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~ Preface ~

Software development is a young profession, and we are still learning the techniques
and building the tools to do it effectively. (Martin Fowler, [Fow22])

Decades have passed since in 1968 leading computer scientist have come together at the NATO
software engineering conference to solve the challenges of the software crisis explained by Edsger
Dijkstra in the following way: “when we had a few weak computers, programming became a mild
problem, and now we have gigantic computers, programming has become an equally gigantic prob-
lem” [Dij72]. Accordingly, they faced the situation of exponentially growing computer technology
which made it hardly possible to write useful and powerful programs in an adequate amount of
time. Solution ideas to overcome the software crisis emphasized the adoption of (mechanical)
engineering ideas and transfer them to the level of programming software. Thus, key principles,
such as approaching the problem in an iterative way and reusing existing concepts or already pro-
grammed source code, were proposed. However, still today, in 2022, the software architect Martin
Fowler states the words quoted in the beginning that software development can still be considered
a “young profession” where we keep and need to keep learning new methods, for instance, in order
to address the rapid technological changes.

In contrast to the 20th century, today one kind of program to solve a problem or to offer some au-
tomated functionality does not suffice anymore. A large diversity of computer hardware, involving
capabilities which the members of 1968’s Nato conference might not have imagined, such as multi-
threading, embedded, cloud, and mobile computing, exists while the customer requirements vary
among private persons, companies, and even countries, too. To efficiently serve specific customer
needs, software product line engineering [CNO1; PBLO5] has become prominent as one technique
adopted from mechanical engineering. By relying on the principle of organized reuse, product line
engineering aims at supporting the mass customization of a product family. Configuring a software
platform allows for deriving customized programs automatically and, thus, increases productivity.
Another software engineering direction stresses abstraction and modeling techniques to automati-
cally generated the source code realizing the modeled system. Using models is native to engineers:
Herbert Stachowiak [Sta73] postulated the usage of a model by employing the principles of map-
ping, reduction, and pragmatism to reflect the original system. Since then, the discipline model-
driven software engineering [Sta+06; BTG12] has installed standardized modeling languages with
formal semantics which, on the one hand, abstract from the source code. On the other hand,
model transformation languages ease the automated generation of another representation for a
given model by focusing on the declaration of correspondences and relations between the two rep-
resentations instead of the concrete execution steps necessary to create the new representation.
As a consequence, the level of productivity is raised by abstracting from realization details and
automating the source code generation.

The combination of model-driven software engineering and software product line engineering,
model-driven software product line engineering [Cza+05], promises to take advantage of the up-
sides of both disciplines to systematically advance the levels of automation and customization.
It seeks to build large software systems holding inherent variability efficiently. Models are em-
ployed to describe the multi-variant system and model transformations should be used to generate
customized source code by the end of the production phase. However, model-driven product line
engineering raises several challenges and requires optimized techniques to increase automation and
to decrease manual engineering efforts. The goal of this thesis is to solve one of these challenges
in a reuse-based, generic and automated way:.
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Abstract

Model-Driven Software Product Line Engineering (MDPLE) is a discipline that bespeaks increased
productivity when developing variability-intense software by combining the benefits of both disci-
plines, model-driven software engineering (MDSE) and software product line engineering (SPLE):
SPLE grounds on the principles of organized reuse and explicit variability to build a (multi-
variant) platform from which customized software products can be derived automatically. In
contrast, MDSE raises the level of abstraction by employing models of different kinds throughout
the development process and eventually represents the software system with executable models.
Model transformations serve to create not only different model representations from a given model
but also to derive executable source code automatically.

While MDPLE should take advantage of the positive effects of each discipline when combining
them, several problems, such as the following, threaten these effects: Annotative product lines
build the multi-variant platform by superimposing single variants of the software. For deriving
a customized product, developers map annotations onto elements of the platform and provide a
configuration of the distinguishing features of the product line. These annotations are Boolean
expressions over the common and distinguishing features of the product line. A filter mechanism
will remove elements from the platform if their annotations are not satisfied by the configuration.
Since multiple artifacts, such as models, build scripts, and source code, form the platform, still
annotating each of these artifacts is a manual process which is tedious and prone to errors. Few
approaches automate this task by manipulating the execution semantics of model transformations.
This requires exclusive access and, in the worst case, to consider variability explicitly in the trans-
formation which increases the level of cognitive complexity and may require to learn new syntax.

Therefore, in this thesis we develop a solution which acknowledges the existing and mature technol-
ogy of (single-variant) model transformations which automate the creation of new models or source
code but are unaware of the variability present in form of annotations in multi-variant product
line artifacts. In contrast to existing approaches, our contribution does not modify the execution
semantics of existing model transformation languages but reuses them and their generated arti-
facts to propagate annotations generically (i.e., independent of the transformation language and
of the transformed instances of metamodels) and automatically.

Specifically, the thesis contributes the informal and formal concepts and implementation of 1)
an a posteriori bytecode model analysis, 2) an a posteriori propagation of annotations based on
transformation trace, as well as 3) a propagation during the execution based on a generic aspect.
Furthermore, the thesis examines the strengths and weaknesses of employing a propagation DSL
and model matching of instances of different metamodels to reconstruct trace information.

The evaluation confirms a significant reduction in manual efforts to annotate the product line:
We examine the trace-based propagation of annotations based on traces of different completeness-
levels and the generic aspect in a controlled setting with small to medium academic product lines.
The aspect-oriented approach assigns 95— 100% of the annotations correctly. Furthermore, even
if the trace completeness is insufficient and does not record all target elements, our approaches
compute more than 90% of the annotations correctly whereas the propagation based on generation-
complete traces determines all target annotations correctly.

In summary, the thesis solves the problem of diminished productivity in MDPLE by providing

the concepts, realization, and evaluation of automated techniques to propagate annotations in
annotative product lines without the need to change established technologies.
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Zusammeniassung

Die Disziplin modell-getriebene Software Produktlinienentwicklung (MDPLE) verspricht, die Pro-
duktivitdt beim Entwickeln hochvariabler Software zu steigern, indem sie von den positiven Effek-
ten der beiden Disziplinen modell-getriebene Softwareentwicklung und Software Produktlinienent-
wicklung profitiert. Organisierte Wiederverwendung und Variabilitat bilden die Kernprinzipien der
Software Produktlinienentwicklung. Beide Konzepte werden benutzt, um kundenspezifische Pro-
dukte anhand einer konfigurierten Plattform abzuleiten. Die modell-getriebene Softwareentwick-
lung hingegen verwendet wiahrend des Entwicklungsprozesses unterschiedliche Arten von Modellen.
Am Ende dieses Prozesses stehen ausfithrbare Modelle, die das Softwaresystem représentieren.
Modelltransformationen stellen eine Automatisierungstechnik dar, die es ermdglicht, anhand eines
gegebenen Modells weitere Représentationen und schliellich den ausfithrbaren Quellcode des Pro-
gramms automatisch zu generieren.

Obwohl MDPLE von den positiven Eigenschaften beider Disziplinen bei deren Kombination prof-
itieren sollte, ergeben sich verschiedene Probleme, die die Vorteile konterkarieren, unter anderem
das Folgende: In annotativen Produktlinien entsteht die Plattform durch das Uberlagern aller er-
laubten Softwarevarianten. Entwickler weisen den Elementen der Plattform Annotationen zu und
geben eine Konfiguration der auswéhlbaren Eigenschaften an, um ein kundenspezifisches Produkt
abzuleiten. Annotationen sind Boolesche Ausdriicke tiber Literale, die die gemeinsamen und un-
terschiedlichen Eigenschaften der Produktlinie repriasentieren. Sobald eine Annotation nicht durch
die gegebene Konfiguration erfiillt ist, entfernt ein Filter die entsprechenden Modellelemente von
der Plattform, um so das Produkt abzuleiten. Bei der Plattform handelt es sich jedoch nicht um
ein einzelnes Artefakt: verschiedene Modelle, Buildskripte, Quellcode, etc., sind darin enthalten,
deren variablen Elemente alle meist hdndisch annotiert werden miissen. Wenige Ansétze automa-
tisieren das Annotieren bislang und manipulieren dabei die Ausfiithrungssemantik bestehender
Einzelvariantentransformationen. Dies verlangt jedoch den Zugriff und die Erlaubnis, die Aus-
fihrungsumgebung zu dndern. Mitunter muss Variabilitdt explizit in der Modelltransformation
berticksichtigt werden, was wiederum die kognitive Komplexitdt beim Erstellen und Warten einer
solchen Transformationsdefinition erhdht.

Aus diesem Grund entwickelt die vorliegende Arbeit Losungsansitze, die auf dem Wissen auf-
bauen, dass Modelltransformationen eine bereits ausgereifte Technik darstellen, um neue Modelle
oder Quellcode zu generieren, der jedoch der Umgang mit Variabilitdt in Form von Annotationen
nicht bekannt ist. Im Gegensatz zu den bisher publizierten Ansétzen, dndern die beigetragenen
Losungen nicht die Ausfiihrungssemantik. Stattdessen benutzen sie die Transformationswerkzeuge
und deren generierte Artefakte, um Annotationen generisch (d.h., unabhéngig von einer Transfor-
mationssprache oder Transformationsdefinition) und automatisch in das Zielmodell zu iibertragen.

Insbesondere tragt die vorliegende Arbeit die informellen und formellen Konzepte sowie die Imple-
mentierung 1) einer a posteriori Analyse von Bytecodeinstruktionen, 2) einer a posteriori Ubertra-
gung von Annotationen anhand von Traceinformation sowie 3) einen aspekt-orientierten Ansatz,
der die Annotationen wéahrend der Ausfithrung in generierten Quellcode einbettet, bei. Des Weit-
eren untersucht die Arbeit die Vor- und Nachteile einer Propagations-DSL und des Vergleichs von
Instanzen unterschiedlicher Metamodelle beziiglich der Maoglichkeit Traceinformation zu rekon-
struieren.

Die Evaluierung der beigetragenen Ansétze bestétigt eine signifikante Reduktion des héndischen
Annotationsaufwands. Dazu wird die Annotationsiibertragung anhand von unterschiedlich voll-
standigen Traces und bei der Verwendung eines generischen Aspekts in kontrollierten Experi-
menten mit kleinen und mittelgroflen akademischen Produktlinien untersucht. Es zeigt sich, dass
der aspektorientierte Ansatz 95— 100% der Annotationen richtig ermittelt. Auflerdem berechnet
die trace-basierte Ubertragung iiber 90% der Annotationen korrekt, selbst wenn die Vollstandigkeit



des Traces nicht hinreichend genau ist. Bei der Berechnung von Annotationen anhand von erzeu-
gungsvollstdndigen Traces werden sogar alle Annotationen korrekt bestimmt.

Insgesamt 16st die vorliegende Arbeit damit ein Problem der minimierten Produktivitdt in der
modell-getriebenen Software Produktlinienentwicklung, indem sie die theoretische Konzepte, deren
Realisierung und Evaluierung beitragt, um Annotationen in annotativen Produktlinien automa-
tisch und ohne die Verdnderung bewédhrter Technologien auf weitere Artefakte zu tibertragen.
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Chapter 1 Problem Statement

Take the best that exists and make it better
When it does not exist, design it.

Sir Frederick Henry Royce

This thesis offers a solution for a problem situated in annotative model-driven software
product line engineering. To state the targeted problem, this introduction to the thesis
offers an overview of the research disciplines and the current shortcoming in model-
driven software product line engineering. Based on that overview, the chapter states
the problem as well as the research objectives and summarizes the research outcome
which the following chapters present in detail.

After stating background information and introducing the problem in Sec. 1.1, Sec. 1.2,
Sec. 1.3 and Sec. 1.4 present the research objectives, delimit the scope by design deci-
sions and enumerate the concrete contributions of the thesis, respectively. The end of
this chapter outlines the structure of the contents of the thesis.




CHAPTER 1. PROBLEM STATEMENT

1.1 Background

Overview This thesis solves a problem which is situated in the discipline of model-driven prod-
uct line engineering, which combines the methods used in the disciplines model-driven software
engineering and software product line engineering. The goal of the thesis is to reuse model trans-
formations, a state-of-the-art technique from the discipline of model-driven software engineering,
to propagate variability annotations in model-driven product lines. The following paragraphs
introduce each discipline in short to explain the problem being solved thereafter.

Disciplines Software product line engineering [PBL05; Ape+13], on the one hand, builds on
the principles of organized reuse and wvariability. The level of domain engineering builds a su-
perimposed platform of all variants whereas the level of application engineering maintains single
variants which are delivered as final products in the end [PBL05]. A key artifact of systematic
product line engineering are variability models [Cza+12] which capture differences (and common-
alities) among the software variants of a product line. Variability mechanisms [Ape+13] serve to
derive and, in the end, build customized variants. The most common ones are the compositional,
transformational (also delta-oriented), and annotative variability mechanisms.

This thesis focuses on the annotative variability mechanism (c.f., Sec. 3.4.4), which constructs a
superimposed multi-variant platform to incorporate all program variants available to a customer.
Without loss of generality, we assume that a feature model [Kan+90] captures the variability of
the system. Annotations are Boolean expressions over the features of the feature model and are
mapped onto the elements of the platform. For deriving a variant, the product developer configures
the variability model by providing selection states for each optional feature. Given such feature
configuration, a filter mechanism will remove elements if their annotations are not satisfied by this
feature configuration.

Model-driven software engineering [BCW12; Sta+06; Sch06], on the other hand, relies on the
principles of abstraction and automated generation. Models which are instances of metamodels
[Kih06] represent the software system which should be created. To generate source code and
thereby realizing the executable program, model transformations [SK03; CHOG6] serve as key tech-
nology for automating the creation of another representation, such as refined models or source
code.

Furthermore, in model-driven software product line engineering [Gom05], models form the core
elements of the platform. As such, not only one domain model but multiple types of models
may compose the platform. Similar as classical software product line engineering, model-driven
product line engineering can employ the same variability mechanisms which instead of code man-
age multi-variant models [SBW16]. In annotative model-driven product lines, the multi-variant
model, also denoted as 150 %-model, composes the variants and maps annotations onto model
elements to allow for filtering customized models from that platform model. We assume classical
forward engineering development which builds coarse-grained models from requirements engineer-
ing in early development stages and subsequently refines them into design and implementation
models. These refinements may occur over several iterations. To support the automated propa-
gation of information of a coarse-grained level to the next, more fine-grained level, model-driven
software engineering employs (incremental) unidirectional model transformations. As an exam-
ple, the product line developer can refine an Ecore model into a UML class model or create a
relational database schema as additional information. The developer can further refine the UML
class model into a Java model which can be used to generate (multi-variant) source code. A
model-driven product line developer typically employs transformations to automate the creation
of new types of models.

Challenge Even though mature tool support for multiple kinds of model transformation lan-
guages exists including their proper integration into the Eclipse IDE, the (single-variant) transfor-
mation engines and languages are unaware of the variability in form of annotations mapped onto
the multi-variant models of a model-driven product line. For this reason, it is possible to execute a
single-variant transformation to generate another model representation for an input multi-variant
model (e.g., create a UML class model from an Ecore model) but it is impossible to propagate the
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annotations mapped onto source model elements therewith, in general. Therefore, product line
developers need to map annotations onto target elements manually. This process is laborious,
time-consuming, and prone to errors: Either the developers assign annotations completely anew
or they look up the annotations of (what they assume to be) corresponding source elements. Al-
ternatively, extending existing transformation definitions — if possible — is a similarly error-prone
effort which has to be repeated for each kind of relevant transformation definition.

Existing Solutions Before working on the thesis, only few techniques existed that regard vari-
ability in model transformations: Variability-based rules [Str+18b] annotate existing rules and
allow their variation to serve the purpose of generating different, customized artifacts by config-
uring the transformation. The lifting of transformation rules [Sal+14] changes the semantics of
the model-to-model graph transformations and, thus, requires to modify the execution engine. A
similar approach incorporates variability directives by extending the syntax of the transformation
language ATL (Atlas Transformation Language) [Sij10] and transforms the resulting execution
model with an ATL transformation into the default ATL execution model in a higher-order trans-
formation. In summary, these three and further closely related approaches [Tae+17; Fam+15]
either manipulate the execution semantics or require to consider variability in the transformation
definition explicitly. On the one hand, accessing the execution engine implies the right and possi-
bility to access and manipulate the existing semantics of a language. On the other hand, exposing
the transformation developer to the variability increases the amount of cognitive complexity to
define the transformation definition and may require to learn new transformation syntax and
semantics.

Consequence Driven by the observations of the possibility to reuse model transformations and
the limitations of existing techniques, the goal of this thesis is to answer and provide an adequate
solution to the following problem:

So far, the product line developer needs to annotate multi-variant (source) models
manually. As one product line consists of multiple modeled artifacts, the developer
has to redundantly map annotations onto each newly introduced artifact in laborious
and error-prone handwork. Since model transformations automate the creation of
target representations, they should be equally reusable to propagate the annotations
of source elements to corresponding target elements in an automated way.

1.2 Research Objective

Based on the goal to propagate annotations automatically by reusing transformation technology,
we derive the following research objectives targeted in this thesis.

RO1 Reuse of existing transformation languages and engines
RO2 Automation of propagating annotations

RO3 Genericity of propagating annotations (i.e., independent of a specific transformation
language or the transformation definition)

RO4 Correctness of propagated annotations

RO1 Reuse Firstly, the objective to reuse existing technology aims to preserve the already
invested time, work, and efforts. Transformation languages with formal semantics have already
been designed and optimized for efficiency. For instance, active research continuously optimizes
the unidirectional model-to-model transformation language ATL [Jou+08] to perform faster and
more accurately by improving the front-end (e.g., validation and repair operations) [Var+21] and
the back-end (e.g., faster compile and execution time) [Cal+19; CGL18; Cua+22]. At the same
time, the ATL zoo [All122] collects several transformation definitions specified in this language.
When building a model-driven product line, the developer may employ existing transformation
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definitions if instances of corresponding metamodels form part of the product line. For example,
transformation definitions which turn a class model into a relational database schema to realize
object-relational mappings serve as a standard example to demonstrate the syntax and semantics
of the language. Therefore, this transformation is available in several languages, such as QVT-R,
[Wes15] and QVT Operational Mappings [Obj16], ATL [All122], and Henshin [Kra].
Overall, reusing the existing know-how offers the benefits that there is no necessity for the product
line developer to
e learn new language constructs
e think about the transformation of annotations explicitly, so that the level of cognitive com-
plexity of the transformation definition does not increase additionally
e extend existing transformation engines
o create new transformation definitions from scratch (which might require an expert in model
transformations)

RO2 Automation Secondly, the product line developer should have to invest no or (only if
indispensable) minimal manual annotation efforts. Thus, the propagation mechanism needs to map
the annotations onto elements of the target model automatically. Accordingly, the propagation
mechanism should ensure that an annotation is mapped onto all (relevant) elements which are
created by the reused transformation after having performed the propagation. If the product line
developer needs to modify an automatically assigned annotation manually after the automatic
propagation, executing the transformation another time (e.g., because the source model changed)
should preserve the manually modified annotations.

RO3 Genericity Thirdly, it should be possible to employ the same propagation mechanism
to propagate annotations generically. Neither the metamodel to which the source and target
model conform nor the kind of transformation engine which creates the target model should
provoke a different propagation mechanism. In other words, the propagation should be processed
independently of the transformation definition and of the transformation engine.

Building a generic solution offers the benefit of (mostly) technology-independent applicability.
By not assuming a certain metamodel or transformation language, a respective solution can be
employed in almost any transformation scenario. Thus, the product line developers are not forced
to employ a specific tool environment, transformation language, or transformation definition but
can reuse the existing tools and languages which are available and adequate.

RO4 Correctness Finally, the propagation of annotations should be correct. Correctness is
not defined by prescribing the concrete annotations assigned to target elements but by examining
their effect on the derived variants. In concrete, transformation and filter operations need to
commute as sketched in Fig. 1.2.1:

multi-variant MVMT multi-variant
source model target model
' filter filter

. . SVMT . .
single-variant single-variant
source model target model

Figure 1.2.1: Commutativity of transformations noted informally.

A multi-variant model transformation (MVMT) creates the multi-variant (annotated) target model.
Then, the same single-variant target model should be created by filtering the multi-variant source
model and transforming the resulting single-variant source model with the reused single-variant
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model transformation (SVMT) as results from filtering the multi-variant target model by the same
feature configuration. If this property holds for each valid feature configuration, we consider the
propagation result correct. To the best of our knowledge, the Lifting [Sal+14] approach postulated
commutativity of transformations as correctness criterion for the first time.

1.3

Scope of Contribution

According to stating the background information and the problem addressed in this thesis, we
take several design decisions which delimit the scope of the approach. Although the detailed
description of the three software engineering disciplines introduces and explains some of these
decisions subsequently in Part II, this section collects the important ones and thereby delineates
the scope of the contribution.

D1

D2

D3

D4

D5

Annotative Model-Driven Product Line

The contributed annotation propagation mechanisms serve to diminish the problem of man-
ually annotating a model-driven product line model and are essential when employing the
annotative variability mechanism. We do not examine the effect or necessity of a simi-
larly automated annotation technique when utilizing the compositional or transformational
variability mechanism or solely implementation techniques to build varying products.

Element-Wise Mappings

Multiple ways to persist the mapping of an annotation onto a model element exist which
Sec. 4.2.2 illuminates. Our solution targets the maintenance of annotations recorded by
the means of element-wise mappings. Those may be either stored externally, which means
in a physically file separated from the domain model, or internally, which means stored
as elements of the target representation (e.g., as preprocessor directives). Thus, we do
not consider annotation-wise mappings which record one kind of annotation once and map
several model elements, particularly of physically different models, onto the corresponding
single annotation.

Constrained Variability

As Sec. 4.1.1 will explain, we consider the transformation of domain models which realize
constrained variability. Since (single-variant) state-of-the-art modeling languages, such as
Ecore or UML, do not offer dedicated constructs to represent and respect the variability in-
herent in a multi-variant domain model, the latter type of model is subject to the constraints
defined in the single-variant modeling language’s syntax. Accordingly, for instance, it is not
possible to define names of one UML class which vary with respect to the given feature con-
figuration. This would require to persist different values of the single-valued attribute name
and map different annotations onto them. Only few approaches support such mechanism,
mostly in a user-hidden way [Reu+20; SW16; BS12]. Therefore, we restrict our solution to
constrained variability.

Proactive Development

This thesis focuses on the proactive (i.e., from scratch) development of a product line. Even
though we assume that at least one multi-variant source model is annotated completely, we
do not regard combining multiple products into a product line as in ertractive approaches
or to integrate new products into an existing platform as in reactive approaches.

Non-Intrusive Reuse

Following from the research objective to reuse existing model transformation technology,
we restrict the solution concepts to modify neither the syntax of existing transformation
languages nor the semantics of their execution engines. On the one hand, in this way the
product line developer may reuse existing transformation definitions to transform multi-
variant models. This is beneficial, particularly, whenever the developer is unable to access
the transformation engine. In addition, the developer is not required to know profoundly
how model transformations behave. On the other hand, in the transformation definition,
the developers do not have to regard the additional complexity introduced by annotations.
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D6 Commutativity as Correctness Criterion
Finally, as stated as research objective (c.f., Sec. 1.2), we foster commuting multi- and
single-variant model transformations as correctness criterion. According to this criterion,
an annotation mapped onto a target element is not determined uniquely. Thus, we do
not evaluate the correctness of an annotation by prescribing a specific expression but by
regarding the presence of the element onto which it is mapped in derived products.

In summary, these design decisions determine and delimit in which areas of software product line
engineering the present work is applicable.

1.4 Overview

In the course of this thesis, we contribute diverse mechanisms which all intend to propagate
annotations to the target model by adhering to the four research objectives. For that reason,
Sec. 1.4.1 illustrates the novelties contributed in this thesis, dedicating a particular focus on their
relationships and dependencies. While Sec. 1.4.1 announces the chapters in which the contributions
appear, Sec. 1.4.2, provides an extended outline of the entire thesis.

1.4.1 Contribution

To meet the research objective, this thesis examines different solution strategies. This section
provides an overview of the main contributions and foreshadows how they appear subsequently
in the following chapters. Fig. 1.4.1 illustrates the dependencies between the contributions of this
thesis and states the corresponding chapters. B.2 collects the peer-reviewed publications which
lay the base for each chapter and the following descriptions cite the respective ones. Furthermore,
the introduction to each chapter mentions the publications which lay its foundation. The fol-
lowing paragraphs subsequently summarize the contents of each contribution which answer four
overarching questions:

How do existing MDPLE tools maintain annotations and keep them consistent? The
first part of the contribution considers the related work by examining annotation maintenance
methods in existing MDPLE tools [GW21] and classifies the properties of multi-variant model
transformations [GW21; WG20a).

Although several solutions to maintain variability in model transformations exist, Sec. 4.3 con-
cludes that none of the examined MDPLE tools considers or employs an automated mechanism
that explicitly keeps corresponding annotations of diverse artifacts consistent.

How and to what extent can we propagate annotations automatically? The following
chapters contribute conceptual solutions to propagate annotations automatically, generically and
correctly by reusing already existing technology.

On the one hand, Chp. 5 and Chp. 6 describe the concept of propagating annotations based on
a transformation trace in model-to-model (M2M) transformations, at an informal level [GSW17],
and the conditions which have to be satisfied, at a formal level [WG18; WG20a], respectively.
On the other hand, Chp. 8 presents an approach to employ aspect-oriented programming tech-
niques to map annotations onto text fragments in model-to-text (M2T) transformations [GW18b].
As the computational model, which formally proves the correctness of trace-based propagation, is
quite restrictive and fosters the usage of complete traces, Chp. 7 offers practical solution strategies
to maintain situations which violate the computational model. Therefore, it discusses the effect of
a generation-complete trace and describes propagation strategies for when traces are incomplete
[GW19c; GW18c] or not existing at all [BG18]. This involves the necessity to preserve annota-
tions which the developer has to modify manually because of inaccurate annotations provoked by
missing information [GW20].
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Figure 1.4.1: Overview of contributions and their appearance in the thesis. The second part of
the bibliography list (B.2) compiles the publications that lay the grounds for these chapters.

To what extent do the conceptual approaches satisfy the objectives in practice? The
final part presents an implementation of the approaches as proof of concept (c.f., Chp. 9) and
evaluates the benefits and limitations gained by the propagation strategies (c.f., Chp. 10). The
respective chapters illustrate the functionality of the realizations to propagate annotations as well
as how commutativity can be examined practically [GW19b]. The evaluation of the propagation
approaches complements already published work [GW19a; GW18a] and is extended to mitigate
some threats of validity.

While — by design — each of the solutions is automated, generic and reuses existing technology,
the results demonstrate that in general correctness cannot be guaranteed in practical situations.
However, the evaluation shows that the propagation based on generation-complete traces results
in commuting transformations in each of the examined situations. If traces are incomplete, the
proposed alternative propagation mechanisms (completion strategies) compute more than 90% of
the annotations correctly which means that less than ten percent of the target annotations have
to be repaired manually (in the worst case scenarios). In addition, the evaluation of the aspect-
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oriented propagation of annotations demonstrates that violations to its computational model may
provoke erroneous annotations. However, in the respective multi-variant source code we have to
repair only four annotations which means that in total more than 98% of preprocessor directives
are computed and inserted correctly.

1.4.2 Structure

Before closing the first part of this thesis, this section explains the organization of the remainder.
Part I gave an overview of the contribution in terms of stating the problem, the research objectives,
and the design decisions. The second part, Part II, scrutinizes the research disciplines. In this
way, Part II narrows down the problem and offers detailed background information to readers
not entirely familiar with either model-driven software engineering (Chp. 2), software product line
engineering (Chp. 3), or their combination (Chp. 4). Furthermore, while the first two sections of
Chp. 4, Sec. 4.1 and Sec. 4.2, present background information how to combine both disciplines,
Sec. 4.3 illuminates how to convey variability information in model transformations. The closing
section motivates the necessity for propagating annotations based on the preceding examination
of existing solutions.

The following parts present the contributed propagation approaches: Part III describes the com-
putational model for trace-based propagation: Chp. 5 illustrates the concept of trace-based prop-
agation and its properties informally whereas Chp. 6 offers the foundations formally noted. As
the computational model may be violated in practice, Part IV explains extensions to the trace-
based propagation approach. On the one hand, Chp. 7 offers several strategies to solve situations
in which trace information is only insufficiently available. On the other hand, Chp. 8 describes
how to transfer variability information in model-to-text transformations by employing an aspect-
oriented approach.

The thesis continues to examine to what extent the contributed concepts are applicable in prac-
tice in Part V: Chp. 9 presents the implementation of the contributed propagation mechanism
whereas Chp. 10 evaluates inasmuch the propagation mechanisms satisfy the research objectives,
particularly commutativity, in varying transformation scenarios.

Part VI finalizes the thesis: Chp. 11 summarizes and reflects on the contribution, discusses design
decisions, and collects important lessons learned which may be relevant not only for research
but also for practitioners and the industry. An outlook on potential future research directions
concludes the thesis.
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Chapter 2 Model-Driven Software Engineering

In nova fert animus mutatas dicere formas / corpora'

Ovid, Met., Book I, Lines 1-2

As first part of introducing background information on the thesis’ topic, this chap-
ter illuminates the discipline model-driven software engineering. While models, which
conform to metamodels, abstract and reduce the original in a pragmatic way, their sole
use will not produce executable source code. Thus, model transformations represent
the key technology to maintain the models in this discipline.

Therefore, this chapter introduces general modeling concepts in its first part, Sec. 2.1
while the second part of this chapter, Sec. 2.2, scrutinizes the key technology in model-
driven software engineering, the concept of model transformations.

1 “T intend to speak of forms changed into new entities”

13
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2.1 Modeling Concepts

Road Map Before diving into the characteristics of model-driven software engineering, this
section discusses terminology associated with the discipline in order to pigeonhole our approach
correctly. in Sec. 2.1.1. Thereafter, Sec. 2.1.1 delimits different terminology to build a com-
mon understanding of the area in which this thesis is situated whereas Sec. 2.1.2 illuminates the
motivation why software engineers may employ models as form of abstraction to build software
systems. Finally, the remaining sections introduce basic modeling concepts and their realization
mechanisms to talk about models throughout the remainder in an informed way.

2.1.1 Preliminaries — Associated Engineering Disciplines

Besides model-driven software engineering (MDSE), the terms model-based engineering (MBE)
and model-driven (software) development (MDD) coexist as names of this research discipline. All
of these directions are centered around the usage of models in order to raise the level of abstraction
when creating a system.

While MDSE and MDD can be regarded synonyms, MBE focuses on models differently. In MBE,
models are associated artifacts which, together with source code, make up the system. They are
not intended to replace the necessity for manually written source code. Conversely, in MDSE
— also denoted as model-driven engineering [Sch06]- or MDD[Sta+06; BCW12] models are the
primary artifacts to prescribe the system, thereby ensuring that executable source code can be
generated automatically. This thesis contributes a technology to enrich MDSE.

2.1.2 Background

In all engineering disciplines models have always predominated the development of a system:

Model Definition in (General) Engineering According to Stachowiak, a model respects the
following three essential features: mapping, reduction and pragmatism. Firstly, a model always
maps the elements of a natural or an artificial original to some representation, the elements of
model. Secondly, the model reflects relevant parts of the original only, thereby reducing it. Finally,
the pragmatic feature involves three instances, the user of the model, the point in ¢ime when it is
used and the purpose to which the model is used. By considering these three factors, the model
is trimmed to cover the system best from a pragmatic point of view. [Sta73]

Model Definition in Software Engineering The following proposition by Kiihne transfers
Stachowiak’s general definition of a model in engineering sciences into a definition of a model in
software engineering.

A model is an abstraction of a (real or language-based) system allowing predictions or
inferences to be made. [Kith06]

In his work, Kiihne presents key concepts on how to recognize models in MDSE by defining
the relationship of a model to the system it describes. In this context, he further elaborates on
metamodels and model transformations, to which we refer in subsequent sections.

First of all, as stated before, a model abstracts from a real or a language-based system with a
specific purpose in mind [Kith06]. While the abstraction of the real-world (system) in form of
a model is in line with Stachowiak, the abstraction of a language(-based system) may explicitly
target the software engineering community.

Abstracting Software Languages In a similar direction, the overall aim of software language
engineering has been — and is still today — to raise the level of abstraction and automation. By now,
only few programmers write assembler code or even machine code. Even when hardware-specific
optimizations are required, developers prefer domain-specific languages [Fow10], from which GPL
code is generated which in turn is transformed into assembler or machine code. A prominent ex-
ample of abstracting from assembler languages is mbeddr which provides a language workbench

14
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Figure 2.1.1: Automation and abstraction climax.

for specifying source code for embedded systems [Voe+13]. Today, the majority of programmers
(still) employs general purpose languages, such as Java or C/C++ [Str13], when developing soft-
ware. Compilers [Aho+13], in turn, generate a lower-level representation, typically machine or
assembly code, from the GPLs automatically. As shown in Fig. 2.1.1, executable models continue
this climax of abstracting the system and generating the lower-level representation automatically.
To this end, models adhering to formal syntax allow for deriving the GPL source code from the
model. As a consequence, the question arises how to note a model formally in order to generate
executable source code from it?

Object Management Group In 1989, the object management group? (OMG) has been founded
as international non-profit consortium for setting modeling standards and, thus, answering these
questions. By now, many standards have been established by this facility and some will be
introduced in the next paragraphs as well as the answer to the question how to express models.

2.1.3 Metamodels

Metamodels are the prominent answer to the question of how to (de-)note a model. The prefix
“meta” originates from the Greek language where “pera” means “after”. After writing his work
“on nature” (¢voikn), Aristotle (4th century BC) published notes reflecting on this first work.
These second notes are nowadays commonly called “Metaphysics” (ueraguoikn) since they use
methods defined in the initial work to reflect on physics (though originally there was no official
title). The idea of using a science to define this science itself has been put up firstly in modern
times by mathematicians, such as David Hilbert (1862-1943) and Kurt Godel (1906-1978). In 1920
Hilbert proposed a research program called “metamathematics” using mathematical methods, for
example a universal axiom system, to define mathematics. Similarly, the idea of defining physics
based on physics was caught up by Godel. This historic excursion indicates that the introduction
of metamodels by the OMG, which is described in the following paragraphs, is no revolutionary
new idea but continues a long historical tradition.

Overview The grounds for metamodeling, i.e., defining models based on models, lie in the
specifications of the Model-Driven Architecture and the Meta Object Facility, both explained in
the following paragraphs. Furthermore, as a metamodel defines the abstract syntax and static
semantics of a model, this section delimits metamodels from modeling languages. Additionally,
the sequel introduces the key concepts of the UML metamodel, which is one of the most widespread
metamodels and serves as example in the subsequent explanations, and the OCL language, which
allows for defining the static semantics of a metamodel.

2 www.omg.org

15


www.omg.org

CHAPTER 2. MDSE

I: MOF, EMOF, W3C

M3
meta-metamodel

«instance of»

M2 UML metamodel,
metamodel DSL grammar, ...

«instance of»

M1 UML model/DSL,
model e.g., UML class
diagram
«reflects»
MO real-world object,

source code

original

Figure 2.1.2: Classical MOF modeling hierarchy.

Model-Driven Architecture The foundations for modeling lay in the model-driven architec-
ture (MDA) [Obj00] proposed by the OMG. The MDA specifies the design of platform independent
models (PIM) which according to Richard Solely, main author of the specification draft, allow
“to derive code from a stable model” ([Obj00], p.3) while the underlying technology changes over
the course of time. The term platform refers to any technical or business details specific to a
system. When deriving source code for a specific platform, firstly the PIM needs to be turned into
a platform specific model (PSM), an intermediate state which additionally includes the technical
or business semantics of the target platform.

Meta Object Facility The Meta Object Facility (MOF) [Obj19b] standard, proposed by the
OMG, declares the standards for metamodeling in the context of the MDA. Classically, the MOF
declares a four-layered hierarchy of modeling which is sketched in Figure 2.1.2. At the bottom,
MO, resides the original. The original may be a real object, which is reflected by some element in
the model, or, for instance, source code, which the model describes. Level M1 contains the actual
model which reflects the original. In turn, the metamodel at level M2 defines the syntax for models
residing at level M1 which are instances of the metamodel. Finally, metamodels are instances of
a meta-metamodel, located at level M3. Since this hierarchy could be extended to infinity, the
standard involves a bootstrapping mechanism. The topmost layer defines its language itself, thus,
being a reflerive metamodel. Ex. 2.1.1 provides a concrete example of models residing at the four
levels and is explained after introducing the specializations of MOF, EMOF and CMOF.

The MOF standard further distinguishes between essential and complete MOF: FEssential MOF
(EMOF), as part of the MOF standard, offers the minimal framework for building metamodels
at level M2. Thereby, the EMOF model merges elements of the UML2 standard, which is intro-
duced in the sequel, with basic MOF concepts and constraints. In this way, EMOF suffices to
bootstrap metamodels conforming to EMOF. Finally, Complete MOF (CMOF') merges several
further packages, for instance the EMOF and additional parts of the UML2 metamodel, in order
to provide for advanced metamodeling capabilities. [Obj19b]

Example 2.1.1: Modeling Hierarchies

Fig. 2.1.3 exemplifies the different hierarchy levels by using concrete model excerpts: The
model at level M1 reflects families consisting of members. The family Obama with a par-
ent called “Michelle” and a child called “Natasha” serves one possible (partial) instance,
representing the original. The model at level M1 is expressed in UML which resides as
metamodel at level M2. At the topmost level, the meta-metamodel defines the syntax to
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which the metamodels conform. In this example, we assume the UML model is expressed
as an Ecore model, as such Ecore servers as meta-metamodel.
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Figure 2.1.3: Modeling hierarchy for UML class models.

Despite the precise structure of this four-level metamodeling hierarchy to which further state-of-
the-art OMG standards, such as the UML standard, refer, research has shown that multi-levels are
closer to reality and ease modeling [AKO08]. Multi-level programming distinguishes the linguistic
from the ontological level of modeling which is beyond the scope of this thesis. In its recent update
of the MOF standard, the OMG refrains from the strict four-level concept. The OMG denotes
the instance-of relationship as the most relevant aspect of the four-level model. Specifically, the
possibility to navigate from objects to their defining classes or, in different terminology, from
instances to their classifiers represents its core contribution [Obj19b].

Concrete vs. Abstract Syntax To explain the relationship between metamodels and models
more precisely, this paragraph distinguishes between the meanings of concrete and abstract syntax
first.

The model reflects the original. If it is noted in the concrete syntaz, it will instantiate the language
constructs as they are defined in the metamodel. The metamodel defines the syntactic constructs,
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Figure 2.1.4: UML association in concrete syntaxr and in a simplified form in its abstract syntax.
Fig. 2.1.3 depicts the corresponding metamodel elements at M2.

the relationships among and the static semantics, which allow to note the model. Noting the model
in abstract syntax instead, shows which of the language constructs defined in the metamodel are
instantiated in the model. Ex. 2.1.2 provides an example which demonstrates the relationship
between concrete and abstract syntax. In the course of this thesis, several figures will note models
in abstract syntax to demonstrate the syntactic constructs of the metamodels declared in the
transformation specification.

Example 2.1.2: Concrete vs. Abstract Syntax

Fig. 2.1.4 exemplifies the differences between concrete and abstract syntax by taking up the
example of the modeling layers. The left hand-side demonstrates a class Family consist of
up to two Person. This model noted in concrete syntax conforms to the UMLZ2 metamodel.
It consists of two classes combined with a bidirectional association.

The right hand side shows relevant excerpts of the model noted in abstract syntax. Key
element is the instance of the UML Association which is called parents and comprises the
two member ends, family and parent which each are an instance of the UML Property.
Furthermore, the class of the respective opposite end contains these properties, for example
the class Family encompasses the property parent.

In this way, the right side contains the same information as the model on the left side but
expresses it by instantiating the corresponding metamodel elements. Thus, it employs the
abstract syntax.

Metamodel — a Modeling Language? A metamodel defines the abstract syntax and static
semantics of a model thereby encompassing the syntactic constructs, their relationships as well as
further constraints on them. Conversely, a modeling language does not only define the metamodel
but all further levels necessary to formalize a programming language. Thus, the modeling language
also defines the execution semantics of the metamodel and potentially further analysis methods,
proofs, etc., too.

Unified Modeling Language The Unified Modeling Language (UML) and its extensions (e.g.,
foundational UML (fUML) and the Action Language for Foundational UML (ALF)), are some
of the most frequently used standardized languages for building models of originals. The language
originates from the Rational Software Corporation where it was designed by Grady Booch, Ivar
Jacobson and James Rumbaugh [BJR96] to quieten the call for a unified notation to describe
a system. The by-now-official UML standard, firstly proposed by the OMG in 1997 and latest
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revised in 2017 [Obj17b], defines 14 kinds of models to express a system’s structure and behavior.
For designing the structure or the static parts of a system, the standard defines, for instance,
package models, class models or component models whereas, for instance, activity, sequence or
communication models serve to express the behavior of the system or some of its specific instances.
Sec. 2.1.3, II illuminates the UML standard with respect to build class models in more detail.

Object Constraint Language The Object Constraint Language (OCL) [Obj14] issued by the
OMG complements the MOF, by a subset, and the UML, by the full set of language constructs,
respectively. The language allows to declare further constraints about their instances which cannot
be expressed by the modeling language itself: For instance, UML or Ecore classes residing in one
and the same package should not be given the same name represents a semantic constraint which
is not expressible by the metamodels alone. As a formal language, OCL avoids the introduction of
ambiguities due to constraints specified in natural language. OCL expressions are guaranteed to
be without side effects and can be utilized to either query model elements or to declare constraints,
such as pre-/postconditions on operations, invariants or the derivation of attributes.

2.1.4 Classifying Properties

Following above descriptions, this section outlines categories which allow to distinguish models
and the design purposes.

Syntax Levels As it was explained in the previous section, concrete syntax is differentiated
from the abstract syntaz. While a model is typically noted in concrete syntax, a model noted in
abstract syntax demonstrates which language constructs of the metamodel form the model.

Syntax Notation Models are commonly assumed to be noted as diagrams, most likely stemming
from the fact, that many models are expressed in graphical syntax. For instance, classically, the
UML specification defined the 14 model types as diagrams. However, recently, several of the UML
model types can also be noted in textual syntax.

Accordingly, the way of noting a model is a second distinguishing factor for the syntax. Besides
the graphical syntax, models can be written, for example, in a textual or a tabular notation.
While a broader group of people may understand the graphical notation, the textual notation
strongly relates with programming languages which may make it easier to understand and utilize
by programmers.

Syntax Definition The model may be defined formally, semi-formally or informally. A formal
model is grounded in a formal modeling language. Thus, it does not only conform to the abstract
syntax defined in some metamodel but also respects the semantics of the modeling language and
possibly further formal descriptions, such as proofs or inferences, for its constructs. In contrast,
a semi-formally defined model conforms to a modeling language which is defined based on formal
constructs combined with informal ones, such as natural language. An informally defined model
adheres to informal descriptions only and, thus, is not considered a model by the means of the
MDA. This thesis considers only metamodels which define the abstract syntax and static semantics
as defined in the MDA.

Execution Semantics Besides the static semantics, the execution semantics describe the be-
havior at runtime for the language constructs. Similarly to defining syntax at different formal
levels, the execution semantics can be defined informally with natural language or with (semi-
)formal methods. In the context of modeling languages, a unique transformation into executable
source code may declare the execution semantics of a modeling construct.

For instance, the UML standard does not prescribe the execution semantics for any of its model
kinds. As a consequence, several ways exist, for example, to order multi-valued properties during
integrating them into a class declarations. In contrast, for example, the OMG defines the execution
semantics in natural language for BPMN Process Execution models [Obj19a].
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Aspect: Structural vs. Behavioral Models In the context of MDSE we further distinguish
the models by the aspect they cover. Structural models capture the relationships between entities
of the system whereas behavioral models describe how an entity operates. Since the ultimate
goal of MDSE is to turn the models into source code written in an GPL, a structural model
upfront expresses how classifiers and packages are organized and allows to generate method stubs
to establish relationships. In UML, for instance, class diagrams or package diagrams serve this
purpose. In the Eclipse Modeling Framework the implementation of specific methods, preserving
referential integrity, is generated completely. In contrast, behavioral models specify how the system
acts in various situations. From behavioral models, e.g., the implementation of method bodies
can be inferred. In UML, for instance, activity or sequence diagrams are categorized as behavioral
models. More powerful are dedicated languages, like the ones specified in foundational the subset
for executable UML models (fUML) [Obj18] and its instantiation in concrete syntax, the action
language for foundational UML (Alf) [Obj17a]. f{UML specifies precise semantics for a subset of
UML which allows for generating executable source code. ALF is the standard providing a textual
syntax on top of f{UMI, though ALF additionally supports structural modeling, its core is trimmed
to express the behavior of method bodies.

Engineering Directions Finally, models reside on different levels of abstraction and the way
and ordering in which they are built may depend on the system requiring a model. The three
engineering directions of a system are sketched in Fig. 2.1.5. Since in Model-Driven Software
Engineering (MDSE) each artifact in the development process should be modeled, we ideally refer
to models at each development step, though it may be the case that, e.g., the implementation not
only consists of an executable implementation model which is transformed into source code but
of hand-written code as well. For that reason, the term “model” is put in brackets in the figure.
requirements design

implementation
(model) (model) (model)

requirements design i

forward engineering

reverse engineering

A

implementation
(model) (model) (model)
round-trip engineering

requirements design implementation
(model) (model) (model)

Figure 2.1.5: Classical software engineering directions.

ps

Forward Engineering Classically, forward engineering adheres to the basic software develop-
ment (waterfall) process [Roy87]: at first, an requirements model is created from analyzing the
system requirements. This model is refined into a design model which, in turn, lays the founda-
tions for the implementation. Since the models exists and describe the system before it is built,
they are used in a prescriptive way.

Reverse Engineering On the contrary, in reverse engineering models are created only after the
implementation already exists. As a consequence, based on the source code the implementation
and design model are deduced. In the last step, the requirements of the system should be inferred.
Since the implemented system exists before the models are derived, the models are used in a
descriptive fashion.

Round-Trip Engineering Finally, in the real world, systems are usually subjects to steady
evolution. In round-trip engineering the evolving factor is respected. As in forward engineering,
the development process can be initiated in the forward direction by analyzing the requirements

20



2.2. MODEL TRANSFORMATIONS

and constructing the corresponding model, refining it into the design and thereafter, in the im-
plementation. However, changes made to the source code or to one of the models in each stage
can be played back in the opposite direction as well. Analogously, the process may as well start
with the implementation as in the reverse engineering direction. The important aspect about the
roundtrip-engineering is to orchestrate the synchronization of the models and the implementation
as soon as any of the artifacts in the development process is modified. For automatically creating
models based on existing models, the key technology are model transformations on which light is
shed in Sec. 2.2.

2.1.5 Eclipse Modeling Framework

While above descriptions of the metamodeling foundations, in particular, of the MDA, MOF and
UML, incorporate common concepts for metamodeling, the question arises how to transfer them
into practice? As answer the Eclipse Modeling Framework (EMF) [Ste+09] has been built to
realize these standards in the integrated development environment (IDE) Eclipse®.

At the core of EMF the Ecore metamodel complying to the Essential MOF (EMOF), i.e., a subset
of the MOF, is located. As situated at level M3 of the MOF metamodeling hierarchy, it serves as
meta-metamodel in EMF to build Ecore metamodels. Ecore metamodels are either represented
as class diagrams or in a tree-structure from which applications can be built to express its models
with a customizable tree-editor. EMF integrates a generator which transforms Ecore models, the
instances of an Ecore metamodel, into Java source code. As the class diagrams only comprise
structural elements, only methods stubs for modeled operations can be generated. Hence, the
modeler needs to express the method bodies and can prohibit its deletion by either removing the
annotation generated placed as comment before each source code fragment generated for a model
element, or by renaming it into generated not.

2.2 Model Transformations

Several authors consider model transformations as “the heart and soul of MDA” [SKO03] and “the
missing link in MDA” [Ger+02] since almost 20 years. Informally, as depicted in Fig. 2.2.1, a
function which receives (or reads) some source (model) input and transforms it into (writes) some
target output can represent a model transformation. The source and target model are instances
of a (not necessarily different) metamodel which may also be the language defining the source or
target model. The transformation specification specifies the relationships of elements in the source
metamodel and elements in the target metamodel and is executed by a transformation engine.
[CHO6]

refers

executes

source
model

target
model

transformation Sl
engine

Figure 2.2.1: Schematic overview of a model transformation [CHO6].

In MDSE, model transformations are the key technology for establishing the high degree of au-
tomation. In various situations model transformations may be exploited, upfront, when generating
source code from a model by applying a model-to-text (M2T) transformation. In addition, creating
a new model representation of an existing model (i.e., there is already (redundant) information
encoded) manually, is an error-prone and laborious task contradicting the aim of raising automa-
tion in software engineering. In this case rather a model-to-model (M2M) transformation should

3 http://www.eclipse.org/
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Figure 2.2.2: Classification of model transformations.

be applied. Likewise, a source in form of text can be turned into a model or into text by a text-to-
model (T2M) or a text-to-text (T2T) transformation, respectively. On the whole, the input and
output of the transformation may either be a source model or source text and a target model or
target text, respectively. For that reason we refer to the input of the engine simply as source and
to its output as target in all of the following explanations.

The first sections provide common features by which a model transformation (language) can be
classified. Thereafter, concrete realizations are introduced.

2.2.1 Classification

By now, the research field of model transformations is largely populated and contains numerous
different branches and supportive directions. Czarnecki and Helsen [CHO3] presented a classifica-
tion of model transformations in 2003 and extended the findings with a feature-based survey of
model transformations in 2006 [CHO06]. At the same time of the journal extension, Mens and Van
Gorp published a “taxonomy of model transformations” [MGO06]. While in Czarnecki et al.s’ pub-
lications [CHO03; CHO6] the different features of transformation languages and tools are organized
in a feature model, i.e., a tree structure with mandatory and optional features of a model trans-
formation, Mens and Van Gorp [MGO06] do not explicitly relate the terms of distinctive categories.
In contrast, the authors focus on model transformations and their properties on a more superficial
level whereas Czarnecki et al. detail additionally how model transformations can be noted and
afterwards executed. In Fig. 2.2.2, we organize the most important and significant properties for
this thesis using the terminology of Mens and Van Gorp at most. The categorization of transfor-
mation technologies, such as the facts how transformation rules may be specified or how they can
be executed (e.g., scheduled), goes beyond the purpose of this chapter which aims to provide an
overview of general transformation properties representing at least (still) vivid solutions.

I Mechanism

First of all, transformation languages may be differentiated by the kind of programming paradigm
(mechanism), they apply. While Mens and Van Gorp distinguish declarative from operational
languages, we have extended this classification to consider hybrid approaches as well as those
based on artificial intelligence (Al), which have become investigated only recently.

Declarative Mechanism On their upside, declarative approaches allow to specify only relating
elements of the source and target model. Such approaches abstract from explicitly navigating
the source model, creating the target model and from specifying the order of executing the rules.
Particularly, this category incorporates functional and logic-based transformation languages, which
are explicitly distinguished in the survey of Czarnecki and Helsen [CHO6].

Functional languages are natural to transformations since a transformation can be regarded as
function receiving some input resulting in some output. As functions are first-class directives
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in functional programming, a transformation can be treated as a model itself. However, it may
become difficult to maintain the state of the transformation.

Besides offering a query mechanism, logic programming provides the benefits, for example, of
backtracking or propagating constraints. Since functional and logic programming abstract from
specifying the execution behavior and focus on relations, they are included in the declarative
category. [MGOG]

Graph-based transformations are not explicitly mentioned in above cited classifications. A graph
rather is considered to be the source and/or target format or in- and output pattern of the
transformation than an explicit kind of transformation mechanism. Nonetheless, it seems to
be justified to mention graph transformations separately, which originate from specifying pair
grammars to transform text into a graph structure (a model) and vice versa [Pra71]. Such graph
grammars allow to express the language of all graphs of one kind and released a large field of
research. Nowadays, in many graph transformation approaches the rules define a left-hand-side
(LHS), being matched in the source graph, and a right-hand-side which is created in the target
graph. Negative application conditions (NAC) specify when the rule is not allowed to be executed.
As graph transformations express relationships or patterns of the source and the target instead of
providing operational procedures how to create target elements, we add them to the subcategory
of the declarative mechanism.

