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Abstract

In Part I of this thesis we study the Vlasov-QUMOND system. This non-linear system
of PDEs describes the time evolution of globular clusters in the context of the MOND
theory. This theory proposes a modification of Newton’s law of gravity that could
be a solution for the missing mass problem in astrophysics. We use the QUMOND
formulation of the MOND theory and develope a robust, mathematical fundament
for this theory. We examine weak solutions of the initial value problem of the Vlasov-
QUMOND system, prove conservation of energy for these solutions and prove the
stability of a large class of stationary solutions.

Part II is devoted to the study of spiral galaxies. We develope a new technique
to construct models for spiral galaxies with realistic and self-consistent dynamics.
Using this technique we construct a flat, axisymmetric model for the Milky Way. We
analyse the stability of this model numerically and describe two instabilities that can
be active in our model. The first instability shows up as an exponential growth of
the forces in tangential direction and is responsible for the formation of large scale
spiral structures, which are very similar to the spiral structure of the real galaxy. The
second instability is the Jeans instability, which has a disruptive nature. We discuss
the implications these two instabilities have for the real galaxy and for the missing
mass problem in astrophysics.

Zusammenfassung

In Teil I dieser Arbeit studieren wir das Vlasov-QUMOND-System. Dieses nicht-
lineare System von PDEs beschreibt die zeitlich Entwicklung von Kugelsternhaufen
im Kontext der MOND-Theorie. Diese Theorie schlägt eine Modifizierung von New-
tons Gravitationsgesetz vor, die eine mögliche Lösung für das Problem der fehlenden
Massen in der Astrophysik ist. Wir benutzen die QUMOND Formulierung der MOND
Theorie und entwickeln ein solides, mathematisches Fundament für diese Theorie. Wir
studieren schwache Lösung des Anfangswertproblems des Vlasov-QUMOND-Systems,
beweisen Energieerhaltung für diese Lösungen und beweisen die Stabilität einer großen
Klasse von stationären Lösungen.

Teil II widmet sich dem Studium von Spiralgalaxien. Wir entwicklen eine neue
Technik um Modelle für Spiralgalaxien zu konstruieren, in denen die Dynamiken
sowohl realistisch als auch selbst-konsistent sind. Wir benutzen diese Technik und
konstruieren ein flaches, axialsymmetrisches Modell für die Milchstraße. Wir analy-
sieren die Stabilität diese Modells numerisch und beschreiben zwei Instabilitäten, die
in unserem Modell aktiv sein können. Die erste Instabilität zeigt sich als ein ex-
ponentielles Wachstum der Kräfte in tangentialer Richtung und ist verantwortlich
für die Bildung großflächiger Spiralstrukturen, die den Spiralstrukturen der realen
Galaxie sehr ähnlich sind. Die zweite Instabilität ist die Jeans Instabilität, die eine
zerstörerische Natur hat. Wir diskutieren die Implikationen, die diese beiden In-
stabilitäten für die reale Galaxie und für das Problem der fehlenden Massen in der
Astrophysik haben.
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Figure 1: This panoramic image shows the entire night sky around the sun like we could see it, if we turned off all electric lighting for a moment. Prominent from left to right stretches the band
of the Milky Way - the disc like, spiral galaxy we are living in. Due to our position inside the disc the Milky Way appears in this image as a horizontal line. The disc is made up of stars and gas.
In the centre we see the luminous bulge that dominates the Milky Way’s central parts. Left below the Milky Way’s band we find the Andromeda galaxy (Figure 2) and right above the globular
cluster Omega Centauri (Figure 3). Both are marked with a yellow square. Credit: ESO/S. Brunier

https://www.eso.org/public/unitedkingdom/images/eso0932a/?lang


Figure 2: The Andromeda galaxy is our nearest large neighbour. Like the Milky
Way it is a disc like, spiral galaxy. Its structure is similar to the Milky Way’s.
Credit: 2002 R. Gendler, Photo by R. Gendler

Figure 3: Omage Centauri is a globular cluster. It is an almost spherically
symmetric, dense huddle of several Million stars that are bound together by their
own gravity. There are about 150 globular clusters that belong to the Milky Way.
Credit: ESO

https://esahubble.org/images/heic0512d/
https://www.eso.org/public/images/eso0844a/


1 Introduction

1.1 Globular clusters

Right above the Milky Way’s band in Figure 1 we find the globular Omega Centauri (Figure 3). There
are about 150 globular clusters that belong to the Milky Way. Globular clusters are almost spherically
symmetric, dense huddles of stars. Therefore their pictorial German name is “Kugelsternhaufen”. In
Part I of this thesis we study the Vlasov-QUMOND system. This a non-linear system of PDEs that
describes the dynamical evolution of globular clusters in the context of the MOND-Theory. This theory
was proposed by Milgrom in 1983. The acronym MOND stands for MOdified Newtonian Dynamics. Our
motivation is a mathematical one: We examine solutions to the initial value problem, conservation of
energy and stability of stationary solutions.

There are two main mathematical problems that one has to deal with in the Vlasov-QUMOND
system. First a square root enters the first derivative of the gravitational potential. Therefore the second
derivatives of this potential are not well behaved and do not provide a good control for time dependent
solutions. Second the potential energy in MOND is not finite. One can only study energy differences. It is
difficult to control these differences efficiently, but this is necessary when we prove stability of stationary
solutions.

In Part I of this thesis we prove that spherically symmetric, weak solutions to the initial value
problem have a Lagrangian structure, despite the difficulties with the second derivates of the gravitational
potential. We prove conservation of energy for Lagrangian solutions and we prove that a large class of
stationary solutions is stable against spherically symmetric perturbations.

1.2 Spiral Galaxies

The band of the Milky Way stretches prominent from left to right in Figure 1. The Milky Way is the
disc-like, spiral galaxy in which we are living. Due to our position inside the disc, the Milky Way appears
as a horizontal line in Figure 1. Countless stars and nebulae make the Milky Way glow. Left below the
Milky Way’s band we see the Andromeda galaxy (Figure 2). Like the Milky Way it is a disc like, spiral
galaxy and its structure is similar to the Milky Way’s. Part II of this thesis is devoted to the study of
spiral galaxies. Our motivation is both a mathematical and a physical one: How can we construct good
dynamical models for spiral galaxies and which implications does the structure and stability of these
models have for real galaxies.

Constructing a good, dynamical model for a spiral galaxy is a challenging, mathematical task. We
want to achieve three points: First, like in the real galaxy all mass should be on almost circular orbits.
Second, we want that the dynamics in our model are self-consistent. There the ‘almost’ makes things
difficult; how to implement it in a self-consistent model? Third, we search for a reasonable stable model.
Therefore we cannot ignore the ‘almost’ because without it the model becomes severely unstable.

In Part II of this thesis we develop an algorithm that allows us to construct a galaxy model that
succeeds in all three aspects. We use this technique to construct a model for the Milky Way. We analyse
this model and address two interesting questions from astrophysics that are still unresolved: How do the
spiral arms in spiral galaxies form and why is the velocity dispersion in all spiral galaxies higher than
one would expect from thermal considerations?

1.3 The missing mass problem

The underlying motivation for both parts of this thesis is the missing mass problem in astrophysics: It
became apparent that astrophysics faced (and still faces) a problem when Rubin et al. (1980) and Bosma
(1981) managed for the first time to measure the distribution and dynamics of atomic hydrogen (HI) in
the outer parts of spiral galaxies. In spiral galaxies most mass is moving on almost circular orbits around
the galactic centre. Originally they expected that at large radii r the circular velocity curve vc(r), i.e.,
the velocity with which the mass is rotating around the galactic centre, would show a Keplerian falloff
vc(r) ∝ r−1/2. But what they observed were almost flat circular velocity curves vc(r) ≈ constant. We
describe this conflict and three possible solutions to it at the example of the Milky Way:

Based on observational data Binney & Tremaine (2008) constructed a model for the Milky Way
consisting of a bulge, a stellar disc1 and a gaseous disc. In Figure 5 we calculate the circular velocity
curve for this model and compared it to the Milky Way’s observed circular velocity curve (Eilers et al.,

1Binney & Tremaine (2008) included two stellar discs in their model. But these discs have similar properties and we
consider only one disc with averaged parameters.
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Figure 4: The circular velocity curve of the Milky Way measured by Eilers et al. (2019) (thick dots). We compare
this curve with the predicted circular velocity curve that belongs to the stars and gases in Model I in Binney &
Tremaine (2008) (dashed line). There is a large gap between the prediction from the model and the observation.
This is a typical example for the missing mass problem.

2019). There is a large discrepancy between the predicted circular velocity curve from the model and the
observed curve. Hence there is too few mass observed to explain the Milky Way’s circular velocity curve
using Newton’s law of gravity. This is a typical example for the missing mass problem.

To resolve this problem Binney & Tremaine assume that the Milky Way is embedded in a large, almost
spherically symmetric halo of non-baryonic, dark matter. This assumption is made by most astrophysicists
nowadays. With the aid of this halo their model describes the Milky Way’s circular velocity curve much
better (Figure 5). There is still a gap between the observation and the prediction from the model, but
this should not surprise because the available observational data concerning the Milky Way’s circular
velocity curve has largely improved within the last couple of years. Binney & Tremaine worked with
older, less accurate data.

By assuming that there exists non-baryonic, dark matter many problematic observations in astro-
physics can be explained very well and so most astrophysicists are content with this assumption. But
recent measurements of the Hubble constant are in strong conflict with predictions from the standard
model of cosmology, the ΛCDM model, where dark matter plays an important role. Nobel laureate Adam
Riess comments on this new conflict: “We just need to follow the evidence. If our theories are incorrect,
than so be it. It may be the case that the universe is more clever than we are now. And a better idea
will come along later.” (Deutscher Rundfunk, 2021). It is thus reasonable to look also for alternatives
to the dark matter hypothesis that can provide solutions to the missing mass problem – and the present
thesis will focus on these alternatives.

Another possible explanation for the missing mass problem was proposed by Milgrom (1983) and is
called MOdified Newtonian Dynamics, in short MOND. Milgrom postulates that for small forces Newton’s
law of gravity must be modified. If a force is small, than according to his theory the real force would
actually be proportional to the square root of the Newtonian force. This theory very effectively explains
the circular velocity curves of many spiral galaxies (Gentile et al., 2011). Also if we simply take the
baryonic model for the Milky Way from above and modify the circular velocity curve according to the
MOND theory, observation and prediction match together reasonable well without any further adjustment
(Figure 5).

A third possible way to explain the circular velocity curves of spiral galaxies was first noticed by
Bosma (1981) and elaborated, e.g., in more detail by Hessman & Ziebart (2011). Bosma noticed that by
scaling the densities of the stars and the gas he could explain his observed circular velocity curves. This
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Figure 5: The thick dots mark again the Milky Way’s circular velocity curve measured by Eilers et al. (2019).
Further the circular velocity curves of three possible solutions to the missing mass problem in the Milky Way are
presented. First: Model I in Binney & Tremaine (2008) uses non-baryonic, dark matter (dashed curve). Second:
We corrected the predicted circular velocity curve from Figure 4 using MOND (dotted line). Third: We made
use of the Bosma effect and scaled the baryonic components of Model II in Binney & Tremaine (2008) by factors
between three and five (dashed dotted line); compare Sections 9.1 and 9.2.

phenomenon is called the Bosma effect. Making use of the Bosma effect Hessman & Ziebart managed to
explain the circular velocity curves of many spiral galaxies very well. They interpret their scaled densities
as proxies for baryonic mass components that reside in the disc but that have not been found yet. In Part
II we construct a dynamical model for the Milky Way that explains the Milky Way’s circular velocity
curve by using the Bosma effect. The corresponding circular velocity curve is also shown in Figure 5.
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Part I: The Vlasov-QUMOND System (VQMS)

“Since [globular clusters] are some of the simplest-looking structures in the Universe, [they] also provide
a useful test-bed for theories of stellar dynamics: if we cannot explain the properties of these objects,
what hope do we have of understanding any of the more complex structures in the Cosmos?” (Binney &
Merrifield, 1998, §6.1).

In Part I of this thesis we undertake a rigorous, mathematical study of the equations that govern the
evolution of globular clusters in the context of the MOND-theory.

2 Introduction Part I

Omega Centauri (Figure 3) is the most luminous of the Milky Way’s about 150 globular clusters (Binney
& Merrifield, 1998, §6.1). A typical globular cluster is approximately spherically symmetric, contains
about 104 to 106 stars but no gas, dust or young stars. The stars in a globular cluster interact only
gravitationally (Binney & Tremaine, 2008, §1.1.4). Since it is not practical to follow the trajectory of
each single star, we describe a globular cluster by a distribution function f = f(t, x, v) that evolves on
position-velocity space; t ≥ 0 is the time, x ∈ R3 is the position and v ∈ R3 is the velocity. The density
ρf (t, x) on position space that corresponds to f is given by integrating f over the velocities

ρf (t, x) =

∫
f(t, x, v) dv. (2.1)

The Newtonian gravitational potential UNf (t, x) that is created by ρf is given by

UNf (t, x) = −G
∫
ρf (t, y)

|x− y|
dy (2.2)

provided the convolution integral exists2. We want to study the evolution of a globular cluster not in
Newtonian but in Mondian physics. Thus we have to transform the Newtonian potential into a Mondian
one. In Mondian physics we want to replace ∂xU

N
f by

∂xU
N
f + λ(|∂xUNf |)∂xUNf

where λ(τ) ≈
√

(a0/τ) describes the deviation of Mondian physics from Newtonian3. However, the mere
replacement of ∂xU

N
f with the above formula causes several problems like non-conservation of momentum

(Famaey & McGaugh, 2012, §6). To avoid these problems we make use of the QUMOND theory4, which
was first proposed by Milgrom (2010), and set

∂xU
M
f is the irrotational part of ∂xU

N
f + λ(|∂xUNf |)∂xUNf . (2.3)

How the irrotational part of the vector field is extracted and why ∂xU
M
f is indeed the gradient of some

potential will be studied in Section 3.2 below. Consider now a test particle that is moving in the field
∂xU

M
f . Its orbit (x(t), v(t)) is a solution of the ODE

ẋ(t) = v(t),

v̇(t) = −∂xUMf (t, x(t)).

Using the notation z = (x, v), b(t, z) = (v,−∂xUMf (t, x)) this ODE can be written as

ż(t) = b(t, z(t)).

Since divz b = 0, the characteristic flow

Z = Z(t, s, z), t, s ≥ 0, z ∈ R6,

2In Part I of this thesis we set the gravitational constant G to unity since it does not affect our analysis.
3a0 ≈ 1.2× 10−10 m s−2 is the critical acceleration below that MOND effects dominate physics. As with the gravitational

constant the concrete value of a0 does not affect our analysis and we set a0 = 1.
4QUMOND = QUasi linear formulation of MOND. The name originates from the fact that for calculating ∂xUMf we

have to perform two linear and one non-linear, algebraic step. First we calculate UNf from ρf (first linear step). Then we

calculate the field ∂xUNf + λ(|∂xUNf |)∂xU
N
f (the non-linear, algebraic step). Last we extract from this field its irrotational

part (second linear step)
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that belongs to this ODE preserves measure (DiPerna & Lions, 1989b). The distribution function f
evolves along the characteristics. Since the total mass

∫
f(t) dz, t ≥ 0, must be constant, f must be

constant along every characteristic. This guarantees that the mass∫
f(t, z) dz =

∫
f(t, Z(t, 0, z)) dz =

∫
f(0, z) dz

is constant; the first equality uses that Z preserves measure, the second one that f is constant along
characteristics. That f is constant along every characteristic Z(t, 0, z) = Z(t) = (X(t), V (t)) means

d

dt
f(t,X(t), V (t)) = 0.

Thus f must solve the Vlasov equation

∂f + v · ∂xf − ∂xUMf · ∂vf = 0. (2.4)

We call f a solution of the Vlasov-QUMOND system (VQMS) if it solves (2.1) - (2.4). In Part I of this
thesis we study weak solutions of the (VQMS) and we will introduce the precise notion of weak solution
in Section 4.1. Note that the (VQMS) is a non-linear system of PDEs: We can write equation (2.2) also
in the equivalent form

∆UNf = 4πGρf , lim
|x|→∞

UNf (x) = 0

(see Lemma 3.1.3 below) and equation 2.3 can alternatively be written as

∆UMf = ∆UN + div
(
λ(|∇UNf |)∇UNf

)
plus suitable boundary conditions (compare Lemma 3.2.3 below). The system is non-linear since the
term ∂xU

N
f · ∂vf appearing in the Vlasov equation (2.4) is quadratic in f .

Keller (2016) proved the existence of spherically symmetric, global, weak solution of the initial value
problem of the (VQMS). In Section 4 we prove conservation of energy for such solutions and study in
detail the link between Eulerian and Lagrangian solutions.

Rein (2015) proved the existence of a large class of spherically symmetric, stationary solutions of the
(VQMS). In Section 5 we prove for a somewhat smaller class of such stationary solutions that they are
stable against spherically symmetric perturbations.

Spherically symmetric, stationary solutions of the (VQMS) are good models for globular clusters
(Binney & Tremaine, 2008, §4.3). For example in the vivid discussion, whether the globular cluster NGC
2419 contradicts MOND or not, models are used that are of the type we consider here in this thesis (Ibata
et al., 2011; Sanders, 2012).

3 Preliminaries

3.1 Newtonian potentials

In this thesis the Newtonian potential will play an important role in two different ways. On the one
hand when we have a certain mass distribution with density ρ then UNρ is the Newtonian gravitational
potential that belongs to the density ρ. On the other hand in the QUMOND theory we must know how
to decompose a vector field v in its irrotational and its solenoidal part. Here the Newtonian potentials
of the three components vi of the vector field play an important role. This we treat in Section 3.2 below.

For ε > 0, i, j = 1, 2, 3 and a measurable function g : R3 → R we define

T εijg(x) := −
∫
|x−y|>ε

[
3

(xi − yi)(xj − yj)
|x− y|5

− δij
|x− y|3

]
g(y) dy, x ∈ R3,

provided that the convolution integral on the right hand side exists. Since

∂xi∂xj
1

|x|
= 3

xixj
|x|5

− δij
|x|3

,

the limit of T εijg for ε→ 0 plays an important in understanding the second derivatives of the Newtonian

potential UNg . In the following two propositions we study this limit.
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Proposition 3.1.1. For every ε > 0 and g ∈ C1
c (R3)

T εijg ∈ C(R3)

and the limit
Tijg := lim

ε→0
T εijg

exists in L∞(R3). In particular
Tijg ∈ C(R3).

Proposition 3.1.2. Let 1 < p <∞. There is a Cp > 0 such that for every ε > 0 and g ∈ Lp(R3)

‖T εijg‖p ≤ Cp‖g‖p

and the limit
Tijg := lim

ε→0
T εijg

exists in Lp(R3) with
‖Tijg‖p ≤ Cp‖g‖p.

Proof of Proposition 3.1.1 and 3.1.2. The statements follow quite directly from the literature. To apply
the results from the literature, we have to verify that

Ωij(x) := 3
xixj
|x|2

− δij , x ∈ R3, x 6= 0,

satisfies the following four assumptions:

1. Ωij must be homogeneous of degree 0, i.e., Ωij(δx) = Ωij(x) for all δ > 0, x 6= 0. This is obviously
true.

2. Ωij must satisfy the cancellation property∫
|x|=1

Ωij(x) dS(x) = 0.

If i 6= j, this is obviously true. If i = j this is also true, since∫
|x|=1

Ωii(x) dS(x) = 3

∫
|x|=1

x2
i dS(x)− 4π

=

∫
|x|=1

|x|2 dS(x)− 4π = 0.

3. Ωij must be bounded on {|x| = 1}. This is obviously true since Ωij is continuous on R3\{0}.

4. Ωij must satisfy the following smoothness property: For

w(δ) := sup
|x−x′|<δ
|x|=|x′|=1

|Ωij(x)− Ωij(x
′)|

must hold ∫ 1

0

w(δ)

δ
dδ <∞.

This is true since for x, x′ ∈ R3 with |x| = |x′| = 1 and |x− x′| < δ we have

|Ωij(x)− Ωij(x
′)| = 3|xixj − x′ix′j | ≤ 3|xi||xj − x′j |+ 3|x′j ||xi − x′i| ≤ 6δ.

Now Proposition 3.1.2 follows directly from (Stein, 1970, Chapter II, Theorem 3) and Proposition 3.1.1
follows from (Dietz, 2001, Satz 2.2). In the formulation of her theorem Dietz does not mention the
continuity of the T εijg, but studying her proof carefully one sees that she has proven the Hölder continuity

of T εijg under the assumption that supp g ⊂ B1. This holds obviously also for every g ∈ C1
c (R3). If

however one is interested solely in the continuity of T εijg, like we here in this thesis, one could also simply
apply the transformation y 7→ x− y in the definition of T εijg and use standard results to deduce that T εijg
is continuous.
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Next we formulate regularity results for the Newtonian potential. Note that we have set the gravita-
tional constant G to unity.

Lemma 3.1.3. Let g ∈ C1+n
c (R3), n ∈ N0. Then the following holds

a) The Newtonian potential UNg ∈ C2+n(R3). Its first derivative is given by

∂xiU
N
g = UN∂yig

, i = 1, 2, 3,

which, using integration by parts, can be written as

∇UNg (x) =

∫
x− y
|x− y|3

g(y) dy, x ∈ R3.

The second derivative of UNg is given by

∂xi∂xjU
N
g = Tijg + δij

4π

3
g,

where i, j = 1, 2, 3.

b) For every R > 0 there is a C > 0 such that

‖UNg ‖∞ + ‖∇UNg ‖∞ ≤ C‖g‖∞.

and
‖D2UNg ‖∞ ≤ C(‖g‖∞ + ‖∇g‖∞)

provided supp g ⊂ BR.

c) UNg is the unique solution of

∆UNg = 4πg, lim
|x|→∞

UNg (x) = 0.

in C2(R3)

Proof. It is proven in (Rein, 2007, Lemma P1) that UNg ∈ C2(R3) if g ∈ C1
c (R3) and that the formulae

for the first derivatives hold. If g ∈ C1+n
c (R3) with n ≥ 1, it follows directly from

∂xiU
N
g = UN∂yig

that UNg ∈ C2+n(R3). To prove a) it remains to verify the formula for the second derivatives. For every
x ∈ R3 we have

∂xi∂xjU
N
g (x) = ∂xiU

N
∂yj g

(x) =

∫
xi − yi
|x− y|3

∂yjg(y) dy =

= −
∫

yi
|y|3

∂yj (g(x− y)) dy =

∫
∂yi(|y|−1)∂yj (g(x− y)) dy.

Dominated convergences and integration by parts then yield

∂xi∂xjU
N
g (x) = lim

ε→0

∫
|y|>ε

∂yi(|y|−1)∂yj (g(x− y)) dy

= lim
ε→0

(
T εijg(x) +

∫
|y|=ε

yiyj
|y|4

g(x− y) dS(y)

)
;

observe that the normal on {|y| = ε} is pointing inward and that there is no border term at infinity due
to the compact support of g. T εijg converges uniformly to Tijg after Proposition 3.1.1. If i 6= j then∣∣∣∣∣

∫
|y|=ε

yiyj
|y|4

g(x− y) dS(y)

∣∣∣∣∣ =

∣∣∣∣∣
∫
|y|=ε

yiyj
|y|4

(g(x− y)− g(x)) dS(y)

∣∣∣∣∣ ≤ 4π‖∇g‖∞ε.
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Hence the border term vanishes. If i = j then∫
|y|=ε

y2
i

|y|4
g(x− y) dS(y) =

∫
|y|=ε

y2
i

|y|4
(g(x− y)− g(x)) dS(y) + g(x)

∫
|y|=ε

y2
i

|y|4
dS(y).

As above the first term vanishes, however, the second one evaluates to 4πg(x)/3. In total we get

∂xi∂xjU
N
g (x) = Tijg(x) + δij

4π

3
g(x).

Let us turn to b). Since supp g ⊂ BR and g is bounded one sees directly that

‖UNg ‖∞ + ‖∇UNg ‖∞ ≤ C‖g‖∞.

That
‖D2UNg ‖∞ ≤ C(‖g‖∞ + ‖∇g‖∞),

is proven in (Rein, 2007, Lemma P1).
It remains to show c). It is stated in (Rein, 2007, Lemma P1) that UNg is the unique solution of

∆UNg = 4πg, lim
|x|→∞

UNg (x) = 0,

however the proof is omitted. So let us briefly summarize the proof of this well known fact. Since

3∑
i=1

(
3
x2
i

|x|5
− 1

|x|3

)
= 0,

we have
3∑
i=1

Tiig = 0.

Thus´

∆UNg =

3∑
i=1

∂2
xiU

N
g =

3∑
i=1

(
Tiig +

4π

3
g

)
= 4πg.

The asymptotic behaviour of UNg (x) for |x| → ∞ follows from the compact support of g. That g is the
unique solution of the above PDE follows from the strong maximum principle (Gilbarg & Trudinger,
1977, Theorem 2.2.).

Lemma 3.1.4. Let g ∈ L1 ∩ Lp(R3) for a 1 < p < ∞. Then UNg ∈ L1
loc(R3) exists, is twice weakly

differentiable and the formulae for ∇UNg and ∂xi∂xjU
N
g from Lemma 3.1.3 and the following estimates

hold

a) If 1 < p < 3
2 and 3 < r <∞ with 1

3 + 1
p = 1 + 1

r then

‖UNg ‖r ≤ Cp,r‖g‖p.

b) If 1 < p < 3 and 3
2 < s <∞ with 2

3 + 1
p = 1 + 1

s then

‖∇UNg ‖s ≤ Cp,s‖g‖p.

c) For every 1 < p <∞
‖D2UNg ‖p ≤ Cp‖g‖p.

Proof. With the formula for ∇UNg as in Lemma 3.1.3 we have

UNg = − 1

| · |
∗ g and ∇UNg =

·
| · |3

∗ g.

1/| · | and ·/| · |3 are in the so called weak Lq-space with q = 3 and q = 3
2 respectively since

sup
α>0

αL
({

x :
1

|x|
> α

})1/3

= (4π/3)1/3 <∞

11



and

sup
α>0

αL
({

x :
1

|x|2
> α

})2/3

= (4π/3)2/3 <∞;

with L(Ω) we denote the Lebesgue measure of a measurable set Ω ⊂ Rn, n ∈ N. Thus (Lieb & Loss,
2010, Remark 4.3(2)) implies that UNg ∈ Lr and ∇UNg ∈ Ls with the desired estimates provided p < 3/2

and p < 3 respectively. If p ≥ 3/2, UNρ ∈ Lr(R3) for every 3 < r < ∞ since ρ ∈ L1 ∩ Lp(R3) ⊂ Lq(R3)

for every 1 < q < 3/2. The same argumentation holds for ∇UNρ if p ≥ 3.

We have to check that ∇UNg is indeed the weak derivative of UNg . For this take φ ∈ C∞c (R3). The
Hardy-Littlewood-Sobolev inequality (Lieb & Loss, 2010, Theorem 4.3) allows us to use Fubini:∫

UNg (x)∂xiφ(x) dx = −
∫∫

g(y)∂xiφ(x)

|x− y|
dxdy.

Now Lemma 3.1.3 implies∫
UNg (x)∂xiφ(x) dx =

∫
g(y)UN∂xiφ

(y) dy =

∫
g(y)∂yiU

N
φ (y) dy

=

∫∫
g(y)

yi − xi
|y − x|3

φ(x) dx dy

= −
∫ (∫

xi − yi
|x− y|

g(y) dy

)
φ(x) dx

= −
∫
∇UNg (x)φ(x) dx.

So the weak gradient of UNg is given by the formula for ∇UNg from Lemma 3.1.3.
Let 1 < p <∞. We study the second derivatives and take (gk) ⊂ C1

c (R3) such that

gk → g in Lp(R3) for k →∞.

Then Hölder, integration by parts and Lemma 3.1.3 give∫
UNg ∂xi∂xjφdx = lim

k→∞

∫
UNgk∂xi∂xjφ dx

= lim
k→∞

∫
(Tijgk + δij

4π

3
gk)φ dx

=

∫
(Tijg + δij

4π

3
g)φdx.

Thus the weak second derivatives of UNg are given by the same formula as in Lemma 3.1.3. The desired

estimate for ∂xi∂xjU
N
g follows from Proposition 3.1.2.

We will often need ∇UNρ for a spherically symmetric density ρ.

Lemma 3.1.5. Let 1 < p < 3 and ρ ∈ L1 ∩ Lp(R3), ≥ 0 be spherically symmetric. Then

∇UNρ (x) =
M(r)

r2

x

r

for a.e. x ∈ R3 with r = |x| and

M(r) :=

∫
Br

ρ(x) dx = 4π

∫ r

0

s2ρ(s) ds

denoting the mass inside the ball with radius r.

Proof. Assume that ρ would be continuous and compactly supported. Then M ∈ C1([0,∞)) with

M ′(r) = 4πr2ρ(r), r ≥ 0.

Further
|M(r)| ≤ ‖ρ‖1
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and

|M(r)| ≤ 4π

3
‖ρ‖∞r3

for r ≥ 0. For x ∈ R3 and r = |x|

U(x) := −
∫ ∞
r

M(s)

s2
ds

is well defined. If r = |x| > 0, U is continuously differentiable with

∇U(x) =
M(r)

r2

x

r
.

Since

|∇U(x)| ≤ 4π

3
‖ρ‖∞r

we have
∇U ∈ C(R3).

Further

∂xi∂xjU(x) = 4πρ(r)
xixj
r2
− 3M(r)

xixj
r5

+
M(r)

r3
δij , r > 0.

Since ρ is continuous,
M(r)

r3
=

4π

3

1

L(Br)

∫
Br

ρdx→ 4π

3
ρ(0)

and ∣∣∣∣4πρ(r)− 3M(r)

r3

∣∣∣∣ = 4π

∣∣∣∣ρ(r)− 1

L(Br)

∫
Br

ρdx

∣∣∣∣→ 0

for r → 0. Hence
D2U ∈ C(R3).

Thus
U ∈ C2(R3).

Further
∆U = 4πρ

and

lim
|x|→∞

|U(x)| ≤ lim
|x|→∞

‖ρ‖1
|x|

= 0.

Since by Lemma 3.1.3 UNρ is a solution of this PDE, too, and this solutions is unique

UNρ = U

and

∇UNρ (x) = ∇U(x) =
M(r)

r2

x

r
, x ∈ R3. (3.1)

If now ρ ∈ L1 ∩ Lp(R3), we take a sequence (ρn) ⊂ Cc(R3) of spherically symmetric densities such
that

ρn → ρ in Lp(R3) for n→∞.

By Lemma 3.1.4
∇UNρn → ∇U

N
ρ in Ls(R3) for n→∞ (3.2)

where s > 3/2 with 1/p+ 2/3 = 1 + 1/s. Set

Mn(r) :=

∫
Br

ρn dx, r ≥ 0.

Then for every r ≥ 0
|Mn(r)−M(r)| ≤ ‖ρn − ρ‖p‖1Br‖p/(p−1).

Hence for all 0 < S < R
Mn →M uniformly on BR for n→∞
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and
Mn(r)

r2

x

r
→ M(r)

r2

x

r
uniformly on {S < |x| < R} for n→∞.

Together with (3.1) and (3.2) this implies that for a.e. x ∈ R3

∇UNρ (x) =
M(r)

r2

x

r
.

Later on in this thesis we will make regularly use of the following statement.

Lemma 3.1.6. If ρ, σ ∈ L6/5(R3) then

− 1

8π

∫
∇UNρ · ∇UNσ dx =

1

2

∫
UNρ σ dx = −1

2

∫∫
ρ(y)σ(x)

|x− y|
dxdy.

Proof. ∇UNρ ,∇UNσ ∈ L2(R3) and UNρ ∈ L6(R3) according to Lemma 3.1.4. Thus the first two integrals
are well defined. By the Hardy-Littlewood-Sobolev inequality (Lieb & Loss, 2010, Theorem 4.3) also the
third integral is well defined. If ρ, σ ∈ C∞c (R3), integration by parts and ∆UNσ = 4πσ give the above
equalities of the integrals. Since C∞c (R3) ⊂ L6/5(R3) is dense and all three integrals above are continuous
maps from L6/5 × L6/5 → R, the above equalities hold for all σ, ρ ∈ L6/5(R3).

3.2 Irrotational vector fields

The basic MOND principle states that given a Newtonian gravitational potential UN then the acceleration
of a particle at position x is given by

∇UN (x) + λ(|∇UN (x)|)∇UN (x).

However, as discussed before, this leads to physics without nice conservation laws. In the QUMOND
theory this problem is overcome by making use of the Helmholtz-Weyl decomposition. This theorem
states that the above vector field can - in a unique way - be decomposed into an irrotational vector field,
which is the gradient of some potential, plus a solenoidal vector field. In the QUMOND theory we define
now

∇UM is the irrotational part of ∇UN + λ(|∇UN |)∇UN

and the acceleration of a particle at position x is given by

∇UM (x).

With this trick the equations of motions in the QUMOND theory can be derived from the Hamiltonian
H(x, v) = 1

2 |v|
2 +UM (x) overcoming the problems with conservation laws. In particular, we will be able

to prove conservation of energy for solutions of the Vlasov-QUMOND-System. In this section we specify
what we mean with the ’irrotational part of a vector field’.

Definition 3.2.1. Let 1 < p <∞ and v ∈ Lp(R3) be a vector field. For i = 1, 2, 3 we define

Hiv :=
1

4π

3∑
j=1

Tijvj +
1

3
vi.

We call the vector field Hv ∈ Lp(R3) the irrotational part of v.

We will see below that Hv is indeed the irrotational part of v in the sense of the the Helmholtz-Weyl
decomposition.

Theorem 3.2.2 (Helmholtz-Weyl decomposition). For every vector field v ∈ Lp(R3), 1 < p < ∞, exist
uniquely determined v1 ∈ Lpirr(R3) and v2 ∈ Lpsol(R3) such that

v = v1 + v2,

where the two subspaces Lpirr(R3) and Lpsol(R3) of Lp(R3) are defined as follows:

Lpirr(R
3) :=

{
w ∈ Lp(R3) such that U ∈W 1,p

loc (R3) exists with w = ∇U
}
,

Lpsol(R
3) :=

{
w ∈ Lp(R3) such that divw = 0 weakly

}
.
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Proof. In (Galdi, 2011, Theorem III.1.2) it is proven that the Helmholtz-Weyl decomposition in the sense
of (Galdi, 2011, equation (III.1.5)) holds. This form of the theorem makes use of a different definition of
the space Lpsol. However, in (Galdi, 2011, Theorem III.2.3) it is proven that our definition here coincides
with the definition used in (Galdi, 2011, Theorem III.1.2).

Let us study how the Helmholtz-Weyl decomposition looks like for smooth vector fields with compact
support.

Lemma 3.2.3. Let v ∈ C2
c (R3). For every 1 < p <∞

Hv =
1

4π
∇

 3∑
j=1

∂xjU
N
vj

 ∈ C1 ∩ Lpirr(R
3)

is the uniquely determined, irrotational part of the vector field v according to the Helmholtz-Weyl decom-
position. Further

divHv = div v and rotHv = 0.

Proof. By Proposition 3.1.2 Hv ∈ Lp(R3) for every 1 < p <∞. Since by Lemma 3.1.3

UNvj ∈ C
3(R3), j = 1, 2, 3,

we have also

Hv =
1

4π
∇

 3∑
j=1

∂xjU
N
vj

 ∈ C1(R3).

