-2 and field data with a random forest algorithm. To increase insights on
remotely derived climate proxies, we incorporated a temporal correlation analysis of
MODIS snow data (NDSI) compared to field measured vegetation and MODIS-NDVI
anomalies. Repeated spatial cross-validation showed good performance of the
classification (80–81% overall accuracy) and foliar vegetation model (R2 0.77–0.8,
RMSE 11.23–12.85). Omitting the spatial cross-validation approach led to a positive
evaluation bias of 0.1 in the overall accuracy of the classification and 25% in RMSE of the
cover models, demonstrating that studies not considering the spatial structure of
environmental data must be treated with caution. The 500-repeated Boruta-algorithm
highlighted MSACRI, MSAVI, NDVI and the short-wave infrared Band-12 as the most
important variables. This indicates that, complementary to traditional indices, soil-adjusted
variables and the short-wave infrared region are essential for vegetation modeling in cold
grasslands. Snow variables also showed high importance but they did not improve the
overall performance of the models. Single-variable models, which were restricted to areas
with very low vegetation cover (<20%), resulted in poor performance of NDVI for cover
prediction and better performance of snow variables. Our temporal analysis provides
evidence that snow variables are important climate proxies by showing highly significant
correlations of spring snow data with MODIS-NDVI during 2001–2020 (Pearson’s r 0.68)
and field measured vegetation during 2006, 2007, 2016 and 2018 (R 0.3). Strong spatial
differences were visible with higher correlations in alpine grasslands (MODIS NDVI: 0.72,
field data: 0.74) compared to other regions and lowest correlations in riparian grasslands.
We thereby show new monitoring approaches to grassland dynamics that enable the
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development of sustainable management strategies, and the mitigation of threats affecting
cold grasslands of Central Asia.

Keywords: central asia, vegetation monitoring, dryland remote sensing, grasslands, snow, vegetation modeling,
rangeland conservation

1 INTRODUCTION

Grasslands cover over 40% of the Earth’s terrestrial surface and
support the livelihoods of more than two billion people (Hewins
et al., 2018; Squires et al., 2018). Large parts of respective
environments are classified as drylands or cold drylands that
provide vital ecosystem services and serve as important regulators
of the climate system (Suttie et al., 2005; Burrell et al., 2018; Smith
et al., 2019). Unfortunately, many known drivers of land use
change, habitat fragmentation and associated biodiversity loss are
increasingly present in drylands and threaten the key services
they provide to mankind (Zhang et al., 2021). Change in
precipitation and temperature results in altered hydrothermal
conditions and biochemical cycles, affecting the species richness,
diversity, growth, health and biomass productivity (Paruelo et al.,
1999; Dingaan and du Preez 2013; Wu et al., 2014). Qualitative
and quantitative information on grassland, shrub steppes and
alpine meadows that compose cold drylands, is therefore a
prerequisite for landscape scale conservation measures, for
grazing management and for the assessment of degradation
vulnerability and fodder availability (Vanselow et al., 2018).
Furthermore, land cover data and respective changes are
important indicators for assessing the United Nation’s
Sustainable Development Goals (Prince 2019).

Because of the peripheral setting of cold drylands, a large part
of their monitoring has to be conducted using regionally adapted
remote sensing methods. However, remote sensing faces major
challenges in these regions due to low vegetation cover and signal
to noise ratio, high shares of non-photosynthetic plant tissue and
soil background reflectance, and large spatial heterogeneity
(Eisfelder et al., 2012; Smith et al., 2019; Zhang et al., 2019).
Additionally, reliable spatial climate datasets and variables are
necessary to assess potential drivers of vegetation change, but the
scarcity of climate infrastructure in respective regions leads to
limitations in the availability of long term climate data for
vegetation monitoring (Zandler et al., 2019, 2020). Despite the
high ecological and societal relevance of these drylands, research
and remote sensing algorithms that are adapted to the specific
situation in this particular regions are still limited (Smith et al.,
2019; Wang et al., 2019), and studies in Asia’s cold grasslands are
particularly scarce (Hu and Hu 2019).

New monitoring approaches are necessary to increase
knowledge on spatio-temporal vegetation dynamics in cold
arid and semi-arid areas, and to enable sustainable
conservation strategies in these regions. Existing research on
remote sensing approaches indicates that the coverage of
various spectral domains, including the red-edge (Ren et al.,
2011; Eisfelder et al., 2012; Li et al., 2012, Li et al., 2017;
Schumacher et al., 2016) or the short-wave infrared region
(SWIR) (Asner et al., 2000; Oldeland et al., 2010; Zandler

et al., 2015b; Ren et al., 2018), improve dryland modeling. Soil
adapted indices were also considered as important in rangeland
research (Zandler et al., 2015b; Fern et al., 2018; Ren et al., 2018)
although some studies showed contrary results (Baghi and
Oldeland 2019). In addition to these variables that are
designed to directly detect biophysical vegetation properties,
snow is an important plant moisture source in cold drylands
(Peng et al., 2010). Therefore, remotely sensed snow variables
may be important vegetation proxies and have the potential to
contribute to vegetation analysis and monitoring in respective
regions (Wang et al., 2013, Wang et al., 2018; Qiu et al., 2019;
Zandler et al., 2020). However, only a limited number of studies
tested the potential of respective variables for both classification
andmodeling. In order to contribute to this high priority research
topic, we examine following research questions in a remote, high
elevation, cold rangeland area of Central Asia with still limited
human footprint (Smallwood and Shank 2019) and with
continental relevance as a “water tower of Asia” (Viviroli
et al., 2007): What is the importance of adapted remote
sensing based indices and snow variables in modeling
vegetation classes and vegetation cover in cold grasslands?
What are central issues for remote sensing based analysis in
these regions? What is the potential of snow variables in
explaining field and satellite based vegetation anomalies? How
can respective approaches contribute to improve the conservation
of cold drylands?