Operational Mechanism On their downside, entirely declarative approaches miss the function-
ality, for example to specify the order of creating target elements or assigning properties explicitly,
which may be beneficial in many real-world transformation scenarios. In this case, operational
mechanisms, allowing to specify, for instance the point in time, when the engine should execute a
rule, become worthwhile. Hence, an operational approach is beneficial, e.g., whenever either the
order of executing rules is essential or it is hard to identify and specify relations in a declarative
way. [MGO6]

Hybrid Mechanism As it tends to be more comfortable to avoid the overhead of, e.g., explicitly
defining execution orders of transformations, but guarding the order of executing transformation
rules may be necessary in certain scenarios, many languages provide a hybrid approach. These
languages typically support expressing basic relationships in a declarative way. In addition, they
either provide integrated procedural elements to gain control over the execution or integrate GPLs
with well-developed standard libraries, e.g., for composing strings or navigating directories. As
an example, the ATL transformation language allows to declare rules which are automatically
matched to elements of the input source model but at the same time rules can also be called
explicitly by other rules without the implicit matching which the developer has no control of.

AI-Based Mechanism Finally, the current revival of artificial intelligence and the capabilities
of modern hardware have encouraged researchers in the field of model transformations to examine
established AT techniques for transforming models. Burgeno et al. [BCG19] have only recently
exploited specific kinds of neural networks to learn transformation specifications. Consequently,
the successful derivation of the transformation specification requires training sets of corresponding
source and target models. As such, its acceptance in and benefit to the model transformation
community is still questionable since it fosters the existence of target models, incorporating each
source-target relationship, beforehand. Besides neural networks, using logical programming to
deduce a general transformation specification based on specific input is an established technique
in artificial intelligence. Consequently, logic-based transformation languages can be regarded to
belong to this category, too.

IT Quantity and Directionality

Quantity Besides the mechanism, the number of instances which participate in the transforma-
tion differentiate the capabilities of transformation languages. 1:1 transformations only transform
one source into one target. In contrast, several languages (at least theoretically) allow for trans-
forming multiples sources into multiple targets (n:m). This encompasses as corner cases, I:n
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transformations, transforming one source into multiple targets, e.g., when transforming one PIM
into many PSMs, or n:1 transformations, which, for instance, summarize many models in one
superimposed model as a refactoring activity. [MGO06]

Directionality Related with the quantity, the directionality classifies transformation language
and specifications. In their easiest form, transformation languages only support unidirectional
transformations. In the forward direction the source is transformed into the target whereas a
backward transformation specifies how to create the source from a given target. In the case of
n:m transformations, the direction is not obvious per se. While straightforwardly the n sources
could be transformed into the m targets in a unidirectional transformation, other combinations
of source and targets are theoretically possible. Consequently, n:m transformations should be
multidirectional allowing to create different kinds of targets based on different kinds of sources.
A bidirectional transformation in which the forward as well as the backward direction is covered
can be regarded as a easiest form of a multi-directional transformation.

Regarding the engineering directions explained in the previous section, the application of a unidi-
rectional forward and backward transformation realizes forward and reverse engineering, respec-
tively. In contrast, bidirectional transformations are ideal whenever round-trip engineering should
be accomplished and relevant in many different engineering disciplines [Cza+09].

IIT Target Representation

Many properties are specific to the type of target representation, namely, the overall technical space
and the fact whether a transformation is horizontal or vertical, the kind of target metamodel and
the physical presence of the target.

Technical Space First of all, most importantly the metamodels may reside in the same or
different technical space. The technical space is defined based on the meta-metamodel (level
M3), for instance, many model transformations reside in the standardized technical space of
the OMG, the MOF, whereas XML is standardized by the worldwide web consortium* (W3C).
An actual transformation can take place in the same technical space. If it involves models of
different technical spaces, one model must be imported for transforming it and the target exported
afterwards. [MGO6]

Abstraction Level Moreover, in line with the technical space we can distinguish a horizontal
from a wvertical transformation. In horizontal transformation source and target are situated at
the same level of abstraction whereas a vertical transformation creates are target at a different
level of abstraction. For instance, the transformation from an analysis model to a design model is
categorized as vertical transformation as are refinements. Conversely, a refactoring exemplifies a
horizontal transformation.

Metamodel As a further aspect, the target’s metamodel is a distinguishing factor. In endoge-
nous transformations the metamodel or grammar to which the source conforms is the same as the
one of the target. For instance, specific refactoring rules can be applied to the source resulting in a
new target which is still expressed in the same language. In contrast, an exogenous transformation
generates a target representation conforming to a different metamodel than the source’s one.

Physical Target Additionally, in-place transformations are differentiated from out-place trans-
formations. An in-place transformation applies all changes to the source model so that it becomes
the target model itself, as it may be the case, for example, in refactorings. In contrast, whenever
the target resides in a different physical representation, we call it an out-place transformation.
An exogenous transformation is always classified as out-place transformation because a physically
different target is created. In endogenous this does not have to be the case necessarily: either
the source model itself is updated to become the new representation, as it is the case of in-place

4 https://www.w3.org/
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Figure 2.2.3: Schematic overview of M2T transformations.

transformations, or a new physical target representation is created which, is expressed in the same
language as the source, nonetheless.

IV Execution Modalities

Incrementality Moreover, we discern batch from incremental transformations. Batch transfor-
mations build the target representation in its entirety. In contrast, an incremental transformation
requires that the target has already been created in a previous execution and applies only changes
made to the source after the previous transformation to the target. Incremental transformations
require a mechanism to detect the modifications applied to the source for propagating them to the
target in the consecutive transformation execution. Such mechanism can be realized, for example,
by recording changes or by comparing the previous state(s) with the current state. For detecting
insertions, deletions, or modifications of source elements, many tools inspect trace information,
which tracks corresponding source and target elements upon their creation.

Automation While the main goal of MDSE is to increase the level of automation, besides
automatic transformations, there are transformations requiring manual interventions. In case the
transformation language allows for ambiguities in its specifications which can not be resolved
automatically interaction by the user may become necessary.

Tracing While Mens and Van Gorp do not go in further detail, Czarnecki and Helsen regard
traces from the technical point of view. Firstly, traces are constructed either completely automat-
ically or have to be manually maintained. Secondly, traces can be placed in different locations.
On the one hand, a trace may be integrated in one of the participating models (source or target).
This is beneficial since it does not require to specify and maintain any additional file. Alterna-
tively, the trace could be stored separately, hence, realizing a clear separation of concerns between
primary and secondary transformation artifacts. In this thesis traces play a key role and, thus,
are discussed in greater detail in Sec. 5.2.1.

2.2.2 Transformation Languages and Tools

The classification properties allow to categorize transformation languages and their realizations
as tools. We introduce an essential subset of transformation languages, which are relevant in this
thesis. First of all, transformation languages are grouped into M2T, T2M and M2M transforma-
tions at a coarse-grained level. We do not present T2T languages because they are out of the scope
of this thesis. T2M languages are shortly described because they are required in round-trip and
reverse engineering scenarios, e.g., when creating an implementation model from the literal source
code. Kahani et al. [Kah+19] provide an extensive survey and classification of 60 contemporary
model transformation tools, which still not covers all available tools but, nevertheless, is taken
into account for describing the languages and tools in this section.

I Model-To-Text Languages

In the first place, M2T transformations enable to perform the core automation step desired in
MDSE, i.e., to create source code based on a model. In this case Fig. 2.2.1 describing a model
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transformation, in general, can be refined by Fig. 2.2.3, describing the M2T transformation where
the target is no model but text conforming to some language, in particular. Even though in
MDSE M2T transformations serve to generate source code frequently, any other type of text
can be generated as well, for example, configuration files, a format for serialization or a textual
representation of the model (e.g., for textually comparing models).

Regarding the approaches to realize M2T transformations, Kahani et al. [Kah+19] distinguish
visitor-based (also referred to as procedural) from template-based approaches. Visitor-based ap-
proaches write the text, e.g., by invoking methods for each model element while traversing the
model. On the contrary, template-based approaches mix static text, which is written to the target
in the same way as depicted in the template (what you see is what you get (WYSIWYG)), with
dynamic text, inferred from the concrete source model. Due to the high similarity between the
static elements in the template, and the outcome, template-based approaches tend to be easier
to understand and, thus, are more popular [Kah+19]. As representatives of template-based ap-
proaches we introduce the standard proposed by the OMG, MOFM2T, and its implementation
Acceleo as well as the template-based code generation language Xpand. Since some scenarios
require more complex instructions, also hybrid solutions exist — as it is the case with model trans-
formation mechanisms in general — e.g., including text generating templates in GPL methods or
vice versa. As representative of a hybrid solution we introduce Xtend, which integrates Xpand.

MOF Model To Text/Acceleo The OMG standard for M2T languages is called MOF Model
to Text (MOFM2T) [Obj08]. The specification suggests a template-based approach and resides
in the MOF technical space, i.e., expecting Ecore models as input. Placeholders in the templates
allow to query source model values which are turned into text by an expression language. In
order to support large transformations, the templates are organized by modules where a visibility
may restrict the access on the template. Moreover, a query can employ OCL expressions, e.g., to
build complex Strings. Control structures may iterate over collections and branching is supported
explicitly. The standard further defines an incremental mode by using protected regions, which
are comparable to Ecore’s generated not annotation mechanism. Moreover, explicit traceability
to the source element for which a text fragment was created could be integrated in the source code
by using unique identification labels (ID’s).

The tool Acceleo® realizes MOFM2T almost exactly. The grammar adopts the syntax from the
standard and supports modules and queries. Upfront, the incremental mode protects only regions
which would be generated in the same way as in the previous execution. In contrast to the OMG
standard, the current state of Acceleo does not support tracing out-of-the-box.

Xpand In contrast to Acceleo, Xpand [Kla07; Eff+04] does not realize any standard but origi-
nates from the openArchitecture Ware (0AW) project [EV06] where it serves as a primarily template-
based M2T transformation language. Xpand projects typically consist of templates, extensions
written in Xtend [Betl6] and a modeling workflow engine MWE(2) workflow. In the templates
blocks specify how metamodel elements are converted into text. In these blocks plain text can be
intermingled with other Xpand directives, e.g., to create a file or to invoke the execution of an-
other block. Moreover, complex instructions can be written in extensions which provide a subset
of the Xtend language, explained in the next paragraph. These extensions are also able to call
Java methods. Most importantly for the present work, Xpand allows to extend or refine blocks
of a template with an aspect-oriented [Kic+97] mechanism: in advice templates arbitrary input
elements of the source model can be mentioned and redefined or embraced by additional text.
The advice template is executed by triggering it in the MWE workflow. Similarly to Acceleo, the
source code of designated protected region can be saved from being modified when executing the
transformation again. This kind of incremental mode also requires unique IDs to identify already
existing objects correctly.

Xtend Although the active development of Xpand has ceased, its key elements, i.e., the syntax
of template blocks, survived in the GPL Xtend [ES; Bet16]. Xtend considers itself as “Java with

5 https://www.eclipse.org/acceleo/
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Spice”, i.e., it is a Java dialect which compiles automatically into Java 8 source code. As a
consequence, the statically typed language exploiting a more concise syntax than Java integrates
with all Java libraries seamlessly. However, the object-oriented language involving also functional
elements, like lambda expressions, not only allows to write arbitrary programs but is categorized
as hybrid M2T language because of the integration of Xpand to generate text literally from a
template-like style.

IT Text-To-Model Languages

Above, we mentioned that in all engineering processes in the last step (or the first one, depending
on the engineering direction) an implementation model is situated. However, in the end the model
needs to be translated into source code to be understood by the compiler. When reverse engi-
neering takes place, at first the current source code has to be transformed into an implementation
model. Model-driven reverse engineering tools and especially round-trip engineering tools support
this functionality by applying T2M transformations. As representatives, we introduce the tools
JaMoPP and MoDisco, which both transfer Java source code into a Java model.

Java Model Parser and Printer The Java Model Parser and Printer (JaMoPP) [Hei+09] was
built for “closing the gap between modeling and code” [Hei4+09]. As its name suggests, JaMoPP
“parses” the static structure of Java files into its own Java metamodel. Thereafter, the meta-
model can be again “printed” as Java code. Since JaMoPP only covers the static structure,
method bodies are attached to metamodel elements representing the Java methods as plain text
in annotations. The Ecore-compliant parser and printer are realized based on Java 5 and and
are not maintained anymore. Nonetheless, they are particularly used in model-driven software
product line engineering. Although the Java metamodel does not reflect the state-of-the-art of
the Java language, the framework can still be integrated in current Eclipse versions.

MoDisco Similar as JaMoPP, the MoDisco [Bru+10] framework is a Eclipse plugin to reverse
engineer implementation models from source code. In the first place, MoDisco, like JaMoPP,
provides an Ecore-compliant Java metamodel but is based on Java 6. MoDisco offers the extensible
means to discover the contents of an Eclipse project in general and of Java source code in particular,
i.e., transforming Java source code into an instance of the metamodel. In turn, a code generator
transforms an instance of the metamodel into Java source code. Thus, the framework supports
round-trip engineering between the model and the source code which only works in batch mode.
The active support for the framework has discontinued at the end of 2018.

IIT Model-To-Model Languages

As it was stated above, the transformation mechanism can either be declarative, procedural, Al-
based or a hybrid mix. Kahani et al. [Kah+19] consider graph-based approaches, which we
classified as declarative approach, an own category.

In 2002, the OMG initiated a a request for proposals for a query view transformation (QVT)
language in the MOF, transforming up to n models into up to m models. Many languages and
realizing tools have been developed as answer to this request. In the following, as declarative
languages, we introduce QVT-R which is also part of the OMG’s QVT standard for M2M trans-
formations, and ATL, a hybrid but primarily declarative language. QVT-O is picked in order to
represent an entirely procedural one.

Furthermore, BXtend [Bucl8] exemplifies a hybrid but graph-based transformation framework.
Further Graph-based transformation tools are, for instance, Henshin [Are+10a; Str+17; Str+18a]
eMoflon [LAS14; LAS15] and AGG [Tae99; Tae03; RET11], which share the fact that the left-
hand side is turned into a right-hand as specified in rules. Tefkat [LS05] exemplifies a logic-based
language which derives an execution environment from the logical rules.

6 https://www.eclipse.org/xtend/
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Figure 2.2.4: Parts of the MOF 2.0 Query View Transformation standard. Adapted from [Obj16]

Atlas Transformation Language The Atlas Transformation Language ATL [Jou+08] and
the similarly named tool (provided as Eclipse plugin) is one of the answers to the OMG’s QVT
request. ATL is designed to specify unidirectional, n:m transformations based on transformation
rules. While matched rules are declaratively executed, i.e., source elements matching the input
pattern are transformed, called rules are invoked by other rules, thus, allowing for ordering the
rule execution in a procedural way. Moreover, although the batch mode works as out-place n:m
transformation, an incremental mode (called “refining mode”) exists which is restricted to in-place
1:1 transformations for refining or refactoring existing targets.

ATL executes the transformation in two phases. Firstly, all target elements are created, allowing to
correctly set references and attributes in the second phase making use of traced elements of the first
phase. Albeit a trace is written during the execution, it is not persisted by the tool. An extension
to ATL, the virtual machine based ATL/EMFTVM [Wag+12] includes the functionality to store
traces after the execution and provides the transformation as bytecode model, too. However,
its transformation capabilities are limited compared to ATL. For instance, an target element’s
collections can only be assigned a value once. Helpers, which act like queries in Acceleo and are
supported in ATL, are limited to assigning static attribute values and not to dynamically fill or
invoke operations, e.g., for composing strings, in the ATL/EMFTVM. In contrast to many other
transformation tools, the ATL and ATL/EMFTVM Eclipse plugins are still vivid.

MOF 2.0 Query/View/Transformation The OMG issued the MOF 2.0 Query/View/Trans-
formation (QVT) language as answer to the request and as standard for establishing a multidirec-
tional transformation language in the context of the MDA. As depicted in Fig. 2.2.4, QVT [Obj16]
is divided into three main sub-languages: QVT Relational (QVT-R), QVT Operational Mappings
(QVT-0) and QVT Core (QVT-C). While QVT-R and QVT-C are entirely declarative, as the
name suggests, QVT-O creates the target in a procedural way. Since QVT-C is a declarative lan-
guage residing at a lower level of abstraction than QVT-R and derivable from QVT-R, we refrain
from describing it.

QVT-R allows to specify relations between up to n elements of different models and to influence
the execution order by pre- and postconditions (which can be considered as assurances). The
standard prescribes two different execution modes. On the one hand, the checking mode veri-
fies the consistency of (already existing) participating models. For instance, a target name not
corresponding with the one inferred from the corresponding relation, would be reported to be
inconsistent. On the other hand, such inconsistencies are repaired automatically by executing
the enforce mode. Since each domain in a relation (i.e., being part of up to n different models)
can be marked to be enforced, multidirectional rules can be expressed in this way. Consequently,
the number of real execution modes depends on the participating number of enforced directions.
For instance, in a bidirectional transformation rules incorporate at least two domains, of source
and target elements, respectively, each being enforced. Therefore, in both directions the checking
and enforce mode is possible. Lastly, incremental transformations complete the OMG’s model
transformation standard. Although in these transformations the standard suggests to execute the
checking mode for detecting inconsistencies between the new source and the old target, many
tools, realizing the standard, technically exploit trace information for detecting changed target
elements.

Realizations of the standard are medini QV'T [ikv18] and the most-recent Eclipse plugin QVT-
d” [Wil17]. ModelMorf realized the first version of the QVT standard almost completely but is

7 https://wiki.eclipse.org/MMT/QVT_Declarative_(QVTd)
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unavailable by now. It has been extensively utilized to examine the standard by Stevens et al.
[Stel0; BS13]. Likewise, the active development of medini QVT stopped in 2012 but is in contrast
to ModelMorf still available. medini QVT realizes incremental and bidirectional transformations
based on persistent traces but misses the explicit checking mode. Finally, QVT-d is a young tool
which still undergoes significant functionality changes in each new Eclipse release. QVT-d also
persists trace information and does not yet support the whole amount of the QVT standard, in
particular, incremental and bidirectional transformations are still not executable. [GBW16]

QVT Operational Besides the declarative transformation language QVT-R, the OMG’s QVT
standard encompasses the operational language QVT Operational (QVT-0) as well. In QVT-O
a transformation is structured like a class (e.g., in UML) with properties and operations which
declares mappings between source and target elements. QVT-O only supports unidirectional
transformations and incorporates OCL statements with side effects. A rudimentary trace (without
configuration, intermediate transformation data, nor deep copies of the involved model elements)
is written during the transformation and can be used for incremental transformations (of the same
source instance). [Obj16]

BXtend As a hybrid approach BXtend [Bucl8; BG16a] provides the means to automatically
create a triple graph transformation system (TGTS) [BDWO08] for bidirectional, incremental trans-
formations without explicitly specifying a triple graph grammar (TGG) [Sch94]. Besides the LHS
and the RHS a TGG involves a third graph in between called correspondence graph to link ele-
ments of the LHS with those of the RHS. The correspondence graph enables to synchronize the
generation of the LHS and the RHS. A TGTS resides on a lower level of abstraction and does not
only incorporate production rules but consistency mechanisms to handle modifications and dele-
tions in model synchronization scenarios. Such system is supposed to be generated from a TGG
automatically. However, in practice it is hard to specify complex synchronization tasks without
handcrafting fine-grained maintenance actions. For that reason, Bxtend was developed. In Bxtend
two unidirectional rules form a bidirectional one. Due to the usage of Xtend, its functional syntax
constructs, such as lambda expressions, intermingle declarative elements with operational ones,
e.g., for prescribing the execution order. Consistency maintenance in incremental transformations
is supported by exploiting the correspondence graph.
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Chapter 3 Software Product Line Engineering

“Although a feature model can represent
commonalities and variabilities in a very concise taxonomic form,
features in a feature model are merely symbols.”

Krzysztof Czarnecki & Michal Antkiewicz [CA05]

Inspired by classical engineering sciences, where mass customization established itself
by developing families of related products in a product line (well-known in the au-
tomotive industry), research and practice adapted the concept for creating software
product lines. As such, software product line engineering is one of the answers to solve
the software crisis’ problem of managing large-scale and (in this case) software-intense
projects. By highlighting common and variable parts of closely related products, the
discipline software product line engineering emphasizes the principles of organized reuse
and variability: Parts, common to all products, should be reused to build a diverse set
of product variants whereas the varying parts should be managed in an organized way.
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Figure 3.0.1: Overview of software product line engineering.
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Fig. 3.0.1 summarizes the key contents introduced in this chapter. The chapter starts
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by presenting basic terminology in Sec. 3.1, such as terms for analyzing the system that
should be realized (problem description in Sec. 3.1.1 or the product line engineering
in Sec. 3.1.2 and Sec. 3.1.3), and offers insights in engineering processes (Sec. 3.2),
modeling the variability (Sec. 3.3) and implementation details (Sec. 3.4) in the following
sections. In the end, the chapter closes with elaborating on product well-formedness,
one key correctness criteria of a product line, and recapitulating notes.
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3.1 Terminology

Before diving into the engineering principles, this section clarifies and presents basic terms and
activities in the context of Software Product Line Engineering (SPLE). Initially, probably the
first term used for what we (now) refer to as product line is family of systems [Par79]. Whenever
these systems share more commonalities — so that it becomes worthwhile analyzing these systems
as a whole — than distinguishing factors, developing and modeling the entire domain pays off. In
a same manner a product line can be named software product family. In accordance with basic
literature on this topic [Gom05], we regard the terms software product line, family of systems or
software product family as synonyms and utilize the shortened term product line in the following
descriptions.

3.1.1 Product Line Analysis

When commencing the development of the product line, the scope of the product line needs to
be delineated. Typically, a product portfolio describes details of the products that should be
supported, particularly their distinguishing and common aspects. This document incorporates
— besides the technical — different perspectives, e.g., the economic point of view of selling the
products. The development steps and set of products are grounded in the product portfolio
which documents the needs of various stakeholders. Most importantly, the portfolio designates
the domain of the system. According to Czarnecki and Eisenhower [CE00], a domain declares the
scope of the product portfolio so that it satisfies all stakeholders’ interests maximally by utilizing
the concepts and terminology common to practitioners and including the knowledge how to build
a system in this domain. [Ape+13]

Problem and Solution Space Fundamentally, the problem space needs to be differentiated
from the solution space. While the problem space systematically recognizes and documents the
common and varying parts of the system, the solution space provides the realization artifacts of
the documented product line functionalities. In the problem space a wariation point describes
a point in the product portfolio where the product characteristics diverge resulting in different
variants. Conversely, in the solution space variation points are implemented by using configuration
techniques. A variant corresponds with a product which is derived by exploiting the configuration
techniques. Technically, problem and solution space are quite often connected by a mapping
tracing the realization artifacts relating to the abstract problem description.

Platform Realizing the product line domain in the solution space results in a software platform.
The platform is considered “a set of software subsystems and interfaces that form a common
structure from which a set of derivative products can be efficiently developed and produced” [ML9T].
As such, the platform lays the grounds for creating a diverse set of products (of a product line).

Feature Modeling During the analysis, features manifest the varying and common parts of the
product line. In the first place, a feature was described as “a prominent or distinctive user-visible
aspect, quality or characteristic of a software system or systems” in the context of the feature-
oriented domain analysis (FODA) [Kan+490]. Further definitions of a feature were provided in
the course of years and were once collected by Classen et al. [CHS08]. This collection of definitions
spans a range of abstractly to technically explaining the meaning of a feature. Despite these 13
gathered definitions, for the purposes of this thesis the initial definition by Kang et al [Kan+90]
suffices at the most. It could be extended by a more technically perspective, such as describing
a feature as “a structure that extends and modifies the structure of a given program in order to
satisfy a stakeholder’s requirement, to implement and encapsulate a design decision, and to offer
a configuration option” [Ape+08]. In particular, the focus on the technical aspect of localizing the
realization of a single feature used as one option when configuring a product should be highlighted
because it is a prominent view in feature-oriented programming (FOP), a summarizing term for
constructing product lines by localizing and focusing on their features. Upfront, a feature describes
a binary option whether a characteristic is present in a product. The reality, however, exhibits a
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higher degree of complexity. Quite frequently, dependencies between features exist and manifest as
feature constraints [Ape+13]. For instance, selecting a wireless connection mechanism in a home
automation system requires that at least the IEEE 802.11a standard is present in the routers.
Likewise, if a finger print scanner unlocks the front door no other mechanism, like a key-card, can
unlock the door, i.e., feature fingerprint excludes feature key-card. Several ways how to capture
variability, in particular as variability models, are detailed in Sec. 3.3.

Variability in Space and Time Lastly, since variability is the essential concept in SPLE, it
must be remarked that SPLE concentrates its focus on variability in space upfront. Variability
in space refers to the fact that artifacts may exist in different forms at one point in time. In
contrast, the concept variability in time refers to the evolution of a system, i.e., one artifact exists
in different forms at different points in time [PBL05]. The research discipline software configuration
management (SCM) [Ber84; Fel91] examines and optimizes the support for variability in time
(besides aiding programming in large teams) extensively. However, managing versions of software
over time, i.e., extensive support for variability in time, is not the focus of this thesis.

Summary All in all, SPLE stresses the explicit focus on variability to reuse parts of the created
artifacts in a systematic, organized way for building a product line.

3.1.2 Product Generation

For realizing the product line, at first, a coarse-grained variability mechanism needs to be chosen?.

Positive variability builds one core product including elements which are ideally present in each
product. The core product is extended by adding new artifacts or changing the core artifacts. A
new customized product is assembled by specifying which elements need to be added to or changed
in the core product. In contrast, negative variability means that the entire set of products is created
in a superimposition. Consequently, in this approach products are not assembled but elements not
belonging to the product are removed from the superimposition.

Feature Configuration In order to derive (also denoted filter) a customized product, a se-
lection of the desired features needs to be provided, which is commonly referred to as feature
configuration. A wvalid feature configuration respects all constraints which are documented in the
variability model. In turn, the derivation tool should ensure that a consistent product is derived,
i.e., resulting in a syntactically and ideally a semantically correct product.

Domain and Application Engineering In this context the distinction of domain engineering
from application engineering should be stated which is a general concept for SPLE processes
[WL99; Lin02; PBL05; Ape+13]. During domain engineering the platform is built in addition to
recording and analyzing variability. Consequently, domain engineering realizes “development for
reuse” ([Ape+13], p.21). In contrast, during application engineering single products are finalized
based on the artifacts produced in the phase of domain engineering. Application engineering is
comparable to single application development except that it explicitly reuses the already created
artifacts of the domain engineering phase, thus, realizing “development with reuse” ([Ape+13],
p-21). In contrast to domain engineering, which is a holistic process for all products, application
engineering is performed for each derived product.

3.1.3 Engineering Strategies

Apel et al. [Ape+13] distinguish three main types of engineering a product line: the proactive,
extractive and reactive development. As stated in the introduction (c.f., Sec. 1.3), the contribution
of this thesis support proactive development, which is explained first, in the following paragraphs.

1 Choosing a variability mechanism freely may be possible only restrictively if single products already exist. In
this case, the mechanism must be aligned with its environment.
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Proactive Development Depending on the company’s strategy and settings, product lines are
(or have to be) developed differently. Building a product line in a proactive way means the product
line is developed from scratch. The company probably considered a new family of products in its
product portfolio without any existing artifact yet. Obviously, in this case the entire platform is
developed from scratch and the products are derived from the platform afterwards.

Reactive Development Conversely, frequently a set of related products already exists in a
company. Many of these products may be traced back to an initial product which was copied
and thereafter modified to fit specific customers’ needs. An extractive SPLE approach aims at
identifying commonalities and differences among the existing products and deriving a variability
model and platform to ease maintenance of the copied products. It is an iterative process limited
to the information encoded in the existing products.

Reactive Development Thirdly, a reactive SPLE approach initiates the development with one
core product line. Incrementally, the new functionality of a not yet envisioned variant is added to
the base product line. Consequently, this approach does not require as much pre-planing as the
proactive approach and, thus, is more agile. On its downside, it may become cumbersome to add
a new variant not at all foreseen so far. Nevertheless, developing a product line in a reactive way
is a more structured process than maintaining existing products in an extractive way. [Ape+13]

3.2 Development Processes

As the field of research on SPLE is largely populated by now, different processes exist to develop
product lines in an organized way. Particularly, the complexity to manage the entire set of
products systematically fosters a structured development strategy, too. For that reason, this
section introduces four fundamental processes which can be applied to systematically build a
product line.

3.2.1 Three Simultaneous Activities

To the best of our knowledge, the first process dedicated to develop a product line in an organized
way was proposed by Clements and Northrop in 2001 [CNO1]. The process consists of the following
three activities, which should be applied in parallel: management, core asset development, and
product development. Each activity is linked to each other and circularly repeated continuously.
Management splits in two parts: While technical management ensures the production of core assets
by measuring the product development and applying defined processes, organizational manage-
ment ensures the success of the product line by providing the necessities for the technical aspects,
like funding or adequate personnel.

Core asset and product development are stronger intertwined. Based on the product constraints,
the production constraints, the production strategy, the architectural elements (like patterns or
frameworks) and the inventory of preexisting assets, the core asset development activity delineates
the scope of the product line. Moreover, the core assets which represent all elements present in each
product including, for example test and planning artifacts as well as a production plan, emerge
from the core asset development. Finally, the product development obtains the production plan,
the core assets, the specifics of one particular product as well as the scope of the product line
to create this product. Due to the concrete implementation, it may be possible that the scope
of the product line has to be adapted and, hence, the product development may influence the
development of the core assets in turn.

3.2.2 Two-Layered Process

The process closest to the classical (iterative) waterfall process is proposed by Pohl et al. [PBL05].
The authors discern the two layers, domain engineering and application engineering. Prior to start-
ing the product line development in the layer of domain engineering, a product management step

34



3.2. DEVELOPMENT PROCESSES

problem space ! solution space

model

o domain analysis domain implementation
c '
£ 5 domain variability mapping realization artifacts
—_—
g € knowledge ' (source code, models, ...)
[S)
© e
9]

features common implementation

requirements artifacts

requirements analysis ! product derivation
customer featlre product
—_—

needs product-specific selection product (incl.

application
engineering

requirements : validation& verifaction)

Figure 3.2.1: Four-clustered process to develop a software product line proposed by Apel et al.
[Ape+13].

where the scope of the product line is defined, is undertaken. In this step, besides others, the
economic aspects of the product line are considered. Thereafter, the steps domain requirements,
domain analysis, domain design, domain implementation, and domain testing are applied in se-
quence in the phase of domain engineering, These development steps culminate in a variability
model and the platform as domain artifacts. Particularly, the platform subsumes all realization
artifacts which may be required in the varying products.

The second layer, the phase of application engineering, receives all domain artifacts and refines
them in the same sequence of activities. Thus, after collecting the application requirements, the
application analysis, the application design, application implementation, and application testing
are conducted to assemble the final application. In the same way as the waterfall process can be
executed iteratively, the steps in domain and application engineering may repeat after performing
one complete development cycle. [PBLO05]

3.2.3 Double Spiral Model

A process which incorporates a risk-driven viewpoint is proposed by Gomaa [Gom05]. The process
adjusts Bohm’s spiral model [Boe88] consisting of the four steps (1) “define objectives, alterna-
tives, and constraints”, (2) “analyze risks”, (3) “develop (product)”, and (4) “plan next cycle” to
be separated into two spirals, one conducting the steps for the complete product line and one con-
ducting them for the individual product. During the development many instances of the spirals
may exist and because a product and the product line may evolve simultaneously, the spirals may
be tightly intertwined. Accordingly, information obtained by processing one spiral feeds the other
spiral and vice versa.

3.2.4 Four-Clustered Process

Finally, Apel et al. [Ape+13] propose a process which adapts the previously explained ones and
trims them to concrete dependencies in between domain and application engineering for developing
feature-oriented software product lines. The corresponding process model, depicted in Fig. 3.2.1,
divides the engineering tasks horizontally in domain and application engineering tasks (as in the
classical two-layered process by Pohl et al.) whereas vertically the problem space is separated from
the solution space. At first, at the level of domain engineering the domain analysis takes place
based on domain knowledge in the problem space. This step decides which products are covered.
Thus, it delineates the “scope of the domain” ([Ape+13], p.21) which results in a variability
model (the authors originally propose a feature model). The analysis artifacts are mapped onto
the domain implementation which occurs in the solution space at the same level. It collects all
realization artifacts, such as design models, source code, and tests, which together constitute the
platform.

At the level of application engineering, a requirements analysis is performed in the problem space
based on customer needs. lIdeally one customized product is related to one particular feature
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configuration. If this is not the case, a requirement not yet covered during the domain analysis,
will be propagated to the level of domain engineering and integrated in the variability model.
Consequently, the requirements analysis may interact with the domain analysis by adding new
requirements and receiving the features of the variability model in turn. The product derivation
finalizes the process. At this stage, common implementation artifacts are taken from the domain
implementation according to the feature selection of the requirements analysis. Moreover, this
last section involves the validation and verification of the eventually delivered product. [Ape+13]

3.3 Variability Modeling

This section illuminates the most common forms of wvariability models in the context of SPLE.
Sec. 3.3.1 initiates by presenting feature models followed by Sec. 3.3.2 explaining further types
such as decision models, the orthogonal variability model, the common variability language and
variability models integrated in UML 2.0.

3.3.1 Feature Models

Basics For the first time, in 1990 Kang et al. [Kan+90] proposed to note features in the form
of feature models to alleviate the feature-oriented domain analysis (FODA). A feature model
captures all common and varying characteristics discovered during the domain analysis as features.
Typically, feature models are manifested graphically, i.e., as feature diagrams, which are trees
with a feature root (typically mentioning the system to be built) and inner nodes building feature
groups. Mandatory features form part of every product whereas optional features can be almost
freely integrated in products. A feature group enumerates a number of child features which are
either aggregated in OR (inclusive) or XOR (exclusive) groups. An XOR group fosters that exactly
one of the features in the group can be selected at the same time. An OR group, instead, allows
to select at least one of its grouped features. In each parent-child relationship of a feature model,
the existence of a child depends on the existence of its parent. Further relationships of features
can be expressed by declaring requires and excludes dependencies between the features, so called
cross-tree constraints. Feature models, offering these properties, can be translated completely
into propositional logic. For instance, the requires and excludes dependencies represent a logical
implication (=) with a positive and a negated feature on the right side, respectively.

Feature Configuration To derive a product a feature configuration, selecting or de-selecting
(all) features, needs to be provided. A feature configuration will be walid if no constraint of
the model is violated. The number of valid configurations increases exponentially in relation
to the number of optional features included in the feature model. Analogously, the number of
valid configurations shrinks by introducing constraints or mandatory features. In contrast to a
complete feature configuration, a partial feature configuration does not provide all features of the
corresponding model with a selection state. Some selection states can simply be inferred, e.g.,
when de-selecting a parent feature none of its children should be selectable. Depending on the
capabilities of the feature configuration tool, partial configurations can be supported and selection
states be propagated. If not all feature selection states are known, either the derivation is not
possible or similarly only a partial product or a product with heuristically determined elements is
created.

Example 3.3.1: Feature Model and Configuration

The left hand side of Fig. 3.3.1 exemplifies a basic feature model which allows to configure
databases with different contents®. The root of the feature diagram typically mentions the
systems to be built, in this case database contents (DBContent). Since all of the root’s
child features, i.e., Person, Family, Animal and Media, are optional, potentially an empty
database could be built. Despite this fact, it is possible to create a database including all
child features, too, since all groups are optional. If a person database is desired, a person

A A
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must carry a name at least (which is a mandatory feature). As an example of an XOR
group we prohibit that a database registers wild and domesticated animals at the same time.
All of the other feature groups are OR groups allowing an arbitrary number of the child
features to be chosen. Two constraints require that pets can only be selected if domesticated
animals, and families can only be present if relations are recorded, respectively.

The right hand side of Fig. 3.3.1 demonstrates two configurations of the feature model. The
configuration in the upper left side is valid and selects a database consisting of families
and songs, nothing else. The second configuration, instead, is invalid because it violates
the cross-tree constraint "Pet requires Domesticated”. The configuration includes pets
but does not select animals, resulting in the invalid configuration.

% This feature model may be necessary when an object-relational mapping of code to database contents
should be established.

mandatory —® Person = true
optional —o Name = true
XOR group <X Relation = true
OR group  4C Family = true
Pet = false
Animal = false invalid
Domesticated = false
Wild = fat B —
Media — ¢ Person = true
Song = tr] Il;Ia;ne - ttme
Move  Cjfen  -ime
Book = Pet = true
. I_ Animal = false
valid Domesticated = false
Wild = false
Media =l....
feature model feature configurations

Figure 3.3.1: Feature model for database contents.

Extensions Due to a missing standard for variability models, many works have extended these
basic descriptions of feature models. A survey and formal definition of feature models has been
published by Schobbens et al. [SHT06]. As examples of extensions, cardinality-based feature
models [CHEO5] can restrict, how many of the grouped features can be selected, and abstract
or attributed features can enrich the expressiveness of the feature model. Additionally, more
variability information, particularly regarding the evolution of a system, could be integrated such
as temporal variability in hyper feature models [SSA14a] or contextual variability which considers
influences by the environment during runtime [Ape+13].

3.3.2 Further Types of Variability Models

Besides feature models, decision models, the Orthogonal Variability Model and the Common
Variability Language play a role in academia and industry to express variety in the product
portfolio.

Decision Models Quite like feature models, decision models [SRG11], originating from the
Synthesis method [Con91], continue a long tradition of maintaining variability, particularly of
industrial applications, in a systematic way. All realization approaches of decision models, such as
the one by Schmid et al. [SJ04] or DOPLER [DGR11], reflect the variability in the problem space
as decisions by taking their dependencies into account and explicitly mapping the decisions to
reusable assets realizing the variability in the solution space. Instead of modeling the differences
and commonalities as in feature models, decision models capture “only” the differences, i.e., the
variability of the system. [Cza+12]
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Orthogonal Variability Model In contrast, the Orthogonal Variability Model (OVM) [PBL05]
explicitly documents variation points and the corresponding variants by mandatory and optional
as well as excludes and requires dependencies among variants and variation points. The OVM
emphasizes the orthogonality of documenting variability. Capturing the variability in this inde-
pendent model, i.e., in an orthogonal way to other realization artifacts, offers its accessibility across
all development artifacts (as is the case with feature models, too). Other approaches, such as the
one by Gomaa et al. [Gom06], integrate the variability information explicitly in the UML artifacts
hindering a cross-artifact usage. In Fig. 3.0.1 we categorize this kind of variability modeling as
inline. [Cza+12]

Common Variability Language Lastly, in 2009 the OMG issued a request for a variability
language standard. By now, this request for proposals is not accessible anymore. The Common
Variability Language (CVL) [Hau+08] answers this request as a forerunner. Particularly, the lan-
guage tries not to use already established wording, such as the term feature (the meaning of which
varies all over computer science disciplines, e.g., in image processing it describes a characteristic
in pictures). Since the CVL (framework) relies on transformations of a base model, details are
explained in Sec. 3.3.2, II.

3.3.3 Endnotes

Summing it up, modeling variability is implemented in many different ways and levels of detail.
Trying to establish the CVL as standardized language by the OMG has not been successful yet
due to many already existing diverse realizations and a still open field of active research (e.g., con-
ducted in form of open contemporary workshops such as the modeling variability (MODEVAR)
series [Ben+19],[Ach+20]). As a consequence for this thesis, we pick the feature model for repre-
senting the commonalities and differences of our product lines as it is one of the most wide-spread
variability models with sound tool support. A feature diagram involving the basic elements, i.e.,
mandatory and optional features, OR and XOR groups as well as requires and excludes cross-tree
constraints suffices to describe the product lines considered in this thesis.

3.4 Variability Implementation Techniques

For implementing a product line in a proactive way (i.e., from scratch) several possibilities exist
which are explained in this section. The majority of the following descriptions is based on Apel
et al’s summary of techniques [Ape+13]. The book presents (only) techniques to establish feature
oriented programming (FOP), i.e., realizing a product line based on capturing variability in form
of a feature model, particularly focusing on how to implement single features and composing
them in an organized way. Another taxonomy for categorizing the implementation of variability
mechanisms was proposed by Svahnberg et al. [SGB05] which includes many technically details
which we do not regard in order to rather give an overview of the general realization mechanisms.
Furthermore, this section does not elaborate on classical tool-driven variability mechanisms, such
as using version control systems (VCS) to develop products in different branches (clone-and-own
approach) or using build systems as they are out of the scope of the thesis.

After elaborating on basic concepts when realizing variability-intense software in Sec. 3.4.1, this
section introduces a compositional (Sec. 3.4.2) (including aspect-oriented), a transformational
(Sec. 3.4.3) and an annotative (Sec. 3.4.4) approach to realize a system with common and varying
features.

3.4.1 Basics

The description of variability implementation techniques initiates in this section with illuminating
general distinctions between implementation strategies, first, and and considering quality criteria
afterwards.
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I General Strategies

Binding Time Implementation techniques vary in two aspects: the time they bind variability
and the employed technology. The variability can be bound early or late in the product devel-
opment. Apel et al. [Ape+13] distinguish compile-time from load-time and run-time binding.
Deciding early (i.e., before compiling the product) which features are part of the products im-
plies that no other functionality is delivered to the customer. In contrast, load-time and run-time
binding postpones the choice which functionality to include in the product to setup time or even
to run-time, respectively. Consequently, all variability is — though hidden — part of the shipped
product. While compile-time products require less resources and do not allow to detect function-
ality of different products, products bound at load- or run-time promise to be more flexible and
easy to reconfigure. [Ape+13]

Language- vs. Tool-based Furthermore, product lines can be developed based on dedicated
languages (language-based) or based on specific tools (tool-based). While in a language-based
approach all variability information is placed in the source code and, thus, the variability man-
agement is also organized based on the information in the source code, a tool-based approach ly
separates the feature implementation from the product derivation and the variability management
by using an external tool. Typical examples are the usage of runtime parameter as a language-
based and the usage of preprocessor as a tool-based approach. However, many times both types
of feature implementation support are intertwined or combined to some extent. [Ape+13]

IT Quality Criteria

Overview To evaluate the benefits and shortcomings of implementation approaches, Apel et
al. [Ape+13] install the following six quality criteria: separation of concerns, uniformity, feature
traceability, information hiding, pre-planning effort, and granularity.

Separating Concerns is one of the most fundamental principles in software engineering [Par72;
Dij76]. Thus, separation of concerns is crucial for leveraging the development of product lines,
too. Since features are the primary concerns in SPLE, their implementation should ideally placed
in one cohesive location to aid maintaining and evolving the system without huge effort. [Ape+13]

Uniformity was, to the best of our knowledge, firstly defined by Batory et al. [BSR04]. It
refers to the fact that a product line is composed of different kinds of artifacts, i.e., source code
in various languages, test frameworks, etc., which should all be targeted by the same feature
implementation technique. This quality criterion addresses the problem of providing solutions
specific to one language or implementation approach which does not scale due to an ever evolving
tool and programming language landscape. [Ape+13]

Feature traceability refers to the possibility to detect features defined in the problem space
also in the solution space. Accordingly, this ideally requires that one feature implementation is
not scattered over different resources but located in one place which is not always possible. Ad-
ditionally, variability implementation approaches may include traceability possibilities naturally,
such as annotative approaches, whereas, e.g., the usage of run-time parameter may hinder easy
traceability. [Ape+13]

Information Hiding Similar to the separation of concerns, information hiding is another key
principle of software engineering. The main goal of this criterion is to write modular source
code, consisting of internal and external parts. The external part of such module — such as an
interface — provides a specification about its internals which can be used to reason about the
internals. However, the implementation of the internals can change without affecting any of the
other modules. [Ape+13]
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Pre-planning describes part of the process before implementing the product line. Upfront, it
must be analyzed which features are present, how they interact and how feature implementations
can be reused. Due to the fact that not all features are likely to be known during the planning
phase, this criterion targets the simplification of anticipating and integrating modifications at later
times which is especially necessary in extractive and reactive engineering. [Ape+13]

Granularity [KAKO8] refers to the level at which feature implementations are located. Each
realization artifact can be considered a hierarchy of details defined by containment relationships.
For instance, a coarse-grained variability mechanism allows to regard the topmost elements of
the containment hierarchy (e.g., a Java class or even a file) as subjects to variation. Conversely,
fine-grained feature implementation are possible, too, [Lie4+10]. For instance, when employing
preprocessors, almost every word in the source code (e.g., a parameter of a method) can be asso-
ciated with one specific feature. Since it is hard to support fine-grained feature implementations
with a coarse-grained technique, the feature realization and the variability mechanism should best
reside at the same level of granularity. [Ape+13]

3.4.2 Compositional Variability

A compositional approach to implementing an SPL builds on components, each (ideally) realizing
only one feature. A component is an independently deployable unit which can be composed by third
parties and without an observable state [SGMO2]. Therefore, it has to be clearly differentiated from
its environment and hide its implementation, e.g., by offering interfaces only for its composition.

Composing In SPLE, components have to be explicitly mapped to the features they realize.
In order to form a final product, a weaving mechanism selects the corresponding components ac-
cording to the given feature configuration and assembles them. Typically, assembling components
is not an automated but a manual process where the developer often needs to add source code
(called glue code) to build an executable product. The compositional approach can be associated
with positive variability because typically additional components will be integrated in the product
if necessary. [Ape+13]

Pros and Cons Regarding the quality criteria, components support uniformity, information
hiding and separation of concerns as well as feature traceability, in case each component realizes
one feature. On their downside, a high amount of pre-planning is necessary to determine the right
size of a component which only allows for coarse-grained variability. Moreover, having to provide
manual glue code reveals a low degree of automation. [Ape+13]

Advanced Technical Realization Two advanced ways to apply FOP, which is a compositional
approach to build product lines, predominated at most in the past: collaboration-based and aspect-
oriented programming.

Collaboration-Based Programming On the one hand, collaboration-based FOP — as the
name implies — relies on a set of classes forming a collaboration which ideally maps to one feature
of the product line. A collaboration consists of multiple classes which play a certain role in the
collaboration. Classes can play multiple roles in different collaborations.

Example 3.4.1: Collaboration-Based Programming

Fig. 3.4.1 highlights the key elements of collaboration-based programming by employing
the example of the feature model for database contents.

The main class representing the database contents provides base functionality to access the
database contents in the basic version. In different collaborations, which each implements a
single features, the class plays different rolls. In this example, the collaboration representing
the feature Song shows the role of the class DBContainer which contains instances of the

A A
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class Song and in the collaboration of the feature Book a collection of books, respectively.

class DBContainer {

private static DBContainer instance; e
DBContent private DBContainer() { ...} prote.cted S.trmg t.1tle; .
public DBContainer getinstance() {...} public Media (String title){...}

abstract class Media {

—_—
} } role of
A
1
class DBContainer { class Song extends Media {
private List<Song> songs; private String dateOfPublication; collaboration

Song public List<Song> getSongs(...) public Song(String title) {...}
}

}

class Book extends Media {
private String author;
public Book(String title) {...}

class DBContainer {
Book private List<Book> books;
public List<Book> getBooks(...)

}

Figure 3.4.1: Compositional implementation of database contents using collaborations.

Specific languages and compilers or extension to existing GPLs, like Jak [BSR04] and mixin
layers [SB02], support this realization approach. AHEAD [Bat04] offers a powerful and formal
algebraic foundation for the approach. One of the biggest advantages is the straight-forward pos-
sibility to trace features in corresponding modules and the conceptual uniformity of applying the
approach to diverse artifacts. Moreover, it requires little pre-planning and concerns are separated.
However, the level of granularity hardly goes beyond method implementations and in general in-
formation hiding is no key concept. Additionally, although concerns are separated into modules,
collaborations cut across different locations in the source code. [Ape+13]

Aspect-Oriented Programming On the other hand, applying aspect-oriented programming
(AOP) [Kic+97] to realize features avoids the scattering of concerns. In AOP a base implementa-
tion is provided which can be extended and changed by aspects of which the base implementation
is unaware. Similar to a variation point, a join point implies a point in the base implementa-
tion where an advice implemented in an aspect can change the basic implementation and, thus,
adds variety. During the compilation, an aspect weaver integrates these changes based on the
feature selection. AspectJ?, an aspect-oriented extension of Java, supports the most powerful
implementation of AOP.

Utilizing AOP for product line development typically implements one feature per aspect. In this
way, AOP clearly separates concerns because the base implementation is unaware of the features
and one advice is unaware of other feature implementations. Hence, the implementation of a
feature is not scattered. This upside implies the downside that the base implementation is hardly
accessible in the aspect implementation and that the aspect is likely to integrate errors (due to
missing information about the base code) or loses its join point when the base implementation
changes (called fragile-pointcut problem [KS04; SG05]). Further benefits are feature traceability
(when each feature is implemented by one aspect), low pre-planning effort and a more fine-grained
feature implementation level. While the concept is applicable uniformly, it requires specific im-
plementations for each language and supporting tool. Moreover, hiding information (e.g., based
on an interface for easy interchangeability) is no key concept of AOP. [Ape+13]

3.4.3 Transformational (Delta-Oriented) Variability

Similar to the compositional approach, a transformational (delta-oriented) variability mechanism
relies on a core module and delta modules [Sch+10].

2 https://www.eclipse.org/aspectj/
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delta DBook when Book { ‘
1 delta DSong when Song {
2 modifies class DBContainer {
adds List<Song> songs;
adds List<Song> getSongs() {...}

1 core Root {
class DBContainer {
private static DBContainer instance;
private DBContainer() { ...}

2

3

4

5 public DBContainer getinstance() {...}
6 }

7

adds class Song {...}
}

}
} 4

N U R W

delta-oriented programming (adaptation: DeltaJava )

Figure 3.4.2: Delta-oriented implementation of database contents using a core product and delta
modules.

Core and Delta Modules The core module, also referred to as 75 % model when the product
line is developed in a model-driven way, represents one valid product. As a consequence, the
core module can be developed by utilizing normal single application engineering techniques. The
delta modules store the change operations which are needed to realize further products and, thus,
incorporate the variability implementation. Consequently, these delta operations in summary
transform an already valid product into another customized product. In contrast to the compo-
sitional variability implementation, where components only add functionality, a delta module can
remove elements from the core module yielding a potential decrease in size of the product and
more effort to check the correctness of resulting products. The additional effort for ensuring con-
sistent products due to the removal of elements can be alleviated, e.g., by including type-checking
mechanisms [SBD11].

Example 3.4.2: Core Product and Delta Modules in Java

Fig. 3.4.2 presents excerpts of applying a delta-oriented approach to realize the database
product line. The core product encompasses all elements to realize a basic executable
product. In this example the core product is the empty database which offers as primary
functionality access to its contents. Delta modules comprise the delta operations that have
to be undertaken for implementing one feature. As demonstrated in the example, the delta
module DSong which should realize the feature Song needs to adapt the class DBContainer
to contain the songs. Furthermore, it needs to create the class Song and a corresponding
implementation.

Model-Driven Transformational Variability While the initial work was performed for prod-
uct lines written in Java, (ongoing) research predominantly focuses on model-driven product lines.
For that reason, the following chapter on model-driven product line engineering provides further
insights in the discipline (c.f., Sec. 4.1.2, II).

Summary Similar to compositional approaches, using delta modules facilitates feature trace-
ability and a strict separation of concerns which can be installed at a fine-grained level and does
not require much pre-planning overhead. The principles uniformly apply to different languages
and tool but information hiding based on interfaces is no key concept of the general approach.

3.4.4 Annotative Variability

In contrast to the aforementioned variability implementation techniques, annotative approaches
do not rely on a core implementation but implement the product line as a whole in the phase of
domain engineering. As such, a superimposition [Bos99; CE00] of all products is developed and
variability annotations serve as presence conditions for single code fragments by mentioning the
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1 public class DBContainer { __nggi_ti_oggl_t_rgrls_lgtion conditional compilation
2 private static DBContainer instance; 1
3 1 #/#IFDEF Book # ‘ 1 public class DBContainer {
4 #/ #IFDEF Song # 1 //#IFDEF Song # 2 private static DBContainer instance; compilation
5 private List<Song> songs; ... 2 public class Song { 3
6 # #ENDIF Song # 3 4 private List<Song> songs; ... q
7 // #IFDEF Book # 4} 5 - Javac o
g private List<Book> Book; ... 5 // #ENDIF Song # 61 1 public class Song { DBContainer.java
9 // #ENDIF Book# 2 . Song.java
10 } 3}

intermediary source code
represenation
of one derived variant

derived
variant

source code annotated with
preprocessor directives

Figure 3.4.3: Annotative implementation of database contents.

feature (or an expression over features) enabling the code fragment. Accordingly, this approach
realizes negative variability because the entire platform is built and artifacts corresponding with
deselected features are removed when deriving a product.