In particular Hv ∈ Lpirr(R3). Since Hv is a gradient, its rotation is zero. For the divergence we have
with Lemma 3.1.3

divHv =
1

4π

3∑
j=1

∆UN∂yj vj
=

3∑
j=1

∂xjvj = div v.

Further we get
v2 := v −Hv ∈ C1 ∩ Lp(R3)

for every 1 < p <∞ with div(v2) = 0 classically. Hence v2 ∈ Lpsol(R3).

We are particularly interested in the Helmholtz-Weyl decomposition of vector fields v ∈ Lp(R3). If
p < 3, we can show that ∂xjU

N
vj exists and, using the same formula as in Lemma 3.2.3, it is easy to deduct

that in this situation, too, the Helmholtz-Weyl decomposition of v is given by Hv + (v −Hv). If p ≥ 3
however (and this is the case of special interest in Mondian physics), the integral

∂xjU
N
vj =

∫
xj − yj
|x− y|3

vj(y) dy

does not necessarily converge. Nevertheless, also in this situation the Helmholtz-Weyl decomposition of
v is given by Hv + (v − Hv) but we can no longer make use of the formula from Lemma 3.2.3. The
key ingredients to prove this explicit form of the Helmholtz-Weyl decomposition for v ∈ Lp(R3) are the
following proposition and corollary5 , which are based on Poincaré’s inequality.

Proposition 3.2.4. Let 1 < p <∞, R > 0, v ∈ Lp(BR) and (Uk) ⊂W 1,p(BR) be such that∫
BR

Uk dx = 0

and
∇Uk → v in Lp(BR) for k →∞

Then there is a U ∈W 1,p(BR) such that

Uk → U in W 1,p(BR) for k →∞

and ∇U = v.
5The important observation is that Lpirr(R

3) and Lpsol(R
3) are closed subsets of Lp(R3). For Lpsol(R

3) this is proved in

Galdi (2011). For Lpirr(R
3) Galdi leaves this as an exercise to the reader (Exercise III.1.2). Corollary 3.2.5 gives a solution

to this exercise.
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Proof. By Poincaré’s inequality (Lieb & Loss, 2010, Theorem 8.11) and since (∇Uk) is a convergent
sequence in Lp(BR)

‖Uk − Ul‖Lp(BR) ≤ C‖∇Uk −∇Ul‖Lp(BR) → 0 for k, l→∞.

Hence (Uk) ⊂ Lp(BR) is a Cauchy sequence. Thus

U := lim
k→∞

Uk ∈ Lp(BR)

exists. In particular v = ∇U .

Corollary 3.2.5. Let 1 < p <∞, v ∈ Lp(R3) and (Uk) ⊂W 1,p
loc (R3) be such that

∇Uk → v in Lp(R3) for k →∞.

Then there exists U ∈W 1,p
loc (R3) such that ∇U = v. In particular Lpirr(R3) is a closed subset of Lp(R3).

Proof. For n, k ∈ N set

U
(n)
k := Uk −

3

4πn3

∫
Bn

Uk dx.

Then ∫
Bn

U
(n)
k dx = 0

and by Proposition 3.2.4 there exists for every n ∈ N

U (n) := lim
k→∞

U
(n)
k ∈ Lp(Bn)

and
∇U (n) = v.

Since ∇U (n) = ∇U (1) on B1, there exists for every n ∈ N a c(n) ∈ R such that

Ũ (n) := U (n) + c(n) = U (1)

on B1. In particular Ũ (n) = Ũ (m) on Bn for every m,n ∈ N with n < m. Hence there exists U ∈W 1,p
loc (R3)

such that ∇U = v.
This implies that Lpirr(R3) is a closed subset of Lp(R3): Take (vk) ⊂ Lpirr(R3) with vk → v in Lp(R3).

By the definition of Lpirr there exists Uk ∈ W 1,p
loc (R3) such that ∇Uk = vk and ∇Uk → v in Lp(R3).

From what we have just proven follows that there exists U ∈ W 1,p
loc (R3) such that v = ∇U . Hence

v ∈ Lpirr(R3).

Theorem 3.2.6 (Explicit Helmholtz-Weyl decomposition). Let 1 < p < ∞ and v ∈ Lp(R3) be a vector
field. Then the uniquely determined Helmholtz-Weyl decomposition of v is given by

v = Hv + (v −Hv)

with
Hv ∈ Lpirr(R

3) and v −Hv ∈ Lpsol(R
3).

Proof. We can approximate v ∈ Lp(R3) with a sequence (vk) ⊂ C2
c (R3). By Lemma 3.2.3 the Helmholtz-

Weyl decomposition of vk is given by

vk = Hvk + (vk −Hvk)

with
Hvk ∈ Lpirr(R

3) and vk −Hvk ∈ Lpsol(R
3).

By Corollary 3.2.5 Lpirr(R3) is a closed subset of Lp(R3). By (Galdi, 2011, Theorem III.2.3) Lpsol(R3) is
the closure of the set

{v ∈ C∞c (R3) with div v = 0}
with respect to the Lp-norm on R3. Hence Lpsol is a closed subset of Lp(R3). Since vk → v and Hvk → Hv
in Lp(R3) for k →∞

Hv ∈ Lpirr(R
3) and v −Hv ∈ Lpsol(R

3)

and
v = Hv + (v −Hv)

is the uniquely determined Helmholtz-Weyl decomposition of v.
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For spherically symmetric vector fields the Helmholtz-Weyl decomposition is trivial.

Lemma 3.2.7. Let 1 < p <∞. Then for every spherically symmetric vector field v ∈ Lp(R3)

Hv = v.

Proof. Let v ∈ Lp(R3) be a spherically symmetric vector field. There exists a sequence (vk) ⊂ C∞c (R3)
of spherically symmetric vector fields with

vk → v in Lp(R3) for k →∞.

Since the vk are spherically symmetric
rot vk = 0.

Hence, by standard results for vector calculus, there exist potentials (Uk) ⊂ C∞(R3) such that for every
k ∈ N

vk = ∇Uk,

in particular vk ∈ Lpirr(R3) and the uniqueness of the Helmholtz-Weyl decomposition implies

Hvk = vk.

Since H : Lp(R3)→ Lp(R3) is continuous
Hv = v.

Last in this chapter we want to prove one useful Lemma.

Lemma 3.2.8. Let 1 < p, q <∞ with 1
p + 1

q = 1, and let v ∈ Lp(R3), w ∈ Lq(R3) be vector fields. Then∫
v ·Hw dx =

∫
Hv · w dx.

Proof. Assume that v ∈ L1 ∩Lp(R3) and w ∈ L1 ∩Lq(R3). Since v, w ∈ L1(R3) we can apply Fubini and
get that for every ε > 0 and i, j = 1, 2, 3∫

T εijvj wi dx = −
∫∫
|x−y|>ε

∂xi∂xj

(
1

|x− y|

)
vj(y) dy wi(x) dx

= −
∫
vj(y)

∫
|x−y|>ε

∂yi∂yj

(
1

|x− y|

)
wi(x) dxdy

=

∫
vj T

ε
ijwi dy.

Hence by Hölder ∫
Hv · w dx =

1

4π

3∑
i,j=1

lim
ε→0

∫
T εijvj wi dx+

1

3

3∑
i=1

∫
viwi dx

=
1

4π

3∑
i,j=1

lim
ε→0

∫
vj T

ε
ijwi dx+

1

3

3∑
i=1

∫
viwi dx

=

∫
v ·Hw dx.

Since L1 ∩ Lp(R3) ⊂ Lp(R3) and L1 ∩ Lq(R3) ⊂ Lq(R3) are dense, and H is continuous, it follows that
for every v ∈ Lp(R3) and w ∈ Lq(R3) ∫

Hv · w dx =

∫
v ·Hw dx.

17



3.3 Mondian potentials

In the MOND theory we want to take the gradient of the Newtonian potential ∇UN and add to it the
correction term

λ(|∇UN |)∇UN .

This is the basic MOND paradigm. In this thesis we make use of the QUMOND-Theory (Milgrom, 2010)
and add only the irrotational part

H(λ(|∇UN |)∇UN )

of the correction term to ∇UN . This leads to the following, formal definition:

∇UM := H(∇UN + λ(|∇UN |)∇UN ) (3.3)

= ∇UN +H(λ(|∇UN |)∇UN ). (3.4)

The theory of the previous chapter ensures that ∇UM is indeed the gradient of a potential.
In each of the following sections we make some of the following three assumptions on the measurable

function

λ : (0,∞)→ (0,∞).

(Λ1) There is Λ1 > 0 such that λ(σ) ≥ Λ1/
√
σ, for σ > 0 small,

(Λ2) There is Λ2 > 0 such that λ(σ) ≤ Λ2/
√
σ, for every σ > 0,

(Λ3) λ ∈ C1((0,∞)), λ(σ) → 0 as σ → ∞ and there is Λ2 > 0 such that −Λ2/(2σ
3/2) ≤ λ′(σ) ≤ 0, for

σ > 0.

Let us discuss the impact the various assumptions on λ have:
As a result of (Λ1) the MONDian force becomes much stronger than its Newtonian counterpart if

the absolute value of the force is low. This is the difference between Mondian and Newtonian physics
that enables MOND to predict correctly flat circular velocity curves in spiral galaxies without having
to rely on dark matter (see for example Gentile et al. (2011)). Further this property guarantees that
MOND forces confine mass more effectively than Newtonian forces. This even simplifies the proof of the
existence of minimizers of the variational problem studied in Section 5.2. Assumption (Λ2) in contrast
takes care that the MOND force does not get arbitrarily strong and remains in its physically motivated
regime. Assumption (Λ3) is a stronger version of (Λ2) and grants more regularity of λ.

In the next Lemma we show that (Λ3) implies (Λ2) and the Hölder continuity of the function λ(|u|)u,
u ∈ R3.

Lemma 3.3.1. If λ : (0,∞)→ (0,∞) satisfies (Λ3) then it satisfies also (Λ2) and there is a C > 0 such
that for all u, v ∈ R3

|λ(|u|)u− λ(|v|)v| ≤ C|u− v|1/2

with λ(|u|)u = 0 if u = 0.

Proof. Let σ > 0, then

λ(σ) = −
∫ ∞
σ

λ′(s) ds ≤ Λ2

2

∫ ∞
σ

ds

s3/2
=

Λ2√
σ
.

Thus λ satisfies (Λ2). Further, the function λ(|u|)u is continuously differentiable on R3\{0}, and for
u ∈ R3, u 6= 0, holds

D(λ(|u|)u) = λ(|u|)E3 + λ′(|u|)uu
T

|u|
where E3 denotes the identity matrix of dimension 3. Since λ satisfies (Λ2) and (Λ3), we have

|D(λ(|u|)u)| ≤ C√
|u|
.

Let now u, v ∈ R3 be such that for all t ∈ [0, 1]

wt := v + t(u− v)
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is different from zero. Then

|λ(|u|)u− λ(|v|)v| ≤
∫ 1

0

∣∣∣∣ d

dt
(λ(|wt|)wt)

∣∣∣∣dt ≤ C ∫ 1

0

|u− v|1/2

|wt|1/2
dt|u− v|1/2.

Set

a :=
v

|u− v|
and b :=

u− v
|u− v|

then |b| = 1 and we have ∫ 1

0

|u− v|1/2

|wt|1/2
dt =

∫ 1

0

dt

|a+ tb|1/2
≤ 2

∫ 1/2

0

ds√
s
<∞.

Thus for a.e. u, v ∈ R3\{0}
|λ(|u|)u− λ(|v|)v| ≤ C|u− v|1/2.

By continuity this holds for all u, v 6= 0 and due to the Hölder continuity this holds for all u, v ∈ R3.

In this thesis we use the QUMOND formulation of MOND. In her master thesis Keller (2016) used the
AQUAL6 formulation of MOND. Keller proved under the assumption of spherical symmetry that there
exist global, weak solutions to the initial value problem for the Vlasov-AQUAL system. In spherical
symmetry AQUAL and QUMOND are equivalent because in both formulations the Mondian field ∇UM
and the Newtonian field ∇UN are connected via

∇UM = ∇UN + λ(|∇UN |)∇UN

and no further corrections have to be made. However, Keller used a slightly different formulation of the
above relation between ∇UM and ∇UN . Instead of using a function λ on the right side of the equation,
she used a function µ on the left side of the equation. The above equation becomes then

µ(|∇UM |)∇UM = ∇UN .

Keller made several assumption on the function µ. Since we want to use her existence result in this thesis,
the following lemma shows how λ and µ are connected and which assumptions we have to make on λ
such that the corresponding µ satisfies the assumptions made in Keller (2016)

Lemma 3.3.2. Let a∗1 < 1 < a∗2 and λ be continuously differentiable on (0,∞) with

λ(σ) =

{
1/
√
σ − 1 , σ ≤ (a∗1)2

0 , σ ≥ a∗2

and

−1 + λ(σ)

σ
< λ′(σ) < 0

for (a∗1)2 < σ < a∗2. This λ satisfies (Λ1) - (Λ3). Further

ν̃(σ) := σ(1 + λ(σ))

is strictly increasing for σ > 0, µ̃ := ν̃−1 exists and µ(τ) := µ̃(τ)/τ is continuously differentiable on
[0,∞) with

µ(τ) =

{
τ , τ ≤ a∗1
1 , τ ≥ a∗2

and
µ′(τ) > 0

for a∗1 < τ < a∗2. So µ satisfies all assumptions from Keller (2016).

6The theory is called AQUAL because the field equation derives from an aquadratic Lagrangian (Famaey & McGaugh,
2012). The theory was introduced by Bekenstein & Milgrom (1984).
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Proof. From the explicit form of λ and its C1-regularity it follows directly that λ satisfies (Λ1) - (Λ3)
Since

ν̃′(σ) = 1 + λ(σ) + σλ′(σ) > 0, σ > 0,

ν̃ is strictly increasing and both µ̃ := ν̃−1 and µ(τ) := µ̃(τ)/τ , τ > 0 exist. The formulae for µ(τ)
for τ small and τ large follow directly from the respective formulae for λ(σ). It is also clear that µ is
continuously differentiable on [0,∞). It remains to prove the monotonicity of µ. The monotonicity of λ
implies

ν̃′(σ) < 1 + λ(σ) =
ν̃(σ)

σ
, for 0 < σ < a∗2.

Since

ν̃′(σ) = (µ̃−1)′(σ) =
1

µ̃′(ν̃(σ))
,

the above inequality translates into

µ̃′(τ) >
µ̃(τ)

τ
,

where we have replaced τ = ν̃(σ) ∈ (0, a∗2). This implies the monotonicity of µ since

τµ′(τ) = (τµ(τ))′ − µ(τ) = µ̃′(τ)− µ̃(τ)

τ
> 0.

In Section 4 it will be sufficient to work with the definition (3.3). We will derive the regularity of the
field ∇UM using the assumption (Λ2) and the regularity of the field ∇UN . We do not need the Mondian
potential UM explicitly. In Section 5 however we study a variational problem. And for proving that the
Euler-Lagrange equation holds, which belongs to this problem, it is important to have an explicit form
of the potential UM . In Lemma 3.2.3 we have seen that for a vector field

v ∈ C2
c (R3)

Hv is the gradient of

1

4π

3∑
j=1

∂xjU
N
vj .

But if ρ ∈ L1 ∩ Lp(R3) for a 1 < p < 3,
∇UNρ ∈ Lq(R3)

for a 3/2 < q <∞ and
v := λ

(
|∇UNρ |

)
∇UNρ ∈ L2q(R3)

provided (Λ2) holds. But then ∂xjU
N
vj is not well defined. However we can still recover a slight variation

of Lemma 3.2.3.

Lemma 3.3.3. Assume that (Λ2) holds and let ρ ∈ L1 ∩ Lp(R3) for a 1 < p < 3 and let 3/2 < q < ∞
with 2/3 + 1/p = 1 + 1/q. Set

Uλρ (x) :=
1

4π

∫
λ
(
|∇UNρ (y)|

)
∇UNρ (y) ·

(
x− y
|x− y|3

+
y

|y|3

)
dy, x ∈ R3.

Then
Uλρ ∈W

1,2q
loc (R3)

and
∇Uλρ = H

(
λ
(
|∇UNρ |

)
∇UNρ

)
∈ L2q(R3).

Further
UMρ := UNρ + Uλρ ∈W

1,q
loc (R3) +W 1,2q

loc (R3)

with weak derivative

∇UMρ = ∇UNρ +H
(
λ
(
|∇UNρ |

)
∇UNρ

)
∈ Lq(R3) + L2q(R3).
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Proof. Let R > 0. First we prove that for

I(x, y) := λ
(
|∇UNρ (y)|

)
∇UNρ (y) ·

(
x− y
|x− y|3

+
y

|y|3

)
, x, y ∈ R3,

holds ∫∫
|x|≤R

|I(x, y)|dx dy <∞. (3.5)

Let p, q be as stated above and let r be the dual exponent of 2q. Since 3 < 2q <∞,

1 < r <
3

2
.

Then ∫∫
|x|≤R,|y|≤2R

|I(x, y)|dxdy ≤ Λ2

∫∫
|x|≤R,|y|≤2R

|∇UNρ (y)|1/2
(

1

|x− y|2
+

1

|y|2

)
dxdy

≤ 2Λ2L(BR)‖∇UNρ ‖1/2q

∥∥∥∥ 1

|y|2

∥∥∥∥
Lr(B3R)

<∞.

Next observe that for all y ∈ R3\{0}, i, j = 1, 2, 3∣∣∣∣∂yi yj|y|3
∣∣∣∣ =

∣∣∣∣ δij|y|3 − 3
yiyj
|y|5

∣∣∣∣ ≤ 4

|y|3
.

Thus for x, y ∈ R3 with |x| ≤ R, |y| > 2R holds∣∣∣∣ xj − yj|x− y|3
− yj
|y|3

∣∣∣∣ =

∣∣∣∣∫ 1

0

d

ds

yj − sxj
|y − sx|3

ds

∣∣∣∣ ≤ R ∫ 1

0

ds

|y − sx|3
.

Since for all 0 ≤ s ≤ 1

|y − sx| ≥ |y|
2
,

we estimate further ∣∣∣∣ xj − yj|x− y|3
− yj
|y|3

∣∣∣∣ ≤ 8R

|y|3
.

Hence ∫∫
|x|≤R,|y|>2R

|I(x, y)|dxdy ≤ C
∫∫
|x|≤R,|y|>2R

|∇UNρ (y)|1/2 1

|y|3
dy

≤ CL(BR)‖∇UNρ ‖1/2q

∥∥∥∥ 1

|y|3

∥∥∥∥
Lr({|y|>2R})

<∞.

Thus (3.5) holds. Fubini then implies that

Uλρ ∈ L1
loc(R3).

It remains to prove that
∇Uλρ = H

(
λ
(
|∇UNρ |

)
∇UNρ

)
.

We write shortly

v :=
1

4π
λ
(
|∇UNρ |

)
∇UNρ ∈ L2q(R3).

Let φ ∈ C∞c (R3). Then∫
Uλρ ∂xiφdx =

∫∫
v(y) ·

(
x− y
|x− y|3

+
y

|y|3

)
∂xiφ(x) dy dx.

Thanks to (3.5) we can apply Fubini and, since∫
∂xiφ(x) dx = 0,
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we have ∫
Uλρ ∂xiφ dx = −

∫
v · ∇UN∂xiφ dy = −

3∑
j=1

∫
vj∂yi∂yjU

N
φ dy.

Lemma 3.1.3 and Proposition 3.1.2 imply∫
Uλρ ∂xiφdx = −

3∑
j=1

lim
ε→0

∫
vj

(
T εijφ+ δij

4π

3
φ

)
dy.

As in the proof of Lemma 3.2.8 we have∫
vj T

ε
ijφ dy =

∫
T εijvj φdy.

Hence ∫
Uλρ ∂xiφdx = −4π

∫  3∑
j=1

Tijvj +
1

3
vi

φdy

= −4π

∫
Hiv φdy.

Thus
∇Uλρ = 4πHv = H

(
λ
(
|∇UNρ |

)
∇UNρ

)
.

In particular, the Helmholtz-Weyl decomposition Theorem 3.2.6 implies

Uλρ ∈W
1,2q
loc (R3).

As in the proof of Lemma 3.1.4 we see that UNρ ∈ Lq
′
(R3) for some q′ > q. Thus

UNρ ∈W
1,q
loc (R3)

with
∇UNρ ∈ Lq(R3).

So we have
UMρ := UNρ + Uλρ ∈W

1,q
loc (R3) +W 1,2q

loc (R3)

When we deal with a spherically symmetric density ρ, the following lemma holds

Lemma 3.3.4. Assume that (Λ3) holds and let 1 < p < 3. If ρ ∈ L1 ∩ Lp(R3) is spherically symmetric,

UNρ , U
λ
ρ ∈ C1(R3\{0})

and for x ∈ R3\{0}, r = |x| holds

UMρ (r) = UMρ (1) +

∫ r

1

(
1 + λ

(
M(s)

s2

))
M(s)

s2
ds

under a slight abuse of notation.

Proof. Lemma 3.1.5 tells us that

∇UNρ (x) =
M(r)

r2

x

r
, x ∈ R3\{0}, r = |x|.

Since ρ ∈ L1(R3)
M(r) ∈ C([0,∞)).

Hence
∇UNρ ∈ C(R3\{0}).
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Since (Λ3) holds, the map
R3 3 u 7→ λ(|u|)u

is continuous (Lemma 3.3.1). Since by Lemma 3.2.7

∇Uλρ = H
(
λ
(
|∇UNρ |

)
∇UNρ

)
= λ

(
|∇UNρ |

)
∇UNρ ,

if follows
∇Uλρ ∈ C(R3\{0}).

Hence
Uλρ , U

N
ρ ∈ C1(R3\{0})

and by the fundamental theorem of calculus

UMρ (r) = UNρ (r) + Uλρ (r) = UMρ (1) +

∫ r

1

(
1 + λ

(
M(s)

s2

))
M(s)

s2
ds.

3.4 Absolutely continuous functions

In Section 4 we examine weak Eulerian and weak Lagrangian solutions of the (VQMS). The Lagrangian
solutions will only have absolutely continuous characteristics. Therefore we devote this small section to
the topic of absolutely continuous functions.

Definition 3.4.1. A point-wise defined function h : [0, T ]→ R, T > 0, is absolutely continuous iff there
is a function h′ ∈ L1((0, T )) such that for all t ∈ [0, T ]

h(t) = h(0) +

∫ t

0

h′(s) ds.

Obviously every absolutely continuous function is also continuous. Further the following characteri-
zation of absolutely continuous functions is important.

Lemma 3.4.2. A function h is absolutely continuous on [0, T ] iff h ∈ W 1,1((0, T )). h′ from Definition
3.4.1 and the weak derivative of h ∈W 1,1((0, T )) are identical.

Proof. Let h be absolutely continuous with

h(t) = h(0) +

∫ t

0

h′(s) ds, 0 ≤ t ≤ T,

and take φ ∈ C∞c ((0, T )). Then∫ T

0

h(t)φ′(t) dt =

∫ T

0

(
h(0) +

∫ t

0

h′(s) ds

)
φ′(t) dt

=

∫ T

0

h′(s)

∫ T

s

φ′(t) dtds

= −
∫ T

0

h′(s)φ(s) ds.

Thus h ∈W 1,1((0, T )) with weak derivative h′.
Let now be h ∈ W 1,1((0, T )) and denote by h′ the weak derivative of h. We define the absolutely

continuous function

h̃(t) :=

∫ t

0

h′(s) ds, 0 ≤ t ≤ T.

Then we know that h̃ ∈W 1,1((0, T )), too, and both h and h̃ have the same weak derivative. Hence h and
h̃ defer only by a constant (Lieb & Loss, 2010, Theorems 6.10. and 6.11.). In particular h is continuous,
too, and, since

h̃(0) = 0,

we have for all 0 ≤ t ≤ T

h(t) = h(0) + h̃(t) = h(0) +

∫ t

0

h′(s) ds.

Thus h is absolutely continuous.
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It is know that the chain rule holds for functions in W 1,1((0, T )). Let us transfer this result to
absolutely continuos functions.

Lemma 3.4.3 (Chain rule). Let G ∈ C1(Rn;R), n ∈ N, and let h : [0, T ]→ Rn be absolutely continuous.
Then G ◦ h is absolutely continuous on [0, T ] and the chain rule holds, i.e.,

(G ◦ h)′(t) = ∇G(h(t)) · h′(t), 0 ≤ t ≤ T.

Proof. Theorem 6.16 of Lieb & Loss (2010) states that the lemma holds, provided ∇G is bounded. Since
h is continuous, h([0, T ]) is a bounded subset of Rn and

h([0, T ]) ⊂ BR

for an R > 0 large enough. Let us now replace G by a function G̃ ∈ C1
c (Rn) such that G̃ = G on BR.

Then ∇G̃ is bounded and the statement of the lemma holds for G̃ ◦ h. Since G̃ ◦ h(t) = G ◦ h(t) and
∇G̃(h(t)) = ∇G(h(t)) for all t ∈ [0, T ], the statement of the lemma holds for G ◦ h, too.

Last in this chapter let us take a look on integration by parts for absolutely continuous functions.

Lemma 3.4.4 (Integration by parts). Let g, h be absolutely continuous on [0, T ], T > 0. Then for all
0 ≤ t1 ≤ t2 ≤ T ∫ t2

t1

g′(s)h(s) ds = g(t2)h(t2)− g(t1)h(t1)−
∫ t2

t1

g(s)h′(s) ds.

Proof. Using the definition of absolutely continuous functions we get∫ t2

t1

g′(s)h(s) ds =

∫ t2

t1

g′(s)

(
h(t1) +

∫ s

t1

h′(σ) dσ

)
ds

= (g(t2)− g(t1))h(t1) +

∫ t2

t1

∫ t2

σ

g′(s) ds h′(σ) dσ

= g(t2)h(t2)− g(t1)h(t1)−
∫ t2

t1

g(σ)h′(σ) dσ.

3.5 Weak flow of ż = b(s, z)

Consider a test particle that is at time t ≥ 0 at position x ∈ R3 and has velocity v ∈ R3. If this particle
moves in a gravitational field F (s, x), s ≥ 0, its trajectory (X(s), V (s)) is a solution of the ODE

Ẋ = V, (3.6)

V̇ = F (s,X)

with initial condition X(t) = x, V (t) = v. Alternatively – introducing the notation z = (x, v), Z = (X,V )
and b(s, z) = (v, F (s, x)) – we can say the trajectory is a solution of

Ż = b(s, Z) (3.7)

with initial condition Z(t) = z. If b is continuous and Lipschitz continuous with respect to z, the Cauchy-
Lipschitz theorem provides global solutions to the ODE (3.7), which have many nice properties. However,
in Mondian physics |F | behaves like a square root when |F | is close to zero. Thus, at most, we can expect
b to be Hölder continuous with respect to z, but not Lipschitz, and the Cauchy-Lipschitz theorem will
not help us any further. Fortunately, DiPerna & Lions (1989b) generalized the classical Cauchy-Lipschitz
theory and provide solutions to the ODE (3.7) – sharing almost the same nice properties as the classical
solutions – under much weaker assumptions. The major change in their theory is that they replace the
assumption

b(s, ·) must be Lipschitz

by

b(s, ·) ∈W 1,1
loc (R3).
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In this chapter we study the flow of the above ODE in the context of the DiPerna-Lions theory.

Definition 3.5.1. Let b : [0, T ]× R6 → R6 and Z : [0, T ]× [0, T ]× R6 → R6 be measurable. We call Z
a weak, measure preserving flow of the ODE (3.7) iff Z satisfies (Z1) - (Z3).

(Z1) For all t ∈ [0, T ] and for a.e. z ∈ R6

b(·, Z(·, t, z)) ∈ L1([0, T ])

and Z(·, t, z) is absolutely continuous on [0, T ] with

Z(s, t, z) = z +

∫ s

t

b(σ, Z(σ, t, z)) dσ

for all s ∈ [0, T ].

(Z2) For all t1, t2, t3 ∈ [0, T ]
Z(t1, t2, Z(t2, t3, z)) = Z(t1, t2, z)

for a.e. z ∈ R3.

(Z3) For all s, t ∈ [0, T ] and Ω ⊂ R6 measurable

L(Z(s, t,Ω)) = L(Ω)

The definition of a flow that preserves measure makes only sense if divz b = 0 like it is the case in the
ODE 3.6, in which we are interested. This becomes clear in the proof of Theorem 3.5.4.

The following lemma lists two important properties of a weak, measure preserving flow.

Lemma 3.5.2. Let b : [0, T ]×R6 → R6 be measurable, T > 0, and Z be a weak, measure preserving flow
of (3.7). Then (Z4) and (Z5) hold:

(Z4) For all s, t ∈ [0, T ]
Z(s, t, Z(t, s, z)) = z

for a.e. z ∈ R3.

(Z5) For all s, t ∈ [0, T ] and g ∈ L1(R6)∫
g(z) dz =

∫
g(Z(s, t, z)) dz.

Proof. (Z4) follows directly from (Z1) and (Z2): Let z ∈ R6 be such that Z(s, t, Z(t, s, z)) = Z(s, s, z)
and such that Z(·, s, z) is absolutely continuous with weak derivative b(·, Z(·, s, z)). This holds for a.e.
z ∈ R6. Then

Z(s, t, Z(t, s, z)) = Z(s, s, z) = z +

∫ s

s

b(σ, Z(σ, s, z)) dσ = z.

(Z5) follows from (Z4) and (Z3): W.l.g. g ≥ 0. Then∫
g(z) dz =

∫ ∞
0

L({g > α}) dα =

∫ ∞
0

L(Z(t, s, {g > α})) dα =

=

∫ ∞
0

L({g ◦ Z(s, t, ·) > α}) dα =

∫
g(Z(s, t, z)) dz,

which is the desired statement. Only the argument

L(Z(t, s, {g > α})) = L({g ◦ Z(s, t, ·) > α}), for α > 0,

deserves still some more attention. This would be clear if Z(t, s, ·) would be a bijective function with
inverse Z(s, t, ·), however, according to (Z2), it is only bijective on R6 up to a set of measure zero. Set
therefore

N := {z ∈ R6|Z(s, t, Z(t, s, z)) 6= z},
M := {ζ ∈ R6|Z(t, s, Z(s, t, ζ)) 6= ζ}.
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Then L(N) = L(M) = 0 and
Z(t, s, ·) : R6\N → R6\M

is bijective with inverse Z(s, t, ·): That Z(t, s, ·) is injective is clear from the definition of N . To see that
it is also surjective take ζ ∈ R6\M and set z := Z(s, t, ζ). Then

Z(t, s, z) = Z(t, s, Z(s, t, ζ)) = ζ.

z ∈ R6\N since
Z(s, t, Z(t, s, z)) = Z(s, t, Z(t, s, Z(s, t, ζ))) = Z(s, t, ζ) = z.

Thus Z(t, s, ·) is surjective, hence it is bijective. This implies that

Z(t, s, {g > α}\N) = {g ◦ Z(s, t, ·) > α}\M.

Since the flow is measure preserving it maps sets of measure zero onto sets of measure zero and we get

L(Z(t, s, {g > α})) = L(Z(t, s, {g > α}\N))

= L({g ◦ Z(s, t, ·) > α}\M)

= L({g ◦ Z(s, t, ·) > α}).

Notation 3.5.3. Let T > 0, 1 ≤ p, q ≤ ∞, n ∈ N, Ω ⊆ Rn measurable and U ⊆ Rn open. By

Lq(0, T ;Lp(Ω))

and
Lq(0, T ;W 1,p(U))

we denote the usual Bochner spaces. We use further the two spaces

Lq(0, T ;Lploc(R
n))

and
Lq(0, T ;W 1,p

loc (Rn))

where a function
f : [0, T ]→ Lploc(R

n)

belongs to the space Lq(0, T ;Lploc(Rn)) iff for every R > 0 the function

f : [0, T ]→ Lp(BR), t 7→ f(t)|BR

is in Lq(0, T ;Lp(BR)); the definition of the space Lq(0, T ;W 1,p
loc (Rn)) is analogue.

Theorem 3.5.4 (DiPerna-Lions). Let F ∈ L1(0, T ;W 1,1
loc (R3)) ∩ L∞(0, T ;L∞(R3)), T > 0. Then there

exists a weak, measure preserving flow Z = (X,V ) of the ODE (3.6) that has the property that for every
R > 0 there exists an R′ > 0 such that for a.e. z ∈ BR and every s ∈ [0, T ]

|Z(s, 0, z)| ≤ R′.

Remark 3.5.5. DiPerna & Lions (1989b) also prove uniqueness of the flow Z, but since we will not make
use of the uniqueness statement, we skip its treatment.

Proof. We want to apply Theorem III.37 on page 539 of DiPerna & Lions (1989b). When in this proof
we use a page number or a reference to an equation, we mean always the respective page or equation in
the paper DiPerna & Lions (1989b).

First we have to verify that the right hand side of our ODE satisfies (∗) and (∗∗) on page 520. This
is trivial since (v, F (s, x)) is obviously divergence free and the assumptions on F guarantee that

(v, F (s, x)) ∈ L1(0, T ;W 1,1
loc (R6))

7Observe that there is an error of numbering in DiPerna & Lions (1989b). Theorem III.2 exists twice: One time on page
537 and a second time on page 539. We need the second theorem and we will refer to it as Theorem III.3 throughout this
thesis.
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and
|v|+ |F (s, x)|
1 + |x|+ |v|

∈ L1(0, T ;L∞(R6)).

Define
L := {φ : R6 → R measureable with |φ| <∞ a.e.}

like on page 532. Then there exists by Theorem III.3 of DiPerna & Lions (1989b) a

Z = (X,V ) : [0, T ]× [0, T ]→ LN

that is a solution of the initial value problem for the ODE 3.6 in the sense of (77). This Z satisfies
(Z2) and (Z3); to see (Z3) one has to combine equation (74) with (75) and use that the divergence of
b(s, z) = (v, F (s, x)) vanishes. Since we assumed that F ∈ L∞(0, T ;L∞(R3)), Theorem III.3 of DiPerna
& Lions (1989b) implies further that

Z ∈ C
(
[0 ≤ t ≤ T ];L∞loc(R6;C([0 ≤ s ≤ T ]))

)
8.

In particular Z : [0, T ]× [0, T ]× R6 → R6 is measurable and for every R > 0 exists an R′ > 0 such that
for a.e. z ∈ BR and every s ∈ [0, T ] holds

|Z(s, 0, z)| ≤ R′.

It remains to prove (Z1). We use the notation

b(s, z) = (v, F (s, x)), s ∈ [0, T ], z = (x, v) ∈ R6.

Then equation (80) implies that for all t ∈ [0, T ] and almost every z ∈ R6 holds:

Z(·, t, z) ∈W 1,1((0, T ))

with weak derivative
∂sZ(s, t, z) = b(s, Z(s, t, z)), s ∈ (0, T ).

Thus Lemma 3.4.2 implies that Z(·, t, z) is absolutely continuous with

Z(s, t, z) = Z(t, t, z) +

∫ s

t

b(σ, Z(σ, t, z)) dσ, s ∈ [0, T ].

Fix an arbitrary t ∈ [0, T ]. It remains to prove that Z(t, t, z) = z for a.e. z ∈ R6. Below we will write
shortly

Z(s) = Z(s, t, z).

