
Reuse of Model Transformations for
Propagating Variability Annotations in
Annotative Software Product Lines

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von
Sandra Greiner

aus Landsberg am Lech

1. Gutachter: Prof. Dr. Bernhard Westfechtel
2. Gutachter: Univ.-Prof. Mag. Dr. Rick Rabiser

Tag der Einreichung: 29.07.2022
Tag des Kolloquiums: 31.10.2022

To my grandparents.

∼ Preface ∼
Software development is a young profession, and we are still learning the techniques
and building the tools to do it effectively. (Martin Fowler, [Fow22])

Decades have passed since in 1968 leading computer scientist have come together at the NATO
software engineering conference to solve the challenges of the software crisis explained by Edsger
Dijkstra in the following way: “when we had a few weak computers, programming became a mild
problem, and now we have gigantic computers, programming has become an equally gigantic prob-
lem” [Dij72]. Accordingly, they faced the situation of exponentially growing computer technology
which made it hardly possible to write useful and powerful programs in an adequate amount of
time. Solution ideas to overcome the software crisis emphasized the adoption of (mechanical)
engineering ideas and transfer them to the level of programming software. Thus, key principles,
such as approaching the problem in an iterative way and reusing existing concepts or already pro-
grammed source code, were proposed. However, still today, in 2022, the software architect Martin
Fowler states the words quoted in the beginning that software development can still be considered
a “young profession” where we keep and need to keep learning new methods, for instance, in order
to address the rapid technological changes.
In contrast to the 20th century, today one kind of program to solve a problem or to offer some au-
tomated functionality does not suffice anymore. A large diversity of computer hardware, involving
capabilities which the members of 1968’s Nato conference might not have imagined, such as multi-
threading, embedded, cloud, and mobile computing, exists while the customer requirements vary
among private persons, companies, and even countries, too. To efficiently serve specific customer
needs, software product line engineering [CN01; PBL05] has become prominent as one technique
adopted from mechanical engineering. By relying on the principle of organized reuse, product line
engineering aims at supporting the mass customization of a product family. Configuring a software
platform allows for deriving customized programs automatically and, thus, increases productivity.
Another software engineering direction stresses abstraction and modeling techniques to automati-
cally generated the source code realizing the modeled system. Using models is native to engineers:
Herbert Stachowiak [Sta73] postulated the usage of a model by employing the principles of map-
ping, reduction, and pragmatism to reflect the original system. Since then, the discipline model-
driven software engineering [Sta+06; BTG12] has installed standardized modeling languages with
formal semantics which, on the one hand, abstract from the source code. On the other hand,
model transformation languages ease the automated generation of another representation for a
given model by focusing on the declaration of correspondences and relations between the two rep-
resentations instead of the concrete execution steps necessary to create the new representation.
As a consequence, the level of productivity is raised by abstracting from realization details and
automating the source code generation.
The combination of model-driven software engineering and software product line engineering,
model-driven software product line engineering [Cza+05], promises to take advantage of the up-
sides of both disciplines to systematically advance the levels of automation and customization.
It seeks to build large software systems holding inherent variability efficiently. Models are em-
ployed to describe the multi-variant system and model transformations should be used to generate
customized source code by the end of the production phase. However, model-driven product line
engineering raises several challenges and requires optimized techniques to increase automation and
to decrease manual engineering efforts. The goal of this thesis is to solve one of these challenges
in a reuse-based, generic and automated way.

i

ii

Abstract

Model-Driven Software Product Line Engineering (MDPLE) is a discipline that bespeaks increased
productivity when developing variability-intense software by combining the benefits of both disci-
plines, model-driven software engineering (MDSE) and software product line engineering (SPLE):
SPLE grounds on the principles of organized reuse and explicit variability to build a (multi-
variant) platform from which customized software products can be derived automatically. In
contrast, MDSE raises the level of abstraction by employing models of different kinds throughout
the development process and eventually represents the software system with executable models.
Model transformations serve to create not only different model representations from a given model
but also to derive executable source code automatically.

While MDPLE should take advantage of the positive effects of each discipline when combining
them, several problems, such as the following, threaten these effects: Annotative product lines
build the multi-variant platform by superimposing single variants of the software. For deriving
a customized product, developers map annotations onto elements of the platform and provide a
configuration of the distinguishing features of the product line. These annotations are Boolean
expressions over the common and distinguishing features of the product line. A filter mechanism
will remove elements from the platform if their annotations are not satisfied by the configuration.
Since multiple artifacts, such as models, build scripts, and source code, form the platform, still
annotating each of these artifacts is a manual process which is tedious and prone to errors. Few
approaches automate this task by manipulating the execution semantics of model transformations.
This requires exclusive access and, in the worst case, to consider variability explicitly in the trans-
formation which increases the level of cognitive complexity and may require to learn new syntax.

Therefore, in this thesis we develop a solution which acknowledges the existing and mature technol-
ogy of (single-variant) model transformations which automate the creation of new models or source
code but are unaware of the variability present in form of annotations in multi-variant product
line artifacts. In contrast to existing approaches, our contribution does not modify the execution
semantics of existing model transformation languages but reuses them and their generated arti-
facts to propagate annotations generically (i.e., independent of the transformation language and
of the transformed instances of metamodels) and automatically.

Specifically, the thesis contributes the informal and formal concepts and implementation of 1)
an a posteriori bytecode model analysis, 2) an a posteriori propagation of annotations based on
transformation trace, as well as 3) a propagation during the execution based on a generic aspect.
Furthermore, the thesis examines the strengths and weaknesses of employing a propagation DSL
and model matching of instances of different metamodels to reconstruct trace information.

The evaluation confirms a significant reduction in manual efforts to annotate the product line:
We examine the trace-based propagation of annotations based on traces of different completeness-
levels and the generic aspect in a controlled setting with small to medium academic product lines.
The aspect-oriented approach assigns 95−100% of the annotations correctly. Furthermore, even
if the trace completeness is insufficient and does not record all target elements, our approaches
compute more than 90% of the annotations correctly whereas the propagation based on generation-
complete traces determines all target annotations correctly.

In summary, the thesis solves the problem of diminished productivity in MDPLE by providing
the concepts, realization, and evaluation of automated techniques to propagate annotations in
annotative product lines without the need to change established technologies.

iii

iv

Zusammenfassung

Die Disziplin modell-getriebene Software Produktlinienentwicklung (MDPLE) verspricht, die Pro-
duktivität beim Entwickeln hochvariabler Software zu steigern, indem sie von den positiven Effek-
ten der beiden Disziplinen modell-getriebene Softwareentwicklung und Software Produktlinienent-
wicklung profitiert. Organisierte Wiederverwendung und Variabilität bilden die Kernprinzipien der
Software Produktlinienentwicklung. Beide Konzepte werden benutzt, um kundenspezifische Pro-
dukte anhand einer konfigurierten Plattform abzuleiten. Die modell-getriebene Softwareentwick-
lung hingegen verwendet während des Entwicklungsprozesses unterschiedliche Arten vonModellen.
Am Ende dieses Prozesses stehen ausführbare Modelle, die das Softwaresystem repräsentieren.
Modelltransformationen stellen eine Automatisierungstechnik dar, die es ermöglicht, anhand eines
gegebenen Modells weitere Repräsentationen und schließlich den ausführbaren Quellcode des Pro-
gramms automatisch zu generieren.

Obwohl MDPLE von den positiven Eigenschaften beider Disziplinen bei deren Kombination prof-
itieren sollte, ergeben sich verschiedene Probleme, die die Vorteile konterkarieren, unter anderem
das Folgende: In annotativen Produktlinien entsteht die Plattform durch das Überlagern aller er-
laubten Softwarevarianten. Entwickler weisen den Elementen der Plattform Annotationen zu und
geben eine Konfiguration der auswählbaren Eigenschaften an, um ein kundenspezifisches Produkt
abzuleiten. Annotationen sind Boolesche Ausdrücke über Literale, die die gemeinsamen und un-
terschiedlichen Eigenschaften der Produktlinie repräsentieren. Sobald eine Annotation nicht durch
die gegebene Konfiguration erfüllt ist, entfernt ein Filter die entsprechenden Modellelemente von
der Plattform, um so das Produkt abzuleiten. Bei der Plattform handelt es sich jedoch nicht um
ein einzelnes Artefakt: verschiedene Modelle, Buildskripte, Quellcode, etc., sind darin enthalten,
deren variablen Elemente alle meist händisch annotiert werden müssen. Wenige Ansätze automa-
tisieren das Annotieren bislang und manipulieren dabei die Ausführungssemantik bestehender
Einzelvariantentransformationen. Dies verlangt jedoch den Zugriff und die Erlaubnis, die Aus-
führungsumgebung zu ändern. Mitunter muss Variabilität explizit in der Modelltransformation
berücksichtigt werden, was wiederum die kognitive Komplexität beim Erstellen und Warten einer
solchen Transformationsdefinition erhöht.

Aus diesem Grund entwickelt die vorliegende Arbeit Lösungsansätze, die auf dem Wissen auf-
bauen, dass Modelltransformationen eine bereits ausgereifte Technik darstellen, um neue Modelle
oder Quellcode zu generieren, der jedoch der Umgang mit Variabilität in Form von Annotationen
nicht bekannt ist. Im Gegensatz zu den bisher publizierten Ansätzen, ändern die beigetragenen
Lösungen nicht die Ausführungssemantik. Stattdessen benutzen sie die Transformationswerkzeuge
und deren generierte Artefakte, um Annotationen generisch (d.h., unabhängig von einer Transfor-
mationssprache oder Transformationsdefinition) und automatisch in das Zielmodell zu übertragen.

Insbesondere trägt die vorliegende Arbeit die informellen und formellen Konzepte sowie die Imple-
mentierung 1) einer a posteriori Analyse von Bytecodeinstruktionen, 2) einer a posteriori Übertra-
gung von Annotationen anhand von Traceinformation sowie 3) einen aspekt-orientierten Ansatz,
der die Annotationen während der Ausführung in generierten Quellcode einbettet, bei. Des Weit-
eren untersucht die Arbeit die Vor- und Nachteile einer Propagations-DSL und des Vergleichs von
Instanzen unterschiedlicher Metamodelle bezüglich der Möglichkeit Traceinformation zu rekon-
struieren.

Die Evaluierung der beigetragenen Ansätze bestätigt eine signifikante Reduktion des händischen
Annotationsaufwands. Dazu wird die Annotationsübertragung anhand von unterschiedlich voll-
ständigen Traces und bei der Verwendung eines generischen Aspekts in kontrollierten Experi-
menten mit kleinen und mittelgroßen akademischen Produktlinien untersucht. Es zeigt sich, dass
der aspektorientierte Ansatz 95−100% der Annotationen richtig ermittelt. Außerdem berechnet
die trace-basierte Übertragung über 90% der Annotationen korrekt, selbst wenn die Vollständigkeit

v

des Traces nicht hinreichend genau ist. Bei der Berechnung von Annotationen anhand von erzeu-
gungsvollständigen Traces werden sogar alle Annotationen korrekt bestimmt.

Insgesamt löst die vorliegende Arbeit damit ein Problem der minimierten Produktivität in der
modell-getriebenen Software Produktlinienentwicklung, indem sie die theoretische Konzepte, deren
Realisierung und Evaluierung beiträgt, um Annotationen in annotativen Produktlinien automa-
tisch und ohne die Veränderung bewährter Technologien auf weitere Artefakte zu übertragen.

vi

Contents

Preface i

Abstract iii

Zusammenfassung v

I Introduction 1

1 Problem Statement 3
1.1 Background . 4
1.2 Research Objective . 5
1.3 Scope of Contribution . 7
1.4 Overview . 8

1.4.1 Contribution . 8
1.4.2 Structure . 10

II Relevant Software Engineering Disciplines 11

2 MDSE 13
2.1 Modeling Concepts . 14

2.1.1 Preliminaries – Associated Engineering Disciplines 14
2.1.2 Background . 14
2.1.3 Metamodels . 15
2.1.4 Classifying Properties . 19
2.1.5 Eclipse Modeling Framework . 21

2.2 Model Transformations . 21
2.2.1 Classification . 22
2.2.2 Transformation Languages and Tools . 25

3 SPLE 30
3.1 Terminology . 32

3.1.1 Product Line Analysis . 32
3.1.2 Product Generation . 33
3.1.3 Engineering Strategies . 33

3.2 Development Processes . 34
3.2.1 Three Simultaneous Activities . 34
3.2.2 Two-Layered Process . 34
3.2.3 Double Spiral Model . 35
3.2.4 Four-Clustered Process . 35

3.3 Variability Modeling . 36
3.3.1 Feature Models . 36
3.3.2 Further Types of Variability Models . 37
3.3.3 Endnotes . 38

3.4 Variability Implementation Techniques . 38

vii

3.4.1 Basics . 38
3.4.2 Compositional Variability . 40
3.4.3 Transformational (Delta-Oriented) Variability 41
3.4.4 Annotative Variability . 42
3.4.5 Multi-Paradigmatic Approaches . 44

3.5 Product Well-Formedness . 44
3.6 Summary . 45

4 MDPLE 46
4.1 Multi-Variant Models . 47

4.1.1 Preliminaries . 47
4.1.2 Variability Mechanisms . 49

4.2 Annotation Maintenance in Existing MDPLE Solutions 57
4.2.1 Classifying Properties of Annotation Maintenance 57
4.2.2 Annotation Maintenance in MDPLE Solutions 59
4.2.3 Results . 61

4.3 Multi-Variant Model Transformations . 62
4.3.1 Model Transformation Reuse . 62
4.3.2 Classification . 63
4.3.3 Variation in Transformation . 65
4.3.4 Annotation Transformation . 66
4.3.5 Results . 68

4.4 Bottom Line . 69

III Trace-Based Propagation of Variability Annotations 71

5 Informal Properties of Trace-Based Propagation 73
5.1 Example of Trace-based Transformation . 74

5.1.1 Single-Variant Model . 74
5.1.2 Example Transformation . 75
5.1.3 Multi-Variant Model . 76

5.2 Properties of Transformation Traces . 77
5.2.1 Traces in Existing Model Transformation Solutions 77
5.2.2 Feature-Based Trace Classification . 79
5.2.3 Common Trace Metamodel for Annotation Propagation 81

5.3 Trace-Based Annotation Propagation . 81
5.3.1 Schematic Overview . 82
5.3.2 Annotation Propagation Procedure . 82
5.3.3 Computational Model . 83

5.4 Summary . 85

6 Formal Foundations 86
6.1 Models as Graphs . 87

6.1.1 Single-Variant Models . 87
6.1.2 Graph Morphisms . 88

6.2 Variability in Graphs . 90
6.3 Graph Transformations . 93

6.3.1 (In-Place) Rules and Derivations . 93
6.3.2 Properties of Derivations . 95
6.3.3 Out-Place Rules and Derivations . 96

6.4 Trace-Based Annotation Propagation . 101
6.4.1 Propagation Algorithm . 101
6.4.2 Commutativity of Derivations . 103

6.5 Summary . 106

IV Extensions to Trace-Based Annotation Propagation 107

7 Missing Trace Information 109
7.1 Generation-Complete Traces . 111

7.1.1 Problem Description . 111
7.1.2 Completely Annotated Target Model . 111
7.1.3 Correctness of Propagated Annotations . 111
7.1.4 Consequences . 113

7.2 Coarse-Grained Traces . 113
7.2.1 Problem Statement . 114
7.2.2 Bytecode Instruction Analysis . 116
7.2.3 Classification of Patterns in Model Transformation Languages 119
7.2.4 Propagation Process . 125
7.2.5 Foundations . 130
7.2.6 Discussion . 132

7.3 Incomplete Trace Information . 135
7.3.1 Problem Statement . 135
7.3.2 Foundations . 137
7.3.3 Computation of Missing Annotations . 140
7.3.4 Discussion . 149

7.4 No Persistent Trace Information . 155
7.4.1 Problem Statement . 156
7.4.2 Propagation DSL . 156
7.4.3 Trace Generation by Model Matching . 162

7.5 Incremental Annotation Propagation . 169
7.5.1 Problem Statement . 169
7.5.2 Background . 171
7.5.3 Incremental Annotation Maintenance . 173
7.5.4 Discussion . 177

7.6 Summary . 179

8 Model-To-Text Annotation Propagation 181
8.1 Problem Statement . 182

8.1.1 Motivation . 182
8.1.2 Consequences . 184

8.2 Aspect-Oriented Multi-Variant Source Code Generation 184
8.2.1 Template-Based Model-To-Text Transformation 185
8.2.2 Aspect-Oriented Programming . 190

8.3 Foundations . 191
8.3.1 Descriptive Overview . 191
8.3.2 Computational Model . 197
8.3.3 Formal Foundations . 201

8.4 Discussion . 209
8.4.1 Computational Model . 209
8.4.2 Related Work . 211

8.5 Summary . 212

V Validation 213

9 Implementation 215
9.1 Preliminaries . 216

9.1.1 Eclipse Modeling Framework . 216
9.1.2 Famile . 217
9.1.3 Delimitation . 220

9.2 Multi-Variant Model Transformation Framework 220

9.2.1 Overview . 220
9.2.2 MuVaTra Core . 222
9.2.3 Mapping Maintenance With Famile . 223

9.3 Realization Specifics . 225
9.3.1 Trace-Based Annotation Propagation . 225
9.3.2 ATL/EMFTVM Rule Analysis-Based Propagation 228
9.3.3 Model-To-Text Aspect-Oriented Propagation 233

9.4 Summary . 239

10 Evaluation 240
10.1 Evaluation Goal . 241

10.1.1 Genericity of Propagation . 241
10.1.2 Correctness of Propagation . 242
10.1.3 Propagation Benefit . 244

10.2 Evaluation Setup . 244
10.2.1 Commutativity Evaluation Framework . 245
10.2.2 Product Lines . 250
10.2.3 Model-To-Model Transformations . 254
10.2.4 Model-To-Text Transformations . 270

10.3 Results . 272
10.3.1 Ecore2UML . 273
10.3.2 Base UML2Java . 275
10.3.3 Advanced UML2Java . 277
10.3.4 Ecore2SQL . 283
10.3.5 Model-To-Text . 286

10.4 Discussion . 292
10.4.1 Trace-Based Propagation . 293
10.4.2 Aspect-Oriented Propagation . 300
10.4.3 Threats to Validity . 302

10.5 Summary . 307

VI Conclusion 309

11 Resume 311
11.1 Summary of Contribution . 312

11.1.1 Overview of Content . 312
11.1.2 Consequences . 313
11.1.3 Design Decision . 313

11.2 Benefits and Take-Away . 314
11.2.1 For Research . 314
11.2.2 For Practitioners and Industry . 315
11.2.3 Take Away . 316

11.3 Future Research . 317

A Appendix 319
A.1 Classification of Annotation Maintenance in MDPLE Approaches 319
A.2 ATL/EMFTVM Bytecode Instruction Opcodes . 320
A.3 Flexible Preprocessor . 320
List of Figures . 323
List of Tables . 325
List of Listings . 326
Abbreviations . 327

B Bibliography 328
B.1 Third-Party Publications . 328

B.2 (Co-)Authored Publications Related with Thesis 349
B.3 Further (Co-)Authored Publications . 351

Acknowledgments 352

Part I

Introduction

1

Chapter 1 Problem Statement

Take the best that exists and make it better
When it does not exist, design it.

Sir Frederick Henry Royce

∼

This thesis offers a solution for a problem situated in annotative model-driven software
product line engineering. To state the targeted problem, this introduction to the thesis
offers an overview of the research disciplines and the current shortcoming in model-
driven software product line engineering. Based on that overview, the chapter states
the problem as well as the research objectives and summarizes the research outcome
which the following chapters present in detail.

After stating background information and introducing the problem in Sec. 1.1, Sec. 1.2,
Sec. 1.3 and Sec. 1.4 present the research objectives, delimit the scope by design deci-
sions and enumerate the concrete contributions of the thesis, respectively. The end of
this chapter outlines the structure of the contents of the thesis.

3

CHAPTER 1. PROBLEM STATEMENT

1.1 Background
Overview This thesis solves a problem which is situated in the discipline of model-driven prod-
uct line engineering, which combines the methods used in the disciplines model-driven software
engineering and software product line engineering. The goal of the thesis is to reuse model trans-
formations, a state-of-the-art technique from the discipline of model-driven software engineering,
to propagate variability annotations in model-driven product lines. The following paragraphs
introduce each discipline in short to explain the problem being solved thereafter.

Disciplines Software product line engineering [PBL05; Ape+13], on the one hand, builds on
the principles of organized reuse and variability. The level of domain engineering builds a su-
perimposed platform of all variants whereas the level of application engineering maintains single
variants which are delivered as final products in the end [PBL05]. A key artifact of systematic
product line engineering are variability models [Cza+12] which capture differences (and common-
alities) among the software variants of a product line. Variability mechanisms [Ape+13] serve to
derive and, in the end, build customized variants. The most common ones are the compositional,
transformational (also delta-oriented), and annotative variability mechanisms.
This thesis focuses on the annotative variability mechanism (c.f., Sec. 3.4.4), which constructs a
superimposed multi-variant platform to incorporate all program variants available to a customer.
Without loss of generality, we assume that a feature model [Kan+90] captures the variability of
the system. Annotations are Boolean expressions over the features of the feature model and are
mapped onto the elements of the platform. For deriving a variant, the product developer configures
the variability model by providing selection states for each optional feature. Given such feature
configuration, a filter mechanism will remove elements if their annotations are not satisfied by this
feature configuration.
Model-driven software engineering [BCW12; Sta+06; Sch06], on the other hand, relies on the
principles of abstraction and automated generation. Models which are instances of metamodels
[Küh06] represent the software system which should be created. To generate source code and
thereby realizing the executable program, model transformations [SK03; CH06] serve as key tech-
nology for automating the creation of another representation, such as refined models or source
code.
Furthermore, in model-driven software product line engineering [Gom05], models form the core
elements of the platform. As such, not only one domain model but multiple types of models
may compose the platform. Similar as classical software product line engineering, model-driven
product line engineering can employ the same variability mechanisms which instead of code man-
age multi-variant models [SBW16]. In annotative model-driven product lines, the multi-variant
model, also denoted as 150 %-model, composes the variants and maps annotations onto model
elements to allow for filtering customized models from that platform model. We assume classical
forward engineering development which builds coarse-grained models from requirements engineer-
ing in early development stages and subsequently refines them into design and implementation
models. These refinements may occur over several iterations. To support the automated propa-
gation of information of a coarse-grained level to the next, more fine-grained level, model-driven
software engineering employs (incremental) unidirectional model transformations. As an exam-
ple, the product line developer can refine an Ecore model into a UML class model or create a
relational database schema as additional information. The developer can further refine the UML
class model into a Java model which can be used to generate (multi-variant) source code. A
model-driven product line developer typically employs transformations to automate the creation
of new types of models.

Challenge Even though mature tool support for multiple kinds of model transformation lan-
guages exists including their proper integration into the Eclipse IDE, the (single-variant) transfor-
mation engines and languages are unaware of the variability in form of annotations mapped onto
the multi-variant models of a model-driven product line. For this reason, it is possible to execute a
single-variant transformation to generate another model representation for an input multi-variant
model (e.g., create a UML class model from an Ecore model) but it is impossible to propagate the

4

1.2. RESEARCH OBJECTIVE

annotations mapped onto source model elements therewith, in general. Therefore, product line
developers need to map annotations onto target elements manually. This process is laborious,
time-consuming, and prone to errors: Either the developers assign annotations completely anew
or they look up the annotations of (what they assume to be) corresponding source elements. Al-
ternatively, extending existing transformation definitions – if possible – is a similarly error-prone
effort which has to be repeated for each kind of relevant transformation definition.

Existing Solutions Before working on the thesis, only few techniques existed that regard vari-
ability in model transformations: Variability-based rules [Str+18b] annotate existing rules and
allow their variation to serve the purpose of generating different, customized artifacts by config-
uring the transformation. The lifting of transformation rules [Sal+14] changes the semantics of
the model-to-model graph transformations and, thus, requires to modify the execution engine. A
similar approach incorporates variability directives by extending the syntax of the transformation
language ATL (Atlas Transformation Language) [Sij10] and transforms the resulting execution
model with an ATL transformation into the default ATL execution model in a higher-order trans-
formation. In summary, these three and further closely related approaches [Tae+17; Fam+15]
either manipulate the execution semantics or require to consider variability in the transformation
definition explicitly. On the one hand, accessing the execution engine implies the right and possi-
bility to access and manipulate the existing semantics of a language. On the other hand, exposing
the transformation developer to the variability increases the amount of cognitive complexity to
define the transformation definition and may require to learn new transformation syntax and
semantics.

Consequence Driven by the observations of the possibility to reuse model transformations and
the limitations of existing techniques, the goal of this thesis is to answer and provide an adequate
solution to the following problem:

So far, the product line developer needs to annotate multi-variant (source) models
manually. As one product line consists of multiple modeled artifacts, the developer
has to redundantly map annotations onto each newly introduced artifact in laborious
and error-prone handwork. Since model transformations automate the creation of
target representations, they should be equally reusable to propagate the annotations
of source elements to corresponding target elements in an automated way.

1.2 Research Objective
Based on the goal to propagate annotations automatically by reusing transformation technology,
we derive the following research objectives targeted in this thesis.

RO1 Reuse of existing transformation languages and engines

RO2 Automation of propagating annotations

RO3 Genericity of propagating annotations (i.e., independent of a specific transformation
language or the transformation definition)

RO4 Correctness of propagated annotations

RO1 Reuse Firstly, the objective to reuse existing technology aims to preserve the already
invested time, work, and efforts. Transformation languages with formal semantics have already
been designed and optimized for efficiency. For instance, active research continuously optimizes
the unidirectional model-to-model transformation language ATL [Jou+08] to perform faster and
more accurately by improving the front-end (e.g., validation and repair operations) [Var+21] and
the back-end (e.g., faster compile and execution time) [Cal+19; CGL18; Cua+22]. At the same
time, the ATL zoo [All22] collects several transformation definitions specified in this language.
When building a model-driven product line, the developer may employ existing transformation

5

CHAPTER 1. PROBLEM STATEMENT

definitions if instances of corresponding metamodels form part of the product line. For example,
transformation definitions which turn a class model into a relational database schema to realize
object-relational mappings serve as a standard example to demonstrate the syntax and semantics
of the language. Therefore, this transformation is available in several languages, such as QVT-R
[Wes15] and QVT Operational Mappings [Obj16], ATL [All22], and Henshin [Kra].
Overall, reusing the existing know-how offers the benefits that there is no necessity for the product
line developer to

• learn new language constructs
• think about the transformation of annotations explicitly, so that the level of cognitive com-

plexity of the transformation definition does not increase additionally
• extend existing transformation engines
• create new transformation definitions from scratch (which might require an expert in model

transformations)

RO2 Automation Secondly, the product line developer should have to invest no or (only if
indispensable) minimal manual annotation efforts. Thus, the propagation mechanism needs to map
the annotations onto elements of the target model automatically. Accordingly, the propagation
mechanism should ensure that an annotation is mapped onto all (relevant) elements which are
created by the reused transformation after having performed the propagation. If the product line
developer needs to modify an automatically assigned annotation manually after the automatic
propagation, executing the transformation another time (e.g., because the source model changed)
should preserve the manually modified annotations.

RO3 Genericity Thirdly, it should be possible to employ the same propagation mechanism
to propagate annotations generically. Neither the metamodel to which the source and target
model conform nor the kind of transformation engine which creates the target model should
provoke a different propagation mechanism. In other words, the propagation should be processed
independently of the transformation definition and of the transformation engine.
Building a generic solution offers the benefit of (mostly) technology-independent applicability.
By not assuming a certain metamodel or transformation language, a respective solution can be
employed in almost any transformation scenario. Thus, the product line developers are not forced
to employ a specific tool environment, transformation language, or transformation definition but
can reuse the existing tools and languages which are available and adequate.

RO4 Correctness Finally, the propagation of annotations should be correct. Correctness is
not defined by prescribing the concrete annotations assigned to target elements but by examining
their effect on the derived variants. In concrete, transformation and filter operations need to
commute as sketched in Fig. 1.2.1:

multi-variant
source model

filter

MVMT

filter

multi-variant
target model

single-variant
target model

single-variant
source model

SVMT

Figure 1.2.1: Commutativity of transformations noted informally.

Amulti-variant model transformation (MVMT) creates the multi-variant (annotated) target model.
Then, the same single-variant target model should be created by filtering the multi-variant source
model and transforming the resulting single-variant source model with the reused single-variant

6

1.3. SCOPE OF CONTRIBUTION

model transformation (SVMT) as results from filtering the multi-variant target model by the same
feature configuration. If this property holds for each valid feature configuration, we consider the
propagation result correct. To the best of our knowledge, the Lifting [Sal+14] approach postulated
commutativity of transformations as correctness criterion for the first time.

1.3 Scope of Contribution
According to stating the background information and the problem addressed in this thesis, we
take several design decisions which delimit the scope of the approach. Although the detailed
description of the three software engineering disciplines introduces and explains some of these
decisions subsequently in Part II, this section collects the important ones and thereby delineates
the scope of the contribution.

D1 Annotative Model-Driven Product Line
The contributed annotation propagation mechanisms serve to diminish the problem of man-
ually annotating a model-driven product line model and are essential when employing the
annotative variability mechanism. We do not examine the effect or necessity of a simi-
larly automated annotation technique when utilizing the compositional or transformational
variability mechanism or solely implementation techniques to build varying products.

D2 Element-Wise Mappings
Multiple ways to persist the mapping of an annotation onto a model element exist which
Sec. 4.2.2 illuminates. Our solution targets the maintenance of annotations recorded by
the means of element-wise mappings. Those may be either stored externally, which means
in a physically file separated from the domain model, or internally, which means stored
as elements of the target representation (e.g., as preprocessor directives). Thus, we do
not consider annotation-wise mappings which record one kind of annotation once and map
several model elements, particularly of physically different models, onto the corresponding
single annotation.

D3 Constrained Variability
As Sec. 4.1.1 will explain, we consider the transformation of domain models which realize
constrained variability. Since (single-variant) state-of-the-art modeling languages, such as
Ecore or UML, do not offer dedicated constructs to represent and respect the variability in-
herent in a multi-variant domain model, the latter type of model is subject to the constraints
defined in the single-variant modeling language’s syntax. Accordingly, for instance, it is not
possible to define names of one UML class which vary with respect to the given feature con-
figuration. This would require to persist different values of the single-valued attribute name
and map different annotations onto them. Only few approaches support such mechanism,
mostly in a user-hidden way [Reu+20; SW16; BS12]. Therefore, we restrict our solution to
constrained variability.

D4 Proactive Development
This thesis focuses on the proactive (i.e., from scratch) development of a product line. Even
though we assume that at least one multi-variant source model is annotated completely, we
do not regard combining multiple products into a product line as in extractive approaches
or to integrate new products into an existing platform as in reactive approaches.

D5 Non-Intrusive Reuse
Following from the research objective to reuse existing model transformation technology,
we restrict the solution concepts to modify neither the syntax of existing transformation
languages nor the semantics of their execution engines. On the one hand, in this way the
product line developer may reuse existing transformation definitions to transform multi-
variant models. This is beneficial, particularly, whenever the developer is unable to access
the transformation engine. In addition, the developer is not required to know profoundly
how model transformations behave. On the other hand, in the transformation definition,
the developers do not have to regard the additional complexity introduced by annotations.

7

CHAPTER 1. PROBLEM STATEMENT

D6 Commutativity as Correctness Criterion
Finally, as stated as research objective (c.f., Sec. 1.2), we foster commuting multi- and
single-variant model transformations as correctness criterion. According to this criterion,
an annotation mapped onto a target element is not determined uniquely. Thus, we do
not evaluate the correctness of an annotation by prescribing a specific expression but by
regarding the presence of the element onto which it is mapped in derived products.

In summary, these design decisions determine and delimit in which areas of software product line
engineering the present work is applicable.

1.4 Overview

In the course of this thesis, we contribute diverse mechanisms which all intend to propagate
annotations to the target model by adhering to the four research objectives. For that reason,
Sec. 1.4.1 illustrates the novelties contributed in this thesis, dedicating a particular focus on their
relationships and dependencies. While Sec. 1.4.1 announces the chapters in which the contributions
appear, Sec. 1.4.2, provides an extended outline of the entire thesis.

1.4.1 Contribution

To meet the research objective, this thesis examines different solution strategies. This section
provides an overview of the main contributions and foreshadows how they appear subsequently
in the following chapters. Fig. 1.4.1 illustrates the dependencies between the contributions of this
thesis and states the corresponding chapters. B.2 collects the peer-reviewed publications which
lay the base for each chapter and the following descriptions cite the respective ones. Furthermore,
the introduction to each chapter mentions the publications which lay its foundation. The fol-
lowing paragraphs subsequently summarize the contents of each contribution which answer four
overarching questions:

How do existing MDPLE tools maintain annotations and keep them consistent? The
first part of the contribution considers the related work by examining annotation maintenance
methods in existing MDPLE tools [GW21] and classifies the properties of multi-variant model
transformations [GW21; WG20a].
Although several solutions to maintain variability in model transformations exist, Sec. 4.3 con-
cludes that none of the examined MDPLE tools considers or employs an automated mechanism
that explicitly keeps corresponding annotations of diverse artifacts consistent.

How and to what extent can we propagate annotations automatically? The following
chapters contribute conceptual solutions to propagate annotations automatically, generically and
correctly by reusing already existing technology.
On the one hand, Chp. 5 and Chp. 6 describe the concept of propagating annotations based on
a transformation trace in model-to-model (M2M) transformations, at an informal level [GSW17],
and the conditions which have to be satisfied, at a formal level [WG18; WG20a], respectively.
On the other hand, Chp. 8 presents an approach to employ aspect-oriented programming tech-
niques to map annotations onto text fragments in model-to-text (M2T) transformations [GW18b].
As the computational model, which formally proves the correctness of trace-based propagation, is
quite restrictive and fosters the usage of complete traces, Chp. 7 offers practical solution strategies
to maintain situations which violate the computational model. Therefore, it discusses the effect of
a generation-complete trace and describes propagation strategies for when traces are incomplete
[GW19c; GW18c] or not existing at all [BG18]. This involves the necessity to preserve annota-
tions which the developer has to modify manually because of inaccurate annotations provoked by
missing information [GW20].

8

1.4. OVERVIEW

trace-based propagation Chapter
 5+6

bytecode instruction
analysis

missing annotation
determination

T

1

2

3

DSL-based propagation

implementation
and evaluation

annotation consistency in existing MDPLE

annotation
maintenance

annotation
maintenance

FCA

MVMT
FCA

MVMTs

Chapter 4

how (M2M)? how (M2T)?

Chapter 7

preconditions
violated?

Chapter

9+10

aspect-oriented
propagation

Chapter 8

equal?
+

differences

Evaluator

extensions to
trace-based
propagation

correct?

correct?
correct?

DBC Graph HAS DBC Graph HAS DBC Graph
0

10

20

30

40

50

60

70

80

90

100

4.22 2.79 6.11 5.96 3.75 7.7 2.89 1.82

9
5
.7

8

9
7
.2

1

9
3
.8

9

9
4
.0

4

9
6
.2

5

9
2
.3

9
7
.1

1

9
8
.1

8

Error Rates in BXtend Transformations (Completion Strategies)

correct

err_act

base UML2Java advanced UML2Java Ecore2SQL

A
c
tu

a
l
E

rr
o

r/
C

o
rr

e
c
tn

e
s
s

[%
]

Figure 1.4.1: Overview of contributions and their appearance in the thesis. The second part of
the bibliography list (B.2) compiles the publications that lay the grounds for these chapters.

To what extent do the conceptual approaches satisfy the objectives in practice? The
final part presents an implementation of the approaches as proof of concept (c.f., Chp. 9) and
evaluates the benefits and limitations gained by the propagation strategies (c.f., Chp. 10). The
respective chapters illustrate the functionality of the realizations to propagate annotations as well
as how commutativity can be examined practically [GW19b]. The evaluation of the propagation
approaches complements already published work [GW19a; GW18a] and is extended to mitigate
some threats of validity.
While – by design – each of the solutions is automated, generic and reuses existing technology,
the results demonstrate that in general correctness cannot be guaranteed in practical situations.
However, the evaluation shows that the propagation based on generation-complete traces results
in commuting transformations in each of the examined situations. If traces are incomplete, the
proposed alternative propagation mechanisms (completion strategies) compute more than 90% of
the annotations correctly which means that less than ten percent of the target annotations have
to be repaired manually (in the worst case scenarios). In addition, the evaluation of the aspect-

9

CHAPTER 1. PROBLEM STATEMENT

oriented propagation of annotations demonstrates that violations to its computational model may
provoke erroneous annotations. However, in the respective multi-variant source code we have to
repair only four annotations which means that in total more than 98% of preprocessor directives
are computed and inserted correctly.

1.4.2 Structure
Before closing the first part of this thesis, this section explains the organization of the remainder.
Part I gave an overview of the contribution in terms of stating the problem, the research objectives,
and the design decisions. The second part, Part II, scrutinizes the research disciplines. In this
way, Part II narrows down the problem and offers detailed background information to readers
not entirely familiar with either model-driven software engineering (Chp. 2), software product line
engineering (Chp. 3), or their combination (Chp. 4). Furthermore, while the first two sections of
Chp. 4, Sec. 4.1 and Sec. 4.2, present background information how to combine both disciplines,
Sec. 4.3 illuminates how to convey variability information in model transformations. The closing
section motivates the necessity for propagating annotations based on the preceding examination
of existing solutions.
The following parts present the contributed propagation approaches: Part III describes the com-
putational model for trace-based propagation: Chp. 5 illustrates the concept of trace-based prop-
agation and its properties informally whereas Chp. 6 offers the foundations formally noted. As
the computational model may be violated in practice, Part IV explains extensions to the trace-
based propagation approach. On the one hand, Chp. 7 offers several strategies to solve situations
in which trace information is only insufficiently available. On the other hand, Chp. 8 describes
how to transfer variability information in model-to-text transformations by employing an aspect-
oriented approach.
The thesis continues to examine to what extent the contributed concepts are applicable in prac-
tice in Part V: Chp. 9 presents the implementation of the contributed propagation mechanism
whereas Chp. 10 evaluates inasmuch the propagation mechanisms satisfy the research objectives,
particularly commutativity, in varying transformation scenarios.
Part VI finalizes the thesis: Chp. 11 summarizes and reflects on the contribution, discusses design
decisions, and collects important lessons learned which may be relevant not only for research
but also for practitioners and the industry. An outlook on potential future research directions
concludes the thesis.

10

Part II

Relevant Software Engineering
Disciplines

11

Chapter 2 Model-Driven Software Engineering

In nova fert animus mutatas dicere formas / corpora1

Ovid, Met., Book I, Lines 1–2

∼

As first part of introducing background information on the thesis’ topic, this chap-
ter illuminates the discipline model-driven software engineering. While models, which
conform to metamodels, abstract and reduce the original in a pragmatic way, their sole
use will not produce executable source code. Thus, model transformations represent
the key technology to maintain the models in this discipline.

Therefore, this chapter introduces general modeling concepts in its first part, Sec. 2.1
while the second part of this chapter, Sec. 2.2, scrutinizes the key technology in model-
driven software engineering, the concept of model transformations.

1 “I intend to speak of forms changed into new entities”

13

CHAPTER 2. MDSE

2.1 Modeling Concepts
Road Map Before diving into the characteristics of model-driven software engineering, this
section discusses terminology associated with the discipline in order to pigeonhole our approach
correctly. in Sec. 2.1.1. Thereafter, Sec. 2.1.1 delimits different terminology to build a com-
mon understanding of the area in which this thesis is situated whereas Sec. 2.1.2 illuminates the
motivation why software engineers may employ models as form of abstraction to build software
systems. Finally, the remaining sections introduce basic modeling concepts and their realization
mechanisms to talk about models throughout the remainder in an informed way.

2.1.1 Preliminaries – Associated Engineering Disciplines
Besides model-driven software engineering (MDSE), the terms model-based engineering (MBE)
and model-driven (software) development (MDD) coexist as names of this research discipline. All
of these directions are centered around the usage of models in order to raise the level of abstraction
when creating a system.
While MDSE and MDD can be regarded synonyms, MBE focuses on models differently. In MBE,
models are associated artifacts which, together with source code, make up the system. They are
not intended to replace the necessity for manually written source code. Conversely, in MDSE
– also denoted as model-driven engineering [Sch06]– or MDD[Sta+06; BCW12] models are the
primary artifacts to prescribe the system, thereby ensuring that executable source code can be
generated automatically. This thesis contributes a technology to enrich MDSE.

2.1.2 Background
In all engineering disciplines models have always predominated the development of a system:

Model Definition in (General) Engineering According to Stachowiak, a model respects the
following three essential features: mapping, reduction and pragmatism. Firstly, a model always
maps the elements of a natural or an artificial original to some representation, the elements of
model. Secondly, the model reflects relevant parts of the original only, thereby reducing it. Finally,
the pragmatic feature involves three instances, the user of the model, the point in time when it is
used and the purpose to which the model is used. By considering these three factors, the model
is trimmed to cover the system best from a pragmatic point of view. [Sta73]

Model Definition in Software Engineering The following proposition by Kühne transfers
Stachowiak’s general definition of a model in engineering sciences into a definition of a model in
software engineering.

A model is an abstraction of a (real or language-based) system allowing predictions or
inferences to be made. [Küh06]

In his work, Kühne presents key concepts on how to recognize models in MDSE by defining
the relationship of a model to the system it describes. In this context, he further elaborates on
metamodels and model transformations, to which we refer in subsequent sections.
First of all, as stated before, a model abstracts from a real or a language-based system with a
specific purpose in mind [Küh06]. While the abstraction of the real-world (system) in form of
a model is in line with Stachowiak, the abstraction of a language(-based system) may explicitly
target the software engineering community.

Abstracting Software Languages In a similar direction, the overall aim of software language
engineering has been – and is still today – to raise the level of abstraction and automation. By now,
only few programmers write assembler code or even machine code. Even when hardware-specific
optimizations are required, developers prefer domain-specific languages [Fow10], from which GPL
code is generated which in turn is transformed into assembler or machine code. A prominent ex-
ample of abstracting from assembler languages is mbeddr which provides a language workbench

14

2.1. MODELING CONCEPTS

Figure 2.1.1: Automation and abstraction climax.

for specifying source code for embedded systems [Voe+13]. Today, the majority of programmers
(still) employs general purpose languages, such as Java or C/C++ [Str13], when developing soft-
ware. Compilers [Aho+13], in turn, generate a lower-level representation, typically machine or
assembly code, from the GPLs automatically. As shown in Fig. 2.1.1, executable models continue
this climax of abstracting the system and generating the lower-level representation automatically.
To this end, models adhering to formal syntax allow for deriving the GPL source code from the
model. As a consequence, the question arises how to note a model formally in order to generate
executable source code from it?

Object Management Group In 1989, the object management group2 (OMG) has been founded
as international non-profit consortium for setting modeling standards and, thus, answering these
questions. By now, many standards have been established by this facility and some will be
introduced in the next paragraphs as well as the answer to the question how to express models.

2.1.3 Metamodels
Metamodels are the prominent answer to the question of how to (de-)note a model. The prefix
“meta” originates from the Greek language where “µετα” means “after”. After writing his work
”on nature” (φυσικη), Aristotle (4th century BC) published notes reflecting on this first work.
These second notes are nowadays commonly called “Metaphysics” (µεταφυσικη) since they use
methods defined in the initial work to reflect on physics (though originally there was no official
title). The idea of using a science to define this science itself has been put up firstly in modern
times by mathematicians, such as David Hilbert (1862-1943) and Kurt Gödel (1906-1978). In 1920
Hilbert proposed a research program called “metamathematics” using mathematical methods, for
example a universal axiom system, to define mathematics. Similarly, the idea of defining physics
based on physics was caught up by Gödel. This historic excursion indicates that the introduction
of metamodels by the OMG, which is described in the following paragraphs, is no revolutionary
new idea but continues a long historical tradition.

Overview The grounds for metamodeling, i.e., defining models based on models, lie in the
specifications of the Model-Driven Architecture and the Meta Object Facility, both explained in
the following paragraphs. Furthermore, as a metamodel defines the abstract syntax and static
semantics of a model, this section delimits metamodels from modeling languages. Additionally,
the sequel introduces the key concepts of the UML metamodel, which is one of the most widespread
metamodels and serves as example in the subsequent explanations, and the OCL language, which
allows for defining the static semantics of a metamodel.

2 www.omg.org

15

www.omg.org

CHAPTER 2. MDSE

M0

M1

M2

M3

model

original

metamodel

meta-metamodel

real-world object,
source code

UML model/DSL,
e.g., UML class
diagram

MOF, EMOF, W3C

UML metamodel,
DSL grammar, ...

«reflects»

«instance of»

«instance of»

Figure 2.1.2: Classical MOF modeling hierarchy.

Model-Driven Architecture The foundations for modeling lay in the model-driven architec-
ture (MDA) [Obj00] proposed by the OMG. The MDA specifies the design of platform independent
models (PIM) which according to Richard Solely, main author of the specification draft, allow
“to derive code from a stable model” ([Obj00], p.3) while the underlying technology changes over
the course of time. The term platform refers to any technical or business details specific to a
system. When deriving source code for a specific platform, firstly the PIM needs to be turned into
a platform specific model (PSM), an intermediate state which additionally includes the technical
or business semantics of the target platform.

Meta Object Facility The Meta Object Facility (MOF) [Obj19b] standard, proposed by the
OMG, declares the standards for metamodeling in the context of the MDA. Classically, the MOF
declares a four-layered hierarchy of modeling which is sketched in Figure 2.1.2. At the bottom,
M0, resides the original. The original may be a real object, which is reflected by some element in
the model, or, for instance, source code, which the model describes. Level M1 contains the actual
model which reflects the original. In turn, the metamodel at level M2 defines the syntax for models
residing at level M1 which are instances of the metamodel. Finally, metamodels are instances of
a meta-metamodel, located at level M3. Since this hierarchy could be extended to infinity, the
standard involves a bootstrapping mechanism. The topmost layer defines its language itself, thus,
being a reflexive metamodel. Ex. 2.1.1 provides a concrete example of models residing at the four
levels and is explained after introducing the specializations of MOF, EMOF and CMOF.
The MOF standard further distinguishes between essential and complete MOF: Essential MOF
(EMOF), as part of the MOF standard, offers the minimal framework for building metamodels
at level M2. Thereby, the EMOF model merges elements of the UML2 standard, which is intro-
duced in the sequel, with basic MOF concepts and constraints. In this way, EMOF suffices to
bootstrap metamodels conforming to EMOF. Finally, Complete MOF (CMOF) merges several
further packages, for instance the EMOF and additional parts of the UML2 metamodel, in order
to provide for advanced metamodeling capabilities. [Obj19b]

Example 2.1.1: Modeling Hierarchies

Fig. 2.1.3 exemplifies the different hierarchy levels by using concrete model excerpts: The
model at level M1 reflects families consisting of members. The family Obama with a par-
ent called “Michelle” and a child called “Natasha” serves one possible (partial) instance,
representing the original. The model at level M1 is expressed in UML which resides as
metamodel at level M2. At the topmost level, the meta-metamodel defines the syntax to

16

2.1. MODELING CONCEPTS

which the metamodels conform. In this example, we assume the UML model is expressed
as an Ecore model, as such Ecore servers as meta-metamodel.

M0

M1

M2

model

original

metamodel

Association

Property

Type

Relationship Classifier

/endType

0..1

aggregation: AggregationKind
isDerived: Boolean
lower: Integer
upper: UnlimitedNatural

owning-
Association

0..*

member-
End

0..1

0..*

M3 meta-metamodel

navigableOwnedEnd

EClass

association

owned-
End

0..*

abstract: boolean
interface: boolean

EAttribute
abstract: boolean
interface: boolean

EReference
containment: boolean
/container: boolean

eOpposite

eStructuralFeatures

EStructuralFeature
lowerBound: int
upperBound: int = 1
derived: boolean

0..*
eContaingClass

0..1

0..1

0..1

Person

birthday: String
name: String

Family

name: String

parent
0..2

0..*

children

family

0..1

0..1

name = "Obama"
birthday = "08-04-1961"

child : Person

name = "Natasha"
birthday = "0-0-2001"

M : Person

name = "Michelle"
birthday = "01-14-1964"

 Obama : Family

parent

children

family

Figure 2.1.3: Modeling hierarchy for UML class models.

Despite the precise structure of this four-level metamodeling hierarchy to which further state-of-
the-art OMG standards, such as the UML standard, refer, research has shown that multi-levels are
closer to reality and ease modeling [AK08]. Multi-level programming distinguishes the linguistic
from the ontological level of modeling which is beyond the scope of this thesis. In its recent update
of the MOF standard, the OMG refrains from the strict four-level concept. The OMG denotes
the instance-of relationship as the most relevant aspect of the four-level model. Specifically, the
possibility to navigate from objects to their defining classes or, in different terminology, from
instances to their classifiers represents its core contribution [Obj19b].

Concrete vs. Abstract Syntax To explain the relationship between metamodels and models
more precisely, this paragraph distinguishes between the meanings of concrete and abstract syntax
first.
The model reflects the original. If it is noted in the concrete syntax, it will instantiate the language
constructs as they are defined in the metamodel. The metamodel defines the syntactic constructs,

17

CHAPTER 2. MDSE

s : Class
name = "Family"

t : Class
name = "Person"

a : Association

memberEnd

Family

name: String

Person

name: String

parent
0..2

family
0..1

memberEnd

ownedAttribute

class

association

association

name = "parent"
lower = 0
upper = 2
aggregation = "composite"

sP : Property

ownedAttribute

name = "family"
lower = 0
upper = 1

aggregation = "none"

tP : Property

type

type

/source

/target

parents

name = "parents"

concrete syntax abstract syntax

Figure 2.1.4: UML association in concrete syntax and in a simplified form in its abstract syntax.
Fig. 2.1.3 depicts the corresponding metamodel elements at M2.

the relationships among and the static semantics, which allow to note the model. Noting the model
in abstract syntax instead, shows which of the language constructs defined in the metamodel are
instantiated in the model. Ex. 2.1.2 provides an example which demonstrates the relationship
between concrete and abstract syntax. In the course of this thesis, several figures will note models
in abstract syntax to demonstrate the syntactic constructs of the metamodels declared in the
transformation specification.

Example 2.1.2: Concrete vs. Abstract Syntax

Fig. 2.1.4 exemplifies the differences between concrete and abstract syntax by taking up the
example of the modeling layers. The left hand-side demonstrates a class Family consist of
up to two Person. This model noted in concrete syntax conforms to the UML2 metamodel.
It consists of two classes combined with a bidirectional association.
The right hand side shows relevant excerpts of the model noted in abstract syntax. Key
element is the instance of the UML Association which is called parents and comprises the
two member ends, family and parent which each are an instance of the UML Property.
Furthermore, the class of the respective opposite end contains these properties, for example
the class Family encompasses the property parent.
In this way, the right side contains the same information as the model on the left side but
expresses it by instantiating the corresponding metamodel elements. Thus, it employs the
abstract syntax.

Metamodel – a Modeling Language? A metamodel defines the abstract syntax and static
semantics of a model thereby encompassing the syntactic constructs, their relationships as well as
further constraints on them. Conversely, a modeling language does not only define the metamodel
but all further levels necessary to formalize a programming language. Thus, the modeling language
also defines the execution semantics of the metamodel and potentially further analysis methods,
proofs, etc., too.

Unified Modeling Language The Unified Modeling Language (UML) and its extensions (e.g.,
foundational UML (fUML) and the Action Language for Foundational UML (ALF)), are some
of the most frequently used standardized languages for building models of originals. The language
originates from the Rational Software Corporation where it was designed by Grady Booch, Ivar
Jacobson and James Rumbaugh [BJR96] to quieten the call for a unified notation to describe
a system. The by-now-official UML standard, firstly proposed by the OMG in 1997 and latest

18

2.1. MODELING CONCEPTS

revised in 2017 [Obj17b], defines 14 kinds of models to express a system’s structure and behavior.
For designing the structure or the static parts of a system, the standard defines, for instance,
package models, class models or component models whereas, for instance, activity, sequence or
communication models serve to express the behavior of the system or some of its specific instances.
Sec. 2.1.3, II illuminates the UML standard with respect to build class models in more detail.

Object Constraint Language The Object Constraint Language (OCL) [Obj14] issued by the
OMG complements the MOF, by a subset, and the UML, by the full set of language constructs,
respectively. The language allows to declare further constraints about their instances which cannot
be expressed by the modeling language itself: For instance, UML or Ecore classes residing in one
and the same package should not be given the same name represents a semantic constraint which
is not expressible by the metamodels alone. As a formal language, OCL avoids the introduction of
ambiguities due to constraints specified in natural language. OCL expressions are guaranteed to
be without side effects and can be utilized to either query model elements or to declare constraints,
such as pre-/postconditions on operations, invariants or the derivation of attributes.

2.1.4 Classifying Properties
Following above descriptions, this section outlines categories which allow to distinguish models
and the design purposes.

Syntax Levels As it was explained in the previous section, concrete syntax is differentiated
from the abstract syntax. While a model is typically noted in concrete syntax, a model noted in
abstract syntax demonstrates which language constructs of the metamodel form the model.

Syntax Notation Models are commonly assumed to be noted as diagrams, most likely stemming
from the fact, that many models are expressed in graphical syntax. For instance, classically, the
UML specification defined the 14 model types as diagrams. However, recently, several of the UML
model types can also be noted in textual syntax.
Accordingly, the way of noting a model is a second distinguishing factor for the syntax. Besides
the graphical syntax, models can be written, for example, in a textual or a tabular notation.
While a broader group of people may understand the graphical notation, the textual notation
strongly relates with programming languages which may make it easier to understand and utilize
by programmers.

Syntax Definition The model may be defined formally, semi-formally or informally. A formal
model is grounded in a formal modeling language. Thus, it does not only conform to the abstract
syntax defined in some metamodel but also respects the semantics of the modeling language and
possibly further formal descriptions, such as proofs or inferences, for its constructs. In contrast,
a semi-formally defined model conforms to a modeling language which is defined based on formal
constructs combined with informal ones, such as natural language. An informally defined model
adheres to informal descriptions only and, thus, is not considered a model by the means of the
MDA. This thesis considers only metamodels which define the abstract syntax and static semantics
as defined in the MDA.

Execution Semantics Besides the static semantics, the execution semantics describe the be-
havior at runtime for the language constructs. Similarly to defining syntax at different formal
levels, the execution semantics can be defined informally with natural language or with (semi-
)formal methods. In the context of modeling languages, a unique transformation into executable
source code may declare the execution semantics of a modeling construct.
For instance, the UML standard does not prescribe the execution semantics for any of its model
kinds. As a consequence, several ways exist, for example, to order multi-valued properties during
integrating them into a class declarations. In contrast, for example, the OMG defines the execution
semantics in natural language for BPMN Process Execution models [Obj19a].

19

CHAPTER 2. MDSE

Aspect: Structural vs. Behavioral Models In the context of MDSE we further distinguish
the models by the aspect they cover. Structural models capture the relationships between entities
of the system whereas behavioral models describe how an entity operates. Since the ultimate
goal of MDSE is to turn the models into source code written in an GPL, a structural model
upfront expresses how classifiers and packages are organized and allows to generate method stubs
to establish relationships. In UML, for instance, class diagrams or package diagrams serve this
purpose. In the Eclipse Modeling Framework the implementation of specific methods, preserving
referential integrity, is generated completely. In contrast, behavioral models specify how the system
acts in various situations. From behavioral models, e.g., the implementation of method bodies
can be inferred. In UML, for instance, activity or sequence diagrams are categorized as behavioral
models. More powerful are dedicated languages, like the ones specified in foundational the subset
for executable UML models (fUML) [Obj18] and its instantiation in concrete syntax, the action
language for foundational UML (Alf) [Obj17a]. fUML specifies precise semantics for a subset of
UML which allows for generating executable source code. ALF is the standard providing a textual
syntax on top of fUMl, though ALF additionally supports structural modeling, its core is trimmed
to express the behavior of method bodies.

Engineering Directions Finally, models reside on different levels of abstraction and the way
and ordering in which they are built may depend on the system requiring a model. The three
engineering directions of a system are sketched in Fig. 2.1.5. Since in Model-Driven Software
Engineering (MDSE) each artifact in the development process should be modeled, we ideally refer
to models at each development step, though it may be the case that, e.g., the implementation not
only consists of an executable implementation model which is transformed into source code but
of hand-written code as well. For that reason, the term “model” is put in brackets in the figure.

requirements

(model)

 forward engineering

design

(model)

implementation

(model)

reverse engineering

requirements

(model)

design

(model)

implementation

(model)

requirements

(model)

design

(model)

implementation

(model)

 round-trip engineering

Figure 2.1.5: Classical software engineering directions.

Forward Engineering Classically, forward engineering adheres to the basic software develop-
ment (waterfall) process [Roy87]: at first, an requirements model is created from analyzing the
system requirements. This model is refined into a design model which, in turn, lays the founda-
tions for the implementation. Since the models exists and describe the system before it is built,
they are used in a prescriptive way.

Reverse Engineering On the contrary, in reverse engineering models are created only after the
implementation already exists. As a consequence, based on the source code the implementation
and design model are deduced. In the last step, the requirements of the system should be inferred.
Since the implemented system exists before the models are derived, the models are used in a
descriptive fashion.

Round-Trip Engineering Finally, in the real world, systems are usually subjects to steady
evolution. In round-trip engineering the evolving factor is respected. As in forward engineering,
the development process can be initiated in the forward direction by analyzing the requirements

20

2.2. MODEL TRANSFORMATIONS

and constructing the corresponding model, refining it into the design and thereafter, in the im-
plementation. However, changes made to the source code or to one of the models in each stage
can be played back in the opposite direction as well. Analogously, the process may as well start
with the implementation as in the reverse engineering direction. The important aspect about the
roundtrip-engineering is to orchestrate the synchronization of the models and the implementation
as soon as any of the artifacts in the development process is modified. For automatically creating
models based on existing models, the key technology are model transformations on which light is
shed in Sec. 2.2.

2.1.5 Eclipse Modeling Framework
While above descriptions of the metamodeling foundations, in particular, of the MDA, MOF and
UML, incorporate common concepts for metamodeling, the question arises how to transfer them
into practice? As answer the Eclipse Modeling Framework (EMF) [Ste+09] has been built to
realize these standards in the integrated development environment (IDE) Eclipse3.
At the core of EMF the Ecore metamodel complying to the Essential MOF (EMOF), i.e., a subset
of the MOF, is located. As situated at level M3 of the MOF metamodeling hierarchy, it serves as
meta-metamodel in EMF to build Ecore metamodels. Ecore metamodels are either represented
as class diagrams or in a tree-structure from which applications can be built to express its models
with a customizable tree-editor. EMF integrates a generator which transforms Ecore models, the
instances of an Ecore metamodel, into Java source code. As the class diagrams only comprise
structural elements, only methods stubs for modeled operations can be generated. Hence, the
modeler needs to express the method bodies and can prohibit its deletion by either removing the
annotation generated placed as comment before each source code fragment generated for a model
element, or by renaming it into generated not.

2.2 Model Transformations
Several authors consider model transformations as “the heart and soul of MDA” [SK03] and “the
missing link in MDA” [Ger+02] since almost 20 years. Informally, as depicted in Fig. 2.2.1, a
function which receives (or reads) some source (model) input and transforms it into (writes) some
target output can represent a model transformation. The source and target model are instances
of a (not necessarily different) metamodel which may also be the language defining the source or
target model. The transformation specification specifies the relationships of elements in the source
metamodel and elements in the target metamodel and is executed by a transformation engine.
[CH06]

source

model
target

model

source

metamodel
target

metamodel

transformation
engine

transformation
specification

refers
to

refers
to

reads writes

executes

Figure 2.2.1: Schematic overview of a model transformation [CH06].

In MDSE, model transformations are the key technology for establishing the high degree of au-
tomation. In various situations model transformations may be exploited, upfront, when generating
source code from a model by applying a model-to-text (M2T) transformation. In addition, creating
a new model representation of an existing model (i.e., there is already (redundant) information
encoded) manually, is an error-prone and laborious task contradicting the aim of raising automa-
tion in software engineering. In this case rather a model-to-model (M2M) transformation should
3 http://www.eclipse.org/

21

http://www.eclipse.org/

CHAPTER 2. MDSE

model transformation

quantity

1 : 1

n : m

endogeneous

exogeneousmetamodels

in-place

out-place

target
existence

techn. space

horizontal
vertical

unidirectional
multidirectional

direction

mechanismhybrid

declarative

AI

batch

incremental

granularity

tracing

creation storage

model separate

manual

automatic

automation

automaticmanual

operational

same different abstraction
level

Figure 2.2.2: Classification of model transformations.

be applied. Likewise, a source in form of text can be turned into a model or into text by a text-to-
model (T2M) or a text-to-text (T2T) transformation, respectively. On the whole, the input and
output of the transformation may either be a source model or source text and a target model or
target text, respectively. For that reason we refer to the input of the engine simply as source and
to its output as target in all of the following explanations.
The first sections provide common features by which a model transformation (language) can be
classified. Thereafter, concrete realizations are introduced.

2.2.1 Classification
By now, the research field of model transformations is largely populated and contains numerous
different branches and supportive directions. Czarnecki and Helsen [CH03] presented a classifica-
tion of model transformations in 2003 and extended the findings with a feature-based survey of
model transformations in 2006 [CH06]. At the same time of the journal extension, Mens and Van
Gorp published a “taxonomy of model transformations” [MG06]. While in Czarnecki et al.s’ pub-
lications [CH03; CH06] the different features of transformation languages and tools are organized
in a feature model, i.e., a tree structure with mandatory and optional features of a model trans-
formation, Mens and Van Gorp [MG06] do not explicitly relate the terms of distinctive categories.
In contrast, the authors focus on model transformations and their properties on a more superficial
level whereas Czarnecki et al. detail additionally how model transformations can be noted and
afterwards executed. In Fig. 2.2.2, we organize the most important and significant properties for
this thesis using the terminology of Mens and Van Gorp at most. The categorization of transfor-
mation technologies, such as the facts how transformation rules may be specified or how they can
be executed (e.g., scheduled), goes beyond the purpose of this chapter which aims to provide an
overview of general transformation properties representing at least (still) vivid solutions.

I Mechanism

First of all, transformation languages may be differentiated by the kind of programming paradigm
(mechanism), they apply. While Mens and Van Gorp distinguish declarative from operational
languages, we have extended this classification to consider hybrid approaches as well as those
based on artificial intelligence (AI), which have become investigated only recently.

Declarative Mechanism On their upside, declarative approaches allow to specify only relating
elements of the source and target model. Such approaches abstract from explicitly navigating
the source model, creating the target model and from specifying the order of executing the rules.
Particularly, this category incorporates functional and logic-based transformation languages, which
are explicitly distinguished in the survey of Czarnecki and Helsen [CH06].
Functional languages are natural to transformations since a transformation can be regarded as
function receiving some input resulting in some output. As functions are first-class directives

22

2.2. MODEL TRANSFORMATIONS

in functional programming, a transformation can be treated as a model itself. However, it may
become difficult to maintain the state of the transformation.
Besides offering a query mechanism, logic programming provides the benefits, for example, of
backtracking or propagating constraints. Since functional and logic programming abstract from
specifying the execution behavior and focus on relations, they are included in the declarative
category. [MG06]
Graph-based transformations are not explicitly mentioned in above cited classifications. A graph
rather is considered to be the source and/or target format or in- and output pattern of the
transformation than an explicit kind of transformation mechanism. Nonetheless, it seems to
be justified to mention graph transformations separately, which originate from specifying pair
grammars to transform text into a graph structure (a model) and vice versa [Pra71]. Such graph
grammars allow to express the language of all graphs of one kind and released a large field of
research. Nowadays, in many graph transformation approaches the rules define a left-hand-side
(LHS), being matched in the source graph, and a right-hand-side which is created in the target
graph. Negative application conditions (NAC) specify when the rule is not allowed to be executed.
As graph transformations express relationships or patterns of the source and the target instead of
providing operational procedures how to create target elements, we add them to the subcategory
of the declarative mechanism.

Operational Mechanism On their downside, entirely declarative approaches miss the function-
ality, for example to specify the order of creating target elements or assigning properties explicitly,
which may be beneficial in many real-world transformation scenarios. In this case, operational
mechanisms, allowing to specify, for instance the point in time, when the engine should execute a
rule, become worthwhile. Hence, an operational approach is beneficial, e.g., whenever either the
order of executing rules is essential or it is hard to identify and specify relations in a declarative
way. [MG06]

Hybrid Mechanism As it tends to be more comfortable to avoid the overhead of, e.g., explicitly
defining execution orders of transformations, but guarding the order of executing transformation
rules may be necessary in certain scenarios, many languages provide a hybrid approach. These
languages typically support expressing basic relationships in a declarative way. In addition, they
either provide integrated procedural elements to gain control over the execution or integrate GPLs
with well-developed standard libraries, e.g., for composing strings or navigating directories. As
an example, the ATL transformation language allows to declare rules which are automatically
matched to elements of the input source model but at the same time rules can also be called
explicitly by other rules without the implicit matching which the developer has no control of.

AI-Based Mechanism Finally, the current revival of artificial intelligence and the capabilities
of modern hardware have encouraged researchers in the field of model transformations to examine
established AI techniques for transforming models. Burgeño et al. [BCG19] have only recently
exploited specific kinds of neural networks to learn transformation specifications. Consequently,
the successful derivation of the transformation specification requires training sets of corresponding
source and target models. As such, its acceptance in and benefit to the model transformation
community is still questionable since it fosters the existence of target models, incorporating each
source-target relationship, beforehand. Besides neural networks, using logical programming to
deduce a general transformation specification based on specific input is an established technique
in artificial intelligence. Consequently, logic-based transformation languages can be regarded to
belong to this category, too.

II Quantity and Directionality

Quantity Besides the mechanism, the number of instances which participate in the transforma-
tion differentiate the capabilities of transformation languages. 1:1 transformations only transform
one source into one target. In contrast, several languages (at least theoretically) allow for trans-
forming multiples sources into multiple targets (n:m). This encompasses as corner cases, 1:n

23

CHAPTER 2. MDSE

transformations, transforming one source into multiple targets, e.g., when transforming one PIM
into many PSMs, or n:1 transformations, which, for instance, summarize many models in one
superimposed model as a refactoring activity. [MG06]

Directionality Related with the quantity, the directionality classifies transformation language
and specifications. In their easiest form, transformation languages only support unidirectional
transformations. In the forward direction the source is transformed into the target whereas a
backward transformation specifies how to create the source from a given target. In the case of
n:m transformations, the direction is not obvious per se. While straightforwardly the n sources
could be transformed into the m targets in a unidirectional transformation, other combinations
of source and targets are theoretically possible. Consequently, n:m transformations should be
multidirectional allowing to create different kinds of targets based on different kinds of sources.
A bidirectional transformation in which the forward as well as the backward direction is covered
can be regarded as a easiest form of a multi-directional transformation.
Regarding the engineering directions explained in the previous section, the application of a unidi-
rectional forward and backward transformation realizes forward and reverse engineering, respec-
tively. In contrast, bidirectional transformations are ideal whenever round-trip engineering should
be accomplished and relevant in many different engineering disciplines [Cza+09].

III Target Representation

Many properties are specific to the type of target representation, namely, the overall technical space
and the fact whether a transformation is horizontal or vertical, the kind of target metamodel and
the physical presence of the target.

Technical Space First of all, most importantly the metamodels may reside in the same or
different technical space. The technical space is defined based on the meta-metamodel (level
M3), for instance, many model transformations reside in the standardized technical space of
the OMG, the MOF, whereas XML is standardized by the worldwide web consortium4 (W3C).
An actual transformation can take place in the same technical space. If it involves models of
different technical spaces, one model must be imported for transforming it and the target exported
afterwards. [MG06]

Abstraction Level Moreover, in line with the technical space we can distinguish a horizontal
from a vertical transformation. In horizontal transformation source and target are situated at
the same level of abstraction whereas a vertical transformation creates are target at a different
level of abstraction. For instance, the transformation from an analysis model to a design model is
categorized as vertical transformation as are refinements. Conversely, a refactoring exemplifies a
horizontal transformation.

Metamodel As a further aspect, the target’s metamodel is a distinguishing factor. In endoge-
nous transformations the metamodel or grammar to which the source conforms is the same as the
one of the target. For instance, specific refactoring rules can be applied to the source resulting in a
new target which is still expressed in the same language. In contrast, an exogenous transformation
generates a target representation conforming to a different metamodel than the source’s one.

Physical Target Additionally, in-place transformations are differentiated from out-place trans-
formations. An in-place transformation applies all changes to the source model so that it becomes
the target model itself, as it may be the case, for example, in refactorings. In contrast, whenever
the target resides in a different physical representation, we call it an out-place transformation.
An exogenous transformation is always classified as out-place transformation because a physically
different target is created. In endogenous this does not have to be the case necessarily: either
the source model itself is updated to become the new representation, as it is the case of in-place

4 https://www.w3.org/

24

https://www.w3.org/

2.2. MODEL TRANSFORMATIONS

source

model
(target)

text

source

metamodel language

transformation
engine

transformation
specification

refers
to

refers
to

reads writes

executes

Figure 2.2.3: Schematic overview of M2T transformations.

transformations, or a new physical target representation is created which, is expressed in the same
language as the source, nonetheless.

IV Execution Modalities

Incrementality Moreover, we discern batch from incremental transformations. Batch transfor-
mations build the target representation in its entirety. In contrast, an incremental transformation
requires that the target has already been created in a previous execution and applies only changes
made to the source after the previous transformation to the target. Incremental transformations
require a mechanism to detect the modifications applied to the source for propagating them to the
target in the consecutive transformation execution. Such mechanism can be realized, for example,
by recording changes or by comparing the previous state(s) with the current state. For detecting
insertions, deletions, or modifications of source elements, many tools inspect trace information,
which tracks corresponding source and target elements upon their creation.

Automation While the main goal of MDSE is to increase the level of automation, besides
automatic transformations, there are transformations requiring manual interventions. In case the
transformation language allows for ambiguities in its specifications which can not be resolved
automatically interaction by the user may become necessary.

Tracing While Mens and Van Gorp do not go in further detail, Czarnecki and Helsen regard
traces from the technical point of view. Firstly, traces are constructed either completely automat-
ically or have to be manually maintained. Secondly, traces can be placed in different locations.
On the one hand, a trace may be integrated in one of the participating models (source or target).
This is beneficial since it does not require to specify and maintain any additional file. Alterna-
tively, the trace could be stored separately, hence, realizing a clear separation of concerns between
primary and secondary transformation artifacts. In this thesis traces play a key role and, thus,
are discussed in greater detail in Sec. 5.2.1.

2.2.2 Transformation Languages and Tools
The classification properties allow to categorize transformation languages and their realizations
as tools. We introduce an essential subset of transformation languages, which are relevant in this
thesis. First of all, transformation languages are grouped into M2T, T2M and M2M transforma-
tions at a coarse-grained level. We do not present T2T languages because they are out of the scope
of this thesis. T2M languages are shortly described because they are required in round-trip and
reverse engineering scenarios, e.g., when creating an implementation model from the literal source
code. Kahani et al. [Kah+19] provide an extensive survey and classification of 60 contemporary
model transformation tools, which still not covers all available tools but, nevertheless, is taken
into account for describing the languages and tools in this section.

I Model-To-Text Languages

In the first place, M2T transformations enable to perform the core automation step desired in
MDSE, i.e., to create source code based on a model. In this case Fig. 2.2.1 describing a model

25

CHAPTER 2. MDSE

transformation, in general, can be refined by Fig. 2.2.3, describing the M2T transformation where
the target is no model but text conforming to some language, in particular. Even though in
MDSE M2T transformations serve to generate source code frequently, any other type of text
can be generated as well, for example, configuration files, a format for serialization or a textual
representation of the model (e.g., for textually comparing models).
Regarding the approaches to realize M2T transformations, Kahani et al. [Kah+19] distinguish
visitor-based (also referred to as procedural) from template-based approaches. Visitor-based ap-
proaches write the text, e.g., by invoking methods for each model element while traversing the
model. On the contrary, template-based approaches mix static text, which is written to the target
in the same way as depicted in the template (what you see is what you get (WYSIWYG)), with
dynamic text, inferred from the concrete source model. Due to the high similarity between the
static elements in the template, and the outcome, template-based approaches tend to be easier
to understand and, thus, are more popular [Kah+19]. As representatives of template-based ap-
proaches we introduce the standard proposed by the OMG, MOFM2T, and its implementation
Acceleo as well as the template-based code generation language Xpand. Since some scenarios
require more complex instructions, also hybrid solutions exist – as it is the case with model trans-
formation mechanisms in general – e.g., including text generating templates in GPL methods or
vice versa. As representative of a hybrid solution we introduce Xtend, which integrates Xpand.

MOF Model To Text/Acceleo The OMG standard for M2T languages is called MOF Model
to Text (MOFM2T) [Obj08]. The specification suggests a template-based approach and resides
in the MOF technical space, i.e., expecting Ecore models as input. Placeholders in the templates
allow to query source model values which are turned into text by an expression language. In
order to support large transformations, the templates are organized by modules where a visibility
may restrict the access on the template. Moreover, a query can employ OCL expressions, e.g., to
build complex Strings. Control structures may iterate over collections and branching is supported
explicitly. The standard further defines an incremental mode by using protected regions, which
are comparable to Ecore’s generated not annotation mechanism. Moreover, explicit traceability
to the source element for which a text fragment was created could be integrated in the source code
by using unique identification labels (ID’s).
The tool Acceleo5 realizes MOFM2T almost exactly. The grammar adopts the syntax from the
standard and supports modules and queries. Upfront, the incremental mode protects only regions
which would be generated in the same way as in the previous execution. In contrast to the OMG
standard, the current state of Acceleo does not support tracing out-of-the-box.

Xpand In contrast to Acceleo, Xpand [Kla07; Eff+04] does not realize any standard but origi-
nates from the openArchitectureWare (oAW) project [EV06] where it serves as a primarily template-
based M2T transformation language. Xpand projects typically consist of templates, extensions
written in Xtend [Bet16] and a modeling workflow engine MWE(2) workflow. In the templates
blocks specify how metamodel elements are converted into text. In these blocks plain text can be
intermingled with other Xpand directives, e.g., to create a file or to invoke the execution of an-
other block. Moreover, complex instructions can be written in extensions which provide a subset
of the Xtend language, explained in the next paragraph. These extensions are also able to call
Java methods. Most importantly for the present work, Xpand allows to extend or refine blocks
of a template with an aspect-oriented [Kic+97] mechanism: in advice templates arbitrary input
elements of the source model can be mentioned and redefined or embraced by additional text.
The advice template is executed by triggering it in the MWE workflow. Similarly to Acceleo, the
source code of designated protected region can be saved from being modified when executing the
transformation again. This kind of incremental mode also requires unique IDs to identify already
existing objects correctly.

Xtend Although the active development of Xpand has ceased, its key elements, i.e., the syntax
of template blocks, survived in the GPL Xtend [ES; Bet16]. Xtend considers itself as “Java with

5 https://www.eclipse.org/acceleo/

26

https://www.eclipse.org/acceleo/

2.2. MODEL TRANSFORMATIONS

Spice”6, i.e., it is a Java dialect which compiles automatically into Java 8 source code. As a
consequence, the statically typed language exploiting a more concise syntax than Java integrates
with all Java libraries seamlessly. However, the object-oriented language involving also functional
elements, like lambda expressions, not only allows to write arbitrary programs but is categorized
as hybrid M2T language because of the integration of Xpand to generate text literally from a
template-like style.

II Text-To-Model Languages

Above, we mentioned that in all engineering processes in the last step (or the first one, depending
on the engineering direction) an implementation model is situated. However, in the end the model
needs to be translated into source code to be understood by the compiler. When reverse engi-
neering takes place, at first the current source code has to be transformed into an implementation
model. Model-driven reverse engineering tools and especially round-trip engineering tools support
this functionality by applying T2M transformations. As representatives, we introduce the tools
JaMoPP and MoDisco, which both transfer Java source code into a Java model.

Java Model Parser and Printer The Java Model Parser and Printer (JaMoPP) [Hei+09] was
built for “closing the gap between modeling and code” [Hei+09]. As its name suggests, JaMoPP
“parses” the static structure of Java files into its own Java metamodel. Thereafter, the meta-
model can be again “printed” as Java code. Since JaMoPP only covers the static structure,
method bodies are attached to metamodel elements representing the Java methods as plain text
in annotations. The Ecore-compliant parser and printer are realized based on Java 5 and and
are not maintained anymore. Nonetheless, they are particularly used in model-driven software
product line engineering. Although the Java metamodel does not reflect the state-of-the-art of
the Java language, the framework can still be integrated in current Eclipse versions.

MoDisco Similar as JaMoPP, the MoDisco [Bru+10] framework is a Eclipse plugin to reverse
engineer implementation models from source code. In the first place, MoDisco, like JaMoPP,
provides an Ecore-compliant Java metamodel but is based on Java 6. MoDisco offers the extensible
means to discover the contents of an Eclipse project in general and of Java source code in particular,
i.e., transforming Java source code into an instance of the metamodel. In turn, a code generator
transforms an instance of the metamodel into Java source code. Thus, the framework supports
round-trip engineering between the model and the source code which only works in batch mode.
The active support for the framework has discontinued at the end of 2018.

III Model-To-Model Languages

As it was stated above, the transformation mechanism can either be declarative, procedural, AI-
based or a hybrid mix. Kahani et al. [Kah+19] consider graph-based approaches, which we
classified as declarative approach, an own category.
In 2002, the OMG initiated a a request for proposals for a query view transformation (QVT)
language in the MOF, transforming up to n models into up to m models. Many languages and
realizing tools have been developed as answer to this request. In the following, as declarative
languages, we introduce QVT-R which is also part of the OMG’s QVT standard for M2M trans-
formations, and ATL, a hybrid but primarily declarative language. QVT-O is picked in order to
represent an entirely procedural one.
Furthermore, BXtend [Buc18] exemplifies a hybrid but graph-based transformation framework.
Further Graph-based transformation tools are, for instance,Henshin [Are+10a; Str+17; Str+18a]
eMoflon [LAS14; LAS15] and AGG [Tae99; Tae03; RET11], which share the fact that the left-
hand side is turned into a right-hand as specified in rules. Tefkat [LS05] exemplifies a logic-based
language which derives an execution environment from the logical rules.

6 https://www.eclipse.org/xtend/

27

https://www.eclipse.org/xtend/

CHAPTER 2. MDSE

Figure 2.2.4: Parts of the MOF 2.0 Query View Transformation standard. Adapted from [Obj16]

Atlas Transformation Language The Atlas Transformation Language ATL [Jou+08] and
the similarly named tool (provided as Eclipse plugin) is one of the answers to the OMG’s QVT
request. ATL is designed to specify unidirectional, n:m transformations based on transformation
rules. While matched rules are declaratively executed, i.e., source elements matching the input
pattern are transformed, called rules are invoked by other rules, thus, allowing for ordering the
rule execution in a procedural way. Moreover, although the batch mode works as out-place n:m
transformation, an incremental mode (called “refining mode”) exists which is restricted to in-place
1:1 transformations for refining or refactoring existing targets.
ATL executes the transformation in two phases. Firstly, all target elements are created, allowing to
correctly set references and attributes in the second phase making use of traced elements of the first
phase. Albeit a trace is written during the execution, it is not persisted by the tool. An extension
to ATL, the virtual machine based ATL/EMFTVM [Wag+12] includes the functionality to store
traces after the execution and provides the transformation as bytecode model, too. However,
its transformation capabilities are limited compared to ATL. For instance, an target element’s
collections can only be assigned a value once. Helpers, which act like queries in Acceleo and are
supported in ATL, are limited to assigning static attribute values and not to dynamically fill or
invoke operations, e.g., for composing strings, in the ATL/EMFTVM. In contrast to many other
transformation tools, the ATL and ATL/EMFTVM Eclipse plugins are still vivid.

MOF 2.0 Query/View/Transformation The OMG issued the MOF 2.0 Query/View/Trans-
formation (QVT) language as answer to the request and as standard for establishing a multidirec-
tional transformation language in the context of the MDA. As depicted in Fig. 2.2.4, QVT [Obj16]
is divided into three main sub-languages: QVT Relational (QVT-R), QVT Operational Mappings
(QVT-O) and QVT Core (QVT-C). While QVT-R and QVT-C are entirely declarative, as the
name suggests, QVT-O creates the target in a procedural way. Since QVT-C is a declarative lan-
guage residing at a lower level of abstraction than QVT-R and derivable from QVT-R, we refrain
from describing it.
QVT-R allows to specify relations between up to n elements of different models and to influence
the execution order by pre- and postconditions (which can be considered as assurances). The
standard prescribes two different execution modes. On the one hand, the checking mode veri-
fies the consistency of (already existing) participating models. For instance, a target name not
corresponding with the one inferred from the corresponding relation, would be reported to be
inconsistent. On the other hand, such inconsistencies are repaired automatically by executing
the enforce mode. Since each domain in a relation (i.e., being part of up to n different models)
can be marked to be enforced, multidirectional rules can be expressed in this way. Consequently,
the number of real execution modes depends on the participating number of enforced directions.
For instance, in a bidirectional transformation rules incorporate at least two domains, of source
and target elements, respectively, each being enforced. Therefore, in both directions the checking
and enforce mode is possible. Lastly, incremental transformations complete the OMG’s model
transformation standard. Although in these transformations the standard suggests to execute the
checking mode for detecting inconsistencies between the new source and the old target, many
tools, realizing the standard, technically exploit trace information for detecting changed target
elements.
Realizations of the standard are medini QVT [ikv18] and the most-recent Eclipse plugin QVT-
d7 [Wil17]. ModelMorf realized the first version of the QVT standard almost completely but is

7 https://wiki.eclipse.org/MMT/QVT_Declarative_(QVTd)

28

https://wiki.eclipse.org/MMT/QVT_Declarative_(QVTd)

2.2. MODEL TRANSFORMATIONS

unavailable by now. It has been extensively utilized to examine the standard by Stevens et al.
[Ste10; BS13]. Likewise, the active development of medini QVT stopped in 2012 but is in contrast
to ModelMorf still available. medini QVT realizes incremental and bidirectional transformations
based on persistent traces but misses the explicit checking mode. Finally, QVT-d is a young tool
which still undergoes significant functionality changes in each new Eclipse release. QVT-d also
persists trace information and does not yet support the whole amount of the QVT standard, in
particular, incremental and bidirectional transformations are still not executable. [GBW16]

QVT Operational Besides the declarative transformation language QVT-R, the OMG’s QVT
standard encompasses the operational language QVT Operational (QVT-O) as well. In QVT-O
a transformation is structured like a class (e.g., in UML) with properties and operations which
declares mappings between source and target elements. QVT-O only supports unidirectional
transformations and incorporates OCL statements with side effects. A rudimentary trace (without
configuration, intermediate transformation data, nor deep copies of the involved model elements)
is written during the transformation and can be used for incremental transformations (of the same
source instance). [Obj16]

BXtend As a hybrid approach BXtend [Buc18; BG16a] provides the means to automatically
create a triple graph transformation system (TGTS) [BDW08] for bidirectional, incremental trans-
formations without explicitly specifying a triple graph grammar (TGG) [Sch94]. Besides the LHS
and the RHS a TGG involves a third graph in between called correspondence graph to link ele-
ments of the LHS with those of the RHS. The correspondence graph enables to synchronize the
generation of the LHS and the RHS. A TGTS resides on a lower level of abstraction and does not
only incorporate production rules but consistency mechanisms to handle modifications and dele-
tions in model synchronization scenarios. Such system is supposed to be generated from a TGG
automatically. However, in practice it is hard to specify complex synchronization tasks without
handcrafting fine-grained maintenance actions. For that reason, Bxtend was developed. In Bxtend
two unidirectional rules form a bidirectional one. Due to the usage of Xtend, its functional syntax
constructs, such as lambda expressions, intermingle declarative elements with operational ones,
e.g., for prescribing the execution order. Consistency maintenance in incremental transformations
is supported by exploiting the correspondence graph.

29

Chapter 3 Software Product Line Engineering

“Although a feature model can represent
commonalities and variabilities in a very concise taxonomic form,

features in a feature model are merely symbols.”

Krzysztof Czarnecki & Michal Antkiewicz [CA05]

∼

Inspired by classical engineering sciences, where mass customization established itself
by developing families of related products in a product line (well-known in the au-
tomotive industry), research and practice adapted the concept for creating software
product lines. As such, software product line engineering is one of the answers to solve
the software crisis’ problem of managing large-scale and (in this case) software-intense
projects. By highlighting common and variable parts of closely related products, the
discipline software product line engineering emphasizes the principles of organized reuse
and variability: Parts, common to all products, should be reused to build a diverse set
of product variants whereas the varying parts should be managed in an organized way.

SPLE approaches

language-
based

tool-driventechnology

load-time

annotative

binding

time

implementation

compile-time

run-time

uniformity
quality
criteriafeature

traceability

granularity

proactive
extractive

engineering

variability

modelingdecision
modeling

inline OVM

transformational

compositional

variability

implementationCVL

feature models

reactive
problem

description

problem space

solution space

information hiding

product

generation

positive variability
negative variability

separation of
concerns

pre-planning
effort

Sec 3.1.1 Sec 3.1.2
Sec 3.1.3

Sec 3.3

Sec 3.4.2

Sec 3.4.1

Sec 3.4.1

Sec 3.4.3

Sec 3.4.4

Sec 3.4.1

processes

Sec 3.2

double
spiral

two
layers

three
simultaneous

four
clusters

Figure 3.0.1: Overview of software product line engineering.

Fig. 3.0.1 summarizes the key contents introduced in this chapter. The chapter starts

30

by presenting basic terminology in Sec. 3.1, such as terms for analyzing the system that
should be realized (problem description in Sec. 3.1.1 or the product line engineering
in Sec. 3.1.2 and Sec. 3.1.3), and offers insights in engineering processes (Sec. 3.2),
modeling the variability (Sec. 3.3) and implementation details (Sec. 3.4) in the following
sections. In the end, the chapter closes with elaborating on product well-formedness,
one key correctness criteria of a product line, and recapitulating notes.

31

CHAPTER 3. SPLE

3.1 Terminology
Before diving into the engineering principles, this section clarifies and presents basic terms and
activities in the context of Software Product Line Engineering (SPLE). Initially, probably the
first term used for what we (now) refer to as product line is family of systems [Par79]. Whenever
these systems share more commonalities – so that it becomes worthwhile analyzing these systems
as a whole – than distinguishing factors, developing and modeling the entire domain pays off. In
a same manner a product line can be named software product family. In accordance with basic
literature on this topic [Gom05], we regard the terms software product line, family of systems or
software product family as synonyms and utilize the shortened term product line in the following
descriptions.

3.1.1 Product Line Analysis
When commencing the development of the product line, the scope of the product line needs to
be delineated. Typically, a product portfolio describes details of the products that should be
supported, particularly their distinguishing and common aspects. This document incorporates
– besides the technical – different perspectives, e.g., the economic point of view of selling the
products. The development steps and set of products are grounded in the product portfolio
which documents the needs of various stakeholders. Most importantly, the portfolio designates
the domain of the system. According to Czarnecki and Eisenhower [CE00], a domain declares the
scope of the product portfolio so that it satisfies all stakeholders’ interests maximally by utilizing
the concepts and terminology common to practitioners and including the knowledge how to build
a system in this domain. [Ape+13]

Problem and Solution Space Fundamentally, the problem space needs to be differentiated
from the solution space. While the problem space systematically recognizes and documents the
common and varying parts of the system, the solution space provides the realization artifacts of
the documented product line functionalities. In the problem space a variation point describes
a point in the product portfolio where the product characteristics diverge resulting in different
variants. Conversely, in the solution space variation points are implemented by using configuration
techniques. A variant corresponds with a product which is derived by exploiting the configuration
techniques. Technically, problem and solution space are quite often connected by a mapping
tracing the realization artifacts relating to the abstract problem description.

Platform Realizing the product line domain in the solution space results in a software platform.
The platform is considered “a set of software subsystems and interfaces that form a common
structure from which a set of derivative products can be efficiently developed and produced” [ML97].
As such, the platform lays the grounds for creating a diverse set of products (of a product line).

Feature Modeling During the analysis, features manifest the varying and common parts of the
product line. In the first place, a feature was described as “a prominent or distinctive user-visible
aspect, quality or characteristic of a software system or systems” in the context of the feature-
oriented domain analysis (FODA) [Kan+90]. Further definitions of a feature were provided in
the course of years and were once collected by Classen et al. [CHS08]. This collection of definitions
spans a range of abstractly to technically explaining the meaning of a feature. Despite these 13
gathered definitions, for the purposes of this thesis the initial definition by Kang et al [Kan+90]
suffices at the most. It could be extended by a more technically perspective, such as describing
a feature as “a structure that extends and modifies the structure of a given program in order to
satisfy a stakeholder’s requirement, to implement and encapsulate a design decision, and to offer
a configuration option” [Ape+08]. In particular, the focus on the technical aspect of localizing the
realization of a single feature used as one option when configuring a product should be highlighted
because it is a prominent view in feature-oriented programming (FOP), a summarizing term for
constructing product lines by localizing and focusing on their features. Upfront, a feature describes
a binary option whether a characteristic is present in a product. The reality, however, exhibits a

32

3.1. TERMINOLOGY

higher degree of complexity. Quite frequently, dependencies between features exist and manifest as
feature constraints [Ape+13]. For instance, selecting a wireless connection mechanism in a home
automation system requires that at least the IEEE 802.11a standard is present in the routers.
Likewise, if a finger print scanner unlocks the front door no other mechanism, like a key-card, can
unlock the door, i.e., feature fingerprint excludes feature key-card. Several ways how to capture
variability, in particular as variability models, are detailed in Sec. 3.3.

Variability in Space and Time Lastly, since variability is the essential concept in SPLE, it
must be remarked that SPLE concentrates its focus on variability in space upfront. Variability
in space refers to the fact that artifacts may exist in different forms at one point in time. In
contrast, the concept variability in time refers to the evolution of a system, i.e., one artifact exists
in different forms at different points in time [PBL05]. The research discipline software configuration
management (SCM) [Ber84; Fel91] examines and optimizes the support for variability in time
(besides aiding programming in large teams) extensively. However, managing versions of software
over time, i.e., extensive support for variability in time, is not the focus of this thesis.

Summary All in all, SPLE stresses the explicit focus on variability to reuse parts of the created
artifacts in a systematic, organized way for building a product line.

3.1.2 Product Generation
For realizing the product line, at first, a coarse-grained variability mechanism needs to be chosen1.
Positive variability builds one core product including elements which are ideally present in each
product. The core product is extended by adding new artifacts or changing the core artifacts. A
new customized product is assembled by specifying which elements need to be added to or changed
in the core product. In contrast, negative variability means that the entire set of products is created
in a superimposition. Consequently, in this approach products are not assembled but elements not
belonging to the product are removed from the superimposition.

Feature Configuration In order to derive (also denoted filter) a customized product, a se-
lection of the desired features needs to be provided, which is commonly referred to as feature
configuration. A valid feature configuration respects all constraints which are documented in the
variability model. In turn, the derivation tool should ensure that a consistent product is derived,
i.e., resulting in a syntactically and ideally a semantically correct product.

Domain and Application Engineering In this context the distinction of domain engineering
from application engineering should be stated which is a general concept for SPLE processes
[WL99; Lin02; PBL05; Ape+13]. During domain engineering the platform is built in addition to
recording and analyzing variability. Consequently, domain engineering realizes “development for
reuse” ([Ape+13], p.21). In contrast, during application engineering single products are finalized
based on the artifacts produced in the phase of domain engineering. Application engineering is
comparable to single application development except that it explicitly reuses the already created
artifacts of the domain engineering phase, thus, realizing “development with reuse” ([Ape+13],
p.21). In contrast to domain engineering, which is a holistic process for all products, application
engineering is performed for each derived product.

3.1.3 Engineering Strategies
Apel et al. [Ape+13] distinguish three main types of engineering a product line: the proactive,
extractive and reactive development. As stated in the introduction (c.f., Sec. 1.3), the contribution
of this thesis support proactive development, which is explained first, in the following paragraphs.

1 Choosing a variability mechanism freely may be possible only restrictively if single products already exist. In
this case, the mechanism must be aligned with its environment.