Preprocessors Technically, the straight-forward implementation of annotative approaches uti-
lizes preprocessor directives. In this case, code fragments which correspond to one specific feature
(or more features) can be annotated by embracing them with a corresponding directive. When
providing a feature configuration (in case of a preprocessor: a selection of the enabled preproces-
sor flags), conditional compilation is performed which only involves source code corresponding to
the selected features to generate the bytecode of the product. While C/C++ includes a built-in
preprocessor, other GPLs, like Java or Python, do not support preprocessors out-of-the-box. For
that reason, preprocessor extensions of Java (e.g., Antenna3) exist to annotate the source code
with preprocessor directives and offer conditional compilation of Java projects. Commercial tools,
such as pure::variants [Beul3] or gears?, offer built-in solutions for conditional compilation based
on preprocessor directives. [Ape+13]

Example 3.4.3: Annotative Source Code for Conditional Compilation

Fig. 3.4.3 depicts an example in which Java source code is surrounded by fictive prepro-
cessor directives, e.g., a list of songs is only kept in the DBContainer when the feature
Song is selected (c.f., lines 4-6). Based on enabled directives (representing the feature con-
figuration), a corresponding preprocessing functionality removes all source code embraced
by non-selected directives at compile-time. Thus, in this example, only the feature Song
is selected and all source code which is annotated with different directives does not form
part of the product derived by the conditional compilation. For demonstrating the “single-
variant” source code the figure depicts also the intermediary state into which the complete
source code is translated during the compilation before creating the final product.

Pros and Cons Since the annotations are exactly located at the corresponding realization
artifact, this variability implementation approach includes native feature traceability and also
supports a fine-granular feature implementation mechanism if using preprocessors. While an
annotative approach requires little pre-planning and is a uniform concept, information hiding
and separation of concerns can not be achieved when using preprocessors. Moreover, the level of
cognitive complexity increases due to the fact that all product implementations are visible.

Virtual Separation of Concerns The complexity of maintaining preprocessor directives can
be diminished, for instance, by generating wviews on the source code [K&sl0]. Given a feature
configuration (i.e., a selection of preprocessor directives) code belonging to other directives can be

3 http://antenna.sourceforge.net/
4 https://biglever.com/solution/gears/
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virtually removed and is only shown as context information (“[1”). Alternatively, in case the still
present preprocessor directives mitigate a clear overview, instead, background colors may be used
to indicate feature annotations which then are removed artificially. The tool Colored IDE (CIDE)
implements this functionality for representing feature annotations in Java source code [K&s07].

External Annotation Mapping As an alternative to the usage of preprocessors, annotations
can be mapped onto artifacts externally. A mapping is a two-valued tuple, consisting of a presence
condition and the corresponding artifact, that should be annotated. On the one hand, the presence
condition, which we simply call annotation in the sequel and may also be referred to as feature
expression, is a Boolean expression over the features defined in the variability model. On the
other hand, the second element of the tuple, the artifact may vary with the granularity of the
approach and, in case of source code-based product lines may be a text fragment. However,
external mapping approaches are more prominent in model-driven product line engineering. For
that reason, they are explained in greater detail in Sec. 4.1.2, TII.

3.4.5 Multi-Paradigmatic Approaches

In practice, certain tools and research prototypes frequently offer a combination of the aforemen-
tioned approaches or the possibility to select one of them, implying that specific approaches may
fit better for certain product lines. In this way, an implementation approach suiting the properties
and the requirements of the system to be developed can be selected. For instance, a product line
where most of the features are present in every product should rather apply an approach based on
negative variability whereas positive variability pays off when features can be clearly distinguished
and only a small number, e.g., of deltas, must be applied to assemble a product.

3.5 Product Well-Formedness

While the key motivation of SPLE is to automate the product generation, the product derivation
step comes with a major requirement. Not only the feature configuration has to be valid (i.e.,
satisfying all constraints encoded in the variability model) but also the product corresponding
with a valid feature configuration has to be (at least) syntactically correct.

Brute-Force Analysis One way to guarantee this correctness, referred to as product well-
formedness, for the entire product line is to generate all valid feature configurations and to derive
each corresponding product once in a brute force approach. However, this product-based analysis
is only feasible for quite small feature models with a small total number of products. With
an increasing number, particularly of optional features, the number of possible products grows
exponentially yielding most of the times a set of products which is impossible to test in a reasonable
amount of time. For instance, the variability model of the Linux kernel, KConfig, as a prominent
example of a highly configurable system, was latest measured to consist of up to more than 6400
features with more than 3000 constraints, which still results in a number of configurations which
is impossible to test in life time. Moreover, a product-based analysis neglects the redundancy
present in products due to their reused parts. From a different point of view, a feature-based
analysis considers each feature implementation in isolation and draws a conclusion on all products.
However, since features are likely to expose different behavior when they are combined, a family-
based analysis should consider also specific combinations of the products. [Thii+14]

Sampling To this end, different sampling strategies mitigate the effort to guarantee product
well-formedness based on examining every product by inspecting a representative sample set of all
products instead. The field of sampling products is largely populated and still actively researched,
e.g., as community challenges [Pet+19; Fer420]. Varshosaz et al. [Var+18] classify sampling
strategies based on their input data and the sampling technique. On the one hand, the input data
can be part of the problem space, which was in all investigated strategies of this survey the feature
model and sometimes further domain knowledge. On the other hand, the input data can be part of
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the solution space, i.e., test or implementation artifacts. The techniques are either manual, semi-
automated, completely automated or based on coverage criteria. While in manual sampling, for
instance, a domain expert selects the set of sampled products, automated sampling either employs
meta-heuristics, i.e., a local or a population-based search (for an optimum), or a greedy strategy.
Semi-automated strategies allow to integrate and vary different parameters, like the sampling time
or a coverage degree, and typically receives a starting set from a domain expert. Finally, coverage
sampling typically includes at least feature-wise or t-wise (where ¢ represents the number of the
different combined features) feature interactions but may also consider implementation artifacts
in a white-box fashion.

3.6 Summary

This chapter presented basic terms and strategies how to develop product lines in a systematic
way by adhering to the principles of variability and organized reuse. These techniques lay the
grounds for incorporating the ideas of model-driven software engineering in product line engineer-
ing methods. The next chapter illuminates how the concepts explained in this chapter convey
when models are the primary development artifacts.
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Chapter 4 Model-Driven Software Product Line
Engineering

Ante mare et terras et quod tegit omnia caelum
unus erat toto naturae vultus
in orbe quem dixere chaos'

Ovid, Met. Book I, Lines 5-7

Both, model-driven software engineering and software product line engineering, aim at
increasing the level of productivity by developing complex software systems in an or-
ganized and automated way. Combining both disciplines bespeaks an increase of their
benefits. By abstracting the product line with models during domain engineering, not
only the product derivation in application engineering is automated but model-driven
software engineering allows to automate the generation of realization models (and in
the end, source code) in domain engineering, too. Consequently, in model-driven (soft-
ware) product line engineering (MDPLE) [Gom05; Cza+05], models are the nucleus
to represent the product line artifacts at every development stage.

As a consequence, the two key elements of MDSE, models conforming to metamod-
els and model transformations, have to be lifted to properly address the additional
dimension of variability. On the one hand, models representing a single system have
to become multi-variant, meaning they have to capture a family of systems. On the
other hand, to keep multiple multi-variant models consistent, automated techniques
are necessary to transfer variability information from model into another. Besides cre-
ating a target model, model transformations can be lifted to address the dimension of
variability.

This chapter presents the possibilities to lift models in Sec. 4.1 and their maintenance,
as implemented in existing MDPLE solutions, in Sec. 4.2. Finally, Sec. 4.3 illuminates
the employment of model transformation technology in model-driven product lines,
which keep the variability information consistent in software families, whereas Sec. 4.4
summarizes the insights.

The chapter shares material with [GW21] and [WG20a] which lay the foundations for its
contents.

1 Before sea and earth and the sky which covers everything existed,
the appearance of the nature was one in all the globe which they have named Chaos.
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4.1. MULTI-VARIANT MODELS

4.1 Multi-Variant Models

The first step of fusing MDSE and SPLE into MDPLE has to enrich models by the dimension
of variability in space. This section delimits the scope of the considered multi-variant models,
firstly, and presents how the variability mechanisms integrate variability information into models,
secondly.

forward engineering

multi-variant
implementation model

multi-variant
requirements model

multi-variant
design model

reverse engineering

multi-variant
implementation model

multi-variant
design model

multi-variant
requirements model

round-trip engineering

multi-variant
implementation model

multi-variant
requirements model

multi-variant
design model

Figure 4.1.1: Engineering directions in MDPLE.

4.1.1 Preliminaries

To be used in MDPLE;, in the first place, models have to represent variable content. In contrast
to developing a single system, as in classical MDSE, models need to represent a family of systems
(i.e., a product line). Accordingly, the general engineering directions depicted in Fig. 2.1.5 refine
to those depicted in Fig. 4.1.1: instead of (single-system) models, models representing a family of
systems are developed and engineered in forward, backward or round-trip direction in MDPLE.
We refer to models representing more than one product as multi-variant models as opposed to
single-variant models which represent only one specific product. Fig. 4.1.2 depicts a multi-variant
UML class model encompassing the various database contents which correspond to the feature
model presented in Fig. 3.3.1. Since such model comprises all variants in a superimposition, it is
also commonly referred to as superimposed or 150 % model. Derived products may only contain
parts of such model.

Metamodel Restrictions In general, although almost arbitrary variable content should be
integrated in the models, commonly the metamodel, to which the model conforms, restricts the
properties of the model elements. Only few tools (e.g., the internal representation of SuperMod)
allow for unconstrained variability or for merging metamodels into one. In this thesis multi-variant
models are instances of a single metamodel with single-variant semantics:

Single Metamodel A multi-variant model is always an instance of only one metamodel and
not of multiple different ones thereby conforming to Prop. 4.1.1:

Property 4.1.1: Single Metamodel

The multi-variant model is instance of one single kind of metamodel.
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<<enumeration>> DatabaseContent
0.*
EmploymentState animals Y - Book
0.*
EMPLOYED ) ;
UNEMPLOYED Animal Media
IN_EDUCATION .
RETIRED F" ﬂ price: Real Movie
ELSE §erNo: UnlimitedNatural 0."
Domesticated Wildlife title: String movies
T
Song
0..* pets
persons families 0.
0.. o * songs
Person onner
e Family
/name: String , X 0.2 0..1| name: String
firstNames: strlng[o.. ] parent family
surname: String 0.1 )
birthday: String family
employmentState: EmploymentState | g
children

Figure 4.1.2: UML class model representing the database contents in a multi-variant model.

Example 4.1.1: Multi-Variant Model

Fig. 4.1.2 depicts an example of an superimposed UML class model. The model superim-
poses the varying contents of the database. Accordingly, it comprises not only persons and
animals but also types of media and organizes persons into families.

Thus, different configurations of this model can remove parts of the model which should not
be present in a specific variant of the model. For instance, a family-database may require
persons and may integrate domesticated animals but does not need media necessarily.
Similarly, a media-database which could be used in a warehouse does not associate a
family or animals with the media. However, all of these possibilities are integrated in
the multi-variant model. Nonetheless, the model does not exceed the boundaries of the
single-variant semantics of the metamodel.

In contrast, techniques exist which identify commonalities between different metamodels, and
summarize these metamodels in one single underlying metamodel (SUMM) [ASB09], which is
based on multi-view modeling [Fin+92]. An instance of a SUMM is not considered a multi-variant
model in our context. Nevertheless, instances of different metamodels are necessary to holistically
reflect a system, as also pointed out by Gomaa and Shin [GS02] who involve a different model for
each development stage.

Single-Variant Semantics Furthermore, the metamodel of multi-variant models in this thesis
conform to single-variant semantics as defined in Prop. 4.1.1. Thus, the models express constrained
variability only.

Property 4.1.2: Single-Variant Semantics

The multi-variant model conforms to a metamodel with single-variant semantics.

As an example, in an Ecore or UML class model the name of a class cannot vary. In the database
example it will not be possible to call the root class of the model (DatabaseContent) differ-
ently (e.g., FamilyDatabase) if a database consisting of families only is derived. If necessary,
a multi-variant model conforming to single-variant semantics can be obtained by normalizing a
“malformed” multi-variant model (i.e., a model violating the single-variant semantics of its meta-
model) [RLK19].
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Table 4.1: Comparison of terminology used in MDSE and SPLE.

term MDSE SPLE

platform  any technical or business details specific  “a set of software subsystems and inter-

to a system (c.f., MDA in Sec. 2.1.3) faces that form a common structure from

which a set of derivative products can be

efficiently developed and produced” [ML9T]

trace container of links between source and summary of links between features and re-
target model of a model transformation alization artifacts

mapping link of corresponding source to target link of a feature expression to realization

elements artifacts

derive execute a transformation to create create a customized product based on the
a target representation from a given platform artifacts and a given feature con-
source model figuration

Terminology As another point, it must be noted that certain terms appear in both disciplines,
MDSE and SPLE, but with diverging meanings. Table 4.1 collects an overview of ambiguous terms
relevant in this thesis. In the following explanations of this thesis we always use the term platform
in the meaning of the SPLE context because we do not consider platform-dependent models.
Since the thesis describes the usage of traces recorded while executing a model transformation,
a trace always refers to a collection of links between the source and target elements of a model
transformation. In contrast, we take a mapping as a synonym for assigning an annotation to a
model element. Mapping models capture the variability traceability [BBMO05] of all elements in
a domain model to annotations. Finally, to indicate the meaning of derive we clearly state the
artifact which is derived, a target representation from a source model by applying a transformation
or a product from domain engineering artifacts (as in SPLE). Due to the focus of the thesis on
negative variability, the following descriptions additionally utilize the term filter as a synonym
for deriving a product because approaches realizing negative variability always remove deselected
elements from the superimposed domain artifacts for deriving a product.

4.1.2 Variability Mechanisms

As Chp. 3 explains, variability can be realized either by an annotative, a transformational or a
compositional mechanism. The same principles apply to MDPLE including further specifics which
relate to the nature of MDSE. Consequently, models can be lifted to realize the dimension of vari-
ability in space by exploiting the same three variability mechanisms. Most of the techniques and
concepts in MDPLE are reflected in the heterogeneity of supportive tools. Therefore, the following
descriptions regard the tool landscape while explaining the compositional, transformational and
annotative variability mechanism applied to models subsequently in the following paragraphs. As
a special form, the closing of the section sheds light on view-based editing approaches which intend
to hide the complexity of developing all variant.

I Compositional MDPLE

Sec. 3.4.2 states that compositional variability mechanisms rely on the predominant concept of a
component and a composer which builds products based on positive variability. Besides relying,
for instance, on interfaces to encapsulate the behavior of a component, collaboration-based FOP
and AOP are specific techniques for this mechanism. To mimic multi-variant contents, almost the
same principles transfer from programming to modeling. Applying aspect-oriented modeling as
well as composing superimposed models are two means to realize a compositional approach:

Aspect-Oriented Modeling Similar to aspect-oriented programming, where a base program
is extended, aspect-oriented modeling [Wim+11b] extends a base model with aspect models which
refer to join points in the base model. For creating a product line, each modeled aspect should be
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related (at least) to one feature which it realizes. The aspect weaver will integrate the advice in
a product if a feature configuration selects the respective feature.

Groher and Volter [GV09] realize aspect-oriented MDPLE by exploiting the concept of aspect-
orientation. The authors contribute a holistic development strategy and corresponding tool to
model a product line with Ecore models, to formally map models of the problem space onto cor-
responding ones of the solution space and to generate source code based on M2T transformations
eventually. The tool environment resides in the open Architecture Ware (0 AW) framework which
offers different languages and tool support for specifying grammars of DSLs or performing model
transformations. As a prominent example, Xtend, a powerful Java dialect, resides in the 0AW.
For executing model transformations in an aspect-oriented way, the solution exploits the (former)
support of the Xtend programming language for aspect-oriented programming, allowing to declare
advices for methods. Furthermore, Xpand, another language of the oAW, supports the declaration
of aspects in M2T transformation. The solution of Groher and Vélter expects a variability model
exported from the commercial tool pure::variants and turns it into a globally accessible variability
model in its own tool environment.

Despite the fact that aspect-oriented solutions typically realize positive variability, Groher and
Volter discuss ways to implement negative variability, too. For realizing this concept at the level
of modeling, they offer the tool XWeave [GV07] as an integration into the 0AW. They realize
negative variability in the model transformation by implementing an overall generator and query
whether a feature is selected before generating the corresponding element. [GV09]

Conversely, the tool MATA (Modeling Aspects Using a Transformation Approach) [Whi409]
utilizes Graph grammars to realize an aspect-oriented approach to SPLE. Every element of a UML
class, state or sequence model can serve as joint point and can form part of the base model slice. A
graph transformation written in MATA’s own language reuses the existing Graph transformation
engine of AGG [Tae99; Tae03; RET11] to compose the base model slice with aspect model slices.
While the base model may contain different model types, an aspect model slice can only target
a model of one kind. For example, an aspect model cannot modify state and a sequence model
simultaneously. Since Graph transformations are formally founded and well-understood, MATA
naturally supports formal analysis methods to detect interacting aspects by a critical pair analysis.

Superimposition-Based Approach Another solution to enrich models with variability for
employing a compositional mechanisms builds a superimposition of model variants by identifying
matching model fragments in the variants which can be composed [Ape+09]. In this context, an
identified model fragment needs to conform to its metamodel and represents one part of a super-
imposed model corresponding with one feature. The superimposition requires a tree-structured
subject language and matching names of elements, that should be unified. The tool FEATURE-
HOUSE [AKL09; AKL13] implements this approach and offers automated generators for language
integration and automated composition tools for deriving products.

II Transformational MDPLE

A second possibility to realize positive variability in MDPLE is to employ transformations. On
the one hand, delta-oriented tools build on a core model which is modified by delta modules
which bundle delta operations. On the other hand, different proprietary variability models and
transformation approaches have been proposed at which this section looks afterwards.

Delta-Oriented Modeling Approaches Delta modeling [CHS15], as one means of transfor-
mational MDPLE, lays the grounds to transfer the delta-oriented variability mechanism from
source code to models. A delta module assembles change operations in an appropriate order and
applies them to the core model. In contrast to a general-purpose model transformation, the oper-
ations in a delta are restricted to address only elements which are allowed to vary, for instance, a
delta operation cannot modify the IDs of elements. Besides the delta operations, a delta module
encompasses an application condition, typically a Boolean expression, such as a formula in propo-
sitional logic, over the features of the corresponding variability model. One cause for errors resides
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in applying different delta modules sequentially because they may compose conflicting operations.
Automated tool support should address this problem by detecting and resolving these conflicts.
DeltaEcore [SSA14b; Seil7] represents an automated tool to realize the delta-oriented variability
mechanism. After defining a base delta language in form of a metamodel for the target language,
delta dialects can be derived based on this metamodel. The dialect defines language-specific delta
operations which are used to specify the delta modules. Specific to this approach is the introduction
of a hyper feature model [SSAl4a]. Products are configured based on the hyper feature model,
which allows to specify revisions of individual features. DarwinSPL [NES17] adapts and extends
the concepts of DeltaEcore by supporting implementations that respect the contextual variability
of a product line.

In contrast to automatically deriving delta languages, a higher degree of automation is achieved
when the delta operations in form of an edit script [KKT13] are derived. The tool SiPL [Pie+15]
generates edit scripts, i.e., a delta module, by comparing model instances. In addition, Pietsch
et al. [Pie+19] offer a formal analysis and resolution of conflicting delta operations among the
modules.

Class Layers Hendrickson et al. [HJHO6] suggest to organize class models in different layers,
each modifying a base layer. As is the case in delta-oriented approaches, a layer incorporates an
“alternative” design decision by defining delta operations (add, remove) which relate to the base
layer and can be composed by respecting further relationships that can be defined between the
layers. The tool EASEL implements this concept which also involves merging and comparing
models.

Transformational Variability Languages The Common Variability Language (CVL), intro-
duced in Sec. 3.3.2), and the family of Variability Mapping Languages (VML*) [Zsc+09], both
foster a delta-oriented variability mechanism where transformations extend a base product.
CVL [Hau+08; Fon+15] realizes positive variability by relying on a base model incorporating
placeholders which can be implemented differently in wvariation models. Variation models are
expressed in an entirely generic language. Resolution models specify the selected products which
can be transformed into the wvariation realization resembling one product in an iterative way. For
that reason, the approach is also called base variability resolution (BVR). Due to its generic
nature, CVL is supposed to be integrable with arbitrary DSLs (and GPLs for modeling, such as
UML).

VML* offers the creation of customized languages to specify mappings from features to model
elements by using the language elements of the corresponding domain model. Moreover, the
VML* metamodel incorporates elements, such as pointcuts or actions which are performed on the
target model during the derivation of products. Based on the instances of the VML* metamodel, a
general purpose model transformation in Xtend is generated. This language realizes the derivation
of single application models. Consequently, this approach which supports positive as well as
negative variability, can be categorized as transformational approach.

IIT Annotative MDPLE

In annotative MDPLE, superimposed models, such as the one depicted in Fig. 4.1.2 which rep-
resents the diverse contents of a database, express the entire variety of products in a commonly
called 150% model. In contrast to the work by Apel et al. [Ape+09], in which the annotated su-
perimposed model is composed by assembling model fragments satisfying a feature configuration,
elements of an annotated model based on negative variability are removed to create a product.
To derive products, annotations have to be mapped onto the elements of Fig. 4.1.2 to declare
in which variants they are present. Accordingly, Fig. 4.1.2 needs to be refined as sketched in
Fig. 4.1.3. In this refined version, the annotations represented in the rounded rectangles declare
in which derived variants the model element onto which it is mapped is present. For instance, the
two associations which connect the classes Person and Family are only present in derived variant
if the features Family and Relation are selected both.
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Figure 4.1.3: Annotated multi-variant UML class model of database contents.

Instead of a preprocessor, which derives a product from an annotative source code product line
by conditional compilation, a model filter is exploited to derive a product. All elements which
are annotated with a Boolean expression which is not satisfied by the given feature configuration
are removed (filtered) in the derivation process to form the product. Conceptually, upfront the
way how annotations are mapped onto model elements as well as their granularity discern different
solutions. The following paragraphs illuminate both aspects.

Mapping Notation As depicted in Fig. 4.1.4 we distinguish an annotation-wise from an element-
wise as well as an external from an internal mapping. The following paragraphs shed light on
their characteristics.

Annotation-wise Mapping An annotation-wise mapping, depicted on the left-hand side of
Fig. 4.1.4, links all elements (independent of the metamodel to which they belong) with their
corresponding annotation. Each possible annotation is stored once in a file and elements reference
the annotation. For example, the annotation-wise mapping of Fig. 4.1.4 links the class Family
as well as the containment reference named families onto the annotation Family whereas the
surname is present only in case the feature Family is not selected. Most notably, as a specific
property of annotation-wise mappings, elements of different models may link directly or may be
linked to these single annotations transitively. In a simple form, the annotation-wise mapping
is part of a correspondence model which references variation points or features of the variability
model and maintains links between elements of different models. A multi-view solution employs
such correspondence model [GS02]. On the downside of referencing features or variation points, the
set of possible annotations is small because it complicates the usage of propositional formulas as
annotations or more advanced annotation mappings. On the upside, an annotation-wise mapping
obviates the necessity to propagate annotations which is an essential automation task in element-
wise mappings for multiple models and discussed in Sec. 4.3.

Element-wise Mapping Conversely, element-wise mappings may map an annotation onto each
element in the model, thereby allowing an annotation to occur more often than once. The middle
and the right of Fig. 4.1.4 exemplify these mappings. Each element may be decorated with an
annotation and the same annotation may occur multiple times.

Internal Mappings Several solutions to realize multi-variant models annotate the model el-
ements by exploiting the capabilities of the modeling language. Such internal mappings may
either reuse the language as it stands, extend it or be integrated in a newly developed proprietary
language for modeling and realizing variability.
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Figure 4.1.4: Mapping notations.

The product line UML software engineering (PLUS) method serves as one example where static
stereotypes extend the basic language constructs of UML. They allow to designate, for instance,
default elements («kernely) or variants («varianty) [GomO05]. Thus, model elements carry an-
notations in form of stereotypes. Ziadi et al. [ZHJ03] introduced the concept of exploiting UML
stereotypes firstly to the best of our knowledge.

In a similar way, a template mechanism assembles UML models [CA05; CP06]. The template
comprises the superimposition of all variants which are annotated by utilizing UML stereotypes,
too. In contrast to PLUS, the approach does not employ a static default set of stereotypes, such
as «kernel» or «varianty, but the stereotypes declare an annotation which is a propositional
formula over features defined in a feature model. Ex. 4.1.2 demonstrates the usage of customized
stereotypes for annotating a UML class model.

Example 4.1.2: Internal Mapping with Feature-Based Stereotypes

The right side of Fig. 4.1.4 sketches the internal mapping based on customized stereotypes
in UML, as suggested in the template mechanism [CA05]. The example derives the stereo-
types from the database example and conveys the same mapping information as is present
in the middle and left side of the figure.

Please note: While in the original contribution annotations are only mapped onto classifiers
which is due to the state-of-the-art capabilities of the UML specification, the example
annotates properties, too. Accordingly, the annotation of the property surname can only
be annotated if the capabilities of UML are extended.

Pros and Cons of Internal Mappings Despite the benefits of reusing existing functionality
which reduces development and training cost, three general downsides of reusing existing model
language capabilities for (internal) mappings stand out:

First, the annotations are tightly intertwined with model elements, and are, thus, scattered over
the model. As a consequence, for deriving a product corresponding elements have to be searched
in all realization artifacts.

Second, the granularity of the mappings is limited by the capabilities of the modeling language.
Therefore, annotations may not be mapped onto all model elements. For instance, while UML
is quite powerful, it is not possible to annotate elements of an Ecore model with customized
stereotypes but as only means with the type EAnnotation. Overloading an existing metamodel
type in this way fosters a disciplined usage based on conventions.

Thirdly, reused-based internal mappings are restricted to one type of model and, thus, not generally
applicable. As an example, UML stereotypes cannot be employed to annotate an Ecore model.
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Proprietary SPL Development Languages In order to address the first downside, mappings
could be stored externally in separated files. To address the second and third downside of insuf-
ficient granularity and genericity, several proprietary languages express variability and the model
elements in an intertwined way, thus, being able to adapt their language appropriately.

Clafers serve as example of a proprietary language with internal mappings. A clafer is a unit
summarizing variability annotations (adhering to a proprietary constraint language), structural
and behavioral model elements. These units are expressed in the similarly called modeling lan-
guage [BCW11; Bak+16; Juo+19]. The VML* framework serves as another example declaring
“annotations” in a proprietary language. The developer can specify a mapping language which
allows to use language elements of the domain model. Accordingly, mappings of features to do-
main model elements are specified in this dedicated language from which a general purpose model
transformation in Xtend is generated. This language realizes the derivation of single applica-
tion models. Consequently, this approach which supports positive as well as negative variability,
can also be categorized as transformational approach but also contributes concepts to annotative
mechanisms.

External Mappings As stated in Sec. 3.4.4, mappings can as well be assigned in a file or data
structure separated from the multi-variant model. Such external mapping offers the advantage that
annotations are not scattered over the modeled artifacts but reside in a dedicated location. In this
way, external mappings separate the concern of modeling from the annotation task. Furthermore,
a variant can be derived more easily because the elements which should be included can be
determined by looking them up at one dedicated location, the external mapping representation.
Both, FeatureMapper [HKWO08] and Famile [BS12], are extensions to Eclipse and support
modeling product lines with eMOF-based models and external mappings. For mapping features
to the domain model they include a separate mapping model which relates domain model elements
with a feature. In contrast to FeatureMapper, which supports mapping feature expressions, i.e.,
propositional formulas over features, onto objects of the model only, Famile supports a finer level
of annotation granularity where structural features can be annotated as well. Moreover, due to
the capabilities of the proprietary mapping model, alternative modeling decisions which cannot
be expressed by the single-variant syntax of the domain model, are possible. For instance, the
name of a UML or Ecore class can vary by including an alternative mapping element for the name
carrying another annotation.

Moreover, approaches which employ a correspondence model between the variability and the
realization models, for instance, multi-view product lines [GS02]), fall into the external category.
In the multi-view approach models at each development stage, for example activity and class
models are each considered a view. The variability model is considered another view and a
correspondence model not only links model elements of each view but also maps them onto features
of the variability model.

Example 4.1.3: External Mappings

The left and the middle part of Fig. 4.1.4 exemplify how to realize external mappings. The
left of figure demonstrates the aforementioned form of an annotation-wise mapping, which
requires an external mapping artifact. The figure sketches the external annotation-wise
mapping as a separate file which collects features. In multi-view approaches, this kind of
mapping may be a separate correspondence view which stores links from model elements
onto annotation.

Instead, the external mapping model, depicted in the middle of Fig. 4.1.4, comprises the
same classifiers and relations as used in the domain model for which it provides annotations.
The figure sketches the mapping model, noted in abstract syntax, in the way the tool Famile
[BS12] realizes it. The mapping model reconstructs the structure of the domain model for
which it stores annotations exactly. ObjectMappings represent each modeled object, i.e.,
not only the enumeration, the classes and associations but also the properties, operations
and their parameters (the latter are not depicted in the figure). The object mapping stores
the annotation which is a propositional formula over features of the feature model and
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references the corresponding object of the domain model.

Notice: For simplicity and easy readability, the mapping model excerpt in Ex. 4.1.3 does not
include all object mappings which form part of the mapping model in the excerpt. Moreover,
the granularity of annotations which can be expressed with Famile goes beyond the granularity
of many other tools because it allows to annotate the structural features, for instance the type
or name of an object, and also to provide alternatives from which we abstract in this figure, too.
In addition, whenever different models build the product line, the same number of independent
mapping models may exist in this approach (because they reflect exactly the structure of the
corresponding model).

Annotation Granularity Regarding the granularity, this property corresponds with the quality
criterion as declared in Sec. 3.4.1 for product line development in general. The property assumes
that all realization artifacts build a strict containment hierarchy where the overall container resides
at the coarsest level of granularity. In the context of models, this could be a package or even the
file containing the model. Conversely, for instance in eMOF, at the finest level of granularity
reside the structural features of model elements, for instance, the name of a class or the type of
an attribute. The granularity influences the derivation complexity (higher if fine-grained) and the
redundancy of artifacts and possibilities for reuse (less redundancy if fine-grained).

Model Filter The term model filter refers to the facility which derives the product based on a
feature configuration in an approach realizing negative variability. [GW19c]

Flat vs. Hierarchical Filter Firstly, the model filter may vary with respect to its capability
to ensure that a well-formed product is derived and the way it incorporates structural informa-
tion of the annotated model. We discern two kinds of model filters: A flat model filter always
removes the elements the annotation of which does not satisfy the feature configuration whereas a
hierarchical filter takes dependencies inside the model into account and may propagate selection
states accordingly. As an example, if the domain model forms a spanning containment tree and
a parent element is not included in a configuration but at least one of its children, a hierarchical
filter will either exclude all children from the derived product or enforce the integration of the
parent. Hierarchical filters allow for simpler annotations of model elements because the Boolean
expression does not have to respect existence relationship while ensuring well-formed products,
nonetheless.

Secondly, filters can vary by the way how they treat model elements missing an annotation. Besides
others, one strategy includes elements missing an annotation in all configurations regardless of the
filter a priori?.

Finally, in a preprocessing step before the derivation, the consistency of the derived product
can be ensured by propagating selection states, thus, avoiding the well-formedness problem. In
hierarchical filters not only the obvious annotations can be determined but also can they be
overridden based on knowledge about the syntax of the metamodel. For instance, in UML class
models a super class should not be removed if the class inheriting from the super class remains
in the product. In this example, either both classes need to be removed or both need to remain.
Czarnecki et al. [CA05; CP06] offer rules to assign a more specific annotation (than true) in UML
class and activity models. Similarly, the tool MODPL [BW14] offers a set of static rules which
generate annotations by regarding dependencies inside Fujaba models [NNZ00]. More generically,
the problem of generating malformed products due to the model filter can also be solved by writing
repair operations, for instance, in a generic DSL [BS16].

Technically, several MDPLE solutions implement the product derivation (i.e., the model filter) as a
(general purpose) model transformation [ZJ06; BOTO07]. This transformation needs to understand
the notation of annotations as well as the feature configuration and has to remove elements
from the domain model accordingly. To avoid the necessity to learn a “general-purpose” model

2 This functionality corresponds with a preprocessor where source code without an enclosing directive is om-
nipresent.
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transformation language, simplified languages, e.g., designed with the VML*, may generate a
general-purpose model transformation language from a less complex language which is specific to
the applied approach.

IV View-Based Editing of Product Lines

While internally a superimposed model is maintained, several approaches hide the complexity of
the complete product line from the developer. Particularly the mapping of annotations may be
hidden by providing editors for manipulating a single variant only. We refer to these approaches
as view-based editing because only parts of the entire product line are exposed to and edited by
the product line engineer. Since view-based editing may support multiple variability mechanisms,
we categorize it as a standalone group of variability mechanisms, although primarily only the way
of editing the product line differentiates from the aforementioned mechanisms. The essential idea
of view-based editing in MDPLE is similar to virtually separating concerns in annotated code by
conditional compilation [K&s12] or providing views on a superimposed source code according to
the choice calculus [EW11; WO14].

A special form of view-based editing is single-variant editing [Sch18] in which the product line
developer edits one complete single variant of the product line only. Conversely, a “view” — as
proposed in the multi-view approach by Gomaa and Shin [GS02] — is a synonym for exactly one
kind of model. As another form, in multi-view modeling a “view” may encompass all model slices,
such as a diverse UML models and a Java model, which satisfy a feature configuration [Ana+18].

Single-Variant Editing — SuperMod represents one tool which realizes single-variant editing
[SW16; SW19]. It is grounded in the Uniform Version Model (UVM) [WMCO01] which unifies
temporal revisions and spatial variants by considering them versions. The model relies on configu-
ration management concepts which populate the local workspace with a single variant by checking
it out from a local repository. A checkout needs to select a revision number and a complete
configuration of the feature model (called choice) which is present at this revision. After editing
the workspace contents, a commit specifying an ambition (i.e., a partial configuration consisting
potentially even of a single selected feature only) integrates the modifications as new revision in
the internal repository which contains the superimposition of all changes applied to the feature
model and the domain model. After a commit, the annotation of each element in the internal su-
perimposed model is replaced by the previous annotation combined with the new revision number
and the feature ambition (present in commit) or its negated form (absent in commit).

It must be noted, that the superimposed model may consist of instances of different metamodels
without maintaining correspondences between them. Finally, during the checkout and commit,
consistency checks are performed. Depending on the kind, conflicts and inconsistencies are either
repaired or reported to the developer.

View-Based Editing of Multiple Models — VaVe As mentioned in the introduction to this
section, approaches combining different metamodels in a single underlying metamodel (SUMM)
exist. Corresponding tools, such as VITRUVIUS [KBL13], generate views on the single under-
lying model, an instance of the SUMM, and edit only the parts present in this view. In contrast
to SuperMod, these approaches maintain consistency operations between the elements of different
models to synchronize changes made to one model with corresponding elements of other models
kept in the SUM.

Ananieva et al. [Ana+18] extend the single-variant development environment of VITRUVIUS
to support the creation of a product line and its subsequent evolution by adding a metamodel
for maintaining variability in space and time. This extension realizes a delta-oriented product
derivation management and also relies on checking out a variant from the underlying workspace,
and committing it again. All delta operations in the view are monitored and applied to all af-
fected elements on commit. As effect of the commit, concurrent views are maintained as well. In
addition, features are explicitly versioned, resulting in directed deltas which have to be chronolog-
ically consistent. For expressing relationships between different metamodels, SUMM approaches
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commonly use proprietary delta operations which do not conform to a “general purpose” model
transformation language.

Projectional Editing As another alternative to provide views but also to support switching
the variability implementation mechanisms, tools may realize a projectional editor. Typically,
a projection includes parts of the abstract syntax which is modified directly, instead of, e.g.,
editing the concrete syntax which is parsed into abstract syntax afterwards. While Walkingshaw
and Ostermann [WO14] promote the usage of projections to allow for single-variant editing, these
projections comprise concrete syntax which still has to be parsed into abstract syntax. Conversely,
the following paragraphs sketch approaches that use projections of the abstract syntax.
Leviathan [Hof410] enables the generation of views on file systems. Consequently, a checkout
populates the local workspace by mounting parts of the complete file system and a local edit
modifies the complete file system. This concept of edit in isolation proofs to increase productivity
despite the loss of overview of changes which have to be consistent with the hidden artifacts. This
insight results from a case study with the version editor [Atk98; ABB02].

PEoPL [BPBL17] is an integration to the projectional language workbench (MPS) [Voell]. Foun-
dational ideas of integrating variability implementations in MPS were presented by Volter et al.
[Voel(]. PEoPL allows to interchange the annotative with a modular variability mechanism by
the usage of projections of the abstract syntax which is modified directly.

Since PEoPL only exists in the closed environment of MPS and focuses on code-oriented product
lines, as an alternative for product lines modeled in eMOF a projectional editor is proposed to
address this shortcoming [Reu420]. This approach allows to switch the projection of an annotative
150 % model to a delta-oriented representation and vice versa by using a virtual abstract syntax
graph (VASG) as pivot model in between of both. The approach normalizes the superimposed
representation in case it would violate single-variant model semantics and matches delta operations
in modules to combine them in the virtual representation. The models in the editor are transformed
into the VASG and vice versa for switching the projections. However, the product line developer
still edits the concrete not the virtual abstract syntax tree.

4.2 Annotation Maintenance in Existing MDPLE Solutions

For enabling MDPLE, solutions need to support the maintenance and realization of variability
information across models not only for one model as described so far. When instances of different
kinds of metamodels together form the product line, the necessity to maintain the annotations
of corresponding elements in these models arises. As an example, in forward engineering (c.f.,
Fig. 4.1.1) it will be redundant and error-prone effort to map annotations manually onto models
at a later stage of development if another already annotated model with similar information exists
at an earlier development stage. Instead, existing annotations should be propagated to corre-
sponding elements automatically and synchronized whenever the product line evolves. Although
this behavior is predominantly relevant in annotative variability mechanisms, this section illumi-
nates how annotations are maintained across models in each variability mechanism, particularly
focusing on their degree of automation.

Accordingly, the first part of this section (Sec. 4.2.1) presents a feature-based classification of
annotation maintenance which we map onto an exemplary set of MDPLE solutions in Sec. 4.2.2.
Thereafter, Sec. 4.2.3 analyze the results.

4.2.1 Classifying Properties of Annotation Maintenance

At first, this section inaugurates distinguishing and common criteria of maintaining annotations in
one model and across models followed by examining how the MDPLE tools introduced in Sec. 4.1
match these criteria.

The feature model in Fig. 4.2.2 comprises the characteristics to classify (existing) approaches
with respect to their maintenance of annotations in one model and across models, for instance
by involving model transformations. The following three main paragraphs explain details of the
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main categories we identified, the way annotations are mapped onto product line fragments (i.e.,
the mapping), the propagation of annotations, and the consistency maintenance, in sequence.

Mapping As discussed when explaining the annotative variability mechanism (c.f., Sec. 4.2.1, III),
the notation and placement of mappings varies. Firstly, the two possibilities of annotation-wise
and element-wise mappings exists and secondly, annotations are either integrated in the domain
artifacts (internally) or stored in a separate file (externally), as illustrated in Fig. 4.1.4.

The mapping notation is relevant for the necessity to apply further actions when multiple models
build the product line. If an annotation-wise mapping is applied, no propagation of annotations
has to be performed because elements are removed or added to their corresponding annotation
instead independent of the metamodel. As a consequence, a propagation of annotations occurs for
element-wise mappings only.

Furthermore, internal mappings may diverge with respect to their representation. They can
be integrated by reusing existing language constructs, such as the UML profiles, of the domain
artifact or by extending the existing language, such as by defining a new language construct. In
contrast, an internal mapping can be realized based on a proprietary language which combines
the annotation with the realization artifact, such as in a clafer.

For applying these categories to compositional and transformational variability mechanisms as
well, a third kind of mapping notation can be introduced. In these two approaches annotations
are mapped onto modules. As a module collects a set of realization fragments or edit operation
in compositional and transformation approaches, respectively, we consider them a special form of
element-wise mappings.

Annotation Propagation Secondly, the propagation of annotations is either manually per-
formed or executed in an automated way. While a manual ”propagation” implies that the product
line developer has to assign the annotation to each model element, an automated propagation is
performed by the tool. If the tool cannot annotate all target elements automatically but requires
to ask the developer in case of uncertainties, the propagation is classified as semi-automatic.
The scope clarifies whether the propagation of annotations occurs in one model (intra), for instance
to assign annotations to model elements still missing an annotation, or across models (inter). The
latter property can assure that multiple models forming one product line receive annotations
consistent with the annotation of a corresponding element in another model.

Annotation Consistency In SPLE, different consistency analyses have to be performed. At
first, feature configurations must be consistent with the feature model (i.e., no constraints of the
feature model should be violated). Furthermore, the derived products need to be well-formed (c.f.
Sec. 3.5). For the maintenance of corresponding annotations in different models, which are created
with model transformations, the commutativity criterion [Sal+14] is predominant.

Commutativity The commutativity criterion informally presented in the introduction in Fig. 1.2.1
is defined based on a single-variant model transformation (SVMT) and a multi-variant model
transformation (MVMT). Both paths, MVMT-filter and filter-SVMT, need to commute: Deriv-
ing a product from the multi-variant source model and transforming it with the SVMT creates a
single-variant target product. This product must be equivalent to the product that is derived from
a multi-variant target model, created by executing the MVMT, when applying the same feature
configuration. If this property holds for each valid feature configuration, the MVMT is consider to
be correct and, thus, the annotated target model is consistent with the annotated source model.
Note: The criterion can be generalized to be independent of transformations by defining a equiv-
alence operator® between two instances of different metamodels: After having defined the equiv-
alence of two instances of different metamodels, the same criterion can be applied. If applying
the same feature configuration to multi-variant instances of different metamodels and the filtered

3 Equivalence of two models conforming to two different metamodels is discussed in Sec. 7.4.2 where Fig. 7.4.3
depicts the adjusted commutativity criterion.
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models are considered equivalent for each valid feature configuration, commutativity will be sat-
isfied.

As another note, the underlying implicit assumption of the commutativity criterion is that the
source filter generates the correct result as well as the single-variant transformation that receives
the filtered source model as input. These two assumptions are, however, two fundamental correct-
ness criteria of the product line engineering tool and the transformation engine, respectively.

By Construction As a second possibility, consistency of annotations can also be ensured by
construction. Tools fulfilling this criterion offer processes that maintain correspondences between
models. As an example, the multi-view approach by Gomaa and Shin [GS02] considers each
instance of a UML model type (e.g., activity and class models) as one view where corresponding
elements are linked by the means of a correspondence model. The correspondence model not only
links the elements of UML models but also a corresponding feature or variation point modeled in
a variability model may be linked to the respective correspondence element. As a consequence, it
is ensured that corresponding elements of different models are mapped onto the same annotation,
which should result in the same effect as commutativity of model transformations. Similarly, edit
operations during development may be restricted in a way that they force to link elements of
different models explicitly and map them onto the same annotation.

4.2.2 Annotation Maintenance in MDPLE Solutions

After having introduced different classification criteria how annotations in one and across models
may be maintained, this section examines how the functionalities are supported in existing MDPLE
tools and approaches. Table A.1 in the appendix summarizes to which categories the approaches
discussed in Sec. 4.1.2 belong. In addition, we have performed a formal concept analysis which
indicates relationships between the properties and the resulting concept lattice illustrates the
result graphically in Fig. 4.2.1.

It must be noted that most of the tool descriptions are for instances of one metamodels only.
Therefore, whenever the tool descriptions are silent on the maintenance of multiple models, as-
sumptions were necessary. In the majority of solutions, we assume that an automatic propagation
or maintenance of annotations cannot be supported without further modifications whereas we
assume that approaches realizing an annotation-wise mapping keep annotations consistent by
(manual) construction.

Compositional Approaches Although the compositional tools and approaches introduced in
Sections 4.1.2 do not apply an annotative variability mechanism (i.e., they do not realize negative
variability), for deriving products they also need to incorporate feature traceability, e.g., in form
of annotations.

Aspect-oriented product line modeling [GV09] serves as an example (primarily) realizing a com-
positional approach. Elements inside the models need to be declared as join points to be extended
by an aspect. Therefore, this approach realizes an element-wise internal mapping. Since most of
the languages of the oAW framework used in the AOPLE approach offer aspect-oriented language
constructs and corresponding tooling, the approach can be categorized to reuse the existing mod-
eling language for realizing the mapping of annotations. If more than one model forms part of the
product line, annotations (or join points) will be declared manually. Consequently, no propaga-
tion occurs and consistency is not ensured neither. While MATA applies a different approach to
realize aspect-oriented behavior by using Graph transformations, it also realizes an internal man-
ual mapping without ensuring consistency. However, MATA is a proprietary language to declare
aspect models each modifying (parts of) the base model. Although the base model may comprise
multiple types of UML models, an aspect model may only modify one kind of a model. Thus,
annotations may occur multiple times for different aspect models.

The approach to superimpose UML models [Ape+09] examines composition techniques for UML
models. Mappings are applied internally by reusing UML profiles. Furthermore, the annotations
are applied manually per module. An automated propagation of annotations between modules
does not exist.
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Transformational Approaches Delta-oriented tools, such as SiPL [Pie+15; Pie+19], Delta-
Ecore [SSAl4b; SSAl4c] and DarwinSPL [NES17], as representatives of a transformational
approach, extend one core model with delta modules. Due to the fact, that each delta module
comprises an application condition and a set of delta operations that have to be applied to realize
the functionality related with the application condition, the mapping is applied module-wise (i.e.,
element-wise) and can be regarded as internal because it is integral part of the delta module.
For the reason that Ecore models which are supported in these tools do not allow for specifying
delta operations, the tools employ their own delta dialects and languages to specify delta modules,
consequently, building a proprietary mapping language. Since annotations have to be assigned to
each new delta module manually, there is no automated propagation present.

A delta-oriented mechanism is also implemented in the tool EASEL [HJHO06]. In this tool a base
layer of a UML class model can be defined and modified by composing feature-specific layers.
Thus, EASEL transforms the base layer into other products. Similarly, annotations are assigned
per module, internally and a propagation of annotations is not discussed.

The variability modeling language CVL [Hau+08] incorporates annotations as proprietary lan-
guage constructs for the transformation of the base model. A propagation of annotations is not
foreseen but they are associated with resolution models completely manually. A consistency cri-
terion is not applied neither.

Lastly, VML* [Zsc+09] offers the functionality to map annotations onto model elements of one
target model in their overall metamodel. The language realizes an external, element-wise mapping
which is specific to one target model. Therefore, a propagation of annotations is not supported
nor a consistency mechanism.

Annotative Approaches persist mappings internally or externally: The mechanism based on
model templates [CA05; CP06] incorporates all variants in the template (i.e., it is an multi-
variant model in our terminology). The template instances are single products derived in a M2M
transformation based on a feature configuration. The template stores annotations element-wise
based on stereotypes provided in a variability profile, which are realized internally. A propagation
of corresponding annotations among models is not discussed.

The proprietary language Clafer [BCW11; Bak+16; Juo+19] stores annotations element-wise (or
module-wise) for each clafer which is a unit storing structural, behavioral elements as well as
its annotations. A propagation of annotations across clafers is, to the best of our knowledge,
not supported. Furthermore, the tools FeatureMapper [HKWO08] and Famile [BS12] both
employ mapping models which link elements of multi-variant domain models, with annotations.
Consequently, both tools employ element-wise external mappings and originally do not support
an automated propagation.

Tools that realize filtered or projectional editing of models, internally maintain multi-variant
models. SuperMod [SW16] assigns annotations element-wise as part of the internally kept su-
perimposed model and maintains them automatically upon commits. Annotations form part of
the SuperMod metamodel. Therefore, they can be considered as a part of a proprietary language.
While SuperMod performs an automatic propagation of annotations each time a modification
is committed and the propagation occurs across different models (which can be part of the su-
perimposed model), consistency between different models is neither ensured by the propagation
algorithm nor by any consistency rule inside the superimposed model. Nevertheless, SuperMod
realizes an inter-model propagation.

Hybrid Approach In a similar way a projectional editor for model-driven product lines allows
to switch delta-oriented and annotative representations of the domain model [Reu+20]. Similar as
SuperMod, internally the tool maintains a multi-variant model (called variational abstract syntax
graph (VASG)) onto which annotations are mapped element-wise as part of the proprietary VASG.
The projection exposed to the developer, reuses the capabilities of Ecore models. Handwritten
rules, transform the user-visible representations, including the annotations, into the VASG and
vice versa. Accordingly, an automatic intra-propagation is supported but not across different
models. As a consequence, consistency checks across models may be missing as well.
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Figure 4.2.1: Formal concept lattice for mapping maintenance of MDPLE tools.

Multi-View Modeling Finally, multi-view approaches [GS02; Ana+18], explicitly deal with
multiple models that are kept consistent upon modifications applied to one model. Gomaa and
Shin [GS02] maintain a variability model incorporating variation points as one view next to other
views, such as activity and class models. A correspondence model resides between all views
and maps elements of various model views onto variation points. Thus, this approach provides an
annotation-wise external mapping and does not need a propagation of annotations but the manual
maintenance of linking the elements correctly with the variation points.

More specifically, VaVe [Ana+18] is an extension to the multi-view framework Vitruvius [KBL13].
VaVe realizes delta-oriented product line development. According to the VaVe metamodel, a fea-
ture (denoted as variant) is related with its implementation versions. Since for each variation
point multiple versions may be present, it is an annotation-wise external mapping. Due to the
connections of the multiple models based on correspondence rules designed in Vitruvius, a change
in one model propagates automatically to corresponding models which in consequence obviates
the need to propagate annotations.

4.2.3 Results

To sum the categorization of tools up, we performed a formal concept analysis (FCA) [GW99]
which is an algebraic method to discover binary relations and logical implications of the attributes
to the considered objects. In our case, the attributes are the features of the classification (c.f.,
Fig. 4.2.2) and the MDPLE solutions categorized in the previous section. The concept lattice
depicted in Fig. 4.2.1 visualizes the result of the FCA which highlights the maximal properties
shared by every solution and the minimal ones not realized by any solution.

As a result, the concept lattice and, thus, the categorization reveals that the way mappings are
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Figure 4.2.2: Feature-based classification of annotation maintenance in MDPLE.

persisted varies. Most notably, the bottom node of the lattice visualizes that no MDPLE solutions
considers the criterion of commutativity but in addition only one tool, SuperMod can propagate
annotations automatically across models. VaVe and the multi-view approach (on the right side
of the lattice) are the only two approaches, ensuring consistency by construction which is an
effect of employing annotation-wise mappings. Consequently, all solutions employing element-
wise mappings do not ensure consistency (so far). However, the fact whether an internal or
external mapping strategy is employed does not further affect the annotation maintenance.

On the whole, at the current state-of-the-art, none of the element-wise approaches can ensure that
the annotation of corresponding model elements is consistent with an already existing annotation.
On the one hand, it becomes obvious that none of the state-of-the-art solutions integrates auto-
mated means to propagate annotations across models. On the other hand, techniques, namely
multi-variant model transformations, have been developed to solve exactly this task and are in-
troduced in the following section.

4.3 Multi-Variant Model Transformations

As second main building block of MDSE, MDPLE should employ and reuse model transformation
technology, for instance, by making it variability-aware. While several MDPLE solutions utilize
model transformations to derive customized products from product line models or languages,
hardly any regards an automated consistency maintenance of annotations across product line
models as explained in the previous section. Multi-variant model transformations target exactly
this problem.

However, the term multi-variant model transformation is ambiguous: Either the transformation
itself becomes variable to create varying target models or the transformation is reused to propagate
annotations to the (single) target model. Before Sec. 4.3.3 and Sec. 4.3.4 illuminate both meanings,
respectively, this section sheds light on reusing model transformations in different use cases in
general in Sec. 4.3.1. Furthermore, Sec. 4.3.2 describes properties of a feature-based classification
which allows to categorize multi-variant model transformation approaches. Accordingly, each of
the approaches introduced in the following two sections is classified and the results are combined
and formally analyzed. The resulting concept lattice and the derived insights close the section in
Sec. 4.3.5.

4.3.1 Model Transformation Reuse

Before scrutinizing multi-variant model transformations for product line models which reuse state-
of-the-art technologies, the following paragraphs discuss model transformation reuse in general.
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We focus on giving insights which transformation reuse scenarios exist and reference publications
which offer and compare different solutions for reusing model transformations in general.