Numerous machine-learning algorithms for modeling and
assessing related research questions have been proposed and
tested in remote sensing literature. Commonly applied methods
for classification or regression include random forest (RF),
conventional decision trees, support vector machines (SVM),
maximum likelihood classifiers, Mahalanobis distance, artificial
neural networks, fuzzy adaptive resonance theory-supervised
predictive mapping, K-nearest neighbors, boosting techniques
with decision trees, quadratic discriminant analysis, Extreme
Gradient Boosting and many more (Grabska et al., 2020; Lapini
et al., 2020; Raab et al., 2020; Talukdar et al., 2020). Among
respective methods, RF is considered as the most widely used
classification algorithm (Phan et al., 2020) and a large number of
recent studies state good or better performance of the RF
approach compared to other techniques (Verrelst et al., 2019;
Diesing 2020; Lapini et al., 2020; Talukdar et al., 2020).
Furthermore, various studies confirmed the robustness of the
RF algorithm (Raab et al., 2020). More recently, deep-learning
methods based on neural networks, such as convolutional
neural networks (CNN) or recurrent neural networks,
showed good potential and some studies found increased
performance compared to previously mentioned, non-deep
classifiers (Zhang et al., 2020a, Zhang et al., 2020b.; Thorp
and Drajat 2021). The majority of these approaches utilized
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high-resolution data and some studies state that traditional
methods such as RF or SVM show similar performance to
CNNs with medium resolution sensors (Li et al., 2020).
Respective research indicates that the RF algorithm is still
widely used, robust and among the best performing
techniques among recent remote sensing approaches using
medium resolution imagery. Therefore, we apply this method
for both classification and cover modeling of vegetation to
provide insights on satellite based monitoring approaches in
cold grasslands.

2 MATERIALS AND METHODS

2.1 Study Area
Our research focusses on the Eastern Wakhan in Afghanistan, a
200 km long and about 65 km broad area sharing international
borders with China, Pakistan and Tajikistan (Figure 1), which
was formally designated as a national park in 2014. This resulted
in financial support to management by the government,
instigated the development of a management plan and the
implementation of regulations. Main measures were a ban on
hunting and that several areas and zones benefitted from
additional preservation activities including reduced livestock
grazing. Illegal hunting was also increasingly monitored and
anti-poaching actions were implemented.

This area, located at altitudes between 2,900 m and 6,300 m, is
at the junction of the Pamir, Hindukush and Karakoram
mountain ranges and is characterized by an arid to semi-arid
cold climate. Yearly average temperatures range between −1°C
and −3°C, and precipitation sums are around 200 mm in the
valleys (Pohl et al., 2015; Zandler et al., 2019). Winter
temperatures are cold with subzero temperatures from

October until March, with averages around −15°C to −5°C and
absolute extremes reaching down to −60°C, whereas in summer,
averages are around 10°C and mean maxima reaching about 26°C
(State Administration for Hydrometeorology of the Republic of
Tajikistan 2013; Metrak et al., 2015; Zandler et al., 2019).
Summerly frost and snow events occur repeatedly. Due to the
location at a climatological divide, precipitation spatially varies
and originates both from the Westerlies with maxima in spring
and from the Indian Summer Monsoon with maxima in summer.
Zonal climate conditions and local water availability influence
vegetation communities that comprise riparian grasslands, Salix
riparian communities, salt grass communities, dwarf-shrub
deserts and steppes, alpine grasslands and nival scree
vegetation communities (Figure 2). Average vegetation cover
shows large differences, with values mostly below 20% in steppe
communities and above 20% in riparian or alpine grasslands. The
region is characterized as one of the few global “essential water
towers” with superior importance for the population and
ecosystems in the watershed (Viviroli et al., 2007; Smith and
Bookhagen 2020). It forms the headwaters of the Amu-Darya, a
river that provides water for millions of people downstream
(Unger-Shayesteh et al., 2013). The biological significance of
the area is illustrated by high diversity of the flora, with about
20% of endemic species (Soelberg and Jäger 2016) such as the
extremely rare Epilobium thermophilum Paulsen, Astragalus
bahrakianus, Hymenolaena badachshanica, Holosteum
kobresietorum K.H. Rechinger, and several endemic Nepeta or
Cousinia spp. (Breckle et al., 2013), and fauna, with several rare or
vulnerable species such as the snow leopard (Panthera uncia), the
Marco Polo sheep (Ovis ammon polii), Siberian ibex (Capra
sibirica), urial (Ovis vignei), and large-billed reed warbler
(Acrocephalus orinus) (Smallwood and Shank 2019). Similar to
large parts of other Asian grasslands and rangelands (Zou et al.,

FIGURE 1 | Overview of the research area and field plots used for this study. The panel on the right shows the location of the region in Eastern Afghanistan. DEM:
NASA (2013), borders: GADM (2018).
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2019), livestock husbandry is the most important economic
activity in the region.

2.2 General Approach and Field Data
To cover the different remote sensing fields relevant for
conservation in cold grasslands, our study is structurally
divided in three parts: The modeling of vegetation
communities, the quantification of foliar vegetation cover

and the analysis of temporal snow and vegetation
anomalies.

The majority of field data to train and evaluate the models was
acquired during the years 2016 and 2018. Fifty meter transects
were used for vegetation cover measurements. Transect locations
were selected to match long term monitoring locations that were
originally established in 2006 and 2007 (Bedunah 2006, Bedunah
2008) to generate temporally consistent values. Additional

FIGURE 2 | Vegetation communities and land cover classes of this study: (A) Riparian grasslands (72 plots), (B) Salix riparian communities (18 plots), (C) salt grass
communities (22 plots), (D) dwarf-shrub deserts and steppes (125 plots), (E) alpine grasslands (58 plots), (F) water surfaces (51 plots), (G) snow and ice (30 plots), (H)
dark rocks and scree (32 plots), (I) bright rocks and scree (15 plots).
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sampling followed a two-step, stratified random sampling
approach to consider ecological and statistical
representativeness, as well as resource constraints (Roleček
et al., 2007 cf.; Zandler et al., 2015b). First, vegetation stands
were preferentially selected to achieve sufficient spatial coverage
and distribution among all vegetation communities. Transects
were then established using probability sampling with an adapted
random walk approach. Foliar cover of living vegetation in
percent was measured using the line and point intercept
techniques and averaged per transect (Mueller-Dombois and
Ellenberg 1974). In total, 93 transects were mapped (cf.
Figure 1). Transect ends were used as spatial reference for
field mapped vegetation cover. Thereby, point estimates of 186
vegetation cover plots were derived. Information from these
transects was also used to create a spatial field dataset for
vegetation communities and other land cover classes.
Delimitation of vegetation communities followed Vanselow

(2011), who created a sophisticated vegetation classification in
a similar region of the adjacent Tajik Pamirs using hierarchical
cluster analysis. To increase information for mostly unvegetated
land cover classes (bright and dark rock and scree areas) and
extend data for some undersampled classes, additional plots
where mapped in the field. Water and snow or ice plots were
included by digitizing respective land classes using a satellite
image (n = 81). In total, 423 land cover plots that covered nine
different land cover classes were mapped (cf. Figure 2).
Furthermore, a small number of previously mapped field plots
from 2006 to 2007 (n = 76) was additionally used for temporal
anomaly evaluation (Bedunah 2009).