33

CHAPTER 3. SPLE

Proactive Development Depending on the company’s strategy and settings, product lines are
(or have to be) developed differently. Building a product line in a proactive way means the product
line is developed from scratch. The company probably considered a new family of products in its
product portfolio without any existing artifact yet. Obviously, in this case the entire platform is
developed from scratch and the products are derived from the platform afterwards.

Reactive Development Conversely, frequently a set of related products already exists in a
company. Many of these products may be traced back to an initial product which was copied
and thereafter modified to fit specific customers’ needs. An extractive SPLE approach aims at
identifying commonalities and differences among the existing products and deriving a variability
model and platform to ease maintenance of the copied products. It is an iterative process limited
to the information encoded in the existing products.

Reactive Development Thirdly, a reactive SPLE approach initiates the development with one
core product line. Incrementally, the new functionality of a not yet envisioned variant is added to
the base product line. Consequently, this approach does not require as much pre-planing as the
proactive approach and, thus, is more agile. On its downside, it may become cumbersome to add
a new variant not at all foreseen so far. Nevertheless, developing a product line in a reactive way
is a more structured process than maintaining existing products in an extractive way. [Ape+13]

3.2 Development Processes
As the field of research on SPLE is largely populated by now, different processes exist to develop
product lines in an organized way. Particularly, the complexity to manage the entire set of
products systematically fosters a structured development strategy, too. For that reason, this
section introduces four fundamental processes which can be applied to systematically build a
product line.

3.2.1 Three Simultaneous Activities
To the best of our knowledge, the first process dedicated to develop a product line in an organized
way was proposed by Clements and Northrop in 2001 [CN01]. The process consists of the following
three activities, which should be applied in parallel: management, core asset development, and
product development. Each activity is linked to each other and circularly repeated continuously.
Management splits in two parts: While technical management ensures the production of core assets
by measuring the product development and applying defined processes, organizational manage-
ment ensures the success of the product line by providing the necessities for the technical aspects,
like funding or adequate personnel.
Core asset and product development are stronger intertwined. Based on the product constraints,
the production constraints, the production strategy, the architectural elements (like patterns or
frameworks) and the inventory of preexisting assets, the core asset development activity delineates
the scope of the product line. Moreover, the core assets which represent all elements present in each
product including, for example test and planning artifacts as well as a production plan, emerge
from the core asset development. Finally, the product development obtains the production plan,
the core assets, the specifics of one particular product as well as the scope of the product line
to create this product. Due to the concrete implementation, it may be possible that the scope
of the product line has to be adapted and, hence, the product development may influence the
development of the core assets in turn.

3.2.2 Two-Layered Process
The process closest to the classical (iterative) waterfall process is proposed by Pohl et al. [PBL05].
The authors discern the two layers, domain engineering and application engineering. Prior to start-
ing the product line development in the layer of domain engineering, a product management step

34

3.2. DEVELOPMENT PROCESSES

product (incl.

validation& verifaction)

variability

model

realization artifacts

(source code, models, ...)

domain

knowledge

customer

needs

mapping

feature

selection

new
requirements

product

features common implementation

artifacts

domain implementation

product derivation

product-specific

requirements

requirements analysis

domain analysis

solution spaceproblem space

d
o
m

a
in

e
n
g
in

e
e
ri

n
g

a
p
p
lic

a
ti

o
n

e
n
g
in

e
e
ri

n
g

Figure 3.2.1: Four-clustered process to develop a software product line proposed by Apel et al.
[Ape+13].

where the scope of the product line is defined, is undertaken. In this step, besides others, the
economic aspects of the product line are considered. Thereafter, the steps domain requirements,
domain analysis, domain design, domain implementation, and domain testing are applied in se-
quence in the phase of domain engineering, These development steps culminate in a variability
model and the platform as domain artifacts. Particularly, the platform subsumes all realization
artifacts which may be required in the varying products.
The second layer, the phase of application engineering, receives all domain artifacts and refines
them in the same sequence of activities. Thus, after collecting the application requirements, the
application analysis, the application design, application implementation, and application testing
are conducted to assemble the final application. In the same way as the waterfall process can be
executed iteratively, the steps in domain and application engineering may repeat after performing
one complete development cycle. [PBL05]

3.2.3 Double Spiral Model
A process which incorporates a risk-driven viewpoint is proposed by Gomaa [Gom05]. The process
adjusts Böhm’s spiral model [Boe88] consisting of the four steps (1) “define objectives, alterna-
tives, and constraints”, (2) “analyze risks”, (3) “develop (product)”, and (4) “plan next cycle” to
be separated into two spirals, one conducting the steps for the complete product line and one con-
ducting them for the individual product. During the development many instances of the spirals
may exist and because a product and the product line may evolve simultaneously, the spirals may
be tightly intertwined. Accordingly, information obtained by processing one spiral feeds the other
spiral and vice versa.

3.2.4 Four-Clustered Process
Finally, Apel et al. [Ape+13] propose a process which adapts the previously explained ones and
trims them to concrete dependencies in between domain and application engineering for developing
feature-oriented software product lines. The corresponding process model, depicted in Fig. 3.2.1,
divides the engineering tasks horizontally in domain and application engineering tasks (as in the
classical two-layered process by Pohl et al.) whereas vertically the problem space is separated from
the solution space. At first, at the level of domain engineering the domain analysis takes place
based on domain knowledge in the problem space. This step decides which products are covered.
Thus, it delineates the “scope of the domain” ([Ape+13], p.21) which results in a variability
model (the authors originally propose a feature model). The analysis artifacts are mapped onto
the domain implementation which occurs in the solution space at the same level. It collects all
realization artifacts, such as design models, source code, and tests, which together constitute the
platform.
At the level of application engineering, a requirements analysis is performed in the problem space
based on customer needs. Ideally one customized product is related to one particular feature

35

CHAPTER 3. SPLE

configuration. If this is not the case, a requirement not yet covered during the domain analysis,
will be propagated to the level of domain engineering and integrated in the variability model.
Consequently, the requirements analysis may interact with the domain analysis by adding new
requirements and receiving the features of the variability model in turn. The product derivation
finalizes the process. At this stage, common implementation artifacts are taken from the domain
implementation according to the feature selection of the requirements analysis. Moreover, this
last section involves the validation and verification of the eventually delivered product. [Ape+13]

3.3 Variability Modeling
This section illuminates the most common forms of variability models in the context of SPLE.
Sec. 3.3.1 initiates by presenting feature models followed by Sec. 3.3.2 explaining further types
such as decision models, the orthogonal variability model, the common variability language and
variability models integrated in UML 2.0.

3.3.1 Feature Models
Basics For the first time, in 1990 Kang et al. [Kan+90] proposed to note features in the form
of feature models to alleviate the feature-oriented domain analysis (FODA). A feature model
captures all common and varying characteristics discovered during the domain analysis as features.
Typically, feature models are manifested graphically, i.e., as feature diagrams, which are trees
with a feature root (typically mentioning the system to be built) and inner nodes building feature
groups. Mandatory features form part of every product whereas optional features can be almost
freely integrated in products. A feature group enumerates a number of child features which are
either aggregated in OR (inclusive) or XOR (exclusive) groups. An XOR group fosters that exactly
one of the features in the group can be selected at the same time. An OR group, instead, allows
to select at least one of its grouped features. In each parent-child relationship of a feature model,
the existence of a child depends on the existence of its parent. Further relationships of features
can be expressed by declaring requires and excludes dependencies between the features, so called
cross-tree constraints. Feature models, offering these properties, can be translated completely
into propositional logic. For instance, the requires and excludes dependencies represent a logical
implication (⇒) with a positive and a negated feature on the right side, respectively.

Feature Configuration To derive a product a feature configuration, selecting or de-selecting
(all) features, needs to be provided. A feature configuration will be valid if no constraint of
the model is violated. The number of valid configurations increases exponentially in relation
to the number of optional features included in the feature model. Analogously, the number of
valid configurations shrinks by introducing constraints or mandatory features. In contrast to a
complete feature configuration, a partial feature configuration does not provide all features of the
corresponding model with a selection state. Some selection states can simply be inferred, e.g.,
when de-selecting a parent feature none of its children should be selectable. Depending on the
capabilities of the feature configuration tool, partial configurations can be supported and selection
states be propagated. If not all feature selection states are known, either the derivation is not
possible or similarly only a partial product or a product with heuristically determined elements is
created.

Example 3.3.1: Feature Model and Configuration

The left hand side of Fig. 3.3.1 exemplifies a basic feature model which allows to configure
databases with different contentsa. The root of the feature diagram typically mentions the
systems to be built, in this case database contents (DBContent). Since all of the root’s
child features, i.e., Person, Family, Animal and Media, are optional, potentially an empty
database could be built. Despite this fact, it is possible to create a database including all
child features, too, since all groups are optional. If a person database is desired, a person

36

3.3. VARIABILITY MODELING

must carry a name at least (which is a mandatory feature). As an example of an XOR
group we prohibit that a database registers wild and domesticated animals at the same time.
All of the other feature groups are OR groups allowing an arbitrary number of the child
features to be chosen. Two constraints require that pets can only be selected if domesticated
animals, and families can only be present if relations are recorded, respectively.
The right hand side of Fig. 3.3.1 demonstrates two configurations of the feature model. The
configuration in the upper left side is valid and selects a database consisting of families
and songs, nothing else. The second configuration, instead, is invalid because it violates
the cross-tree constraint ”Pet requires Domesticated”. The configuration includes pets
but does not select animals, resulting in the invalid configuration.
a This feature model may be necessary when an object-relational mapping of code to database contents

should be established.

DBContent

Animal

FamilyPerson

Employed

Name
WildDomesticated

Pet Song

Relation

Movie Book

Media

Person = true
Name = true
Relation = true
Family = true
Pet = false
Animal = false
Domesticated = false
Wild = false
Media = true
Song = true
Movie = false
Book = false

feature model feature configurations

valid

invalid

mandatory
optional

OR group
XOR group

Person = true
Name = true
Relation = true
Family = true
Pet = true
Animal = false
Domesticated = false
Wild = false
Media =

Figure 3.3.1: Feature model for database contents.

Extensions Due to a missing standard for variability models, many works have extended these
basic descriptions of feature models. A survey and formal definition of feature models has been
published by Schobbens et al. [SHT06]. As examples of extensions, cardinality-based feature
models [CHE05] can restrict, how many of the grouped features can be selected, and abstract
or attributed features can enrich the expressiveness of the feature model. Additionally, more
variability information, particularly regarding the evolution of a system, could be integrated such
as temporal variability in hyper feature models [SSA14a] or contextual variability which considers
influences by the environment during runtime [Ape+13].

3.3.2 Further Types of Variability Models
Besides feature models, decision models, the Orthogonal Variability Model and the Common
Variability Language play a role in academia and industry to express variety in the product
portfolio.

Decision Models Quite like feature models, decision models [SRG11], originating from the
Synthesis method [Con91], continue a long tradition of maintaining variability, particularly of
industrial applications, in a systematic way. All realization approaches of decision models, such as
the one by Schmid et al. [SJ04] or DOPLER [DGR11], reflect the variability in the problem space
as decisions by taking their dependencies into account and explicitly mapping the decisions to
reusable assets realizing the variability in the solution space. Instead of modeling the differences
and commonalities as in feature models, decision models capture “only” the differences, i.e., the
variability of the system. [Cza+12]

37

CHAPTER 3. SPLE

Orthogonal Variability Model In contrast, theOrthogonal Variability Model (OVM) [PBL05]
explicitly documents variation points and the corresponding variants by mandatory and optional
as well as excludes and requires dependencies among variants and variation points. The OVM
emphasizes the orthogonality of documenting variability. Capturing the variability in this inde-
pendent model, i.e., in an orthogonal way to other realization artifacts, offers its accessibility across
all development artifacts (as is the case with feature models, too). Other approaches, such as the
one by Gomaa et al. [Gom06], integrate the variability information explicitly in the UML artifacts
hindering a cross-artifact usage. In Fig. 3.0.1 we categorize this kind of variability modeling as
inline. [Cza+12]

Common Variability Language Lastly, in 2009 the OMG issued a request for a variability
language standard. By now, this request for proposals is not accessible anymore. The Common
Variability Language (CVL) [Hau+08] answers this request as a forerunner. Particularly, the lan-
guage tries not to use already established wording, such as the term feature (the meaning of which
varies all over computer science disciplines, e.g., in image processing it describes a characteristic
in pictures). Since the CVL (framework) relies on transformations of a base model, details are
explained in Sec. 3.3.2, II.

3.3.3 Endnotes
Summing it up, modeling variability is implemented in many different ways and levels of detail.
Trying to establish the CVL as standardized language by the OMG has not been successful yet
due to many already existing diverse realizations and a still open field of active research (e.g., con-
ducted in form of open contemporary workshops such as the modeling variability (MODEVAR)
series [Ben+19],[Ach+20]). As a consequence for this thesis, we pick the feature model for repre-
senting the commonalities and differences of our product lines as it is one of the most wide-spread
variability models with sound tool support. A feature diagram involving the basic elements, i.e.,
mandatory and optional features, OR and XOR groups as well as requires and excludes cross-tree
constraints suffices to describe the product lines considered in this thesis.

3.4 Variability Implementation Techniques

For implementing a product line in a proactive way (i.e., from scratch) several possibilities exist
which are explained in this section. The majority of the following descriptions is based on Apel
et al.’s summary of techniques [Ape+13]. The book presents (only) techniques to establish feature
oriented programming (FOP), i.e., realizing a product line based on capturing variability in form
of a feature model, particularly focusing on how to implement single features and composing
them in an organized way. Another taxonomy for categorizing the implementation of variability
mechanisms was proposed by Svahnberg et al. [SGB05] which includes many technically details
which we do not regard in order to rather give an overview of the general realization mechanisms.
Furthermore, this section does not elaborate on classical tool-driven variability mechanisms, such
as using version control systems (VCS) to develop products in different branches (clone-and-own
approach) or using build systems as they are out of the scope of the thesis.
After elaborating on basic concepts when realizing variability-intense software in Sec. 3.4.1, this
section introduces a compositional (Sec. 3.4.2) (including aspect-oriented), a transformational
(Sec. 3.4.3) and an annotative (Sec. 3.4.4) approach to realize a system with common and varying
features.

3.4.1 Basics
The description of variability implementation techniques initiates in this section with illuminating
general distinctions between implementation strategies, first, and and considering quality criteria
afterwards.

38

3.4. VARIABILITY IMPLEMENTATION TECHNIQUES

I General Strategies

Binding Time Implementation techniques vary in two aspects: the time they bind variability
and the employed technology. The variability can be bound early or late in the product devel-
opment. Apel et al. [Ape+13] distinguish compile-time from load-time and run-time binding.
Deciding early (i.e., before compiling the product) which features are part of the products im-
plies that no other functionality is delivered to the customer. In contrast, load-time and run-time
binding postpones the choice which functionality to include in the product to setup time or even
to run-time, respectively. Consequently, all variability is – though hidden – part of the shipped
product. While compile-time products require less resources and do not allow to detect function-
ality of different products, products bound at load- or run-time promise to be more flexible and
easy to reconfigure. [Ape+13]

Language- vs. Tool-based Furthermore, product lines can be developed based on dedicated
languages (language-based) or based on specific tools (tool-based). While in a language-based
approach all variability information is placed in the source code and, thus, the variability man-
agement is also organized based on the information in the source code, a tool-based approach ly
separates the feature implementation from the product derivation and the variability management
by using an external tool. Typical examples are the usage of runtime parameter as a language-
based and the usage of preprocessor as a tool-based approach. However, many times both types
of feature implementation support are intertwined or combined to some extent. [Ape+13]

II Quality Criteria

Overview To evaluate the benefits and shortcomings of implementation approaches, Apel et
al. [Ape+13] install the following six quality criteria: separation of concerns, uniformity, feature
traceability, information hiding, pre-planning effort, and granularity.

Separating Concerns is one of the most fundamental principles in software engineering [Par72;
Dij76]. Thus, separation of concerns is crucial for leveraging the development of product lines,
too. Since features are the primary concerns in SPLE, their implementation should ideally placed
in one cohesive location to aid maintaining and evolving the system without huge effort. [Ape+13]

Uniformity was, to the best of our knowledge, firstly defined by Batory et al. [BSR04]. It
refers to the fact that a product line is composed of different kinds of artifacts, i.e., source code
in various languages, test frameworks, etc., which should all be targeted by the same feature
implementation technique. This quality criterion addresses the problem of providing solutions
specific to one language or implementation approach which does not scale due to an ever evolving
tool and programming language landscape. [Ape+13]

Feature traceability refers to the possibility to detect features defined in the problem space
also in the solution space. Accordingly, this ideally requires that one feature implementation is
not scattered over different resources but located in one place which is not always possible. Ad-
ditionally, variability implementation approaches may include traceability possibilities naturally,
such as annotative approaches, whereas, e.g., the usage of run-time parameter may hinder easy
traceability. [Ape+13]

Information Hiding Similar to the separation of concerns, information hiding is another key
principle of software engineering. The main goal of this criterion is to write modular source
code, consisting of internal and external parts. The external part of such module – such as an
interface – provides a specification about its internals which can be used to reason about the
internals. However, the implementation of the internals can change without affecting any of the
other modules. [Ape+13]

39

CHAPTER 3. SPLE

Pre-planning describes part of the process before implementing the product line. Upfront, it
must be analyzed which features are present, how they interact and how feature implementations
can be reused. Due to the fact that not all features are likely to be known during the planning
phase, this criterion targets the simplification of anticipating and integrating modifications at later
times which is especially necessary in extractive and reactive engineering. [Ape+13]

Granularity [KAK08] refers to the level at which feature implementations are located. Each
realization artifact can be considered a hierarchy of details defined by containment relationships.
For instance, a coarse-grained variability mechanism allows to regard the topmost elements of
the containment hierarchy (e.g., a Java class or even a file) as subjects to variation. Conversely,
fine-grained feature implementation are possible, too, [Lie+10]. For instance, when employing
preprocessors, almost every word in the source code (e.g., a parameter of a method) can be asso-
ciated with one specific feature. Since it is hard to support fine-grained feature implementations
with a coarse-grained technique, the feature realization and the variability mechanism should best
reside at the same level of granularity. [Ape+13]

3.4.2 Compositional Variability
A compositional approach to implementing an SPL builds on components, each (ideally) realizing
only one feature. A component is an independently deployable unit which can be composed by third
parties and without an observable state [SGM02]. Therefore, it has to be clearly differentiated from
its environment and hide its implementation, e.g., by offering interfaces only for its composition.

Composing In SPLE, components have to be explicitly mapped to the features they realize.
In order to form a final product, a weaving mechanism selects the corresponding components ac-
cording to the given feature configuration and assembles them. Typically, assembling components
is not an automated but a manual process where the developer often needs to add source code
(called glue code) to build an executable product. The compositional approach can be associated
with positive variability because typically additional components will be integrated in the product
if necessary. [Ape+13]

Pros and Cons Regarding the quality criteria, components support uniformity, information
hiding and separation of concerns as well as feature traceability, in case each component realizes
one feature. On their downside, a high amount of pre-planning is necessary to determine the right
size of a component which only allows for coarse-grained variability. Moreover, having to provide
manual glue code reveals a low degree of automation. [Ape+13]

Advanced Technical Realization Two advanced ways to apply FOP, which is a compositional
approach to build product lines, predominated at most in the past: collaboration-based and aspect-
oriented programming.

Collaboration-Based Programming On the one hand, collaboration-based FOP – as the
name implies – relies on a set of classes forming a collaboration which ideally maps to one feature
of the product line. A collaboration consists of multiple classes which play a certain role in the
collaboration. Classes can play multiple roles in different collaborations.

Example 3.4.1: Collaboration-Based Programming

Fig. 3.4.1 highlights the key elements of collaboration-based programming by employing
the example of the feature model for database contents.
The main class representing the database contents provides base functionality to access the
database contents in the basic version. In different collaborations, which each implements a
single features, the class plays different rolls. In this example, the collaboration representing
the feature Song shows the role of the class DBContainer which contains instances of the

40

3.4. VARIABILITY IMPLEMENTATION TECHNIQUES

class Song and in the collaboration of the feature Book a collection of books, respectively.

class DBContainer {
 private static DBContainer instance;
 private DBContainer() { ...}
 public DBContainer getinstance() {...}
}

DBContent

 class Song extends Media {
 private String dateOfPublication;
 public Song(String title) {...}
 ...
}

class DBContainer {
 private List<Song> songs;
 public List<Song> getSongs(...)
}

 abstract class Media {
 protected String title;
 public Media (String title){...}
}

Song

 class Book extends Media {
 private String author;
 public Book(String title) {...}
 ...
}

class DBContainer {
 private List<Book> books;
 public List<Book> getBooks(...)
}

Book

role of

collaboration

Figure 3.4.1: Compositional implementation of database contents using collaborations.

Specific languages and compilers or extension to existing GPLs, like Jak [BSR04] and mixin
layers [SB02], support this realization approach. AHEAD [Bat04] offers a powerful and formal
algebraic foundation for the approach. One of the biggest advantages is the straight-forward pos-
sibility to trace features in corresponding modules and the conceptual uniformity of applying the
approach to diverse artifacts. Moreover, it requires little pre-planning and concerns are separated.
However, the level of granularity hardly goes beyond method implementations and in general in-
formation hiding is no key concept. Additionally, although concerns are separated into modules,
collaborations cut across different locations in the source code. [Ape+13]

Aspect-Oriented Programming On the other hand, applying aspect-oriented programming
(AOP) [Kic+97] to realize features avoids the scattering of concerns. In AOP a base implementa-
tion is provided which can be extended and changed by aspects of which the base implementation
is unaware. Similar to a variation point, a join point implies a point in the base implementa-
tion where an advice implemented in an aspect can change the basic implementation and, thus,
adds variety. During the compilation, an aspect weaver integrates these changes based on the
feature selection. AspectJ2, an aspect-oriented extension of Java, supports the most powerful
implementation of AOP.
Utilizing AOP for product line development typically implements one feature per aspect. In this
way, AOP clearly separates concerns because the base implementation is unaware of the features
and one advice is unaware of other feature implementations. Hence, the implementation of a
feature is not scattered. This upside implies the downside that the base implementation is hardly
accessible in the aspect implementation and that the aspect is likely to integrate errors (due to
missing information about the base code) or loses its join point when the base implementation
changes (called fragile-pointcut problem [KS04; SG05]). Further benefits are feature traceability
(when each feature is implemented by one aspect), low pre-planning effort and a more fine-grained
feature implementation level. While the concept is applicable uniformly, it requires specific im-
plementations for each language and supporting tool. Moreover, hiding information (e.g., based
on an interface for easy interchangeability) is no key concept of AOP. [Ape+13]

3.4.3 Transformational (Delta-Oriented) Variability
Similar to the compositional approach, a transformational (delta-oriented) variability mechanism
relies on a core module and delta modules [Sch+10].
2 https://www.eclipse.org/aspectj/

41

https://www.eclipse.org/aspectj/

CHAPTER 3. SPLE

core Root {
 class DBContainer {
 private static DBContainer instance;
 private DBContainer() { ...}
 public DBContainer getinstance() {...}
 }
}

delta DBook when Book {
 modifies class DBContainer {
 create class Book {...}
 adds List<Song> songs;
 adds List<Song> getSongs() {...}
 ...
 }
}

delta DSong when Song {
 modifies class DBContainer {
 adds List<Song> songs;
 adds List<Song> getSongs() {...}
 ...
 }
 adds class Song {...}
}

delta-oriented programming (adaptation: DeltaJava)

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

Figure 3.4.2: Delta-oriented implementation of database contents using a core product and delta
modules.

Core and Delta Modules The core module, also referred to as 75 % model when the product
line is developed in a model-driven way, represents one valid product. As a consequence, the
core module can be developed by utilizing normal single application engineering techniques. The
delta modules store the change operations which are needed to realize further products and, thus,
incorporate the variability implementation. Consequently, these delta operations in summary
transform an already valid product into another customized product. In contrast to the compo-
sitional variability implementation, where components only add functionality, a delta module can
remove elements from the core module yielding a potential decrease in size of the product and
more effort to check the correctness of resulting products. The additional effort for ensuring con-
sistent products due to the removal of elements can be alleviated, e.g., by including type-checking
mechanisms [SBD11].

Example 3.4.2: Core Product and Delta Modules in Java

Fig. 3.4.2 presents excerpts of applying a delta-oriented approach to realize the database
product line. The core product encompasses all elements to realize a basic executable
product. In this example the core product is the empty database which offers as primary
functionality access to its contents. Delta modules comprise the delta operations that have
to be undertaken for implementing one feature. As demonstrated in the example, the delta
module DSong which should realize the feature Song needs to adapt the class DBContainer
to contain the songs. Furthermore, it needs to create the class Song and a corresponding
implementation.

Model-Driven Transformational Variability While the initial work was performed for prod-
uct lines written in Java, (ongoing) research predominantly focuses on model-driven product lines.
For that reason, the following chapter on model-driven product line engineering provides further
insights in the discipline (c.f., Sec. 4.1.2, II).

Summary Similar to compositional approaches, using delta modules facilitates feature trace-
ability and a strict separation of concerns which can be installed at a fine-grained level and does
not require much pre-planning overhead. The principles uniformly apply to different languages
and tool but information hiding based on interfaces is no key concept of the general approach.

3.4.4 Annotative Variability
In contrast to the aforementioned variability implementation techniques, annotative approaches
do not rely on a core implementation but implement the product line as a whole in the phase of
domain engineering. As such, a superimposition [Bos99; CE00] of all products is developed and
variability annotations serve as presence conditions for single code fragments by mentioning the

42

3.4. VARIABILITY IMPLEMENTATION TECHNIQUES

public class DBContainer {
 private static DBContainer instance;
 ...
 // #IFDEF Song #
 private List<Song> songs; ...
 // #ENDIF Song #
 // #IFDEF Book #
 private List<Book> Book; ...
 // #ENDIF Book#
}

1

2

3

4

5

6

7

8

9

10

 // #IFDEF Book #
public class Song {
 ...
}
// #ENDIF Song #

1

2

3

4

5

 // #IFDEF Song #
public class Song {
 ...
}
// #ENDIF Song #

1

2

3

4

5

conditional translation

public class DBContainer {
 private static DBContainer instance;

 private List<Song> songs; ...

}

1

2

3

4

5

6
public class Song {
 ...
}

1

2

3

conditional compilation

 javac
 DBContainer.java
 Song.java

compilation

source code annotated with
preprocessor directives

intermediary source code
represenation

of one derived variant
derived
 variant

Figure 3.4.3: Annotative implementation of database contents.

feature (or an expression over features) enabling the code fragment. Accordingly, this approach
realizes negative variability because the entire platform is built and artifacts corresponding with
deselected features are removed when deriving a product.

Preprocessors Technically, the straight-forward implementation of annotative approaches uti-
lizes preprocessor directives. In this case, code fragments which correspond to one specific feature
(or more features) can be annotated by embracing them with a corresponding directive. When
providing a feature configuration (in case of a preprocessor: a selection of the enabled preproces-
sor flags), conditional compilation is performed which only involves source code corresponding to
the selected features to generate the bytecode of the product. While C/C++ includes a built-in
preprocessor, other GPLs, like Java or Python, do not support preprocessors out-of-the-box. For
that reason, preprocessor extensions of Java (e.g., Antenna3) exist to annotate the source code
with preprocessor directives and offer conditional compilation of Java projects. Commercial tools,
such as pure::variants [Beu13] or gears4, offer built-in solutions for conditional compilation based
on preprocessor directives. [Ape+13]

Example 3.4.3: Annotative Source Code for Conditional Compilation

Fig. 3.4.3 depicts an example in which Java source code is surrounded by fictive prepro-
cessor directives, e.g., a list of songs is only kept in the DBContainer when the feature
Song is selected (c.f., lines 4-6). Based on enabled directives (representing the feature con-
figuration), a corresponding preprocessing functionality removes all source code embraced
by non-selected directives at compile-time. Thus, in this example, only the feature Song
is selected and all source code which is annotated with different directives does not form
part of the product derived by the conditional compilation. For demonstrating the “single-
variant” source code the figure depicts also the intermediary state into which the complete
source code is translated during the compilation before creating the final product.

Pros and Cons Since the annotations are exactly located at the corresponding realization
artifact, this variability implementation approach includes native feature traceability and also
supports a fine-granular feature implementation mechanism if using preprocessors. While an
annotative approach requires little pre-planning and is a uniform concept, information hiding
and separation of concerns can not be achieved when using preprocessors. Moreover, the level of
cognitive complexity increases due to the fact that all product implementations are visible.

Virtual Separation of Concerns The complexity of maintaining preprocessor directives can
be diminished, for instance, by generating views on the source code [Käs10]. Given a feature
configuration (i.e., a selection of preprocessor directives) code belonging to other directives can be
3 http://antenna.sourceforge.net/
4 https://biglever.com/solution/gears/

43

http://antenna.sourceforge.net/
https://biglever.com/solution/gears/

CHAPTER 3. SPLE

virtually removed and is only shown as context information (“[]”). Alternatively, in case the still
present preprocessor directives mitigate a clear overview, instead, background colors may be used
to indicate feature annotations which then are removed artificially. The tool Colored IDE (CIDE)
implements this functionality for representing feature annotations in Java source code [Käs07].

External Annotation Mapping As an alternative to the usage of preprocessors, annotations
can be mapped onto artifacts externally. A mapping is a two-valued tuple, consisting of a presence
condition and the corresponding artifact, that should be annotated. On the one hand, the presence
condition, which we simply call annotation in the sequel and may also be referred to as feature
expression, is a Boolean expression over the features defined in the variability model. On the
other hand, the second element of the tuple, the artifact may vary with the granularity of the
approach and, in case of source code-based product lines may be a text fragment. However,
external mapping approaches are more prominent in model-driven product line engineering. For
that reason, they are explained in greater detail in Sec. 4.1.2, III.

3.4.5 Multi-Paradigmatic Approaches
In practice, certain tools and research prototypes frequently offer a combination of the aforemen-
tioned approaches or the possibility to select one of them, implying that specific approaches may
fit better for certain product lines. In this way, an implementation approach suiting the properties
and the requirements of the system to be developed can be selected. For instance, a product line
where most of the features are present in every product should rather apply an approach based on
negative variability whereas positive variability pays off when features can be clearly distinguished
and only a small number, e.g., of deltas, must be applied to assemble a product.

3.5 Product Well-Formedness
While the key motivation of SPLE is to automate the product generation, the product derivation
step comes with a major requirement. Not only the feature configuration has to be valid (i.e.,
satisfying all constraints encoded in the variability model) but also the product corresponding
with a valid feature configuration has to be (at least) syntactically correct.

Brute-Force Analysis One way to guarantee this correctness, referred to as product well-
formedness, for the entire product line is to generate all valid feature configurations and to derive
each corresponding product once in a brute force approach. However, this product-based analysis
is only feasible for quite small feature models with a small total number of products. With
an increasing number, particularly of optional features, the number of possible products grows
exponentially yielding most of the times a set of products which is impossible to test in a reasonable
amount of time. For instance, the variability model of the Linux kernel, KConfig, as a prominent
example of a highly configurable system, was latest measured to consist of up to more than 6400
features with more than 3000 constraints, which still results in a number of configurations which
is impossible to test in life time. Moreover, a product-based analysis neglects the redundancy
present in products due to their reused parts. From a different point of view, a feature-based
analysis considers each feature implementation in isolation and draws a conclusion on all products.
However, since features are likely to expose different behavior when they are combined, a family-
based analysis should consider also specific combinations of the products. [Thü+14]

Sampling To this end, different sampling strategies mitigate the effort to guarantee product
well-formedness based on examining every product by inspecting a representative sample set of all
products instead. The field of sampling products is largely populated and still actively researched,
e.g., as community challenges [Pet+19; Fer+20]. Varshosaz et al. [Var+18] classify sampling
strategies based on their input data and the sampling technique. On the one hand, the input data
can be part of the problem space, which was in all investigated strategies of this survey the feature
model and sometimes further domain knowledge. On the other hand, the input data can be part of

44

3.6. SUMMARY

the solution space, i.e., test or implementation artifacts. The techniques are either manual, semi-
automated, completely automated or based on coverage criteria. While in manual sampling, for
instance, a domain expert selects the set of sampled products, automated sampling either employs
meta-heuristics, i.e., a local or a population-based search (for an optimum), or a greedy strategy.
Semi-automated strategies allow to integrate and vary different parameters, like the sampling time
or a coverage degree, and typically receives a starting set from a domain expert. Finally, coverage
sampling typically includes at least feature-wise or t-wise (where t represents the number of the
different combined features) feature interactions but may also consider implementation artifacts
in a white-box fashion.

3.6 Summary
This chapter presented basic terms and strategies how to develop product lines in a systematic
way by adhering to the principles of variability and organized reuse. These techniques lay the
grounds for incorporating the ideas of model-driven software engineering in product line engineer-
ing methods. The next chapter illuminates how the concepts explained in this chapter convey
when models are the primary development artifacts.

45

Chapter 4 Model-Driven Software Product Line
Engineering

Ante mare et terras et quod tegit omnia caelum
unus erat toto naturae vultus

in orbe quem dixere chaos1

Ovid, Met. Book I, Lines 5-7

∼

Both, model-driven software engineering and software product line engineering, aim at
increasing the level of productivity by developing complex software systems in an or-
ganized and automated way. Combining both disciplines bespeaks an increase of their
benefits. By abstracting the product line with models during domain engineering, not
only the product derivation in application engineering is automated but model-driven
software engineering allows to automate the generation of realization models (and in
the end, source code) in domain engineering, too. Consequently, in model-driven (soft-
ware) product line engineering (MDPLE) [Gom05; Cza+05], models are the nucleus
to represent the product line artifacts at every development stage.

As a consequence, the two key elements of MDSE, models conforming to metamod-
els and model transformations, have to be lifted to properly address the additional
dimension of variability. On the one hand, models representing a single system have
to become multi-variant, meaning they have to capture a family of systems. On the
other hand, to keep multiple multi-variant models consistent, automated techniques
are necessary to transfer variability information from model into another. Besides cre-
ating a target model, model transformations can be lifted to address the dimension of
variability.

This chapter presents the possibilities to lift models in Sec. 4.1 and their maintenance,
as implemented in existing MDPLE solutions, in Sec. 4.2. Finally, Sec. 4.3 illuminates
the employment of model transformation technology in model-driven product lines,
which keep the variability information consistent in software families, whereas Sec. 4.4
summarizes the insights.

The chapter shares material with [GW21] and [WG20a] which lay the foundations for its
contents.

1 Before sea and earth and the sky which covers everything existed,
the appearance of the nature was one in all the globe which they have named Chaos.

46

4.1. MULTI-VARIANT MODELS

4.1 Multi-Variant Models
The first step of fusing MDSE and SPLE into MDPLE has to enrich models by the dimension
of variability in space. This section delimits the scope of the considered multi-variant models,
firstly, and presents how the variability mechanisms integrate variability information into models,
secondly.

multi-variant

requirements model

 forward engineering

multi-variant

design model

multi-variant

implementation model

reverse engineering

multi-variant

requirements model

multi-variant

design model

multi-variant

implementation model

multi-variant

requirements model
multi-variant

design model

multi-variant

implementation model

 round-trip engineering

Figure 4.1.1: Engineering directions in MDPLE.

4.1.1 Preliminaries
To be used in MDPLE, in the first place, models have to represent variable content. In contrast
to developing a single system, as in classical MDSE, models need to represent a family of systems
(i.e., a product line). Accordingly, the general engineering directions depicted in Fig. 2.1.5 refine
to those depicted in Fig. 4.1.1: instead of (single-system) models, models representing a family of
systems are developed and engineered in forward, backward or round-trip direction in MDPLE.
We refer to models representing more than one product as multi-variant models as opposed to
single-variant models which represent only one specific product. Fig. 4.1.2 depicts a multi-variant
UML class model encompassing the various database contents which correspond to the feature
model presented in Fig. 3.3.1. Since such model comprises all variants in a superimposition, it is
also commonly referred to as superimposed or 150 % model. Derived products may only contain
parts of such model.

Metamodel Restrictions In general, although almost arbitrary variable content should be
integrated in the models, commonly the metamodel, to which the model conforms, restricts the
properties of the model elements. Only few tools (e.g., the internal representation of SuperMod)
allow for unconstrained variability or for merging metamodels into one. In this thesis multi-variant
models are instances of a single metamodel with single-variant semantics:

Single Metamodel A multi-variant model is always an instance of only one metamodel and
not of multiple different ones thereby conforming to Prop. 4.1.1:

Property 4.1.1: Single Metamodel

The multi-variant model is instance of one single kind of metamodel.

47

CHAPTER 4. MDPLE

Person

/name: String

firstNames: String[0..*]

surname: String

birthday: String

employmentState: EmploymentState

Family

name: String
parent
0..2

0..*
children

family
0..1

0..1

Animal Media

price: Real
serNo: UnlimitedNatural
title: String

 DatabaseContent

books

Domesticated Wildlife

Book

Movie

Song

family

songs

movies
0..*

0..*

0..*

0..* pets

families
0..*

EmploymentState

EMPLOYED
UNEMPLOYED
IN_EDUCATION
RETIRED
ELSE

<<enumeration>>

owner
0..1

0..*
animals

persons
0..*

Figure 4.1.2: UML class model representing the database contents in a multi-variant model.

Example 4.1.1: Multi-Variant Model

Fig. 4.1.2 depicts an example of an superimposed UML class model. The model superim-
poses the varying contents of the database. Accordingly, it comprises not only persons and
animals but also types of media and organizes persons into families.
Thus, different configurations of this model can remove parts of the model which should not
be present in a specific variant of the model. For instance, a family-database may require
persons and may integrate domesticated animals but does not need media necessarily.
Similarly, a media-database which could be used in a warehouse does not associate a
family or animals with the media. However, all of these possibilities are integrated in
the multi-variant model. Nonetheless, the model does not exceed the boundaries of the
single-variant semantics of the metamodel.

In contrast, techniques exist which identify commonalities between different metamodels, and
summarize these metamodels in one single underlying metamodel (SUMM) [ASB09], which is
based on multi-view modeling [Fin+92]. An instance of a SUMM is not considered a multi-variant
model in our context. Nevertheless, instances of different metamodels are necessary to holistically
reflect a system, as also pointed out by Gomaa and Shin [GS02] who involve a different model for
each development stage.

Single-Variant Semantics Furthermore, the metamodel of multi-variant models in this thesis
conform to single-variant semantics as defined in Prop. 4.1.1. Thus, the models express constrained
variability only.

Property 4.1.2: Single-Variant Semantics

The multi-variant model conforms to a metamodel with single-variant semantics.

As an example, in an Ecore or UML class model the name of a class cannot vary. In the database
example it will not be possible to call the root class of the model (DatabaseContent) differ-
ently (e.g., FamilyDatabase) if a database consisting of families only is derived. If necessary,
a multi-variant model conforming to single-variant semantics can be obtained by normalizing a
“malformed” multi-variant model (i.e., a model violating the single-variant semantics of its meta-
model) [RLK19].

48

4.1. MULTI-VARIANT MODELS

Table 4.1: Comparison of terminology used in MDSE and SPLE.

term MDSE SPLE
platform any technical or business details specific

to a system (c.f., MDA in Sec. 2.1.3)
“a set of software subsystems and inter-
faces that form a common structure from
which a set of derivative products can be
efficiently developed and produced” [ML97]

trace container of links between source and
target model of a model transformation

summary of links between features and re-
alization artifacts

mapping link of corresponding source to target
elements

link of a feature expression to realization
artifacts

derive execute a transformation to create
a target representation from a given
source model

create a customized product based on the
platform artifacts and a given feature con-
figuration

Terminology As another point, it must be noted that certain terms appear in both disciplines,
MDSE and SPLE, but with diverging meanings. Table 4.1 collects an overview of ambiguous terms
relevant in this thesis. In the following explanations of this thesis we always use the term platform
in the meaning of the SPLE context because we do not consider platform-dependent models.
Since the thesis describes the usage of traces recorded while executing a model transformation,
a trace always refers to a collection of links between the source and target elements of a model
transformation. In contrast, we take a mapping as a synonym for assigning an annotation to a
model element. Mapping models capture the variability traceability [BBM05] of all elements in
a domain model to annotations. Finally, to indicate the meaning of derive we clearly state the
artifact which is derived, a target representation from a source model by applying a transformation
or a product from domain engineering artifacts (as in SPLE). Due to the focus of the thesis on
negative variability, the following descriptions additionally utilize the term filter as a synonym
for deriving a product because approaches realizing negative variability always remove deselected
elements from the superimposed domain artifacts for deriving a product.

4.1.2 Variability Mechanisms
As Chp. 3 explains, variability can be realized either by an annotative, a transformational or a
compositional mechanism. The same principles apply to MDPLE including further specifics which
relate to the nature of MDSE. Consequently, models can be lifted to realize the dimension of vari-
ability in space by exploiting the same three variability mechanisms. Most of the techniques and
concepts in MDPLE are reflected in the heterogeneity of supportive tools. Therefore, the following
descriptions regard the tool landscape while explaining the compositional, transformational and
annotative variability mechanism applied to models subsequently in the following paragraphs. As
a special form, the closing of the section sheds light on view-based editing approaches which intend
to hide the complexity of developing all variant.

I Compositional MDPLE

Sec. 3.4.2 states that compositional variability mechanisms rely on the predominant concept of a
component and a composer which builds products based on positive variability. Besides relying,
for instance, on interfaces to encapsulate the behavior of a component, collaboration-based FOP
and AOP are specific techniques for this mechanism. To mimic multi-variant contents, almost the
same principles transfer from programming to modeling. Applying aspect-oriented modeling as
well as composing superimposed models are two means to realize a compositional approach:

Aspect-Oriented Modeling Similar to aspect-oriented programming, where a base program
is extended, aspect-oriented modeling [Wim+11b] extends a base model with aspect models which
refer to join points in the base model. For creating a product line, each modeled aspect should be

49

CHAPTER 4. MDPLE

related (at least) to one feature which it realizes. The aspect weaver will integrate the advice in
a product if a feature configuration selects the respective feature.
Groher and Völter [GV09] realize aspect-oriented MDPLE by exploiting the concept of aspect-
orientation. The authors contribute a holistic development strategy and corresponding tool to
model a product line with Ecore models, to formally map models of the problem space onto cor-
responding ones of the solution space and to generate source code based on M2T transformations
eventually. The tool environment resides in the open Architecture Ware (oAW) framework which
offers different languages and tool support for specifying grammars of DSLs or performing model
transformations. As a prominent example, Xtend, a powerful Java dialect, resides in the oAW.
For executing model transformations in an aspect-oriented way, the solution exploits the (former)
support of the Xtend programming language for aspect-oriented programming, allowing to declare
advices for methods. Furthermore,Xpand, another language of the oAW, supports the declaration
of aspects in M2T transformation. The solution of Groher and Völter expects a variability model
exported from the commercial tool pure::variants and turns it into a globally accessible variability
model in its own tool environment.
Despite the fact that aspect-oriented solutions typically realize positive variability, Groher and
Völter discuss ways to implement negative variability, too. For realizing this concept at the level
of modeling, they offer the tool XWeave [GV07] as an integration into the oAW. They realize
negative variability in the model transformation by implementing an overall generator and query
whether a feature is selected before generating the corresponding element. [GV09]
Conversely, the tool MATA (Modeling Aspects Using a Transformation Approach) [Whi+09]
utilizes Graph grammars to realize an aspect-oriented approach to SPLE. Every element of a UML
class, state or sequence model can serve as joint point and can form part of the base model slice. A
graph transformation written in MATA’s own language reuses the existing Graph transformation
engine of AGG [Tae99; Tae03; RET11] to compose the base model slice with aspect model slices.
While the base model may contain different model types, an aspect model slice can only target
a model of one kind. For example, an aspect model cannot modify state and a sequence model
simultaneously. Since Graph transformations are formally founded and well-understood, MATA
naturally supports formal analysis methods to detect interacting aspects by a critical pair analysis.

Superimposition-Based Approach Another solution to enrich models with variability for
employing a compositional mechanisms builds a superimposition of model variants by identifying
matching model fragments in the variants which can be composed [Ape+09]. In this context, an
identified model fragment needs to conform to its metamodel and represents one part of a super-
imposed model corresponding with one feature. The superimposition requires a tree-structured
subject language and matching names of elements, that should be unified. The tool FEATURE-
HOUSE [AKL09; AKL13] implements this approach and offers automated generators for language
integration and automated composition tools for deriving products.

II Transformational MDPLE

A second possibility to realize positive variability in MDPLE is to employ transformations. On
the one hand, delta-oriented tools build on a core model which is modified by delta modules
which bundle delta operations. On the other hand, different proprietary variability models and
transformation approaches have been proposed at which this section looks afterwards.

Delta-Oriented Modeling Approaches Delta modeling [CHS15], as one means of transfor-
mational MDPLE, lays the grounds to transfer the delta-oriented variability mechanism from
source code to models. A delta module assembles change operations in an appropriate order and
applies them to the core model. In contrast to a general-purpose model transformation, the oper-
ations in a delta are restricted to address only elements which are allowed to vary, for instance, a
delta operation cannot modify the IDs of elements. Besides the delta operations, a delta module
encompasses an application condition, typically a Boolean expression, such as a formula in propo-
sitional logic, over the features of the corresponding variability model. One cause for errors resides

50

4.1. MULTI-VARIANT MODELS

in applying different delta modules sequentially because they may compose conflicting operations.
Automated tool support should address this problem by detecting and resolving these conflicts.
DeltaEcore [SSA14b; Sei17] represents an automated tool to realize the delta-oriented variability
mechanism. After defining a base delta language in form of a metamodel for the target language,
delta dialects can be derived based on this metamodel. The dialect defines language-specific delta
operations which are used to specify the delta modules. Specific to this approach is the introduction
of a hyper feature model [SSA14a]. Products are configured based on the hyper feature model,
which allows to specify revisions of individual features. DarwinSPL [NES17] adapts and extends
the concepts of DeltaEcore by supporting implementations that respect the contextual variability
of a product line.
In contrast to automatically deriving delta languages, a higher degree of automation is achieved
when the delta operations in form of an edit script [KKT13] are derived. The tool SiPL [Pie+15]
generates edit scripts, i.e., a delta module, by comparing model instances. In addition, Pietsch
et al. [Pie+19] offer a formal analysis and resolution of conflicting delta operations among the
modules.

Class Layers Hendrickson et al. [HJH06] suggest to organize class models in different layers,
each modifying a base layer. As is the case in delta-oriented approaches, a layer incorporates an
“alternative” design decision by defining delta operations (add, remove) which relate to the base
layer and can be composed by respecting further relationships that can be defined between the
layers. The tool EASEL implements this concept which also involves merging and comparing
models.

Transformational Variability Languages The Common Variability Language (CVL), intro-
duced in Sec. 3.3.2), and the family of Variability Mapping Languages (VML*) [Zsc+09], both
foster a delta-oriented variability mechanism where transformations extend a base product.
CVL [Hau+08; Fon+15] realizes positive variability by relying on a base model incorporating
placeholders which can be implemented differently in variation models. Variation models are
expressed in an entirely generic language. Resolution models specify the selected products which
can be transformed into the variation realization resembling one product in an iterative way. For
that reason, the approach is also called base variability resolution (BVR). Due to its generic
nature, CVL is supposed to be integrable with arbitrary DSLs (and GPLs for modeling, such as
UML).
VML* offers the creation of customized languages to specify mappings from features to model
elements by using the language elements of the corresponding domain model. Moreover, the
VML* metamodel incorporates elements, such as pointcuts or actions which are performed on the
target model during the derivation of products. Based on the instances of the VML* metamodel, a
general purpose model transformation in Xtend is generated. This language realizes the derivation
of single application models. Consequently, this approach which supports positive as well as
negative variability, can be categorized as transformational approach.

III Annotative MDPLE

In annotative MDPLE, superimposed models, such as the one depicted in Fig. 4.1.2 which rep-
resents the diverse contents of a database, express the entire variety of products in a commonly
called 150% model. In contrast to the work by Apel et al. [Ape+09], in which the annotated su-
perimposed model is composed by assembling model fragments satisfying a feature configuration,
elements of an annotated model based on negative variability are removed to create a product.
To derive products, annotations have to be mapped onto the elements of Fig. 4.1.2 to declare
in which variants they are present. Accordingly, Fig. 4.1.2 needs to be refined as sketched in
Fig. 4.1.3. In this refined version, the annotations represented in the rounded rectangles declare
in which derived variants the model element onto which it is mapped is present. For instance, the
two associations which connect the classes Person and Family are only present in derived variant
if the features Family and Relation are selected both.

51

CHAPTER 4. MDPLE

Person

/name: String
firstNames : String[0..*]
surname: String
birthday: String
employmentState: EmploymentState

Family

name: String
parent0..2

0..* children

family
0..1 0..1

Animal
Media

price: Real
serNo: UnlimitedNatural
title: String

 DatabaseContent
books

Domesticated Wildlife

Book

Movie

Song

family

songs

movies

0..*

0..*

0..*

0..* pets

families0..*

EmploymentState

EMPLOYED
UNEMPLOYED
IN_EDUCATION
RETIRED
ELSE

<<enumeration>>

0..*persons

0..* animals

not Family

Domesticated

Animal

Family ∧ Relation

Media

Movie
Song

Book

Wild

Employed

Pet ∧ Person ∧ Domesticated

Name

Person

DB

0..1 owner

species: String

Figure 4.1.3: Annotated multi-variant UML class model of database contents.

Instead of a preprocessor, which derives a product from an annotative source code product line
by conditional compilation, a model filter is exploited to derive a product. All elements which
are annotated with a Boolean expression which is not satisfied by the given feature configuration
are removed (filtered) in the derivation process to form the product. Conceptually, upfront the
way how annotations are mapped onto model elements as well as their granularity discern different
solutions. The following paragraphs illuminate both aspects.

Mapping Notation As depicted in Fig. 4.1.4 we distinguish an annotation-wise from an element-
wise as well as an external from an internal mapping. The following paragraphs shed light on
their characteristics.

Annotation-wise Mapping An annotation-wise mapping, depicted on the left-hand side of
Fig. 4.1.4, links all elements (independent of the metamodel to which they belong) with their
corresponding annotation. Each possible annotation is stored once in a file and elements reference
the annotation. For example, the annotation-wise mapping of Fig. 4.1.4 links the class Family
as well as the containment reference named families onto the annotation Family whereas the
surname is present only in case the feature Family is not selected. Most notably, as a specific
property of annotation-wise mappings, elements of different models may link directly or may be
linked to these single annotations transitively. In a simple form, the annotation-wise mapping
is part of a correspondence model which references variation points or features of the variability
model and maintains links between elements of different models. A multi-view solution employs
such correspondence model [GS02]. On the downside of referencing features or variation points, the
set of possible annotations is small because it complicates the usage of propositional formulas as
annotations or more advanced annotation mappings. On the upside, an annotation-wise mapping
obviates the necessity to propagate annotations which is an essential automation task in element-
wise mappings for multiple models and discussed in Sec. 4.3.

Element-wise Mapping Conversely, element-wise mappings may map an annotation onto each
element in the model, thereby allowing an annotation to occur more often than once. The middle
and the right of Fig. 4.1.4 exemplify these mappings. Each element may be decorated with an
annotation and the same annotation may occur multiple times.

Internal Mappings Several solutions to realize multi-variant models annotate the model el-
ements by exploiting the capabilities of the modeling language. Such internal mappings may
either reuse the language as it stands, extend it or be integrated in a newly developed proprietary
language for modeling and realizing variability.

52

4.1. MULTI-VARIANT MODELS

Person

/name: String
firstNames : String[0..*]
surname: String
birthday: String

DatabaseContent

Family

name: String

* persons

«Family»

Person
/name: String
firstNames : String[0..*]
surname: String
birthday: String

DatabaseContent

* persons

:ObjectMapping

annotation =

:ObjectMapping

annotation = ""

:ObjectMapping

annotation = "Person"

:ObjectMapping

annotation = "Person"

:ObjectMapping

annotation =

:MappingModel

...

internal mappingexternal mapping

«Person»

«!Family»

«Person»

"!Family"

"Person"

"Person"

"Family"

"DB"

DB

Family

Person

!Family

!Person

...

Family

name: String

«Family»

Person
/name: String
firstNames : String[1..3]
surname: String
birthday: String

DatabaseContent

Family

name: String

persons *

«Person»

families * * families

* families

annotation-wise element-wise

«Family»
...

Figure 4.1.4: Mapping notations.

The product line UML software engineering (PLUS) method serves as one example where static
stereotypes extend the basic language constructs of UML. They allow to designate, for instance,
default elements («kernel») or variants («variant») [Gom05]. Thus, model elements carry an-
notations in form of stereotypes. Ziadi et al. [ZHJ03] introduced the concept of exploiting UML
stereotypes firstly to the best of our knowledge.
In a similar way, a template mechanism assembles UML models [CA05; CP06]. The template
comprises the superimposition of all variants which are annotated by utilizing UML stereotypes,
too. In contrast to PLUS, the approach does not employ a static default set of stereotypes, such
as «kernel» or «variant», but the stereotypes declare an annotation which is a propositional
formula over features defined in a feature model. Ex. 4.1.2 demonstrates the usage of customized
stereotypes for annotating a UML class model.

Example 4.1.2: Internal Mapping with Feature-Based Stereotypes

The right side of Fig. 4.1.4 sketches the internal mapping based on customized stereotypes
in UML, as suggested in the template mechanism [CA05]. The example derives the stereo-
types from the database example and conveys the same mapping information as is present
in the middle and left side of the figure.
Please note: While in the original contribution annotations are only mapped onto classifiers
which is due to the state-of-the-art capabilities of the UML specification, the example
annotates properties, too. Accordingly, the annotation of the property surname can only
be annotated if the capabilities of UML are extended.

Pros and Cons of Internal Mappings Despite the benefits of reusing existing functionality
which reduces development and training cost, three general downsides of reusing existing model
language capabilities for (internal) mappings stand out:
First, the annotations are tightly intertwined with model elements, and are, thus, scattered over
the model. As a consequence, for deriving a product corresponding elements have to be searched
in all realization artifacts.
Second, the granularity of the mappings is limited by the capabilities of the modeling language.
Therefore, annotations may not be mapped onto all model elements. For instance, while UML
is quite powerful, it is not possible to annotate elements of an Ecore model with customized
stereotypes but as only means with the type EAnnotation. Overloading an existing metamodel
type in this way fosters a disciplined usage based on conventions.
Thirdly, reused-based internal mappings are restricted to one type of model and, thus, not generally
applicable. As an example, UML stereotypes cannot be employed to annotate an Ecore model.

53

CHAPTER 4. MDPLE

Proprietary SPL Development Languages In order to address the first downside, mappings
could be stored externally in separated files. To address the second and third downside of insuf-
ficient granularity and genericity, several proprietary languages express variability and the model
elements in an intertwined way, thus, being able to adapt their language appropriately.
Clafers serve as example of a proprietary language with internal mappings. A clafer is a unit
summarizing variability annotations (adhering to a proprietary constraint language), structural
and behavioral model elements. These units are expressed in the similarly called modeling lan-
guage [BCW11; Bak+16; Juo+19]. The VML* framework serves as another example declaring
“annotations” in a proprietary language. The developer can specify a mapping language which
allows to use language elements of the domain model. Accordingly, mappings of features to do-
main model elements are specified in this dedicated language from which a general purpose model
transformation in Xtend is generated. This language realizes the derivation of single applica-
tion models. Consequently, this approach which supports positive as well as negative variability,
can also be categorized as transformational approach but also contributes concepts to annotative
mechanisms.

External Mappings As stated in Sec. 3.4.4, mappings can as well be assigned in a file or data
structure separated from the multi-variant model. Such external mapping offers the advantage that
annotations are not scattered over the modeled artifacts but reside in a dedicated location. In this
way, external mappings separate the concern of modeling from the annotation task. Furthermore,
a variant can be derived more easily because the elements which should be included can be
determined by looking them up at one dedicated location, the external mapping representation.
Both, FeatureMapper [HKW08] and Famile [BS12], are extensions to Eclipse and support
modeling product lines with eMOF-based models and external mappings. For mapping features
to the domain model they include a separate mapping model which relates domain model elements
with a feature. In contrast to FeatureMapper, which supports mapping feature expressions, i.e.,
propositional formulas over features, onto objects of the model only, Famile supports a finer level
of annotation granularity where structural features can be annotated as well. Moreover, due to
the capabilities of the proprietary mapping model, alternative modeling decisions which cannot
be expressed by the single-variant syntax of the domain model, are possible. For instance, the
name of a UML or Ecore class can vary by including an alternative mapping element for the name
carrying another annotation.
Moreover, approaches which employ a correspondence model between the variability and the
realization models, for instance, multi-view product lines [GS02]), fall into the external category.
In the multi-view approach models at each development stage, for example activity and class
models are each considered a view. The variability model is considered another view and a
correspondence model not only links model elements of each view but also maps them onto features
of the variability model.

Example 4.1.3: External Mappings

The left and the middle part of Fig. 4.1.4 exemplify how to realize external mappings. The
left of figure demonstrates the aforementioned form of an annotation-wise mapping, which
requires an external mapping artifact. The figure sketches the external annotation-wise
mapping as a separate file which collects features. In multi-view approaches, this kind of
mapping may be a separate correspondence view which stores links from model elements
onto annotation.
Instead, the external mapping model, depicted in the middle of Fig. 4.1.4, comprises the
same classifiers and relations as used in the domain model for which it provides annotations.
The figure sketches the mapping model, noted in abstract syntax, in the way the tool Famile
[BS12] realizes it. The mapping model reconstructs the structure of the domain model for
which it stores annotations exactly. ObjectMappings represent each modeled object, i.e.,
not only the enumeration, the classes and associations but also the properties, operations
and their parameters (the latter are not depicted in the figure). The object mapping stores
the annotation which is a propositional formula over features of the feature model and

54

4.1. MULTI-VARIANT MODELS

references the corresponding object of the domain model.

Notice: For simplicity and easy readability, the mapping model excerpt in Ex. 4.1.3 does not
include all object mappings which form part of the mapping model in the excerpt. Moreover,
the granularity of annotations which can be expressed with Famile goes beyond the granularity
of many other tools because it allows to annotate the structural features, for instance the type
or name of an object, and also to provide alternatives from which we abstract in this figure, too.
In addition, whenever different models build the product line, the same number of independent
mapping models may exist in this approach (because they reflect exactly the structure of the
corresponding model).

Annotation Granularity Regarding the granularity, this property corresponds with the quality
criterion as declared in Sec. 3.4.1 for product line development in general. The property assumes
that all realization artifacts build a strict containment hierarchy where the overall container resides
at the coarsest level of granularity. In the context of models, this could be a package or even the
file containing the model. Conversely, for instance in eMOF, at the finest level of granularity
reside the structural features of model elements, for instance, the name of a class or the type of
an attribute. The granularity influences the derivation complexity (higher if fine-grained) and the
redundancy of artifacts and possibilities for reuse (less redundancy if fine-grained).

Model Filter The term model filter refers to the facility which derives the product based on a
feature configuration in an approach realizing negative variability. [GW19c]

Flat vs. Hierarchical Filter Firstly, the model filter may vary with respect to its capability
to ensure that a well-formed product is derived and the way it incorporates structural informa-
tion of the annotated model. We discern two kinds of model filters: A flat model filter always
removes the elements the annotation of which does not satisfy the feature configuration whereas a
hierarchical filter takes dependencies inside the model into account and may propagate selection
states accordingly. As an example, if the domain model forms a spanning containment tree and
a parent element is not included in a configuration but at least one of its children, a hierarchical
filter will either exclude all children from the derived product or enforce the integration of the
parent. Hierarchical filters allow for simpler annotations of model elements because the Boolean
expression does not have to respect existence relationship while ensuring well-formed products,
nonetheless.
Secondly, filters can vary by the way how they treat model elements missing an annotation. Besides
others, one strategy includes elements missing an annotation in all configurations regardless of the
filter a priori2.
Finally, in a preprocessing step before the derivation, the consistency of the derived product
can be ensured by propagating selection states, thus, avoiding the well-formedness problem. In
hierarchical filters not only the obvious annotations can be determined but also can they be
overridden based on knowledge about the syntax of the metamodel. For instance, in UML class
models a super class should not be removed if the class inheriting from the super class remains
in the product. In this example, either both classes need to be removed or both need to remain.
Czarnecki et al. [CA05; CP06] offer rules to assign a more specific annotation (than true) in UML
class and activity models. Similarly, the tool MODPL [BW14] offers a set of static rules which
generate annotations by regarding dependencies inside Fujaba models [NNZ00]. More generically,
the problem of generating malformed products due to the model filter can also be solved by writing
repair operations, for instance, in a generic DSL [BS16].
Technically, several MDPLE solutions implement the product derivation (i.e., the model filter) as a
(general purpose) model transformation [ZJ06; BOT07]. This transformation needs to understand
the notation of annotations as well as the feature configuration and has to remove elements
from the domain model accordingly. To avoid the necessity to learn a “general-purpose” model

2 This functionality corresponds with a preprocessor where source code without an enclosing directive is om-
nipresent.

55

CHAPTER 4. MDPLE

transformation language, simplified languages, e.g., designed with the VML*, may generate a
general-purpose model transformation language from a less complex language which is specific to
the applied approach.

IV View-Based Editing of Product Lines

While internally a superimposed model is maintained, several approaches hide the complexity of
the complete product line from the developer. Particularly the mapping of annotations may be
hidden by providing editors for manipulating a single variant only. We refer to these approaches
as view-based editing because only parts of the entire product line are exposed to and edited by
the product line engineer. Since view-based editing may support multiple variability mechanisms,
we categorize it as a standalone group of variability mechanisms, although primarily only the way
of editing the product line differentiates from the aforementioned mechanisms. The essential idea
of view-based editing in MDPLE is similar to virtually separating concerns in annotated code by
conditional compilation [Käs12] or providing views on a superimposed source code according to
the choice calculus [EW11; WO14].
A special form of view-based editing is single-variant editing [Sch18] in which the product line
developer edits one complete single variant of the product line only. Conversely, a “view” – as
proposed in the multi-view approach by Gomaa and Shin [GS02] – is a synonym for exactly one
kind of model. As another form, in multi-view modeling a “view” may encompass all model slices,
such as a diverse UML models and a Java model, which satisfy a feature configuration [Ana+18].

Single-Variant Editing – SuperMod represents one tool which realizes single-variant editing
[SW16; SW19]. It is grounded in the Uniform Version Model (UVM) [WMC01] which unifies
temporal revisions and spatial variants by considering them versions. The model relies on configu-
ration management concepts which populate the local workspace with a single variant by checking
it out from a local repository. A checkout needs to select a revision number and a complete
configuration of the feature model (called choice) which is present at this revision. After editing
the workspace contents, a commit specifying an ambition (i.e., a partial configuration consisting
potentially even of a single selected feature only) integrates the modifications as new revision in
the internal repository which contains the superimposition of all changes applied to the feature
model and the domain model. After a commit, the annotation of each element in the internal su-
perimposed model is replaced by the previous annotation combined with the new revision number
and the feature ambition (present in commit) or its negated form (absent in commit).
It must be noted, that the superimposed model may consist of instances of different metamodels
without maintaining correspondences between them. Finally, during the checkout and commit,
consistency checks are performed. Depending on the kind, conflicts and inconsistencies are either
repaired or reported to the developer.

View-Based Editing of Multiple Models – VaVe As mentioned in the introduction to this
section, approaches combining different metamodels in a single underlying metamodel (SUMM)
exist. Corresponding tools, such as VITRUVIUS [KBL13], generate views on the single under-
lying model, an instance of the SUMM, and edit only the parts present in this view. In contrast
to SuperMod, these approaches maintain consistency operations between the elements of different
models to synchronize changes made to one model with corresponding elements of other models
kept in the SUM.
Ananieva et al. [Ana+18] extend the single-variant development environment of VITRUVIUS
to support the creation of a product line and its subsequent evolution by adding a metamodel
for maintaining variability in space and time. This extension realizes a delta-oriented product
derivation management and also relies on checking out a variant from the underlying workspace,
and committing it again. All delta operations in the view are monitored and applied to all af-
fected elements on commit. As effect of the commit, concurrent views are maintained as well. In
addition, features are explicitly versioned, resulting in directed deltas which have to be chronolog-
ically consistent. For expressing relationships between different metamodels, SUMM approaches

56

4.2. ANNOTATION MAINTENANCE IN EXISTING MDPLE SOLUTIONS

commonly use proprietary delta operations which do not conform to a “general purpose” model
transformation language.

Projectional Editing As another alternative to provide views but also to support switching
the variability implementation mechanisms, tools may realize a projectional editor. Typically,
a projection includes parts of the abstract syntax which is modified directly, instead of, e.g.,
editing the concrete syntax which is parsed into abstract syntax afterwards. While Walkingshaw
and Ostermann [WO14] promote the usage of projections to allow for single-variant editing, these
projections comprise concrete syntax which still has to be parsed into abstract syntax. Conversely,
the following paragraphs sketch approaches that use projections of the abstract syntax.
Leviathan [Hof+10] enables the generation of views on file systems. Consequently, a checkout
populates the local workspace by mounting parts of the complete file system and a local edit
modifies the complete file system. This concept of edit in isolation proofs to increase productivity
despite the loss of overview of changes which have to be consistent with the hidden artifacts. This
insight results from a case study with the version editor [Atk98; ABB02].
PEoPL [BPB17] is an integration to the projectional language workbench (MPS) [Voe11]. Foun-
dational ideas of integrating variability implementations in MPS were presented by Völter et al.
[Voe10]. PEoPL allows to interchange the annotative with a modular variability mechanism by
the usage of projections of the abstract syntax which is modified directly.
Since PEoPL only exists in the closed environment of MPS and focuses on code-oriented product
lines, as an alternative for product lines modeled in eMOF a projectional editor is proposed to
address this shortcoming [Reu+20]. This approach allows to switch the projection of an annotative
150 % model to a delta-oriented representation and vice versa by using a virtual abstract syntax
graph (VASG) as pivot model in between of both. The approach normalizes the superimposed
representation in case it would violate single-variant model semantics and matches delta operations
in modules to combine them in the virtual representation. The models in the editor are transformed
into the VASG and vice versa for switching the projections. However, the product line developer
still edits the concrete not the virtual abstract syntax tree.

4.2 Annotation Maintenance in Existing MDPLE Solutions
For enabling MDPLE, solutions need to support the maintenance and realization of variability
information across models not only for one model as described so far. When instances of different
kinds of metamodels together form the product line, the necessity to maintain the annotations
of corresponding elements in these models arises. As an example, in forward engineering (c.f.,
Fig. 4.1.1) it will be redundant and error-prone effort to map annotations manually onto models
at a later stage of development if another already annotated model with similar information exists
at an earlier development stage. Instead, existing annotations should be propagated to corre-
sponding elements automatically and synchronized whenever the product line evolves. Although
this behavior is predominantly relevant in annotative variability mechanisms, this section illumi-
nates how annotations are maintained across models in each variability mechanism, particularly
focusing on their degree of automation.
Accordingly, the first part of this section (Sec. 4.2.1) presents a feature-based classification of
annotation maintenance which we map onto an exemplary set of MDPLE solutions in Sec. 4.2.2.
Thereafter, Sec. 4.2.3 analyze the results.

4.2.1 Classifying Properties of Annotation Maintenance
At first, this section inaugurates distinguishing and common criteria of maintaining annotations in
one model and across models followed by examining how the MDPLE tools introduced in Sec. 4.1
match these criteria.
The feature model in Fig. 4.2.2 comprises the characteristics to classify (existing) approaches
with respect to their maintenance of annotations in one model and across models, for instance
by involving model transformations. The following three main paragraphs explain details of the

57

CHAPTER 4. MDPLE

main categories we identified, the way annotations are mapped onto product line fragments (i.e.,
the mapping), the propagation of annotations, and the consistency maintenance, in sequence.

Mapping As discussed when explaining the annotative variability mechanism (c.f., Sec. 4.2.1, III),
the notation and placement of mappings varies. Firstly, the two possibilities of annotation-wise
and element-wise mappings exists and secondly, annotations are either integrated in the domain
artifacts (internally) or stored in a separate file (externally), as illustrated in Fig. 4.1.4.
The mapping notation is relevant for the necessity to apply further actions when multiple models
build the product line. If an annotation-wise mapping is applied, no propagation of annotations
has to be performed because elements are removed or added to their corresponding annotation
instead independent of the metamodel. As a consequence, a propagation of annotations occurs for
element-wise mappings only.
Furthermore, internal mappings may diverge with respect to their representation. They can
be integrated by reusing existing language constructs, such as the UML profiles, of the domain
artifact or by extending the existing language, such as by defining a new language construct. In
contrast, an internal mapping can be realized based on a proprietary language which combines
the annotation with the realization artifact, such as in a clafer.
For applying these categories to compositional and transformational variability mechanisms as
well, a third kind of mapping notation can be introduced. In these two approaches annotations
are mapped onto modules. As a module collects a set of realization fragments or edit operation
in compositional and transformation approaches, respectively, we consider them a special form of
element-wise mappings.

Annotation Propagation Secondly, the propagation of annotations is either manually per-
formed or executed in an automated way. While a manual ”propagation” implies that the product
line developer has to assign the annotation to each model element, an automated propagation is
performed by the tool. If the tool cannot annotate all target elements automatically but requires
to ask the developer in case of uncertainties, the propagation is classified as semi-automatic.
The scope clarifies whether the propagation of annotations occurs in one model (intra), for instance
to assign annotations to model elements still missing an annotation, or across models (inter). The
latter property can assure that multiple models forming one product line receive annotations
consistent with the annotation of a corresponding element in another model.

Annotation Consistency In SPLE, different consistency analyses have to be performed. At
first, feature configurations must be consistent with the feature model (i.e., no constraints of the
feature model should be violated). Furthermore, the derived products need to be well-formed (c.f.
Sec. 3.5). For the maintenance of corresponding annotations in different models, which are created
with model transformations, the commutativity criterion [Sal+14] is predominant.

Commutativity The commutativity criterion informally presented in the introduction in Fig. 1.2.1
is defined based on a single-variant model transformation (SVMT) and a multi-variant model
transformation (MVMT). Both paths, MVMT-filter and filter-SVMT, need to commute: Deriv-
ing a product from the multi-variant source model and transforming it with the SVMT creates a
single-variant target product. This product must be equivalent to the product that is derived from
a multi-variant target model, created by executing the MVMT, when applying the same feature
configuration. If this property holds for each valid feature configuration, the MVMT is consider to
be correct and, thus, the annotated target model is consistent with the annotated source model.
Note: The criterion can be generalized to be independent of transformations by defining a equiv-
alence operator3 between two instances of different metamodels: After having defined the equiv-
alence of two instances of different metamodels, the same criterion can be applied. If applying
the same feature configuration to multi-variant instances of different metamodels and the filtered

3 Equivalence of two models conforming to two different metamodels is discussed in Sec. 7.4.2 where Fig. 7.4.3
depicts the adjusted commutativity criterion.

58

4.2. ANNOTATION MAINTENANCE IN EXISTING MDPLE SOLUTIONS

models are considered equivalent for each valid feature configuration, commutativity will be sat-
isfied.
As another note, the underlying implicit assumption of the commutativity criterion is that the
source filter generates the correct result as well as the single-variant transformation that receives
the filtered source model as input. These two assumptions are, however, two fundamental correct-
ness criteria of the product line engineering tool and the transformation engine, respectively.

By Construction As a second possibility, consistency of annotations can also be ensured by
construction. Tools fulfilling this criterion offer processes that maintain correspondences between
models. As an example, the multi-view approach by Gomaa and Shin [GS02] considers each
instance of a UML model type (e.g., activity and class models) as one view where corresponding
elements are linked by the means of a correspondence model. The correspondence model not only
links the elements of UML models but also a corresponding feature or variation point modeled in
a variability model may be linked to the respective correspondence element. As a consequence, it
is ensured that corresponding elements of different models are mapped onto the same annotation,
which should result in the same effect as commutativity of model transformations. Similarly, edit
operations during development may be restricted in a way that they force to link elements of
different models explicitly and map them onto the same annotation.

4.2.2 Annotation Maintenance in MDPLE Solutions
After having introduced different classification criteria how annotations in one and across models
may be maintained, this section examines how the functionalities are supported in existing MDPLE
tools and approaches. Table A.1 in the appendix summarizes to which categories the approaches
discussed in Sec. 4.1.2 belong. In addition, we have performed a formal concept analysis which
indicates relationships between the properties and the resulting concept lattice illustrates the
result graphically in Fig. 4.2.1.
It must be noted that most of the tool descriptions are for instances of one metamodels only.
Therefore, whenever the tool descriptions are silent on the maintenance of multiple models, as-
sumptions were necessary. In the majority of solutions, we assume that an automatic propagation
or maintenance of annotations cannot be supported without further modifications whereas we
assume that approaches realizing an annotation-wise mapping keep annotations consistent by
(manual) construction.

Compositional Approaches Although the compositional tools and approaches introduced in
Sections 4.1.2 do not apply an annotative variability mechanism (i.e., they do not realize negative
variability), for deriving products they also need to incorporate feature traceability, e.g., in form
of annotations.
Aspect-oriented product line modeling [GV09] serves as an example (primarily) realizing a com-
positional approach. Elements inside the models need to be declared as join points to be extended
by an aspect. Therefore, this approach realizes an element-wise internal mapping. Since most of
the languages of the oAW framework used in the AOPLE approach offer aspect-oriented language
constructs and corresponding tooling, the approach can be categorized to reuse the existing mod-
eling language for realizing the mapping of annotations. If more than one model forms part of the
product line, annotations (or join points) will be declared manually. Consequently, no propaga-
tion occurs and consistency is not ensured neither. While MATA applies a different approach to
realize aspect-oriented behavior by using Graph transformations, it also realizes an internal man-
ual mapping without ensuring consistency. However, MATA is a proprietary language to declare
aspect models each modifying (parts of) the base model. Although the base model may comprise
multiple types of UML models, an aspect model may only modify one kind of a model. Thus,
annotations may occur multiple times for different aspect models.
The approach to superimpose UML models [Ape+09] examines composition techniques for UML
models. Mappings are applied internally by reusing UML profiles. Furthermore, the annotations
are applied manually per module. An automated propagation of annotations between modules
does not exist.

59

CHAPTER 4. MDPLE

Transformational Approaches Delta-oriented tools, such as SiPL [Pie+15; Pie+19], Delta-
Ecore [SSA14b; SSA14c] and DarwinSPL [NES17], as representatives of a transformational
approach, extend one core model with delta modules. Due to the fact, that each delta module
comprises an application condition and a set of delta operations that have to be applied to realize
the functionality related with the application condition, the mapping is applied module-wise (i.e.,
element-wise) and can be regarded as internal because it is integral part of the delta module.
For the reason that Ecore models which are supported in these tools do not allow for specifying
delta operations, the tools employ their own delta dialects and languages to specify delta modules,
consequently, building a proprietary mapping language. Since annotations have to be assigned to
each new delta module manually, there is no automated propagation present.
A delta-oriented mechanism is also implemented in the tool EASEL [HJH06]. In this tool a base
layer of a UML class model can be defined and modified by composing feature-specific layers.
Thus, EASEL transforms the base layer into other products. Similarly, annotations are assigned
per module, internally and a propagation of annotations is not discussed.
The variability modeling language CVL [Hau+08] incorporates annotations as proprietary lan-
guage constructs for the transformation of the base model. A propagation of annotations is not
foreseen but they are associated with resolution models completely manually. A consistency cri-
terion is not applied neither.
Lastly, VML* [Zsc+09] offers the functionality to map annotations onto model elements of one
target model in their overall metamodel. The language realizes an external, element-wise mapping
which is specific to one target model. Therefore, a propagation of annotations is not supported
nor a consistency mechanism.

Annotative Approaches persist mappings internally or externally: The mechanism based on
model templates [CA05; CP06] incorporates all variants in the template (i.e., it is an multi-
variant model in our terminology). The template instances are single products derived in a M2M
transformation based on a feature configuration. The template stores annotations element-wise
based on stereotypes provided in a variability profile, which are realized internally. A propagation
of corresponding annotations among models is not discussed.
The proprietary language Clafer [BCW11; Bak+16; Juo+19] stores annotations element-wise (or
module-wise) for each clafer which is a unit storing structural, behavioral elements as well as
its annotations. A propagation of annotations across clafers is, to the best of our knowledge,
not supported. Furthermore, the tools FeatureMapper [HKW08] and Famile [BS12] both
employ mapping models which link elements of multi-variant domain models, with annotations.
Consequently, both tools employ element-wise external mappings and originally do not support
an automated propagation.
Tools that realize filtered or projectional editing of models, internally maintain multi-variant
models. SuperMod [SW16] assigns annotations element-wise as part of the internally kept su-
perimposed model and maintains them automatically upon commits. Annotations form part of
the SuperMod metamodel. Therefore, they can be considered as a part of a proprietary language.
While SuperMod performs an automatic propagation of annotations each time a modification
is committed and the propagation occurs across different models (which can be part of the su-
perimposed model), consistency between different models is neither ensured by the propagation
algorithm nor by any consistency rule inside the superimposed model. Nevertheless, SuperMod
realizes an inter-model propagation.

Hybrid Approach In a similar way a projectional editor for model-driven product lines allows
to switch delta-oriented and annotative representations of the domain model [Reu+20]. Similar as
SuperMod, internally the tool maintains a multi-variant model (called variational abstract syntax
graph (VASG)) onto which annotations are mapped element-wise as part of the proprietary VASG.
The projection exposed to the developer, reuses the capabilities of Ecore models. Handwritten
rules, transform the user-visible representations, including the annotations, into the VASG and
vice versa. Accordingly, an automatic intra-propagation is supported but not across different
models. As a consequence, consistency checks across models may be missing as well.

60

4.2. ANNOTATION MAINTENANCE IN EXISTING MDPLE SOLUTIONS

Figure 4.2.1: Formal concept lattice for mapping maintenance of MDPLE tools.

Multi-View Modeling Finally, multi-view approaches [GS02; Ana+18], explicitly deal with
multiple models that are kept consistent upon modifications applied to one model. Gomaa and
Shin [GS02] maintain a variability model incorporating variation points as one view next to other
views, such as activity and class models. A correspondence model resides between all views
and maps elements of various model views onto variation points. Thus, this approach provides an
annotation-wise external mapping and does not need a propagation of annotations but the manual
maintenance of linking the elements correctly with the variation points.
More specifically,VaVe [Ana+18] is an extension to the multi-view frameworkVitruvius [KBL13].
VaVe realizes delta-oriented product line development. According to the VaVe metamodel, a fea-
ture (denoted as variant) is related with its implementation versions. Since for each variation
point multiple versions may be present, it is an annotation-wise external mapping. Due to the
connections of the multiple models based on correspondence rules designed in Vitruvius, a change
in one model propagates automatically to corresponding models which in consequence obviates
the need to propagate annotations.

4.2.3 Results

To sum the categorization of tools up, we performed a formal concept analysis (FCA) [GW99]
which is an algebraic method to discover binary relations and logical implications of the attributes
to the considered objects. In our case, the attributes are the features of the classification (c.f.,
Fig. 4.2.2) and the MDPLE solutions categorized in the previous section. The concept lattice
depicted in Fig. 4.2.1 visualizes the result of the FCA which highlights the maximal properties
shared by every solution and the minimal ones not realized by any solution.
As a result, the concept lattice and, thus, the categorization reveals that the way mappings are

61

CHAPTER 4. MDPLE

annotation
maintenance

mapping

notation

annotation-
wise

manual automated

automation

element-
wise

placement

external internal

consistency

none

existing proprietary

reuse extend

commutativity

by
construction

propagation

scope

intra inter

annotation-wise ⇒ by construction

semi-automated

scope ⇒ automation

mandatory
optional

OR group
XOR group

Figure 4.2.2: Feature-based classification of annotation maintenance in MDPLE.

persisted varies. Most notably, the bottom node of the lattice visualizes that no MDPLE solutions
considers the criterion of commutativity but in addition only one tool, SuperMod can propagate
annotations automatically across models. VaVe and the multi-view approach (on the right side
of the lattice) are the only two approaches, ensuring consistency by construction which is an
effect of employing annotation-wise mappings. Consequently, all solutions employing element-
wise mappings do not ensure consistency (so far). However, the fact whether an internal or
external mapping strategy is employed does not further affect the annotation maintenance.
On the whole, at the current state-of-the-art, none of the element-wise approaches can ensure that
the annotation of corresponding model elements is consistent with an already existing annotation.
On the one hand, it becomes obvious that none of the state-of-the-art solutions integrates auto-
mated means to propagate annotations across models. On the other hand, techniques, namely
multi-variant model transformations, have been developed to solve exactly this task and are in-
troduced in the following section.

4.3 Multi-Variant Model Transformations

As second main building block of MDSE, MDPLE should employ and reuse model transformation
technology, for instance, by making it variability-aware. While several MDPLE solutions utilize
model transformations to derive customized products from product line models or languages,
hardly any regards an automated consistency maintenance of annotations across product line
models as explained in the previous section. Multi-variant model transformations target exactly
this problem.
However, the term multi-variant model transformation is ambiguous: Either the transformation
itself becomes variable to create varying target models or the transformation is reused to propagate
annotations to the (single) target model. Before Sec. 4.3.3 and Sec. 4.3.4 illuminate both meanings,
respectively, this section sheds light on reusing model transformations in different use cases in
general in Sec. 4.3.1. Furthermore, Sec. 4.3.2 describes properties of a feature-based classification
which allows to categorize multi-variant model transformation approaches. Accordingly, each of
the approaches introduced in the following two sections is classified and the results are combined
and formally analyzed. The resulting concept lattice and the derived insights close the section in
Sec. 4.3.5.

4.3.1 Model Transformation Reuse
Before scrutinizing multi-variant model transformations for product line models which reuse state-
of-the-art technologies, the following paragraphs discuss model transformation reuse in general.

62

4.3. MULTI-VARIANT MODEL TRANSFORMATIONS

We focus on giving insights which transformation reuse scenarios exist and reference publications
which offer and compare different solutions for reusing model transformations in general.

M2MReuse Survey Model transformation reuse, in general, aims to reuse an existing transfor-
mation for more than one transformation scenario without the need to rewrite the transformation
entirely. Kusel et al. [Kus+15] extract six essential reuse scenarios along the three dimensions
granularity, specificity and scope. Granularity denotes whether small parts, such as single rules, or
large parts, such as modules offer reusable source code. Specificity refers to the fact whether the
transformation language supports a generic type system or one concrete metamodel whereas the
scope allows for exchanging at least one metamodel of the transformation. The six scenarios are
compared with respect to the classical phases in software reuse: abstraction, selection, specializa-
tion and integration [Kru92]. The findings of comparing the by then state-of-the-art in reusable
model transformation technology for realizing the aforementioned software scenarios reveal that
the mechanisms support generic reuse only restrictively. For instance, solutions are trimmed for
certain kinds of metamodels or one specific transformation language and specialization support is
hardly offered. Extending a transformation to allow for propagating annotations in a product line
is not considered but may only restrictively and not generically be possible with the considered
transformation approaches.

Feature-Based M2M Reuse Classification A recent classification on reusing transforma-
tions across metamodels [Bru+20] offers further classification criteria in form of a feature model
and takes surveyed community needs into account. In the same way as reuse mechanisms in classi-
cal programming can rely on language-specific support, such as subtyping or genericity [Che+16],
similar concepts can be found or integrated into model transformation languages as well. Still,
these mechanisms do not allow for transforming a product line model into another or to create
a family of products by regarding variability which is the most relevant form of reuse for the
purposes of this thesis.

Model Transformation Product Line Research on model transformation product lines recog-
nizes the variety in input and output models and the resulting variety in the model transformation
definitions [Lar+18]. Therefore, the varying transformation can be represented as a product line.
However, a model transformation product line does not solve the problem targeted with this thesis.

4.3.2 Classification
Transformations addressing the additional dimension of variability inherent in product line models
have in common that they reuse existing model transformation engines to create the target model.
The way, how annotations are attached to target model elements varies and can be classified
according to the features presented in Fig. 4.3.1. This section illuminates each of the features
from left to right and elaborates on the level of automation as prerequisite.

Automation Before discussing the capabilities of different solutions, the degrees of automating
the maintenance of annotations, as defined in Fig. 4.2.2, have to be recapitulated. The bottom
line of automating the annotation of target models is an entirely manual process. Consequently,
neither the model transformation is made variability-aware nor another (customized) technique is
utilized. In automated solutions the propagation of annotations across models works completely
automatically. The product line developer does not have to intervene. As a consequence, a semi-
automated propagation tries to compute annotations automatically first, followed by involving
the product line developer in case of uncertainties, such as ambiguities or missing information, to
determine the annotation for specific model elements.

Genericity On the left of the feature model depicted in Fig. 4.3.1, the first feature scope defines
to what extent the solution is generically applicable with respect to the transformation language
and the transformation definition.

63

CHAPTER 4. MDPLE

multi-variant
model transformation

scope

definition gray-box

specific

white-box black-box

abstraction

independent

language

specific independent

execution

noninvasiveinvasive

engine definition

time

post-
processing

inter-
processing

mandatory
optional

OR group
XOR group

Figure 4.3.1: Feature-based classification of multi-variant model transformations.

Firstly, definition-specific (metamodel-specific) solutions are able to propagate the annotations of
one kind of metamodel to another one. Thus, these solutions are able to support all transforma-
tions creating instances of these metamodels independent of the used transformation language.
Such approach can be realized, for instance, by employing a DSL to specify corresponding ele-
ments of the source and target metamodel and iterating the input and output models accordingly
when assigning annotations.
Secondly, a language-independent solution can propagate annotations independent of the model
transformation language which creates the target model whereas a language-specific solution is
trimmed for supporting the propagation of annotations for a specific transformation language
only. Language-specific solutions either extend or manipulate the transformation language, the
specification or the execution environment.

Abstraction As different degrees of abstracting the multi-variant transformation, white-box
solutions are distinguished from gray-box and black-box solutions.
A white-box solution interacts with the transformation specification directly either by extracting
information of the specification, manipulating it or by adapting the execution environment. In
contrast, a gray-box solution does not analyze the transformation specification but exploits the
artifacts created during or for the execution. For instance, a trace written during the transfor-
mation allows to draw conclusions on the specification but exploiting this information does not
interfere with the execution engine nor requires manipulations or an analysis of the transformation
specification.
The least invasive solution does not interfere with the transformation engine and specification.
Instead, the transformation is treated as a black-box. Based on other knowledge, e.g., the types of
transformed models, corresponding elements have to be determined and annotations propagated
accordingly.

Execution As another point, the way, how the execution is performed, varies. Either the
execution is performed in a noninvasive way, i.e., the execution environment is not manipulated
at all. Differently, in invasive solutions either the transformation specification is changed (e.g.,
by extending the syntax to become variability-aware) or the execution engine is manipulated
to become variability-aware. Black-box solutions imply a noninvasive execution because they
consider neither the transformation specification nor the execution engine and consequently do
not manipulate them.

Point in Time Last but not the least, multi-variant model transformation solutions can be
classified by the point in time at which they assign annotations to target elements. On the one
hand, the solution can attach annotations already during the execution of the reused transfor-
mation which we refer to as an inter-processing approach. On the contrary, particularly most of
the noninvasive solutions assign the annotations after the single-variant transformation has been
performed in a post-processing step.

64

4.3. MULTI-VARIANT MODEL TRANSFORMATIONS

Note: Preprocessing of annotations, for example in form of a static analysis of the transformation
specification, can be considered one means to compute annotations but the actual assignment to
target elements can occur earliest when the target elements are created.

4.3.3 Variation in Transformation
While this thesis offers methodologies to reuse single-variant transformation specifications as they
stand, related work focuses on extending existing model transformation languages by variability-
aware rules. This class of “multi-variant” model transformations varies the transformation exe-
cution. Respective solutions offer possibilities to express the variability inside the transformation
rules themselves. During the execution of the transformation the variability is bound resulting
in different target models. Although this functionality does not solve the problem of propagating
the annotations to the target model and thus does not create an annotated multi-variant tar-
get model, this section introduces different solutions for incorporating variability in the model
transformation. The main approaches which we identify in this research area are variability-based
rules and higher order transformations. The upper part of Table 4.2 summarizes how the three
main approaches can be mapped onto the multi-variant model transformation categories which is
explained subsequently in this section. Since these approaches do not propagate annotations but
bind variability before the execution, the time category is not applicable.

Variability-Based Rules The variability-based rules [SS16] serve as first example where vari-
ability is explicitly encoded in the model transformation. Those rules are implemented as a tool
extension to Henshin [Are+10b; Str+18a]. Although the approach supports filtered editing of the
rules, variability has to be expressed and considered explicitly in the transformation definition.
On receiving a feature configuration, the variability is bound and a corresponding target created.
In contrast to others, the matching of a variability-based rule exploits the variability information
to speed up the execution by first matching the common parts and the distinguishing parts there-
after [Str+17]. The rules and their matching are formally specified [Str+18b] as algebraic graph
transformations [Ehr+08].
Although variability-based rules do not propagate annotations to the target model, they are aware
of the variability of product lines and can be categorized as a language-dependent, definition-
independent white-box solution to handle variability because they require to adapt the transfor-
mation engine and to extend the definition.

Aspect-Orientation Employing aspect-oriented programming techniques to realize model-driven
product lines is discussed in Sec. 4.3.3, I. Particularly, the concept of employing an aspect for
each feature represents one means to compose a transformation yielding customized products
when binding the variability. However, the solution of Groher and Völter [GV09] does not aim for
generating a multi-variant model. Employing a generic aspect to generate multi-variant source
code is a contribution of this thesis presented in Chp. 8.

Higher-Order Transformation Alternatively, variability rules can employ higher order trans-
formations. A higher-order transformation denotes a model transformation creating another model
transformation [Tis+09].

Variability Rules in ATL Similar to other approaches that employ a higher-order transfor-
mation to derive products [OH07; BOT07] (from the same model), the solution by Sijtema et al.
[Sij10] creates varying target models by extending ATL rules to integrate conditional compilation
directives. In contrast to, for instance, the lifting approach (Sec. 4.3.4), the execution semantics
of the state-of-the-art ATL execution environment remains unchanged. Instead, the variability-
aware transformation definition is transformed by a higher-order transformation into a “default”
ATL definition by a transformation written in ATL. On receiving a feature configuration and a
source model, an ATL transformation translates the variability-based transformations into state-
of-the-art ATL transformations where only positively selected parts are included. The respective

65

CHAPTER 4. MDPLE

Table 4.2: Classification of multi-variant model transformation approaches in related work based
on features in Fig. 4.3.1. The first part of the table enumerates approaches which vary the
transformation to yield customized products whereas the second part regards solutions which
propagate annotations. All approaches are white-box solutions because they change execution
semantics of existing single-variant model transformation approaches.

Ref Description Scope Realization Time
[Str+15] Variability-Based

(VB) Rules
definition-independent,
language-specific,

invasive, engine –

[Sij10] HOT: variability
rules in ATL

definition-independent,
language-specific

invasive, defini-
tion & engine

–

[Kav+11] HOT: MTS definition-independent,
language-specific

noninvasive –

[Sal+14;
Fam+15]

Lifting definition-independent,
language-specific,

invasive, engine inter

[Tae+17] Formal Framework
Based in Category
Theory

definition-independent,
language-specific

invasive, engine inter

[SPJ18] Staged-Strategy
(Lifting + VB
Rules)

definition-independent,
language-specific

invasive, engine inter

publication does not discuss limitations of the approach, for instance, the kind of annotations and
product line scenarios which are supported.
The solution works language-specific but independent of the definition. While it does not require
to modify the default ATL execution engine, it extends the ATL syntax (i.e., in an invasive way)
and offers a preprocessing engine that binds variability and converts the extended ATL into the
default ATL transformation. Thus, it is a inter-processing white-box solution which does not
propagate annotations but builds varying target product models. The transformation definition
is extended and the engine, too.

MTS The model transformation system (MTS) [Kav+11] employs higher order transformations
to generate customized transformations, too. Similar to variability-based rules, the purpose is to
create platform-dependent models from platform-independent ones. After defining commonalities
and the variability in the transformation, a variability metamodel is created which captures pa-
rameterized rules in the form of a metamodel. Instances of this model represent a customized but
still parameterized transformation which is input to a second transformation. The second higher
order transformation creates the concrete transformation for deriving one specific product. On
the whole, this approach does not target and therefore not support the propagation of variability
information among models.
As classified in Table 4.2, the MTS higher-order transformation solution works independently of
a specific definition but is implemented in one specific language. It is a white-box solution which
requires to integrate the higher order transformations in the execution engine of GReaT [Kar+03]
and to extend the default syntax.