M2M Reuse Survey Model transformation reuse, in general, aims to reuse an existing transfor-
mation for more than one transformation scenario without the need to rewrite the transformation
entirely. Kusel et al. [Kus+15] extract six essential reuse scenarios along the three dimensions
granularity, specificity and scope. Granularity denotes whether small parts, such as single rules, or
large parts, such as modules offer reusable source code. Specificity refers to the fact whether the
transformation language supports a generic type system or one concrete metamodel whereas the
scope allows for exchanging at least one metamodel of the transformation. The six scenarios are
compared with respect to the classical phases in software reuse: abstraction, selection, specializa-
tion and integration [Kru92]. The findings of comparing the by then state-of-the-art in reusable
model transformation technology for realizing the aforementioned software scenarios reveal that
the mechanisms support generic reuse only restrictively. For instance, solutions are trimmed for
certain kinds of metamodels or one specific transformation language and specialization support is
hardly offered. Extending a transformation to allow for propagating annotations in a product line
is not considered but may only restrictively and not generically be possible with the considered
transformation approaches.

Feature-Based M2M Reuse Classification A recent classification on reusing transforma-
tions across metamodels [Bru+420] offers further classification criteria in form of a feature model
and takes surveyed community needs into account. In the same way as reuse mechanisms in classi-
cal programming can rely on language-specific support, such as subtyping or genericity [Che+16],
similar concepts can be found or integrated into model transformation languages as well. Still,
these mechanisms do not allow for transforming a product line model into another or to create
a family of products by regarding variability which is the most relevant form of reuse for the
purposes of this thesis.

Model Transformation Product Line Research on model transformation product lines recog-
nizes the variety in input and output models and the resulting variety in the model transformation
definitions [Lar418]. Therefore, the varying transformation can be represented as a product line.
However, a model transformation product line does not solve the problem targeted with this thesis.

4.3.2 Classification

Transformations addressing the additional dimension of variability inherent in product line models
have in common that they reuse existing model transformation engines to create the target model.
The way, how annotations are attached to target model elements varies and can be classified
according to the features presented in Fig. 4.3.1. This section illuminates each of the features
from left to right and elaborates on the level of automation as prerequisite.

Automation Before discussing the capabilities of different solutions, the degrees of automating
the maintenance of annotations, as defined in Fig. 4.2.2, have to be recapitulated. The bottom
line of automating the annotation of target models is an entirely manual process. Consequently,
neither the model transformation is made variability-aware nor another (customized) technique is
utilized. In automated solutions the propagation of annotations across models works completely
automatically. The product line developer does not have to intervene. As a consequence, a semi-
automated propagation tries to compute annotations automatically first, followed by involving
the product line developer in case of uncertainties, such as ambiguities or missing information, to
determine the annotation for specific model elements.

Genericity On the left of the feature model depicted in Fig. 4.3.1, the first feature scope defines
to what extent the solution is generically applicable with respect to the transformation language
and the transformation definition.
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Figure 4.3.1: Feature-based classification of multi-variant model transformations.

Firstly, definition-specific (metamodel-specific) solutions are able to propagate the annotations of
one kind of metamodel to another one. Thus, these solutions are able to support all transforma-
tions creating instances of these metamodels independent of the used transformation language.
Such approach can be realized, for instance, by employing a DSL to specify corresponding ele-
ments of the source and target metamodel and iterating the input and output models accordingly
when assigning annotations.

Secondly, a language-independent solution can propagate annotations independent of the model
transformation language which creates the target model whereas a language-specific solution is
trimmed for supporting the propagation of annotations for a specific transformation language
only. Language-specific solutions either extend or manipulate the transformation language, the
specification or the execution environment.

Abstraction As different degrees of abstracting the multi-variant transformation, white-box
solutions are distinguished from gray-boxr and black-box solutions.

A white-box solution interacts with the transformation specification directly either by extracting
information of the specification, manipulating it or by adapting the execution environment. In
contrast, a gray-box solution does not analyze the transformation specification but exploits the
artifacts created during or for the execution. For instance, a trace written during the transfor-
mation allows to draw conclusions on the specification but exploiting this information does not
interfere with the execution engine nor requires manipulations or an analysis of the transformation
specification.

The least invasive solution does not interfere with the transformation engine and specification.
Instead, the transformation is treated as a black-box. Based on other knowledge, e.g., the types of
transformed models, corresponding elements have to be determined and annotations propagated
accordingly.

Execution As another point, the way, how the execution is performed, varies. Either the
execution is performed in a noninvasive way, i.e., the execution environment is not manipulated
at all. Differently, in invasive solutions either the transformation specification is changed (e.g.,
by extending the syntax to become variability-aware) or the execution engine is manipulated
to become variability-aware. Black-box solutions imply a noninvasive execution because they
consider neither the transformation specification nor the execution engine and consequently do
not manipulate them.

Point in Time Last but not the least, multi-variant model transformation solutions can be
classified by the point in time at which they assign annotations to target elements. On the one
hand, the solution can attach annotations already during the execution of the reused transfor-
mation which we refer to as an inter-processing approach. On the contrary, particularly most of
the noninvasive solutions assign the annotations after the single-variant transformation has been
performed in a post-processing step.
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Note: Preprocessing of annotations, for example in form of a static analysis of the transformation
specification, can be considered one means to compute annotations but the actual assignment to
target elements can occur earliest when the target elements are created.

4.3.3 Variation in Transformation

While this thesis offers methodologies to reuse single-variant transformation specifications as they
stand, related work focuses on extending existing model transformation languages by variability-
aware rules. This class of “multi-variant” model transformations varies the transformation exe-
cution. Respective solutions offer possibilities to express the variability inside the transformation
rules themselves. During the execution of the transformation the variability is bound resulting
in different target models. Although this functionality does not solve the problem of propagating
the annotations to the target model and thus does not create an annotated multi-variant tar-
get model, this section introduces different solutions for incorporating variability in the model
transformation. The main approaches which we identify in this research area are variability-based
rules and higher order transformations. The upper part of Table 4.2 summarizes how the three
main approaches can be mapped onto the multi-variant model transformation categories which is
explained subsequently in this section. Since these approaches do not propagate annotations but
bind variability before the execution, the time category is not applicable.

Variability-Based Rules The variability-based rules [SS16] serve as first example where vari-
ability is explicitly encoded in the model transformation. Those rules are implemented as a tool
extension to Henshin [Are+10b; Str+18a]. Although the approach supports filtered editing of the
rules, variability has to be expressed and considered explicitly in the transformation definition.
On receiving a feature configuration, the variability is bound and a corresponding target created.
In contrast to others, the matching of a variability-based rule exploits the variability information
to speed up the execution by first matching the common parts and the distinguishing parts there-
after [Str+17]. The rules and their matching are formally specified [Str+18b] as algebraic graph
transformations [Ehr+08].

Although variability-based rules do not propagate annotations to the target model, they are aware
of the variability of product lines and can be categorized as a language-dependent, definition-
independent white-box solution to handle variability because they require to adapt the transfor-
mation engine and to extend the definition.

Aspect-Orientation Employing aspect-oriented programming techniques to realize model-driven
product lines is discussed in Sec. 4.3.3, I. Particularly, the concept of employing an aspect for
each feature represents one means to compose a transformation yielding customized products
when binding the variability. However, the solution of Groher and Vélter [GV09] does not aim for
generating a multi-variant model. Employing a generic aspect to generate multi-variant source
code is a contribution of this thesis presented in Chp. 8.

Higher-Order Transformation Alternatively, variability rules can employ higher order trans-
formations. A higher-order transformation denotes a model transformation creating another model
transformation [Tis+09].

Variability Rules in ATL Similar to other approaches that employ a higher-order transfor-
mation to derive products [OHO7; BOTO07] (from the same model), the solution by Sijtema et al.
[Sij10] creates varying target models by extending ATL rules to integrate conditional compilation
directives. In contrast to, for instance, the lifting approach (Sec. 4.3.4), the execution semantics
of the state-of-the-art ATL execution environment remains unchanged. Instead, the variability-
aware transformation definition is transformed by a higher-order transformation into a “default”
ATL definition by a transformation written in ATL. On receiving a feature configuration and a
source model, an ATL transformation translates the variability-based transformations into state-
of-the-art ATL transformations where only positively selected parts are included. The respective
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Table 4.2: Classification of multi-variant model transformation approaches in related work based
on features in Fig. 4.3.1. The first part of the table enumerates approaches which vary the
transformation to yield customized products whereas the second part regards solutions which
propagate annotations. All approaches are white-box solutions because they change execution
semantics of existing single-variant model transformation approaches.

Ref Description Scope Realization Time

[Str+15]  Variability-Based definition-independent, invasive, engine =
(VB) Rules language-specific,

[Sij10] HOT: variability —definition-independent, invasive, defini- -
rules in ATL language-specific tion & engine

[Kav+11] HOT: MTS definition-independent, noninvasive =

language-specific
[Sal+14; Lifting definition-independent, invasive, engine inter
Fam+15] language-specific,

[Tae+17] Formal Framework definition-independent, invasive, engine inter
Based in Category language-specific

Theory

[SPJ18]  Staged-Strategy definition-independent, invasive, engine  inter
(Lifting 4+ VB language-specific
Rules)

publication does not discuss limitations of the approach, for instance, the kind of annotations and
product line scenarios which are supported.

The solution works language-specific but independent of the definition. While it does not require
to modify the default ATL execution engine, it extends the ATL syntax (i.e., in an invasive way)
and offers a preprocessing engine that binds variability and converts the extended ATL into the
default ATL transformation. Thus, it is a inter-processing white-box solution which does not
propagate annotations but builds varying target product models. The transformation definition
is extended and the engine, too.

MTS The model transformation system (MTS) [Kav+11] employs higher order transformations
to generate customized transformations, too. Similar to variability-based rules, the purpose is to
create platform-dependent models from platform-independent ones. After defining commonalities
and the variability in the transformation, a variability metamodel is created which captures pa-
rameterized rules in the form of a metamodel. Instances of this model represent a customized but
still parameterized transformation which is input to a second transformation. The second higher
order transformation creates the concrete transformation for deriving one specific product. On
the whole, this approach does not target and therefore not support the propagation of variability
information among models.

As classified in Table 4.2, the MTS higher-order transformation solution works independently of
a specific definition but is implemented in one specific language. It is a white-box solution which
requires to integrate the higher order transformations in the execution engine of GReaT [Kar+03]
and to extend the default syntax.

4.3.4 Annotation Transformation

The second way to parse multi-variant model transformations considers the propagation of the
annotations to the target model. Besides the contribution of this thesis, lifting and two formal
frameworks represent this kind of transformation and are explained in this order. The lower part
of Table 4.2 summarizes the results of mapping the approaches in this section onto the features of
multi-variant transformations as defined in Fig. 4.3.1.
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Lifting of Transformation To the best of our knowledge, Salay et al. [Sal+14] proposed
the first solution applying a single-variant model transformation to a product line in order to
include annotations in the target models. The authors formalize a Lifting algorithm for a single-
variant in-place Graph transformation involving negative application conditions (NAC) to become
variability-aware and create an annotated target model.

The lifting algorithm, which describes how a single rule can propagate annotations, behave as
follows: The product line, the set of constraints, the rule and a matching site inside the domain
model of the product line are input to the algorithm and modify the input product line. Applying
the lifted rule requires that the constraints of the product line as well as the application constraint
¢a, composed of a negated disjunction of the constraints’ NACs combined with the constraints of
the elements that are maintained and deleted. The algorithm, then, maps the annotation ¢, to
each added element and —¢, is combined in a conjunction with the elements’ constraints to each
deleted element. If the resulting constraint together with the set of constraints of the product line
is not satisfiable, the element will be removed from the product line.

The algorithm is formally proven to be correct for typed graphs and in-place transformations.
However, Lifting requires to modify the execution semantics of a rule application which is imple-
mented as extension to Henshin [Are+10b; Str+18a]. As a consequence, supporting the lifting of a
rule requires to change the transformation engine. Moreover, the solution is restricted to in-place
Graph transformations. A transformation, for example specified in ATL, is not guaranteed to be
lifted by employing this algorithm.

Despite the fact that Lifting is defined for in-place Graph transformations, the algorithm was in-
tegrated in the execution engine of DSLTrans [Bar+10], a graph-based domain-specific out-place
transformation language. The solution was successfully applied to transform one product line
model into another one by retaining the original product line model in the context of the auto-
motive industry [Fam+15]. Similarly to the basic lifting algorithm, the integration in DSLTrans
requires to change the semantics of its execution environment.

As depicted in the first line of Table 4.2, both inter-processing solutions are language-specific but
propagate the annotations independently of a concrete definition. Since they require to modify
the execution semantics by manipulating the engine, they are categorized as white-box solutions.

Category Theory Taentzer et al. [Tae+17] propose a formal framework specified in category
theory for transforming one product line into another, including the evolution of the variability
model. For instance, the framework represents the Lifting algorithm as a special case (with-
out evolution). In the formal framework not only a product line serves as input but also the
transformation rules involve variability. Therefore, the negative application condition, the left
hand-side and the right-hand side may specify the set of features and constraints and may en-
compass annotated domain model elements. Due to its restriction to injective morphisms, only
in-place Graph transformations and simplified feature model evolution scenarios are possible. For
instance, splitting of assets [BTG12] cannot be expressed.

Even though an implementation of the framework is not yet published, it can be considered as
language-specific, definition-independent white-box solution because it either requires to extend
an existing Graph transformation engine or to develop a proprietary tool satisfying all conditions.

Staged Transformations On the contrary, a staged strategy of combining variability-based
rules and the lifting algorithm can be applied to transform product lines [SPJ18]. The strategy
mitigates the drawbacks of lifting and variability-based rules to enumerate all rules or all products,
respectively, to transform a product line. It behaves as follows: first, a common base rule is
matched with the annotated domain model, followed by a search for the specific rule that needs
to be applied. The respective rule is lifted to the product line as described in [Sal+14]. The
equivalence of the resulting products, i.e., commutativity, is proofed based on algebraic graph
transformations. Accordingly, the method is applicable to rudimentary Graph transformations
(without negative application conditions or amalgamation). Furthermore, features need to be
expressed explicitly in the rule set. To this end, the user effort is higher due to the cognitive
complexity introduced in variability rules. Nonetheless, avoiding the need to iterate over single
products or rules confirms expected runtime savings. Since the solution is a combination of lifting

67



CHAPTER 4. MDPLE

definition-independent, language-specific, white-box

inter-processing

inuaSive, definition ! :
noninvasive

Lifting, Category-Based Framewaork

VB-Rules, ATL-HOT
MTS-HOT

wition-specific, language-independent, gray-box, black-box, post-processing

Figure 4.3.2: Formal concept lattice for multi-variant model transformation properties of related
solutions.

and variability-based rules, it is grouped in the same classification categories. Consequently,
the staged strategy is a white-box, definition-independent but language-specific solution which is
performed during the transformation in an modified transformation engine.

4.3.5 Results

Table 4.2 collects mappings of the related multi-variant model transformation solutions onto the
feature-based classification criteria. This section presents a formal concept analysis which was
performed in the same way as in Fig. 4.2.1 but for these mappings of multi-variant model trans-
formations. At the bottom, the lattice shows the properties which cannot be mapped onto any of
the approaches whereas the top node shows the properties which are shared among all approaches.

Annotation Propagating Approaches The descriptions in this section reveal that in total
only three related solutions realize the automatic propagation of annotations based on a reused
single-variant model transformation. Moreover, these solutions, namely lifting, the category-
based framework and the staged strategy, require to manipulate the execution semantics of the
reused transformation engine. Consequently, these invasive solutions realize the assignment of
annotations during the actual model transformation execution (inter-processing).

Further Properties On the upside, all solutions are definition-generic, meaning that the prop-
agation of annotations can be performed on instances of arbitrary metamodels. On their downside,
they work for one transformation language or class of languages (specific graph transformations)
only. Except for MTS, all of the approaches represent white-box solutions which modify either
the transformation engine or its semantics (i.e., they are invasive).

On the contrary, several contributions, such as variability-based rules, explicitly incorporate the
variability dimension in the transformation rules and, thus, expose the product line developer to a
higher level of cognitive complexity. Moreover, the variability in these rules is bound to a specific
configuration during the execution, thus, yielding single-variant models and not a superimposition
of them which would be required for adequate development and evolution support in MDPLE.
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The lattice further demonstrates that only MTS does not invade in the execution environment
but cannot be considered a black- or gray box approach because it requires to manually derive
and configure a variant of the transformation that should be executed. Not analyzing the trans-
formation but using one of its artifacts, namely the trace, for propagating annotations is one of
the main contributions of this thesis.

4.4 Bottom Line

All in all, this chapter illuminates the consequences and possibilities of fusing model-driven soft-
ware engineering and software product line engineering which means to develop product lines in
a model-driven way.

On the one hand, models have to be enriched by variability information which is realized in vary-
ing ways in MDPLE solutions. On the other hand, model transformations can be employed in
MDPLE solutions not only for deriving customized products but also to keep different models
(originating from developing the product line in different stages and for different customer con-
cerns) in one product line consistent. However, only few existing solutions consider an automatic
maintenance of variability information across different models. In addition, the already existing
solutions are not employed in any of the considered MDPLE and typically require to modify ex-
isting model transformation execution semantics or require to declare the variability in the model
transformation specifications directly. This results in adaptation costs and higher complexity due
to the additional dimension of variability which may be the reason why an integration is still
missing.
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Chapter 5 Informal Properties of Trace-Based
Propagation

Ideas that you’ll never find
All the inventors could never design

Coldplay, Speed of Sound

Many transformation approaches and software development tools record corresponding
elements of different artifacts as trace(ability) information. Given this observation, we
utilize the persistent information about corresponding elements of a source and tar-
get model to propagate the annotation of source to corresponding target elements.
Therefore, this chapters presents an informal example illustrating an out-place model-
to-model transformation which records a trace of corresponding elements while being
executed. We employ the persisted trace information to propagate annotations from
the source to the target model of the example.

The example (Sec. 5.1) demonstrates model-to-model transformation rules which cre-
ate a Java model from a class model. First, it illustrates the transformation of single-
variant models and extends the models with variability information to become multi-
variant, thereafter. Before Sec. 5.3 explains how traces can be used to propagate
annotations and which conditions have to be satisfied for a correct result, Sec. 5.2
illustrates different types of traces and classifies them to derive a common trace meta-
model which we employ for propagating annotations.

The chapter shares material with [GSW17], [WG18], [WG20a] and [WG20b] which lay the
foundations for its contents.

73



CHAPTER 5. INFORMAL PROPERTIES OF TRACE-BASED PROPAGATION

5.1 Example of Trace-based Transformation

For exemplifying the formalization presented in the next chapter with a concrete scenario, this
section introduces a multi-variant UML class model to Java transformation. The UML class
model for the database contents product line, depicted and introduced in Fig. 4.1.2, serves as
source model in a reduced form.

Instead of considering all classes and, thus, all variants, in the first step (Sec. 5.1.1) the example
presents the transformation of one class and one package into corresponding elements of a Java
model. Thereafter, Sec. 5.1.2 presents the transformation rules that are necessary to create the
target Java model. Finally, Sec. 5.1.3 extends the example to represent a small multi-variant
model in the same scenario and the result of applying the same rules to this example.

simplified UML class metamodel simplified Java metamodel
+] packagedElem
Package oElem
name: String ; PaCkage
Model A Model name: String
«|0Type *
Class T units “oFlem
name: String CompUnit ClassDecl
name: String name: String
i | um: Model :
H name="" im:Modell o] 0
L | m.170del| | jp: Package i | DBContent.java
db : up : Package ¢ name= "db" ' | package db;
' packaged- [ame= "do" l:> oElem . :
+ Elem H blic class DBContent {
' ' public class
DBContent || : T oType units oElem :
H . . . H }
; uc : Class cu : CompUnit cd : ClassDecl | !
name = "DBContent” name= "DBContent.java" name = "DBContent" | |
concrete ' concrete
syntax 0 abstract syntax abstract syntax H syntax

Figure 5.1.1: UML class and Java MoDisco model excerpt representing the database contents.

5.1.1 Single-Variant Model

Fig. 5.1.1 presents the contents of the example transformation which transforms a UML class
model into a corresponding Java model. The top of the figure introduces the simplified UML class
and Java metamodels to which the models, depicted at the bottom, conform.

On the left side, the top depicts the simplified UML metamodel for class models consisting of
a package hierarchy. The Model is designed as a special kind of package and classes are stored
in the packages as o(wned) Types. Packages as well as classes are named elements in the UML
metamodel. The bottom depicts an instance of this metamodel in concrete and abstract syntax.
The model comprises two packages, one being an instance of a Model (object name: um), and the
other one holding the class named DBContent.

The right side of the figure illustrates the simplified Java metamodel which is an adaptation of
the Java MoDisco metamodel [Bru+10]. The class Model serves as root which contains packages
but also all compilation units (CompUnit) in which type declarations are actually implemented.
The only kind of type declaration are class declarations (ClassDecl) stored in packages which
corresponds with the UML side where only classes are present. In the original metamodel, a
reference between compilation unit and the type declaration exists as well as an indirection via
access classes (TypeAccess) which are left out from this example for the reason of easier readability.
At the bottom, the right side presents an instance of this metamodel which corresponds to the
UML class model (and can be created by a model transformation). The UML model (instance
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source trace target
m : Model c jm : Model
u t1: M2M J

packagedElem ++ oElems
up : Package ++ 12 : P2P ++ jp : Package

Figure 5.1.2: Graphical rule which transforms UML packages into Java packages. The container
Model has already been created. ++ signs mark the target elements created by the rule.

name: um) is represented by a Java model (instance name jm). Both models contain a package with
the same name whereas additionally the Java model comprises a compilation unit (instance name:
jcu) for the class declaration (instance name: jcd) corresponding to the UML class DBContent.

5.1.2 Example Transformation

This section describes the transformation rules to create a Java model from a given UML class
model. The subsequent paragraphs describe all rules at the level of objects while also establishing
links between these objects. Names of the elements are assigned correspondingly in the real-world
transformation but not explicitly mentioned in the example. Furthermore, the rules compose a
source and a target side as well as a trace section. Trace elements map source objects onto the
created target objects and are maintained by trace-generating transformation engines, such as the
Eclipse QVT-O plugin or the ATL/EMFTVM, in addition to the target model.

Transformation of Model A forward batch transformation behaves as explained in the follow-
ing paragraphs. The initial step transforms the UML Model into a Java model. This rule is not
explicitly shown because of its simplicity. A trace element created by this rule references the UML
model as source and the Java model as target element, respectively.

Package To Package After having transformed the UML model, the transformation creates a
Java package for each UML package. In this example, the rule does not construct the package
hierarchy but integrates all packages in the single model of the respective transformation side.
Fig. 5.1.2 presents the source and the target graph corresponding to the example. The rule marks
elements and references that are created anew with ++ symbols and highlights them in orange
color.

To generate containment references properly, it is essential that the Java model corresponding to
the UML model as well as a corresponding trace element have already been created in the first
execution step of the transformation. Consequently, the transformation rule depicted in Fig. 5.1.2
creates not only a similarly named Java package for the UML package but also a containment
reference originating from the Java model and ending in the Java package for storing the package
in the Java model.

Moreover, in a trace-generating transformation not only the target side is extended but also the
trace section by adding a new trace element. Accordingly, the figure shows that the P2P object
is added, too. This trace element references the UML package as source element and the java
package as well as the containment reference as target elements.

Class To ClassDeclaration The third transformation rule, depicted in Fig. 5.1.3, transforms
each UML class into a class declaration and a compilation unit. While the class declaration is
stored in the Java package, the Java model serves as container for the compilation unit. In this
example the transformation rule refrains from creating a link between the compilation unit and
the class (which is necessary in the real-world scenario) as well as from regarding the possibility
to store more than one type declaration in a compilation unit. In addition, the rule refrains from
creating an interface for each UML class for the sake of easy readability of the example.
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Figure 5.1.3: Graphical rule which transforms UML classes into Java class declarations and com-
pilation units.

Trace Access Most notably, after having performed the step of creating the Java package, the
transformation may access the new trace element between the UML and Java package created
by the rule transforming packages. In this way, the transformation can add new elements to
previously created elements in the target model, namely the class declaration to the package and
the compilation unit to the model. Besides accessing existing trace elements, this rule extends
the trace graph with a new trace element referencing the four elements created anew and the
corresponding source element.

Please note: Although the rules need to access already existing trace information and existing
target elements to properly store the elements added by the rules, these access relationships are
not made explicit in the rules (yet) for the sake of easier readability of the example.

5.1.3 Multi-Variant Model

After having explained the basic (single-variant) rules in the previous section, the following para-
graphs demonstrate an extended input model with annotated varying contents.

The example is extended by the classes Person and Family added to the UML class model. In
addition, we simplify the feature model of the database product line example (Fig. 3.3.1) such
that it encompasses the mandatory feature P(erson) and the optional feature Fa(mily) which are
part of the database (DB) root feature. The left of Fig. 5.1.4 depicts the extended UML class
model. This figure shows that the three classes are turned into corresponding class declarations
and compilation units. In contrast to the transformation rules, the names of the class declaration
and compilation units are assigned, too, to distinguish the objects more easily.

From the figure, two points become obvious: Firstly, in contrast to the above rule descriptions the
trace references also context elements besides the target elements created by the corresponding
rule application. As an example, the rule to create a class (Fig. 5.1.3) only references the class
declaration and the compilation unit as well as the containment references as target elements.
However, for adding the containment references (tpyes and units) to the correct container, also
the package and the model have to be accessed by the rule. For that reason, accessing already
existing elements in the target model (i.e., elements that have been created in a previous execution
step) is marked in the trace element by a reference to these context elements sketched as dashed
lines in Fig. 5.1.4. Accordingly, execution traces may vary with respect to the granularity by
which they reference elements in the target model. Different kinds of traces written during a
model transformation execution are discussed in Sec. 5.2.

Secondly, although the source model is annotated, the rules presented in Sec. 5.1.2 are unaware of
the variability occurring in product lines and offer no means for propagating the annotations to the
target model. Consequently, a multi-variant target model (without annotations) can be created
by employing a state-of-the-art (single-variant) model transformation. However, to automatically
annotate the target model, further extensions are required. As explained in the subsequent de-
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Figure 5.1.4: Rule applications to multi-variant model in triple-graph representation.

scriptions, the generated trace elements can be employed to propagate the annotations without
a need to change the single-variant model transformation nor its execution environment. Im-
portant requirements to successfully and beneficially propagate annotations by employing trace
information are summarized in Sec. 5.3.3.

5.2 Properties of Transformation Traces

Due to the plethora of model transformation languages and tools, various kinds of traces exist
in M2M transformation execution engines. By examining trace-generating model transformation
solutions in Sec. 5.2.1 and deriving a feature-based classification (Sec. 5.2.2), this section gives
an overview of their differences and commonalities. Based on these properties, a common trace
model is derived (Sec. 5.2.3) which is trimmed to be suitable to define a generic algorithm for
propagating annotations. Arbitrary traces can be transformed into the common trace model to
be used in the propagation algorithm.

Please note: Here, we only consider traces, which result from applying a M2M transformation
and record corresponding source and target elements. Traceability frameworks [Aiz+06; BBMO05;
WP10], particularly those customized for MDSE [Anq+10; SHG12], go beyond the interests of
the trace-based propagation by relating multiple kinds of artifacts and, for instance maintained
in a database, and by allowing for querying the traceability information and further maintenance
activities. For that reason, they not considered in the following discussions.

5.2.1 Traces in Existing Model Transformation Solutions

Several transformation solutions maintain traces during their execution. Due to the multitude of
model transformation solutions (c.f. Sec. 2.2.2), the information persisted in the maintained traces
is of manifold granularity, too. In this section, we examine the traces of exemplary model trans-
formation engines as representatives of different possibilities to note information of corresponding
source and target elements.

QVT [Objl6] The OMG proposed the QVT framework (c.f., Sec. 5.2.1, III) as standard for incre-
mental bidirectional M2M transformations. The QVT-R specification establishes the declarative
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language in this framework. Even though the standard does not prescribe a trace for realizing the
incremental transformation, the stable tool realization medini QVT [ikv18] builds traces during
the execution and persists them thereafter. Traces encompass a sequence of instances of relations
(which are comparable to rules in other model transformations solutions). A rule instance records
the relation which it instantiates as well as the source elements for which it was triggered and the
resulting target elements. The list of target elements consists not only of the elements generated
anew but also of already existing (context) elements in the target element which had to be accessed
to create the new target elements.

In contrast, the Eclipse plugin which realizes the procedural language QVT Operational Mappings
(QVT-0O) manifests trace information, too. The trace may record context elements if they are
provided as input to the mappings (i.e., rules) and all target elements which are explicitly defined
as output parameters. The persistent information may vary with respect to how the rules are
defined as Sec. 5.2.1, I discusses in more detail.

ATL (EMFTVM) [Wag+12] As a second model transformation language, ATL [Jou+08] allows
for specifying in-place and out-place unidirectional model transformations which are realized by
different virtual machines. The default virtual machine of the ATL distribution supports out-place
transformations and incremental in-place transformations.

Although during the execution of a transformation specification a trace is maintained and can be
accessed when specifying the rules, the trace is not persisted after the execution. For that reason, in
this work we employ the ATL/EMFTVM as virtual machine which offers to persist the execution
trace and additionally provides an instruction model of the bytecode. Despite manifesting the
trace, still the available capabilities of this virtual machine are more restrictive than in the default
ATL virtual machine. Particularly, ATL/EMFTVM does not support incremental transformations
nor the usage of helpers hindering the specification of complex transformations.

An example of a ATL/EMFTVM traces is presented in Sec. 5.2.1, II. These traces record the
source and created target objects of each applied matched rule. The trace elements do not record
context elements which are required to created these element nor mappings of structural features.
Similarly, applications of lazy and called rules are not persisted.

BXtend [Bucl§]isa framework offering to implement bidirectional, incremental transformations
in a way strongly inspired by triple graph grammars. Rules, in which the transformation developer
has to explicitly maintain a correspondence graph between the source and the target model, are
implemented in the object-oriented Java dialect Xtend [ES]. Accordingly, the correspondence
graph represents the trace information which in its default version maps only one source onto
one target element regardless of how many elements are created or accessed to create the new
elements. Therefore, the trace consists of correspondences which are 1:1 links.

eMoflon [LAS14; LAS15] serves as an example of a language and corresponding tool which
persists two kinds of trace information. Triple graph rules may express incremental bidirectional
model transformations. Consequently, similar to BXtend, a correspondence graph is maintained
between the source and the target model in which each node (i.e., a link) stores exactly one source
node and one target node. Besides the correspondence graph, however, eMoflon builds a protocol
during the execution which is persisted thereafter. This data structure records a partially ordered
set of rule applications which store the match as well as the elements that are created including
context elements that were necessary for the new creation. We consider the protocol and the
correspondence graph as two different types of traces.

Further M2M Transformation Solutions Finally, several other transformation solutions
exist which permanently store trace information. Kahani et al. [Kah+19] distinguish tools that
automatically create trace information, such as medini QVT or the DSLTrans [Bar+10], from those
allowing to manually define trace links in the transformation rules, such as in Henshin [Str418a].
Few tools, such as eMoflon, allow for both, manual trace generation, i.e., the correspondence
graph, and automatic trace generation in form of the aforementioned protocol. But the details
and properties of the traces apart from their generation are not discussed in this article.
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Figure 5.2.1: Feature-based classification of M2M transformation traces.

The granularity of the trace written by the transformation engines may depend on the type of
employed rule (e.g., in ATL and QVT-O (c.f., Sec. 10.2.3)) and, for instance in Henshin, on
the developer who has to specify the creation of trace elements. Accordingly, target elements
can be stored by potentially differentiating context from target elements at the level of objects.
In contrast, if the correspondence graph is extendable, the granularity of mapping source onto
target elements may be refined. Accordingly, the possibility of specifying sublinks to relate struc-
tural features of objects can and has been used to offer more fine-grained tracing [Bec+07]. The
customization of traces is also offered by the BxtendDSL [BBW21] framework, which extends
the basic BXtend framework with higher automation. However, the customization also requires
manual maintenance of these specific kinds of links and is not examined by the tool developers
yet.

5.2.2 Feature-Based Trace Classification

As a consequence from the previous descriptions, we classify traces maintained in M2M transfor-
mations based on the categories depicted in Fig. 5.2.1. We apply this feature-based taxonomy to
the traces resulting from the M2M transformation languages described in the preceding section.
Table 5.1 collects the resulting mapping.

Trace Type Firstly, traces are either link-based or rule-based. While rule-based traces result
from applying rules and maintain a link or reference to the applied rule, a link-based trace stores
links between up to many elements of the source model and and up to many elements of the tar-
get model without necessarily mentioning the rule in charge for their creation. ATL/EMFTVM
and medini QVT offer rule-based traces whereas BXtend and eMoflon require the transforma-
tion developers to specify the creation of the correspondence graph during rule execution. The
correspondence elements per se are not related with the rule creating them. eMoflon’s protocol
originates from applying the transformation and mentions the corresponding rule. Therefore, it
can be classified as rule-based trace.

Trace Generation The second feature differentiates an automatic from a manual generation of
the trace. This feature can also be related with the type of the trace. While link-based traces are
frequently built manually by the transformation developer in the transformation rules, rule-based
traces are an artifact automatically created by the transformation execution engine. However,
as discussed by Kahani et al. [Kah+19], ATL traces can be maintained and accessed by the
transformation developer. Depending on the ATL rule type, the developer may create custom
trace information in case no automatic generation is supported. However, in any case, the default
virtual machine does not persist the ATL traces after the execution.

Trace Completeness The third criterion, completeness, refers to the elements that are stored
per rule application. Incomplete traces only store a single target element and a single source
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Table 5.1: Categorization of an exemplary set of M2M transformation traces.

Tool Trace Data Type Generation Complete- Granularity
Structure ness
medini QVT trace model rule-based automatic complete coarse
ATL/EMFTVM trace model rule-based  automatic = generation-  coarse
complete
BXtend correspondence link-based manual incomplete coarse
model
eMoflon correspondence link-based manual incomplete coarse
graph
eMoflon protocol rule-based automatic complete fine

element regardless of the fact how many elements are created for the source(s) element(s) and
how many context elements are required for their creation. In contrast, a generation-complete
trace stores all target elements created by the corresponding rule application but no context
elements. The latter are persisted by complete traces in addition to the created target elements.
Fig. 5.2.2 exemplifies the different kinds of traces for the transformation scenario of converting
a UML class into a Java class declaration and compilation unit. The top row shows the excerpt
of an incomplete trace: Only the UML class and the Java class declaration are referenced by
the trace element although the compilation unit is created as well by the same rule application
corresponding to the trace element. The excerpt in the second row demonstrates a generation-
complete trace element referencing not only the class but also the compilation unit. However, the
Java model and package, which are necessary to store the class declaration and the compilation
unit, are referenced only in the trace elements of complete traces as depicted at the bottom of the
figure. In addition, depending on the granularity of the trace, not only the objects are stored in
the trace but also the links between them or even the attributes of objects. In the figure we show
a fine-grained complete trace where also the links between objects are referenced as source, target
and context elements by the trace element.

The classification of the completeness of traces is in accordance with the scope of transformation
steps proposed by Cuadrado et al. [CMO09] for the modularization of a model transformation.
The authors distinguish a local to local, local to global, global to local and global to global scope
of performing transformations steps. The local to local scope corresponds with an incomplete
trace, where only one target element can be created from one source element, which is called
pivot element by the authors. In a local to global transformation step more than one target
element is created which may require to collect information from different parts of the target
model (i.e., for instance context elements). In contrast, a global to local transformation step
requires more (globally available) information from the source model than the pivot element to
create a single target element. We represent that case by incorporating more than one source
element in generation-complete and complete traces. Finally, a global to global transformation
step combines the cases of a global to local and a local to global transformation steps and is
represented in a complete trace.

Notice that the type and the completeness are orthogonal criteria. Completeness refers to the
amount of information stored in the trace whereas the type describes the fact how the trace is
created.

Trace Granularity Lastly, traces may either be coarse-grained or fine-grained. A coarse-
grained trace records elements of the target model at the level of objects only. Conversely, a
fine-grained trace also links the attributes of and references between objects to corresponding
source elements. The ATL/EMFTVM, medini-QVT and BXtend traces as well as the correspon-
dence graph of eMoflon represent coarse-grained information at the level of objects. In contrast,
the protocol of eMoflon maintains a more fine-grained trace, which stores the references between
objects but neither their attributes.
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Figure 5.2.2: Trace completeness levels.

5.2.3 Common Trace Metamodel for Annotation Propagation

Based on the criteria classifying the different transformation traces, we derive a common trace
metamodel into which transformation traces can be turned. Fig. 5.2.3 depicts the generalized
model. The trace model encompasses an ordered set of trace elements. The order results from the
sequence of applying transformation rules.

Each trace element references up to many source and target as well as context elements. De-
spite the fact that the trace elements enumerate sets of source, target and context elements (i.e.,
representing a complete trace), incomplete traces which reference only one source and one tar-
get element are covered as special instances of this metamodel: The set of context elements is
completely empty and the sets of source and target elements include one respective pivot element.

5.3 Trace-Based Annotation Propagation

This section presents the key characteristics of the trace-based propagation of annotation at an
informal level. Sec. 5.3.1 initiates with giving a schematic overview of the propagation whereas
Sec. 5.3.2 explains how to process a trace model and to compute the target annotations based on
this information. Finally, Sec. 5.3.3 enumerates the properties to which the transformation type,
the transformation rules and the recorded trace must conform in order to satisfy commutativity.
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Figure 5.2.3: Common trace metamodel.

5.3.1 Schematic Overview

The knowledge about different trace kinds and the common trace metamodel lay the grounds for
propagating the annotations of multi-variant models to the target model without having to adapt
the reused single-variant transformation.

multi-variant
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target model target model

single-variant
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Figure 5.3.1: Schema of trace-based annotation propagation.

The schematic overview in Fig. 5.3.1 illustrates the concept of utilizing the trace for propagat-
ing annotations. The single-variant model transformation first turns the multi-variant source
model into a multi-variant target model (without regarding annotations). As an artifact of the
transformation, a trace is generated and serves as input to the trace-based propagation algorithm
transferring the annotations from the source model to the target model. Details of the propagation
algorithm are given next.

5.3.2 Annotation Propagation Procedure

For propagating annotations to the target model, the trace elements elements of the common
trace metamodel (Fig. 5.2.3) are processed sequentially by their order. For the algorithm it is
important that the order corresponds with the application of transformation rules and, thus, the
order of creating elements in the target model.

According to the common trace model, each trace element enumerates a set of source, target
and context elements, which are abbreviated as SRC, TRG and CTX, respectively, in the following
explanations. For each trace element, the annotations of the source elements in SRC are queried
as well as the annotations of the context elements in CTX. These annotations are combined in a
conjunction and attached to each target element trg € TRG in the following way:

trg.ann = ( /\ s.ann) A ( /\ c.ann)

s € SRC c € CTX

Please note: For demonstration reasons the formula notes the annotation of the source and target
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elements as one of their attributes. As explained in Sec. 4.1, however, mapping the annotations
onto model elements may be realized in varying ways in reality. Moreover, the expression has to
be simplified before attaching it to the target elements to avoid redundant clauses and transitively
growing expressions.

In the transformation example of the beginning of this chapter (Fig. 5.1.4), the annotations are
propagated by the trace-based propagation as follows. The first trace element corresponds with
the creation of models. Accordingly, the only referenced target element jm receives the annotation
of the recorded source element um which is DB.

Next, the trace element t2 mapping the packages is processed. Here, the Java model jm is
referenced as context element and up as the single source element. Accordingly, the annotation
attached to the package would be DB A DB which can be simplified to the annotation DB for the
Java package jp.

Thirdly, the elements t3, t4 and t5 are processed subsequently. As an example, the annotation
computed based on t4 for the class declaration, compilation unit and the containment references
originating from the model and package receive the annotation (DB A P) A DB A DB where the first
clause stems from the source element and the second and third from the context elements. Only
the simplified expression DB A P is applied to the target elements.

5.3.3 Computational Model

To propagate the annotations to target elements based on the informally described algorithm cor-
rectly, the transformation and their traces have to adhere to certain properties. The computational
model for trace-based annotation propagation summarizes these properties. If the computational
model is satisfied, commutativity can be guaranteed as explained in Chp. 6. The following para-
graphs introduce each property at a conceptual level starting with general properties for the
transformation and continuing with concrete properties for the rules and the resulting traces.

Transformation Properties First of all, the transformation, in general, has to conform to the
following properties.

Property 5.3.1: Batch Transformation

A batch transformation has to be performed, thus, creating a new target model.

The computational model assumes that no target model exists yet. Accordingly, a new target
model without any annotation is created. Since incremental transformations are not regarded in
the computational model, Sec. 7.5 presents an extension how to address them.

Property 5.3.2: Rule-Based Traces

The transformation has to be composed of rules. The rule-based transformation execution
applies each rule to each match exactly once and the trace records the rule generating the
trace element.

Traces have to record rule applications in an ordered way. As a consequence, the computational
model requires a rule-based transformation which apply all rules to all matches exactly once.

Notice: Link-based traces are subsumed in rule-based traces as long as each link corresponds
exactly with one rule application. Furthermore, this property does not cover explicit control
structures which prescribe the order of applying rules. Instead, the model assumes that in a
global control structure the transformation execution environment resolves dependencies between
target elements and applies them in the correct order. The order of the trace reflects the order in
which the execution environment creates elements in the target model.
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Property 5.3.3: Out-Place Transformation

The transformation has to be performed out-place, which means it creates a target model
at a physically different location from the source model.

Prop. 5.3.3 prescribes that the source and target model are physically separated. As a further
implication, it assumes that the source model remains the same and is not modified by the for-
ward transformation. Consequently, all source model elements (including their annotations) are
pertained as they are.

Rule Application Properties Besides the transformation in general, the application of trans-
formation rules has to satisfy the following properties, in particular.

Property 5.3.4: Functional Rule Application

Rules have to be functional: Applying a rule to a given match determines the result
uniquely.

Commonly, rule-based transformation languages are of functional behavior. In the computational
model, the functional behavior of rules carries over to the entire transformation. Non-functional
single-variant model transformations would result in different output model in different executions.
Therefore, non-functional transformations could prevent the multi-variant model transformation
to commute with respect to the filters and single-variant transformations.

Property 5.3.5: Monotonic Rule Application

Rules have to be monotonic: Applying a rule adds elements to the target model but does
not remove or change any already existing element in the target model.

Due to the batch behavior, deletions and modifications of target elements are not supported by the
computational model which also holds for single rules. The common trace metamodel (Sec. 5.2.3)
groups elements of the target model into context and (created) target elements but not in modified
or deleted ones.

Property 5.3.6: Local Rule Application

Rules have to be local: The effect of applying a rule depends on the match only.

Locality is essential to support commutativity because it guarantees that the rule is applicable to
the same match in the unfiltered (multi-variant) as well as in filtered (single-variant) models. For
that reason, the context of matching the rule in the source model has to be irrelevant to the rule.
If rules were not local and, thus, the context of the match were relevant, an application condition
could cause a rule being applicable in the multi-variant model but not in a filtered model or vice
versa.

Trace Properties Finally, the trace for the transformation has to be complete and fine-grained:

Property 5.3.7: Complete Traces

A complete trace, which enumerates the subsequently executed rule, all source, context,
and target elements, has to be recorded.

If target elements are missing from the trace, they cannot receive variability annotations by the
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propagation algorithm. Consequently, the target elements missing in the trace, miss an annotation.
Then, assumptions or conventions have to be made whether these elements are visible in every
variant of the product line. Missing source and context elements in the trace may also cause
annotations that are not specific enough and may result in a violation of commutativity.

Property 5.3.8: Fine-Grained Traces

The trace has to be as fine-grained as the mapping mechanism and the model filter.

Although in the example (Fig. 5.1.4) we illustrate annotations at the level of objects, the compu-
tational model postulates the usage of fine-grained traces. Only if the annotations of all involved
model elements (i.e., of objects, attributes and links) are considered, the annotation for the target
elements is computed correctly.

Please note: To guarantee commutativity, the trace needs to be as fine-grained as the mapping
and the filter. While the granularity of the mapping mechanism determines up to which level
annotations can be assigned to source elements (e.g., to their structural features), the granularity
of the filter determines up to which granularity these annotations affect the derived variant. If
the filter works at the level of objects only, it cannot remove structural features of the objects. In
that case, a trace at the level of objects only will suffice to satisfy commutativity.

5.4 Summary

This chapter illustrates a single-variant UML class to Java model transformation and explains how
to lift it to propagate annotations. We exemplify how a trace-generating rule behaves and employ
this information together with an examination of traces persisted by different transformation
engines, to derive the concepts for propagating annotations from the multi-variant source to the
multi-variant target model. Based on a derived common trace model, annotations from recorded
source and context elements are mapped onto recorded target elements. Finally,at a conceptual
level Sec. 5.3.3 explains which properties the transformation specification and execution engine
need to satisfy in order to guarantee commutativity.
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Chapter 6 Formal Foundations

A pack of wolves, a bunch of grapes,
or a flock of pigeons are all examples of sets of things.

Paul Halmos

Given the informal explanations of trace-based propagation in Chp. 5, this chapter
presents how to formally note multi-variant model-to-model transformations and de-
fines the important properties to guarantee commuting multi-variant and single-variant
transformations. The main purpose of this chapter is to demonstrate which conditions
have to be satisfied to prove commutativity of multi-variant model transformations.
Instead of repeating the complete proof, we refer the interested reader to the corre-
sponding publications [WG18; WG20a] for details and present the background knowl-
edge and key ideas of the proof here.

For defining multi-variant M2M transformations, this chapter employs a formalism
based on Graph theory. This formalism considers models as graphs consisting of nodes
and edges. Model transformations are Graph transformations where a left-hand side
and right-hand side graph constitute the rule which replaces matches of the left-hand
side in the host graph by the right-hand side.

By employing the informal example of the preceding chapter, at first, Sec. 6.1 and
Sec. 6.2 demonstrate the graph formalism for expressing single-variant models and
multi-variant models, respectively. Next, Sec. 6.3 introduces trace-generating in- and
out-place graph transformations on single-variant models, denoted as derivations and
STT derivations. Last but not least, Sec. 6.4 contributes the algorithm which employs
the generated trace to propagate annotations to the target model in multi-variant
model transformations and sketches the proof of commutativity based on the prop-
erties of the computational model for trace-based propagation. Sec. 6.5 closes the
chapter by summarizing its content.

[WG20a], [WG20b] and [WG18] lay the foundations for this chapter.
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6.1 Models as Graphs

The formal notion of multi-variant transformation represents models as Graphs which consist of
nodes and edges. Accordingly, we employ Graph theory [Ehr+15] to formalize transformations.
The foundations of Graph theory lie in set theory [Hall7] which we utilize throughout the formal-
ization.

Before defining model transformations, this section starts by noting models in Graph formalism
(Sec. 6.1.1) and defining relationships between graphs in form of morphism operators (Sec. 6.1.2).

6.1.1 Single-Variant Models

In this thesis, models form spanning containment trees and their objects are linked by typed
references. As a consequence, it is possible to express the model as a graph which requires the
following mapping;:

Graph Each object is represented by a node in the graph and each link between objects by an
edge. Therefore, a graph encompasses nodes and directed edges as typed elements. We refrain
from explicitly including the attributes of objects, such as the name or their type, in the graph.
Consequently, we employ a typed graph, where nodes and edges are labeled but without attributes
nor an explicit graph schema prescribing details of the structure of the graph.

Please note: the following definition of a graph permits — besides a unique source and target node
— an edge as target of an edge, which is also denoted as higher order edge. Higher order edges will
be used for defining traces where the target of an edge may be an edge of the source or target
graph.

The set of nodes N and edges FE of a graph are summarized as the disjoint set of typed graph
elements EL = NUFE and used for defining a typed graph in Def. 6.1.1:

Definition 6.1.1: Graph

Let Ty and Tg be finite sets of node types and edge types, respectively. A graph over
Ty and Tg is a tuple G = (N, E,ln,lg,s,t), where

e N is a finite set of nodes,

o F is a finite set of edges, where (NNE =10),
e Iy : N — Ty is a node labeling function,

e lp:E—Tg is an edge labeling function,

e s:FE — FL is a source function, and

e t:E— FEL is a target function.

An edge e is self-referential if the source or the target of the edge is the edge itself, i.e., if
s(e)=e V t(e) =e.

Ordered Graph More specifically, the models in our thesis are ordered implying that an ordered
graph represents them. The nodes and edges in an ordered graph satisfy an ordering function as
defined in Def. 6.1.2.

Definition 6.1.2: Ordered Graph

Let G=(N,E,ln,lg,s,t) be a graph over Ty and Tg.

G is ordered with respect to its edge set E if and only if an ordering function ord: EL — N 6"
which maps graph elements onto natural numbers exists and which satisfy the following
conditions:

Vne N :ord(n)=0
Ve € E : ord(e) = max(ord(s(e)),ord(t(e))) +1

/N
o o
o~
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As a consequence, the ordering function guarantees the following property:

Ve € E :ord(e) > ord(s(e)) A ord(e) > ord(t(e)) (6.3)

Consequently, an ordered graph prohibits the existence of self-referential edges. The following
descriptions assume ordered graphs.

Ex. 6.1.1 demonstrates how the UML class model introduced in Fig. 5.1.1 is expressed in graph
notation.

simplified UML UML class model
class metamodel in graph notation
E\, oPackages e, : oPackages
: Pack
Package ¢ | 4R Fackage
name: String s name="db
? s
Model um : Model e, : oTypes
«|0Types t
Class uc: Class
name: String name = "DBContent"

Figure 6.1.1: UML class model in graph notation.

Example 6.1.1: UML Class Model as Graph

The UML class model depicted on the right-hand side of Fig. 6.1.1 serves as an example
throughout this chapter. It is represented as a graph G = (N, E,ln,lg,s,t) over Ty and
Tg and constitutes in the following way:

o T ={Model, Package,Class}

o Tg ={oPackages,oTypes}

o N = {um,up,uc}

o E={e1,ea}

o Iy ={um+— Model,up — Package,uc — Class}
o lp={e1 — oPackages,es — oTypes}

o s={e1— um,ez — up}

o t={e1— up,ez — uc}

G is ordered because the source and target of an edge are nodes only. Accordingly, the
ordering function returns 0 for the nodes and 1 for the edges e; and es, thus, satisfying
Def. 6.1.2.

All of the following examples refer to the example of Fig. 5.1.1 in graph notation as exemplified
for the UML class model in Fig. 6.1.1.

6.1.2 Graph Morphisms

In model transformations, the application of a rule is determined based on a match of input
model elements with the source elements declared by the rule. Similarly, in graph transformations
matches are determined based on the structure of the input graph and the one specified in the
rule.

Graph morphisms define relations between graphs, particularly the equivalence of graphs or of
sub-graphs, and are type and structure preserving mapping functions for graph elements. In the
sequel, we refer to graph morphisms as morphisms:
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Definition 6.1.3: Morphism

Let G1 = (N1, E1,ln,,lE,,51,t1) and Go = (N2, E»,lN,,lE,,s2,t2) be graphs over Ty and
Tg with the disjoint sets of graph elements EL; = Ny UE; and ELs = NoU Es, respectively.
A morphism m : G1 — G2, m = (my,mg) comprises two functions: a node mapping func-
tion my : N1 — Na and an edge mapping function mpg : E1 — Ea retaining node and edge
types as well as the source and target of an edge. Furthermore, mgy, : ELy — E Lo denotes
the element mapping function mgy, = my +mg applying either my or mg depending on
the kind of input. The morphism guarantees the following conditions:

V ni €Nt Iny(mn(n1)) =N, (n1) (6.4)
Ve eF: lE2 (mE(el)) = lEl (61) (6.5)
Ve €FE: sa(mp(e1)) =mpr(si(er)) (6.6)
Ve €F: ta(mp(e1)) =mpgr(ti(er)) (6.7)

An identity morphism is a morphism id = (idy,idg) with identities on nodes and edges.

If both, my and mpg, are injective, surjective, or bijective the morphism is called monomorphism,
epimorphism, or isomorphism, respectively. These definitions carry over to graphs which adhere
to the following properties:

Definition 6.1.4: Graph Relations

Let G1 = (N1, Env,IN, R, s1,t1) and G2 = (N2, Ea,lN,,lE,,s2,t2) be graphs over T and
Tg. We employ the following graph relations:

o sub-graph: G1 C Go if and only if id = (idy,idg) is an identity morphism from G;
to Go.

e less or equal: G1 < Go if m: G1 — G4 is a monomorphism.

e isomorphic: G1 ~ Gg if m: Gy — G2 is an isomorphism.

Furthermore, morphism operators construct a new graph from existing morphisms. The following
explanations consider the composition, inverse, restriction and range of up to two morphisms
incorporating up to three graphs.