2.3 Satellite Images and Preprocessing
We utilized Level-1C satellite images of the Sentinel-2 sensor (ESA
2020a), acquired on 20th of July 2016 and 15th of July 2018, for
land cover classification and vegetation cover modeling (Figure 3).

FIGURE 3 | Comparison of false color composites (Bands 8-4-3) of (A) 20th of July 2016 and (B) 15th of July 2018 using Bottom-Of-Atmosphere reflectance
derived from the Sentinel-2 Level-1C product with the Sen2Cor software.
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Respective dates were chosen based on minimum cloud cover and
as it corresponds to the peak of the regional vegetation period
during July and August (Zandler et al., 2020). Calculation of
Bottom-Of-Atmosphere reflectance was performed using the
Sen2Cor software (ESA 2020b). Bands with 10m and 20m
resolution were selected for the final analysis. For calculation of
Sentinel-2 snow data, we used all available images from March to
May, resulting in a total of 37 images, and applied a dense cloud
masking approach. To derive elevation information for the land
cover classification, the SRTM dataset with a resolution of 30m
was utilized (NASA 2013). MODIS indices of the products
MOD13Q1 (Didan 2015) and MOD10A1 V6 (Hall and Riggs
2016) were applied to derive vegetation and snow long-term
anomalies for 2001-2020, respectively. The MOD13Q1 data has
a spatial resolution of 250 m and delivers Normalized Difference
Vegetation Index (NDVI) data at a 16-days interval. Thereby, the
product is generated based on best values of a daily NDVI series, i.e.
including low cloud coverage and high NDVI values (Didan 2015).
The MOD10A1 V6 dataset is based on the Normalized Difference
Snow Index (NDSI, Table 1).

The product has a nominal spatial resolution of 500 m and
contains NDSI, missing data, water and cloud values on a daily
basis (Hall and Riggs 2016). To generate a continuous daily NDSI
time series, cloud and other invalid pixels where removed using a
simple gap-filling algorithm (cf. Zandler et al., 2020). All pixels
with more than 60% missing data, which corresponded to
approximately 5% of the research area, were masked for the
analysis. Gaps in the NDSI time series were linearly interpolated.
For the beginning and the end of the time series, the relevant
closest value was used. This simple approach was selected as it is
considered as effective, reproducible, transferable and
independent (cf. Salomonson and Appel 2006). Finally, both
MODIS products were averaged to monthly values.

2.4 Remote Sensing Variables
For Sentinel based applications, we used all 10 m and 20m bands
and a number of vegetation indices as potential predictors in both

of our modeling approaches (Table 1). We included the NDVI as
one of themost frequently used variables for remote sensing studies
in our analysis (Bannari et al., 1995). As red-edge bands were found
to greatly improve remote sensing based analysis in drylands (Ren
et al., 2011; Schumacher et al., 2016; Li et al., 2017) and the
Sentinel-2 sensor offers several bands in this region, we also
included two versions of a Normalized Difference Red Edge
Index (NDRE) in our analysis. Additionally, the MERIS

TABLE 1 | Overview of utilized vegetation indices. Band designations refer to bands of the Sentinel-2 sensor as outlined in ESA (2015) if not stated otherwise.

Index Formula References

MODIS NDSI (Band 4-Band 6)/(Band 4 + Band 6) Tran et al. (2019)
Sentinel NDVI (Band 8-Band 4)/(Band 8 + Band 4) Rouse, (1973)
Sentinel NDRE 1 (Band 8-Band 7)/(Band 8 + Band 7) Eitel et al. (2009)
Sentinel NDRE 2 (Band 8-Band 8a)/(Band 8 + Band 8a) Eitel et al. (2009)
Sentinel MTCI (Band 6-Band 5)/(Band 5 + Band 4) Ramoelo et al. (2012)
Sentinel MCARI ((Band 5-Band 4)-0.2*(Band 5 -Band 3))* (Band 5)/(Band 4) Ramoelo et al. (2012)
Sentinel WDVI Band 8-(α*Band 4) Qi et al. (1994)
Sentinel PVI (Band 8-α* Band 4- β)/√(1+α2) Elvidge and Chen (1995)
Sentinel SAVI (Band 8-Band 4)/(Band 8 + Band 4 + 1.5)*(1 + 0.5) Qi et al. (1994)
Sentinel TSAVI (α*(Band 8–1.147*Band 4-β))/(α*Band 8 + Band 4-α*β+0.08*(1+α2)) Qi et al. (1994)
Sentinel SACRI (α*(Band 8-Band 11-β))/(α*Band 8 + Band 11-α*β) Ren et al. (2012)
Sentinel MSACRI 5*(α*(Band 11-α*Band 12-β))/(α*Band 11 + Band 12+α*β) Ren et al. (2012)
Sentinel MSAVI (Band 8-Band 4)/(Band 8 + Band 4+(1-2*α*NDVI*WDVI))) Qi et al. (1994)
Sentinel NDSI (Band 3-Band 11)/(Band 3 + Band 11) Schmitt et al. (2019)

Respective central wavelengths are 490 nm (Band 2), 560 nm (Band 3), 665 nm (Band 4), 705 nm (Band 5), 740 nm (Band 6), 783 nm (Band 7), 865 nm (Band 8a), 842 nm (Band 8),
1,610 nm (Band 11) and 2,190 nm (Band 12). With theMODIS dataset, Band 4 covers the spectral range between 545 and 565 nm andBand 6 between 1,628 nm and 1,652 nm (NASA,
2013). Soil adapted indices include soil line coefficients, whereby α corresponds to the slope of the soil line, β is the intercept of the soil line. These variables were derived from a study of
another high-elevation region in Central Asia (Zandler et al., 2015b).