4.3.4 Annotation Transformation

The second way to parse multi-variant model transformations considers the propagation of the
annotations to the target model. Besides the contribution of this thesis, lifting and two formal
frameworks represent this kind of transformation and are explained in this order. The lower part
of Table 4.2 summarizes the results of mapping the approaches in this section onto the features of
multi-variant transformations as defined in Fig. 4.3.1.

66

4.3. MULTI-VARIANT MODEL TRANSFORMATIONS

Lifting of Transformation To the best of our knowledge, Salay et al. [Sal+14] proposed
the first solution applying a single-variant model transformation to a product line in order to
include annotations in the target models. The authors formalize a Lifting algorithm for a single-
variant in-place Graph transformation involving negative application conditions (NAC) to become
variability-aware and create an annotated target model.
The lifting algorithm, which describes how a single rule can propagate annotations, behave as
follows: The product line, the set of constraints, the rule and a matching site inside the domain
model of the product line are input to the algorithm and modify the input product line. Applying
the lifted rule requires that the constraints of the product line as well as the application constraint
φa, composed of a negated disjunction of the constraints’ NACs combined with the constraints of
the elements that are maintained and deleted. The algorithm, then, maps the annotation φa to
each added element and ¬φa is combined in a conjunction with the elements’ constraints to each
deleted element. If the resulting constraint together with the set of constraints of the product line
is not satisfiable, the element will be removed from the product line.
The algorithm is formally proven to be correct for typed graphs and in-place transformations.
However, Lifting requires to modify the execution semantics of a rule application which is imple-
mented as extension to Henshin [Are+10b; Str+18a]. As a consequence, supporting the lifting of a
rule requires to change the transformation engine. Moreover, the solution is restricted to in-place
Graph transformations. A transformation, for example specified in ATL, is not guaranteed to be
lifted by employing this algorithm.
Despite the fact that Lifting is defined for in-place Graph transformations, the algorithm was in-
tegrated in the execution engine of DSLTrans [Bar+10], a graph-based domain-specific out-place
transformation language. The solution was successfully applied to transform one product line
model into another one by retaining the original product line model in the context of the auto-
motive industry [Fam+15]. Similarly to the basic lifting algorithm, the integration in DSLTrans
requires to change the semantics of its execution environment.
As depicted in the first line of Table 4.2, both inter-processing solutions are language-specific but
propagate the annotations independently of a concrete definition. Since they require to modify
the execution semantics by manipulating the engine, they are categorized as white-box solutions.

Category Theory Taentzer et al. [Tae+17] propose a formal framework specified in category
theory for transforming one product line into another, including the evolution of the variability
model. For instance, the framework represents the Lifting algorithm as a special case (with-
out evolution). In the formal framework not only a product line serves as input but also the
transformation rules involve variability. Therefore, the negative application condition, the left
hand-side and the right-hand side may specify the set of features and constraints and may en-
compass annotated domain model elements. Due to its restriction to injective morphisms, only
in-place Graph transformations and simplified feature model evolution scenarios are possible. For
instance, splitting of assets [BTG12] cannot be expressed.
Even though an implementation of the framework is not yet published, it can be considered as
language-specific, definition-independent white-box solution because it either requires to extend
an existing Graph transformation engine or to develop a proprietary tool satisfying all conditions.

Staged Transformations On the contrary, a staged strategy of combining variability-based
rules and the lifting algorithm can be applied to transform product lines [SPJ18]. The strategy
mitigates the drawbacks of lifting and variability-based rules to enumerate all rules or all products,
respectively, to transform a product line. It behaves as follows: first, a common base rule is
matched with the annotated domain model, followed by a search for the specific rule that needs
to be applied. The respective rule is lifted to the product line as described in [Sal+14]. The
equivalence of the resulting products, i.e., commutativity, is proofed based on algebraic graph
transformations. Accordingly, the method is applicable to rudimentary Graph transformations
(without negative application conditions or amalgamation). Furthermore, features need to be
expressed explicitly in the rule set. To this end, the user effort is higher due to the cognitive
complexity introduced in variability rules. Nonetheless, avoiding the need to iterate over single
products or rules confirms expected runtime savings. Since the solution is a combination of lifting

67

CHAPTER 4. MDPLE

Figure 4.3.2: Formal concept lattice for multi-variant model transformation properties of related
solutions.

and variability-based rules, it is grouped in the same classification categories. Consequently,
the staged strategy is a white-box, definition-independent but language-specific solution which is
performed during the transformation in an modified transformation engine.

4.3.5 Results
Table 4.2 collects mappings of the related multi-variant model transformation solutions onto the
feature-based classification criteria. This section presents a formal concept analysis which was
performed in the same way as in Fig. 4.2.1 but for these mappings of multi-variant model trans-
formations. At the bottom, the lattice shows the properties which cannot be mapped onto any of
the approaches whereas the top node shows the properties which are shared among all approaches.

Annotation Propagating Approaches The descriptions in this section reveal that in total
only three related solutions realize the automatic propagation of annotations based on a reused
single-variant model transformation. Moreover, these solutions, namely lifting, the category-
based framework and the staged strategy, require to manipulate the execution semantics of the
reused transformation engine. Consequently, these invasive solutions realize the assignment of
annotations during the actual model transformation execution (inter-processing).

Further Properties On the upside, all solutions are definition-generic, meaning that the prop-
agation of annotations can be performed on instances of arbitrary metamodels. On their downside,
they work for one transformation language or class of languages (specific graph transformations)
only. Except for MTS, all of the approaches represent white-box solutions which modify either
the transformation engine or its semantics (i.e., they are invasive).
On the contrary, several contributions, such as variability-based rules, explicitly incorporate the
variability dimension in the transformation rules and, thus, expose the product line developer to a
higher level of cognitive complexity. Moreover, the variability in these rules is bound to a specific
configuration during the execution, thus, yielding single-variant models and not a superimposition
of them which would be required for adequate development and evolution support in MDPLE.

68

4.4. BOTTOM LINE

The lattice further demonstrates that only MTS does not invade in the execution environment
but cannot be considered a black- or gray box approach because it requires to manually derive
and configure a variant of the transformation that should be executed. Not analyzing the trans-
formation but using one of its artifacts, namely the trace, for propagating annotations is one of
the main contributions of this thesis.

4.4 Bottom Line
All in all, this chapter illuminates the consequences and possibilities of fusing model-driven soft-
ware engineering and software product line engineering which means to develop product lines in
a model-driven way.
On the one hand, models have to be enriched by variability information which is realized in vary-
ing ways in MDPLE solutions. On the other hand, model transformations can be employed in
MDPLE solutions not only for deriving customized products but also to keep different models
(originating from developing the product line in different stages and for different customer con-
cerns) in one product line consistent. However, only few existing solutions consider an automatic
maintenance of variability information across different models. In addition, the already existing
solutions are not employed in any of the considered MDPLE and typically require to modify ex-
isting model transformation execution semantics or require to declare the variability in the model
transformation specifications directly. This results in adaptation costs and higher complexity due
to the additional dimension of variability which may be the reason why an integration is still
missing.

69

Part III

Trace-Based Propagation of
Variability Annotations

71

Chapter 5 Informal Properties of Trace-Based
Propagation

Ideas that you’ll never find
All the inventors could never design

Coldplay, Speed of Sound

∼

Many transformation approaches and software development tools record corresponding
elements of different artifacts as trace(ability) information. Given this observation, we
utilize the persistent information about corresponding elements of a source and tar-
get model to propagate the annotation of source to corresponding target elements.
Therefore, this chapters presents an informal example illustrating an out-place model-
to-model transformation which records a trace of corresponding elements while being
executed. We employ the persisted trace information to propagate annotations from
the source to the target model of the example.

The example (Sec. 5.1) demonstrates model-to-model transformation rules which cre-
ate a Java model from a class model. First, it illustrates the transformation of single-
variant models and extends the models with variability information to become multi-
variant, thereafter. Before Sec. 5.3 explains how traces can be used to propagate
annotations and which conditions have to be satisfied for a correct result, Sec. 5.2
illustrates different types of traces and classifies them to derive a common trace meta-
model which we employ for propagating annotations.

The chapter shares material with [GSW17], [WG18], [WG20a] and [WG20b] which lay the
foundations for its contents.

73

CHAPTER 5. INFORMAL PROPERTIES OF TRACE-BASED PROPAGATION

5.1 Example of Trace-based Transformation
For exemplifying the formalization presented in the next chapter with a concrete scenario, this
section introduces a multi-variant UML class model to Java transformation. The UML class
model for the database contents product line, depicted and introduced in Fig. 4.1.2, serves as
source model in a reduced form.
Instead of considering all classes and, thus, all variants, in the first step (Sec. 5.1.1) the example
presents the transformation of one class and one package into corresponding elements of a Java
model. Thereafter, Sec. 5.1.2 presents the transformation rules that are necessary to create the
target Java model. Finally, Sec. 5.1.3 extends the example to represent a small multi-variant
model in the same scenario and the result of applying the same rules to this example.

Model

Package

oType*

Class
name: String

name: String

DBContent

db

Model

Package

oElem*

ClassDecl
name: String

name: String

CompUnit
name: String

jm : Model

oElem

jcd : ClassDecl
name = "DBContent"

name= "db"

jcu : CompUnit

name= "DBContent.java"

package db;

public class DBContent {
 ...
}

DBContent.java

units

units *

oElem

*

um : Model

oType

uc : Class
name = "DBContent"

name= "db"

 up : Package

packagedElem*

jp : Package

abstract syntax
concrete
syntax abstract syntax

concrete
syntax

simplified UML class metamodel simplified Java metamodel

packaged-
Elem

oElem

name= ""

Figure 5.1.1: UML class and Java MoDisco model excerpt representing the database contents.

5.1.1 Single-Variant Model
Fig. 5.1.1 presents the contents of the example transformation which transforms a UML class
model into a corresponding Java model. The top of the figure introduces the simplified UML class
and Java metamodels to which the models, depicted at the bottom, conform.
On the left side, the top depicts the simplified UML metamodel for class models consisting of
a package hierarchy. The Model is designed as a special kind of package and classes are stored
in the packages as o(wned)Types. Packages as well as classes are named elements in the UML
metamodel. The bottom depicts an instance of this metamodel in concrete and abstract syntax.
The model comprises two packages, one being an instance of a Model (object name: um), and the
other one holding the class named DBContent.
The right side of the figure illustrates the simplified Java metamodel which is an adaptation of
the Java MoDisco metamodel [Bru+10]. The class Model serves as root which contains packages
but also all compilation units (CompUnit) in which type declarations are actually implemented.
The only kind of type declaration are class declarations (ClassDecl) stored in packages which
corresponds with the UML side where only classes are present. In the original metamodel, a
reference between compilation unit and the type declaration exists as well as an indirection via
access classes (TypeAccess) which are left out from this example for the reason of easier readability.
At the bottom, the right side presents an instance of this metamodel which corresponds to the
UML class model (and can be created by a model transformation). The UML model (instance

74

5.1. EXAMPLE OF TRACE-BASED TRANSFORMATION

jm : Model

++ jp : Packageup : Package

++ oElems

trace targetsource

t1 : M2Mum : Model

packagedElem

++ t2 : P2P

++ ++

++

Figure 5.1.2: Graphical rule which transforms UML packages into Java packages. The container
Model has already been created. ++ signs mark the target elements created by the rule.

name: um) is represented by a Java model (instance name jm). Both models contain a package with
the same name whereas additionally the Java model comprises a compilation unit (instance name:
jcu) for the class declaration (instance name: jcd) corresponding to the UML class DBContent.

5.1.2 Example Transformation
This section describes the transformation rules to create a Java model from a given UML class
model. The subsequent paragraphs describe all rules at the level of objects while also establishing
links between these objects. Names of the elements are assigned correspondingly in the real-world
transformation but not explicitly mentioned in the example. Furthermore, the rules compose a
source and a target side as well as a trace section. Trace elements map source objects onto the
created target objects and are maintained by trace-generating transformation engines, such as the
Eclipse QVT-O plugin or the ATL/EMFTVM, in addition to the target model.

Transformation of Model A forward batch transformation behaves as explained in the follow-
ing paragraphs. The initial step transforms the UML Model into a Java model. This rule is not
explicitly shown because of its simplicity. A trace element created by this rule references the UML
model as source and the Java model as target element, respectively.

Package To Package After having transformed the UML model, the transformation creates a
Java package for each UML package. In this example, the rule does not construct the package
hierarchy but integrates all packages in the single model of the respective transformation side.
Fig. 5.1.2 presents the source and the target graph corresponding to the example. The rule marks
elements and references that are created anew with ++ symbols and highlights them in orange
color.
To generate containment references properly, it is essential that the Java model corresponding to
the UML model as well as a corresponding trace element have already been created in the first
execution step of the transformation. Consequently, the transformation rule depicted in Fig. 5.1.2
creates not only a similarly named Java package for the UML package but also a containment
reference originating from the Java model and ending in the Java package for storing the package
in the Java model.
Moreover, in a trace-generating transformation not only the target side is extended but also the
trace section by adding a new trace element. Accordingly, the figure shows that the P2P object
is added, too. This trace element references the UML package as source element and the java
package as well as the containment reference as target elements.

Class To ClassDeclaration The third transformation rule, depicted in Fig. 5.1.3, transforms
each UML class into a class declaration and a compilation unit. While the class declaration is
stored in the Java package, the Java model serves as container for the compilation unit. In this
example the transformation rule refrains from creating a link between the compilation unit and
the class (which is necessary in the real-world scenario) as well as from regarding the possibility
to store more than one type declaration in a compilation unit. In addition, the rule refrains from
creating an interface for each UML class for the sake of easy readability of the example.

75

CHAPTER 5. INFORMAL PROPERTIES OF TRACE-BASED PROPAGATION

jm : Model

++ jcd : ClassDecl

up : Package

++ oElems

trace targetsource

t1 : M2Mum : Model

packagedElem

t2 : P2P jp : Package

++ jcu : CompUnit

uc : Class

oElems

++ units

oType

++ t2 : C2C

++
++

++
++

++

Figure 5.1.3: Graphical rule which transforms UML classes into Java class declarations and com-
pilation units.

Trace Access Most notably, after having performed the step of creating the Java package, the
transformation may access the new trace element between the UML and Java package created
by the rule transforming packages. In this way, the transformation can add new elements to
previously created elements in the target model, namely the class declaration to the package and
the compilation unit to the model. Besides accessing existing trace elements, this rule extends
the trace graph with a new trace element referencing the four elements created anew and the
corresponding source element.
Please note: Although the rules need to access already existing trace information and existing
target elements to properly store the elements added by the rules, these access relationships are
not made explicit in the rules (yet) for the sake of easier readability of the example.

5.1.3 Multi-Variant Model
After having explained the basic (single-variant) rules in the previous section, the following para-
graphs demonstrate an extended input model with annotated varying contents.
The example is extended by the classes Person and Family added to the UML class model. In
addition, we simplify the feature model of the database product line example (Fig. 3.3.1) such
that it encompasses the mandatory feature P(erson) and the optional feature Fa(mily) which are
part of the database (DB) root feature. The left of Fig. 5.1.4 depicts the extended UML class
model. This figure shows that the three classes are turned into corresponding class declarations
and compilation units. In contrast to the transformation rules, the names of the class declaration
and compilation units are assigned, too, to distinguish the objects more easily.
From the figure, two points become obvious: Firstly, in contrast to the above rule descriptions the
trace references also context elements besides the target elements created by the corresponding
rule application. As an example, the rule to create a class (Fig. 5.1.3) only references the class
declaration and the compilation unit as well as the containment references as target elements.
However, for adding the containment references (tpyes and units) to the correct container, also
the package and the model have to be accessed by the rule. For that reason, accessing already
existing elements in the target model (i.e., elements that have been created in a previous execution
step) is marked in the trace element by a reference to these context elements sketched as dashed
lines in Fig. 5.1.4. Accordingly, execution traces may vary with respect to the granularity by
which they reference elements in the target model. Different kinds of traces written during a
model transformation execution are discussed in Sec. 5.2.
Secondly, although the source model is annotated, the rules presented in Sec. 5.1.2 are unaware of
the variability occurring in product lines and offer no means for propagating the annotations to the
target model. Consequently, a multi-variant target model (without annotations) can be created
by employing a state-of-the-art (single-variant) model transformation. However, to automatically
annotate the target model, further extensions are required. As explained in the subsequent de-

76

5.2. PROPERTIES OF TRANSFORMATION TRACES

oElems

jcd : ClassDecl
name = "DBContent"

name= "db"

cud : CompUnit
name= "DBContent.java"

units

um : Model

oType

uc : Class
name = "DBContent"

name= "db"

 up : Package jp : Package

jm : Model

oType

ucp : Class
name = "Person"

jcp : ClassDecl
name = "Person"

cup : CompUnit
name= "Person.java"

units

jcf : ClassDecl
name = "Family" cuf : CompUnit

name= "Family.java"

units

oElems

oElems

t1 : M2M

t2 : P2P

 t3 : C2C

 t4 : C2C

 t5 : C2C
ucf : Class
name = "Family"

oType

packagedElem

trace targetsource

DB

DB∧P

DB

DB

DB∧Fa

...annotation targetcontextsource

Figure 5.1.4: Rule applications to multi-variant model in triple-graph representation.

scriptions, the generated trace elements can be employed to propagate the annotations without
a need to change the single-variant model transformation nor its execution environment. Im-
portant requirements to successfully and beneficially propagate annotations by employing trace
information are summarized in Sec. 5.3.3.

5.2 Properties of Transformation Traces
Due to the plethora of model transformation languages and tools, various kinds of traces exist
in M2M transformation execution engines. By examining trace-generating model transformation
solutions in Sec. 5.2.1 and deriving a feature-based classification (Sec. 5.2.2), this section gives
an overview of their differences and commonalities. Based on these properties, a common trace
model is derived (Sec. 5.2.3) which is trimmed to be suitable to define a generic algorithm for
propagating annotations. Arbitrary traces can be transformed into the common trace model to
be used in the propagation algorithm.
Please note: Here, we only consider traces, which result from applying a M2M transformation
and record corresponding source and target elements. Traceability frameworks [Aiz+06; BBM05;
WP10], particularly those customized for MDSE [Anq+10; SHG12], go beyond the interests of
the trace-based propagation by relating multiple kinds of artifacts and, for instance maintained
in a database, and by allowing for querying the traceability information and further maintenance
activities. For that reason, they not considered in the following discussions.

5.2.1 Traces in Existing Model Transformation Solutions
Several transformation solutions maintain traces during their execution. Due to the multitude of
model transformation solutions (c.f. Sec. 2.2.2), the information persisted in the maintained traces
is of manifold granularity, too. In this section, we examine the traces of exemplary model trans-
formation engines as representatives of different possibilities to note information of corresponding
source and target elements.

QVT [Obj16] The OMG proposed the QVT framework (c.f., Sec. 5.2.1, III) as standard for incre-
mental bidirectional M2M transformations. The QVT-R specification establishes the declarative

77

CHAPTER 5. INFORMAL PROPERTIES OF TRACE-BASED PROPAGATION

language in this framework. Even though the standard does not prescribe a trace for realizing the
incremental transformation, the stable tool realization medini QVT [ikv18] builds traces during
the execution and persists them thereafter. Traces encompass a sequence of instances of relations
(which are comparable to rules in other model transformations solutions). A rule instance records
the relation which it instantiates as well as the source elements for which it was triggered and the
resulting target elements. The list of target elements consists not only of the elements generated
anew but also of already existing (context) elements in the target element which had to be accessed
to create the new target elements.
In contrast, the Eclipse plugin which realizes the procedural language QVT Operational Mappings
(QVT-O) manifests trace information, too. The trace may record context elements if they are
provided as input to the mappings (i.e., rules) and all target elements which are explicitly defined
as output parameters. The persistent information may vary with respect to how the rules are
defined as Sec. 5.2.1, I discusses in more detail.

ATL (EMFTVM) [Wag+12] As a second model transformation language, ATL [Jou+08] allows
for specifying in-place and out-place unidirectional model transformations which are realized by
different virtual machines. The default virtual machine of the ATL distribution supports out-place
transformations and incremental in-place transformations.
Although during the execution of a transformation specification a trace is maintained and can be
accessed when specifying the rules, the trace is not persisted after the execution. For that reason, in
this work we employ the ATL/EMFTVM as virtual machine which offers to persist the execution
trace and additionally provides an instruction model of the bytecode. Despite manifesting the
trace, still the available capabilities of this virtual machine are more restrictive than in the default
ATL virtual machine. Particularly, ATL/EMFTVM does not support incremental transformations
nor the usage of helpers hindering the specification of complex transformations.
An example of a ATL/EMFTVM traces is presented in Sec. 5.2.1, II. These traces record the
source and created target objects of each applied matched rule. The trace elements do not record
context elements which are required to created these element nor mappings of structural features.
Similarly, applications of lazy and called rules are not persisted.

BXtend [Buc18] is a framework offering to implement bidirectional, incremental transformations
in a way strongly inspired by triple graph grammars. Rules, in which the transformation developer
has to explicitly maintain a correspondence graph between the source and the target model, are
implemented in the object-oriented Java dialect Xtend [ES]. Accordingly, the correspondence
graph represents the trace information which in its default version maps only one source onto
one target element regardless of how many elements are created or accessed to create the new
elements. Therefore, the trace consists of correspondences which are 1:1 links.

eMoflon [LAS14; LAS15] serves as an example of a language and corresponding tool which
persists two kinds of trace information. Triple graph rules may express incremental bidirectional
model transformations. Consequently, similar to BXtend, a correspondence graph is maintained
between the source and the target model in which each node (i.e., a link) stores exactly one source
node and one target node. Besides the correspondence graph, however, eMoflon builds a protocol
during the execution which is persisted thereafter. This data structure records a partially ordered
set of rule applications which store the match as well as the elements that are created including
context elements that were necessary for the new creation. We consider the protocol and the
correspondence graph as two different types of traces.

Further M2M Transformation Solutions Finally, several other transformation solutions
exist which permanently store trace information. Kahani et al. [Kah+19] distinguish tools that
automatically create trace information, such as medini QVT or the DSLTrans [Bar+10], from those
allowing to manually define trace links in the transformation rules, such as in Henshin [Str+18a].
Few tools, such as eMoflon, allow for both, manual trace generation, i.e., the correspondence
graph, and automatic trace generation in form of the aforementioned protocol. But the details
and properties of the traces apart from their generation are not discussed in this article.

78

5.2. PROPERTIES OF TRANSFORMATION TRACES

traces

type

link-based

fine-grainedcoarse-graind

rule-based

completeness

incomplete

generation-
complete

complete

granularitygeneration

automatic manual

mandatory
optional

OR group
XOR group

Figure 5.2.1: Feature-based classification of M2M transformation traces.

The granularity of the trace written by the transformation engines may depend on the type of
employed rule (e.g., in ATL and QVT-O (c.f., Sec. 10.2.3)) and, for instance in Henshin, on
the developer who has to specify the creation of trace elements. Accordingly, target elements
can be stored by potentially differentiating context from target elements at the level of objects.
In contrast, if the correspondence graph is extendable, the granularity of mapping source onto
target elements may be refined. Accordingly, the possibility of specifying sublinks to relate struc-
tural features of objects can and has been used to offer more fine-grained tracing [Bec+07]. The
customization of traces is also offered by the BxtendDSL [BBW21] framework, which extends
the basic BXtend framework with higher automation. However, the customization also requires
manual maintenance of these specific kinds of links and is not examined by the tool developers
yet.

5.2.2 Feature-Based Trace Classification
As a consequence from the previous descriptions, we classify traces maintained in M2M transfor-
mations based on the categories depicted in Fig. 5.2.1. We apply this feature-based taxonomy to
the traces resulting from the M2M transformation languages described in the preceding section.
Table 5.1 collects the resulting mapping.

Trace Type Firstly, traces are either link-based or rule-based. While rule-based traces result
from applying rules and maintain a link or reference to the applied rule, a link-based trace stores
links between up to many elements of the source model and and up to many elements of the tar-
get model without necessarily mentioning the rule in charge for their creation. ATL/EMFTVM
and medini QVT offer rule-based traces whereas BXtend and eMoflon require the transforma-
tion developers to specify the creation of the correspondence graph during rule execution. The
correspondence elements per se are not related with the rule creating them. eMoflon’s protocol
originates from applying the transformation and mentions the corresponding rule. Therefore, it
can be classified as rule-based trace.

Trace Generation The second feature differentiates an automatic from a manual generation of
the trace. This feature can also be related with the type of the trace. While link-based traces are
frequently built manually by the transformation developer in the transformation rules, rule-based
traces are an artifact automatically created by the transformation execution engine. However,
as discussed by Kahani et al. [Kah+19], ATL traces can be maintained and accessed by the
transformation developer. Depending on the ATL rule type, the developer may create custom
trace information in case no automatic generation is supported. However, in any case, the default
virtual machine does not persist the ATL traces after the execution.

Trace Completeness The third criterion, completeness, refers to the elements that are stored
per rule application. Incomplete traces only store a single target element and a single source

79

CHAPTER 5. INFORMAL PROPERTIES OF TRACE-BASED PROPAGATION

Table 5.1: Categorization of an exemplary set of M2M transformation traces.

Tool Trace Data
Structure

Type Generation Complete-
ness

Granularity

medini QVT trace model rule-based automatic complete coarse
ATL/EMFTVM trace model rule-based automatic generation-

complete
coarse

BXtend correspondence
model

link-based manual incomplete coarse

eMoflon correspondence
graph

link-based manual incomplete coarse

eMoflon protocol rule-based automatic complete fine

element regardless of the fact how many elements are created for the source(s) element(s) and
how many context elements are required for their creation. In contrast, a generation-complete
trace stores all target elements created by the corresponding rule application but no context
elements. The latter are persisted by complete traces in addition to the created target elements.
Fig. 5.2.2 exemplifies the different kinds of traces for the transformation scenario of converting
a UML class into a Java class declaration and compilation unit. The top row shows the excerpt
of an incomplete trace: Only the UML class and the Java class declaration are referenced by
the trace element although the compilation unit is created as well by the same rule application
corresponding to the trace element. The excerpt in the second row demonstrates a generation-
complete trace element referencing not only the class but also the compilation unit. However, the
Java model and package, which are necessary to store the class declaration and the compilation
unit, are referenced only in the trace elements of complete traces as depicted at the bottom of the
figure. In addition, depending on the granularity of the trace, not only the objects are stored in
the trace but also the links between them or even the attributes of objects. In the figure we show
a fine-grained complete trace where also the links between objects are referenced as source, target
and context elements by the trace element.
The classification of the completeness of traces is in accordance with the scope of transformation
steps proposed by Cuadrado et al. [CM09] for the modularization of a model transformation.
The authors distinguish a local to local, local to global, global to local and global to global scope
of performing transformations steps. The local to local scope corresponds with an incomplete
trace, where only one target element can be created from one source element, which is called
pivot element by the authors. In a local to global transformation step more than one target
element is created which may require to collect information from different parts of the target
model (i.e., for instance context elements). In contrast, a global to local transformation step
requires more (globally available) information from the source model than the pivot element to
create a single target element. We represent that case by incorporating more than one source
element in generation-complete and complete traces. Finally, a global to global transformation
step combines the cases of a global to local and a local to global transformation steps and is
represented in a complete trace.
Notice that the type and the completeness are orthogonal criteria. Completeness refers to the
amount of information stored in the trace whereas the type describes the fact how the trace is
created.

Trace Granularity Lastly, traces may either be coarse-grained or fine-grained. A coarse-
grained trace records elements of the target model at the level of objects only. Conversely, a
fine-grained trace also links the attributes of and references between objects to corresponding
source elements. The ATL/EMFTVM, medini-QVT and BXtend traces as well as the correspon-
dence graph of eMoflon represent coarse-grained information at the level of objects. In contrast,
the protocol of eMoflon maintains a more fine-grained trace, which stores the references between
objects but neither their attributes.

80

5.3. TRACE-BASED ANNOTATION PROPAGATION

jm : Model

 jcd : ClassDecl

oElems

trace targetsource

jp : Package

 jcu : CompUnit

uc : Class

oElems

units

 t2 : C2C

 jcd : ClassDecl

oElems

 jcu : CompUnit

uc : Class

units

 t2 : C2C

jm : Model

jp : Package

 jcd : ClassDecl
oElems

 jcu : CompUnit

uc : Class

units

 t2 : C2C

jm : Model

jp : Package

incomplete

generation-
complete

complete

um : Model

up : Package

target contextsource

oElems

oElems

packagedElem

oType

Figure 5.2.2: Trace completeness levels.

5.2.3 Common Trace Metamodel for Annotation Propagation
Based on the criteria classifying the different transformation traces, we derive a common trace
metamodel into which transformation traces can be turned. Fig. 5.2.3 depicts the generalized
model. The trace model encompasses an ordered set of trace elements. The order results from the
sequence of applying transformation rules.
Each trace element references up to many source and target as well as context elements. De-
spite the fact that the trace elements enumerate sets of source, target and context elements (i.e.,
representing a complete trace), incomplete traces which reference only one source and one tar-
get element are covered as special instances of this metamodel: The set of context elements is
completely empty and the sets of source and target elements include one respective pivot element.

5.3 Trace-Based Annotation Propagation

This section presents the key characteristics of the trace-based propagation of annotation at an
informal level. Sec. 5.3.1 initiates with giving a schematic overview of the propagation whereas
Sec. 5.3.2 explains how to process a trace model and to compute the target annotations based on
this information. Finally, Sec. 5.3.3 enumerates the properties to which the transformation type,
the transformation rules and the recorded trace must conform in order to satisfy commutativity.

81

CHAPTER 5. INFORMAL PROPERTIES OF TRACE-BASED PROPAGATION

TraceElement

TraceModel TargetModelSourceModel

TargetElement

targets
*

* contexts

SourceElement

sources
*

* elementselements *
* elements
{ordered}

Figure 5.2.3: Common trace metamodel.

5.3.1 Schematic Overview
The knowledge about different trace kinds and the common trace metamodel lay the grounds for
propagating the annotations of multi-variant models to the target model without having to adapt
the reused single-variant transformation.

single-variant

model transformation

trace

multi-variant
model transformation

source model

annotation

source model

single-variant
target model

multi-variant
target model

target model

annotation

target model

trace-based

propagation

Figure 5.3.1: Schema of trace-based annotation propagation.

The schematic overview in Fig. 5.3.1 illustrates the concept of utilizing the trace for propagat-
ing annotations. The single-variant model transformation first turns the multi-variant source
model into a multi-variant target model (without regarding annotations). As an artifact of the
transformation, a trace is generated and serves as input to the trace-based propagation algorithm
transferring the annotations from the source model to the target model. Details of the propagation
algorithm are given next.

5.3.2 Annotation Propagation Procedure
For propagating annotations to the target model, the trace elements elements of the common
trace metamodel (Fig. 5.2.3) are processed sequentially by their order. For the algorithm it is
important that the order corresponds with the application of transformation rules and, thus, the
order of creating elements in the target model.
According to the common trace model, each trace element enumerates a set of source, target
and context elements, which are abbreviated as SRC, TRG and CTX, respectively, in the following
explanations. For each trace element, the annotations of the source elements in SRC are queried
as well as the annotations of the context elements in CTX. These annotations are combined in a
conjunction and attached to each target element trg ∈ TRG in the following way:

trg.ann := (
∧

s ∈ SRC

s.ann)∧ (
∧

c ∈ CTX

c.ann)

Please note: For demonstration reasons the formula notes the annotation of the source and target

82

5.3. TRACE-BASED ANNOTATION PROPAGATION

elements as one of their attributes. As explained in Sec. 4.1, however, mapping the annotations
onto model elements may be realized in varying ways in reality. Moreover, the expression has to
be simplified before attaching it to the target elements to avoid redundant clauses and transitively
growing expressions.
In the transformation example of the beginning of this chapter (Fig. 5.1.4), the annotations are
propagated by the trace-based propagation as follows. The first trace element corresponds with
the creation of models. Accordingly, the only referenced target element jm receives the annotation
of the recorded source element um which is DB.
Next, the trace element t2 mapping the packages is processed. Here, the Java model jm is
referenced as context element and up as the single source element. Accordingly, the annotation
attached to the package would be DB ∧ DB which can be simplified to the annotation DB for the
Java package jp.
Thirdly, the elements t3, t4 and t5 are processed subsequently. As an example, the annotation
computed based on t4 for the class declaration, compilation unit and the containment references
originating from the model and package receive the annotation (DB ∧ P) ∧ DB ∧ DB where the first
clause stems from the source element and the second and third from the context elements. Only
the simplified expression DB ∧ P is applied to the target elements.

5.3.3 Computational Model

To propagate the annotations to target elements based on the informally described algorithm cor-
rectly, the transformation and their traces have to adhere to certain properties. The computational
model for trace-based annotation propagation summarizes these properties. If the computational
model is satisfied, commutativity can be guaranteed as explained in Chp. 6. The following para-
graphs introduce each property at a conceptual level starting with general properties for the
transformation and continuing with concrete properties for the rules and the resulting traces.

Transformation Properties First of all, the transformation, in general, has to conform to the
following properties.

Property 5.3.1: Batch Transformation

A batch transformation has to be performed, thus, creating a new target model.

The computational model assumes that no target model exists yet. Accordingly, a new target
model without any annotation is created. Since incremental transformations are not regarded in
the computational model, Sec. 7.5 presents an extension how to address them.

Property 5.3.2: Rule-Based Traces

The transformation has to be composed of rules. The rule-based transformation execution
applies each rule to each match exactly once and the trace records the rule generating the
trace element.

Traces have to record rule applications in an ordered way. As a consequence, the computational
model requires a rule-based transformation which apply all rules to all matches exactly once.
Notice: Link-based traces are subsumed in rule-based traces as long as each link corresponds
exactly with one rule application. Furthermore, this property does not cover explicit control
structures which prescribe the order of applying rules. Instead, the model assumes that in a
global control structure the transformation execution environment resolves dependencies between
target elements and applies them in the correct order. The order of the trace reflects the order in
which the execution environment creates elements in the target model.

83

CHAPTER 5. INFORMAL PROPERTIES OF TRACE-BASED PROPAGATION

Property 5.3.3: Out-Place Transformation

The transformation has to be performed out-place, which means it creates a target model
at a physically different location from the source model.

Prop. 5.3.3 prescribes that the source and target model are physically separated. As a further
implication, it assumes that the source model remains the same and is not modified by the for-
ward transformation. Consequently, all source model elements (including their annotations) are
pertained as they are.

Rule Application Properties Besides the transformation in general, the application of trans-
formation rules has to satisfy the following properties, in particular.

Property 5.3.4: Functional Rule Application

Rules have to be functional: Applying a rule to a given match determines the result
uniquely.

Commonly, rule-based transformation languages are of functional behavior. In the computational
model, the functional behavior of rules carries over to the entire transformation. Non-functional
single-variant model transformations would result in different output model in different executions.
Therefore, non-functional transformations could prevent the multi-variant model transformation
to commute with respect to the filters and single-variant transformations.

Property 5.3.5: Monotonic Rule Application

Rules have to be monotonic: Applying a rule adds elements to the target model but does
not remove or change any already existing element in the target model.

Due to the batch behavior, deletions and modifications of target elements are not supported by the
computational model which also holds for single rules. The common trace metamodel (Sec. 5.2.3)
groups elements of the target model into context and (created) target elements but not in modified
or deleted ones.

Property 5.3.6: Local Rule Application

Rules have to be local: The effect of applying a rule depends on the match only.

Locality is essential to support commutativity because it guarantees that the rule is applicable to
the same match in the unfiltered (multi-variant) as well as in filtered (single-variant) models. For
that reason, the context of matching the rule in the source model has to be irrelevant to the rule.
If rules were not local and, thus, the context of the match were relevant, an application condition
could cause a rule being applicable in the multi-variant model but not in a filtered model or vice
versa.

Trace Properties Finally, the trace for the transformation has to be complete and fine-grained:

Property 5.3.7: Complete Traces

A complete trace, which enumerates the subsequently executed rule, all source, context,
and target elements, has to be recorded.

If target elements are missing from the trace, they cannot receive variability annotations by the

84

5.4. SUMMARY

propagation algorithm. Consequently, the target elements missing in the trace, miss an annotation.
Then, assumptions or conventions have to be made whether these elements are visible in every
variant of the product line. Missing source and context elements in the trace may also cause
annotations that are not specific enough and may result in a violation of commutativity.

Property 5.3.8: Fine-Grained Traces

The trace has to be as fine-grained as the mapping mechanism and the model filter.

Although in the example (Fig. 5.1.4) we illustrate annotations at the level of objects, the compu-
tational model postulates the usage of fine-grained traces. Only if the annotations of all involved
model elements (i.e., of objects, attributes and links) are considered, the annotation for the target
elements is computed correctly.
Please note: To guarantee commutativity, the trace needs to be as fine-grained as the mapping
and the filter. While the granularity of the mapping mechanism determines up to which level
annotations can be assigned to source elements (e.g., to their structural features), the granularity
of the filter determines up to which granularity these annotations affect the derived variant. If
the filter works at the level of objects only, it cannot remove structural features of the objects. In
that case, a trace at the level of objects only will suffice to satisfy commutativity.

5.4 Summary
This chapter illustrates a single-variant UML class to Java model transformation and explains how
to lift it to propagate annotations. We exemplify how a trace-generating rule behaves and employ
this information together with an examination of traces persisted by different transformation
engines, to derive the concepts for propagating annotations from the multi-variant source to the
multi-variant target model. Based on a derived common trace model, annotations from recorded
source and context elements are mapped onto recorded target elements. Finally,at a conceptual
level Sec. 5.3.3 explains which properties the transformation specification and execution engine
need to satisfy in order to guarantee commutativity.

85

Chapter 6 Formal Foundations

A pack of wolves, a bunch of grapes,
or a flock of pigeons are all examples of sets of things.

Paul Halmos

∼

Given the informal explanations of trace-based propagation in Chp. 5, this chapter
presents how to formally note multi-variant model-to-model transformations and de-
fines the important properties to guarantee commuting multi-variant and single-variant
transformations. The main purpose of this chapter is to demonstrate which conditions
have to be satisfied to prove commutativity of multi-variant model transformations.
Instead of repeating the complete proof, we refer the interested reader to the corre-
sponding publications [WG18; WG20a] for details and present the background knowl-
edge and key ideas of the proof here.

For defining multi-variant M2M transformations, this chapter employs a formalism
based on Graph theory. This formalism considers models as graphs consisting of nodes
and edges. Model transformations are Graph transformations where a left-hand side
and right-hand side graph constitute the rule which replaces matches of the left-hand
side in the host graph by the right-hand side.

By employing the informal example of the preceding chapter, at first, Sec. 6.1 and
Sec. 6.2 demonstrate the graph formalism for expressing single-variant models and
multi-variant models, respectively. Next, Sec. 6.3 introduces trace-generating in- and
out-place graph transformations on single-variant models, denoted as derivations and
STT derivations. Last but not least, Sec. 6.4 contributes the algorithm which employs
the generated trace to propagate annotations to the target model in multi-variant
model transformations and sketches the proof of commutativity based on the prop-
erties of the computational model for trace-based propagation. Sec. 6.5 closes the
chapter by summarizing its content.

[WG20a], [WG20b] and [WG18] lay the foundations for this chapter.

86

6.1. MODELS AS GRAPHS

6.1 Models as Graphs
The formal notion of multi-variant transformation represents models as Graphs which consist of
nodes and edges. Accordingly, we employ Graph theory [Ehr+15] to formalize transformations.
The foundations of Graph theory lie in set theory [Hal17] which we utilize throughout the formal-
ization.
Before defining model transformations, this section starts by noting models in Graph formalism
(Sec. 6.1.1) and defining relationships between graphs in form of morphism operators (Sec. 6.1.2).

6.1.1 Single-Variant Models
In this thesis, models form spanning containment trees and their objects are linked by typed
references. As a consequence, it is possible to express the model as a graph which requires the
following mapping:

Graph Each object is represented by a node in the graph and each link between objects by an
edge. Therefore, a graph encompasses nodes and directed edges as typed elements. We refrain
from explicitly including the attributes of objects, such as the name or their type, in the graph.
Consequently, we employ a typed graph, where nodes and edges are labeled but without attributes
nor an explicit graph schema prescribing details of the structure of the graph.
Please note: the following definition of a graph permits – besides a unique source and target node
– an edge as target of an edge, which is also denoted as higher order edge. Higher order edges will
be used for defining traces where the target of an edge may be an edge of the source or target
graph.
The set of nodes N and edges E of a graph are summarized as the disjoint set of typed graph
elements EL=N ∪̇E and used for defining a typed graph in Def. 6.1.1:

Definition 6.1.1: Graph

Let TN and TE be finite sets of node types and edge types, respectively. A graph over
TN and TE is a tuple G= (N,E,lN , lE ,s, t), where

• N is a finite set of nodes,
• E is a finite set of edges, where (N ∩E = ∅),
• lN :N → TN is a node labeling function,
• lE : E→ TE is an edge labeling function,
• s : E→ EL is a source function, and
• t : E→ EL is a target function.

An edge e is self-referential if the source or the target of the edge is the edge itself, i.e., if
s(e) = e ∨ t(e) = e.

Ordered Graph More specifically, the models in our thesis are ordered implying that an ordered
graph represents them. The nodes and edges in an ordered graph satisfy an ordering function as
defined in Def. 6.1.2.

Definition 6.1.2: Ordered Graph

Let G= (N,E,lN , lE ,s, t) be a graph over TN and TE .
G is ordered with respect to its edge set E if and only if an ordering function ord :EL→N+

0
which maps graph elements onto natural numbers exists and which satisfy the following
conditions:

∀n ∈N : ord(n) = 0 (6.1)
∀e ∈ E : ord(e) =max(ord(s(e)),ord(t(e))) + 1 (6.2)

87

CHAPTER 6. FORMAL FOUNDATIONS

As a consequence, the ordering function guarantees the following property:

∀e ∈ E : ord(e)> ord(s(e)) ∧ ord(e)> ord(t(e)) (6.3)

Consequently, an ordered graph prohibits the existence of self-referential edges. The following
descriptions assume ordered graphs.
Ex. 6.1.1 demonstrates how the UML class model introduced in Fig. 5.1.1 is expressed in graph
notation.

Model

Package

oTypes*

Class
name: String

name: String

um : Model e2 : oTypes

uc : Class
name = "DBContent"

name= "db"

 up : Package
oPackages*

UML class model
 in graph notation

simplified UML
 class metamodel

e1 : oPackages

s

t

s

t

Figure 6.1.1: UML class model in graph notation.

Example 6.1.1: UML Class Model as Graph

The UML class model depicted on the right-hand side of Fig. 6.1.1 serves as an example
throughout this chapter. It is represented as a graph G = (N,E,lN , lE ,s, t) over TN and
TE and constitutes in the following way:

• TN = {Model,Package,Class}
• TE = {oPackages,oTypes}
• N = {um,up,uc}
• E = {e1,e2}
• lN = {um 7→Model,up 7→ Package,uc 7→ Class}
• lE = {e1 7→ oPackages,e2 7→ oTypes}
• s= {e1 7→ um,e2 7→ up}
• t= {e1 7→ up,e2 7→ uc}

G is ordered because the source and target of an edge are nodes only. Accordingly, the
ordering function returns 0 for the nodes and 1 for the edges e1 and e2, thus, satisfying
Def. 6.1.2.

All of the following examples refer to the example of Fig. 5.1.1 in graph notation as exemplified
for the UML class model in Fig. 6.1.1.

6.1.2 Graph Morphisms

In model transformations, the application of a rule is determined based on a match of input
model elements with the source elements declared by the rule. Similarly, in graph transformations
matches are determined based on the structure of the input graph and the one specified in the
rule.
Graph morphisms define relations between graphs, particularly the equivalence of graphs or of
sub-graphs, and are type and structure preserving mapping functions for graph elements. In the
sequel, we refer to graph morphisms as morphisms:

88

6.1. MODELS AS GRAPHS

Definition 6.1.3: Morphism

Let G1 = (N1,E1, lN1 , lE1 ,s1, t1) and G2 = (N2,E2, lN2 , lE2 ,s2, t2) be graphs over TN and
TE with the disjoint sets of graph elements EL1 =N1 ∪̇E1 and EL2 =N2 ∪̇E2, respectively.
A morphism m :G1→G2, m= (mN ,mE) comprises two functions: a node mapping func-
tion mN :N1→N2 and an edge mapping function mE :E1→E2 retaining node and edge
types as well as the source and target of an edge. Furthermore, mEL :EL1→EL2 denotes
the element mapping function mEL =mN +mE applying either mN or mE depending on
the kind of input. The morphism guarantees the following conditions:

∀ n1 ∈N1 : lN2(mN (n1)) = lN1(n1) (6.4)
∀ e1 ∈ E1 : lE2(mE(e1)) = lE1(e1) (6.5)
∀ e1 ∈ E1 : s2(mE(e1)) =mEL(s1(e1)) (6.6)
∀ e1 ∈ E1 : t2(mE(e1)) =mEL(t1(e1)) (6.7)

An identity morphism is a morphism id= (idN , idE) with identities on nodes and edges.

If both, mN and mE , are injective, surjective, or bijective the morphism is called monomorphism,
epimorphism, or isomorphism, respectively. These definitions carry over to graphs which adhere
to the following properties:

Definition 6.1.4: Graph Relations

Let G1 = (N1,E1, lN1 , lE1 , s1, t1) and G2 = (N2,E2, lN2 , lE2 ,s2, t2) be graphs over TN and
TE . We employ the following graph relations:

• sub-graph: G1 ⊆ G2 if and only if id = (idN , idE) is an identity morphism from G1
to G2.

• less or equal: G1 .G2 if m :G1→G2 is a monomorphism.

• isomorphic: G1 'G2 if m :G1→G2 is an isomorphism.

Furthermore, morphism operators construct a new graph from existing morphisms. The following
explanations consider the composition, inverse, restriction and range of up to two morphisms
incorporating up to three graphs.

Definition 6.1.5: Morphism Operators

Let Gi = (Ni,Ei, lNi
, lEi

, si, ti)(1≤ i≤ 3) be graphs over TN and TE .

• Composition: Let m1 : G1 → G2 and m2 : G2 → G3 be morphisms, where m1 =
(mN1 ,mE1) and m2 = (mN2 ,mE2). The morphism m = m1 ◦m2 : G1 → G3 with
m= (mN1 ◦mN2 ,mE1 ◦mE2) is called the composition of m1 and m2.

• Inverse Morphism: Let m : G1→G2, with m = (mN ,mE) be an isomorphism. The
isomorphism m−1 :G2→G1 with m−1 = (mN

−1,mE
−1) is called the inverse of m.

• Restriction: Letm :G1→G2, withm= (mN ,mE) be a morphism, and letG3⊆G1 be
a subgraph of G1. The morphism m|G3 :G3→G2 such that m|G3 = (mN |N3 ,mE |E3)
is called the restriction of m onto G3 which only maps the elements of the subgraph
G3 onto elements of G2.

• Range: Letm :G1→G2 withm= (mN ,mE) be a morphism. The range ofm, ran(m)
is a subgraph G3 ⊆G2 with node set N3 and edge set E3 such that N3 = ran(mN)
and E3 = ran(mE).

89

CHAPTER 6. FORMAL FOUNDATIONS

The following two properties of morphisms, which follow from their definitions, are essential for
ensuring commutativity:

• The composition m3 of two monomorphisms m1 and m2, such that m3 = m1 ◦m2, is a
monomorphism, too.

• For a morphism m :G1→G2 the morphism m′ :G1→ ran(m) is an epimorphism iff

∀n ∈N1,∀e ∈ E1 : m′E(e) =mE(e) ∧ m′N (n) =mN (n).

6.2 Variability in Graphs

As the graphs defined so far represent single-variant models, this section introduces the extension
of graphs to represent the dimension of spatial variability present in SPLE. In this way, it starts
with defining annotations and their effect in filtering models and closes with formalizing multi-
variant graphs and model filters.

Feature Models In this thesis we employ feature models, as one kind of variability model, to
express variability in a product line. Boolean features represent the common and distinguishing
parts of the product line. The finite set of features F = {f1, . . . ,fn},(n≥ 1) represents them. For
the proof of commutativity and for representing multi-variant model transformations we refrain
from considering constraints among the features. The correctness of the feature model and the
validity of corresponding feature configurations is supposed to be analyzed by specific SPLE tool
support.

Annotations For annotating models, as mentioned in the previous chapters, typically not a sole
feature is used but a Boolean expression over features to which we refer as annotation:

Definition 6.2.1: Annotation

Let F be a set of features. An annotation over F is an arbitrary Boolean expression in
propositional logic over features from F . The set of all Boolean expressions over F is
denoted by AF ; we write aF ∈AF for one annotation.

A feature configuration describes a product variant by determining the features to be incorporated
in this variant. In contrast to an annotation, in a (complete) feature configuration every feature
of the set of features of the product line must be assigned a selection state which mentions the
feature either positively or in a negated form.

Definition 6.2.2: Feature Configuration

Let F = {f1, . . . ,fn}, n ≥ 1, be a set of features. A feature configuration over F is a
conjunction of bindings fcF = b1∧ . . .∧ bn, where bi ∈ {fi,¬fi}. The set FCF denotes the
set of all valid feature configurations.

Negatively bound features imply that they are not represented in the derived variant whereas
positively bound ones are included. We do not consider partial configurations in this thesis. For
that reason, a feature configuration always provides either a positive or negative selection state
to each feature in the feature model (i.e., it is fully bound).
Furthermore, the constraints and dependencies in a feature model declare which feature configura-
tions are valid. We refrain from formalizing valid feature configurations but assume in the following
definitions that only valid feature configurations are included in the set of feature configurations.

90

6.2. VARIABILITY IN GRAPHS

Visibility Evaluation Annotative approaches require to map annotations onto model elements
to encapsulate the knowledge which elements to remove in the product derivation process. For
deriving products we employ a visibility evaluation function which expresses whether a given
annotation satisfies a given feature configuration.

Definition 6.2.3: Visibility Evaluation Function

Let F be a set of features, FCF the set of feature configurations and AF be the set of
annotations over F . A visibility evaluation function over F is a function vF :AF ×FCF →
B, where B = {true,false}, denotes the set of Boolean values. vF guarantees the following
property:

vF (aF ,fcF) = true ⇔ fcF ⇒ aF (6.8)

Example 6.2.1: Features, Annotations and Configuration

As an example, let assume F = {f1,f2,f3} is a set of the features representing the features
DB, P and Fa of the database example, respectively. Given an annotation aF = f1 ∧¬f2
and a configuration fcF,1 = f1 ∧ f2 ∧ f3, the visibility evaluation function vF (aF ,fcF,1)
returns false whereas it returns true for the same annotation and the feature configuration
fcF,2 = f1∧¬f2∧f3.

Multi-Variant Model To represent multi-variant models, we employmulti-variant graphs. The
elements of the multi-variant graph are associated with annotations by a mapping function which
together with the graph defines the multi-variant graph:

Definition 6.2.4: Multi-Variant Graph

Let F be a set of features. A multi-variant graph is a pair MGF = (G,mapF), where G=
(N,E,lN , lE ,s, t) is a graph, EL=N ∪̇E, and mapF : EL→ AF is a mapping annotation
function assigning an annotation to each element of G.
mapF must ensure referential integrity, thus, the following constraint must be satisfied for
each edge in E:

∀e ∈ E :mapF (e) ⇒ mapF (s(e))∧mapF (t(e)) (6.9)

The set of all multi-variant graphs for the set of features F is denoted asMGF .

Referential integrity assures that a single-variant graph derived from the multi-variant graph
is well-formed with respect to an absence of dangling edges. Furthermore, depending on the
properties of the mapping function, either the graph is annotated completely, i.e., the function
can determine an annotation for each graph element in EL, or not. In this chapter, the function
is assumed to be total for the source graph of the transformation, thus, each element is assigned
an annotation.

Example 6.2.2: Multi-Variant Graph

Let F = {f1,f2,f3} denote the set of features in this example. The multi-variant graph
MG= (G,mapF) consists of the single-variant graph and the mapping function. Fig. 6.2.1
illustrates the single-variant graph G, which comprises a model, a package and three classes
together forming the five nodes of the graph. The model, the package and one class carry
the annotation DB (i.e., f1), the second class (node ucp) the feature DB∧P (i.e., f1∧ f2)
and the third class (node ucf) the annotation DB∧Fa (i.e., f1 ∧ f3). Accordingly, the
mapping function mapF returns these annotations for the respective input nodes.

91

CHAPTER 6. FORMAL FOUNDATIONS

The edges of this example satisfy referential integrity, thus, conforming to the definition
of multi-variant graphs. As an example, the nodes connected by e3 will be visible besides
the edge itself if the annotation of e3, f1 ∧ f2 (i.e., DB∧P), is implied by the feature
configuration. The same statement holds for the edges e1, e2 and e4.

um : Model

e2 : oTypes

ucp : Class
name = "Person"

name= "db"

 up : Package
e1 : oPackages

s

t

s t

uc : Class
name = "DBContent"

ucf : Class
name = "Family"

e3 : oTypes

t

s

DB∧P

DB∧P DB∧Fa

DB∧Fa

e4 : oTypes

DB

s

t

DB

DB

DB

DB

Figure 6.2.1: Multi-variant model in graph notation.

Model Filter For deriving products, in annotative approaches elements of the multi-variant
model have to be removed to form the customized product. In the graph formalism a filter
function accomplishes this task:

Definition 6.2.5: (Flat)Filter

Let F be a set of features and FCF be the corresponding set of feature configurations.
Let MGF and G denote the sets of all multi-variant graphs and single-variant graphs,
respectively. A filter is a function filterF :MGF ×FCF →G defined as follows:
For a given multi-variant graph MGF = (G,mapF) and a feature configuration fcF , the
function filterF (MGF ,fcF) =G′, with G′ ⊆G, adheres to the following properties:

N ′ = {n ∈N |vF (mapF (n),fcF) = true} (6.10)
E′ = {e ∈ E |vF (mapF (e),fcF) = true} (6.11)

Example 6.2.3: Filtered Graph Variants

As an example of filtered graph variants, Fig. 6.2.2 demonstrates three variants of the
multi-variant graph presented in Ex. 6.2.2. We assume that the feature DB is mandatory
whereas P and Fa are optional yielding four valid feature configurations.
The top row of the figure declares the feature configuration and presents the corresponding
graph variants derived by the filter functions below. On the left, Fig. 6.2.2 presents the
variant encompassing the class DBContent and its containers only. Since the features Fa
and P are deselected in the corresponding configuration all other elements are removed from
the multi-variant graph by the filter function. Accordingly, the second and third column
comprise variants where P and Fa are each solely selected, respectively. The fourth feature
configuration where P and Fa are selected simultaneously, incorporates all elements of the

92

6.3. GRAPH TRANSFORMATIONS

multi-variant graph as depicted in Fig. 6.2.1.

6.3 Graph Transformations
This section introduces a rule-based formalism for transforming (single-variant) graphs and at
the end multi-variant graphs. The section starts with the definition of in-place transformations
applied to one graph (Sec. 6.3.1). After summarizing the properties of such transformation in
Sec. 6.3.2, Sec. 6.3.3 extends the in-place to out-place transformations. An out-place transforma-
tion is simulated by splitting a single graph in three mutual exclusive sub-graphs representing a
trace graph in between source and target graphs.

6.3.1 (In-Place) Rules and Derivations
For generating a target model transformation rules are executed. Here we start with defining in-
place transformation rules and their application for deriving a target representation of the input
graph. In the following the input graph G to which rules are applied is referred to as host graph.
A transformation rule consists of a left-hand side graph and a right-hand side graph where the
left-hand side is replaced by the right-hand side.

Definition 6.3.1: Rule

Let L and R be graphs over TN and TE , such that L⊆R. The pair ρ= (L,R) represents a
rule over TN and TE . L and R are called the left-hand side and the right-hand side graphs
of the rule, respectively.
The finite set of all rules ρ is denoted as P .

To apply rules to the input graph, a matching site (match) needs to be present in the input graph.
Accordingly, the elements contained in L have to match the structure of the parts of the input
graph exactly. Therefore, an injective mapping (i.e., a monomorphism) represents a match:

Definition 6.3.2: Graph Match

Let G and ρ= (L,R) be a graph and a rule over TN and TE , respectively. A match for ρ
in G is a monomorphism mL : L→G.

The application of a rule to a match is called a derivation step because applying the rule to
the match derives the right side. Consequently, we call the application of multiple rules (i.e., a

um : Model

e2 : oTypes

name= "db"

 up : Package

e1 : oPackages

s

t

uc : Class
name = "DBContent"

t

s

um : Model

e2 : oTypes

ucp : Class
name = "Person"

name= "db"

 up : Package

e1 : oPackages

s

t

s

t

uc : Class
name = "DBContent"

e3 : oTypes

t

s
s

um : Model

e2 : oTypes

ucf : Class
name = "Family"

name= "db"

 up : Package

e1 : oPackages

s

t

s

t

uc : Class
name = "DBContent"

e4 : oTypes

t

s

DB ∧ ⌐P ∧ ⌐Fa DB ∧ P ∧ ⌐Fa DB ∧ ⌐P ∧ Fa
feature
config.

derived
variant

Figure 6.2.2: Filtered variants in graph notation.

93

CHAPTER 6. FORMAL FOUNDATIONS

transformation) a derivation. In short, we write the derivation step, involving the rule ρ and the
match m as a pair (ρ,m).
If there are two graphs G and H obtained by employing two monomorphisms mL and mR to the
left-hand side and right-hand side, respectively, and two identity morphisms mapping L onto R,
and G onto H, H can be derived directly from G by satisfying the following definition:

Figure 6.3.1: Rule application diagram for match in G and direct derivation of H.

Definition 6.3.3: Direct Derivation

Let G, H and ρ = (L,R) be two graphs and a rule over TN and TE , respectively. Let
mL : L→ G be a match for ρ in G and let idL : L→ R and idG : G→H denote identity
morphisms.
H is directly derivable from G via ρ if H satisfies the following properties:

• A monomorphism mR :R→H exists such that the diagram of Fig. 6.3.1 commutes:
idL ◦mR =mL ◦ idG.

• For each graph H ′ with the same properties, H .H ′.

We note the derivation as G ρ,mL−→ H if the matchmL is of importance and G ρ→H otherwise.
Furthermore, applying a rule to a graph is denoted as derivation step.
Lastly, let P be a rule set. If a rule ρ ∈ P exists, such that G ρ→ H holds, H is directly
derivable from G via P (G P→H).

Accordingly, a derivation step (i.e, the application of a rule to a match) extends the host graph
with elements of the right-hand side, which are not present in the left-hand side.
To conform to the computational model introduced in Sec. 5.3.3, the transformation rules satisfy
the following properties:

1. ρ is functional (Prop. 5.3.4): after fixing the match mL and applying ρ, the resulting graph
H is unique up to isomorphism.

2. ρ is monotonic (Prop. 5.3.5): ρ adds nodes or edges to G but does not remove elements from
G.

3. ρ is local (Prop. 5.3.6): the condition allowing to apply ρ as well as the effect of the application
depend only on the match mL.

Based on the application of single derivation steps, a derivation, transforming the input graph
into a target graph, is defined in the following way:

Definition 6.3.4: Derivation

Let G, H and P be two graphs and a rule set over TN and TE , respectively. H is deriv-
able from G via P (G P∗→ H) if and only if a sequence of rules ρ0, . . . , ρn−1, of matches
m0, . . . , mn−1 and of graphs G0, . . . , Gn exists, such that n ∈N+

0 and the following condi-
tions hold:

• G=G0, H =Gn

94

6.3. GRAPH TRANSFORMATIONS

• Gi
ρi,mi−→ Gi+1 for 0≤ i < n

• A rule is applied only once to the same match:
(ρi,mi) = (ρj ,mj)⇒ i= j for 0≤ i, j < n

A sequence of derivation steps satisfying the conditions stated above is called a derivation.
A derivation G P∗→ H is complete if it cannot be extended any more. An empty derivation
(n= 0) does not apply any rule.

A complete derivation is a rule-based transformation, thus, satisfying Prop. 5.3.2. Moreover,
each rule is applied to a corresponding match exactly once and therefore, exposes the following
properties.

6.3.2 Properties of Derivations
For guaranteeing commutativity not only the rules but also the derivations (i.e. the rule ap-
plication steps) must satisfy the computational model. As stated above, rules have to exhibit
functional, monotonic and local behavior. Except for locality, these properties carry over from
single rule applications to the derivation. These properties are important to embed the single-
variant transformations into the multi-variant transformation without generating contradicting
results.

Functional Behavior Firstly, complete derivations have to exhibit functional behavior. Thus,
the result of a complete derivation is unique up to isomorphism. Accordingly, if G P∗→ H1 and
G
P∗→ H2 are complete derivations H1 and H2 are unique up to isomorphism (H1 'H2).

Functional derivations guarantee the following property: if two rules r1 and r2 are applicable to
the host graph at the same time, the order of applying r1 and r2 can be exchanged and delivers
the same result, nonetheless. Accordingly, r2 is applicable after having executed r1 and vice versa
resulting each time in the same graph.
This property (carrying over from rules (Prop. 5.3.4)) ensures that each time a transformation
(derivation) is applied to the same host graph, the transformation results in the same derived
target graph. This is necessary to safely embed single-variant into multi-variant transformations.

Monotonicity Secondly, derivations have to be monotonic. Consequently, the transformation
only adds elements to the target graph but does not remove or modify already existing elements
in the target graph which is in accordance with Prop. 5.3.5 for transformation rules.
As a result of this property, in a sequence of monotonic derivation steps via a rule set P , G0

P→
G1

P→ . . .
P→ Gn−1

P→ Gn, n ∈ N+, each derived “predecessor” graph is a sub-graph of the graph
derived in the next application step, such that ∀i ∈ [0 . . .n] :Gi ⊆Gi+1.
Furthermore, if H ′ is the result of a complete derivation via P (G P∗→H ′) and H the graph resulting
from a (partial) derivation (G P→H), H can be mapped onto H ′ injectively by a monomorphism,
such that H .H ′. This is the case, if there is a monomorphism G→ G′ and G′

P∗→ H ′ because
then the derivation G′→H ′ encompasses each of the applied derivation steps in G→H. Due to
locality, this holds for G0→G′0 and can be proven by induction for the remaining steps.

Termination In general, the definition of applying rules to matches (in in-place transformations)
does not guarantee to terminate. Since it is possible that rules generate new matches during
a derivation step, an infinite sequence of derivation steps may result. However, if a complete
derivation starting from graph G′ exists, any sequence of derivation steps starting on a graph
G.G′ will terminate which is a consequence of above properties.
Consequently, if H ′ is the result of performing a complete derivation (G′ P

∗
→ H ′) via a rule set P

and H is the (intermediary) graph resulting from a partial derivation (G P→H) via P , the number

95

CHAPTER 6. FORMAL FOUNDATIONS

of derivation steps to create H is less than or equal as the number of derivation steps necessary
to perform the complete derivation, yielding H ′.

6.3.3 Out-Place Rules and Derivations
So far we have defined in-place transformations: Rules are applied based on matches in a single
graph and modify exactly this graph. By decomposing a graph into three sub-graphs, a source
graph, a trace graph, and a target graph and employing trace-generating source-to-target rules,
we simulate forward out-place transformations. A batch transformation is defined as a complete
derivation, initiated with a graph consisting of a source sub-graph (only) and empty trace and
target sub-graphs.
To this end, this section adds all definitions of properties of the computational model for trace-
based propagation (Sec. 5.3) which are still missing because they do not apply to in-place trans-
formations.

STT Graph To begin with, a source-to-target graph, defined in Def. 6.3.5, records the informa-
tion about the transformation:

Definition 6.3.5: Source-to-Target Graph

A source-to-target graph (STT graph) is a graph G typed over node types TN = TNS
∪

TNT R
∪ TNT

and edge types TE = TES
∪ TET R

∪ TET
, comprising three mutually

exclusive sub-graphs G = GS ∪̇ GTR ∪̇ GT and mutually exclusive edge sets connecting
these sub-graphs.
Accordingly, it is composed of the following elements:

• GS ⊆G: the source graph, typed over TNS
and TES

.

• GT ⊆G: target graph, typed over TNT
and TET

.

• GTR ⊆G: trace graph typed over TNT R
and TET R

whereby

– trace nodes are typed over rule identifiers, i.e., TNT R
= IDP for some rule set

P .
– the edge type set TET R

contains a single edge type: TET R
= {use}.

• Trace-to-source edges of type src from trace nodes NTR to elements of the source
graph.

• Trace-to-target edges of type ctx or trg from trace nodes NTR to elements of the
target graph.

We write G=GS ←GTR→GT to indicate that G is an STT graph comprising the com-
ponents as defined above.

According to Def. 6.3.5, the STT graph composes the source, the target and a trace graph.
The nodes of the trace graph maintain links between corresponding source and target elements.
Ex. 6.3.1 demonstrates how the STT graph represents the transformation rule which converts a
UML package into a corresponding Java element.

Example 6.3.1: Source-To-Target Graph

Fig. 6.3.2 illustrates an example of an STT graph by showing the simplified UML class
model and Java model from Fig. 5.1.1 in graph notation. The state of the graph is reached
after applying the rule to generate the package after the model has been created.
Accordingly, two trace nodes exist in GTR, t1 and t2, which reference the corresponding

96

6.3. GRAPH TRANSFORMATIONS

target elements. Most importantly, the edge between the model and the package is listed
as a target element of t2, too. Therefore, the trace is fine-grained. Furthermore, t2
enumerates three source elements. Besides the package which is the pivot element of this
trace node, the reference oPackages and the model are referenced as src elements because
both are required to correctly integrate the Java package in the Java model. The Java
model is referenced as a ctx element of t2 because it was already created by the M2M rule
but is necessary to add the package correctly. In addition, the dependency of the P2P rule
of the M2M rule is marked by a use edge from t2 to t1 in the trace sub-graph.

 jp : Package

jm : Model

name= "db"

up : Package t2 : P2P

e5 : src st

e11 : packages

s

t

e10 : trg

t
e9 : trg

t

GTR GTGS

t1 : M2M

e6 :
use

s

t

e7 : trg

e8 : ctx

e2 : src st
um : Model

s

e1 : oPackages

t s

t e3 : src

s t

t

e4 : src s
s

ss

t

Figure 6.3.2: Source-to-target rule of P2P rule.

For easier readability, the following definitions refrain from mentioning node and edge types ex-
plicitly and from expanding graphs into components. Instead, per convention indices indicate to
which sub-graph an element belongs. For instance, NTR is the set of trace nodes present in the
trace sub-graph GTR.

STT Rule As a consequence of the definition of STT graphs, the definition of a rule is extended
to address the sub-graphs. The left-hand side graph L and right-hand side graph R are both STT-
graphs in the following explanations. To ensure monotonicity (Prop. 5.3.5), a rule only extends the
target sub-graph while the source and trace sub-graphs remain unmodified. These considerations
allow to define a Source-To-Target Rule in Def. 6.3.6.

Definition 6.3.6: Source-to-Target Rule

Let ρ= (L,R) be a rule, where L= LS ← LTR→ LT and R=RS ←RTR→RT are STT
graphs. ρ is a source-to-target rule (STT rule) if the following conditions hold:

∀el ∈ ELR : el /∈ ELL⇒ el ∈ ELRT
(6.12)

∀el ∈ ELLT
: |{e ∈ EL | tL(e) = el∧ lEL

(e) = trg}|= 1 (6.13)

Accordingly, each element of the right-hand side graph R not contained in L is present in RT only.
Moreover, each element in LT must possess exactly one incoming trg edge. The existence of the
incoming trg edge for elements of the left-hand side’s target graph (Equation 6.13) ensures the
completeness of dependency information which will be required for the complete transformation
of STT-Graphs(Def. 6.3.8). From Equation 6.12 follows that a rule does not add elements to
the source and trace graph, such that the corresponding left-hand and right-hand side sub-graphs
encompass exactly the same elements.

97

CHAPTER 6. FORMAL FOUNDATIONS

jm : Model

++ jcd : ClassDecl

++ jcu : CompUnit

 jp : Package

e2 : oTypes

uc : Class

up : Package
t1 : P2P

e5 : src

st

e11 : oTypes

s

t

s

t

++ e12 : types
s

t

e9 : trg

t

e7 : trg

GTR GTGS

t1 : M2Mum : Model
se3 : src

e1 : oPackages

e4 : src

e10 : trg

++
e13 : types

e8 : ctx

s

s

s

s
e6 :
uses

s

t

t

t

t

t

t

t

s

s

Figure 6.3.3: STT rule representing C2C rule.

Example 6.3.2: Source-To-Target Rule for Class Transformation

Fig. 6.3.3 demonstrates an STT rule creating a Java class and compilation unit for a UML
class which corresponds to the informal rule of Fig. 5.1.3 except that no trace element is
generated, yet. The ++ markers as well as the orange color indicate the elements which
are added to the target graph. Accordingly, these elements are part of RT only. All the
other elements form part of L and R in the same way.

Trace-Generating Rule In order to capture trace information, STT rules defined by the user
are turned into trace-generating STT rules, which are exploited by the transformation engine dur-
ing the execution of the transformation. Model transformation solutions, for instance ATL/EMF-
TVM and QVT-O, apply a similar mechanism. Thus, the user may define STT rules accessing
trace information but is not required to specify the generation of trace information as is the case
in link-based traces. Instead, as a side effect, the trace is created during execution automatically.
The following definition prescribes how a (general) STT rule is extended to automatically add
trace information to the right-hand side trace graph.

Definition 6.3.7: Trace-Generating STT Rule

Let ρ= (L,R) be an STT rule, where L= LS← LTR→ LT and R=RS←RTR→RT are
STT graphs. Executing the following steps subsequently creates the trace-generating STT
rule ρ′ = (L′,R′) where L′ = L′S ← L′TR→ L′T and R′ =R′S ←R′TR→R′T :

1. Initialize ρ′ with ρ: ρ′ := ρ.

2. Add a single trace node n′ to the trace sub-graph R′TR. n′ is typed by the identifier
idρ of ρ:

l′N (n′) = idρ (6.14)

3. For each trace node n ∈ LTR, create a trace edge e′ of type use from n′ to n:

l′E(e′) = use ∧ s′(e′) = n′ ∧ t′(e′) = n (6.15)

98

6.3. GRAPH TRANSFORMATIONS

4. For each source element (node or edge) el ∈ LS , create a trace edge e′ of type src
from n′ to the source element el:

l′E(e′) = src ∧ s′(e′) = n′ ∧ t′(e′) = el (6.16)

5. For each already created target element el ∈ LT , create a trace edge e′ of type ctx
from n′ to the old target element el:

l′E(e′) = ctx ∧ s′(e′) = n′ ∧ t ′(e′) = el (6.17)

6. For each new target element el ∈ RT , create a trace edge e′ of type trg from n′ to
the target element el:

l′E(e′) = trg ∧ s′(e′) = n′∧ t′(e′) = el (6.18)

jm : Model

++ jcd : ClassDecl

++ jcu : CompUnit

 jp : Package

e2 :
oTypes

uc : Class

up : Package t2 : P2P

e5 : src

s

t

e23 : packages

s

t

s

t

++ e24 : types
s

t

e18 : trg

t

e16 : trg

GTR GTGS

t1 : M2Mum : Model se3 : src

e1 :
oPackages

e4 : src

++ e25 :
types

e17 : ctx

s

s

s

s

++ e14 : ctx

s

s

t

t

t

t

++ e13 :
 use

++ t3 : C2C

s

t

++ e22 : trg

++ e24 : trg

++ e20 : ctx

s

++ e21 : trg

s
s

++ e10 : src

++ e11 : src

s
ss

s

t s s

++ e25 :
 use

++ e9 : src

++ e7 : src

e12 :
use

t

t

t

t

s s

t
t

e19 : trg

t

t

t

++ e23 : trg

++ e8 : src

s

t

t

t

s

e6 : src

s

s

t

t

t

t

++ e15 : ctx

Figure 6.3.4: Trace-generating STT rule of C2C rule.

Example 6.3.3: Trace-Generating STT Rule

Fig. 6.3.4 depicts the trace-generating STT rule that is generated for the rule creating a
Java class declaration and a compilation unit for a given class depicted in Fig. 6.3.3. Node
t3 is added to GTR according to the generation rules prescribed in Def. 6.3.7. Not only one
source and target edge are added which reference the pivot elements, the UML class and
Java class declaration, respectively, but also to all source elements and all created elements
in the target graph. Moreover, use edges originating from t3 reference the trace nodes t1
and t2 and ctx elements reference the target elements, the Model and Package as well as
their connecting references, which are necessary to add the created target elements in the
right container.

99

CHAPTER 6. FORMAL FOUNDATIONS

Properties of Trace-Generating Source-to-Target Rules The construction of trace-genera-
ting STT rules allows to infer that a trace created by trace-generating STT rules conforms to the
following properties of the conceptual model. The trace is

• rule-based (Prop. 5.3.2): Since each trace node represents the application of a rule by
which the node is typed, the link to the rule is persisted.

• complete (Prop. 5.3.7): Trace elements record all source, context and target elements.

• fine-grained (Prop. 5.3.8): Besides nodes, trace elements also reference edges between the
nodes and, thus, persist the finest level of granularity possible in the formalism.

For proving commutativity these properties are essential. Generating trace elements for each
rule application covers all creations of target elements. Moreover, the completeness of the trace
guarantees that the annotation information for its target elements can be computed correctly,
as required by the definition of the annotation propagation algorithm (Sec. 6.3.3). Lastly, the
ordering by use edges ensures the partial order necessary to process trace information in the
correct transformation order.

Derivation via Trace-Generating Rules Derivations via trace-generating STT rules, called
STT derivations, are derivations similar to those defined in Def. 6.3.4, which is extended in the
following way.

Definition 6.3.8: STT Derivation

Let G = GS ←GTR→GT and H = HS ←HTR→HT be STT graphs. Furthermore, let
P be a set of trace-generating STT rules. H is STT-derivable from G if G P∗→ H holds.

The notion of completeness carries over from derivations to STT derivations. In addition, since
the STT rules do not modify the source graph, GS =HS always holds.

Properties of STT Graphs The following facts about trace-generating STT rules are essential
for propagating annotations based on the trace. In below statements the symbol ∅ denotes an
empty graph because the set of graph elements is empty. Furthermore, we employ binary relations
to note edge types tE : If an edge of type tE from el1 to el2 exists, we will write the relation
(el1,el2) ∈ tE for the typed edge or use arrow notation: el1

tE→ el2.
The following properties hold true for the STT-graph H =HS ←HTR→HT derived via P from
G=GS ←∅→ ∅, such that G P∗→ H, :

1. Each target element of the target sub-graph HT possesses exactly one incoming trg edge:

∀el ∈ ELHT
: | {e ∈ EH | tH(e) = el∧ lEH

(e) = trg}|= 1 (6.19)

This property ensures that an annotation is assigned only once by the propagation algorithm
presented in Sec. 6.4.

2. The trace sub-graph HTR is acyclic with respect to use edges: Let use+ ⊆NHT R
×NHT R

denote the transitive closure over use edges. No trace node uses itself:

∀nHT R
∈NHT R

: ¬(nHT R

use+
−→ nHT R

) (6.20)

Due to this property, a trace node cannot be processed more often than once for propagation
to the target elements when HTR is iterated.

100

6.4. TRACE-BASED ANNOTATION PROPAGATION

3. Each create/use dependency between rule applications is explicit: If a trace node nHT R

encompasses an outgoing ctx edge to a target element t, nHT R
will posses an outgoing use

edge to another trace node referencing the target element t with an outgoing trg edge:

∀nHT R
∈NHT R

, ∀elHT
∈ ELHT

: nHT R

ctx−→ elHT
⇒

∃n′HT R
∈NHT R

\{nHT R
} : nHT R

use−→ n′HT R
∧ n′HT R

trg−→ elHT
(6.21)

Due to the construction of the trace graph and of use and trg edges, this property ensures
that the information in the trace graph is inherently consistent.

Based on above definitions and the properties of STT graphs, the single-variant derivation which
represents a single-variant model transformations is defined as follows:

Definition 6.3.9: Single-Variant Derivation

Let P be a set of trace-generating STT rules and S and T be a source and a target
graph, respectively. T is single-variant derivable from S via P (S P∗→ T) if STT graphs
G=GS←GTR→GT and H =HS←HTR→HT exist, satisfying the following conditions:

GS = S ∧ GTR = ∅ ∧ GT = ∅ (6.22)

G
P∗→ H (6.23)

HT = T (6.24)

G
P∗→ H is a complete STT derivation, thus, completeness carries over from general deriva-

tions to single-variant derivations.

Example 6.3.4: Transformation Derivation

In Fig. 6.3.4, the target graph GT has been derived from the source graph GS according
to Def. 6.3.9.

Thus, by employing relations between STT graphs (Def. 6.3.8), Def. 6.3.9 specifies a relation be-
tween source and target graphs and allows to formalize out-place batch transformations (Properties
5.3.3 and 5.3.1, respectively) in this way.
Summing it up, the definitions of rules and derivations in Sec. 6.3.1 and Sec. 6.3.3 conform to all
properties of the computational model postulated in Sec. 5.3.3.

6.4 Trace-Based Annotation Propagation
After having defined single-variant transformations and multi-variant graphs, this section describes
how the mapping function for a target graph is created from the mapping function of the source
graph. Effectively, these steps propagate the annotations from the source to the target graph.

6.4.1 Propagation Algorithm
Alg. 1 describes how the mapping function for the multi-variant target graph can be computed:
Please note: for the sake of a consistent representation, Alg. 1 is noted in the graph formalism.
Its implementation is in accordance with the common trace model (Sec. 5.2.3) and the informally
stated algorithm for trace-based propagation (Sec. 5.3.2).
Applying the algorithm to a (completely derived) graph H =HS←HTR→HT , where a mapping
functionmapFHS

:ELHS
→AF forHS exists, results in a mapping function forHT which conforms

to the definition of multi-variant graphs (Def. 6.2.4). As a consequence, MHSF
= (HS ,mapFHS

)

101

CHAPTER 6. FORMAL FOUNDATIONS

Algorithm 1 Trace-based propagation of annotations.
1: procedure propagate(H,mapFHS

,mapFHT
)

2: in mapFHS
: ELHS

→AF . Annotation function for the source graph HS
3: in H =HS ←HTR→HT . Target STT graph, derived from HS ←∅→ ∅
4: out mapFHT

: ELHT
→AF . Annotation function for the target graph HT

5:
6: var SRC ⊆ ELHS

,CTX ⊆ ELHT
,TRG⊆ ELHT

. Sets of source, context, and target
elements

7: var WHT R
⊆NHT R

. Working set of trace nodes
8: var nHT R

∈NHT R
. The current trace node to be processed

9: var aF ∈AF . Annotation to be assigned to target elements
10: var te ∈ ELHT

. The target element to be annotated
11:
12: WHT R

:=NHT R
. Initialize working set of trace nodes

13: while WHT R
6= ∅ do

14: nHT R
:=Select(WHT R

) . Select trace node in topological order
15: WHT R

:=WHT R
\{nHT R

} . Remove trace node from working set
16: . Determine source, context, and target elements (using arrow notation for edges):
17: SRC := {se ∈ ELHS

| nHT R

src−→ se}
18: CTX := {ce ∈ ELHT

| nHT R

ctx−→ ce}
19: TRG := {te ∈ ELHT

| nHT R

trg−→ te}
20: aF :=

∧
{mapFS

(src) | src ∈ SRC} ∧
∧
{mapFT

(ce) | ce ∈ CTX}
21: . The annotation is a conjunction of source and context element expressions
22: aF := SIMPLIFY(aF) . Simplify the annotation
23: for trg ∈ TRG do . Process all target elements
24: mapFHT

(trg) := aF . Annotate the target element
25: end for
26: end while
27: end procedure

is the multi-variant source graph from which the mapping function for the multi-variant target
graph MHTF

= (HT ,mapFHT
) is computed by employing the algorithm. Due to the following

properties, the mapping function is guaranteed to be consistent with the source mapping function.

1. Alg. 1 builds a mapping function which is total:
A complete derivation processes all derivation steps. The trace-generating STT derivation
creates a trace element in each derivation step. Alg. 1 iterates all trace nodes while assuming
that each element of HT is referenced by exactly one target edge trg which is declared as
property of STT graphs in Equation 6.19.

2. The computed annotation for each target element is well-defined:
According to Equation 6.20 the trace graph is acyclic which allows to perform a topological
sort. Consequently, the Select operation in Alg. 14 retrieves a trace node from the set of
open trace nodes only after all of its used trace nodes have been processed. In addition,
according to Equation 6.21, context elements of a trace node possess exactly one incoming
trg edge from a used trace node which is guaranteed to be processed beforehand. Therefore,
the annotation of context elements is always accessed after it was assigned its annotation by
the used trace node. As a consequence, the annotation computed in Alg. 24 is well-defined.

3. The mapping function assigns annotations which satisfy referential integrity as postulated
as property of multi-variant graphs (Def. 6.2.4, Equation 6.9) such that:

∀eHT
∈ EHT

: mapFHT
(eHT

)⇒
mapFHT

(sHT
(eHT

)) ∧ mapFHT
(tHT

(eHT
)) (6.25)

102

6.4. TRACE-BASED ANNOTATION PROPAGATION

For an edge e in EHT
two cases can occur: Either its ends are created in the same derivation

step or at least one end in a previous derivation step. If both ends are created by the same
derivation step, the same annotation will be assigned to the edge and its ends, satisfying
Equation 6.25 trivially. If one end of the edge e is created in a previous derivation step and
annotated with some annotation a′F , the annotation mapped onto e will be combined with
the annotation of its ends because those are context elements. As a result, the annotation
function comprises the annotation for the edge (e.g., aF) and the one of the ends, which
altogether is mapFHT

= a′F ∧aF .

Both cases satisfy referential integrity.

Based on the previous definitions, it is possible to define a multi-variant derivation, which relates
a multi-variant source graphs with a multi-variant target graph in one STT graph:

Definition 6.4.1: Multi-Variant Derivation

Let P be a set of trace-generating STT rules and H = HS ← HTR → HT be the STT
graph resulting from a complete STT derivation starting with HS ← ∅→ ∅. Let further
MHSF

= (HS ,mapFHS
) be a multi-variant source graph and letmapFHT

be the annotation
function resulting from employing the trace-based propagation algorithm (Alg. 1) with H
and mapFHS

as input.
Then, the multi-variant target graph MHTF

= (HT ,mapFHT
) is multi-variant derivable

from the multi-variant source graph MHSF
(MHSF

PF
∗

−→MHTF
).

6.4.2 Commutativity of Derivations
This section defines the commutativity criterion informally introduced in Sec. 1.2 to the graph
notation and sketches the important properties to prove its satisfaction with the trace-based
propagation.
Before explaining the commutativity criterion, we sum up the facts about single- and multi-variant
derivations in relation with the computational model for trace-based propagation introduced so
far:

• Since both, the single-variant transformation and trace-based propagation, exhibit functional
behavior (c.f., Sec. 6.3.2), the result of a terminating multi-variant transformation is unique
up to isomorphism.
Please note: this property will be guaranteed if the Select operation (Alg. 1, Line 14)
retrieves the trace nodes in the partial order defined by the use edge creation in trace-
generating STT rules.

• Executing a single-variant model transformation on a filtered source graph will terminate if
the multi-variant model derivation performed on the multi-variant source graph terminates
(c.f., Sec. 6.3.2). Similarly, the resulting graph is unique up to isomorphism.

• The filter function terminates and produces a single-variant graph which is unique up to
isomorphism.

According to these properties, the successful execution of the transform-filter path in the com-
mutativity criterion always terminates and produces a result unique up to isomorphism. The
commutativity criterion compares this result with the outcome of the filter-transform path where
the same feature configuration is provided to the filter function.
The commutativity theorem, visualized in Fig. 6.4.1, states that the graphs created by the
transform-filter and filter-transform paths for the same feature configuration deliver equal results
(up to isomorphism):

103

CHAPTER 6. FORMAL FOUNDATIONS

Figure 6.4.1: Commutativity in graph formalism.

Theorem 1 (Commutativity). Let P be a set of trace-generating STT rules, F and FCF be a
set of features and feature configurations over F , respectively, and filterF : GF ×FCF → G be a
graph filter function.
Let furtherMGSF

= (GS ,mapFGS
) be a multi-variant source graph and letMHTF

= (HT ,mapFHT
)

be a multi-variant target graph, which is multi-variant derived from MGSF
(GSF

PF
∗

−→HTF
).

Then, the following proposition is satisfied for each feature configuration fcF ∈ FCF :
Let G′S = filterF (MGSF

,fcF) and H ′′T = filterF (HTF
,fcF) be the filtered (single-variant) source

and target graph, respectively. Finally, let H ′T be single-variant derivable from G′S.
Then, H ′T and H ′′T are equal up to isomorphism: H ′T 'H ′′T .

The proof utilizes the following statements declared before: Let G P∗→ H be the complete STT
derivation, where G = GS ← ∅ → ∅ and H = HS ← HTR → HT are the multi-variant graphs
(without the mapping function). Similarly, letG′ P

∗
→H ′ be the underlying complete STT derivation

for the single-variant graph, where G′ =G′S ←∅→ ∅ and H ′ =H ′S ←HTR→H ′T . Per definition
the source graphs remain the same during derivations, such that GS =HS and G′S =H ′S , because
the source graph is not modified by a STT derivation (Def. 6.3.8). This property is a consequence
of the definition of STT rules (Def. 6.3.6).

Figure 6.4.2: Monomorphism preservation by complete derivations.

As a second fact, the filtered graphs are sub-graphs of the multi-variant graphs, such that G′ ⊆G,
which implies that the identity on G′ is a monomorphism mG :G′→G. Since monomorphisms are
preserved by complete derivations (which is proven in [WG20a]), such that the diagram depicted
in Fig. 6.4.2 holds, a monomorphism mH : H ′ → H exists as well. Applying this property to
the (transformations of the) commutativity diagram results in the diagram depicted in Fig. 6.4.3,
which is still silent on the properties of H ′′T .
To prove commutativity, the restriction mHT

of the monomorphism mH to H ′T , i.e., mHT
=

mH |H′
T
, is utilized which is sketched in Fig. 6.4.3, too. It is shown that the range of mHT

comprises exactly the graph H ′′T such that the following equation holds:

ran(mHT
) =H ′′T (6.26)

From this equation, it can be deduced that mHT
:H ′T →H ′′T is surjective resulting in H ′T and H ′′T

104

6.4. TRACE-BASED ANNOTATION PROPAGATION

Figure 6.4.3: Application of the monomorphism preservation to commutativity diagram.

being isomorphic: H ′T 'H ′′T .
Rephrasing Equation 6.26 uses the mapping morphism for the elements of HT which is denoted
as mELHT

and the knowledge that elements of H ′′T are only visible if their mapping function is
implied by the feature configuration:

∀el ∈ ELHT
: el ∈ ran(mELHT

) ⇔ vF (mapFHT
(el),fcF) = true (6.27)

For the proof of Equation 6.26 and Equation 6.27, the derivation sequence of G is employed
as well as the knowledge that only elements, the annotation of which is implied by the feature
configuration fcF , pass the filter function to become parts of G′S and H ′′T . The monomorphism
which maps the filtered graph onto the multi-variant graph reflects the latter property. We state
the property here for the elements of the source graph where it is guaranteed to be satisfied

∀el ∈ ELGS
: el ∈ ran(mELGS

) ⇔ vF (mapFGS
(el),fcF) = true (6.28)

For the derivation sequence G0, . . .Gn we know that it is increasing monotonically, each source
graph GS,i in the sequence, where 0≤ i≤ n, is the same as GS , such that GS,i =GS and that the
resulting graph Gn equals H, such that Gn =H. Furthermore, the derived target sub-graph of G
is the same as the target graph of H, such that GT,n =HT .
To this end, for an element to be present in H ′′T the annotation of the element has to be visible
given the feature configuration. According to Alg. 1, the annotation is computed from the source
and context elements stored in the trace. We know that the annotation of an element is visible
if and only if the annotations of all its source (SRC) and context elements (CTX) are visible as
well. Based on this knowledge and the fact that all elements in GT which are present in the range
of mELHT

have to be visible in the given feature configuration, the following equation holds in
each derivation step i:

vF (aF ,fcF) = true ⇔ ∀s ∈ SRCi : s ∈ ran(mELGS
) ∧ c ∈CTXi : c ∈ ran(mELHT

) (6.29)

If and only if matches (ρ′i,m′i) in the complete single-variant derivation G′ P
∗
→ H ′ and (ρi,mi) in

the complete multi-variant derivation G
P∗→ H exist, satisfying the following two properties, all

source and context elements are guaranteed to be members of the respective ranges as postulated
in Equation 6.29:

1. ρi = ρ′i

2. The monomorphism from H ′ to H, mH , maps the elements of match m′i onto those of match
mi.

As a consequence, if and only if the matches (ρi,mi) and (ρ′i,m′i) satisfy these properties, the an-
notation assigned to the target elements in derivation step i evaluates to true. Matches correspond
with each other if and only if the elements created by applying the respective rule correspond with
each other. This knowledge, results in the following fact:

vF (aF ,fcF) = true ⇔ ti ∈ ran(mELHT
) (6.30)

105

CHAPTER 6. FORMAL FOUNDATIONS

Since the new target elements which evaluate to true would be part of the next derivation step it
can be concluded that the rephrased property to prove commutativity (Equation 6.27) is satisfied
by the construction of the propagation algorithm in accordance with the definition of the single-
and multi-variant derivations.

6.5 Summary
Altogether, this chapter formally defines multi-variant M2M transformations by employing Graph
theory. By defining graphs and their transformation, firstly, by a set of in-place rules and secondly,
by out-place rules, the chapter formalizes the concept of trace-based propagation, subsequently.
Sec. 6.3.2 and Sec. 6.3.3 explain to what extent the definitions conform to the computational model
for trace-based propagation before presenting the propagation algorithm in Sec. 6.4.1. Finally,
Sec. 6.4.2 summarizes the essential steps for proving commutativity of the proposed propagation
approach.
Despite proving commutativity for the trace-based annotation propagation conforming to the
computational model, existing transformation languages or their engines may violate the compu-
tational model in different respects: Transformation engines exist which do not store complete,
fine-grained trace information permanently. The corresponding languages may be more powerful,
for instance, they may support non-local or non-functional rules. Similarly, transformations may
be performed incrementally to prevent redundant computations. Therefore, the following part of
the thesis presents annotation propagation strategies for transformation scenarios which violate
the computational model.

106

Part IV

Extensions to Trace-Based
Annotation Propagation

107

Chapter 7 Missing Trace Information

Untersuchen was ist, und nicht was behagt1

Johann Wolfgang von Goethe
(The Attempt as Mediator of Object and Subject, 1792)

∼

As foreshadowed by the concluding summary of the previous chapter, the computa-
tional model for the trace-based propagation may be too restrictive to be applicable
in several real-world transformation scenarios. On the one hand, as a consequence of
different granularity, the trace information may not be complete, rendering a trace
generation-complete or incomplete. On the other hand, some transformation engines
do not generate or persist a trace at all. For instance, the default ATL virtual machine
constructs a trace for a subset of the rule types, the matched rules, internally but
does not store the trace permanently after the execution. For this reason, this chapter
offers solutions to scenarios in which the level of trace completeness and granularity
is less than the one expected by the computational model for trace-based propagation.

Fig. 7.0.1 presents the organization and relationships of the sections of this chap-
ter. The computational model for trace-based propagation postulates complete and
fine-grained trace information to satisfy commutativity. Accordingly, the first section
discusses the impact of a generation-complete trace on the commutativity criterion. As
this information suffices to create a completely annotated target model automatically,
the trace-based propagation is not modified.

Conversely, Sec. 7.2 offers a solution for the situation in which either a generation-
complete or complete trace is available but the persisted information is more coarse-
grained than the granularity at which annotations can be assigned to model elements.
For instance, while the trace only stores corresponding source and target objects, an-
notations may also be mapped onto their structural features, such as their names.
Then, the trace-based propagation can be executed as preliminary step to compute
annotations for the corresponding elements recorded in the trace. A following analysis
of the transformation definition, represented as bytecode instruction model, serves to
determine the missing fine-grained annotations.