Definition 6.1.5: Morphism Operators

Let G; = (Ni,Ei,lNi,lEi, si,t;) (1 <1i < 3) be graphs over Ty and Tg.

e Composition: Let my : G1 — G2 and ms : Go — (G3 be morphisms, where my =
(mn,,mg,) and mg = (mn,,mg,). The morphism m =mjomsy: G1 — G3 with
m = (my, omn,, Mg, ©Mmg,) is called the composition of mi and mo.

o Inverse Morphism: Let m: G; — Ga, with m = (my,mg) be an isomorphism. The
isomorphism m~' : Go — G1 with m™1 = (mN_l,mE_l) is called the inverse of m.

o Restriction: Let m: Gy — Go, withm = (my,mg) be a morphism, and let G5 C G be
a subgraph of G1. The morphism m|q, : G3 — G2 such that m|c, = (mN|Ng, ME|E5)
is called the restriction of m onto Gs which only maps the elements of the subgraph
G35 onto elements of Gs.

e Range: Let m: Gy — G2 withm = (mpy,mg) be a morphism. The range of m, ran(m)
is a subgraph G's C Gy with node set N3 and edge set E3 such that N3 =ran(my)
and E3 =ran(mg).
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The following two properties of morphisms, which follow from their definitions, are essential for
ensuring commutativity:

e The composition m3 of two monomorphisms m, and ms, such that msz = mjoms, is a
monomorphism, too.

« For a morphism m : G; — G2 the morphism m’ : G; — ran(m) is an epimorphism iff

Vn € Ny,Ve € Ey: mg(e) =mpg(e) A m/y(n) =mpy(n).

6.2 Variability in Graphs

As the graphs defined so far represent single-variant models, this section introduces the extension
of graphs to represent the dimension of spatial variability present in SPLE. In this way, it starts
with defining annotations and their effect in filtering models and closes with formalizing multi-
variant graphs and model filters.

Feature Models In this thesis we employ feature models, as one kind of variability model, to
express variability in a product line. Boolean features represent the common and distinguishing
parts of the product line. The finite set of features F' = {f1,...,fn},(n > 1) represents them. For
the proof of commutativity and for representing multi-variant model transformations we refrain
from considering constraints among the features. The correctness of the feature model and the
validity of corresponding feature configurations is supposed to be analyzed by specific SPLE tool
support.

Annotations For annotating models, as mentioned in the previous chapters, typically not a sole
feature is used but a Boolean expression over features to which we refer as annotation:

Definition 6.2.1: Annotation

Let F be a set of features. An annotation over F' is an arbitrary Boolean expression in
propositional logic over features from F. The set of all Boolean expressions over F' is
denoted by Ap; we write ap € Ap for one annotation.

A feature configuration describes a product variant by determining the features to be incorporated
in this variant. In contrast to an annotation, in a (complete) feature configuration every feature
of the set of features of the product line must be assigned a selection state which mentions the
feature either positively or in a negated form.

Definition 6.2.2: Feature Configuration

Let F ={f1, ...,fn}, n>1, be a set of features. A feature configuration over F' is a
conjunction of bindings fcp = by A...A\by, where b; € {f;,—f;}. The set FCr denotes the
set of all valid feature configurations.

Negatively bound features imply that they are not represented in the derived variant whereas
positively bound ones are included. We do not consider partial configurations in this thesis. For
that reason, a feature configuration always provides either a positive or negative selection state
to each feature in the feature model (i.e., it is fully bound).

Furthermore, the constraints and dependencies in a feature model declare which feature configura-
tions are valid. We refrain from formalizing valid feature configurations but assume in the following
definitions that only valid feature configurations are included in the set of feature configurations.
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Visibility Evaluation Annotative approaches require to map annotations onto model elements
to encapsulate the knowledge which elements to remove in the product derivation process. For
deriving products we employ a wvisibility evaluation function which expresses whether a given
annotation satisfies a given feature configuration.

Definition 6.2.3: Visibility Evaluation Function

Let F be a set of features, FCp the set of feature configurations and Ar be the set of
annotations over F'. A visibility evaluation function over F' is a function vp : Ap X FCp —
B, where B = {true, false}, denotes the set of Boolean values. vp guarantees the following

property:

vp(ap, fep) =true & fep = ap (6.8)

Example 6.2.1: Features, Annotations and Configuration

As an example, let assume F = { f1, fa, f3} is a set of the features representing the features
DB, P and Fa of the database example, respectively. Given an annotation ap = fi A= fa
and a configuration fcpi = fi A fa A fs, the visibility evaluation function vp(ar, fcr 1)
returns false whereas it returns true for the same annotation and the feature configuration
fera=fiNfaA f3.

Multi-Variant Model To represent multi-variant models, we employ multi-variant graphs. The
elements of the multi-variant graph are associated with annotations by a mapping function which
together with the graph defines the multi-variant graph:

Definition 6.2.4: Multi-Variant Graph

Let F be a set of features. A multi-variant graph is a pair MGr = (G,mapp), where G =
(N,E,IN,lg,s,t) is a graph, EL= NUE, and mapp : EL — Ap is a mapping annotation
function assigning an annotation to each element of G.

mapp must ensure referential integrity, thus, the following constraint must be satisfied for
each edge in E:

Ve € E :mapr(e) = mapr(s(e)) Amapr(t(e)) (6.9)

The set of all multi-variant graphs for the set of features F' is denoted as MG p.

Referential integrity assures that a single-variant graph derived from the multi-variant graph
is well-formed with respect to an absence of dangling edges. Furthermore, depending on the
properties of the mapping function, either the graph is annotated completely, i.e., the function
can determine an annotation for each graph element in EFL, or not. In this chapter, the function
is assumed to be total for the source graph of the transformation, thus, each element is assigned
an annotation.

Example 6.2.2: Multi-Variant Graph

Let F = {f1, fa, f3} denote the set of features in this example. The multi-variant graph
MG = (G,mapp) consists of the single-variant graph and the mapping function. Fig. 6.2.1
illustrates the single-variant graph G, which comprises a model, a package and three classes
together forming the five nodes of the graph. The model, the package and one class carry
the annotation DB (i.e., f1), the second class (node ucp) the feature DBAP (i.e., f1 A f2)
and the third class (node ucf) the annotation DBA Fa (i.e., fi A f3). Accordingly, the
mapping function mapp returns these annotations for the respective input nodes.
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The edges of this example satisfy referential integrity, thus, conforming to the definition
of multi-variant graphs. As an example, the nodes connected by e3 will be visible besides
the edge itself if the annotation of es, fi A fo (i.e., DBAP), is implied by the feature
configuration. The same statement holds for the edges e, e and ey.

e, : oPackages

um : Model [ 1] up : Package

s_| name="db" < e,:0Types

s
e, : oTypes
<> @31 0Types
t t t

uc : Class ucp : Class ucf : Class
name = "DBContent" name = "Person” name = "Family"

Figure 6.2.1: Multi-variant model in graph notation.

Model Filter For deriving products, in annotative approaches elements of the multi-variant
model have to be removed to form the customized product. In the graph formalism a filter
function accomplishes this task:

Definition 6.2.5: (Flat)Filter

Let F be a set of features and FCg be the corresponding set of feature configurations.
Let MG and G denote the sets of all multi-variant graphs and single-variant graphs,
respectively. A filter is a function filterp : MGp x FCrp — G defined as follows:

For a given multi-variant graph MGp = (G,mapr) and a feature configuration fcp, the
function filterp(MGp, fcp) = G’, with G’ C G, adheres to the following properties:

N’ ={n € N |vp(mapr(n), fcr) = true} (6.10)
E' ={e€ E|vp(mapr(e), fcr) = true} (6.11)

Example 6.2.3: Filtered Graph Variants

As an example of filtered graph variants, Fig. 6.2.2 demonstrates three variants of the
multi-variant graph presented in Ex. 6.2.2. We assume that the feature DB is mandatory
whereas P and Fa are optional yielding four valid feature configurations.

The top row of the figure declares the feature configuration and presents the corresponding
graph variants derived by the filter functions below. On the left, Fig. 6.2.2 presents the
variant encompassing the class DBContent and its containers only. Since the features Fa
and P are deselected in the corresponding configuration all other elements are removed from
the multi-variant graph by the filter function. Accordingly, the second and third column
comprise variants where P and Fa are each solely selected, respectively. The fourth feature
configuration where P and Fa are selected simultaneously, incorporates all elements of the




6.3. GRAPH TRANSFORMATIONS

multi-variant graph as depicted in Fig. 6.2.1.

6.3 Graph Transformations

This section introduces a rule-based formalism for transforming (single-variant) graphs and at
the end multi-variant graphs. The section starts with the definition of in-place transformations
applied to one graph (Sec. 6.3.1). After summarizing the properties of such transformation in
Sec. 6.3.2, Sec. 6.3.3 extends the in-place to out-place transformations. An out-place transforma-
tion is simulated by splitting a single graph in three mutual exclusive sub-graphs representing a
trace graph in between source and target graphs.

6.3.1 (In-Place) Rules and Derivations

For generating a target model transformation rules are executed. Here we start with defining in-
place transformation rules and their application for deriving a target representation of the input
graph. In the following the input graph G to which rules are applied is referred to as host graph.
A transformation rule consists of a left-hand side graph and a right-hand side graph where the
left-hand side is replaced by the right-hand side.

Definition 6.3.1: Rule

Let L and R be graphs over Ty and Tg, such that L C R. The pair p = (L, R) represents a
rule over Ty and Tg. L and R are called the left-hand side and the right-hand side graphs
of the rule, respectively.

The finite set of all rules p is denoted as P.

To apply rules to the input graph, a matching site (match) needs to be present in the input graph.
Accordingly, the elements contained in L have to match the structure of the parts of the input
graph exactly. Therefore, an injective mapping (i.e., a monomorphism) represents a match:

Definition 6.3.2: Graph Match

Let G and p= (L,R) be a graph and a rule over Ty and Tg, respectively. A match for p
in G is a monomorphism my, : L — G.

The application of a rule to a match is called a derivation step because applying the rule to
the match derives the right side. Consequently, we call the application of multiple rules (i.e., a

feature
config. DBA~PA—Fa DB APA~Fa DBA—P A Fa

um : Model um : Model um : Model

e, : oPackages

S
e, : oPackages
. up : Package 7] up_: Package t”] up_: Package
derived —
s,| name= "db' name="db" name="db"

t
variant s
e,:0Types s e, :0Types s
e, :0Types e;:0Types e,:0Types
t t t t

e, : oPackages

i

uc : Class uc : Class ucp : Class uc : Class ucf : Class
name = "DBContent" name = "DBContent" name = "Person" name = "DBContent" name = "Family"

Figure 6.2.2: Filtered variants in graph notation.
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transformation) a derivation. In short, we write the derivation step, involving the rule p and the
match m as a pair (p,m).

If there are two graphs G and H obtained by employing two monomorphisms my, and mpg to the
left-hand side and right-hand side, respectively, and two identity morphisms mapping L onto R,
and G onto H, H can be derived directly from G by satisfying the following definition:

id,

L L - R

mg Mg
id,

G ¢ . H

Figure 6.3.1: Rule application diagram for match in G and direct derivation of H.

Definition 6.3.3: Direct Derivation

Let G, H and p = (L,R) be two graphs and a rule over Tx and Tg, respectively. Let
my, : L — G be a match for p in G and let idp, : L — R and idg : G — H denote identity
morphisms.

H is directly derivable from G via p if H satisfies the following properties:

e A monomorphism mpg : R — H exists such that the diagram of Fig. 6.3.1 commutes:
idL oOmpr=mjp, Oid(;.

o For each graph H' with the same properties, H < H'.
We note the derivation as G ¥ H if the match my, is of importance and G £ H otherwise.

Furthermore, applying a rule to a graph is denoted as derivation step.
Lastly, let P be a rule set. If a rule p € P exists, such that G 5 H holds, H is directly

derivable from G via P (G A H ).

Accordingly, a derivation step (i.e, the application of a rule to a match) extends the host graph
with elements of the right-hand side, which are not present in the left-hand side.

To conform to the computational model introduced in Sec. 5.3.3, the transformation rules satisfy
the following properties:

1. pis functional (Prop. 5.3.4): after fixing the match my, and applying p, the resulting graph
H is unique up to isomorphism.

2. pis monotonic (Prop. 5.3.5): p adds nodes or edges to G but does not remove elements from
G.

3. pislocal (Prop. 5.3.6): the condition allowing to apply p as well as the effect of the application
depend only on the match myp,.

Based on the application of single derivation steps, a derivation, transforming the input graph
into a target graph, is defined in the following way:

Definition 6.3.4: Derivation

Let G, H and P be two graphs and a rule set over T and Tg, respectively. H is deriv-

able from G via P (G P, H) if and only if a sequence of rules pg,..., pn—1, of matches
mo,..., mp—1 and of graphs Gy, ..., G, exists, such that n € Na' and the following condi-
tions hold:

o GC=GCo H=Cn
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. GipﬂiGH_l for0<i<n
e A rule is applied only once to the same match:
(pismi) = (pj,mj)=>i=7for 0<i,j<n

A sequence of derivation steps satisfying the conditions stated above is called a derivation.

A derivation G % H is complete if it cannot be extended any more. An empty derivation
(n=0) does not apply any rule.

A complete derivation is a rule-based transformation, thus, satisfying Prop. 5.3.2. Moreover,
each rule is applied to a corresponding match exactly once and therefore, exposes the following
properties.

6.3.2 Properties of Derivations

For guaranteeing commutativity not only the rules but also the derivations (i.e. the rule ap-
plication steps) must satisfy the computational model. As stated above, rules have to exhibit
functional, monotonic and local behavior. Except for locality, these properties carry over from
single rule applications to the derivation. These properties are important to embed the single-
variant transformations into the multi-variant transformation without generating contradicting
results.

Functional Behavior Firstly, complete derivations have to exhibit functional behavior. Thus,
the result of a complete derivation is unique up to isomorphism. Accordingly, if G 2, H; and

ot Hjy are complete derivations H; and Ha are unique up to isomorphism (H; ~ Hy).
Functional derivations guarantee the following property: if two rules r; and 75 are applicable to
the host graph at the same time, the order of applying r1 and ro can be exchanged and delivers
the same result, nonetheless. Accordingly, ro is applicable after having executed 71 and vice versa
resulting each time in the same graph.

This property (carrying over from rules (Prop. 5.3.4)) ensures that each time a transformation
(derivation) is applied to the same host graph, the transformation results in the same derived
target graph. This is necessary to safely embed single-variant into multi-variant transformations.

Monotonicity Secondly, derivations have to be monotonic. Consequently, the transformation
only adds elements to the target graph but does not remove or modify already existing elements
in the target graph which is in accordance with Prop. 5.3.5 for transformation rules.

As a result of this property, in a sequence of monotonic derivation steps via a rule set P, Gg i
G1 2.5 Gpn-1 Ei Gn, n € NT, each derived “predecessor” graph is a sub-graph of the graph
derived in the next application step, such that Vi € [0...n]: G; C Giy1.

Furthermore, if H' is the result of a complete derivation via P (G g2l ) and H the graph resulting
from a (partial) derivation (G Lyt ), H can be mapped onto H' injectively by a monomorphism,
such that H < H'. This is the case, if there is a monomorphism G — G’ and G’ 25 H' because

then the derivation G/ — H’ encompasses each of the applied derivation steps in G — H. Due to
locality, this holds for Gy — G}, and can be proven by induction for the remaining steps.

Termination In general, the definition of applying rules to matches (in in-place transformations)
does not guarantee to terminate. Since it is possible that rules generate new matches during
a derivation step, an infinite sequence of derivation steps may result. However, if a complete
derivation starting from graph G’ exists, any sequence of derivation steps starting on a graph
G < @ will terminate which is a consequence of above properties.

Consequently, if H' is the result of performing a complete derivation (G’ Ny 5l ) via a rule set P

and H is the (intermediary) graph resulting from a partial derivation (G Sn ) via P, the number
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of derivation steps to create H is less than or equal as the number of derivation steps necessary
to perform the complete derivation, yielding H’.

6.3.3 Out-Place Rules and Derivations

So far we have defined in-place transformations: Rules are applied based on matches in a single
graph and modify exactly this graph. By decomposing a graph into three sub-graphs, a source
graph, a trace graph, and a target graph and employing trace-generating source-to-target rules,
we simulate forward out-place transformations. A batch transformation is defined as a complete
derivation, initiated with a graph consisting of a source sub-graph (only) and empty trace and
target sub-graphs.

To this end, this section adds all definitions of properties of the computational model for trace-
based propagation (Sec. 5.3) which are still missing because they do not apply to in-place trans-
formations.

STT Graph To begin with, a source-to-target graph, defined in Def. 6.3.5, records the informa-
tion about the transformation:

Definition 6.3.5: Source-to-Target Graph

A source-to-target graph (STT graph) is a graph G typed over node types Ty = Ty U
Tnpp U TN, and edge types Tg = Tgg U Tgp, U Tg,, comprising three mutually
exclusive sub-graphs G = Gs U Grgr U Gt and mutually exclusive edge sets connecting
these sub-graphs.

Accordingly, it is composed of the following elements:

» Gg C G: the source graph, typed over Ty and Tg,.
o G CG: target graph, typed over T, and I'g,,.
o Grgr CG: trace graph typed over Ty, and Tg,., whereby

— trace nodes are typed over rule identifiers, i.e., Tn,, = IDp for some rule set
P.

— the edge type set Tg,.,, contains a single edge type: Tg,., = {use}.

o Trace-to-source edges of type src from trace nodes Npg to elements of the source
graph.

o Trace-to-target edges of type ctx or trg from trace nodes Nrgr to elements of the
target graph.

We write G = Gg < Grr — G to indicate that G is an STT graph comprising the com-
ponents as defined above.

According to Def. 6.3.5, the STT graph composes the source, the target and a trace graph.
The nodes of the trace graph maintain links between corresponding source and target elements.
Ex. 6.3.1 demonstrates how the STT graph represents the transformation rule which converts a
UML package into a corresponding Java element.

Example 6.3.1: Source-To-Target Graph

Fig. 6.3.2 illustrates an example of an STT graph by showing the simplified UML class
model and Java model from Fig. 5.1.1 in graph notation. The state of the graph is reached
after applying the rule to generate the package after the model has been created.

Accordingly, two trace nodes exist in Gpg, t1 and t2, which reference the corresponding
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target elements. Most importantly, the edge between the model and the package is listed
as a target element of t2, too. Therefore, the trace is fine-grained. Furthermore, t2
enumerates three source elements. Besides the package which is the pivot element of this
trace node, the reference oPackages and the model are referenced as src elements because
both are required to correctly integrate the Java package in the Java model. The Java
model is referenced as a ctx element of t2 because it was already created by the M2M rule
but is necessary to add the package correctly. In addition, the dependency of the P2P rule
of the M2M rule is marked by a use edge from t2 to t1 in the trace sub-graph.

Gs GTR Gt
Model t €:SC ¢ s t
um : Model [ e src | t1:M2M e, :trg ¢ | jm : Model
S t eg: Cix
t s
e, : oPackages € : t
e €4 : packages
t s s Sys t
. €,:SIC s - :
up : Package 4 2:P2P | e rg t| ip : Package
name="db" t es.src S €10 1rg

Figure 6.3.2: Source-to-target rule of P2P rule.

For easier readability, the following definitions refrain from mentioning node and edge types ex-
plicitly and from expanding graphs into components. Instead, per convention indices indicate to
which sub-graph an element belongs. For instance, Nrg is the set of trace nodes present in the
trace sub-graph Grg.

STT Rule As a consequence of the definition of STT graphs, the definition of a rule is extended
to address the sub-graphs. The left-hand side graph L and right-hand side graph R are both STT-
graphs in the following explanations. To ensure monotonicity (Prop. 5.3.5), a rule only extends the
target sub-graph while the source and trace sub-graphs remain unmodified. These considerations
allow to define a Source-To-Target Rule in Def. 6.3.6.

Definition 6.3.6: Source-to-Target Rule

Let p=(L,R) be a rule, where L = Lg + Lpr — L1 and R= Rg < Rpr — Ry are STT
graphs. p is a source-to-target rule (STT rule) if the following conditions hold:

Vele ELr: el ¢ ELy = el€ ELg,, (6.12)
Vele ELp, : |[{e€ Er | tr(e) =elNlg, (e) =trg}| =1 (6.13)

Accordingly, each element of the right-hand side graph R not contained in L is present in Ry only.
Moreover, each element in L must possess ezactly one incoming trg edge. The existence of the
incoming trg edge for elements of the left-hand side’s target graph (Equation 6.13) ensures the
completeness of dependency information which will be required for the complete transformation
of STT-Graphs(Def. 6.3.8). From Equation 6.12 follows that a rule does not add elements to
the source and trace graph, such that the corresponding left-hand and right-hand side sub-graphs
encompass exactly the same elements.

97



CHAPTER 6. FORMAL FOUNDATIONS

Gs GTR Gt
t S BTV VIR e;:trg t
um : Model [ t: M2M ep 1 CIX ¢] jm_: Model 2
S t e s
el : oPackages s use s e trg
1 94 .
! . e, src t1:P2P ‘ s ?” OIS
up:Package <9 s ,
€5 : Src (| P Package
S
€ 1rg
) )
e2:oTypes ++ €4, : types
; t ++
. €13 types
++ jcd : ClassDecl
uc : Class )
++ jcu : CompUnit |t |

Figure 6.3.3: STT rule representing C2C rule.

Example 6.3.2: Source-To-Target Rule for Class Transformation

Fig. 6.3.3 demonstrates an STT rule creating a Java class and compilation unit for a UML
class which corresponds to the informal rule of Fig. 5.1.3 except that no trace element is
generated, yet. The ++ markers as well as the orange color indicate the elements which
are added to the target graph. Accordingly, these elements are part of Ry only. All the

other elements form part of L and R in the same way.

Trace-Generating Rule In order to capture trace information, STT rules defined by the user
are turned into trace-generating STT rules, which are exploited by the transformation engine dur-
ing the execution of the transformation. Model transformation solutions, for instance ATL/EMF-
TVM and QVT-O, apply a similar mechanism. Thus, the user may define STT rules accessing
trace information but is not required to specify the generation of trace information as is the case
in link-based traces. Instead, as a side effect, the trace is created during execution automatically.
The following definition prescribes how a (general) STT rule is extended to automatically add
trace information to the right-hand side trace graph.

Definition 6.3.7: Trace-Generating STT Rule

id, of p:

1. Initialize p’ with p: p' := p.

I (') =id,

Ug(ey=use A s'(')=n" At'()=n

Let p=(L,R) be an STT rule, where L=Lg < Lyr — Ly and R=Rg < Rrr — Rp are
STT graphs. Executing the following steps subsequently creates the trace-generating STT
rule p' = (L',R’) where L' = L' < L., — L7 and R' = Rlg < Rl — RI:

2. Add a single trace node n’ to the trace sub-graph R/.. n’ is typed by the identifier

3. For each trace node n € LTg, create a trace edge €’ of type use from n’ to n:

(6.14)

(6.15)
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4. For each source element (node or edge) el € Lg, create a trace edge €' of type src
from n’ to the source element el:

Ug(e)y=src A s'()=n" A t'()=cel (6.16)

5. For each already created target element el € L, create a trace edge €' of type ctx
from n' to the old target element el:

Ugle)=ctx A §(e)=n" At'())=el (6.17)

6. For each new target element el € R, create a trace edge €' of type trg from n’ to
the target element el:

Ug(e)=trg A s'(e')=n' At/ (/) =el (6.18)
Gs GTr Gt
++ €44 : CiX
it Pt
t t ggisIC . ) t

: . e tr —

um : Model —O—t t1: M2M |4 16 - 119 t im : Model |
tif[fS CESIC t €7, Clx s
el: t €12

2]

oPackages] t use +4+ 65 CX t
€s5.SI1C g s s S‘ €15 trg t -
up:Package |t e sic o {2:P2P | €23 : packages

t

— %

t S €g:1rg ¢
3 +¥e;:8IC | jp: Package
. +e3: ++ €y : CiX t
e2: use

S
++ €, : types
t

++ jcd : ClassDecl

oTypes ++ €5 SIC

uc : Class . s lsls l:J:

++8isrC | +4 t3:C2C ss T onitrg

++ €, 1 1trg

—

. types
++ 611t Rk .
2 ++ jcu : CompUnit

++ €4 :SIC

+4+ €491 SIC TS ‘S sis ++ 631119

++ €55
use

++ €55

Figure 6.3.4: Trace-generating STT rule of C2C rule.

Example 6.3.3: Trace-Generating STT Rule

Fig. 6.3.4 depicts the trace-generating STT rule that is generated for the rule creating a
Java class declaration and a compilation unit for a given class depicted in Fig. 6.3.3. Node
t3 is added to Grg according to the generation rules prescribed in Def. 6.3.7. Not only one
source and target edge are added which reference the pivot elements, the UML class and
Java class declaration, respectively, but also to all source elements and all created elements
in the target graph. Moreover, use edges originating from t3 reference the trace nodes t1
and t2 and ctx elements reference the target elements, the Model and Package as well as
their connecting references, which are necessary to add the created target elements in the
right container.
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Properties of Trace-Generating Source-to-Target Rules The construction of trace-genera-
ting STT rules allows to infer that a trace created by trace-generating STT rules conforms to the
following properties of the conceptual model. The trace is

o rule-based (Prop. 5.3.2): Since each trace node represents the application of a rule by
which the node is typed, the link to the rule is persisted.

o complete (Prop. 5.3.7): Trace elements record all source, context and target elements.

o fine-grained (Prop. 5.3.8): Besides nodes, trace elements also reference edges between the
nodes and, thus, persist the finest level of granularity possible in the formalism.

For proving commutativity these properties are essential. Generating trace elements for each
rule application covers all creations of target elements. Moreover, the completeness of the trace
guarantees that the annotation information for its target elements can be computed correctly,
as required by the definition of the annotation propagation algorithm (Sec. 6.3.3). Lastly, the
ordering by use edges ensures the partial order necessary to process trace information in the
correct transformation order.

Derivation via Trace-Generating Rules Derivations via trace-generating STT rules, called
STT derivations, are derivations similar to those defined in Def. 6.3.4, which is extended in the
following way.

Definition 6.3.8: STT Derivation

Let G=Gg + Grr — G and H=Hg < Hrr — Hp be STT graphs. Furthermore, let
P be a set of trace-generating STT rules. H is STT-derivable from G if G P, H holds.

The notion of completeness carries over from derivations to STT derivations. In addition, since
the STT rules do not modify the source graph, Gg = Hg always holds.

Properties of STT Graphs The following facts about trace-generating STT rules are essential
for propagating annotations based on the trace. In below statements the symbol {) denotes an
empty graph because the set of graph elements is empty. Furthermore, we employ binary relations
to note edge types tg: If an edge of type tg from ely to els exists, we will write the relation

(elq,els) € tg for the typed edge or use arrow notation: el E els.
The following properties hold true for the STT-graph H = Hg - Hrr — Hrp derived via P from

G=Gg 0 — 0, such that G2 H, :
1. Each target element of the target sub-graph Hp possesses exactly one incoming trg edge:
Velc ELp, : |{e€ Eg | tu(e) =elNlg,(e) =trg}| =1 (6.19)

This property ensures that an annotation is assigned only once by the propagation algorithm
presented in Sec. 6.4.

2. The trace sub-graph Hrg is acyclic with respect to use edges: Let use™ C Nppp X Nepp
denote the transitive closure over use edges. No trace node uses itself:

4
VnHTRENHTRZ—\<nHTRI£> nHTR) (6.20)

Due to this property, a trace node cannot be processed more often than once for propagation
to the target elements when Hrp is iterated.
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3. Each create/use dependency between rule applications is explicit: If a trace node ng,. ,
encompasses an outgoing ctx edge to a target element ¢, ng,., will posses an outgoing use
edge to another trace node referencing the target element ¢ with an outgoing trg edge:

17
VTLHTRENHTR,VGZHTEELHT: nHTRﬂ)elHT =

use trg
Ity € Nepp \ bz} s nHrg == Mg A Wy — €lay (6.21)

Due to the construction of the trace graph and of use and trg edges, this property ensures
that the information in the trace graph is inherently consistent.

Based on above definitions and the properties of STT graphs, the single-variant derivation which
represents a single-variant model transformations is defined as follows:

Definition 6.3.9: Single-Variant Derivation

Let P be a set of trace-generating STT rules and S and T be a source and a target

graph, respectively. T is single-variant derivable from S via P (S Ii: T) if STT graphs
G=Gg <+ Grr— Gr and H= Hg + Hrr — Hr exist, satisfying the following conditions:

Gs=S AN Grr=0 N Gpr =10 (6.22)
¢ H (6.23)
Hr=T (6.24)

pP* . . g g .
G — H is a complete STT derivation, thus, completeness carries over from general deriva-
tions to single-variant derivations.

Example 6.3.4: Transformation Derivation

In Fig. 6.3.4, the target graph G has been derived from the source graph Gg according
to Def. 6.3.9.

Thus, by employing relations between STT graphs (Def. 6.3.8), Def. 6.3.9 specifies a relation be-
tween source and target graphs and allows to formalize out-place batch transformations (Properties
5.3.3 and 5.3.1, respectively) in this way.

Summing it up, the definitions of rules and derivations in Sec. 6.3.1 and Sec. 6.3.3 conform to all
properties of the computational model postulated in Sec. 5.3.3.

6.4 Trace-Based Annotation Propagation

After having defined single-variant transformations and multi-variant graphs, this section describes
how the mapping function for a target graph is created from the mapping function of the source
graph. Effectively, these steps propagate the annotations from the source to the target graph.

6.4.1 Propagation Algorithm

Alg. 1 describes how the mapping function for the multi-variant target graph can be computed:
Please note: for the sake of a consistent representation, Alg. 1 is noted in the graph formalism.
Its implementation is in accordance with the common trace model (Sec. 5.2.3) and the informally
stated algorithm for trace-based propagation (Sec. 5.3.2).

Applying the algorithm to a (completely derived) graph H = Hg + Hpg — Hr, where a mapping
function map Frg ELyg — Ar for Hg exists, results in a mapping function for H7 which conforms
to the definition of multi-variant graphs (Def. 6.2.4). As a consequence, M Hg,, = (H s,mapFHS)
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Algorithm 1 Trace-based propagation of annotations.

1:
2
3
4:
5
6
T
8:
9:
10:
11:
12:
13:
14:
15:

16:
17:

18:

19:
20:
21:
22:
23:
24:
25:
26:

procedure PROPAGATE(H, MapFy ., MAPFy,, )

in Mapry, : ELgg — Ap > Annotation function for the source graph Hg
in H=Hg + Hrr — Hr > Target STT graph, derived from Hg <+ 0 — 0
out Mapry, ELy, — Afr > Annotation function for the target graph Hp

var SRCC FLy,,CTX CELy,,,TRGC ELy, > Sets of source, context, and target

elements
var Wy, € N p, > Working set of trace nodes
var ng,, € Ny, > The current trace node to be processed
var ap € Ap > Annotation to be assigned to target elements
var te € ELy,. > The target element to be annotated
Whrr = Na, g > Initialize working set of trace nodes
while Wy, # 0 do
NHpg =SELECT(Wi,. ) > Select trace node in topological order
Wy = Wrarp \ {02} > Remove trace node from working set

> Determine source, context, and target elements (using arrow notation for edges):
SRC :={se € ELyy | npy,, — se}
CTX :={cec ELp, | ng,p REEN ce}
t
TRG:={te€ ELg, | nHyp 9 te}
ap := N{mappy(src) | srce€ SRCY N N{mapr,(ce) | ce € CTX}
> The annotation is a conjunction of source and context element expressions

ap := SIMPLIFY (ar) > Simplify the annotation
for trg € TRG do > Process all target elements
mapry, . (trg) :=ap > Annotate the target element
end for
end while

27: end procedure

is the multi-variant source graph from which the mapping function for the multi-variant target
graph M Hrp, = (HT7mapFHT) is computed by employing the algorithm. Due to the following
properties, the mapping function is guaranteed to be consistent with the source mapping function.

1. Alg. 1 builds a mapping function which is total:
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A complete derivation processes all derivation steps. The trace-generating STT derivation
creates a trace element in each derivation step. Alg. 1 iterates all trace nodes while assuming
that each element of Hp is referenced by exactly one target edge trg which is declared as
property of STT graphs in Equation 6.19.

The computed annotation for each target element is well-defined:

According to Equation 6.20 the trace graph is acyclic which allows to perform a topological
sort. Consequently, the SELECT operation in Alg. 14 retrieves a trace node from the set of
open trace nodes only after all of its used trace nodes have been processed. In addition,
according to Equation 6.21, context elements of a trace node possess exactly one incoming
trg edge from a used trace node which is guaranteed to be processed beforehand. Therefore,
the annotation of context elements is always accessed after it was assigned its annotation by
the used trace node. As a consequence, the annotation computed in Alg. 24 is well-defined.

The mapping function assigns annotations which satisfy referential integrity as postulated
as property of multi-variant graphs (Def. 6.2.4, Equation 6.9) such that:

Ver, € Exy: Mapry, . (ery) =

mapFHT(sHT(eHT)) A mapry,, (tay(ery)) (6.25)
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For an edge e in E,, two cases can occur: Either its ends are created in the same derivation
step or at least one end in a previous derivation step. If both ends are created by the same
derivation step, the same annotation will be assigned to the edge and its ends, satisfying
Equation 6.25 trivially. If one end of the edge e is created in a previous derivation step and
annotated with some annotation a’, the annotation mapped onto e will be combined with
the annotation of its ends because those are context elements. As a result, the annotation
function comprises the annotation for the edge (e.g., ar) and the one of the ends, which
altogether is mapp,, == ap Nap.

Both cases satisfy referential integrity.

Based on the previous definitions, it is possible to define a multi-variant derivation, which relates
a multi-variant source graphs with a multi-variant target graph in one STT graph:

Definition 6.4.1: Multi-Variant Derivation

Let P be a set of trace-generating STT rules and H = Hg < Hprr — Hr be the STT
graph resulting from a complete STT derivation starting with Hg < () — (0. Let further
MHs, = (Hsg, mapFHS) be a multi-variant source graph and let MapFy, be the annotation

function resulting from employing the trace-based propagation algorithm (Alg. 1) with H
and MapFy s input.
Then, the multi-variant target graph M Hr,, = (HT,mapFHT) is multi-variant derivable

from the multi-variant source graph M Hg,, (MHg, fey MHr,,).

6.4.2 Commutativity of Derivations

This section defines the commutativity criterion informally introduced in Sec. 1.2 to the graph
notation and sketches the important properties to prove its satisfaction with the trace-based
propagation.

Before explaining the commutativity criterion, we sum up the facts about single- and multi-variant
derivations in relation with the computational model for trace-based propagation introduced so
far:

e Since both, the single-variant transformation and trace-based propagation, exhibit functional
behavior (c.f., Sec. 6.3.2), the result of a terminating multi-variant transformation is unique
up to isomorphism.

Please note: this property will be guaranteed if the SELECT operation (Alg. 1, Line 14)
retrieves the trace nodes in the partial order defined by the use edge creation in trace-
generating STT rules.

o Executing a single-variant model transformation on a filtered source graph will terminate if
the multi-variant model derivation performed on the multi-variant source graph terminates
(c.f., Sec. 6.3.2). Similarly, the resulting graph is unique up to isomorphism.

e The filter function terminates and produces a single-variant graph which is unique up to
isomorphism.

According to these properties, the successful execution of the transform-filter path in the com-
mutativity criterion always terminates and produces a result unique up to isomorphism. The
commutativity criterion compares this result with the outcome of the filter-transform path where
the same feature configuration is provided to the filter function.

The commutativity theorem, visualized in Fig. 6.4.1, states that the graphs created by the
transform-filter and filter-transform paths for the same feature configuration deliver equal results
(up to isomorphism):
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MGs. = (Gs, mapr;_) MHy, = (Hr, mapr,, )

filters(MGs, , fcr) filters(MHr_ , fcg)

P*
G's H, = H"

Figure 6.4.1: Commutativity in graph formalism.

Theorem 1 (Commutativity). Let P be a set of trace-generating STT rules, F' and FCF be a
set of features and feature configurations over F, respectively, and filterp :Gp X FCp — G be a
graph filter function.

Let further MGs, = (G’S,mapFGS) be a multi-variant source graph and let M Hr,, = (HT,mapFHT)

be a multi-variant target graph, which is multi-variant derived from MGs, (Gs, Pi) Hr,).
Then, the following proposition is satisfied for each feature configuration fcp € FCp:

Let Gy = filterp(MGs,., fcr) and HY. = filterp(Hr,., fcr) be the filtered (single-variant) source
and target graph, respectively. Finally, let H. be single-variant derivable from G'g.

Then, HY. and HY. are equal up to isomorphism: H. ~ HJ..

The proof utilizes the following statements declared before: Let G L. H be the complete STT
derivation, where G = Gg + 0 — 0 and H = Hg + Hrr — Hp are the multi-variant graphs
(without the mapping function). Similarly, let G’ P, H' be the underlying complete STT derivation
for the single-variant graph, where G’ = G < 0 — 0 and H' = H§ < Hrr — H’.. Per definition
the source graphs remain the same during derivations, such that Gg = Hg and G's = Hy, because
the source graph is not modified by a STT derivation (Def. 6.3.8). This property is a consequence
of the definition of STT rules (Def. 6.3.6).

P*
G H

meg my

P*
G' H'

Figure 6.4.2: Monomorphism preservation by complete derivations.

As a second fact, the filtered graphs are sub-graphs of the multi-variant graphs, such that G’ C G,
which implies that the identity on G’ is a monomorphism mg : G’ — G. Since monomorphisms are
preserved by complete derivations (which is proven in [WG20a]), such that the diagram depicted
in Fig. 6.4.2 holds, a monomorphism mpg : H — H exists as well. Applying this property to
the (transformations of the) commutativity diagram results in the diagram depicted in Fig. 6.4.3,
which is still silent on the properties of HY.

To prove commutativity, the restriction mpg, of the monomorphism mg to H., ie., mp, =
mH|H/T, is utilized which is sketched in Fig. 6.4.3, too. It is shown that the range of mpg,

comprises exactly the graph H/. such that the following equation holds:
ran(mp,) = Hf (6.26)

From this equation, it can be deduced that mg,. : H, — HY. is surjective resulting in H/, and HY.
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Figure 6.4.3: Application of the monomorphism preservation to commutativity diagram.

being isomorphic: H/. ~ H.

Rephrasing Equation 6.26 uses the mapping morphism for the elements of Hp which is denoted
as MELy,, and the knowledge that elements of H/. are only visible if their mapping function is
implied by the feature configuration:

Vel € ELy, : el € rcm(mELHT) & vF(mapFHT (el), fer) =true (6.27)

For the proof of Equation 6.26 and Equation 6.27, the derivation sequence of G is employed
as well as the knowledge that only elements, the annotation of which is implied by the feature
configuration fcp, pass the filter function to become parts of G’ and H/.. The monomorphism
which maps the filtered graph onto the multi-variant graph reflects the latter property. We state
the property here for the elements of the source graph where it is guaranteed to be satisfied

Vel € ELgg: el € ran(mELGS) & vp(mapFGS (el), fer) =true (6.28)

For the derivation sequence Gy, ...G, we know that it is increasing monotonically, each source
graph Gg; in the sequence, where 0 <7 <n, is the same as G'g, such that Gs; = G5 and that the
resulting graph G,, equals H, such that G,, = H. Furthermore, the derived target sub-graph of G
is the same as the target graph of H, such that G, = Hr.

To this end, for an element to be present in H/ the annotation of the element has to be visible
given the feature configuration. According to Alg. 1, the annotation is computed from the source
and context elements stored in the trace. We know that the annotation of an element is visible
if and only if the annotations of all its source (SRC) and context elements (CTX) are visible as
well. Based on this knowledge and the fact that all elements in G which are present in the range
of mgr, Hy have to be visible in the given feature configuration, the following equation holds in
each derivation step i:

ve(ap, fep) =true & Vs € SRC; : sErcm(mELGs) ANceCTX;: cErcm(mELHT) (6.29)

/

If and only if matches (p;,m}) in the complete single-variant derivation G’ Lo H and (pi,m;) in

the complete multi-variant derivation G LNy 4 exist, satisfying the following two properties, all
source and context elements are guaranteed to be members of the respective ranges as postulated
in Equation 6.29:

L pi=p]

2. The monomorphism from H' to H, mg, maps the elements of match m/ onto those of match
m;.

As a consequence, if and only if the matches (p;,m;) and (p},m}) satisfy these properties, the an-
notation assigned to the target elements in derivation step ¢ evaluates to true. Matches correspond
with each other if and only if the elements created by applying the respective rule correspond with
each other. This knowledge, results in the following fact:

vp(ap, fep) =true & t; € ran(mELHT) (6.30)
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Since the new target elements which evaluate to true would be part of the next derivation step it
can be concluded that the rephrased property to prove commutativity (Equation 6.27) is satisfied
by the construction of the propagation algorithm in accordance with the definition of the single-
and multi-variant derivations.

6.5 Summary

Altogether, this chapter formally defines multi-variant M2M transformations by employing Graph
theory. By defining graphs and their transformation, firstly, by a set of in-place rules and secondly,
by out-place rules, the chapter formalizes the concept of trace-based propagation, subsequently.
Sec. 6.3.2 and Sec. 6.3.3 explain to what extent the definitions conform to the computational model
for trace-based propagation before presenting the propagation algorithm in Sec. 6.4.1. Finally,
Sec. 6.4.2 summarizes the essential steps for proving commutativity of the proposed propagation
approach.

Despite proving commutativity for the trace-based annotation propagation conforming to the
computational model, existing transformation languages or their engines may violate the compu-
tational model in different respects: Transformation engines exist which do not store complete,
fine-grained trace information permanently. The corresponding languages may be more powerful,
for instance, they may support non-local or non-functional rules. Similarly, transformations may
be performed incrementally to prevent redundant computations. Therefore, the following part of
the thesis presents annotation propagation strategies for transformation scenarios which violate
the computational model.
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Chapter 7 Missing Trace Information

Untersuchen was ist, und nicht was behagt!

Johann Wolfgang von Goethe
(The Attempt as Mediator of Object and Subject, 1792)

As foreshadowed by the concluding summary of the previous chapter, the computa-
tional model for the trace-based propagation may be too restrictive to be applicable
in several real-world transformation scenarios. On the one hand, as a consequence of
different granularity, the trace information may not be complete, rendering a trace
generation-complete or incomplete. On the other hand, some transformation engines
do not generate or persist a trace at all. For instance, the default ATL virtual machine
constructs a trace for a subset of the rule types, the matched rules, internally but
does not store the trace permanently after the execution. For this reason, this chapter
offers solutions to scenarios in which the level of trace completeness and granularity
is less than the one expected by the computational model for trace-based propagation.

Fig. 7.0.1 presents the organization and relationships of the sections of this chap-
ter. The computational model for trace-based propagation postulates complete and
fine-grained trace information to satisfy commutativity. Accordingly, the first section
discusses the impact of a generation-complete trace on the commutativity criterion. As
this information suffices to create a completely annotated target model automatically,
the trace-based propagation is not modified.

Conversely, Sec. 7.2 offers a solution for the situation in which either a generation-
complete or complete trace is available but the persisted information is more coarse-
grained than the granularity at which annotations can be assigned to model elements.
For instance, while the trace only stores corresponding source and target objects, an-
notations may also be mapped onto their structural features, such as their names.
Then, the trace-based propagation can be executed as preliminary step to compute
annotations for the corresponding elements recorded in the trace. A following analysis
of the transformation definition, represented as bytecode instruction model, serves to
determine the missing fine-grained annotations.

If the trace is incomplete instead, Sec. 7.3 offers heuristic completion algorithms to
determine missing annotations in the target model automatically whereas Sec. 7.4
presents two possibilities to automatically reconstruct trace information without ana-
lyzing the transformation in the case that a trace is unavailable.

1 Investigate what is, and not what pleases.
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Figure 7.0.1: Overview and interplay of strategies to maintain missing trace information.

To this end, due to the missing mapping information, we apply heuristic strategies to
complete annotations. As a result, some elements in the target model may not be an-
notated correctly, such that it may be necessary to fix the annotations manually. The
requirement to repair target annotations may occur if the trace is generation-complete
or too coarse-grained and if the annotation completion relies on heuristics. Manually
assigned annotations, however, should be pertained in consecutive transformations of
the same source model, to preserve the manual effort. Therefore, Sec. 7.5 describes
how to preserve manual annotations in incremental transformations and how to main-
tain them in an incremental propagation.

[GSW17], [GW18c], [BG18], [GW19c|, [GW20] and [GNS22] lay the grounds for the contents of
this chapter.
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7.1. GENERATION-COMPLETE TRACES

7.1 Generation-Complete Traces

This sections illuminates the situation when the reused transformation engine persists generation-
complete instead of complete traces. At first, Sec. 7.1.1 describes the problem provoked by
generation-complete traces: the derived target model may comprise too many elements which are
not created by the single-variant transformation performed on the derived source model because
the context element is missing. While an annotation propagation based on a generation-complete
trace still yields a completely annotated model (Sec. 7.1.2), it may impact the correctness of
the propagated annotations, as an example in Sec. 7.1.3 illustrates. The closing section draws a
conclusion of these observations.

7.1.1 Problem Description

Per definition, a generation-complete trace consists of an ordered list of trace elements which
record source elements and the target elements which are created and added to the target model
by applying a rule. As opposed to a complete trace, the generation-complete trace does not store
context elements, i.e., already existing target elements which are necessary to create a new target
element. Similarly, this trace does not store further source elements which were responsible to
create the context elements.

According to the computational model for trace-based propagation, propagating annotations based
on a generation-complete trace cannot guarantee commutativity, in general. By postulating com-
plete traces, the computational model regards the fact that a transformation rule requires the
presence of the context element to construct the new target elements. Thus, the annotation of
the context element has to be satisfied in order to create the target element because otherwise the
context element would be missing and the target element could not be created by the single-variant
model transformation.

However, even though generation-complete traces violate the computational model for trace-
based propagation, this section discusses the implications of propagating annotations based on
a generation-complete trace: On the one hand, a trace of such granularity ensures a completely
annotated target model, nonetheless. Since the generation-complete trace records each created
element in the target model, the propagation algorithm can map an annotation onto each of
them. On the other hand, the effect on commutativity may depend on the contents of the rule,
particularly on the reason why another target element is considered a context element.

7.1.2 Completely Annotated Target Model

Although a generation-complete trace does not record context elements, the trace-based propa-
gation can combine the annotations of the source elements in a conjunction and assign them to
the elements which are created by applying the corresponding rule in the target model. Since
a generation-complete trace records all elements of the target model, which were created by the
transformation, such that Equation 6.13 (each element in the target graph is referenced by ex-
actly one trg-edge) still holds, an annotation will be mapped onto all target elements after the
trace-based propagation has finished.

Consequently, the result of a trace-based propagation based on a generation-complete trace be-
haves differently than a propagation based on incomplete traces, which is discussed in Sec. 7.3. The
information in incomplete trace cannot ensure a completely annotated target model which leaves
room for uncertainties about the presence of target elements in derived products. Conversely,
propagating annotations based on a generation-complete trace does not require to compute miss-
ing annotations and ensures that each target element carries the annotation of its corresponding
source elements.

7.1.3 Correctness of Propagated Annotations

In general, the missing information of a context element may provoke the situation that a target
element is not created by the single-variant model transformation due to the missing context
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Figure 7.1.1: Commutativity in propagation based on generation-complete vs. complete trace.
The type-link is annotated with the same annotation as the s2 and trg2, respectively.

element (and the source element corresponding with the context element). This may be the case
either because the presence of the source element which is responsible for creating the context
element or the presence of the context element itself is necessary to match the rule and to generate
the target element or because the missing source elements yield a malformed derived source variant
and prevents the single-variant transformation to be executed at all. Ex. 7.1.1 explains such
situation in a class model to Java model transformation.

Example 7.1.1: Violation of Commutativity due to Generation-Complete Trace

Fig. 7.1.1 illustrates an example of violated commutativity caused by generation-complete
(fine-grained) trace information. The example demonstrates a rule transforming a reference
into a field declaration. The multi-variant source model M Gg,, consists of a class s1 and
a reference s2 which are annotated with the two optional features A and B (which are not
related by further constraints).

The transformation specification requires the presence of the type of the reference to execute
the rule R2F. If the source class which is linked as type is not present (i.e., null), the
transformation will not execute the rule because of a respective application condition®.
Accordingly, the complete trace records the class s1 besides s2 and the type-link as source
element for the rule application R2F and the class declaration trgl as context element
whereas the generation-complete trace, depicted on the right side, only records the source
and target element, s2 and trg2 and their respective type-links, respectively.

The propagation based on the complete trace, depicted in the left part of the figure, maps
the annotation A A\ B onto trg2 and its type-link, thereby combining the annotations of the
second source element s1 and the context element trgl with the one of the actual source
element s2 and its type-link (and removes each of the redundant features A and B).

The derived single-variant source model on the left hand-side comprises the reference s2
only. The filter removes the type-link because it would be a dangling link. Consequently,
the single-variant transformation will not execute rule R2F due to the missing required
source type. Thus, H). remains empty.

Deriving the target model HY. from the multi-variant target model M Hr,,, depicted on
the left hand-side, which was annotated based on the complete trace, yields a commuting
transformation: The derived target model HY. is empty, too.

The right part of the figure depicts the result of annotating the target model based on the
generation-complete trace. As opposed to the left side, the field declaration trg2 remains
in the derived variant HY, after deriving H7 from the M Hr,, whereas the filter removes the
type-link again due to the missing target element. Nevertheless, the annotation propagated
based on the generation-complete information causes a violation of commutativity.

@ The rule is (still) local because the type of the reference is part of the left side which needs to be matched
in the input model.
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Please note: A similar situation as in Ex. 7.1.1 may occur if the transformation engine transforms
valid models only. If, instead of guarding the rule with an application condition, a well-formedness
rule is present on the source metamodel, the single-variant transformation may not be executed
at all. In this example a well-formedness rule may foster that the type of a reference must not
be null. If the transformation engine checks whether the input model is valid before initiating
the transformation, it will not execute the transformation specification. As a consequence, H/. is
empty and commutativity may be violated, too. This may also be the case, if a hierarchical filter
is applied to the target model because it would only regard well-formedness rules associated with
the target element for which the annotation of the context element is missing.

On the whole, the example demonstrates that a missing context element may provoke the situation
where a rule is not executed due to a missing element and, consequently, that the target elements
are not created. However the annotation mapped onto the target element in the multi-variant
target model, which misses the annotation of the context element, provokes the inclusion of the
target element in the derived variant. Thus, while in some scenarios generation-complete traces
suffice to satisfy commutativity, as the evaluation will show (c.f., Sec. 10.3), a generation-complete
trace alone cannot guarantee commutativity.

7.1.4 Consequences

All in all, a propagation based on a generation-complete trace ensures a completely annotated tar-
get model in the first place. Furthermore, the propagation maps the annotation of source elements
onto the corresponding target elements which are created by the rule application. Accordingly,
whenever the source elements are present in a derived product the corresponding target elements
will be present as well. However, as a consequence of missing context elements, the single-variant
transformation performed on the derived source model may not create the target elements, which
are present in the derived target model. Thus, it may violate commutativity, in general.

7.2 Coarse-Grained Traces

The computational model postulates that traces are as fine-grained (c.f., Prop. 5.3.8) as the
model filter and the mapping annotation function as one criterion for a correct propagation of
annotations. If the trace persists more coarse-grained information only, necessary annotation
information may be missing and commutativity will not be guaranteed anymore. Solving this
problem requires to extract information about corresponding elements which is as fine-grained as
the model filter and the mapping annotation function.

The following descriptions investigate the situation in which traces store correspondences be-
tween all objects but not between their structural features (i.e., their attributes and references)?.
Structural features of objects appear, for example, in each instance of the Ecore metamodel (c.f.
Sec. 9.1.1). If the structural features of target objects possess customized values apart from a
default one, the transformation specification may assign and transform specific values to these
structural features. For instance a UML class to Java model transformation may assign the name
of a UML class to the corresponding Java class declaration. As a consequence, at least the transfor-
mation specification encapsulates the knowledge which source elements and structural features are
used to create a structural feature of a target object. In a similar way, low-level bytecode contains
the similar information but it is represented in a way that is more agnostic of the corresponding
transformation language, particularly of its syntax. Therefore, the transformation specification
represented in form of bytecode instructions may be exploited complementary to the present trace
information about corresponding objects.