FIGURE 4 | Methodological overview of the utilized products,
processing and outputs.
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Terrestrial Chlorophyll Index (MTCI) was included as a red edge
based index. Similarly, theModified Chlorophyll Absorption Index
(MCARI) was calculated as it performed well in biomass modeling
in a comparable region (Zandler et al., 2015b) and because it covers
the non-green or structural parts of vegetation (Ren et al., 2018).

Soil adapted indices, either based on fixed adjustment
parameters or on the soil line concept (Qi et al., 1994; Bannari

et al., 1995), are considered to be particularly suitable for low
vegetation cover conditions. Therefore, several such indices, such
as the Weighted Difference Vegetation Index (WDVI) or the
Perpendicular Vegetation Index (PVI), were used for modeling
and classification in this approach. Further indices that where
designed to be robust against soil brightness variations and may
be advantageous in cold drylands are the Soil-Adjusted

FIGURE 5 | Overview of modeled vegetation classes for the year 2018 including NDSI as a snow variable (A), with details of the lower regions in the South-West
with Salix riparian communities (B) and the lakes in the East with adjacent Salt grass communities (C).
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Vegetation Index (SAVI, Huete 1988) and the Transformed SAVI
(TSAVI, Qi et al., 1994). We included two additional indices that
showed reasonable performance for detecting dry vegetation
matter in other environments: the Soil-Adjusted Corn Residue
Index (SACRI) and the Modified Soil-Adjusted Crop Residue
Index (MSACRI) (Li and Guo 2018; Ren et al., 2018). Finally, we
calculated Modified SAVI (MSAVI), as recent research showed
that this index may provide an improved vegetation signal
compared to traditional indices as it is more robust to soil
noise (Vanselow and Samimi 2014; Vanselow et al., 2018; Wu
et al., 2019).

Sentinel NDSI was calculated in analogy to the MODIS
products. As the majority of snowfall in the region occurs in
spring and respective season showed to be particularly important
for vegetation in existing research (Pohl et al., 2015; Zandler et al.,
2020), we averaged snow related metrics of Sentinel and MODIS
for the months of March, April and May. For MODIS, we
calculated anomalies as the deviation from the 2001–2020
mean. For Sentinel, we calculated the average NDSI for 2018
only, as almost no satellite images were available in 2016 during
the relevant period. Topography is important for the water
budget. Therefore, it influences the distribution of vegetation
communities in arid regions (Sternberg and Shoshany 2001;
Vanselow and Samimi 2014). Accordingly, we included the
variables elevation in meters, slope in degrees, cosine and sine
of aspect in radians (referred to as “northerness” and “eastness”
respectively, ranging e.g., from −1 for southern orientation to +1
for northern orientation) for the land cover classification using
the SRTM data.

2.5 Models and Statistical Analysis
The generated products were combined in different ways for
modeling approaches and anomaly calculations (Figure 4). For
remote sensing based vegetation mapping with many possible
predictor variables, a large number of potentially useful models
exist (Zandler et al., 2015b; Verrelst et al., 2019). In cold drylands,
existing studies showed good performance of LASSO for
vegetation quantification (Zandler et al., 2015b), whereas the
RF approach (Breiman 2001) was frequently and successfully
used for vegetation quantification (Vanselow and Samimi 2014;
Schumacher et al., 2016) and classification (Kraudzun et al., 2014;
Hu and Hu 2019; Zhang et al., 2019). To allow for good
comparability between modeling of vegetation quantities and
vegetation classes, as well as with other research approaches,
we selected the RF approach for multivariate models in this study

(Breiman 2001; James et al., 2013). We used the standard
definition of model parameters because other studies indicate
very limited impact of parameter tuning on model performance
(Diesing 2020). An evaluation of the performance and the
modeling errors needs to consider spatial dependence of
samples and independence of training and test data (Brenning
2012). Existing research showed that single splits into training
and test datasets have high variance and do not provide robust
accuracy assessments (Lyons et al., 2018). Furthermore, the
spatial structure that is characteristic for data of drylands and
other environments requires a spatial validation approach.
Therefore, we performed a spatial, 100-repeated 10-fold cross-
validation with k-means clustering (Ruß and Brenning 2010)
using the R-package sperrorest (Brenning 2012) for land cover
modeling and classification, as respective technique resulted in
robust accuracy metrics in existing research (Zandler et al., 2015b;
Lyons et al., 2018). To compare results to simple non-spatial
cross-validation, a methodology still frequently applied in
grassland studies, we also ran the models without the spatial
validation approach. Variable importance assessment was
performed using the Boruta algorithm as existing research
provides evidence that it is the most powerful method with
large sets of predictor variables (Degenhardt et al., 2019).
Thereby, we applied the Boruta R-package (Kursa and
Rudnicki 2010) with a p value of 0.05 and 500 importance
source runs and repeated the whole calculation 500 times to
account for stochastic variability due to the random forest
classifier (cf. Zandler et al., 2020). Finally, we derived the
importance scores averaged over all importance source runs
and repetitions. For vegetation cover modeling, we also tested
single predictor variable models to compare the snow variable
with the commonly used NDVI in regions with very low
vegetation cover (<20%). For this approach, we selected an
ordinary least squares approach with the same cross-validation
procedure.