If the trace is incomplete instead, Sec. 7.3 offers heuristic completion algorithms to
determine missing annotations in the target model automatically whereas Sec. 7.4
presents two possibilities to automatically reconstruct trace information without ana-
lyzing the transformation in the case that a trace is unavailable.

1 Investigate what is, and not what pleases.

109

CHAPTER 7. MISSING TRACE INFORMATION

missing annotation
determination

1

22

3

DSL-based propagation

model matching

complete
trace

generation-complete trace
 fine-grained

coarse-grained

incomplete
trace

no
trace

mapping incompleteness

white-box analysis

trace-based propagation

Sec 7.2Sec. 7.1 Sec 7.3 Sec 7.4

manual annotation
preservation

Sec 7.5

Chp. 6

mapping completeness

Figure 7.0.1: Overview and interplay of strategies to maintain missing trace information.

To this end, due to the missing mapping information, we apply heuristic strategies to
complete annotations. As a result, some elements in the target model may not be an-
notated correctly, such that it may be necessary to fix the annotations manually. The
requirement to repair target annotations may occur if the trace is generation-complete
or too coarse-grained and if the annotation completion relies on heuristics. Manually
assigned annotations, however, should be pertained in consecutive transformations of
the same source model, to preserve the manual effort. Therefore, Sec. 7.5 describes
how to preserve manual annotations in incremental transformations and how to main-
tain them in an incremental propagation.

[GSW17], [GW18c], [BG18], [GW19c], [GW20] and [GNS22] lay the grounds for the contents of
this chapter.

110

7.1. GENERATION-COMPLETE TRACES

7.1 Generation-Complete Traces
This sections illuminates the situation when the reused transformation engine persists generation-
complete instead of complete traces. At first, Sec. 7.1.1 describes the problem provoked by
generation-complete traces: the derived target model may comprise too many elements which are
not created by the single-variant transformation performed on the derived source model because
the context element is missing. While an annotation propagation based on a generation-complete
trace still yields a completely annotated model (Sec. 7.1.2), it may impact the correctness of
the propagated annotations, as an example in Sec. 7.1.3 illustrates. The closing section draws a
conclusion of these observations.

7.1.1 Problem Description
Per definition, a generation-complete trace consists of an ordered list of trace elements which
record source elements and the target elements which are created and added to the target model
by applying a rule. As opposed to a complete trace, the generation-complete trace does not store
context elements, i.e., already existing target elements which are necessary to create a new target
element. Similarly, this trace does not store further source elements which were responsible to
create the context elements.
According to the computational model for trace-based propagation, propagating annotations based
on a generation-complete trace cannot guarantee commutativity, in general. By postulating com-
plete traces, the computational model regards the fact that a transformation rule requires the
presence of the context element to construct the new target elements. Thus, the annotation of
the context element has to be satisfied in order to create the target element because otherwise the
context element would be missing and the target element could not be created by the single-variant
model transformation.
However, even though generation-complete traces violate the computational model for trace-
based propagation, this section discusses the implications of propagating annotations based on
a generation-complete trace: On the one hand, a trace of such granularity ensures a completely
annotated target model, nonetheless. Since the generation-complete trace records each created
element in the target model, the propagation algorithm can map an annotation onto each of
them. On the other hand, the effect on commutativity may depend on the contents of the rule,
particularly on the reason why another target element is considered a context element.

7.1.2 Completely Annotated Target Model
Although a generation-complete trace does not record context elements, the trace-based propa-
gation can combine the annotations of the source elements in a conjunction and assign them to
the elements which are created by applying the corresponding rule in the target model. Since
a generation-complete trace records all elements of the target model, which were created by the
transformation, such that Equation 6.13 (each element in the target graph is referenced by ex-
actly one trg-edge) still holds, an annotation will be mapped onto all target elements after the
trace-based propagation has finished.
Consequently, the result of a trace-based propagation based on a generation-complete trace be-
haves differently than a propagation based on incomplete traces, which is discussed in Sec. 7.3. The
information in incomplete trace cannot ensure a completely annotated target model which leaves
room for uncertainties about the presence of target elements in derived products. Conversely,
propagating annotations based on a generation-complete trace does not require to compute miss-
ing annotations and ensures that each target element carries the annotation of its corresponding
source elements.

7.1.3 Correctness of Propagated Annotations
In general, the missing information of a context element may provoke the situation that a target
element is not created by the single-variant model transformation due to the missing context

111

CHAPTER 7. MISSING TRACE INFORMATION

s1: Class

s2 : Reference trg2 : FD

trg1 : CDt1 : C2C

t2 : R2F

trace
targetsource

 B

MHTF
 MGSF

G'S
H''TH'T

⌐A ∧ B filter

 A A

A ∧ B

⌐A ∧ B

 s2 : Reference t2 : R2F

s1: Class

s2 : Reference trg2 : FD

trg1 : CDt1 : C2C

t2 : P2F

trace
targetsource

 B

MHTF
 MGSF

G'S
H''TH'T

⌐A ∧ B filter

 A A

⌐A ∧ B

t2 : P2F

 B

trg2 : FD≃∅ ∅ ∅

type typetype type

 s2 : Reference≃

generation-completecomplete

Figure 7.1.1: Commutativity in propagation based on generation-complete vs. complete trace.
The type-link is annotated with the same annotation as the s2 and trg2, respectively.

element (and the source element corresponding with the context element). This may be the case
either because the presence of the source element which is responsible for creating the context
element or the presence of the context element itself is necessary to match the rule and to generate
the target element or because the missing source elements yield a malformed derived source variant
and prevents the single-variant transformation to be executed at all. Ex. 7.1.1 explains such
situation in a class model to Java model transformation.

Example 7.1.1: Violation of Commutativity due to Generation-Complete Trace

Fig. 7.1.1 illustrates an example of violated commutativity caused by generation-complete
(fine-grained) trace information. The example demonstrates a rule transforming a reference
into a field declaration. The multi-variant source model MGSF

consists of a class s1 and
a reference s2 which are annotated with the two optional features A and B (which are not
related by further constraints).
The transformation specification requires the presence of the type of the reference to execute
the rule R2F. If the source class which is linked as type is not present (i.e., null), the
transformation will not execute the rule because of a respective application conditiona.
Accordingly, the complete trace records the class s1 besides s2 and the type-link as source
element for the rule application R2F and the class declaration trg1 as context element
whereas the generation-complete trace, depicted on the right side, only records the source
and target element, s2 and trg2 and their respective type-links, respectively.
The propagation based on the complete trace, depicted in the left part of the figure, maps
the annotation A ∧ B onto trg2 and its type-link, thereby combining the annotations of the
second source element s1 and the context element trg1 with the one of the actual source
element s2 and its type-link (and removes each of the redundant features A and B).
The derived single-variant source model on the left hand-side comprises the reference s2
only. The filter removes the type-link because it would be a dangling link. Consequently,
the single-variant transformation will not execute rule R2F due to the missing required
source type. Thus, H ′T remains empty.
Deriving the target model H ′′T from the multi-variant target model MHTF

, depicted on
the left hand-side, which was annotated based on the complete trace, yields a commuting
transformation: The derived target model H ′′T is empty, too.
The right part of the figure depicts the result of annotating the target model based on the
generation-complete trace. As opposed to the left side, the field declaration trg2 remains
in the derived variant H ′′T after deriving H ′′T from theMHTF

whereas the filter removes the
type-link again due to the missing target element. Nevertheless, the annotation propagated
based on the generation-complete information causes a violation of commutativity.
a The rule is (still) local because the type of the reference is part of the left side which needs to be matched

in the input model.

112

7.2. COARSE-GRAINED TRACES

Please note: A similar situation as in Ex. 7.1.1 may occur if the transformation engine transforms
valid models only. If, instead of guarding the rule with an application condition, a well-formedness
rule is present on the source metamodel, the single-variant transformation may not be executed
at all. In this example a well-formedness rule may foster that the type of a reference must not
be null. If the transformation engine checks whether the input model is valid before initiating
the transformation, it will not execute the transformation specification. As a consequence, H ′T is
empty and commutativity may be violated, too. This may also be the case, if a hierarchical filter
is applied to the target model because it would only regard well-formedness rules associated with
the target element for which the annotation of the context element is missing.
On the whole, the example demonstrates that a missing context element may provoke the situation
where a rule is not executed due to a missing element and, consequently, that the target elements
are not created. However the annotation mapped onto the target element in the multi-variant
target model, which misses the annotation of the context element, provokes the inclusion of the
target element in the derived variant. Thus, while in some scenarios generation-complete traces
suffice to satisfy commutativity, as the evaluation will show (c.f., Sec. 10.3), a generation-complete
trace alone cannot guarantee commutativity.

7.1.4 Consequences
All in all, a propagation based on a generation-complete trace ensures a completely annotated tar-
get model in the first place. Furthermore, the propagation maps the annotation of source elements
onto the corresponding target elements which are created by the rule application. Accordingly,
whenever the source elements are present in a derived product the corresponding target elements
will be present as well. However, as a consequence of missing context elements, the single-variant
transformation performed on the derived source model may not create the target elements, which
are present in the derived target model. Thus, it may violate commutativity, in general.

7.2 Coarse-Grained Traces
The computational model postulates that traces are as fine-grained (c.f., Prop. 5.3.8) as the
model filter and the mapping annotation function as one criterion for a correct propagation of
annotations. If the trace persists more coarse-grained information only, necessary annotation
information may be missing and commutativity will not be guaranteed anymore. Solving this
problem requires to extract information about corresponding elements which is as fine-grained as
the model filter and the mapping annotation function.
The following descriptions investigate the situation in which traces store correspondences be-
tween all objects but not between their structural features (i.e., their attributes and references)2.
Structural features of objects appear, for example, in each instance of the Ecore metamodel (c.f.
Sec. 9.1.1). If the structural features of target objects possess customized values apart from a
default one, the transformation specification may assign and transform specific values to these
structural features. For instance a UML class to Java model transformation may assign the name
of a UML class to the corresponding Java class declaration. As a consequence, at least the transfor-
mation specification encapsulates the knowledge which source elements and structural features are
used to create a structural feature of a target object. In a similar way, low-level bytecode contains
the similar information but it is represented in a way that is more agnostic of the corresponding
transformation language, particularly of its syntax. Therefore, the transformation specification
represented in form of bytecode instructions may be exploited complementary to the present trace
information about corresponding objects.
This section sheds light on white-box analysis strategies to complement the propagation of an-
notations in multi-variant model transformations and discusses the benefits and shortcomings of
analyzing a bytecode model. Thus, the following descriptions assume that the target model was

2 The constellation of fine-grained mappings combined with a coarse-grained trace occurs, for instance, when
propagating annotations of multi-variant models created with the tool Famile based on an ATL/EMFTVM
trace.

113

CHAPTER 7. MISSING TRACE INFORMATION

already created and that a trace-based propagation of annotations at the object level has already
been performed.

Road Map Sec. 7.2.1 illustrates the problem based on an example which maps an annotation,
which is more specific than the one of the source object, onto one of the source object’s attributes
which violates commutativity. Based on this example, it draws conclusions on the correctness of
the transformation and sketches solution ideas.
The subsequent sections present how to analyze the bytecode of model transformations. At first,
this task requires to be familiar with bytecode instructions and their relations with transforma-
tion rule assignments. Therefore, Sec. 7.2.2 establishes a general understanding of the bytecode
instruction analysis. When analyzing the instructions patterns which assign structural features of
source objects to structural features of target objects, assignment patterns have to be recognized
which are explained in Sec. 7.2.3. The following sections, Sec. 7.2.4 and Sec. 7.2.5, derive the
propagation algorithm based on identifying assignment patterns in bytecode instructions infor-
mally and formally. To conclude this section, Sec. 7.2.6 discusses the pros and cons of additionally
analyzing bytecode instructions for propagating fine-grained annotations as well as related work
on model transformation analysis.

7.2.1 Problem Statement
This sections illustrates the problem which occurs if the mapping granularity of the source and
target model resides at a more fine-grained level than the correspondences between source and
target elements stored in the trace.

Assumptions The following descriptions assume that (at least) a coarse-grained generation-
complete trace is available. Consequently, a transformation with MGS as input has created an
output modelMHT . Moreover, correspondences between all source and created target objects are
available in form of a trace and annotations have been mapped onto all target objects corresponding
with source objects. However, the coarse-grained trace granularity does not always suffice to
correctly annotate the target model, as the following example demonstrates.

oAttributes

uc : Class
name = "Person"

name= "firstNames"
upper = -1

up : Property

P ∧ N ∧⌐F∧⌐MN

G'S H''TH'T

abstract syntax

concrete syntax

Person

/name: String
firstNames : String[0..*]
surname: String
birthday: String
employmentState: EmploymentState

not Family

Name MultipleNames

Name

Family

Name

MultipleNames

feature model excerpt

Person

Person

eAttributes

ec : EClass
name = "Person"

name= "firstNames"
upperBound = -1

ea : EAttribute

MultipleNames

filter

≃
eAttributes

ec : EClass
name = "Person" single-variant

model
transformation

name= "firstNames"
upperBound = 1

ea : EAttribute

Name

Person

trace-based
propagation

oAttributes

uc : Class
name = "Person"

name= "firstNames"
upper = 1

up : Property

oAttributes

uc : Class
name = "Person"

name= "firstNames"
upper = -1

up : Property

P ∧ N ∧⌐F∧⌐MN

Person

... MGSF
 MHTF

Figure 7.2.1: Commutativity violation due to fine-grained annotation mapping.

114

7.2. COARSE-GRAINED TRACES

Example 7.2.1: Annotation Violation Provoked by Coarse-Grained Trace

Fig. 7.2.1 sketches how a coarse-grained annotation for a structural feature of an object
violates commutativity. The figure illustrates an Ecore to UML class model transformation
which converts an excerpt of the database product line model into the corresponding UML
class model.
On the left, the top of the figure captures relevant excerpts of the adapted feature model
whereas the bottom depicts the model fragment and its annotations in concrete syntax.
The feature model is extended by an optional feature MultipleNames which serves as child
of the mandatory feature Name. The latter is selected whenever the feature Person is
selected in a feature configuration.
A product line developer has mapped the feature MultipleNames as annotation onto the
value of the EAttribute upperBound which defines the number of allowed first names of a
person. Consequently, in this example, it is possible to annotate the structural features of
objects, which, for instance, the MDPLE tool Famile, supports. Furthermore, the presence
of a structural feature depends on the presence of its objects. Accordingly, no annotations
are mapped onto the remaining structural features because they carry the annotation of
the object which they refine implicitly. Thus, they can only exist, if the object they refine
exists, too.
The right side of the figure notes the transformation scenario in abstract syntax which
depicts how annotations are mapped onto the structural features of objects. On the top,
the figure shows the relevant excerpt of the multi-variant source and the multi-variant
target model. The latter results from a trace-based propagation based on a coarse-grained
trace, which only records source and target objects but no correspondences between their
structural features. While the property which is created for the source attribute receives
the annotation Name, no annotation is mapped onto the UML structural feature upper
which corresponds with the structural feature upperBound.
On the bottom of the right side, the figure depicts the filtered models for the feature
configuration which selects the features Person and Name and deselects the features Family
and MultipleNames. As the annotation of the attribute upper is not satisfied by the feature
configuration, the model filter removes the value and the default value 1 replaces the
multiplicity of -1. Transforming this model with the single-variant model transformation
creates the transformed target model H ′T where the attribute upper is assigned the same
value 1. However, the derived target model H ′′T still comprises the value -1 for the same
attribute. Consequently, H ′T and H ′′T mismatch and violate commutativity.

Consequences This example allows for drawing the conclusion that trace information which is
more coarse-grained than the mapping mechanism cannot guarantee commutativity. If the map-
ping mechanism maps annotations at the level of structural features while the used transformation
trace records source and target elements at the object level, the values of the structural features
may diverge between the transformed single-variant source model and the derived target model.
Thus, coarse-grained traces may threaten commutativity.

Solution Ideas Two solutions may mitigate this problem:
Firstly, the trace information could be extended which requires to inject functionality into the
execution to record and map also structural features of objects. In practice, only few examples
of traces, which persist such fine-grained information [Bec+07], already exist. Changing the
execution engine instead, requires the rights to modify the engine and represents an engine-specific
solution. Thus, it contradicts the research objectives to reuse existing transformation capabilities
without modifications (item RO1) and to provide a generic solution (item RO3).
Secondly, the transformation specification which encodes the information as well could be analyzed.
Particularly, some execution engines, such as eMoflon [LAS15] and the ATL/EMFTVM [Wag+12],
persist execution models, resulting from applying the transformation. These execution models can
be analyzed and used to extract the information about corresponding elements in a more general
way than parsing and analyzing a specification written in a specific transformation language.

115

CHAPTER 7. MISSING TRACE INFORMATION

7.2.2 Bytecode Instruction Analysis

This section introduces the background knowledge for analyzing bytecode instructions to propagate
fine-grained annotations. First, the section provides an overview of the dependencies between rules,
traces and bytecode instructions. For extracting corresponding elements, the essential activity is
to recognize assignment patterns in the bytecode instructions. Therefore, the second part of this
section gives an introduction to bytecode instructions, in general, and continues to give a concrete
example of an ATL transformation rule and the corresponding bytecode instructions, in particular.

Overview of Analyzing Transformation Rules and the Generated Artifacts Concluding
from the sketch to solve the problem (c.f., Sec. 7.2.1), one way to gain a more fine-grained mapping
may extend the trace information which requires to change the execution behavior to persist more
fine-grained annotations during the execution. Alternatively, the transformation specification or
its execution model can be analyzed. Thus, this section offers an overview on the dependencies
between a transformation specification, traces, and bytecode instructions. These dependencies
and corresponding technical considerations lay the ground to derive and examine the bytecode
analysis in subsequent sections.

transformation

rule

bytecode

instruction opcodes

translates into

creatematch

transformation execution

instruction opcodes

analysis

trace

element

manifests

analysis

result

trace

analysis

input

maps

matched

structural features

matched

objects

target object

 structural

features

source object

 structural

features

Figure 7.2.2: Schematic overview of bytecode instruction analysis-based propagation.

Fig. 7.2.2 presents a schematic overview of the dependencies between a transformation rule, a
corresponding trace element, the transformed objects and the bytecode instruction opcodes into
which the rule is translated. The figure exemplifies these dependencies based on applying one
rule, which transforms one source object into one target object. This single rule application serves
as representative for the entire transformation consisting of several of such and potentially more
complex rule applications. A more complex rule may comprise several source and target elements.
The transformation execution part, depicted on top of the figure, comprises the transformation
rule, a trace element which is generated by applying the rule, and corresponding bytecode instruc-
tions into which the transformation rule is translated. A source object matches the rule and the
rule creates a target object. Even though not depicted in the figure, other kinds of rules may also
match several source objects and create or employ several target objects. A (generation-)complete
trace records all matched source elements and all created target elements in the trace element
whereas the bytecode instruction opcodes field summarizes all instructions being executed in order
to generate the target elements.
While the middle part of the figure shows the two possibilities of either analyzing the trace or the
instruction opcodes resulting from the execution, the part at the bottom presents the results of

116

7.2. COARSE-GRAINED TRACES

Table 7.1: Overview of basic ATL/EMFTVM bytecode instructions.

Mnemonic Description

LOAD <localVariable>
Load the reference to the given local variable onto the operand
stack

GET <fieldname> Fetch the value stored in the given field of the loaded object
PUSH <value> Push the given value onto the operand stack
SET <fieldname> Assign a value computed before to the given field

INVOKE <opname>
Perform the given operation that is specified (e.g., a concatenation
operation or a trace lookup)

IF <offset>,<trg> Branch the execution based on a condition
ITERATE <offset>,<trg> Iterate a collection which provokes a branch the execution
GOTO <offset>,<trg> Go to the instruction specified as target

these analyses: Analyzing the information from the trace element only, results in matched objects
which will not suffice if annotations are mapped onto their structural features. If the bytecode,
into which the transformation specification is translated, is analyzed, it will be possible to retrieve
more fine-grained mappings. The bytecode consists of instruction opcodes which can be iterated in
the analysis step to detect assignments of source structural features to target structural features.
Particularly, this step can also include the analysis of supportive methods that compute a complex
value, such as OCL expressions stated in queries or helper definitions. In a similar way, the rules of
the transformation specification itself could be analyzed which requires a language-specific parser
which is aware of the entire syntax and semantics of the language. For instance, the execution
of a transformation rule in ATL depends on its nature and can be initiated by a global matching
(top rules) or by invoking it from another rule (lazy and called rules).
In summary, either the transformation specification or the bytecode can be analyzed to retrieve
fine-grained correspondences between the source and created target model. In the figure, this
would mean either analyzing the transformation rule or the bytecode instruction opcodes. Ana-
lyzing the transformation specification requires access to the specification and a parser, specific
to the language. Since the syntax and semantics of a language undergoes evolution more often
than the bytecode representation, the parser needs to be updated to new syntax and correspond-
ing semantics provided by the transformation specification and the execution engine. In general,
bytecode instruction opcodes, however, remain stable while the language chances: For example,
the opcodes used in the Java virtual machine have not changed in between the Java SE 8 and Java
SE 17 versions [Lin+15; Lin+21]. Therefore and due to the fact that the execution bytecode for
a transformation specification may be available as a model or can be abstracted and translated
into a model, we discuss how to analyze the bytecode model in the remainder of this section.

Overview of Relevant Bytecode Instructions Before diving into the analysis of trans-
formation rules, this paragraph introduces important bytecode instruction opcodes, which rep-
resent assignment statements. For exemplifying the instructions we employ the names of the
ATL/EMFTVM engine, which are closely related but not as details as the Java instruction op-
codes.
To begin with, a stack of instructions represents a transformation rule. A summary of these
relevant instructions is provided in Table 7.1. Each instruction possesses an opcode mnemonic,
representing the opcode kind with a short term in natural language, and an operand stack of
variables on which the opcode is executed. The first column of Table 7.1 states the mnemonic and
the operands pushed on the stack whereas the second column offers a short description.
The upper part of rows in Table 7.1 holds instructions that interact with variables. Load-
instructions load a local variable by retrieving it from the given reference and push it onto the
operand stack. Similarly, get-instructions retrieve specific fields from the loaded reference. For
instance, if a class is loaded, the field name can be retrieved. While PUSH instructions do not
necessarily access an object to push the given value, which can also be static, onto the operand
stack, the SET operation retrieves the value and assigns it to the given fieldname. Accord-

117

CHAPTER 7. MISSING TRACE INFORMATION

ATL Ecore2Java rule ATL Ecore2Java execution model

Figure 7.2.3: Mapping of ATL/EMFTVM rule onto bytecode instructions.

ingly, the EMFTVM execution model distinguishes LocalVariableInstruction (i.e., LOAD)
from FieldInstructions (i.e., GET and SET) whereas the PUSH instruction is considered a
regular instruction.
The lower part of the instruction table comprises branch instructions as well as the invoke operation
instruction. While the invoke operations specifies the name of the operation that should be
performed, branch instructions store an offset and a target instruction.
For more detail we refer the interested reader to the entire list of EMFTVM bytecode instructions
depicted in Fig. A.2.1 which is retrieved from the corresponding ATL/EMFTVM Eclipse plugin3

Example of Representing Assignments as Bytecode Instructions A model transfor-
mation creates target elements according to the transformation specification. Regardless of the
transformation paradigm, such as declarative or a procedural language, information is retrieved
from the source model and used to create a target element. Based on that fact, we can identify
common patterns which are used to assign a value to the structural features, i.e., the attributes
and references, of an object.
Therefore, Ex. 7.2.2 presents a concrete example of an ATL rule and the corresponding bytecode
instructions. The ATL/EMFTVM compiler records these instructions in a model at each save
operation in the editing (Eclipse) workspace. The example and further code fragments which
assign values in a transformation serve to classify and scrutinize types of patterns in the following
sections.

Example 7.2.2: ATL Transformation Rule and Bytecode Instructions

Fig. 7.2.3 depicts an ATL rule, which creates a Java interface and a class declaration
for each EClass of a given Ecore model, on its left side. On its right side, it shows the
corresponding execution model created from the ATL/EMFTVM plugin.
While the first part of the ATL rule states the from-pattern, i.e., the characteristics required
to match a source object, the to-pattern in the second part of the rule describes, which and
how target elements are created. The rule creates a Java interface and class declaration
as target elements. The bytecode model records the corresponding elements as input and

3 The ATL/EMFTVM execution metamodel is contained in the Eclipse plugin project:
org.eclipse.m2m.atl.emftvm.

118

7.2. COARSE-GRAINED TRACES

output rule elements, respectively.
The first assignment, name <- src.name occurs in the creation of the interface, which
is highlighted with a surrounding blue rectangle. The statement assigns the name of the
matching source object src as name to the interface. For this task, the assignment retrieves
the value of the attribute name of the source object and assigns it to the corresponding
attribute of the interface object which is created. The topmost blue rectangle on the right
side highlights the resulting instruction opcodes. First, the opcodes LOAD the target and
source element. Then, the name of the source object is RESOLVEd and then SET to the one
of the target object.
The second and third assignment occur in the part creating the class declaration. The
second assignment name <- src.name + ‘Impl’ composes the name for the class decla-
ration from the source name concatenated with the static String value ’Impl’. Since the
first part of the assignment is exactly the same as for the first assignment, the first part
of opcodes is the same, too. In addition to the opcodes representing the first assignment,
this assignment involves a PUSH opcode, which lays the static String value Impl on the
stack, together with another INVOKE instruction, which stores the concatenation operator
+. Based on executing these opcodes, in the end the concatenated name is assigned to the
class declaration.
The third statement, package <- src.ePackage assigns the (first) element which is cre-
ated for the referenced ePackage of the source object as the package of the class declaration.
Even though the rule states that the ePackage of the source element is assigned to the
target object, the ATL execution engine retrieves the corresponding target element from a
runtime trace which it maintains to resolve objects. Interestingly, despite loading different
source element types (attribute vs. referenced object, i.e., static vs. dynamic element), the
opcodes in the execution model are the same for the first and third assignment.

Consequences This example allows for inferring that different assignment patterns occur which
(may) rely on the values of structural feature of the matching source object. Either a source value
is assigned directly, or it is composed of other static or dynamic values and assigned in this
way. Similarly, referenced objects or their values may be used to retrieve the assigned value.
More complex expressions can be stated on the right side of such assignment which the following
paragraphs illuminate.

7.2.3 Classification of Patterns in Model Transformation Languages
As Ex. 7.2.2 shows, different forms of statements assign values to structural features of target
objects. Depending on the paradigm, syntax and semantics of the transformation language, these
assignments may expressed at different stages of complexity. However, at an abstract level, the
assignments share the goal of assigning a value to the structural feature of a target object, mostly
by exploiting information of the source model.

Road Map Therefore, the first part of the following paragraphs introduce a taxonomy based
on which assignment patterns can be classified. The second part illuminates concrete assignment
patterns and their corresponding bytecode instruction opcodes whereas the concluding part collects
observations which are important to propagate annotations.

I Assignment Pattern Taxonomy

Fig. 7.2.4 presents a taxonomy which classifies assignments and helps to gain an overview before
exploring the details of specific assignments.

Occurrence Firstly, a transformation rule can state an assignment directly or indirectly. The
ATL example of Fig. 7.2.3 demonstrates direct assignments only, which declare how to compute the
assigned values from potentially different sources of information. In contrast, indirect assignments
invoke another method to compute the assigned value. Such helper method may be implemented

119

CHAPTER 7. MISSING TRACE INFORMATION

assignments

occurence

single multipleindirect

source object

direct

input other

cardinality

target object

dynamicstatic

value
computation

output other

combined

Figure 7.2.4: Classification of assignment patterns in model transformation languages.

either in the transformation specification or in an associated GPL file. The main difference between
a direct and indirect assignment is that invoking a method creates a branch in the execution flow.
As a consequence, different bytecode instructions represent the method call. Particularly, indirect
assignments may invoke another method which may be defined in another file and potentially in
another language.

Cardinality Furthermore, a transformation rule can use a single value (e.g., of the source object)
or multiple ones to compute the assigned target value. The actual complexity of the assignment
depends on the operations executed on these multiple values and the source from which the values
are retrieved.

Value Computation The computation of values involves several stages of complexity. Assign-
ing a static value resides at the lowest level of complexity and does not require any computation.
Assigning a dynamic value instead, means to compute the information from model elements. At
first, we can distinguish the type of object which is stated in the assignment. Either an object
from the source or from the target model can be used to compute the assigned values. In the
example presented in Fig. 7.2.3, only the input object serves as source from which the assigned
values are extracted. While the first two assignments of this example retrieve values of attributes
of the input source object, the third assignment retrieves the value from an object referenced as
ePackage from the source object. Thus, the assigned value is computed either from the input
source object or from another source element, which may be referenced by the source object or
may be stored in a variable.
As an alternative, if a rule creates multiple target elements, it is possible to assign one of them
as referenced by another of the created target elements. For instance, in Fig. 7.2.3 it is possible
that the rule assigns the created interface declaration tar as one of the implemented interfaces by
adding them into a corresponding reference of the created class declaration tar2. Thus, the rule
uses the value of another target element of the same rule.
Furthermore, the values of a context element which is the target element of another rule might be
used explicitly by employing the trace and providing some source object, e.g., referenced by the
input source object of the rule. Such operation is stated by invoking an operation which accesses
the trace during the execution and retrieves the corresponding created target element. As an
example, ATL allows to access the trace by invoking the operations resolve() or resolveTemp().
It must be noted that stating the reference to a source object requires an implicit resolve operation
which looks up the corresponding target elements in the trace, too. Even though the effect of
stating a source object on the right side is the same as stating the target element which was
created for that source object, the opcodes diverge.

II Assignment Patterns

Based on this classification, the following paragraphs introduce common patterns in more detail.
Straightforward patterns are single-value direct assignments of exactly one value (e.g., of a source

120

7.2. COARSE-GRAINED TRACES

element) to one structural feature of the target object. In contrast, multi-valued assignments
compute the target value from multiple elements. The following paragraphs illuminate both types
and further patterns subsequently.

Overview of Single-Value Assignments Table 7.2 enumerates types of assigning a single
value to a single-valued structural feature of the created target object. It must be noted that the
table incorporates assignment operations which reduces several distinct values to one. However,
in each of these reductions only up to one single value from a structural feature of the input source
object is retrieved which may be combined with several static values. The leftmost column classifies
the assignment pattern whereas the second column gives an example in ATL. The rightmost
column enumerates the corresponding bytecode instructions as represented in the ATL/EMFTVM
execution model.

Table 7.2: Bytecode instruction opcodes of direct assignment patterns of single values.

Assignment Type Example Instructions

1-valued direct assignment,
static

name ← ‘SomeName’ LOAD(tar), PUSH, INVOKE(resolve),
SET(name)

1-valued direct assignment,
dynamic

name ← src.name LOAD(tar), LOAD(src), GET(name),
INVOKE(resolve), SET(name)

1-value direct assignment,
combined

name ← src.name +
‘.java’

LOAD, LOAD, GET(name), PUSH(‘.java’),
INVOKE(+), INVOKE(resolve), SET

1-valued direct assignment,
chained

name ←
src.ePackage.name

LOAD, LOAD, GET(ePackage), GET(name),
INVOKE(resolve), SET(name)

1-valued direct assignment,
chained-combined

name ←
src.ePackage.name +
‘impl’

LOAD, LOAD, GET(ePackage),
GET(name), PUSH(’.impl’), INVOKE(+),
INVOKE(resolve), SET(name)

First of all, a static value can be assigned to a target attribute. The assigned value may not
necessarily be of type String, as in the examples of the table, but the expression may assign
another primitive type, such as an Integer (e.g., upper ← -1) or an enumeration literal, to
an attribute with a corresponding type. The first line of the table gives an example where the
attribute name of the target element receives the value ’SomeName’.

Single-Value Static Direct Assignment The corresponding ATL/EMFTVM opcodes LOAD
the target object which the out-pattern of the rule declares, in the first place. The PUSH opcode
receives the static value which is in this example SomeName and the opcode INVOKE resolves the
reference to the loaded target object by looking it up in the (internally maintained) ATL trace.
Finally, the SET opcode assigns the pushed value to the name attribute of the target element, as
declared in the assignment statement.

Single-Value Dynamic Direct Assignment Conversely, an assignment may retrieve the value
of the target structural feature from the value of the structural feature of the given source object.
The second row presents an example of such direct dynamic assignment of a single value. The
expression name ← src.name assigns the value of a name attribute of the source object (src.name)
to the target name whereas the third row exemplifies the combination of a static with a dynamic
value.
The corresponding opcodes load not only the target object (first LOAD) but also the source object
(second LOAD) which needs to be accessed to retrieve the value to be assigned. Then, the source
name is GET and resolved. Finally, the source name is set as value of the name of the loaded target
object.
Similarly, both assignment statements, the static and the dynamic one, can be combined. A
statement is recognized as conforming to the pattern regardless of which one is stated first, the
statically or the dynamically determined value. Thus, the pattern combines the operations of
assignment patterns for a single static and dynamic assignment. However, it must be stated,

121

CHAPTER 7. MISSING TRACE INFORMATION

even though for propagating annotations it does not make a difference how many static values are
considered, the complexity of the instruction opcodes increases significantly if several computations
based on static and dynamic values are performed before being finally assigned.

Single-Value Dynamic Direct Assignment, Chained Moreover, several transformation lan-
guages allow for assigning the value of another source object which is referenced by the matched
input object. A pattern which is rather easy to identify, retrieves the dynamic value from a
directly linked source object (not of objects accessed by following multiple links) and assigns it
without modifications. Row four of Table 7.2 exemplifies such assignment pattern which retrieves
the name of the ePackage referenced by the source object.
The corresponding instruction opcodes mention a third get: In contrast to the patterns presented
before, not the name of the source object is retrieved but the ePackage referenced by the source
object is retrieved by a GET instruction first and its name by a second GET instruction. This name
is set as the name of the target object.

Single-Value Dynamic Direct Assignment, Chained-Combined Similar to the combined
direct assignment, the dynamic value taken from referenced objects can be combined with one or
multiple static values. The bottom row of the same table provides an example which computes
the assigned value by combining a referenced value with a static one.

Table 7.3: Bytecode instruction opcodes of direct assignment patterns of multiple values.

Assignment Type Example Instructions

multi-valued direct assign-
ment, dynamic

name ← src.name +
src.upperBound

L(tar), L(src), G(name), L(src), G(upper-
Bound), I(+), I(resolve), S(name)

multi-valued direct assign-
ment, combined

name ← src.name +
src.upperBound + ’impl’

L(tar), L(src), G(name), L(src),
G(upperBound), I(+), PUSH(’.impl’),
I(+), I(resolve), S(name)

multi-valued direct assign-
ment, chained

name ←
src.ePackage.name +
src.name

L(tar), L(src), G(ePackage), G(name),
L(src), G(name), I(+), I(resolve),
S(name)

multi-valued direct assign-
ment, chained, combined

name ←
src.ePackage.name +
src.name + ’impl’

L(tar), L(src), G(ePackage), G(name),
L(src), G(name), I(+), PUSH(’.impl’),
I(+), I(resolve), SET(name)

Overview of Multi-Value Assignments In contrast to single-value assignments, multiple
values of the source object can be used to compute the value which should be assigned to a
structural feature of the target object. Table 7.3 enumerates patterns which use two values of
structural features of the source object to compute the value of the target attribute name.
Table 7.3 assumes a similar structure as Table 7.2. Thus, in the left column it mentions a clas-
sification of the assignment type, in the middle a concrete example and in the right column the
instruction opcodes of the corresponding ATL/EMFTVM model. As opposed to Table 7.2, Ta-
ble 7.3 abbreviates the opcodes, LOAD, GET, INVOKE and SET to their first letter. This table serves
as example of how such statements can be constructed.

Multi-Value Dynamic Direct Assignment The number of values used for computing the
assigned single value is not restricted by two but it may be several ones of the source object or
ones that are referenced by the object. However, since these instructions also serve to determine
a single value for a single-valued structural feature of the target object, the assignment needs to
perform one or several operations to reduce the multiple values to one.
In concrete, as before, two or multiple values of the source object only may be used to compute a
single value that is assigned as exemplified in the first row of Table 7.3. The example concatenates
the name of the source object with the value stored in the attribute upperBound of the source

122

7.2. COARSE-GRAINED TRACES

object and assigns the result as name to the target object. The table highlights, the differences
with the opcodes used for assigning a single-value which is combined with a static value in blue
color. Particularly, a second pair of a LOAD and GET instruction has to be executed, which loads
the source object another time and retrieves the value of the attribute upperBound.

Multi-Value Dynamic Direct Assignment, Combined The second row combines the two
loaded dynamic values with an additional static value. Again, the order of combining the source
attributes with the static value is irrelevant. Whenever a pair of loading the source object and a
single get instruction appear before the set instruction, the pattern can be classified as multi-value
direct assignment which combines several source values.
The difference with the opcodes in the previous row is highlighted in blue color. It requires
additional invocations of reduction operators which combine the multiple values to one.

Multi-Value Dynamic Direct Assignment, Chained Finally, the third row shows the as-
signment where the value of one of the structural features is not retrieved from the source object
but from an object referenced by the source object (i.e., a chain of references is expanded). As a
result, two GET opcodes are put on the instruction stack consecutively followed by another LOAD
instruction to load the source object again to GET its name. The first pair of load and get instruc-
tions, loads the source object, retrieves the value of the ePackage with the first get instruction and
the name of the referenced package with the second get instruction. Similar actions are performed
in the fourth row, where the chained get is combined not only with the direct retrieval but also
with a static value.
The examples of the table only show how to compute String values of two structural features.
In general, a multi-value direct assignment for a single-valued structural feature could employ
more than two dynamic sources of information as long as these values are reduced to a single one.
Similarly, for static values no other restrictions exist neither. The same holds for other primitive
types. For example, several Boolean values could be combined in an expression and the resulting
value be assigned to a respective attribute.

Collection Assignment In contrast to the patterns explained so far, several transformations
allow to assign a list of values to a multi-valued structural feature of a target element. Conse-
quently, a collection of values is assigned to a collection of values.

Example 7.2.3: Assignment of Collections

Listing 7.2.1 presents an example of a multi-valued assignment. Line 16 assigns the
union of the elements created for the attributes and the methods of an EClass as the
bodyDeclarations of the corresponding created Java class. The corresponding opcodes,
which are placed in the line underneath, are exactly the same as for the assignment which
concatenates two string values of two source values. Only the opcode which invokes the
+ operation in case of the string concatenation invokes the union operation instead but is
still represented by the same opcode INVOKE.

Despite the similarity of the opcodes, the collection, consisting of either attributes of some source
object or links to other objects, may comprise a multitude of different annotations. If it is a direct
assignment of only a single multi-valued structural features, the annotation of each element in the
collection needs to be looked up and combined in a disjunctive expression. However, if two or
multiple collections are flattened to one, the annotation depends on the reduction operator which
also may remove elements from one source set such that those elements are not required and their
annotations do not have to be satisfied. Due to these ambiguities, the following analysis focuses
on recognizing patterns which can be recognized uniquely and which offer clear semantics of how
to compute an annotation for target elements based on the source elements.

123

CHAPTER 7. MISSING TRACE INFORMATION

Further Patterns Finally, the execution control flow can branch due to if-conditions and the
possibility to imperatively influence the order of creating target objects by calling rules explicitly.
Target objects which are created in a called rule are not present in the trace. Thus, the trace-
based propagation cannot annotate them. Furthermore, besides the direct assignment patterns,
indirect assignments may occur, too. Listing 7.2.1 exemplifies some of these patterns specified in
ATL and presents the corresponding instruction opcodes as comments behind or underneath the
transformation source code lines. Opcodes which are used to load or get an object or to set a
value are abbreviated to their first letter.

1 rule Class2ClassDeclaration {
2 from
3 src: Ecore!EClass
4 to
5 tar: Java!ClassDeclaration (
6 name <- if (src.abstract) then -- L, L, G, IFN
7 ’Abstract’ + src.name.firstToUpper()
8 -- PUSH(Abstract), L, G, I(firstToUpper), I(+), GOTO
9 else

10 src.name -- L, G, I
11 endif, -- S
12

13 superClass <- thisModule.getSupCl(src.eSuperTypes)
14 -- L, GETENVTYPE, L, G(eSuperTypes), INVOKE_STATIC(getSupCl), INVOKE(resolve), S
15

16 bodyDeclarations <- src.eAttributes.union(src.eOperations)
17 -- L, L, G(eAttributes), L, G(eOperations), I(union), I(resolve), S
18)
19 do {
20 if (not src.eSuperTypes.oclIsUndefined() and src.eSuperTypes.size() > 1)
21 -- left side of ’and’: L(src), G, ISNULL, NOT, IFN
22 -- right side of ’and’: L, G, INVOKE(size), PUSH, INVOKE(>), GOTO, PUSHF, IFN
23 {
24 for (c in src.eSuperTypes) { -- L(SRC), G, ITERATE, STORE, GETENVTYPE
25 thisModule.assignSuperInterf(src, c); -- L(src), L(c), INVOKE_STATIC, POP
26 } -- ENDITERATE
27 }
28 }
29 }

Listing 7.2.1: Example of ATL/EMFTVM transformation rule with complex assignments. The
comments represent the corresponding bytecode instruction opcodes.

Firstly, by calling a helper or query method, such as in Line 13, a computation based on given
source objects or of their structural features may be performed in another rule or method and
assigned to the target element. In the example, a method is invoked which determines the class
from which the created class inherits based on the given reference eSuperTypes. Even though
the statement assigns a single value to the single-valued structural feature superClass based on
a multi-valued reference, due to this indirect assignment, the opcodes which perform the compu-
tation are not accessible in the instruction stack of the rule.
Furthermore, it is not guaranteed that such computations are executed linearly. Conditional
executions and iterating collections may provoke execution branches, as exemplified for retrieving
a name for a class declaration in Lines 6-10. Even though in this case the name of the source class
is the decisive attribute used in each branch, this cannot be assumed in general. More complex
instructions and different structural features may be used in branches, requiring to decide which
structural feature of a branch to prefer for determining an annotation. Particularly, in helper
methods it is possible to express conditions and branch the execution based on certain values of
the source object. Similarly, an iteration can be performed and used to invoke operations as shown
in Line 24 of Listing 7.2.1. Due to these ambiguities, recognizing and determining an annotation
based on these complex statements is not regarded in this thesis.

124

7.2. COARSE-GRAINED TRACES

III Observations

From classifying the patterns and mapping a pattern onto bytecode instruction opcodes we draw
the following conclusions which allow to identify the patterns.

Start and End of Instruction Firstly, each list of instructions representing one assignment
terminates with a SET opcode and starts with a LOAD opcode to retrieve the created target object
based on the name defined in the rule. The opcode stores the name of the target object. If a rule
invokes another rule by a method call, a POP instruction will mark the end of a block instead.

Source and Target Structural Feature Secondly, the knowledge which structural features of
which source objects are used to computed the assigned target value represents the key information
for propagating their annotations. The GET opcodes store the names of the source structural
features and the SET opcode hold the name of the feature to which the value is assigned.

Unique Assignment Patterns Thirdly, it is possible to identify a pattern unambiguously, if
it does not

• branch
• invoke rules with source values as input
• iterate a collection of values to retrieve a single value
• flatten several lists of values to a single collection
• combine any of these statements.

As explained before, conditional execution, iterating collections and performing operations on
them can become arbitrarily complex. Therefore, it may require additional knowledge about the
semantics of functions (standard library as well as manually added) to analyze whether and if
multiple source values exist, which are relevant to compute the assigned target value in the end.
For that reason, the following propagation process does not regard the assignment of collections,
or of branches, indirection based on method invocations and combinations thereof. In contrast,
our rule analysis, described in Sec. 9.3.2, recognizes direct assignments of

• single or multiple static values (first row of Table 7.2)
• single or multiple values of one source object (second row of Table 7.2 and first row of Table 7.3)
• single dynamic values combined with static values (third row of Table 7.2 and second row of

Table 7.3)
• a single or multiple chained value accesses (fourth row of Table 7.2 and third row of Table 7.3).

The following section explains how this information can be used for propagating annotations.

7.2.4 Propagation Process
After having identified assignment patters and the corresponding bytecode instructions, this sec-
tion demonstrates how to employ this information for propagation annotations to structural fea-
tures. As Fig. 7.2.5 illustrates, the multi-variant fine-grained propagation process consists of two
elementary steps: the propagation of annotations of objects, based on the trace, and of their
structural features, based on analyzing assignment patterns. Chp. 6 explains in detail how the
trace-based propagation behaves. Therefore, the first part of this section summarizes the main
properties of this propagation which serves as starting point for the bytecode instruction-based
propagation explained in the second part.

I Trace-Based Propagation

To propagate annotations from the source model to the target model, first, the annotations of
corresponding objects are propagated by a trace-based propagation as described in Alg. 1.

Result of Propagation: Annotation Mapping for Data Nodes The reused single-variant
transformation creates the superimposed target model, the graph HT and at least a generation-
complete trace HTR. Exploiting the trace for propagating annotations results in an annotation

125

CHAPTER 7. MISSING TRACE INFORMATION

single-variant

model transformation

(generation-)complete

trace

multi-variant model transformation

trace-based

propagation

bytecode

instruction-based

propagation

mapFG

MGSF

GS

S

a-mapFH

MHTF

HT

T

a-map'FH

MH'TF

HT

T

1

22

bytecode instruction

opcodes model

Figure 7.2.5: Overview of bytecode instruction-based analysis.

mapping function a−map′FHT
. In contrast to the previous explanations, the annotation mapping

function does not only map annotations onto graph nodes and edges, which represent objects and
their links but also onto their structural features, which are stored in data nodes attached to the
graph nodes and edges. Def. 7.2.3 formally defines the function a−mapF in Sec. 7.2.5.

Annotated Graph Elements In the following, we assume that the trace-based propagation
generates a complete mapping function for the graph nodes and edges, representing objects and
links, due to processing a generation-complete or complete trace. The data nodes and the edges
that link the data node to the created target nodes and edges, receive a default annotation, which
is the one of the graph element for which they store the value of one of their structural features.
Accordingly, the presence of a data node always depends on the graph element for which it holds
data values.

Refining Data Nodes Since the structural features of the source elements may comprise a
more restrictive visibility in filtered products, as demonstrated in Sec. 7.2.1, the mapping function
for the target graph needs to reflect these annotations, too. Therefore, the multi-variant source
and target model, MGSF

and MH ′TF
, respectively, are input to the second propagation. This

propagation refines the mapping function by analyzing the bytecode instruction opcodes (e.g.,
persisted in form of a model) and assigning annotations of source data nodes to the corresponding
target data nodes.

II Bytecode Instruction-Based Propagation

After the coarse-grained trace-based propagation based on the (generation-)complete trace has
been performed, the multi-variant model transformation can execute the fine-grained propagation
of annotations based on analyzing the bytecode instructions. Fig. 7.2.6 illustrates the steps per-
formed in the bytecode instruction-based propagation schematically. First, the sections gives a
schematic overview of the procedure before diving into more technical details:

Overview The given bytecode instruction opcode model is analyzed rule-wise: It starts with
extracting instruction blocks for each rule. Secondly, it analyzes the blocks and tries to identify
patterns. This results in a set of classified assignment patterns which store the name of the
target structural feature as well the structural features of the source objects that are used. The
assignment of a static value only is irrelevant for the further process but is recognized similarly.
The following step determines the source and target objects that match the load instruction of a
rule. Accordingly, accessing the source and target model is essential to determine the matching

126

7.2. COARSE-GRAINED TRACES

analyze rules

bytecode instruction -based propagation

a-mapFG

MGSF

GS

MHTF

a-mapFH

HT

T

bytecode

instruction

opcodes model

classified

assignment patterns

map source

annotation onto target

structural feature

classify assignment

patterns

matching source

and target objects

a-map'FH

MH'TF

HT

T

extract source

and target object

determine

syntactically matching

structural features
extract

instruction blocks

S

HTR

Figure 7.2.6: Steps of bytecode instruction-based propagation.

objects and the values of their structural features. This step can occur already before the pattern
recognition or be input from the previous trace-based propagation.

Details In more detail, the bytecode model is input to the propagation mechanism and iterated
rule-wise. To illustrate and concretize the procedure, we employ the ATL/EMFTVM execution
model as example.

Extraction of Analyzed Rules For each ATL rule recorded in the bytecode model, which
matches a source element, an analyzed rule is created. The analyzed rule is a data structure which
composes the list of instructions that is stored inside the ATL rule into different recognizable
assignments. Thus, the analyzed rule stores multiple lists of different assignment patterns which
in turn store the key information for propagating annotations: the name of the set-field, which
is the structural feature of the target object, and one or multiple names of get-fields which store
the field names of the source object. Fig. 9.3.4 summarizes the implementation specifics of the
AnalyzedRule in more detail. It is important to note is that it is beneficial to build a rule-to-
analyzedRule map before (or during) iterating the source model to analyze a rule which matches
a source element only once. The following paragraphs explain how different kinds of assignments
are extracted from the instruction block associated with a rule.

Instruction Block Extraction To extract the information stored in the AnalyzedRule, the
entire list of instructions of the rule is iterated. In case of the ATL/EMFTVM this requires to
iterate the applier codeblock (to-block) and the postApplier (do-block) codeblock.
As stated as observation from comparing the instruction opcodes of common assignment patterns
in Sec. 7.2.3, instruction blocks (in the applier) which represent an assignment of a value terminate
with a SET opcode. Accordingly, an instruction block terminates with a set instruction and a new
block initiates with the opcode stated thereafter. All instructions between the initiation and the
set are collected and stored inside the instruction block.
Since the do-block in ATL influences the execution order, this part of a rule may invoke other
rules without assigning any value. Such instruction block does not end with a SET opcode but
with a POP opcode which needs to be considered when iterating the entire list of instructions to
extract assignments. Thus, whenever a POP opcode appears, the instructions before are neglected
and a new assignment instruction block is tried to be extracted from the opcodes following the
POP opcode. The do-block is considered because it is possible to place assignments in this section
of a rule, too.

127

CHAPTER 7. MISSING TRACE INFORMATION

Assignment Pattern Recognition Next, the instruction blocks need to be analyzed. Based
on the common structure of instruction sequences observed by mapping different assignment state-
ments onto the instruction opcode in Sec. 7.2.3, this step tries to recognize patterns in the in-
struction blocks.
A direct static and dynamic assignment of a single value can be recognized in a straightforward
way. They consist of a fixed number of instructions (4 and 5, respectively) and of a fixed se-
quence of opcodes, as exemplified in row one and two of Table 7.2. While the corresponding
recognition algorithm adds a direct dynamic assignment to a corresponding list in the analyzed
rule, a static assignment is neglected. The analyzed rule records such assignment pattern as
SingleValueAssignment, as shown in the model of Fig. 9.3.4. A static assignment of a single
value cannot contribute to propagate annotations of a source structural feature because it does
not state any source feature. Similarly, a ChainedAssignment is recognized whenever a sequence
of two or more GET instructions occurs without interruptions of another opcode in the block of
instructions. If the static assignment is combined with a dynamic assignment of a single source
value or a chain thereof, it will be inserted as a CombinedAssignment. Such assignment holds a
list of single GET instructions but can also consider chains of GET fields which are represented as
lists. The identification algorithm recognizes such assignment whenever a single get instruction
opcode (no other directly thereafter) follows two load opcodes. Opcodes in between which do not
provoke a branch or iteration of the execution are ignored.
Whenever a branch instruction, such as an ITERATE or IF/IFN instruction, occurs in the instruc-
tion block, the algorithm categorizes the assignment as OtherStatement because it may involve
diverging execution branches which are provoked, for example, by diverging values of a struc-
tural feature. Since both can be combined almost arbitrarily, their analysis requires more specific
techniques and is left out of the scope of this thesis.

Propagation Algorithm After the patterns have been identified per rule, the propagation
algorithm iterates the source nodes and executes the following steps: Due to its complexity, we
state the steps of the propagation process in natural language for easier comprehension:

1. for each rule: create an analyzed rule and store it in a mapping function: ρToα : ρ→ α

2. for each source object or link el

2.1. retrieve transformation rule ρ, which records el as source element, from the execution
model

2.2. retrieve analyzed rule α by looking up ρ in the map ρToα
2.3. retrieve the trace node nTR, which records el as source element, from HTR

2.4. retrieve created target objects from trace node nTR and store them in TRG
2.5. for each created target object trg ∈ TRG

2.5.1 retrieve its structural elements and store them in DNODESt
2.5.2 for each structural feature ft ∈DNODESt

2.5.2a search a pattern in α which records ft in the set-field and loads trg
2.5.2b if no pattern matches, continue with next target feature, i.e., goto 2.5.2;

otherwise:
2.5.2c for each get-field in the pattern search an equally named structural feature in

the source object and store them in DNODESs
2.5.2d assign mapping to ft: combine the annotation of the object trg with the an-

notation of the elements in DNODESs in a conjunction

Accordingly, the source model is iterated and we assume that a rule matches only one source ele-
ment and creates a set of target elements (nodes and edges). Furthermore, no target element can
be targeted by two distinct rules, i.e., the property for STT-graphs that each target element pos-
sesses exactly one incoming edge (c.f., Equation 6.13) still holds. As such, all target elements can

128

7.2. COARSE-GRAINED TRACES

be retrieved from the trace model given the source object. Alternatively, based on the information
in the execution model, corresponding target objects might be retrieved similarly.
Next, for each created target element in TRG, the structural features are determined in step 2.5.1.
Then, a pattern in the analyzed rule α has to be found which assigns a value to the currently
processed structural feature. For solving this task, the algorithm iterates the list DNODESt and
searches a pattern in the corresponding analyzed rule α, the set-field of which matches the name
of the currently processed structural features. If the algorithm finds a match, it depends on the
concrete pattern which exact steps to perform in step 2.5.2c:

SingleValueAssignments contain only one get-field which is used for searching an equally
named structural feature in the source object. The algorithm will add the corresponding single
data node to DNODESs, to map its annotation onto the structural feature ft.

ChainedGets contain a list of get-fields. Thus, the reference to the target object needs to be
followed as long until the final GET instruction. The annotation mapped onto each object on this
way needs to be combined in a conjunction with the annotation of the last attribute or reference
to ensure the visibility of the elements along the path when filtering the multi-variant model.

CombinedAssignment may contain multiple structural features depending on the number of
get-fields. Thus, the algorithm stores the matching structural feature in the set of source data
nodes DNODESs, the annotations of which are combined in a conjunction. Furthermore, if a
chain occurs, the algorithm computes the annotation while following the references and combines
them in a conjunction with the remaining annotations.
To this end, the computed annotations consist of the annotation of the source object el, which is
also present on the target objects due to the trace-based propagation, and a conjunction of the
annotations mapped onto the elements matching the get-fields. As a consequence, after having
iterated the entire source model, each structural feature of the target model possesses a mode
specific annotation, if its counterpart(s) in the source model possess(es) a more specific annotation
than the graph element, too.

III Properties

According to the algorithm for analyzing bytecode instruction, informally described in the pre-
ceding parts of this section, the transformation must conform the following properties.

Property 7.2.1: Single-Value Assignment

The rules have to assign only a single value.

So far, the algorithm does not handle the assignment of collections of values to collections of
values. In contrast, the algorithm can compute the single value based on multiple values which
are reduced to one. If an assignment computes values for multiple data nodes, the pattern will be
ignored.

Property 7.2.2: Linear Execution Control Flow

The execution control flow must not branch, particularly, not on collections which should
be iterated.

Due to ambiguities and potentially conditional execution, branches are not covered and assign-
ments are hard to determine unambiguously if branches and iterations are nested arbitrarily.
Therefore, this behavior is not extracted as assignment pattern. Note: This property also pro-
hibits the invocation of helper methods which is made explicit in Prop. 7.2.3.

129

CHAPTER 7. MISSING TRACE INFORMATION

Property 7.2.3: Self-Contained Transformation

The transformation must not delegate computations to other engines.

Prop. 7.2.3 requires that any computation necessary to construct the target model must be part of
the transformation specification or accessible from it in a representation that resides at the same
level of abstraction as the analyzed bytecode. On the one hand, this property forbids to employ
computations which are implemented in another transformation language or a general purpose
language because the bytecode model may deviate from the one used here. On the other hand,
the property does not forbid helper-functions or modularity of transformations in general, even
though they are not supported yet.
Please note: We do not explicitly forbid the usage of called and lazy rules in ATL/EMFTVM.
If target objects remain without an annotation after propagating the annotations based on the
generation-complete trace, we employ the container completion strategy, as described in Alg. 4,
to assign annotations to the target elements missing one. Thus, before analyzing the rules for
fine-grained mappings, it is guaranteed that the source and target mapping representations are
completely annotated.
If these properties hold, it is possible to analyze the transformation and to retrieve annotations
for structural features of the target model. Due to the finite sets that are iterated and missing
recursion, it is guaranteed that the propagation algorithm terminates.

7.2.5 Foundations
So far, the formalism for trace-based propagation of annotations employs a typed graph (transfor-
mations) which allows to annotate nodes and edges, representing objects and links between them.
This chapter, however, assumes that the structural features of graph nodes can be annotated, too.
To express this in the formalism, we extend the set of elements in the graph such that different
types of nodes represent objects and their features. Furthermore, the mapping annotation function
must be able to map annotations onto the nodes and edges which represent a structural feature.
The extension of the ordered graphs used so far requires to add nodes and edges which represent
the structural features of an object. We add elements which extend the graph typed over TN and
TE to an attributed typed graph, also denoted as E-graphs [EPT04].

E-Graphs In the first place, we extend the set of graph nodes N with a set of data nodes DN .
A data node dn is typed and uniquely associated with a graph node to store the concrete value of
an attribute. Similarly, we add a set of node attribute edges ENA which associate the graph node
with a value stored in the data node. Such edge origins from a graph node in N and targets a
data node in DN , such that sNA :ENA→N and tNA :ENA→DN are the corresponding source
and target functions.
Finally, a set of edge attribute edges EEA incorporates edges which origin from a graph edge and
assign a value by the means of a data node to the edge.

Definition 7.2.1: E-Graph

An E-graph EG with EG= (N,E,DN ,EEA,ENA,(si, ti)i∈{G,EA,NA}, lj∈{N,E,DN ,NA,EA})
is typed over type sets TN , TE , TDN

, TNA, TEA and comprises the following elements

• finite sets of graph nodes and graph edges, N and E

• finite sets of data nodes DN

• finite sets of edges ENA and EEA which connect a graph node and a graph edge with
a data node, respectively.

• source and target functions
between graph nodes: s : E→N and t : E→N

130

7.2. COARSE-GRAINED TRACES

between a graph node and data node: sNA : ENA→N and tNA : ENA→DN

between a graph edge and a data node sEA : EEA→ E and tEA : EEA→DN

• type labeling functions for graph elements:
lN :N → TN , lE : E→ TE

The set of graph elements is defined as EL = N ∪̇ E. The entirety of all elements in the
attributed graph is denoted as AEL= EL ∪̇ DN ∪̇ ENA ∪̇ EEA.

For propagating annotations of source data nodes to target data nodes, the function data allows
to determine the data nodes for a given graph element:

Definition 7.2.2: Data Node Function

Let EL be the graph elements of an E-Graph EG. The function data : EL→ P(DN)
takes a graph element and returns all data nodes with an incoming node attribute or edge
attribute edge originating from the given element:

data(el) =
{
{dn ∈Dn, e ∈ ENA | sNA(e) = el ∧ tNA(e) = dn} el ∈N
{dn ∈Dn, e ∈ EEA | sEA(e) = el ∧ tEA(e) = dn} el ∈ E (7.1)

Moreover, the third adaptation modifies the mapping annotation function mapF (c.f., Def. 6.2.4)
such that it can map an annotation onto the data nodes in the set DN :

Definition 7.2.3: Attribute Mapping Annotation Function

Let F and AF be the set of features and annotations over features, respectively, and let
ELD = EL ∪̇ DN be the set of elements in the E-graph EG which can be annotated.
The attribute mapping annotation function a−map_pF : ELD→ AF is a total function
assigning either an annotation or the empty element ε to each element in G.

Propagation Algorithm Based on the three extensions to the graph formalism for the trace-
based propagation, Alg. 2 notes the steps of propagating the annotations of data nodes formally
according to the informal descriptions of Sec. 7.2.4.
The propagation iterates the set of source graph nodes in Line 15 and determines a rule which
records the graph node as source element of its left hand-side source graph in the following line.
The algorithm further invokes the function analyzeOrLookup, which extracts the corresponding
analyzed rule from a map or computes the analysis and stores it in the map. Furthermore,
the algorithm retrieves the trace node which records the processed source element in its source
elements. Since we assume generation-complete traces, the source element must be present.
Then, the algorithm retrieves the created target elements from the trace node and iterates them.
For each traced target node, the algorithm determines the set of its structural features DNODESt
by employing the function data and iterates this set. The function MatchInAlpha in Line 24
tries to find an assignment which states the name of the currently processed data node dt in its
set-field. If it finds a matching pattern, it will store the pattern in the variable assign-block and
use it to retrieve get-fields which match the data nodes of the source node DNODESs.
Depending on the assignment type, the function GetAnnotationFromMatch combines the source
annotations, as described in Sec. 7.2.5, II. If a single direct dynamic assignment is detected, the an-
notation of the source data node will be mapped onto the target data node without modifications.
If multiple dynamic values are recognized in a CombinedAssignment, all corresponding source
annotations will be combined in a conjunction. Similarly, the function combines the annotations
on the way to the source attribute in a conjunction in case a ChainedAssignment is detected.
Finally, the resulting annotation aF is combined with the annotation of the target element in a

131

CHAPTER 7. MISSING TRACE INFORMATION

Algorithm 2 Propagation of annotations of structural features.
1: procedure propagate(EH,a−mapFS

,P,a−mapFT
)

2: in EH = S← TR→ T . attributed target STT E-graph, derived from S←∅→ ∅
3: in a−mapFS

: ELDS →AF . Annotation function for the source graph S
4: in P . The set of transformation rules
5: inout a−mapFT

: ELDT →AF . Annotation function for the target graph T which is
already complete

6:
7: var nS ∈NS . The current source node to be processed
8: var nTR ∈NTR . The trace node recording nS as source node
9: var dT ∈DNT

. The target data node to be annotated
10: var aF ∈AF . Annotation retrieved from matching source elements
11: var ρ ∈ P . The currently matching transformation rule
12: var αρ . The analyzed rule for ρ
13: var assign-block . Block of opcodes in αρ, which stores the set-field that matches dT
14:
15: for all nS ∈NS do
16: ρ := {(L,R) ∈ P | nS ∈ LS} . Retrieve rule which records nS as source element
17: αρ := analyzeOrLookup (ρ)
18: . Retrieve trace node and target elements recorded in trace node
19: nTR := {tr ∈NTR | tr

src−→ nS}
20: TRG := {te ∈ ELT | nTR

trg−→ te}
21: for all t ∈ TRG do . Process all target elements
22: DNODESt := data(t) . get structural features of target element
23: for all dT ∈DNODESt do . process structural features
24: assign-block := matchInAlpha(αρ, dT) . block with matching set-field
25: if assign-block 6= ε then
26: aF := getAnnotationFromMatch(assign-block, DNODESs, mapFS

) .
computed annotation based on assignment type and matching get-fields

27: mapFT
(dT) := aF ∧mapFT

(t) . Annotate the target data node
28: end if
29: end for
30: end for
31: end for
32: end procedure

conjunction which ensures that the data nodes can only be present when the corresponding graph
element is present in a configured variant.

7.2.6 Discussion
To sum it up, this section discusses the benefits and challenges of analyzing a bytecode model in
order to propagate annotations from structural features of source elements to target elements.
At first, the section illuminates some critical and beneficial aspects as well as points to consider
when applying a bytecode analysis whereas the second part of the section illuminates related work
and discusses future potentials.

Computational Cost First of all, a developer may consider the computational cost when delib-
erating if the additional annotation refinement pays off. Alg. 2, which propagates the fine-grained
annotations, performs several iterations over relevant data nodes to compute and assign the an-
notations.
Firstly, the bytecode needs to be analyzed rule-wise. This is not explicitly shown in the algorithm
but part of the functionality of the function canalyzeOrLookup and informally explained in
Sec. 7.2.4. Secondly, the algorithm iterates the finite set of source nodes and for each source node

132

7.2. COARSE-GRAINED TRACES

looks up a matching trace element and the corresponding analyzed transformation rule. Further-
more, the algorithm iterates the recorded target elements and for each of them the data nodes, as
well as the data nodes of the source element to find matching set- and get-fields, respectively.
Due to the complexity of the computation steps, which require several iterations of the graph
elements and their data nodes together with mapping look-ups on top of the trace-based prop-
agation, we argue that the solution pays off in two cases: On the one hand, if the annotations
of a significant number4 of structural features are more specific than those mapped onto their
respective objects, an automated approach to propagate their annotations is beneficial to decrease
manual efforts and human error. On the other hand, if no trace is available, the potential to
analyze the bytecode remains as one solution to reconstruct the entire mapping of source elements
including their structural features.

Pattern Derivation Sec. 7.2.3 offers an overview of common assignment patterns in model
transformations. The following remarks need to be considered:
Firstly, the relevant information for the purposes of this work is which source elements are used to
create which target elements. How target elements are created, i.e., which actions are performed
in between is not necessarily relevant. Accordingly, we focused to describe patterns which we can
identify clearly and which provide the key information namely the source elements and the target
element. As shortly discussed in the section, due to ambiguities and a necessary deeper analysis
particularly when collections are assigned, we refrain from exploiting them in our proof of concept
presented in Sec. 9.3.2.
Secondly, we have ATL transformation rules to demonstrate, exemplify and classify different
kinds of assignments. For presenting the opcodes we employed the EMFTVM bytecode model.
Although we are aware of similar patterns in other declarative languages, such as QVT (Relational
and operational mappings), it may require further investigation to which extent these patterns
occur in different transformation languages, particularly, if the transformation does not realize the
declarative paradigm. Accordingly, we categorize this approach as language-specific even though
the ATL transformation specification itself is not analyzed.

Benefits On its upside, similar to the discussion of a transformation based on a generation-
complete trace in Sec. 7.1, the analysis-based propagation ensures that the target mapping is
completely annotated, including its structural features at every time after the initial trace-based
propagation. If patterns are identified which assign target values (i.e., the transformation adheres
to the properties summarized in the third part of Sec. 7.2.4), the mappings of structural features
will be refined if necessary. This is particularly relevant if the structural features can assume
different values in different configurations due to different annotations.
Furthermore, mapping annotations to the structural features of objects in product line models is a
highly fine-grained way of annotating elements but not supported by many MDPLE approach. It
aims to allow for alternative values depending on the presence or absence of features. Particularly,
when unconstrained variability is supported, for instance as implemented in single-variant editing
tools, such as SuperMod [SW16] or the VASG in the projectional editing tool [Reu+20], allowing
for different values of a structural feature may be necessary. However, in this thesis we assumes
constrained variability (Prop. 4.1.2). As a consequence, if a more specific annotation ar is assigned
to the value of a structural feature of an object than to the object (annotation: ao, with ar⇒ ao),
the structural feature still is present in a filtered product even if ar is not satisfied by the feature
configuration. Due to constrained variability, the structural feature will assume its default value
if the annotated data node does not pass the filter.
Finally, the potential of analyzing bytecode may pay off if no information about corresponding
objects in form of a trace is available. A rule analysis can determine source and target objects
which match the declared source and target types. If execution branches are discovered as well
in a static analysis (e.g., by building control and data flow graphs) the mappings of assignments
occurring in branches may also be determined. However, it must be noted that this would be

4 For instance, if each graph element possesses a data node with a more fine-grained mapping, an automated
propagation may pay off to reduce the manual refinement efforts.

133

CHAPTER 7. MISSING TRACE INFORMATION

an expensive solution which is still specific to a transformation language and requires a complete
disassembly of the source code and domain models which support unconstrained variability.

Related Work Static analysis of (ATL) transformations has been implemented and performed
by Cuadrado et al. [CGL17; CGL18]. This work, however, aims at a different goal: The static
analysis serves to enhance the correctness of an ATL transformation specification by analyzing it
each time it is saved. Then, the analyzer searches, for example, for typing errors. In addition,
the analysis is exploited to improve the performance of the transformation execution engine, e.g.,
through parallelization. Consequently, the analyzer does not provide the pinpointed information
about corresponding source and target features but would help to determine whether all con-
tributing objects are bound. Furthermore, the analyzer does not operate on the execution model
persisted by the ATL/EMFTVM but on the operand stack created by the ATL default virtual ma-
chine. In contrast, we employ the EMFTVM because it stores an accessible generation-complete
trace as well as the corresponding execution model, which we analyze instead. Finally, our anal-
ysis serves to propagate annotations from source elements to target elements and is, therefore,
trimmed for this purpose.
In Sec. 4.3.3, we classify the lifting approach [Sal+14] as white-box solution. However, lifting
does not analyze the transformation nor any of its artifacts but changes the semantics of the
execution engine. Accordingly, the approach works independently of a specific transformation
specification but also requires access and adaptation of a single-variant model transformation
engine to become capable to transfer variability information. In contrast, analyzing bytecode
instructions neither regards the transformation specification itself (e.g., by parsing it) nor requires
to change the execution semantics. Similar to gray-box propagation, the approach analyses an
artifact created for specifying the transformation which is, in contrast to a trace, already present
before the transformation execution. Since our analysis focuses on the bytecode model of the
ATL/EMFTVM, it is trimmed to the analysis of exactly that model and, thus, language-specific.
Nonetheless, the assignment patterns itself are independent of a transformation language.

Outlook Similar to abstracting trace-based propagation, a bytecode instruction-based abstrac-
tion could be used to analyze several different kinds of bytecode, such as also the Java bytecode
model [Rhe+18]. Accordingly, the bytecode instructions of several compilers could be compared
and used to derive a common model from which also common assignment patterns could be com-
bined. To further respect branches and iterations instead of extracting only assignment patterns,
control and data flow graphs could be extracted by employing methods from static source code
analysis. If this white-box analysis was used to create the target model, the boundaries of con-
strained variability might have to be extended and a multi-variant model where elements (e.g.,
structural features) may instantiate different values could be created, given an according repre-
sentation is available (for instance, similar to the hidden superimposed model in SuperMod or the
VASG in the projectional editor).

134

7.3. INCOMPLETE TRACE INFORMATION

7.3 Incomplete Trace Information
Besides model transformation engines which persist complete and generation-complete traces,
transformation approaches exist which pertain only records of the main pivotal source and target
element per rule applications (i.e., 1:1 mappings) in incomplete traces. Triple graph grammars
and similar approaches [Sch94; LAS14; Buc18], represent examples of approaches which record
incomplete traces. This section describes how to maintain the situation when incomplete trace
information is available. In this situation, we propose to perform the annotation propagation based
on the information present in the trace in the first step. A second step completes the mapping
information of the target model based on heuristics which exploit the hierarchical structure of the
target models.
For introducing the situation provoked by incomplete traces, Sec. 7.3.1 illustrates the problems
which may occur, due to the incomplete trace information while Sec. 7.3.2 explains how the
foundation of transformation introduced in Chp. 6 have to be adapted in order to explain the
alternative computation of a completely annotated target model in Sec. 7.3.3. To close this
section, Sec. 7.3.4 discusses the impact of computing missing annotations with respect to the
accuracy and the time efforts at the conceptual level.

7.3.1 Problem Statement
This section describes the situation which will occur if annotations are propagated based on
incomplete trace information. It starts with presenting an example and draws conclusions from
the example afterwards.

Example 7.3.1: Effects of Annotation Propagation Based on Incomplete Trace

Fig. 7.3.1 illustrates an example which employs an incomplete trace to propagate anno-
tations. Similar to the previous examples in this thesis, the source UML class model
encompasses database contents which are transformed into a corresponding Java model.
The source package db contains the single class Person which is annotated with the optional
feature P. The source edges miss an annotation. Therefore, the filter needs to employ
a strategy to handle missing annotations. In this example, the model filter integrates
elements missing an annotation in each product. Furthermore, this filter is capable to
guarantee referential integrity: if a link passes the filter, both of its ends have to be present,
otherwise the filter will remove the link.
Similar as in the previous examples, the transformation specification turns a UML class
into a Java class declaration and a compilation unit which are stored in the corresponding
Java package and model, respectively. In contrast to the previous examples, which assumed
the availability of a (generation-)complete trace, here only an incomplete trace is available.
Accordingly, the trace elements record the single pivot elements of the transformation rules.
For instance, in case of the C2C rule, the trace element relates the UML class with the Java
class declaration. Consequently, the propagation algorithm can only map the annotation
of the single source element onto the single target element causing the compilation unit to
remain without annotation.
The bottom of Fig. 7.3.1 shows one step of evaluating the commutativity criterion which
filters the annotated multi-variant models by the feature configuration selecting the feature
DB and deselecting the optional feature P. The left hand-side depicts the filtered source
model G′S , which comprises the UML model and package. Transforming G′S with the
single-variant model transformation results in the single-variant model H ′T which contains
the corresponding Java package and model.
In contrast, filtering the multi-variant target model MHTF

by the same feature configura-
tion derives the single-variant target model H ′′T which consists of the package but also of
the compilation unit for the class Person. Due to the missing annotation, the filter assumes
the respective element to be visible in each variant. Since H ′T and H ′′T are not equivalent
(up to isomorphism), the multi-variant model transformation violates commutativity.

135

CHAPTER 7. MISSING TRACE INFORMATION

name= "db"

um : Model

name= "db"

 up : Package jp : Package

jm : Model

oTypes

ucp : Class
name = "Person"

jcp : ClassDecl
name = "Person"

cup : CompUnit
name= "Person.java"

unitstypes

t1 : M2M

t2 : P2P

 t3 : C2C

oPackages

trace targetsource

DB

 P

DB

packages

 P

DB

DB

DB ∧ ⌐P

um : Model

name= "db"

 up : Package

oPackages

name= "db"

 jp : Package

jm : Model

cup : CompUnit
name= "Person.java"

unitspackages

DB ∧ ⌐P

name= "db"

 jp : Package

jm : Model

packages

MHTF
 MGSF

G'S H''TH'T

single-variant
model

transformation

filter

≃

 ?

Figure 7.3.1: Commutativity violation due to incomplete trace information.

This example demonstrates that the annotations propagated to the multi-variant target model
based on incomplete trace information do not suffice to guarantee commutativity and that the
missing information in the incomplete trace causes this effect.

Influence of Model Filter As the example needs to assume the behavior of the filter in sight
of missing annotations, we discuss the effect of the filter before drawing conclusions from the
example:
It must be noted that not only the kind of trace may make a difference for satisfying the com-
mutativity criterion but also the definition of the filter function: As explained in Sec. 7.3.1, III,
a flat filter does not make assumptions about relations between model elements but considers the
annotation mapped onto an element to determine whether the element is integrated in the product
derived for a feature configuration. Def. 6.2.5 defines this kind of filter as flat filter function while
assuming that an annotations is mapped onto all elements.
However, filters have to react to situations in which elements miss annotations, too. Flat filters
can either integrate each element missing an annotation (assuming an implicit true as annotation)
or remove each element missing an annotation (assuming an implicit false as annotation) in the
derivation. However, assuming the annotation false would mean the element is not present in
any of the configured products which would make the element superfluous in the multi-variant
model. Thus, the unconditional removal of an element can hardly represent a valuable alternative.
For that reason, we consider flat model filters which integrate each element without annotation in
the derived product in the example and in the sequel.
In contrast, a hierarchical filter regards relationships between elements of the multi-variant model.
Based on the hierarchical structure formed in several model types, particularly in models con-
forming to the Ecore metamodel, the presence of existence dependencies can be assumed. As a
consequence, hierarchical filters may override or suppress the integration of a model element in the
derived variant based on the given annotations and the hierarchical structure of the models, which
are assumed to form a spanning containment tree. In this example, however, the hierarchical filter
would not make a difference because the compilation unit as a child element is filtered and the
well-formedness is not affected by removing it. If the situation was vice versa, the compilation
unit was kept in the derived variant and the model was removed, the hierarchical filter would
prevent the situation by integrating the Java Model in the derived variant, too.
In general, filters for arbitrary models cannot assume dependencies inside the models generically
and, thus, do not allow for propagating selection states as hierarchical filters do. Therefore, in
the following discussions we assume a flat filter and only refer to the capabilities of a hierarchical

136

7.3. INCOMPLETE TRACE INFORMATION

filter explicitly, if it is relevant. Furthermore, if annotations can be assigned only to objects of the
models, referential integrity depends on the capabilities of the flat filter. In general, there are two
viable solutions to handle edges without annotations: The filter may either integrate such edges
in each variant unconditionally, assuming an implicit true as annotation, or it may integrate the
edges only if both ends are integrated in the variant. Removing such edges (i.e., assuming false
as annotation) would violate referential integrity because then only objects would be present in
the derived product without links connecting them.

Consequences: Shortcomings Caused by Missing Annotations The example reveals that
an incomplete trace as input to the trace-based propagation algorithm results in a partially an-
notated model. However, in a partially annotated model elements missing an annotation may be
retained in or removed from too many configured products by mistake due to the missing mapping
information and due to different model filter capabilities.
Accordingly, we identify at least the following shortcomings and problems caused by utilizing
traces with insufficient information about corresponding elements in source and target model:

• uncertainty: in general, it is unclear whether an element missing an annotation is included
in or excluded from a derived model. The presence depends on the capabilities and the
configuration of the employed model filter.

• increased resource consumption: including too many elements in the derived target
model which are not present in the corresponding derived source model may consume an
increased and unnecessary amount of resources.

• security threat: integrating (sensitive) data, which is not intended to the customer accord-
ing to its configuration, in the product may leak confidential or security-relevant information
or functionality (although it may be hidden or dead but is delivered, nonetheless).

• misbehavior and inconsistency: excluding too many or the wrong elements may cause
dangling references, misbehavior and inconsistent models which, in the end, may provoke
non-functional source code to be derived.

For that reason, it is essential to assign annotations to all target elements which can be annotated.
Only then, no (or the least) assumptions have to be made and misbehavior resulting from missing
annotations can be avoided. Consequently, the subsequent sections discuss strategies to determine
missing annotations in partially annotated models.

7.3.2 Foundations
In contrast to the total mapping function produced by trace-based propagation based on a com-
plete trace, the propagation based on an incomplete trace creates a partial mapping function
map_pF . The following definitions adjust the foundations provided in Chp. 6 to respect the
conditions introduced by the missing correspondence information.

Partially Annotated Multi-Variant Graph Firstly, multi-variant graphs as defined so far
comprise a total mapping annotation function (Def. 6.2.4). Therefore, Def. 7.3.1 declares a partial
mapping annotation function:

Definition 7.3.1: Partial Mapping Annotation Function

Let F and AF be the set of features and annotations over features, respectively, and let
EL=N ∪̇ E be the set of elements in a graph G. The partial mapping annotation function
map_pF : EL→AF ∪{ε} is a total function assigning either an annotation or the empty
element ε to each element in G.
We note the set of annotations including the empty element as A0

F ,
such that A0

F =AF ∪{ε}.

137

CHAPTER 7. MISSING TRACE INFORMATION

The definition uses the empty element ε to describe a missing annotation for an element in the
graph. Furthermore, in contrast to the total mapping function mapF , referential integrity cannot
be ensured by this function.
On the whole, a partially annotated multi-variant model is a graph with a partial mapping anno-
tation function:

Definition 7.3.2: Partially Annotated Multi-Variant Graph

Given a set of features F and annotations A0
F , a partially annotated multi-variant graph

is a pair MG_pF = (G,map_pF), where G= (N,E,lN , lE ,s, t) is a graph comprising the
disjoint set of elements EL = N ∪̇ E, and map_pF : EL → A0

F is a partial mapping
annotation function assigning a potentially empty annotation to each element of G.

Filter Depending on the used tool, the visibility evaluation function (c.f., Def. 7.3.3) used by
the filter function (Def. 6.2.5) may interpret an empty annotation differently.
If the filter includes all elements missing an annotation in the configured product, the evaluation
function can be refined in the following way:

Definition 7.3.3: Positive Visibility Evaluation Function

Let F be a set of features, FCF the set of feature configurations and AF be the set of
annotations over F . A positive visibility evaluation function over F is a function vF :
A0
F ×FCF → B, where B = {true,false} denotes the set of Boolean values. vF guarantees

the following property:

vF (ε,fcF) = true (7.2)
vF (aF ,fcF) = true ⇔ fcF ⇒ aF (7.3)

Consequently, regardless of the feature configuration, a missing annotation means that the element
is visible and, thus, integrated in the resulting product.

Hierarchical Graph Moreover, the following algorithms assume that the graphs form a strict
containment hierarchy. A node can only exist if its parent node exists in the graph or the node
is the root of the containment hierarchy. Nevertheless, also cross-references inside the tree may
occur which are not decisive for the containment hierarchy and, thus, irrelevant for the existence
relationship. For extending the graph formalism to express a hierarchy, we employ the function c :
E→B, which states whether a given edge is a containment relationship (true) or not (false). The
function s applied to a containment edge determines the container and the function t determines
the contained node.

Definition 7.3.4: Hierarchical Graph

Let TN and TE be the finite sets of node types and edge types, respectively. A hierarchical
graph over TN and TE is a tuple G= (N,E,lN , lE ,s, t,c,root), where

• N is a finite set of nodes,
• E is a finite set of edges, where (N ∩E = ∅),
• lN :N → TN , lE : E→ TE are a node and edge labeling function, respectively,
• s : E→ EL, t : E→ EL are a source and target function, respectively,
• c : E→ B is a Boolean container function and
• root ∈N is the root node of the graph.

The container np of a node n ∈ (N \{root}) must be unique, must not reference itself, and
the root must not possess a container which the following three properties ensure:

138

7.3. INCOMPLETE TRACE INFORMATION

∀e1,e2 ∈ E : c(e1) = c(e2) = true ∧ t(e1) = t(e2) = n

⇒ e1 = e2 (7.4)
∀n ∈N \{root} : @e ∈ E : s(e) = n ∧ t(e) = n (7.5)

∀e ∈ E : c(e) = true ⇒ t(e) 6= root (7.6)

Accordingly, the definition of hierarchical graphs models a containment hierarchy where the con-
tainer of a node is unique.

Tree Operations For determining missing annotations, the respective strategies exploit the
hierarchy of nodes. Functions delivering parent in children nodes in the graph can be defined in
the following ways. Def. 7.3.5 initiates with describing how the parent of one node is determined.

Definition 7.3.5: Parent Node Function

Let G be a graph typed over TN and TE and EL=N ∪̇ E be the set of its elements.
The partial function parentE :N →N ∪ {ε} returns the unique parent node np for a given
node n or nothing if it is the root, such that

parentE(n) =
{
np ⇔ ∃e ∈ E : c(e) = true ∧ s(e) = np ∧ t(e) = n
ε n= root

(7.7)

The transitive closure over all parents of a node is denoted as parent+E ⊆N ×N .

Ex. 7.3.2 provides an example of applying the parent function.

Example 7.3.2: Parent (Container) Annotations

In the example, depicted in Fig. 7.3.1, the container of the UML package up is the UML
model. Consequently, parentE(up) = um. Similarly, the parent of the UML class ucp is the
UML package and thus, parentE(ucp) = up. In contrast, since um is the root node, the
parent function will not return a node for this node as input: parentE(um) = ε.

Accordingly, in a spanning containment tree the parent node np of a node n is unique and the
only one that is referenced as source node with an outgoing edge labeled as container from n.

In addition, we define the set of children nodes of a node n as all nodes that are referenced as
target nodes contained in node n in Def. 7.3.6.

Definition 7.3.6: Children Nodes Function

Let G be a graph typed over TN and TE and EL=N ∪̇ E be the set of its elements.
The function childrenE :N →N returns the set of children nodes NC ⊂N for a given node
n, such that

childrenE(n) = {nc | e ∈ E ∧ c(e) = true ∧ s(e) = n ∧ t(e) = nc}=NC (7.8)

Ex. 7.3.3 continues to demonstrate the children computation function based on the example graph
presented in Fig. 7.3.1.

139

CHAPTER 7. MISSING TRACE INFORMATION

Example 7.3.3: Children (Contained) Annotations

In the example depicted in Fig. 7.3.1, the children nodes of the Java model jm are the Java
package jp and the compilation unit cup. Consequently, childrenE(jm) = {jp, cup}.

7.3.3 Computation of Missing Annotations
Based on the modified formalization which represents incompletely annotated multi-variant graphs,
this section describes the process of computing missing annotations. The first part describes how
to determine the missing annotations schematically to gain an overview of the three proposed
strategies and their embedding in the propagation mechanism so far. Based on that information,
the second part explains how to compute the elements which miss annotations and the third part
offer details on the completion strategies for nodes followed by the strategy for edges.

I Schematic Propagation Procedure

Overview Due to the information missing in incomplete traces, the trace-based propagation
does not behave as in the base version depicted in Fig. 5.3.1 but consists of two steps as depicted
in Fig. 7.3.2. Since the transformation based on an incomplete trace may only produce a partial
mapping annotation function map_pFHT

resulting in a partially annotated multi-variant target
graph MH_pHTF

(1), the second step creates the completely annotated graph MHHT F
. Ac-

cordingly, the second box depicted in the middle of Fig. 7.3.2 represents a black-box algorithm
which should determine missing annotations based on the partially annotated model. The input
to this step encompasses the already produced partial mapping annotation function as well as the
model, i.e., the partially annotated multi-variant graph MH_pHTF

. Both are indispensable for
determining dependencies between model elements based on the heuristic algorithms we propose
next.

single-variant

model transformation

trace of 1: 1 mappings

multi-variant
model transformation

mapFG map_pFH

trace-based

propagation

missing annotation

determination

MGSF
 MH_pTF

HT GS

mapFH

MHTF

HT

S T

T

1

22

Figure 7.3.2: Schematic overview of employing completion strategies.

Please note: the graph HT is not modified anymore but required as input to the second step to
consult its structure and the dependencies between its nodes.

Assignment Strategies For determining missing annotations we introduce three algorithms
which utilize the containment structure of EMF-based models. Since the Ecore metamodel fosters
a strict existence relationship, we assume the same existence relationships in the multi-variant
graphs. Accordingly, the multi-variant graphs form a spanning containment tree. Consequently,
if the algorithms should be applied to other kinds of models conforming to a less restrictive

140

7.3. INCOMPLETE TRACE INFORMATION

missing annotation determination

map_pFH

MH_pTF

HT

T

MH_p'TF

map_p'FH

HT

T

computeOpen

1

propagateContainer

propagateContained

propagateCombined

applyStrategy

22

openNodes

openEdges assignEdgeAnnotations

MHTF

mapFH

HT

T

3

Figure 7.3.3: Overview of steps to complete annotations.

containment structure, first, the spanning containment tree will have to be determined. Otherwise,
the algorithms cannot guarantee a proper annotation result.
The baseline of determining a missing annotation is the extended visibility function (Def. 7.3.3).
In case of a missing annotation, its result is comparable to either mapping true or false onto
each element missing an annotation.

Overview of Strategies In contrast, the first proposed strategy, container, assigns the an-
notation of the parent node of the node missing the annotation. Similarly, the second strategy,
contained, combines the annotations of the contained nodes in a disjunction and assigns it to
the current element. Finally, the first and second strategy can be combined to determine the
annotations of the container nodes firstly and computing those of the children afterwards. Ac-
cordingly, the following three possibilities compute an annotation for each element el still missing
an annotation and are enumerated here in short. The subsequent paragraphs explain them in
detail.

1. container : use the annotation of el’s container for mapping assignment

2. contained: build the disjunction of the annotations of el’s contained elements for mapping
assignment

3. combined: combine the el’s container (strategy (1)) annotation and the disjunction of the
annotations of el’s contained elements (strategy (2)) in a conjunction for mapping assignment

Overview of Computing Missing Annotations Before describing the details of the three
completion algorithms, Fig. 7.3.3 illustrates the dependencies and key parameters of the processed
steps to determine a missing annotation.
According to Fig. 7.3.3, the computation of missing annotations consists of three basic steps. In
the figure, rectangles represent operations and half-rounded rectangles the in- or output of an
operation. At first, the computeOpen algorithm (Alg. 3) determines the elements still missing an
annotation. It distinguishes nodes from edges and collects them in two sets ordered by a pre-order
traversal of the spanning containment tree formed by the input model. The set of nodes is input to
the second step, which employs one of the three strategies, prescribed in Alg. 4 - 6 to determine the
annotations for each node in the set based on the partially annotated model. This step results in
a partial mapping function map_p′FHT

where each node carries an annotation but not necessarily
every edge. Consequently, the third step provides the new partially annotated model as well as the
set of edges missing an annotation as input to the algorithm assignEdgeAnnotations (Alg. 7).
Based on the annotations of the source and target node connected by an edge, the algorithm
determines the annotations of the edges. To this end, the resulting mapping annotation function
is total yielding a completely annotated graph.

141

CHAPTER 7. MISSING TRACE INFORMATION

Before starting the ‘missing annotation determination’ process with the partial model as input, as
sketched in Fig. 7.3.3, the algorithm checks whether an annotation is already mapped onto the root
of the model. If the root misses an annotation, the root element will receive the annotation of the
root of the feature model because otherwise the entire target model would not exist. Additionally,
this check and potential assignment of an annotation to the root of the model guarantees that
container expressions exist when traversing the containment hierarchy of the considered model
from top to bottom.

II Computation of Open Elements

After having determined the root annotation, the first step of Fig. 7.3.3 collects all graph elements
without an annotation as described in Alg. 3. The algorithm computes two distinctive sets of open
elements in the graph. It distinguishes nodes (OpenNodes) from edges (OpenEdges) to compute
their missing annotations separately and those of the nodes in the first place.

Algorithm 3 Compute ordered sets of nodes and edges missing an annotation.
1: procedure computeOpen(HT ,map_pFHT

)
2: in HT . target subgraph
3: in map_pFHT

: ELHT
→A0

F . Partial annotation function for the target subgraph HT
4:
5: var OpenNodes := {} . Initialize ordered set of open nodes
6: var OpenEdges := {} . Initialize ordered set of open edges
7: var el ∈ ELHT

. Processed target element
8:
9: for el ∈NHT

do . Topologically process all nodes of target graph
10: if map_pFHT

(el) = ε then
11: OpenNodes :=OpenNodes ∪ {el} . Append element to set of open nodes
12: end if
13: end for
14: for el ∈ EHT

do . Process all edges of target graph
15: if map_pFHT

(el) = ε then
16: OpenEdges :=OpenEdges ∪ {el} . Append element to set of open edges
17: end if
18: end for
19: end procedure

Subsequently, the algorithm iterates the nodes of the target input graph HT (i.e., the set NHT
)

in a pre-order traversal. Line 9 starts with collecting the set of open nodes. If no annotation is
mapped onto the processed node (c.f., Line 10), the algorithm will append the node to the back
of the set of open nodes. Similarly, the second loop iterates the set of edges (c.f., Line 14) and
appends each edge which misses an annotation to the set of open nodes (c.f., Line 15). As opposed
to the set of open nodes, the order of edges is irrelevant because the annotation which is computed
for the edges, will be a conjunction of the their source and target node annotations.
Altogether, after having processed all elements of NHT

, the sets of open nodes is ordered according
to a pre-order traversal of the spanning containment tree formed by the model while the set of
open edges contains them in arbitrary order.