Let β ∈ C∞c (R6) be a vector field, then for a.e. z ∈ R6 the chain rule for absolutely continuous functions
(Lemma 3.4.3) implies that βi ◦ Z(·, t, z) is absolutely continuos, too, with weak derivative

∂sβi(Z(s)) = ∇βi(Z(s)) · b(s, Z(s)), s ∈ [0, T ]

for each i = 1, . . . , 6. Hence for every φ ∈ C∞c ([t, T )× R6) integration by parts (Lemma 3.4.4) yields∫ ∫ T

t

∇βi(Z(s)) · b(s, Z(s))φ(s, z) dsdz =

=−
∫
βi(Z(t))φ(t, z) dz −

∫ ∫ T

t

βi(Z(s))∂sφ(s, z) dsdz.

Now we exploit that Z is a solution of the initial value problem for the ODE (3.7) in the sense of (77).
Observe that β is an admissible function as defined on page 532. That (77) holds in distributions sense,
means ∫ ∫ T

t

∇βi(Z(s)) · b(s, Z(s))φ(s, z) dsdz =

=−
∫
βi(z)φ(t, z) dz −

∫ ∫ T

t

βi(Z(s))∂sφ(s, z) dsdz;

8Observe that there is one excess bracket in (DiPerna & Lions, 1989b, Theorem III.3). The statement Lploc(R
N );C([0 ≤

s <∞))) should be Lploc(R
N ;C([0 ≤ s <∞)))
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for the notion of solution in distributions sense compare page 514. Since we can choose φ of the form

φ(s, z) = w(z)ψ(s, z), s ∈ [t, T ], z ∈ R6,

where w ∈ C∞c (R6) is arbitrary and ψ ∈ C∞c ((−∞, T ) × R6) is such that ψ = 1 on {t} × suppw, the
lemma of du Bois-Reymond implies that

βi(Z(t, t, z)) = βi(z) (3.8)

for a.e. z ∈ R6. Assume that
N := {z ∈ R6|Z(t, t, z) 6= z}

has positive measure. Then there is an R > 0 such that

NR := {z ∈ BR|Z(t, t, z) 6= z}

has positive measure. Since Z preserves measure there is an R′ > R such that

Z(t, t,NR) ∩BR′

has positive measure. Let β ∈ C∞c (R6) be such that β(z) = z on BR′ . Then

βi(Z(t, t, z)) 6= βi(z)

for all z ∈ NR with Z(t, t, z) ∈ BR′ . But this set has positive measure contradicting (3.8). This shows
that (Z1) holds.

4 Time dependent solutions of the (VQMS)

As stated in the introduction we search distribution functions f = f(t, x, v) that are solutions of the
Vlasov-QUMOND system (VQMS):

∂tf + v · ∂xf − ∂xUMf · ∂vf = 0,

∂xU
M
f = ∂xU

N
f +H

(
λ(|∂xUNf |)∂xUNf

)
,

UNf (t, x) = −
∫
ρf (t, y)

|x− y|
dy,

ρf (t, x) =

∫
f(t, x, v) dv.

The term H(λ(|∂xUNf |)∂xUNf ) makes the difference between the Vlasov-QUMOND system studied here
in this thesis and the Vlasov-Poisson system that is, e.g., studied extensively in Rein (2007). The term
λ(|∂xUNf |)∂xUNf is the MOND-correction and H extracts the irrotational part of it thus taking care that

∂xU
M
f is indeed the gradient of some potential.
Now we introduce the notion of weak solutions for the initial value problem of the (VQMS). We

distinguish between Eulerian and Lagrangian solutions.

4.1 Weak Eulerian and weak Lagrangian solutions

We assume throughout this section that T > 0 and 1 < p, q <∞ with

1

p
+

1

q
= 1.

Further we assume that f̊ ∈ Lp(R6), ≥ 0. We do not make explicit assumptions on λ. We admit any λ
that is sufficiently regular such that

∂xU
M
f ∈ L1(0, T ;Lqloc(R

3))

exists (The subscript f refers to the weak Eulerian and weak Lagrangian solutions defined next).

28



Definition 4.1.1. We call a function
f : [0, T ]× R6 → R

a weak Eulerian solution of the (VQMS) with initial condition f̊ iff

f ∈ L∞(0, T ;Lp+(R6)),

it exists
∂xU

M
f ∈ L1(0, T ;Lqloc(R

3))

and for all φ ∈ C∞c ([0, T )× R6) holds∫ T

0

∫
f(∂tφ+ v · ∂xφ− ∂xUMf · ∂vφ) dz dt+

∫
f̊φ(0, z) dz = 0.

Definition 4.1.2. We call a function
f : [0, T ]× R6 → R

a weak Lagrangian solution of the (VQMS) with initial condition f̊ iff there exists both

∂xU
M
f ∈ L1(0, T ;Lqloc(R

3))

and a weak flow Z = (X,V ) of the ODE

Ẋ = V,

V̇ = −∂xUMf (s,X)

such that
f(t, z) = f̊(Z(0, t, z))

for every t ∈ [0, T ] and z ∈ R6.

We prove the useful fact that Lagrangian solutions preserve Lp-norms of f .

Lemma 4.1.3. Let f be a weak Lagrangian solution with initial condition f̊ . Then

f ∈ L∞(0, T ;Lp(R6))

and for all t ∈ [0, T ]

‖f(t)‖p = ‖f̊‖p.

If further f̊ ∈ Lp ∩ Ls(R6) for a 1 ≤ s ≤ ∞, then we have additionally that for every t ∈ [0, T ]

‖f(t)‖s = ‖f̊‖s.

Proof. Let t ∈ [0, T ]. Since Z is a weak flow, (Z5) implies

‖f(t)‖pp =

∫
f(t, z)p dz =

∫
f̊(Z(0, t, z))p dz =

∫
f̊(z)p dz = ‖f̊‖pp. (4.1)

Hence ∫ T

0

∫
f(t, z)p dz dt =

∫ T

0

‖f̊‖pp dt = T‖f̊‖pp

and f ∈ Lp([0, T ]× R6). Since

Lp([0, T ]× R6) = Lp(0, T ;Lp(R6))

(Knopf, 2017, Lemma 4),
f : [0, T ]→ Lp(R6)

is Borel-measurable. Together with (4.1) this implies

f ∈ L∞(0, T ;Lp(R6)).

If now f̊ ∈ Lp ∩ Ls(R6) for a 1 ≤ s <∞, then (4.1) implies that also

‖f(t)‖s = ‖f̊‖s

for all t ∈ [0, T ]. If s =∞ this statement follows from the fact that Z preserves measure (Z3).
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We want to understand how Eulerian and Lagrangian solutions of the (VQMS) are connected. One
connection can easily be seen.

Theorem 4.1.4. Every weak Lagrangian solution of the (VQMS) with initial condition f̊ is also a weak
Eulerian one.

Proof. Let f be a weak Lagrangian solution. Obviously f ≥ 0 a.e.. Further Lemma 4.1.3 implies that
f ∈ L∞(0, T ;Lp(R6)). Now take φ ∈ C∞c ([0, T ) × R6). Then the chain rule for absolutely continuous
functions (Lemma 3.4.3) implies that φ(·, Z(·, 0, z)) is absolutely continuous on [0, T ] for a.e. z ∈ R6. For
brevity we use in the following the notations

b(t, z) = (v,−∂xUMf (t, x))

and
Z(t) = Z(t, 0, z)

for t ∈ [0, T ], z = (x, v) ∈ R6. Then∫ T

0

∫
f(t, z)(∂tφ(t, z) + b(t, z) · ∂zφ(t, z)) dz dt =

=

∫ T

0

∫
f̊(z)(∂tφ(t, Z(t)) + b(t, Z(t)) · ∂zφ(t, Z(t))) dz dt

=

∫
f̊(z)

∫ T

0

d

dt
φ(t, Z(t)) dtdz

=−
∫
f̊(z)φ(0, Z(0)) dz = −

∫
f̊(z)φ(0, z) dz;

in the last equality we used (Z4). Thus f is also a weak Eulerian solution.

The other way around - to prove that an Eulerian solution is also a Lagrangian one - is more difficult.
An answer to this question is given by DiPerna & Lions. Here the assumption

∂xU
M
f ∈ L1(0, T ;W 1,q

loc (R3)),

is essential.

Theorem 4.1.5. Every weak Eulerian solution f of the (VQMS) with initial condition f̊ is - after
modifying it on a set of measure zero - also a weak Lagrangian solution provided

∂xU
M
f ∈ L1(0, T ;W 1,q

loc (R3)) ∩ L∞(0, T ;L∞(R3)).

Proof. In Theorem 3.5.4, which is based on Theorem III.3 of DiPerna & Lions (1989b), we have already
shown that with the above regularity of ∂xU

M
f there exits a weak flow Z = (X,V ) of

Ẋ = V,

V̇ = −∂xUMf (s,X).

Set
f̃(t, z) := f̊(Z(0, t, z)), t ∈ [0, T ], z ∈ R6.

As in Lemma 4.1.3 one proves that
f̃ ∈ L∞(0, T ;Lp(R6))

and as in Theorem 4.1.4 one proves that f̃ is a weak Eulerian solutions with initial condition f̊ of the
PDE

∂tf̃ + v · ∂xf̃ − ∂xUMf · ∂v f̃ = 0;

here it should be pointed out that ∂xU
M
f is independent of f̃ . According to Corollary II.1 in DiPerna &

Lions (1989b) the solution of this PDE is unique. Hence f = f̃ a.e. and f̃ is a weak Lagrangian solution

of the (VQMS) with initial condition f̊ .
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4.2 Existence of weak Eulerian solutions

Keller (2016) proved the existence of global, spherically symmetric solutions to the initial value problem
of the (VQMS). We transfer her results into the notion of this thesis.

Remark. In the following theorem f̊ and f are said to be spherically symmetric. This means that for all
A ∈ SO(3), t ∈ [0,∞) and a.e. x, v ∈ R3

f̊(Ax,Av) = f̊(x, v),

f(t, Ax,Av) = f(t, x, v).

Theorem 4.2.1 (Keller). Let λ be as in Lemma 3.3.2 and f̊ ∈ C1
c (R6), ≥ 0 and spherically symmetric.

Then there exists
f : [0,∞)× R6 → [0,∞)

spherically symmetric such that for every 1 ≤ p <∞ and T > 0

f ∈ L∞(0, T ;Lp(R6)),

ρf ∈ L∞(0, T ;Lp(R3)),

∂xU
M
f ∈ L∞(0, T ;L∞(R3)),

and for all φ ∈ C∞c ([0, T )× R6) holds∫ T

0

∫
f(∂tφ+ v · ∂xφ− ∂xUMf · ∂vφ) dz dt+

∫
f̊φ(0, z) dz = 0.

In particular f is a weak Eulerian solution of the (VQMS) with initial condition f̊ . Further we have that
for every T > 0 there is an R > 0 such that

supp f |[0,T ]×R3×R3 ⊂ [0, T ]×BR ×BR,
supp ρ|[0,T ]×R3 ⊂ [0, T ]×BR.

Proof. When in this proof we use a reference to a theorem (germ. ’Satz’) or chapter we refer to the
respective theorem or chapter in Keller (2016).

Keller first studies a regularized version of the (VQMS) where ∂xU
M
f gets replaced by a regularized

field ∂xU
M
k . The regularization is made such that it vanishes for k →∞ (see the introduction to Chapter

4). Satz 3.10 implies that for every k ∈ N there are

fk ∈ C1([0,∞)× R6),

ρk ∈ C1([0,∞))× R3),

∂xU
M
k ∈ C0,1([0,∞)× R3)

such that fk(0) = f̊ and

∂tfk + v · ∂xfk − ∂xUMk · ∂vfk = 0 on [0,∞)× R6,

ρk(t, x) =

∫
fk(t, x, v) dv t ∈ [0,∞), x ∈ R3,

and
∂xU

M
k

is the regularized Mondian force corresponding to ρk. Further there exist

R,P : [0,∞)→ [0,∞)

monotonic increasing such that for all t ∈ [0,∞), k ∈ N

supp fk(t) ⊂ BR(t) ×BP (t),

supp ρk(t) ⊂ BR(t).
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Satz 4.2, 4.4 and 4.10 imply that (after selecting a suitable subsequence that again is denoted by fk, etc.)
for every T > 0, R′ > 0

fk ⇀ f weakly in L2([0, T ]× R6),

ρk ⇀ ρf weakly in L2([0, T ]× R3),

∂xU
M
k → ∂xU

M
f strongly in L2([0, T ]×BR′)

for k →∞. In particular

supp f ⊂ [0, T ]×BR(T ) ×BP (T ), (4.2)

supp ρ ⊂ [0, T ]×BR(T ).

Now integration by parts gives that for every φ ∈ C∞c ([0, T )× R6)

0 = −
∫ T

0

∫
(∂tfk + v · ∂xfk − ∂xUMk · ∂vfk)φdz dt

=

∫ T

0

∫
fk(∂tφ+ v · ∂xφ− ∂xUMk · ∂vφ) dz dt+

∫
f̊(z)φ(0, z) dz

→
∫ T

0

∫
f(∂tφ+ v · ∂xφ− ∂xUMf · ∂vφ) dz dt+

∫
f̊(z)φ(0, z) dz

for k →∞. Satz 4.2 states further that f ∈ L∞([0,∞)× R6). Thanks to (4.2) this implies that

f ∈ Lp([0, T ]× R6) = Lp(0, T ;Lp(R6))

for every 1 ≤ p <∞. Further for every measurable set I ⊂ [0, T ]∫
I

‖f(t)‖pp dt =

∫
I

∫∫
{|x|<R(t),|y|<P (t)}

fp dv dxdt

≤ ‖f‖p∞L(BR(T ) ×BP (T ))L(I).

Thus the map
[0, T ] 3 t 7→ ‖f(t)‖pp

is bounded. In particular the map
[0, T ] 3 t 7→ ‖f(t)‖p

is bounded, too, and hence
f ∈ L∞(0, T ;Lp(R6)).

In particular f is a weak Eulerian solution of the (VQMS) with initial condition f̊ . Analogous as for f
one proves

ρf ∈ L∞(0, T ;Lp(R3)).

Consequently there is a sequence of spherically symmetric, simple functions

ρn : [0, T ]→ Lp(R3), n ∈ N,

such that for a.e. t ∈ [0, T ]

ρn(t)→ ρ(t) strongly in Lp(R3) for n→∞.

W.l.g. we may assume supp ρn ⊂ [0, T ]×BR(T ). Let p > 3 and 1 < q < 3
2 with 1/p+ 1/q = 1, then

‖∂xUNf (t)− ∂xUNρn(t)‖∞ ≤ sup
x∈R3

∫
|y|<R(T )

|ρf (t, y)− ρn(t, y)|
|x− y|2

dy

≤ ‖ρf (t)− ρn(t)‖p

(∫
|y|<R(T )

dy

|y|2q

)1/q

≤ C‖ρf (t)− ρn(t)‖p.
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By Lemma 3.3.2 λ obeys (Λ3) and hence λ is by Lemma 3.3.1 Hölder continuous. Thus

‖λ(|∂xUNf (t)|)∂xUNf (t)− λ(|∂xUNρn(t)|)∂xUNρn(t)‖∞ ≤ ‖∂xUNf (t)− ∂xUNρn(t)‖1/2∞ .

Since ∂xU
N
f is a spherically symmetric vector field, Lemma 3.2.7 implies

∂xU
M
f = ∂xU

N
f +H(λ(|∂xUNf |)∂xUNf ) = ∂xU

N
f + λ(|∂xUNf |)∂xUNf .

The same holds for ∂xU
N
ρn . Thus the above inequalities imply

‖∂xUMf − ∂xUMρn‖∞ ≤ C
(
‖ρf (t)− ρn(t)‖p + ‖ρf (t)− ρn(t)‖1/2p

)
.

Since the (∂xU
N
ρn + λ(|∂xUNρn |)∂xUNρn)n are a sequence of simple functions and ρn(t) → ρf (t) in Lp(R3)

for a.e. t ∈ [0, T ],
∂xU

M
f ∈ L∞(0, T ;L∞(R3)).

4.3 The link between weak Eulerian and weak Lagrangian solutions

In the previous section we studied the existence of weak Eulerian solutions. Now we ask whether these
solutions are also Lagrangian ones? If we want to give a positive answer to this question, then in view of
Theorem 4.1.5 we have to prove the existence of weak derivatives of ∂xU

M
f with respect to the position

variable x ∈ R3.
Let us summarize what we know already about weak Eulerian solutions. Theorem 4.2.1 states that

there exists a spherically symmetric, weak Eulerian solution f of the (VQMS) with initial condition

f̊ ∈ C1
c (R3). For these solutions

ρf ∈ L∞(0, T ;Lp(R3))

for every 1 ≤ p <∞ and T > 0. Then Lemma 3.1.4 gives that also

D2UNf ∈ L∞(0, T ;Lp(R3))

for every 1 < p <∞. Therefore
∂xU

N
f ∈ L∞(0, T ;C0,α(R3))

for all 0 < α < 1 by Morrey’s inequality. Assuming that (Λ3) holds Lemma 3.3.1 implies that

∂xU
M
f ∈ L∞(0, T ;C0,β(R3))

for all 0 < β < 1
2 . Taking a second look on Morrey’s inequality one could now expect that

D2UMf ∈ L∞(0, T ;Lp(R3))

for all 1 < p < 6. But this expectation proves deceptive. Why? Let us remain in the situation of spherical
symmetry and for ρ = ρ(x) spherically symmetric study the divergence of

∇UMρ = ∇UNρ + λ(|∇UNρ |)∇UNρ .

In view of Lemma 3.1.5

λ(|∇UNρ (x)|)∇UNρ (x) =

√
M(r)

r

x

r
, r = |x|,

where for convenience we assumed λ(σ) = 1/
√
σ, σ > 0. So

div(∇UMρ (x)) = ∆UNρ (x) +
1

r2
(r
√
M(r))′

= 4πρ(r) +

√
M(r)

r2
+

√
M(r)

′

r
.

ρ is just fine, the second term can be controlled as expected above, but the third one will cause problems.
We prove the following
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Proposition 4.3.1. Let R > 0, 1 < p, q <∞ and ρ ∈ C1 ∩ Lp(R3), ≥ 0, spherically symmetric. Then∥∥∥∥∥
√
M(r)

r2

∥∥∥∥∥
Lq(BR)

≤ C‖ρ‖1/2p

if 1 < q < 6 and p > 3q/(6− q) with C = C(p, q,R) > 0, and∥∥∥∥∥
√
M(r)

′

r

∥∥∥∥∥
Lq(BR)

≤ C‖ρ‖1/2p

if 1 < q < 2 and p > q/(2− q) + q with C = C(p, q,R) > 0. With
√
M(r)

′
we denote the function

√
M(r)

′
:=


2πr2ρ(r)√
M(r)

, if M(r) > 0

0 , if M(r) = 0
.

Proof. Let 1 < q < 6 and 1 < p <∞ with p > 3q/(6− q). For r ≥ 0

M(r) =

∫
Br

ρ(x) dx ≤ ‖ρ‖p‖1Br‖p/(p−1) ≤ C‖ρ‖pr3−3/p.

Thus ∥∥∥∥∥
√
M(r)

r2

∥∥∥∥∥
q

Lq(BR)

=

∫
BR

M(r)q/2r−2q dx ≤ C‖ρ‖q/2p

∫
BR

r
3q
2 −

3q
2p−2q dx.

Since
3q

2
− 3q

2p
− 2q > −3⇔ 3− q

2
>

3q

2p
⇔ p >

3q

6− q
we have ∥∥∥∥∥

√
M(r)

r2

∥∥∥∥∥
Lq(BR)

≤ C‖ρ‖1/2p .

Now we turn to the second estimate. Let 1 < q < 2, p > q/(2 − q) + q and r0 ≥ 0 be such that
M(r0) = 0 and M(r) > 0 for all r > r0. Since ρ ∈ C1(R3), M(r) ∈ C1([0,∞)) with

M ′(r) =
d

dr
4π

∫ r

0

s2ρ(s) ds = 4πr2ρ(r).

Hence
√

(M(r)) ∈ C1((r0,∞)) with

√
M(r)

′
=

2πr2ρ(r)√
M(r)

, r > r0.

Assume that R > r0, then∥∥∥∥∥
√
M(r)

′

r

∥∥∥∥∥
q

Lq(BR\Br0 )

=

∫
BR\Br0

(
2πrρ(r)√
M(r)

)q
dx

≤ (2πR)q
∫
BR\Br0

ρ(r)α
ρ(r)q−α

M(r)q/2
dx

with
α :=

p

p− 1
(q − 1).

Obviously α > 0, and further α < q since

α =
p

p− 1
(q − 1) < q ⇔ 1− 1

q
< 1− 1

p
⇔ q < p.
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Now we apply Hölder’s inequality and get∥∥∥∥∥
√
M(r)

′

r

∥∥∥∥∥
q

Lq(BR\Br0 )

≤ C‖ρ‖αp
∥∥∥∥ ρ(r)q−α

M(r)q/2

∥∥∥∥
Lp/(p−α)(BR\Br0 )

;

note that 0 < α < q < p. Since

(q − α)
p

p− α
= 1⇔ q − α = 1− α

p
⇔ q − 1 = α

(
1− 1

p

)
⇔ α =

p

p− 1
(q − 1),

we have ∥∥∥∥ ρ(r)q−α

M(r)q/2

∥∥∥∥
Lp/(p−α)(BR\Br0 )

=

(∫
BR\Br0

ρ(r)M(r)−pq/(2p−2α) dx

)(p−α)/p

= C

[∫ R

r0

(
M(r)1−pq/(2p−2α)

)′
dr

](p−α)/p

;

here we have used that pq/(2p− 2α) < 1 since

pq

2p− 2α
< 1⇔ q

2
< 1− α

p
= 1− q − 1

p− 1

⇔ 2− q
2

>
q − 1

p− 1

⇔ p > 1 +
2(q − 1)

2− q
=

2− q + 2q − 2

2− q
=

q

2− q
.

Thus ∥∥∥∥∥
√
M(r)

′

r

∥∥∥∥∥
q

Lq(BR\Br0 )

≤ C‖ρ‖αp ‖ρ‖
(p−α)/p−q/2
L1(BR) .

Since
‖ρ‖L1(BR) ≤ C‖ρ‖p

and

1

q

(
α+

p− α
p
− q

2

)
=
q − 1

q

p

p− 1
+

1

q

(
1− q − 1

p− 1

)
− 1

2

=
(q − 1)p+ (p− q)

q(p− 1)
− 1

2

=
pq − q
q(p− 1)

− 1

2

=
1

2
,

we finally have ∥∥∥∥∥
√
M(r)

′

r

∥∥∥∥∥
Lq(BR\Br0 )

≤ C‖ρ‖1/2q .

Using the proposition we can control Lq-norms of the derivatives of the Mondian part

λ(|∇UNρ |)∇UNρ
of the force field provided 1 < q < 2 and ρ is spherically symmetric.

Lemma 4.3.2. Let 1 < q < 2, p > q
2−q + q, R > 0 and ρ ∈ L1 ∩ Lp(R3), ≥ 0, spherically symmetric. If

(Λ3) holds,
λ(|∇UNρ |)∇UNρ ∈W

1,q
loc (R3)

with ∥∥∇ [λ(|∇UNρ |)∇UNρ
]∥∥
Lq(BR)

≤ C‖ρ‖1/2p

where C = C(p, q,R) > 0.
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Proof. Since we are in spherical symmetry, Lemma 3.1.5 gives

λ(|∇UNρ |)∇UNρ = λ

(
M(r)

r2

)
M(r)

r2

x

r
, x ∈ R3, r = |x|;

for better readability we suppress the x-argument on the left side. Using the abbreviation

λ̃(σ) = λ(σ)σ, σ ≥ 0,

we have

λ(|∇UNρ |)∇UNρ = λ̃

(
M(r)

r2

)
x

r
.

Thanks to Lemma 3.3.1
|λ̃(σ)− λ̃(τ)| ≤ C|σ − τ |1/2, σ, τ ≥ 0, (4.3)

for a C > 0 where
λ̃(0) = 0.

This Lemma states also that (Λ2) holds, so

0 ≤ λ̃(σ) ≤ Λ2

√
σ, σ ≥ 0. (4.4)

Still using (Λ3) we get

|λ̃′(σ)| ≤ |λ′(σ)|σ + λ(σ) ≤ C√
σ
, σ > 0, (4.5)

for a C > 0. Thanks to (4.4), for every R > 0 holds

∥∥λ(|∇UNρ |)∇UNρ
∥∥q
Lq(BR)

≤ Λq2

∫
BR

(√
M(r)

r

)q
dx ≤ C‖ρ‖q/21 .

Next we approximate ρ by smooth densities ρn and study the (weak) derivatives of λ(|∇UNρn |)∇U
N
ρn .

Let (ρn) ⊂ C1
c (R3) be a sequence of spherically symmetric densities such that

ρn → ρ strongly in L1(R3) and Lp(R3) for n→∞.

As above λ(|∇UNρn |)∇U
N
ρn ∈ L

q
loc(R3). Denote by

Mn(r) =

∫
Br

ρn dx, r ≥ 0,

the mass of ρn inside the ball with radius r. Then Mn ∈ C1(R3) with

∇(Mn(r)) = M ′n(r)
x

r
= 4πρn(r)rx.

Let rn ≥ 0 be such that Mn(rn) = 0 and Mn(r) > 0 for all r > rn. Then

λ(|∇UNρn |)∇U
N
ρn ∈ C

1(R3\{|x| = rn})

with
∂xi
[
λ(|∇UNρn |)∂xjU

N
ρn

]
= 0 (4.6)

if |x| < rn, and

∂xi
[
λ(|∇UNρn |)∂xjU

N
ρn

]
= ∂xi

(
λ̃

(
Mn(r)

r2

)
xj
r

)
= λ̃′

(
Mn(r)

r2

)
M ′n(r)

xixj
r4

(4.7)

− 2λ̃′
(
Mn(r)

r2

)
Mn(r)

xixj
r5

+ λ̃

(
Mn(r)

r2

)(
δij
r
− xixj

r3

)
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if |x| > rn and i, j = 1, 2, 3. Denote by

∂xi
[
λ(|∇UNρn |)∂xjU

N
ρn

]
the functions that are pointwise a.e. defined by (4.6) and (4.7). Using (4.4) and (4.5) we get for |x| > rn

∣∣∂xi [λ(|∇UNρn |)∂xjU
N
ρn

]∣∣ ≤ C ( M ′n(r)

2
√
Mn(r)

1

r
+

√
Mn(r)

r2

)

= C

(√
Mn(r)

′

r
+

√
Mn(r)

r2

)
.

Since p > q/(2− q) + q and
q

2− q
=

3q

6− 3q
>

3q

6− q
,

we can apply Proposition 4.3.1 and get for every R > 0∥∥∂xi [λ(|∇UNρn |)∂xjU
N
ρn

]∥∥
Lq(BR)

≤ C‖ρn‖1/2p . (4.8)

Now we prove that the functions given by (4.6) and (4.7) are indeed the weak derivatives of λ(|∇UNρn |)∇U
N
ρn .

For every φ ∈ C∞c (R3)∫
λ(|∇UNρn |)∂xjU

N
ρn∂xiφ dx = lim

s↘rn

∫
{|x|≥s}

λ(|∇UNρn |)∂xjU
N
ρn∂xiφdx

= −
∫
∂xi
(
λ(|∇UNρn |)∂xjU

N
ρn

)
φ dx

+ lim
s↘rn

∫
{|x|=s}

λ(|∇UNρn |)∂xjU
N
ρnφ

xi
|x|

dS(x).

If rn = 0, we use ∣∣λ(|∇UNρn |)∇U
N
ρn

∣∣ ≤ Λ2

√
Mn(r)

r
≤ Λ2‖ρ‖1/21

r

and get ∣∣∣∣∣
∫
{|x|=s}

λ(|∇UNρn |)∂xjU
N
ρnφ

xi
|x|

dS(x)

∣∣∣∣∣ ≤ Cs→ 0 for s→ 0.

If rn > 0, we use

∣∣λ(|∇UNρn |)∇U
N
ρn

∣∣ ≤ Λ2

rn

(∫
rn<|x|<s

ρn dx

)1/2

→ 0 for s→ rn,

and get, too, that the border term in the above integration by parts vanishes. Hence the by (4.6) and
(4.7) pointwise a.e. defined functions are indeed the weak derivatives of

λ(|∇UNρn |)∇U
N
ρn ∈W

1,q
loc (R3).

It remains to prove that
λ(|∇UNρ |)∂xjUNρ ∈W

1,q
loc (R3)

and that the estimate (4.8) holds with ρn replaced by ρ. Using (4.3) and Hölder we have for R > 0

∥∥λ(|∇UNρn |)∇U
N
ρn − λ(|∇UNρ |)∂xjUNρ

∥∥
L1(BR)

=

∫
BR

∣∣∣∣λ̃(M(r)

r2

)
− λ̃

(
Mn(r)

r2

)∣∣∣∣ dx
≤ C

∫
BR

|M(r)−Mn(r)|1/2

r
dx

≤ C
(∫

BR

|Mn(r)−M(r)|dx
)1/2

≤ C‖ρn − ρ‖1/21 .
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Thus
λ(|∇UNρn |)∇U

N
ρn → λ(|∇UNρ |)∂xjUNρ strongly in L1(BR) for n→∞.

Since
‖ρn‖p ≤ C

independent of n ∈ N, (4.8) implies that there is a subsequence (again denoted by (ρn)) such that

∂xi
[
λ(|∇UNρn |)∂xjU

N
ρn

]
⇀ V weakly in Lq(R3) for n→∞.

V is the weak derivative of
λ(|∇UNρ |)∂xjUNρ

with respect to xi and hence
λ(|∇UNρ |)∇UNρ ∈W

1,q
loc (R3).

Since the Lq-norm is weakly lower semi-continuous, (4.8) implies

‖V ‖Lq(BR) ≤ lim inf
n→∞

∥∥∂xi [λ(|∇UNρn |)∂xjU
N
ρn

]∥∥
Lq(BR)

≤ C lim
n→∞

‖ρn‖1/2p

= C‖ρ‖1/2p .

The existence of weak derivatives of∇UMρ grants a Lagrangian description of the spherically symmetric
solutions from Theorem 4.2.1.

Theorem 4.3.3. Let λ be as in Lemma 3.3.2 and f̊ ∈ C1
c (R3), ≥ 0 and spherically symmetric. Then the

weak Eulerian solution f of the (VQMS) with initial condition f̊ from Theorem 4.2.1 is a weak Lagrangian
one.

Proof. Let T > 0, R > 0. We prove

∂xU
M
f ∈ L1(0, T ;W 1,5/4(BR)).

Then Theorem 4.1.5 implies that f is also a weak Lagrangian solution. In the following proof we write
shortly ρ = ρf .

Let p > 3. Since
ρ ∈ L∞(0, T ;Lp(R3)),

there is a sequence of spherically symmetric, simple functions (ρn) such that for a.e. t ∈ [0, T ]

ρn(t)→ ρ(t) in Lp(R3) for n→∞.

Since supp ρ ⊂ [0, T ]×BR′ for an R′ > 0, we can choose the ρn such that

supp ρn ⊂ [0, T ]×BR′ .

As in the proof of Theorem 4.2.1, we get

‖∂xUMρn (t)− ∂xUMρ (t)‖∞ ≤ C
(
‖ρn(t)− ρ(t)‖p + ‖ρn(t)− ρ(t)‖1/2p

)
.

Since (∂xU
M
ρn ) is a sequence of simple functions, this implies

∂xU
M
ρ ∈ L∞(0, T ;L5/4(BR)).

The compact support of the ρn implies that for a.e. t ∈ [0, T ] also

ρn(t)→ ρ(t) in L5/4(R3) for n→∞.

Let t ∈ [0, T ] such that ρn(t) converges in Lp(R3) and in L5/4(R3) to ρ(t) and take an arbitrary subse-
quence (ρ′n) of (ρn). Lemma 3.1.4 and Lemma 4.3.2 imply that∥∥∥∂2

xU
N
ρ′n

(t)
∥∥∥

5/4
≤ C‖ρ′n(t)‖5/4,∥∥∥∂x (λ(|∂xUNρ′n(t)|

)
∂xU

N
ρ′n

(t)
)∥∥∥

L5/4(BR)
≤ C‖ρ′n(t)‖p;
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observe that
5/4

2− 5/4
+

5

4
=

5

3
+

5

4
=

35

12
< 3 < p.

Since ρ′n(t) converges in both Lp and L5/4, there is a C > 0 such that∥∥∥∂2
xU

M
ρ′n

(t)
∥∥∥
L5/4(BR)

≤ C.

Hence there is a further sub-subsequence (ρ′′n) such that

∂2
xU

M
ρ′′n

(t) ⇀ ∂2
xU

M
ρ (t) weakly in L5/4(BR) for n→∞.

We can repeat this argument for every subsequence of (ρn) and for every t ∈ [0, T ] such that ρn(t) is
convergent to ρ(t). Thus for a.e. t ∈ [0, T ]

∂2
xU

M
ρn (t) ⇀ ∂2

xU
M
ρ (t) weakly in L5/4(BR) for n→∞.

Let now g ∈ L5(BR), then for a.e. t ∈ [0, T ]∫
BR

g ∂2
xU

M
ρn (t) dx→

∫
BR

g ∂2
xU

M
ρ (t) dx for n→∞.

Thus the map

[0, T ] 3 t 7→
∫
BR

g ∂2
xU

M
ρ (t) dx

is measurable as the pointwise limit of measurable functions. Thus the theorem of Pettis implies that
also the map

[0, T ] 3 t 7→ ∂2
xU

M
ρ (t) ∈ L5/4(BR)

is measurable. Since for a.e. t ∈ [0, T ]∥∥∂2
xU

M
ρ (t)

∥∥
L5/4(BR)

≤ C
(
‖ρ(t)‖5/4 + ‖ρ(t)‖p

)
,

this map is also bounded. Hence

∂xU
M
ρ ∈ L∞(0, T ;W 1,5/4(BR)).

Thus in spherical symmetry a weak Eulerian solution is also a weak Lagrangian solution. As we
argue in Section 6 it will not be difficult to prove Theorem 4.2.1 also without the assumption of spherical
symmetry – at least on small time intervals. This way one can construct symmetry free weak Eulerian
solutions. Will these solutions still be Lagrangian ones?

As we have argued in the introduction to this section one might expect from a naive argumentation
that

D2UMρ ∈ Lq(R3)

for 1 < q < 6 if
ρ ∈ L1 ∩ L∞(R3).

However in Lemma 4.3.2 we were only able to prove an estimate of the type

‖D2UMρ ‖q ≤ C‖ρ‖1/2p

if 1 < q < 2. In the following Lemma we show that this estimate is indeed optimal; there is no such
estimate if q > 2. Further the subsequent Lemma will show that it is unlikely that any such estimate can
be proven if we drop the assumption of spherical symmetry.

Lemma 4.3.4. Let λ(σ) = 1/
√
σ, σ > 0. Then there is a sequence of spherically symmetric densities

(ρn) ⊂ L1 ∩ L∞(R3) such that for all n ∈ N ρn ≥ 0, supp ρn ⊂ B2 and ‖ρn‖∞ ≤ 1, but

‖D2UMρn‖q →∞ for n→∞

if 2 < q < 6.

39



Remark 4.3.5. The Idea behind the proof of Lemma 4.3.4 is the following: In ∆UMρ appears the term√
M(r)

′

r
=

2πrρ(r)√
M(r)

=
2πρ(r)√
N(r)

1√
r

where we have introduced the notion

N(r) :=
1

r3
M(r) =

1

r3

∫
Br

ρ(x) dx.

(Rudin, 1999, Satz 7.7) implies that for a.e. y ∈ R3

1

r3

∫
Br(y)

ρ(x) dx→ 4π

3
ρ(y) for r → 0.