For the temporal analysis of snow and NDVI anomalies, we
used Pearson’s correlation to compare the time series anomalies
as we expect linear relations between respective variables (Wang
et al., 2018; Chen et al., 2020). Thereby, MODIS NDSI anomalies
were calculated for spring and MODIS NDVI anomalies were
averaged over the peak of the vegetation period (July, August).
The latter period was used to maximize the vegetation signal (cf.
Zandler et al., 2020). Furthermore, we correlated respective
satellite based anomalies with field data measurements. All
temporal analysis and the vegetation cover model were
restricted to vegetated areas as given by the land cover
classification. To convert the high-resolution Sentinel-2
classification to the coarser MODIS dataset, we applied a
majority-resampling method, i.e. we assigned those classes to
the MODIS pixels that showed the maximum number of pixels in
the original classification. It is important to state that different
resampling approaches may lead to small variations in the results,
but we selected this method as other studies showed small
variations of about one percentage point across their tested
resolutions with this approach (Oyana et al., 2014). For
temporal anomalies, the land cover classes riparian grasslands,
Salix riparian communities and salt grass communities were

TABLE 2 |Overall performance of the land cover classification and comparison to
performance assessment without spatial cross-validation. Models without
snow variables are labeled with “no NDSI.” All p-values were very highly significant.

Overall Accuracy % Kappa p-value

2016 0.81 0.78 <0.001
2016–no NDSI 0.81 0.77 <0.001
2016–no SCV 0.91 0.89 <0.001
2018 0.80 0.76 <0.001
2018–no NDSI 0.80 0.76 <0.001
2018–no SCV 0.92 0.90 <0.001
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summarized to one class riparian areas due to their ecological
dependencies of azonal ground or surface water.

3 RESULTS

3.1 Land Cover Classification
The land cover classification showed well-defined vegetation
communities and partly zonal distributions of vegetation
classes (Figure 5).

The overall cross-validated accuracy of the models ranged
between 80% in 2018 and 81% in 2016 and was highly
significant (Table 2). There was no difference in performance
measures with our without snow variables. If spatial cross-
validation was ignored, accuracy measures were about ten
percentage points higher. Accuracy measures showed some
variations between classes. Dwarf-shrub deserts and steppes,
water, snow and dark rock and scree classes had highest
accuracies in both years with balanced values above 85%
(Table 3, Table 4). Riparian grasslands and alpine grasslands
resulted in relatively high performances with minimum
balanced accuracy of 69%. Salix riparian communities and salt
grass communities showed higher errors and minima of balanced
accuracies around 40%. Salix riparian communities were mainly
confused with riparian grasslands, and salt grass communities with

dwarf-shrub steppes and deserts. These classes performed much
better in 2018, whereas the bright rocks and scree class performed
worse in 2018. However, alpine meadows, riparian grasslands and
dwarf-shrub deserts performed better in 2016. In summary, yearly
differences were small with slightly better performance of the
vegetation classes in 2016.

Elevation,MSACRI, SACRI and slope were among the fivemost
important variables according to the repeated Boruta algorithm in
both years (Figure 6). No variable was considered as unimportant
in both years, but the variable “northerness” was relatively close to
the maximum of the randomly shuffled shadow variables. The
NDVI and the snow variable NDSI were also among the ten most
important variables, whereby the latter ranked higher in both years.
Sentinel-2 Band 12 and MSAVI also showed high importance
scores. All other predictors showed larger variability between
the years.

3.2 Foliar Vegetation Cover Model
Cross-validated R2 values of multivariate models ranged between
0.77 (2016) to 0.80 (2018) and showed RMSE values of 11.23
percentage points in 2018, compared to a standard deviation of
measured cover of 24.81%, and 12.85 percentage points in 2016,
compared to a standard deviation of measured cover of 27.03%
(Table 5). All multivariate models showed a small negative bias.
Performance differences betweenmodels with snow variables and

TABLE 3 | Confusion matrix of test data summed over all repetitions and folds for the 2016 model including snow variables.

Class 1 2 3 4 5 6 7 8 9 Row Totals Sensitivity Specificity Balanced
-Accuracy

1 5,657 403 91 10 923 0 0 116 0 7,200 79 68 73
2 1,281 495 23 0 1 0 0 0 0 1800 28 55 41
3 400 0 779 1,021 0 0 0 0 0 2,200 35 52 44
4 159 0 377 11,904 56 0 0 0 4 12,500 95 84 90
5 806 0 154 780 4,060 0 0 0 0 5,800 70 80 75
6 0 0 0 0 0 4,701 0 0 399 5,100 92 96 94
7 0 0 0 0 0 0 3,000 0 0 3,000 100 100 100
8 0 0 0 104 0 0 0 3,096 0 3,200 97 94 95
9 0 0 60 366 19 196 0 77 782 1,500 52 66 59
10 8,303 898 1,484 14,185 5,059 4,897 3,000 3,289 1,185 42,300

Reference classes are on rows, predicted classes in columns. Class numbers refer to 1) Riparian grasslands, 2) Salix riparian communities, 3) salt grass communities, 4) dwarf-shrub
deserts and steppes, 5) alpine grasslands, 6) water surfaces, 7) snow and ice, 8) dark rocks and scree, 9) bright rocks and scree.

TABLE 4 | Confusion matrix of test data summed over all repetitions and folds for the 2018 model including snow variables.

Class 1 2 3 4 5 6 7 8 9 Row Totals Sensitivity Specificity Balanced
-Accuracy

1 5,034 637 2 196 1,162 15 0 154 0 7,200 70 68 69
2 844 956 0 0 0 0 0 0 0 1800 53 60 57
3 273 0 1,273 652 0 0 0 0 2 2,200 58 93 75
4 89 0 98 12,197 116 0 0 0 0 12,500 98 84 91
5 1,161 0 2 895 3,742 0 0 0 0 5,800 65 73 69
6 0 0 0 0 0 4,613 37 58 392 5,100 90 90 90
7 0 0 0 0 0 0 2,962 0 38 3,000 99 99 99
8 0 0 0 45 107 223 0 2,623 202 3,200 82 87 85
9 0 0 0 473 5 294 0 166 562 1,500 37 47 42
10 7,401 1,593 1,375 14,458 5,132 5,145 2,999 3,001 1,196 42,300

Reference classes are on rows, predicted classes in columns. Class numbers refer to 1) Riparian grasslands, 2) Salix riparian communities, 3) salt grass communities, 4) dwarf-shrub
deserts and steppes, 5) alpine grasslands, 6) water surfaces, 7) snow and ice, 8) dark rocks and scree, 9) bright rocks and scree.
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models without snow variables were minimal for multivariate
models. If spatial cross-validation was not performed,
performance measures increased by about 0.1 in R2 and three

cover percentage points in RMSE due to positive spatial
evaluation bias. Models with only one predictor and limited to
low vegetation cover regions (<20%) showed better performance

FIGURE 6 | Variable importance for the land cover classification derived from a 500-repeated Boruta algorithm in 2016 (A) and 2018 (B).