Example 7.3.4: Computation of Open Elements

This example extends Ex. 7.3.1 in the way presented in Fig. 7.3.4. For easier readability,
the (source) edges are not annotated and not recorded by the 1:1 links in this scenario.
The example assumes a modified C2C transformation rule: Instead of creating a Java class
declaration and corresponding compilation unit CUnit only, the transformation also adds
an interface declaration (InterfDecl) to the Java package jp as well as a corresponding

142

7.3. INCOMPLETE TRACE INFORMATION

compilation unit for the interface to the Java model jm. While the Java model stores the
compilation units as before, the interface declaration is stored in the package jp linked with
the UML package up comprising the transformed UML class ucp. Moreover, a package,
called impl, should store each class declaration. Accordingly, the C2C rule will create the
implementation package jpi stored inside the package containing the interface declaration
additionally if this package does not exist in the containing package yet (i.e., for the first
transformed class stored in this package).
As pivotal elements, the trace still records the UML classes and the Java class decla-
rations and propagates the annotations depicted in the blue-colored rounded rectangles,
accordingly. Consequently, the annotations of the two compilation units for each C2C rule
application as well as of the implementation package and the interface declarations are
missing after propagating annotations based on the incomplete trace.
The computation of the open elements iterates the target modelMHTF

in pre-order traver-
sal. The collection of nodes missing an annotation examines the left subtree of the root
node, at first. The package jp is annotated but its children, both interface declarations of
the Person and Family class as well as the implementation package, miss an annotation so
that the algorithm adds them to the set of open nodes subsequently. The class declarations
which are processed afterwards, carry annotations and thus, are not integrated into the
set of open nodes. Similarly, iterating the remaining nodes of the model first appends the
compilation unit for the Person interface and class declaration followed by the compilation
units for the Family interface and class declaration to the ordered set of open nodes. As a
result, the set of open nodes encompasses all nodes of the model missing an annotation in
their hierarchical order: OpenNodes= {jif,jip,jpi,cup,cupi,cuf,cufi}

name = "db"

um : Model

name= "db"

 up : Package
jp : P

jm : Model

ue2 : oTypes

ucp : Class
name = "Person"

jcp : ClassDecl
name = "PersonImpl"

name = "Person.java"

eu1 : units

cup : CUnit

et2 : types

t1 : M2M

t2 : P2P

 t3 : C2C

ue1 : oPackages

trace targetsource

DB

 P

DB

ep1: packages

 P

DB

DBMHTF
 MGSF

 ?

name = "Person-
 Impl.java"

eu2 :
units ?

jip : InterfDecl
name = "Person"

et1 : types

name = "impl"

jpi : P
 ?

ep2 :
packages

cupi : CUnit
 ?

ucf : Class
name = "Family"

 t4 : C2C
jcf : ClassDecl
name = "FamilyImpl"

et4 :
types

 F F

jif : InterfDecl
name = "Family"

 ?ue3 : oTypes name = "Family.java"

cuf : CUnit
 ?

name = "Family-
 Impl.java"

 ?
cufi : CUnit

et3 :
types

eu3 :
units

eu4 :
units

Figure 7.3.4: Commutativity violation due to incomplete traces in extended example. The C2C rule
creates a class declaration, stored in an package impl, an interface declaration and two compilation
units for storing the interface and class, respectively.

Please note: Even though the source edges are not annotated in the example, the pre-order
traversal can also record the edges which miss an annotation. For reasons of better performance,
it is suggested to iterate the partially annotated model only once and record both sets of open
elements simultaneously. Recording the edges additionally results in a set of open edges, which
comprises each edge of the target model. In Ex. 7.3.4 the set constitutes as follows: OpenEdges=
{ep1,et3,et1,ep2,et2,et4,eu1,eu2,eu3,eu4}.

143

CHAPTER 7. MISSING TRACE INFORMATION

III Computation of Open Node Annotations

In the next step, one of the three completion strategies processes the ordered set of open nodes.
The following paragraphs introduce the algorithms describing the processed steps n the container,
the contained and the combined strategy, subsequently.

Container Strategy Alg. 4 describes the behavior of the container strategy. The algorithm
iterates the set of open nodes from the beginning to the end (i.e., according to the pre-order
traversal order) (l. 8). For each processed node n, in line 9 the algorithm determines the annotation
of its container by employing the parent function defined in Def. 7.3.5. Then, the algorithm assigns
the annotation stored in np to n by updating the partial mapping function in line 10. As a result,
n may serve as annotated parent node if one of its children misses an annotation as well. Thus,
the algorithm guarantees the availability of an annotation for the parent node for each processed
node. Moreover, it ensures referential and existence integrity for the set of open nodes: whenever
a node n∈OpenNodes is integrated in a configured product, it is ensured that its container exists
in the same product, too.

Algorithm 4 Assignment of the annotation of the container node.
1: procedure propagateContainer(OpenNodes,MH_pFT

)
2: in OpenNodes . ordered set of nodes without annotation
3: in HT . target subgraph
4: in map_pFHT

: ELHT
→A0

F . Partial annotation function for HT
5: out map_p′FHT

: ELHT
→A0

F . Partial annotation function for HT with all nodes
annotated

6:
7: map_p′FHT

:= map_pFHT
. Initiate total annotation function with partial one

8: for n ∈OpenNodes do . Iterate containment hierarchy top-down
9: var np := parentE(n) . get container node
10: map_p′FHT

(n) :=map_p′FHT
(np) . assign annotation of container node

11: end for
12: end procedure

Example 7.3.5: Computation of Container Annotation

The extended example, depicted in Fig. 7.3.4, misses annotations for the set of open nodes,
OpenNodes = {jif,jip,jpi,cup,cupi,cuf,cufi}, which are computed in Ex. 7.3.4. This
lays the grounds for this example which describes how to compute the missing annotations
for this set of open nodes based on the container completion strategy. Fig. 7.3.5 summarizes
the result:
Firstly, the algorithm determines the annotation of the interface declaration jif corre-
sponding with the UML class Family. The Java package jp represents its parent node
onto which the annotation DB mapped. Accordingly, the annotation which is computed for
the interface jif is DB.
Similarly, the next elements, the interface declaration for the class Person (jip) as well
as the implementation package (jpi), receive the same annotation because the package
jp encompasses these two elements, too. Thereafter, the compilation units receive an
annotation, which is also DB.
As a result, in this example the container strategy assigns the annotation DB to each of the
nodes stored in OpenNodes. Apparently, in this example the result of the algorithm not
optimal because the root feature is assigned to all elements missing an annotation.

144

7.3. INCOMPLETE TRACE INFORMATION

name = "db"

um : Model

name= "db"

 up : Package
jp : P

jm : Model

ue2 : oTypes

ucp : Class
name = "Person"

jcp : ClassDecl
name = "PersonImpl"

name = "Person.java"

eu1 : units

cup : CUnit

et2 : types

t1 : M2M

t2 : P2P

 t3 : C2C

ue1 : oPackages

trace targetsource

DB

 P

DB

ep1: packages

 P

DB

DBMHTF
 MGSF

name = "Person-
 Impl.java"

eu2 :
units

jip : InterfDecl
name = "Person"

et1 : types

name = "impl"

jpi : PDB

ep2 :
packages

cupi : CUnit

DB

ucf : Class
name = "Family"

 t4 : C2C
jcf : ClassDecl
name = "FamilyImpl"

et4 :
types

 F F

jif : InterfDecl
name = "Family"

DB

ue3 : oTypes name = "Family.java"

cuf : CUnit

name = "Family-
 Impl.java"

cufi : CUnit

et3 :
types

eu3 :
units

eu4 :
units

DB

DB

DB

DB

Figure 7.3.5: Computed annotations by container completion strategy (Alg. 4).

Contained Strategy The contained strategy – presented in Algorithm 5 – iterates the ordered
set from the end to the beginning. For that reason, at first, a reverse operation inverts the set of
open nodes (l. 8) which results from the pre-order traversal. Each element receives the annotations
of its children nodes combined in a disjunction (l. 14). Consequently, the node (containing the
children) has to exist as soon as at least one of the children nodes exists.
If no children elements exist (i.e., a leaf of the tree is processed), an empty disjunctive clause would
be the result which is defined to evaluate to false in Boolean algebra. Since this would remove the
element from each derived product (c.f., discussion of model filters in Sec. 7.3.1), as alternative,
the algorithm retains each leaf node in a resulting product by assigning the root feature instead
of the empty disjunctive clause in line 12. Nonetheless, due to the bottom-up propagation, all
elements processed after the leaf nodes possess children where annotations are assigned.

Example 7.3.6: Computation of Contained Annotation

This example explains how to compute annotations for the set of open nodes of the example
depicted in Fig. 7.3.4, based on the contained strategy.
First, the set of open nodes is reversed. Accordingly, the reversed set starts with the
compilation units and comprises the interface declarations such that in the end:
Reversed= {cufi,cuf,cupi,cup, jpi, jip, jif}.
The result of the following computation deviates only in the annotation mapped onto the
package impl (object jpi) from the annotated multi-variant target model created by the
container strategy, shown in Fig. 7.3.5:
First, the algorithm processes the four compilation units which are leaf nodes of the span-
ning containment tree. The example assumes that this corner case is implemented as
proposed in Alg. 5, which maps the annotation of the root feature, which is DB, onto those
nodes. Consequently, the compilation units are integrated in every derived product.
Next, the annotation of the implementation package jpi is determined which is P ∨ F, which
combines the annotations of its children nodes in a disjunction. For the remaining open
nodes, representing the interface declarations, the same situation as for the compilation unit
occurs: the root feature DB is mapped onto them because both elements do not comprise
children nodes.

145

CHAPTER 7. MISSING TRACE INFORMATION

Algorithm 5 Assignment of annotations based on contained elements.
1: procedure PropagateContained(OpenNodes,MH_pTF

)
2: in OpenNode¸ . ordered set of nodes without annotation
3: in HT . target subgraph
4: in map_pFHT

: ELHT
→A0

F . Partial annotation function for HT
5: out map_p′FHT

: ELHT
→A0

F . Partial annotation function for HT with all nodes
annotated

6:
7: map_p′FHT

:= map_pFHT
. Initiate total annotation function with partial one

8: var Reversed = reverse(OpenNodes) . reverse the set
9: for n ∈Reversed do . iterate bottom-up
10: var Children = childrenE(n) . set of children nodes
11: if Children= ∅ then
12: map_p′FHT

(n) := getRootFeat()
13: else
14: map_p′FHT

(n) :=
∨
c∈Childrenmap_p′FHT

(c)
15: end if
16: end for
17: end procedure

Combined Strategy Finally, Alg. 6 describes the realization of the combined strategy. The set
of open nodes is iterated twice. Similarly as in Alg. 4, the first iteration of the set of nodes occurs
from front to back according to the pre-ordered sequence (l. 9) and assigns the annotation of the
parent node to each processed node (l. 11).
Secondly, the algorithm iterates the set of open nodes in reverse order (l. 14) in the same way
as in Alg. 5. In contrast to the contained strategy, this algorithm does not have to determine an
annotation if children elements are missing because the previous iteration ensures that at least
the annotation of the container is already assigned. However, if children nodes are present, the
algorithm will combine their annotations in a disjunction (l. 18). In the end, the resulting clause
is combined with the annotation assigned in the first iteration in a conjunction (l.19) and assigned
this way to the respective node.

Example 7.3.7: Computation of Combined Annotation

Fig. 7.3.6 demonstrates the annotations resulting from applying the combined strategy to
compute the annotations missing in Fig. 7.3.4.
First, the annotations of the parent nodes are assigned as in Ex. 7.3.5. Accordingly, each
node in the set of open nodes receives the annotation DB. Afterwards, the algorithm iterates
the reversed set of open nodes. If a node contains children nodes, their annotations will be
combined in a disjunction. The resulting annotation is combined in a conjunction with the
already present parent annotation. In this example, this is the case for the package impl
(object: jpi). If the node does not contain children, the annotation computed in the first
iteration will remain unchanged.
Thus, after executing the combined strategy, the mapping annotation function associates
the following Boolean expressions with respective model elements:

map_p′(jif) =map_p′(jip) = DB
map_p′(jpi) = DB∧ (P∨F)
map_p′(cup) =map_p′(cupi) =map_p′(cuf) =map_p′(cufi) = DB

All in all, the combined strategy may increase the execution time due to iterating the set of nodes
twice but not its complexity, as the second iteration visits exactly the same number of elements.
The complexity of each algorithm is discussed in Sec. 7.3.4. Moreover, it is expected that the

146

7.3. INCOMPLETE TRACE INFORMATION

Algorithm 6 Assignment of combined (parent and children) annotations.
1: procedure PropagateCombined(OpenNodes,MH_pTF

)
2: in OpenNodes . ordered set of nodes without annotation
3: in HT . target subgraph
4: in map_pFHT

: ELHT
→A0

F . Partial annotation function for the target graph HT
5: out map_p′FHT

:ELHT
→A0

F . Partial annotation function for target graph HT with all
nodes annotated

6:
7:
8: map_p′FHT

:= map_pFHT
. Initiate total annotation function with partial one

9: for n ∈OpenNodes do . Iterate containment hierarchy top-down
10: var np := parentE(n) . get container node
11: map_p′FHT

(n) :=map_p′FHT
(np) . assign annotation of container node

12: end for
13:
14: var Reversed = reverse(OpenNodes) . reverse the set
15: for n ∈Reversed do . iterate bottom-up
16: var Children = childrenE(n) . set of children nodes
17: if Children 6= ∅ then
18: var childClause=

∨
c∈Childrenmap_p′FHT

(c)
19: map_p′FHT

(n) :=map_p′FHT
(n) ∧ childClause

20: end if
21: end for
22: end procedure

accuracy of the determined annotations with respect to satisfying commutativity when employing
the combined strategy increases. Sec. 7.3.4 further elaborates on the accuracy of the heuristics to
determine annotations in partially annotated models. Finally, Sec. 10.3 examines the accuracy of
the completion algorithms in different transformation scenarios in practice.

IV Computation of Missing Edge Annotations

Besides the set of open nodes, Alg. 3 computes the set of edges missing an annotation. This
section explains how the set of open edges is processed.
After having determined annotations for each node, it is possible to consider the edges, regardless
of whether they are forming the spanning containment tree (containment references) or estab-
lish a cross-reference between arbitrary nodes. Performing the algorithms in the order sketched
in Fig. 7.3.3 guarantees that an annotation is present on each node.
To ensure referential integrity, both ends of an edge have to be incorporated in a derived product for
avoiding dangling references. Otherwise, it depends on the behavior of the model filter whether
the edge is included in each derived product or excluded. Therefore, the algorithm assigning
annotations to edges retrieves the annotation of the source node (s) and of the target node (t) and
combines them in a conjunction. This expression is assigned to the respective edge by employing
the mapping annotation function.
Alg. 7 describes the assignment of annotations to edges missing one. The partially annotated
target graph as well as the set of open edges are input to the algorithm. As sketched in Fig. 7.3.3,
the partial mapping already records an annotation for each node in the graph. In contrast to
processing the set of open nodes, the order of processing the edges is irrelevant because all nodes
are annotated. Consequently, the set of open edges may be iterated in arbitrary order. For each
edge in the set, the algorithm assigns the conjunction of the annotation of its source and target
node (l. 9) to the edge. To this end, the entire completion process ensures that an annotation is
not only mapped onto each node but also onto each edge in the graph.

147

CHAPTER 7. MISSING TRACE INFORMATION

name = "db"

um : Model

name= "db"

 up : Package
jp : P

jm : Model

ue2 : oTypes

ucp : Class
name = "Person"

jcp : ClassDecl
name = "PersonImpl"

name = "Person.java"

eu1 : units

cup : CUnit

et2 : types

t1 : M2M

t2 : P2P

 t3 : C2C

ue1 : oPackages

trace targetsource

DB

 P

DB

ep1: packages

 P

DB

DBMHTF
 MGSF

name = "Person-
 Impl.java"

eu2 :
units

jip : InterfDecl
name = "Person"

et1 : types

name = "impl"

jpi : PDB

ep2 :
packages

cupi : CUnit
DB∧ (P∨F)

ucf : Class
name = "Family"

 t4 : C2C
jcf : ClassDecl
name = "FamilyImpl"

et4 :
types

 F

 F

jif : InterfDecl
name = "Family"

ue3 : oTypes name = "Family.java"

cuf : CUnit

name = "Family-
 Impl.java"

cufi : CUnit

et3 :
types

eu3 :
units

eu4 :
units

DB

DB

DB

DB

DB

Figure 7.3.6: Computed annotations by combined completion strategy (Alg. 6).

Algorithm 7 Assignment of annotations to edges.
1: procedure assignEdgeAnnotations(OpenEdges,MH_pFT

)
2: in OpenEdges . set of edges without annotation
3: in H =HS ←HTR→HT . target STT graph
4: in map_p′FHT

: ELHT
→AF . Partial annotation function for the target graph HT

where all nodes are annotated
5: out mapFHT

: ELHT
→AF . Total annotation function for the target graph HT

6:
7: mapFHT

:= map_p′FHT
. Initiate total annotation function with partial one

8: for e ∈OpenEdges do . Iterate set of edges
9: mapFHT

(e) :=mapFHT
(s(e)) ∧mapFHT

(t(e)) . assign annotation of container node
10: end for
11: end procedure

Example 7.3.8: Assignment of Annotations to Edges

After having assigned annotations to each node by one of the three strategies introduced
before, the set of open edges is iterated to assign annotations.
As a result of determining elements missing annotations in Ex. 7.3.4, the set of open edges
encompasses each edge in the target model: OpenEdges= {ep1, et3, et1, ep2, et2, et4,
eu1, eu2, eu3, eu4}
Since the algorithm computes annotations after having applied one of the three strategies,
all nodes are already annotated. We assume that the container strategy (Alg. 4) provided
the missing node annotations. Then, Alg. 7 assigns the annotations to the edges in the
mapping function, which Fig. 7.3.7 highlights by blue rectangles with white letters, as
follows.
Again we refrain from simplifying the annotations to show their composition based on the
annotations of the source node (left side of the conjunction) and target node ((.e., the right

148

7.3. INCOMPLETE TRACE INFORMATION

side of the conjunction).

map(ep1) =map(et3) =map(et1) =map(ep2) DB∧DB
map(et2) = DB∧P
map(et4) = DB∧F
map(eu1) =map(eu2) =map(eu3) =map(eu4) DB∧DB

name = "db"

um : Model

name= "db"

 up : Package
jp : P

jm : Model

ue2 : oTypes

ucp : Class
name = "Person"

jcp : ClassDecl
name = "PersonImpl"

name = "Person.java"

eu1 : units

cup : CUnit

et2 : types

t1 : M2M

t2 : P2P

 t3 : C2C

ue1 : oPackages

trace targetsource

DB

 P

DB
ep1: packages

 P

DB

DBMHTF
 MGSF

name = "Person-
 Impl.java"

eu2 : units

jip : InterfDecl
name = "Person"

et1 : types
name = "impl"

jpi : P

ep2 :
packages

cupi : CUnit

ucf : Class
name = "Family"

 t4 : C2C
jcf : ClassDecl
name = "FamilyImpl"

et4 : types

 F F

jif : InterfDecl
name = "Family"ue3 : oTypes

name = "Family.java"

cuf : CUnit

name = "Family-
 Impl.java"

cufi : CUnit

et3 :
types

eu3 : units

eu4 : units
DB

DB∧DB

DB

DB

DB

DB

DB

DB

DB∧DB

DB∧DB

DB∧DB

DB∧DB

DB∧DB

DB∧P

DB∧F

DB∧DB

Figure 7.3.7: Computed annotations by edge completion (Alg. 7), depicted in blue rectangles. The
container strategy (Alg. 4) completed the annotations of the nodes.

Summing it up, by employing one of the three proposed strategies, in the first step annotations for
the nodes are determined. Due to the construction and order of the algorithms, it is guaranteed
that for each node missing an annotation, an annotation can be determined because either an
annotated parent node exists or its children are annotated. Similarly, the computation of the
edge annotations is performed only after all nodes are annotated ensuring that the source and the
target of an edge offer access to a valid annotation. Thus, the process turns a partial mapping
function into a total mapping function.

7.3.4 Discussion
Even though the strategies ensure the creation of a total mapping function based on knowledge
guaranteed by incomplete traces, the resulting function may still incorporate mappings that are
not specific enough or too specific. On the one hand, an annotation that is not sufficiently specific
is too broad with respect to including the corresponding model element in too many configured
products. On the other hand, an annotation that is too specific is too restrictive with respect to
removing the corresponding model element from too many configured products. Both situations
may cause violations to the commutativity criterion. Moreover, the algorithms expose different
computational complexity which may be weighed against its accuracy when selecting a strategy
to complete the mapping function with annotations.
The following two parts discuss the computational complexity of each algorithm, firstly, and the
accuracy to satisfy commutativity, secondly. Please note that the sequel discusses the up- and
downsides of choosing one of the strategies conceptually and derive proposals to choose a strategy
in case incomplete trace information is present. Conversely, the evaluation in Chp. 10 employs
measurements to investigate the precise error introduced by applying the heuristic strategies in

149

CHAPTER 7. MISSING TRACE INFORMATION

different scenarios.

I Computational Complexity

As illustrated in Fig. 7.3.3 the process of determining the total mapping function consists of three
major steps: first, the collection of graph elements missing annotations, second, the computation
of node annotations and third, the computation of edge annotations. For selecting one of the
heuristics, its computational complexity may be regarded and weighed against its benefits for
accuracy. Accordingly, we first analyze the complexity to offer a worst case estimation of the
computational complexity regarding time consumption. For that reason, this part discusses the
complexity of the algorithms which determine the open sets of elements in the target graph missing
an annotation first. Next, the complexity of determining the missing annotations for the graph
edges is discussed before regarding the three heuristics which compute the missing annotations
for the graph nodes.

Preliminaries For analyzing the algorithms in an isolated way the following variables are of
interest:
The input to the algorithms is the partially annotated target graph MHT = (HT ,map_pHT

). A
number of n = |NT | nodes and of e = |ET | edges counts the elements of the target graph HT ,
where x= n+e represents the number of all graph elements.
Furthermore, let n′ < n and e′ ≤ e be the number of nodes and edges missing an annotation,
respectively. Even though no annotations were assigned before by an incomplete propagation,
the preprocessing step would annotate the root node of the target graph with the root feature,
ensuring that at least one node out of the n nodes of HT is annotated. This in turn guarantees
that the number of open nodes is smaller than the number of all nodes in HT .
Moreover, the strategies to determine missing annotations based on the already assigned anno-
tations have to access the mapping function. In reality the complexity of accessing and storing
elements in maps depends on several factors, such as the implementation of the map, the capacity
in case of a hash map and a balanced dispersal among buckets, etc., which in the best case is O(1)
and in the worst case O(m) with m representing the number of elements stored in the map. For
that reason, in the sequel we assume the worst case of a complexity of O(x) for retrieving a graph
element from and adding a graph element to the map.

Termination In the first place, it must be guaranteed that the annotation determination strate-
gies terminate on an arbitrary partially annotated multi-variant graph as input. The main loop
that iterates the set of open nodes or edges is decisive for the termination of the algorithms to
find the missing annotations.
As stated in the preliminaries, the number of open nodes n′ = |OpenNodes| is limited by the finite
number of nodes in the multi-variant input graph n = |N |, such that n′ < n. Moreover, the sets
of nodes and edges in HT are finite implying that the sets of open nodes and edges are finite as
well when beginning the iteration of the sets.
Secondly, the algorithms neither add nodes to the set of open nodes nor edges to the set of open
edges. Moreover, in case of the contained and combined strategy another loop iterates the children
of a node inside the loop which processes the open nodes. Since the number of all nodes in HT
limits the number of children sharply, i.e., |childrenE(n)|< |N |, and no children nodes are added,
the inner loop as well as the outer loop terminate when determining annotations for the nodes.
Similarly, only one loop iterates the finite set of open edges. Assuming one computation step is
required to access the source and target node connected by an edge, the loop iterating the set
of open edges is guaranteed to terminate, too, because the algorithm does not modify the set.
Consequently, since the number of elements in the sets of open nodes (and children nodes) and
edges remains finite, processing the sets is guaranteed to terminate.

Complexity of Computing Set of Open Elements The first step executes the algorithm to
determine the sets of open nodes and edges (Alg. 3). This algorithm exposes quadratic execution
time with respect to the number of graph elements as upper threshold as the following deduction

150

7.3. INCOMPLETE TRACE INFORMATION

Algorithm 8 Asymptotic complexity of computing open nodes and edges.
1: ...
2: for el ∈ ELHT

do . O(x)
3: if map_pFHT

(el) = ε then . O(x)
4: if el ∈NHT

then . O(n)
5: OpenNodes :=OpenNodes ∪ {el} . O(n′)
6: else . O(1)
7: OpenEdges :=OpenEdges ∪ {el} . O(e′)
8: end if
9: end if
10: end for

shows. The upper thresholds for the time-relevant processing steps of Alg. 3 are put in comments
behind the corresponding expressions in Alg. 8.
The algorithm executes the outer loop for each node and each edge implying the upper threshold for
the execution time is O(x) in Line 2. Inside the loop, the algorithm checks whether an annotation
is already mapped onto the element, which requires to access the mapping function. Therefore,
Line 3 spends at most an execution time of O(x). Thereafter, it is checked whether the element
is included in the set of nodes which requires to compare the element with n nodes at maximum,
resulting in a time of O(n). In case the processed element is not present in the set of open nodes,
it is contained in the set of edges causing no additional runtime.
Next, the algorithm appends the element to the already determined set of open nodes. Depending
on the implementation of appending elements to the set of elements, its complexity may be
constant or linear: If the element is appended to the end of the corresponding set without a
need to iterate the entire set, a complexity of O(1) can be achieved. Nonetheless, in the worst
case the complexity of Line 5 exposes linear time of O(n′) when not allowing for accessing the last
element of a collection in constant time and similarly O(e′) in Line 7.
All in all, each graph element is processed once in the outer loop while the inner loop performs the
following number of computation steps at maximum: x+n+n′ or x+n+ e′, with respect to the
element being an edge or a node. We can approximate the inner processing steps as x+x+x= 3x
because n,n′,e′ < x. As a result, the overall complexity sums up to O(x∗3x) = O(x∗x) = O(x2)
= O((n+e)2). Summing it up, computing the sets of open nodes and edges performs in quadratic
execution time with respect to the number of nodes and edges in the worst case.

Complexity of Computing Edge Annotations To determine the annotation of all edges
missing one, the set of edges is iterated once. Accordingly, this process requires linear time of
O(e′) in the worst case. In addition, accessing the source and target node of an edge should be
managed in constant time (O(1)) by following a reference. Accessing the mapping of both nodes
inside this loop exposes a time of O(x) at maximum yielding an overall asymptotic execution time
of quadratic amount: O(e′ ∗2x). Thus, the algorithm performs in quadratic time with respect to
the number of all elements in the graph in the worst case.

Complexity of Computing Node Annotations Regarding the execution time of the heuris-
tics implemented in the three strategies, the algorithms expose an asymptotic quadratic and cubic
complexity with respect to the number of nodes in the worst case.

Complexity of Container Strategy The container strategy iterates the set of open nodes once
(O(n′)) and accesses the container of each node. Alg. 9 summarizes the asymptotic estimations
of the execution time as comments in each line.
We assume that the parent node can be accessed in constant time in Line 4. This assumption is
justified because it requires to follow the unique incoming edge labeled as container. A pointer
may realized accessing this edge since it is the single edge of this kind for each node. Thereafter,
accessing the mapping function exposes linear complexity O(x) in the worst case plus assigning
the resulting annotation to the same map of annotations which spends the same amount of time

151

CHAPTER 7. MISSING TRACE INFORMATION

Algorithm 9 Complexity of container strategy (1).
1: ...
2: map_p′FHT

:= map_pFHT
. Initiate total annotation function with partial one

3: for n ∈OpenNodes do . O(n′)
4: var np := parentE(n) . O(1)
5: map_p′FHT

(n) :=map_p′FHT
(np) . O(2∗ (x))

6: end for

in the worst case in Line 5. Consequently, the worst case asymptotic execution time is quadratic:
O(n′ ∗ (2∗x)) = O(x2).

Complexity of Contained Strategy In contrast, the contained and combined strategy require
to iterate the number of children nodes nc ≤ n inside the outer loop which iterates the set of open
nodes. As sketched in Alg. 10, this additional iteration of the children nodes, which accesses
the mapping function for each child node, exposes an asymptotic execution time of O(n ∗ x)
(c.f., Line 9) at maximum. In total, the computation steps inside the loop sum up to n+x or
n+n∗x+x in the first branch (no children) or second branch, respectively. As a result, the worst
case execution time inside the loop is O(x2). Since iterating the (reversed) set of nodes requires
linear time, in total the asymptotic execution time sums up to O(x3) in the worst case.

Algorithm 10 Complexity of contained strategy.
1: ...
2: map_p′FHT

:= map_pFHT
. Initiate total annotation function with partial one

3: var Reversed = reverse(OpenNodes) . O(n′)
4: for n ∈Reversed do . O(n′)
5: var Children = childrenE(n) . O(n)
6: if Children= ∅ then
7: map_p′FHT

(n) := getRootFeat() . O(x)
8: else
9: var ann=

∨
c∈Childrenmap_p′FHT

(c) . O(n∗x)
10: map_p′FHT

(n) := ann . O(x)
11: end if
12: end for

Complexity of Combined Strategy The combined strategy, which combines the contained
and container strategy, exposes the asymptotic execution time approximated by the time to execute
the contained strategy, which is of cubic complexity. This results from the following observation.
First, the algorithm executes the container strategy exposing quadratic execution time at maxi-
mum. Afterwards, it executes the contained strategy, exposing cubic execution time. In summary,
we can approximate the execution time as O(x2 +x3) which results in an asymptotic execution
time of O(x3).

Reflection An optimized implementation of accessing and manipulating the mapping function
may, however, reduce the execution time significantly. If accessing and adding elements to the
mapping function is executed in constant time, each asymptotic runtime will be reduced by an
entire factor, i.e., the resulting execution time of the contained and combined strategy will be of
quadratic (O(x2)) and the container strategy of linear (O(x)) complexity.
All in all, this estimation shows that the complexity of the contained and the combined strategy
is of the same size. Even though both strategies expose an additional potency of complexity,
it is caused by approximating the number of children of each node by the number of all nodes.
In reality, however, the number of children of an open node can at most only once reach the

152

7.3. INCOMPLETE TRACE INFORMATION

amount of n−2 causing that no further nodes are present to be processed anymore. Instead, the
probability that the number of children nodes remains far below the number of all nodes in the
graph is relatively high, even a number of zero children nodes is possible. If it could be assumed
that the mapping of all children nodes can be accessed in linear time, there would be no difference
between the three strategies with respect to the asymptotic execution time.

II Accuracy

As mentioned before, the accuracy of the annotations determined by one of the heuristic strategies
do not guarantee 100% correctness with respect to the commutativity criterion. Nonetheless, we
argue that they result in a deterministic behavior, on the one hand, and improve the accuracy
compared to having no annotations, on the other hand.

General Remarks In the first place, it must be noted that each of the strategies guarantees
to determine annotations for all elements missing one. However, the accuracy is limited by the
heuristics exploiting the structure of the model as well as the presence of annotations assigned
beforehand, for example, based on the incomplete trace.

Container Strategy By assigning the annotation of the parent node, the container strategy
(1) ensures referential integrity with respect to contained children. The strategy implies that if
the parent node is present, its children nodes which were not annotated automatically will be
present in a derived product, too. Moreover, since it should not be possible for a child node to
be present without its parent, the child should not receive an annotation which is less restrictive.
Consequently, assigning the annotation of the parent node guarantees that products incorporating
a child without its parent will not be derivable if the child was missing an annotation. However,
the annotation retrieved from the parent node may still be too broad, i.e., the child node may be
included in too many products.
For instance, let r denote the root element of the domain model. If children of r are missing an
annotation, the algorithm will assign the annotation of r to its children as well. However, since
r should be present in each product, the root feature is mapped onto that element to ensure the
existence of the derived variant. As a result, the children of r, which miss an annotation, will be
present in each derived product even if they realize an optional feature.
Moreover, if a hierarchy of elements misses an annotation, the container strategy propagates a
potential coarse-grained annotation from the top along the hierarchy down to the bottom until the
first element carrying an annotation is reached. Accordingly, although a more specific annotation
would have to be assigned to any of the elements in this hierarchy, the annotations remain at the
same broad level as at the top of the model hierarchy.
In the extended version of the introductory example depicted in Fig. 7.3.4, the compilation units
of the Java model all miss an annotation. Since their parent is the root of the model, they receive
the root feature as annotation. Consequently, when applying the parent strategy, all compilation
units will be integrated in every derived product regardless of the fact whether they comprise
only optional classifiers. For that reason, even the compilation unit holding the class Family is
contained in a product realizing the feature configuration where F is deselected without containing
the class. The filter will remove the class due to its more fine-grained annotation. In addition, if the
compilation units contained further children which missed an annotation, they would receive the
root feature as annotation rendering them present in every derived product, too. This limitation
for leaf nodes manifests in each of the proposed algorithms in this example.

Contained Strategy In the contained strategy, the annotation of the children nodes is mapped
onto the parent node missing one. Alg. 5 guarantees that each child is annotated before processing
the parent. In this strategy a node without children nodes (i.e., a leaf node) would be completely
excluded from every product if the annotation false was assigned. As our algorithm assigns the
root feature as annotation instead, the leaf node is included in every product, meaning that the
annotation is too broad.

153

CHAPTER 7. MISSING TRACE INFORMATION

Similar as in the container strategy, the coarse-grained annotation of a leaf node missing an
annotation may propagate along the hierarchy of the spanning containment tree from bottom to
top if multiple ancestors consecutively miss an annotation. Particularly, excluding these elements
from every derived product by assigning the annotation false would result in derived products
missing too many elements unconditionally, from which we refrain.
On its upside, if children nodes are present for a node missing an annotation, the determined
annotation will guarantee referential integrity for the children of the node missing the annotation.
If the algorithm combines all annotations of children nodes in a disjunction, it will guarantee that
for each child of the node, which is pertained in a configured product, its parent is present, too.
As a result, a well-formed structure with respect to the children dependency is guaranteed.
Moreover, if specific annotations are mapped onto all children nodes of the node missing the
annotation, the resulting annotation will be more specific than assigning only the single annotation
of the parent node in the contained strategy as well as more specific than assigning the root feature,
which is the case if a leaf node misses an annotation. In concrete, the node will be present only if
one of its children is present, i.e., the node will be only part of a product if its presence is required
to ensure the existence of a child. However, if the parent of the node missing the annotation
is annotated with an optional feature which does not imply the annotation of the children, it is
possible to derive products, where the parent of the node is missing while the node and its children
are present but without a valid container.
As highlighted in Ex. 7.3.6, the annotation of the compilation units serves as an example where
children nodes are missing. Consequently, assigning the annotation false would remove all of
them from every product event if they would contain a classifier realizing a mandatory feature.
Then, the classifier might be integrated but without the corresponding compilation unit. In
contrast, if the root feature is assigned to the compilation units, the same effect as of the container
strategy occurs: too many compilation units may be present in derived products. However, the
annotation computed for the implementation package (jpi) in the same example, is appropriate.
The package will be included in derived products if the features F and P are selected solely or
both. In case none of these two features is selected, the model filter removes the package due
to its annotation. Since its parent, the package jp, is annotated with a mandatory feature, in
this example the problem of removing a parent while its child, which was missing an annotation,
remains in a derived product does not occur.

Combined Strategy The combined strategy is introduced to combine the benefits and to reduce
the drawbacks of the contained and container strategy with respect to accuracy.
First of all, the annotations of parent nodes are mapped onto the nodes missing an annotation.
This ensures that each of the open nodes carries an annotation but the risk remains that the
propagated annotations are too broad which may reduce the accuracy. As a consequence, if a
leaf node misses an annotation, the annotation of the parent will be present. Not assigning the
root feature to such element is beneficial for the following reason: Assigning the root feature is
comparable to assigning true. Instead, the annotation of the parent node may be more specific
and therefore becomes decisive for the presence in a derived product.
If both, annotated children nodes and an annotated parent node, are present for a node missing
an annotation before executing one of the strategies, the combined strategy is able to determine
an annotation that preserves the containment structure in any feature configuration and which is
more specific than assigning the parent or children annotations in isolation. If the parent node
does not form part of the set of open nodes, the annotation which corresponds with the respective
source node is mapped onto it. As a result, the annotation assigned in the first iteration (i.e.,
based on the container strategy) is at least as specific as the annotation of the parent node.
However, it still may be too broad for the node missing the annotation. Due to the fact, however,
that the annotations of the children are combined with this annotation, the node will only be
present in a configured product if one of the children is present, too. Accordingly, if annotations
are mapped onto the parent and children nodes of a node missing an annotation, the resulting
annotation ensures that the node is only present if its parent and one of its children are present.
Thus, the combination with the annotation of the children nodes refines the result and ensures
the persistence of the containment hierarchy in configured products without dangling references.

154

7.4. NO PERSISTENT TRACE INFORMATION

Ex. 7.3.7 sheds lights on the benefits and shortcomings of the combined strategy. On the one
hand, the resulting annotations may be too broad: Since the compilation units are stored in the
root of the model and miss children nodes, the computed annotation is too broad: the compilation
units form part of every derived product. For the same reason, the annotations of the interface
declarations are too broad. Even if their container, the package db, was annotated with a more
specific annotation than the root feature, the annotation of the package might not subsume the
annotations of all classifiers contained in the package. On the other hand, the annotation of the
implementation package (jpi) resides at the right level of accuracy. As annotations are mapped
onto its parent and children nodes, the computed annotation guarantees the presence in the correct
set of derived products: If the features P and F are deselected, the package will be removed. This is
semantically correct and should be implemented in this way in the model transformation because
the package is not needed in this case. If one of the features P and F or both are selected instead,
the package will be present. Consequently, for this element the combined strategy (as well as the
contained) strategy computes the correct annotation with respect to satisfying commutativity.

Conclusion The discussions on accuracy and complexity allow to suggest a strategy when prop-
agating annotations based on incomplete trace information.
The discussion reveals that the container strategy assigns annotations which may be too broad
and, as a result, include too many elements in the configured products. As mentioned in the
introduction to this section (Sec. 7.3.1), including too many elements in configured products
implies potentially leaking information and functionality which may not belong to the customer.
Thus, the strategy may achieve higher accuracy than assigning the annotation true but may render
leaf nodes visible in too many derived variants.
In contrast, the contained strategy uses the annotations of children elements to compute the
missing annotation. This strategy ensures the presence of the parent node for children whose
parent node is not annotated, on the one hand.
On the other hand, let np denote the parent node of the node n which misses an annotation and
receives an annotation computed from the annotation of its children. If an annotation is mapped
onto np based on the trace propagation (due to a 1:1 trace element), the contained strategy
cannot ensure that np is present in the same set of configuration as n because it does not regard
the annotation of np. Moreover, if n is a leaf node, the root feature is mapped onto it resulting in a
too broad annotation. Consequently, the combined strategy assigns the most accurate annotation
even though the corner cases of leaf nodes, particularly with the root node as parent, still receive
the root feature as annotation which means the least specific one.
Weighing the accuracy against the computational complexity, the container strategy is ideal, if a
fast executable solution is desired and broad annotations are sufficient. If the execution time is
no critical factor and accuracy is of relevance, we recommend the combined strategy.

7.4 No Persistent Trace Information

If transformation execution engines do not persist trace information, either the information of
corresponding elements of the source and target model for propagating annotations from source
to target elements will have to be retrieved in different ways or the propagation mechanism must
change.
This section sketches two possibilities to reconstruct the information of corresponding source and
target elements despite missing execution traces. On the one hand, relationships between the
source and the target model can be declared manually in a DSL with incorporated tooling to
assign annotations based on the correspondences to the target model. On the other hand, the
source and target model can be compared to detect similarities for inferring corresponding elements
of source and target model automatically based on shared characteristics.

Road Map Therefore, this section starts with stating the problem by recapitulating the specifics
of propagating annotations based on trace information. Thereafter, Sec. 7.4.2 and Sec. 7.4.3

155

CHAPTER 7. MISSING TRACE INFORMATION

introduce how a propagation DSL and a model matching approach, respectively, may propagate
annotations despite missing traces.

7.4.1 Problem Statement
First of all, this section recapitulates properties classifying multi-variant model transformations.
As declared in Sec. 4.3.2, multi-variant model transformations can be classified by different fea-
tures. Trace-based propagation is a post-processing, automated approach which does not invade
in the execution engine but – as a gray-box approach – relies on the trace as artifact directly
resulting from the execution of the respective models. Since traces transformation engines persist
trace information in varying ways, the trace-based propagation itself is generic with respect to
the model transformation language as well as to the metamodels to which the source and target
models, conform. However, some transformation execution engines do not maintain or persist
trace information. For instance, the ATL default virtual machine records the source and target
elements created by a matched rule but does not persist this information after the execution.
Furthermore, the applications of lazy and called rules are not automatically recorded but could be
maintained by the developer inside the specification. As a consequence, missing trace information
requires to annotated the target model completely manually if no automation, as proposed in this
section, is available.
The two approaches, presented in the following sections, do not require any access to the trans-
formation specification or its execution engine artifacts. On the one hand, the propagation DSL,
as one approach, requires to define corresponding source and target elements of two metamodels
manually to automatically propagate annotations. On the other hand, by matching the source and
target model the second approach may retrieve corresponding elements automatically which can be
used for the automatic trace-based propagation. Both approaches are post-processing approaches
that are not intertwined with a transformation execution if it is present at all.

7.4.2 Propagation DSL
To propagate annotations when no trace is available, this section presents the concepts of prop-
agation DSLs which allow for declaring relationships between the metamodels. An interpreter
receives the source and the target model and parses the specification. By iterating the source
model, the interpreter assigns the annotation of a source element to its corresponding target el-
ements as declared in the specification. For instance, the DSL ModelSync [BG18] realizes such
mechanism.

Road Map In the sequel, the first part demonstrates how a DSL serves to propagate annota-
tions. General design decisions for such approach are given in the second part whereas the third
part demonstrates the DSL ModelSync, as one representative, in particular. The descriptions on
propagating annotations based on a DSL close in the fourth part with a delimitation of other
approaches and a discussion of the automation capabilities offered by this mechanism.

I Schematic Overview

First of all, the developer can use the DSL approach to declare corresponding elements between
two metamodels (thereby replacing the need to retrieve it from a model transformation). Fig. 7.4.1
gives a schematic overview of the approach. While the first step (1) does not foster how the target
model is created beforehand (e.g., by a model transformation or manually), which is sketched
with the create box in the figure, the developer has to specify corresponding elements of the
source and target metamodel in the DSL specification manually. In step two (2), the concrete
DSL specification serves as input to the DSL propagation mechanism as well as the source model
and source mapping (which may be combined in one artifact represented as MGSF

in the figure).
In summary, the manual task involves at least specifying corresponding source and target elements
based on the metamodels. If the target model cannot be created automatically, it may origin from
a manual creation process, too. However, how the target model is created is irrelevant to the

156

7.4. NO PERSISTENT TRACE INFORMATION

DSL specification

multi-variant
''model transformation''

mapFG mapFH

DSL

propagation

MGSF

HT GS

MHTF

S T

2

source

metamodel (TS)

target

metamodel (TT)

conforms to
defined upon

create
1

data flow

Figure 7.4.1: Schematic overview of propagation DSL-based propagation.

propagation mechanism and not the task of the propagation mechanism5. Moreover, defining
correspondences based on the metamodels, offers the benefit that the specification can be reused
for every instance conforming to both metamodels. Thus, the DSL approach pays off in situation
where multiple instances of the source metamodel require a propagation and a model transforma-
tion engine is not accessible or other persistent information about deriving target elements from
corresponding source elements is not available.

II DSL Design Decisions

As a consequence from the functionality, different design possibilities exist to define the syntax and
semantics for the DSL. Since the DSL specifies corresponding elements of the source and target
metamodel, the design decisions are similar to classifying properties of model transformations
(Sec. 2.2.1). Fig. 7.4.2 summarizes important design criteria for a propagation DSL which the
following paragraphs explain from left to right.

DSL design

rule mapping

exclusivness

fine-grained

coarse-graind

exclusive

annotation computation

combination

disjunction

conjunction

granularityquantity

1 : 1

n : mn : 1

overlapping

contexts batch

mode

incremental unidirectional bidirectional

direction

correctness
guarantee

configurable

1 : n

mandatory
optional

OR group
XOR group

1:1 ⇒ combination

Figure 7.4.2: Feature-based classification of designing propagation DSLs.

Rule Mapping The first major design criterion of a propagation DSL, as depicted in Fig. 7.4.2,
regards the type and structure of the rule mapping to define corresponding elements in the meta-
models.
Similar to the completeness criterion for traces and the quantity definition for model transforma-
tions, the quantity of a rule mapping may vary. First, either one source element may be mapped
onto one target element or onto multiple target elements, i.e., specifying 1:1 or 1:n mappings.

5 The DSL may reflect model transformation rules which could create the target model.

157

CHAPTER 7. MISSING TRACE INFORMATION

Similarly, multiple source element may be mapped onto one target or multiple target elements,
yielding m:1 or m:n mappings.
Secondly, the mappings may be further distinguished by the exclusiveness criterion which allows
for specifying the same target element in multiple mapping declarations (overlapping target sets)
or exclusively in one rule. This property will be essential if only 1:1 mappings can be declared:
if the mapping is not overlapping, all source and target elements might be specified only once.
Mapping two source elements onto the same target type, or vice versa, however, may be neces-
sary if no appropriate representative exists in the opposite model. For instance, the metaclass
UnlimitedNatural of the UML metamodel has no straight-forward (1:1) representative in the
Java model and may, thus, be mapped onto the primitive type long.
Moreover, if overlapping mappings are allowed, it might be beneficial to declare context elements
explicitly, i.e., a target type that corresponds with another source type (being created for that
source element) but which is necessary to create the actual target element.

Mapping Granularity Thirdly, the granularity of the mapping may vary. In the simplest
form, in terms of the Graph formalism, only source nodes are mapped onto target nodes (coarse-
grained). A more fine-grained mapping may map also edges and attributes of nodes onto each
other (fine-grained).

Annotation Computation As a second major design decision, the computation of annotations
may vary. Similar to a model transformation, the propagation mode may vary and may work only
in a batch or in an incremental way. An incremental propagation would consider already existing
annotations on the target model and detect conflicts whereas a batch propagation ignores already
existing annotations and overwrites them with the one of the source element. Similarly, the
direction property may support a bidirectional propagation or a unidirectional propagation only.
As another design decision of the DSL, the way the annotation of source (and context) elements as
well as annotations, assigned previously in case of an incremental propagation, should be combined
may vary and should be configurable. If it is not configurable either a disjunction or conjunction
of the annotations of source elements may be computed. A design decision for the category
combination will be required only, if the DSL supports 1:n (n:1) or n:m mappings.
Generally, depending on the design and the underlying interpretation, it may be possible to give
correctness guarantees for the computed annotations.

Correctness Criterion Without Model Transformations For defining the correctness of
the annotation propagation, so far we use the commutativity of model transformations (c.f.,
Fig. 1.2.1). However, black-box approaches do not assume that a model transformation creates
the target model or is accessible. For that reason, without an available model transformation it
is necessary to define correctness criterion based on the available artifacts:
In the first place, even though traces are not available a model transformation may create the
target model, nevertheless. In this case, the commutativity criterion, as it is defined by Salay et
al. [Sal+14], can be used as guarantee, despite the missing trace: The transformation result of
the single-variant transformation of a derived source product can be compared with the derived
target product for each feature configuration.
In contrast, if a model transformation is unavailable, the first step for guaranteeing a reasonable
target mapping annotation function can check the function for completeness. If annotations are
missing, one of the completion algorithms presented in Sec. 7.3.3 can be employed.
Furthermore, equivalence of two models, which are instances of different metamodels, may be
determined by a (generic) equivalence operator. Fig. 7.4.3 illustrates the commutativity criterion
when the multi-variant target model is created manually and a DSL propagates the annotations.
Then, the only information at hand is the propagation DSL and no automated mechanism gen-
erates the target model given a single-variant source model. Therefore, an equivalence operator
between the single-variant source and target models is necessary. A model matching mechanism
for instances of different metamodels may determine this equivalence by relying on the stable
information of corresponding metamodel elements specified in the DSL. Sec. 7.4.3 elaborates on
matching these instance.

158

7.4. NO PERSISTENT TRACE INFORMATION

multi-variant
source model

filter

manual

+ DSL

filter

multi-variant
target model

single-variant
target model

single-variant
source model ≃

Figure 7.4.3: Commutativity without model transformations.

Summing it up, without an available model transformation the correctness criterion either fosters
weak properties, such as the completeness of the mapping annotation function, or requires to
match models corresponding to different metamodels.

III ModelSync

Overview ModelSync is a DSL developed with Xtext [Bet16] which allows declaring the corre-
sponding elements of two different metamodels. An interpreter reads the specification to propagate
annotations from a mapping model for the source domain model to a mapping model for the tar-
get domain model. The grammar of this textual propagation language resembles the syntax of
the ATL model transformation language and maps one source onto multiple target elements in
a declarative and unidirectional way. It allows for declaring guards, which are Boolean expres-
sions based on the structural features of the declared target type, and further conditions over the
structural features of objects to define matching source and target objects. In contrast to ATL,
ModelSync does not employ procedural elements, such as do-blocks, but only declarative map-
pings. Due to declaring relationships at the level of two metamodels, the script can be employed
to propagate annotations from any source to any target instance of these metamodels.

Grammar Listing 7.4.1 presents excerpts of the ModelSync grammar specified in Xtext: After
having declared the source and target metamodels and provided a unique name in the specification
(left out from the listing), a propagation rule (Lines 2-5) carries an ID and encompasses one
mapping. A mapping (Lines 7-9) links one source element (which can be defined more specifically
by a guard) with up to many target elements. Conditions (Lines 18-25) further constrain, which
target elements match the propagation rule.
One specific feature of the DSL allows for matching alternative values for the value of a structural
feature in conditions. This may be beneficial, for instance, if a name varies with the type of the
source elements. For example, the access method for a class field either starts with the prefix
get... or is... depending on the fact whether the field is of an arbitrary type or of a Boolean
type, respectively. Moreover, in the current state, the DSL supports different operations on strings
which can declare conditions more specifically.

Interpreter Given an annotated source mapping model and a target mapping model (without
annotations), an interpreter computes matching source and target elements. The interpreter
iterates the set of rule to initially determine all target objects matching the declared target types
in the rule. Next, it iterates the source model to determine for each source element which of the
target elements passes the guards and matches the conditions. The matching ones are collected
in a final match. Note: A preprocessing step computes all target candidates of the input multi-
variant model for each rule. Since the DSL does not validate the uniqueness of a target element
in a rule, a target element might occur in several matches in general.
Based on the resulting sets of matching source and target elements, the propagation mechanism
iterates the source mapping model and determines for each of the matching source element the set
of target elements and their corresponding mapping elements in the target model. If the source

159

CHAPTER 7. MISSING TRACE INFORMATION

object is annotated, the propagation algorithm of the interpreter will map the annotation of the
source object onto the mappings of all matching target objects.
1 ...
2 PropagationRule:
3 ’rule’ name=ID ’{’
4 mapping=Mapping
5 ’}’;
6

7 Mapping:
8 ’source’ sourceElement=ElementDef guard=Guard?
9 (targets+=Target)+;

10

11 Target:
12 (’target’ (targetElement=ElementDef)
13 ’{’ (conditions+=Condition)* ’}’);
14

15 Guard:
16 {Guard} ’(’ (guardOperation=GuardExpression)? ’)’;
17

18 Condition:
19 target=FeatureAccess ’=’
20 // Mapping
21 (sourceLeft=STRING ’+’)? source=FeatureAccess (’:’ operation=Operation)? (’+’

sourceRight=STRING)?
22

23 // Alternative mapping
24 (’|’ (altSourceLeft=STRING ’+’)? altSource=FeatureAccess (’:’

altOperation=Operation)? (’+’ altSourceRight=STRING)?)?
25 ’;’;
26

27 FeatureAccess:
28 ElementRef ({FeatureAccess.ref=current} "." right=[Feature])*;
29

30 ElementRef returns Reference:
31 {ElementRef} type=[Element];
32

33 Feature:
34 Attribute | Reference;
35

36 Operation:
37 StringOperation;
38 ...

Listing 7.4.1: Excerpt of the ModelSync grammar specified in Xtext.

Example The following example demonstrates excerpts of how a ModelSync specification maps
types of the UML class metamodel onto corresponding ones in the Java MoDisco metamodel .

Example 7.4.1: ModelSync Specification

Listing 7.4.2 presents an excerpt of mapping the UML metamodel onto the Java meta-
model with ModelSync. First, each specification imports the source and target metamodels
(Line 1 and 2). Thereafter, rules declare a source and up to multiple target elements.
The excerpt sketches two mapping rules: Class2Class lists corresponding target elements
for a UML class and Property2Field corresponding elements for a UML property. The
rule for mapping UML classes illustrates that multiple target types (ClassDeclaration
and CompilationUnit) can be declared for one source type. Furthermore, its attributes
(c.f., Line 8) and attributes of linked elements (c.f., Line 9) can be mapped onto each other

160

7.4. NO PERSISTENT TRACE INFORMATION

in form of further conditions. The interpreter searches an adequate element in the target
model which matches these conditions and assigns the annotation from the source object
to the matched target objects. For instance, the name of the compilation unit must be
composed of the UML class name followed by the suffix .java to be accepted as match
and to receive the annotation of the UML class name.
Secondly, the rule mapping a property onto a field declaration illustrates guards for source
elements (c.f., Line 17). Only single-valued properties match this rule and, thus, only their
annotations are propagated to the declared correspondences.

1 importMetaModel "http://www.eclipse.org/uml2/5.0.0/UML"
2 importMetaModel "http://www.eclipse.org/MoDisco/Java/0.2.incubation/java"
3

4 ...
5 rule Class2Class {
6 source umlC : Class
7 target javaCD : ClassDeclaration {
8 javaCD.name = umlC.name;
9 javaCD.package.name = umlC.package.name;

10 }
11 target javaCU : CompilationUnit {
12 javaCU.name = umlC.name + ".java";
13 }
14 }
15 ...
16 rule Property2FieldSingle {
17 source umlProp : Property (umlProp.upper == 1)
18 target javaFD : FieldDeclaration {
19 javaFD.type.type = umlProp.type;
20 javaFD.fragments.name = umlProp.name;
21 }
22 target javaSetter : MethodDeclaration {
23 javaSetter.name = "set" + umlProp.name:toUpperFirst();
24 }
25 }

Listing 7.4.2: Excerpt of a ModelSync specification defining correspondences between the UML
and Java metamodel.

Design Decisions Altogether, based on this example together with the descriptions of Model-
Sync, we can draw the following conclusions on the design decisions of the DSL:
Regarding the quantity and granularity, the ModelSync DSL can specify 1:n mappings at a fine-
grained level. One source element, which can be specified at the granularity of its attributes by
exploiting guards, can be declared as corresponding to multiple target elements. Although the
grammar and validation of ModelSync does not forbid the usage of context elements, they are not
considered for the computation of annotations.
Regarding the computation of annotations, the ModelSync interpreter applies a unidirectional copy
approach: If a source element carries an annotation, the interpreter assigns the annotation to all
target elements matching the conditions. Thus, it is a batch mode execution without an option
to combine or configure the computation of (more complex) annotations. Furthermore, the DSL
does not guarantee any properties. Source elements can be mapped in multiple rules and target
elements may match multiple rules. However, once a match has been determined for a target
element, the element will be excluded from further matching and thus receives the annotation of
the first source element of the corresponding matching rule.

Consequences As a consequence of the design of ModelSync, the product line developer has
to define a specification for each pair of instances of distinct metamodels. However, due to the
1:n design, the DSL may more easily support refinement- relationships where the source model
is extended than relationships between source and target model that decrease the number of

161

CHAPTER 7. MISSING TRACE INFORMATION

source elements (requiring n:1 mappings). Thus, if the source and target metamodel comprised
n:1 relationships, the propagation of annotations could provoke inconsistent annotations.
Moreover, the underlying DSL interpreter expects two F2DMM (Feature To Domain Mapping
Model) of the MDPLE tool Famile (c.f., Sec. 9.1.2). It assigns annotations to the one designated
as target model. Consequently, it is trimmed to solve exactly this task and is tightly intertwined
with the development of a product line in in this tool. For different mapping mechanisms it cannot
be used out-of-the-box.

IV Discussion

To conclude, we reflect the pros and cons of a propagation DSL, starting with a delimitation and
the categorization of the approach with respect to propagating annotations and ending with a
discussion of the automation capabilities. Moreover, since the ModelSync specification resembles
declarative model transformations to a great extent, we compare ModelSync with model trans-
formation approaches. At the end, this part discusses the automation degree of a propagation
DSL.

Delimitation As delimiting factors, first of all, it must be mentioned that the target model
already exists and information how it was created is not available due to the black-box nature.
Consequently, in contrast to the variations of trace-based propagation, the propagation DSL does
not rely on a model transformation meaning that the target model may also have been created
manually. This implies that correctness in form of commutativity cannot be defined over model
transformations but an equivalence operator or a weaker correctness condition is necessary. To this
end, based on the presented properties, a propagation DSL represents a language-independent,
specification-specific, black-box post-processing approach for propagating annotations.

Comparison With Model Transformation Specification In general, the ModelSync DSL
reflects a declarative model transformation specification with many respects: It requires specifying
corresponding elements of the source and target model and can map their attributes and references
onto each other. In contrast to a transformation specification and the corresponding engine, the
propagation mechanism does not create target elements but assumes that they already exist.
Moreover, the DSL engine will not report errors, if a source element misses target elements but
simply will not recognize a match. Finally, it creates a mapping model used in the MDPLE tool
Famile and, thus, is a tool-dependent solution.

Discussion on Automation Employing a propagation DSL to declare corresponding elements
of two metamodels offers two main advantages: On the one hand, similar to a model transformation
specification, a DSL specification works for any pair of models conforming to the source and target
metamodel it is defined for. On the other hand, the approach works completely independent of a
transformation engine and, thus, is per se tool- and language-independent. As a consequence, it
does not restrict the transformation language or the mechanism that creates the target model.
One major disadvantage is the missing automation due to themanual specification of the mappings
in a concrete specification. However, one automation possibility may compare the source and
target model, as discussed in Sec. 7.4.3, to determine matching source and target elements.

7.4.3 Trace Generation by Model Matching
Despite the upside of defining a correspondence specification and the automated propagation of
annotations to the target model, on the downside, the propagation DSL has to be specified for each
new pair of metamodels manually. In contrast, matching the source and target model to generate
a propagation DSL or to re-engineer trace information increases the automation. Grammel et
al. [GKV12] propose an automatic trace generation approach relying on matching models when
no out-place transformation is available which we examined as automation technique and present
in this section.

162

7.4. NO PERSISTENT TRACE INFORMATION

Road Map To keep this thesis self-contained, the following parts introduces research on the
topic of model and metamodel matching first. Afterwards, they present a matching framework
proposed by Grammel et al. [GKV12] which offers a solution to extract trace information by
comparing two models. The final two parts sketches how the matching concepts can be exploited
to propagate annotations and discuss these solutions, respectively.

I State-Of-The-Art in Model Matching Approaches

When multiple versions of models exist due to editing a model over the course of time, for instance,
a version control system may want to determine modifications of model elements in terms of
differences for efficient versioning. Since falling back to textual comparisons of parsed model
representations (e.g., in XML format) does not suffice due to a lack of semantic context information
[FLW11; Wes14], it is necessary to apply model-specific matching mechanisms. The following
paragraphs shed light on various existing matching strategies proposed in previous related work,
the result of which this thesis may use to propagate annotations. Additionally, it introduces the
model matching framework EMFCompare, provided as Eclipse plugin, which supports several of
the presented matching categories.

Classification Categories Kolovos et al. [Kol+09] distinguish four types of model matching
approaches: static identity-based, signature-based and similarity-based matching as well as custom
language-specific matching. These four categories lay the foundations for further subsequent and
contemporary classifications of model matching approaches [ASW09; Bro+12; Uhr11; BPV10;
Gra14; SA20]. Besides these forms of state-based matching of models operation-based matching
compares edit operations. Furthermore, “out-place matching” of models which are instances of
different metamodels and matching metamodels themselves represent specific categories which
require sophisticated techniques.

Static Identity-Based In the first category, a static identifier, such as a UUID (universal
unique identifier), allows for identifying an evolving object across versions of a model. As a
consequence, this approach may only be applicable if the same model is versioned and a mechanism
assigning unique identifiers is available by the modeling tool. Moreover, if two independently
created models are compared, this approach will not work because even if the objects of both
models are structurally equivalent, their identifiers may be different.

Signature-Based matching tries to alleviate the shortcoming of static identification (requiring
universal identifiers) by computing an identity value based on user-defined functions. The function
may regard the structural features of an object and the algorithm compares the computed values.
The downside of this approach is that the user needs to provide the functions that allow for
computing the identity of an object which has to be unique for each object in one model.

Similarity-Based In contrast to static identity- and signature-based matching, which recognizes
a match if and only if the identities of objects are the same, similarity-based matching computes
the similarity based on (some of) the objects’ features. If the computed similarity for two objects
exceeds a (configurable) threshold, two objects will be considered similar. This approach allows for
weighing features differently and typically achieves better matching results than a solely identity-
based mapping. The algorithms performed on typed attributed graphs (TAG) [EPT04] in these
approaches achieve more accurate matching results than identity-based ones [Kol+09]. Algorithms
and entire frameworks supporting this mechanism only are, for instance, the similarity flooding
algorithm [MGR02], SiDiff [SG08], DSMDiff [LGJ07] as well as a trace-generating framework
explained in Sec. 7.4.3, II.

Modeling Language-Specific Matching While the three aforementioned categories can be
applied to any type of metamodel (general applicable), custom language-specific approaches are
trimmed for a modeling language (e.g., UML). Accordingly, they can specify concrete matching
properties and metrics to determine an accurate matching result taking the model specifics into

163

CHAPTER 7. MISSING TRACE INFORMATION

account for the matching. As an example, Uhrig defines editing costs between two graphs repre-
senting class models for determining a matching [Uhr11] and several solutions focus on comparing
UML models [KWN05; MRR11a; MRR11b] or Ecore models [201; KH10].

EMFCompare [TI06; BP08] serves as one example of a configurable and customizable model
matching framework to compare EMF-based models. It may apply a static identity-based compar-
ison if UUIDs are available, or a similarity-based matching [Add+16] otherwise. For computing
the similarity, EMFCompare considers the name, the type (i.e., the features of the meta-element),
the remaining attribute values and relationships (regarding containment and non-containment
references) in order to heuristically match the elements of two models. Furthermore, it can be
customized to compare instances of a specific metamodel due to an open API and is developed
with efficiency to compare large model, composed of thousands of elements. According to Gram-
mel [Gra14], however, there is a lack of accuracy when EMFCompare is used to compare models
conforming to different metamodels. Sec. 10.2.1 provides more detail on the technical specifics of
this matching framework which is used as part of the evaluation of commutativity.

Operation-Based Besides these four classical categories which realize state-based comparisons,
a monitoring system may record edit operations applied to the model and may use them to
compute differences between two versions of a model, yielding an operation-based matching [Her10;
KKT13]. The latter, however, requires an edit recording mechanism and, thus, is not as generically
applicable as a state-based matching. Due to the capabilities of an operation-based matching
system, a recent systematic literature survey of Somogyi and Asztalos [SA20] extends the basic four
categories of matching algorithms with the categories of using none of the four classical categories,
which is the case in operation-based techniques, or being configurable [BPV10; Alt+08], i.e.,
multiple possibilities can be exclusively chosen, in a staged way or in a combined way. Moreover,
model matching may not only employ a textual or a Graph-based comparison but a combination
thereof [RV08].In addition, the matching algorithms vary with respect to the type of models that
is compared, being either structural or behavioral models. Somogyi and Asztalos [SA20] state
that most of the matching algorithms exhibit low accuracy when comparing behavioral models.

Out-Place Model Matching Typically most of the model matching algorithms, particularly
those designed for versioning models, compare one type of (evolving) model. Although metamodels
may evolve, too [Wac07; PMR16], the matching mechanisms compute differences between two
versions of a model and, therefore, match two instances of the same metamodel.
For employing model matching algorithms to automatically determine relationships between a
source and target model of an exogenous transformation, however, a matching between two models
conforming to distinct metamodels is required. As opposed to matching an evolving model to
detect differences, matching two instances of different metamodels is more complex: Technically,

• the types of objects do not match,

• the identifiers do not match and, more importantly,

• it may not necessarily be 1:1 matches but an element in one model may correspond with
zero to up to multiple elements in the second model.

Due to this complexity, retrieving correspondences between two models conforming to different
metamodels may require even more sophisticated matching algorithms than for comparing in-
stances of the same metamodel. The next section illuminates the capabilities of matching frame-
work dedicated to derive trace information.

Metamodel Matching Matching two metamodels can be considered a special case of model
matching and exhibits a similar complexity. While both metamodels may be instances of the
same meta-metamodel, they do not have to share the same concepts if the two compared models
are not versions of an evolving metamodel. Metamodels, in particular, may exhibit structural
(i.e., same concept represented with different constructs) and syntactic heterogeneity (i.e., same

164

7.4. NO PERSISTENT TRACE INFORMATION

matching framework for trace extraction

HT

convert

match

configure

extract

GS typed

attributed
graphs

matching
cube

mapping GS ← HTR → HT

H=

Figure 7.4.4: Model matching framework for generating trace links based on [GKV12].

construct named differently) as well as differences in the formal language (e.g., hierarchical vs.
relational) [Wim+11a]. For the specific purpose of matching metamodels, which may be required,
for instance, to infer a model transformation, additional approaches have been proposed besides the
four categories of Kolovos et al. [Kol+09]. Besides other approaches, which have been implemented
particularly for the purposes of deducing model transformations [FL19; LF20; VIR10] by applying
different deterministic techniques, heuristic approaches are a different mechanism to narrow down
the search space for computing matching source and target elements.
For example, one search-based mechanism [Kes+14] employs genetic algorithms based on simu-
lated annealing [KGV83] which determine a solution and examine the local search space for an
optimum. The function which the search mechanism optimizes regards structural and syntactic
similarity. This approach achieves the highest accuracy for matching distinct metamodels which
resulted from evolution. It is able to outperform each of the examined deterministic approaches,
particularly, in determining n:n mappings and matching elements with different names because it
explores the search space only partially.

Summary All in all, the previous paragraphs demonstrate that different solutions to detect
similarities in between two models exist. Deterministic approaches may rely on syntactic and
structural similarities and can specify metamodel-specific rules. Heuristic approaches, in contrast,
allows for computing optimized solutions by exploring the search space efficiently. As a sole
syntactic comparison of elements may not suffice to determine matching elements in two models,
the next section illuminates an approach which was developed specifically to reconstruct trace
information for models conforming to two distinct metamodels.

II Matching Framework for Trace-Generation

In the following we describe an approach that explicitly targets the comparison of models con-
forming to different metamodels. Grammel et al. [GKV12] propose a matching framework to
retrieve trace links when a model transformation is not available . In contrast to the work in
this thesis, the purpose of their work is not to propagate annotations in multi-variant models but
to establish trace-links for multiple purposes in MDSE: comprehension of the system, analysis
of change impacts and source model coverage as well as for debugging a transformation [RJ01;
OO07].
The proposed matching and extraction process constitutes as depicted in Fig. 7.4.4. In the figure,
we adapt the input (GS , HT) and output (H) of the matching framework to be represented as in
the Graph formalism established in Chp. 6. A (multi-variant) source model as well as a (multi-
variant) target model without mapping functions are input to the matching framework. The graph
HTR constitutes the mapping that is computed which offers links between the multi-variant source
and target model to complete H in its entirety. Next, we describe the single steps performed in
the matching process.

Convert In the first step of computing matches, the framework converts the source and target
model into typed attributed graphs (TAG) to represent them in a normalized data structure which

165

CHAPTER 7. MISSING TRACE INFORMATION

the algorithm can compare. This formalism considers metamodels as attributed typed graphs
(ATG), which are also input to the conversion step, and their instances as attributed graphs
(AG). Due to an additional mapping to the metamodel, a TAG is a special kind of AG. The
proposed approach assumes that the metamodels are already matched based on similarity of the
attributes and nodes [Gra14] and the resulting matching serves as additional input to the matching
algorithm.
AGs comprise two types of nodes: data nodes and graph nodes. While a graph node represents
a concrete type of the model (i.e., an instance of a metamodel type) an attribute node carries
an attribute value, e.g., the name of the type. Similarly, three types of edges exist: graph edges,
node attribute edges and edge attribute edges, representing either a link between graph nodes, a
connection to a data node originating from a graph node or from a graph edge, respectively.

Match Based on the representation as TAG, the similarity-based match step computes simi-
larities for each pair of graph nodes. As similarity measures, the algorithm either employs the
attributes solely, the attributes together with the connections which consider the outgoing graph
edges to other graph nodes, or an instance-of measure exploiting the type information extracted
from mapping the AG onto its metamodel graph (i.e., an ATG). The outcome of comparing nodes
pairwise is a similarity cube which comprises a matrix of node pairs for each measured similarity
type (i.e., attributes, connections and instance-of).
The matching based on the attribute-similarity of a pair of source and target nodes compares the
values of all data nodes of the source node with the values of all data nodes of the target node.
For measuring the similarity of two data nodes, Grammel [Gra14] consider String comparisons
using a function which yields a result of 1 if the Strings in the data nodes are the same, of 0.5
if one is the Substring of the opposite node and of 0 if there is no match [GKV12]. According
to the corresponding dissertation [Gra14], for determining the matching, the approach exploits
the functionalities of the MatchBox framework [VIR10] additionally. Therefore, the framework
compares Strings either on the basis of building Trigramms as a specific form of n-gram [MS99] or
the Levensthein distance. This yields a more accurate result than relying on the pure Substring
function: For example, the Strings PersonDatabase and FamilyDatabase are neither equal nor
Substrings of one another but share a common subsequence. Accordingly, the basic three-valued
comparison [GKV12] would compute a similarity of 0 whereas a Trigramm or Longest Common
Subsequence [HS77] detects a higher similarity.

Non-String Datatypes In reality, however, not only Strings constitute the data of a graph
node but different primitive types, such as Boolean values or numeric values (e.g., doubles or
integers). Therefore, one possibility may represent these values as Strings as well by potentially
losing semantic-related accuracy. For example, the double values 1.5 and 15.0 may yield a higher
similarity than 1.5 and 1.6 when being matched as String whereas in absolute numbers 1.5 and
1.6 are related more closely. Alternatively, the comparison needs to employ customized functions
for computing similarities of primitive types apart from Strings being stored in data nodes.

Connectivity Similarity For employing the connection measure, it is essential to compute the
attribute values first. Otherwise the children nodes cannot be compared because the comparison
is based on attribute values. Then, MatchBox [VIR10] matches parent, children, sibling and leaf
nodes or employs a graph editing distance or the matching of predefined patterns.

Instance-Of Similarity For the instance-of measure, a prematch of the two accompanying
metamodels is necessary. Both metamodels can be matched in a similar way, as the model but in
contrast share a common metamodel, in our use cases the Ecore meta-metamodel. This similarity,
however, is not used for matching the attributes or connections per se.

Data Matrix Reduction After a pair-wise comparison of the data nodes, resulting in a data
matrix for each pair and similarity measure, this matrix is reduced to a single value which is
associated as the respective similarity measure with the two graph nodes and put as entry into

166

7.4. NO PERSISTENT TRACE INFORMATION

multi-variant
model transformation

mapFG mapFH

DSL-based

propagation

MGSF

HT GS

MHTF

S T

source

metamodel

target

metamodel
prematch

DSL

specification

conforms to
defined upon
data flow

Figure 7.4.5: Schematic overview of DSL-based propagation by metamodel matching.

the similarity matrix for the graph nodes. Since multiple similarity measures (i.e., attributes,
connections, instance-of) may be computed, a similarity matrix is kept for each measure and,
thus, results in a similarity cube.

Configure The result of the matching step is a similarity cube which lists for each pair of graph
nodes the reduced computed similarity measures. In the configuration step, one out of (at least)
three strategies can be chosen. Either the similarity measure per node pair can be aggregated,
selected or a ranking can be iterated in one direction.
For the aggregation [Gra14], either the maximal or minimal similarity value can be chosen to
declare a pair of nodes as similar, or the results can be weighted or the average can be computed.
The selection either retrieves all matches above a threshold, takes the first N highest ranking
matches or defines a delta after the values have been aggregated. Finally, the ranking of values
can be iterated in forward or backward direction or a combination thereof. As a consequence, it
is not only 1:1 mappings but 1:n mappings can be retrieved from the similarity cube depending
on the threshold configuration.

Extract Lastly, the trace-generating framework extracts links between the two input models.
In our formalism the trace sub-graph HTR needs to result as part of a source-to-target graph
incorporating GS as source and HT as target sub-graphs and with established links between both.
In contrast to the source-to-target graphs defined in Def. 6.3.5, this algorithm is unaware of context
nodes and the resulting trace granularity and completeness depends on the preceding configuration
step. However, depending on the similarity threshold, it is possible to map multiple elements onto
one source node which is in contrast to matching algorithms which compare models conforming
to the same metamodel.

III Schematic Overview of Matching-Based Propagation

After having demonstrated how to refactor trace information from model matching, this part
sketches two possibilities how the result of the model matching can enrich the propagation of
annotations when trace information is missing. On the one hand, a matching between the meta-
models only may be computed or, on the other hand, the metamodels and the models can be
matched.

Metamodel-Matching Based Firstly, Fig. 7.4.5 demonstrates how (meta)model matching can
automate the propagation of annotations by extracting the DSL specification (Sec. 7.4.2). Since
we assume that the source and target model are instances of metamodels which are in turn models
conforming to the Ecore meta-metamodel, it is possible to apply the model matching algorithm
presented in the previous part (or another metamodel matching approach) of this section to the
metamodels in the prematch step. As a result from this matching, correspondences between

167

CHAPTER 7. MISSING TRACE INFORMATION

multi-variant
model transformation

mapFG mapFH

trace-based

propagation

MGSF

HT GS

MHTF

S T

source

metamodel

target

metamodel
prematch

general

tracemodel

match

conforms to
defined upon
data flow

Figure 7.4.6: Schematic overview of trace-based propagation by model matching.

the source and the target metamodel are available. Since a propagation DSL as discussed in
Sec. 7.4.2 defines correspondences at the meta-level, the result of matching metamodels may be
transformed into such DSL specification. Consequently, we can construct a mapping rule in the
DSL specification for each pair of matched source and target graph nodes and feed that script into
the DSL parser together with the source model and its mapping as well as the target model. As
a result, the mapping for the target model is created automatically in the same way as the DSL
specification.

Model-Matching Based Secondly, Fig. 7.4.6 demonstrates the usage of a matching framework
to propagate annotations to the target model with a trace-based propagation algorithm. Instead
of comparing only the metamodels and employing the DSL propagation mechanism, the trace-
based propagation can be used. Consequently, besides computing the prematch, which improves
the matching result due to employing the instance-of similarity measure in addition, the concrete
source and target model, GS and HT are matched. To use trace-based propagation as explained
in Sec. 5.2.3, the resulting trace information of the match step needs to be transformed into the
common trace model. Then, Alg. 1 can create the mapping for the target model, however, without
guaranteeing commutativity due to missing guarantees on the completeness and granularity of the
matching result.

IV Discussion

This section reflects, on the one hand, on the automation degree of employing a model matching
framework for extracting trace information as well as on the expected accuracy, on the other hand.

Automation In contrast to defining a DSL specification manually, the benefit of metamodel
matching is to automatically extract the DSL specification based on the matching result. However,
it is essential that the matching is accurate (which is claimed by the designers [VIR10; Gra14;
Kes+14]). If the matching is inaccurate, wrong annotations will be propagated to target elements.
Similarly, if the source and target model are matched instead, and can be turned into the common
trace model (c.f., Sec. 5.2.3), the automated trace-based annotation propagation may be used
as well. Even if not all target elements were matched, the completion algorithms for partially
annotated models (Sec. 7.3.3) could be used in a postprocessing step.
Consequently, matching the metamodels or their instances represents a fully automated annotation
propagation.

Accuracy Due to the configuration possibilities and the dependency on model structures in the
deterministic and heuristic (meta)mode matching processes, the correctness and completeness of
the computed correspondences can not be guaranteed. Therefore, the resulting matching is an
approximation. It is not possible to detect context elements with any of the examined matching

168

7.5. INCREMENTAL ANNOTATION PROPAGATION

approaches (c.f., Sec. 7.4.3, I and Sec. 7.4.3, II). Particularly, the matching framework of Grammel
et al. [GKV12] does not consider the explicit extraction of context elements despite the main
objective to generate trace information. When allowing to match a target node multiple times,
this node may be mapped onto multiple source nodes without clarification whether it has to be
considered a context node or a target node. Without that information, the annotation for a target
node, mapped onto multiple source nodes, may be overwritten when propagating annotations
and the last assigned annotation remains. If the matching algorithm extracts only 1:1 mappings
instead, the extracted trace will be incomplete requiring to execute the propagation for partially
annotated models (c.f., Sec. 7.3.3) to complete the annotations automatically. The accuracy of
completing annotations is discussed in Sec. 7.4.3, II.

Summary In summary, the discussion illustrates that matching models or their metamodels
will both allow to completely automatically propagate annotations to the target model. However,
due to the nature of the matching algorithms, correctness in form of commutativity can hardly be
guaranteed and depends on the granularity and completeness of the matching.

7.5 Incremental Annotation Propagation

As stated in the introduction to this chapter, some solutions for propagating annotations cannot
guarantee commutativity when (fine-grained) information about corresponding elements of the
source and target model is missing in the trace. Particularly, the annotations which are deter-
mined by a completion strategy may be too broad such that the element remains in too many
configurations. Accordingly, a product line developer may fix those annotations manually in a
post-processing step. To maintain manually modified annotations, for instance in iterative devel-
opment scenarios, this section discusses how to maintain already existing annotations of the target
model in an incremental annotation propagation.

Road Map For that reason, Sec. 7.5.1 describes the problem which occurs when maintaining
existing target annotations manually firstly. Secondly, Sec. 7.5.2 discusses evolution scenarios of
model-driven product line in order to delimit the incremental propagation strategy. For propagat-
ing annotations incrementally, a mechanism to distinguish manually assigned from automatically
computed annotations is necessary. Sec. 7.5.3 presents two ways to accomplish this task in its
first part and describes the corresponding propagation algorithms in its second part. In the end,
Sec. 7.5.4 discusses the proposed strategies.

7.5.1 Problem Statement
Sec. 7.3 and Sec. 7.4 show that an automatic approach to annotate the target model completely
may not assign annotations that guarantee 100% correctness in case the trace information is in-
complete or in case the trace information resides at a more coarse-grained level than the annotation
mapping function.
For instance the examples in Fig. 7.3.5 and Fig. 7.3.6 illustrate that the annotations computed
by the three completion strategies, are mostly too broad. Due to the hierarchical strategies,
particularly, the annotations mapped onto leaf nodes hardly reside at the right level of specificity.
Thus, the model filter pertains the corresponding model nodes in too many filtered variants. As a
consequence, the product line developer may change these annotations and assign semantically
correct ones manually.

Example Fig. 7.5.1 demonstrates the result of the annotation propagation based on an incom-
plete trace. The annotations situated in the rectangles of light-purple color are those which are
mapped onto the target elements based on the trace information. The annotations which are
crossed out are those assigned by the combined completion strategy (c.f., Sec. 7.3.3). The man-
ually repaired annotations reside next to the crossed out annotations in blue rounded rectangles.

169

CHAPTER 7. MISSING TRACE INFORMATION

name = "db"

um : Model

name= "db"

 up : Package
jp : P

jm : Model

ue2 : oTypes

ucp : Class
name = "Person"

jcp : ClassDecl
name = "PersonImpl"

name = "Person.java"

eu1 : units

cup : CUnit

et2 : types

t1 : M2M

t2 : P2P

 t3 : C2C

ue1 : oPackages

trace targetsource

DB

 P

DB

ep1: packages

 P

DB

DBMHTF
 MGSF

name = "Person-
 Impl.java"

eu2 :
units

jip : InterfDecl
name = "Person"

et1 : types

name = "impl"

jpi : PDB∧DB

ep2 :
packages

cupi : CUnit
DB∧ (P∨F)

ucf : Class
name = "Family"

 t4 : C2C
jcf : ClassDecl
name = "FamilyImpl"

et4 : types F

 F

jif : InterfDecl
name = "Family"ue3 : oTypes

name = "Family.java"

cuf : CUnit

name = "Family-
 Impl.java"

cufi : CUnit

et3 : types

eu3 :
units

eu4 :
units

DB∧DB

DB∧DB

DB∧DB

DB∧DB

DB∧DB

F
F

F

P

P

P

Figure 7.5.1: Manually repaired broad annotations.

Accordingly, except for the annotation of the implementation package, which carries the semanti-
cally correct annotation DB ∧(P∨F), the developer exchanges the remaining completed annotations
(e.g., those of the compilation units) by either assigning P or F for elements realizing the classes
Person and Family, respectively.

Incremental Maintenance Consequently, the question arises: how are the existing target an-
notations affected when a product line developer executes the forward transformation another
time, for instance, because a UML element was added? The execution of multi-variant model
transformations, as defined so far, ignores the fact that a target model exists and, thus, consid-
ers neither existing target elements nor their annotations. Even though the reused single-variant
model transformation is performed incrementally and recognizes the already existing target model,
it will not be aware of annotations because the propagation algorithm is defined in batch mode.
As a consequence, all annotations of the target model are overwritten. Furthermore, if an incom-
plete trace is the source of information for propagating annotations and missing annotations are
computed by one of the completion strategies, the second execution of the trace-based propagation
provokes the same situation: the annotations of the leaf nodes are not specific enough and violate
commutativity. As a result, all manually assigned annotations (i.e., the entire invested work) are
lost. In turn, this requires to repeat the manual process which increases the development cost and
is laborious, unnecessarily redundant work.

Consequences For that reason, we draw the conclusion that strategies, which regard the pres-
ence of already existing annotations in incremental transformations, are indispensable to support
iterative development. If the product line developer changes annotations of the target model after
an automatic propagation manually, they should not be overwritten in a subsequent execution.
In addition, the example shows that it is not possible to propagate the modified annotations back
to the source model since unique information about the corresponding source elements may not
available in the incomplete trace. Thus, the common trace model, which is used for the propaga-
tion, misses this information, too. Due to the fact that the trace does not record these elements,
without further knowledge it is uncertain which source elements correspond with manually mod-
ified target elements. This makes it impossible to associate manually changed annotations with
a corresponding source element. As a consequence, a mechanism to preserve and maintain these
manual annotations in consecutive annotation propagation processes is indispensable.

170

7.5. INCREMENTAL ANNOTATION PROPAGATION

7.5.2 Background
Iterative and incremental software development [LB03] is a natural process of building a software
system in a step-wise way. Typically it deviates from the classical waterfall process [Roy87] (even
if that one is performed in iterations) and incrementally evolves artifacts of certain development
stages. In our context, we assume an incremental and iterative construction of domain models
building a product line.

Road Map Accordingly, the product line may evolve and incremental transformations may
propagate the changes made to source domain model to the target model. Therefore, the first
part of this section illuminates background information on evolution dimensions in product line
engineering and incremental model transformations. This knowledge serves to delimit the contri-
bution of this thesis in the third part.

I Product Line Evolution Dimensions

Evolution of a product line can be parsed in different ways: Evolution can target the feature model
only but changing the feature model may affect existing annotations and realization artifacts.
Thus, a combination of evolving the feature model, a realization artifact and its annotation may,
particularly, occur in iterative development processes. Please note: In the following we do not
consider the (co-)evolution of single variants [Kir+21; Sch+16] as we focus on changes occurring
at the level of domain engineering. More detail and discussions on evolving software product
lines including the engineering method and product maintenance in terms of reusable assets is
presented, for example, by Botterweck and Pleuss [BP14].

Feature Model Several works [TBK09; BTG12; Bür+16] focus on the evolution of the feature
model which determines how the set of variants changes due to new requirements.
Borba et al. [BTG12] offer formal foundations for behavior preserving product line evolution, i.e.,
the functionality remains stable but the feature model evolves. A similar line of work compares two
distinct feature models resulting from, for instance, collaborative (and distributed) development or
refactorings [KAK08], in a state-based way. These works check whether two feature models are
semantically equal [TBK09; Ach+12; FLW11]. If two feature model are semantically equal, they
will share exactly the same set of valid feature configurations.
In contrast, feature models may also evolve as part of an iterative development process: While the
set of products and functionality of the product line is a priori fixed, it may take several (mostly
monotonic) development steps until the feature model is completely developed. For instance,
variation control systems, such as SuperMod [SW16; SW19], incorporate and manage a feature
model evolving in this way. Even though these systems edit single variants, this is the only means
to edit the elements of the software platform.

Annotations Due to changing the feature model (without preserving behavior), the annotations
mapped onto realization artifacts may (have to) change, too: If the feature model evolves by
adding, changing or deleting features and their constraints, already assigned annotations may
become obsolete and require to be changed as well. Modifying annotations may not only occur
as a consequence of changing the feature model but may also occur in isolation. For instance, as
illustrated in the motivation (Sec. 7.5.1), automatically computed annotations may be not specific
enough due to missing propagation information. Therefore, they may have to be refined.

Realization Artifacts As third change type, the realization artifacts, in our case the domain
models, may change. Either only one model or both models connected by a transformation can
change, provoking either an update of the unmodified side or a synchronization. The latter is
necessary if the latest changes should be preserved on each side and not be overwritten by a
unidirectional transformation.
Refactorings, iterative development and new customer requirements may provoke the evolution
of realization artifacts. Particularly, in iterative MDPLE a domain model is developed in several

171

CHAPTER 7. MISSING TRACE INFORMATION

development steps. The changes may be propagated to related models subsequently and may
also involve synchronization tasks if multiple models are changed individually. Modifying two
models requires the usage of bidirectional incremental transformation to keep both models in a
synchronized state [Anj+20] whereas keeping multiple models synchronized requires even more
sophisticated methods [Stü+20; Stü+21; Kla21].

Combination Typically, the three types of changes rarely occur in isolation. Changing the
feature model without preserving its semantics may involve a change of annotations because they
may have become obsolete, when a mentioned feature was removed, modified or added, or too
broad due to changing the dependencies between features. Furthermore, changing the feature
model may involve changing the realization artifacts. For instance, model elements may be added
to a domain model to realize a new feature. Adding a new domain model element to the source
model may also require to add a new annotation which is mapped onto that model element.
Removing a domain model element may require to remove its annotation (e.g., a mapping element),
too. Similarly, changing a domain model element may also provoke the change of a corresponding
annotation which may have to be propagated to the target model.

Summary To sum it up, annotations, the realization artifacts, particularly the domain model
in our context, and the feature model may change in isolation or jointly. Consequently, different
stages of complexity have to be considered for preserving annotation consistency after an evolution
step.

II Incremental Model Transformations

In the following we assume that the batch transformation which creates the multi-variant target
model, can also be executed incrementally. Accordingly, it is capable to detect modifications to
the input model and only propagates those to the target model. The following paragraphs present
background information on incremental transformations.

Delta Types To distinguish an incremental transformation from other approaches, Anjorin et
al. [Anj+20] offer a classification of synchronization scenarios: The authors classify a unidirec-
tional incremental transformation as directed synchronization which prioritizes the direction of the
transformation as opposed to a synchronization where changes on both sides can occur.
A delta describes the difference between the previous model and the model at the state of syn-
chronization which is necessary to detect and propagate only changes in the incremental transfor-
mation. The authors distinguish operational deltas from structural deltas and from edits. While
operational deltas comprise the sequence of modification steps yielding the new state of a model,
a structural delta represents the difference by a mapping between the old and the current version.
An edit encompasses a list of deltas in an ordered way which are applied to one model.
For the realization of an incremental transformation, the respective languages and the correspond-
ing execution engines handle and employ different approaches:

Model-To-Model Transformations For performing an incremental transformation the en-
gines need to determine the modifications in the input model. Even though model transformation
may compare the new and previous input models to detect the differences between the old and
new versions, the structural comparisons may not be cost-effective and not fine-grained enough.
For example, if no unique identifiers are used for the comparison, changing a model element may
be also recognized as a deletion followed by an addition.
Therefore, (incremental) M2M transformations frequently rely on trace information [Wag+12;
Obj16; BBW21; Buc18] to build an incremental version such that a comparison of source model
elements suffices. First of all, the source model edits are transformed and update the trace
information. Adding a source element requires to add a trace element (and the corresponding
target elements). In contrast, if a source element is deleted, a trace element will remain, which
references target elements but no source elements. Thus, an incremental transformation execution

172

7.5. INCREMENTAL ANNOTATION PROPAGATION

deletes trace elements which do not reference a source element anymore as well as the target
elements referenced by the respective trace element.

Model-To-Text Transformations Incremental M2T transformations require to compare the
source model with its previous version or to record edit operations which yielded the new state,
similar as M2M transformations do. For instance, both, Acceleo and Xpand, compare the current
and previous state of the source model in order to incrementally generate the target text.
Since in M2T transformations text is generated which may be changed by the developer, these
languages employ protected regions to retain manually added or modified text fragments in the
generated text. These regions have to be identified uniquely. For example, Xpand requires to mark
them with an ID. Furthermore, they need to state an escape sequence, for instance the words
generated not, which the text generator recognizes and does not modify anything inside the
enclosed region. However, if no source element matching the block containing the enclosed region
is detected, anything that was created for the source element before will be deleted. Sec. 8.2.1
offers more detail how the realization of the Mof2Text standard, Acceleo, and the template-based
transformation language Xpand realize incremental transformations.

III Delimitation

Based on the background information of possible evolution scenarios in MDPLE, the following two
paragraphs describe which change and transformation scenarios the following contribution solves:
the incremental maintenance of annotations between a source and target model.

Annotation Preservation While different stages of complexities can be related with incre-
mental transformations, the sequel focuses on the evolution of annotations. Manually repaired
annotations which were too broad or too specific due to missing trace information, as sketched in
the Fig. 7.5.1, should be retained in a subsequent transformation execution if the corresponding
source elements have not changed. Thus, we explain the preservation of annotations which have
been manually exchanged after an initial transformation and adapt the trace-based propagation
algorithms accordingly. The following explanations consider unidirectional scenarios which (re-
)generate the target model, which change neither the direction of the transformation nor of the
annotation propagation.

Transformation and Feature Model For propagating changes of a source model to the tar-
get model, we employ a unidirectional incremental single-variant transformation which may add
elements to the target model which correspond with elements added to the source model. If the
target model changes (apart from its annotations), the modifications will be overwritten according
to the transformation specification and the source elements. Moreover, if the reused single-variant
model transformation is executed again, it must be in incremental mode so that the trace still
records the same source and target elements. Otherwise all elements are new, and thus, require
an annotation which would provoke an entirely new computation of the target mappings. Fur-
thermore, if the feature model changes, the MDPLE tool needs to check whether each annotation
can still be satisfied immediately after the change has occurred. Thus, the annotations which are
mapped onto model elements are consistent with the feature model before propagating them.

7.5.3 Incremental Annotation Maintenance
As illustrated in the introductory example of this section, the annotations mapped onto target
elements in Fig. 7.5.1 may be not specific enough as a result from missing reliable information
about corresponding source and target elements. Therefore, these annotations may have to be
changed manually after the automatic propagation.

Road Map For propagating annotations incrementally, the first part of this section provides the
foundations for representing the different types of annotations, manually assigned and automati-

173

CHAPTER 7. MISSING TRACE INFORMATION

cally computed ones, and maintaining them. Based on these definitions, the second part describes
two algorithms to incrementally propagate annotations.

I Preliminaries

For incrementally propagating annotations, the mapping annotation function may store different
kinds of annotations. The following paragraphs provide the foundations for representing different
kinds of annotations and for maintaining them in an incremental propagation.

Annotation Version When propagating annotations incrementally, up to three different ver-
sions of annotations may be relevant:
The stored annotation, as, has been propagated by a multi-variant model transformation at time
tn and, thus, it has been assigned automatically to a target element. At time tn+1, before updating
the target annotations, as is mapped onto the target elements. Therefore, as can be regarded as
the base version of an annotation [GNS22]. This annotation may be changed in between the two
executions at tn and tn+1, yielding an annotation am, which a developer maps onto the respective
target element manually. Finally, a consecutive execution of the annotation propagation at time
tn+1 computes an annotation ac which should be assigned to the target element and may be the
same as as or replace it.

Annotation Representation The storage of these annotations, if required, can be realized by
extending a mapping element to distinguish the stored from the manually changed annotation.
The computed annotation ac is transient and is not stored itself but either overwrites the stored
one or it is discarded. Without loss of generality, we define such two-valued mapping as follows:

Definition 7.5.1: Two-Valued Annotation Mapping Function

Let EL be the elements in graph G and AF be the set of annotations constructed from a set
of features F . The function t−map : EL→ AF × (AF ∪{ε}) maps up to two annotations
onto a graph element, such that t−map(el) = (as,am), as represents an automatically
computed annotation and am an optionally added manual one.