This section sheds light on white-box analysis strategies to complement the propagation of an-
notations in multi-variant model transformations and discusses the benefits and shortcomings of
analyzing a bytecode model. Thus, the following descriptions assume that the target model was

2 The constellation of fine-grained mappings combined with a coarse-grained trace occurs, for instance, when
propagating annotations of multi-variant models created with the tool Famile based on an ATL/EMFTVM
trace.
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already created and that a trace-based propagation of annotations at the object level has already
been performed.

Road Map Sec. 7.2.1 illustrates the problem based on an example which maps an annotation,
which is more specific than the one of the source object, onto one of the source object’s attributes
which violates commutativity. Based on this example, it draws conclusions on the correctness of
the transformation and sketches solution ideas.

The subsequent sections present how to analyze the bytecode of model transformations. At first,
this task requires to be familiar with bytecode instructions and their relations with transforma-
tion rule assignments. Therefore, Sec. 7.2.2 establishes a general understanding of the bytecode
instruction analysis. When analyzing the instructions patterns which assign structural features of
source objects to structural features of target objects, assignment patterns have to be recognized
which are explained in Sec. 7.2.3. The following sections, Sec. 7.2.4 and Sec. 7.2.5, derive the
propagation algorithm based on identifying assignment patterns in bytecode instructions infor-
mally and formally. To conclude this section, Sec. 7.2.6 discusses the pros and cons of additionally
analyzing bytecode instructions for propagating fine-grained annotations as well as related work
on model transformation analysis.

7.2.1 Problem Statement

This sections illustrates the problem which occurs if the mapping granularity of the source and
target model resides at a more fine-grained level than the correspondences between source and
target elements stored in the trace.

Assumptions The following descriptions assume that (at least) a coarse-grained generation-
complete trace is available. Consequently, a transformation with MGg as input has created an
output model M Hp. Moreover, correspondences between all source and created target objects are
available in form of a trace and annotations have been mapped onto all target objects corresponding
with source objects. However, the coarse-grained trace granularity does not always suffice to
correctly annotate the target model, as the following example demonstrates.
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Example 7.2.1: Annotation Violation Provoked by Coarse-Grained Trace

Fig. 7.2.1 sketches how a coarse-grained annotation for a structural feature of an object
violates commutativity. The figure illustrates an Ecore to UML class model transformation
which converts an excerpt of the database product line model into the corresponding UML
class model.

On the left, the top of the figure captures relevant excerpts of the adapted feature model
whereas the bottom depicts the model fragment and its annotations in concrete syntax.
The feature model is extended by an optional feature MultipleNames which serves as child
of the mandatory feature Name. The latter is selected whenever the feature Person is
selected in a feature configuration.

A product line developer has mapped the feature MultipleNames as annotation onto the
value of the EAttribute upperBound which defines the number of allowed first names of a
person. Consequently, in this example, it is possible to annotate the structural features of
objects, which, for instance, the MDPLE tool Famile, supports. Furthermore, the presence
of a structural feature depends on the presence of its objects. Accordingly, no annotations
are mapped onto the remaining structural features because they carry the annotation of
the object which they refine implicitly. Thus, they can only exist, if the object they refine
exists, too.

The right side of the figure notes the transformation scenario in abstract syntax which
depicts how annotations are mapped onto the structural features of objects. On the top,
the figure shows the relevant excerpt of the multi-variant source and the multi-variant
target model. The latter results from a trace-based propagation based on a coarse-grained
trace, which only records source and target objects but no correspondences between their
structural features. While the property which is created for the source attribute receives
the annotation Name, no annotation is mapped onto the UML structural feature upper
which corresponds with the structural feature upperBound.

On the bottom of the right side, the figure depicts the filtered models for the feature
configuration which selects the features Person and Name and deselects the features Family
and MultipleNames. As the annotation of the attribute upper is not satisfied by the feature
configuration, the model filter removes the value and the default value 1 replaces the
multiplicity of -1. Transforming this model with the single-variant model transformation
creates the transformed target model H). where the attribute upper is assigned the same
value 1. However, the derived target model HY. still comprises the value -1 for the same
attribute. Consequently, H. and H’. mismatch and violate commutativity.

Consequences This example allows for drawing the conclusion that trace information which is
more coarse-grained than the mapping mechanism cannot guarantee commutativity. If the map-
ping mechanism maps annotations at the level of structural features while the used transformation
trace records source and target elements at the object level, the values of the structural features
may diverge between the transformed single-variant source model and the derived target model.
Thus, coarse-grained traces may threaten commutativity.

Solution Ideas Two solutions may mitigate this problem:

Firstly, the trace information could be extended which requires to inject functionality into the
execution to record and map also structural features of objects. In practice, only few examples
of traces, which persist such fine-grained information [Bec+07], already exist. Changing the
execution engine instead, requires the rights to modify the engine and represents an engine-specific
solution. Thus, it contradicts the research objectives to reuse existing transformation capabilities
without modifications (item RO1) and to provide a generic solution (item RO3).

Secondly, the transformation specification which encodes the information as well could be analyzed.
Particularly, some execution engines, such as eMoflon [LAS15] and the ATL/EMFTVM [Wag+12],
persist execution models, resulting from applying the transformation. These execution models can
be analyzed and used to extract the information about corresponding elements in a more general
way than parsing and analyzing a specification written in a specific transformation language.
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7.2.2 Bytecode Instruction Analysis

This section introduces the background knowledge for analyzing bytecode instructions to propagate
fine-grained annotations. First, the section provides an overview of the dependencies between rules,
traces and bytecode instructions. For extracting corresponding elements, the essential activity is
to recognize assignment patterns in the bytecode instructions. Therefore, the second part of this
section gives an introduction to bytecode instructions, in general, and continues to give a concrete
example of an ATL transformation rule and the corresponding bytecode instructions, in particular.

Overview of Analyzing Transformation Rules and the Generated Artifacts Concluding
from the sketch to solve the problem (c.f., Sec. 7.2.1), one way to gain a more fine-grained mapping
may extend the trace information which requires to change the execution behavior to persist more
fine-grained annotations during the execution. Alternatively, the transformation specification or
its execution model can be analyzed. Thus, this section offers an overview on the dependencies
between a transformation specification, traces, and bytecode instructions. These dependencies
and corresponding technical considerations lay the ground to derive and examine the bytecode
analysis in subsequent sections.

transformation execution
source object match T create target object
structural it structural
features A ) ,~4 features
. manifests 1 1trans|ates into ;
e SR '
trace bytecode i
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element instruction opcodes :
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Figure 7.2.2: Schematic overview of bytecode instruction analysis-based propagation.

Fig. 7.2.2 presents a schematic overview of the dependencies between a transformation rule, a
corresponding trace element, the transformed objects and the bytecode instruction opcodes into
which the rule is translated. The figure exemplifies these dependencies based on applying one
rule, which transforms one source object into one target object. This single rule application serves
as representative for the entire transformation consisting of several of such and potentially more
complex rule applications. A more complex rule may comprise several source and target elements.
The transformation execution part, depicted on top of the figure, comprises the transformation
rule, a trace element which is generated by applying the rule, and corresponding bytecode instruc-
tions into which the transformation rule is translated. A source object matches the rule and the
rule creates a target object. Even though not depicted in the figure, other kinds of rules may also
match several source objects and create or employ several target objects. A (generation-)complete
trace records all matched source elements and all created target elements in the trace element
whereas the bytecode instruction opcodes field summarizes all instructions being executed in order
to generate the target elements.

While the middle part of the figure shows the two possibilities of either analyzing the trace or the
instruction opcodes resulting from the execution, the part at the bottom presents the results of
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Table 7.1: Overview of basic ATL/EMFTVM bytecode instructions.

Mnemonic Description

LOAD <localVariable> Load the reference to the given local variable onto the operand

stack
GET <fieldname> Fetch the value stored in the given field of the loaded object
PUSH <value> Push the given value onto the operand stack
SET <fieldname> Assign a value computed before to the given field

Perform the given operation that is specified (e.g., a concatenation

INVOKE < > .
opname operation or a trace lookup)

IF <offset>,<trg> Branch the execution based on a condition
ITERATE <offset>,<trg> Iterate a collection which provokes a branch the execution
GOTO <offset>,<trg> Go to the instruction specified as target

these analyses: Analyzing the information from the trace element only, results in matched objects
which will not suffice if annotations are mapped onto their structural features. If the bytecode,
into which the transformation specification is translated, is analyzed, it will be possible to retrieve
more fine-grained mappings. The bytecode consists of instruction opcodes which can be iterated in
the analysis step to detect assignments of source structural features to target structural features.
Particularly, this step can also include the analysis of supportive methods that compute a complex
value, such as OCL expressions stated in queries or helper definitions. In a similar way, the rules of
the transformation specification itself could be analyzed which requires a language-specific parser
which is aware of the entire syntax and semantics of the language. For instance, the execution
of a transformation rule in ATL depends on its nature and can be initiated by a global matching
(top rules) or by invoking it from another rule (lazy and called rules).

In summary, either the transformation specification or the bytecode can be analyzed to retrieve
fine-grained correspondences between the source and created target model. In the figure, this
would mean either analyzing the transformation rule or the bytecode instruction opcodes. Ana-
lyzing the transformation specification requires access to the specification and a parser, specific
to the language. Since the syntax and semantics of a language undergoes evolution more often
than the bytecode representation, the parser needs to be updated to new syntax and correspond-
ing semantics provided by the transformation specification and the execution engine. In general,
bytecode instruction opcodes, however, remain stable while the language chances: For example,
the opcodes used in the Java virtual machine have not changed in between the Java SE 8 and Java
SE 17 versions [Lin+15; Lin+21]. Therefore and due to the fact that the execution bytecode for
a transformation specification may be available as a model or can be abstracted and translated
into a model, we discuss how to analyze the bytecode model in the remainder of this section.

Overview of Relevant Bytecode Instructions Before diving into the analysis of trans-
formation rules, this paragraph introduces important bytecode instruction opcodes, which rep-
resent assignment statements. For exemplifying the instructions we employ the names of the
ATL/EMFTVM engine, which are closely related but not as details as the Java instruction op-
codes.

To begin with, a stack of instructions represents a transformation rule. A summary of these
relevant instructions is provided in Table 7.1. Each instruction possesses an opcode mnemonic,
representing the opcode kind with a short term in natural language, and an operand stack of
variables on which the opcode is executed. The first column of Table 7.1 states the mnemonic and
the operands pushed on the stack whereas the second column offers a short description.

The upper part of rows in Table 7.1 holds instructions that interact with variables. Load-
instructions load a local variable by retrieving it from the given reference and push it onto the
operand stack. Similarly, get-instructions retrieve specific fields from the loaded reference. For
instance, if a class is loaded, the field name can be retrieved. While PUSH instructions do not
necessarily access an object to push the given value, which can also be static, onto the operand
stack, the SET operation retrieves the value and assigns it to the given fieldname. Accord-
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ATL Ecore2java rule ATL Ecore2java execution model

l¢! platform:/resource/de.ubt.ai1.mvmt.transformations.demo.emftvm/ecore2Java.emftvm
~ & Module ecore2Java

» %f Operation static EMFTVMIExecEnv::init() : Object

» 4f Operation static EMFTVMIExecEnv::main() : Object

~ & Rule Class2IDCD

-- @atlcompiler emftvm _
-- @nsURI Ecore=http://www.eclipse.org/emf/2002/Ecore |= Input Rule Element src: Ecore!Eclass (models: []) (mapsToSelF: false)
-- @nsURI Java=http://www.eclipse.org/MoDisco/Java/0.2.incubation/java |= output Rule Element tar: JavalinterfaceDecl (models: [OUT])

|= output Rule Element tar2: Java!ClassDecl (models: [OUT])
~ » Code Block (maxLocals: 4 maxStack: 3
4 0:LOADO, 2 (tar: Java!lnterfaceDecl)
4 1:LOADO, 1 (src: Ecore!Eclass)
<4 2: GET (fieldname: name)
4 3:INVOKE (argcount: 0) (opname: resolve)
+_4: SET (fieldname: name)
5:LOAD 0, 3 (tar2: Java!ClassDecl)
6: LOAD O, 1 (src: Ecore!Eclass)
7: GET (fieldname: name)
8: PUSH (stringValue: "Impl")
9: INVOKE (argcount: 1) (opname: +)
10: INVOKE (argcount: 0) (opname: resolve)
11: SET (fieldname: name)
12: LOAD 0, 3 (tar2: Java!ClassDecl)
13: LOAD 0, 1 (src: Ecore!lEclass)
14: GET (fieldname: ePackage)
15: INVOKE (argcount: 0) (opname: resolve)
16: SET (fieldname: package)

bac42.4 42.90

module ecore2lava;
create OUT: Java from IN : Ecore;

Frule Class2IDCD {
from

src: Ecore!Eclass H
to

tar; Java!InterfaceDecl(

)

tar2: Java!ClassDecl ( /-
name <- src.name + 'Impl'
package <- src.ePackage

)

i
ooo[¢o¢¢¢\o¢

Figure 7.2.3: Mapping of ATL/EMFTVM rule onto bytecode instructions.

ingly, the EMFTVM execution model distinguishes LocalVariableInstruction (i.e., LOAD)
from FieldInstructions (i.e., GET and SET) whereas the PUSH instruction is considered a
regular instruction.

The lower part of the instruction table comprises branch instructions as well as the invoke operation
instruction. While the invoke operations specifies the name of the operation that should be
performed, branch instructions store an offset and a target instruction.

For more detail we refer the interested reader to the entire list of EMFTVM bytecode instructions
depicted in Fig. A.2.1 which is retrieved from the corresponding ATL/EMFTVM Eclipse plugin®

Example of Representing Assignments as Bytecode Instructions A model transfor-
mation creates target elements according to the transformation specification. Regardless of the
transformation paradigm, such as declarative or a procedural language, information is retrieved
from the source model and used to create a target element. Based on that fact, we can identify
common patterns which are used to assign a value to the structural features, i.e., the attributes
and references, of an object.

Therefore, Ex. 7.2.2 presents a concrete example of an ATL rule and the corresponding bytecode
instructions. The ATL/EMFTVM compiler records these instructions in a model at each save
operation in the editing (Eclipse) workspace. The example and further code fragments which
assign values in a transformation serve to classify and scrutinize types of patterns in the following
sections.

Example 7.2.2: ATL Transformation Rule and Bytecode Instructions

Fig. 7.2.3 depicts an ATL rule, which creates a Java interface and a class declaration
for each EClass of a given Ecore model, on its left side. On its right side, it shows the
corresponding execution model created from the ATL/EMFTVM plugin.

While the first part of the ATL rule states the from-pattern, i.e., the characteristics required
to match a source object, the to-pattern in the second part of the rule describes, which and
how target elements are created. The rule creates a Java interface and class declaration
as target elements. The bytecode model records the corresponding elements as input and

3 The ATL/EMFTVM execution metamodel is contained in the FEclipse plugin  project:
org.eclipse.m2m.atl.emftvm.
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output rule elements, respectively.

The first assignment, name <- src.name occurs in the creation of the interface, which
is highlighted with a surrounding blue rectangle. The statement assigns the name of the
matching source object src as name to the interface. For this task, the assignment retrieves
the value of the attribute name of the source object and assigns it to the corresponding
attribute of the interface object which is created. The topmost blue rectangle on the right
side highlights the resulting instruction opcodes. First, the opcodes LOAD the target and
source element. Then, the name of the source object is RESOLVEd and then SET to the one
of the target object.

The second and third assignment occur in the part creating the class declaration. The
second assignment name <- src.name + ‘Impl’ composes the name for the class decla-
ration from the source name concatenated with the static String value ’Impl’. Since the
first part of the assignment is exactly the same as for the first assignment, the first part
of opcodes is the same, too. In addition to the opcodes representing the first assignment,
this assignment involves a PUSH opcode, which lays the static String value Impl on the
stack, together with another INVOKE instruction, which stores the concatenation operator
+. Based on executing these opcodes, in the end the concatenated name is assigned to the
class declaration.

The third statement, package <- src.ePackage assigns the (first) element which is cre-
ated for the referenced ePackage of the source object as the package of the class declaration.
Even though the rule states that the ePackage of the source element is assigned to the
target object, the ATL execution engine retrieves the corresponding target element from a
runtime trace which it maintains to resolve objects. Interestingly, despite loading different
source element types (attribute vs. referenced object, i.e., static vs. dynamic element), the
opcodes in the execution model are the same for the first and third assignment.

Consequences This example allows for inferring that different assignment patterns occur which
(may) rely on the values of structural feature of the matching source object. Either a source value
is assigned directly, or it is composed of other static or dynamic values and assigned in this
way. Similarly, referenced objects or their values may be used to retrieve the assigned value.
More complex expressions can be stated on the right side of such assignment which the following
paragraphs illuminate.

7.2.3 Classification of Patterns in Model Transformation Languages

As Ex. 7.2.2 shows, different forms of statements assign values to structural features of target
objects. Depending on the paradigm, syntax and semantics of the transformation language, these
assignments may expressed at different stages of complexity. However, at an abstract level, the
assignments share the goal of assigning a value to the structural feature of a target object, mostly
by exploiting information of the source model.

Road Map Therefore, the first part of the following paragraphs introduce a taxonomy based
on which assignment patterns can be classified. The second part illuminates concrete assignment
patterns and their corresponding bytecode instruction opcodes whereas the concluding part collects
observations which are important to propagate annotations.

I Assignment Pattern Taxonomy
Fig. 7.2.4 presents a taxonomy which classifies assignments and helps to gain an overview before

exploring the details of specific assignments.

Occurrence Firstly, a transformation rule can state an assignment directly or indirectly. The
ATL example of Fig. 7.2.3 demonstrates direct assignments only, which declare how to compute the
assigned values from potentially different sources of information. In contrast, indirect assignments
invoke another method to compute the assigned value. Such helper method may be implemented
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assignments
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Figure 7.2.4: Classification of assignment patterns in model transformation languages.

either in the transformation specification or in an associated GPL file. The main difference between
a direct and indirect assignment is that invoking a method creates a branch in the execution flow.
As a consequence, different bytecode instructions represent the method call. Particularly, indirect
assignments may invoke another method which may be defined in another file and potentially in
another language.

Cardinality Furthermore, a transformation rule can use a single value (e.g., of the source object)
or multiple ones to compute the assigned target value. The actual complexity of the assignment
depends on the operations executed on these multiple values and the source from which the values
are retrieved.

Value Computation The computation of values involves several stages of complexity. Assign-
ing a static value resides at the lowest level of complexity and does not require any computation.
Assigning a dynamic value instead, means to compute the information from model elements. At
first, we can distinguish the type of object which is stated in the assignment. Either an object
from the source or from the target model can be used to compute the assigned values. In the
example presented in Fig. 7.2.3, only the input object serves as source from which the assigned
values are extracted. While the first two assignments of this example retrieve values of attributes
of the input source object, the third assignment retrieves the value from an object referenced as
ePackage from the source object. Thus, the assigned value is computed either from the input
source object or from another source element, which may be referenced by the source object or
may be stored in a variable.

As an alternative, if a rule creates multiple target elements, it is possible to assign one of them
as referenced by another of the created target elements. For instance, in Fig. 7.2.3 it is possible
that the rule assigns the created interface declaration tar as one of the implemented interfaces by
adding them into a corresponding reference of the created class declaration tar2. Thus, the rule
uses the value of another target element of the same rule.

Furthermore, the values of a context element which is the target element of another rule might be
used explicitly by employing the trace and providing some source object, e.g., referenced by the
input source object of the rule. Such operation is stated by invoking an operation which accesses
the trace during the execution and retrieves the corresponding created target element. As an
example, ATL allows to access the trace by invoking the operations resolve() or resolveTemp().
It must be noted that stating the reference to a source object requires an implicit resolve operation
which looks up the corresponding target elements in the trace, too. Even though the effect of
stating a source object on the right side is the same as stating the target element which was
created for that source object, the opcodes diverge.

IT Assignment Patterns

Based on this classification, the following paragraphs introduce common patterns in more detail.
Straightforward patterns are single-value direct assignments of exactly one value (e.g., of a source
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element) to one structural feature of the target object. In contrast, multi-valued assignments
compute the target value from multiple elements. The following paragraphs illuminate both types
and further patterns subsequently.

Overview of Single-Value Assignments Table 7.2 enumerates types of assigning a single
value to a single-valued structural feature of the created target object. It must be noted that the
table incorporates assignment operations which reduces several distinct values to one. However,
in each of these reductions only up to one single value from a structural feature of the input source
object is retrieved which may be combined with several static values. The leftmost column classifies
the assignment pattern whereas the second column gives an example in ATL. The rightmost
column enumerates the corresponding bytecode instructions as represented in the ATL/EMFTVM
execution model.

Table 7.2: Bytecode instruction opcodes of direct assignment patterns of single values.

Assignment Type Example Instructions

1-valued direct assignment, name < ‘SomeName’ LOAD(tar), PUSH,  INVOKE(resolve),

static SET(name)

1-valued direct assignment, name <— src.name LOAD(tar), LOAD(src), GET(name),

dynamic INVOKE(resolve), SET(name)

1-value direct assignment, name < src.name + LOAD, LOAD, GET(name), PUSH(¢. java’),

combined . java’ INVOKE(+), INVOKE(resolve), SET

1-valued direct assignment, name <— LOAD, LOAD, GET(ePackage), GET(name),

chained src.ePackage .name INVOKE(resolve), SET(name)

1-valued direct assignment, name <— LOAD, LOAD, GET(ePackage),

chained-combined src.ePackage.name + GET(name), PUSH(’.impl’), INVOKE(+),
¢impl’ INVOKE(resolve), SET(name)

First of all, a static value can be assigned to a target attribute. The assigned value may not
necessarily be of type String, as in the examples of the table, but the expression may assign
another primitive type, such as an Integer (e.g., upper < -1) or an enumeration literal, to
an attribute with a corresponding type. The first line of the table gives an example where the
attribute name of the target element receives the value ’SomeName’.

Single-Value Static Direct Assignment The corresponding ATL/EMFTVM opcodes LOAD
the target object which the out-pattern of the rule declares, in the first place. The PUSH opcode
receives the static value which is in this example SomeName and the opcode INVOKE resolves the
reference to the loaded target object by looking it up in the (internally maintained) ATL trace.
Finally, the SET opcode assigns the pushed value to the name attribute of the target element, as
declared in the assignment statement.

Single-Value Dynamic Direct Assignment Conversely, an assignment may retrieve the value
of the target structural feature from the value of the structural feature of the given source object.
The second row presents an example of such direct dynamic assignment of a single value. The
expression name ¢ src.name assigns the value of a name attribute of the source object (src.name)
to the target name whereas the third row exemplifies the combination of a static with a dynamic
value.

The corresponding opcodes load not only the target object (first LOAD) but also the source object
(second LOAD) which needs to be accessed to retrieve the value to be assigned. Then, the source
name is GET and resolved. Finally, the source name is set as value of the name of the loaded target
object.

Similarly, both assignment statements, the static and the dynamic one, can be combined. A
statement is recognized as conforming to the pattern regardless of which one is stated first, the
statically or the dynamically determined value. Thus, the pattern combines the operations of
assignment patterns for a single static and dynamic assignment. However, it must be stated,
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even though for propagating annotations it does not make a difference how many static values are
considered, the complexity of the instruction opcodes increases significantly if several computations
based on static and dynamic values are performed before being finally assigned.

Single-Value Dynamic Direct Assignment, Chained Moreover, several transformation lan-
guages allow for assigning the value of another source object which is referenced by the matched
input object. A pattern which is rather easy to identify, retrieves the dynamic value from a
directly linked source object (not of objects accessed by following multiple links) and assigns it
without modifications. Row four of Table 7.2 exemplifies such assignment pattern which retrieves
the name of the ePackage referenced by the source object.

The corresponding instruction opcodes mention a third get: In contrast to the patterns presented
before, not the name of the source object is retrieved but the ePackage referenced by the source
object is retrieved by a GET instruction first and its name by a second GET instruction. This name
is set as the name of the target object.

Single-Value Dynamic Direct Assignment, Chained-Combined Similar to the combined
direct assignment, the dynamic value taken from referenced objects can be combined with one or
multiple static values. The bottom row of the same table provides an example which computes
the assigned value by combining a referenced value with a static one.

Table 7.3: Bytecode instruction opcodes of direct assignment patterns of multiple values.

Assignment Type Example Instructions

multi-valued direct assign- name < src.name + L(tar), L(src), G(name), L(src), G(upper-

ment, dynamic src.upperBound Bound), I(+), I(resolve), S(name)

multi-valued direct assign- name < src.name + L(tar), L(src), G(name), L(src),

ment, combined src.upperBound + ’impl’ G(upperBound), I(+), PUSH(’.impl’),
I(+), I(resolve), S(name)

multi-valued direct assign- name <— L(tar), L(src), G(ePackage), G(name),

ment, chained src.ePackage.name + L(src), G(name), I(+4), I(resolve),
src.name S(name

multi-valued direct assign- name <— L(tar), L(src), G(ePackage), G(name),

ment, chained, combined src.ePackage.name + L(src), G(name), I(+4), PUSH(’.impl’),

(
(+
(t
(
(
(
(
(

€
src.name + ’impl’ I(+), I(resolve), SET(name)

Overview of Multi-Value Assignments In contrast to single-value assignments, multiple
values of the source object can be used to compute the value which should be assigned to a
structural feature of the target object. Table 7.3 enumerates patterns which use two values of
structural features of the source object to compute the value of the target attribute name.

Table 7.3 assumes a similar structure as Table 7.2. Thus, in the left column it mentions a clas-
sification of the assignment type, in the middle a concrete example and in the right column the
instruction opcodes of the corresponding ATL/EMFTVM model. As opposed to Table 7.2, Ta-
ble 7.3 abbreviates the opcodes, LOAD, GET, INVOKE and SET to their first letter. This table serves
as example of how such statements can be constructed.

Multi-Value Dynamic Direct Assignment The number of values used for computing the
assigned single value is not restricted by two but it may be several ones of the source object or
ones that are referenced by the object. However, since these instructions also serve to determine
a single value for a single-valued structural feature of the target object, the assignment needs to
perform one or several operations to reduce the multiple values to one.

In concrete, as before, two or multiple values of the source object only may be used to compute a
single value that is assigned as exemplified in the first row of Table 7.3. The example concatenates
the name of the source object with the value stored in the attribute upperBound of the source
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object and assigns the result as name to the target object. The table highlights, the differences
with the opcodes used for assigning a single-value which is combined with a static value in blue
color. Particularly, a second pair of a LOAD and GET instruction has to be executed, which loads
the source object another time and retrieves the value of the attribute upperBound.

Multi-Value Dynamic Direct Assignment, Combined The second row combines the two
loaded dynamic values with an additional static value. Again, the order of combining the source
attributes with the static value is irrelevant. Whenever a pair of loading the source object and a
single get instruction appear before the set instruction, the pattern can be classified as multi-value
direct assignment which combines several source values.

The difference with the opcodes in the previous row is highlighted in blue color. It requires
additional invocations of reduction operators which combine the multiple values to one.

Multi-Value Dynamic Direct Assignment, Chained Finally, the third row shows the as-
signment where the value of one of the structural features is not retrieved from the source object
but from an object referenced by the source object (i.e., a chain of references is expanded). As a
result, two GET opcodes are put on the instruction stack consecutively followed by another LOAD
instruction to load the source object again to GET its name. The first pair of load and get instruc-
tions, loads the source object, retrieves the value of the ePackage with the first get instruction and
the name of the referenced package with the second get instruction. Similar actions are performed
in the fourth row, where the chained get is combined not only with the direct retrieval but also
with a static value.

The examples of the table only show how to compute String values of two structural features.
In general, a multi-value direct assignment for a single-valued structural feature could employ
more than two dynamic sources of information as long as these values are reduced to a single one.
Similarly, for static values no other restrictions exist neither. The same holds for other primitive
types. For example, several Boolean values could be combined in an expression and the resulting
value be assigned to a respective attribute.

Collection Assignment In contrast to the patterns explained so far, several transformations
allow to assign a list of values to a multi-valued structural feature of a target element. Conse-
quently, a collection of values is assigned to a collection of values.

Example 7.2.3: Assignment of Collections

Listing 7.2.1 presents an example of a multi-valued assignment. Line 16 assigns the
union of the elements created for the attributes and the methods of an EClass as the
bodyDeclarations of the corresponding created Java class. The corresponding opcodes,
which are placed in the line underneath, are exactly the same as for the assignment which
concatenates two string values of two source values. Only the opcode which invokes the
+ operation in case of the string concatenation invokes the union operation instead but is
still represented by the same opcode INVOKE.

Despite the similarity of the opcodes, the collection, consisting of either attributes of some source
object or links to other objects, may comprise a multitude of different annotations. If it is a direct
assignment of only a single multi-valued structural features, the annotation of each element in the
collection needs to be looked up and combined in a disjunctive expression. However, if two or
multiple collections are flattened to one, the annotation depends on the reduction operator which
also may remove elements from one source set such that those elements are not required and their
annotations do not have to be satisfied. Due to these ambiguities, the following analysis focuses
on recognizing patterns which can be recognized uniquely and which offer clear semantics of how
to compute an annotation for target elements based on the source elements.
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Further Patterns Finally, the execution control flow can branch due to if-conditions and the
possibility to imperatively influence the order of creating target objects by calling rules explicitly.
Target objects which are created in a called rule are not present in the trace. Thus, the trace-
based propagation cannot annotate them. Furthermore, besides the direct assignment patterns,
indirect assignments may occur, too. Listing 7.2.1 exemplifies some of these patterns specified in
ATL and presents the corresponding instruction opcodes as comments behind or underneath the
transformation source code lines. Opcodes which are used to load or get an object or to set a
value are abbreviated to their first letter.

1 rule Class2ClassDeclaration {

2 from

3 src: Ecore!EClass

4 to

5 tar: Java!ClassDeclaration (

6 name <- if (src.abstract) themn -- L, L, G, IFN

7 ’Abstract’ + src.name.firstToUpper ()

8 -- PUSH(Abstract), L, G, I(firstToUpper), I(+), GOTO

9 else

10 src.name - L, G, I

11 endif, -- S

12

13 superClass <- thisModule.getSupCl(src.eSuperTypes)

14 -- L, GETENVTYPE, L, G(eSuperTypes), INVOKE_STATIC(getSupCl), INVOKE(resolve), S
15

16 bodyDeclarations <- src.eAttributes.union(src.eOperations)

17 -- L, L, G(eAttributes), L, G(eOperations), I(union), I(resolve), S

18 )

19 do {

20 if (not src.eSuperTypes.oclIsUndefined() and src.eSuperTypes.size() > 1)

21 -- left side of ’and’: L(src), G, ISNULL, NOT, IFN

22 -- right side of ’and’: L, G, INVOKE(size), PUSH, INVOKE(>), GOTO, PUSHF, IFN

23 {

2 for (c in src.eSuperTypes) { -- L(SRC), G, ITERATE, STORE, GETENVTYPE
25 thisModule.assignSuperInterf(src, c); -- L(src), L(c), INVOKE_STATIC, POP
26 } -— ENDITERATE

27 3

28 }

29 }

Listing 7.2.1: Example of ATL/EMFTVM transformation rule with complex assignments. The
comments represent the corresponding bytecode instruction opcodes.

Firstly, by calling a helper or query method, such as in Line 13, a computation based on given
source objects or of their structural features may be performed in another rule or method and
assigned to the target element. In the example, a method is invoked which determines the class
from which the created class inherits based on the given reference eSuperTypes. Even though
the statement assigns a single value to the single-valued structural feature superClass based on
a multi-valued reference, due to this indirect assignment, the opcodes which perform the compu-
tation are not accessible in the instruction stack of the rule.

Furthermore, it is not guaranteed that such computations are executed linearly. Conditional
executions and iterating collections may provoke execution branches, as exemplified for retrieving
a name for a class declaration in Lines 6-10. Even though in this case the name of the source class
is the decisive attribute used in each branch, this cannot be assumed in general. More complex
instructions and different structural features may be used in branches, requiring to decide which
structural feature of a branch to prefer for determining an annotation. Particularly, in helper
methods it is possible to express conditions and branch the execution based on certain values of
the source object. Similarly, an iteration can be performed and used to invoke operations as shown
in Line 24 of Listing 7.2.1. Due to these ambiguities, recognizing and determining an annotation
based on these complex statements is not regarded in this thesis.
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IITI Observations

From classifying the patterns and mapping a pattern onto bytecode instruction opcodes we draw
the following conclusions which allow to identify the patterns.

Start and End of Instruction Firstly, each list of instructions representing one assignment
terminates with a SET opcode and starts with a LOAD opcode to retrieve the created target object
based on the name defined in the rule. The opcode stores the name of the target object. If a rule
invokes another rule by a method call, a POP instruction will mark the end of a block instead.

Source and Target Structural Feature Secondly, the knowledge which structural features of
which source objects are used to computed the assigned target value represents the key information
for propagating their annotations. The GET opcodes store the names of the source structural
features and the SET opcode hold the name of the feature to which the value is assigned.

Unique Assignment Patterns Thirdly, it is possible to identify a pattern unambiguously, if
it does not

e branch

e invoke rules with source values as input

o iterate a collection of values to retrieve a single value

« flatten several lists of values to a single collection

e combine any of these statements.
As explained before, conditional execution, iterating collections and performing operations on
them can become arbitrarily complex. Therefore, it may require additional knowledge about the
semantics of functions (standard library as well as manually added) to analyze whether and if
multiple source values exist, which are relevant to compute the assigned target value in the end.
For that reason, the following propagation process does not regard the assignment of collections,
or of branches, indirection based on method invocations and combinations thereof. In contrast,
our rule analysis, described in Sec. 9.3.2, recognizes direct assignments of

o single or multiple static values (first row of Table 7.2)

« single or multiple values of one source object (second row of Table 7.2 and first row of Table 7.3)

o single dynamic values combined with static values (third row of Table 7.2 and second row of

Table 7.3)

« a single or multiple chained value accesses (fourth row of Table 7.2 and third row of Table 7.3).

The following section explains how this information can be used for propagating annotations.

7.2.4 Propagation Process

After having identified assignment patters and the corresponding bytecode instructions, this sec-
tion demonstrates how to employ this information for propagation annotations to structural fea-
tures. As Fig. 7.2.5 illustrates, the multi-variant fine-grained propagation process consists of two
elementary steps: the propagation of annotations of objects, based on the trace, and of their
structural features, based on analyzing assignment patterns. Chp. 6 explains in detail how the
trace-based propagation behaves. Therefore, the first part of this section summarizes the main
properties of this propagation which serves as starting point for the bytecode instruction-based
propagation explained in the second part.

I Trace-Based Propagation
To propagate annotations from the source model to the target model, first, the annotations of

corresponding objects are propagated by a trace-based propagation as described in Alg. 1.

Result of Propagation: Annotation Mapping for Data Nodes The reused single-variant
transformation creates the superimposed target model, the graph Hp and at least a generation-
complete trace Hyr. Exploiting the trace for propagating annotations results in an annotation
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Figure 7.2.5: Overview of bytecode instruction-based analysis.

mapping function a —map’ Frrp In contrast to the previous explanations, the annotation mapping
function does not only map annotations onto graph nodes and edges, which represent objects and
their links but also onto their structural features, which are stored in data nodes attached to the
graph nodes and edges. Def. 7.2.3 formally defines the function a — mapg in Sec. 7.2.5.

Annotated Graph Elements In the following, we assume that the trace-based propagation
generates a complete mapping function for the graph nodes and edges, representing objects and
links, due to processing a generation-complete or complete trace. The data nodes and the edges
that link the data node to the created target nodes and edges, receive a default annotation, which
is the one of the graph element for which they store the value of one of their structural features.
Accordingly, the presence of a data node always depends on the graph element for which it holds
data values.

Refining Data Nodes Since the structural features of the source elements may comprise a
more restrictive visibility in filtered products, as demonstrated in Sec. 7.2.1, the mapping function
for the target graph needs to reflect these annotations, too. Therefore, the multi-variant source
and target model, MGgs, and M H’TF, respectively, are input to the second propagation. This
propagation refines the mapping function by analyzing the bytecode instruction opcodes (e.g.,
persisted in form of a model) and assigning annotations of source data nodes to the corresponding
target data nodes.

IT Bytecode Instruction-Based Propagation

After the coarse-grained trace-based propagation based on the (generation-)complete trace has
been performed, the multi-variant model transformation can execute the fine-grained propagation
of annotations based on analyzing the bytecode instructions. Fig. 7.2.6 illustrates the steps per-
formed in the bytecode instruction-based propagation schematically. First, the sections gives a
schematic overview of the procedure before diving into more technical details:

Overview The given bytecode instruction opcode model is analyzed rule-wise: It starts with
extracting instruction blocks for each rule. Secondly, it analyzes the blocks and tries to identify
patterns. This results in a set of classified assignment patterns which store the name of the
target structural feature as well the structural features of the source objects that are used. The
assignment of a static value only is irrelevant for the further process but is recognized similarly.

The following step determines the source and target objects that match the load instruction of a
rule. Accordingly, accessing the source and target model is essential to determine the matching
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Figure 7.2.6: Steps of bytecode instruction-based propagation.

objects and the values of their structural features. This step can occur already before the pattern
recognition or be input from the previous trace-based propagation.

Details In more detail, the bytecode model is input to the propagation mechanism and iterated
rule-wise. To illustrate and concretize the procedure, we employ the ATL/EMFTVM execution
model as example.

Extraction of Analyzed Rules For each ATL rule recorded in the bytecode model, which
matches a source element, an analyzed rule is created. The analyzed rule is a data structure which
composes the list of instructions that is stored inside the ATL rule into different recognizable
assignments. Thus, the analyzed rule stores multiple lists of different assignment patterns which
in turn store the key information for propagating annotations: the name of the set-field, which
is the structural feature of the target object, and one or multiple names of get-fields which store
the field names of the source object. Fig. 9.3.4 summarizes the implementation specifics of the
AnalyzedRule in more detail. It is important to note is that it is beneficial to build a rule-to-
analyzedRule map before (or during) iterating the source model to analyze a rule which matches
a source element only once. The following paragraphs explain how different kinds of assignments
are extracted from the instruction block associated with a rule.

Instruction Block Extraction To extract the information stored in the AnalyzedRule, the
entire list of instructions of the rule is iterated. In case of the ATL/EMFTVM this requires to
iterate the applier codeblock (to-block) and the postApplier (do-block) codeblock.

As stated as observation from comparing the instruction opcodes of common assignment patterns
in Sec. 7.2.3, instruction blocks (in the applier) which represent an assignment of a value terminate
with a SET opcode. Accordingly, an instruction block terminates with a set instruction and a new
block initiates with the opcode stated thereafter. All instructions between the initiation and the
set are collected and stored inside the instruction block.

Since the do-block in ATL influences the execution order, this part of a rule may invoke other
rules without assigning any value. Such instruction block does not end with a SET opcode but
with a POP opcode which needs to be considered when iterating the entire list of instructions to
extract assignments. Thus, whenever a POP opcode appears, the instructions before are neglected
and a new assignment instruction block is tried to be extracted from the opcodes following the
POP opcode. The do-block is considered because it is possible to place assignments in this section
of a rule, too.
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Assignment Pattern Recognition Next, the instruction blocks need to be analyzed. Based
on the common structure of instruction sequences observed by mapping different assignment state-
ments onto the instruction opcode in Sec. 7.2.3, this step tries to recognize patterns in the in-
struction blocks.

A direct static and dynamic assignment of a single value can be recognized in a straightforward
way. They consist of a fixed number of instructions (4 and 5, respectively) and of a fixed se-
quence of opcodes, as exemplified in row one and two of Table 7.2. While the corresponding
recognition algorithm adds a direct dynamic assignment to a corresponding list in the analyzed
rule, a static assignment is neglected. The analyzed rule records such assignment pattern as
SingleValueAssignment, as shown in the model of Fig. 9.3.4. A static assignment of a single
value cannot contribute to propagate annotations of a source structural feature because it does
not state any source feature. Similarly, a ChainedAssignment is recognized whenever a sequence
of two or more GET instructions occurs without interruptions of another opcode in the block of
instructions. If the static assignment is combined with a dynamic assignment of a single source
value or a chain thereof, it will be inserted as a CombinedAssignment. Such assignment holds a
list of single GET instructions but can also consider chains of GET fields which are represented as
lists. The identification algorithm recognizes such assignment whenever a single get instruction
opcode (no other directly thereafter) follows two load opcodes. Opcodes in between which do not
provoke a branch or iteration of the execution are ignored.

Whenever a branch instruction, such as an ITERATE or IF/IFN instruction, occurs in the instruc-
tion block, the algorithm categorizes the assignment as OtherStatement because it may involve
diverging execution branches which are provoked, for example, by diverging values of a struc-
tural feature. Since both can be combined almost arbitrarily, their analysis requires more specific
techniques and is left out of the scope of this thesis.

Propagation Algorithm After the patterns have been identified per rule, the propagation
algorithm iterates the source nodes and executes the following steps: Due to its complexity, we
state the steps of the propagation process in natural language for easier comprehension:

1. for each rule: create an analyzed rule and store it in a mapping function: pToa: p — «
2. for each source object or link el
2.1. retrieve transformation rule p, which records el as source element, from the execution
model
2.2. retrieve analyzed rule a by looking up p in the map pToa
2.3. retrieve the trace node npg, which records el as source element, from Hrgr

2.4. retrieve created target objects from trace node nygr and store them in TRG
2.5. for each created target object trg € TRG

2.5.1 retrieve its structural elements and store them in DNODES;
2.5.2 for each structural feature f; € DNODES;

2.5.2a search a pattern in « which records f; in the set-field and loads trg

2.5.2b if no pattern matches, continue with next target feature, i.e., goto 2.5.2;
otherwise:

2.5.2¢ for each get-field in the pattern search an equally named structural feature in
the source object and store them in DNODES

2.5.2d assign mapping to f;: combine the annotation of the object trg with the an-
notation of the elements in DNODES; in a conjunction

Accordingly, the source model is iterated and we assume that a rule matches only one source ele-
ment and creates a set of target elements (nodes and edges). Furthermore, no target element can
be targeted by two distinct rules, i.e., the property for STT-graphs that each target element pos-
sesses exactly one incoming edge (c.f., Equation 6.13) still holds. As such, all target elements can
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be retrieved from the trace model given the source object. Alternatively, based on the information
in the execution model, corresponding target objects might be retrieved similarly.

Next, for each created target element in T'RG, the structural features are determined in step 2.5.1.
Then, a pattern in the analyzed rule a has to be found which assigns a value to the currently
processed structural feature. For solving this task, the algorithm iterates the list DNODES; and
searches a pattern in the corresponding analyzed rule «, the set-field of which matches the name
of the currently processed structural features. If the algorithm finds a match, it depends on the
concrete pattern which exact steps to perform in step 2.5.2c:

SingleValueAssignments contain only one get-field which is used for searching an equally
named structural feature in the source object. The algorithm will add the corresponding single
data node to DNODESj, to map its annotation onto the structural feature f;.

ChainedGets contain a list of get-fields. Thus, the reference to the target object needs to be
followed as long until the final GET instruction. The annotation mapped onto each object on this
way needs to be combined in a conjunction with the annotation of the last attribute or reference
to ensure the visibility of the elements along the path when filtering the multi-variant model.

CombinedAssignment may contain multiple structural features depending on the number of
get-fields. Thus, the algorithm stores the matching structural feature in the set of source data
nodes DNODES,, the annotations of which are combined in a conjunction. Furthermore, if a
chain occurs, the algorithm computes the annotation while following the references and combines
them in a conjunction with the remaining annotations.

To this end, the computed annotations consist of the annotation of the source object el, which is
also present on the target objects due to the trace-based propagation, and a conjunction of the
annotations mapped onto the elements matching the get-fields. As a consequence, after having
iterated the entire source model, each structural feature of the target model possesses a mode
specific annotation, if its counterpart(s) in the source model possess(es) a more specific annotation
than the graph element, too.

IIT Properties

According to the algorithm for analyzing bytecode instruction, informally described in the pre-
ceding parts of this section, the transformation must conform the following properties.

Property 7.2.1: Single-Value Assignment

The rules have to assign only a single value.

So far, the algorithm does not handle the assignment of collections of values to collections of
values. In contrast, the algorithm can compute the single value based on multiple values which
are reduced to one. If an assignment computes values for multiple data nodes, the pattern will be
ignored.

Property 7.2.2: Linear Execution Control Flow

The execution control flow must not branch, particularly, not on collections which should
be iterated.

Due to ambiguities and potentially conditional execution, branches are not covered and assign-
ments are hard to determine unambiguously if branches and iterations are nested arbitrarily.
Therefore, this behavior is not extracted as assignment pattern. Note: This property also pro-
hibits the invocation of helper methods which is made explicit in Prop. 7.2.3.
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Property 7.2.3: Self-Contained Transformation

The transformation must not delegate computations to other engines.

Prop. 7.2.3 requires that any computation necessary to construct the target model must be part of
the transformation specification or accessible from it in a representation that resides at the same
level of abstraction as the analyzed bytecode. On the one hand, this property forbids to employ
computations which are implemented in another transformation language or a general purpose
language because the bytecode model may deviate from the one used here. On the other hand,
the property does not forbid helper-functions or modularity of transformations in general, even
though they are not supported yet.

Please note: We do not explicitly forbid the usage of called and lazy rules in ATL/EMFTVM.
If target objects remain without an annotation after propagating the annotations based on the
generation-complete trace, we employ the container completion strategy, as described in Alg. 4,
to assign annotations to the target elements missing one. Thus, before analyzing the rules for
fine-grained mappings, it is guaranteed that the source and target mapping representations are
completely annotated.

If these properties hold, it is possible to analyze the transformation and to retrieve annotations
for structural features of the target model. Due to the finite sets that are iterated and missing
recursion, it is guaranteed that the propagation algorithm terminates.

7.2.5 Foundations

So far, the formalism for trace-based propagation of annotations employs a typed graph (transfor-
mations) which allows to annotate nodes and edges, representing objects and links between them.
This chapter, however, assumes that the structural features of graph nodes can be annotated, too.
To express this in the formalism, we extend the set of elements in the graph such that different
types of nodes represent objects and their features. Furthermore, the mapping annotation function
must be able to map annotations onto the nodes and edges which represent a structural feature.
The extension of the ordered graphs used so far requires to add nodes and edges which represent
the structural features of an object. We add elements which extend the graph typed over Ty and
Tg to an attributed typed graph, also denoted as E-graphs [EPT04].

E-Graphs In the first place, we extend the set of graph nodes N with a set of data nodes D .
A data node d,, is typed and uniquely associated with a graph node to store the concrete value of
an attribute. Similarly, we add a set of node attribute edges En 4 which associate the graph node
with a value stored in the data node. Such edge origins from a graph node in N and targets a
data node in Dy, such that sya: Ena — N and tya : Ena — Dy are the corresponding source
and target functions.

Finally, a set of edge attribute edges Eg 4 incorporates edges which origin from a graph edge and
assign a value by the means of a data node to the edge.

Definition 7.2.1: E-Graph

An E-graph EG with EG=(N,E,Dn,Ega,EnNa, (Siyti)ie{G,EA,NA}vle{N,E,DN,NA,EA})
is typed over type sets T, T, Tpy, Tna, TEa and comprises the following elements

« finite sets of graph nodes and graph edges, N and E
o finite sets of data nodes Dy

« finite sets of edges En 4 and Eg 4 which connect a graph node and a graph edge with
a data node, respectively.

o source and target functions

between graph nodes: s: E— N andt: E— N
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between a graph node and data node: sya:Enxa— N andtna: Ena— Dy
between a graph edge and a data node sga: Fpa — F andtga: Ega — Dy

e type labeling functions for graph elements:
IN:N—=>Tn,lg: E—Tg

The set of graph elements is defined as EL = N U E. The entirety of all elements in the
attributed graph is denoted as AEL=FEL U Dy U Exa U Ega.

For propagating annotations of source data nodes to target data nodes, the function data allows
to determine the data nodes for a given graph element:

Definition 7.2.2: Data Node Function

Let EL be the graph elements of an E-Graph EG. The function data : EL — P(Dy)
takes a graph element and returns all data nodes with an incoming node attribute or edge
attribute edge originating from the given element:

[ {dn€Dy, e Ena | syale)=cel N tyale)=dp} eleN
data(el) _{ {dn €D,, e€Ega | spale)=cel A tga(e) Zdn} ele B (7'1)

Moreover, the third adaptation modifies the mapping annotation function mapp (c.f., Def. 6.2.4)
such that it can map an annotation onto the data nodes in the set Dy:

Definition 7.2.3: Attribute Mapping Annotation Function

Let F and Ap be the set of features and annotations over features, respectively, and let
ELD = EL U Dy be the set of elements in the E-graph EG which can be annotated.
The attribute mapping annotation function a —map_pr : ELD — Ap is a total function
assigning either an annotation or the empty element € to each element in G.

Propagation Algorithm Based on the three extensions to the graph formalism for the trace-
based propagation, Alg. 2 notes the steps of propagating the annotations of data nodes formally
according to the informal descriptions of Sec. 7.2.4.

The propagation iterates the set of source graph nodes in Line 15 and determines a rule which
records the graph node as source element of its left hand-side source graph in the following line.
The algorithm further invokes the function ANALYZEORLOOKUP, which extracts the corresponding
analyzed rule from a map or computes the analysis and stores it in the map. Furthermore,
the algorithm retrieves the trace node which records the processed source element in its source
elements. Since we assume generation-complete traces, the source element must be present.
Then, the algorithm retrieves the created target elements from the trace node and iterates them.
For each traced target node, the algorithm determines the set of its structural features DNODES;
by employing the function data and iterates this set. The function MATCHINALPHA in Line 24
tries to find an assignment which states the name of the currently processed data node d; in its
set-field. If it finds a matching pattern, it will store the pattern in the variable assign-block and
use it to retrieve get-fields which match the data nodes of the source node DNODES;.
Depending on the assignment type, the function GetAnnotationFromMatch combines the source
annotations, as described in Sec. 7.2.5, II. If a single direct dynamic assignment is detected, the an-
notation of the source data node will be mapped onto the target data node without modifications.
If multiple dynamic values are recognized in a CombinedAssignment, all corresponding source
annotations will be combined in a conjunction. Similarly, the function combines the annotations
on the way to the source attribute in a conjunction in case a ChainedAssignment is detected.
Finally, the resulting annotation ap is combined with the annotation of the target element in a
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Algorithm 2 Propagation of annotations of structural features.

1: procedure PROPAGATE(EH,a —mapry, P,a—mapp,,)
2 in FH=S+«TR—T > attributed target STT E-graph, derived from S < — @
3: in a —mappy : ELDgs — Afp > Annotation function for the source graph S
4 in P > The set of transformation rules
5 inout a —mapp, : ELDr — Ar > Annotation function for the target graph 7" which is
already complete
6:
T var ng € Ng > The current source node to be processed
8: var nrr € Nrgr > The trace node recording ng as source node
9: var dr € Dy, > The target data node to be annotated
10: var ap € Ap > Annotation retrieved from matching source elements
11: var pe P > The currently matching transformation rule
12: var > The analyzed rule for p
13: var assign-block > Block of opcodes in a,, which stores the set-field that matches dr
14:
15: for all ng € Ng do
16: p:={(L,R)e P|ng€Lgs} > Retrieve rule which records ng as source element
17: ap := ANALYZEORLOOKUP (p)
18: > Retrieve trace node and target elements recorded in trace node
19: nrg:={tr € Nrgr | tr e ns}
20: TRG :={te€ ELy | nrg =5 te}
21: for all t € TRG do > Process all target elements
22: DNODES; := data(t) > get structural features of target element
23: for all dr e DNODES; do > process structural features
24: assign-block := MATCHINALPHA(c,, dr) > block with matching set-field
25: if assign-block # ¢ then
26: ap := GETANNOTATIONFROMMATCH (assign-block, DNODES,, maprg) >
computed annotation based on assignment type and matching get-fields
27: mapp, (dr) := ap Amapp,(t) > Annotate the target data node
28: end if
29: end for
30: end for
31: end for

32: end procedure

conjunction which ensures that the data nodes can only be present when the corresponding graph
element is present in a configured variant.

7.2.6 Discussion

To sum it up, this section discusses the benefits and challenges of analyzing a bytecode model in
order to propagate annotations from structural features of source elements to target elements.
At first, the section illuminates some critical and beneficial aspects as well as points to consider
when applying a bytecode analysis whereas the second part of the section illuminates related work
and discusses future potentials.

Computational Cost First of all, a developer may consider the computational cost when delib-
erating if the additional annotation refinement pays off. Alg. 2, which propagates the fine-grained
annotations, performs several iterations over relevant data nodes to compute and assign the an-
notations.