TABLE 5 | Performance measures of the foliar vegetation cover models with data from the years 2016 and 2018 and comparison to performance assessment without spatial
cross-validation (labeled “No SCV”). Standard models are models without snow variables in contrast to models that include NDSI as a predictor.

R2 RMSE RMSE-rel MAE MAE-rel BIAS BIAS-rel SD field

Standard Model 2018 0.79 11.28 46.6 7.43 30.72 −0.58 −2.4 24.81
NDSI Model 2018 0.8 11.23 46.42 7.35 30.38 −0.55 −2.29 24.81
Standard Model 2018 - no SCV 0.88 8.63 35.67 5.06 20.9 0.28 1.16 24.81
NDSI Model 2018 - no SCV 0.88 8.59 35.51 4.98 20.57 0.31 1.29 24.81
NDVI Single-Model 2018 −0.08 4.43 59.23 3.52 47.07 0.15 2.04 4.25
NDSI Single-Model 2018 0.23 3.74 50.01 2.92 39.08 −0.24 −3.18 4.25
Standard Model 2016 0.77 12.85 44.06 9.22 31.63 −0.2 −0.68 27.03
NDSI Model 2016 0.78 12.78 43.82 9.23 31.66 −0.4 −1.37 27.03
Standard Model 2016 - no SCV 0.87 9.71 33.31 6.17 21.15 0.19 0.66 27.03
NDSI Model 2016 - no SCV 0.87 9.73 33.37 6.18 21.19 0.18 0.63 27.03
NDVI Single-Model 2016 0.14 3.56 36.31 2.82 28.76 0.01 0.09 3.83
NDSI Single-Model 2016 0.39 2.99 30.52 2.34 23.87 −0.18 −1.79 3.83

Models for regions with low cover values and a single predictor are labeled as “Single-Model”.
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of NDSI compared to NDVI by about 0.3 in R2 and 0.6 in RMSE.
Furthermore, single NDVI models did not result in suitable
models if compared to the field-measured standard deviation.
Maps of modeled foliar vegetation cover showed larger values
near rivers or lakes and in higher elevations (Figure 7).

MSACRI was the most important variable in both years
according to the 500-repeated variable importance assessment
(Figure 8). Generally, almost all variables were considered
important for the cover model, with the exception of NDRE 2
in 2016, which did not result in higher importance scores than
randomly shuffled shadow variables. Importance of other

variables was comparable between the years with some
differences. Generally, Band 2, 4 and 12, TSAVI, NDVI, MTCI
and MSAVI were among the ten most important predictors in
both years. Other variables showed higher differences between
the years.

3.3 Snow and Vegetation Anomalies
MODIS based snow and NDVI anomalies 2001–2020 showed
largely similar variations over time (Figure 9). Median values of
field-measured foliar vegetation cover anomalies had a
comparable pattern to NDSI variations. MODIS based

FIGURE 7 | Overview of modeled foliar vegetation cover for the year 2018 (A), with details of parts of the Big Pamir wildlife reserve in the West (B) and the
Teggermansu wildlife reserve in the East of the research area (C).
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correlations were positive and highly significant with overall
Pearson’s r of 0.68 (Table 6). Separate analysis of different
vegetation communities showed that riparian areas and dwarf-
shrub steppes had similar overall correlations, but alpine
grasslands had much higher correlation values. The correlation
of MODIS spring NDSI and field measured foliar vegetation
cover anomalies was relatively high in alpine grasslands (r of
0.74), but showed much lower correlations in dwarf-shrub
steppes and no significant correlation in riparian areas.

4 DISCUSSION

4.1 Performance of Models
To our knowledge, this research study is the first that
systematically evaluates remote sensing variables for both
vegetation classification and vegetation quantification in Asia’s
cold drylands and during different years. The general
performance of the models was good for the 2 years with

similar or better accuracies if compared to other dryland
studies (Vanselow and Samimi 2014; Wang et al., 2019; Zhang
et al., 2019). However, direct quantitative comparisons between
studies from different regions and with different research designs
are generally problematic (Zandler et al., 2015b).

Regarding the vegetation classification, a notable difference in
accuracies between different classes was visible. It showed highest
errors in some ground water influenced classes such as Salix
riparian communities, which were confused with riparian
meadows, and salt grass communities, which were often
classified as dwarf shrub steppes. This may be mainly caused
by the fact that respective classes frequently form a small-scale
mosaic with various transitions depending on the water table and
micro relief (Mętrak et al., 2017), which makes accurate
classification difficult due to the spatial resolution and spectral
ambiguousness (Smith et al., 2019). Similarly, related spectral
signals of alpine grasslands and riparian grasslands due to
conformity of a number of plant genera most likely increased
errors in respective classes. Nevertheless, the predominant

FIGURE 8 | Variable importance for the foliar vegetation model derived from a 500-repeated Boruta algorithm in 2016 (A) and 2018 (B).
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vegetation communities showed good performance measures
with very high accuracies of dwarf-shrub steppes compared to
existing research (Vanselow and Samimi 2014; Hu and Hu 2019).
Future approaches may further benefit from combining
respective non-deep learning techniques with neural network
based approaches and high-resolution imagery (Li et al., 2020;
Thorp and Drajat 2021).

The temporal evaluation showed that yearly performance
differences were small in total, but some classes, such as Salix
riparian communities, salt grass communities and bright rocks
and scree showed stronger variations in performance between the
years. This may be explained by different weather patterns,
whereby 2016 was relatively wet and 2018 a much drier year
in comparison (Figure 9). High water availability in 2016, also
due to meltwater, may have led to increased plant vigor and
greenness in shallower rooted riparian grasslands, which
increased spectral similarity to the deep rooted Salix riparian
communities, characterized by dense vegetation and very high
greenness. In the case of salt grass communities, which were
increasingly confused with dwarf shrub deserts and steppes in

2016, the higher water availability may have disproportionally
enhanced greenness in the steppe communities due to higher forb
cover, also increasing spectral similarity. However, the greener
conditions in dwarf shrub steppes in 2016 may have contributed
to the separation to bright rocks, which was worse in 2018.
Finally, drier conditions may have led to more confusion
between the rock classes in 2018, as soil moisture increases the
effectiveness of the infrared reflectance region and has various
impacts on vegetation indices (Tucker and Miller 1977; Todd and
Hoffer 1998).