Accordingly, for a graph element not only one annotation is stored in the mapping but a tuple
consisting of the stored annotation and the optional manual one. For the presence of a model
element in a filtered product, the manually assigned annotation is decisive. Whenever an anno-
tation is mapped onto an element manually, the annotation overrides the automatically assigned
one. This form of selective filter is defined as follows:

Definition 7.5.2: Selective Filter

Let F be a set of features and FCF be the corresponding set of feature configurations.
Let MGF and G denote the sets of all multi-variant graphs and single-variant graphs,
respectively. A selective filter is a function s− filterF :MGF ×FCF → G defined as
follows:
For a given multi-variant graphMGF = (G,t−mapF) and a feature configuration fcF , the
function s−filterF (MGF ,fcF) =G′, with G′ ⊆G, adheres to the following properties:

N ′ = {n ∈N | (7.9)
(mapF (n) = (as, ε) ∧ vF (aS ,fcF) = true) ∨
(mapF (n) = (as,am) ∧ vF (am,fcF) = true)}

E′ = {e ∈ E | vF (mapF (e),fcF) = true} (7.10)

Mapping two annotations onto the same element can be realized when using external mappings,
which distinguish these two kinds of annotations. The mechanisms to realize internal mappings

174

7.5. INCREMENTAL ANNOTATION PROPAGATION

vary (c.f., Sec. 7.5.3, III), affecting the possibility to map annotations onto text fragments. If the
internal mapping mechanism allows for mapping a specific annotation, for instance as preprocessor
directive, onto a realization fragment, it may offer a possibility to add a second annotation (e.g.,
in form of a comment) to the respective element.

Equality of Annotations In the following, we will have to compare annotations which are
Boolean expressions over features in the feature model and which can be represented as Strings.
The straightforward way of comparing two Strings may recognize two annotations as syntactically
different even though a programmer would recognize them as semantically equal [GNS22].
For instance, the annotations Person ∧ Family and Family ∧ Person are syntactically different
but satisfy the same set of feature configurations. Thus, they are semantically equal. For that
reason, for comparing two annotations, being Boolean expressions, they have to be in a normalized
state, e.g., in CNF, to be syntactically comparable and to be able to uniquely determine their
syntactic equality.
If the feature model is consulted as context information, even more annotations, which do not
assume the same CNF, may have the same effect for keeping an element in a product upon
derivation. For instance, if P and F are mandatory features without further constraints, the
annotations a1 = P and a2 = F will include the elements onto which they are mapped in the same
set of filtered variants. Consequently, the two annotations are semantically equal, which means
they satisfy the same set of feature configurations.
For determining semantic equality, the context needs to be considered. Three simplification mecha-
nisms which regard the feature model as content have been proposed by von Rhein et al. [Rhe+15].
These strategies employ mostly heuristics and do not discuss the comparison of two distinct anno-
tations but check only if an annotations and its simplified form have the same effect. To use them
for comparing two distinct annotations, both annotations must be simplified with a deterministic
strategy and compared thereafter. However, this requires, for instance, that the strategies render
the two annotations, a1 and a2 of above example equal.

Protected Annotations To preserve an annotation from overwriting in an incremental prop-
agation, the annotation can be flagged similar to employing protected regions in M2T transfor-
mations. A protected annotation may not be changed by the automated propagation algorithm.
This functionality can enrich each type of mapping mechanism.
In an incremental transformation, protecting an annotation will be indispensable if only one
(type of) annotation is stored per model element. In contrast, when storing manually modified
annotations, separately protecting the annotation is not necessary because the computation does
not change the manually assigned one.
To check, whether an annotation is protected, we employ a function protected defined as follows:

Definition 7.5.3: Protected Evaluation Function

Let G be a graph and EL = N ∪̇ E its elements. The protected evaluation function
protected : EL×AF →{true,false} states whether the given annotation of the given ele-
ment is protected, i.e., it cannot be changed.

Incremental Model Transformation Furthermore, we assume that the incremental transfor-
mation which converts the source model into a target model has already been performed. As a
result, a trace model HTR is available which records all pairs of corresponding source and target
elements. The incremental annotations propagation iterates this trace model as in batch mode,
and computes annotations for the target elements of each trace element as described next.

II Incremental Annotation Propagation

According to the previous descriptions, different types of mappings can occur. This section il-
luminates the two situations of only one and two annotations stored per mapping and proposes
algorithms to prescribe how to assign target annotations incrementally.

175

CHAPTER 7. MISSING TRACE INFORMATION

In the first situation a single annotation is mapped onto a model element. This annotation can be
protected from being overwritten. In the second situation two different annotations are mapped
onto each element as defined in Def. 7.5.1. The mapping encompasses the stored annotation,
which was automatically assigned in a previous execution, and a manually modified one. While
an automatically assigned annotation must be present for each target element at each time after
an initial propagation, the manually modified annotation can also be empty and is expected to be
empty for the majority of model elements.

Single Annotation In the sequel, we propose an incremental propagation algorithm for the
situations in which the MDPLE tool stores a single annotation per model element. In this case,
the MDPLE tool must offer a mechanism to flag target annotations in order to prevent them from
being overwritten if they are changed manually.
Accordingly, the propagation algorithm does not need to compare the computed annotation with
the stored annotation but needs to check whether the already stored annotation is protected.
Given the presence of a protection mechanism, the incremental annotation propagation algorithm
may overwrite any annotation which is not protected.

Algorithm 11 Incremental propagation of annotations one annotation mapped onto elements.
1: procedure propagate(H,mapFS

,map_pFT
,mapFT

)
2: in H = S← TR→ T . STT graph, derived from S← TR′→ T ′ in an incremental

transformation
3: in mapFS

: ELS →AF . Annotation function for the source graph S
4: in map_pFT

: ELT →AF . Partial annotation function for the target graph T
5: out mapFT

: ELT →AF . Annotation function for the target graph T
6: var TRG . Set of target elements
7: var SRC . Set of source elements
8: var ac . Computed annotation
9: for all ntr ∈NTR do . Iterate trace nodes in topological order
10: SRC := {s ∈ ELS | ntr

src−→ s}
11: TRG := {t ∈ ELT | ntr

trg−→ t}
12: CTX := {t ∈ ELT | ntr

ctx−→ t}
13: ac :=

∧
s∈SRC mapFS

(s) ∧
∧
c∈CTX mapFT

(c) . Compute annotation from source
elements

14: for all t ∈ TRG do . Iterate target elements
15: if ¬protected(t,map_pFT

(t)) then
16: mapFT

(t) := ac . Overwrite annotation
17: else
18: mapFT

(t) :=map_pFT
. Retain protected annotation

19: end if
20: end for
21: end for
22: end procedure

Alg. 11 presents the steps which are performed in an incremental propagation where target an-
notations may be protected. The algorithm receives the STT-graph (i.e., the source, trace and
target model) after having performed the incremental transformation, and the source and target
mapping functions. In contrast to the batch transformation, the target mapping function is not
only output but also input and stores annotations for each model element which was created in a
previous transformation execution. Since for new elements no annotation may be present yet, the
given target mapping function is partial whereas the output target mapping function is total.
Similar to the batch propagation algorithm (c.f., Alg. 1), Line 9 of Alg. 11 iterates the trace model
in topological order, which ensures that an annotation assigned to a context element exists already.
The algorithm retrieves the sets of recorded sets of source, context and target elements from each
trace node ntr. The source and context elements are used to compute the annotation as in the

176

7.5. INCREMENTAL ANNOTATION PROPAGATION

batch approach. If the set of context elements remains empty (e.g., due to a generation-complete
trace), the neutral element of a conjunction (i.e., true) will be placed instead.
Then, the computed annotation is assigned to each target element, the annotation of which is
not protected. Since no further comparison with the previous annotation is performed, the new
annotation replaces the old one without further constraints. If no annotation was present so far
because the target element was created by the incremental transformation that occurred right
before the propagation, the computed annotation will be the first one mapped onto the element.
To this end, the annotation of each element is updated or preserved.
It must be noted, that at first glance, it would seem beneficial to iterate only trace model elements
which have been added in comparison to the previous trace version. However, this would not suffice
because annotations of existing source elements may also have been changed. Therefore, the entire
trace model is iterated.

Two Annotations In contrast to overwriting each annotation which is not preserved, the fol-
lowing paragraphs describe how to propagate an annotation when two annotations are stored per
element. If an MDPLE tool realizes such behavior, the t−map function replaces the mapping
function of the multi-variant target graph. In a backward transformation the source mapping
function would also have to be replaced but in unidirectional scenarios it can be kept, assuming
that there is no difference between a manual and a computed source annotation.
Alg. 12 describes the steps that are performed during the incremental propagation in the presence
of up to two annotations per element. Similar to the algorithm before, the STT graph as well
as the source and partial mapping annotation function are input to the algorithm. The complete
target mapping annotation function forms the output of the algorithm. In contrast to Alg. 11,
the partial and complete target mapping functions store the manually mappings, too.
Again, the algorithm iterates the trace model in topological order and retrieves the recorded sets of
source, context and target elements of each trace node. Based on this information and the source
and target mapping annotation function, the algorithm computes the annotation as in the batch
version defined in Alg. 1. When iterating the target elements thereafter, the algorithm checks in
the first place whether a manual annotation is mapped onto the target element.
If no manual annotation exists, the algorithm will deduce that no specific user added information
needs to be preserved. Thus, the algorithm maps the computed annotation onto the target element
in Line 20. If a manual annotation is present, the algorithm checks whether the stored and the
computed annotations are the same. If they are equal, no further action is necessary because the
annotation does not change the effect of the already existing annotation.
If the stored and the computed annotations diverge, the algorithm checks whether the computed
annotations equals the manual one. For instance, this may be the case if the previously assigned
annotation as was too broad before and the developer refined the target annotation before changing
it on the corresponding source elements, too. In this case, the stored annotation is overwritten
and the manual annotation remains as it is. Particularly, the manual annotation is not deleted
because in another subsequent propagation the information might be necessary again.
Finally, if the three annotations, ac, as and am diverge, a conflict exists. However, as the manual
annotation outweighs the computed annotations in the selective-filter, a straightforward solution
of resolving this conflict overwrites the computed annotation. Nonetheless, it might be beneficial
to inform the product line developer that particularly the two computed annotations deviate,
which might require an update of the fixed manual annotation, too.
All in all, in the end, each trace element and, thus, each information from the source model is
propagated to the target model and a total mapping annotation function accompanies the target
model.

7.5.4 Discussion
To sum it up, the two propagation algorithms as well as the ways to represent mappings aim to
support the incremental maintenance of annotations in a multi-variant target model. The primary
goal of this thesis is to protect target annotations, which were manually modified by the product
line developer, in a consecutive execution of the multi-variant transformation.

177

CHAPTER 7. MISSING TRACE INFORMATION

Algorithm 12 Incremental propagation of annotations with two annotations mapped onto target
elements.
1: procedure propagate(H,mapFS

, t−map_pFT
, t−mapFT

)
2: in H = S← TR→ T . target STT graph, derived from S← TR′→ T ′ in an incremental

transformation
3: in mapFS

: ELS →AF . Complete annotation mapping function of source graph S
4: in t−map_pFT

: ELT →AF . Partial annotation function of the target graph T
5: out t−mapFT

: ELT →AF . Annotation function for the target graph T
6:
7: var TRG . Target elements
8: var SRC . Source elements from which target annotation is computed
9: var ac . Computed annotation
10: var am . Manual annotation
11: for all ntr ∈NTR do . Iterate trace nodes in topological order
12: SRC := {s ∈ ELS | ntr

src−→ s}
13: CTX := {c ∈ ELT | ntr

ctx−→ c}
14: TRG := {t ∈ ELT | ntr

trg−→ t}
15: ac :=

∧
s∈SRCmapFS

(s) ∧
∧
c∈CTX t−mapFT

(c)
16:
17: for all t ∈ TRG do
18: (as,am) :=map_pmFT

(t)
19: if am = ε then . If the annotation was not manually
20: mapFT

:= (ac,am) . The old annotation can be replaced
21: else
22: if as 6= ac then
23: if ac = am then
24: t−mapFT

(t) := (ac,am) . Replace stored annotation
25: else
26: resolveConflict(t,as,ac,am, t−mapFT

)
27: end if
28: end if
29: end if
30: end for
31: end for
32: end procedure

For this task we have discussed the possibility to protect annotations and to store two different
annotations. Furthermore, the algorithms for propagating annotations based on a trace have been
refined accordingly. The following paragraphs discuss the assumptions that we posed as well as
the benefits of this approach and spotlight related work.

Assumptions The presented propagation algorithms make several assumptions on the evolution
of product lines. We refrain from regarding the evolution of the feature model and the target
domain model as well as from deleting or updating source elements.
Although we do not explicitly discuss the evolution of feature models, this does not hamper
their development in an evolution scenario. We assume that changing the feature model triggers
a validation of all existing models in the product line by the MDPLE tool. If annotations do
not conform with the modified feature model, this problem must be solved when changing the
feature model. At the most, the multi-variant transformation could be enriched by a pre- and
post-processing step to evaluate the correctness of annotation with respect to the feature model.
In addition, we do not focus on domain model changes. Accordingly, situations in which the target
domain model changes differently than the source model are not considered. Particularly, it is
not possible that an element of the multi-variant target domain model assumes a manual value
which cannot be derived by executing the reused model transformation. This assumption helps

178

7.6. SUMMARY

to ensure commutativity of annotations also in the incremental scenario. If only source elements
are added and the transformation rules are local, functional and monotonic, corresponding target
elements should be integrated in the target model seamlessly without threatening commutativity
(if corresponding trace elements record the target elements).

Benefits Using fixed mappings pays off when incomplete traces are present and a completion
strategy computes the missing annotations as proposed in Sec. 7.3. For instance, the completion
strategies always map the root feature onto the compilation units of a Java model, which are
created for each UML class in a UML class to Java transformation, although the compilation
units might represent optional elements. Thus, the developer refine the broad annotations and
desires to preserve the manually invested work in consecutive executions. Since modifying those
annotations each time a batch propagation takes place is a laborious and redundant task, this
manual effort saved each time the multi-variant transformation is executed incrementally again
after the change.
As another point, the algorithms for incrementally propagating annotations are described in a
generic way, independent of the MVMT approach. The concrete realization of how to determine
the annotation and how to verify whether an annotation may be changed may diverge. Similarly,
handling non-matching annotations by the means of a three-way comparison requires a tool-
specific way to represent these two-fold annotations as well to compare annotations. Since we
do not assume a tool-specific or transformation language-specific behavior (e.g., for recording
modifications or for storing mappings concretely), the concepts are generally applicable.

Pitfalls Particularly, when two types of annotations, a manual and an automatically computed
annotation, are mapped onto a model element, the question arises which annotation weighs more.
The definition of the selective filter (Def. 7.5.2) favors the manual annotation and determines the
presence of the model element based on this annotation. However, in the incremental forward
propagation it may not be clear how to handle the situation when the stored and the newly
computed annotations deviate and are not the same as the manual annotation. Our solution
prefers the manual annotation and assumes that the stored annotation can be overwritten when
no manual annotation is present (assuming that if the stored annotation was wrong, it would have
been replaced with a manual one). Despite the automation of this behavior, the annotation may
deviate from the developer’s intention. Therefore, we propose to report real conflicting annotations
if the stored, computed and manual annotations diverge.
Finally, in a unidirectional propagation the distinction between automated and manual annotation
makes only sense for the target of a source model. It is assumed that the source model is annotated
completely and that the source annotations are correct regardless whether the annotation were
provided manually or the source model resulted from a prior transformation.

Related Work Regarding related multi-variant transformations, protecting and incrementally
maintaining annotations has not been considered apart from this thesis, to the best of our knowl-
edge. The category-based framework for evolving product line transformations [Tae+17], regards
the evolution of the feature model as one artifact besides the evolution of the source domain model.
However, it does not consider the annotations explicitly. To the best of our knowledge we assume
that the target annotations will be overwritten, if they already exist. A new approach, developed
by the authors of this thesis, considers the maintenance of annotations in synchronization scenar-
ios (i.e., in bidirectional transformations) which goes beyond the scope of this thesis which focuses
on unidirectional (incremental) transformations [GNS22].

7.6 Summary

In summary, this chapter proposes strategies to propagate annotations in situations in which the
traces are not complete and and in which the granularity level of trace information deviates from
the level of the mappings in a trace-based propagation (i.e., violating Prop. 5.3.8 and Prop. 5.3.7).

179

CHAPTER 7. MISSING TRACE INFORMATION

The first sections, Sec. 7.1 and Sec. 7.2, illuminate the situations where each target element
representing an object can be annotated but information about context elements or mappings of
structural features, respectively, is missing. Firstly, the descriptions show that a propagation based
on a generation-complete trace can create a completely annotated multi-variant target model.
However, the algorithm may map an annotation onto the target elements which is too broad such
that these elements may be present in single-variant target models which cannot be created with
the reused single-variant transformation due to the missing context element.
Secondly, for retrieving mappings of structural features, we offer a solution which analyzes the
bytecode model of the transformation specification. As a consequence, the analysis requires to
access the bytecode model and works in an independent way of the concrete transformation (i.e.,
the source and target metamodels) and, conceptually, of the transformation language.
For situations in which traces are incomplete, Sec. 7.3 proposes and discusses three completion
strategies to determine the missing annotations. These heuristics exploit the tree-structure of the
target models to compute missing annotations and assume that parts of the model are already
correctly annotated. A theoretical analysis shows that the accuracy depends on the presence of
annotations at parent or children graph nodes and that the computational complexity is in the
worst case cubic.
If no trace is present, the information of corresponding source and target model elements needs
to be restored in a different way. As black-box approach, which works independent of a trans-
formation language, propagation DSLs, such as the ModelSync DSL, can be manually specify
corresponding elements as described in Sec. 7.4.2. A specification in the DSL basically rewrites a
declarative transformation specification by specifying corresponding source and target objects and
employs this information to propagate the annotations from source to the corresponding target
elements matching the specified patterns automatically.
In contrast, comparing the source and target model and to determine matching elements auto-
matically represents a solution situated at a higher degree of automation and genericity. However,
without assumptions on the metamodels to which the models conform, the accuracy of matched
model elements by the model comparison approach presented in Sec. 7.4.3 remains low. Due to low
levels of accuracy, granularity and automation of model matching approaches and the propaga-
tion DSL, we refrain from integrating proofs of concepts in our multi-variant model transformation
framework presented in Chp. 9.
Finally, annotations computed by the heuristics and based on generation-complete traces may
be too broad or to specific for pertaining model elements in filtered variant. Therefore, Sec. 7.5
presents how to protect manually modified target annotations in an incremental annotation prop-
agation.

180

Chapter 8 Model-To-Text Annotation Propagation

Simplicity does not precede complexity,
it follows it.

Alan Perlis, Epigrams on Programming, 1982

∼

While the previous contributions propagate the annotations of one model to another
based on traces or comparable information, this chapter offers a solution to integrate
the annotations into text generated by a model-to-text transformation. Instead of
traces, the chapter employs concepts of aspect-oriented programming in order to prop-
agate annotations without a need to change the execution semantics of the transfor-
mation engine.

Firstly, Sec. 8.1 illustrates the problem of deriving customized source code without
an annotated multi-variant source code platform. As one solution to overcome this
problem, Sec. 8.2 explains the essential background information on template-based
model-to-text transformations and of aspect-oriented programming. Based on this
description and further observations, Sec. 8.3 formalizes M2T transformations by em-
ploying the Graph formalism, too, and defines the computational model and corre-
sponding algorithm for aspect-oriented annotation propagation. Sec. 8.4 discusses the
design decisions of the computational model and of annotating source code fragments
while additionally reflecting on related work on the topic. A summary provided in
Sec. 8.5 concludes the chapter.

The chapter is based on the publications for employing aspect-oriented annotation propagation
[GW18a; GW18b].

181

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

8.1 Problem Statement

Serving as introduction to this chapter, this section motivates and stresses the importance of fea-
ture traceability, in general, and of annotations in source code, in particular. Firstly, a motivating
example demonstrates the effect of manually integrating source code into method bodies. Without
a multi-variant source code platform the product line developer has to repeat the integration in
each derive variant. In this way, the example emphasizes the resulting deficiency in productivity
and draws consequences to reduce the manual efforts.

8.1.1 Motivation

To motivate the necessity of annotated source code, (instead of generating single-variant models
from which the source code is derived), this section employs the family database example from
the previous chapters (Fig. 4.1.3). In contrast to the previous examples, this example focuses on
an excerpt of the model representing the derived attribute name of the class Person. Accordingly,
in the source code an implementation of a method getName() is necessary.

Person

/name: String
firstNames : String[0..*]
surname: String

Family

name: String
parent
0..2

0..*
children

family
0..1

0..1

DatabaseContent

family

0..*0..*
persons

not Family

Family

Name

Person

DB

FamilyPerson

Name

feature model

// #IFDEF Person #
public class Person {
 private String[] firstNames;
 // #IFDEF not Family #
 private String surname;
 // #ENDIF #
 // #IFDEF Family #
 private Family family;
 // #ENDIF #
 ...

1

2

3

4

5

6

7

8

9

10

public class Person {
 private String[] firstNames;
 private Family family;

 public String getName() {
 ++ String name = Arrays.toString(firstNames) + family.name;
 ++ return name;
 -- return null;
 }

}

1

2

3

4

5

6

7

8

9

10

11

Person
/name: String
firstNames : String[0..*]

Family

name: String
parent
0..2

0..*
children

family
0..1

0..1

DatabaseContent

family

0..*
0..*
persons

families

public class Person {
 private String[] firstNames;
 private String surname;

 public String getName() {
 ++ String name = Arrays.toString(firstNames) + surname;
 ++ return name;
 -- return null;
 }
 public String getSurname() {...}
 ...
}

1

2

3

4

5

6

7

8

9

10

11

12

Person
/name: String
firstNames : String[0..*]
surname: String

DatabaseContent

0..*
persons

fil
te

r
fil

te
r

tr
an

sf
or

m
tr

an
sf

or
m

tr
an

sf
or

m

DB ∧

Person ∧

Family ∧

Name

DB ∧

Person ∧

⌐Family ∧

Name

11

12

13

14

15

16

17

18

19

20

21

22

23

 public String getName() {
 ++ String name = Arrays.toString(firstNames);
 ++ // #IFDEF Family #
 ++ name += family.name;
 ++ // #ELSE#
 ++ name += surname;
 ++ // #ENDIF#
 ++ return name;
 -- return null;
 }
 ...
}
// #ENDIF #

multi-variant annotated
UML class model

multi-variant annotated
Java source code

derived single-variant
UML class model

generated single-variant
Java source code

generated single-variant
Java source code

derived single-variant
UML class model

Figure 8.1.1: Integration of method body in multi-variant vs. single-variant source code.

182

8.1. PROBLEM STATEMENT

Scenario Fig. 8.1.1 illustrates the scenario on the top left. The UML class model comprises
the classes Person and Family, which both store names. The upper left corner depicts the
corresponding feature model excerpt. If a feature configuration selects the feature Family, the
property surname will be missing in the person class of the corresponding derived model, as
depicted on the left side of the second row in the figure. The surname will be present and the
family class will be missing, if the feature Person is selected but the feature Family not, as
depicted on the left side at the bottom of the figure. Model elements without mapped annotations
are integrated in each product.

Template-Based UML Class Model to Java Transformation In this scenario the em-
ployed transformation represents a simplified real world transformation: the Java source code
generation for UML class models. Although Fig. 8.1.1 focuses on the transformation of a class
and its attributes, we summarize the basic behavior of the entire transformation in short:
It creates a class declaration for a UML class only (and no interface). Accordingly, first, the
transformation creates a class file for each class declaration which contains a package and import
statements before opening the class declaration. For each property of a UML class, field dec-
larations are inserted followed by integrating the method declarations. While field declarations
contain only a type, a visibility and a potential modifier, a method may also include a parameter
declaration which is inserted with the separator ‘,’ inside the enclosing rounded brackets. The
return type is inserted before the method name. For derived properties of the UML class, such as
the name of the class Person in the example, no field declaration but an access method getName()
is created which declares the type of the property as return type. Furthermore, access methods
may be created for each ’normal’ field declaration which are left from the example. Finally, the
transformation integrates a default return statement in the body of each method declaration to
generate a valid source code file without compilation errors.

Process Without Automation Support To retrieve source code for a product, without a
multi-variant transformation the developer needs to derive a product from the multi-variant model
and generate the corresponding source code by transforming the models into Java. The lower part
of Fig. 8.1.1 illustrates this procedure by showing the generated source code on the right side.
Since the property name of the class person is a derived attribute, it requires an implementation
of the method body. Per default, the code generation creates the method header and a default
return type (Lines 5 and 8) only. Accordingly, a developer provides the method body in the way
sketched in the figure. The developer removes the default return type null, indicated with red
-- in both products. However, due to the different information present in the derived models, the
implementation of the method bodies varies for the two products. Blue ++ indicate the manually
added lines of source code which compute the full name, composed of the first names followed by
the family name depending on the available information.

Redundant Error-Prone Effort Continuing the product derivation (i.e., filtering the multi-
variant UML class model and generating the corresponding source code) requires to implement the
method body repeatedly. Typically, a developer may copy-and-paste and adjust the method bod-
ies, if needed. Despite missing automation and, thus, an increased time-consuming and expensive
manual effort, this procedure is also error-prone: The manual implementation might be modified
inadvertently or on purpose, resulting in diverging behavior for the same kind of product.

Solution Idea Generating multi-variant source code from the multi-variant source model in-
stead solves the problem of redundant implementations and reduced automation. Even though
multiple approaches to generate source code for class models exist, such as the default Ecore code
generation [Ste+09] or the UML modeling tool Valkyrie [Buc12], these generators are unaware of
variability and, thus, not able to integrate annotations in the generated text. Accordingly, such
generator can produce multi-variant source code but for deriving customized products annota-
tions are missing. For this task, it is necessary to map annotations onto corresponding source
code fragments.

183

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

The the upper right side of Fig. 8.1.1 sketches the result of a multi-variant M2T transformation
which includes annotations. The multi-variant transformation maps the annotation of a source
object onto the corresponding created source code fragments as preprocessor directive. Since the
example demonstrates the creation of Java source code, the preprocessor directive (which are not
supported out-of-the box) is integrated as a comment such that the source code can still be com-
piled. Furthermore, the method getName() misses an implementation which is added manually.
In contrast to deriving a UML class model variant, generating its source code and implementing
the method bodies, the method body for the multi-variant source code is implemented only once.
Consequently, conditionally compiling the multi-variant source code to derive a single variant
integrates the method body automatically and does not require interaction with the developer.

8.1.2 Consequences

The example illustrates the importance of generating annotated multi-variant source code and
deriving products from that source code platform.
At minimum, annotated multi-variant source code offers the following benefits, which affect de-
velopment cost and correctness positively:

• Automatic Single-Variant Code Generation A customized product can be derived from
the multi-variant source code automatically without deriving a single-variant model first.

• Reduced Copy-And-Paste of Manual Implementations Changes to the source code,
such implementations of method bodies, can be provided in the multi-variant source code
platform. Consequently, derived products from the source code platform include manu-
ally added source code fragments concerning only the selected features. This removes the
necessity to copy and paste manual modifications in every newly derived product.

• One Dedicated Place for Maintenance A multi-variant source code platform (and re-
maining links to derived products) may offer the possibility to integrate, for instance, bug
fixes from a product, into the platform and distribute them to all other already derived
products. Linking products with the platform as well as their reactive integration, however,
is out of the scope of this thesis.

Despite this artificial example for motivating the contribution, a similar study [Ji+15] confirms
the need for feature traceability across design and source code artifacts. Using preprocessor
directives is an easy to embed and light-weighted way of annotating source code in the first place
[Ape+13]. However, it must be noted that, despite the light-weight integration of annotations
into source code, without tool support the maintenance of this code may become cost-intensive
due to potentially scattered features and diverging behavior which requires an increased amount
of cognitive complexity [Mar+21; AK09; SW19].

8.2 Aspect-Oriented Multi-Variant Source Code Genera-
tion

While a trace-based multi-variant model transformation establishes a tool-independent, post-
processing approach to create annotated multi-variant models, it does not enclose concepts for
creating annotated multi-variant source code out-of-the-box. M2T transformations rarely main-
tain persistent trace information but rather rely either on matching source code elements or a
manual specification of tracing information by using IDs to recognize text fragments correspond-
ing with source model elements. Even if sufficient trace information were available, technically an
a posterior trace-based propagation would require to re-execute the transformation to incorporate
annotations internally in form of preprocessor directives or to build an external mapping file which
uniquely identifies text fragments with annotations.

184

8.2. ASPECT-ORIENTED MULTI-VARIANT SOURCE CODE GENERATION

1 [module ecore2java(’http://www.eclipse.org/emf/2002/Ecore’)/]
2

3 [template public main(p : EPackage)
4 [comment @main/]
5 [for (cl : EClassifier | ec.eClassifiers)]
6 [let c : EClass = cl]
7 [eClass2Java(c)/]
8 [/let]
9 [/for]

10 [/template]
11

12

13 [template public eClassToJavaSC(ec : EClass) ? (ec.interface = false)]
14 [file (ec.name + ’java’, false, ’UTF-8’)]
15 public class [ec.name/] {
16 // Constructor
17 [c.name/]() {}
18 [for (attr : EStructuralFeature | ec.eStructuralFeatures)]
19 [eStructFeat2Field(attr)/]
20 [/for]
21 }
22 [/file]
23 [/template]
24

25 [template public StructFeat2Field(attr :EStructuralFeature)
26 ? (attr.derived = false and attr.many = false)]
27 private [getType(attr.eType)/] [attr.name/];
28 [/template]
29 ...

Listing 8.2.1: Example of an Acceleo module composed of three text production rules (template).

Road Map This section presents the background information on M2T transformations and
aspect-oriented behavior the concept of both are used to embed annotations in the target text
while executing the reused transformation. First, Sec. 8.2.1 examines the two template-based
M2T languages Acceleo and Xpand to derive commonalities and basic concepts of such transfor-
mations. Thereafter, Sec. 8.2.2 illuminates the concepts and implementations of aspect-oriented
programming in more detail.

8.2.1 Template-Based Model-To-Text Transformation
This section introduces the basic concepts for creating text from a given model via template-based
M2T transformations. Examples taken from Acceleo, the implementation of the MOF2Text stan-
dard issued by the OMG, and Xpand serve to illustrate and infer the basic concepts shared by
template-based languages. The first part of this section explains language constructs for speci-
fying the transformation while the second part presents the execution behavior which are both
summarized thereafter.

I Text Production Specification

To demonstrate the specifics of template-based text productions, this following paragraphs present
the language concepts and execution semantics of the transformation engines Acceleo and Xpand.

Acceleo [Obj08] is a template-based M2T language, which implements the MOF2Text stan-
dard. To demonstrate the language constructs, Listing 8.2.1 presents an excerpt of an Acceleo
transformation which generates a Java class from a given Ecore class in a simplified form. Ac-
cordingly, the first line declares the module’s name, ecore2java, and the Ecore metamodel as the
metamodel, the instances of which are transformed with this specification.

185

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

At the coarsest level, Acceleo allows to compose transformations of modules. Modules can im-
port functionality from other modules (import-directive) or extend other modules, i.e., Acceleo
supports inheritance between modules. A module comprises template definitions, which are rules
declaring for one type of the source model how corresponding text should be constructed from
the object’s properties, and queries, which – similar to methods – may implement behavior used
at various places or may build strings by employing OCL expressions. Furthermore, static Java
methods may enrich the production rules for querying complex computations which are hard to
express in OCL.
Inside modules, templates prescribe which text should be produced for each object o matching
the type declared in the template. Such text producing rule ϑ comprises static text and dynamic
productions. Lines 3-10, 13-23 and Lines 26-28 of the listing represent templates.
The creation of a file can be initiated in a template and, thus, serves as physical storage where the
text production is written to. Line 14 of Listing 8.2.1 initiates the creation of in the rule which
generates a class declaration by providing the name and path as well as the encoding format (e.g.,
in the example: UTF-8) for the generated text.
Furthermore, the static text can be intermixed with dynamic text productions which compute
the printed value: On the one hand, a dynamic directive may be resolved directly in the rule
ϑ, similar to a variable which is dynamically replaced with the concrete value of the matching
object’s o property. On the other hand, the rule may invoke another rule ϑ′ if the text should be
retrieved from another object o′ directly referenced by the object o which matches the invoking
template ϑ. Retrieving the name of the class to create the class declaration in Line 15 with the
directive [ec.name/] is an example of a directly stated dynamic directive in Acceleo. Invoking
another template, to generate text for all attributes in the given EClass is demonstrated inside
the for-loop in Line 7. The let-expression stated in Line 6 performs a type cast and provides
an alias such that only eClassifiers, which are of type EClass, are input to the corresponding
invoked template.
In addition, guards may restrict the kind of object that match a template by the values of their
structural features. A guard, initiated by a question mark in the concrete syntax of Acceleo, can
be stated after the declaration of the type that matches a template and constrains its applica-
tion, similar to a positive application condition in M2M transformations. In the example, the
eClassToJava template will be only executed if the given EClass is no interface. Similarly,
if -conditions inside the template can constrain the text production based on certain values and
branch the control flow. for-loops serve to further prescribe the order of the control flow when
iterating the given objects’ structural features. The for-loop in Lines 18-20 iterates all structural
features of the class to invoke another template which transforms EAttributes and EReferences.

Xpand In contrast to Acceleo, the language Xpand [Eff+04] does not realize the MOF2Text
standard. Nevertheless, it encompasses similar concepts, such as for-loops and if-statements as
well as the invocation of other text producing rules. The language resides in the openArchitec-
tureWare [EV06] framework and is integrated in the language Xtend to define complex String
computations. To illustrate the syntax specifics in the following explanations, we employ the
same transformation as for explaining the Acceleo constructs. Accordingly, the transformation
specification in Listing 8.2.2 realizes the same functionality as implemented in Listing 8.2.1.
Xpand does not realize a module mechanism, such as Acceleo, nor offers queries. Instead, tem-
plates can access extensions, which are specified in Xtend and may express and compute more
complex text productions such as the iteration of a collection of elements for determining the
printed String. Furthermore, import-statements declare a namespace which obviates the need to
mention the fully qualified name each time a type is stated. Even though they are not called
templates, an Xpand transformation specification consists of define-blocks which represent a text
producing rule similar as an Acceleo template. An MWE(2) workflow collects necessary addi-
tional information for executing an Xpand template, such as the metamodel, the instances of
which should be transformed.
Listing 8.2.2 imports the Ecore namespace in Line 1 while Line 2 imports an extension file, called
path and located in the directory extensions, which summarizes additional methods specified in
Xtend. The methods in the extension file compute the path names of files or packages.

186

8.2. ASPECT-ORIENTED MULTI-VARIANT SOURCE CODE GENERATION

1 «IMPORT ecore»
2 «EXTENSION extensions::path»
3

4 «DEFINE main FOR EPackage»
5 «EXPAND classifier FOREACH eClassifiers»
6 «ENDDEFINE»
7

8 «DEFINE classifier FOR EClassifier»
9 «IF metaType.name == "ecore::EClass"»

10 «EXPAND EClass FOR (EClass) this»
11 «ENDIF»
12 «IF metaType.name == "ecore::EEnum"» ... «ENDIF»
13 «ENDDEFINE»
14

15 «DEFINE EClass FOR EClass»
16 «REM» create corresponding class «ENDREM»
17 «IF interface == false»
18 «FILE getPackagePath() +"/impl/"+ name + "Impl.java"-
19

20 package «getPackageName()».impl;
21 «EXPAND templates::implementations::class FOR this»
22 «ENDFILE»
23 «ENDIF»
24 «ENDDEFINE»
25

26 «REM» template: ’templates::implementations’ «ENDREM»
27 «DEFINE class FOR EClass»
28 public class «name»Impl {
29 «EXPAND EStructuralFeature FOREACH eStructuralFeatures»
30 }
31 «ENDDEFINE»
32

33

34 «DEFINE EStructuralFeature FOR EStructuralFeature»
35 «IF derived == false»
36 protected «getType()» «name»;
37 «ENDIF»
38 «ENDDEFINE»

Listing 8.2.2: Example of Xpand text production rules for EClasses.

A define-block, denoted as «DEFINE», is a text-producing rule declaring one type of object, and
combines static and dynamic text generation directives. A file-directive («FILE») inside the define-
blocks initiates the creation of a file in a batch transformation or accesses a matching one in
incremental transformations. Any static text inside the directive is written verbatim and any
dynamic text is written in its resolved form to that file in the order declared by the block. In
contrast to Acceleo, it is not possible to further restrict the declared type of the define-block
directly with a guard. If different text needs to be produced depending on the values of structural
features of the matched object, if -directives inside the define-block need to initiate these branches.
Besides if-directives, the language offers several mechanisms to iterate a collection of structural
features. A for-loop can be declared inside a define-block and produces text at the declared
position. Alternatively, similarly to invoking other templates on referenced objects, it is possible
to invoke another define-block by writing a directive EXPAND, such as in Line 29 of Listing 8.2.2.
This could be regarded as an indirect for-loop which iterates a collection of referenced objects by
invoking another text producing rule. Apart from the main definition block, only define-blocks
invoked by other rules are executed.
In Listing 8.2.2, the main define-block (Lines 4-6) invokes the respective define-block for each
type of classifier contained in the matching package. As define-blocks and expand-directives do not

187

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

1 bean = org.eclipse.emf.mwe.utils.StandaloneSetup{
2 registerGeneratedEPackage = "org.eclipse.emf.ecore.EcorePackage"
3 }
4 component = org.eclipse.xpand2.Generator{
5 id = "generator"
6 metaModel = org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel{ }
7 expand = "templates::Main::main FOR model"
8 fileEncoding = "UTF-8"
9 outlet = {

10 path = ’${targetPath}’
11 postprocessor = org.eclipse.xpand2.output.JavaBeautifier{}
12 }
13 advice = advices
14 }

Listing 8.2.3: Excerpt of MWE2 workflow for generating text from an Ecore model.

allow for guards that constrain the objects, the if-directive in Line 9 determines which define-block
should be executed for the given type of classifier when being invoked by the main define-block.
In this case, the main block invokes the define-block for producing the text of EClasses (Line 15).
For each matching class a file is created first in Line 18. Anything that is declared inside that
directive which ends in Line 22 (i.e., static declarations and invoked dynamic declarations) is
included in the file.
After stating and computing the package declaration in the file, another define-block specific
for EClasses is invoked which generates the class declaration followed by invoking a define-block
transforming all structural features. Even though polymorphism is stated to be supported [Kla07],
a similar directive as in Listing 8.2.1 matching the concrete type of a structural feature, i.e., an
attribute or a reference, cannot be compiled with current versions of Xpand1. Finally, “REM”-
blocks (e.g., in Line 16) signify comments which are not printed to the produced file.
Further differences between Acceleo and Xpand mainly regard additional functionality to express
the transformation [Kla07]. For instance, Acceleo allows to define macros and queries can be
expressed inside a transformation module directly with OCL syntax whereas Xpand requires to
write an extension in Xtend for complex computations. However, overall the template-based
transformation of a model based on Acceleo and in Xpand employs mostly similar concepts.

II Text Production Execution

After having introduced the basic language constructs and concepts of template-based M2T trans-
formations, this section derives the commonalities of executing such transformations.

Entry Point Rule Each of the two template-based approaches employs an explicit and unique
entry point at which the text production initiates. Acceleo marks this ”main” rule of a module with
the comment [comment @main/]. In Listing 8.2.1, packages serve as entry point. For that reason
the template, named main, matches EPackages and states the declaration as main-rule in Line 4 as
first statement in the rule. Similar to the Acceleo listing, the Xpand listing (Listing 8.2.2) names
one of its define-blocks main (c.f., Line 4) even though this is only by convention. As in Xpand,
the MWE(2) workflows are decisive for executing the transformation, the workflow declares the
entry point of the transformation and in this way where the respective main define-block of this
Xpand template is stated. Listing 8.2.3 presents the relevant excerpt of an MWE2 workflow to
generate source code. As mentioned above, the metamodel is not stated in the Xpand templates
but the registered package is declared in this workflow (in the example in Line 2). The entry point
is defined for the Generator component as expand property in Line 7.

Rule Execution Order For executing the transformation, both, the Acceleo and Xpand en-
gines, iterate the given source model implicitly and search for objects matching the declared type
of the entry point. Then, the file and text production is performed in the order as declared in the

1 Tried with Eclipse Modeling Tools 2020-03 (4.15.0), Xpand Version 2.2.0.v201605260315

188

8.2. ASPECT-ORIENTED MULTI-VARIANT SOURCE CODE GENERATION

text producing rules. A composes static declarations but may also invoke further rules. The text
production of the invoked rules is embedded exactly where they are invoked. Thus, the execution
is rule-based and works monotonically and hierarchically. Starting at the entry point for matching
objects in the input model, subsequent rule applications are extended from that rule and produce
text ordered as defined in the rules. To this end, the text production produces a “forest’ of files.

Incremental Executions To be beneficial in scenarios similar as sketched in Sec. 8.1.1, where
manual source code is added to the created text files, M2T transformations have to preserve these
manual modifications in consecutive executions of the transformation. Acceleo and Xpand offer
two concepts for this kind of incremental behavior: tracing and protected blocks.
Acceleo and the Mof2Text standard encompass a trace-directive ([trace]). The contents of a
trace block are associated with the parameter given to the trace command. To identify the
block unambiguously, a unique identifier must be provided. The same holds for protected blocks
([protect]) which mark a block as modifiable by the user and retain anything inside in subsequent
transformations of the same input model. Protected blocks will only be retained, if the surrounding
block exists. If not, the protected area will be removed from the file as well. In contrast to
protected blocks, Acceleo incorporates the command for creating trace blocks but, to the best of
our knowledge, current engines2 do not support this explicit traceability.
To realize incremental behavior, Xpand offers two ways to recognize changes of the input model,
on the one hand, and may trace input elements to generated text fragments, on the other hand.
While such trace model is created by a callback of the Xpand generator on the fly, for computing
the diff model for the input model one out of two possibilities can be specified in the workflow:
Either an incremental generation facade or an incremental generation callback can be employed.
The facade expects the old and the new input model as well as a trace model and requires to
define the outlet (i.e., the path and a declaration whether the text can be overwritten). Using
the generation callback instead, allows for more control over the steps that are performed in the
execution, particularly, to store the input model as a backup copy to be compared in a subsequent
execution or to delete files which are obsolete after the execution. [Eff+04].
Furthermore, to retain already created (manually added text), protected areas can enrich the
Xpand define-blocks. The protect-block requires the definition of characters which allow to inte-
grate a comment in the created text without changing the semantics of the original text production.
Furthermore, a unique and stable ID is necessary to identify the text production for the same ele-
ment. Explicit traceability is not foreseen neither in the template definitions nor in the workflow.
However, the language report [Kla07] suggests to implement tracing functionality by using aspects
which are supported in Xpand and explained in Sec. 8.2.2.

III Summary

From inspecting the syntactic constructs of Acceleo and Xpand, which realize and implement the
same concepts of the MOF2Text standard of the OMG, we can infer the following commonalities
of M2T rule specifications.

File Creation Firstly, one M2T specification may be defined in multiple files, i.e., templates
(modules in Acceleo) and libraries or helper files summarizing queries which may access a GPL
for complex computations. A statement that initiates the creation of a file is essential to generate
or access a location to embed the text productions. One functionality of such directive is to create
the respective directory if necessary.

Single Source Element Secondly, text-producing rules (i.e., templates in Acceleo and define-
blocks in Xpand) match one type of object (which can be restricted with application conditions
defined over the object’s properties) and combine statically generated text fragments, which the
rule declares literally, with dynamically generated ones.

2 Tested with Acceleo Core SDK 3.7.11.202102190929 in an Eclipse Modeling Tools Version 2021-12 (4.22.0)

189

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

Rule Invocation Firstly, an entry point rule initiates the execution. Secondly, rules may invoke
further rules as part of their capability to integrated dynamically determined text. A dynamic
production may access a structural feature of the input object (e.g., of type String) and directly
states the conversion of it into a text fragment. In the more complex case, the dynamic production
either invokes a query, which also may receive the object or a structural feature of the object and
returns text, or another text-producing rule is performed on elements referenced by the matching
source object. Accordingly, one text producing rule ϑ may invoke several other rules θ′. The order
of calling the rules is given by the order of invoked text-producing rules and the created text by
the order of the matching objects.

8.2.2 Aspect-Oriented Programming
This section recapitulates the basic concepts of aspect-oriented programming, in general. The usage
of AOP in M2T transformations is sketched shortly in the presentation of model transformation
approaches in Sec. 2.2.2 and its usage for realizing compositional variability in Sec. 3.4.2. The
following paragraphs first consider the terminology of the central concepts of aspect-oriented
programming [Kic+97] and their execution. Thereafter, we shed light on the realization of these
concepts in M2T transformations.

Concepts

In programs P, whenever condition C arises, perform action A. [FF00]

This quote by Filman and Fridman describes the essential dimensions of aspect-oriented program-
ming: requiring a quantification of the conditions that can be specified to execute an action defined
by some interface and a weaving mechanism that allows to integrate the action into the program.
In our context AOP serves as one strategy to realize variability in a organized and reusable
way. Sec. 3.4.2 sketches the concepts of aspect-oriented programming as a solution for realizing a
compositional variability mechanism. Accordingly, the approach maintains a base version declaring
join points in the source code and an advice realizes the extension of the base version feature-wise.

Terminology According to Apel et al. [Ape+13], an aspect is the unit that contains an alter-
native or extending implementation of the original implementation. The representation of this
unit may vary depending on the aspect-oriented realization approach. For instance in AspectJ an
aspect is comparable with a Java class declaration. Conversely, an advice declares the actual im-
plementation of aspects. The aspect weaver extends the execution engine and weaves the aspects
into the original implementation whenever appropriate. During the aspect-oriented execution, a
joinpoint denotes the event when an aspect is executed whereas a point cut denotes the actual
declaration of the location and condition when a joinpoint has to be executed.

Execution Accordingly, in general, an aspect-oriented execution (i.e., not necessarily a model
transformation) behaves as follows: The original implementation is executed. Whenever a point
cut is reached and a matching advice is available, the original implementation is refused and
the implementation of the advice is executed instead. Even though the original implementation is
neglected at first, it may be invoked by the advice and executed nevertheless but in the way defined
in the advice. Moreover, an advice may not only target one kind of point cut but may be executed
for several types [FF00]. For instance, a wildcard declaration may realize this functionality.

Aspect-Oriented Model-To-Text Transformation Using an aspect-oriented approach in
M2T transformations does not execute a program but generates the text, instead. Thus, in an
aspect-oriented M2T transformation, instead of extending source code, the aspects extend text
producing rules. Consequently, an aspect is another text producing rule that extends the base
templates used in the transformation. Point cuts and the rule execution behavior have to be added
to the language which supports the weaving of aspects.

190

8.3. FOUNDATIONS

single-variant

model transformation

multi-variant
aspect-oriented

model transformation

source model

annotation

source model

multi-variant
target model

multi-variant
source code

preprocessor

directives

source

code

advice

«calls»

Figure 8.3.1: Schematic overview of aspect-oriented propagation.

Aspect Definition Every aspect-oriented language encompasses the functionality to execute
the original implementation: For example, in Xpand a method targetDef.proceed(), where
targetDef represents the element matching the type declared in the point cut, can be invoked
for this purpose. Moreover, typically around, before or after statements declare text productions
which should be executed in the respective place related with the original production.

8.3 Foundations
Based on the properties of templates-based M2T transformation languages introduced in the
previous section, this section defines the foundations how to employ the aspect-oriented paradigm
to propagate annotations. Particularly, the section derives a computational model for the aspect-
oriented propagation of annotations in M2T transformations.

Road Map The first section, Sec. 8.3.1, offers a descriptive overview of how to propagate
annotations and of how to abstract the text generation as execution and target trees (in contrast
to the STT graphs of M2M transformations). Based on these descriptions, Sec. 8.3.2 derives a
computational model of aspect-oriented M2T transformations which is formally noted in Sec. 8.3.3.

8.3.1 Descriptive Overview
This section offers a descriptive overview of how the annotations can be embedded into source code
by employing a generic aspect. In contrast to the preceding approaches, an aspect-oriented multi-
variant text generation behaves in the way presented in Fig. 8.3.1. While the source model of the
propagation does not change (i.e., it still consists of a multi-variant source model and corresponding
annotations), the right side reflects a multi-variant text representation. To annotate the source
code, preprocessor directives are embedded in the multi-variant source code, yielding an annotated
source code platform.

Aspect-Oriented Propagation Similar to multi-variant M2M transformations, a reused single-
variant M2T transformation creates the multi-variant target text representation (without anno-
tations). In concrete, the single-variant model transformation is a template-based model-to-text
transformation. In contrast to multi-variant M2M transformations, it does not rely on a trace
from the single-variant model transformation and is, thus, a black-box approach. Furthermore, the
aspect-oriented multi-variant model transformation does not realize a post-processing approach.
It employs a weaving mechanism which integrates the annotations during the execution by calling
an aspect. Thus, it is an inter-processing approach to realize a multi-variant model transformation.

Example For demonstrating the basic concepts necessary to realize aspect-oriented behavior
at an informal level, we employ the example, sketched in Fig. 8.1.1, of transforming the UML
class model for database contents into Java source code. Fig. 8.3.2 demonstrates how the original
text production creates the target text and with which source elements the target text fragments

191

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

 public String getName() {

 return null;
 }

 }

public class Person {

 private String[] firstNames;

 private String surname;

private Family family;

multi-variant Java source code
generated by

original transformation

Person

/name: String
firstNames : String[0..*]
surname: String

Family

name: String

0..2 parent

not Family
Name

Person

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

// #IFDEF Person #

1..1 family

// #ENDIF #

annotated multi-variant
UML class model

 public String getName() {

 return null;
 }
 ...

 }

public class Person {

 private String[] firstNames;

 private String surname;

 private Family family;

annotated multi-variant
Java source code generated by
aspect-oriented transformation

// #IFDEF Name #

// #IFDEF not Family#

// #ENDIF #

// #ENDIF #

// #ENDIF #

// #IFDEF Family#

// #IFDEF Name #

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Person.java

Person.java

// #ENDIF #

text blocks

text fragments

...preprocessor
directive

Figure 8.3.2: Preprocessor directives enclosing text fragments in hierarchy of text blocks.

correspond. The file depicted in the middle of the figure represents the result of applying the
original text production to the class Person depicted on the left side. The original transformation
creates a file for each class and incorporates the class statement which composes field and method
declarations (produced by invoking other rules). The created elements can be abstracted as blocks
and fragments: The surrounding text block is created for the Java class Person and represented
by the underlying red rectangle. It encompasses fragments, such as the class declaration ‘public
class Person’, and further blocks, for example, the ones holding the fragments created for the
UML properties (e.g., ‘private String surname;’). Furthermore, for the derived attribute name
a method header and a default implementation which returns the default value are created.
The right side of the figure visualizes the result of extending the original text production with
an aspect that propagates annotations: The aspect embraces each block created by the original
text product with a preprocessor directive stating the annotation of the source element. As an
example, the class declaration Person is surrounded with the directive ‘// #IFDEF Person #’.
This example lays the ground for deriving informal properties in this section, starting with the
representation of the created text, followed by abstracting the transformation specification.

I Target Representation

The result of a template-based M2T transformation (i.e., the generated text) shares common
properties, due the nature of the M2T execution:

Text Structure The overall encompassing container of each text production is a file, which
needs to be created by some rule. Several files may result from transforming a source model, for
example, a file can be generated for each class in a UML class model. Even though rarely direct
creations of a directory exist, typically the files are organized in one overarching directory (with
potential sub-directories). Furthermore, as Fig. 8.3.2 shows, the generated text is composed of
blocks, sketched as rectangles in the figure. Blocks contain either sole text fragments, generated
by a rule with static or dynamic directives or other blocks. However, in the final text statically
created fragments cannot be distinguished from dynamically created ones. Furthermore, a rule
can create multiple blocks and fragments combined arbitrarily but their order is fixed by the rule.

192

8.3. FOUNDATIONS

Fragment

name: String

File

 Directory

children
{ordered}

0..*

0..* files

Element

text: String

Block
1..1

root

parent 1..1

(a) Text metamodel.

name= Person.java

:File :Directory

children

files

:Fragment
t= "public class Person {"

:Block
root

parent

:Fragment
t= "}"

children children

children

:Fragment
t= "public String[] firstNames;"

children

:Fragment
t= "public String surname;"

:Block

children

:Fragment
t= "public Family family;"

:Fragment
t= "public String getName();"

:Fragment
t= "return null;\n}"

:Block
children

:Block
children children children

(b) Instance of text metamodel.

Figure 8.3.3: Representations of text generated by a M2T transformation.

Text Metamodel From these facts, we deduce a metamodel for the generated text. Fig. 8.3.3a
presents a generic text metamodel which represents arbitrary text generated by a template-based
M2T transformation. The root of the model is a directory which summarizes all files that are
created during the transformation. We refrain from representing a hierarchy of directories but
assume that all created files can be integrated into one by flattening the hierarchy (which requires
unique file names). While the order of the files inside the directory can vary, its contents can not.
A file encompasses one root block. Blocks consist of an ordered sequence of children, which are
either further blocks or fragments holding the eventually printed text. The rule determines the
order of the contained elements. Fragments reside at the bottom of the hierarchy.

Example 8.3.1: Instantiation of Text Metamodel

Fig. 8.3.3b displays an instance of the text metamodel for the Java class Person, shown in
Fig. 8.3.2.5
The UML class Person is transformed into a file called Person.java which comprises
a main block as root. The file is stored in an overall container, which is a directory
but not specified in more detail in this example. The root block of the file Person.java
states the code line ‘public class Person {’ as first fragment followed by another block
consisting of the elements contained inside the class and another fragment ‘}’ which closes
the class declaration. Furthermore, the block inside the class includes the fragments which
are created for each attribute and reference. For the derived attribute name a block is
generated by the respective rule which encompasses a fragment stating the header of the
respective method, ‘public String getName() {’, and another block which represents
the method body, followed by a fragment which holds the return statement and closes the
block with the respective bracket. An important characteristic of this model is that for
each invoked rule a block, which still has no children, is created by the invoking rule.

Abstraction The description of abstracting generated text as a metamodel allows to infer that
the result of a text production can be represented by a hierarchical graph which is typed over
the classes of the metamodel. A node in the typed graph represents an object and a labeled
edge represents a link between two objects which cannot form cycles. While blocks are typically
inner nodes, except if they serve as placeholder, fragments are always leaf nodes of the graph.
Furthermore, the order of children nodes is relevant and corresponds with the order defined in
the text producing rule. The text and name properties of the metamodel can be represented as
attributes in data nodes linked with the respective graph nodes. As a result, the generated target
source code can be abstracted by an attributed typed hierarchical tree.

193

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

II Propagation Process

The propagation process of annotations consists of two parts executed simultaneously: the original
text production and the aspect weaving. This part abstracts the basic characteristics of a template-
based M2T transformation as summarized in Sec. 8.2.1, first and describes the aspect-oriented
execution thereafter by introducing the abstraction concept of execution tree.

Text-Generating Rules The transformation consists of a set of rule applications Θ which
match exactly one source object and create an ordered and hierarchical set of target elements.
Furthermore, a rule can invoke another rule the elements of which are integrated in the graph at
exactly that position between fragments and blocks where it was invoked. An entry point rule
ϑr initiates the transformation and matching source objects are iterated implicitly. ϑr invokes
further sub-ordinary rules yielding the creation of sub-trees in the target text tree.

Execution Tree A hierarchy of rule applications represents the M2T transformations. The
transformation execution expands a directed acyclic graph, the nodes of which reference the source
object and order the created target nodes as well as the rule invocations according to the rule
definition and the respective elements of the source model. This process yields a forest of execution
trees which create a (sub-)tree in the target graph for each source node matching the entry
point rule. Without loss of generality, we assume that this forest of target trees is grouped into
one overarching directory which is either created by the first rule application (regardless of the
matching source object) or already created but serves as the root of the target graph, nonetheless.
When propagating annotations, the overall target root may not get a specific annotation but must
always be present, i.e., the annotation true must be assigned implicitly or explicitly, such that
the element is not removed by any filter.

up : EPackage

name= "db"

ot2:eClassifiers

ucp : EClass
name = "Person"

 : Root

 : Cl

execution tree target model
inter graph edge

1:trg

files

:Fragment
t= "public class Person {"

:Block
root

:Fragment
t= "}"

:Block

:Directory

name= Person.java

:File

 : Im

 : Pr

 ...

 : Op : Pa

:Fragment
t= "package db;"

:Fragment
t= "import db.Family;" 1:ch

:Block

3:ch

2:ch

4:ch

 : Pr

:Fragment
t="private String surname;"

5:ch

:Fragment
t= "private String getName() {"

:Block

...
1:ch

1:ch

1:trg

2:ch

4:ch
:Fragment

t= "}"

3:ch

intra graph edge

ucf : EClass
name = "Family"

ot1:eClassifiers

p1 : EAttribute
name = "surname"
type = String

p2 : EAttribute
name = "name"
type = String

type

source model

p2 : EReference
name = "family"

4:trg

2:trg

3:trg

5:trg

6:trg

7:trg

1:trg

1:trg

:src

:src

:src

:src

:src

oa3:eStructFeatures

oa2:eStructFeatures

oa1:eStructFeatures

0:trg

i1:ivk

i1:ivk

im:ivk

im2:ivk

ik:ivk

i2:ivk

2:trg

3:trg

:src

Figure 8.3.4: STT-graph representation of Ecore2Java M2T transformation. The target model
conforms to the text metamodel (Fig. 8.3.3a).

Example Ex. 8.3.2 demonstrates an example in which an M2T transformation creates an ordered
execution tree of rule invocations and a hierarchically structured target text model.

194

8.3. FOUNDATIONS

1 «DEFINE Cl FOR EClass»
2 «IF interface == false»
3 «FILE getPackagePath() + name + "Impl.java"-»
4 package «getPackageName()».impl;
5 «EXPAND Im FOREACH importedTypes().reject(e|e.metaType.name != "ecore::EClass")»
6 «EXPAND classContent FOR this»
7 «ENDFILE»
8 «ENDIF»
9 «ENDDEFINE»

10

11 «DEFINE Im FOR EClassifier»
12 import «getPackageName((EClass)this)».«name»;
13 «ENDDEFINE»
14

15 «DEFINE classContent FOR EClass»
16 public class «name»Impl{
17 «EXPAND Pr FOREACH eStructuralFeatures»
18 «EXPAND Op FOREACH eOperations»
19 }
20 «ENDDEFINE»

Listing 8.3.1: Xpand rules which generate a Java class declaration for a given EClass.

Example 8.3.2: M2T Execution Tree

Fig. 8.3.4 demonstrates the source and target of an M2T transformation of Ecore models
to Java source code. The source EClass consists of the attribute surname, the derived
attribute name and the reference family. The execution tree, depicted in the middle,
results from applying the rules sketched in Listing 8.3.1.
The middle of the figure depicts the execution tree, which reflects how the execution
proceeds by organizing the rule applications, which are typed over the rule names. For
instance, a rule application which transforms an EClass is typed as Cl and those trans-
forming EAttributes are typed Pr. Inside the execution tree, solid lines mark graph edges,
which represent the invocation of another rule on elements referenced by the source object
whereas dotted lines reference the single source object and the created target objects in
the order defined in the rule.
Firstly, the M2T engine executes the entry point rule (not shown in the listing), which is
named Root and represents the single EPackage db by a directory. Secondly, the entry
point rule iterates the classifiers contained in the source package in the order in which
they are contained. The solid lines in the execution tree typed as ivk represent the rule
invocation and are ordered in the same way as the order of invoking source elements. Thus,
in the example the first transformed classifier is the class Family and the second one the
class Person. The root of the execution tree contains respective rule application elements.
Moreover, to integrate the text of an invoked rule ϑ′, the invoking rule ϑ creates a block
which serves as root to embed the text of the invoked rule.
The figure only depicts excerpts of applying the rule Cl to the class Person. The rule
defines the order of the created elements, referenced as trg by the corresponding element
in the execution tree, as well as the order of invoking sub-ordinary rules:
At first, Cl creates a file holding a block which states the package name as first fragment.
The execution tree element Cl records the block and the fragment as the second and third
target element after the file. Next, the invoked rule named Im creates an import statement
for each of non-primitive type used in the Java class. Thereafter, the class declaration is
added as fragment and another block is created followed by a fragment that closes the class
after the block.
For the text production inside the class, the rule Cl invokes the rule Pr on each attribute of
the source object ucp. The initially empty target block serves as root in which the rule will

195

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

1 «AROUND * FOR Object»
2 «getOpeningDirective()»
3 «targetDef.proceed()»
4 «getClosingDirective()»
5 «ENDAROUND»

Listing 8.3.2: Generic advice to enclose every text production with a preprocessor directive.

integrate fragments stating the attribute type and name if it is not derived. Conversely, if
the attribute is derived, the rule will create a method declaration head as fragment followed
by a block for the method body and a closing fragment. Similarly, also EOperations can
be transformed, hinted in the figure as rule invocations Op and Pa for their parameters.

Please note: Ex. 8.3.2 describes the creation of one directory for the source model. If multiple
packages compose the input model, the execution tree becomes a forest of similarly structured
trees. A (virtual) entry point rule application can serve as root comprising these trees resulting in
a single execution tree and the target hierarchy of directories may be flattened to a single directory
to regain a flat structure.

Model-To-Text Aspect Execution If an aspect weaver is present additionally, it may extend
the original text production. Each time an object of the input model is processed, which matches
the pointcut declared in an aspect, the corresponding implemented advice is executed instead of
the original text-producing rule. Depending on its implementation, the advice may execute the
original text production nonetheless but extend or embrace it with additional text.
A generic advice, such as the Xpand advice presented in Listing 8.3.2, can be utilized for embed-
ding annotations. An around statement implements the behavior for embracing the source code
with an annotation. By stating a wildcard (‘*’) as point cut (Line 1), we implement an advice
which encloses the original text production of every object which matches a text-producing rule3.
The advice has to look up the annotation of the source object in the mapping function, mapFGS

of the multi-variant input model, MGS , and assigns the annotation by stating it in an opening
preprocessor directive before the original text production of the rule. After executing the original
text production, the advice closes the preprocessor directive.
In the advice presented in Listing 8.3.2, the function in Line 2, serves as black box which imple-
ments the look up of the mapping function as well as the composition of the printed annotation,
e.g., as a specific preprocessor directive. Similarly, the function getClosingDirective (Line 4)
marks the end of the directive with a corresponding annotation. The instruction targetDef.pro-
ceed() executes the original text production which resides between the opening and closing di-
rectives stating the annotation.

Preprocessor Directive Depending on the capabilities of the target language, the opening and
closing declaration stating the annotation may vary. For instance, if a preprocessor for GPLs is
employed, the preprocessor may not allow for Boolean expressions in the directive or may not
support hierarchical directives. Moreover, the concrete syntax of directives may vary with respect
to the target language. As a consequence, the directive may become arbitrarily complex, e.g., to
respect the hierarchy of blocks.
At an informal level, Fig. 8.3.2 demonstrates how the original text production is extended with
preprocessor directives. The generic advice surrounds each text block which serves as root for
the text production with preprocessor comments. In this example, exactly the annotation of the
respective source object is mapped onto the block. For example, the class declaration is surrounded
with the preprocessor directive ‘// #IFDEF Person #’. As Java source code is generated, the
directive is represented as a Java comment which assumes a preprocessor which recognizes the
phrase ‘#IFDEF’ as the opening of a directive.

3 Producing text by invoking external methods, implemented in queries or in a GPL, does not support tracing and
is not considered a point cut. Thus, these implementations do not trigger the execution of an advice.

196

8.3. FOUNDATIONS

8.3.2 Computational Model
Based on abstracting the source code generation and annotation propagation as execution and text
trees, this section firstly summarizes the characteristics of a M2T transformation execution which
uses aspects and creates hierarchically structured text. Then it defines the commutativity criterion
for this type of transformations and derives properties for the aspect-oriented transformation which
are necessary to satisfy commutativity, at an informal level.

Transformation Rule Behavior Based on the abstract example demonstrating how a M2T
transformation creates a target tree (Ex. 8.3.2), we can summarize the following facts about M2T
transformations. This behavior corresponds not only with the execution tree itself but also with
its links to the target model.

1. Each application of a transformation rule creates an ordered sequence of nodes, representing
fragments and blocks, and edges, which build a tree structure in the target model.

2. A transformation rule integrates the created tree under a given root node as sub-tree in the
target model.

3. A transformation rule ϑ creates a block node without children in the target tree for each
sub-ordinary rule ϑ′ invoked by ϑ. This block node serves as root to integrate the sub-tree
created by ϑ′.

4. A transformation rule creates a node in the execution tree for each invoked rule in the order
of the processed source elements and expands the rule to create the respective sub-graph in
the target model.

Commutativity To ensure the correctness of annotations propagated with the advice on top of
the original text production, it is essential that the single-variant M2T transformation creates the
same text fragments for a derived single-variant source model as are created for the same elements
in the multi-variant source model. In concrete, Fig. 8.3.5 shows the corresponding commutativity
diagram:
Let G′ denote a single-variant model derived from the multi-variant model (MGS) and H ′ be
the source code tree resulting from transforming G′ without injected aspects. Furthermore, let
MHT be the source code tree representing the annotated multi-variant text created by the aspect-
oriented multi-variant model-to-text transformation andH ′′ be the source code derived fromMHT
for the same feature configuration. If the single-variant text production Θ′ generates the same
text elements in H ′ as the multi-variant text production ΘF for the same source objects, the same
text elements will be present in H ′′ upon derivation with a preprocessor or similar functionality.

Figure 8.3.5: Commutativity of M2T transformations.

Consequences As a consequence, to satisfy commutativity, the single-variant transformation
specification has to create the same text fragment when only a sub-graph of the multi-variant
source graph serves as input. This has to hold regardless whether the object is contained in a multi-
variant model or in a single-variant model derived from the multi-variant one. Consequently, it
must be possible to embed the execution tree Θ′ resulting from transforming G′ into the execution

197

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

tree ΘF resulting from transforming MGS . Formally, a morphism embedding the single-variant
execution tree into the multi-variant execution tree mΘ : Θ′→ΘF must be a monomorphism.

Properties To guarantee commutativity, the multi-variant source model and the target tree
as well as the text producing rules have to satisfy several properties. The following paragraphs
regard the termination of the transformation first and continue with postulating properties to
embed transformation rules. Finally, the advice and the mapping and filter mechanisms are
considered.

Termination First of all, termination of the transformation has to be guaranteed. The following
properties are necessary to satisfy termination.

Property 8.3.1: Unique Rule Application

A rule can be applied to a source node only once.

This criterion ensures that a rule cannot be executed multiple times on the same node provoking
the creation of the same elements and potentially a non-terminating transformation. Accordingly,
it also prohibits recursive rules being applied to the same source node. Thus, a source node may
match different rules but may be processed for the same rule only once.

Property 8.3.2: Left Preserving

Applying a rule does not modify the source graph.

In this way, no new source elements are created which might provoke a non-terminating trans-
formation. As a side effect, no source elements are deleted or modified which might change the
result of the text production, too. This property should be supported by the syntax of a M2T
transformation language natively because the language serves to create text as output and not a
model which is the input. As such, functionality to manipulate the source model is not foreseen in
those languages. However, when allowing to invoke helper methods written in a GPL, generally
almost any side-effect could be implemented which might modify the source model and, thus,
violate this property.

Property 8.3.3: Leaf Rules

Rules must exist which do not invoke any other rule.

Property 8.3.4: Finite Depth of Execution Tree

Each explored execution branch must terminate with a leaf rule (c.f., Prop. 8.3.3).

Leaf rules which are invoked at the end of each execution branch are one key factor to guarantee
termination of the execution. Ending each execution branch with a leaf rule suffices to guarantee
the termination of the transformation. Since the source model comprises a finite set of source
nodes, which is not modified (Prop. 8.3.2) and a source node is processed only once by the same
rule (Prop. 8.3.1), the set of matches for one rule is guaranteed to be finite. Moreover, due to the
fact that the set of rules is finite and no new source matches are created, the set of all matches is
finite as well. This fact together with the fact that rules cannot invoke each other in endless loops
and must end with leaf rules ensures termination and a finite execution tree.

Embedding Single-Variant Into Multi-Variant Execution Furthermore, for embedding a
single-variant execution tree into the multi-variant execution tree, the rules have to satisfy the

198

8.3. FOUNDATIONS

following properties.

Property 8.3.5: Functional Rule

Rules have to be functional: The application of the same rule to an equivalent source node
constructs the same execution sub-tree and the same text sub-tree.

Although a rule is applied to a source node only once during one transformation, this property
ensures that when executing the same transformation another time, the same execution tree and
target sub-trees are created for the same input node. The property of functional rules carries over
to the entire transformation.

Property 8.3.6: Local Rule

Rules have to be local: For the same matching source node the same execution and target
sub-tree has to be created regardless of the surrounding elements.

As an example, locality prohibits if-conditions and queries inside the rule that depend on the
presence of specific values of other source nodes.

Property 8.3.7: Monotonic Transformation Rule

Transformation rules may not delete elements in the target graph.

A non-monotonic rule could violate the effect of another functional rule because it may delete its
created target elements.
If a rule is functional and local, it guarantees that the same target elements are created for the same
source node of a single-variant or a multi-variant model. Together with the monotonic behavior
the combination of the three rule properties is sufficient and guarantees that the execution sub-tree
remains the same in the single- and multi-variant context for the same source node.
Please note: If a transformation language violates locality, in general, the annotation granularity
and style may ensure commutativity, nonetheless. For instance, if application conditions, guards
or if-conditions restrict the application of a rule only based on values of the structural features of
the source node and the mapping mechanism only annotates nodes (not their structural features),
the same attributes are present on the same objects regardless of any feature configuration. Con-
sequently, the execution behavior cannot vary due to non-local rules caused by attribute-values of
matching source nodes.
Furthermore, we consider source graphs which are ordered with respect to their children nodes.
Accordingly, the execution tree is ordered in the same way as the matched source nodes and, as
a result, the created text sub-trees are ordered as well in two dimensions: the sub-trees in the
execution tree representing a rule application are ordered and the elements of the created sub-tree
in the text tree are ordered in the sequence as prescribed in the corresponding rule.

Property 8.3.8: Order Preserving Transformation Execution

The transformation needs to be order preserving: Rules may not change the order of the
source graph, the execution and the target tree.

Given Prop. 8.3.8, the orders remains stable even if elements or sub-trees are missing in between
one of the children sequences of the execution and the target tree. Based on this necessary
property, a missing source node, and consequently a missing node and potentially corresponding
sub-tree in the execution tree, does not change the overall order of the execution tree. The same
holds for a missing leaf node or sub-tree in the text tree.

199

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

Advice Besides the transformation rules and the execution, the advice which extends the exe-
cution of each rule has to guarantee similar properties.

Property 8.3.9: Graph Preserving Advice

The advice must neither delete elements from the execution and the text tree nor add
elements to them.

In the abstract representation the advice updates the mapping annotation function but does not
modify the generated text tree. Thus, the elements that are created in the text tree are not
influenced by the aspect and only the properties of the rules and the transformation are decisive
for embedding single-variant execution trees and and the text trees into the multi-variant execution
and text tree, respectively.

Property 8.3.10: Hierarchical Annotation

The annotation of the source object must be combined with the annotation of the target
root node.

Accordingly, the text fragments produced by a rule are only visible if their container is present.
Since the created text tree is hierarchically structured and created from top to bottom, it is
guaranteed that for each text production an annotated root is present and that the created text
has a container. This property propagates transitively from the root node to the leaf nodes.

Annotations and Filters have to adhere to the following properties.

Property 8.3.11: Coarse-Grained Annotation

Annotations must be mapped onto source objects only.

Thus, the annotation granularity corresponds with the mapping granularity of the target model,
which only annotates the nodes. Structural features of source objects, which may restrict the
application of a rule or be used to produce dynamic text, may not carry an annotation which is
more restrictive than the annotation of the source object. Then, the same rules are executed for
the single-variant graph as for the same nodes in the multi-variant graph.

Property 8.3.12: Order Preserving Filter

The filters must preserve the order of children nodes on the source graph and target tree.

This ensures that the filtered source models is a sub-graph of the multi-variant source graph and
that the same execution tree, and as a result, the same target sub-tree are created.

Effect on Commutativity The interplay of these properties guarantees commutativity: The
set of source nodes is transformed into a target tree and builds a corresponding execution tree.
A rule is applied to each matching source node once (Prop. 8.3.1) which ensures together with
the fact that the execution is finite (Prop. 8.3.2 - Prop. 8.3.4) that a well-defined hierarchically
ordered target tree is created.
If the set of source nodes is restricted due to filtering, the single-variant execution builds an ex-
ecution tree which can be embedded into the multi-variant execution tree. This is guaranteed
because rules are functional (Prop. 8.3.5), do not delete already created elements (Prop. 8.3.7)
and create the remaining sub-trees in the same order as in the multi-variant model (Prop. 8.3.8).
Furthermore, the advice does not modify the target tree (Prop. 8.3.9). As a consequence, the

200

8.3. FOUNDATIONS

resulting single-variant target tree can be embedded into the multi-variant target tree. Further-
more, the transformation rules preserve the order of tree elements (Prop. 8.3.8) and the filter does
not affect this order (Prop. 8.3.12), too. Finally, if the annotations are constructed hierarchically
(Prop. 8.3.10), it will be guaranteed that the root nodes are present for creating adequate sub-trees
in derived variants.
Since annotations are assigned to each target node created by a rule application and the same
rule applications are executed in the single-variant as in the multi-variant derivation, the filtered
target tree comprises the same elements in the same order as the tree resulting from executing
the single-variant transformation on the derived source graph. Altogether, these properties are
independent of a specific feature configuration and, thus, they ensure commutativity.

8.3.3 Formal Foundations
In contrast to a trace-generating transformation, an aspect-oriented source code generation be-
haves differently: Firstly, instead of a model, text is generated which can, however, be abstracted
as hierarchical attributed tree consisting of nodes and edges as explained in Sec. 8.3.1. Secondly,
the advice surrounds each text production for one source object with a preprocessor directive
stating the annotation of the source object. We simulate this behavior by a mapping function
where each created graph node and graph edge receive the annotation of the corresponding source
object combined with the annotation of the root of the created sub-tree.

Road Map To present the foundations of aspect-oriented execution, the first part of this section
defines the representation of the created single-variant and multi-variant text files as node-ordered
hierarchical trees accompanied by a mapping annotation function. Based on these definitions, the
following two parts explain single-variant out-place derivations of the execution and the target
tree as well as the multi-variant transformation including the algorithm for the aspect-oriented
propagation of annotations. The final part presents the commutativity criterion.

I Model and Text Representation

In the descriptions so far, the target of a transformation were models. In contrast, now ordered
text is the target which we represent as an instance of a text metamodel and as such does not
provoke the necessity to adapt the formalism significantly.

Model Tree Based on the considerations of Sec. 8.3.1, we restrict the previous representation
of models as graphs to trees in this chapter. As explained in Sec. 8.3.2, the source and target
representation are hierarchical graphs with ordered children nodes. Furthermore, these trees are
not only typed over specific type systems but they are also attributed. Attributes of the source
tree are of arbitrary primitive types whereas the attributes of the target tree are Strings and
represent the generated text which is associated with a target node typed as Fragment. A data
node carrying a label text and originating from a graph node typed as Fragment may serve to
store the generated text which is required for converting the abstract representation as tree into
a real file. The presence of a data node, however, depends on the corresponding graph node.
Therefore, the annotation of the graph node only is decisive for the presence of data nodes and
edges such that we refrain from representing them explicitly (e.g., as E-graphs [EPT04]).

Node-Ordered Trees As a consequence, we enrich the previous definition of hierarchical graphs
(Def. 7.3.4) with ordering functions for children nodes of a container node.

Definition 8.3.1: Node-Ordered Hierarchical Graph

Let TN and TE be the finite sets of node types and edge types, respectively. A
node-ordered, hierarchical graph over TN and TE is a typed graph, i.e., a tuple G =
(N,E,lN , lE ,s, t,c,root,pred,succ,nOrd), where

• N is a finite set of graph nodes,

201

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

• E is a finite set of graph edges, where (N ∩E = ∅),

• lN :N → TN and lE : E→ TE are node and edge labeling functions, respectively,

• s : E→N and t : E→ EL are source and target graph edge function, respectively,

• c : E→ B is a Boolean container function,

• root ∈N is the root node of the graph,

• succ :N →N ∪{ε} is a direct successor function,

• pred :N →N ∪{ε} is a direct predecessor function,

• nOrd :N → N+ is a node ordering function and

The container np of a graph node n ∈ N is unique and is accessible with a function
parentE :N →N ∪{ε} (Def. 7.3.5).

The graph is acyclic, such that the transitive closure over all parents of a node does not
contain the node: ∀n ∈N : ¬(n parent

+
−→ n).

Furthermore, the predecessor and successor functions are acyclic, such that:

∀n ∈N \{root} : ¬(n pred
+

−→ n) (8.1)

∀n ∈N \{root} : ¬(n succ
+

−→ n) (8.2)

The node ordering function as well as the predecessor and successor functions together
satisfy the following conditions:

∀n ∈N : pred(n) = ε ∧ succ(n) = ε ⇒ nOrd(n) = 1 (8.3)
∀n1,n2 ∈N : parentE(n1) 6= parentE(n2) ⇒

¬(n1
pred+
−→ n2) ∧ ¬(n1

succ+
−→ n2) (8.4)

∀n1,n2 ∈N : n1
succ+
−→ n2 ⇒ parentE(n1) = parentE(n2) ∧

nOrd(n1)< nOrd(n2) ∧ n2
pred+
−→ n1 (8.5)

∀n1,n2 ∈N : n1
pred+
−→ n2 ⇒ parentE(n1) = parentE(n2) ∧

nOrd(n1)> nOrd(n2) ∧ (n2
succ+
−→ n1) (8.6)

Consequently, the children nodes are ordered and can access their direct predecessor and successor,
if they share the same parent node (8.4) and a successor or predecessor are present. Moreover, the
node order increases such that the order of a successor is higher than the order of a predecessor
(8.5 and 8.6).

Node Appending For integrating a new node nn as a child of some parent node np, a function
last : N →N receives a parent node and returns the child with the highest order and which has
no successor. The following descriptions assume that the source model, the execution model and
the target mode, are node-ordered hierarchical graphs, which is in fact are trees.

Type System Furthermore, the types present in the text metamodel (c.f., Fig. 8.3.3a) restrict
the type system of generated text trees. Accordingly, the sets TN = {Directory,F ile,Block,Frag-
ment} and TE = {files,children} represent all possible node and edge types of a node-ordered
tree, respectively, which reflects the text generated by a M2T transformation.

202

8.3. FOUNDATIONS

Multi-Variant Text Representation To integrate variability information into the generated
text, we could surround the original text production with comments stating the corresponding
annotation in the concrete syntax. Expressed in our formalism, annotations would be represented
as further nodes of type Fragment. Instead, similar to the model formalism, a mapping function
represents the association of an annotation with a source code fragment. Due to the hierarchical
dependencies of the generated text as opposed to the model formalism, a source code fragment or
block can only be integrated in the derived product, if all of its containers are also integrated in
the derived product.
Accordingly, a multi-variant text comprises the text tree together with a mapping function for
each of its elements, similar to a multi-variant graph defined in Def. 6.2.4. For the generated
text graph, it suffices to map annotations onto graph nodes only. Graph edges connecting nodes
are only present in filtered products if both, their source and target node, are present as well.
Furthermore, the attribute nodes holding the actual text, which we refrain to represent explicitly,
will be only integrated in a filtered tree, if and only if the graph node with which they are associated
is integrated in the derived tree.

Model Filter The propagation of annotations assigns the annotation of the source node com-
bined in a conjunction with the annotation of the source node’s parent node. If the annotations
that are provided by the propagation always combine the annotation of the source node with the
annotation of the parent of the created target node, a flat filter (Def. 6.2.5) suffices to derive valid
source and target trees which do not violate the tree properties.

II Single-Variant Out-Place Derivation

Similarly to trace-generating derivations based on STT-rules, a single-variant derivation creating
a text tree is an out-place transformation. Instead of a trace graph an execution tree is built
by these models. Accordingly, we still employ source-to-target graphs (Def. 6.3.5) but with more
restrictive properties, such as being sub-trees and not arbitrary sub-graphs:

Definition 8.3.2: Source-to-Target M2T Graph

A source-to-target M2T graph (STT M2T graph) is a graph M2T −G typed over node
types TN = TNS

∪̇ TNExec
∪̇ TNT

and edge types TE = TES
∪̇ TEExec

∪̇ TET
. It comprises

three mutually exclusive node-ordered hierarchical sub-treesM2T −G=GS ∪̇ GExec ∪̇ GT
and mutually exclusive edge sets connecting these sub-trees.
More specifically, it is composed of the following elements:

• GS ⊆M2T −G: the source tree, typed over TNS
and TES

.

• GT ⊆ M2T − G: target tree, typed over the constant sets TNT
=

{Directory,F ile,Block,Fragment} and TET
= {children,files}.

• GExec ⊆M2T −G: execution tree typed over TNExec
and TEExec

whereby

– execution tree nodes are typed over rule identifiers, i.e., TNExec
= IDΘ for some

rule set Θ.
– the edge type set TEExec

contains the edge types: TEExec
= {ivk}.

• Execution-tree-to-source edges of type src from execution tree nodes NExec to ele-
ments of the source graph.

• Execution-tree-to-target edges of type trg from execution tree nodes NExec to ele-
ments of the target graph.

We write M2T −G = GS ← GExec → GT to indicate that M2T −G is an STT graph
comprising the components as defined above.

203

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

Thus, in contrast to STT graphs, an STT M2T graph does not posses context edges. Furthermore,
it consists of hierarchically, ordered trees where the target tree is typed over a constant set of text
types. Additionally, text-producing STT-rules are more restrictive:

Transformation Rule The left hand-side comprises a single node in the source sub-graph which
matches the single source object. Similarly, the left hand-side comprises a single execution node
which represents either the entry point rule or the rule which invokes the current rule. Finally
the target sub-graph of the left hand-side consist of a single target node only which represents
the empty block created by the invoking rule. The execution and target sub-graphs of the right
hand-side, instead, comprises the elements as created by the rule.

Definition 8.3.3: Text-Producing Source-to-Target Rule

Let ϑ = (L,R,ΘC) be a rule, where L = nS ← nExec → nT and R = nS ← RExec → RT
are STT graphs and ΘC the set of rules that are invoked by ϑ such that ϑ /∈ΘC and with
ϑc ∈ΘC , such that ϑc = ((nSc ← nExecc → nTc),(nSc ←RExecc →RTc),Θ′C).
ϑ is a text-producing source-to-target rule (tp-STT rule) if the following conditions hold:

∀(Lc,Rc,Θ′C) ∈ΘC : ∃nb ∈RT : nb = nTc (8.7)

Accordingly, the text-producing rule ϑ comprises an additional set of rules which are invoked by
ϑ. One of its created nodes nb serves as root for one of the rules in the set of invoked rules ΘC .
This definition, however, is silent on how the execution tree for the processed node is constructed
which is defined in Def. 8.3.4.

Definition 8.3.4: Execution Tree Building tp-STT Rule

Let ϑ= (L,R,ΘC) be a tp-STT rule, where L= nS← nExec→ nT and R= nS←RExec→
RT are STT graphs.
Executing the following steps subsequently creates the execution-tree building STT rule
ϑ′ = (L′,R′) where L′ = nS ← n′Exec→ n′T and R′ = nS ←R′Exec→R′T :

1. Initialize ϑ′ with ϑ: ϑ′ := ϑ.

2. Add a single execution tree node ne to the execution sub-tree R′Exec. ne is typed by
the identifier idϑ of ϑ:

l′N (ne) = idϑ (8.8)

3. For the root node nExec, create an edge e′ of type ivk from nExec to ne:

l′E(e′) = ivk ∧ s′(e′) = nExec ∧ t′(e′) = ne (8.9)

4. Create node order:

(a) If the root node nExec, already possesses children nodes labeled as ivk edges:
retrieve the last child in the sequence, such that npred = last(nExec) and set it
as predecessor of ne and ne as its successor:

pred(ne) = npred (8.10)
succ(npred) = ne (8.11)

(b) If the root node nExec does not possess children, n(e) becomes the first child:

pred(ne) = ε (8.12)
succ(ne) = ε (8.13)

204

8.3. FOUNDATIONS

5. Increase the order of the predecessor by one and assign it to the created node ne

nOrd(ne) = nOrd(npred) + 1 (8.14)

6. Create an edge e′ of type src from ne to the source node ns ∈NS :

l′E(e′) = src ∧ s′(e′) = ns ∧ t′(e′) = el (8.15)

7. For each new target node nn ∈NRT
\{nT }, create an edge e′ of type trg from ne to

the target node nn in the order given in R:

l′E(e′) = trg ∧ s′(e′) = ne∧ t′(e′) = nn (8.16)

Based on this definition execution tree building rules create ivk-edges which reflect the order of
executed rules. Furthermore, the rules do not only create ordered invoke edges but also order
the target edges. Ex. 8.3.3 demonstrates how the execution tree is built when transforming an
EClass.

up : EPackage

name= "db"

e1:oType

ucp : EClass
name = "Person"

 r: Root

execution tree target tree

++4:trg

++1:ch

++2:ch

++ b2:Block

++ :Fragment
t= "public class Person {"

:Directory

++ :Block

name= Person.java

++ f :File

++ :Fragment
t= "package db;"

++ :Fragment
t= "}"

 ++ c: Cl

++ b1:Block
++5:ch

++4:ch

++6:ch

++7:ch

++3:ch

source graph

++2:trg

++3:trg

e14 : trg tst s : src

++ :
 ivk

s

t s

t
++ : src

++1:trg

++5:trg

++6:trg

++7:trg

s

ss
s

t

t

t

t

s

s

t

s

t

t

t

t

t

t

tt

t

s

s

s s s s

Figure 8.3.6: Execution tree building tp-STT rule (Def. 8.3.4).

Example 8.3.3: Execution Tree Building tp-Source-To-Target Rule Application

Fig. 8.3.6 demonstrates the first application of an execution tree building tp-STT rule which
creates source code for a given EClass. The execution tree node labeled as Root serves as
root for the execution sub-tree of the rule. Similarly, the Directory serves as root for the
target side. The source node which matches the rule is the EClass Person. Therefore, the
rule is executed on that class and behaves similar as explained in Ex. 8.3.2: it creates a
file which states the package and the class declaration as fragments and integrates empty
blocks for adding field and method declarations.
The execution tree building rule adds a new node to the execution tree, in addition. This
node is labeled by the executed rule, i.e., it is named Cl in this example. The node
references all created target nodes in the order in which they are generated with labeled
target edges. Furthermore, a new ivk edge which origins from the root execution node
r and targets the newly added node c is inserted. Finally, a source edge is added which

205

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

references the source node.
When the next class of the package is processed (i.e., the class Family), another execution
node is integrated in the execution tree as child of the execution node r. Its order will
be increased by one and the execution node c will record the execution node created for
the class Family as its successor. The file and its contents which are created for the class
Family will become the second sub-tree of the Directory node. Accordingly, the file f will
be the predecessor of the file representing the class Family.

Text-Generating Transformation Based on the definition of tp-STT rules, Def. 8.3.5 defines
a text-generating derivation as follows:

Definition 8.3.5: Text-Generating Derivation

Let G = GS ← GExec→ GT and H = HS ←HExec→HT be tp-STT M2T graphs. Fur-
thermore, let Θ be a set of trace-generating STT rules. H is STT-derivable from G if
G

Θ∗→ H holds.

A complete derivation Θ∗ is an ordered execution tree representing the order of rule applications
and target element creations The order of target elements is relevant in M2T transformations to
integrate fragments or blocks in an overarching block. We simulate this behavior by ordering the
children of a node, i.e., if a sub-tree is added it can only be added at the prescribed place.

III Multi-Variant Aspect-Oriented Text Derivation

An aspect-oriented derivation of text ΘF propagates annotations by executing an advice on top of
each rule application. Accordingly, the derivation behaves as described in Alg. 13. The algorithm
employs recursion and ends when no source node is left to be processed.

Input and Output A set of source nodes NS from GS , the corresponding total mapping func-
tion mapFGS

and the target text tree HT are input to the algorithm as well as the currently
processed rule ϑr. While the source tree is total and not modified, the target tree is built subse-
quently during the execution as well as the mapping function for the target graph mapFHT

which
represents the output. The execution tree is maintained by executing the execution tree building
tp-STT rules. The propagation of the annotations and creating the target tree proceeds as follows:

Determining Target Elements and Target Root Node First, the algorithm computes the
set of target elements created by the current rule in Line 16. Second, the algorithm determines
the annotation of the root node nT of the created target tree and stores it in ap. If nT is the root
of the entire target tree, the annotation true will be stored in ap.
After having extracted this information, the algorithm iterates the set of given source nodes. For
each source node matching the type of source node specified in the rule it performs the following
actions: The algorithm computes the annotation which should be assigned to all created target
elements by combining the annotation mapped onto the matching source node with the parent
annotation in a conjunction in Line 27. This ensures that upon filtering a text tree, a container is
present for each pertained target node. Since the annotation propagation proceeds top-down the
hierarchical order, similar to the container completion strategy (c.f., Alg. 4), a parent mapping
will always be present (except for the root node of the target tree). Therefore, the annotations
guarantee existence relationships in the text tree.
Thereafter, the algorithm executes the actual transformation of the source node. For each target
element ntrg, the text production is performed which adds the element in the correct order to the
target tree. Furthermore, it adds a node representing the rule application to the execution tree
and trg edges which reference the created elements ntrg as target and as source the execution
node. Afterwards, Line 30 maps the computed annotation to the created target element. Finally,
the algorithm iterates the list of invoked rules and searches a match in the given list of source

206

8.3. FOUNDATIONS

Algorithm 13 Multi-variant aspect-oriented text derivation.
1: procedure propagate_Aspect_Oriented(NS ,mapFGS

,HT ,ϑr,mapFHT
)

2: in NS . ordered set of source nodes
3: in mapFGS

: ELG→AF . Mapping annotation function of the source graph GS
4: in HT = (NT ,ET , lNT

, lET
,sT , tT , cT , rootT ,predS ,succS ,nOrdS) . Target text tree

5: in ϑr = (nS ← nExec→ nT ,nS ← nExec→RT ,ΘC) . Entry point rule
6: out mapFHT

:NT →AF . Annotation function for the source code graph S
7:
8: var aF ∈AF . Annotation to be assigned to target elements
9: var ap ∈AF . Annotation of the parent node
10: var Trg . Set of target nodes created by the rule
11: var ntrg . Created target node
12: var WNS

. Ordered working set of source nodes
13: var nsrc . Processed source node
14: var ϑc = (nSc ← nExecc → nTC

,nSC
← nExecC

→RTC
,ΘCc) . Invoked rule

15:
16: Trg :=NRT

\{nT } . Determine set of created target nodes
17: WNS

:=NS . Initialize ordered working set of source nodes
18: if nT 6= ε then . Compute the parent annotation
19: ap :=mapFH

(nT) . Annotation of root of the target sub-tree
20: else
21: ap := true . Root node has no parent
22: end if
23:
24: for nsrc ∈WNS

do . Iterate ordered working set of source nodes
25: if lN (nsrc) = lN (nS) then . Processed source node matches source node of rule
26: WNS

:=WNS
\{nsrc} . Remove source node from working set

27: aF :=mapFGS
(nsrc) ∧ ap . Annotation of source node

28: for ntrg ∈ Trg do . Process all created target nodes
29: execOrgTextgen(HT , ntrg) . Add ntrg to HT and update HExec
30: mapFHT

(ntrg) := aF . Annotate the target element
31: end for
32: for ϑc ∈ΘC do . Iterate the invoked rules
33: if nSc ∈NS ∧ nTc ∈ Trg then . Matching invoked rule
34: propagateAspectOriented(NS , HT , mapFG

, ϑc, mapFHT
)

35: end if
36: end for
37: end if
38: end for
39: end procedure

nodes. If a match is found, the same algorithm is performed again with ϑc as input rule and
the updated target graph and mapping function. Consequently, to ensure the termination of the
algorithm, there must be text-producing rules which do not invoke other rules. If each execution
branch ends with such rule, the execution terminates as well.
It must be noted that the transformation initiates with executing an entry point rule. We assume
that the first applied rule creates a unique root, (i.e., this rule is processed only once) and comprises
a set of rules that integrate nodes beneath this root node subsequently. Thus, in contrast to any
other rule, the target side of L comprises only the empty element ε while the target side of R
comprises the single root node. Only then, rules which mention the root node on the target side
of L are processed subsequently, as described in the algorithm.