Firstly, the bytecode needs to be analyzed rule-wise. This is not explicitly shown in the algorithm
but part of the functionality of the function CANALYZEORLOOKUP and informally explained in
Sec. 7.2.4. Secondly, the algorithm iterates the finite set of source nodes and for each source node

132



7.2. COARSE-GRAINED TRACES

looks up a matching trace element and the corresponding analyzed transformation rule. Further-
more, the algorithm iterates the recorded target elements and for each of them the data nodes, as
well as the data nodes of the source element to find matching set- and get-fields, respectively.
Due to the complexity of the computation steps, which require several iterations of the graph
elements and their data nodes together with mapping look-ups on top of the trace-based prop-
agation, we argue that the solution pays off in two cases: On the one hand, if the annotations
of a significant number? of structural features are more specific than those mapped onto their
respective objects, an automated approach to propagate their annotations is beneficial to decrease
manual efforts and human error. On the other hand, if no trace is available, the potential to
analyze the bytecode remains as one solution to reconstruct the entire mapping of source elements
including their structural features.

Pattern Derivation Sec. 7.2.3 offers an overview of common assignment patterns in model
transformations. The following remarks need to be considered:

Firstly, the relevant information for the purposes of this work is which source elements are used to
create which target elements. How target elements are created, i.e., which actions are performed
in between is not necessarily relevant. Accordingly, we focused to describe patterns which we can
identify clearly and which provide the key information namely the source elements and the target
element. As shortly discussed in the section, due to ambiguities and a necessary deeper analysis
particularly when collections are assigned, we refrain from exploiting them in our proof of concept
presented in Sec. 9.3.2.

Secondly, we have ATL transformation rules to demonstrate, exemplify and classify different
kinds of assignments. For presenting the opcodes we employed the EMFTVM bytecode model.
Although we are aware of similar patterns in other declarative languages, such as QVT (Relational
and operational mappings), it may require further investigation to which extent these patterns
occur in different transformation languages, particularly, if the transformation does not realize the
declarative paradigm. Accordingly, we categorize this approach as language-specific even though
the ATL transformation specification itself is not analyzed.

Benefits On its upside, similar to the discussion of a transformation based on a generation-
complete trace in Sec. 7.1, the analysis-based propagation ensures that the target mapping is
completely annotated, including its structural features at every time after the initial trace-based
propagation. If patterns are identified which assign target values (i.e., the transformation adheres
to the properties summarized in the third part of Sec. 7.2.4), the mappings of structural features
will be refined if necessary. This is particularly relevant if the structural features can assume
different values in different configurations due to different annotations.

Furthermore, mapping annotations to the structural features of objects in product line models is a
highly fine-grained way of annotating elements but not supported by many MDPLE approach. It
aims to allow for alternative values depending on the presence or absence of features. Particularly,
when unconstrained variability is supported, for instance as implemented in single-variant editing
tools, such as SuperMod [SW16] or the VASG in the projectional editing tool [Reu+20], allowing
for different values of a structural feature may be necessary. However, in this thesis we assumes
constrained variability (Prop. 4.1.2). As a consequence, if a more specific annotation a, is assigned
to the value of a structural feature of an object than to the object (annotation: a,, with a, = a,),
the structural feature still is present in a filtered product even if a, is not satisfied by the feature
configuration. Due to constrained variability, the structural feature will assume its default value
if the annotated data node does not pass the filter.

Finally, the potential of analyzing bytecode may pay off if no information about corresponding
objects in form of a trace is available. A rule analysis can determine source and target objects
which match the declared source and target types. If execution branches are discovered as well
in a static analysis (e.g., by building control and data flow graphs) the mappings of assignments
occurring in branches may also be determined. However, it must be noted that this would be

4 For instance, if each graph element possesses a data node with a more fine-grained mapping, an automated
propagation may pay off to reduce the manual refinement efforts.
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an expensive solution which is still specific to a transformation language and requires a complete
disassembly of the source code and domain models which support unconstrained variability.

Related Work Static analysis of (ATL) transformations has been implemented and performed
by Cuadrado et al. [CGL17; CGL18]. This work, however, aims at a different goal: The static
analysis serves to enhance the correctness of an ATL transformation specification by analyzing it
each time it is saved. Then, the analyzer searches, for example, for typing errors. In addition,
the analysis is exploited to improve the performance of the transformation execution engine, e.g.,
through parallelization. Consequently, the analyzer does not provide the pinpointed information
about corresponding source and target features but would help to determine whether all con-
tributing objects are bound. Furthermore, the analyzer does not operate on the execution model
persisted by the ATL/EMFTVM but on the operand stack created by the ATL default virtual ma-
chine. In contrast, we employ the EMFTVM because it stores an accessible generation-complete
trace as well as the corresponding execution model, which we analyze instead. Finally, our anal-
ysis serves to propagate annotations from source elements to target elements and is, therefore,
trimmed for this purpose.

In Sec. 4.3.3, we classify the lifting approach [Sal+14] as white-box solution. However, lifting
does not analyze the transformation nor any of its artifacts but changes the semantics of the
execution engine. Accordingly, the approach works independently of a specific transformation
specification but also requires access and adaptation of a single-variant model transformation
engine to become capable to transfer variability information. In contrast, analyzing bytecode
instructions neither regards the transformation specification itself (e.g., by parsing it) nor requires
to change the execution semantics. Similar to gray-box propagation, the approach analyses an
artifact created for specifying the transformation which is, in contrast to a trace, already present
before the transformation execution. Since our analysis focuses on the bytecode model of the
ATL/EMFTVM, it is trimmed to the analysis of exactly that model and, thus, language-specific.
Nonetheless, the assignment patterns itself are independent of a transformation language.

Outlook Similar to abstracting trace-based propagation, a bytecode instruction-based abstrac-
tion could be used to analyze several different kinds of bytecode, such as also the Java bytecode
model [Rhe+18]. Accordingly, the bytecode instructions of several compilers could be compared
and used to derive a common model from which also common assignment patterns could be com-
bined. To further respect branches and iterations instead of extracting only assignment patterns,
control and data flow graphs could be extracted by employing methods from static source code
analysis. If this white-box analysis was used to create the target model, the boundaries of con-
strained variability might have to be extended and a multi-variant model where elements (e.g.,
structural features) may instantiate different values could be created, given an according repre-
sentation is available (for instance, similar to the hidden superimposed model in SuperMod or the
VASG in the projectional editor).
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7.3 Incomplete Trace Information

Besides model transformation engines which persist complete and generation-complete traces,
transformation approaches exist which pertain only records of the main pivotal source and target
element per rule applications (i.e., 1:1 mappings) in incomplete traces. Triple graph grammars
and similar approaches [Sch94; LAS14; Bucl8], represent examples of approaches which record
incomplete traces. This section describes how to maintain the situation when incomplete trace
information is available. In this situation, we propose to perform the annotation propagation based
on the information present in the trace in the first step. A second step completes the mapping
information of the target model based on heuristics which exploit the hierarchical structure of the
target models.

For introducing the situation provoked by incomplete traces, Sec. 7.3.1 illustrates the problems
which may occur, due to the incomplete trace information while Sec. 7.3.2 explains how the
foundation of transformation introduced in Chp. 6 have to be adapted in order to explain the
alternative computation of a completely annotated target model in Sec. 7.3.3. To close this
section, Sec. 7.3.4 discusses the impact of computing missing annotations with respect to the
accuracy and the time efforts at the conceptual level.

7.3.1 Problem Statement

This section describes the situation which will occur if annotations are propagated based on
incomplete trace information. It starts with presenting an example and draws conclusions from
the example afterwards.

Example 7.3.1: Effects of Annotation Propagation Based on Incomplete Trace

Fig. 7.3.1 illustrates an example which employs an incomplete trace to propagate anno-
tations. Similar to the previous examples in this thesis, the source UML class model
encompasses database contents which are transformed into a corresponding Java model.
The source package db contains the single class Person which is annotated with the optional
feature P. The source edges miss an annotation. Therefore, the filter needs to employ
a strategy to handle missing annotations. In this example, the model filter integrates
elements missing an annotation in each product. Furthermore, this filter is capable to
guarantee referential integrity: if a link passes the filter, both of its ends have to be present,
otherwise the filter will remove the link.

Similar as in the previous examples, the transformation specification turns a UML class
into a Java class declaration and a compilation unit which are stored in the corresponding
Java package and model, respectively. In contrast to the previous examples, which assumed
the availability of a (generation-)complete trace, here only an incomplete trace is available.
Accordingly, the trace elements record the single pivot elements of the transformation rules.
For instance, in case of the C2C rule, the trace element relates the UML class with the Java
class declaration. Consequently, the propagation algorithm can only map the annotation
of the single source element onto the single target element causing the compilation unit to
remain without annotation.

The bottom of Fig. 7.3.1 shows one step of evaluating the commutativity criterion which
filters the annotated multi-variant models by the feature configuration selecting the feature
DB and deselecting the optional feature P. The left hand-side depicts the filtered source
model G'q, which comprises the UML model and package. Transforming G's with the
single-variant model transformation results in the single-variant model H’. which contains
the corresponding Java package and model.

In contrast, filtering the multi-variant target model M Hr,, by the same feature configura-
tion derives the single-variant target model HY. which consists of the package but also of
the compilation unit for the class Person. Due to the missing annotation, the filter assumes
the respective element to be visible in each variant. Since H}. and H’. are not equivalent
(up to isomorphism), the multi-variant model transformation violates commutativity.
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Figure 7.3.1: Commutativity violation due to incomplete trace information.

This example demonstrates that the annotations propagated to the multi-variant target model
based on incomplete trace information do not suffice to guarantee commutativity and that the
missing information in the incomplete trace causes this effect.

Influence of Model Filter As the example needs to assume the behavior of the filter in sight
of missing annotations, we discuss the effect of the filter before drawing conclusions from the
example:

It must be noted that not only the kind of trace may make a difference for satisfying the com-
mutativity criterion but also the definition of the filter function: As explained in Sec. 7.3.1, III,
a flat filter does not make assumptions about relations between model elements but considers the
annotation mapped onto an element to determine whether the element is integrated in the product
derived for a feature configuration. Def. 6.2.5 defines this kind of filter as flat filter function while
assuming that an annotations is mapped onto all elements.

However, filters have to react to situations in which elements miss annotations, too. Flat filters
can either integrate each element missing an annotation (assuming an implicit true as annotation)
or remove each element missing an annotation (assuming an implicit false as annotation) in the
derivation. However, assuming the annotation false would mean the element is not present in
any of the configured products which would make the element superfluous in the multi-variant
model. Thus, the unconditional removal of an element can hardly represent a valuable alternative.
For that reason, we consider flat model filters which integrate each element without annotation in
the derived product in the example and in the sequel.

In contrast, a hierarchical filter regards relationships between elements of the multi-variant model.
Based on the hierarchical structure formed in several model types, particularly in models con-
forming to the Ecore metamodel, the presence of existence dependencies can be assumed. As a
consequence, hierarchical filters may override or suppress the integration of a model element in the
derived variant based on the given annotations and the hierarchical structure of the models, which
are assumed to form a spanning containment tree. In this example, however, the hierarchical filter
would not make a difference because the compilation unit as a child element is filtered and the
well-formedness is not affected by removing it. If the situation was vice versa, the compilation
unit was kept in the derived variant and the model was removed, the hierarchical filter would
prevent the situation by integrating the Java Model in the derived variant, too.

In general, filters for arbitrary models cannot assume dependencies inside the models generically
and, thus, do not allow for propagating selection states as hierarchical filters do. Therefore, in
the following discussions we assume a flat filter and only refer to the capabilities of a hierarchical
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filter explicitly, if it is relevant. Furthermore, if annotations can be assigned only to objects of the
models, referential integrity depends on the capabilities of the flat filter. In general, there are two
viable solutions to handle edges without annotations: The filter may either integrate such edges
in each variant unconditionally, assuming an implicit true as annotation, or it may integrate the
edges only if both ends are integrated in the variant. Removing such edges (i.e., assuming false
as annotation) would violate referential integrity because then only objects would be present in
the derived product without links connecting them.

Consequences: Shortcomings Caused by Missing Annotations The example reveals that
an incomplete trace as input to the trace-based propagation algorithm results in a partially an-
notated model. However, in a partially annotated model elements missing an annotation may be
retained in or removed from too many configured products by mistake due to the missing mapping
information and due to different model filter capabilities.

Accordingly, we identify at least the following shortcomings and problems caused by utilizing
traces with insufficient information about corresponding elements in source and target model:

e uncertainty: in general, it is unclear whether an element missing an annotation is included
in or excluded from a derived model. The presence depends on the capabilities and the
configuration of the employed model filter.

e increased resource consumption: including too many elements in the derived target
model which are not present in the corresponding derived source model may consume an
increased and unnecessary amount of resources.

o security threat: integrating (sensitive) data, which is not intended to the customer accord-
ing to its configuration, in the product may leak confidential or security-relevant information
or functionality (although it may be hidden or dead but is delivered, nonetheless).

e misbehavior and inconsistency: excluding too many or the wrong elements may cause
dangling references, misbehavior and inconsistent models which, in the end, may provoke
non-functional source code to be derived.

For that reason, it is essential to assign annotations to all target elements which can be annotated.
Only then, no (or the least) assumptions have to be made and misbehavior resulting from missing
annotations can be avoided. Consequently, the subsequent sections discuss strategies to determine
missing annotations in partially annotated models.

7.3.2 Foundations

In contrast to the total mapping function produced by trace-based propagation based on a com-
plete trace, the propagation based on an incomplete trace creates a partial mapping function
map_pr. The following definitions adjust the foundations provided in Chp. 6 to respect the
conditions introduced by the missing correspondence information.

Partially Annotated Multi-Variant Graph Firstly, multi-variant graphs as defined so far
comprise a total mapping annotation function (Def. 6.2.4). Therefore, Def. 7.3.1 declares a partial
mapping annotation function:

Definition 7.3.1: Partial Mapping Annotation Function

Let F and Afp be the set of features and annotations over features, respectively, and let
EL= N U E be the set of elements in a graph G. The partial mapping annotation function
map_pr: EL — ApU{e} is a total function assigning either an annotation or the empty
element € to each element in G.

We note the set of annotations including the empty element as A%,

such that A% = ApU{e}.
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The definition uses the empty element € to describe a missing annotation for an element in the
graph. Furthermore, in contrast to the total mapping function mapp, referential integrity cannot
be ensured by this function.

On the whole, a partially annotated multi-variant model is a graph with a partial mapping anno-
tation function:

Definition 7.3.2: Partially Annotated Multi-Variant Graph

Given a set of features F' and annotations A%, a partially annotated multi-variant graph
is a pair MG_pp = (G,map_pr), where G = (N,E,lN,lg,s,t) is a graph comprising the
disjoint set of elements EL = N U E, and map_pp : EL — A% is a partial mapping
annotation function assigning a potentially empty annotation to each element of G.

Filter Depending on the used tool, the visibility evaluation function (c.f., Def. 7.3.3) used by
the filter function (Def. 6.2.5) may interpret an empty annotation differently.

If the filter includes all elements missing an annotation in the configured product, the evaluation
function can be refined in the following way:

Definition 7.3.3: Positive Visibility Evaluation Function

Let F be a set of features, FCp the set of feature configurations and Ar be the set of
annotations over F'. A positive visibility evaluation function over F' is a function v :
A% x FCp — B, where B = {true, false} denotes the set of Boolean values. vp guarantees
the following property:

vr(e, fep) = true (7.2)
vp(ap, fep) =true & fep=ap (7.3

Consequently, regardless of the feature configuration, a missing annotation means that the element
is visible and, thus, integrated in the resulting product.

Hierarchical Graph Moreover, the following algorithms assume that the graphs form a strict
containment hierarchy. A node can only exist if its parent node exists in the graph or the node
is the root of the containment hierarchy. Nevertheless, also cross-references inside the tree may
occur which are not decisive for the containment hierarchy and, thus, irrelevant for the existence
relationship. For extending the graph formalism to express a hierarchy, we employ the function c:
E — B, which states whether a given edge is a containment relationship (true) or not (false). The
function s applied to a containment edge determines the container and the function ¢ determines
the contained node.

Definition 7.3.4: Hierarchical Graph

Let Ty and Ty be the finite sets of node types and edge types, respectively. A hierarchical
graph over T and Tg is a tuple G = (N, E,ln,lg,s,t,c,root), where

e N is a finite set of nodes,

o FE is a finite set of edges, where (NNE =0),

e IN:N—=Tn,lg: E— Tg are a node and edge labeling function, respectively,
e s:E—FEL, t: E— EL are a source and target function, respectively,

e c: FE — B is a Boolean container function and

e root € N is the root node of the graph.

The container n,, of a node n € (N \ {root}) must be unique, must not reference itself, and
the root must not possess a container which the following three properties ensure:

L 4
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Vei,eg € E: cler) =clez) =true A t(e1) =t(e2) =n
= e1 =e (7.4)
Vn € N\ {root} : FecE: s(e)=n A tle)=n (7.5)
Vec E: cle) =true = t(e) # root (7.6)

Accordingly, the definition of hierarchical graphs models a containment hierarchy where the con-
tainer of a node is unique.

Tree Operations For determining missing annotations, the respective strategies exploit the
hierarchy of nodes. Functions delivering parent in children nodes in the graph can be defined in
the following ways. Def. 7.3.5 initiates with describing how the parent of one node is determined.

Definition 7.3.5: Parent Node Function

Let G be a graph typed over Ty and T and EL =N U E be the set of its elements.
The partial function parentg : N — N U {€} returns the unique parent node n,, for a given
node n or nothing if it is the root, such that

np, & JdecE: cle)=true A s(e)=mnp A tle)=n

€ n=root (7.7)

parentg(n) = {

The transitive closure over all parents of a node is denoted as parent;g CNxN .

Ex. 7.3.2 provides an example of applying the parent function.

Example 7.3.2: Parent (Container) Annotations

In the example, depicted in Fig. 7.3.1, the container of the UML package up is the UML
model. Consequently, parentg(up) = um. Similarly, the parent of the UML class ucp is the
UML package and thus, parentg(ucp) = up. In contrast, since um is the root node, the
parent function will not return a node for this node as input: parentg(um) =e.

Accordingly, in a spanning containment tree the parent node n, of a node n is unique and the
only one that is referenced as source node with an outgoing edge labeled as container from n.

In addition, we define the set of children nodes of a node n as all nodes that are referenced as
target nodes contained in node n in Def. 7.3.6.

Definition 7.3.6: Children Nodes Function

Let G be a graph typed over Ty and T, and EL = N U E be the set of its elements.
The function childreng : N — N returns the set of children nodes No C N for a given node
n, such that

childreng(n) ={n. | e € E A c(e)=true A s(e)=n A t(e)=n.} = N¢ (7.8)

Ex. 7.3.3 continues to demonstrate the children computation function based on the example graph
presented in Fig. 7.3.1.
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Example 7.3.3: Children (Contained) Annotations

In the example depicted in Fig. 7.3.1, the children nodes of the Java model jm are the Java
package jp and the compilation unit cup. Consequently, childreng(jm) = {jp, cup}.

7.3.3 Computation of Missing Annotations

Based on the modified formalization which represents incompletely annotated multi-variant graphs,
this section describes the process of computing missing annotations. The first part describes how
to determine the missing annotations schematically to gain an overview of the three proposed
strategies and their embedding in the propagation mechanism so far. Based on that information,
the second part explains how to compute the elements which miss annotations and the third part
offer details on the completion strategies for nodes followed by the strategy for edges.

I Schematic Propagation Procedure

Overview Due to the information missing in incomplete traces, the trace-based propagation
does not behave as in the base version depicted in Fig. 5.3.1 but consists of two steps as depicted
in Fig. 7.3.2. Since the transformation based on an incomplete trace may only produce a partial
mapping annotation function map_ p Frp resulting in a partially annotated multi-variant target
graph M H _DPHr, (1), the second step creates the completely annotated graph M Hp, .. Ac-
cordingly, the second box depicted in the middle of Fig. 7.3.2 represents a black-box algorithm
which should determine missing annotations based on the partially annotated model. The input
to this step encompasses the already produced partial mapping annotation function as well as the
model, i.e., the partially annotated multi-variant graph M H_p Hr,, - Both are indispensable for
determining dependencies between model elements based on the heuristic algorithms we propose
next.

multi-variant
model transformation

MGs, single-variant MH_p-,

L7
/ model transformation \\
I~

Gs ] Hr

©

Y ) (

(trace of 1: 1 mappings

mapeg. N ; |~ Map_Pr,

L]
\ trace-based /

propagation MHTF
. . Hy
missing annotation
determination map,,
-

Figure 7.3.2: Schematic overview of employing completion strategies.

Please note: the graph Hp is not modified anymore but required as input to the second step to
consult its structure and the dependencies between its nodes.

Assignment Strategies For determining missing annotations we introduce three algorithms
which utilize the containment structure of EMF-based models. Since the Ecore metamodel fosters
a strict existence relationship, we assume the same existence relationships in the multi-variant
graphs. Accordingly, the multi-variant graphs form a spanning containment tree. Consequently,
if the algorithms should be applied to other kinds of models conforming to a less restrictive
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Figure 7.3.3: Overview of steps to complete annotations.

containment structure, first, the spanning containment tree will have to be determined. Otherwise,
the algorithms cannot guarantee a proper annotation result.

The baseline of determining a missing annotation is the extended visibility function (Def. 7.3.3).
In case of a missing annotation, its result is comparable to either mapping true or false onto
each element missing an annotation.

Overview of Strategies In contrast, the first proposed strategy, container, assigns the an-
notation of the parent node of the node missing the annotation. Similarly, the second strategy,
contained, combines the annotations of the contained nodes in a disjunction and assigns it to
the current element. Finally, the first and second strategy can be combined to determine the
annotations of the container nodes firstly and computing those of the children afterwards. Ac-
cordingly, the following three possibilities compute an annotation for each element el still missing
an annotation and are enumerated here in short. The subsequent paragraphs explain them in
detail.

1. container: use the annotation of el’s container for mapping assignment

2. contained: build the disjunction of the annotations of el’s contained elements for mapping
assignment

3. combined: combine the el’s container (strategy (1)) annotation and the disjunction of the
annotations of el’s contained elements (strategy (2)) in a conjunction for mapping assignment

Overview of Computing Missing Annotations Before describing the details of the three
completion algorithms, Fig. 7.3.3 illustrates the dependencies and key parameters of the processed
steps to determine a missing annotation.

According to Fig. 7.3.3, the computation of missing annotations consists of three basic steps. In
the figure, rectangles represent operations and half-rounded rectangles the in- or output of an
operation. At first, the computeOpen algorithm (Alg. 3) determines the elements still missing an
annotation. It distinguishes nodes from edges and collects them in two sets ordered by a pre-order
traversal of the spanning containment tree formed by the input model. The set of nodes is input to
the second step, which employs one of the three strategies, prescribed in Alg. 4 - 6 to determine the
annotations for each node in the set based on the partially annotated model. This step results in
a partial mapping function mapip};HT where each node carries an annotation but not necessarily

every edge. Consequently, the third step provides the new partially annotated model as well as the
set of edges missing an annotation as input to the algorithm assignEdgeAnnotations (Alg. 7).
Based on the annotations of the source and target node connected by an edge, the algorithm
determines the annotations of the edges. To this end, the resulting mapping annotation function
is total yielding a completely annotated graph.
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Before starting the ‘missing annotation determination’ process with the partial model as input, as
sketched in Fig. 7.3.3, the algorithm checks whether an annotation is already mapped onto the root
of the model. If the root misses an annotation, the root element will receive the annotation of the
root of the feature model because otherwise the entire target model would not exist. Additionally,
this check and potential assignment of an annotation to the root of the model guarantees that
container expressions exist when traversing the containment hierarchy of the considered model
from top to bottom.

IT Computation of Open Elements

After having determined the root annotation, the first step of Fig. 7.3.3 collects all graph elements
without an annotation as described in Alg. 3. The algorithm computes two distinctive sets of open
elements in the graph. It distinguishes nodes (OpenNodes) from edges (OpenEdges) to compute
their missing annotations separately and those of the nodes in the first place.

Algorithm 3 Compute ordered sets of nodes and edges missing an annotation.

1: procedure COMPUTEOPEN(HT,mapipFHT)

2 in Hp > target subgraph
3 in map_p Frp ELy, — A% > Partial annotation function for the target subgraph Hp
4:

5: var OpenNodes := {} > Initialize ordered set of open nodes
6 var OpenEdges := {} > Initialize ordered set of open edges
7 var el € ELp., > Processed target element
8

9: for el € Ny, do > Topologically process all nodes of target graph
10: if map_pry,, (el) = € then
11: OpenNodes := OpenNodes U {el} > Append element to set of open nodes
12: end if
13: end for
14: for el € Ey,, do > Process all edges of target graph
15: if map_pry,, (el) = € then
16: OpenEdges := OpenEdges U {el} > Append element to set of open edges
17: end if
18: end for

19: end procedure

Subsequently, the algorithm iterates the nodes of the target input graph Hrp (i.e., the set Np,.)
in a pre-order traversal. Line 9 starts with collecting the set of open nodes. If no annotation is
mapped onto the processed node (c.f., Line 10), the algorithm will append the node to the back
of the set of open nodes. Similarly, the second loop iterates the set of edges (c.f., Line 14) and
appends each edge which misses an annotation to the set of open nodes (c.f., Line 15). As opposed
to the set of open nodes, the order of edges is irrelevant because the annotation which is computed
for the edges, will be a conjunction of the their source and target node annotations.

Altogether, after having processed all elements of N, the sets of open nodes is ordered according
to a pre-order traversal of the spanning containment tree formed by the model while the set of
open edges contains them in arbitrary order.

Example 7.3.4: Computation of Open Elements

This example extends Ex. 7.3.1 in the way presented in Fig. 7.3.4. For easier readability,
the (source) edges are not annotated and not recorded by the 1:1 links in this scenario.

The example assumes a modified C2C transformation rule: Instead of creating a Java class
declaration and corresponding compilation unit CUnit only, the transformation also adds
an interface declaration (InterfDecl) to the Java package jp as well as a corresponding
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compilation unit for the interface to the Java model jm. While the Java model stores the
compilation units as before, the interface declaration is stored in the package jp linked with
the UML package up comprising the transformed UML class ucp. Moreover, a package,
called impl, should store each class declaration. Accordingly, the C2C rule will create the
implementation package jpi stored inside the package containing the interface declaration
additionally if this package does not exist in the containing package yet (i.e., for the first
transformed class stored in this package).

As pivotal elements, the trace still records the UML classes and the Java class decla-
rations and propagates the annotations depicted in the blue-colored rounded rectangles,
accordingly. Consequently, the annotations of the two compilation units for each C2C rule
application as well as of the implementation package and the interface declarations are
missing after propagating annotations based on the incomplete trace.

The computation of the open elements iterates the target model M Hr,, in pre-order traver-
sal. The collection of nodes missing an annotation examines the left subtree of the root
node, at first. The package jp is annotated but its children, both interface declarations of
the Person and Family class as well as the implementation package, miss an annotation so
that the algorithm adds them to the set of open nodes subsequently. The class declarations
which are processed afterwards, carry annotations and thus, are not integrated into the
set of open nodes. Similarly, iterating the remaining nodes of the model first appends the
compilation unit for the Person interface and class declaration followed by the compilation
units for the Family interface and class declaration to the ordered set of open nodes. As a
result, the set of open nodes encompasses all nodes of the model missing an annotation in
their hierarchical order: OpenNodes = {jif,jip, jpi,cup,cupi,cuf,cufi}

source trace target
MG ©8) MHre ’—
i Mo e e e
4‘ Ll o INIEEINAL
uet : oPackages DB ep1: packages cup : CUnit
DB) jp:P name = "Person.java"
up : Package t2: P2P : :
name = "db" eu2:
— ¢ Name= "db" Iet Etpes units
o oT - — cupi : CUnit
ue2 : oTypes ip : InterfDecl name = "impl =
n n name = "Person-
@ name = "Person Ietz : types f Impl.java"
. ; 3:
ucp : Class t3:C2C " cp : ClassDecl . he
_p “ —_— : - - -
name = rerson types @ name = "Personimpl cuf : CUnit
ue3 : oTypes Y etd name = "Family.java"
if : InterfDecl types oud-
F name = "Family" F ) units
jcf : ClassDecl . .
uct : Class 4t4 :C2C name = "Familylmpl" CM
name = "Family" name = "Family-
Impl.java"

Figure 7.3.4: Commutativity violation due to incomplete traces in extended example. The C2C rule
creates a class declaration, stored in an package impl, an interface declaration and two compilation
units for storing the interface and class, respectively.

Please note: Even though the source edges are not annotated in the example, the pre-order
traversal can also record the edges which miss an annotation. For reasons of better performance,
it is suggested to iterate the partially annotated model only once and record both sets of open
elements simultaneously. Recording the edges additionally results in a set of open edges, which
comprises each edge of the target model. In Ex. 7.3.4 the set constitutes as follows: OpenFEdges =
{epl,et3,etl, ep2,et2,etd,eul,eu2, eul,eud}.
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IIT Computation of Open Node Annotations

In the next step, one of the three completion strategies processes the ordered set of open nodes.
The following paragraphs introduce the algorithms describing the processed steps n the container,
the contained and the combined strategy, subsequently.

Container Strategy Alg. 4 describes the behavior of the container strategy. The algorithm
iterates the set of open nodes from the beginning to the end (i.e., according to the pre-order
traversal order) (1. 8). For each processed node n, in line 9 the algorithm determines the annotation
of its container by employing the parent function defined in Def. 7.3.5. Then, the algorithm assigns
the annotation stored in n, to n by updating the partial mapping function in line 10. As a result,
n may serve as annotated parent node if one of its children misses an annotation as well. Thus,
the algorithm guarantees the availability of an annotation for the parent node for each processed
node. Moreover, it ensures referential and existence integrity for the set of open nodes: whenever
a node n € OpenNodes is integrated in a configured product, it is ensured that its container exists
in the same product, too.

Algorithm 4 Assignment of the annotation of the container node.

1: procedure PROPAGATECONTAINER(OpenNodes, MH_pp,.)
2 in OpenNodes > ordered set of nodes without annotation
3: in Hr > target subgraph
4 in map_p Fp, ELg, — A% > Partial annotation function for Hp
5 out mapip'FH :ELp, — A% > Partial annotation function for H7p with all nodes
T
annotated
6:
7 mapip’FH = map_pry,, > Initiate total annotation function with partial one
8 for n € OpenNodes do > Iterate containment hierarchy top-down
9 var n, := parentg(n) > get container node
10: mapip’FH (n):= mapip},H (np) > assign annotation of container node
T T
11: end for

12: end procedure

Example 7.3.5: Computation of Container Annotation

The extended example, depicted in Fig. 7.3.4, misses annotations for the set of open nodes,
OpenNodes = {jif,jip, jpi,cup,cupi,cuf,cufi}, which are computed in Ex. 7.3.4. This
lays the grounds for this example which describes how to compute the missing annotations
for this set of open nodes based on the container completion strategy. Fig. 7.3.5 summarizes
the result:

Firstly, the algorithm determines the annotation of the interface declaration jif corre-
sponding with the UML class Family. The Java package jp represents its parent node
onto which the annotation DB mapped. Accordingly, the annotation which is computed for
the interface jif is DB.

Similarly, the next elements, the interface declaration for the class Person (jip) as well
as the implementation package (jpi), receive the same annotation because the package
jp encompasses these two elements, too. Thereafter, the compilation units receive an
annotation, which is also DB.

As a result, in this example the container strategy assigns the annotation DB to each of the
nodes stored in OpenNodes. Apparently, in this example the result of the algorithm not
optimal because the root feature is assigned to all elements missing an annotation.
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Figure 7.3.5: Computed annotations by container completion strategy (Alg. 4).

Contained Strategy The contained strategy — presented in Algorithm 5 — iterates the ordered
set from the end to the beginning. For that reason, at first, a REVERSE operation inverts the set of
open nodes (1. 8) which results from the pre-order traversal. Each element receives the annotations
of its children nodes combined in a disjunction (l. 14). Consequently, the node (containing the
children) has to exist as soon as at least one of the children nodes exists.

If no children elements exist (i.e., a leaf of the tree is processed), an empty disjunctive clause would
be the result which is defined to evaluate to false in Boolean algebra. Since this would remove the
element from each derived product (c.f., discussion of model filters in Sec. 7.3.1), as alternative,
the algorithm retains each leaf node in a resulting product by assigning the root feature instead
of the empty disjunctive clause in line 12. Nonetheless, due to the bottom-up propagation, all
elements processed after the leaf nodes possess children where annotations are assigned.

Example 7.3.6: Computation of Contained Annotation

This example explains how to compute annotations for the set of open nodes of the example
depicted in Fig. 7.3.4, based on the contained strategy.

First, the set of open nodes is reversed. Accordingly, the reversed set starts with the
compilation units and comprises the interface declarations such that in the end:
Reversed = {cufi, cuf, cupi, cup, jpi, jip, jif}.

The result of the following computation deviates only in the annotation mapped onto the
package impl (object jpi) from the annotated multi-variant target model created by the
container strategy, shown in Fig. 7.3.5:

First, the algorithm processes the four compilation units which are leaf nodes of the span-
ning containment tree. The example assumes that this corner case is implemented as
proposed in Alg. 5, which maps the annotation of the root feature, which is DB, onto those
nodes. Consequently, the compilation units are integrated in every derived product.
Next, the annotation of the implementation package jpi is determined which is PV F, which
combines the annotations of its children nodes in a disjunction. For the remaining open
nodes, representing the interface declarations, the same situation as for the compilation unit
occurs: the root feature DB is mapped onto them because both elements do not comprise
children nodes.
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Algorithm 5 Assignment of annotations based on contained elements.

1: procedure PROPAGATECONTAINED(OpenNodes, M H _pr,,)
2: in OpenNode, > ordered set of nodes without annotation
3: in Hr > target subgraph
4 in map_p Fp. ELg, — A% > Partial annotation function for Hrp
5 out map_p%H cELg, — AOF > Partial annotation function for Hy with all nodes
T
annotated
6:
7 mapip};H = map_pry,, > Initiate total annotation function with partial one
T
8: var Reversed = REVERSE(OpenN odes) > reverse the set
9: for n € Reversed do > iterate bottom-up
10 var Children = childreng(n) > set of children nodes
11: if Children =( then
12: mapip’FH (n) := GETROOTFEAT()
T
13: else
/ e /
14: map—pFHT (TL) T chChildren map—pFHT (C)
15: end if
16: end for

17: end procedure

Combined Strategy Finally, Alg. 6 describes the realization of the combined strategy. The set
of open nodes is iterated twice. Similarly as in Alg. 4, the first iteration of the set of nodes occurs
from front to back according to the pre-ordered sequence (1. 9) and assigns the annotation of the
parent node to each processed node (1. 11).

Secondly, the algorithm iterates the set of open nodes in reverse order (1. 14) in the same way
as in Alg. 5. In contrast to the contained strategy, this algorithm does not have to determine an
annotation if children elements are missing because the previous iteration ensures that at least
the annotation of the container is already assigned. However, if children nodes are present, the
algorithm will combine their annotations in a disjunction (1. 18). In the end, the resulting clause
is combined with the annotation assigned in the first iteration in a conjunction (1.19) and assigned
this way to the respective node.

Example 7.3.7: Computation of Combined Annotation

Fig. 7.3.6 demonstrates the annotations resulting from applying the combined strategy to
compute the annotations missing in Fig. 7.3.4.

First, the annotations of the parent nodes are assigned as in Ex. 7.3.5. Accordingly, each
node in the set of open nodes receives the annotation DB. Afterwards, the algorithm iterates
the reversed set of open nodes. If a node contains children nodes, their annotations will be
combined in a disjunction. The resulting annotation is combined in a conjunction with the
already present parent annotation. In this example, this is the case for the package impl
(object: jpi). If the node does not contain children, the annotation computed in the first
iteration will remain unchanged.

Thus, after executing the combined strategy, the mapping annotation function associates
the following Boolean expressions with respective model elements:

map_p' (jif) = map_p'(jip) = DB
map_p' (jpi) = DBA(PVE)
map_p' (cup) = map_p' (cupi) = map_p'(cuf) = map_p'(cufi) = DB

All in all, the combined strategy may increase the execution time due to iterating the set of nodes
twice but not its complexity, as the second iteration visits exactly the same number of elements.
The complexity of each algorithm is discussed in Sec. 7.3.4. Moreover, it is expected that the
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Algorithm 6 Assignment of combined (parent and children) annotations.

1: procedure PROPAGATECOMBINED(OpenNodes, M H_pr,,)

2: in OpenNodes > ordered set of nodes without annotation
3: in Hy > target subgraph
4 in map_pry,, ELy, — A% > Partial annotation function for the target graph Hp
5

out mapip},H :ELg, — A% > Partial annotation function for target graph Hr with all
T

nodes annotated

6:

7

8: map_p'FH = Map_pry,, > Initiate total annotation function with partial one

T
9: for n € OpenNodes do > Iterate containment hierarchy top-down
10: var n, = parentg(n) > get container node
11: map_pp, (n):=map_pp, (np) > assign annotation of container node
T T
12: end for
13:
14: var Reversed = REVERSE(OpenN odes) > reverse the set
15: for n € Reversed do > iterate bottom-up
16: var Children = childreng(n) > set of children nodes
17: if Children # () then
. _ /
18: var childClause =\ .c chitdren map_pp,, (¢)
. / — / .

19: map_pry, (n):= map_pey, (n) A childClause
20: end if
21: end for

22: end procedure

accuracy of the determined annotations with respect to satisfying commutativity when employing
the combined strategy increases. Sec. 7.3.4 further elaborates on the accuracy of the heuristics to
determine annotations in partially annotated models. Finally, Sec. 10.3 examines the accuracy of
the completion algorithms in different transformation scenarios in practice.

IV  Computation of Missing Edge Annotations

Besides the set of open nodes, Alg. 3 computes the set of edges missing an annotation. This
section explains how the set of open edges is processed.

After having determined annotations for each node, it is possible to consider the edges, regardless
of whether they are forming the spanning containment tree (containment references) or estab-
lish a cross-reference between arbitrary nodes. Performing the algorithms in the order sketched
in Fig. 7.3.3 guarantees that an annotation is present on each node.

To ensure referential integrity, both ends of an edge have to be incorporated in a derived product for
avoiding dangling references. Otherwise, it depends on the behavior of the model filter whether
the edge is included in each derived product or excluded. Therefore, the algorithm assigning
annotations to edges retrieves the annotation of the source node (s) and of the target node (¢) and
combines them in a conjunction. This expression is assigned to the respective edge by employing
the mapping annotation function.

Alg. 7 describes the assignment of annotations to edges missing one. The partially annotated
target graph as well as the set of open edges are input to the algorithm. As sketched in Fig. 7.3.3,
the partial mapping already records an annotation for each node in the graph. In contrast to
processing the set of open nodes, the order of processing the edges is irrelevant because all nodes
are annotated. Consequently, the set of open edges may be iterated in arbitrary order. For each
edge in the set, the algorithm assigns the conjunction of the annotation of its source and target
node (1. 9) to the edge. To this end, the entire completion process ensures that an annotation is
not only mapped onto each node but also onto each edge in the graph.

147



CHAPTER 7. MISSING TRACE INFORMATION
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Figure 7.3.6: Computed annotations by combined completion strategy (Alg. 6).

Algorithm 7 Assignment of annotations to edges.

1: procedure ASSIGNEDGEANNOTATIONS(OpenEdges, MH_pp,,)

2 in OpenFEdges > set of edges without annotation
3: in H=Hg<+ Hrr— Hrp > target STT graph
4 in mapip’FH :ELp, — Af > Partial annotation function for the target graph Hp

T
where all nodes are annotated

5 out Mapry,, ELg, — Afp > Total annotation function for the target graph Hp
6:

7 Mapry, = map_p’FH > Initiate total annotation function with partial one

T

8 for e € OpenFEdges do > Iterate set of edges
9 mapry,, (e) := mapry,. (s(e)) Amapry,,, (t(e)) © assign annotation of container node

10: end for
11: end procedure

Example 7.3.8: Assignment of Annotations to Edges

After having assigned annotations to each node by one of the three strategies introduced
before, the set of open edges is iterated to assign annotations.

As a result of determining elements missing annotations in Ex. 7.3.4, the set of open edges
encompasses each edge in the target model: OpenEdges = {ep1, et3, etl, ep2, et2, et4,
eul, eu2, eu3, eud}

Since the algorithm computes annotations after having applied one of the three strategies,
all nodes are already annotated. We assume that the container strategy (Alg. 4) provided
the missing node annotations. Then, Alg. 7 assigns the annotations to the edges in the
mapping function, which Fig. 7.3.7 highlights by blue rectangles with white letters, as
follows.

Again we refrain from simplifying the annotations to show their composition based on the
annotations of the source node (left side of the conjunction) and target node ((.e., the right

L 4
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side of the conjunction). ]
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Figure 7.3.7: Computed annotations by edge completion (Alg. 7), depicted in blue rectangles. The
container strategy (Alg. 4) completed the annotations of the nodes.

Summing it up, by employing one of the three proposed strategies, in the first step annotations for
the nodes are determined. Due to the construction and order of the algorithms, it is guaranteed
that for each node missing an annotation, an annotation can be determined because either an
annotated parent node exists or its children are annotated. Similarly, the computation of the
edge annotations is performed only after all nodes are annotated ensuring that the source and the
target of an edge offer access to a valid annotation. Thus, the process turns a partial mapping
function into a total mapping function.

7.3.4 Discussion

Even though the strategies ensure the creation of a total mapping function based on knowledge
guaranteed by incomplete traces, the resulting function may still incorporate mappings that are
not specific enough or too specific. On the one hand, an annotation that is not sufficiently specific
is too broad with respect to including the corresponding model element in too many configured
products. On the other hand, an annotation that is too specific is too restrictive with respect to
removing the corresponding model element from too many configured products. Both situations
may cause violations to the commutativity criterion. Moreover, the algorithms expose different
computational complexity which may be weighed against its accuracy when selecting a strategy
to complete the mapping function with annotations.

The following two parts discuss the computational complexity of each algorithm, firstly, and the
accuracy to satisfy commutativity, secondly. Please note that the sequel discusses the up- and
downsides of choosing one of the strategies conceptually and derive proposals to choose a strategy
in case incomplete trace information is present. Conversely, the evaluation in Chp. 10 employs
measurements to investigate the precise error introduced by applying the heuristic strategies in
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different scenarios.

I Computational Complexity

As illustrated in Fig. 7.3.3 the process of determining the total mapping function consists of three
major steps: first, the collection of graph elements missing annotations, second, the computation
of node annotations and third, the computation of edge annotations. For selecting one of the
heuristics, its computational complexity may be regarded and weighed against its benefits for
accuracy. Accordingly, we first analyze the complexity to offer a worst case estimation of the
computational complexity regarding time consumption. For that reason, this part discusses the
complexity of the algorithms which determine the open sets of elements in the target graph missing
an annotation first. Next, the complexity of determining the missing annotations for the graph
edges is discussed before regarding the three heuristics which compute the missing annotations
for the graph nodes.

Preliminaries For analyzing the algorithms in an isolated way the following variables are of
interest:

The input to the algorithms is the partially annotated target graph M Hr = (Hp,map_pp,). A
number of n = |Np| nodes and of e = |Ep| edges counts the elements of the target graph Hrp,
where © = n+ e represents the number of all graph elements.

Furthermore, let n’ < n and e < e be the number of nodes and edges missing an annotation,
respectively. Even though no annotations were assigned before by an incomplete propagation,
the preprocessing step would annotate the root node of the target graph with the root feature,
ensuring that at least one node out of the n nodes of Hy is annotated. This in turn guarantees
that the number of open nodes is smaller than the number of all nodes in Hrp.

Moreover, the strategies to determine missing annotations based on the already assigned anno-
tations have to access the mapping function. In reality the complexity of accessing and storing
elements in maps depends on several factors, such as the implementation of the map, the capacity
in case of a hash map and a balanced dispersal among buckets, etc., which in the best case is O(1)
and in the worst case O(m) with m representing the number of elements stored in the map. For
that reason, in the sequel we assume the worst case of a complexity of O(z) for retrieving a graph
element from and adding a graph element to the map.

Termination In the first place, it must be guaranteed that the annotation determination strate-
gies terminate on an arbitrary partially annotated multi-variant graph as input. The main loop
that iterates the set of open nodes or edges is decisive for the termination of the algorithms to
find the missing annotations.

As stated in the preliminaries, the number of open nodes n’ = |OpenN odes| is limited by the finite
number of nodes in the multi-variant input graph n = |N|, such that n’ < n. Moreover, the sets
of nodes and edges in Hp are finite implying that the sets of open nodes and edges are finite as
well when beginning the iteration of the sets.

Secondly, the algorithms neither add nodes to the set of open nodes nor edges to the set of open
edges. Moreover, in case of the contained and combined strategy another loop iterates the children
of a node inside the loop which processes the open nodes. Since the number of all nodes in Hp
limits the number of children sharply, i.e., |childreng(n)| <|N|, and no children nodes are added,
the inner loop as well as the outer loop terminate when determining annotations for the nodes.
Similarly, only one loop iterates the finite set of open edges. Assuming one computation step is
required to access the source and target node connected by an edge, the loop iterating the set
of open edges is guaranteed to terminate, too, because the algorithm does not modify the set.
Consequently, since the number of elements in the sets of open nodes (and children nodes) and
edges remains finite, processing the sets is guaranteed to terminate.

Complexity of Computing Set of Open Elements The first step executes the algorithm to
determine the sets of open nodes and edges (Alg. 3). This algorithm exposes quadratic execution
time with respect to the number of graph elements as upper threshold as the following deduction
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Algorithm 8 Asymptotic complexity of computing open nodes and edges.

1: ...
2: for el € ELy, do > O(x)
3: if map_ppy,, (el) =€ then > O(x)
4: if el € Ny, then > O(n)
5: OpenNodes := OpenNodes U {el} > O(n/
6: else > O(1)
7: OpenEdges := OpenEdges U {el} > O(e)
8: end if
9: end if
10: end for

shows. The upper thresholds for the time-relevant processing steps of Alg. 3 are put in comments
behind the corresponding expressions in Alg. 8.

The algorithm executes the outer loop for each node and each edge implying the upper threshold for
the execution time is O(z) in Line 2. Inside the loop, the algorithm checks whether an annotation
is already mapped onto the element, which requires to access the mapping function. Therefore,
Line 3 spends at most an execution time of O(x). Thereafter, it is checked whether the element
is included in the set of nodes which requires to compare the element with n nodes at maximum,
resulting in a time of O(n). In case the processed element is not present in the set of open nodes,
it is contained in the set of edges causing no additional runtime.

Next, the algorithm appends the element to the already determined set of open nodes. Depending
on the implementation of appending elements to the set of elements, its complexity may be
constant or linear: If the element is appended to the end of the corresponding set without a
need to iterate the entire set, a complexity of O(1) can be achieved. Nonetheless, in the worst
case the complexity of Line 5 exposes linear time of O(n') when not allowing for accessing the last
element of a collection in constant time and similarly O(e’) in Line 7.

All in all, each graph element is processed once in the outer loop while the inner loop performs the
following number of computation steps at maximum: x +n-+n’ or x +n+ ¢, with respect to the
element being an edge or a node. We can approximate the inner processing steps as t+x+x =3z
because n,n’,e’ < . As a result, the overall complexity sums up to O(z*3z) = O(z*x) = O(2?)
= O((n+¢€)?). Summing it up, computing the sets of open nodes and edges performs in quadratic
execution time with respect to the number of nodes and edges in the worst case.

Complexity of Computing Edge Annotations To determine the annotation of all edges
missing one, the set of edges is iterated once. Accordingly, this process requires linear time of
O(¢) in the worst case. In addition, accessing the source and target node of an edge should be
managed in constant time (O(1)) by following a reference. Accessing the mapping of both nodes
inside this loop exposes a time of O(z) at maximum yielding an overall asymptotic execution time
of quadratic amount: O(e’*2x). Thus, the algorithm performs in quadratic time with respect to
the number of all elements in the graph in the worst case.

Complexity of Computing Node Annotations Regarding the execution time of the heuris-
tics implemented in the three strategies, the algorithms expose an asymptotic quadratic and cubic
complexity with respect to the number of nodes in the worst case.

Complexity of Container Strategy The container strategy iterates the set of open nodes once
(O(n')) and accesses the container of each node. Alg. 9 summarizes the asymptotic estimations
of the execution time as comments in each line.

We assume that the parent node can be accessed in constant time in Line 4. This assumption is
justified because it requires to follow the unique incoming edge labeled as container. A pointer
may realized accessing this edge since it is the single edge of this kind for each node. Thereafter,
accessing the mapping function exposes linear complexity O(x) in the worst case plus assigning
the resulting annotation to the same map of annotations which spends the same amount of time
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Algorithm 9 Complexity of container strategy (1).

1: ...

2: mapip’FHT = Map_pry, > Initiate total annotation function with partial one
3: for n € OpenNodes do > O(n')
4: var ny, := parentg(n) > O(1)
5 mapip’FHT (n):= mapip’FHT (np) > O0(2x(x))
6: end for

in the worst case in Line 5. Consequently, the worst case asymptotic execution time is quadratic:
O(n'*(2xx)) = O(z?).

Complexity of Contained Strategy In contrast, the contained and combined strategy require
to iterate the number of children nodes n. < n inside the outer loop which iterates the set of open
nodes. As sketched in Alg. 10, this additional iteration of the children nodes, which accesses
the mapping function for each child node, exposes an asymptotic execution time of O(n x* )
(c.f., Line 9) at maximum. In total, the computation steps inside the loop sum up to n+z or
n+n+x+ 2 in the first branch (no children) or second branch, respectively. As a result, the worst
case execution time inside the loop is O(x?). Since iterating the (reversed) set of nodes requires
linear time, in total the asymptotic execution time sums up to O(z?) in the worst case.

Algorithm 10 Complexity of contained strategy.
1 ...

2: mapip’FHT = Map_pry, > Initiate total annotation function with partial one
3: var Reversed = REVERSE(OpenNodes) > O(n’)
4: for n € Reversed do > O(n')
5: var Children = childreng(n) > O(n)
6: if Children =0 then

7: mapip/FHT (n) := GETROOTFEAT() > O(x)
8: else

9: var ann =\ .conitdren mapip’FHT (¢) > O(nx*x)
10: mapip’FHT (n) :==ann > O(x)
11: end if

12: end for

Complexity of Combined Strategy The combined strategy, which combines the contained
and container strategy, exposes the asymptotic execution time approximated by the time to execute
the contained strategy, which is of cubic complexity. This results from the following observation.
First, the algorithm executes the container strategy exposing quadratic execution time at maxi-
mum. Afterwards, it executes the contained strategy, exposing cubic execution time. In summary,
we can approximate the execution time as O(x? 4+ 23) which results in an asymptotic execution
time of O(2?).

Reflection An optimized implementation of accessing and manipulating the mapping function
may, however, reduce the execution time significantly. If accessing and adding elements to the
mapping function is executed in constant time, each asymptotic runtime will be reduced by an
entire factor, i.e., the resulting execution time of the contained and combined strategy will be of
quadratic (O(z?)) and the container strategy of linear (O(z)) complexity.

All in all, this estimation shows that the complexity of the contained and the combined strategy
is of the same size. Even though both strategies expose an additional potency of complexity,
it is caused by approximating the number of children of each node by the number of all nodes.
In reality, however, the number of children of an open node can at most only once reach the
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amount of n — 2 causing that no further nodes are present to be processed anymore. Instead, the
probability that the number of children nodes remains far below the number of all nodes in the
graph is relatively high, even a number of zero children nodes is possible. If it could be assumed
that the mapping of all children nodes can be accessed in linear time, there would be no difference
between the three strategies with respect to the asymptotic execution time.

II Accuracy

As mentioned before, the accuracy of the annotations determined by one of the heuristic strategies
do not guarantee 100% correctness with respect to the commutativity criterion. Nonetheless, we
argue that they result in a deterministic behavior, on the one hand, and improve the accuracy
compared to having no annotations, on the other hand.

General Remarks In the first place, it must be noted that each of the strategies guarantees
to determine annotations for all elements missing one. However, the accuracy is limited by the
heuristics exploiting the structure of the model as well as the presence of annotations assigned
beforehand, for example, based on the incomplete trace.

Container Strategy By assigning the annotation of the parent node, the container strategy
(1) ensures referential integrity with respect to contained children. The strategy implies that if
the parent node is present, its children nodes which were not annotated automatically will be
present in a derived product, too. Moreover, since it should not be possible for a child node to
be present without its parent, the child should not receive an annotation which is less restrictive.
Consequently, assigning the annotation of the parent node guarantees that products incorporating
a child without its parent will not be derivable if the child was missing an annotation. However,
the annotation retrieved from the parent node may still be too broad, i.e., the child node may be
included in too many products.