So we could expect that √
M(r)

′

r
≈
√

3πρ(r)√
ρ(0)

1√
r

for r > 0 small.

Assuming for the moment that ρ(0) > 0 and that ‖ρ‖∞ <∞ this would guarantee that ‖
√
M(r)

′
/r‖q is

bounded for all 1 < q < 6. Together with Proposition 4.3.1 this would give us a bound for ‖D2UMρ ‖q for
all 1 < q < 6. However, the pointwise representation of an Lp-function ρ is tricky:

Lets take an open set Ωn ⊂ [0, 2] such that for all ε > 0

L(Ωn ∩ [0, ε]) ≈ ε

n

and set
ρn(r) := 1Ωn(r).

Then there is no well defined value of ρ(0) and we get

N(r) ≈ C

n
for r > 0 small

with a constant C > 0 independent of n. Thus√
M(r)

′

r
≈ 2π√

C

√
n1Ωn(r)

1√
r

for r > 0 small,

and when we send n→∞ this is unbounded in Lq for 2 < q < 6.

Proof of Lemma 4.3.4. For n ∈ N set

Ωn :=

∞⋃
i=0

[
2−i,

(
1 +

1

n

)
2−i
)

and define

ρn(r) :=
1

4π
1Ωn(r), r ≥ 0.

Denote by

Mn(r) :=

∫
Br

ρn dx

the mass of ρn inside the ball with radius r ≥ 0. Let n, j ∈ N, then

Mn(2−j+1) =

∞∑
i=j

∫ (1+1/n)2−i

2−i
r2 dr ≤

∞∑
i=j

1

n
2−i(2−i+1)2 =

4

n

∞∑
i=j

(
1

8

)i

=
4

n

(
1

1− 1/8
− 1− (1/8)j

1− 1/8

)
=

4

n

(
1

8

)j
8

7
=
C0

n
(2−j)3.
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Let r ∈ [2−j , 2−j+1) for a j ≥ 0. Then

Mn(r) ≤Mn(2−j+1) ≤ C0

n
(2−j)3 ≤ C0

n
r3.

Thus

Nn(r) :=
1

r3
Mn(r) ≤ C0

n

and
ρn(r)√
Nn(r)

≥
√
n

4π
√
C0

1Ωn(r). (4.9)

Let now 2 < q < 6, then

‖D2UMρn‖q ≥ C‖∆U
M
ρn‖q = C

∥∥∥∥∥4πρn(r) +

√
Mn(r)

r2
+

√
Mn(r)

′

r

∥∥∥∥∥
q

.

Since ρn,Mn ≥ 0 and Mn is monotonic increasing

‖D2UMρn‖q ≥ C

∥∥∥∥∥
√
Mn(r)

′

r

∥∥∥∥∥
q

= C

∥∥∥∥∥ rρn(r)√
Mn(r)

∥∥∥∥∥
q

= C

∥∥∥∥∥ ρn(r)√
Nn(r)

r−1/2

∥∥∥∥∥
q

.

Now we use the estimate (4.9) and get

‖D2UMρn‖q ≥ C
√
n
∥∥∥r−1/21Ωn(r)

∥∥∥
q

= C
√
n

(∫
Ωn

r2−q/2 dr

)1/q

= C
√
n

( ∞∑
i=0

∫ (1+1/n)2−i

2−i
r2−q/2 dr

)1/q

.

For 2 < q ≤ 4 we have

∞∑
i=0

∫ (1+1/n)2−i

2−i
r2−q/2 dr ≥

∞∑
i=0

1

n
2−i(2−i)2−q/2 =

1

n

∞∑
i=0

(2−3+q/2)i

and for 4 < q < 6

∞∑
i=0

∫ (1+1/n)2−i

2−i
r2−q/2 dr ≥

∞∑
i=0

1

n
2−i(2−i+1)2−q/2 =

1

n
22−q/2

∞∑
i=0

(2−3+q/2)i.

Hence
‖D2UMρn‖q ≥ Cn

1/2−1/q,

and this is divergent if q > 2.

So it is not possible for any q > 2 to prove an estimate of the form

‖D2UMρ ‖Lq(BR) ≤ C‖ρ‖1/2p

even if ρ is spherically symmetric (and non-negative). Will the situation get even worse if we leave
spherical symmetry?

Let us look at the difficulties that one can encounter. D2UMρ causes difficulties when ∇UNρ (x) = 0
for an x ∈ R3 because then

λ
(∣∣∇UNρ (x+ y)

∣∣) ∣∣∇UNρ (x+ y)
∣∣ =

∣∣∇UNρ (x+ y)
∣∣1/2 ≈ C√y

if |y| is small and λ(σ) = 1/σ for σ > 0. Consider now the following, symmetry free situation: For every
n ∈ N place a point mass at position

xn = (1− 1/n, 0, 0) .

41



Then for every n ∈ N there is 0 < αn < 1 such that for

yn = αnxn + (1− αn)xi+1

we have
∇UN (yn) = 0;

UN denotes the Newtonian gravitational potential created by all the masses at the points xn. So for
every n ∈ N D2UN (yn) will cause difficulties.

The exact treatment of such a non-symmetric situation is difficult. Can we perhaps mimic the above
difficulties in spherical symmetry? The answer is yes, if we do not demand that ρ has to be non-negative.
Then the next lemma shows that it is no more possible for any 1 ≤ p, q ≤ ∞ to prove an estimate of the
form

‖D2UMρ ‖Lq(BR) ≤ C‖ρ‖1/2p .

Lemma 4.3.6. Let λ(σ) = 1/
√
σ, σ > 0. Then there exists a ρ ∈ L1 ∩ L∞(R3), spherically symmetric,

which takes positive and negative values, such that

∇UMρ /∈W 1,1
loc (R3).

Proof. For n ∈ N set

an :=

n∑
i=1

2

i2

and let mn be the center between an and an+1, i.e.,

mn := an +
1

(n+ 1)2
.

Then a1 = 2 and

an →
π2

3
< 4 for n→∞.

Set M(r) := 0 if r ∈ [0, 2) or r ∈ [π2/3,∞). If r ∈ [2, π2/3) set

M(r) :=

{
α if r ∈ [an,mn) and r = an + α

1/(n+ 1)2 − α if r ∈ [mn, an+1) and r = mn + α
.

Then M is continuous and

M(an) = 0, (4.10)

M(mn) =
1

(n+ 1)2
.

Set ρ(r) := 0 if r ∈ [0, 2) or r ∈ [π2/3,∞). If r ∈ [2, π2/3) set

ρ(r) :=

{
1/(4πr2) if r ∈ [an,mn)

−1/(4πr2) if r ∈ [mn, an+1)
.

Then ρ ∈ L1 ∩ L∞(R3). Further for r ≥ 0

M ′(r) = 4πr2ρ(r)

and thus

M(r) =

∫ r

0

4πs2ρ(s) ds =

∫
Br

ρdx.

In view of (4.10)

∇UNρ (x) =
M(r)

r2

x

r

will have a zero for all x = (an, 0, 0), n ∈ N. Let us see how this troubles the second derivatives of the
Mondian potential:
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As in the introduction to this section we have

div(∇UMρ (x)) = ρ(x) +
1

r2
(r
√
M(r))′

for r = |x| > 0. But
1

r2
(r
√
M(r))′ /∈ L1(B4)

since ∫
B4

∣∣∣∣ 1

r2
(r
√
M(r))′

∣∣∣∣dx = 4π

∫ 4

0

∣∣∣(r√M(r))′
∣∣∣dr

= 4π

∞∑
i=1

[∫ mn

an

(r
√
M(r))′ dr −

∫ an+1

mn

(r
√
M(r))′ dr

]

= 8π

∞∑
i=1

mn

√
M(mn) ≥ 8π

∞∑
i=1

1

n+ 1
=∞.

Hence
div(∇UMρ ) /∈ L1(B4)

and
∇UMρ /∈W 1,1

loc (R3).

Since the density ρ constructed in Lemma 4.3.6 mimics the difficulties that one can encounter in a
situation without symmetry assumptions, we suspect that it is impossible to prove the existence of weak,
integrable derivatives of ∇UMρ for general ρ ∈ L1 ∩ L∞(R3), ≥ 0. Thus the assumption of spherical
symmetry in Theorem 4.3.3 seems indeed to be necessary - at least if one wants to rely on Theorem III.3
of DiPerna & Lions (1989b).

4.4 Conservation of energy

In this section we prove that weak Lagrangian solutions f of the (VQMS) conserve energy as long as
the support of f remains bounded. Since we have already proven that the spherically symmetric, weak
Eulerian solutions from Theorem 4.2.1 are also Lagrangian ones (Theorem 4.3.3) this yields conservation
of energy for these solutions. In Section 6 we show how the result from this section can be used to prove
also conservation of energy for symmetry free, weak Eulerian solutions even if we cannot prove that these
solutions are Lagrangian ones.

General assumptions. Throughout this section we assume that (Λ3) holds.

First a technical proposition that will be important to prove the finiteness of the potential energy.

Proposition 4.4.1. Let p > 1, R > 0 and ρ ∈ L1 ∩ Lp(R3),≥ 0 with supp ρ ⊂ BR. Then√
1− R2

|x|2
‖ρ‖1

(|x|+R)2
≤
∣∣∇UNρ (x)

∣∣ ≤ ‖ρ‖1
(|x| −R)2

for a.e. x ∈ R3 with |x| > R.

Proof. Let x, y ∈ R3 with |y| < R < |x|, then |x− y| ≥ |x| −R, and hence∣∣∇UNρ (x)
∣∣ ≤ ∫ ρ(y′)

(|x| −R)2
dy′ =

‖ρ‖1
(|x| −R)2

.

Let α be the angle between the vectors x and x− y. With α0 as in the following sketch
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we have
|α| ≤ α0 ≤

π

2

and

cosα ≥ cosα0 =

√
1− sin2 α0 =

√
1− R2

|x|2
.

Together with the estimate |x− y| ≤ |x|+R, this yields

∣∣∇UNρ (x)
∣∣ ≥ ∣∣∣∣∇UNρ (x) · x

|x|

∣∣∣∣ =

∣∣∣∣∫ cosα

|x− y′|2
ρ(y′) dy′

∣∣∣∣ ≥
√

1− R

|x|2
‖ρ‖1

(|x|+R)2
.

Next we introduce the function Q, which is of importance in defining the potential energy.

Definition and Lemma 4.4.2. Set

Q(v) :=

∫ v

0

λ(u)udu, v ∈ [0,∞).

Then Q ∈ C1([0,∞)), it is monotonic increasing and for all v1, v2 ≥ 0

|Q(v2)−Q(v1)| ≤ 3

2
Λ2|v3/2

2 − v3/2
1 |.

Proof. First we observe that Lemma 3.3.1 implies

Q ∈ C1([0,∞)).

Since λ ≥ 0 we also see directly that Q is monotonic. Further with the transformation u = w2/3 we have

Q(v) =
2

3

∫ v3/2

0

λ(w2/3)w1/3 dw.

Since (Λ3) implies (Λ2) (Lemma 3.3.1), we have

λ(w2/3)w1/3 ≤ Λ2.

Hence for v2 ≥ v1 ≥ 0

Q(v2)−Q(v1) ≤ 2

3
Λ2|v3/2

2 − v3/2
1 |. (4.11)

Further we will need the following first order Taylor expansion of Q:

Lemma 4.4.3. There is a C > 0 such that for all u, v ∈ R3

|Q(|u|)−Q(|v|)− λ(|v|)v · (u− v)| ≤ C|u− v|3/2.

Proof. Let u, v ∈ R3 such that
wt := v + t(u− v) 6= 0

for all t ∈ [0, 1]. Set
q(t) := Q(|wt|).

Then
q ∈ C2([0, 1])

with
q′(t) = Q′(|wt|)

wt
|wt|
· (u− v) = λ(|wt|)wt · (u− v)

and

q′′(t) = λ′(|wt|)
[wt · (u− v)]2

|wt|
+ λ(|wt|)|u− v|2.
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We have

q(1)− q(0) =

∫ 1

0

q′(s) ds =

∫ 1

0

(
q′(0) +

∫ s

0

q′′(t) dt

)
ds

= q′(0) +

∫ 1

0

∫ 1

t

ds q′′(t) dt

= q′(0) +

∫ 1

0

(1− t)q′′(t) dt.

Hence

Q(|u|)−Q(|v|)− λ(|v|)v · (u− v) =

∫ 1

0

(1− t)q′′(t) dt.

By (Λ2) and (Λ3)

|q′′(t)| ≤ C |u− v|
2

|wt|1/2
.

Hence ∣∣∣∣∫ 1

0

(1− t)q′′(t) dt

∣∣∣∣ ≤ C|u− v|2 ∫ 1

0

dt

|wt|1/2
.

The integral on the right side becomes maximal if wt would be zero for t = 1/2. Hence∫ 1

0

dt

|wt|1/2
≤
∫ 1

0

dt∣∣− 1
2 |u− v|+ t|u− v|

∣∣1/2
= |u− v|−1/2

∫ 1

0

dt

|t− 1/2|1/2

= 2
√

2|u− v|−1/2.

Thus
|Q(|u|)−Q(|v|)− λ(|v|)v · (u− v)| ≤ C|u− v|3/2.

In Mondian physics one can formally derive that the potential energy corresponding to a density ρ(x)
is given by

Ẽpot(ρ) = − 1

8π

∫ ∣∣∇UNρ ∣∣2 dx− 1

4π

∫
Q
(∣∣∇UNρ ∣∣)dx

(Milgrom, 2010). However the second integral is in general not finite. If we choose for example a compactly
supported density ρ then

∇UNρ (x) = O(|x|−2)

for |x| → ∞ (Proposition 4.4.1). If we choose further λ(v) = 1/
√
v, then

Q(v) =
2

3
v3/2, v ≥ 0,

and
Q(∇UNρ (x)) = O(|x|−3)

and this is not integrable. Nevertheless we can study the difference between the potential energies of two
densities ρ and ρ̄.

Lemma 4.4.4. Let p > 3 and ρ, ρ̄ ∈ L1 ∩ Lp(R3), ≥ 0 with compact support and ‖ρ‖1 = ‖ρ̄‖1, then∫ ∣∣Q (∣∣∇UNρ ∣∣)−Q (∣∣∇UNρ̄ ∣∣)∣∣dx <∞
and hence

Ẽpot(ρ)− Ẽpot(ρ̄) =− 1

8π

∫ (∣∣∇UNρ ∣∣2 − ∣∣∇UNρ̄ ∣∣2) dx

− 1

4π

∫ (
Q
(∣∣∇UNρ ∣∣)−Q (∣∣∇UNρ̄ ∣∣)) dx

is finite.
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Proof. Lemma 3.1.4 implies that D2UNρ , D
2UNρ̄ ∈ Lp(R3). Since p > 3, Morrey’s inequality (Evans, 2010,

Section 5.6. Theorem 5) implies that there is a C > 0 such that for every x ∈ R3

‖∇UNρ ‖L∞(B1(x)), ‖∇UNρ̄ ‖L∞(B1(x)) < C.

Hence
∇UNρ , ∇UNρ̄ ∈ L∞(R3).

Hence for R > 0 ∫
|x|<2R

∣∣Q (∣∣∇UNρ ∣∣)−Q (∣∣∇UNρ̄ ∣∣)∣∣dx <∞.
Fix R > 0 such that supp ρ, supp ρ̄ ⊂ BR. Using Lemma 4.4.2 we can estimate∫

|x|≥2R

∣∣Q (∣∣∇UNρ ∣∣)−Q (∣∣∇UNρ̄ ∣∣)∣∣ dx ≤ C ∫
|x|≥2R

(∣∣∇UNρ ∣∣3/2 − ∣∣∇UNρ̄ ∣∣3/2) .
Using Proposition 4.4.1 we can estimate further∫

|x|≥2R

∣∣Q (∣∣∇UNρ ∣∣)−Q (∣∣∇UNρ̄ ∣∣)∣∣dx
≤C‖ρ‖3/21

∫
|x|≥2R

(
1

(|x| −R)3
−
(

1− R2

|x|2

)3/4
1

(|x|+R)3

)
dx

≤C
∫
|x|≥2R

(
1

(|x| −R)3
− 1

(|x|+R)3

)
dx

+ C

∫
|x|≥2R

1

(|x|+R)3

(
1−

(
1− R2

|x|2

)3/4
)

dx

≤C
∫
|x|≥2R

6R

(|x| −R)4
dx+ C

∫
|x|≥2R

1

(|x|+R)3

R3/2

|x|3/2
dx <∞.

So ∫ ∣∣Q (∣∣∇UNρ ∣∣)−Q (∣∣∇UNρ̄ ∣∣)∣∣dx <∞.
In particular this implies that the second integral in the difference of the potential energies exists. Further
Lemma 3.1.4 implies that the first integral exists. So

Ẽpot(ρ)− Ẽpot(ρ̄)

is well defined and finite.

In this thesis we are interested in ‘the’ energy of one specific distribution function f on position-
velocity space. But for the potential energy it makes only sense to study differences of potential energies
as we have just seen. Therefore we always fix a reference density ρ̄ on position space that has the same
mass as f and study the difference between the potential energies of ρf and ρ̄. However the (finite) term∫
|∇UNρ̄ |2 dx in the previous Lemma added only a negligible constant. Hence we drop it and work in the

sequential with the following

Definition 4.4.5. Let both f ∈ L∞(R6) and ρ̄ ∈ C(R3) be non-negative and compactly supported with∫∫
f dv dx =

∫
ρ̄dx.

Then both the kinetic energy of f

Ekin(f) :=
1

2

∫∫
|v|2f dv dx

and the potential energy of f (w.r.t the reference density ρ̄)

Epot(f) := Epot(ρf ) :=− 1

8π

∫ ∣∣∣∇UNρf ∣∣∣2 dx

− 1

4π

∫ (
Q
(∣∣∣∇UNρf ∣∣∣)−Q (∣∣∇UNρ̄ ∣∣))dx
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are finite and we define the total energy of f as

E(f) := Ekin(f) + Epot(f).

We can prove conservation of energy for weak Lagrangian solutions as long as the characteristics do
not escape to infinity.

Theorem 4.4.6. Let T > 0 and f̊ ∈ L∞(R6), ≥ 0 with compact support. Let

f(t, z) = f̊(Z(0, t, z)), t ∈ [0, T ], z ∈ R6

be a weak Lagrangian solution of the (VQMS) with initial condition f̊ . If there is an R > 0 such that for

a.e. z ∈ supp f̊ holds
|Z(s, 0, z)| ≤ R, s ∈ [0, T ],

then the total energy
E(f(t)) = Ekin(f(t)) + Epot(f(t)), t ∈ [0, T ],

is constant.

For the solution of the (VQMS) from Theorem 4.2.1 the following form of the above theorem holds.

Theorem 4.4.7. Let λ be as in Lemma 3.3.2 and f̊ ∈ C1
c (R3), ≥ 0 and spherically symmetric. Then

the solution f of the (VQMS) with initial condition f̊ from Theorem 4.2.1 conserves energy.

Proof. According to Theorem 4.3.3 the solution f of the (VQMS) from Theorem 4.2.1 is a Lagrangian
solution with flow Z = (X,V ). Theorem 4.3.3 relies on Theorem 3.5.4 to prove the existence of the flow

Z. This theorem states further that there is an R > 0 such that for a.e. z ∈ supp f̊ and for all s ∈ [0, T ]

|Z(s, 0, z)| ≤ R.

Hence Theorem 4.4.6 implies that the energy is conserved.

For the rest of this chapter the assumptions of Theorem 4.4.6 shall hold. The proof of Theorem 4.4.6
is split into several small steps. First we look at the kinetic energy.

Lemma 4.4.8. The kinetic energy of f is absolutely continuous and

d

dt
Ekin(f(t)) = −

∫
jf (t, x) · ∂xUMf (t, x) dx, t ∈ [0, T ]

where

jf (t, x) :=

∫
vf(t, x, v) dv, t ∈ [0, T ], x ∈ R3.

Proof. Shortly we write

X(t) = X(t, 0, x, v),

V (t) = V (t, 0, x, v),

for t ∈ [0, T ] and x, v ∈ R3. V (t) is absolutely continuous with

d

dt
V (t) = −∂xUMf (t,X(t))

and hence, by Lemma 3.4.3, |V (t)|2 is absolutely continuous with

d

dt
|V (t)|2 = −2V (t) · ∂xUMf (t,X(t)).

Hence

Ekin(f(t))− Ekin(f(0)) =
1

2

∫∫
|v|2f(t, x, v) dv dx− 1

2

∫∫
|v|2f̊(x, v) dv dx

=
1

2

∫∫
(|V (t)|2 − |V (0)|2)f̊(x, v) dv dx

= −
∫∫ ∫ t

0

V (s) · ∂xUMf (s,X(s))f̊(x, v) dsdv dx.
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Applying Fubini and again the transformation formula

Ekin(f(t))− Ekin(f(0)) = −
∫ t

0

∫∫
v · ∂xUMf (s, x)f(s, x, v) dv dxds

= −
∫ t

0

∫
jf (t, x) · ∂xUMf (t, x) dxds;

it was legitimate to use Fubini since there are 1 < p, q < ∞ with 1/p + 1/q = 1 such that ∂xU
M
f ∈

L1(0, T ;Lqloc(R3)) and f ∈ L∞(0, T ;Lp(R3)) with supp f(t) ⊂ BR, and hence∫ t

0

∫∫ ∣∣v · ∂xUMf (s, x)f(s, x, v)
∣∣dv dxds

≤ R
∫ t

0

‖f(s)‖p
∥∥∂xUMf (s)

∥∥
Lq(BR)

ds <∞.

Thus Ekin(f(t)) is absolutely continuous with

d

dt
Ekin(f(t)) = −

∫
jf (t, x) · ∂xUMf (t, x) dx.

When studying the time derivative of Epot in the sequential, it is convenient to regularize f . For ε > 0
and w ∈ C∞c (R3), ≥ 0,

∫
w dx = 1 we set

wε(x) :=
1

ε3
w
(x
ε

)
and

fε(t, x, v) :=

∫
f(t, y, v)wε(x− y) dy,

ρε(t, x) := ρfε(t, x),

jε(t, x) := jfε(t, x);

t ∈ [0, T ], x, v ∈ R3.
First we look at spatial derivatives of UNρε and UNjε .

Proposition 4.4.9. We have
ρε, jε ∈ C([0, T ];C1

b (R3))

and
UNρε , U

N
jε,i ∈ C([0, T ];C2

b (R3)),

i = 1, 2, 3. Further for all t ∈ [0, T ] and for ε > 0 small enough

supp ρε(t), supp jε(t) ⊂ BR

and
‖ρε(t)‖∞, ‖jε(t)‖∞ ≤ C

for a C > 0.

Remark. Cb(R3) denotes the space of continuous and bounded functions on R3 equipped with the uniform
norm ‖ ·‖∞. Ckb (R3), k ∈ N, denotes the space of k times continuously differentiable functions on R3 that
are bounded and whose partial derivatives up to k-th order are bounded, too. The norm of f ∈ Ckb (R3)
is given by the uniform norm of f plus the uniform norms of all partial derivatives of f up to k-th order.

Proof. Since ‖f̊‖∞ <∞ and the characteristics Z(t, 0, z) with z ∈ supp f̊ are bounded, it follows that for
ε > 0 small the support and the L∞-norm of ρε and jε are bounded as stated. Let ε > 0 be small such
that these bounds hold. We have

jε(t, x) =

∫
vfε(t, x, v) dv =

∫∫
vwε(x− y)f(t, y, v) dy dv =

=

∫∫
V (t)wε(x−X(t))f̊(y, v) dy dv
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for t ∈ [0, T ], x ∈ R3 where we wrote shortly

X(t) = X(t, 0, y, v),

V (t) = V (t, 0, y, v).

For a.e. (y, v) ∈ R6 the integrand is continuous with respect to (t, x) ∈ [0, T ]× R3 and it is bounded by

R‖wε‖∞‖f̊‖∞1{|z|≤R}. Hence

jε ∈ C([0, T ]× R3).

Since supp jε(t) ⊂ BR for all t ∈ [0, T ], jε is uniformly continuous and in particular

jε ∈ C([0, T ];Cb(R3)).

We can differentiate under the integral sign and get that

∂xjε(t, x) =

∫∫
V (t)∇(wε)(x−X(t))f̊(y, v) dy dv

is continuous on [0, T ]× R3. jε still is compactly supported, hence

jε ∈ C([0, T ];C1
b (R3)).

Since the map
C1
c (BR) 3 g 7→ UNg ∈ C2

b (R3)

is continuous (Lemma 3.1.3), we have that

UNjε,i ∈ C([0, T ];C2
b (R3)).

The proof for ρε is completely analogous.

Now we differentiate ∇UNρε with respect to the time variable.

Lemma 4.4.10. The partial derivative

∂t∂xU
N
ρε ∈ C([0, T ]× R3).

exists with
∂t∂xU

N
ρε = −4πH(jε).

Proof. For matter of simplicity we calculate first ∂tU
N
ρε instead of directly ∂t∂xU

N
ρε . Let ψ ∈ C1(R) with

0 ≤ ψ ≤ 1, 0 ≤ ψ′ ≤ 2, ψ(s) = 0 if s ≤ 1 and ψ(s) = 1 if s ≥ 2. For δ > 0 we define

Uδ(t, x) := −
∫
ρε(t, y

′)

|x− y′|
ψ

(
|x− y′|

δ

)
dy′ =

= −
∫∫∫

f(t, ξ′, v′)wε(y
′ − ξ′)

|x− y′|
ψ

(
|x− y′|

δ

)
dξ′ dv′ dy′.

With the transformations
y′ = x+ ξ′ − y

and
(ξ′, v′) = (X(t, 0, ξ, v), V (t, 0, ξ, v)) =: (X(t), V (t))

we have

Uδ(t, x) = −
∫∫∫

f(t, ξ′, v′)wε(x− y)

|y − ξ′|
ψ

(
|y − ξ′|
δ

)
dξ′ dv′ dy =

= −
∫∫∫

f̊(ξ, v)wε(x− y)

|y −X(t)|
ψ

(
|y −X(t)|

δ

)
dξ dv dy.

Since both X(t) and V (t) are absolutely continuous for a.e. (ξ, v) ∈ R6 and

d

dt
X(t) = V (t)
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we have
X ∈ C1([0, T ])

for a.e. (ξ, v) ∈ R6. Hence
Uδ, ∂tUδ ∈ C([0, T ]× R3)

with

∂tUδ(t, x) = −
∫∫∫

f̊(ξ, v)wε(x− y)[
y −X(t)

|y −X(t)|3
· V (t)ψ

(
|y −X(t)|

δ

)
−1

δ

y −X(t)

|y −X(t)|2
· V (t)ψ′

(
|y −X(t)|

δ

)]
dξ dv dy.

Since for t ∈ [0, T ], x ∈ R3

∣∣UNρε (t, x)− Uδ(t, x)
∣∣ ≤ ∫

|x−y′|≤2δ

ρε(t, y
′)

|x− y′|
dy′ ≤ Cδ2,

Uδ converges uniformly to UNρε on [0, T ]× R3 when δ → 0. For t ∈ [0, T ], x ∈ R3 set

V (t, x) := −
∫∫∫

f̊(ξ, v)wε(x− y)
y −X(t)

|y −X(t)|3
· V (t) dξ dv dy

= −
∫∫∫

f(t, ξ′, v′)wε(y
′ − ξ′) x− y′

|x− y′|3
· v′ dξ′ dv′ dy′

= −
∫
jε(t, y

′) · x− y′

|x− y′|3
dy′

= −
3∑
i=1

∂xiU
N
jε,i .

Using that the characteristics Z(t, 0, z) with z ∈ supp f̊ are bounded and that 1 − ψ(s) = ψ′(s) = 0 for
s ≥ 2, we get

|∂tUδ(t, x)− V (t, x)|

≤
∫∫∫

|y−X(t)|≤2δ

f̊(ξ, v)wε(x− y)

(
R

|y −X(t)|2
+

1

δ

2R

|y −X(t)|

)
dξ dv dy

≤ 5R

∫∫∫
|x−y′|≤2δ

f(t, ξ′, v′)wε(y
′ − ξ′)

|x− y′|2
dξ′ dv′ dy′

= 5R

∫
|x−y′|≤2δ

ρε(t, y
′)

|x− y′|2
dy′ ≤ Cδ.

Hence ∂tUδ converges uniformly to V on [0, T ]× R3 when δ → 0. Thus

∂tU
N
ρε = V = −

3∑
i=1

∂xiU
N
jε,i ∈ C([0, T ]× R3)

exists. Further both ∂xU
N
ρε and ∂x∂tU

N
ρε exist and are continuous. The Theorem of Schwartz then implies

that

∂t∂xU
N
ρε = ∂x∂tU

N
ρε = −

3∑
i=1

∂x∂xiU
N
jε,i ∈ C([0, T ]× R3)

exists, too9. Using the formula from Lemma 3.2.3 this can be written as

∂t∂xU
N
ρε = −4πH(jε).

9The Theorem of Schwartz in this form was first proved by Peano (1890) and in this form can also be found in (Rudin,
1976, Theorem 9.41)
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Now that we have the time derivative of ∂xU
N
ρε , we can differentiate Epot(ρε(t)), too.

Lemma 4.4.11.
Epot(ρε) ∈ C1([0, T ])

with
d

dt
Epot(ρε(t)) =

∫ (
∂xU

N
ρε + λ

(∣∣∂xUNρε ∣∣) ∂xUNρε ) ·H(jε) dx.

Proof. Differentiation under the integral sign gives the desired formula. We only have to justify this
calculation by finding an integrable function g = g(x) such that∣∣∂xUNρε (t) + λ

(∣∣∂xUNρε ∣∣) ∂xUNρε ∣∣ |H(jε)| ≤ g

on [0, T ]× R3. From Proposition 4.4.9 follows that for ε > 0 fixed

‖ρε(t)‖∞, ‖jε(t)‖∞, ‖∂xjε(t)‖∞ ≤ C, t ∈ [0, T ],

for a C > 0.With Lemma 3.1.3

‖∂xUNρε (t)‖∞, ‖∂
2
xU

N
jε (t)‖∞ ≤ C, t ∈ [0, T ].

With the formula from Lemma 3.2.3 for H(jε)

|H(jε)(t, x)| ≤ C|∂2
xU

N
jε (t, x)|,

hence
‖H(jε)(t)‖∞ ≤ C, t ∈ [0, T ].

Further Proposition 4.4.1 implies that for t ∈ [0, T ], |x| ≥ 2R

|∂xUNρε (t, x)| ≤ C

|x|2
.

Similarly one proves

|H(jε)(t, x)| ≤ C

|x|3
.

Combining the above estimates and using that λ(u) ≤ Λ2/
√
u, u > 0, gives g. Hence

Epot(ρε) ∈ C1([0, T ]).

Sending ε→ 0 yields conservation of energy.

Lemma 4.4.12. Epot(f) is absolutely continuous on [0, T ] with

d

dt
Epot(f(t)) = − d

dt
Ekin(f(t)), t ∈ [0, T ].

In particular, the total energy is conserved.

Proof. First we show that Epot(ρε) converges pointwise to Epot(ρf ) on [0, T ]. For every 1 ≤ p < ∞ and
t ∈ [0, T ] we have

ρε(t)→ ρ(t) in Lp(R3) for ε→ 0

and thus by Lemma 3.1.4 for every 3
2 < q <∞

∂xU
N
ρε (t)→ ∂xU

N
ρf

(t) in Lq(R3) for ε→ 0.

in particular for every R′ > 0

∂xU
N
ρε (t)→ ∂xU

N
ρf

(t) in L3/2(BR′) for ε→ 0.
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Since ‖ρε‖1 = ‖ρf‖1 = ‖f̊‖1, Proposition 4.4.1 gives for t ∈ [0, T ] and |x| ≥ 2R

|∂xUNρε (t, x)|3/2 − |∇UNρf (t, x)|3/2

≤ ‖f̊‖3/21

(
1

(|x| −R)3
− 1

(|x|+R)3
+

1

(|x|+R)3

(
1−

(
1− R2

|x|2

)3/4
))

≤ C
(

1

(|x| −R)4
+

1

(|x|+R)3

R3/2

|x|3/2

)
≤ C

|x|4
.

Let δ > 0 and choose R′ > 2R such that ∫
|x|>R′

dx

|x|4
< δ,

then Lemma 4.4.2 implies

|Epot(ρε(t))− Epot(ρf (t))|

≤ C

(∣∣∣‖∂xUNρε (t)‖22 − ‖∂xUNρf (t)‖22
∣∣∣+

∫
BR′

∣∣∣Q(|∂xUNρε |)−Q(|∂xUNρf |)
∣∣∣ dx+ δ

)
. (4.12)

Lemma 4.4.3 implies∫
BR′

∣∣∣Q(|∂xUNρε |)−Q(|∂xUNρf |)
∣∣∣dx

≤ C
∫
BR′

|∂xUNρε − ∂xU
N
f |3/2 dx+ C

∫
λ(|∂xUNf |)|∂xUNf |

∣∣∂xUNρε − ∂xUNf ∣∣dx
≤ C

∫
BR′

|∂xUNρε − ∂xU
N
f |3/2 dx+ CΛ2‖∂xUNf ‖

1/2

L3/2(BR′ )
‖∂xUNρε − ∂xU

N
f ‖L3/2(BR′ )

≤ C
(
‖∂xUNρε − ∂xU

N
f ‖

3/2

L3/2(BR′ )
+ ‖∂xUNρε − ∂xU

N
f ‖L3/2(BR′ )

)
Thus the right side of inequality (4.12) converges to a value below Cδ as ε→ 0. Since δ > 0 was arbitrary,

Epot(ρε)→ Epot(ρf ) (4.13)

pointwise on [0, T ] for ε→ 0.
Next we show that the derivative of Epot(ρε) converges, too. Lemma 3.3.1 implies that

‖λ(|∂xUNρε |)∂xU
N
ρε − λ(|∂xUNρf |)∂xU

N
ρf
‖L4(R3)

≤ C‖|∂xUNρε − ∂xU
N
ρf
|1/2‖L4(R3) = C‖∂xUNρε − ∂xU

N
ρf
‖1/2L2(R3) → 0

pointwise on [0, T ] for ε→ 0. Since jε(t)→ jf (t) in L4/3(R3) for ε→ 0, t ∈ [0, T ], and H : L4/3 → L4/3

is continuous,
H(jε(t))→ H(jf (t)) in L4/3(R3) for ε→ 0.

Hence by Hölder

d

dt
Epot(ρε) =

∫
(∂xU

N
ρε + λ(|∂xUNρε |)∂xU

N
ρε ) ·H(jε) dx

→
∫

(∂xU
N
ρf

+ λ(|∂xUNρf |)∂xU
N
ρf

) ·H(jf ) dx

pointwise on [0, T ] for ε→ 0. Rewriting this convergence using Lemma 3.2.8 gives

d

dt
Epot(ρε)→

∫
∂xU

M
ρf
· jf dx (4.14)

pointwise on [0, T ] for ε→ 0.
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Now we show that the pointwise convergences (4.13) and (4.14) are sufficient to prove the absolute
continuity of Epot(ρf ). Using the bounds on ρε and jε from Proposition 4.4.9 gives∣∣∣∣ d

dt
Epot(ρε)

∣∣∣∣ =

∣∣∣∣∫ (∂xU
N
ρε + λ(|∂xUNρε |)∂xU

N
ρε ) ·H(jε) dx

∣∣∣∣
≤
(
‖∂xUNρε‖L4(R3) + Λ2‖∂xUNρε‖

1/2
L2(R3)

)
‖H(jε)‖L4/3(R3)

≤ C
(
‖ρε‖L12/7(R3) + ‖ρε‖1/2L6/5(R3)

)
‖jε‖L4/3(R3) ≤ C

with C > 0 independent of ε > 0 small. This estimate allows us to use Lebesgue and together with (4.13)
and (4.14) we get for s, t ∈ [0, T ]

Epot(ρf (t))− Epot(ρf (s)) = lim
ε→0

(Epot(ρε(t))− Epot(ρε(s)))

= lim
ε→0

∫ t

s

d

dt
Epot(ρε(τ)) dτ

=

∫ t

s

∫
∂xU

M
ρf

(τ) · jf (τ) dxdτ

= −
∫ t

s

d

dτ
Ekin(f(τ)) dτ.