Our comparison of the spatial cross-validation approach with
ordinary, non-spatial cross-validation underlined the need to
consider spatial auto-correlation in evaluation approaches with
clustered data in general, but especially in Asia’s cold grasslands.
Our analysis shows that ignoring spatial effects in the evaluation
may lead to positive evaluation bias of around 0.1 in R2 and an
underestimation of 25% in RMSE and over 30% in MAE.
Respective results are supported by remote sensing studies of
other regions (Mayr et al., 2018; Meyer et al., 2019; Fauvel et al.,
2020). This reinforces that remote sensing studies without spatial
validation approaches have to be treated with caution in case of
clustered field data.

4.2 Importance of Predictor Variables
Importance assessment showed a noticeable emphasis on indices
including background information as the most relevant
predictors but covered different wavelengths. In all years and
models, MSACRI was among the most important variables. The
reasons for the relevance of this predictor may be a result of the
incorporated soil correction (Fern et al., 2018) and the coverage of
non-photosynthetic vegetation signals with the index (Ren et al.,
2018). Influence of soil is considered as a main obstacle in remote
sensing of drylands and specific methods are necessary to account
for the background influence on the spectrum (Eisfelder et al.,
2012; Smith et al., 2019). Although living vegetation was the

FIGURE 9 | Standardized anomaly time series of MODIS NDVI during the peak of the vegetation period (July, August) and MODIS NDSI in spring (March-May)
compared to field-measured foliar vegetation cover in July and August.

TABLE 6 | Results of Pearson correlation analysis of MODIS time series raster
anomalies 2001-2020 averaged over the whole area (MODIS) and correlation
between MODIS NDSI anomalies and field-measured foliar vegetation anomalies
for the years 2006,2007,2016 and 2018 (measured cover). Asterisks indicate
significant correlations.

r p-value

MODIS NDVI - vegetated areas 0.68 0.001**
MODIS NDVI - riparian areas 0.62 0.004**
MODIS NDVI - dwarf-shrub steppes 0.65 0.002**
MODIS NDVI - alpine grasslands 0.72 <0.001***
Measured cover - all plots 0.30 <0.001***
Measured cover - riparian areas 0.28 0.088
Measured cover - dwarf-shrub steppes 0.36 <0.001***
Measured cover - alpine grasslands 0.74 <0.001***
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dependent variable, the coverage of senescent vegetation, litter
and woody vegetation parts, which are captured by MSACRI (via
the inclusion of SWIR spectral bands), contributed to the total
vegetation signal and was highly important for vegetation
modeling in this environment (Zandler et al., 2015a; Ren
et al., 2018). Other predictors that showed high importance in
all assessments were the MSAVI, Band 12 and the NDVI. The
SWIR Band 12 further supports the relevance of covering
vegetation signals of lignin or cellulose. The prominence of the
SWIR for vegetation analysis in drylands, and the better ability to
capture vegetation cover differences compared to traditional
indices is also supported by research on drylands from other
continents (Poitras et al., 2018). Therefore, our results propose
that including SWIR bands and indices in remote sensing based
research studies is of high relevance to Asia’s grasslands. The
importance of MSAVI is additional evidence that the
incorporation of soil-adjusted indices greatly improves
vegetation models (Svinurai et al., 2018). However, also the
commonly used index NDVI was highly important in all
approaches. Both MSAVI and NDVI include red and infrared
bands, which shows that this spectral region is continuously
essential for remote sensing-based vegetation analysis in cold
grasslands. These results also raise expectations of new index
adjustment methods for dryland research such as soil adapted
indices that combine near infrared and SWIR bands (Chen X.
et al., 2019).

Although medium-resolution studies analyzed vegetation-
snow relationships in the past (Wang et al., 2013, 2018), this
is the first study that tests higher-resolution snow variables for
vegetation modeling and classification in cold grasslands. It is
noteworthy that although snow variables were considered as
important for vegetation models and were frequently found in
the top ten regarding median importance scores, their removal
did not lead to lower performance of the multivariate models.
Therefore, other indices or bands may substitute respective snow
information for spatial modeling of vegetation. However, the
importance assessment shows the high relevance of snow
variables for vegetation communities and vegetation cover in
cold drylands, and provides evidence that temporal anomalies of
higher-resolution snow variables may serve as important climate
proxies in the future. The relatively low temporal resolution of
Sentinel-2 imagery prior to the year 2018, which was greatly
improved with the launch of the Sentinel-2B satellite in 2017
(ESA 2020a), prevented temporal analysis of this variable in this
study. Linear, single variable models had a very low performance
in general, but showed that in regions with very low cover values
(<20% cover), NDSI was a better proxy of vegetation cover than
the NDVI. This may be explained by strong soil background
reflectance, resulting in a greater impact on NDVI variability than
the marginal vegetation signal of scarce vegetation (Smith et al.,
2019). This shows the importance of snow cover algorithms for
products with high spatial and temporal resolutions (Piazzi et al.,
2019). However, it is important to consider that snow variables
are not directly related to vegetation properties and hence, their
application for vegetation modeling is generally limited.

Most red-edge based indices were situated at the lower end of
the median importance range in this study. This is in contrast to

existing research approaches that reported good performance of
this spectral region in grassland modeling (Sibanda et al., 2017; Lin
et al., 2019; Filho et al., 2020), although some studies only stated
insignificant contribution of red-edge bands (Cai et al., 2020).
However, the MTCI, which uses the two lower wavelength red-
edge bands, was among the ten best variables in almost all models.
Therefore, the selection of the appropriate red-edge bands may be
crucial in modeling vegetation of different grasslands. The lower
resolution of the red-edge bands (20 m) compared to infrared and
red bands (10 m) may also be a reason for the lower importance of
red-edge indices in this region with high spatial heterogeneity and
small-scale vegetation patterns (cf. Zarco-Tejada et al., 2018).