Properties Altogether, if a matching transformation rule is invoked, the aspect-oriented propa-
gation algorithm assigns for each source node an annotation to the created target elements. Thus,

207

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

the transformation is total, if rules for each type of source node are invoked once in the transfor-
mation. Removing each source node which matched the set of rules once in Line 26 guarantees
that a source node is not processed multiple times by the same rule (Prop. 8.3.1).
This also prohibits that the algorithm performs a recursive execution with the same source node.
Since the invoked rules may be performed on the entire set of input nodes and the invoked rules
may invoke other rules, , the algorithm itself cannot guarantee that each execution branch ends
with a leaf rule. However, we prohibit the usage of non-monotonic rules but define rules which do
not alter the source model and which preserve and build a stable order of the execution and text
trees.

Multi-Variant Derivation To this end, we define a multi-variant aspect-oriented derivation
as follows:

Definition 8.3.6: Multi-Variant Derivation

Let Θ be a set of execution tree building tp-STT rules and H = HS ← HExec → HT be
the STT graph resulting from a complete STT derivation starting with HS ← ∅→ ∅. Let
further MHSF

= (HS ,mapFHS
) be a multi-variant source graph and let mapFHT

be the
annotation function resulting from employing the aspect-oriented propagation algorithm
(Alg. 13) with NHS

, HT and mapFHS
as initial input.

Then, the multi-variant target graph MHTF
= (HT ,mapFHT

) is multi-variant derivable

from the multi-variant source graph MHSF
(MHSF

ΘF
∗

−→MHTF
).

IV Commutativity

For proving commutativity, the text tree H ′′T resulting from the transform-filter path must be the
equivalent to the text tree H ′T resulting from executing the filter-transform path, i.e., H ′T and
H ′′T are equal up to isomorphism. Let N ′S be the ordered set of source model nodes in the filtered
source graph GS . H ′T results from applying a complete derivation, represented as execution tree
Θ′, to N ′S starting from the same root-rule ϑr as the multi-variant complete derivation, which is
represented as execution tree Θ∗F .

Embedding H ′T in HT Each rule is processed on each matching source node and for each
processed source node a node in the execution trees is built. Thus, each processed source node in in
N ′S is referenced by some execution node in Θ′. Additionally, the same nodes are also processed in
the multi-variant transformation and initiate the creation of one execution node each in Θ∗F which
reference the matching source node. Furthermore, the rules are functional, local, monotonic and
order preserving. Thus, independent of the values of their structural features, different execution
runs compute the same target sub-tree, which is unique up to isomorphism, for the same input
source node. Consequently, the nodes of the execution tree Θ′ reference ordered target sub-trees
which are equal up to isomorphism to sub-trees referenced by the nodes corresponding with the
same source object in Θ∗F . Since rules can invoke sub-ordinary rules non-recursively resulting in
acyclic execution trees, the presence of a node in the execution tree means that also a parent node
is present which reflects the rule that invoked the rule corresponding with the child node.
For that reason, the execution tree ΘF |N ′

S
tracking the transformation of the filtered source node

set, possesses the same execution nodes, in the same order and with the same target trees as are
present in Θ′. Accordingly, a monomorphism mΘ : Θ′ → Θ∗F exists which allows to embed the
single-variant execution graph into the multi-variant one.

Propagated Annotations So far, the properties ensure that the same target sub-trees are
present in HT as in H ′T but they do not guarantee that they are present in H ′′T . By applying
Alg. 13 for each of the processed source nodes of NS its annotation combined with the parent
annotation is mapped onto the created target sub-tree. Since the source nodes in N ′S are present in
NS and processed by Θ∗F , each of the created target sub-trees receives the annotation as assigned

208

8.4. DISCUSSION

to the matching nodes combined with the parent annotation. Accordingly, when filtering HT by
the same configuration, these sub-trees remain in the filtered text H ′′T . However, this does not
guarantee that no other elements are integrated in H ′′T .
If there were other elements in HT annotated with an expression, composed of their source node
annotation and the annotation of their root node, that is satisfied by the feature configuration
those would be added to H ′′T , additionally. Accordingly, there would be a matching source node
processed by ΘF which is removed by the source filter and therefore not included in N ′S . If it
were present in GS , it would be present in N ′S and processed by the total derivation Θ′ and its
target elements would be part of H ′T . This would imply that the combined annotation assigned
to the target elements would be less restrictive than the annotation of the source node.
Let as be the annotation of the source node and ar the annotation of the root node of the target
sub-tree that passed the filter. If as cannot be satisfied by a feature configuration, i.e., it evaluates
to false, the conjunction as ∧ar assigned to the target sub-tree cannot become true under the
same configuration which contradicts the assumption. As a consequence, only the target sub-trees
present in H ′T is present in H ′′T .

Well-Formedness Finally, since the trees are ordered, it is essential that not only the same
elements are present in H ′T and H ′′T but also in the same order (not necessarily with the same
order-value).
Transformations and filters preserve the order of elements and the rule execution (Prop. 8.3.8 and
Prop. 8.3.12), respectively. Consequently, the order of the elements remains stable even if some
elements (e.g., in the sequences of children nodes) are missing. The order invariants defined in
Def. 8.3.1 (Equation 8.3-Equation 8.6) remain valid.
Since executing a rule may create an entire sub-tree, all elements created for the matching source
node receive the annotation of the source node combined in a conjunction with the annotation of
the root node of the sub-tree. As a consequence, a node can only remain in the filtered target
model if its parent is present as well which ensures the existence-relationship of trees.

8.4 Discussion
To conclude this chapter, the following sections elaborates on the benefits and restrictions which
need to be considered when M2T transformations are enriched with variability information by an
aspect-oriented approach. Accordingly, Sec. 8.4.1 discusses the properties of the computational
model with respect to real-world M2T transformations whereas Sec. 8.4.2 illuminates alternatives
how to annotate the behavioral representations of a product line and includes a discussion of the
cognitive complexity of a multi-variant text representation.

8.4.1 Computational Model
In general, certain restrictions of the computational model presented in Sec. 8.3.2 can be discussed
and may be relaxed in specific situations.

I Transformation Properties

Unique Rule Application Prop. 8.3.1 postulates that the same node is processed by the same
rule only once in order to ensure termination. While the example of an execution tree, depicted in
Fig. 8.3.4, shows that a source node may be referenced as source node by several execution nodes,
it cannot be targeted as source element twice by the same rule type.
As a consequence, firstly, a leaf rule could be processed multiple times on the same node as long
as the process terminates, in general. Since this kind of recursive behavior typically depends on
a termination condition which must be met at some point, this dependency leaves room to a
violation and a non-terminating execution. Secondly, if the same rule is executed on the same
source node multiple times until a condition is satisfied, it is not guaranteed that this conditions
holds in a single-variant and multi-variant model in the same way provoking different target trees
to be created. Therefore, the property is integrated in the computational model.

209

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

Annotation Computation For ensuring well-formedness upon filtering and a safe embedding
of the single-variant into the multi-variant text production, the annotation of the source node is
combined with the annotation of the target root node of the invoking rule. In practice, this would
mean to access the text element created for the source node of the invoking rule and to look up its
annotation during the aspect-oriented execution. A generic aspect which generates arbitrary text
is not able to access this information. On the contrary, the aspect looks up the annotation of the
element containing the source node (i.e., the parent annotation). Thus, the annotations can only
guarantee correctness if rules are invoked on children nodes, stored in a containment hierarchy
only. For any element apart from that (i.e., cross-referenced nodes), a different annotation may
be mapped onto the actual container that is accessed.

Completeness of Annotations We assume that the given source model is completely anno-
tated such that the mapping annotation function for the source model is total. Even though the
formalization does not regard edges, the approach assumes that the presence of an edge depends
on the presence of the two nodes it connects.
Consequently, Alg. 13 propagates annotations to all target nodes of the right hand-side of the text-
producing rule. Since all source nodes are annotated, annotations are mapped onto the nodes of
all created sub-tree elements after the aspect-oriented execution.

II Granularity and Style of Annotations

The generic aspect invokes two methods which serve as black box to provide the opening and
closing directive for embracing the original text production with an annotation. Furthermore,
Listing 9.3.2 exemplifies the style of a resulting text production which integrates preprocessor
directives into Java source code. The enclosing directive, which represents the annotation, needs
to respect the capabilities of the engine (e.g., the preprocessor) which filters the generated text:

Annotation Syntax First, the syntax of opening and closing directives may vary, such as open-
ing the directive with a statement #IF, #IFDEF or #ifdef. For instance, the C/C++/Objective-
C preprocessor employs the opening directives, #if, #ifdef and #ifndef. While the first can
be followed by a Boolean expression over Macros and comparable primitive types, the latter two
are shortened versions of “if defined” and “if !defined”. Thus, the annotations have to be
adapted to the annotation style in realizations of the black box methods.

Complexity of Annotation Expression Second, the complexity of the expression following
the opening directive keyword, may vary and either state only a single macro (representing a
feature in our use case) or a Boolean expression over them. For instance, if the preprocessor
does not support AND-expressions, it may be necessary to nest the directives, which requires
the respective support by the preprocessor, too. Vice versa, if nesting is allowed, the computed
annotation may not have to be combined with the respective root annotation of the text production
(as proposed in our computational model) but it can be nested in the outer directive.

Artificially Added Preprocessing Third, if a GPL without built-in preprocessor directives
is used, such as Java, it is necessary to embed the directives in a form that does not threaten the
compilation. Accordingly, in Java we employ (JavaDoc and single-line) comments which requires
to use a customized preprocessor style in order to distinguish the preprocessor comment from a
regular comment. Finally, a preprocessor per se is unaware of variability. Typically, the features
or similar constructs of a variability model are transformed into preprocessor macros and states
are assigned to them according to a feature configuration. Therefore, the validity of the feature
configuration has to be checked before deriving a customized text representation.

Annotation Mapping Instead of Text Fragment Altogether, we did not integrate the
annotating directives as elements inside the target tree but abstracted them in form of a mapping.
Thus, we abstract from a specific target language because not every language compiler encompasses

210

8.4. DISCUSSION

preprocessing capabilities. Furthermore, not necessarily source code has to be generated but any
kind of text (e.g., XML-files) which might require annotations, too.

Arbitrary Hierarchical Text The descriptions so far discussed generating and mapping an-
notations onto source code as well as the conditional compilation of a preprocessor for deriving
products. As a first fact, even though arbitrary text can be generated, naturally template-based
M2T transformation specifications create a text which is ordered and hierarchically structured
according to the rule execution semantics. Thus the descriptions in this chapter can be general-
ized for the text production of any kind of text performed by a M2T transformation. In contrast,
it depends on the target representation whether constructs similar to preprocessor directives can
be embedded. If the target text conforms to a grammar, the preprocessor style should employ
some escape characters which allow to integrate annotation without violating the grammar. For
instance, in an XML file still comments could be provided.

Tracing Via Unique Identifiers Alternatively, as used in the proposed formalism, the as-
pect could construct a map instead which is capable to associate text fragments uniquely with
annotations The unique identification requires to provide a unique ID to the text fragment in a
non-invasive way at the least. Furthermore, a parser needs to identify when the text fragment
corresponding with one ID starts and ends. Then, the map can serve as input to derive a cus-
tomized text representation by removing the fragments the annotations of which are not satisfied
by the respective feature configuration. As such the map can serve as a replacement for the trace
information. Depending on the time of assigning the annotations, i.e., during the execution by em-
ploying the aspect, or after the execution by employing the map distinguishes the aspect-oriented
from the trace-based propagation.

8.4.2 Related Work
When discussing the integration of annotations into text, particularly into source code, some
questions about the feasibility may arise. Therefore, this section discusses, how to integrate
behavior in structural models instead, which may obviate the need for a multi-variant source code
platform. Furthermore, Xpand and aspect-orientation was used to develop product lines. This
section differentiates this existing from our approach. Finally, the level of cognitive complexity
rises if multi-variant source code with different execution branches is created which is discussed
at the end of this section.

Integration of Behavior in Structural Models In the motivating example, as well as for
any other source code generating transformation, it would be possible to provide the behavior in
form of another behavioral model, such as an ALF [Obj17a] model. These kinds of models may
be beneficial to complement structural models with behavior, such as the logic implemented in
method bodies. However, if arbitrary text is created which requires manual modifications, these
models will not suffice in general. For that reason and because this work focuses on structural
modeling, we do not consider behavioral models as complementary to text productions.
One solution integrates Java method bodies in Ecore model as annotations of method stubs [BS15].
The authors employ a T2M transformation which parses Java source code and turns it into a
Java model. Subsequently, they iterate the methods defined in the Ecore model and search for
method headers in the Java model which match the iterated method heads. If they match and
a body implementation is part of the Java model, a M2T transformation converts the method
body of the Java model into Java source code. The resulting text is integrated as annotation
in the Ecore model. Thus, behavior is injected into the structural model similar as manually
assumed in Sec. 8.1.1. However, variability of a product line is not considered: As a result, first,
annotations would have to be mapped onto the Ecore model as well as on the implemented method
bodies manually because the code generation of Ecore is unaware of variability. Then, the method
bodies could be reintegrated into the Ecore model including the manually provided annotation.
However, this approach cannot suffice the automation and genericity criteria for multi-variant
model transformations.

211

CHAPTER 8. MODEL-TO-TEXT ANNOTATION PROPAGATION

Usage of AOP as Compositional Variability Mechanism The aspect-oriented program-
ming capabilities of Xpand are employed in another approach to develop product lines [VG07].
However, this approach uses the capabilities to realize a compositional variability mechanism
where each feature is realized in one aspect. These aspects will be added to a common code
base if the a feature configuration selects the feature which they realize. Sec. 4.3.3 discusses the
entire concepts of employing the oAW framework for developing a software product line [GV09].
However, the authors do not employ the aspect-oriented technique to propagate annotations. In-
stead, the approach proposed in this chapter employs a single aspect and realizes an annotative
variability mechanism.

Cognitive Complexity One argument against creating multi-variant source code is the in-
creased level of cognitive complexity. With an increased number of conditions in the source code
it becomes hard for the developer to understand how the program behaves in different configu-
rations. However, adequate tool support, such as the tool CIDE [Käs10] exists which can help
to conditionally compile the source code platform and to show only single variants. Similarly,
coloring different features may speed up and positively affect understanding variable source code
[Fei+13]. Thus, the complexity can be hidden from the user by respective tool support. Further-
more, our approach integrates the annotations automatically into the source code such that the
developer does not need to map annotations onto the source code fragments.
Our evaluation of automating the annotation task (c.f., Sec. 10.3.5) shows that the effort for
mapping annotations onto target elements is (almost) reduced completely. Thus, the level of
cognitive complexity to annotate the generated source code decreases in the same size due to the
automated propagation of annotations.

8.5 Summary
All in all, this chapter illustrated the problem of deriving source code variants from structural mod-
els and motivated the necessity to build multi-variant source code platforms. Since these platforms
require annotations mapped onto text fragments (instead of model elements), too, the chapter de-
rives a computational model for propagating annotations in an aspect-oriented approach. For
the derivation, the sections first illuminated the behavior of template-based M2T transformations
and aspect-oriented programming as well as the requirements to propagate annotations in these
scenarios. As a result, the formalization represents transformations that build ordered execution
and target trees and assigns preprocessor directives by mapping the annotation onto all elements
contained in the created sub-trees. Finally, Sec. 8.4 discusses the impact of creating annotated
multi-variant source code and exposing it to the developers as well as the usage of preprocessors,
particularly, when they are not integrated in the execution semantics of the target programming
language which requires disciplined annotations.

212

Part V

Validation

213

Chapter 9 Implementation

Most people find the concepts obvious,
but the doing impossible.

Alan Perlis

∼

The previous chapters of this thesis contribute approaches to propagate annotations
from a source model to a target representation at a conceptual level. This chapter
presents how we implemented corresponding prototypes as proof of concept. Accord-
ingly, this chapter serves the purpose to demonstrate how the concepts can be realized
and employed in the development of model-driven product lines. In this way, the chap-
ter also lays the grounds for the following chapter which evaluates the contribution of
the thesis.

The subsequent presentation of the implementation, however, considers only the ap-
proaches which have not been rendered as impractical or of restricted usefulness during
their introduction. Accordingly, it demonstrates the trace-based propagation based on
traces of each kind of completeness stage, particularly of completing annotations in
sight of incomplete traces and of analyzing the ATL/EMFTVM bytecode model in
sight of coarse-grained traces. While the the ModelSync and model matching strate-
gies, which may be employed if no trace is available, are not integrated in the multi-
variant transformation framework presented in this chapter, the chapter also explains
the implementation of the aspect-oriented propagation in M2T transformations.

The chapter is organized in the following way: The first section of this chapter presents
background information on employed existing technologies and frameworks on which
the prototypes rely mostly whereas Sec. 9.2 presents an overview of the architecture of
the multi-variant model transformation framework. The implementation of the trace-
based propagation, the bytecode instruction analysis and the aspect-oriented propaga-
tion are detailed in Sec. 9.3 while Sec. 9.4 summarizes the contributions of the chapter.

215

CHAPTER 9. IMPLEMENTATION

0..1
eOpposite

*
eSubPackages

EPackage

nsURI: String
nsPrefix: String
name: String

EOperation

ETypedElement

lowerBound:int
upperBound: int=1
/many: boolean
...

EClassifier

name: String

EStructuralFeature

derived: boolean
transient: boolean
changeable: boolean
...

EParameter

EClass
abstract: boolean
interface: boolean

EEnum

EDataType

EEnumLiteral

value:int

EAttribute

* eStructuralFeatures

eType
0..1

0..*
eSuperTypes

* eParameters eOperation

* eLiterals

eSuperPackage

* eClassifiers

ePackage

eEnum

eContaingClass

EReference

containment: boolean
/container: boolean
...

Figure 9.1.1: Ecore metamodel.

9.1 Preliminaries

The entire implementation is based on the Eclipse Modeling Framework [Ste+09]. As tool for
developing model-driven product lines, we employ Famile [BS12]. Accordingly, the respective
propagation implementations maintain annotations as represented in Famile which builds on the
EMF, too. For that reason, the following two sections, (Sec. 9.1.1 and Sec. 9.1.2), introduce key
characteristics of EMF and Famile, respectively.

9.1.1 Eclipse Modeling Framework
The Eclipse Modeling Framework [Ste+09] offers the facilities to use modeling, code generation and
serialization mechanisms to create a software system with the Eclipse IDE. Its core contribution is
the Ecore metamodel which serves to build customized metamodels. Furthermore, a code generator
allows to derive Java source code from its instances as well as customized language workbenches
providing editors which can be integrated as plugins into Eclipse. The following paragraphs present
more detail on the Ecore metamodel and the EMF tooling.

Ecore Metamodel The Ecore metamodel is a class model which allows to describe the structure
of a software system. Before presenting details on the model elements, it must be noted that the
model resides at different levels of the modeling hierarchy, at M2 and M3 (c.f., Sec. 2.1.3). At
M3, it plays the role of a meta-metamodel serving as metamodeling language to build metamodels
conforming to its syntax. For instance the UML and Java metamodel, which we consider in the
examples throughout this thesis and which are employed in the evaluation, too, are instances of
the Ecore meta-metamodel. Conversely, at level M2, the Ecore metamodel is used to develop
and model applications for which source (and editor) code can be generated automatically. The
following descriptions refer to it as metamodel, regardless at which stage it resides in the respective
development.
Fig. 9.1.1 presents core elements of the Ecore metamodel: Its instances form a strict hierarchy
on top of which an object typed as EPackage serves as root. The package provides a namespace
address, the nsURI, with which the Ecore model can be registered as plugin in Eclipse. A hierarchy
of packages structures the contents of the metamodel. Each named packages comprises a number
of named classifiers which are either EClasses or EDataTypes. The latter is the general class
for representing enumeration datatypes, the EEnum, which can specify several literals. Classes
summarize behavior in form of operations and structural features which are either EAttributes
or EReferences. Each of these typed elements possesses a type, can be derived, and may be
single-valued or multi-valued depending on the value set for its upperBound. The type of an
operation is the return type of this operation. In contrast to Java and similar to UML, a class
may inherit from several other classes. In contrast to UML, there are no realization relationships

216

9.1. PRELIMINARIES

between class and interfaces, the latter of which are represented as a separate EClassifier in
UML.
Furthermore, in contrast to UML, references conform to more restrictive semantics than asso-
ciations. An EReference is always unidirectional. A bidirectional reference is built from two
unidirectional ones by setting the eOpposite field accordingly. The model supports neither n-ary
references nor association classes. Strict containment references foster a unique container, prohibit
cycles and build an existence dependency. A contained EObject (i.e., an instance of one of the
defined EClasses,) can only be present in a model instance, if and only if its container is present.
For example, in the Ecore metamodel, depicted in Fig. 9.1.1, an instance of a structural feature
must be contained in an instance of the EClass. Two unidirectional references model this relation-
ship: The meta attribute containment of the reference pointing to the structural feature and name
eStructuralFeatures is set true and its type is the class EStructuralFeature. Its eOppposite
is the second reference, named eContainingClass where the containment is set false but the
derived meta attribute value container is set true.

Source Code Generation For each Ecore model conforming to the Ecore metamodel, a
GenModel can be created with the EMF. This model stores specific information to generate, and
potentially customize the generation of, Java source code from the metamodel.
The built-in M2T transformation engine creates one package which contains interfaces for each
EClass defined in the metamodel and one implementation package which comprises the corre-
sponding class declarations which implement the interfaces. Furthermore, a package util contains
a model-specific factory to create model elements conforming to the declared metamodel as well as
further facilities to maintain the model elements in Java programs. Besides these basic realization
artifacts, the code generator can also create edit and editor source code which allows to build
customized editors to build corresponding models and which can be deployed as Eclipse plugins.
Based on the generated source code, instances of the defined model can either be created by using
the editor or the factory provided in the util-package. Furthermore, the reflective API allows to
query the meta-properties of a model element, for instance, the name of the model EClass or the
resource in which the EObject is contained.

Resource Management Besides the possibility to generate source code and editors, the EMF
allows to persist models with its own resource managements API. A ResourceSet manages all
models represented in its collected resources. In order to recognize the type of models, the corre-
sponding model EPackage has to be registered in the resource set. Based on this information and
a given resource URI, models can be persisted or loaded and modified.

9.1.2 Famile
As shortly introduced in Sec. 4.1.2, Famile [BS12] is an Eclipse-based tool supporting the devel-
opment of annotative model-driven software product lines. Famile realizes an external mapping
mechanism and builds on the following three main components: Firstly, a feature model expresses
the commonalities and differences of the product line to be built. Secondly, arbitrary domain
models, the metamodels of which conform to the Ecore meta-metamodel, can be used to design
and realize the product line. Thirdly, Feature to Domain Mapping Models (F2DMMs) allow to
map annotations, which conform to the feature model and are referred to as feature expressions,
onto a domain model which they reference. Further, the tool functionality involves the creation of
feature configurations, applying them to a F2DMM and derive a customized model variant. The
employed hierarchical filter allows to define how to handle missing annotations and the F2DMM
model may be enriched by a SDIRL model which is a DSL prescribing domain model specific
repair operations in case model well-formedness would be violated by filtering a variant.

Feature Model The Famile offers a feature model editor to build feature models conforming
to its respective metamodel. A feature model may encompass optional and mandatory atomic
features and may organize them in feature groups. The feature group determines how many of its
child features can be selected simultaneously. Thereby, it allows for representing OR, XOR and

217

CHAPTER 9. IMPLEMENTATION

AND groups. Furthermore, the model may relate features in requires- and excludes-dependencies
apart from the hierarchical tree structure. A particular characteristic of the feature model meta-
model is that it is also used for representing feature configurations. Consequently, each atomic
feature and feature group possesses a selection state which is used to represent a complete feature
configuration. Lastly, the feature model allows for cardinality-based feature modeling [CHE05],
too. Thus, attributes which define an upper limit for its value can refine an atomic feature.

Feature To Domain Mapping Model Together with a domain model, the feature model
is referenced by the F2DMM model. The F2DMM model assumes exactly the same hierar-
chical structure as the domain model for which it provides annotations. Thus, the root, the
MappingModel, comprises a tree of ObjectMappings for each EObject of its corresponding do-
main model and organizes them in the same hierarchical order internally. As Famile allows for
fine-grained mappings, the F2DMM encompasses mappings for the structural features, too, de-
noted as AttributeMapping and CrossRefMapping. Further functionality allows modeling beyond
the capabilities of single-variant models by employing AlternativeMappings which can declare a
different value for a structural feature. However, this functionality goes beyond the scope of this
thesis which assumes single-variant semantics (Prop. 4.1.2) and is not further regarded.

feature expression

object mapping crossreference

mapping

feature model view object mappings, rebuilding domain model tree structural feature mappings

protected against automatic overwriting

properties
view

attribute

mapping

Figure 9.1.2: Famile mapping model editor.

218

9.1. PRELIMINARIES

Fig. 9.1.2 displays the mapping editor of Famile, which depicts the F2DMM model for the Ecore
model representing the database product line introduced in Fig. 4.1.3. The left column of the
editor shows the feature model, which is referenced by the F2DMM model situated in the middle
of the editor. The feature model cannot be modified in this editor but used to drag a feature to
map it onto an object of the F2DMM model. The right side shows mappings for structural features
of an object. In this example, the highlighted object firstNames is the object which is of type
EAttribute. Its annotations, the feature expression Name, is stated behind the respective object in
the middle of the editor. The structural features of the EAttribute are shown on the right side.
The attribute upperBound holding as value -1 carries the refined annotation MultipleNames,
as exemplified in Sec. 7.2.2. Below this attribute mapping, the feature eType demonstrates a
crossreference mapping which is not annotated in a refined way.
The bottom of the editor incorporates the F2DMM Properties view, which lists important prop-
erties of the selected object mapping. Every mapping in the product lines we examined, is a
core mapping, which means it forms part of the mapping model per default. Conversely, an
AlternativeMapping is no core mapping. Besides the core mapping property, the essential prop-
erties of the object mapping is the attached feature expression, represented as String. The field
whether the mapping is fixed is an extension to the mapping model made for the purposes of this
thesis. After manually modifying an annotation, the developer is asked whether to pertain this
annotation. In this way, an incremental transformation cannot change a fixed mapping. Addition-
ally, the view mentions the selection state of the selected mapping for a given feature configuration.
This is only possible if additionally a feature configuration is applied to the F2DMM model oth-
erwise it remains incomplete (as in the figure). Internally, the F2DMM model is rebuilt and the
selection state computed each time the mapping model, the feature model, or the domain model
changes. Thereby, the correctness of an annotation (i.e., the analysis whether the annotation can
be expressed with the contents of the feature model), is conducted based on th custom FEL-DSL
for representing and analyzing feature expressions in Famile.

Adaptions to Famile Besides the possibility to fix manually modified mappings (see previous
paragraph), for realizing the concepts of the thesis the following further adaptations have been
made to Famile. The F2DMM editor highlights objects, onto which no annotation is mapped, as
depicted in Fig. 9.1.3. In this example, the database Ecore model is not annotated completely
yet. The excerpt shows that the enumeration literals of the EmploymentState enumeration as
well as the attribute species of the class Animal still miss annotations. Highlighting the mapping
elements without annotations helps the developer to identify these elements easily and to map an
annotation onto them.

Figure 9.1.3: Database Content mappings with missing annotations in F2DMM editor.

219

CHAPTER 9. IMPLEMENTATION

9.1.3 Delimitation
The following descriptions will present implementation information about the central contribu-
tions of this thesis. We do not present implementations for concepts, which were rendered as
impractical or not able to achieve a high amount of correctly and automatically propagated an-
notations. In concrete, we do not integrate implementation details for the ModelSync DSL which
would be of the most practical use when combined with an automated detection of correspondences
(e.g., generated by model matching). However, preliminary evaluation results of a Bachelor the-
sis [Hoe20] have shown that the automated detection, based on the model matching framework
(c.f., Sec. 9.1.3, II), is not capable to recognize even matches between simple models if the struc-
ture of the compared models deviates: When comparing the similar project management [Ker03]
metamodels representing Gantt diagrams and CPM networks, a matching algorithm based on
attributes, references and types, was unable to detect corresponding elements sufficiently.

9.2 Multi-Variant Model Transformation Framework
The following sections present the architecture and key aspects of realizing the contributed concep-
tual approaches for propagating annotations in multi-variant model transformations. The concepts
share the ability to execute the reused single-variant transformation and to employ a propagation
mechanism which transfers the annotations from the source model to the target representation.
This commonality as well as the concrete approaches are implemented in the framework for Multi-
Variant Transformations, denoted as MuVaTra, in the sequel.

Road Map To realize and evaluate the feasibility of the propagation strategies which the previ-
ous chapters introduced, we implemented several Java projects. The following paragraphs give an
overview of the implemented packages (Sec. 9.2.1) and their relationships, firstly. The subsequent
section, Sec. 9.2.2, illuminates the core of the framework in more detail while Sec. 9.2.3 explains
how to realize the interfaces based on an implementation for the tool Famile. This implementation
lays the grounds for evaluating the propagation strategies in Chp. 10.

9.2.1 Overview
The package diagram depicted in Fig. 9.2.1 offers a simplified overview of essential projects and
packages which realize the concepts introduced in the previous chapters. The packages of white
color symbolize standalone projects, with equally named main packages, and the packages of
orange color represent contained packages. Furthermore, the two blue colored interfaces represent
Eclipse extension points. We refrain from demonstrating all implementation details, such as
exceptions and utility classes, and focus on key classes and functionality.
The framework is built around the muvatra core package, which abstracts the basic function-
ality and is extended by further implementations in referencing packages but also by offer-
ing an extension point for reusing a single-variant transformation execution mechanism. While
the two packages displayed in the top row of the figure represent core functionality which is
independent of a specific propagation approach, the packages denoted as execution.traces,
execution.missingAnn and execution.ruleAnalysis represent projects that allow to propa-
gate annotations based on traces of arbitrary granularity written by arbitrary transformation
engines. Similar as the SVTransformer, the TraceConverter interface serves as Eclipse extension
point which can be extended to plugin the capabilities of a specific transformation engine. Finally,
in the right bottom corner resides the packages which represents the implementation artifacts for
execution the aspect-oriented propagation.
Please note: We split the single-variant transformation and the propagation to allow for separation
of concerns. However, for black-box and gray-box post-processing propagation approaches, it
might not be necessary to integrate the execution of the single-variant transformation because it
can also be executed manually. Similarly, in an inter-processing approach it might not be possible
to distinguish the reused transformation execution and the propagation as it is the case for the
aspect-oriented propagation.

220

9.2. MULTI-VARIANT MODEL TRANSFORMATION FRAMEWORK

muvatra::execution::traces

TraceConverter
«interface»

converter

SVTransformationHandler
«interface» S,T

transformation

TracePropagationExecutor

MVMTTraceExecutor

TracePropagator
M

propagatorConverterExtensHandler

muvatra::famile

FamileMappingElement

FamileMappingHandler

mapping

FamileComparator

AnnotationUtil

util

muvatra::execution::missingAnns

MissingAnnotationDeterminer

DialogController

controller

CompletionStrategy
«enum»

ChooseStrategyDialog

ui

muvatra

MappingElement
«interface»

MappingHandler
«interface»

M

mapping

Propagator
«interface»

MVMTExecutor

SVTransformer
«interface» S,T

execution

transformer

EcoreTransformer

muvatra::execution::ruleAnalysis

ruleModel

statementKinds

M

M

EMFTVMExecutor

execution

M

AttributePropagator

ruleAnalysis

RuleAnalyzer

muvatra::aspect-oriented

AspectExecutor

execution

XpandTransformer

muvatra::execution::ui

wizards

MVMTExecuteTracePage

pages

MVMTExecWizard

Figure 9.2.1: Overview of architecture of MuVaTra framework.

MuVaTra Core Package The muvatra core project offers the interfaces for executing the
reused single-variant transformation and for propagating annotations. This package is explained
in more detail in Sec. 9.2.2. Furthermore, the project muvatra::transformer summarizes basic
functionality to execute EMF-based M2M transformations.
To abstract from a specific mapping approach, the core package further comprises a package
mapping which offers an interface for representing an arbitrary mapping element and a generic
MappingHandler which maintains concrete realizations of the MappingElement interface. To this
end, the MappingElement serves as an Adapter [Gam+97] for propagating annotations to the con-
crete mapping realization and offers functionality, such as accessing the mapped model elements,
its annotations as well as the annotations of its parent and children mappings.

MuVaTra Famile Package The muvatra::famile project comprises a concrete realization
for mapping elements of F2DMM models, as explained in more detail in Sec. 9.2.3. In addition,
the util package offers a mechanism to compare the Famile mapping elements, which is used
for sorting the mappings hierarchically by the mapping handler and a utility class to maintain
annotations, e.g., to simplify the Famile feature expressions.

MuVaTra Trace Execution Package For executing the trace-based propagation, on the one
hand, the muvatra::execution::traces package, offers the interface TraceConverter as ex-
tension point. A corresponding handler executes the extension which converts a transformation
engine-specific trace (e.g., an ATL/EMFTVM trace) into the common trace model (c.f. Sec. 5.2.3).
On the other hand, the contained transformation package encompasses the facility to execute the
trace-based propagation.
The MVMTTraceExecutor initiates the reused single-variant execution engine, which is either given
to the executor programmatically or the SVTransformationHandler extracts an installed exten-
sion of the SVTransformer interface.
The TracePropagator performs the actual trace-based propagation based on the common trace
model which was converted before. The execution behaves exactly as described in Alg. 1 and
employs an instance of the MappingHandler to retrieve the annotations from the source mapping
and assign them to the target mapping. If no context elements are present, only the annotations
of the source elements are combined and mapped onto all recorded target elements. After hav-
ing iterated the generalized trace, the trace propagator checks whether the some target mapping
elements still miss an annotation (e.g., due to an incomplete trace). If this is the case, it will em-

221

CHAPTER 9. IMPLEMENTATION

ploy functionality of the muvatra::execution::missingAnns1 package, which is explained in the
following paragraph. Finally, the execution package encompasses a TracePropagationExecutor
which only employs the trace propagator but does not execute the reused single-variant transfor-
mation. Thus, it receives the target model as well as the trace which have been created (manually)
before, e.g., by executing a transformation manually with the respective tool.

MuVaTra Missing Annotation Package To annotate elements missing an annotation after
the trace-based propagation, the missing annotation determination package offers the required
functionality. An enumeration summarizes the completion strategies presented in the second part
of Sec. 7.3.3. The missing annotation determiner either receives the strategy which it should
employ to compute the missing annotations or it asks the developer interactively by initiating a
corresponding dialog. For assigning the annotations, the computation also employs the mapping
handler which is provided by the propagator.

Graphical User Interface For executing the trace-based propagation, a graphical user inter-
face in form of an Eclipse wizard is part of the framework. It consists of a wizard page and the
corresponding control mechanism, the MVMTExecutionWizard, which initiates the program logic
implemented in the TracePropagationExecutor.

Specific Propagation Approaches The projects ruleAnalysis and aspect-oriented com-
prise the implementation logic of the corresponding specific propagation approaches. In contrast,
to the core packages, they extend the basic functionality with concrete implementation specifics
which go beyond the trace-based propagation. On the one hand, the project ruleAnalysis relies
on executing the trace-based propagation first. Therefore, it utilizes the TracePropagation-
Executor. While the execution package comprises the execution logic and the propagator for
annotations of attributes, the packages ruleModel and ruleAnalysis offer the logic to analyze
EMFTVM-bytecode models. On the other hand, the project aspect-oriented comprises the
logic to execute an Xpand transformation with the given advice.

9.2.2 MuVaTra Core
The core of the framework is implemented in the muvatra package and strongly relies on the
Strategy design pattern [Gam+97] as well as the plugin mechanism provided by the Eclipse IDE.
It consists of packages which offer interfaces for executing the multi-variant model transformation,
thereby propagating annotations and reusing single-variant transformations as well as mechanism
to maintain the annotations in form of mappings. The following paragraphs explain these four
components subsequently.

Multi-Variant Model Transformation Engine As depicted in Fig. 9.2.2, the main class
of the package muvatra is the MVMTExecutor. It may contain a transformer which is able to
execute the reused single-variant transformation realized by the Strategy design pattern as well
as a propagation mechanism. Except for the execution time, which can be used for conducting
performance measurements, this abstract class does not prescribe how to execute the multi-variant
model transformation. As multi-variant model transformation approaches vary, particularly the
execution of an inter- and a post-processing annotation propagation cannot be generalized further:

Propagation While inter-processing approaches, such as aspect-oriented transformations, prop-
agate annotations while executing the reused single-variant transformation, a post-processing ap-
proach, such as the trace-based propagation, executes the single-variant transformation firstly and
propagates the annotations secondly. Similarly, if the single-variant transformation is executed
manually, the SVTransformer will not be required for propagating the annotations. A trace, the
source and target model with corresponding mapping information suffice to propagate annotations
with the trace-based approach.

1 For space reasons the original name de.ubt.ai1.mvmt.missingAnnotationDeterminer is abbreviated.

222

9.2. MULTI-VARIANT MODEL TRANSFORMATION FRAMEWORK

MVMTExecutor

execTime: long
transformer

SVTransformer

transform(srcM:S, trgM:T,
trafo:String, forward:Boolean,
incremental:Boolean)

«interface» S,T

Propagator

propagate(fwd:Boolean,
 incr:Boolean)

0..1

MappingElement

getMappedElement() : Object
getAnnotation: String
setAnnotation(a:String)
getParentAnnotation(): String
getChildrenAnnotation(): String [0..*]
isProtected(): Boolean
isObjectMapping():Boolean
isAttributeMapping():Boolean

«interface»

MappingHandler

getMapping(o: Object): M
getMappedElement(m: M): Object
getParentObject(m:M): Object
getParentMapping(m:M): M
getChildrenMapping(m:M): M [0..*]
getAnnotation(o:Object): String
setAnnotation(o:Object, a:String)
initMapping(mappingModel:Resource, trgModel: Resource)
initSrcMapping()
initTrgMapping()
getRootFeature()
sortMappings(mappings: M[0..*])

«interface»
M

mapping

muvatra

propagator

0..1

Figure 9.2.2: Core of MuVaTra framework.

Reused Single-Variant Transformation To execute the single-variant transformation, the
transformer requires the source and target model representation as input as well as the infor-
mation to initiate the transformation-specific engine, such as the transformation path or further
parameters. The SVTransformer maintains the source and target based on generic parameters.
Thus, the representation can, for instance, be given as Ecore resources or be the roots of the models
which are transformed. The two boolean input parameters of the transform method may declare,
whether the transformation should be executed in forward or backward direction and in batch or
incremental mode. Even though this thesis targets unidirectional transformations, the interface
mentions the possibility for a backward transformation which could be implemented by concrete
realizations of the interface. Furthermore, the interface SVTransformer serves as extension point
for Eclipse plugins and, thus, an implementation for the custom transformation language and
engine can be implemented as extension and plugged into the MuVaTra framework in this way.

Mapping For propagating annotations, the realization of the interface Propagation needs to
access and modify the mappings of the model elements. Therefore, the framework encompasses
an interface for mapping elements which realizes the Adapter design pattern [Gam+97] and serves
to access and modify the annotation mapped onto an element.
The MappingElement assumes that an arbitrary element, not only elements of Ecore models, can
be annotated. Thus, the method getMappedElement() may return an arbitrary Java Object.
By abstracting from a concrete type onto which the annotation is mapped, the implementation
allows for representing annotations for text elements or to realize different types of mappings. The
remaining methods are used to compute or map annotations onto the concrete mapped element.
Distinguishing the type of mapping, whether it is attached to an object (i.e., a graph node) or
one of its attributes allows to perform the specific algorithms accurately. If the mapping element
references neither an attribute nor an object, it will be considered a cross-reference mapping,
which corresponds with mapping an annotation onto a graph edge. A realization of the mapping
and the application of the adapter pattern for the tool Famile is shed light on next.

9.2.3 Mapping Maintenance With Famile
As this thesis employs the tool Famile to implement and evaluate the annotation propagation, the
following paragraphs demonstrate how to integrate the tool-specific mapping representation into
the framework. In this way, they serve as an example of how to maintain mapping representations
of different tools in the framework.
The MuVaTra core project incorporates interfaces for adapting mapping elements and for a handler

223

CHAPTER 9. IMPLEMENTATION

muvatra::famile::mapping

(from f2dmm)

Mapping

(from f2dmm)

ObjectMapping

(from f2dmm)

AttributeMapping

(from f2dmm)

ReferenceMapping

FamileMappingHandler

FamileMappingHandler (srcMapMod:Resource, srcMod: Resource,
 trgMapMod:Resource, trgMod:Resource)
getMapping (o: Object): FamileMappingElement
getMappedElement (m: FamileMappingElement): Object
getParentObject (m:FamileMappingElement): Object
getParentMapping (m:FamileMappingElement): FamileMappingElement
getChildrenMapping (m:FamileMappingElement): FamileMappingElement [0..*]
getAnnotation (o:Object): String
setAnnotation (o:Object, a:String)
getAllSrcMappings (): FamileMappingElement [0..*]
getAllTrgMappings (): FamileMappingElement [0..*]
initMapping (mappingModel:Resource, trgModel: Resource)
initSrcMapping ():
initTrgMapping ():
getRootFeature (): String
sortMappings(mappings: M[0..*])

«bind» <M -> FamileMappingElement>

FamileMappingElement

FamileMappingElement (m:Mapping)
getMappedElement (): Object
getAnnotation (): String
setAnnotation (a:String):
getParentAnnotation (): String
getChildrenAnnotation ():String [0..*]
compareTo (m:FamileMappingElement): Integer
isProtected(): Boolean
...

isAttributeMapping: Boolean
isObjectMapping: Boolean

attributeMapping
0..1

referenceMapping
0..1

objectMapping
0..1

«use»

(from f2dmm)

MappingModel

«use»

MappingElement

getMappedElement() : Object
getAnnotation: String
setAnnotation(a:String)
getParentAnnotation(): String
getChildrenAnnotation(): String [0..*]
isProtected(): Boolean
isObjectMapping():Boolean
isAttributeMapping():Boolean

«interface»

MappingHandler

getMapping(o: Object): M
getMappedElement(m: M): Object
getParentObject(m:M): Object
getParentMapping(m:M): M
getChildrenMapping(m:M): M [0..*]
getAnnotation(o:Object): String
setAnnotation(o:Object, a:String)
initMapping(mappingModel:Resource, trgModel: Resource)
initSrcMapping()
initTrgMapping()
getRootFeature()
sortMappings(mappings: M[0..*])

«interface»
M

srcMappingModel: Resource
trgMappingModel: Resource
trgModel: Resource
...

muvatra::mapping

«use»

«use»

Figure 9.2.3: Adapter for Famile Mapping.

which maintains these mappings. The project muvatra.famile implements these interfaces and
encapsulates the specifics of Famile mappings. Fig. 9.2.3 presents an overview of the two classes
that complete the adapter pattern and which constitute as follows.

Famile Mapping Element The class FamileMappingElement realizes the interface Mapping-
Element and provides the implementation logic for using a Mapping element stored in the F2DMM
models. It serves as adapter (or wrapper) to hide the implementations specifics of the adaptee,
the mapping element of the F2DMM model.
For an instance of the f2dmm Mapping element, the handler creates exactly one FamileMapping-
Element in an initialization step and stores the respective mapping which is either an Object-
Mapping, an AttributeMapping or a CrossRefMapping. Accordingly, accessing the mapped ele-
ment returns either an EObject, an EAttribute or EReferences. Containment references are not
explicitly modeled in the f2dmm metamodel but the hierarchy of the mappings elements represents
them implicitly. Thus, no explicit mapping elements represents them.
The remaining functionality mainly offers operations which are required in the propagation algo-
rithms, such as querying tree elements: Famile parent annotations can be retrieved by accessing
the container whereas the function isFixedMapping returns the value which is required by the
function isProtected(). For comparing the elements, the mapping element wrapper computes
a height function which reflects the level in the tree. This information suffices to sort mapping
elements topologically which is required for iterating the mappings top-down or bottom-up.

Famile Mapping Handler The mapping handler manages the source and target mapping
models and plays the role of the client in the adapter pattern. To maintain the mappings, the
handler receives the Ecore resources storing the source F2DMM and the target F2DMM models,
the latter of which may be empty before the propagation. Furthermore, the source and target
domain models referenced by the mapping models are provided to the mapping handler, in order
to be able to build a new target F2DMM model, if needed.
Many of the methods the class realizes are implemented in the given mapping elements and
thus, invoked on this element. For instance, the parent mapping is retrieved by invoking the

224

9.3. REALIZATION SPECIFICS

respective method on the given mapping element. The constructor of the handler initializes
the FamileMappingElements and constructs an internal object-to-mapping map. The method
getMapping(...) employs this map to retrieve the mapping for a given object. The root feature
is retrieved from the feature model referenced by the source mapping model. For sorting mappings,
the handler employs the interface Comparator and the fact that the FamileMappingElement offers
the customized implementation of the method compareTo() which compares the height of the tree
levels of the compared mappings. The generic trace propagation exploits the capabilities, offered
by the mapping handler, in order to assign annotations to target elements as explained next.

9.3 Realization Specifics
This section presents the implementation specifics of concrete propagation mechanisms. At first,
Sec. 9.3.1 illuminates the realization of the trace-based propagation including its extensions when
annotations are missing due to a fine-grained trace. In the second place, Sec. 9.3.2 presents details
on the rule analysis of EMFTVM rules which builds on the fact that a trace-based propagation
was performed before. The section closes with providing details how to realize the aspect-oriented
model-to-text multi-variant transformation in Sec. 9.3.3.

9.3.1 Trace-Based Annotation Propagation
One essential contribution of this thesis is the concept of using trace information to propagate
annotations. The trace execution package collects the basic implementation. For the trace-based
propagation three elements are relevant: the common trace metamodel (instances of which are
referred to as generalized trace model), the trace converter, which turns an engine-specific trace
into the generalized trace model and the actual propagation mechanism. The following three
subsection illuminate them subsequently.

I Common Trace Metamodel

In the first place, an Ecore model represents the common trace metamodel for traces which was
introduced in Sec. 5.2.3. Fig. 9.3.1a depicts the generalized trace metamodel which is used for
the trace-based propagation regardless of the granularity of the given trace. The Tracemodel
represents the root which comprises and ordered set of trace steps. Furthermore, it records the
trace completeness. The remaining elements correspond with the theoretical descriptions of the
common trace metamodel: Accordingly, a trace steps records source elements and distinguishes
target from context elements also residing in the target model. Model elements are considered to
be EObjects. In addition, the rule for which the trace step was recorded can be persisted in the
trace step and is assumed to be of type EObject, too.

TraceStep

targets
*

sources
*

* elements
{ordered}

(from ecore)

EObject

TraceGranularity

INCOMPLETE=0
GEN-COMPLETE=1
COMPLETE =2

TraceModel

kind:TraceGranularity

contexts
*

rule 0..1

«enumeration»

(a) Generalized trace metamodel.

TracedRule

SourceElement

0..*
sourceElements

0..* rules {ordered}

TargetElementTraceLink

TraceElement

name: EString 0..1
object

0..* targetElements

TraceLinkSet

 links 0..*
{ordered}

0..1
rule

 linkSet 0..1

0..1 targetOf

0..1 sourceOf

(from ecore)

EObject

(b) Simplified ATL/EMFTVM trace metamodela.

a Based on org.eclipse.m2m.atl.emftvm.trace Eclipse
project.

Figure 9.3.1: Trace metamodels.

225

CHAPTER 9. IMPLEMENTATION

II Trace Conversion

To employ the generalized trace model, firstly, an engine-specific trace needs to be converted
into the generalized trace model. The following descriptions illustrate the conversion based on
converting the ATL/EMFTVM trace, respectively for other traces.

(ATL/EMFTVM) Trace Metamodel As an example, Fig. 9.3.1b depicts the trace meta-
model of the ATL/EMFTVM transformation engine (in a simplified form). After executing a
transformation, the engine persists an instance of this model. Thus, the root of the trace, the
TraceLinkSet, contains traced rules which record trace links. A traced rule corresponds with a
matched rule of the transformation specification that was executed and is only integrated if there
was a matching source object that caused its execution. The traced rule records trace links. A
trace link manifests the pairs of source and target elements in the trace link for each application
of the rule. Ex. 9.3.1 demonstrates an instance of the ATL/EMFTVM trace metamodel.

Example 9.3.1: ATL/EMFTVM Trace Metamodel and Instance

As an example, Fig. 9.3.2 displays the ATL/EMFTVM trace resulting from transforming
the database Ecore model into a UML class model. The main part of the figure shows the
trace whereas the right side presents the target UML model into which the input Ecore
model is transformed. The bottom left corner depicts an excerpt of the source model.
The ATL TracedRule which converts an Ecore class into a UML class is stored once in the
TraceLinkSet. For each converted class which does not inherit from another class, i.e., in
total five classes (Person, Media, Family, DataBaseContent and Animal), the traced rule
encompasses a trace link, which in turn records the respective Ecore class as source and
the UML class as target element, respectively.
The figure highlights the trace link and presents the respective values of the properties
view for the Ecore and UML class Person. As source element, called src, it records the
EClass Person and as target element, called trg, the UML class Person.

Trace Converter The trace converter receives the engine-specific trace resource, which is either
provided manually or by executing of the single-variant transformation programmatically before-
hand. In concrete, the ATLEMFTVMConverter, which we provided in a respective package, iterates
the set of traced rules. At first, it creates a new generalized trace model and sets the granularity
to generation-complete. This assumption holds as long as there are no lazy and called ATL rules
which would not be recorded in the engine-specific trace.
For each trace link, the converter creates a trace step and sets the source and target elements,
accordingly. Since a trace link only records the set of target elements which are created by the
corresponding rule and no context elements, there is no possibility to retrieve the information about
other already existing target elements which would be used in the rule to create the new elements.
After having iterated the traced rules and their links completely, the resulting generalized trace is
stored and returned.

Further Trace Converters We have implemented similar extensions of the TraceConverter
for traces persisted by BXtend and QVT Operational Mappings. The conceptual approach is
similar as converting the ATL/EMFTVM trace. One specificity of the QVT-O deviates. Traces
stored by the QVT-O engine are complete, inasmuch as they record all relevant target elements
which are necessary to transform a source element. Thus, besides the created target elements
it records context elements but not explicitly. For that reason, the respective QVTOConverter
maintains a list of already processed target elements and looks currently processed target elements
up. If they are already present in the list, they are integrated in the created trace step as context
elements. Apart from that, the trace conversion for BXtend traces behaves in a straight-forward
way where only one source and one target element are recorded and transformed accordingly.

226

9.3. REALIZATION SPECIFICS

Figure 9.3.2: ATL/EMFTVM trace between Ecore and UML database content model.

III Annotation Propagation

For propagating annotations based on the information stored in a trace, the package muvatra.ex-
ecution.traces provides the generic TracePropagator. Independent of the trace granularity, it
receives the converted generalized trace model as well as a mapping handler which maintains
the source and target mappings. Accordingly, the trace propagator assumes that the same type
of mapping element is present for the source and the target domain model. This is a justified
assumption for the trace-based propagation because both models reside in the same product line
and are built with the same MDPLE environment.

Trace Propagation The propagator iterates the trace steps of the generalized model and assigns
annotations to the target elements corresponding to a source element by employing the handler.
It combines the annotations of the source elements and – if the trace is complete – of the context
elements in a conjunction and maps this annotation onto all target elements. If a (syntactically
equal) source annotation occurs multiple times in this expression, it is stated only once. During
the iteration, the propagator records the mapping elements which already received an annotation.
Depending on the trace completeness, the target mapping model is either completely annotated
or some target mapping elements miss an annotation causing an incompletely annotated model.

Example 9.3.2: Trace-Based Annotation Assignment

The example presented in Fig. 9.3.2 shows how an ATL/EMFTVM trace links source and
target elements. Accordingly, the generalized trace resulting from its conversion records a
trace step that reference the Ecore class Person and the UML class Person as source and
target element, respectively. When the propagation algorithm processes this trace step, the
TracePropagator employs the mapping handler to look up the annotations of all source
elements (i.e., the class Person) and context elements (none in this case), combines these
annotations in a conjunction and employs the handler to map the computed annotation to
the target element. After having processed the trace step, the target F2DMM model maps
the annotation Person onto the UML class Person.

227

CHAPTER 9. IMPLEMENTATION

If the trace model records an incomplete trace, and target elements remain without annotations,
one of the three completion strategies, described in Sec. 7.3.3, is employed. As sketched in the
overview of implementation packages (c.f., Sec. 9.2.1) in Fig. 9.2.1, the completion strategies
are represented by an enumeration datatype. The propagator computes a list of open mapping
elements which still miss an annotation, sorts the list topologically and creates an instance of the
MissingAnnotationDeterminer which receives the root feature and the list of open elements.

Annotation Completion The first step of completing annotations separates the mappings
of nodes (i.e., ObjectMappings in Famile) from mappings for their attributes and those from
mappings for cross references. Furthermore, the completion strategy is either provided by the
trace propagator (in case it is executed programmatically for the evaluation) or the developer
who initiates the propagation can select the strategy via a GUI action. After this initiation, the
program iterates the list of open elements and assigns annotations by accessing either the parent
mapping, the children mappings or both, depending on the strategy.

IV Trace-Based Execution

Two ways exist to execute the trace-based propagation which depend on the possibility to initi-
ate the single-variant transformation by the means of a program. Either the trace is provided
directly or a mechanism has to initiate the single-variant transformation which returns the trace
dynamically after executing the transformation:
The TraceExecutor which manages the entire trace-based propagation is given the source mapping
model and the target mapping model as well as the trace. Based on this information, the executor
initiates the TracePropagator which performs the annotation propagation as explained above.
In contrast, the MVMTTraceBasedExecutor does not receive the trace as artifact but executes the
single-variant transformation instead, to retrieve the trace thereafter. In this case, a mechanism to
executed the single-variant transformation (i.e., an implementation of the SVTransformer) which
generates the trace has to be provided and executed .

V Incremental Propagation

For propagating annotations incrementally, the trace propagator further checks whether an an-
notation is protected. The mapping element interface contains a respective Boolean method.
Mapping elements of the tool Famile (i.e., a FamileMappingElement), implement this behavior
by checking whether the attribute fixedMapping is set true. Thus, the corresponding function
of the FamileMappingElement returns the value of the attribute fixedMapping.
All annotations which are not protected are overwritten: the trace-based propagation updates the
annotations of all non-protected target mappings.

9.3.2 ATL/EMFTVM Rule Analysis-Based Propagation

For computing annotations of attribute mappings in a more fine-grained way than assigning the
annotation of the corresponding object mapping, Sec. 7.2 presents a strategy to analyze the
ATL/EMFTVM bytecode execution model. We implemented a proof of concept which analyzes
the bytecode instruction model resulting from compiling an ATL/EMFTVM transformation spec-
ification according to the descriptions in Alg. 2. The implementation reuses the functionalities of
the trace-based executor, explained in Sec. 9.3.1, on the one hand, and realizes the analysis of rules
as well as a propagator for structural features, on the other hand. Since the analysis is trimmed
to the ATL/EMFTVM engine, the trace converter and single-variant transformation executor for
ATL are employed in the trace propagator.
Sec. 7.2.4 describes the relevant conceptual information for extracting and using the information to
propagate annotations of structural features. Therefore, this section provides further information
on the implementation specifics which complement the previous descriptions.

228

9.3. REALIZATION SPECIFICS

Rule

CodeBlock

0..1
matcher

0. .1
applier

0..1
postApply

Instruction

opcode :Opcode 0..*
code

 owningBlock 1

Module
0..*

rules

Figure 9.3.3: Simplified EMFTVM execution metamodel of its bytecode instructions.

Road Map The first part scrutinizes background information on ATL and the EMFTVM based
on which the second part derives the structure for analyzing the relevant opcodes and patterns from
the bytecode model. We employ the resulting rules for propagating the annotations from source
to target structural features, described in third part. The section terminates with a reflection on
the proposed propagation strategy.

I ATL/EMFTVM

The ATL syntax and execution semantics provide different kinds of rules realizing a hybrid trans-
formation approach of declarative and imperative nature.

Rule Types The execution engine iterates the source model and executes these rules for each
matching source element automatically. Accordingly, matched rules must match a source element
uniquely. In addition, ATL supports lazy and called rules. These rules are invoked by another
rule and expect implicit and explicit parameters, respectively. While using matched rules only
builds a declarative transformation specification which focuses on the correspondences between
the source and target metamodel, using called rules only allows to imperatively prescribe the
execution order of the transformation specification and, thus, of the creation of target elements.
As an imperative construct a matched rule can specify a do- block which is executed after the to-
pattern was executed. In this block no new elements can be created explicitly but helper functions
can be used to assign further values or lazy and called rules can be invoked.

Tracing in Rule Types For called and lazy rules ATL does not create traces regardless of
the employed virtual machine. Therefore, the annotation propagation contributed in this thesis
supports only declarative ATL transformation definitions composed of matched rules. Due to this
fact, we can assume that a generation-complete trace results from the execution. If matched and
called ATL rules were mixed, the resulting trace would be incomplete.

ATL/EMFTVM Transformation Artifacts Although each ATL transformation maintains a
trace internally during the execution, only the EMFTVM compiler persists the ATL trace after the
execution. This virtual machine for ATL persists the trace as well as an execution model, which
is an instance of the emftvm execution metamodel depicted in a simplified form in Fig. 9.3.3.
Consequently, it represents an ATL module which summarizes a set of rules. A rule consists of a
matcher code block, which represents the from-patter, an applier code block which represents
the to-pattern and a potential postApply code block which represents the do-block of an ATL
rule. The code block enumerates the code instruction which store one of the opcode integrated in
the appendix (Fig. A.2.1).
The trace being an instance of the emftvm trace metamodel (c.f., Fig. 9.3.1b) is used to exemplify
the conversion of an engine-specific trace, the ATL/EMFTVM trace model, into the general trace
model in Sec. 9.3.1. In contrast, the ATL execution model reflects the ATL module that captures
the transformation specification. It composes the rules in terms of different kinds of instructions

229

CHAPTER 9. IMPLEMENTATION

which each state the opcode which they execute in the order as specified in the rule. An example of
the instruction sequence resulting from a transformation block was given in Sec. 7.2.2 in Fig. 7.2.3.

ATL vs. ATL/EMFTVM In addition, when compiling an ATL transformation with the
ATL/EMFTVM compiler different behavior is supported for the same syntax. First of all, for
employing the compiler the first line of the main transformation specification needs to state the
EMFTVM as compiler in a comment: @atlcompiler emftvm. Furthermore, some functionality
known from the default compiler is not supported, for instance, due to lazy evaluation. It is
not possible to add or modify any target element apart from the rule where it is created. For
instance, if an additional target element should be added to an existing list of target elements, it
will result in a runtime error. Similarly, in our transformations we could not use helper-definitions
as variables which are filled in one do-block and accessed thereafter in another do-block. Thus,
their functionality is not implemented in the EMFTVM2.

AnalyzedRule

0..*
basicAssignments

SingleValAsgnm

-getField: String

1 rule

ATLAssignment
-setField: String

CombinedAssgnm

-gets: String[0..*]
-chainedGet: List<String>[0..*]

(from emftvm)

Rule

(from emftvm)

Instruction

ChainedAssgnm

-gets: String [0..*]

InstructionBlock
-size: String

OtherStatement
-setField: String

0..*
combAssignments

0..*
chainedAssignments

0..*
instructions

0..*
others

0..*
instructions

Direct-

Creation

«use»

0..*
directCreations

Figure 9.3.4: AnalyzedRule as data structure.

II Analyzing Rules

For propagating annotations, the execution model is analyzed as postulated in Sec. 7.2.4. In more
detail, the corresponding implementation behaves as follows:

Analysis Procedure The analysis procedure receives an EMFTVM rule from the execution
model and analyzes this rule. The result is stored in form of an analyzed rule together with the
ATL rule as key-value pair, in order to analyze it only once. For a given ATL rule a new instance
of the AnalyzedRule, depicted in Fig. 9.3.4, is created by performing the following steps:

1. Build a list of InstructionBlocks for the ATL to-pattern (called applier) of the rule.
These blocks always end with a Set opcode.

2. Build a list of InstructionBlocks for the ATL do-block (called postapply) of the rule.
These blocks end with a SET opcode or a POP opcode. Only include blocks which end with
a SET opcode because the POP instruction branches the execution.

3. Iterate the list of instruction blocks of the to-pattern and the do-block and analyze the blocks
of instructions applying the following categorization:

(a) if the first instruction does not LOAD a value, it is a DirectCreation, which pushes a
static value or combination thereof only and assigns it to the loaded target structural
feature

2 Tested with ATL/EMTFVM Version 4.5.0.v202110180912

230

9.3. REALIZATION SPECIFICS

:SingleValAssgnm

setField = "name
getField= "name"

0..* code

:InstructionBlock
size= 5

name="Class2IDCD"

:Rule :AnalyzedRule

:Instruction
opcode = "L"

:Instruction
opcode = "L"

:Instruction
opcode = "G"

:Instruction
opcode = "S"

:Instruction
opcode = "I"

:CombinedAssignment

gets = {name}
chainedGet={}

:Instruction
opcode = "L"

:Instruction
opcode = "L"

:Instruction
opcode = "G"

:Instruction
opcode = "S"

:Instruction
opcode = "P"

:Instruction
opcode = "I"

:Instruction
opcode = "I"

:InstructionBlock
size= 7

:SingleValAssgnm

setField = "name
getField= "name"

:InstructionBlock
size= 5

:Instruction
opcode = "L"

:Instruction
opcode = "L"

:Instruction
opcode = "G"

:Instruction
opcode = "S"

:Instruction
opcode = "I"

Figure 9.3.5: Instance of AnalyzedRule representing ATL rule of Fig. 7.2.3.

(b) if the instructions start with a LOAD, followed by a get instruction, and only contain
5 instructions in total, it is a SingleValueAssignment of a single value

(c) if two consecutive get operations occur, it as ChainedAssignment

(d) any block in which a branching instruction, such as an ITERATE or IF opcode, occurs
is classified as OtherStatement

(e) anything else is treated as a CombinedAssignment of multiple values to a single value

Pattern Determination The type of recognized assignment pattern determines which infor-
mation to retrieve from the instruction block and how to handle it in the subsequent propagation:
Any instruction block that is categorized as OtherStatement or StaticAssignment is stored in
the analyzed rule for completeness but not considered further. In order to create a SingleValue-
Assignment, the name of the get-field is retrieved from the corresponding instruction block. To
create a ChainedAssignment, the list of instructions is iterated from the first GET to the last
GET in the sequence. It must be noted that the implementation recognizes only one sequences of
gets. If there are multiple “chains”, they will be recognized as CombinedAssignment. To create a
CombinedAssignment, the list of instructions is iterated and the GET instructions are only stored
in the list of “single” gets, if no other get-field follows immediately thereafter (i.e., if there is no
chain). If a chain is recognized, it will be added to a separate list.
The entire pattern recognition is implemented in a functional implementation style. Statements
are extracted while creating the analyzed rule and their fields are also set in the constructor.
Thereafter, these elements cannot be modified anymore.

Example 9.3.3: Analyzed Assignments in ATL Rule

The ATL rule and corresponding bytecode presented in Fig. 7.2.3 are summarized in the an-
alyzed rule as shown in Fig. 9.3.5. The analysis recognizes two SingleValueAssignments
as well as a CombinedAssignment. The constructor of the analyzed rule builds the in-
struction blocks which serve as intermediate data whereas the rule stores the identified
ATLAssignment patterns permanently. Furthermore, the assignments store the concrete
instructions in the order present in the bytecode model.
For example, five instructions represent the first assignment ‘name <- src.name’ which
load (L) the source and target object, get (G) the value of the source name, invoke (I) the
resolution of the target object and set (S) the value of the source name to the target name.

231

CHAPTER 9. IMPLEMENTATION

III Propagation of Structural Feature Annotations

After having analyzed the rules, the AttributePropagator iterates the trace model. For each
source element it looks up the ATL rule which matches the source object. Based on the ATL rule,
it determines the corresponding AnalyzedRule. If the rule was not analyzed before, it will be
analyzed by creating an new instance of the AnalyzedRule. The constructor performs the pattern
recognition such that the patterns can be used in the following propagation.
Then, the propagator iterates the target elements of the trace steps and looks up the mappings of
EObjects. For each target object mapping, the list of attribute and crossreference mappings are
iterated. The RuleAnalyzer checks whether their names matches the set-field in the identified
patterns of the analyzed rule. If this is the case, it will check the structural features of the
corresponding source object to find those which match the corresponding get-field in the pattern.
The annotations of the matching source structural features are combined in a conjunction and
mapped onto the target structural feature which matched the set-field.

IV Reflection

For summing bytecode instruction analysis up, this part reflects on the computational model, the
benefits and the results of examining the implemented prototype.

Computational Model Propagating fine-grained annotations based on our approach requires
to satisfy Prop. 7.2.1- Prop. 7.2.3 which postulate the assignment of a single value (i.e., no collec-
tions are created and assigned), a linear execution flow and particularly a self-contained transfor-
mation. This paragraphs illuminates to what extent the capabilities of the ATL/EMFTVM meet
these properties. The language ATL is more powerful than the required properties. It allows to
assign collections to multi-valued structural features and offers several syntactic constructs that
may diverge the control flow such as if-conditions and for-loops. Furthermore, due to the module
mechanism, ATL transformations are more powerful and not only allow to invoke helper methods
in the same file but also of different referenced other files.
Consequently, the implementation cannot guarantee commutativity in general but it depends on
the syntactic constructs used in the ATL transformation specification. For instance, if specific an-
notation are mapped onto structural features only which are mapped in a SingleValueAssignment
commutativity is satisfied nonetheless. Furthermore, while the computational model is less restric-
tive, ATL only allows to match a source object once per rule. Thus, in the graph formalism, each
source graph node of the STT graphs possesses exactly one incoming source edge.

Limitations and Benefits First of all, not the entire set of instructions can be recognized in
the current state of the analysis. We focuse on assignment patterns which occur often and can
be analyzed without employing heuristics. For branching conditions, the recognition is excluded
because the elements being iterated or guarding the execution branch may provoke the creation or
deletion of elements in the single-variant execution which differ from the result of the multi-variant
execution. Since this behavior threatens commutativity of the transformation and may require an
unconstrained variability representation for the target model, it is out of the scope of this thesis
(c.f., Prop. 4.1.2).
Moreover, as discussed before, the additional analysis of rules and corresponding iteration of the
source and target model elements adds additional computational cost. Thus, for employing it
(instead of manually refining single target annotations), there should be a relevant number of
structural features carrying an annotation which is more fine-grained than the annotation of their
object on which they depend.

Execution Results To demonstrate the feasibility and potentials of the approach, we performed
the rule analysis in two scenarios. We used the motivating example of the database product line
where the number of first names is only higher than one if the feature MultipleNames is selected
as scenario, on the one hand. The propagation based on the rule analysis extension annotates the
target attribute correctly.

232

9.3. REALIZATION SPECIFICS

On the other hand, in a scenario of transforming a Graph product line [LB01] (c.f., Sec. 9.3.2, II)
Ecore domain model into a corresponding UML class model, the propagation performs successfully,
too. An adaptation of this product line [GSW17] allows for weighted edges represented as an
EAttribute of the class Weight. The EAttribute is present in each Graph regardless whether
the optional feature Weighted is selected or not. While a concrete value can be provided when the
feature Weighted is selected, a value of one is automatically derived when the respective feature is
not selected. This product line assumes this behavior by mapping the annotation not Weighted
onto the meta-attribute of the EAttribute weight.
In both the database and the graph product line, the annotations of the structural features are
propagated correctly. However, it must be noted that SingleValueAssignments assign the values
of the derived and the name attribute. Although the examination does not cover the chained or
combined assignments, we refrain from evaluating the implementation mainly due to the following
reason: Such propagation pays off if a high number of structural features is annotated more
specifically than its objects (c.f., Sec. 7.2.6) which is not the case in the evaluated product lines
(c.f., Sec. 10.2.2).

9.3.3 Model-To-Text Aspect-Oriented Propagation
To proof the concept of propagating annotations in the aspect-oriented way, proposed in Chp. 8,
this section describes the realization of the generic advice in the M2T language Xpand. The
extension-file used in the advice allows to propagate the annotations of the mapping model used
in the tool Famile (c.f., Sec. 9.1.2). Furthermore, we employ a customizable preprocessor which
can be adapted to several programming languages without built-in preprocessor tool support by
allowing to configure the syntax of the directives as well as the escape characters which integrate
the preprocessor directives in a non-invasive way in Java source code. Details on the preprocessor
resulting from a student project are given in Sec. A.3.
The solution to propagate annotations while executing the reused single-variant transformation
consists of two key components: A template containing the generic advice to modify the existing
SVMT and aMWE(2) workflow which augments the execution of the original M2T transformation
with the implemented advice.

Road Map The first two parts of this section explain how the advice has to be specified for
propagating annotations generically and how the (MWE2) workflow weaves the advice into the
original text production. In contrast, the third part of this section offers details on the realization
of the aspect-oriented propagation which we implemented as proof of concept. To this end, the
fourth paragraphs discusses the implementation with respect to the computational model and
provides an outlook on the evaluation which follows in the next chapter.

I Advice Template

In the first place, the automatic transfer of annotations requires a generic instruction to annotate
source code fragments which correspond with an annotated source model element. Therefore, we
implement an Xpand advice which behaves as follows: First, the originally generated text should
be surrounded with an annotation. Thus, an around-statement forms the key element of the
advice which invokes the original text production. In order to regard any model element text is
generated for, the around-statement needs to state a wildcard such that each object matches. The
latter is required to retrieve the annotation which is mapped onto it. If an annotation is present,
the around-statement will generate an opening and a closing directive which enclose the original
text production. The following paragraphs present details, how this behavior is realized.

Generic Advice Listing 9.3.1 describes a simplification of the generic advice which aims at
creating annotated (Java) source code:
The first line comprises the AROUND statement. By using a wildcard for the objects that should
match the advice and stating ‘templates:*::*’ any define-block in any regular Xpand-file (not

233

CHAPTER 9. IMPLEMENTATION

1 «AROUND templates::*::* FOR Object»
2 «LET getMapping((EObject)this) AS mapping»
3 «IF mapping != null && mapping.isSetFeatureExprStr()»
4 «getOpeningComment(mapping)»
5 // @ID: «getID((EObject)this)»
6 «targetDef.proceed()»
7 «getClosingComment()»
8 «ENDIF»
9 «ENDLET»

10 «ENDAROUND»

Listing 9.3.1: Simplified generic advice which embraces an original text generation.

1 /** #IFDEF !Family && Person # */
2 // @ID: _TACGEFc3Eeetfr4BhVYAxQ
3 private String surname;
4 /** #ENDIF */

Listing 9.3.2: Java field declaration annotated with JavaDoc comments.

in extensions specified in Xtend) stored in the folder templates can be the target of the advice
whenever the source type of the define-block is of type EObject3.
In the next step, the advice retrieves the mapping element for the input object in Line 3. The
advice invokes a method getMapping() which is implemented in an Xtend extension and accesses
the F2DMM object mapping for the given EObject. To accomplish this task, the extension-file
employs a Java class which loads the F2DMM model of the source domain model automatically
by searching the Famile project for files with an f2dmm file ending. If the product line comprises
multiple F2DMM models, it will ask the developer to choose the appropriate one. After the first
look up of a mapping element, the F2DMM model is stored for following look ups. If the mapping
element is annotated, the annotation will serve to enclose the original text production with a
preprocessor directive.
Please note: Although we assume that the input model is annotated completely, Famile does not
guarantee this assumption. Therefore, the advice checks whether an annotation is mapped onto
the matched source object in Line 3. Additionally, the method getOpeningComment(), which is
implemented in Java, checks whether an annotation is mapped onto the parent and assigns either
the annotation of the matching object solely or its conjunction with the parent annotation.
In addition, the advice computes a unique ID in Line 5 to identify the object in potential con-
secutive executions. This ID is stated as a comment before the original text production and
can be used to identify the text production and corresponding source object in an incremental
transformation uniquely. Furthermore, it could also be used to reconstruct trace information.

Resulting Annotation Listing 9.3.2 illustrates the preprocessor directives which result from
applying the advice to transform the attribute surname of the class Person in the example depicted
in Fig. 8.1.1. The first line opens the directive and states the annotation. It uses the respective
preprocessor directive, in this case ‘#IFDEF’. As Java source code is generated which does not
support preprocessing, the directives are stated as Java comments so that the source code is still
compilable. Due to the preprocessor directive, the field is only present in a derived product if the
feature Family is not selected but the feature Person. The last line shows the closing directive as
corresponding with the preprocessor. The statement ‘targetDef.proceed()’ executes the original
text production which creates the text stated between the ID directive and the closing directive.
Due to the comments which state the annotation of the source object for which text fragments
were created, it is possible to inject the variability information in a text production. By combining
the annotation of the source element with its parents annotation, it is ensured that a container

3 Our implementation expects F2DMM models which map annotations onto EObjects (and their structural fea-
tures) only.

234

9.3. REALIZATION SPECIFICS

1 module de.ubt.ai1.ecore2Text.Codegen
2

3 var targetPath = "src-gen" // provide parameter for exchanging output path
4 var modelPath = "model/database.ecore" // provide parameter for exchanging input model
5 var advices = "templates/Main" // provide parameter for injecting an advice from outside
6

7 Workflow {
8 bean = org.eclipse.emf.mwe.utils.StandaloneSetup {
9 registerGeneratedEPackage = "org.eclipse.emf.ecore.EcorePackage"

10 }
11

12 component = org.eclipse.emf.mwe.utils.Reader {
13 uri = "${modelPath}"
14 modelSlot = "model"
15 }
16

17 component = org.eclipse.xpand2.Generator {
18 id = "generator"
19 metaModel = org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel{ }
20 expand = "templates::Main::main FOR model" // entry point rule
21 fileEncoding = "UTF-8"
22 outlet = {
23 path = "${targetPath}"
24 postprocessor = org.eclipse.xpand2.output.JavaBeautifier{}
25 }
26 advice = advices // provide the slot for injecting an advice
27 }
28 }

Listing 9.3.3: Reused single-variant MWE2 workflow for an Ecore to Java transformation.

is not removed by the preprocessor. Depending on the preprocessor and target language, the
methods getOpeningComment() and getClosingComment() of Listing 9.3.1 have to be adjusted.

II Workflow

MWE2 workflows consist of variables, components and parameters which enrich the components.
Furthermore, beans declare the setup of the execution. To execute the advice, as second part of
the realization, an MWE2 workflow has to specify the advice in its component generator.

Transformation Project Setup In general, the realization consists of two projects. One
project contains the single-variant reused Xpand specification including all relevant extension-
files and the MWE2 workflow, for instance, for a transformation of Ecore models into Java source
code. The MWE2 workflow, which declares the input metamodel and the paths of the input model
and the output directory, executes the transformation. The second project comprises the advice
template and another MWE2 workflow. This first workflow weaves the generic advice template
which allows to modify the input and output directories into the single-variant execution.

Single-Variant Transformation Workflow Listing 9.3.3 presents the workflow which exe-
cutes the original text production and weaves the advice implementation presented in Listing 9.3.1
into the original production. After the module declaration in the first line, variables define the
target path where the output text is written to, the input model path and the location of the
advice. If the workflow is initiated from a Java implementation, these variables serve as parame-
ters, the values of which can be provided by the implementation. The input model is given to the
reader component which parses the input model file while the second component of the workflow
defines the generator which creates the text production. In this example, the workflow creates
Java source code for a given Ecore model and stores the generated source code in the target path.
The parameter expand of the generator states the entry point rule of the single-variant M2T
transformation. The parameter advice serves as placeholder which can be replaced by the second
MWE2 workflow which executes the aspect-oriented transformation.

235

CHAPTER 9. IMPLEMENTATION

1 module de.ubt.ai1.mvmt.AdviceGenerator
2

3 var targetPath = "./mv_src-gen" // provide a custom output path
4 var adv = "./advices/advice" // specify the location of the advice
5 var modelPath = ‘../de.ubt.ai1.famile.example.dataBase/domainmodel/database.ecore’
6

7 Workflow {
8 bean = org.eclipse.emf.mwe.utils.StandaloneSetup {
9 scanClassPath = true

10 registerGeneratedEPackage = "org.eclipse.emf.ecore.EcorePackage"
11 registerGeneratedEPackage = "de.ubt.ai1.f2dmm.F2DMMPackage"
12 registerGeneratedEPackage = "de.ubt.ai1.f2dmm.fel.FELPackage"
13 registerGeneratedEPackage = "de.ubt.ai1.f2dmm.sdirl.SdirlPackage"
14 registerGeneratedEPackage = "de.ubt.ai1.fm.FeaturemodelPackage"
15

16 extensionMap = { // add ‘f2dmm’ as file extension
17 from = "f2dmm"
18 to = "de.ubt.ai1.f2dmm.util.F2DMMResourceFactoryImpl"
19 }
20 }
21 component = @de.ubt.ai1.ecore2java.Codegen { // the original text production
22 targetPath = "${targetPath}" // update target path
23 advices = adv // provide the advice
24 modelPath = "${modelPath}"
25 }
26 }

Listing 9.3.4: Advice-injecting workflow for Ecore to Java transformation.

Aspect-Weaving Workflow The aspect-oriented workflow executes the single-variant text pro-
duction by employing its generator and providing values to its variables. Listing 9.3.4 presents
the workflow which executes the single-variant Ecore to Java text production of Listing 9.3.3.
Firstly, Listing 9.3.4 may define another target path where the multi-variant source code is stored.
Furthermore, it states where the actual generic advice is located. Most importantly, the standalone
setup loads all registered packages which are necessary to load the mapping representation (here
the F2DMM model of the tool Famile). The extension map is used to identify the ending of the
mapping model and associate it with the corresponding factory.
Then, this advice-injecting workflow executes the original text-producing workflow. The workflow
overwrites the target path of the ecore2java.Codegen module in Line 22 and injects the advice
in the following line. Lastly, it defines the location of the input model, which replaces the input
model of the original text production. The remaining functionality, which is necessary to execute
the text production, is used in the way it is defined in the workflow of the original text production.

III Incremental Realization

For preserving manually added text in the generated text, Xpand offers the functionality of pro-
tected areas. As explained in Sec. 8.2.1, Xpand requires to mark a protected block with a unique
ID. An incremental transformation looks up the contents of the protected block together with the
ID and adds the contents to the block with the same ID created in the incremental transformation.
Anything that is not protected will be computed anew.

Example In the exemplary Ecore to Java M2T transformation, we add a protected block to the
method body. This allows to integrated behavior at the level of domain engineering and obviates
the need to provide a manual implementation for each block.
Listing 9.3.5 presents the Xpand define-block which transforms an Ecore operation and preserves
the method body from being overwritten. It differentiates the situation when a return type is given
and not. In both cases the method body is protected in the default Xpand way. A protected-
block initiates with the keyword PROTECT followed by defining the comment character sequence
which needs to allow for differentiating normally generated text from a protection-comment. The
keywords CSTART and CEND define the character sequence of such comment in Lines 4 and 9, in

236

9.3. REALIZATION SPECIFICS

1«DEFINE EOperation FOR ecore::EOperation»
2 «IF eType != null »
3 public «getType()» «name»(«FOREACH eParameters AS par SEPARATOR ’,’» «par.getType()» «

par.name» «ENDFOREACH») {
4 «PROTECT CSTART "//" CEND "" ID getID((EObject)this)»
5 return «returnValue()»;
6 «ENDPROTECT»
7 «ELSE »
8 public void «name»(«FOREACH eParameters AS par SEPARATOR ’,’» «par.getType()» «

par.name» «ENDFOREACH») {
9 «PROTECT CSTART "//" CEND "" ID getID((EObject)this)»

10 «ENDPROTECT»
11 «ENDIF»
12 }
13«ENDDEFINE»

Listing 9.3.5: Protected text production of generating a method declaration for an EOperation.

this example the characters ‘//’. Thereafter, the ID keyword request the object ID which serves to
uniquely identify the source object for which text is generated (i.e., the operation in this example).
For that reason, the method getID() expects an EObject and is implemented as a Java extension
which determines a unique and stable ID for the object.
Inside the protection block, the text-generating rule may add text-producing instructions. This
is the case in Line 5. In this example, the return type of the method is not empty meaning a
value has to be returned by the method in order to compile the Java class without errors. The
method returnValue() determines the default return value for the type of the given operation.
The developer can change these text-productions manually which will not be overwritten by the
following text production. The keyword ENDPROTECT closes the protection block.

Variability Inside Protected Blocks It is important to notice, that also inside method bod-
ies conditional implementations may occur. For instance, if the database should print all its
contents, not every feature may be selected and accordingly several references are only valid if the
corresponding feature(s) are selected. As a consequence, when manually adding source code to
a protected block, the developer needs to enclose text corresponding with optional features with
respective preprocessor comments in the correct style.

Execution For executing incremental transformations which preserve manually added source
code in protected areas, the generator component of the MWE2 workflow needs to be modified
slightly, as presented in Listing 9.3.6: The workflow does not deviate much from the batch MWE2
workflow. For protecting text in protected blocks it suffices to add the parameter prSrcPaths to
the generator component as in Line 15. As a consequence, if executed again the workflow scans
the existing protected paths. If their ID matches the ID of the currently processed object and
ID of the currently processed protected region, the previously stored text will be added to the
matching section. Thus, it remains present in a subsequent execution.
Incremental MWE2 workflows are also capable to compare an old with a new version of a model
and to store a trace. However, for protecting regions with manually added text it suffices to
employ the ID-based mechanism.

IV Discussion

Based on the description of how to implement an aspect-oriented annotation propagation in Xpand,
this section discusses the results with respect to achieving commutativity. At first, the section
examines the properties of Xpand with respect to the computational model followed by giving an
outlook on the evaluation.

237

CHAPTER 9. IMPLEMENTATION

1 module de.ubt.ai1.ecore2Text.incr.Codegen
2 ...
3 Workflow {
4 bean = ...
5 // incremental text generation:
6 component = org.eclipse.xpand2.Generator {
7 id = "generator"
8 metaModel = org.eclipse.xtend.typesystem.emf.EmfRegistryMetaModel{}
9 expand = "templates::Main::main FOR model"

10 fileEncoding = "UTF-8"
11 outlet = {
12 path = ’${targetPath}’
13 postprocessor = org.eclipse.xpand2.output.JavaBeautifier{}
14 }
15 prSrcPaths = ’${targetPath}’ // consider protected paths in target model
16 advice = advices
17 }
18 }

Listing 9.3.6: MWE2 workflow for incremental Ecore to Java transformation.

Properties of Xpand Model-to-Text Transformations In the first place, it must be noted
that Xpand does not satisfy the computational model for aspect-oriented transformations com-
pletely with the following respects:

Transformation In Xpand, a define-block represents a text-producing rule. As such, only a
single source object is transformed into text and either matches the entry point rule or an invoked
rule. A rule is left preserving (Prop. 8.3.2) because the source model cannot be changed, however, it
can be invoked on itself (i.e., with the same input object). Thus, the same rule can be executed on
the same object multiple times which violates Prop. 8.3.1. Due to this capability, a finite number of
matches and a finite depth of the execution tree (i.e., violating Prop. 8.3.4) cannot be guaranteed
for a transformation written in Xpand generally. However, a transformation specification may
satisfy the computational model, nonetheless, if it does not employ recursive rules on the same
node. Thus, commutativity depends on the rules specified in a concrete transformation.

Non-Local Even though template definitions cannot be guarded with conditions, which hinder
locality, inside of expand declarations if -conditions may be implemented which vary the behavior
with respect to different properties of the matching source object. If upon filtering a condition is
satisfied but was not for the multi-variant source model or vice versa, the created text fragment will
be missing in the multi-variant source code but will be present in the transformed single-variant
source code.
In a similar way, an advice may change the implementation of a join point almost arbitrarily. An
advice possesses the power to remove the original text production completely and to replace it with
arbitrary text. As a consequence, the result of executing a single-variant transformation without
injected aspects and the multi-variant version with injected aspects may deviate which threatens
commutativity. Accordingly, injecting an advice may violate left-preservation (Prop. 8.3.2).

Non-Monotonic The Xpand syntax (without aspects) is monotonic. It does not offer language
constructs to delete elements. However, Xpand may violate the monotonic behavior of the trans-
formation (Prop. 8.3.9). As Xpand allows to employ extensions written in the GPL Xtend and in
Java, those extensions possess the power to modify the source model and the created target files.

Functional and Order-Preserving Xpand transformations are functional (Prop. 8.3.5) and
preserve the execution and text generation order (Prop. 8.3.8). Even if the execution of a rule
triggers an advice, for the same input node, the same rule generates the same text in the same
order.

238

9.4. SUMMARY

Evaluation Outlook Despite the fact that specifications written in Xpand may violate the
computational model, evaluation results have achieved 100% correctness in terms of commutativity
for the Graph product line [GW18a]. On the one hand, annotations are only provided to source
objects not to their attributes and, thus, satisfy the computational model. On the other hand, for
each annotated source node a define-block is used in the original transformation. Even though
a source object can match several define-blocks and accordingly be processed multiple times,
these blocks do not execute any other block and are implemented non-recursively. Therefore, the
transformation terminates and the annotations can be determined uniquely. Sec. 10.3.5 offers
a detailed examination of the already partially introduced Ecore to Java transformation and a
MoDisco Java model to Java source code generation.

9.4 Summary
On the whole, this chapter explains how we realized the different annotation propagation strategies
which were introduced theoretically in the preceding chapters. Sec. 9.2 presents an overview
of the MuVaTra framework which allows not only to realize the propagation based on traces
of any completeness level but also the aspect-oriented propagation and the bytecode analysis.
Although we employed the MDPLE tool Famile to realize the product lines and consequently
maintain its external annotation representation in form of F2DMM model, the framework offers
several possibilities, such as extension points and respective design patterns, to support different
annotation mapping mechanisms and further transformation languages. The subsequent section,
Sec. 9.3, explains how we realized the trace-based propagation, bytecode instruction analysis and
aspect-oriented propagation in detail. In this way it serves as example of how to replicate or
integrate the capabilities to server other MDPLE tools. The following chapter evaluates to what
extent the approaches meet the research objectives and employs the implementations presented
in this chapter to propagate the annotations of different subject product lines.

239

Chapter 10 Evaluation

Science, for me, gives a partial explanation for life.
In so far as it goes, it is based on fact, experience and experiment.

Rosalind Franklin

∼

This chapter evaluates whether and to what extent the proposed concepts and their
implementations satisfy the research objectives.

Accordingly, the concepts presented in Chp. 5-7 are examined with regards to being
automated, generic, and correct, and reuse existing technology. The evaluation con-
siders the approaches which we implemented as proof of concepts and which have not
been rendered as impractical before. Therefore, in the sequel, we examine the trace-
based propagation realization which regards complete and generation-complete traces
as well as the extension for incomplete traces. Furthermore, the analysis of EMFTVM
rules is discussed briefly and the aspect-oriented propagation in M2T transformations
is discussed extensively.

The results confirm that the main purpose of reducing the manual efforts can be
achieved with each of the proposed strategies. Even with incomplete traces more than
90% of the assigned annotations are computed correctly which also holds for the aspect-
oriented approach where non-local rules are employed. Surprisingly, in the examined
scenarios, a generation-complete trace suffices to satisfy commutativity to full extent.

The sequel starts with explaining the goal of the evaluation in Sec. 10.1 and continues
with describing the setup of the evaluation, including the implementation, the subject
product lines, and the transformation definitions in Sec. 10.2. While the following
section, Sec. 10.3 disseminates the results of the evaluation, Sec. 10.4, summarizes and
discusses them.

[Gre19], [GW19b], [GW19a] and [GW18a] lay the foundations of this chapter.

240

10.1. EVALUATION GOAL

10.1 Evaluation Goal

The evaluation checks whether and to what extent the research objectives are achieved in trans-
formation scenarios which deviate from the computational models. To recapitulate, the research
objective of this thesis is to develop methods which reuse (RO1) existing single-variant model
transformations in order to automatically (RO2) propagate annotations. These methods should
propagate annotations generically (RO3) and correctly (RO4).
The conceptual idea of trace-based propagation (c.f., Chp. 5), its extensions (c.f., Chp. 7) and
of aspect-oriented propagation (c.f., Chp. 8) demonstrate that the methodologies are automated
and do not modify the reused single-variant transformations technology but only exploit existing
capabilities. Thus, we achieve the reuse and automation objectives, RO1 and RO2, by the design
of the methods. Conversely, the correct and generic propagation (RO3 and RO4) depends on
the respective approach and genericity can partly be achieved with the implementation as the
following two sections discuss.

10.1.1 Genericity of Propagation

As first criterion, this section discusses to what extent the proposed approaches are generic.
The feature-based classification of multi-variant transformations, introduced in Sec. 4.3.2, clas-
sifies the scope of these transformations with respect to the transformation definition (i.e., the
transformation definition) and the language: An entirely generic solution propagates annotations
independently of the definition (i.e., independent of the metamodels over which it is defined) and
of the language. Therefore, the following paragraphs categorize to which extent the trace-based
propagation, the bytecode analysis and the aspect-oriented propagation are generic with respect
to these two criteria.

Trace-Based Propagation Firstly, the trace-based propagation is an entirely generic approach:
It does not rely on engine-specific traces but abstracts from the potentially distinct information
contained in traces written by different transformation execution environments. As a consequence,
the approach can be applied independently of a specific transformation language, such as ATL
or QVT-O, whenever information about corresponding source and target elements is available.
Additionally, since the only relevant information about the source objects recorded in the trace is
their annotation, no specific information about the metamodel they are instances of is required.
As the same holds for the target model, the approach works in a definition-independent way,
too. In sum, the trace-based approach, as well as the proposed completion strategies, which only
assume a tree-structured input model, are entirely generic.

Bytecode Instruction Analysis Secondly, the analysis of the ATL/EMFTVM bytecode model
is a language-specific but definition-independent approach. While we identify value assign-
ment patterns which may be used similarly in different transformation languages, we map them
onto the EMFTVM bytecode instructions only. Thus, the approach can be applied exactly to
ATL/EMFTVM transformation definitions and may have to be adapted to support other trans-
formation languages and their compilers. Nonetheless, the approach works independent of a
specific metamodel: The relevant information that is extracted by the analysis are the structural
features of the additionally extracted source object (of whatever type) and the structural feature
of the target object which is assigned a new value based on the source structural feature(s).

Aspect-Oriented Propagation Thirdly, the aspect-oriented approach is language-indepen-
dent and definition-independent. While we specified the aspect in the language Xpand and use
the language in the evaluation, the aspect can be defined in another aspect-oriented language in
the same way. Only the directives have to state the annotation according to the used preprocessor.
Furthermore, the kind of source metamodel and the type of target text which is generated do not
influence the mapping of the annotations onto the generated text.

241

CHAPTER 10. EVALUATION

Consequences In summary, the trace-based and aspect-oriented approaches work completely
generically (independent of the language and the definition) whereas the bytecode instructions
analysis is trimmed to a specific language.

10.1.2 Correctness of Propagation
As correctness criterion, commutativity must be satisfied. The transformed single-variant target
model and the derived single-variant target model must be equal up to isomorphism when being
abstracted as graphs.

Commuting Annotations The correctness of trace-based propagation involving transforma-
tion rules and traces which satisfy the computational model (c.f., Sec. 5.3.3) is formally proven
whereas its practical extensions dealing with incomplete trace information offer a high degree of
flexibility which mitigates proofs of commutativity in every situation. The extensions, which target
situations where no complete trace information is available, can satisfy commutativity, neverthe-
less, depending on the transformation definition and the source and target models. Similarly, M2T
transformations specified in Xpand may satisfy commutativity despite the fact that Xpand does
not satisfy the computational model for aspect-oriented propagation (Sec. 8.3.2) in its entirety.

First Evaluation Question: Correctness As a consequence, the relevant questions for eval-
uating the correctness are as follows:

EQ1 Does the propagation approach commute?

a To what extent is commutativity achieved? (What is the size of the absolute and the
severity error?)

b How much manual effort has to be invested to repair wrong annotations?
c Which completion strategy achieves the highest accuracy?

To measure, and thereby answer, the first main question, whether the propagation approach
commutes, we employ an evaluation framework (c.f., Sec. 10.2.1) which executes the commutativity
criterion (rigorously). As a result from comparing the filter-transform and transform-filter variants
in this framework, the quantitative error regarding the number of differences between each pair
of derived variants is measured and used to answer EQ1 a. Consulting the evaluation data in
more detail, allows to detect mismatches in the compared variants and to fix corresponding target
annotations based on that information and context knowledge. Counting this number allows to
answer EQ1 b and to compute the actual error measure of annotations with a wrong effect.
Finally, EQ1 c compares the computed error measures in each completion strategy (c.f., 7.3.3) to
determine which strategy performs best in terms of accuracy.
To validate the degree of correctness, the evaluation employs three error measures, an absolute
error, a severity error and the actual error:

Absolute Error The absolute error counts the number of feature configurations which violate
commutativity and weighs them against the number of all valid feature configurations. At this
coarse-grained level, it states how many percent of the feature configurations are erroneous.