Hence Epot(ρf ) is continuous on [0, T ] and the total energy is conserved.

4.5 The missing uniqueness problem

There are several proofs in the literature to prove uniqueness for the Vlasov-Poisson system. Unfortu-
nately all these proofs cannot be transferred to the (VQMS).

Proofing uniqueness for the (VQMS) like in Theorem 1.1 of Rein (2007) does not work due to both
∇UMρ being at most Hölder continuous instead of Lipschitz continuous and due to the non-linear nature
of the estimates

‖λ(|∇UMρ |)∇UMρ ‖2s ≤ ‖|∇UMρ |1/2‖2s = ‖∇UMρ ‖1/2s ≤ ‖ρ‖1/2p ; (4.15)

we assumed that (Λ2) holds and that 3
2 < s < ∞ and 1 < p < 3 are as in Lemma 3.1.4. Further the

uniqueness proofs in (Knopf, 2017, Proposition 18), (DiPerna & Lions, 1989b, Theorem II.2) and (Loeper,
2006, Section 3.2.) can also all three not be transferred to the (VQMS) due to the non-linear nature of
the estimate (4.15).

The major problem is that all four proofs rely on a Gronwall-loop argument. They define some
quantity d(t) that resembles the difference between two different solutions with the same initial data.
Then an estimate of the form

d′(t) ≤ Cd(t)

is derived. Since the two solutions have the same initial data, d(0) = 0, and Gronwall’s lemma yields
d(t) = 0 for all t > 0. This yields uniqueness.

However, when the estimate for d′ is derived, all four proofs have at some point to estimate the
gradient of the potential by some norm of the density. If we consider now the (VQMS) then due to the
estimate (4.15) a square root enters at this point and we end up with an estimate of the form

d′(t) ≤ C
(
d(t) +

√
d(t)

)
.

In the following we do a formal calculation and follow the ansatz of DiPerna & Lions and Knopf to
illustrate this.

Consider f, g ∈ C1([0, T ]× R6), T > 0, with f(0) = g(0) such that for all t ∈ [0, T ]

supp f(t), supp g(t) ⊂ BR

for an R > 0 and

∂tf + v · ∂xf − ∂xUMf · ∂vf = 0,

∂tg + v · ∂xg − ∂xUMg · ∂vg = 0.
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For p > 3 study
d(t) := ‖f(t)− g(t)‖p, t ∈ [0, T ].

Then - suppressing the time variable on the right side -

d′(t) = ‖f − g‖1−pp

∫
|f − g|p−2(f − g)∂t(f − g) dz.

Using the Vlasov equation we get

∂t(f − g) = −v · ∂x(f − g) + ∂xU
M
f · ∂v(f − g) + (∂xU

M
f − ∂xUMg ) · ∂vg.

Using the compact support the theorem of Gauss gives

p

∫
|f − g|p−2(f − g)∂x(f − g) · v dz =

∫
divx(|f − g|pv) dz = 0

and

p

∫
|f − g|p−2(f − g)∂v(f − g) · ∂xUMf dz =

∫
divv(|f − g|p∂xUMf ) dz = 0.

Hence

d′(t) ≤ C‖f − g‖1−pp

∫
|f − g|p−1

∣∣∂xUMf − ∂xUMg ∣∣dz.
Assuming that (Λ3) holds, Lemma 3.3.1 gives∫

|f − g|p−1
∣∣∂xUMf − ∂xU

M
g

∣∣dz
≤
∫
|f − g|p−1

(∣∣∂xUNf−g∣∣+
∣∣∂xUNf−g∣∣1/2)dz

≤ C‖f − g‖p−1
p

(∥∥∂xUNf−g∥∥p +
∥∥∂xUNf−g∥∥1/2

p/2

)
.

Thus
d′(t) ≤ C

(∥∥∂xUNf−g∥∥p +
∥∥∂xUNf−g∥∥1/2

p/2

)
.

For s > 3/2 and 1 < q < 3 with
2

3
+

1

q
= 1 +

1

s

Lemma 3.1.4 gives ∥∥∂xUNf−g∥∥s ≤ C‖ρf−g‖q.
Since q < 3 < p and the support of f and g is compact, we can estimate this further and get∥∥∂xUNf−g∥∥s ≤ C‖ρf−g‖p ≤ C‖f − g‖p.
Thus

d′(t) ≤ C(‖f − g‖p + ‖f − g‖1/2p ) = C(d(t) +
√
d(t)).

Unfortunately this estimate is useless to prove uniqueness for the (VQMS).
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5 Stationary solutions of the (VQMS) and their stability

In the following subsections we prove that there is a large class of stationary solutions to the (VQMS)
that are stable against small, spherically symmetric perturbations. The solutions are of the form

f0(x, v) = φ(E) (5.1)

where φ is a suitable chosen function and

E = E(x, v) =
1

2
|v|2 + UMf0 (x), x, v ∈ R3,

is the local energy. Since the local energy is conserved along solutions of

Ẋ = V,

V̇ = −∂xUMf0 (X),

f0 is constant along such solutions, too. This enables us to prove that f0 is a weak Eulerian solution
of the (VQMS). The difficulty in constructing such an f0 is that the right side of (5.1) depends on f0

itself due to the term UMf0 , which appears in E. We construct f0 as the minimizer of an energy-Casimir
functional under a mass constraint. The corresponding Euler-Lagrange equation ensures that f0 is of the
form (5.1) and the fact that f0 is a minimizer grants the desired stability.

5.1 The reduced energy-Casimir functional

Instead of finding f0 directly it is convenient to construct first its density

ρ0 = ρf0

as the minimizer of a reduced energy-Casimir functional. For this purpose we introduce the Casimir
functional on the space of densities first. For a suitable ansatz function Ψ and a measurable density
ρ : R3 → [0,∞) we define the Casimir functional

C(ρ) :=

∫
Ψ(ρ) dx.

We demand that Ψ satisfies the following assumptions:

Assumptions on Ψ. Ψ ∈ C1([0,∞)), Ψ(0) = Ψ′(0) = 0 and it holds:

(Ψ1) Ψ is strictly convex,

(Ψ2) Ψ(ρ) ≥ Cρ1+1/n for ρ > 0 large, where 0 < n < 3.

In the following sections we use for a sufficiently regular density ρ the notation

Epot(ρ) = ENpot(ρ) + EQpot(ρ)

where

ENpot(ρ) := − 1

8π

∫ ∣∣∇UNρ ∣∣2 dx

is the “Newtonian” part of the potential energy and

EQpot(ρ) := − 1

4π

∫ (
Q
(∣∣∇UNρ ∣∣)−Q (∣∣∇ŪN ∣∣)) dx

is the part of the potential energy that makes Mondian physics different from Newtonian physics - we
refer to it as the “Mondian” part of the potential energy. As discussed earlier for EQpot(ρ) to be finite it
is important to fix a reference density ρ̄ that has the same mass as ρ.

Let M > 0. Fix ρ̄ ∈ Cc(R3), ≥ 0, spherically symmetric with ‖ρ̄‖1 = M . Let R̄ > 0 be such that

supp ρ̄ = BR̄.

In the following we use the notation
∇ŪN = ∇UNρ̄ .
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For a sufficiently regular density ρ with the same mass M > 0 as ρ̄ we define the reduced energy-
Casimir functional

Hr(ρ) := Epot(ρ) + C(ρ).

We search a minimizer of Hr over the set

RM :=
{
ρ ∈ L1

+(R3) sph. sym.
∣∣∣‖ρ‖1 = M, |EQpot(ρ)|+ C(ρ) <∞

}
.

Since we will see in the following section that RM ⊂ L6/5(R3), it follows from the Hardy-Littlewood-
Sobolev inequality that for all ρ ∈ RM also the Newtonian part of the potential energy is finite.

Note that the minimizer of the above variational problem does not depend on the choice of ρ̄. To see
this take another reference density ρ̃ ∈ Cc(R3), ≥ 0, spherically symmetric with ‖ρ̃‖1 = M . For ρ ∈ RM
denote by ẼQpot(ρ) the Mondian part of the potential energy of ρ with respect to the reference density ρ̃.
Then

EQpot(ρ) = ẼQpot(ρ) + C

with

C = − 1

4π

∫ (
Q
(∣∣∇UNρ̃ ∣∣)−Q (∣∣∇UNρ̄ ∣∣)) dx ∈ R

independent of ρ ∈ RM .
In the next section we prove the existence of a minimizer ρ0 ∈ RM of the reduced energy-Casimir

functional Hr. In Section 5.3 we deduce the corresponding Euler-Lagrange equation and analyse the
regularity of ρ0. Finally in Section 5.4 we define the full energy-Casimir functional on the space of
distribution functions f and construct from ρ0 a minimizer f0 of the full functional. Using the fact that
f0 is a minimizer, we prove that f0 is stable against small, spherically symmetric perturbations.

5.2 Minimizers of the reduced Energy-Casimir functional under a mass con-
straint

General assumptions. Throughout this section we assume that (Λ1) and (Λ2) hold.

Proposition 5.2.1. Q ∈ C([0,∞)) and monotonic increasing. If u ≥ v ≥ 0, it holds that

Q(u) ≤ 2Λ2

3
u3/2

and

Q(u)−Q(v) ≤ 2Λ2

3
(u3/2 − v3/2).

If u ≥ v ≥ 0 are small, it holds additionally that

Q(u) ≥ 2Λ1

3
u3/2

and

Q(u)−Q(v) ≥ 2Λ1

3
(u3/2 − v3/2).

Proof. Follows directly from the definition of Q, (Λ1) and (Λ2). Compare the proof of Lemma 4.4.2.

First we have to find bounds for the potential energy. Here we use the spherical symmetry to get also
good bounds for the Mondian part of the potential energy.

Lemma 5.2.2. There are C0 > 0 and C1 = C1(R̄,Λ2) > 0 such that for all ρ ∈ RM

−ENpot(ρ) ≤ C0‖ρ‖26/5

and

−EQpot(ρ) ≤ 1

4π

∫
|x|≤R̄

Q
(∣∣∇UNρ ∣∣)dx ≤ −C1E

N
pot(ρ)3/4 ≤ C1C0‖ρ‖3/26/5.
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Proof. The inequality for ENpot is a direct consequence of the Hardy-Littlewood-Sobolev inequality (Lieb

& Loss, 2010, Theorem 4.3) since for ρ ∈ L6/5(R3)

−Epot(ρ) =
1

2

∫∫
ρ(x)ρ(y)

|x− y|
dxdy;

see Lemma 3.1.6. So let us study the inequality for EQpot: Q is monotonic. Thanks to spherical symmetry

we have further for |x| ≥ R̄

|∇ŪN (x)| = M

|x|2
≥ |∇UNρ (x)|.

Thus

−EQpot(ρ) =
1

4π

∫
|x|≤R̄

(
Q
(∣∣∇UNρ ∣∣)−Q (∣∣∇ŪN ∣∣)) dx+

∫
|x|>R̄

. . . dx

≤ 1

4π

∫
|x|≤R̄

Q
(∣∣∇UNρ ∣∣) dx.

Further Hölder and Proposition 5.2.1 imply

1

4π

∫
|x|≤R̄

Q
(∣∣∇UNρ ∣∣)dx ≤ Λ2

6π

(∫
|x|≤R̄

|∇UNρ |2 dx

)3/4(
4π

3
R̄3

)1/4

≤ −Λ2C(R̄)ENpot(ρ)3/4.

Applying the inequality for ENpot(ρ) closes the proof.

Next we prove that H is bounded from below on RM and several bounds along minimizing sequences.

Lemma 5.2.3. infRM Hr > −∞ and along every minimizing sequence (ρj) ⊂ RM of Hr

‖ρj‖6/5, ‖ρj‖1+1/n and

∫
Ψ(ρj) dx

remain bounded.

Proof. Let ρ ∈ RM . From (Ψ2) and the definition of RM we can deduce

‖ρ‖1+1/n
1+1/n =

∫
{ρ≤1}

ρ1+1/n dx+

∫
{ρ>1}

ρ1+1/n dx

≤M + C

∫
Ψ(ρ) dx. (5.2)

Let either β = 2 or β = 3/2. Since for α = (n+ 1)/6

1− α
1

+
α

1 + 1/n
=

5− n
6

+
n

6
=

5

6
,

the interpolation formula yields

‖ρ‖β6/5 ≤ ‖ρ‖
(1−α)β
1 ‖ρ‖αβ1+1/n

≤ C
(

1 +

∫
Ψ(ρ) dx

)nβ/6
≤ C + C

(∫
Ψ(ρ) dx

)nβ/6
; (5.3)

in the last inequality we used that nβ/6 < 1. Using now Lemma 5.2.2, we can estimate Hr from below:

Hr(ρ) ≥
∫

Ψ(ρ) dx− C‖ρ‖26/5 − C‖ρ‖
3/2
6/5

≥
∫

Ψ(ρ) dx− C − C
(∫

Ψ(ρ) dx

)n/3
− C

(∫
Ψ(ρ) dx

)n/4
. (5.4)

57



Since n < 3, this implies that Hr is bounded from below on RM :

inf
RM
Hr ≥ min

a≥0
(a− C − Can/3 − Can/4) > −∞.

Let now (ρj) ⊂ RM be a minimizing sequence of Hr. Then (5.4) implies that
∫

Ψ(ρj) dx is bounded.
(5.2) and (5.3) give the bounds for ‖ρj‖1+1/n and ‖ρj‖6/5.

Lemma 5.2.3 enables us to extract from minimizing sequences (ρj) a subsequence that converges
weakly to a ρ0 ∈ L1+1/n. This ρ0 is our candidate for the minimizer of Hr. To prove that it is a
minimizer we have in particular to show that

Epot(ρj)→ Epot(ρ0) for j →∞.

For this the following compactness result from Rein (2007) is helpful.

Lemma 5.2.4. Let (ρj) ⊂ L1+1/n
+ (R3) be such that

ρj ⇀ ρ0 weakly in L1+1/n(R3),

∀ε > 0 ∃R > 0 : lim sup
j→∞

∫
|x|≥R

ρj dx < ε.

Then ∇UNρj → ∇U
N
ρ0 strongly in L2.

Proof. See Lemma 2.5. in Rein (2007).

Thus in order to pass with Epot to the limit we have to show that the mass along a minimizing sequence
remains concentrated. In the Mondian situation this is even easier to prove than in the Newtonian
situation. Far away from the centre of mass Mondian forces are much higher than their Newtonian
counterpart, hence they should also confine mass much more efficiently. And since EQpot is the term that
makes the difference between Newtonian and Mondian physics, this effect should be hidden there. This
turns out to be true as the following lemma shows.

Lemma 5.2.5. If (ρj) ⊂ RM is a minimizing sequence of Hr, then there is a C > 0 such that for all
R > R̄ large enough and j ∈ N ∫

|x|>R
ρj dx ≤ C

(
logR− log R̄

)−2/3
(5.5)

Proof. For r ≥ 0 let

M(ρj , r) :=

∫
|x|≤r

ρj dx.

For R > R̄ sufficiently large we can use Proposition 5.2.1 and get

− 1

4π

∫
|x|≥R̄

(
Q
(∣∣∣∇UNρj ∣∣∣)−Q (∣∣∇ŪN ∣∣))dx ≥ Λ1

6π

∫
|x|≥R̄

(
|∇ŪN |3/2 − |∇UNρj |

3/2
)

dx.

Introducing polar coordinates and using that M(ρj , r) takes values between 0 and M and is monotonic
increasing, we can estimate further

− 1

4π

∫
|x|≥R̄

(
Q
(∣∣∣∇UNρj ∣∣∣)−Q (∣∣∇ŪN ∣∣))dx ≥ 2Λ1

3

∫ ∞
R̄

M3/2 −M(ρj , r)
3/2

r
dr

≥ 2Λ1

3

∫ ∞
R̄

(M −M(ρj , r))
3/2

r
dr

≥ 2Λ1

3
(M −M(ρj , R))

3/2
∫ R

R̄

dr

r
.

Additionally, Lemma 5.2.2 and 5.2.3 imply that C(ρj) +ENpot(ρj) is bounded. Hence EQpot(ρj) is bounded
and

− 1

4π

∫
|x|≥R̄

(
Q
(∣∣∣∇UNρj ∣∣∣)−Q (∣∣∇ŪN ∣∣))dx ≤ EQpot(ρj) +

1

4π

∫
|x|<R̄

Q
(∣∣∣∇UNρj ∣∣∣) dx ≤ C
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independent of j ∈ N. Now we have only to use that

M −M(ρj , R) =

∫
|x|>R

ρj dx

and we can close the proof.

Now we can prove that there are minimizers of Hr over RM . To prove later that these minimizers are
also stable against small perturbations, it is important that we prove further several convergences along
minimizing sequences.

Theorem 5.2.6. Let (ρj) ⊂ RM be a minimizing sequence of Hr Then there exists a subsequence, again
denoted by (ρj), such that

ρj ⇀ ρ0 weakly in L1+1/n(R3).

ρ0 ∈ RM is a minimizer of Hr and

∇UNρj → ∇U
N
ρ0 strongly in L2(R3).

If additionally ρ0 is compactly supported,

∇UNρj −∇U
N
ρ0 → 0 strongly in L3/2(R3).

Remark. Observe that
∇UNρ0 , ∇U

N
ρj /∈ L

3/2(R3)

but
∇UNρj −∇U

N
ρ0 ∈ L

3/2(R3).

Proof. Let (ρj) ⊂ RM be a minimizing sequence of Hr. Since by Lemma 5.2.3 (ρj) ⊂ L1+1/n(R3) is
bounded, there exists a subsequence, again denoted by (ρj), such that

ρj ⇀ ρ0 weakly in L1+1/n(R3).

First we want to prove that ρ0 ∈ RM . Obviously ρ0 is spherically symmetric and non-negative. Due to
the weak convergence and Lemma 5.2.5, there is for every ε > 0 an R > 0 such that∫

BR

ρ0 dx = lim
j→∞

∫
BR

ρj dx ∈ [M − ε,M ].

Thus by monotone convergence ∫
ρ0 dx = M.

Now we extract from (ρj) a subsequence (ρ̂j) such that

lim
j→∞

∫
Ψ(ρ̂j) dx = lim inf

j→∞

∫
Ψ(ρj) dx.

From Mazur’s lemma we know that

∀j ∈ N ∃Nj ≥ j and c
(j)
j , . . . , c

(j)
Nj
≥ 0 with

Nj∑
i=j

c
(j)
i = 1

such that

ρ̃j :=

Nj∑
i=j

c
(j)
i ρ̂i → ρ0 strongly in L1+1/n(R3).

We extract a subsequence (ρ̃jk) of (ρ̃j) such that ρ̃jk converges to ρ0 pointwise a.e.. Since Ψ is continuous,
Ψ(ρ̃jk) converges pointwise a.e., too. Using Fatou’s lemma and the convexity of Ψ we conclude that∫

Ψ(ρ0) dx ≤ lim inf
k→∞

∫
Ψ(ρ̃jk) dx = lim inf

k→∞

∫
Ψ

Njk∑
i=jk

c
(jk)
i ρ̂i

dx

≤ lim inf
k→∞

sup
l≥jk

∫
Ψ(ρ̂l) dx = lim sup

j→∞

∫
Ψ(ρ̂j) dx

= lim
j→∞

∫
Ψ(ρ̂j) dx = lim inf

j→∞

∫
Ψ(ρj) dx. (5.6)
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Lemma 5.2.3 implies that lim inf
∫

Ψ(ρj) dx < ∞. Hence
∫

Ψ(ρ0) < ∞. It remains to prove that

|EQpot(ρ0)| <∞. Then ρ0 ∈ RM . We know that ρ0 ∈ L1∩L1+1/n(R3). In particular ρ0 ∈ L6/5(R3). Thus
Lemma 5.2.2 implies

EQpot(ρ0) > −∞.

Before we can show that EQpot(ρ0) <∞ we have to pass to the limit with the potential energy.
For the Newtonian part this is straightforward: Lemma 5.2.4 together with Lemma 5.2.5 imply that

∇UNρj → ∇U
N
ρ0 strongly in L2(R3) for j →∞.

In particular,
ENpot(ρj)→ ENpot(ρ0) for j →∞. (5.7)

Now we treat the Mondian part of the potential energy: Thanks to spherical symmetry for every ρ ∈ RM
and x ∈ R3 with |x| > R̄ holds

Q(|∇UNρ (x)|) ≤ Q(|∇ŪN (x)|). (5.8)

Thus for every R > R̄ and j ∈ N

EQpot(ρj) ≥ −
1

4π

∫
|x|≤R

(
Q(|∇UNρj |)−Q(|∇ŪN |)

)
dx. (5.9)

Now we extract a subsequence of (∇UNρj ), which we denote again by (∇UNρj ), such that

∇UNρj → ∇U
N
ρ0 pointwise a.e. for j →∞.

Since Q is continuous, Q(|∇UNρj |) converges pointwise a.e., too. From Proposition 5.2.1 and Lemma 5.2.3
we know further that

Q(|∇UNρj |) ≤ C
M(ρj , r)

3/2

r3
≤ C‖ρj‖3/26/5

L(Br)
1/4

r3
≤ Cr−9/4, r > 0,

with C > 0 independent of j ∈ N. Hence we can apply the theorem of dominated convergence in (5.9)
and it follows

lim inf
j→∞

EQpot(ρj) ≥ − lim
j→∞

1

4π

∫
|x|≤R

Q(|∇UNρj |) dx+
1

4π

∫
|x|≤R

Q(|∇ŪN |) dx

= − 1

4π

∫
|x|≤R

(
Q(|∇UNρ0 |)−Q(|∇ŪN |)

)
dx.

(5.8) holds for ρ0, too. Thus, when we send R→∞, monotone convergence yields

lim inf
j→∞

EQpot(ρj) ≥ E
Q
pot(ρ0). (5.10)

In particular, EQpot(ρ0) <∞ and thus ρ0 ∈ RM .
Taking into account (5.6), (5.7) and (5.10) it follows

Hr(ρ0) =

∫
Ψ(ρ0) dx+ ENpot(ρ0) + EQpot(ρ0)

≤ lim inf
j→∞

∫
Ψ(ρj) dx+ lim

j→∞
ENpot(ρj) + lim inf

j→∞
EQpot(ρj)

≤ lim
j→∞

Hr(ρj) = min
RM
Hr. (5.11)

Since ρ0 ∈ RM ,
Hr(ρ0) = min

RM
Hr

and ρ0 is indeed a minimizer of Hr over RM .
Now it proves important that, when we derived the estimate (5.6), we extracted first the subse-

quence (ρ̂j). This way in the inequality (5.11) appears twice a lim inf. This actually implies that both

(
∫

Ψ(ρj) dx) and (EQpot(ρj)) are convergent and∫
Ψ(ρj) dx→

∫
Ψ(ρ0) dx,

EQpot(ρj)→ EQpot(ρ0) (5.12)
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for j →∞. This we need when we prove next that

∇UNρj −∇U
N
ρ0 → 0 strongly in L3/2(R3)

provided the support of ρ0 is compact.
Let us assume in the following that ρ0 has compact support and let R0 > 0 be sufficiently large such

that
supp ρ0 ⊂ BR0

.

We have already seen above that

∇UNρj → ∇U
N
ρ0 strongly in L2(R3) for j →∞.

Hence
∇UNρj → ∇U

N
ρ0 strongly in L3/2(BR0

) for j →∞.

Using spherical symmetry and the compact support of ρ0 we derive the estimate∥∥∥∇UNρ0 −∇UNρj∥∥∥3/2

L3/2({|x|≥R0})
=

∫
|x|≥R0

∣∣∣∇UNρ0 −∇UNρj ∣∣∣3/2 dx

=

∫
|x|≥R0

(M −M(ρj , |x|))3/2

|x|3
dx

≤
∫
|x|≥R0

M3/2 −M(ρj , |x|)3/2

|x|3
dx

=

∫
|x|≥R0

(
|∇UNρ0 |

3/2 − |∇UNρj |
3/2
)

dx.

For R0 sufficiently large we can use Proposition 5.2.1 and estimate further∥∥∥∇UNρ0 −∇UNρj∥∥∥3/2

L3/2({|x|≥R0})
≤ 3

2Λ1

∫
|x|≥R0

(
Q(|∇UNρ0 |)−Q(|∇UNρj |)

)
dx

= − 6π

Λ1

(
EQpot(ρ0)− EQpot(ρj)

)
− 3

2Λ1

∫
|x|<R0

(
Q(|∇UNρ0 |)−Q(|∇UNρj |)

)
dx. (5.13)

Using Proposition 5.2.1, the mean value theorem and Hölder

3

2Λ1

∫
|x|<R0

∣∣∣Q(|∇UNρ0 |)−Q(|∇UNρj |)
∣∣∣dx ≤ Λ2

Λ1

∫
|x|<R0

∣∣∣|∇UNρ0 |3/2 − |∇UNρj |3/2∣∣∣ dx
≤ Λ2

Λ1

∫
|x|<R0

3

2

(
|∇UNρ0 |+ |∇U

N
ρj |
)1/2 ∣∣∣∇UNρ0 −∇UNρj ∣∣∣dx

≤ C
∥∥∥∇UNρ0 −∇UNρj∥∥∥

L3/2(BR0
)

and this converges to zero for j →∞. Together with (5.12) and (5.13) this implies∥∥∥∇UNρ0 −∇UNρj∥∥∥
L3/2({|x|≥R0})

→ 0 for j →∞.

So
∇UNρ0 −∇U

N
ρj → 0 in L3/2(R3) for j →∞

provided that ρ0 has compact support.

5.3 The Euler-Lagrange equation for the reduced variational problem

Next we want to derive the Euler-Lagrange equation that belongs to the minimizer ρ0. It will be important
that λ(|u|)u, u ∈ R3, is Hölder continuous. Therefore we strengthen the general assumptions of the
previous section.
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General assumptions. Throughout this section we assume that (Λ1) and (Λ3) hold.

First a technical proposition:

Proposition 5.3.1. Let φ ∈ L∞(R3) with compact support and
∫
φ dx = 0. Then

∇UNφ ∈ Lp(R3)

for every 1 < p ≤ ∞.

Proof. Let suppφ ⊂ BR and x ∈ R3, then

|∇UNφ (x)| ≤ ‖φ‖∞
∫
|y|≤R

dy

|x− y|2
≤ 4πR‖φ‖∞ <∞.

Thus ∇UNφ ∈ L∞(R3). Let now |x| > 2R. W.l.g. we may assume that

x = (x1, 0, 0) ∈ R3 with x1 > 2R.

Then

|∂x2
UNφ (x)| =

∣∣∣∣∫ −y2

|x− y|3
φ(y) dy

∣∣∣∣ ≤ ‖φ‖∞R ∫
|y|<R

dy

|x− y|3

≤ ‖φ‖∞RL(BR)

(
2

|x|

)3

.

And with the same calculation for |∂x3
Uφ(x)| we get that both

∂x2
UNφ (x), ∂x3

UNφ (x) = O(|x|−3)

for x1 →∞. Now let
α := φ1{φ>0}

and
β := −φ1{φ<0}.

Then α, β ≥ 0, ‖α‖1 = ‖β‖1 = ‖φ‖1/2 and

∂x1U
N
φ (x) =

∫
|y|<R

x1 − y1

|x− y|3
α(y) dy −

∫
|y|<R

x1 − y1

|x− y|3
β(y) dy

where both integrands on the right side are non-negative. With the same argumentation as in Proposition
4.4.1 we get

|∂x1
UNφ (x)|
‖α‖1

≤ 1

(|x| −R)2
−
√

1−R2/|x|2
(|x|+R)2

=

=
1−

√
1−R2/|x|2

(|x| −R)2

+
√

1−R2/|x|2
(

1

(|x| −R)2
− 1

(|x|+R)2

)
. (5.14)

Since
d

dσ

√
1− σ = −1

2
(1− σ)−1/2, σ < 1,

we have

1−

√
1− R2

|x|2
≤ 1

2

(
1− R2

|x|2

)−1/2
R2

|x|2
=

1

2
(|x|2 −R2)−1/2R

2

|x|
≤ C

|x|
.

Further
1

(|x| −R)2
− 1

(|x|+R)2
≤ 2

(|x| −R)3
(|x|+R− |x|+R) =

4R

(|x| −R)3
.

Thus (5.14) implies that
∂x1

UNφ (x) = O(|x|−3)
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for x1 →∞. Thus in general
∇UNφ (x) = O(|x|−3)

for |x| → ∞. And since ∇UNφ is bounded, this implies that

∇UNφ ∈ Lp(R3)

for every 1 < p ≤ ∞.

The most delicate part in deriving the Euler-Lagrange equation belonging to ρ0 is the derivative of
EQpot(ρ). This derivative we study in the next lemma.

Lemma 5.3.2. Let ρ ∈ L1 ∩ Lp(R3) for a 1 < p < 3 and let φ ∈ L∞(R3) with compact support and∫
φ dx = 0. Then ∫ ∣∣Q (|∇UNρ+τφ|)−Q (|∇UNρ |)∣∣dx <∞

and

lim
τ→0
−1

τ

1

4π

∫ (
Q
(
|∇UNρ+τφ|

)
−Q

(
|∇UNρ |

))
dx =

∫
Uλρ φdx.

Remark 5.3.3. Observe that in Lemma 5.3.2 we did neither assume that ρ is spherically symmetric
(like in Lemma 5.2.2) nor that the support of ρ is compact (like in Lemma 4.4.4 ). Nevertheless the
difference between the Mondian part of the potential energy of ρ and ρ+ τφ is finite. The reason is that
the difference between the two densities under consideration is given by τφ and we have made several
regularity assumptions on φ.

Proof of Lemma 5.3.2. We prove first the intermediate assertion

lim
τ→0
−1

τ

1

4π

∫ (
Q
(
|∇UNρ+τφ|

)
−Q

(
|∇UNρ |

))
dx = − 1

4π

∫
λ(|∇UNρ |)∇UNρ · ∇UNφ dx. (5.15)

To avoid lengthy equations we use the abbreviation

F (v) := λ(|v|)v, v ∈ R3.

Since we assume that (Λ3) holds, we have more regularity for Q and λ than in the previous section. From
Lemma 4.4.2 follows

Q ∈ C1([0,∞))

with
Q′(σ) = λ(σ)σ, σ ≥ 0.

Since Q′(0) = 0,
Q(| · |) ∈ C1(R3)

with
∇Q(|v|) = F (v), v ∈ R3.

For u, v ∈ R3 set
fu,v(t) := Q(|tu+ (1− t)v|), 0 ≤ t ≤ 1.

From the mean value theorem follows that for every u, v ∈ R3 exists s ∈ [0, 1] such that

Q(|u|)−Q(|v|) = fu,v(1)− fu,v(0) = f ′u,v(s)

= F (su+ (1− s)v) · (u− v).

Treat ∇UNρ+τφ and ∇UNρ as pointwise defined functions and interpret ∇UNρ+τs(y)φ and ∇UNφ as linear

combinations of the two. Then for every y ∈ R3 there is 0 ≤ s(y) ≤ 1 such that

Q
(
|∇UNρ+τφ(y)|

)
−Q

(
|∇UNρ (y)|

)
= τF

(
∇UNρ+τs(y)φ(y)

)
· ∇UNφ (y).
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In view of the intermediate assertion 5.15, which we want to prove, we estimate (suppressing the y-
argument)∣∣Q (|∇UNρ+τφ|)−Q (|∇UNρ |)− τF (∇UNρ ) · ∇UNφ

∣∣ ≤ τ ∣∣F (∇UNρ+τsφ)− F (∇UNρ )
∣∣ |∇UNφ |

≤ Cτ
∣∣∇UNρ+τsφ −∇UNρ ∣∣1/2 |∇UNφ |

≤ Cτ2|∇UNφ |3/2;

we have used the Hölder continuity of F (u) = λ(|u|)u (Lemma 3.3.1). Thus

1

4π

1

τ

∫ ∣∣Q (|∇UNρ+τφ|)−Q (|∇UNρ |)− τF (∇UNρ ) · ∇UNφ
∣∣dy ≤ Cτ ∫ |∇UNφ |3/2 dy.

With Proposition 5.3.1 this yields the intermediate assertion (5.15). Further this guarantees that the
integral ∫ ∣∣Q (|∇UNρ+τφ|)−Q (|∇UNρ |)∣∣dx <∞
for all τ ≥ 0. Using the estimates from the proof of Lemma 3.3.3 allows us to use Fubini in the following
calculation:

− 1

4π

∫
λ(|∇UNρ |)∇UNρ · ∇UNφ dx = − 1

4π

∫
λ(|∇UNρ (y)|)∇UNρ (y) ·

∫
y − x
|y − x|3

φ(x) dxdy

=
1

4π

∫∫
λ(|∇UNρ (y)|)∇UNρ (y) ·

(
x− y
|x− y|3

+
y

|y|3

)
φ(x) dy dx

=

∫
Uλρ (x)φ(x) dx.

We prove that minimizers ρ0 of Hr satisfy the following Euler-Lagrange equation.

Lemma 5.3.4. Let ρ0 ∈ RM be a minimizer of Hr over RM . Then there is an E0 ∈ R such that for
a.e. x ∈ R3

ρ0(x) =

{
(Ψ′)−1(E0 − UMρ0 (x)), if UMρ0 < E0,

0, if UMρ0 ≥ E0.

Proof. Consider ρ0 as a pointwise defined function. Let ε > 0 and set

Sε := {x ∈ B1/ε|ε ≤ ρ0(x) ≤ 1/ε}.

For ε > 0 small enough
L(Sε) > 0.

Let w ∈ L∞(R3) be spherically symmetric and compactly supported such that

w ≥ 0 on {ρ = 0} (5.16)

and
w vanishes on supp ρ0\Sε. (5.17)

Define

φ := w −
∫
w dx

L(Sε)
1Sε

and
ρτ := ρ0 + τφ, τ > 0.

Observe that φ ∈ L∞(R3), suppφ ⊂ Sε ∪ suppw is compact and
∫
φdx = 0.

We show that ρτ ∈ RM for τ > 0 small: Obviously ρτ is spherically symmetric. If τ ≥ 0 is small, then
ρτ ≥ 0 due to (5.16), (5.17) and the boundedness of φ on Sε. Since

∫
φdx = 0,

∫
ρτ dx = M . Further∫

Ψ(ρτ ) dx ≤
∫

Ψ(ρ0) dx+

∫
Sε

Ψ(ρ0 + τφ) dx+

∫
suppw\ supp ρ0

Ψ(w) dx

≤
∫

Ψ(ρ0) dx+ Ψ(1/ε+ τ‖φ‖∞)L(B1/ε) + Ψ(‖w‖∞)L(suppw) <∞.
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And last, ρ0 ∈ RM and Lemma 5.3.2 imply∫ ∣∣Q(|∇UNρτ |)−Q(|∇ŪN |)
∣∣dx ≤ ∫ ∣∣Q(|∇UNρτ |)−Q(|∇UNρ0 |)

∣∣dx
+

∫ ∣∣Q(|∇UNρ0 |)−Q(|∇ŪN |)
∣∣dx <∞.