4.3 Temporal Correlation of Vegetation and
Snow Anomalies
Existing research showed a positive relationship between
vegetation and snow cover derived from MODIS in cold
drylands of other regions (Wang et al., 2013, Wang et al.,
2018), which is in agreement with this study. Regarding
different land cover classes, our results also confirm that the
strongest coupling of snow to vegetation occurs in alpine
grasslands. In contrast to existing research, which reported no
correlation between snow variables and vegetation proxies in
shrub steppes (Wang et al., 2018), the satellite based analysis
showed a strong positive correlation in our research area.

In addition to satellite based NDVI data, we also analyzed the
correlation of snow variables with field-measured vegetation
anomalies, a subject hitherto rarely studied. Respective results
confirmed the satellite based analysis, providing valuable field
evidence for the applicability of snow variables in assessing
vegetation dynamics. The main reason for stronger coupling of
snow and vegetation in alpine grasslands may be found in the
species composition, with larger shares of grasses that show faster
reaction times to water variability in the upper soil layer than
woody vegetation with deeper rooting plants (Li et al., 2013).
Furthermore, snow cover may also have a positive effect on plants
due to an insulation effect during the cold season in higher altitudes
(Wang et al., 2013, Wang et al., 2018) and some studies also stated
increased climate sensitivity of vegetation in higher elevations (Li
et al., 2019). Dwarf-shrub steppes also showed correlations with
snow but the strength of the correlation was lower. A main reason
for this is the longer response times of woody vegetation to weather
variability and the relative drought tolerance of dwarf-shrubs (Zhu
et al., 2019). Finally, field based anomalies in riparian areas showed
no correlation with NDSI variations and the lowest correlations for
the NDVI time series. This may be caused by lower direct coupling
to atmospheric water amounts and higher influence of ground
water, glacial melt water variations or other hydrological impacts in
other parts of the watershed (cf. Zandler et al., 2020).

Our results thereby show that although snow variables are not
applicable to model vegetation communities that are influenced by
surface or ground water, they serve as important indirect climate
proxies for vegetation monitoring. The main advantage of this
variable compared to other climate elements is that snow is
detectable using high-resolution remote sensing methods. This
may provide a new spatial level of vegetation monitoring in
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Asia’s cold drylands with Sentinel-2 or even higher resolution data
such as PlanetScope or SkySat. The presented snow-vegetation
relationship may also be of high relevance for grassland
management and premature determination of livestock stocking
rates based on spring snow conditions.

4.4 Remote Sensing and Mitigation of
Infrastructure Encroachment and Land-Use
Impacts in Cold Drylands
Remote sensing is one of the main tools available for mapping and
monitoring vegetation, land cover and associated patterns of
biodiversity across large landscape scales (Wang and Gamon
2019). Data derived from the present study support that remote
sensing could provide accurate qualitative and quantitative
information on the land cover of cold drylands. In Asia, these
ecosystems are currently exposed to an unprecedented level of
human-induced vegetation change and various disturbances
resulting from the Belt and Road Initiative (BRI), potentially the
largest infrastructure development once in a lifetime (Ascensão
et al., 2018; Lechner et al., 2018). The expansion of land
transportation infrastructure from China to Europe across the
cold drylands of Central Asia and the induced land disturbance,
including rawmaterial extraction and the associated fragmentation
of surrounding landscapes, will degrade ecosystem services in one
of the main “water towers” of Asia. These impacts will potentially
push some fragilized ecosystems to abrupt changes in quality and
functionality (Leadley et al., 2014), resulting in unknown
consequences for the populations in the watershed. Stakeholders
must therefore carefully consider trade-offs between economic
gains and ecosystem loss and plan effects mitigation or
alternative solutions that minimize impacts (Hughes 2019).

The first step to reduce impacts associated with transportation
infrastructure development is to determine where they are likely to
occur, and to which extent they may affect the functionality of the
landscape. Remote sensing tools assessed in the present paper offer
the capability and spatial accuracy necessary to meaningfully
model impact on cold drylands and associated biodiversity, and
support the development of mitigation strategies. These remote
sensing tools are also available to help BRI developers integrate the
cumulative effects of climate change and ecological interactions
(e.g., livestock grazing) into the needed risk assessment matrix.
They help strengthen and lend credibility to the use of best
practices such as strategic environmental and social assessments
(Ascensão et al., 2018), and science-based pre-assessment of land
cover and biodiversity impacts, even before investments are made
for environmental impact assessment studies. Furthermore,
respective tools may contribute to disentangle effects of climate
change and human induced activities which had severe impacts on
cold drylands in the past decades (Wu et al., 2014; Mirzabaev et al.,
2016; Chen T. et al., 2019).

The comparison of remote sensing based environmental
variables to usage intensity indicators such as livestock grazing
density may provide important insights and support development
of sustainable and biodiversity-inclusive grazing schemes. Satellite
based models can also help characterize pasture quality, livestock
and wildlife carrying capacity, seasonal forage distributions,

optimal timing for grazing and serve as valuable foundation for
decision makers in respective environments (Egeru et al., 2015).

5 CONCLUSION

This study showed that in addition to variables covering the near
infrared wavelengths, soil adjustment methods and the SWIR
spectral regions are particularly important for land cover
classification and vegetation quantification in cold grassland
environments. High-resolution snow variables were considered
important in all models, which illustrates the relevance of snow
for vegetation of respective ecosystems. The comparison of spatial
cross-validation compared to ordinary cross-validation provided
further evidence for the necessity of validation approaches that
consider spatial patterns in respective ecosystems with clustered
data. Temporarily, snow anomalies were highly and positively
correlated to NDVI and field measured vegetation anomalies.
Respective insights contribute to the understanding of grasslands
by highlighting important variables and remotely sensed climate
proxies. The relevance of snow variables also indicates that future
research may greatly benefit from longer time series of high
spatiotemporal-resolution satellite data in understanding grassland
dynamics in Asia’s cold drylands. The results of presented research
supports that remote-sensing models can accurately predict the
qualitative and quantitative features of vegetation in cold drylands.
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