For instance, let r denote the root element of the domain model. If children of r are missing an
annotation, the algorithm will assign the annotation of r to its children as well. However, since
r should be present in each product, the root feature is mapped onto that element to ensure the
existence of the derived variant. As a result, the children of r, which miss an annotation, will be
present in each derived product even if they realize an optional feature.

Moreover, if a hierarchy of elements misses an annotation, the container strategy propagates a
potential coarse-grained annotation from the top along the hierarchy down to the bottom until the
first element carrying an annotation is reached. Accordingly, although a more specific annotation
would have to be assigned to any of the elements in this hierarchy, the annotations remain at the
same broad level as at the top of the model hierarchy.

In the extended version of the introductory example depicted in Fig. 7.3.4, the compilation units
of the Java model all miss an annotation. Since their parent is the root of the model, they receive
the root feature as annotation. Consequently, when applying the parent strategy, all compilation
units will be integrated in every derived product regardless of the fact whether they comprise
only optional classifiers. For that reason, even the compilation unit holding the class Family is
contained in a product realizing the feature configuration where F is deselected without containing
the class. The filter will remove the class due to its more fine-grained annotation. In addition, if the
compilation units contained further children which missed an annotation, they would receive the
root feature as annotation rendering them present in every derived product, too. This limitation
for leaf nodes manifests in each of the proposed algorithms in this example.

Contained Strategy In the contained strategy, the annotation of the children nodes is mapped
onto the parent node missing one. Alg. 5 guarantees that each child is annotated before processing
the parent. In this strategy a node without children nodes (i.e., a leaf node) would be completely
excluded from every product if the annotation false was assigned. As our algorithm assigns the
root feature as annotation instead, the leaf node is included in every product, meaning that the
annotation is too broad.

153



CHAPTER 7. MISSING TRACE INFORMATION

Similar as in the container strategy, the coarse-grained annotation of a leaf node missing an
annotation may propagate along the hierarchy of the spanning containment tree from bottom to
top if multiple ancestors consecutively miss an annotation. Particularly, excluding these elements
from every derived product by assigning the annotation false would result in derived products
missing too many elements unconditionally, from which we refrain.

On its upside, if children nodes are present for a node missing an annotation, the determined
annotation will guarantee referential integrity for the children of the node missing the annotation.
If the algorithm combines all annotations of children nodes in a disjunction, it will guarantee that
for each child of the node, which is pertained in a configured product, its parent is present, too.
As a result, a well-formed structure with respect to the children dependency is guaranteed.
Moreover, if specific annotations are mapped onto all children nodes of the node missing the
annotation, the resulting annotation will be more specific than assigning only the single annotation
of the parent node in the contained strategy as well as more specific than assigning the root feature,
which is the case if a leaf node misses an annotation. In concrete, the node will be present only if
one of its children is present, i.e., the node will be only part of a product if its presence is required
to ensure the existence of a child. However, if the parent of the node missing the annotation
is annotated with an optional feature which does not imply the annotation of the children, it is
possible to derive products, where the parent of the node is missing while the node and its children
are present but without a valid container.

As highlighted in Ex. 7.3.6, the annotation of the compilation units serves as an example where
children nodes are missing. Consequently, assigning the annotation false would remove all of
them from every product event if they would contain a classifier realizing a mandatory feature.
Then, the classifier might be integrated but without the corresponding compilation unit. In
contrast, if the root feature is assigned to the compilation units, the same effect as of the container
strategy occurs: too many compilation units may be present in derived products. However, the
annotation computed for the implementation package (jpi) in the same example, is appropriate.
The package will be included in derived products if the features F and P are selected solely or
both. In case none of these two features is selected, the model filter removes the package due
to its annotation. Since its parent, the package jp, is annotated with a mandatory feature, in
this example the problem of removing a parent while its child, which was missing an annotation,
remains in a derived product does not occur.

Combined Strategy The combined strategy is introduced to combine the benefits and to reduce
the drawbacks of the contained and container strategy with respect to accuracy.

First of all, the annotations of parent nodes are mapped onto the nodes missing an annotation.
This ensures that each of the open nodes carries an annotation but the risk remains that the
propagated annotations are too broad which may reduce the accuracy. As a consequence, if a
leaf node misses an annotation, the annotation of the parent will be present. Not assigning the
root feature to such element is beneficial for the following reason: Assigning the root feature is
comparable to assigning true. Instead, the annotation of the parent node may be more specific
and therefore becomes decisive for the presence in a derived product.

If both, annotated children nodes and an annotated parent node, are present for a node missing
an annotation before executing one of the strategies, the combined strategy is able to determine
an annotation that preserves the containment structure in any feature configuration and which is
more specific than assigning the parent or children annotations in isolation. If the parent node
does not form part of the set of open nodes, the annotation which corresponds with the respective
source node is mapped onto it. As a result, the annotation assigned in the first iteration (i.e.,
based on the container strategy) is at least as specific as the annotation of the parent node.
However, it still may be too broad for the node missing the annotation. Due to the fact, however,
that the annotations of the children are combined with this annotation, the node will only be
present in a configured product if one of the children is present, too. Accordingly, if annotations
are mapped onto the parent and children nodes of a node missing an annotation, the resulting
annotation ensures that the node is only present if its parent and one of its children are present.
Thus, the combination with the annotation of the children nodes refines the result and ensures
the persistence of the containment hierarchy in configured products without dangling references.
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Ex. 7.3.7 sheds lights on the benefits and shortcomings of the combined strategy. On the one
hand, the resulting annotations may be too broad: Since the compilation units are stored in the
root of the model and miss children nodes, the computed annotation is too broad: the compilation
units form part of every derived product. For the same reason, the annotations of the interface
declarations are too broad. Even if their container, the package db, was annotated with a more
specific annotation than the root feature, the annotation of the package might not subsume the
annotations of all classifiers contained in the package. On the other hand, the annotation of the
implementation package (jpi) resides at the right level of accuracy. As annotations are mapped
onto its parent and children nodes, the computed annotation guarantees the presence in the correct
set of derived products: If the features P and F are deselected, the package will be removed. This is
semantically correct and should be implemented in this way in the model transformation because
the package is not needed in this case. If one of the features P and F or both are selected instead,
the package will be present. Consequently, for this element the combined strategy (as well as the
contained) strategy computes the correct annotation with respect to satisfying commutativity.

Conclusion The discussions on accuracy and complexity allow to suggest a strategy when prop-
agating annotations based on incomplete trace information.

The discussion reveals that the container strategy assigns annotations which may be too broad
and, as a result, include too many elements in the configured products. As mentioned in the
introduction to this section (Sec. 7.3.1), including too many elements in configured products
implies potentially leaking information and functionality which may not belong to the customer.
Thus, the strategy may achieve higher accuracy than assigning the annotation true but may render
leaf nodes visible in too many derived variants.

In contrast, the contained strategy uses the annotations of children elements to compute the
missing annotation. This strategy ensures the presence of the parent node for children whose
parent node is not annotated, on the one hand.

On the other hand, let n;, denote the parent node of the node n which misses an annotation and
receives an annotation computed from the annotation of its children. If an annotation is mapped
onto n, based on the trace propagation (due to a 1:1 trace element), the contained strategy
cannot ensure that n, is present in the same set of configuration as n because it does not regard
the annotation of n,,. Moreover, if n is a leaf node, the root feature is mapped onto it resulting in a
too broad annotation. Consequently, the combined strategy assigns the most accurate annotation
even though the corner cases of leaf nodes, particularly with the root node as parent, still receive
the root feature as annotation which means the least specific one.

Weighing the accuracy against the computational complexity, the container strategy is ideal, if a
fast executable solution is desired and broad annotations are sufficient. If the execution time is
no critical factor and accuracy is of relevance, we recommend the combined strategy.

7.4 No Persistent Trace Information

If transformation execution engines do not persist trace information, either the information of
corresponding elements of the source and target model for propagating annotations from source
to target elements will have to be retrieved in different ways or the propagation mechanism must
change.

This section sketches two possibilities to reconstruct the information of corresponding source and
target elements despite missing execution traces. On the one hand, relationships between the
source and the target model can be declared manually in a DSL with incorporated tooling to
assign annotations based on the correspondences to the target model. On the other hand, the
source and target model can be compared to detect similarities for inferring corresponding elements
of source and target model automatically based on shared characteristics.

Road Map Therefore, this section starts with stating the problem by recapitulating the specifics
of propagating annotations based on trace information. Thereafter, Sec. 7.4.2 and Sec. 7.4.3
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introduce how a propagation DSL and a model matching approach, respectively, may propagate
annotations despite missing traces.

7.4.1 Problem Statement

First of all, this section recapitulates properties classifying multi-variant model transformations.
As declared in Sec. 4.3.2, multi-variant model transformations can be classified by different fea-
tures. Trace-based propagation is a post-processing, automated approach which does not invade
in the execution engine but — as a gray-box approach — relies on the trace as artifact directly
resulting from the execution of the respective models. Since traces transformation engines persist
trace information in varying ways, the trace-based propagation itself is generic with respect to
the model transformation language as well as to the metamodels to which the source and target
models, conform. However, some transformation execution engines do not maintain or persist
trace information. For instance, the ATL default virtual machine records the source and target
elements created by a matched rule but does not persist this information after the execution.
Furthermore, the applications of lazy and called rules are not automatically recorded but could be
maintained by the developer inside the specification. As a consequence, missing trace information
requires to annotated the target model completely manually if no automation, as proposed in this
section, is available.

The two approaches, presented in the following sections, do not require any access to the trans-
formation specification or its execution engine artifacts. On the one hand, the propagation DSL,
as one approach, requires to define corresponding source and target elements of two metamodels
manually to automatically propagate annotations. On the other hand, by matching the source and
target model the second approach may retrieve corresponding elements automatically which can be
used for the automatic trace-based propagation. Both approaches are post-processing approaches
that are not intertwined with a transformation execution if it is present at all.

7.4.2 Propagation DSL

To propagate annotations when no trace is available, this section presents the concepts of prop-
agation DSLs which allow for declaring relationships between the metamodels. An interpreter
receives the source and the target model and parses the specification. By iterating the source
model, the interpreter assigns the annotation of a source element to its corresponding target el-
ements as declared in the specification. For instance, the DSL ModelSync [BG18] realizes such
mechanism.

Road Map In the sequel, the first part demonstrates how a DSL serves to propagate annota-
tions. General design decisions for such approach are given in the second part whereas the third
part demonstrates the DSL ModelSync, as one representative, in particular. The descriptions on
propagating annotations based on a DSL close in the fourth part with a delimitation of other
approaches and a discussion of the automation capabilities offered by this mechanism.

I Schematic Overview

First of all, the developer can use the DSL approach to declare corresponding elements between
two metamodels (thereby replacing the need to retrieve it from a model transformation). Fig. 7.4.1
gives a schematic overview of the approach. While the first step (1) does not foster how the target
model is created beforehand (e.g., by a model transformation or manually), which is sketched
with the create box in the figure, the developer has to specify corresponding elements of the
source and target metamodel in the DSL specification manually. In step two (2), the concrete
DSL specification serves as input to the DSL propagation mechanism as well as the source model
and source mapping (which may be combined in one artifact represented as MGg,, in the figure).
In summary, the manual task involves at least specifying corresponding source and target elements
based on the metamodels. If the target model cannot be created automatically, it may origin from
a manual creation process, too. However, how the target model is created is irrelevant to the
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Figure 7.4.1: Schematic overview of propagation DSL-based propagation.
propagation mechanism and not the task of the propagation mechanism®. Moreover, defining
correspondences based on the metamodels, offers the benefit that the specification can be reused
for every instance conforming to both metamodels. Thus, the DSL approach pays off in situation
where multiple instances of the source metamodel require a propagation and a model transforma-
tion engine is not accessible or other persistent information about deriving target elements from
corresponding source elements is not available.

IT DSL Design Decisions

As a consequence from the functionality, different design possibilities exist to define the syntax and
semantics for the DSL. Since the DSL specifies corresponding elements of the source and target
metamodel, the design decisions are similar to classifying properties of model transformations
(Sec. 2.2.1). Fig. 7.4.2 summarizes important design criteria for a propagation DSL which the
following paragraphs explain from left to right.
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1:1 = combination
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Figure 7.4.2: Feature-based classification of designing propagation DSLs.

Rule Mapping The first major design criterion of a propagation DSL, as depicted in Fig. 7.4.2,
regards the type and structure of the rule mapping to define corresponding elements in the meta-
models.

Similar to the completeness criterion for traces and the quantity definition for model transforma-
tions, the quantity of a rule mapping may vary. First, either one source element may be mapped
onto one target element or onto multiple target elements, i.e., specifying 1:1 or 1:n mappings.

5 The DSL may reflect model transformation rules which could create the target model.
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Similarly, multiple source element may be mapped onto one target or multiple target elements,
yielding m:1 or m:n mappings.

Secondly, the mappings may be further distinguished by the ezclusiveness criterion which allows
for specifying the same target element in multiple mapping declarations (overlapping target sets)
or exclusively in one rule. This property will be essential if only 1:1 mappings can be declared:
if the mapping is not overlapping, all source and target elements might be specified only once.
Mapping two source elements onto the same target type, or vice versa, however, may be neces-
sary if no appropriate representative exists in the opposite model. For instance, the metaclass
UnlimitedNatural of the UML metamodel has no straight-forward (1:1) representative in the
Java model and may, thus, be mapped onto the primitive type long.

Moreover, if overlapping mappings are allowed, it might be beneficial to declare context elements
explicitly, i.e., a target type that corresponds with another source type (being created for that
source element) but which is necessary to create the actual target element.

Mapping Granularity Thirdly, the granularity of the mapping may vary. In the simplest
form, in terms of the Graph formalism, only source nodes are mapped onto target nodes (coarse-
grained). A more fine-grained mapping may map also edges and attributes of nodes onto each
other (fine-grained).

Annotation Computation As a second major design decision, the computation of annotations
may vary. Similar to a model transformation, the propagation mode may vary and may work only
in a batch or in an incremental way. An incremental propagation would consider already existing
annotations on the target model and detect conflicts whereas a batch propagation ignores already
existing annotations and overwrites them with the one of the source element. Similarly, the
direction property may support a bidirectional propagation or a unidirectional propagation only.
As another design decision of the DSL, the way the annotation of source (and context) elements as
well as annotations, assigned previously in case of an incremental propagation, should be combined
may vary and should be configurable. If it is not configurable either a disjunction or conjunction
of the annotations of source elements may be computed. A design decision for the category
combination will be required only, if the DSL supports 1:n (n:1) or n:m mappings.

Generally, depending on the design and the underlying interpretation, it may be possible to give
correctness guarantees for the computed annotations.

Correctness Criterion Without Model Transformations For defining the correctness of
the annotation propagation, so far we use the commutativity of model transformations (c.f.,
Fig. 1.2.1). However, black-box approaches do not assume that a model transformation creates
the target model or is accessible. For that reason, without an available model transformation it
is necessary to define correctness criterion based on the available artifacts:

In the first place, even though traces are not available a model transformation may create the
target model, nevertheless. In this case, the commutativity criterion, as it is defined by Salay et
al. [Sal+14], can be used as guarantee, despite the missing trace: The transformation result of
the single-variant transformation of a derived source product can be compared with the derived
target product for each feature configuration.

In contrast, if a model transformation is unavailable, the first step for guaranteeing a reasonable
target mapping annotation function can check the function for completeness. If annotations are
missing, one of the completion algorithms presented in Sec. 7.3.3 can be employed.

Furthermore, equivalence of two models, which are instances of different metamodels, may be
determined by a (generic) equivalence operator. Fig. 7.4.3 illustrates the commutativity criterion
when the multi-variant target model is created manually and a DSL propagates the annotations.
Then, the only information at hand is the propagation DSL and no automated mechanism gen-
erates the target model given a single-variant source model. Therefore, an equivalence operator
between the single-variant source and target models is necessary. A model matching mechanism
for instances of different metamodels may determine this equivalence by relying on the stable
information of corresponding metamodel elements specified in the DSL. Sec. 7.4.3 elaborates on
matching these instance.
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Figure 7.4.3: Commutativity without model transformations.

Summing it up, without an available model transformation the correctness criterion either fosters
weak properties, such as the completeness of the mapping annotation function, or requires to
match models corresponding to different metamodels.

IIT ModelSync

Overview ModelSync is a DSL developed with Xtext [Bet16] which allows declaring the corre-
sponding elements of two different metamodels. An interpreter reads the specification to propagate
annotations from a mapping model for the source domain model to a mapping model for the tar-
get domain model. The grammar of this textual propagation language resembles the syntax of
the ATL model transformation language and maps one source onto multiple target elements in
a declarative and unidirectional way. It allows for declaring guards, which are Boolean expres-
sions based on the structural features of the declared target type, and further conditions over the
structural features of objects to define matching source and target objects. In contrast to ATL,
ModelSync does not employ procedural elements, such as do-blocks, but only declarative map-
pings. Due to declaring relationships at the level of two metamodels, the script can be employed
to propagate annotations from any source to any target instance of these metamodels.

Grammar Listing 7.4.1 presents excerpts of the ModelSync grammar specified in Xtext: After
having declared the source and target metamodels and provided a unique name in the specification
(left out from the listing), a propagation rule (Lines 2-5) carries an ID and encompasses one
mapping. A mapping (Lines 7-9) links one source element (which can be defined more specifically
by a guard) with up to many target elements. Conditions (Lines 18-25) further constrain, which
target elements match the propagation rule.

One specific feature of the DSL allows for matching alternative values for the value of a structural
feature in conditions. This may be beneficial, for instance, if a name varies with the type of the
source elements. For example, the access method for a class field either starts with the prefix
get... or is... depending on the fact whether the field is of an arbitrary type or of a Boolean
type, respectively. Moreover, in the current state, the DSL supports different operations on strings
which can declare conditions more specifically.

Interpreter Given an annotated source mapping model and a target mapping model (without
annotations), an interpreter computes matching source and target elements. The interpreter
iterates the set of rule to initially determine all target objects matching the declared target types
in the rule. Next, it iterates the source model to determine for each source element which of the
target elements passes the guards and matches the conditions. The matching ones are collected
in a final match. Note: A preprocessing step computes all target candidates of the input multi-
variant model for each rule. Since the DSL does not validate the uniqueness of a target element
in a rule, a target element might occur in several matches in general.

Based on the resulting sets of matching source and target elements, the propagation mechanism
iterates the source mapping model and determines for each of the matching source element the set
of target elements and their corresponding mapping elements in the target model. If the source
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object is annotated, the propagation algorithm of the interpreter will map the annotation of the
source object onto the mappings of all matching target objects.
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PropagationRule:
’rule’ name=ID ’{’
mapping=Mapping
7};;

Mapping:
’source’ sourceElement=ElementDef guard=Guard?
(targets+=Target)+;

Target:
(’target’ (targetElement=ElementDef)
’{’> (conditions+=Condition)* ’}’);

Guard:
{Guard} ’(° (guardOperation=GuardExpression)? ’)’;

Condition:
target=FeatureAccess ’=’
// Mapping
(sourceLeft=STRING ’+’)? source=FeatureAccess (’:’ operation=0Operation)? (’+’
sourceRight=STRING)?

// Alternative mapping
(> (altSourceLeft=STRING ’+’)7 altSource=FeatureAccess (’:’
altOperation=Operation)? (’+’ altSourceRight=STRING)?)?

). .
PR

FeatureAccess:
ElementRef ({FeatureAccess.ref=current} "." right=[Feature])*;

ElementRef returns Reference:
{ElementRef} type=[Element];

Feature:
Attribute | Reference;

Operation:
StringOperation;

Listing 7.4.1: Excerpt of the ModelSync grammar specified in Xtext.

Example The following example demonstrates excerpts of how a ModelSync specification maps
types of the UML class metamodel onto corresponding ones in the Java MoDisco metamodel .

Example 7.4.1: ModelSync Specification

160

Listing 7.4.2 presents an excerpt of mapping the UML metamodel onto the Java meta-
model with ModelSync. First, each specification imports the source and target metamodels
(Line 1 and 2). Thereafter, rules declare a source and up to multiple target elements.
The excerpt sketches two mapping rules: Class2Class lists corresponding target elements
for a UML class and Property2Field corresponding elements for a UML property. The
rule for mapping UML classes illustrates that multiple target types (ClassDeclaration
and CompilationUnit) can be declared for one source type. Furthermore, its attributes
(c.f., Line 8) and attributes of linked elements (c.f., Line 9) can be mapped onto each other
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in form of further conditions. The interpreter searches an adequate element in the target
model which matches these conditions and assigns the annotation from the source object
to the matched target objects. For instance, the name of the compilation unit must be
composed of the UML class name followed by the suffix .java to be accepted as match
and to receive the annotation of the UML class name.

Secondly, the rule mapping a property onto a field declaration illustrates guards for source
elements (c.f., Line 17). Only single-valued properties match this rule and, thus, only their
annotations are propagated to the declared correspondences.

+ importMetaModel "http://www.eclipse.org/uml2/5.0.0/UML"
2 importMetaModel "http://www.eclipse.org/MoDisco/Java/0.2.incubation/java"
3

4 0
s rule Class2Class {

6 source umlC : Class

7 target javaCD : ClassDeclaration {

8 javaCD.name = umlC.name;

9 javaCD.package.name = umlC.package.name;

10 }

11 target javaCU : CompilationUnit {

12 javaCU.name = umlC.name + ".java";
13}

14 }

15 + oW

16 rule Property2FieldSingle {

17 source umlProp : Property (umlProp.upper == 1)
18 target javaFD : FieldDeclaration {

19 javaFD.type.type = umlProp.type;

20 javaFD.fragments.name = umlProp.name;

21 }

22 target javaSetter : MethodDeclaration {

23 javaSetter.name = "set" + umlProp.name:toUpperFirst();
24 }

25 }

Listing 7.4.2: Excerpt of a ModelSync specification defining correspondences between the UML
and Java metamodel.

Design Decisions Altogether, based on this example together with the descriptions of Model-
Sync, we can draw the following conclusions on the design decisions of the DSL:

Regarding the quantity and granularity, the ModelSync DSL can specify 1:n mappings at a fine-
grained level. One source element, which can be specified at the granularity of its attributes by
exploiting guards, can be declared as corresponding to multiple target elements. Although the
grammar and validation of ModelSync does not forbid the usage of context elements, they are not
considered for the computation of annotations.

Regarding the computation of annotations, the ModelSync interpreter applies a unidirectional copy
approach: If a source element carries an annotation, the interpreter assigns the annotation to all
target elements matching the conditions. Thus, it is a batch mode execution without an option
to combine or configure the computation of (more complex) annotations. Furthermore, the DSL
does not guarantee any properties. Source elements can be mapped in multiple rules and target
elements may match multiple rules. However, once a match has been determined for a target
element, the element will be excluded from further matching and thus receives the annotation of
the first source element of the corresponding matching rule.

Consequences As a consequence of the design of ModelSync, the product line developer has
to define a specification for each pair of instances of distinct metamodels. However, due to the
1:n design, the DSL may more easily support refinement- relationships where the source model
is extended than relationships between source and target model that decrease the number of
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source elements (requiring n:1 mappings). Thus, if the source and target metamodel comprised
n:1 relationships, the propagation of annotations could provoke inconsistent annotations.
Moreover, the underlying DSL interpreter expects two F2DMM (Feature To Domain Mapping
Model) of the MDPLE tool Famile (c.f., Sec. 9.1.2). It assigns annotations to the one designated
as target model. Consequently, it is trimmed to solve exactly this task and is tightly intertwined
with the development of a product line in in this tool. For different mapping mechanisms it cannot
be used out-of-the-box.

IV Discussion

To conclude, we reflect the pros and cons of a propagation DSL, starting with a delimitation and
the categorization of the approach with respect to propagating annotations and ending with a
discussion of the automation capabilities. Moreover, since the ModelSync specification resembles
declarative model transformations to a great extent, we compare ModelSync with model trans-
formation approaches. At the end, this part discusses the automation degree of a propagation
DSL.

Delimitation As delimiting factors, first of all, it must be mentioned that the target model
already exists and information how it was created is not available due to the black-box nature.
Consequently, in contrast to the variations of trace-based propagation, the propagation DSL does
not rely on a model transformation meaning that the target model may also have been created
manually. This implies that correctness in form of commutativity cannot be defined over model
transformations but an equivalence operator or a weaker correctness condition is necessary. To this
end, based on the presented properties, a propagation DSL represents a language-independent,
specification-specific, black-box post-processing approach for propagating annotations.

Comparison With Model Transformation Specification In general, the ModelSync DSL
reflects a declarative model transformation specification with many respects: It requires specifying
corresponding elements of the source and target model and can map their attributes and references
onto each other. In contrast to a transformation specification and the corresponding engine, the
propagation mechanism does not create target elements but assumes that they already exist.
Moreover, the DSL engine will not report errors, if a source element misses target elements but
simply will not recognize a match. Finally, it creates a mapping model used in the MDPLE tool
Famile and, thus, is a tool-dependent solution.

Discussion on Automation FEmploying a propagation DSL to declare corresponding elements
of two metamodels offers two main advantages: On the one hand, similar to a model transformation
specification, a DSL specification works for any pair of models conforming to the source and target
metamodel it is defined for. On the other hand, the approach works completely independent of a
transformation engine and, thus, is per se tool- and language-independent. As a consequence, it
does not restrict the transformation language or the mechanism that creates the target model.
One major disadvantage is the missing automation due to the manual specification of the mappings
in a concrete specification. However, one automation possibility may compare the source and
target model, as discussed in Sec. 7.4.3, to determine matching source and target elements.

7.4.3 Trace Generation by Model Matching

Despite the upside of defining a correspondence specification and the automated propagation of
annotations to the target model, on the downside, the propagation DSL has to be specified for each
new pair of metamodels manually. In contrast, matching the source and target model to generate
a propagation DSL or to re-engineer trace information increases the automation. Grammel et
al. [GKV12] propose an automatic trace generation approach relying on matching models when
no out-place transformation is available which we examined as automation technique and present
in this section.
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Road Map To keep this thesis self-contained, the following parts introduces research on the
topic of model and metamodel matching first. Afterwards, they present a matching framework
proposed by Grammel et al. [GKV12] which offers a solution to extract trace information by
comparing two models. The final two parts sketches how the matching concepts can be exploited
to propagate annotations and discuss these solutions, respectively.

I State-Of-The-Art in Model Matching Approaches

When multiple versions of models exist due to editing a model over the course of time, for instance,
a version control system may want to determine modifications of model elements in terms of
differences for efficient versioning. Since falling back to textual comparisons of parsed model
representations (e.g., in XML format) does not suffice due to a lack of semantic context information
[FLW11; Wesl4], it is necessary to apply model-specific matching mechanisms. The following
paragraphs shed light on various existing matching strategies proposed in previous related work,
the result of which this thesis may use to propagate annotations. Additionally, it introduces the
model matching framework EMFCompare, provided as Eclipse plugin, which supports several of
the presented matching categories.

Classification Categories Kolovos et al. [Kol409] distinguish four types of model matching
approaches: static identity-based, signature-based and similarity-based matching as well as custom
language-specific matching. These four categories lay the foundations for further subsequent and
contemporary classifications of model matching approaches [ASW09; Bro+12; Uhrll; BPV10;
Grald; SA20]. Besides these forms of state-based matching of models operation-based matching
compares edit operations. Furthermore, “out-place matching” of models which are instances of
different metamodels and matching metamodels themselves represent specific categories which
require sophisticated techniques.

Static Identity-Based In the first category, a static identifier, such as a UUID (universal
unique identifier), allows for identifying an evolving object across versions of a model. As a
consequence, this approach may only be applicable if the same model is versioned and a mechanism
assigning unique identifiers is available by the modeling tool. Moreover, if two independently
created models are compared, this approach will not work because even if the objects of both
models are structurally equivalent, their identifiers may be different.

Signature-Based matching tries to alleviate the shortcoming of static identification (requiring
universal identifiers) by computing an identity value based on user-defined functions. The function
may regard the structural features of an object and the algorithm compares the computed values.
The downside of this approach is that the user needs to provide the functions that allow for
computing the identity of an object which has to be unique for each object in one model.

Similarity-Based In contrast to static identity- and signature-based matching, which recognizes
a match if and only if the identities of objects are the same, similarity-based matching computes
the similarity based on (some of) the objects’ features. If the computed similarity for two objects
exceeds a (configurable) threshold, two objects will be considered similar. This approach allows for
weighing features differently and typically achieves better matching results than a solely identity-
based mapping. The algorithms performed on typed attributed graphs (TAG) [EPTO04] in these
approaches achieve more accurate matching results than identity-based ones [Kol+09]. Algorithms
and entire frameworks supporting this mechanism only are, for instance, the similarity flooding
algorithm [MGRO2], SiDiff [SG08], DSMDift [LGJ07] as well as a trace-generating framework
explained in Sec. 7.4.3, II.

Modeling Language-Specific Matching While the three aforementioned categories can be
applied to any type of metamodel (general applicable), custom language-specific approaches are
trimmed for a modeling language (e.g., UML). Accordingly, they can specify concrete matching
properties and metrics to determine an accurate matching result taking the model specifics into
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account for the matching. As an example, Uhrig defines editing costs between two graphs repre-
senting class models for determining a matching [Uhrl1] and several solutions focus on comparing
UML models [KWNO05; MRR11a; MRR11b] or Ecore models [201; KH10].

EMFCompare [TI06; BP0S§] serves as one example of a configurable and customizable model
matching framework to compare EMF-based models. It may apply a static identity-based compar-
ison if UUIDs are available, or a similarity-based matching [Add+16] otherwise. For computing
the similarity, EMFCompare considers the name, the type (i.e., the features of the meta-element),
the remaining attribute values and relationships (regarding containment and non-containment
references) in order to heuristically match the elements of two models. Furthermore, it can be
customized to compare instances of a specific metamodel due to an open API and is developed
with efficiency to compare large model, composed of thousands of elements. According to Gram-
mel [Gral4], however, there is a lack of accuracy when EMFCompare is used to compare models
conforming to different metamodels. Sec. 10.2.1 provides more detail on the technical specifics of
this matching framework which is used as part of the evaluation of commutativity.

Operation-Based Besides these four classical categories which realize state-based comparisons,
a monitoring system may record edit operations applied to the model and may use them to
compute differences between two versions of a model, yielding an operation-based matching [Her10;
KKT13]. The latter, however, requires an edit recording mechanism and, thus, is not as generically
applicable as a state-based matching. Due to the capabilities of an operation-based matching
system, a recent systematic literature survey of Somogyi and Asztalos [SA20] extends the basic four
categories of matching algorithms with the categories of using none of the four classical categories,
which is the case in operation-based techniques, or being configurable [BPV10; Alt+08], i.e.,
multiple possibilities can be exclusively chosen, in a staged way or in a combined way. Moreover,
model matching may not only employ a textual or a Graph-based comparison but a combination
thereof [RV08].In addition, the matching algorithms vary with respect to the type of models that
is compared, being either structural or behavioral models. Somogyi and Asztalos [SA20] state
that most of the matching algorithms exhibit low accuracy when comparing behavioral models.

Out-Place Model Matching Typically most of the model matching algorithms, particularly
those designed for versioning models, compare one type of (evolving) model. Although metamodels
may evolve, too [Wac07; PMRI16], the matching mechanisms compute differences between two
versions of a model and, therefore, match two instances of the same metamodel.

For employing model matching algorithms to automatically determine relationships between a
source and target model of an exogenous transformation, however, a matching between two models
conforming to distinct metamodels is required. As opposed to matching an evolving model to
detect differences, matching two instances of different metamodels is more complex: Technically,

e the types of objects do not match,
¢ the identifiers do not match and, more importantly,

e it may not necessarily be 1:1 matches but an element in one model may correspond with
zero to up to multiple elements in the second model.

Due to this complexity, retrieving correspondences between two models conforming to different
metamodels may require even more sophisticated matching algorithms than for comparing in-
stances of the same metamodel. The next section illuminates the capabilities of matching frame-
work dedicated to derive trace information.

Metamodel Matching Matching two metamodels can be considered a special case of model
matching and exhibits a similar complexity. While both metamodels may be instances of the
same meta-metamodel, they do not have to share the same concepts if the two compared models
are not versions of an evolving metamodel. Metamodels, in particular, may exhibit structural
(i.e., same concept represented with different constructs) and syntactic heterogeneity (i.e., same
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Figure 7.4.4: Model matching framework for generating trace links based on [GKV12].

construct named differently) as well as differences in the formal language (e.g., hierarchical vs.
relational) [Wim+11a]. For the specific purpose of matching metamodels, which may be required,
for instance, to infer a model transformation, additional approaches have been proposed besides the
four categories of Kolovos et al. [Kol+09]. Besides other approaches, which have been implemented
particularly for the purposes of deducing model transformations [FL19; LF20; VIR10] by applying
different deterministic techniques, heuristic approaches are a different mechanism to narrow down
the search space for computing matching source and target elements.

For example, one search-based mechanism [Kes+14] employs genetic algorithms based on simu-
lated annealing [KGV83] which determine a solution and examine the local search space for an
optimum. The function which the search mechanism optimizes regards structural and syntactic
similarity. This approach achieves the highest accuracy for matching distinct metamodels which
resulted from evolution. It is able to outperform each of the examined deterministic approaches,
particularly, in determining n:n mappings and matching elements with different names because it
explores the search space only partially.

Summary All in all, the previous paragraphs demonstrate that different solutions to detect
similarities in between two models exist. Deterministic approaches may rely on syntactic and
structural similarities and can specify metamodel-specific rules. Heuristic approaches, in contrast,
allows for computing optimized solutions by exploring the search space efficiently. As a sole
syntactic comparison of elements may not suffice to determine matching elements in two models,
the next section illuminates an approach which was developed specifically to reconstruct trace
information for models conforming to two distinct metamodels.

ITI Matching Framework for Trace-Generation

In the following we describe an approach that explicitly targets the comparison of models con-
forming to different metamodels. Grammel et al. [GKV12] propose a matching framework to
retrieve trace links when a model transformation is not available . In contrast to the work in
this thesis, the purpose of their work is not to propagate annotations in multi-variant models but
to establish trace-links for multiple purposes in MDSE: comprehension of the system, analysis
of change impacts and source model coverage as well as for debugging a transformation [RJ01;
0007].

The proposed matching and extraction process constitutes as depicted in Fig. 7.4.4. In the figure,
we adapt the input (Gg, Hr) and output (H) of the matching framework to be represented as in
the Graph formalism established in Chp. 6. A (multi-variant) source model as well as a (multi-
variant) target model without mapping functions are input to the matching framework. The graph
Hrp g constitutes the mapping that is computed which offers links between the multi-variant source
and target model to complete H in its entirety. Next, we describe the single steps performed in
the matching process.

Convert In the first step of computing matches, the framework converts the source and target
model into typed attributed graphs (TAG) to represent them in a normalized data structure which
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the algorithm can compare. This formalism considers metamodels as attributed typed graphs
(ATG), which are also input to the conversion step, and their instances as attributed graphs
(AG). Due to an additional mapping to the metamodel, a TAG is a special kind of AG. The
proposed approach assumes that the metamodels are already matched based on similarity of the
attributes and nodes [Gral4] and the resulting matching serves as additional input to the matching
algorithm.

AGs comprise two types of nodes: data nodes and graph nodes. While a graph node represents
a concrete type of the model (i.e., an instance of a metamodel type) an attribute node carries
an attribute value, e.g., the name of the type. Similarly, three types of edges exist: graph edges,
node attribute edges and edge attribute edges, representing either a link between graph nodes, a
connection to a data node originating from a graph node or from a graph edge, respectively.

Match Based on the representation as TAG, the similarity-based match step computes simi-
larities for each pair of graph nodes. As similarity measures, the algorithm either employs the
attributes solely, the attributes together with the connections which consider the outgoing graph
edges to other graph nodes, or an instance-of measure exploiting the type information extracted
from mapping the AG onto its metamodel graph (i.e., an ATG). The outcome of comparing nodes
pairwise is a similarity cube which comprises a matriz of node pairs for each measured similarity
type (i.e., attributes, connections and instance-of).

The matching based on the attribute-similarity of a pair of source and target nodes compares the
values of all data nodes of the source node with the values of all data nodes of the target node.
For measuring the similarity of two data nodes, Grammel [Gral4] consider String comparisons
using a function which yields a result of 1 if the Strings in the data nodes are the same, of 0.5
if one is the Substring of the opposite node and of 0 if there is no match [GKV12]. According
to the corresponding dissertation [Grald], for determining the matching, the approach exploits
the functionalities of the MatchBox framework [VIR10] additionally. Therefore, the framework
compares Strings either on the basis of building Trigramms as a specific form of n-gram [MS99] or
the Levensthein distance. This yields a more accurate result than relying on the pure Substring
function: For example, the Strings PersonDatabase and FamilyDatabase are neither equal nor
Substrings of one another but share a common subsequence. Accordingly, the basic three-valued
comparison [GKV12] would compute a similarity of 0 whereas a Trigramm or Longest Common
Subsequence [HST77] detects a higher similarity.

Non-String Datatypes In reality, however, not only Strings constitute the data of a graph
node but different primitive types, such as Boolean values or numeric values (e.g., doubles or
integers). Therefore, one possibility may represent these values as Strings as well by potentially
losing semantic-related accuracy. For example, the double values 1.5 and 15.0 may yield a higher
similarity than 1.5 and 1.6 when being matched as String whereas in absolute numbers 1.5 and
1.6 are related more closely. Alternatively, the comparison needs to employ customized functions
for computing similarities of primitive types apart from Strings being stored in data nodes.

Connectivity Similarity For employing the connection measure, it is essential to compute the
attribute values first. Otherwise the children nodes cannot be compared because the comparison
is based on attribute values. Then, MatchBox [VIR10] matches parent, children, sibling and leaf
nodes or employs a graph editing distance or the matching of predefined patterns.

Instance-Of Similarity For the instance-of measure, a prematch of the two accompanying
metamodels is necessary. Both metamodels can be matched in a similar way, as the model but in
contrast share a common metamodel, in our use cases the Ecore meta-metamodel. This similarity,
however, is not used for matching the attributes or connections per se.

Data Matrix Reduction After a pair-wise comparison of the data nodes, resulting in a data
matriz for each pair and similarity measure, this matrix is reduced to a single value which is
associated as the respective similarity measure with the two graph nodes and put as entry into
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Figure 7.4.5: Schematic overview of DSL-based propagation by metamodel matching.

the similarity matrix for the graph nodes. Since multiple similarity measures (i.e., attributes,
connections, instance-of) may be computed, a similarity matriz is kept for each measure and,
thus, results in a similarity cube.

Configure The result of the matching step is a similarity cube which lists for each pair of graph
nodes the reduced computed similarity measures. In the configuration step, one out of (at least)
three strategies can be chosen. Either the similarity measure per node pair can be aggregated,
selected or a ranking can be iterated in one direction.

For the aggregation [Grald], either the maximal or minimal similarity value can be chosen to
declare a pair of nodes as similar, or the results can be weighted or the average can be computed.
The selection either retrieves all matches above a threshold, takes the first N highest ranking
matches or defines a delta after the values have been aggregated. Finally, the ranking of values
can be iterated in forward or backward direction or a combination thereof. As a consequence, it
is not only 1:1 mappings but 1:n mappings can be retrieved from the similarity cube depending
on the threshold configuration.

Extract Lastly, the trace-generating framework extracts links between the two input models.
In our formalism the trace sub-graph Hppr needs to result as part of a source-to-target graph
incorporating Gg as source and Hr as target sub-graphs and with established links between both.
In contrast to the source-to-target graphs defined in Def. 6.3.5, this algorithm is unaware of context
nodes and the resulting trace granularity and completeness depends on the preceding configuration
step. However, depending on the similarity threshold, it is possible to map multiple elements onto
one source node which is in contrast to matching algorithms which compare models conforming
to the same metamodel.

IIT Schematic Overview of Matching-Based Propagation

After having demonstrated how to refactor trace information from model matching, this part
sketches two possibilities how the result of the model matching can enrich the propagation of
annotations when trace information is missing. On the one hand, a matching between the meta-
models only may be computed or, on the other hand, the metamodels and the models can be
matched.

Metamodel-Matching Based Firstly, Fig. 7.4.5 demonstrates how (meta)model matching can
automate the propagation of annotations by extracting the DSL specification (Sec. 7.4.2). Since
we assume that the source and target model are instances of metamodels which are in turn models
conforming to the Ecore meta-metamodel, it is possible to apply the model matching algorithm
presented in the previous part (or another metamodel matching approach) of this section to the
metamodels in the prematch step. As a result from this matching, correspondences between
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the source and the target metamodel are available. Since a propagation DSL as discussed in
Sec. 7.4.2 defines correspondences at the meta-level, the result of matching metamodels may be
transformed into such DSL specification. Consequently, we can construct a mapping rule in the
DSL specification for each pair of matched source and target graph nodes and feed that script into
the DSL parser together with the source model and its mapping as well as the target model. As
a result, the mapping for the target model is created automatically in the same way as the DSL
specification.

Model-Matching Based Secondly, Fig. 7.4.6 demonstrates the usage of a matching framework
to propagate annotations to the target model with a trace-based propagation algorithm. Instead
of comparing only the metamodels and employing the DSL propagation mechanism, the trace-
based propagation can be used. Consequently, besides computing the prematch, which improves
the matching result due to employing the instance-of similarity measure in addition, the concrete
source and target model, Gg and Hp are matched. To use trace-based propagation as explained
in Sec. 5.2.3, the resulting trace information of the match step needs to be transformed into the
common trace model. Then, Alg. 1 can create the mapping for the target model, however, without
guaranteeing commutativity due to missing guarantees on the completeness and granularity of the
matching result.

IV Discussion

This section reflects, on the one hand, on the automation degree of employing a model matching
framework for extracting trace information as well as on the expected accuracy, on the other hand.

Automation In contrast to defining a DSL specification manually, the benefit of metamodel
matching is to automatically extract the DSL specification based on the matching result. However,
it is essential that the matching is accurate (which is claimed by the designers [VIR10; Gral4;
Kes+14]). If the matching is inaccurate, wrong annotations will be propagated to target elements.
Similarly, if the source and target model are matched instead, and can be turned into the common
trace model (c.f., Sec. 5.2.3), the automated trace-based annotation propagation may be used
as well. Even if not all target elements were matched, the completion algorithms for partially
annotated models (Sec. 7.3.3) could be used in a postprocessing step.

Consequently, matching the metamodels or their instances represents a fully automated annotation
propagation.

Accuracy Due to the configuration possibilities and the dependency on model structures in the
deterministic and heuristic (meta)mode matching processes, the correctness and completeness of
the computed correspondences can not be guaranteed. Therefore, the resulting matching is an
approximation. It is not possible to detect context elements with any of the examined matching
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approaches (c.f., Sec. 7.4.3, I and Sec. 7.4.3, II). Particularly, the matching framework of Grammel
et al. [GKV12] does not consider the explicit extraction of context elements despite the main
objective to generate trace information. When allowing to match a target node multiple times,
this node may be mapped onto multiple source nodes without clarification whether it has to be
considered a context node or a target node. Without that information, the annotation for a target
node, mapped onto multiple source nodes, may be overwritten when propagating annotations
and the last assigned annotation remains. If the matching algorithm extracts only 1:1 mappings
instead, the extracted trace will be incomplete requiring to execute the propagation for partially
annotated models (c.f., Sec. 7.3.3) to complete the annotations automatically. The accuracy of
completing annotations is discussed in Sec. 7.4.3, II.

Summary In summary, the discussion illustrates that matching models or their metamodels
will both allow to completely automatically propagate annotations to the target model. However,
due to the nature of the matching algorithms, correctness in form of commutativity can hardly be
guaranteed and depends on the granularity and completeness of the matching.

7.5 Incremental Annotation Propagation

As stated in the introduction to this chapter, some solutions for propagating annotations cannot
guarantee commutativity when (fine-grained) information about corresponding elements of the
source and target model is missing in the trace. Particularly, the annotations which are deter-
mined by a completion strategy may be too broad such that the element remains in too many
configurations. Accordingly, a product line developer may fix those annotations manually in a
post-processing step. To maintain manually modified annotations, for instance in iterative devel-
opment scenarios, this section discusses how to maintain already existing annotations of the target
model in an incremental annotation propagation.

Road Map For that reason, Sec. 7.5.1 describes the problem which occurs when maintaining
existing target annotations manually firstly. Secondly, Sec. 7.5.2 discusses evolution scenarios of
model-driven product line in order to delimit the incremental propagation strategy. For propagat-
ing annotations incrementally, a mechanism to distinguish manually assigned from automatically
computed annotations is necessary. Sec. 7.5.3 presents two ways to accomplish this task in its
first part and describes the corresponding propagation algorithms in its second part. In the end,
Sec. 7.5.4 discusses the proposed strategies.

7.5.1 Problem Statement

Sec. 7.3 and Sec. 7.4 show that an automatic approach to annotate the target model completely
may not assign annotations that guarantee 100% correctness in case the trace information is in-
complete or in case the trace information resides at a more coarse-grained level than the annotation
mapping function.

For instance the examples in Fig. 7.3.5 and Fig. 7.3.6 illustrate that the annotations computed
by the three completion strategies, are mostly too broad. Due to the hierarchical strategies,
particularly, the annotations mapped onto leaf nodes hardly reside at the right level of specificity.
Thus, the model filter pertains the corresponding model nodes in too many filtered variants. As a
consequence, the product line developer may change these annotations and assign semantically
correct ones manually.

Example Fig. 7.5.1 demonstrates the result of the annotation propagation based on an incom-
plete trace. The annotations situated in the rectangles of light-purple color are those which are
mapped onto the target elements based on the trace information. The annotations which are
crossed out are those assigned by the combined completion strategy (c.f., Sec. 7.3.3). The man-
ually repaired annotations reside next to the crossed out annotations in blue rounded rectangles.
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Figure 7.5.1: Manually repaired broad annotations.

Accordingly, except for the annotation of the implementation package, which carries the semanti-
cally correct annotation DB A (PVF), the developer exchanges the remaining completed annotations
(e.g., those of the compilation units) by either assigning P or F for elements realizing the classes
Person and Family, respectively.

Incremental Maintenance Consequently, the question arises: how are the existing target an-
notations affected when a product line developer executes the forward transformation another
time, for instance, because a UML element was added? The execution of multi-variant model
transformations, as defined so far, ignores the fact that a target model exists and, thus, consid-
ers neither existing target elements nor their annotations. Even though the reused single-variant
model transformation is performed incrementally and recognizes the already existing target model,
it will not be aware of annotations because the propagation algorithm is defined in batch mode.
As a consequence, all annotations of the target model are overwritten. Furthermore, if an incom-
plete trace is the source of information for propagating annotations and missing annotations are
computed by one of the completion strategies, the second execution of the trace-based propagation
provokes the same situation: the annotations of the leaf nodes are not specific enough and violate
commutativity. As a result, all manually assigned annotations (i.e., the entire invested work) are
lost. In turn, this requires to repeat the manual process which increases the development cost and
is laborious, unnecessarily redundant work.

Consequences For that reason, we draw the conclusion that strategies, which regard the pres-
ence of already existing annotations in incremental transformations, are indispensable to support
iterative development. If the product line developer changes annotations of the target model after
an automatic propagation manually, they should not be overwritten in a subsequent execution.
In addition, the example shows that it is not possible to propagate the modified annotations back
to the source model since unique information about the corresponding source elements may not
available in the incomplete trace. Thus, the common trace model, which is used for the propaga-
tion, misses this information, too. Due to the fact that the trace does not record these elements,
without further knowledge it is uncertain which source elements correspond with manually mod-
ified target elements. This makes it impossible to associate manually changed annotations with
a corresponding source element. As a consequence, a mechanism to preserve and maintain these
manual annotations in consecutive annotation propagation processes is indispensable.
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7.5.2 Background

Iterative and incremental software development [LB03] is a natural process of building a software
system in a step-wise way. Typically it deviates from the classical waterfall process [Roy87] (even
if that one is performed in iterations) and incrementally evolves artifacts of certain development
stages. In our context, we assume an incremental and iterative construction of domain models
building a product line.

Road Map Accordingly, the product line may evolve and incremental transformations may
propagate the changes made to source domain model to the target model. Therefore, the first
part of this section illuminates background information on evolution dimensions in product line
engineering and incremental model transformations. This knowledge serves to delimit the contri-
bution of this thesis in the third part.

I Product Line Evolution Dimensions

Evolution of a product line can be parsed in different ways: Evolution can target the feature model
only but changing the feature model may affect existing annotations and realization artifacts.
Thus, a combination of evolving the feature model, a realization artifact and its annotation may,
particularly, occur in iterative development processes. Please note: In the following we do not
consider the (co-)evolution of single variants [Kir+21; Sch+16] as we focus on changes occurring
at the level of domain engineering. More detail and discussions on evolving software product
lines including the engineering method and product maintenance in terms of reusable assets is
presented, for example, by Botterweck and Pleuss [BP14].

Feature Model Several works [TBK09; BTG12; Biir+16] focus on the evolution of the feature
model which determines how the set of variants changes due to new requirements.

Borba et al. [BTG12] offer formal foundations for behavior preserving product line evolution, i.e.,
the functionality remains stable but the feature model evolves. A similar line of work compares two
distinct feature models resulting from, for instance, collaborative (and distributed) development or
refactorings [KAKO8], in a state-based way. These works check whether two feature models are
semantically equal [TBKO09; Ach+12; FLW11]. If two feature model are semantically equal, they
will share exactly the same set of valid feature configurations.

In contrast, feature models may also evolve as part of an iterative development process: While the
set of products and functionality of the product line is a priori fixed, it may take several (mostly
monotonic) development steps until the feature model is completely developed. For instance,
variation control systems, such as SuperMod [SW16; SW19], incorporate and manage a feature
model evolving in this way. Even though these systems edit single variants, this is the only means
to edit the elements of the software platform.

Annotations Due to changing the feature model (without preserving behavior), the annotations
mapped onto realization artifacts may (have to) change, too: If the feature model evolves by
adding, changing or deleting features and their constraints, already assigned annotations may
become obsolete and require to be changed as well. Modifying annotations may not only occur
as a consequence of changing the feature model but may also occur in isolation. For instance, as
illustrated in the motivation (Sec. 7.5.1), automatically computed annotations may be not specific
enough due to missing propagation information. Therefore, they may have to be refined.

Realization Artifacts As third change type, the realization artifacts, in our case the domain
models, may change. Either only one model or both models connected by a transformation can
change, provoking either an update of the unmodified side or a synchronization. The latter is
necessary if the latest changes should be preserved on each side and not be overwritten by a
unidirectional transformation.

Refactorings, iterative development and new customer requirements may provoke the evolution
of realization artifacts. Particularly, in iterative MDPLE a domain model is developed in several
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development steps. The changes may be propagated to related models subsequently and may
also involve synchronization tasks if multiple models are changed individually. Modifying two
models requires the usage of bidirectional incremental transformation to keep both models in a
synchronized state [Anj+20] whereas keeping multiple models synchronized requires even more
sophisticated methods [Stii+20; Stii+21; Kla21].

Combination Typically, the three types of changes rarely occur in isolation. Changing the
feature model without preserving its semantics may involve a change of annotations because they
may have become obsolete, when a mentioned feature was removed, modified or added, or too
broad due to changing the dependencies between features. Furthermore, changing the feature
model may involve changing the realization artifacts. For instance, model elements may be added
to a domain model to realize a new feature. Adding a new domain model element to the source
model may also require to add a new annotation which is mapped onto that model element.
Removing a domain model element may require to remove its annotation (e.g., a mapping element),
too. Similarly, changing a domain model element may also provoke the change of a corresponding
annotation which may have to be propagated to the target model.

Summary To sum it up, annotations, the realization artifacts, particularly the domain model
in our context, and the feature model may change in isolation or jointly. Consequently, different
stages of complexity have to be considered for preserving annotation consistency after an evolution
step.

II Incremental Model Transformations

In the following we assume that the batch transformation which creates the multi-variant target
model, can also be executed incrementally. Accordingly, it is capable to detect modifications to
the input model and only propagates those to the target model. The following paragraphs present
background information on incremental transformations.

Delta Types To distinguish an incremental transformation from other approaches, Anjorin et
al. [Anj+20] offer a classification of synchronization scenarios: The authors classify a unidirec-
tional incremental transformation as directed synchronization which prioritizes the direction of the
transformation as opposed to a synchronization where changes on both sides can occur.

A delta describes the difference between the previous model and the model at the state of syn-
chronization which is necessary to detect and propagate only changes in the incremental transfor-
mation. The authors distinguish operational deltas from structural deltas and from edit