Thus ρτ ∈ RM .
Lemma 5.3.2 implies further

1

τ
(EQpot(ρτ )− EQpot(ρ0))→

∫
Uλρ0φdx for τ → 0.

Since
1

τ
(Ψ(ρτ )−Ψ(ρ0))→ Ψ′(ρ0)φ pointwise for τ → 0

and
1

τ
|Ψ(ρτ )−Ψ(ρ0)| ≤ Ψ′(1/ε+ ‖φ‖∞)|φ|, 0 ≤ τ ≤ 1,

dominated convergence implies

1

τ

∫
(Ψ(ρτ )−Ψ(ρ0)) dx→

∫
Ψ′(ρ0)φdx for τ → 0.

Since both ρτ , ρ0 ∈ RM ⊂ L6/5(R3), we have thanks to Lemma 3.1.6

1

τ
(ENpot(ρτ )−ENpot(ρ0))

= − 1

2τ

∫∫
ρτ (x)ρτ (y)

|x− y|
dxdy +

1

2τ

∫∫
ρ0(x)ρ0(y)

|x− y|
dxdy

= −
∫∫

φ(x)ρ(y)

|x− y|
dxdy − τ

2

∫∫
φ(x)φ(y)

|x− y|
dxdy.

Thus
1

τ
(ENpot(ρτ )− ENpot(ρ0))→

∫
UNρ0φ dx for τ → 0.

Since ρ0, ρτ ∈ RM and ρ0 is a minimizer of Hr over RM , we have

0 ≤ lim
τ↘0

1

τ
(Hr(ρτ )−Hr(ρ0))

=

∫
(UMρ0 + Ψ′(ρ0))φdx

=

∫
(UMρ0 + Ψ′(ρ0))w dx−

∫
Sε

(UMρ0 + Ψ′(ρ0))

∫
w dx

L(Sε)
dy

=

∫ [
UMρ0 + Ψ′(ρ0)−

∫
Sε

(UMρ0 + Ψ′(ρ0)) dy

L(Sε)

]
w dx

=

∫ [
UMρ0 + Ψ′(ρ0)− Eε

]
w dx

with

Eε :=

∫
Sε

(UMρ0 + Ψ′(ρ0)) dy

L(Sε)
.

w was arbitrary. In view of (5.16) and (5.17) the above inequality implies

UMρ0 + Ψ′(ρ0) ≥ Eε a.e. on {ρ0 = 0},
UMρ0 + Ψ′(ρ0) = Eε a.e. on Sε.

Since ε > 0 was arbitrary, too, Eε = E0 is independent of ε and

UMρ0 + Ψ′(ρ0) ≥ E0 a.e. on {ρ0 = 0},
UMρ0 + Ψ′(ρ0) = E0 a.e. on {ρ0 > 0}.
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Since Ψ′(0) = 0 and Ψ′(σ) > 0 if σ > 0, it holds for a.e. x ∈ R3

ρ0(x) = 0 ⇐⇒ UMρ0 (x) ≥ E0

and
ρ0(x) > 0 ⇐⇒ UMρ0 < E0.

If UMρ0 < E0 the convexity of Ψ gives

ρ0(x) = (Ψ′)−1(E0 − UMρ0 (x)).

Since for a suitable density ρ ∇UMρ (x) = O(|x|−1) for |x| → ∞, the potential UMρ (x) diverges
logarithmically when |x| → ∞. Combining this with the just proven Euler-Lagrange equation yields that
minimizers of Hr are compactly supported.

Lemma 5.3.5. Let ρ0 ∈ RM be a minimizer of Hr over RM . Then ρ0 is compactly supported.

Proof. Since ρ0 is spherically symmetric and ρ0 ∈ RM ⊂ L6/5(R3), Lemma 3.3.4 states that UMρ0 ∈
C1(R3\{0}) and

UMρ0 (r) = UMρ0 (1) +

∫ r

1

(
1 + λ

(
M(s)

s2

))
M(s)

s2
ds, r = |x|, x ∈ R3\{0}.

Let R > 1 be sufficiently large such that we can use (Λ1) in the following estimate and such that
M(r) ≥M/2 for every r > R. Then we get

UMρ0 (r) ≥ UMρ0 (1) + Λ1

√
M

2

∫ r

R

ds

s
≥ C ′ + C log r, r > R,

with C ′ ∈ R and C > 0. In particular UMρ0 (r) > E0 for r > R sufficiently large. Thus ρ0 is compactly
supported.

Last in this section we use the Euler-Lagrange equation to prove that minimizers are continuous.

Lemma 5.3.6. Let ρ0 ∈ RM be a minimizer of Hr over RM . Then

ρ0 ∈ Cc(R3)

and
UMρ0 ∈ C

1(R3).

Proof. As in the proof of Lemma 5.2.3
ρ0 ∈ L1+1/n(R3).

Hence
M(r) ≤ ‖ρ0‖1+1/n‖1Br‖n+1 ≤ Cr3/(n+1), r ≥ 0. (5.18)

Since 0 < n < 3, we have in particular

M(r) ≤ Cr3/4, 0 ≤ r ≤ R0, (5.19)

where R0 > 0 is such that
supp ρ0 = BR0 .

(5.19) and (Λ2) imply

|∇Uλρ0(x)| = λ

(
M(r)

r2

)
M(r)

r2
≤
√
M(r)

r
≤ Cr−5/8, 0 < r = |x| < R0.

Thus (Uλρ0(r))′ is in L1([0, R0]) and hence

Uλρ0 ∈ C(BR0
).
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and with Lemma 3.3.4
Uλρ0 ∈ C(R3).

(5.18) implies

|∇UN (x)| = M(r)

r2
≤ Cr3/(n+1)−2, r = |x| > 0.

If 0 < n < 2, (UNρ0(r))′ ∈ L1([0, R0]) and hence

UNρ ∈ C(R3).

Then ρ ∈ Cc(R3). Since (Λ3) holds, ∇UMρ0 ∈ C(R3) and UMρ0 ∈ C
1(R3).

If however 2 ≤ n < 3, some more arguments are necessary to get the same regularity for ρ0 and UMρ0 .
Let us employ again (5.19). Then we have for 0 < r ≤ R0

|UNρ0(r)| ≤ |UNρ0(R0)|+ C

∫ R0

r

s−5/4 ds ≤ Cr−1/4. (5.20)

Observe that due to the mean value theorem, the convexity of Ψ and (Ψ2) holds:

Ψ′(ρ) ≥ Ψ′(τ) =
Ψ(ρ)−Ψ(0)

ρ− 0
=

Ψ(ρ)

ρ
≥ Cρ1/n

for every ρ > 0 large with an intermediate value 0 < τ < ρ. Thus

(Ψ′)−1(η) ≤ Cηn for η > 0 large.

Thus ∫
ρ4

0 dx ≤
∫
{ρ0 small}

ρ4
0 dx+ C

∫
{ρ0 large}

(E0 − Uλρ0 − U
N
ρ0)4n dx

≤ C
∫
ρ0 dx+ C

∫
BR0

(1 + |UNρ0(x)|)4n dx.

Using (5.20) gives ∫
ρ4

0 dx ≤ C

(
1 +

∫
BR0

|x|−n dx

)
<∞

since 0 < n < 3. Hence
M(r) ≤ ‖ρ0‖4‖1Br‖4/3 ≤ Cr9/4

and

|∇UNρ0 | =
M(r)

r2
≤ Cr1/4, x ∈ R3, r = |x|.

Thus
∇UNρ0 , ∇U

λ
ρ0 ∈ C(R3).

Hence
UMρ0 ∈ C

1(R3)

and
ρ0 ∈ Cc(R3).

5.4 Minimizers of the full energy-Casimir functional and their stability

General assumptions. As in the previous section we assume throughout this section that (Λ1) and
(Λ3) hold.

For a suitable ansatz function Φ and a distribution function f : R6 → [0,∞) measurable we define
the Casimir functional

C(f) :=

∫∫
Φ(f) dx dv.

We demand that Φ satisfies the following assumptions:
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Assumptions on Φ. Φ ∈ C1([0,∞)), Φ(0) = Φ′(0) = 0 and it holds:

(Φ1) Φ is strictly convex,

(Φ2) Φ(f) ≥ Cf1+1/k for f ≥ 0 large, where 0 < k < 3/2.

In the following we use for a sufficiently regular distribution function f the notations

Epot(f) := Epot(ρf )

with Epot(ρf ) as before and

Ekin(f) :=
1

2

∫∫
|v|2f(x, v) dxdv

as in Section 4.4. We define the full energy-Casimir functional

HC(f) := Epot(f) + Ekin(f) + C(f).

Fix M > 0. We search a minimizer f0 of HC over the set

FM :=
{
f ∈ L1

+(R6) sph. sym
∣∣∣‖f‖1 = M, |EQpot(f)|+ Ekin(f) + C(f) <∞

}
;

recall that a distribution function f is called spherically symmetric if for all A ∈ SO(3)

f(Ax,Av) = f(x, v) for a.e. x, v ∈ R3.

We want to construct minimizers of HC from the minimizers of Hr. For this purpose we ‘reduce’ the full
functional by factoring out the v-dependence. This we do exactly in the same manner as Rein (2007):

For r ≥ 0 define

Gr :=

{
g ∈ L1

+(R3) sph. sym

∣∣∣∣∫ g(v) dv = r,

∫ (
1

2
|v|2g(v) + Φ(g(v))

)
dv <∞

}
and

Ψ(r) := inf
g∈Gr

∫ (
1

2
|v|2g(v) + Φ(g(v))

)
dv.

The relation between Φ and Ψ arises in a natural way. More details on that can be found in Rein (2007).
But the relation between Φ and Ψ can also be made more explicit using Legendre transformations. This
is done in Lemma 2.3. of Rein (2007). From this relation one deduces the following properties of Ψ:

Lemma 5.4.1. Ψ ∈ C1([0,∞)), Ψ(0) = Ψ′(0) = 0 and it holds:

(Ψ1) Ψ is strictly convex,

(Ψ2) Ψ(ρ) ≥ Cρ1+1/n for ρ > 0 large, where n := k + 3
2 .

Proof. The proof of this lemma is identical with the proof of Lemma 2.3. in Rein (2007).

Thus Ψ satisfies all assumptions that we used in the sections 5.1, 5.2 and 5.3. So we know that with
the just defined Ψ there exists a minimizer ρ0 ∈ RM of Hr over RM , which satisfies in particular the
Euler-Lagrange equation

ρ0(x) =

{
(Ψ′)−1(E0 − UMρ0 (x)), if UMρ0 < E0,

0, if UMρ0 ≥ E0,

for an E0 ∈ R. Making use of this equation we can construct a minimizer f0 of the full functional HC :

Lemma 5.4.2. For every f ∈ FM
HC(f) ≥ Hr(ρf ).

Let ρ0 ∈ RM be a minimizer of Hr over RM and set

f0(x) :=

{
(Φ′)−1(E0 − E), if E < E0,

0, if E ≥ E0,

with E(x, v) = |v|2/2 + UMρ0 (x), x, v ∈ R3. Then ρf0 = ρ0,

HC(f0) = Hr(ρ0)

and f0 ∈ FM is a minimizer of HC over FM . We have further

f0 ∈ Cc(R6).
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Proof. Inequality (2.11) from Rein (2007) states that for every f ∈ FM

C(f) + Ekin(f) ≥
∫

Ψ(ρf ) dx.

Thus ρf ∈ RM and
HC(f) ≥ Hr(ρf ). (5.21)

With exactly the same proof as for Theorem 2.2. in Rein (2007) if follows that

HC(f0) = Hr(ρ0) (5.22)

and
ρf0 = ρ0;

one has only to replace U – which represents the Newtonian potential in Rein (2007) – by UM everywhere.
(5.21), (5.22) and that ρ0 is a minimizer of Hr over RM imply that f0 is a minimizer of HC over FM .
By Lemma 5.3.6 UMρ0 ∈ C

1(R3). Thus f0 ∈ C(R6). By Lemma 5.3.5

supp ρ0 = BR0

for an R0 > 0. Thus there is a C0 > 0 such that

|UMρ0 | ≤ C0 on supp ρ0.

By the definition of f0, for all (x, v) ∈ supp f0 holds

|v| ≤
√

2(E0 − UMρ0 (x)) ≤
√

2(|E0|+ C0) =: R1.

Hence
supp f0 ⊂ BR0

×BR1

is compact.

In the following let f0, ρ0 and UM0 := UMρ0 be as in Lemma 5.4.2. Since f0 is a function of the local
energy E, f0 is constant along solutions of

Ẋ = V,

V̇ = −∇UM0 ,

and in this sense it is a solution of the (VQMS). However we can make this statement more explicit in
the notions that we used previously in this thesis.

Lemma 5.4.3. For every φ ∈ C∞c (R6) holds∫∫ (
v · ∂xφ−∇UM0 · ∂vφ

)
f0 dx dv = 0.

In particular f(t) := f0, t ≥ 0, is a static, weak Eulerian solution of the (VQMS).

Proof. We know from Lemma 5.3.6 that UM0 ∈ C1(R3) and from the previous lemma that f0 has compact
support. Thus there is a C0 > 0 such that

E0 −
1

2
|v|2 − UM0 (x) ≤ C0 for (x, v) ∈ supp f0.

Further

E0 −
1

2
|v|2 − UM0 (x) ≤ 0 for (x, v) /∈ supp f0.

Extend (Φ′)−1 by 0 to (−∞, 0). Then (Φ′)−1 ∈ C(R). By smoothening (Φ′)−1 we find a sequence
(ϕk) ⊂ C1(R) such that

ϕk → (Φ′)−1 uniformly on [−1, C0] for k →∞
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and for all k ∈ N
suppϕk ⊂ [−1, C0 + 1].

Set

fk(x, v) := ϕk(E0 −
1

2
|v|2 − UM0 (x)), x, v ∈ R3.

In the proof of Lemma 5.3.5 we have seen that UM0 (x) diverges logarithmically for |x| → ∞. Hence the
uniform boundedness of suppϕk implies that there is an R′ > 0 such that

supp fk ⊂ BR′ ⊂ R6

for all k ∈ N. Further the uniform convergence of the ϕk implies that also

fk → f0 uniformly on R6.

Thus for every φ ∈ C∞c (R6)∫∫ (
v · ∂xφ−∇UM0 · ∂vφ

)
fk dxdv →

∫∫ (
v · ∂xφ−∇UM0 · ∂vφ

)
f0 dxdv

for k →∞. Since the theorem of Gauss gives∫∫
(v · ∂xφ −∇UM0 · ∂vφ

)
fk dxdv

=

∫∫ (
divx(φv)− divv(φ∇UM0 )

)
fk dxdv

=

∫∫
φϕ′k(E0 − E)

(
−v · ∇UM0 +∇UM0 · v

)
dx dv = 0,

this implies ∫∫ (
v · ∂xφ−∇UM0 · ∂vφ

)
f0 dx dv = 0.

In particular for f(t) := f0, t ≥ 0, and for every φ ∈ C∞c ([0,∞)× R6)∫ T

0

∫∫ (
∂tφ+ v · ∂xφ−∇UM0 · ∂vφ

)
f0 dx dv dt+

∫∫
φ(0, x, v)f0 dxdv = 0.

Thus f is a static, weak Eulerian solution of the (VQMS).

Last we use the fact that f0 is a minimizer to prove that f0 is stable against small, spherically
symmetric perturbations. For this purpose we need suitable tools to measure the distance between f0

and another distribution function f ∈ FM . A first order Taylor expansion of Epot under the integral sign
gives for f ∈ FM

HC(f)−HC(f0) = d(f, f0) + remainder terms

where

d(f, f0) :=

∫∫
(Φ(f)− Φ(f0) + E(f − f0)) dxdv;

as before E = |v|2/2 + UM0 (x), x, v ∈ R3. It holds

Lemma 5.4.4. For every f ∈ FM d(f, f0) ≥ 0 and d(f, f0) = 0 iff f = f0.

Proof. Since
∫∫

f dxdv =
∫∫

f0 dx dv = M and Φ is convex,

d(f, f0) =

∫∫
(Φ(f)− Φ(f0) + (E − E0)(f − f0)) dx dv

≥
∫∫

[Φ′(f0) + E − E0] (f − f0) dxdv.

Due to the definition of f0 the term in the brackets vanishes if f0 > 0. Hence

d(f, f0) ≥ 0.

Moreover, since Φ is strictly convex, there is for every f ∈ FM with f 6= f0 a set of positive measure
where

Φ(f)− Φ(f0) > Φ′(f0)(f − f0).

Hence d(f, f0) = 0 iff f = f0.
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Thus d is an appropriate tool to measure distances between f0 and f ∈ FM . We have to take care of
the remainder terms. Since

ENpot(f) = − 1

8π

∫
|∇UNf |2 dx = −1

2

∫∫
ρf (x)ρf (y)

|x− y|
dxdy

is quadratic in f , its Taylor expansion stops after the second term and the corresponding remainder
term is simple. For EQpot the Taylor expansion does not stop and we have to estimate the corresponding
remainder term using Lemma 4.4.3. This leads to the following lemma.

Lemma 5.4.5. Let f ∈ FM ∩ L∞(R6) be compactly supported, then

|HC(f)−HC(f0)− d(f, f0)| ≤ C
(
‖∇UNf −∇UN0 ‖22 + ‖∇UNf −∇UN0 ‖

3/2
3/2

)
.

Proof. We have

HC(f)−HC(f0)− d(f, f0) = Epot(f)− Epot(f0)−
∫∫

UM0 (f − f0) dxdv. (5.23)

A second order Taylor expansion under the integral sign gives

ENpot(f)− ENpot(f0) = − 1

8π

∫ (
|∇UNf |2 − |∇U0|2

)
dx

= − 1

4π

∫
∇UN0 · (∇UNf −∇UN0 ) dx− 1

8π

∫
|∇UNf −∇UN0 |2 dx.

Since ρf , ρ0 ∈ RM ⊂ L6/5(R3), Lemma 3.1.6 gives

− 1

4π

∫
∇UN0 · (∇UNf −∇UN0 ) dx =

∫∫
UN0 (f − f0) dx dv.

Thus we have

ENpot(f)− ENpot(f0)−
∫∫

UN0 (f − f0) dxdv = − 1

8π
‖∇UNf −∇UN0 ‖22. (5.24)

Further Lemma 4.4.3 implies∣∣∣∣EQpot(f)− EQpot(f0) +
1

4π

∫
λ(|∇UN0 |)∇UN0 · (∇UNf −∇UN0 ) dx

∣∣∣∣ ≤ C‖∇UNf −∇UN0 ‖3/23/2.

Since supp ρf , supp ρ0 are compact, ‖ρf‖∞, ‖ρ0‖∞ < ∞ and
∫
ρf dx =

∫
ρ0 dx = M , we get as in the

proof of Lemma 5.3.2

1

4π

∫
λ(|∇UN0 |)∇UN0 · (∇UNf −∇UN0 ) dx = −

∫∫
Uλ0 (f − f0) dx dv.

Thus ∣∣∣∣EQpot(f)− EQpot(f0)−
∫∫

Uλ0 (f − f0) dx dv

∣∣∣∣ ≤ C‖∇UNf −∇UN0 ‖3/23/2. (5.25)

Taking (5.23), (5.24) and (5.25) together implies

|HC(f)−HC(f0)− d(f, f0)| ≤ C
(
‖∇UNf −∇UN0 ‖22 + ‖∇UNf −∇UN0 ‖

3/2
3/2

)
.

Now we can prove the following stability result.

Theorem 5.4.6. Assume that λ is as in Lemma 3.3.2 and that the minimizer f0 ∈ FM of HC over
FM is unique. Then for every ε > 0 there is a δ > 0 such that for every f̊ ∈ FM ∩ C1

c (R3) spherically
symmetric with

d(f̊ , f0) + ‖∇UN
f̊
−∇UN0 ‖2 + ‖∇UN

f̊
−∇UN0 ‖3/2 < δ

holds
d(f(t), f0) + ‖∂xUNf (t)−∇UN0 ‖2 + ‖∂xUNf (t)−∇UN0 ‖3/2 < ε, 0 ≤ t <∞,

where f is the weak Eulerian solution of the (VQMS) with initial condition f̊ from Theorem 4.2.1.
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Proof. Assume that there exist ε > 0, (f̊j) ⊂ FM ∩C1
c (R3) spherically symmetric, (tj) ⊂ [0,∞) such that

d(f̊j , f0) + ‖∇UN
f̊j
−∇UN0 ‖2 + ‖∇UN

f̊j
−∇UN0 ‖3/2 <

1

j
(5.26)

but
d(fj(tj), f0) + ‖∂xUNfj (tj)−∇UN0 ‖2 + ‖∂xUNfj (tj)−∇UN0 ‖3/2 > ε; (5.27)

fj is the weak Eulerian solution of the (VQMS) with initial condition f̊j from Theorem 4.2.1. First we
check that fj(tj) ∈ FM for every j ∈ N. From Theorem 4.3.3 we know that fj is also a weak Lagrangian
solution. Thus it is in particular non-negative and by Lemma 4.1.3 it preserves Lp-norms. Thus∫∫

fj(tj) dxdv = ‖fj(tj)‖1 = ‖f̊j‖1 = M

and
‖fj(tj)‖∞ = ‖f̊j‖∞ <∞.

As we have argued in the proof of Theorem 4.4.7 we see that fj(tj) has compact support. Thus

|EQpot(fj(tj))|+ Ekin(fj(tj)) + C(fj(tj)) <∞.

Since fj(tj) is also spherically symmetric, fj(tj) ∈ FM .
Now (5.26) and Lemma 5.4.5 imply that

HC(f̊j)→ HC(f0) for j →∞.

By Theorem 4.4.7 fj conserves energy and thus

E(fj(tj)) = E(f̊j).

Further the flow Zj corresponding to fj conserves also phase space volume and by (Z5)

C(fj(tj)) =

∫
Ψ(fj(tj , z)) dz =

∫
Ψ(f̊j(Zj(0, t, z))) dz

=

∫
Ψ(f̊j(z)) dz = C(f̊j).

Hence
HC(fj(tj)) = HC(f̊j)→ HC(f0) for j →∞. (5.28)

Thus (fj(tj)) ⊂ FM is a minimizing sequence of HC over FM . Lemma 5.4.2 implies that (ρfj (tj)) ⊂ RM
is also a minimizing sequence of Hr over RM . Hence Theorem 5.2.6 implies

‖∂xUNfj (tj)−∇UN0 ‖2 + ‖∂xUNfj (tj)−∇UN0 ‖3/2 → 0 for j →∞.

Together with (5.28) and Lemma 5.4.5 this implies

d(fj(tj), f0)→ 0 for j →∞.

Thus for j sufficiently large

d(fj(tj), f0) + ‖∂xUNfj (tj)−∇UN0 ‖2 + ‖∂xUNfj (tj)−∇UN0 ‖3/2 < ε,

which contradicts the assumption (5.27).

6 Discussion about the assumption of spherical symmetry

In many theorems in Sections 4 and 5 we made the assumption that the distribution function f must
be spherically symmetric. We discuss where one can easily get rid of this assumption and where it was
much more crucial.
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In Theorem 4.2.1 we summarized the result of Keller (2016) that the initial value problem for the
(VQMS) has global, weak Eulerian solutions under the assumption of spherical symmetry. In her proof
Keller constructed first classical solutions fk for a smoothed MOND field ∂xU

M
k . Then the main ingredient

in her proof is to guarantee that on every time interval [0, T ], T > 0, the support of the fk remains
uniformly bounded. This enables her to pass to the limit and construct a weak Eulerian solution f of
the (VQMS). The following formal calculation shows that at least on time intervals [0, δ] with δ > 0
sufficiently small we can guarantee that the support of a Lagrangian solution f(t) remains bounded also
without the assumption of spherical symmetry:

Let T > 0 and assume that f(t) is a weak Lagrangian solution of the (VQMS) on [0, T ] such that
supp f(t) ⊂ BR for a an R > 0 and for every t ∈ [0, T ]. Set

P (t) := sup {|v| |(x, v) ∈ supp f(s), 0 ≤ s ≤ t} , t ∈ [0, T ].

Since f is a Lagrangian solution ‖f(t)‖1 and ‖f(t)‖∞ are conserved and like in the exploratory calculation
on page 395 in Rein (2007)

‖∂xUNf (t)‖∞ ≤ C‖ρf (t)‖2/3∞ ≤ CP (t)2, t ∈ [0, T ].

Let (X(t), V (t)) be an absolutely continuous characteristic with (X(0), V (0)) ∈ supp f(0). Then

V (t) = V (0)−
∫ t

0

∂xU
M
f (s,X(s)) ds.

Assuming here in this formal calculation for simplicity10 that

∂xU
M
f = ∂xU

N
f + |∂xUNf |−1/2∂xU

N
f ,

we get the estimate

P (t) ≤ P (0) + C

∫ t

0

(P (s)2 + P (s)) ds.

Denote by Q(t) the solution of
Q̇ = C(Q2 +Q), Q(0) = P (0).

Then

P (t) ≤ Q(t) =
1

1− q0eCt
− 1

with 0 < q0 = P (0)/(P (0)+1) < 1 and t > 0 sufficiently small. Thus the v-support of f remains bounded
on small time intervals and thus also the x-support remains bounded.

Marrying the idea of this formal calculation with the proof of Keller (2016) makes it possible to
prove that on small timescales the initial value problem for the (VQMS) has weak Eulerian solutions also
without symmetry assumptions.

Is it also possible to prove the existence of global, weak Eulerian solutions for the (VQMS) without
symmetry assumptions? For the Vlasov-Poisson system this is possible (Pfaffelmoser, 1992; Lions &
Perthame, 1991). In these proofs one shows that on every time interval [0, T ], T > 0, the support of a
solution f remains bounded. The main difficulty is to guarantee that the forces do not become so strong
that they can accelerate mass in finite time to infinite velocities. When trying to prove the existence
of global solutions of the (VQMS), we will have to deal with the same difficulty. But when the forces
are strong Mondian and Newtonian physics are very similar. Hence one might suspect that it should
be possible to prove the existence of global solutions of the (VQMS) by using similar techniques as in
the situation of the Vlasov-Poisson system. However this is only a philosophical answer and a rigorous
treatment of this question is left open.

As discussed in Section 4.3 we doubt that it is possible to prove that every weak Eulerian solution of
the (VQMS) is also a Lagrangian one when we drop the assumption of spherical symmetry. But while

10Without symmetry assumptions ∂xUMf is then no longer a gradient but for this formal calculation we do not worry

about that. For a precise argument we must employ that not only ∂xUNf ∈ L
∞ but that also ∂xUNf ∈ C

0,α, α > 0. Then

∂xU
M
f = H

(
∂xU

N
f + |∂xUNf |

−1/2∂xU
N
f

)
∈ C0,α/2

since H maps Hölder continuous functions on Hölder continuous functions. From this connection between the regularity of
∂xUNf and ∂xUMf we get also L∞-bounds for ∂xUMf . This is a fact that we have not used here in this thesis.
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we have proved conservation of energy in Section 4.4 without symmetry assumptions, we have done so
only for weak Lagrangian solutions. So the question arises: Do weak Eulerian solutions conserve energy
if we do not assume that they are spherically symmetric? Weak solutions for the Vlaosv-Poisson system
(Horst et al., 1984) or for the Vlasov-Maxwell system (DiPerna & Lions, 1989a) are not known to conserve
energy. So why should weak solutions for the (VQMS) do so? There is a difference why one considers
weak solutions for these systems: For the above cited weak solutions of the Vlasov-Poisson and the
Vlasov-Maxwell system the authors used the concept of weak solutions because they could not control
L∞-norms of the force term effectively enough. This is not the reason why we consider weak solutions
for the (VQMS). We consider weak solutions for the (VQMS) because we cannot control the regularity
of the force term. In particular the derivatives of the force term cause problems. But as shown and
discussed above one can control L∞-norms of the force term in MOND efficiently enough to guarantee
that on finite time intervals the support of a solution f remains bounded. When now one constructs a
weak Eulerian solution with the technique from Keller (2016) by approximating it with solutions fk for
a smoothed version of the Vlasov-QUMOND system, we can apply Theorem 4.4.6 to the fk and get that
these smooth solutions conserve energy. We can do so because the necessary smoothing applies only to
the MOND function λ and we have proven Theorem 4.4.6 for very general λ. Since the support of the
fk remains uniformly bounded, we can pass to the limit also in the energy-integrals and we will get that
the resulting weak Eulerian solution f conserves energy, too.

Is it also possible to prove the stability result from Section 5 without symmetry assumptions? Here
the discussion becomes more tricky. The first point where we used the assumption of spherical symmetry
was Lemma 5.2.2 where we proved bounds for the potential energy. For the Mondian part of the potential
energy this proof relied very much on the assumption of spherical symmetry. In order to get a similar
bound also without symmetry assumption we suspect that one has to prove first a confining property
like the one from Lemma 5.2.5 where EQpot(ρ) controls how far apart the mass of ρ can be scattered. But
also this proof used spherical symmetry and a new idea is necessary to prove such a confining property
without symmetry assumptions. The next problem that one faces is that for a minimizing sequence (ρj)
that converges weakly to a minimizer ρ0 we must prove

∇UNρj −∇U
N
ρ0 → 0 strongly in L3/2(R3).

This is an essential ingredient in the proof of the stability statement in Theorem 5.4.6. Proofing that
∇UNρj −∇U

N
ρ0 converges strongly to zero in L3/2(R3) relied on the assumption of spherical symmetry, too,

and it did so in a somewhat sophisticated way. So also there we need a new proof.
If we manage to prove that without the assumption of spherical symmetry there are minimizers for

the variational problem from Section 5, it is easy to get the corresponding Euler-Lagrange equation since
our proof from Section 5.3 did not depend on the assumption of spherical symmetry. Further we would
expect that the minimizers are still spherically symmetric. This holds in the Newtonian situation of the
Vlasov-Poisson system and there is no reason why this should be different in the Mondian situation of
the (VQMS). In the Newtonian situation we are aware of two proofs to show that minimizers are still
spherically symmetric but both proofs fail in the Mondian situation:

The first proof uses that under the symmetric rearrangement of a density ρ the corresponding potential
energy ENpot(ρ) decreases (Lieb & Loss, 2010, Theorem 3.7). But this argument relies on the fact that
the potential energy can be written in the form

ENpot(ρ) = −1

2

∫∫
ρ(x)ρ(y)

|x− y|
dxdy.

We do not have such a representation for EQpot(ρ) and therefore this proof cannot be applied in the
Mondian situation.

The second proof relies on a symmetry result for solutions of elliptic equations (Gidas et al., 1979). In
the Newtonian situation we can deduce from the Poisson equation and from the Euler-Lagrange equation
that the potential UN of a minimizer ρ0 solves an equation of the form

∆UN = 4πρ0 = 4πg(UN )

with a suitable function g. For such an equation one can deduce from Theorem 4 of Gidas et al. (1979)
that UN must be spherically symmetric. Now we consider again the Mondian situation and we switch
from the QUMOND formulation to the AQUAL11 formulation of the MOND theory. This enables us to

11AQUAL is an acronym for aquadratic Lagrangian. Compare footnote 6 on Page 19.
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see more directly why the result of Gidas et al. cannot be applied in the Mondian situation. In AQUAL
the Mondian potential UM is derived as the solution of the PDE

div
(
µ(|∇UM |)∇UM

)
= 4πρ0, lim

|x|→∞
|∇UM (x)| = 0.

In spherical symmetry the potentials UM derived from the AQUAL and the QUMOND theory are
identical, but without the assumption of spherical symmetry these potentials are in general different. Let
µ be as in Lemma 3.3.2. We have

div
(
µ(|∇UM |)∇UM

)
− 4πg(UM )

= µ(|∇UM |)
3∑
i=1

∂2
xiU

M +
µ′(|∇UM |)
|∇UM |

3∑
i,j=1

∂xiU
M∂xjU

M∂xi∂xjU
M − 4πg(UM )

= G(UM , ∂xiU
M , ∂xi∂xjU

M )

with a suitable function G = G(a, x,H), a ∈ R, x ∈ R3, H = (hij) ∈ R3 × R3. To apply Theorem 4 of
Gidas et al. (1979) we need that for all a ∈ R, x ∈ R3 the matrix

(∂hijG)1≤i,j≤3 = µ(|x|)E3 +
µ′(|x|)
|x|

xxT

is positive definite; E3 denotes the identity matrix with dimension 3. If |x| is small, µ(|x|) = |x| and

(∂hijG)1≤i,j≤3 = |x|
(
E3 +

xxT

|x|2

)
.

Thus
(∂hijG)1≤i,j≤3 → 0 for |x| → 0.

Hence (∂hijG) is not positive definite for x = 0 and the symmetry result of Gidas et al. (1979) cannot be
applied in the Mondian situation.

Summarizing we can say, that it is possible to remove the assumption of spherical symmetry from
the treatment of the time-dependent solutions in Section 4 and still get almost the same results – except
for the link between Eulerian and Lagrangian solutions, which we discussed in detail in Section 4.3. In
contrast, removing the assumption of spherical symmetry from the treatment of the variational problem
in Section 5 will be quite a challenging task.
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Part II: Modelling the Milky Way

Now we leave MOND and the equations that govern the evolution of globular clusters and emerge ourselves
in the modelling of spiral galaxies:

7 Introduction Part II

The Milky Way - and spiral galaxies in general - still ask us many a riddle. To three of them we develop
new answers here in this thesis:

Where does the four armed spiral pattern in the Milky Way’s ISM originate from (Steiman-Cameron
et al., 2010)?

Why does atomic hydrogen have in most spiral galaxies the same velocity dispersion well above the
value expected from thermal considerations (Tamburro et al., 2009)?

Is a halo of non-baryonic, dark matter necessary to explain the Milky Way’s flat circular velocity
curve?

The key in answering these questions is a model for our galaxy where the interstellar medium (ISM) is
equipped with self-consistent dynamics. These dynamics are difficult to model because the ISM’s mass is
moving on almost circular orbits around the galactic centre. This ‘almost’ makes things difficult; how to
implement it in a self-consistent model? But we cannot ignore it because it is important for stability. We
solved this mathematical problem and this enables us to shed a new light on the three questions above.

The distribution function in our model is a function of the third component of the angular momentum
and the energy only and our technique can easily be extended to construct a self-consistent, multi-phase
model for the whole galaxy; a task that was elusive up to now (Binney, 2020). Our technique is based
on a fixed-point like algorithm, which is an improved version of the algorithm from Andréasson & Rein
(2015), plus a good understanding of how distribution functions, which match observations, must look
like. The resulting distribution function is comparable with the one of a cut-out Mestel disc like it is,
e.g., studied in Zang (1976), Toomre (1981) or Sellwood & Carlberg (2019). But here in this thesis our
distribution function is embedded in a realistic model for our galaxy; not in an infinitely extended Mestel
disc with infinite mass, like in the papers just cited.

How do we model the Milky Way in this thesis? The Milky Way has three baryonic components, a
bulge, a stellar disc12 and the interstellar medium (ISM). We include the bulge and the stellar disc as
rigid components and model the ISM dynamically. In the Milky Way, the ISM’s gaseous mass is confined
to a very thin disc, which exhibits spiral patterns and where all mass is moving on almost circular orbits
around the galactic centre. Simplifying, we assume in our model that the disc is razor-thin, i.e., all mass
is restricted to live in the plain, and - at first - we ignore the spiral patterns and assume that the disc
is axially symmetric. One could be tempted to simplify further and assume that all mass is on purely
circular orbits. However, this would be a bad idea, because such a disc destroys itself very fast (Binney
& Tremaine, 2008, §6.2.3). It is therefore important that we have at each position a dispersion of the
velocities – and this makes things complicated. In total we will search for a rigid bulge, a rigid stellar
disc and an axisymmetric distribution function f(x, v) ≥ 0 on position-velocity space with x, v ∈ R2 that
models the ISM.

Since most of the mass in our galaxy is on almost circular orbits, one can deduct from the observational
data how the circular velocity curve looks like (Eilers et al., 2019). From this, one can calculate the
axisymmetric gravitational potential UGal of our galaxy. In our model we assume that the potential is
time-independent and we demand that the distribution function f is time-independent, too. This is the
case if f is constant along each particle orbit, i.e., if for a given test particle with orbit (x(t), v(t)), where

ẋ = v,

v̇ = −∇UGal(x),

it holds that
d

dt
f(x(t), v(t)) = 0.

12In fact the Milky Way has two stellar discs but they have similar properties and so we include only one stellar disc with
averaged parameters.
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This is the case if and only if f is a solution of the (time-independent) Vlasov equation13

v · ∂xf −∇UGal · ∂vf = 0. (7.1)

We use Newton’s law of gravitation14 and thus the gradient of the gravitational potential that corresponds
to f is given by

∇Uf (x) := G

∫
R2

x− y
|x− y|3

Σf (y) dy, x ∈ R2, (7.2)

where

Σf (x) :=

∫
R2

f(x, v) dv (7.3)

is the (flat) density on position space R2 that corresponds to f , and G is the constant of gravitation. We
search for a model for the Milky Way, so we demand that the gravitational potential generated by our
model must equal the gravitational potential UGal of our galaxy, i.e.,

∇UGal = ∇Ubulge +∇Ust.disc +∇Uf . (7.4)

We call f a self-consistent model for the Milky Way’s ISM if it satisfies (7.1) - (7.4).
Mathematically the problem of finding such models is challenging because we have to find models that

are compactly supported, fast rotating and reasonable stable. Every model that one finds in the literature
fails at least at one aspect. The infinitely extended Mestel disk mentioned above is not compactly support
and has infinite mass. A cold disk where all mass is on purely circular orbits is highly unstable. And
while the models from Andréasson & Rein (2015), Firt & Rein (2006) or Frenkler (2016) are compactly
supported and stable, they are not fast rotating. Here in this thesis we present for the first time a model
that succeeds in all three aspects.

The outline of Part II is as follows: In Section 8 we study a new class of self-consistent models for
the Mestel disc, analyse their inner structure and construct from this understanding our model for the
Milky Way. We describe how multiphase models can be constructed with our technique. In Section 9 we
compare our model with other models from the literature and classify our model as a typical example
for the Bosma effect. In Section 10 we study numerically the stability of our model. There are two
instabilities and they correctly predict the spiral structure in the Milky Way’s ISM and the velocity
dispersion of atomic hydrogen. This explanations would fail if we included non-baryonic, dark matter.
In Section 11 we summarize our results and identify the tasks that should be tackled next.

8 From the Mestel disc to a realistic model of the Milky Way

8.1 The Mestel disc

As starting point we analyse first the so called Mestel disc (Mestel, 1963). This disc has the flat, axially
symmetric density

Σ0(r) :=
v2

0

2πGr
, r > 0,

where v0 > 0 is a constant with dimension of velocity. The derivative of the axisymmetric gravitational
potential generated by this flat mass distribution can be approximated using the well known formula for
a spherically symmetric mass distribution

U ′0(r) ≈ GM(r)

r2
=
v2

0

r

where M(r) denotes the mass inside the radius r (compare Lemma 3.1.5 from Part I). In general this is
only a rough approximation for a flat mass distribution but in the special case of the Mestel disc, this
approximation gives indeed the correct values (Binney & Tremaine, 2008, §2.6.1a) and we have for every
r > 0

U ′0(r) =
v2

0

r
. (8.1)

13In astrophysics this equation is often called the collisionless Boltzmann equation.
14In Part I it was necessary to distinguish between the Newtonian potential UN and the Mondian potential UM . Here

in Part II there is only the Newtonian potential. Thus we drop the superscript N and write shortly U for the Newtonian
potential.
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The velocity on a circular orbit is related to the derivative of the potential at radius r via the simple
formula

vc(r) =
√
rU ′0(r). (8.2)

Hence the Mestel disc has an everywhere flat circular velocity curve with vc(r) = v0. For the understand-
ing of galaxies like the Milky Way, which exhibit an almost flat circular velocity curve, it is therefore
useful to analyse first the analytically accessible Mestel disc. In the following theorem we equip this disc
with dynamics:

Theorem 8.1.1. Let v0 > 0 and let U0(r) = v2
0 log r, r > 0, be the potential of the Mestel disc. Take a

function Φ0 : [0,∞)→ [0,∞) measurable such that

0 < I :=

∫ ∞
0

∫ ∞
−∞

1

v2
Φ0

(
v2

1 + v2
2

2
− v2

0 log
v2

v0
− v2

0

2

)
dv1 dv2 <∞.

Set

C0 :=
v2

0

2πGI

and

f0(Lz, E) :=
C0

Lz
Φ0

(
E − v2

0 log
Lz
v0
− v2

0

2

)
1{Lz>0}

where
Lz(x, v) := x1v2 − x2v1

is the third component of the angular momentum and

E(x, v) :=
1

2
|v|2 + U0(x)

is the local energy. This f0 is a self-consistent model for the Mestel disc in the following sense:
The density that belongs to f0 equals the density of the Mestel disc:

Σf0 = Σ0.

Further along every solution of

ẋ = v, (8.3)

v̇ = −∇U0(x)

Lz and E are conserved, because U0 is axisymmetric and time-independent. Thus f0 is constant along
every solution of the ODE (8.3) and in this sense it solves the Vlasov equation (7.1) with ∇UGal replaced
by ∇U0.

Remark. In the following we refer to Lz as the angular momentum because the other two components of
the angular momentum are zero.

A sufficient condition for 0 < I <∞ is for example that Φ0 ∈ L∞+ ([0,∞)), has compact support and
does not vanish everywhere.

Proof of the Theorem. For x ∈ R3\{0} and r = |x| we use the transformation

(vr, vt) :=

(
x · v
r
,
Lz
r

)
.

vr denotes the velocity in radial direction and vt the velocity in tangential direction. Using this transfor-
mation we get

E − v2
0 log

Lz
v0
− v0

2
=
v2
r + v2

t

2
+ v2

0 log r − v2
0 log

rvt
v0
− v0

2

=
v2
r + v2

t

2
− v2

0 log
vt
v0
− v0

2
. (8.4)
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Since log s ≤ s− 1 for all s > 0,

E − v2
0 log

Lz
v0
− v0

2
≥ v2

r + v2
t

2
− v0(vt − v0)− v0

2

=
v2
r

2
+

(vt − v0)2

2
≥ 0. (8.5)

Thus the argument of Φ0 is everywhere non-negative and f0 is well defined. Further (8.4) implies

Σf0(r) =

∫
f0(Lz, E) dv

=
C0

r

∫ ∞
0

∫ ∞
−∞

1

vt
Φ0

(
v2
r + v2

t

2
− v2

0 log
vt
v0
− v0

2

)
dvr dvt

=
v2

0

2πGr
= Σ0(r).

Thus f0 is a self-consistent model for the Mestel disc in the above sense.

There are two choices for Φ0 where f0 resembles known distributions functions for the Mestel disc:
The first choice is to set Φ0 as the δ-distribution. In this case we have a cold disc were all mass is on
purely circular orbits. This is because the argument of Φ0 is zero if and only if the radial component
of the velocity vr = 0 and the tangential component of the velocity vt = v0 (see inequation (8.5)). The
second choice is Φ0(η) = exp(−Cη) with C > 0. In this case we get Toomres model for the Mestel disc
that was studied extensively in Zang (1976).

At a first glance f0 might look a bit complicated and unmotivated, but with the help of the next
Lemma we are able to write it down in a simpler form that is more intuitive.

Lemma 8.1.2. Let v0 > 0 and let U0(r) = v2
0 log r, r > 0, be the potential of the Mestel disc. Every

orbit in the potential U0 can be characterized uniquely – up to rotations and shifts in time – by its values
for Lz and E. Let us study orbits with (Lz, E) ∈ (0,∞)× R; we call this half-plane the Lz-E-plane. All
these orbits are moving counter-clock wise around the origin. The angular momentum-energy curve of
circular orbits

(Lc(r), Ec(r)) =

(
rv0, v

2
0 log r +

v2
0

2

)
=

(
Lc, v

2
0 log

Lc
v0

+
v2

0

2

)
=

(
Lc, Ec

(
Lc
v0

))
can either be characterized by r ∈ (0,∞) or by Lc ∈ (0,∞). It divides the Lz-E-plane into two parts. All
admissible orbits have an Lz-E-coordinate above the angular momentum-curve, there are no orbits below.
The orbits that are almost circular are those that are close to the angular momentum curve.

Proof. We only consider orbits with Lz 6= 0 since these are the orbits that do not pass through the origin.
Let Lz 6= 0 and let

Ueff(s) := v2
0 log s+

L2
z

2s2
, s > 0,

be the corresponding effective potential. We have

U ′eff(s) =
1

s

(
v2

0 −
L2
z

s2

)
.

Hence Ueff is decreasing for 0 < s < rc = Lz/v0. It is increasing for s > rc and it takes its minimum at
s = rc. Further

lim
s↘0

Ueff(s) = lim
s→∞

Ueff(s) =∞.

Let (x(t), v(t)) be an orbit in the potential U0 with angular momentum Lz 6= 0. Set r := |x| and
vr := x · v/r. Then

ṙ = vr, (8.6)

v̇r = −U ′eff(r).
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The energy E along this orbit is constant and we have

E =
1

2
|vr|2 + Ueff(r) ≥ Ueff(rc).

Thus there are uniquely determined 0 < r1 < rc < r2 such that

E = Ueff(r1) = Ueff(r2).

The right side (vr,−U ′eff(r)) of the ODE (8.6) is locally Lipschitz continuous for (r, vr) ∈ (0,∞) × R.
Thus uniqueness implies that there are t1, t2 ∈ R such that r(t1) = r1 and r(t2) = r2, and that every
orbit with the same values Lz and E is identical to (x(t), v(t)) up to rotations and shifts in time. If we
consider another orbit (x̃, ṽ) with angular momentum L̃z 6= Lz then obviously the orbit is different from
(x, v) because at the same position the orbits will have different tangential velocities. If L̃z = Lz but the
energy Ẽ 6= E, then r̃1 6= r1 and r̃2 6= r2 and hence the orbits are different, too; r̃1 and r̃2 are defined
in the same manner as r1 and r2. Thus every orbit in the potential U0 of the Mestel disc is uniquely
characterized by its values for Lz and E.

Consider now two test particles with the same angular momentum Lz > 0. Assume that the first
particle is moving on a circular orbit ar radius rc = Lz/v0 and that the second particle is moving on an
eccentric orbit. A short look at the effective potential tells us that at some time t ∈ R the second particle
has to appear at the radius rc, too. Then the energy of the first particle is

E1 = Ueff(rc)

and the energy of the second particle is

E2 = Ueff(rc) +
1

2
|vr(t)|2 > Ueff(rc) = E1.

Hence the Lz-E-coordinate of every orbit is located above the angular momentum-energy curve of circular
orbits. Further a particle is on an almost circular orbit if the radial component of its velocity is small,
i.e., if it has an Lz-E-coordinate close to the angular momentum-energy curve.

Now let us write down f0 a second time:

f0(Lz, E) =
C0

Lz
Φ0

(
E − Ec

(
Lz
v0

))
1{Lz>0}. (8.7)

For the rest of this thesis we use the following simple form for Φ0:

Φ0(η) :=

{
1 if η < (2σ)2,

0 else,
(8.8)

where σ > 0 is a parameter with the dimension of velocity. Now we can explain the structure of f0 in a
much more intuitive way: We take a narrow stripe along the angular momentum-energy curve of circular
orbits in the potential U0, namely of thickness (2σ)2, and define f0 on it. This is the part Φ0(E − Ec).
For self-consistency the density generated by f0 must be Σ0, for this purpose we need also the prefactor
C0/Lz. Since we want only orbits that rotate counter-clockwise, we exclude all orbits with Lz < 0.

We are interested in models where all mass is on almost circular orbits. Thus we need a narrow stripe
and a small parameter σ. We see in the next Lemma that the parameter σ gives the dispersion of the
tangential velocities:

Lemma 8.1.3. When σ ↘ 0 the average tangential velocity in the model f0 for the Mestel disc is

vt,avg = v0 + o(σ)

independent of radius. The dispersion of the tangential velocities is

σ + o(σ)

and also independent of radius; in the rest of this thesis we refer to σ as the velocity dispersion. Further
the dispersion of the radial velocities is

√
2σ + o(σ) and

C0 =
v3

0

8
√

2π2Gσ2
+ o(σ−2). (8.9)
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Remark 8.1.4. We can calculate the minimal and the maximal appearing tangential velocities vt,min and
vt,max in the model f0 explicitly:

vt,min/max = v0

√
−W0/−1

[
− exp

(
−8σ2

v2
0

− 1

)]
where W0 and W−1 denote the two real branches of the Lambert W function. We postpone the proof of
this fact to the appendix.

Proof of Lemma 8.1.3. All o(σm) and O(σm) terms in this proof are with respect to σ ↘ 0. Let σ, v0 > 0.
At radius r > 0 the radial and the tangential component vr and vt of the velocity are distributed according
to the law

(vr, vt) ∼ p(vr, vt) :=
1

Σ0(r)
f0 (r, 0, vr, vt)

where we have written f0 in Cartesian coordinates; x = (r, 0) and v = (v1, v2) = (vr, vt).
∫
p dv = 1 and

we treat p as a probability density function. Thank to (8.4) we have

p(vr, vt) =

{
1/(Ivt), if (v2

r + v2
t − v2

0)/2− v2
0 log(vt/v0) ≤ (2σ)2 and vt ≥ 0

0, else.

We see that p does not depend on the radius. The average tangential velocity is the expected value E(vt)
and the square of the velocity dispersion is the Variance Var(vt). We are interested in the behaviour of
E(vt) and Var(vt) when σ ↘ 0. Then the support of p shrinks more and more. Since the point (0, v0)
is always located inside the support of p it is convenient to introduce coordinates that zoom onto that
point while σ ↘ 0. We use the coordinate transformation

vr = σwr,

vt = v0 + σ(wt − v0).

Then dv = σ2 dw,
(wr, wt) ∼ q(wr, wt) = σ2p(σwr, v0 + σ(wt − v0))

and
E(vt) = E(v0 + σ(wt − v0)).

For σ > 0 we denote the support of q by

Wσ :=

{
(wr, wt)

∣∣∣∣wt ≥ v0 −
v0

σ
, σ2w

2
r + (wt − v0)2

2
+ σv0(wt − v0)− v2

0 log

(
1 + σ

wt − v0

v0

)
≤ 4σ2

}
=

{
(wr, wt)

∣∣∣∣wt ≥ v0 −
v0

σ
,
w2
r + (wt − v0)2

2
+
v0(wt − v0)

σ
− v2

0

σ2
log

(
1 + σ

wt − v0

v0

)
≤ 4

}
.

Thus

q(wr, wt) =

{
σ2/(I(v0 + σ(wt − v0))), if (wr, wt) ∈Wσ,

0, else.

We set

W0 :=

{
(wr, wt)

∣∣∣∣w2
r

2
+ (wt − v0)2 ≤ 4

}
.

Using that there is a compactum K ⊂ R2 such that

Wσ ⊂ K

for all σ > 0 sufficiently small, a second order Taylor approximation gives

v2
0

σ2
log

(
1 + σ

wt − v0

v0

)
=
v2

0

σ2

(
σ
wt − v0

v0
− 1

2
σ2 (wt − v0)2

v2
0

+O(σ3)

)
=
v0(wt − v0)

σ
− 1

2
(wt − v0)2 +O(σ).
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Thus for σ ↘ 0 the envelope of Wσ converges uniformly to the envelope of W0. This fact we will employ
frequently below. We have

E(vt) = E(v0 + σ(wt − v0))

=

∫
(v0 + σ(wt − v0))q(vr, vt) dw

=
σ2

I

∫
Wσ

dw. (8.10)

We have

I =

∫
{(v2r+v2t−v20)/2−v20 log(vt/v0)≤(2σ)2, vt≥0}

dv

vt
= σ2

∫
Wσ

dw

v0 + σ(wt − v0)

and hence
σ2

I
→ v0

L(W0)
for σ → 0. (8.11)

If we would pass to the limit in (8.10) now, we would only get

E(vt) = v0 + o(1).

This result makes only use of the fact that (0, v0) lies inside of Wσ and is too weak to analyse Var(vt).
We must elaborate that (0, v0) marks the centre of W0 to get better convergences:

E(vt) = v0 +
σ2

I

∫
Wσ

dw − v0
σ2

I

∫
Wσ

dw

v0 + σ(wt − v0)

= v0 +
σ2

I

∫
Wσ

(
1− v0

v0 + σ(wt − v0)

)
dw

= v0 +
σ3

I

∫
Wσ

wt − v0

v0 + σ(wt − v0)
dw.

Using (8.11) and that ∫
Wσ

wt − v0

v0 + σ(wt − v0)
dw →

∫
W0

wt − v0

v0
dw = 0 for σ ↘ 0,

we get
E(vt) = v0 + o(σ). (8.12)

We have

Var(vt) =

∫
|vt − E(vt)|2p(vr, vt) dv

=

∫
|vt − v0 + v0 − E(vt)|2p(vr, vt) dv

=

∫
|vt − v0|2p dv + 2

∫
(vt − v0)(v0 − E(vt))p dv + |v0 − E(vt)|2.

(8.12) and
‖vt − v0‖L∞(supp p) = O(σ)

imply

Var(vt) =

∫
|vt − v0|2p dv + o(σ2).

Since ∫
|vt − v0|2p dv =

σ4

I

∫
Wσ

|wt − v0|2

v0 + σ(wt − v0)
dw

and ∫
Wσ

|wt − v0|2

v0 + σ(wt − v0)
dw →

∫
W0

|wt − v0|2

v0
dw for σ ↘ 0,
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we have ∫
|vt − v0|2p dv − σ2σ

2

I

∫
W0

|wt − v0|2

v0
dw = o(σ2)

and

Var(vt) = σ2 σ
2

Iv0

∫
W0

|wt − v0|2 dw + o(σ2).

With the transformation wt − v0 = 2s∫
W0

|wt − v0|2 dw =

∫ v0+2

v0−2

∫ √8−2(wt−v0)2

−
√

8−2(wt−v0)2
dwr |wt − v0|2 dwt

= 2
√

8

∫ v0+2

v0−2

√
1− (wt − v0)2

4
|wt − v0|2 dwt

= 32
√

2

∫ 1

−1

√
1− s2s2 ds.

Using the transformation s2 = t, dt = 2sds and the Beta-function B∫
W0

|wt − v0|2 dw = 64
√

2

∫ 1

0

√
1− s2s2 ds = 32

√
2

∫ 1

0

√
1− t

√
tdt

= 32
√

2B(3/2, 3/2) = 4
√

2π = L(W0).

Since
σ2

Iv0
→ L(W0)−1 for σ ↘ 0,

this implies that
Var(vt) = σ2 + o(σ2).

Due to symmetry the average radial velocity is zero. Var(vr) can be calculated with the same techniques
as above and one gets that the dispersion of the radial velocities is given by

√
2σ + o(σ). Further

C0 =
v2

0

2πGI
=

v2
0

2πGσ2

σ2

I

and ∣∣∣∣C0 −
v3

0

8
√

2π2Gσ2

∣∣∣∣ =
v2

0

2πGσ2

∣∣∣∣σ2

I
− v0

4
√

2π

∣∣∣∣ .
By (8.11)

C0 =
v3

0

8
√

2π2Gσ2
+ o(σ−2).

8.2 A cut-out Mestel disc resembling the Milky Way’s ISM

This is the point where we leave the Mestel disc and start to construct from it a self-consistent model
with finite mass and extension. It is plausible to assume that the dynamics of a galaxy should be similar
to (8.7) in a region where the circular velocity curve is almost flat. The Milky Way has such a flat curve
between 5 kpc and 25 kpc from the galactic centre (Eilers et al., 2019). Luckily the Milky Way belongs
also to the minority of galaxies that have a central depression of their hydrogen distribution, which makes
up about 70 per cent of the Milky Way’s interstellar medium (ISM). Thus for the Milky Way we are in
the situation that most mass of the ISM is located in the region where the circular velocity curve is flat.
This makes it an ideal candidate to be modelled with a distribution function similar to (8.7). This is
somewhat a fortunate coincidence since on the one hand this is the easiest situation where we can deduct
a finitely extended, self-consistent model from (8.7) and on the other hand the ISM is the part of the
visible galaxy that asks us most riddles.

To get from the Mestel disc to a model with finite extension, we will now drop several orbits from f0.
First we cut a hole into the central region. By choosing only orbits with

Lz > v0R1
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Figure 6: The average density of atomic hydrogen HI (solid line) and of molecular hydrogen H2 (dashed line)
in an annulus around the galactic centre, versus radius of the annulus. The density is low for radii smaller than
4 kpc or larger than 21 kpc. After Figure 9.19 of Binney & Merrifield (1998).

for some R1 > 0, we drop most orbits that live within the region 0 < r < R1. Further we want a finitely
extended model, so we demand

Lz < v0R2

for some R2 > R1, thus dropping most orbits that live beyond R2. In what follows the cut out central
hole will do just fine, but at the border R2 it will we necessary to further cut out every orbit that crosses
R2. This is achieved by demanding

E < U0(R2) +
L2
z

2R2
2

.

With these three cut-offs most orbits live beyond R1, but there is no orbit beyond R2. Our new distri-
bution function in orbital form reads as follows:

f1(Lz, E) :=
C

Lz
Φ0

(
E − Ec

(
Lz
v0

))
1{v0R1<Lz<v0R2} (8.13)

×1{E<U0(R2)+L2
z/(2R

2
2)}

where C > 0 will be determined below.
We want to model the Milky Way’s ISM with this distribution function. In view of the Milky Way’s

hydrogen distribution (Figure 6) and its circular velocity curve (Eilers et al., 2019) we choose

R1 = 4 kpc, R2 = 21 kpc and v0 = 230 km s−1. (8.14)

For simplicity we had already chosen Φ0 = 1[0,(2σ)2] in (8.8). As shown in Lemma 8.1.3, with this choice
the velocity dispersion of the model is equal to σ. Leroy et al. (2008) calculated the velocity dispersion of
atomic hydrogen in the outer regions of several nearby spiral galaxies. Atomic hydrogen is an abundant
gas in the ISM which dominates the outer parts of spiral galaxies like the Milky Way. They found that
most galaxies have a dispersion of (11± 3) km s−1. The concrete value, that we choose for σ, affects
only little the resulting mass model, but it is important for the stability that we study in more detail
in Section 10. There we vary σ and look at the different behaviour of the resulting dynamical models.
For the present we fix σ = 11 km s−1, and thus choose a dispersion in the middle of the measurements of
Leroy et al.

Further we will in the following smooth out the integral kernel of the gradient of the gravitational
potential to take into account the observed thickness of the ISM’s disc. We assume a constant scale

84



0

50

100

150

200

250

300

0 5 10 15 20 25

V
el

o
ci

ty
[k

m
s−

1
]

Radius [kpc]

Figure 7: The circular velocity curve (solid line) that corresponds to the cut-out model f1 if we choose the
weight C ≈ C0, and the original, constant circular velocity curve (dashed line) that corresponds to the Mestel
disc. The circular velocity curve of the cut-out model is no longer flat. To make it flat again, we need to include
bulge and stellar disc in our model, too, and reduce the mass of our cut-out Mestel disc, which represents the
ISM.

height15 zg = 300 pc for the ISM. Nevertheless, we still define the density Σf on the planar space R2, but
we replace the gradient of the gravitational potential (7.2) by

∇Uf (x) := G

∫
R2

Σf (y)
x− y

(|x− y|2 + δ2
z)3/2

; (8.15)

here δz = 1.5zg is the average distance in z-direction when we draw two test particles at random from
the spatial density

Σf (x1, x2) exp (−|z|/zg) .
We give a proof of the relation δz = 1.5zg in the appendix.

Let us continue with the above parameters. From f1(Lz, E) we get f1(x, v) in Cartesian coordinates
by replacing

E = U0(r) +
|v|2

2
and Lz = x1v2 − x2v1.

Then we can calculate numerically the density Σ1(r) =
∫
f1 dv. Further, we calculate the corresponding

potential and the circular velocity curve. The circular velocity curve that corresponds to f1 is shown in
Figure 7, where we set

C = 6.6× 1024 M� s−1 ≈ C0

according to the approximation (8.9). Obviously the circular velocity curve is no longer flat. Mainly
the force generated by the central mass is missing to support a flat circular velocity curve in the region
between R1 and R2. This missing mass has to be ’replaced’ by the bulge and the stellar disc which
we implement as rigid components. We implement the bulge as spherically symmetric and since it only
extends out to approximately 1.9 kpc < R1 (Binney & Tremaine, 2008, §2.7) its actual shape does not
affect our model and we take for simplicity

ρb(x) := A

(
1− |x|

1.9 kpc

)
for x ∈ R3 and |x| ≤ 1.9 kpc.

15According to Ferrière (2001) most gas of the ISM is cold and warm atomic hydrogen with scale heights between 100 pc
and 400 pc, followed by molecular hydrogen with scale heights between 120 pc and 140 pc. If we choose another scale height,
e.g., zg = 100 pc this does hardly change the properties of the resulting model.
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For the stellar disc we assume a scale length Rd = 3.2 kpc and define the density

Σd(r) = B exp

(
− r

Rd

)
for r > 0.

For the stellar disc we assume a disc thickness of 500 pc16 and smooth out the gradient of its gravitational
potential as in (8.15).

We have now three components, namely bulge, stellar disc and ISM with the free parameters A,B,C >
0. We fit these parts together such that our model reproduces the observed circular velocity curve of the
Milky Way as closely as possible. This curve was measured in Eilers et al. (2019) and we refer to it as
vc,MW . We choose A1, B1, C1 > 0 such that∫ 25 kpc

5 kpc

(
v2
c,MW − v2

b,1 − v2
d,1 − v2

g,1

)2
dr (8.16)

becomes minimal; here vb,1, vd,1 and vg,1 denote the circular velocity curve of the bulge, the stellar disc
and the gaseous component ISM respectively where we have replaced A,B,C by A1, B1, C1. The integral
borders 5 kpc and 25 kpc are the lower and upper border of the range covered by Eilers et al. and we
treat vc,MW as a piece-wise linear function. Calculating numerically the optimal parameters we get

A1 = 2.7 M� pc−3

B1 = 1300 M� pc−2

C1 = 1.7× 1024 M� s−1 ≈ 0.26C0.

With these parameters fixed we can calculate the circular velocity curve of our model

vc,1 =
√
v2
b,1 + v2

d,1 + v2
g,1.

In Figure 8 both vc,1 and the measured curve of the Milky Way vc,MW are shown. As can be seen, this
is already quite a good fit. Nevertheless the model is not self-consistent yet, because the potential that
belongs to the mass model is different from the potential that we assumed for the dynamics.

8.3 A Model of the Milky Way with self-consistent dynamics for the ISM

Before we continue, recall how in the previous section the dynamical part of our model, the ISM, was
constructed. The ISM is located mostly between R1 and R2 where the circular velocity curve is almost
flat. We thought about how a distribution function in such a region should look like and in (8.13) we
defined f1 under the assumption of a logarithmic potential that gives rise to an exactly flat rotation curve
everywhere. After adding a bulge and a stellar disc to the model, the resulting circular velocity curve
has now some bumps and is slightly decaying in the relevant region between R1 and R2 (Figure 8). But
it is almost flat. So the initially assumed logarithmic potential is close to the resulting potential, and
thus f1 is also close to a self-consistent model. We want to iterate what we have done so far and use the
following algorithm to construct a self-consistent model:

Algorithm for the construction of a model of the Milky Way where the ISM is equipped with self-
consistent dynamics

1. Given a gravitational potential Ui(r). Calculate

vc,i(r) =
√
rU ′i(r),

Lc,i(r) = rvc,i(r),

Ec,i(r) = Ui(r) + v2
c,i(r)/2

for R1 < r < R2

16Binney & Tremaine (2008) included two stellar discs that have similar properties. One has a scale height 300 pc and
the other 1000 pc. We consider one disc with average parameters and set the scale height to 500 pc
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Figure 8: The resulting circular velocity curve (solid line) after we have also included a bulge and a stellar disc
and after we have weighted the three baryonic components optimally. In this model the ISM is represented by f1
with C = C1 ≈ 0.26C0. Its dynamics are not self-consistent yet. The dots mark the circular velocity curve of the
Milky Way as measured by Eilers et al. (2019), which we try to approximate with our model.

2. Choose R′2 < R2 maximal such that Lc,i is strictly increasing on [R1, R
′
2] 17 and define the inverse

map of Lc,i(r):
[Lc,i(R1), Lc,i(R

′
2)] 3 Lz 7→ rc(Lz)

(hence rc(Lz) is the radius where a test particle with angular momentum Lz is on a circular orbit)

3. Define

fi+1(Lz, E) :=
C

Lz
Φ0 (E − Ec(rc(Lz)))1{Lc,i(R1)<Lz<Lc,i(R′2)}

×1{E<U0(R′2)+L2
z/(2R

′2
2 )}

4. Replace

E = Ui(x) +
|v|2

2
and Lz = x1v2 − x2v1

and calculate the flat density Σi+1 =
∫
fi+1 dv and the corresponding potential and circular velocity

curve vg,i+1

5. Replace A,B,C by Ai+1, Bi+1, Ci+1 and choose them such that∫ 25kpc

5kpc

(
v2
c,MW − v2

b,i+1 − v2
d,i+1 − v2

g,i+1

)2
dr

is minimal

6. Calculate the total potential Ui+1(r) of all three baryonic components and return to the first step

To measure the convergence of our algorithm we look at

δi :=
||Σi+1 − Σi||2
||Σi||2

17This is necessary because the disc of the ISM is truncated at R2. As a result vc,i is decaying very rapidly near R2.
This is an effect due to the flatness of the disc. As a result Lc,i is not monotonous in this region.
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Figure 9: The circular velocity curve (solid line) of our final model. For comparison we show also the circular
velocity curve of the Milky Way (thick dots) measured by Eilers et al. (2019). The velocity dispersion (dashed
lines) is shown. In our model now the ISM is equipped with self-consistent dynamics.

where || · ||2 denotes the L2-Norm on R2. With the parameters chosen in (8.14), δ1 ≈ 0.10, δi decreases
in each iteration step roughly by a factor between 0.5 and 0.7, and we stop the algorithm after twelve
iterations when δi < 0.001. The resulting distribution function f is a self-consistent model for the Milky
Way’s ISM where the bulge and the stellar disc are rigid components. Or more precisely, it is as close to
a self-consistent model as possible: We cannot distinguish it anymore from a self-consistent model on a
computer.

The circular velocity curve and the velocity dispersion in our model are shown in Figure 9. The
densities of the baryonic components in our model are shown in Figure 10. The circular velocity curve
and the low velocity dispersion resemble quiet well the properties of the Milky Way. This is very nice, but
with this observation alone we can not be satisfied yet. We have to cover two more very relevant topics:
First how do the densities in our model compare to the densities in present models and observations
(Section 9), and second what about the stability of the dynamical part in our model (Section 10)? These
two question are closely coupled.

8.4 A self-consistent, multiphase model of the entire galaxy

Before in the next sections we compare our model with other models and study the stability of our model,
let us take a closer look on the algorithm itself. The algorithm of the previous section is very powerful
since it is highly customizable. It can easily be extended to create a multiphase, self-consistent model of
the entire galaxy. This is a task that was elusive up to now; see, e.g., the review from Binney (2020).

How can the algorithm from Section 8.3 be extended to construct a multiphase, self-consistent model
for the entire galaxy? Look for this on Step 3 in the algorithm where we define our distribution function.
In this definition we have a prefactor C/Lz. This prefactor was motivated from the Mestel disc where it
was necessary for self-consistency (see equation (8.7)). But in our finitely extended model this is no longer
necessary. There the algorithm takes care that the dynamics become self-consistent. So we can replace
C/Lz by any suitable function ψ(Lz). Further we can add to our model as many different distribution
functions as we want and choose for every one a different prefactor ψ. Each of these new distribution
functions has to be updated in Step 3 of the algorithm.

It could for example be convenient to decompose the ISM into atomic hydrogen HI and molecular
hydrogen H2. This can easily be achieved by including two distribution function fHI and fH2 with
suitable prefactors ψHI and ψH2.
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Figure 10: The densities of the ISM (solid line), the stellar disc (dashed line) and the bulge (dotted line) of our
model for the Milky Way.

In the same way we can equip a stellar disc with dynamics. But it is important to note that a stellar
disc must be defined also in regions where the circular velocity curve is not flat but rising. So one has to
study first how a suitable ansatz in these regions looks like.

Obviously also a dark matter halo (dynamical or not) can easily be added to the model. We have not
done this because we wanted to analyse on the basis of a dynamical, purely baryonic model whether a
halo of non-baryonic dark matter is necessary or not to explain the dynamics of spiral galaxies. And this
leads to interesting results that we discuss in the Sections 9 and 10.

9 Comparing our mass model with observational data

In the introduction we posed the question:

Is a halo of non-baryonic, dark matter necessary to explain the Milky Way’s flat circular velocity
curve?

In the previous section we have constructed a model that explains the Milky Way’s flat circular velocity
curve out to 25 kpc. The disc of this model has an extension of only 21 kpc, there is no large halo of non-
baryonic, dark matter involved and the densities of bulge, stellar disc and ISM conform to observations
up to a prefactor. Nevertheless, to explain the circular velocity curve a certain amount of mass is needed
that creates the necessary gravitational potential. Since most current models make use of a dark matter
halo, while our model does not, our model needs more baryonic mass than current models and a mass
gap occurs. In this section we study how large this mass gap is by comparing our model with our models
from the literature.

A short side note: We have read that it should not be possible to explain a flat circular velocity
curve with a finitely extended gaseous disc like we did with our model (Rubin et al. (1980) and Sparke &
Gallagher (2000)). However, this statement is based on the simple formula that can be used in spherical
symmetry to calculate the gradient of a gravitational potential. There one has

U ′(r) = GM(r)/r2

where M(r) denotes the mass in the interior of a ball with radius r > 0. One can use this formula also
in the situation of a spiral galaxy to approximate the mass function M(r). But a flat circular velocity
curve, which is related to U ′(r) via formula (8.2), would imply that the mass function does not converge
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BT08 Here Factor
1010 M� 1010 M�

Total 21.5 15.0 0.7
Total baryonic 4.3 15.0 3.5
Bulge 0.36 1.4 3.9
Stellar disc 3.0 8.5 2.8
ISM 1.0 5.1 5.1
Dark matter 17.1 - -

Table 1: Masses of the different components of the Milky Way. The first column contains the masses of Model
2 in Binney and Tremaine (BT08), the second one the masses of our self-consistent model (Here), and the third
column (Factor) states by how much the mass of BT08 must be multiplied to match the mass of our model. Only
masses within 25 kpc were included. In our model all mass lies within 25 kpc. In BT08 a high amount of mass,
in particular dark matter, lies beyond 25 kpc; this mass we ignore in our comparison. (The masses from BT08
were calculated using central surface densities of 463 M� pc−2 and 73 M� pc−2 for the stellar disc and the ISM
respectively)

to a limit at the edge of the observable galactic disc. However, in a flat, axially symmetric situation the
above formula is only a rough approximation. To understand the main difference between the spherical
and the flat case consider an infinitesimally thin sphere and an infinitesimally thin ring and distribute
over both the same amount of mass. If we approach the sphere with a test particle, the forces, which pull
the test particle to the sphere, are bounded. In contrast, if we approach the ring with a test particle, the
forces become infinitely strong. This effect is responsible that a flat density that is rapidly decaying can
create strong forces near the region where this rapid decay occurs. This effect can very nicely be observed
in Figure 7 where the cut-off of our disc at R2 = 21 kpc causes the circular velocity curve to peak there.
The Milky Way has such a rapid decay in the outskirts of its HI disc (Figure 6). By mimicking this decay
our model with an extension of only 21 kpc can explain the Milky Way’s flat circular velocity curve out
to 25 kpc.

9.1 Comparing our mass model with the one in Binney & Tremaine (2008)

In §2.7 of Binney & Tremaine (2008) (hereafter referenced as BT08) two mass models for the Milky Way
were constructed. Their Model 2 assumes a stellar disc with a scale length Rd = 3.2 kpc as we did in
Section 8. Therefore we compare this model with ours.

The masses of the Milky Way’s components in the model of BT08 and in our model are listed in
Table 1. All mass in our model is confined to a disc with radius 21 kpc and we explain with this mass the
circular velocity curve of the Milky Way out to 25 kpc. In the model of BT08 much mass (mostly dark
matter) lies beyond the edge of the visible galaxy. To compare the two models properly, we list therefore
in the table only masses within a ball with radius 25 kpc.

We see that the total mass of our model and the one of the model in BT08 take similar values. This
is to be expected because both models must explain the same circular velocity curve and for this similar
amounts of mass are necessary. Nevertheless, the total mass of our model is about 30 per cent lower than
the mass in BT08. Since in the model of BT08 only one quarter of the mass is baryonic while in our model
all mass is baryonic, necessarily a mass gap arises. Our model needs 3.5 times as much baryonic mass as
the model in BT08. The missing mass distributes almost uniformly over the three baryonic components
of our model. We have to multiply the masses of the three baryonic components in our model by factors
between 2.8 and 5.1 to reproduce the masses in BT08.

9.2 Our model for the Milky Way as an example for the Bosma effect

That it is possible to explain circular velocity curves of spiral galaxies by scaling the gaseous content
of these galaxies was already noticed by Bosma (1981). When he measured the densities and dynamics
in the outer parts of spiral galaxies, he calculated the disc density necessary to explain the observed
circular velocity curve and compared it to the observed density of the gas. He noticed that as a rule the
ratio of the two is roughly constant in the outer parts of the galaxies in his sample. This phenomenon is
called the Bosma effect. Hessman & Ziebart (2011) used this phenomenon to explain the circular velocity
curves of 17 galaxies from The Nearby HI Galaxy Survey (THINGS) without invoking non-baryonic, dark
matter. They scaled the observed densities of both the stellar and the gaseous discs like we did for the
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Figure 11: Scaling factors used by Hessman & Ziebart (2011) for the stellar and the HI discs of 17 spiral
galaxies from the THINGS sample. One outlier (scaling factor 28.0 for the HI content) is not displayed in the
right histogram. With the such scaled discs Hessman & Ziebart can explain the circular velocity curves of the
respective galaxies without invoking non-baryonic, dark matter. Our factors 2.8 for the stellar and 5.1 for the
gaseous disc of the Milky Way fall in the midst of their factors.

Milky Way in Sections 8.2 and 8.3. They interpreted the scaled stellar and the scaled gaseous discs as
proxies for other – presumedly non-stellar – mass components that reside in the disc and have not been
observed, yet. They found good agreement between observed and predicted circular velocity curves. We
have summarized their scaling factors for the gaseous and the stellar discs18 in Figure 11.

Both BT08 and we (Section 8.2) took a functional form for the ISM that is similar to the observed
density of atomic plus molecular hydrogen reported by Binney & Merrifield (1998). Further both BT08
and we took the same functional form for the stellar disc. In our model the ISM is 5.1 times and the
stellar disc 2.8 times more massive than the corresponding discs from BT08. These two factors fall in
the midst of the factors from Hessman & Ziebart (2011) making our model for the Milky Way a typical
example for the Bosma effect.

9.3 Higher densities of the ISM measured by the Voyager probes

An argument that the density of the ISM could indeed be higher than currently assumed is provided
by the Voyager 1 and 2 probes which in 2012 and 2018 left the heliosphere and entered the interstellar
medium. They are the first artificial objects to do so. Inside the heliosphere the electron density is very
low (about 0.001 particles per cm3). In the interstellar medium current models predict a higher value
of about 0.04 particles per cm3 (Gurnett et al., 1993). Measurements carried out by the space probes
motivated Gurnett et al. already in 1993 to postulate that there must be a ’pill up’ region in front of
the heliospheric nose where the electron density is higher than the predicted value. The Voyager 1 and 2
probes entered the ISM far off the region where the pile up was expected to be (Kurth & Gurnett, 2020).
First they measured an electron density of 0.04 cm−3 and 0.05 cm−3 close to the estimate mentioned
above. But after travelling 20 AU more this density rose to 0.13 cm−3 and 0.12 cm−3. Roughly three

18In Hessman & Ziebart (2011) the scaling factors for the stellar discs are given by 1+fdisc and the scaling factors for the
gaseous discs by 1 + fHI. The values for fdisc and fHI are tabulated in their paper. Since the gaseous discs of Hessman &
Ziebart contained only atomic hydrogen HI, Hessman & Ziebart multiplied their gaseous discs with an additional factor of
1.39 to correct the disc densities for the presence of Helium and heavier elements. We have not invoked such an additional
factor since the model for the ISM from Binney & Tremaine (2008) includes already similar corrections.
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times higher than expected. Since the two space probes entered the interstellar medium at different
positions, Gurnett and Kurth expect that this high electron density is a large scale feature that can be
found everywhere in the direction of the heliospheric nose.

Gurnett and Kurth discussed some possible explanations for this high density but concluded that the
question of its origin cannot be answered satisfactory. We would like to add another possible explanation
to their list: Could it be that this high electron density is not just a local phenomenon near the heliospheric
nose, but that is is real? Meaning that the electron density is indeed higher than expected everywhere in
the Milky Way and that this points toward a higher density of the whole interstellar medium, consistent
with our model?

10 Stability, Spiral Structure and Velocity Dispersion

Let us pose the question: Is our model stable? The answer to this question is: No, it is unstable. It can
suffer from two instabilities. And this good. Because these instabilities take care that our model offers
simple answers to the two questions from the introduction:

Where does the four armed spiral pattern in the Milky Way’s ISM originate from?19

Why does atomic hydrogen have in most spiral galaxies the same velocity dispersion well above the
value expected from thermal considerations?

For these answers it is important that the ISM mass in our model is as high as we have seen in the
previous section. Models that use an ISM disc with a lower mass embedded in a halo of non-baryonic,
dark matter cannot answer these questions as easily as our model does.

In this section we show several simulations where the initial particles were drawn at random from
the distribution function constructed in Section 8.3 and where the equations of motion were integrated
numerically. In Section 10.1, where we study the spiral activity, we choose in our model σ = 11 km s−1

and in Section 10.3, where we study the Jeans instability, we look on a model with σ = 9 km s−1. Details
on our numerical methods can be found in the appendix.

10.1 Spiral structure in our model and in the Milky Way

The first instability our model suffers from offers a simple explanation for the observed four armed spiral
pattern in the Milky Way’s ISM (see Figure 12). To understand what happens there, let us take a
look on the tangential accelerations. In axial symmetry, these accelerations would be zero. However,
in our simulation the particles were drawn at random from the distribution function and hence these
accelerations are different from zero although they are very small initially. If now we run the simulation,
these tangential accelerations grow exponentially. This can be seen very well in Figure 13 where we have
plotted the root mean square (RMS) of the tangential accelerations as a function of time:

RMS(atan) =

√√√√∑
i

(
xi,1ai,2 − xi,2ai,1

ri

)2

,

where a = v̇ and the sum ranges over all particles in the simulation. These growing tangential accelerations
correspond to local overdensities which become denser and denser and result in a spiral structure with
four large spiral arms that match the observed spiral arms in the Milky Way’s ISM to a high degree; in
Figure 12 we have overlaid the spiral structure of our model with the four armed spiral structure that
was observed by Steiman-Cameron et al. (2010). Given that the spiral structure in our model forms
spontaneously, the similarity is astonishing. We are not aware of any other simulation that can reproduce
the spiral structure in the Milky Way’s ISM as well as our model does.

Steiman-Cameron et al. discuss several possible explanations why the Milky Way’s ISM has a four
armed spiral structure – in contrast to a two armed spiral structure that can be observed in the stellar
disc. Our model gives the most simple explanation: Assuming the mass of the ISM is as high as in our
model, then spiral activity is self-excited, it is independent from the dynamical properties of the rest of
the galaxy and it gives rise to exactly the spiral pattern that is observed in the Milky Way.

19In this thesis we consider only the four armed spiral structure reported by Steiman-Cameron et al. (2010). It should
be noted that the exact structure of the spiral arms in the Milky Way is still debated (see, e.g., the discussion in the
introduction of Poggio et al. (2021)). But nevertheless a four armed spiral structure in the Milky Way’s ISM similar to the
one reported by Steiman-Cameron et al. (2010) is at the moment the most accurate visualization of what the Milky Way
looks like (Shen & Zheng, 2020).
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Figure 12: Spiral structure (Background image) that has formed in our model within 400 Myr out of the initially
axially symmetric disc, overlaid with the four spiral arms that were calculated from observational data by Steiman-
Cameron et al. (2010) (solid lines); the position of the sun is marked by �. Given that the spiral arms in our
model form spontaneously, the similarity between them and the observed arms is astonishing. The plate covers
40 kpc x 40 kpc. In the background image black corresponds to densities above 120 M� pc−2, gray to densities
above 60 M� pc−2, and white to densities below.
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Figure 13: The RMS of the tangential accelerations is very low initially but grows exponentially for about
400 Myr (take note of the logarithmic scale for the y-axis). It still continues to grow for 300 Myr more at a slower
pace and then it decays gradually. The growth of the tangential accelerations corresponds to local overdensities
which become denser and denser. These overdensities result in a spiral structure that resembles very well the
observed spiral structure of the Milky Way’s ISM (see Figure 12).
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10.2 Prolonging spiral activity

The spiral activity in our simulation does not last forever, it is only strong for about 1 Gyr. When we
continue the simulation (see Figure 14) the arms move and permanently disrupt and merge with each
other. In the simulation the velocity dispersion σ has initially a low and realistic value of 11 km s−1. Since
the mass moves faster than the spiral arms, the mass passes through the spiral arms and gets deviated.
Within the 1 Gyr of strong spiral activity the velocity dispersion rises to a value that is about four times
as high as the initial one (Figure 15). This higher velocity dispersion stabilizes the disc, suppresses the
spiral activity and the simulation converges to a new axially symmetric state.

In the Milky Way this seems not to happen - and in other spiral galaxies neither. For comparison the
Milky Way’s stellar disc is assumed to be (8.8± 1.7) Gyr old (del Peloso et al., 2005). Nevertheless, we
can observe nearly everywhere in the Milky Way’s ISM the same low dispersion of velocities (Marasco
et al., 2017) and also the spiral activity seems to last forever. Why?

In the real galaxy the velocity dispersion of the gas becomes permanently reduced. The Milky Way’s
gaseous mass in the ISM is not distributed homogeneously but it is concentrated in large clouds. As
long as these clouds would move on circular orbits, everything would be fine. But when they become
deviated and the velocity dispersion rises, the orbits of these clouds intersect and they collide. In these
collisions they loose the radial component of their velocity and continue on on circular orbits. Thus the
velocity dispersion decreases again. This keeps the velocity dispersion low and enables a long lasting
spiral activity (Sellwood & Masters, 2021, §6.1.).

10.3 Velocity dispersion and the Jeans instability

The dissipative process just describe must be strong because everywhere in the Milky Way atomic hy-
drogen has a low velocity dispersion slightly below 10 km s−1 (see, e.g., Marasco et al. (2017) where they
have measured the velocity dispersion in the inner regions of our galaxy). So in the Milky Way the
spiral activity does not manage to increase this dispersion like in our simulation. The observed velocity
dispersion of atomic hydrogen in the Milky Way is typical for other spiral galaxies, too. In the sample
of twenty nearby spiral galaxies from Leroy et al. (2008) most spiral galaxies have a dispersion close to
10 km s−1 (see Figure 16). This is higher than the value one would expect from thermal considerations
(Tamburro et al., 2009). In spiral galaxies most hydrogen can be found either in a cold (∼ 100 K) or in a
warm (∼ 8000 K) thermal equilibrium. Cold atomic hydrogen has a line width of ∼ 1 km/s, while warm
atomic hydrogen has a line width of ∼ 8 km s−1. But if the dissipative process of cloud-cloud collisions is
strong, why does it not reduce the velocity dispersion to the minimal thermal value somewhere between
1 km s−1 and 8 km s−1?

Our model offers an answer to this question, again in the form of an instability. If in our model
we choose σ ' 10 km s−1 only the instability from Section 10.1, which causes the spiral arms, is active.
If, however, we choose σ / 10 km s−1 a second instability enters the model: The Jeans instability.
This instability rearranges the masses and increases the velocity dispersion. In Figure 17 we show this
instability in action in our model with σ = 9 km s−1. The threshold between stability and the Jeans
instability coincides with the observed velocity dispersion of atomic hydrogen in the Milky Way and in
most other spiral galaxies. A dissipative process – however strong it may by – cannot reduce the velocity
dispersion below this threshold because if it does so, the Jeans instability starts to work against it. Thus –
assuming that other spiral galaxies are comparable to the Milky Way – the Jeans instability can explain
why most spiral galaxies share the same velocity dispersion of atomic hydrogen well above the value
expected from thermal considerations.

Interestingly, the Jeans instability in our model triggers only in the outskirts of the galactic disc. And
it is good that it does not trigger in the inner regions, too, because there the mass contained in our stellar
disc dominates (see Figure 10). But at the present the dynamics of this component are missing in our
model (see the discussion in Section 8.4 how we plan to include the dynamics of this component in future
models). Obviously these dynamics will affect the Jeans instability in the inner regions of our model. On
the contrary in the outskirts of our model the ISM disc, which we have modelled dynamically, dominates
the mass. So there our model has to predict the velocity dispersion correctly; and this it does.

10.4 What about non-baryonic, dark matter

Let us pose a last question here in this thesis: Do models that use a halo of non-baryonic, dark matter
have similar easy explanations for the spiral structure in the Milky Way’s ISM and the velocity dispersion
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t=0 t=200 Myr

t=400 Myr t=800 Myr

t=1.2 Gyr t=3.0 Gyr

Figure 14: A simulation of our self-consistent model where the initial particles are drawn at random. After
about 200 Myr we can make out a faint multi-armed spiral structure. These spiral arms merge and after 400 Myr
form four large spiral arms, which resemble the Milky Way’s spiral arms very well. As time continues these arms
move, become elongated due to the differential rotation and disrupt and merge with each other. After 800 Myr we
still see a three-armed, and after 1.2 Gyr a two-armed spiral structure. Afterwards the spiral activity calms down.
After 3 Gyr still a weak, bi-symmetric structure is visible. As the simulation continues, the system converges
more and more to a new axially symmetric state. Each plate covers 40 kpc x 40 kpc and the colour scheme is
the same as in Figure 12. A more detailed video of this simulation can be found on the project homepage:
https://www.diffgleichg.uni-bayreuth.de/en/research/spiral-galaxies/index.html
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Figure 15: Scatter plot of the tangential velocity versus distance from the galactic centre for a random sample of
100 particles after 400 Myr (left) and after 1.4 Gyr (right). The solid line shows the mean tangential velocity and
the dashed line the velocity dispersion (calculated for all particles in the simulation). During the first 400 Myr the
dynamical properties of the model have hardly changed. Afterwards the spiral activity dominates the evolution
of the model and increases the velocity dispersion. At time 1.4 Gyr the velocity dispersion has risen to a value
about four times as high as initially. This stabilizes the model and suppresses further spiral activity. When we
stop the simulation after 10 Gyr the plot on the right hand side has not changed much any more. Observe that
the vertical axis shows only velocities between 150 km s−1 and 300 km s−1
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Figure 16: Histogram of the velocity dispersion of atomic hydrogen in the outer parts of the galactic discs of
20 nearby spiral galaxies. The sample is taken from Leroy et al. (2008) and only galaxies with an inclination
below 60° were included. Above an inclination of 60° the calculated velocity dispersion is affected by projection
errors. We see that most spiral galaxies have a velocity dispersion around 10 km s−1 or 11 km s−1 and there is a
gap between dispersion zero and the observed velocity dispersions.

96



0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

D
en

si
ty

[M
�

p
c−

2
]

Radius [kpc]

V
el

o
ci

ty
D

is
p

er
si

on
[k

m
s−

1
]

Radius [kpc]

Figure 17: The two figures show the Jeans instability in action if we choose in our model σ = 9 km s−1. The left
plot shows the density as a function of the radius at time zero (solid line) and after 800 Myr (dashed line). The right
plot shows the velocity dispersion as a function of the radius at time zero (solid line) and after 800 Myr (dashed
line). After 800 Myr the Jeans instability has rearranged the mass beyond 10 kpc. This mass is now concentrated
in two rings around the galactic centre. The velocity dispersion in these rings is higher than initially. In the
simulation that was run to create these plots axial symmetry was enforced to suppress the formation of spiral
arms so that we can study the Jeans instability isolated. If in this simulation we choose σ = 11 km s−1, like in
Section 10.1 above, the model just remains stable.
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of atomic hydrogen? The answers is No, at least not ad hoc. The problem is that a dark matter halo
provides too much stability.

In our baryonic model we can freeze four fifths of the ISM mass and study only the dynamical
rest. Then the frozen mass is kind of a rigid dark matter component and the remaining dynamical disc
resembles an ISM disc like it is predicted by Model II of Binney & Tremaine (2008) (see Section 9.1). In
such a disc neither the instability that causes the spiral structure (Section 10.1) nor the Jeans instability,
which explains the velocity dispersion (Section 10.3), is active. So models that make use of dark matter
have to search for more complicated answers to explain the two dynamical phenomenons spiral activity
and velocity dispersion.

Looking into the literature, one sees that models that make use of dark matter indeed struggle to
reproduce the spiral structures observed in spiral galaxies (see the review of Sellwood & Masters (2021)
and the references therein). Also it is difficult for these models to explain the observed velocity dispersion
of atomic hydrogen exactly (Tamburro et al., 2009).

10.5 Spiral Arms and Bar-Shaped Bulges result from the same instability

We want to close this section with a short note, which is independent of the previous discussions. When
we started this work, we had at first self-consistent models, too, but these lacked many properties of the
models presented here in this thesis. Almost all of these first models degenerated into bars or lop-sided
discs. In this context it is noteworthy that the formation of a bar, of a lop-sided disc or of large scale
spiral structures is always preceded by an exponential growth of the tangential accelerations as shown
in Figure 13. So these three phenomena are all due to the same instability. This instability always is
triggered if sufficient mass is in sufficiently rotational motion. But to which result this instability leads,
depends on the concrete distribution of the mass and its dynamical properties. We have not examined
this instability any further, but it is obvious that a good understanding of it would prove very useful
since it is both responsible for the formation of large scale spiral structures and relevant for how bulges
are shaped.

11 Conclusion Part II

Let us summarize the answers our model for the Milky Way gives to the three questions from the
introduction:

Where does the four armed spiral pattern in the Milky Way’s ISM originate from?

In our model the origin of this spiral pattern lies in the dynamical properties of the ISM itself. Our
self-consistent, axisymmetric model for the ISM suffers from an instability that transforms the ISM disc
into a disc with four large spiral arms that resemble very well the spiral arms observed in the Milky Way’s
ISM (Section 10.1).

Why does atomic hydrogen have in most spiral galaxies the same velocity dispersion well above the
value expected from thermal considerations?

In the outer regions of the galactic disc the Jeans instability is active in our model if we choose a velocity
dispersion that is below 10 km s−1 (Section 10.3). Thus if we would include in our model the dissipative
process of cloud-cloud collisions (Section 10.2), this dissipative process can only reduce the velocity
dispersion to the threshold between stability and the Jeans instability. Then the Jeans instability starts
to work against it and stops the further reduction of the velocity dispersion. This threshold between
stability and the Jeans instability coincides with the observed values of the velocity dispersion of atomic
hydrogen in the outer regions of spiral galaxies (Figure 17). Assuming that the structure of most spiral
galaxies is comparable to the Milky Way’s, the Jeans instability offers an explanation why in most spiral
galaxies the velocity dispersion of atomic hydrogen gets reduced to the same value somewhere around
10 km s−1, which is well above the value expected from thermal considerations.

Is a halo of non-baryonic, dark matter necessary to explain the Milky Way’s flat circular velocity
curve?

Our model explains the Milky Way’s flat circular velocity curve out to 25 kpc without relying on non-
baryonic, dark matter (Section 8.3). Our model has an extension of 21 kpc and is made up only of
baryonic matter. The densities of the three baryonic components bulge, stellar disc and ISM match the
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densities derived from observations up to a prefactor. The three prefactors take values between three and
five making our model a typical example for the Bosma effect (Section 9.2). Following the interpretation
of the Bosma effect from Hessman & Ziebart (2011), a baryonic, yet unobserved mass component that
resides in the disc and traces the known baryonic components can explain the Milky Way’s flat circular
velocity curve. Then a halo of non-baryonic dark matter is no longer necessary. An argument in favour
of an ISM density as high as in our model is provided by the measurements of the two voyager probes,
the first artificial objects to reach the ISM. Both probes measure a three times higher density than was
expected a priori (Section 9.3). But perhaps an even stronger evidence for the existence of a baryonic, yet
unobserved matter component, which shares the same dynamical properties as the HI gas, is given by the
answers to the other two questions: Both answers would fail if we included a stabilizing, non-baryonic
dark matter component and reduced the ISM mass, so that it matches current assumptions (Section
10.4). In particular it is surprising that the Jeans instability vanishes completely from the outer parts of
our model if we include a dark matter component. In the outer parts of the galaxy the gaseous mass that
we have modelled dynamically dominates and other mass components like stars are of minor importance.
Thus there our model should predict the dynamical properties correctly. Without non-baryonic, dark
matter that works, but with it it does not work.

What should be done next? In a future project we plan to discuss the above questions using models
that are superior to the present model in several aspects: First we should leave the Milky Way and
construct dynamical models for spiral galaxies, which we can observe from outside. There the HI content
and the spiral structure can be observed with much less uncertainty than it is the case for the Milky
Way20. It is then important that these models contain also a dynamical stellar disc. For this purpose we
have to model dynamics also in the central regions of spiral galaxies where the circular velocity curve is
rising. Here in this thesis we have constructed a self-consistent model for the Milky Way in the region
where the circular velocity curve is flat. Using similar techniques we are confident that we can construct
self-consistent galaxy models also in regions where the circular velocity curve is rising. When we construct
such models and analyse their structure and stability, we should have an open mind for all three answers
to the missing mass problem that we have summarized in the introduction to this thesis. An excellent
sample for such a study are the spiral galaxies contained in The Nearby HI Galaxy Survey (THINGS).
For these galaxies high quality HI maps and circular velocity curves exist. Further the stellar content of
these galaxies can be determined using data from the SIRTF Nearby galaxy survey (SINGS). These data
already enabled several authors to construct mass models for these galaxies that explain the respective
circular velocity curves by either using non-baryonic, dark matter (de Blok et al., 2008), MOND (Gentile
et al., 2011) or the Bosma effect (Hessman & Ziebart, 2011). Equipping these models with self-consistent
dynamics will allow us to undertake a good stability analysis and compare the different outcomes in
all three settings. We are particularly interested in answers to the following questions regarding spiral
structure and the Jeans instability:

Is spiral structure in such galaxy models self-excited? And does it lead to the observed spiral structure?
There are some spiral galaxies where an external effect like a closer encounter with another galaxy or
a rotating bar in the centre of the galaxy can account for the observed spiral pattern. But there are
many spiral galaxies were no such explanation exists and a self-excitation mechanism like the one we
have described in Section 10.1 is necessary to explain the observed spiral structure (Sellwood & Masters,
2021, §3). We have seen in Section 10.4 that a certain amount of mass in rotational motion is necessary
for spiral structure to be self-excited. Will the dynamical mass in galaxies embedded in a non-baryonic,
dark matter halo suffices?

What about the Jeans instability? Does it serve as an explanation for the observed velocity dispersion
of the gas like we suspected in Section 10.3 and like it is claimed by Meurer et al. (2013)? We plan to
dig deeper into this question than we have done in Section 10.3. For the Jeans instability it is important
that axisymmetric waves can propagate through the disc and aggravate themselves. But spiral patterns
break the symmetry of an initially axisymmetric disc. How does this affect the Jeans instability? To
examine this question in more detail we can use what we have learned in this thesis: The growth of a
spiral structure relies on the growth of the forces in the tangential direction (Section 10.1). The Jeans
instability relies on the evolution of forces in radial direction (see Figure 17). By suppressing the evolution

20While writing Part II of this thesis the author – as a mathematician – had to learn astrophysics by studying on his own.
Since in the textbook Galactic Dynamics from Binney & Tremaine, which the author considered a lot in the early phase of
this thesis, much information about the Milky Way can be found, we constructed in Part II a model for the Milky Way,
too. But perhaps it was not the wisest decision to consider the Milky Way, since there information about the HI content or
the spiral structure is affected by many uncertainties due to our position inside the Milky Way’s disc. See for example the
review of Lockman (2002) about HI in the Milky Way or the comparison of different models with different parameters for
the Milky Way’s spiral arms in Poggio et al. (2021).
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of the radial forces we can suppress the Jeans instability and wait for a spiral pattern to emerge from
an initially self-consistent, axisymmetric model that would otherwise have been destroyed by the Jeans
instability. Will the resulting disc with its spiral pattern and the broken axisymmetry still be affected by
the Jeans instability? How efficiently will the spiral structure stabilize the disc?

Answering the above questions in all three settings (dark matter, MOND, Bosma effect) can enable
us to decide which of the three answers to the missing mass problem from the introduction is the most
plausible one.

We have one last question that deserve our attention: What is the very nature of the instability that
causes the spiral arms to form? In Figure 13 we have seen that this instability shows up as an exponential
growth of the forces in tangential direction. It must be possible to track down the nature of this instability
with rigorous mathematical methods. Since this instability is not only responsibly for the formation of
spiral structures but also for the formation of bar-shaped bulges (Section 10.5), a better understanding
of this instability would enhance our understanding of both: Spirals in the disc and bulges in the centre
of spiral galaxies.
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A Appendix

A.1 Tangential velocity in our model for the Mestel disc

In Remark 8.1.4 we had left open the proof that the minimal and the maximal appearing tangential
velocity in our self-consistent model f0 for the Mestel disc are given by

vt,min/max = v0

√
−W0/−1

[
− exp

(
−8σ2

v2
0

− 1

)]
. (A.1)

Let us prove this.

Proposition A.1.1. Let a ∈ R, then

x2 + a = log x, x > 0,

has

two solutions iff a < − log
√

2− 1/2,

one solution iff a = − log
√

2− 1/2,

no solution iff a > − log
√

2− 1/2.

The solutions are

xi =

√
−1

2
Wi(−2e2a)

with i = 0,−1 and Wi denoting the i-th branch of the Lambert W function.

Remark A.1.2. The two Lambert W functions W−1 : [−1/e, 0) → (−∞,−1] and W0 : [−1/e,∞) →
[−1,∞) are the two branches of the inverse function of

(−∞,∞) 3 z 7→ zez ∈ [−1/e,∞).

In particular for all admissible ζ ≥ −1/e and i = 0,−1

ζ = Wi(ζ) exp(Wi(ζ)).

Proof of the Proposition. Use the transformation

x = exp
(
−y

2
+ a
)
, y ∈ R.

Then

x2 + a = log x ⇐⇒ exp (−y + 2a) = −y
2

⇐⇒ −2e2a = yey. (A.2)

Since
(yey)′ = (y + 1)ey = 0 ⇐⇒ y = −1

we see that yey takes its global minimum at y = −1 and hence

yey ≥ −1

e

for all y ∈ R. Thus (A.2) can hold iff

2e2a ≤ 1

e
⇐⇒ a ≤ − log

√
2− 1

2
.

In this case we have the two solutions
yi = Wi(−2e2a)
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with i = 0 or i = −1. Thus

xi = exp
(
−yi

2
+ a
)

= exp

(
−1

2
Wi(−2e2a) + a

)
are the solutions of x2 + a = log x. We want to simplify this formula further. For this purpose let b ∈ R.
With ζ = −eb we get as in Remark A.1.2

−eb = Wi(−eb) exp(Wi(−eb)).

Thus
−1

Wi(−eb)
= exp(Wi(−eb)− b)

Taking the logarithm on both sides of the equation gives

− log(−Wi(−eb)) = Wi(−eb)− b, b ∈ R.

Applying this equality with b = 2a+ log 2 gives

exp

(
−1

2
Wi(−2e2a) + a

)
= exp

[
−1

2

[
Wi(−e2a+log 2)− (2a+ log 2)

]]
exp

[
−1

2
log 2

]
=

1√
2

exp

[
1

2
log
(
−Wi(−e2a+log 2)

)]
=

√
−1

2
Wi(−2e2a).

Lemma A.1.3. For v0, σ > 0 and f0 as in Lemma 8.1.3 the minimal and the maximal appearing
tangential velocity at every position x ∈ R2\{0} are given by

vt,min/max = v0

√
−W0/−1

[
− exp

(
−8σ2

v2
0

− 1

)]
Proof. Denote by vr, vt the radial and the tangential component of the velocity. For every x ∈ R2\{0}

(vr, vt) ∈ supp f0(x, ·) ⇐⇒ v2
r + v2

t

2
− v2

0 log
vt
v0
− v2

0

2
≤ (2σ)2

⇐⇒ 1

2

(
vt
v0

)2

− log
vt
v0
− 1

2
≤
(

2σ

v0

)2

− 1

2

(
vr
v0

)2

.

Since the left side of the last inequality is strictly convex and diverges to infinity for vt → 0 and vt →∞,
the minimal and maximal tangential velocity are the two solutions of

1

2

(
vt
v0

)2

− log
vt
v0
− 1

2
=

(
2σ

v0

)2

With

x2 =
1

2

(
vt
v0

)2

this holds iff

x2 − log
√

2− log x− 1

2
=

(
2σ

v0

)2

⇐⇒ x2 −

(
log
√

2 +
1

2
+

(
2σ

v0

)2
)

= log x.

102



This has the two solutions

xi =

√
−1

2
Wi

[
−2 exp

(
−2 log

√
2− 1− 8σ2

v2
0

)]

=

√
−1

2
Wi

[
− exp

(
−8σ2

v2
0

− 1

)]
.

Thus

vt,min =
√

2v0x0 = v0

√
−W0

[
− exp

(
−8σ2

v2
0

− 1

)]
and

vt,max =
√

2v0x−1 = v0

√
−W−1

[
− exp

(
−8σ2

v2
0

− 1

)]

A.2 Average z-distance in a disk with constant scale height

We claimed in Section 8.2 that for a disc with the spatial density

Σ(x1, x2) exp (−|z|/zg)

the expected value of the distance in z-direction between two particles that we draw at random from this
density is 1.5zg. We give a short derivation of this. W.l.g. we set zg = 1 in the following calculations.
Then the z-coordinates Z1 and Z2 of the two particles are distributed according to the law

Z1, Z2 ∼
1

2
e−|z|.

The probability that the distance between the two particles is lower than δ > 0 is

P (|Z1 − Z2| < δ) =
1

4

∫ ∞
−∞

∫ z+δ

z−δ
e−|z|e−|z

′| dz′ dz.

The probability distribution function p(δ) that corresponds to the random variable |Z1 −Z2| is given by

p(δ) =
d

dδ
P (|Z1 − Z2| < δ)

=
1

4

∫ ∞
−∞

e−|z|
(
e−|z+δ| + e−|z−δ|

)
dz

=
1

2

∫ ∞
−∞

e−|z|e−|z+δ| dz

=
1

2

∫ −δ
−∞

ezez+δ dz +
1

2

∫ 0

−δ
eze−z−δ dz +

1

2

∫ ∞
0

e−ze−z−δ dz

=
eδ

2

∫ −δ
−∞

e2z dz +
e−δ

2

∫ 0

−δ
dz +

e−δ

2

∫ ∞
0

e−2z dz

=
eδe−2δ

4
+
δe−δ

2
+
e−δ

4

=
1

2
(1 + δ)e−δ

if δ > 0, and p(δ) = 0 if δ ≤ 0. Since∫ ∞
0

δe−δ dδ =

∫ ∞
0

δ(−e−δ)′ dδ =

∫ ∞
0

e−δ dδ = 1

and ∫ ∞
0

δ2e−δ dδ = 2

∫ ∞
0

δe−δ dδ = 2,
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we have for the expected value

EV (|Z1 − Z2|) =

∫ ∞
0

δ

2
(1 + δ)e−δ dδ

=
1

2

∫ ∞
0

δe−δ dδ +
1

2

∫ ∞
0

δ2e−δ dδ =
3

2
.

These calculations show that for a disc with scale height zg the distance in z-direction between two
randomly determined particles is at average 1.5zg.

A.3 Integrating the equations of motions in Section 10

In Section 10 we discuss several simulations. We want to describe the numerical methods used in these
simulations.

For every simulation we use a distribution function f(x, v) that was generated with the algorithm
from Section 8.3. From this distribution function we draw at random particles with initial coordinates
(xi(0), vi(0)) and integrate the equations of motion

ẋi = vi, v̇i = G
∑
j 6=i

xj − xi
(|xj − xi|2 + δ2

z)
3/2

.

We have modified Newton’s law of gravitation to take into account the disc thickness as we have done
already in Section 8.2. As previously δz = 1.5zg with zg = 300 pc.

We integrate the equations of motion numerically using a Velocity Verlet algorithm and we have
implemented two ways to calculate the force efficiently. The first method uses a polar grid where the disc
is divided in 100 uniform angles and along each radial line 400 meshpoints are distributed out to 100 kpc.
Particles that move beyond 100 kpc are dropped from the simulation. To distribute the meshpoints
radially, we approximate the density of our initial data by a continuous, piecewise function which is
linearly increasing to 4.3 kpc and exponentially decreasing beyond. The meshpoints are distributed such
that to each meshpoint the same mass of the approximate density would be assigned. In the simulation we
use bi-linear interpolation to assign the mass of each particle to the four adjacent meshpoints, calculate
the force between the meshpoints and get the force on the particles by again using bi-linear interpolation.
For simulations with this polar mesh, we created 1 Million particles from f(x, v). The second method
enforces axial symmetry. This is achieved by calculating in each time step a histogram of the radial
positions of the particles. This histogram is transformed into an axially symmetric density and from this
density the forces on the particles are calculated. For simulations with enforced axial symmetry we used
100.000 particles.
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anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet habe.
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