Definition 10.1.1: Absolute Error

Let n be the number of all valid feature configurations for a given feature model and let w
be the number of feature configurations in which the filter-transform and transform-filter
models deviate. The absolute error errabs constitutes as follows:

errabs = w

n

242

10.1. EVALUATION GOAL

As a consequence, this measure may render a configuration as erroneous as soon as one out of
hundreds elements of one model differs from a counterpart in the model with which it is compared.
In the worst case, this may provoke an error of 100% even though only one annotations of the
multi-variant target model is not specific enough.

Severity Error For that reason, we have relaxed the error measure, to count the number of
detected differences of each feature configuration and weigh it against the number of all target
annotations in the multi-variant target model:

Definition 10.1.2: Severity Error

Let n be the number of all valid feature configurations for a given feature model. Let
|diff | be the number of differences between two models and |mt| be the number of all
target elements in the multi-variant model.
The severity error errsev constitutes as follows:

errsev =
∑n
i=1
|diffi|
|mt|

n

According to the definition, the severity error requires to determine the number of differences
between the model derived from the source model and transformed into the target model and the
model derived from the multi-variant target model. As the number of model elements in the two
compared models may deviate, we employ the number of all model elements in the superimposed
model as base line. Furthermore, it must be noted that the number of differences may depend on
the capabilities of the comparison tool.

Actual Error Since the number of differences depends on the accuracy of the comparison ap-
proach (e.g., the EMFCompare comparison mechanism), a third measure regards the actual num-
ber of annotations that have to be corrected in the multi-variant target model to achieve an
absolute error of 0%. This number is weighed with the number of all possible mapping elements
in form of the actual error.

Definition 10.1.3: Actual Error

Let #mapt be the number of all elements that can be annotated in the multi-variant target
model. Further, let aFc be the number of annotations that have to be corrected to achieve
commutativity.
The actual error erract constitutes as follows:

erract = aFc

#mapt

Compared to the absolute and severity error, the actual error does not measure the effect of an
annotation on the model elements but counts the actual number of annotations in the multi-variant
target model that threaten commutativity.

Remarks Three points have to be considered when computing the actual error: Firstly, the
error measure is only defined if it is possible to satisfy commutativity (errabs = 0%) with the
transformation at all. In case a constellation of annotations in the source model provokes different
behavior of the single-variant transformation when applied to the multi-variant and a single-variant
transformation, it is possible that commutativity cannot be satisfied by the means of any target
annotation. Then, the actual error cannot be computed.
Secondly, the number of all mapping elements mapt is higher than the number of annotations
assigned to objects only: mapt considers each element that can be annotated by the means of
the employed mapping mechanism. Accordingly, for instance, annotations which are mapped onto

243

CHAPTER 10. EVALUATION

crossreferences or structural features of an object are respected in the value, if those elements can
be annotated. As a further consequence, this number may not correspond with the number of
annotations which are mapped onto target elements by the propagation mechanism automatically.
However, the value is beneficial because it remains stable for the same target model regardless of
the propagation approach.
Thirdly, two annotations may be (syntactically) different but may be satisfied by the same set
of configurations. As a consequence, it is possible to change annotations in multiple ways to
achieve the same goal of commutativity. Thus, for measuring the actual error, on the one hand,
the developer has to adjust annotations manually and count how many annotations have to be
modified in order to compute the value. On the other hand, due to ambiguities, we assume,
that the developer modifies only a minimal set to satisfy commutativity and that the developers
determine meaningful annotations.

10.1.3 Propagation Benefit
Even though we have already stated that the strategies are automated, the benefits of the approach,
such as the saved manual effort, may be measured. Due to violations of the computational model
not all annotations may be computed correctly. For instance, the theoretical evaluation of accuracy
in computing missing annotations (c.f., Sec. 7.3.4) shows that some computed annotations are not
specific enough. Therefore, the second evaluation question considers how many of the annotations
are propagated correctly compared to the number that have to repaired manually.

Second Evaluation Question: Saved Manual Effort The main purpose of the automated
annotation propagation is to reduce the manual effort of annotating domain models in one product
line repeatedly. For that reason, the evaluation examines the following question, additionally:

EQ2 How much manual annotation effort is saved by the automated propagation?

To measure item EQ2, we compare the number of annotations that can be applied to the target
model with the number of annotations that are assigned correctly. As a consequence, the value of
the saved annotation effort is the inverted actual error (c.f., Def. 10.1.3):

Definition 10.1.4: Saved Annotation Effort

Let #mapt be the number of all elements that can be annotated in the multi-variant target
model. Further, let aFc be the number of annotations that have to be corrected to achieve
commutativity.
The saved annotation effort tsav constitutes as follows:

tsav = #mapt−aFc

#mapt

10.2 Evaluation Setup
For evaluating the goals, we employ laboratory experiments [SF18] which are conducted in our
evaluation framework. The measured results as well as the setup are openly available [Gre22].

Road Map The first part of this section (i.e., Sec. 10.2.1) presents the technical setup of the
evaluation, including a description of the machine executing the transformations used for eval-
uation and the implemented testing infrastructure which is used to measure to what extent the
propagated annotations suffice to satisfy commutativity in the subject systems. After presenting
the technical facets of the framework for evaluating commutativity, Sec. 10.2.2 introduces the sub-
ject product lines which are used to evaluate the correctness. To obtain a diverse set of evaluation
data, Sec. 10.2.3 further explains transformation definitions in various languages which convert
the respective source multi-variant product line models.

244

10.2. EVALUATION SETUP

equal?
+

differences

F

P*

Feature-
Configurator

Evaluator

gen-
FeatureConfigs

fcF

Filter filter SVTransformer

Comparator

transform

filter

compare

mapFG

MGSF

GS

S

mapFH

MHTF

HT

T

G'

H''

H'

Filter

input

operation

...interface

...data

Figure 10.2.1: Schematic overview of commutativity evaluation framework.

10.2.1 Commutativity Evaluation Framework

For conducting the evaluation automatically, we implemented an evaluation framework to execute
the commutativity criterion. This section illuminates the technical and conceptual characteristics
of the framework subsequently.

Technical Setup The quantitative evaluation of the trace-based and aspect-oriented propa-
gation is executed with the following technical setup: All transformations are conducted on an
Ubuntu 20.04.4 LTS 64bit operating system. An Intel Core i7-8550U CPU 1.80GHzx8 with 23.4
GiB of memory builds the key part of the computing hardware. The evaluation framework is
implemented in Eclipse Modeling Tools version 2021-12 (4.22.0).

Overview Fig. 10.2.1 provides an overview of the implementation of the evaluation framework.
Input to the framework are the resources of the multi-variant source and target models,MGSF

and
MHTF

, as well as the feature model (F) and the transformation definition (P∗) The evaluation
compares the transformed source product H ′ with the filtered target product H ′′ for each valid
feature configuration and manifests the results. A csv-file summarizes the results of comparing and
differentiating the single-variant models and answers the question to what extent commutativity
is satisfied in the examined scenario.
The following four parts offer more detail on each of the steps in the sequence they are executed.
Particularly, the following descriptions explain how the necessary interfaces, depicted as rectangles
in the figure, are realized as well as the representations of the generated artifacts and inputs, shown
as half-rounded rectangles.

I Feature Configuration Generation

In the first step of evaluating the commutativity criterion, all valid feature configurations are
created. Therefore, the feature model serves as input to the FeatureConfigurator and a set of
feature configurations, shown only as a single feature configuration, fcF in the figure, results as
output. If the set of optional features is large, which may make the consecutive comparison of all
filtered models infeasible, a respective realization of the interface may only copmute a significant
sample thereof.

245

CHAPTER 10. EVALUATION

II Filter Mechanism

The feature configurations are input to a filter mechanism which receives an annotated multi-
variant model as well as the feature configurations to create a single-variant model. The filter
removes all model elements of the multi-variant model carrying an annotation which does not
satisfy the given feature configuration to build the derived single-variant model. Depending on
the kind of target representation, one (model) filter mechanism may suffice or another will be
required. The latter may be the case if annotated source code should be configured which requires
a filter exhibiting preprocessing capabilities.
Accordingly, the second step of the evaluation framework filters the source and the target prod-
uct by each valid feature configuration. While the single-variant source model is transformed
thereafter, the derived single-variant target representation is compared with the result of this
transformation. The following three paragraphs present details how Famile realizes the model
filter and how we conditionally compiled the multi-variant source code.

Famile Filter The tool Famile employs a hierarchical filter, denoted as ConditionalCopier.
The mapping model stores a propagation mechanism which the copier uses to compute selection
states of a model element. The propagation mechanism may be executed in forward and backward
direction1 which either is able to override annotations top-down or bottom-up, respectively. As a
third propagation option, these dependencies can also be ignored. Two additional options allow
for assuming all mapping elements without an annotation to be included before the conditional
copier is executed and the possibility to propagate selection states transitively. Finally, Famile
allows to define context-specific repair operations in the separate DSL SDIRL which may help to
restore validity when the hierarchical filter would derive a model which violates constraints defined
in its metamodel, such as having dangling references.

Famile Propagation Mechanism The F2DMM models representing the examined subject
product lines (c.f., Sec. 10.2.2) employ the default propagation mechanism which propagates se-
lection states in forward direction transitively and includes incomplete mappings a priori (i.e.,
it assumes the annotation true). For instance, if an attribute mapping is not annotated, the
include-incomplete option assigns the annotation true implicitly such that the attribute will be
pertained in the filtered product if the annotation of its container, the object mapping, satisfies the
feature configuration. Please note: Although the include-incomplete option has the same effect
as applying the parent annotation, we argue that our completion strategies are tool-independent
and explicitly state the annotation whereas the actual annotation with the Famile propagation
mechanism results from a transient computation which is not visible to the user.
Based on the forward, transitive and include-incomplete configuration, our default FamileFilter
mechanism executes the ConditionalCopier. This class copies the domain model and includes
only those element, for which a SELECTED-state is computed when applying a feature configuration
to the mapping model. The mapping models of the subject product lines are not enriched with
an SDIRL-model, such that no metamodel-specific repair operations are available.

Preprocessor Filter for Source Code In contrast, for ‘filtering’ source code we employ pre-
processing technology that allows for conditional compilation and to derive source code variants
from the multi-variant source code platform. Since Java does not comprise a built-in preprocessor
and the support of (previously) existing Java Comment preprocessors discontinued or requires
specific execution setups, such as Maven projects, a standalone Xtext-based preprocessor was
developed in a student project supervised by the author of this thesis.
The preprocessor is flexible inasmuch as it can be configured to adjust the symbols which open
and close comments in the programming language and the style of the preprocessor contents. It
receives a flag-file which states the name of the features literally and a binary selection state for
each of these features. However, the preprocessor itself is unaware of the feature model. Thus, it

1 Forward propagation in Famile means that an active mapping element, which requires an inactive mapping
element, becomes inactive, too. Vice versa, the inactive mapping element becomes active in case the reverse
propagation strategy is selected.

246

10.2. EVALUATION SETUP

cannot check the completeness of the feature selection in the flag-file which has to be ensured by
the facility which transforms a feature configuration into that flag-file. The second configuration
file of the preprocessor determines the escape sequences which mark comments in the source code
and the keywords to open and close preprocessor directives in these comments. Based on these
configuration options, the preprocessor cannot only be used for Java source code files but also for
different languages without such built-in capabilities, such as Python.

III Single-Variant Transformation

The third step of the evaluation iterates the set of derived source variants and transforms them
into the target representation. This step employs the same transformation definition which was
reused to transform the multi-variant source model into the multi-variant target model.
Accordingly, this step employs a realization of the SVTransformer (c.f., Sec. 9.2.2) which created
the multi-variant target model. This means that it must be possible to initiate the transformation
engine programmatically. For instance, the documentations of the ATL/EMFTVM and the QVT-
O engines describe how to execute a transformation definition written in its language based on a
Java program. On the contrary, QVT-R transformations, which should be executed with medini
QVT, cannot be executed in a recent Eclipse environment without significant adaptations, such as
downgrading the versions of the employed metamodels (if registered ones are used) and building
an environment which employs a Java version smaller than Java 1.8. For that reason, this step of
the evaluation framework (re-)uses only the single-variant transformers, which are implemented as
realizations of the MuVaTra SVTransformer interface (i.e., a BXtend, ATL/EMFTVM and QVT-
O but no QVT-R transformer). In case of M2T transformations, we employ an XPandTransformer
which initiates a given MWE2-workflow with the source model and the path of the target directory
given as further parameters.

IV Comparison

After having transformed the derived source models, the fourth step compares the transformed
(H ′) with the filtered target model (H ′′). Accordingly, this step compares either two models or
the Java classes contained in two directories.

EMF Compare In case of comparing two models, we employ the capabilities of the EMF-
Compare framework (c.f., Sec. 7.4.3). While this framework, which serves mainly for versioning
models, is highly configurable and can be customized for performing metamodel-specific compar-
isons, we employ one of its default comparison methods to compare two models conforming to the
same target metamodel. As a consequence of comparing equivalent model elements with different
(or even no) UUIDs, we do not use these values to compare the model elements but use the default
property-based comparison. Thus, the framework tries to match two objects based on their kinds
of structural features and their values.
According to the developer guide of EMFCompare [200+], the comparison consists of multiple
steps which first matches EObjects and creates an initial difference model based on the computed
mappings. Thereafter, the comparison method iterates the detected differences and tries to deter-
mine equivalent changes which produce the same result in the end. Those differences are collected
in form of an equivalence in the resulting difference model. Besides matches, equivalences and
differences the resulting comparison model may contain conflicts arising from differences which
are not recognized as an equivalence. In concrete, the resulting object of type Comparison allows
to retrieve the following information:

• getDifferences(), which returns all objects of type Difference and its children.
• getEquivalences(), which returns the list of contained equivalences.
• getMatches(), which returns the list of all recognized matching objects.
• getConflicts(), which returns a list of conflicts with a version stored at a repository.

While the number of differences and equivalences may vary in our comparison results, the number
of matches is always one (and split up in more fine-grained submatches) and the number of conflicts
is always zero. The latter is only available if a one local model file is compared with a remote one
stored in a repository.

247

CHAPTER 10. EVALUATION

'real'

difference

equivalence

Figure 10.2.2: EMFCompare difference model of transform-filter and filter-transform database
content variants.

Example 10.2.1: EMFCompare Difference Model

As an example of a comparison outcome, Fig. 10.2.2 displays a difference model created by
the EMFCompare framework using the default property-based comparison. The difference

248

10.2. EVALUATION SETUP

model results from comparing the transformed and the filtered SQL models resulting for a
configuration which deselects the features Wildlife and Book in the DBC product line.
The figure demonstrates two kinds of mismatches: real differences and equivalences. Real
differences occur in this transformation in the EObject-table. In this case, no columns for
the classes Book and Wildlife are present in the transformed variant, depicted on the left
side of the figure, whereas they are present in the filtered target variant, depicted on the
right side. This is a result from applying the parent annotation mapped onto the EObject
table (i.e., DBContent) onto the column and foreign key which are not linked by a trace
element and, thus, are annotated by the completion strategy. Annotations provoking a real
difference should be repaired to achieve commuting transformations.
In contrast, the EMFCompare mechanism detects and records differences which are recog-
nized as equivalences in the consecutive comparison step. The difference model exemplifies
this for the foreign key of the table Domesticated. While the transformed and filtered prod-
uct store exactly the same foreign key, the comparison model records not only a match but
also an add- as well as delete-difference. These two differences are recognized as equiva-
lences and recorded this way at the bottom of the model. Consequently, this equivalence
does not affect the commutativity of the transformation.

For computing the correctness in terms of the size of the error, we employ the number of adjusted
differences. In concrete, we subtract the number of differences which were recognized as equivalent
from the total number of differences stored for the comparison object. This allows to compute the
severity error and to draw a conclusion about the error introduced to wrong annotations.

Source Code Comparison In contrast to comparing two models with the model comparison
framework EMFCompare, comparing two source code projects requires to compare the Java source
code syntactically. For each feature configuration the files of the created source code project are
compared with the ones filtered from the multi-variant target source code.
The comparison removes all white spaces, in order to mitigate counting empty lines which may be
introduced by the source code generator, inadvertently. Moreover, each line containing a comment
is removed already during the derivation of the configured product2. Furthermore, the comparison
removes the contents of protected regions, such that only the generated text without preprocessor
comments is compared and additional lines and any other white spaces can be neglected. After
this step, the default Java String compares the resulting Strings syntactically. Despite the pre-
processing and although a number is computed by the String comparison, the returned difference
value3 does not allow to draw a conclusion on the severity of the error. Therefore, we count only
the number of files incorporating a difference, sum it up and weigh it against the number of all
files that are created during the commutativity check. Sec. 10.2.1, I provides the details on the
computed error measures for evaluating M2T transformations.
Please note: This form of comparison is performed right after the batch generation of the source
code. If source code was added manually to the generated multi-variant source code (e.g., the
body of a method), a comparison after a subsequent derivation would render a configuration as
erroneous because this information is not present in the source model and therefore not reflected
in the source code generated for a filtered source variant.

Result Manifestation In the last step, the evaluation framework measures the correctness by
counting the number of differences recorded in the performed comparisons. Based on that number,
it computes the absolute and the severity error.
For verifying the result, the model comparison persists the created filtered and transformed vari-
ants as well as the difference model. The persistence of the compared variants allows to inspect

2 The default derivation mechanism of the FlePP preprocessor retains the comments holding preprocessor directives
in the source code to allow for reconfiguring the source code. Therefore, we added a postprocess which removes
all comments which either mention a directive or invisible source code fragments which are deselected in the
configuration.

3 The distance between the first two non-matching characters constitutes the returned value of the default String
comparison (str.compareTo(str2).)

249

CHAPTER 10. EVALUATION

individual configurations and the resulting derived variants manually. This information serves the
developer to gain knowledge about wrong annotations in the target model.
The text comparison also persists the derived variants in order to inspect the differences. The
error values are computed similarly but not equally as the measures for comparing models. Since
the EMFCompare difference model counts the number of differences explicitly it is possible to
regard that number per configuration. Conversely, the text comparison requires to compare the
contents of different files per configuration. Since we employ the default String comparison at
the granularity of file content, the error measure counts how many files are mismatching per
configuration. Both adapted measures for the absolute and the severity error are stored in the
resulting comparison file.

10.2.2 Product Lines
To diversify the evaluation, we select three product line models. They range from small to medium
size in terms of the number of valid configurations. Furthermore, the feature models are as diverse
as to incorporate all possible kinds of relationships between features and the assigned annotations
to the model elements. The three parts of this section introduce the Database Content, Graph
and Home Automation System product lines subsequently in the mentioned order.

I Database Content Product Line

The product line for Database Contents (DBC) product line is introduced in this thesis to demon-
strate various properties of product line engineering and to eventually illustrate the contributed
propagation mechanisms. Thus, it serves as one subject system for evaluating the propagation
mechanisms. The product line allows to configure (i.e., filter) the contents of a database which
may comprise data about persons and animals as well as different forms of media. For the sake of
completeness, this sections summarizes its important characteristics for evaluating commutativity.

Statistics Feature Model The feature model comprises 14 features in total, out of which 12
are optional. Only the child feature name of the feature Person is mandatory in case the feature
Person is selected.
The hierarchical constraints encompass the necessity that at least one feature directly underneath
the root feature has to be selected (inclusive Or-group). Similarly, at least one feature of the
group Media and Person has to be selected. The feature Animal forms the root of an Xor-group
where at maximum one feature can be selected (i.e., Domesticated or Wildlife). Moreover, a
crosstree constraint requires that whenever the feature Pet is selected the feature Domesticated
(and transitively the feature Animal) is selected, too. As a result, the feature model constitutes
234 valid feature configurations.
Please note: The evaluation does not regard the extension of the feature model with the optional
feature MultipleNames which exemplified a fine-grained mapping. As the evaluation does not ex-
amine the analysis of bytecode instructions for propagating fine-grained annotations, as explained
in the final part of Sec. 9.3.2, the additional feature would not be considered in the propagation.

Statistics F2DMM and Domain Models Fig. 9.1.2 demonstrates the feature and mapping
model of the DBC product line in tree representation as represented in the F2DMM editor. The
Ecore domain model comprises ten classes, one enumeration type, 23 structural features and one
operation. Five out of the ten classes inherit from another class. In total, the elements together
with the literals and explicit inheritance objects sum up to 69 object mappings. As Table 10.1
enumerates, in total, the mapping model encompasses 200 source mapping elements (including
those for structural features).
The UML class model which results from the Ecore2UML ATL/EMFTVM model transformation
(c.f., second part of Sec. 10.2.3) is further transformed into a Java domain and mapping model
(c.f., third part of Sec. 10.2.3). The input UML source mapping model of the DBC product line
comprises 301 mapping elements.
In summary, it is a medium-sized artificial product line.

250

10.2. EVALUATION SETUP

Table 10.1: Overview of subject product lines model statistics. The Database Content (DBC) and
Graph product line originally conform to the Ecore metamodel and are transformed into UML
models for further processing, the HAS model conforms to the UML metamodel.

Product #features n |ms| #maps #maps
Line (optional) (all valid fc) (Ecore model) (UML class model)
DBC 14 (12) 234 69 200 301
Graph 14 (10) 180 84 239 368
HAS 25 (21) 16560 221 – 559

II Graph Product Line

The product line for Graphs [LB01] allows to build different types of graphs. A Graph can
possess colored nodes, weighted or directed edges and allows to perform Graph algorithms, such
as different search mechanisms. Besides a BFS or DFS, which can be performed on the Graph,
the class Algorithm offers distinct methods to execute graph algorithms, such as computing a
minimum spanning tree. Fig. 10.2.3 demonstrates the corresponding mapping and domain model
visualized in the Famile F2DMM editor.

Graph feature model Graph mapping model

Figure 10.2.3: Graph product line feature model and F2DMM model.

251

CHAPTER 10. EVALUATION

Statistics Feature Model The feature model comprises 14 features in total, out of which ten
are optional. The hierarchical constraints encompass an OR-group to refine the properties of edges
which can be weighted, directed or both, an XOR-group for the search mechanism, which is either
a DFS or a BFS search as well as another OR-group for realizing different algorithms. Furthermore,
crosstree constraints foster that the features ShortestPath requires the feature Weighted whereas
the feature Cycle and the feature Transpose each require the feature Directed.
As a result, the feature model constitutes 180 valid feature configurations. Although the DBC and
the Graph product line comprise the same number of optional features, the Graph product line
allows for less valid configurations due to the higher number of constraints in its feature model.

Statistics F2DMM and Domain Models As Fig. 10.2.3 displays, the Ecore domain model
comprises eight classes without inheritance relationships, eleven operations and 22 structural
features resulting in 84 object mappings for model elements. In total, the mapping model encom-
passes 239 mapping elements which include not only mappings for the EObjects but also for their
structural features.
Similar as in the DBC product line, the UML class model which results from the Ecore2UML
ATL/EMFTVM model transformation is transformed into a Java domain and mapping model.
The input mapping model of the Graph UML class model comprises 130 object mappings and 368
mapping elements, in total.
Altogether, the product line is medium-sized and can be employed in real-world applications to
derive variants of Graphs and implement the method stubs for the required algorithms.

III Home Automation System Product Line

In their foundational book for product line engineering, Pohl et al. [PBL05] describe a product
line which realizes Home Automation Systems (HAS). The contents of this product line were
reconstructed as UML package, class and state models at the Chair of Applied Computer Science
I of the University of Bayreuth. We employ this product line to further evaluate the trace-based
propagation approaches based on a larger and more complex subject and transform the HAS class
model into a Java MoDisco model.
Fig. 10.2.4 depicts the feature model as well as the F2DMM model at the granularity of classes.
The HAS requires a possibility to connect remotely and an identification mechanism. Furthermore,
it can control different kinds of peripherals, such as the heating and air conditioning systems and
a microwave oven. Connections can be secured via VPN or SSH and add-on packages may allow
controlling the system through apps or incorporating weather monitoring.

Statistics Feature Model The feature model comprises 25 features with 12 attributes. 21
features are optional. Furthermore, the following constraints are present:

• the feature IEEE 11b requires the feature IEEE 11a
• the feature IEEE 11g requires the features IEEE 11b and IEEE 11a
• at least one and at maximum two identification mechanisms can be selected
• the features MagneticCard and FingerprintScanner both exclude the feature Keypad
• the feature SecureConnection builds an XOR-group allowing for only one of either the SSH

or the VPN feature to be selected at the same time
• the feature Add-onPackage constitutes an XOR-group allowing for only one of is children

features to be selected

Due to these constraints, the feature model compiles 16560 valid feature configurations.

Statistics F2DMM and Domain Models Fig. 10.2.4 displays the HAS feature model and
its F2DMM model, which demonstrates that the domain model comprises a plethora of distinct
elements. The UML model organizes 15 packages, 36 classes and interfaces, five associations as
well as five nested classes. In addition, the model comprises operations and structural features
as well as 23 generalizations and one interface realization. The three classes, MicrowaveOven,
TemperatureConditioner and RollingShutters, declare their behavior by the means of a state

252

10.2. EVALUATION SETUP

HAS feature model HAS mapping model

Figure 10.2.4: Home Automation System product line feature model and F2DMM model.

machine which will not be transformed by the UML2Java transformation (c.f., third part of
Sec. 10.2.3). Further operations and properties present on the classifiers sum up to 221 model
elements in total and a total number of 559 source mapping elements.

Annotations Many of the features are mapped 1:1 onto equally or similarly named packages
and classes. Therefore, the remainder highlights annotations which deviate from this behavior:
The package wifi is present in variants derived from configurations which either select the feature
Wireless or Bluetooth. Similarly, the package cond comprises implementations to realize the
air conditioning control as well as the heating control. Therefore, the two respective features are
combined in a disjunctive expression and mapped onto the respective packages. Furthermore,
the interface SecureConnectionProvider realizes the Singleton design pattern. Thus, it com-
prises a static class field which requires the feature VPN to be selected, too. Consequently, the
feature expression VPN or "Secure Connection" is mapped onto the corresponding property.
The BluetoothConnector specializes the AbstractWifiConnector. Accordingly, the expression
Bluetooth and Wireless is mapped onto the contained generalization.

Summary Altogether, the product line is medium-sized. Although the number of 16560 possible
configurations is almost 100 times larger than the number of configurations in the Graph product
line, it is still not considered of large size because it does not comprise hundreds of optional
features resulting in millions of configurations that can be created. In contrast to the DBC and
Graph product lines, the feature model incorporates excludes-dependencies as constraints. Thus,
the design complements the selection of feature models to cover each type of constraint at least
once in an examined product line. Additionally, as the last row of Table 10.8 enumerates, the
domain model and mapping model establish a medium-sized system control product line, which
is an experimental but real-life oriented subject system.

253

CHAPTER 10. EVALUATION

10.2.3 Model-To-Model Transformations
In order to further diversify the evaluation setup and to give evidence for language- and definition-
independence of the propagation approaches, we examine three kinds of M2M transformations and
vary the transformation languages.

Road Map On the one hand, we reuse and re-implemented the model transformation definition
which is commonly used for demonstrating the capabilities and syntax of model transformation lan-
guages: It transforms class models into a relational database schema to establish object-relational
mappings. The first part of this section describes the specifics of the Ecore2SQL transformation
which results from harmonizing and employing an existing bidirectional version for this task.
On the other hand, the evaluation examines the behavior in an Ecore2UML class model transfor-
mation to refine the Ecore source models. The specific of this transformation are explained in
the second part of this section. Finally, an already existing UML class model to Java MoDisco
transformation turns the resulting UML class model into a Java model. The third part of this
section describes details of this UML2Java transformation.
The three parts are organized in the same way: they first present details of the metamodel
and describe thereafter how the rules generate target elements from the source elements. As we
employ a trace-based propagation, next the information stored in the resulting traces is sketched.
Furthermore, if language-specific behavior is relevant, the closing of the part will shed light on it.

I Ecore to Relational Database Transformations

Several transformation language documentations employ the class model to relational database
schema transformation to demonstrate the syntax and capabilities of their language. To em-
ploy these transformations and allow for justified comparisons, we have streamlined an existing
ATL transformation [INR05], as well as a similar QVT-O Eclipse example, which both transform
simplified forms of class models into a relational database schema. The resulting harmonized
transformation definitions, denoted as Ecore2SQL transformation in the sequel, transform an
Ecore class model into a metamodel representing relational databases, which is described in the
following paragraph. The subsequent paragraphs elaborate on the details of the reused BXtend
and the re-implemented ATL/EMFTVM and QVT-O definitions, respectively.

Relational Database Schema Metamodel For representing relational database schemata,
we employ an already existing metamodel [Wes15], denoted as SQL metamodel, which conforms
to the Ecore meta-metamodel. The metamodel represents the target of a bidirectional incremental
transformation specified in QVT-R and was used to specify the same transformation behavior in
a BXtend transformation in a student project.

Schema

Annotation

annotation:String

ModelElement

PrimaryKey

1 owningModelElement

Table ForeignKey

Column

type:String
properties: Property[0..*]

NamedElement

name:String

1
owningSchema ownedAnnotations 0..*

1..* ownedTables

1..* ownedColumns

1
owningTable

Key
1..*

keys

«enumeration»

Property

NotNull
AutoIncrement
Unique

«enumeration»

Action

Cascade
SetNull

Event

condition:Condition
action: Action

«enumeration»

Condition

Delete
Update

0..1
ownedPrimaryKey

0..* ownedForeignKey

1
column

1 owningTable

1 owningTable
0..* ownedEvents

1 owningForeignKey

Figure 10.2.5: Relational database schema metamodel.

Fig. 10.2.5 represents the main elements of the metamodel. Each model element may carry up to
several annotations which help to uniquely transform one of its instances into a Ecore model in

254

10.2. EVALUATION SETUP

the backward direction. In our transformation definitions we assign these annotations but do not
consider the backward transformation.
A Schema forms the root of each instance and contains several tables. Each table comprises
columns, a unique primary key and up to several foreign keys. A column is of a certain type, stored
as String literal, and owns properties. Furthermore, it may serve as the key for other tables. For
instance, typically a column named ‘id’ serves as primary key of a regular table. While the primary
key belongs uniquely to a table, the foreign key references the column of another table in addition
and possesses several events which perform an action for a given condition. For instance, an event
may be triggered upon a delete-action which may cause a cascading deletion of all corresponding
columns and tables.

Common Transformation Rules The three transformation languages compose a different
number of rules to achieve the same SQL target model. Therefore, the following paragraphs
summarize the general behavior of the Ecore2SQL transformation definition [Wes15].
The transformation constructs the following mappings:

1. EPackage: Schema
2. The Schema maintains an object table, for managing the unique ID’s of each table
3. EClass: Table including a PrimaryKey which is a column named id of type int.
4. Inheritance:

• the table of a root class (i.e., inheriting from EObject) possesses a foreign key into the
object table

• table of a specific class possesses a foreign key into the table representing the superType

5. Single-Valued EAttribute: Column
6. Containment EReference: Column and ForeignKey of the table representing the opposite

contained class
7. Single-valued, unidirectional, non-containment EReference: Column and ForeignKey
8. Remaining types of EReference: Table. The rules must ensure to create only one table for

a bidirectional reference.

Accordingly, the transformation assumes the following facts:

• single, unique package which serves as root of the class model
• single inheritance
• structural features are either single- or multi-valued; any specific value as upper bound (e.g.,

five first names) can not be fostered

As a consequence, additionally neither enumerations, datatypes, operations, nor attributes with
an enumeration type are transformed.
The following explanations describe in detail how the BXtend definition transforms an Ecore
class model into a corresponding SQL model. While the first paragraphs illuminate the BX-
tend transformation in detail, the subsequent paragraphs focus on implementation details of the
ATL/EMFTVM and QVT-O specifications.

BXtend The reused BXtend transformation composes five Xtend classes which implement the
rules to transform packages, classes, the inheritance relationships, attributes and references in the
given order. It implements the same behavior as the QVT-R transformation [Wes15]. On the
one hand, the rules explicitly implement the incremental behavior by checking whether elements,
which should be created, exist already and only modify their properties in case they exist. On the
other hand, the rules implement the backward direction which we do not regard in the sequel.
In addition, each of the classes representing a rule inherits from the class Elem2Elem. This
abstract class offers functionality to maintain the source and target model. It generates and
updates trace information generically and allows to retrieve source and target elements from a
given trace element, denoted as Corr(espondence) object.

255

CHAPTER 10. EVALUATION

Transforming EPackagess The rule implemented in the class Package2Schema creates a schema
for each Ecore package and inserts a table, named EObject, which owns an id column of type
int and the properties NOT_NULL and AUTO_INCREMENT. Furthermore, the schema receives the
annotation package for representing the source object type from which it was created.

Transforming EClasses The rule executed in the second place transforms each class into a
table. As an example, Listing 10.2.1 presents the implementation of the corresponding forward
BXtend rule of the class Class2Table. Line 4 either retrieves the table from the trace or creates a
new one whereas Line 9 adds the table to the schema which was created for the package containing
the processed class. Furthermore, for each EClass, the rule adds a primary key as well as the
annotation class in Lines 12 and 14, respectively. The method in Line 12 creates a primary key
which is named id, of type int and possesses the property NOT_NULL. If the object table does not
own a reference key of the class yet, it will be created in Lines 18-21 or its properties are updated
in the following lines.

Listing 10.2.1: BXtend forward transformation rule creating a Table for a given EClass.
1 override sourceToTarget() {
2 sourceModel.allContents.filter(typeof(EClass)).forEach[ec |
3 val corr = ec.getOrCreateCorrModelElement(ruleID)
4 val tbl = corr.getOrCreateTargetElem(targetPackage.table) as Table
5 tbl.name = ec.name;
6

7 val schema = (ec.EPackage.corrModelElem.targetElement as Schema)
8 if (!schema.ownedTables.contains(tbl))
9 schema.ownedTables += tbl

10

11 if (tbl.ownedPrimaryKey === null)
12 tbl.createPrimaryKeyAttr
13 if (tbl.ownedAnnotations.size == 0)
14 tbl.addAnnotations(Arrays.asList("class", ec.kind))
15

16 val key = tbl.referencingForeignKeys.findFirst[k |
17 k.owningTable == schema.eObjectTable]
18 if (key === null) {
19 val col = schema.eObjectTable.createForeignKeyAttr(tbl.name, tbl)
20 col.properties.clear
21 col.properties += Property.UNIQUE
22 } else {
23 key.column.name = tbl.name
24 key.column.properties += Property.UNIQUE
25 key.referencedTable = tbl
26 }
27]
28 }

Transforming Class Inheritance In the set of subsequently executed rules, for each class
which inherits from another class (i.e., the size of the eSuperTypes is larger than zero), the
rule in class Generalization2Realization creates a foreign key. This key references the table
representing the super class and is stored in the table representing the sub class. The column id
of the super table serves as column referenced by the foreign key. If a class does not inherit from
another class, a similar foreign key will be created which references a corresponding column in
the object table and carries the annotation root. Each of the foreign keys triggers a cascading
deletion, represented as Event. Accordingly, whenever one of the following rules creates a foreign
key, additionally an event is created.

Transforming EAttributes Next, the transformation processes the attributes: A column is
created for a single-valued attribute. The rule assigns its name and determines the type which

256

10.2. EVALUATION SETUP

transforms the Ecore primitive datatypes, EInt and ELong into the String ‘int’, the EBoolean into
‘boolean’, the EDate into ‘data’, the EString into ‘varchar(30)’ and EDouble into ‘double’. In
addition, the rule assigns the annotations attribute and single.
If the attribute is multi-valued, instead, the rule creates a table. The rule combines the name of
the containing class with the name of the attribute and assigns it as name of the table as well as
the annotations attribute and multi. Furthermore, the rule creates an id-column and assigns
the table as owner as well as a foreign key which is contained in the created table and references
the table, which was created for the class containing the processed attribute as well as the created
id-column as column.

Transforming EReferences In the end, the transformation class Reference2Relation handles
EReferences. It distinguishes containment from uni- and bidirectional crossreferences as well as
the cardinality of the referenced elements.
For containment references the transformation creates a column. The assigned name depends on
the directionality of the reference. It combines the name of the reference with the suffix _inverse
in case of a unidirectional reference whereas the name of the reference name is concatenated with
the literal _inverse_ and the name of the opposite reference. The column is inserted into the
table that represents the class of the referenced type. Furthermore, the rule inserts an additionally
created foreign key which mentions the created column as column and references the table which
represents the containing class of the transformed reference. The same rule is applied for single-
and multi-valued references which yield only different annotations stored in the foreign key and
the column, stating either single or multi with respect to the upper bound of the attribute.
Ex. 10.2.2 illustrates the results of transforming different kinds of references.

Example 10.2.2: Created SQL Elements for Ecore References

On the left, Fig. 10.2.6 shows the element resulting from transforming the containment
reference between the class DatabaseContent of our demonstrating example and the class
Book. The table which was created for the class Book contains a column which states that
an inverse relationship exists between the database and the book table as well as a foreign
key which references the database table and stores the column. The main target element
that is recorded in the trace is the created column in the table Book.

The transformation of a single-valued unidirectional crossreference behaves similarly as the trans-
formation of a single-valued attribute. The rule creates a column which is owned by the table
representing the class which contains the reference as well as a foreign key which references the
table created for the referenced type.
Instead, a multi-valued unidirectional crossreference provokes the creation of a table. The table is
called by the name of the containing class combined with the reference name and is inserted into
the schema. The table receives a foreign key named, id, which references the table representing
the containing class, as well as a second foreign key, named reference which references the table
representing the referenced type of the processed EReference. As annotation, the table stores the
strings cross, multi and unidirectional.
Finally, a bidirectional crossreference is transformed into a table, which carries a name composed
of the opposite reference name and the reference name. The BXtend rule ensures that only one of
both references creates a table by comparing the names of the processed and the opposite reference
and only transforming the one with a smaller String comparison value. It creates a source and
a target column as well as corresponding foreign keys. The source foreign key references the
table representing the containing class of the processed reference whereas the target foreign key
references the table representing the referenced type. Both columns must not be null. The table
carries the annotations cross and bidirectional as well as details about the multiplicity of the
two ends of the reference.

257

CHAPTER 10. EVALUATION

books
Book

0..*

 DatabaseContent

(unidirectional) containment (bidirectional) crossreference

owner
Person

0..1

 Domesticated
0..*

pets

(bidirectional) crossreference(unidirectional) containment

Figure 10.2.6: Transformed EReferences into columns, foreign keys, events, and tables.

Example 10.2.3: SQL-Table Created for the Bidirectional Crossreference in
DBC Product Line

Fig. 10.2.6 further depicts an example of a transformed bidirectional crossreference on the
right side. In the example the reference between the classes Domesticated and Person
which declares the ownership of a pet is transformed.
The rule turns the corssreference into a table which possesses two columns and two for-
eign keys. While one foreign key references the table which was created for the class
Domesticated, the second foreign key references the table Person. The corresponding
columns are denoted as source and target, respectively.
The sql annotations declare the type of the transformed reference. In this case a do-
mesticated pet belongs to exactly one person. Therefore, the sql annotations state
forwardSingle for the reference to the class Person and backwardMulti for the refer-
ence to the class Domesticated.

Resulting Trace To this end, relevant information for propagating annotations resides in the
incrementally maintained trace. Since the correspondence model (i.e., the trace information)
created by BXtend contains only 1:1 correspondences, it does not record all elements created by
a rule application. In concrete, the incomplete trace stores the following correspondences:

• EPackage ⇔ Schema

258

10.2. EVALUATION SETUP

• EClass ⇔ Table
• EAttribute ⇔

– single-valued: Column
– multi-valued: Table

• EReference ⇔
– containment: Column
– single-valued unidirectional: Column
– multi-valued unidirectional: Table
– any other: Table

Accordingly, the trace maps an EPackage and an EClass onto a Schema and a Table, respectively,
whereas for references and attributes the mapping depends on their meta structural features. The
trace records a Column as target element in case the EAttribute is single-valued and a Table if it
is multi-valued. Similarly, while a containment reference or a single-valued unidirectional reference
map onto a Column, any other kind of reference maps onto a Table.

Trace Table Table 10.2 summarizes these trace mappings in the first and second column,
where the former states the source element and the latter the target element. The remaining
objects which are created by the respective rules are not recorded in the BXtend trace but in
the ATL/EMFTVM trace. The table enumerates these elements in the third column. The fol-
lowing paragraphs illuminate the ATL/EMFTVM and QVT-O transformations, particularly, the
generated trace information.

ATL/EMFTVM We tried to reuse the Class2Relational transformation of the ATL zoo to
employ an existing transformation definition. However, streamlining was hardly possible because
the metamodels as well as the behavior deviate almost completely from the more fine-grained BX-
tend definition. Therefore, we (re-)implemented the transformation and used the ATL/EMFTVM
compiler for translating and executing the transformation.
In order to create trace elements for each source element transformed by a rule, we did not
employ called or lazy rules and refrained from storing parameters in helpers. Furthermore, the
ATL/EMFTVM compiler only executes a subset of the functionality of the default ATL compi-
lation engine. For instance, accessing elements stored in helpers and retrieving them in another
rule is not supported. Consequently, we use only one helper without side effects to retrieve the
String representation of an sql type corresponding with a given primitive EType. Moreover, we
only accessed trace elements in do-blocks of the specification. This helps to assign, for instance,
the table created for a bidirectional or multi-valued reference in the corresponding schema.
The generation-complete trace resulting from an Ecore2SQL implementation comprises mappings,
which record each of the specified objects of the to-pattern. Table 10.2 enumerates the target
elements which are mapped in the ATL/EMFTVM trace in the third column.
According to the rules, the transformation creates a Schema as well as an EObject-Table, a Column
named id, a PrimaryKey and an annotation, stating the source element, as target element for a
given source EPackage. Consequently, the ATL/EMFTVM trace records those elements as targets
of a trace link as shown in the first row of Table 10.2. Similarly, the following rows of the table
enumerate the target elements which are created for a source element of the type stated in the
first column.

QVT Operational Mappings We have also re-implemented the transformation in QVT Op-
erational Mappings. Similar as the proposed ATL class to relational database transformation
example of the ATL zoo, the example provided in the QVT standard, which can be downloaded
as an example Eclipse project, uses a simplified class and a different relational database meta-
model. Therefore, we streamlined the transformation, too.
The implementation of the transformation definition can vary because different language con-
structs can be employed to achieve the same goal. In addition, the type of specified rules influences
the contents of the trace strongly. Ex. 10.2.4 demonstrates how the rule specification can vary:

259

CHAPTER 10. EVALUATION

Table 10.2: Trace information for the Ecore2SQL transformation persisted by the execution en-
gines for the languages BXtend, ATL/EMFTVM and QVT-O.

Source BXtend ATL/EMFTVM and QVT-O QVT-O
Element (created target elements) (context elements)

EPackage Schema Schema, object-Table, id-Column, PrimaryKey,
package-Annotation

EClass Table Table, id-Column, PrimaryKey, object-Column, object-Table,
ForeignKey(obj.Table), ForeignKey(loc. inheritance), Schema
two delete-Events, three Annotations

EAttribute,
single-valued

Column Column, two Annotations class-Table

EAttribute, Table Table, id-Column, value-Column class-Table
multi-valued ForeignKey, delete-Event, two Annotations
EReference,
containment

Column Column, ForeignKey, six Annotations, delete-Event –

EReference,
single-valued,
unidirectional

Column Column, six Annotations, ForeignKey, delete-Event –

EReference Table Table, id-Column, reference-Column
multi-valued,
unidirectional

three Annotations, two ForeignKeys, two delete-
Events

–

EReference, Table Table, source-Column, target-Column
bidirectional four Annotations, two ForeignKeys, –

two delete-Events

Example 10.2.4: QVT Operational Mappings

Fig. 10.2.7 illustrates two QVT-O entry point rules as well as two kinds of specifying
mappings in this language which are excerpts of our entire definition. On the top, in
Lines 37-43 the main method controls the order of the execution. Since the presence of
classifiers is indispensable for transforming references, the first set of rules transforms the
root objects, the EPackages, into a Schema which invoke the transformations of classifiers
and attributes. The second set of rules mentioned in the main method, transforms the
specific types of references.
The mapping model2RDBModel, opened in Line 51, creates a schema, an object table com-
prising an id-column, a primary key which uses the id-column, as well as an sql annotation
which states that the schema was created for a Ecore package. While the version de-
picted on the left side mentions only the schema as the primarily created object by the rule
in Line 51, the right side mentions all objects that are created by the rule in the header
(Lines 52-56). Accordingly, the left version of the rule creates the objects aside the schema,
as variables and integrates them in the corresponding container (e.g., the id-column in the
created object table) by using corresponding references. Conversely, in the right version
the created objects represent OUT-parameters. The rule assigns values to their structural
features based on the parameter names.
The traces which are generated for both rule types diverge with respect to the listed target
elements (represented as OUT parameters). The left version incorporates incomplete trace
information, which maps a source object of type EPackage onto a target object of type
Schema. The trace which is created for the right version records the objects created as
idColumn, the primKey and the annotation as additional target elements.
Furthermore, the mapping-rules class2Table and class2Table_inheritance receive the
object table and the schema as context parameters.

According to the example, a QVT-O trace represents context information as IN parameters and
maintains a list of explicitly declared OUT parameters. The trace converter for QVT-O traces,
QVTOConverter (c.f., Sec. 9.3.1), which is contributed as part of this thesis, records these IN

260

10.2. EVALUATION SETUP

incomplete-trace-generating mapping complete-trace-generating mapping

traced
target elements

non-traced
target elements

traced
context elements

Figure 10.2.7: QVT-O mapping rule producing incomplete vs. (generation-) complete traces.

parameters as context elements of a trace step and the OUT parameters as target elements.
This example demonstrates that the granularity of a QVT-O trace depends on the way mappings
are defined in the specification. If the definition comprises rules which only mention a single target
element and create additional elements as variables, the trace granularity will be incomplete. For
that reason, our transformation definition employs mapping-rules which state each element that
is created explicitly as target element of the mapping.
Additionally, input parameters serve as context information in the mapping-rules creating tables
for classes and for attributes. For instance, the object table serves to create foreign keys for
an EClass whereas for an EReference, the transformation is initiated by the main method and,
thus, cannot receive the containing class as well as the referenced class as context elements.
The corresponding mapping rule retrieves the latter two elements by accessing the internally
maintained trace. The persisted trace does not persist the information of additional trace lookup
performed inside the mapping rule.
In summary, the QVT-O trace extends the ATL/EMFTVM trace information with the more
complete information about context elements. Table 10.2 shows the additional elements stored
in the QVT-O trace in its right-most column. Concretely, the QVT-O trace records the object
table and the schema for each transformed class as context elements. In the same way, it lists the
table which was created for the containing class as the context element of an EAttribute. Since
the QVT-O target elements are the same as in the ATL/EMFTVM trace, these elements are not
mentioned again in the table.

II Ecore to UML Class Models

Besides the Ecore2SQL transformations, we employ an Ecore to UML class model transformation
[GSW17] to generate the source model for a consecutive reused UML to Java transformation. The
Ecore to UML class model transformation is specified in the language ATL and compiled and
executed using the ATL/EMFTVM. This allows to persist generation-complete trace information
about corresponding elements. Before diving into the contents of the transformation rules and the
resulting trace, the following paragraphs shed light on elements of the UML metamodel which are
used to build class models (i.e., one out of the 14 UML model types).

261

CHAPTER 10. EVALUATION

Model

Package

Interface

NamedElement

name:String
visibility:VisibilityKind

0..* nestingPackage

«enumeration»

VisibilityKind

public
package
protected
private

«enumeration»

AggregationKind

none
shared
composite

«enumeration»

ParamDirKind

in
inout
out
return

* /superclass

Classifier

isAbstract: Boolean

0..1 nestedPackage

Class

Property

aggregation: AggregationKind
lower : int
upper: int

Association

* memberEnd

1
association

* ownedEnd

1 owning-
Association

Enumeration
* owned-
Literal

EnumerationLiteral

1 enumeration

Generalization

Relationship

PackagableElement

1 general

specific 1

* generalization

Operation

Type

TypedElement

0..* packagedElement

0..* elementImport

0..* importedElement

1
contract

implementing-
Classifier *

type 1

Parameter * owned-
Operation

1
class

ownedOperation *

1 interface

InterfaceRealization

ElementImport

* owned-
Attribute

nested- *
Classifier

*
ownedParameter

PrimitiveType

direction: ParamDirKind

lower: Integer
upper: UnlimitedNatural

Figure 10.2.8: Simplified UML metamodel including to represent class models.

UML Class Metamodel Fig. 10.2.8 presents key elements of the UML 2.5 metamodel, which
are required to represent a class model. The figure focuses on relevant elements which are cre-
ated in the Ecore2UML transformation and similarly should be transformed into a Java rep-
resentation. We refrain from depicting all abstract classes, such as DirectedRelationship or
EncapsulatedClassifier. While those classes serve to organize and add (mostly derived) refer-
ences between meta classes, they do not affect the transformation and hamper the readability of
the figure. Furthermore, it must be noted that the metamodel assumes the specific characteristics
to call multi-valued references with a name in singular form.
The Model forms the root of UML class models and is a special kind of a Package. Packages allow
to further organize the contents of the models in different nesting levels. A package can import
elements, which may be, for instance, primitive Java types but simultaneously can also comprise
the primitive types of its own in form of packagedElements. Besides primitive types, classifiers
represent the central entities of a class model. The UML metamodel distinguishes – besides others,
the following classifiers, which we employ in our transformations: Class, Interface, Enumeration
and Association. Relationships express dependencies between two or multiple classifiers, such
as inheritance or associations.
In more detail, in the first place, each element in the class metamodel is designated with a name
and possesses a visibility which is either public, package, protected or private. Per default
each element is publicly accessible. A PackageableElement forms either part of an element import
(from another model) or of a Package. The latter can build different nesting levels and embraces
mostly types in form of classifiers. A classifier can be abstract whereas the model distinguishes
interfaces explicitly from classes.
Different kinds of inheritance relationships exist between classes and interfaces. Since UML sup-
ports multiple inheritance, a classifier can store several generalizations which record the general
classifier from which the specific classifier inherits. The specific classifier in turn records the
generalization object which summarizes this information. For example, the class Domesticated
stores a generalization object which references the class Animal as its general class. Moreover,
a Class may implement an Interface. InterfaceRealizations document this dependency by
holding the contract (i.e., the interface) as well as the classifiers4. Finally, classes explicitly
derive the list of super classes from the generalization objects and may comprise further classes,
recorded as nestedClassifier.
Besides inheritance relationships, an Association describes a relationship between two or multiple

4 The figure simplifies the implementingClassifier reference of the InterfaceRealization which originally
references the abstract class BehavioredClassifier. UseCases, Collaborations and Actors specialize the
BehavioredClassifier, too, but are not required to represent a class model.

262

10.2. EVALUATION SETUP

classifiers in terms of Propert[y]ies. The association stores each referenced property (at least
two), which is typed by the classifier, as a memberEnd. A composite relationship (composition or
aggregation) is modeled by setting a corresponding aggregation kind to the respective property.
Furthermore, the UML metamodel allows to define the direction and the navigability, the owner
of the association ends, which can be the classifier or the association itself, as well as the names
and the multiplicity of the ends. If further information should be associated with an association,
it may be modeled in form of an AssociationClass which combines the semantics of both, the
UML Association and the UML Class.

Transformation Assumptions Firstly, the definition assumes that the Ecore class model com-
prises only one package which serves as root of the model. Secondly, the rules assume only single
inheritance between classes. In addition, since Ecore model elements do not possess a visibility,
we consider the default UML visibility for all its elements, namely public, such that the trans-
formation definition does not have to set it explicitly. As the Ecore metamodel does not allow for
nesting classifiers and explicit interface realization, likewise the transformation does not construct
nesting levels between classifiers and does not create interface realization objects, respectively.

Transformation Rules The transformation establishes the following mappings which add up
to 15 matched ATL rules and one helper which returns a primitive types for parameters and
attributes:

• EPackage: a UML Model, five PrimitiveType (Boolean, Integer, String, Real, Unlimited-
Natural) and a root Package

• EClass (no interface, empty eSuperTypes) : Class
• EClass (no interface, with eSuperTypes): Class, Generalization
• EClass (interface, empty eSuperTypes): Interface
• EEnum : Enumeration
• EEnumLiteral : EnumerationLiteral

• EAttribute (primitive type): Property
• EReference (unidirectional): Property (owned by Class), Association, Property (owned

by Association)
• EReference (bidirectional): two Propert[y]ies (owned by Class), Association, empty

Property (owned by Association)
• EOperation (no return): Operation
• EOperation (with return): Operation, return-Parameter
• EParameter: Parameter

For the root Package, the transformation creates a UML Model as root and an equally named
package which comprises the classifiers as well as the additionally created UML primitive types.
As primitive types, the types Boolean, String, Integer, Real and UnlimitedNatural are present
in the UML model per default. Accordingly, a helper mechanism maps the Ecore primitive types
in the following way:

• EBoolean becomes Boolean
• EString and EChar become String,
• EInt and EByte become Integer,
• EDouble and EFloat become Real and
• ELong become UnlimitedNatural.

Transforming EClassifier The transformation definition differentiates EClasses which are
no interfaces and those which are interfaces and Enumeration data types. It creates an interface
for each class where the meta attribute interface is set true. Aside from interfaces, an EClass
which is no interface is turned into a UML Class which may be abstract if the respective
meta attribute is set true in the source class. If the EClass inherits from another class, the
transformation creates an additional object of type Generalization by employing a different rule

263

CHAPTER 10. EVALUATION

which resolves the reference to the super class in its do-block. For EEnums a respective rule creates
a corresponding Enumeration and literals. The rules add the classifiers to the package created for
the root EPackage by employing the trace information maintained during the transformation.

Example 10.2.5: Ecore2UML Subclass Transformation Rule

Listing 10.2.2 presents the ATL matched rule which creates a UML Class and
Generalization for a given EClass. This rule serves as example how the overall trans-
formation proceeds, particularly, how the specification integrates the objects created for
structural features into a classifier.
In the first place, the guard in Line 3 of this rule ensures that only classes which inherit
from another class match the rule. The rule does not only create a UML class as the
primary target element, tar, but also the generalization object. The latter references the
super class as general classifier and the created target class as the specific classifier.
Line 10 inserts the generalization as the only one of the created target class. This action
ensures also, that the derived reference superClass of the created UML class is set.
Finally, the do-block inserts the elements that are created for the eStructuralFeatures
and eOperations of the input class. These two statements resolve trace information and
return the corresponding elements. Line 17 accesses the trace element which is created for
the transformation of referecens. By stating the name of the target element in the rule,
here trg, it is possible to extract one specific target element out of potentially multiple
ones created by a rule. The second line adds all operations which are created for the list
of eOperations stored in the matched EClass.

Please note: In case a rule creates multiple objects (e.g., such as the presented rule does), the
operation resolve() returns the first created object in the matching rule. For instance, for the
operations, the created UML operation which is stated as single or first object in the respective
rule is integrated. In contrast, if multiple elements and another element than the first one that
is created in the rule should be resolved by accessing the trace, the name of the target object in
the rule, such as gen in the presented rule, must be stated in the operation resolve(). Since
the rules which create the property which should be added to the list of ownedAttributes may
state the association as first element, the resolution explicitly mentions the name of the created
element that should be used. Consequently, it is indispensable that the target name given to the
operation resolve() matches one object name defined in the to-pattern. If they do not match, a
runtime error will occur.

Transforming EStrcuturalFeature To transform structural features, the definition differen-
tiates attributes from references. It creates a Property for each EAttribute. Thereby, the corre-
sponding rule retrieves the type for the created property either by employing the aforementioned
helper, in case it is not an enumeration type, or by employing the trace to resolve the element
that was created for the enumeration datatype. In addition, the rule copies the values of the meta
attributes of the EAttribute to the corresponding meta attributes of the Property, such as the
attributes derived to isDerived or upperBound to upper. Associations are not considered in
this rule because they have to be created for references only:
The transformation definition employs distinct rules for unidirectional and bidirectional references.
In contrast to the Ecore2SQL transformation, the multiplicity does not influence the distinction
because it can be mapped onto equivalent meta attributes of the UML properties.
For a unidirectional reference, the transformation creates a Property which is stored in the con-
taining class as well as an Association and a second Property. While the first property, which
represents the values of the reference, is stored in the containing class, the second property is
stored in the association as its ownedMemberEnd. Besides the owned member, the created associ-
ation further records both properties in the separate meta reference memberEnd.
For bidirectional references, the specification employs two rules. One rule serves to create the
association and the Property stored in the containing class. The second rule creates a property
representing the opposite end. This allows to insert the created properties in the correct class

264

10.2. EVALUATION SETUP

Listing 10.2.2: Ecore2UML ATL/EMFTVM rule for transforming subclasses.
1 rule EClass2Class_super {
2 from
3 src: Ecore!EClass
4 (src.interface = false and src.eSuperTypes.size() <> 0) -- subclass
5 to
6 tar: UML!Class (
7 name <- src.name,
8 isAbstract <- src.abstract,
9 package <- thisModule.resolveTemp(src.ePackage, ’pkg’)

10 generalization <- Sequence{gen} -- set created generalization
11),
12 gen: UML!Generalization (
13 general <- src.eSuperTypes.first(),
14 specific <- tar
15)
16 do {
17 tar.ownedAttribute <- src.eAttributes -> union(src.eReferences.resolve(’tar’));
18 tar.ownedOperation <- src.eOperations;
19 }
20 }

inside the rule that creates the classes by resolving the created target elements by their name
tar when using the trace information. Besides those two properties which are both stored in the
respective containing classes, the rule, which creates the bidirectional association, creates another
empty property (i.e., initialized with default values) and stores it as an ownedMember of the created
association. This additional property is necessary due to the fact that the execution engine would
not insert the created association in the package otherwise. This in turn would provoke incorrect
trace information. Before propagating annotations to a Java model, we remove this additional
unused property from the association in a postprocessing step

Transforming EOperation At last, the specification states two rules to transform operations.
One rule creates only a UML Operation whereas the second rule creates a return parameter in
addition in case the eType of the given EOperation is defined. This distinction helps to create
two different types of trace elements and to insert the returned parameter as target element
explicitly if it is present. Furthermore, another rule converts the operations’ EParameters into
UML parameters of the DirectionKind in.

Transformation Result Fig. 10.2.9 displays the resulting UML class model for the DBC prod-
uct line in the Ecore tree editor. The figure highlights the following elements: An inheritance re-
lationship (i.e., a Generalization in UML) exists between the classes Domesticated and Animal.
The subclass stores the generalization object, in this example the class Domesticated. Similar el-
ements are also present in the classes Wildlife, Book, Song, and Movie mentioning the respective
super classes.
Furthermore, Fig. 10.2.9 stresses the elements created for uni- and bidirectional references. While
the database contains elements in a unidirectional way (i.e., a unidirectional containment refer-
ence), as highlighted in the figure, a pet knows its owner and vice versa (bidirectional crossrefer-
ence). The transformation creates one property for the unidirectional reference and stores it in
the Database whereas the opposite end (which is not modeled in Ecore) resides as property in the
additionally created Association. The association is named by the EClass owning the reference
followed by the reference name and records both created properties as memberEnds. Conversely, the
bidirectional reference between persons and domesticated animals is turned into an Association
as well as two properties which are both stored in the respective class. The association is named by
the name of the two references, in the example: pets_To_owner, and encompasses both properties
as member ends.

265

CHAPTER 10. EVALUATION

unidirectional
containment

reference

bidirectional reference

inheritance
relationship

Figure 10.2.9: DBC UML class model resulting from Ecore2UML transformation.

III UML Class to Java Models

As a third kind of transformation, the UML class model to Java MoDisco transformation (de-
noted UML2Java in the sequel) serves to examine a real-world use case which is necessary to
synchronize class models and derived Java source code. Besides its main purpose, the UML2Java
transformation allows to assess the propagation in the large. The target of the transformation
represents Java source code in form of a model. The MoDisco framework [Bru+10] builds on this
model and offers a M2T generator which transforms the model into the corresponding Java source
code, on the one hand. On the other hand, the framework offers discoverers which allow to parse
the source code of a Java project and transform it into an instance of its Java metamodel by the
means of a T2M transformation.
Notice that – like for the similar tool, JaMoPP [Hei+09] which allows to parse Java source code
into a model and print Java source code based on such model – the active development of Java

266

10.2. EVALUATION SETUP

MoDisco discontinued and supports Java source code conforming up to version 1.6 (JaMoPP
represents Java 1.5). However, since we focus on developing and transforming the structure (not
the behavior) of Java programs, the MoDisco framework suffices for the purpose of examining a
real-world forward transformation.
After introducing the Java MoDisco metamodel, the following paragraphs disseminate two ver-
sions of the transformation: On the one hand, the base transformation rebuilds the class structure
1:1 as far as possible. On the other hand, we extended this transformation to reflect the EMF
code generation with regards to separating the implementation from its interface and create im-
plementation packages and an interface as well as class for each UML class.

NamedElement

name: String
proxy: Boolean

«enumeration»

VisibilityKind

none
public
private
protected

«enumeration»

InheritanceKind

none
abstract
final

0..1 super-
Class

Type

ClassDeclaration VariableDeclarationFragment

FieldDeclaration

* types

* fragments

0..1 variables-
Container

EnumDeclaration

0..* enumConstants

EnumConstantDeclaration

1 enumeration

InterfaceDeclaration

ParameterizedType

Model

Package
0..*
ownedPackages

0..1 package

0..1 model

* ownedElements

TypeAccess

Modifier

inheritance: InheritanceKind
static: Boolean
visibility: VisibilityKind

AbstractTypeDecl

ArrayType

PrimitiveType

PrimitiveTypeVoid

PrimitiveTypeInt

BodyDeclaration

...

MethodDeclaration
CompilationUnit

 0..1
type

 usagesIn-
TypeAccess

0..*
superInterfaces
0..*

0..1
package

owned-
0..* Elements

SingleVariableDeclaration
0..1
modifier

0..1 modifier

0..1 singleVariableDeclaration

1 body-
Declaration

compilation-
0..* Units

* parameters

0..1 methodDeclaration

1
type

 1 type

0..1 returnType

* orphan-
Types

body- *
Declarations

0..1 abstractTypeDecl

 0..1 type
type 1

type 1

type- 0..*
Arguments

Figure 10.2.10: Simplified Java MoDisco metamodel.

Java MoDisco Metamodel The Java MoDisco metamodel serves to represent Java source
code complying up to Java 1.6 in all its facets. Accordingly, it does not only represent the static
structure of the source code completely but also the behavioral parts, namely method bodies and
value assignments.
Fig. 10.2.10 summarizes elements of the Java MoDisco metamodel which are relevant to repre-
sent the static structure of Java source code on which we focus in the following. Similar to the
UML metamodel, a Model forms the root of the Java MoDisco metamodel. In contrast to the
UML metamodel, the Model meta class is no specialization but a class which neither inherits
from another class nor is specialized by another class. The model comprises not only Packages,
referenced as ownedElements, but also orphanTypes and compilationUnits. While the orphan
types comprise any type, such as primitive types, type declarations or parameterized types, the
compilation units represent the units which can contain one or several type declarations.
A CompilationUnit does not contain elements but references a package as well as the types which
are integrated in that unit. Since the reference between the Model and the CompilationUnit is
unidirectional, for storing a created compilation unit the Java model (as context element) needs
to be present.
The TypeAccess represents another distinguishing design decision of the metamodel. Instead
of referencing a specific type, such as the type of a field declaration, directly, an instance of
the TypeAccess is referenced by the object to record the dependency explicitly in an object.
Accordingly, the TypeAccess object references the actual type.
Packages may contain nestedPackages and either record its containing package or model. Fur-
thermore, a package comprises ownedElements, too, which are of type AbstractTypeDeclaration.
An AbstractTypeDeclaration is a specific Type which is contained in a package and encom-

267

CHAPTER 10. EVALUATION

passes bodyDeclarations. The abstract type declaration may realize several superInterfaces
whereas a ClassDeclaration may encompass exactly one superClass which are accessed via
respective instances of the class TypeAccess. Besides interfaces and classes an Enumeration-
Declaration serves as third specialization of the abstract type declaration and comprises enu-
meration constant declarations.
Each abstract type declaration encompasses bodyDeclarations which can be another abstract
type declaration (e.g., a nested class or an inline enumeration declaration) or a field or a method
declaration. A Modifier refines the implementation information of the body declaration, stating
its visibility, whether it is static and if it is inheritance state (i.e., whether it is final or abstract).
A field declaration comprises fragments of type VariableDeclarationFragment which define the
name of the field and store a type referenced via a TypeAccess. Similarly, a method declaration
records a returnType and can comprise a number of parameters. In contrast to a field declaration
the name of the method is part of the MethodDeclaration object and in contrast to UML, the
return type is defined at each state. Due to explicitly modelling void as a primitive type, it can
be used as return type in case the method does not return anything.

Transformation Rules We employ a transformation to convert a UML class model into a
Java representation specified in BXtend [BG16b]. The specification allows to transform the static
structure but does not add behavior in form of representing method bodies except for default
return values. Furthermore, the specification employs a 1:1 mapping of classes, meaning that no
additional interface declaration or any other package is created for a given class. Attributes are
represented by accessor methods and associations are summarized in a class declaration which
is able to mitigate the information loss in case a unidirectional association would have to be
transformed.

Entry Point: Models and PrimitiveTypes In more detail, the BXtend specification encom-
passes twelve classes that allow to transform the main elements of UML class models. The
transformation starts with transforming the model, primitive types and packages subsequently
and continues to transform classifiers in form of enumerations, interfaces and classes and han-
dles class inheritance thereafter. Additionally, after the classifiers are transformed associations
are turned into Java class declarations. The remaining three classes comprise rules to transform
properties, operations and the literals of an enumeration.
While the class and corresponding rules to transform models straightforwardly sets the names,
primitive types can be either stored as packaged elements in the UML Model or as imported
elements. Accordingly, the rule considers both possibilities. Furthermore, it creates an ArrayType
for each primitive type in order to represent multi-valued primitive types in this way (there are
no multiplicities in Java) as well as the primitive type void and the packages java.lang and
java.util which comprise the String class and the List interface, respectively. The primitive
type of the ArrayType is wrapped by the means of a TypeAccess which is also created by the
rule. The created primitive and array types are added to the Java Model as orphanTypes. As a
consequence, the correspondence element of the trace records only the source primitive type as
source and the respective Java primitive type as target element. The trace records neither the
additionally created type access and array type nor the primitive type void which does not reflect
any specific UML type.

Transforming Package The transformation of packages consists of two steps. The first step
creates a Java package for each UML package as well as a corresponding trace element and assigns
the name. The second step constructs the package hierarchy by accessing the trace information
which either adds the package as ownedElement[s] of the Java Msodel or as a subPackage[s] of
another model. If the UML Model does not comprise a package, an artificial root package will be
created in the target model.

Transforming Classifiers The transformation of each classifier, enumeration, interface and
class, creates the respective type declaration as well as a parameterized type and a modifier for

268

10.2. EVALUATION SETUP

the type declaration. On the one hand, again, the parameterized type serves to collect multi-
ple instances of the type declaration. In this case, the parameterized type employs the interface
java.util.List and the type declaration as its actual parameter to represent the container of
the multiple values. Its realization requires to create two type accesses, one for the list interface
and one for the type declaration, where the latter serves as sole typeArgument[s]. On the other
hand, the modifier encapsulates the inheritance properties and visibility of the type declaration.
The visibility can be mapped almost 1:1, except for the UML visibility package, which corre-
sponds with the Java visibility none. Similarly, if the UML type declaration is an interface or a
class, the fields abstract and final can be mapped accordingly onto the inheritance kind of the
modifier. Additionally, a compilation unit is created for each type declaration which is referenced
as originalCompilationUnit by the created type declaration. While the type declarations are
stored in the corresponding package, the parameterized type and the compilation unit are stored
in the Java model.
Moreover, the rule transforming classes regards the possibility to nest classifiers inside a type
declaration. It employs a two-fold mechanism, similar as for the packages: First, it creates a class
declaration for each UML class and thereafter, builds the nesting levels.
Inheritance relationships are handled after having created the type declarations. The transforma-
tion assumes only single inheritance and assigns the superClass via a TypeAccess accordingly.
If a Generalization exists between two interfaces, superInterfaces are assigned instead.

Transforming Associations For transforming an association, different possibilities exist which
may also regard the fact that unidirectional associations may provoke information loss if trans-
formed in two directions. For that reason, the transformation creates a separate public class
declaration and corresponding compilation unit for each association, regardless of its direction,
navigability and multiplicity. The association class is stored in the package created for the UML
package storing the association. The next step which transforms every kind of UML Property
creates its field declarations.

Transforming Propert[y]ies The rule that transforms a UML property always creates a
FieldDeclaration in the first place and sets the name by the means of an additionally created
VariableDeclarationFragment in the second place. Setting the owner of the field declaration
depends on the ownership of the UML property. If the end is owned by an association, the field
declaration will be integrated as ownedElement of the corresponding association class created in
the previous transformation step. In this case, further information about the owner, navigability
and aggregation kind is added to the field declaration in form of additionally created Java-Doc
comments. If the UML property does not correspond with an association (i.e., it is not recorded
as a memberEnd), it will be integrated in the type declaration created for the corresponding UML
container. Finally, types are set according to the type and multiplicity of the UML property. Due
to the complexity of the transformation, we refrained from guarding read- and write-access to the
field declarations by the means of get- and set-methods.

Transforming Operations The final part of the transformation definition converts UML op-
erations into Java MethodDeclarations. First of all, this requires to assign the name but also
to map the visibility in the same it is done for type declarations as well as the inheritance kind.
Additionally, operations may be static which is set similarly. The transformation of the return
type, either retrieves the corresponding primitive or complex type according to the respective
multiplicity and references it via a type access object or the type access references the primitive
type void in case no return value is set. In the original transformation an artificial parameter
was included in the UML operation if no type was specified (i.e., it was null) in order to create
a correspondence element in the trace. In this transformation we decided to not create a trace
element in this case because it may provoke inconsistencies in incremental transformations. In-
stead, the rules handle the creation and deletion of type accesses explicitly for each method. As
a consequence, however, the trace does not record a correspondence and thus, does not provide
information which annotation to assign to the type accesses in the Java model.

269

CHAPTER 10. EVALUATION

Transforming Parameters The remaining input parameters are transformed into a Single-
VariableDeclaration. In contrast to a field declaration, the name is set directly to the single
variable declaration. Similar to field declaration, the type is referenced via a type access object
which is created in the rule, additionally. The referenced type corresponds with the multiplicity
and is accordingly either a primitive type or an array thereof or a type declaration or a list thereof.

Trace Mappings In summary, although several target elements are created in the majority of
rules, the incomplete BXtend trace records the following 1:1 mappings only:

• Model ⇔ Model
• PrimitiveType ⇔ PrimitiveType(...)
• Package ⇔ Package
• Enumeration ⇔ EnumDeclaration
• EnumerationLiteral ⇔ EnumConstantDeclaration
• Interface ⇔ InterfaceDeclaration
• Class ⇔ ClassDeclaration
• Association ⇔ ClassDeclaration
• Property ⇔ FieldDeclaration
• (input) Parameter ⇔ SingleVariableDeclaration

As a consequence, the majority of elements in the target model are not recorded in the trace and
will receive annotations by one of the completion strategies.

Advanced Version In order to examine the influence of modeling hierarchies in completing
annotations due to the presence of incomplete traces, we modified the UML2Java forward trans-
formation. The advanced version creates an implementation package in packages corresponding
with an UML package which stores a UML class as well as corresponding interface declarations for
each class declaration. The advanced transformation, UML2JavaAdv, behaves as follows:
For each UML class the transformation does not only create a class declaration, compilation unit
and parameterized type are created but also an interface declaration which the class declara-
tion realizes and a corresponding compilation unit. The rule further only creates only a single
parameterized type which employs the interface as parameter of the Java list.
While the interface is stored in the package, which was created for the UML package containing the
class to be transformed, the generated class declaration is stored in an implementation package,
named ‘impl’. The package impl is created once by the rule that transforms UML packages
whenever a UML class exists in the package. Furthermore, the rule adds both created compilation
units (one for the interface and one for the class declaration each) and the parameterized type
to the model as compilationUnits and orphanTypes, respectively. Moreover, the rule adds the
interface to the set of superInterfaces implemented by the created class declaration but refrains
from adding the method heads present in the class declarations.
Apart from that behavior, the rule which transforms UML classes creates parameterized types and
compilations units similar as in the base version. Creating the interfaces and the implementation
package constitutes the main difference to the basic UML2Java transformation.

10.2.4 Model-To-Text Transformations

For evaluating the correctness of the aspect-oriented propagation, we further employ two M2T
transformations specified in Xpand: While the Ecore to Java transformation reflects the EMF
code generation inasmuch as it also creates interfaces and classes for an EClass, the MoDisco
to Java transformation re-implements the basic behavior of the MoDisco source code generator.
The original transformations both resulted from student projects supervised by the author of this
thesis. The following two parts first explain the text generation for Ecore models followed by the
generation for Java MoDisco models.

270

10.2. EVALUATION SETUP

I Ecore to Java Source Code

At first, we consider an M2T transformation definition which converts an instance of the Ecore
metamodel into Java source code. This Ecore2Java definition partially rebuilds basic concepts of
the Ecore code generation. In particular, for each EClass which is no interface and not abstract,
the transformation creates not only a Java class but also an interface which the created class
implements.

Entry Point: EPackage The Ecore package matches the entry point rule of the transformation
and the corresponding expand-directive initiates text productions for each contained classifier.
The rule begins with the transformation of EClasses followed by the creation of EEnums. While
the creation of an enumeration focuses on stating all literals literally (no further functionality),
the transformation of classes assumes a higher degree of complexity:

Transforming EClass In the first place, the block handling EClasses creates a file which repre-
sents the interface declaration. This is created in any case regardless whether the meta attribute
interface of the EClass is set true. Before opening the interface declaration with the text frag-
ment public interface <name> (the name is dynamically replaced), the package declaration is
stated as first line, which is derived from the container of the EClass. In the following lines, type
import statements are printed which are computed from iterating the types used in the structural
features and operations of the EClass. Even though the resulting text production is initiated by
an expand-directive and, therefore, the annotations of the source element will be mapped onto
it, it is a non-local rule because the necessity of the import may depend on the presence of an
operation or association which includes the typed element for which the import is created.
In case the meta attribute interface of the given EClass is set false, the rule initiates the
creation of a second file which stores the class declaration stating the same import-directives as
the interface. Listing 8.3.1 summarizes its behavior: The transformation adds the created file to
an package impl stored in the directory created for the containing package. Besides stating the
package declaration and the import statements, the file opens the declaration of the class by stating
its name combined with the suffix Impl (i.e., <name>Impl). Furthermore, the class implements
the interface, the declaration of which was created before, by writing the word implements after
the class name. Additionally, if a super type is present, the word extends is written right after
the name of the class declaration (before the implements statement).
Before invoking the rule for transforming structural features and operations, the rule, creating
the class declaration, opens a protected region, to allow for integrating and preserving additional
source code. Then, it handles structural features followed by generating text for its operations.

Transforming EStructuralFeature To transform the structural features of the EClass, a rule
creates access-methods (get- and set-). Furthermore, if an attribute is not derived, it will
integrate a protected field declaration in the created class. While the created interface states only
the heads of the methods, the rule which creates the class declaration invokes another rule that
creates the entire body of the access methods.

Transforming EOperation Similarly, the transformation of EOperations creates only the head
of the methods in the interface. Conversely, in the class declaration not only the head of the
method is generated but also its body which may comprise a default return type (if the return
type of the EOperation is defined). In addition, the corresponding rule creates another protected
region as content of the method body. This region also encompasses the return statement in
order to be able to replace the default with a custom return value.

II Java MoDisco Model to Java Source Code

As a second transformation, we employ a code generation prototype which creates Java source
code from a given Java MoDisco model. Again, the focus of the rules lies in transforming the
structural representation of the software but not its behavior. Furthermore, the purpose of using

271

CHAPTER 10. EVALUATION

this transformation lies in demonstrating that the same advice is able to transfer annotations
between instances of different metamodels and not to fully rebuild the MoDisco M2T generation.

Entry Point: CompilationUnit As a consequence of the design of the Java MoDisco meta-
model, the entry point rule does not iterate the contents of packages but of compilation units.
These model elements represent exactly the contents which should be created in form of a Java file.
While the Ecore2Java transformation needs to collect the element types which should be imported
before opening the type declaration, the compilation units store importedElements. However,
since this is not a derived reference, it depends on the creation mechanism of the Java model
whether the compilation unit states imported elements. The UML2Java specification (Sec. 10.2.3),
for instance, does not create these elements. Thus, if the compilation unit does not enumerate
imported elements, no import-statements will be included in the created type declaration.

Transforming FieldDeclaration Then, the text-generating rule either opens an interface dec-
laration or a class declaration. Enumerations and inheritance among classifiers is not supported
in the rules. Inside the class declaration, MoDisco FieldDeclarations are converted in a cor-
responding Java (static) field declaration. The transformation assumes that only one variable
fragment is stated per field declaration. For converting a method declaration. the visibility and
type are extracted and used in the header. Furthermore, the return type as declared in the Java
method declaration is stated as return value. Instead of field declarations, the transformation
writes the method headers in interface declarations.
UML associations are stored in the input MoDisco model as class declarations with corresponding
compilation units. Therefore, they are treated in the same way, as any other class declaration.

10.3 Results
This section presents the results of evaluating the correctness of propagating the annotations of
the subject product lines (c.f., Sec. 10.2.2) after and while executing one of the transformation
definitions presented in Sec. 10.2.3 and Sec. 10.2.4. In particular, the included sections bring
up the resulting F2DMM models and the multi-variant source code as well as the measured error
values and discuss the implied accuracy of the annotations. Besides demonstrating the correctness
of annotations propagated based on generation-complete and complete traces, which result in
correctly annotated models, one focus lies in examining the effect of the completion strategies
used in sight of incomplete traces. The latter do not affect accuracy differently in our setup which
is discussed in Sec. 10.4. Finally, the aspect-oriented propagation results show that the Xpand-
based propagation achieves high accuracy despite the language’s more powerful capabilities that
violate the computational model in general.

Preliminaries The sequel presents the evaluation of commutativity for each pair of transforma-
tion definition and appropriate input model of the subject product line for each valid configurations
in order to gain an accurate result. Accordingly, no sampling is used and each valid configuration
(i.e., 234, 180 and 16560 configurations in the DBC, Graph and HAS product lines, respectively)
is regarded. Furthermore, each of the input source mapping models is annotated completely with
respect to the object mappings. As effect, a (user-intended) annotation is mapped onto each
of the source elements recorded in traces or processed by the aspect. The models and source
code directories are distinguished and referred to as filer-transform and transform-filter variants.
The filter-transform variant results from applying the model filter to the annotated multi-variant
source model followed by executing the single-variant transformation whereas the transform-filter
variant results from executing the multi-variant transformation followed by applying the model
filter to the annotated multi-variant target model, respectively.

Road Map The following sections demonstrate the results of the M2M transformations scenar-
ios first and the results of the M2T transformations second. Thus, Sec. 10.3.1 - 10.3.4 present
the results of conducting the Ecore2UML, base and advanced UML2Java and the Ecore2SQL

272

10.3. RESULTS

Table 10.3: Resulting error measurements of the multi-variant Ecore2UML transformation.

Product Line #mapt errabs [%] errsev [%] erract[%]

DBC 310 0.00 0.00 0.00
Graph 380 0.00 0.00 0.00

transformation, respectively. Conversely, Sec. 10.3.5 summarizes the results of the two M2T
transformation scenarios which transform an Ecore and a Java MoDisco model into Java source
code, respectively.
The description of each transformation scenario starts with an overview of the comparison results.
Then, it dives into the details which present the resulting target mapping model and demonstrate
the measured values afterwards.

10.3.1 Ecore2UML
The transformation of Ecore models into UML class models and propagating the annotations
based on the ATL/EMFTVM trace results in an absolute error of 0%. Thus, the implemented
trace propagation computes and assigns all annotations completely correctly yielding a correctly
annotated domain model. The trace-based propagation algorithm together with the executed
reused single-variant transformation definition creates correctly annotated models for both, the
Graph and the DBC product line, despite the missing context elements in the ATL/EMFTVM
trace. As a consequence, the severity and the actual error are equally of 0%, as listed in Table 10.3.
This accuracy of the annotations also justifies that the resulting mapping models can serve as input
to the following UML2Java transformation without adaptations.

Details Fig. 10.3.1 presents the F2MM models resulting from transforming the multi-variant
Ecore DBC and Graph Ecore domain models. The left side depicts the DBC and the right side
the Graph F2DMM models, respectively, which rebuild the UML class models created by the
reused single-variant model transformation. The figure highlights some of the created types of
UML elements with colored solid rectangles. The respective assigned annotations are stressed
with circles inside the rectangles and reside behind the model element in the tree editor.

Correct Annotations Firstly, the figure indicates that each of the elements is annotated and
the comparison results (not depicted in the figure) computes an absolute error of 0%. Thus, the
assigned annotations are correct and satisfy commutativity to full extent. Even though not all
annotations are depicted in Fig. 10.3.1 for space reasons, the evaluation results state that correct
annotations are mapped onto all objects.

Annotations of Unidirectional Associations Secondly, the figure exemplifies the annota-
tions of the associations created for uni- and bidirectional references. The associations Database_-
to_familes and Graph_to_nodes serve as examples of unidirectional associations in the DBC and
the Graph F2DMM models, respectively. Accordingly, the associations store the end from which
the transformed EReference origins as its ownedEnd and the referenced class is stored as property
in the class from which the association origins. For instance, the association Database_to_familes
comprises the property database whereas the class DatabaseContent stores the property families.
The propagation algorithm mapped the annotation Family and Relation, which is the annota-
tion of the source element, the EReference families, onto each of these elements.

Annotations of Bidirectional Associations As examples of transformed bidirectional refer-
ences, the figure highlights the associations parent_to_familyP and graph_to_algorithm, ad-
ditionally. While the respective opposite class stores the corresponding member end as property,
another property had to be inserted into the association so that the ATL/EMFTVM engine
generated the association. We remove this empty property before executing subsequent trans-
formations. Nonetheless, the annotation of the bidirectional source reference is mapped onto all

273

CHAPTER 10. EVALUATION

unidirectional

containment

reference

bidirectional

reference

operations

Figure 10.3.1: DBC and Graph UML F2DMM models resulting from Ecore2UML transformation.

elements created by the respective ATL rule which the trace records as target elements of this
rule application.

Annotations of Further Elements Thirdly, the figure highlights further UML class model
elements, such as operations and properties of primitive type. These elements carry correct anno-
tations which correspond with the source element, the corresponding EOperation, too.

Correctness Despite Generation-Complete Trace All in all, the propagation based on the
generation-complete ATL/EMFTVM trace produces correct annotations which result in commut-
ing transformations. Although the ATL/EMFTVM trace is not complete, the presence of context
elements would not refine the computed annotations in a way that influences the derived vari-
ants. This effect is caused by the source annotations which imply the selection of the annotations
mapped onto context elements.
As an example, the creation of a class requires the package as context element and the annota-
tions of the EClasses imply the annotation of the single packages (i.e., Graph and DBContent,
respectively) of both source models. The situation is the same for the remaining elements, which
require the presence of context elements to be created, such as the UML operations, which require
a classifier to be present. Still, in this transformation scenario and in the given source models, the
annotation of the depending elements implies the annotation of the element they depend on, such
that either both annotations are selected and both elements are present or both are missing.

Summary The comparison results give evidence that the annotation propagation performs
100%, correctly for the input product lines. Since context elements would not refine the assigned
annotations, for the subject product line models and the transformation definitions a correct prop-

274

10.3. RESULTS

Table 10.4: Resulting mappings and error measurements of UML2Java transformations.
1Calculated by subtracting the number of trace elements from all mappings.

UML2Java Product
Line

#target
mappings

#incomplete
mappings1

errabs [%] errsev [%] erract[%]

DBC 688 625 100.00 20.22 4.22
base Graph 753 682 100.00 18.94 2.79

HAS 1342 1192 100.00 14.52 6.11
DBC 788 725 100.00 23.64 5.96

advanced Graph 827 756 100.00 22.76 3.75
HAS 1714 1564 100.00 14.99 7.70

agation is conducted based on the generation-complete ATL/EMFTVM trace. As a consequence,
we can employ the resulting target domain and mapping models as input to the UML2Java trans-
formation5.

10.3.2 Base UML2Java
The second scenario, which examines the effects of the completion strategies, transforms the cre-
ated UML class models into Java MoDisco models. We conducted the UML2Java transformation
on all three subject product line models. The DBC and Graph UML class models and mapping
models result from executing the Ecore2UML transformation beforehand whereas the HAS do-
main and mapping model are replicated independently at the Chair of Software Engineering (of
the University of Bayreuth) from literature [PBL05]. The UML2Java transformation is specified
in BXtend which persists incomplete trace information. Therefore, we investigate the effects and
correctness of the three completion strategies in this scenario.

Overview of Results Table 10.4 summarizes the results of executing the base and the advanced
version of the UML2Java transformation. As the upper part of the table shows, transforming
each of the subject product lines with the base transformation resulted in an absolute error of
100% while particularly the actual error remains below 10% in each subject product line. This
allows for concluding that the propagation algorithm computes and assigns more than 90% of the
annotations correctly. Furthermore, the results show that the three completion strategies exhibit
the same accuracy in this transformation scenario. The measured error rates are equal for each
strategy in each subject product line.
While the absolute error expresses that in each configuration at least one mismatch exists, the
actual error indicates that the majority of annotations is correct with respect to satisfying com-
mutativity. In fact, only the elements which are contained in the Java Model as orphanTypes or
compilationUnits are annotated with a too broad annotation.

Details Fig. 10.3.2 presents, from left to right, the F2DMM models resulting from transforming
the DBC product line and employing each of the three completion strategies, the container, the
contained, and the combined strategy. The annotations of the F2DMM model resulting from
applying the combined strategy are not simplified. This allows distinguishing the parent from
children annotations based on which the combined annotation is computed.

Annotations Determined Based on Trace Information The figure indicates that the prop-
agation algorithm maps a correct annotation onto each target element recorded in a 1:1 trace
element. Blue boxes highlight these elements, which are referenced as target element of a corre-
spondence element of the BXtend trace. For instance, the package database as well as each class

5 We remove the empty property, which is required to insert a bidirectional associations in the correct pack-
age in the Ecore2UML transformation, from the created association before executing the following UML2Java
transformation.

275

CHAPTER 10. EVALUATION

container completion contained completion combined completion

annotation based on
propagation strategy

annotation based
on trace element

Figure 10.3.2: DBC Java F2DMM models created by base UML2Java transformation.

declaration created for UML classes or associations carry the annotation which is mapped onto
the respective source element. These annotations satisfy commutativity.

Completed Annotations of Elements Not Contained in Root of Model In contrast,
the remaining mapping elements which are surrounded by red rectangles demonstrate annotations
which the respective completion strategy computes. Each Modifier, such as the one of the
class declaration Person, which is created additionally in a rule besides the pivot target element
(which is its direct container) receives its annotation from the completion strategy. The container
completion strategy, the result of which is shown on the left, maps the annotation of the parent onto
each model element without annotation. For the modifiers contained in abstract type declarations,
field declarations, or method declarations, this strategy suffices to achieve commutativity and none
of the annotations has to be refined. The contained strategy, maps the root annotation, DBContent,
onto the modifier instead because the modifier is a leaf in the model tree such that no children
annotations are present. Due to the hierarchical filter of Famile (forward strategy), however, this
annotation does not influence commutativity: the hierarchical filter will remove the modifier if
no proper container is present. In our example, the annotations for elements contained in field or
method declarations, such as type accesses, are correct, too. This can always be assumed when
the annotation of the field or method declaration implies the annotations of their types.

Completed Annotations of Elements Contained in Root of Target Model Conversely,
the completion strategies map the root feature, DBContent, as annotation onto the orphanTypes

276

10.3. RESULTS

(i.e., the ParameterizedTypes, ArrayType, etc.) and the compilationUnits. The parent of
these elements is the Java Model which is annotated with the (broad) root feature, DBContent.
The compilation units do not comprise children objects but only cross references to the types
which they store. Consequently, the completion strategies assign either the parent annotation of
the Java model (i.e., DBContent) or the root feature (i.e., also DBContent) because no annotated
children exist. Although the parameterized types contain two type accesses as children, none of
the completion strategies can compute a more specific annotation. This is due to the fact that the
parent of the (sub-)model tree is the Java model and that none of the leaf nodes, the type accesses,
is annotated. Consequently, the contained strategy can only assign the annotation DBContent.
As a consequence of the broad annotations computed by the container and the contained strategy,
the combined strategy cannot compute a more accurate annotation for the parameterized types
and the compilation units.
Fig. 10.3.2 highlights the parameterized type and the compilation unit which are created for the
class Person. While the class declaration which is also created and stored as single (pivot) target
element in the trace is annotated correctly, the remaining two elements are not. Consequently, all
compilation units and parameterized types remain in transform-filter variants whereas they are
not present filter-transform variants which violates commutativity.

Results of Graph and HAS Product Lines The same situation holds true for the Java
models for the Graph product line and the HAS product line: The completion strategies compute
an annotation which satisfies commutativity for the elements contained in classifiers and their
body declarations given the hierarchical Famile filter. In contrast, the annotations computed for
the parameterized types and compilations units and their contained elements are too broad.

Actual Error Despite the broad annotations and the high severity errors, it suffices to modify
the annotations of the parameterized types and the compilation units in each of the chosen com-
pletion strategies. For that reason, in the DBC product line the actual error is of 4.22% because
it requires to change (at minimum) 29 out of the 688 annotations. In the Graph product line
only 21 out of 753 annotations have to be replaced (2.79%) and in the HAS product line the
annotations of 41 parameterized types and of 41 compilation units (i.e., 82 mappings out of 1342
mapping elements in the target F2DMM) have to be repaired manually. Thus, the actual error is
of 6.11% in the HAS product line and still means that more than 90% of all automatically assigned
annotations are correct with respect to achieve commutativity.

Summary In sum, the results of conducting the base UML2Java transformation reveal that the
assignment of annotations is complete but that the completion strategies are not able to compute
annotations that are specific enough to achieve at least one pair of matching transform-filter and
filter-transform variants. However, computing the severity error and manually determining the
actual error by repairing a minimum set of annotations (only nodes contained in the model root),
indicates that more than 90% of the annotations automatically computed by the 1:1 propagation
together with a completion strategy suffice to satisfy commutativity.

10.3.3 Advanced UML2Java
The advanced UML2Java transformation extends the base version inasmuch as it adds an im-
plementation package to each package which contains a class declaration in the base version. In
addition, it does not only create a class declaration for each UML Class but also an interface
declaration. While the implementation package stores the class declarations, which are recorded
in the incomplete trace, the original package, which corresponds with the UML package holding
the UML class, contains interface declarations.

Effect of Model Structure and Type of Completion Strategy Due to the modified struc-
ture of the target model, this transformation serves to examine whether the combined or the
contained completion strategy positively affect the accuracy and, thus, the correctness of the
computed annotations for these models. The same three models, the DBC, Graph, and HAS

277

CHAPTER 10. EVALUATION

annotation based

on trace element

annotation based on

propagation strategy

...

Figure 10.3.3: DBC Java F2DMM model created by advanced UML2Java transformation.

UML domain and mapping model serve as input to the transformation definition. Accordingly,
the same number of target elements is annotated and therefore the information used for complet-
ing the annotation is exactly the same. This fact allows to investigate the effect of the model
structure on the accuracy of annotations, in addition.

Overview The lower part of Table 10.4 lists the computed error values. As in the base
UML2Java version, the absolute error remains at 100% and the severity error higher than 10%
whereas the actual error is at the size of about 5%. Furthermore, there is no difference in accuracy
between the completion strategies. However, as Table 10.5 will show, less annotations have to be
fixed in the HAS model than in the Graph and DBC models in relation to the number of anno-
tations assigned based on trace information. The structure and annotations of the target model
cause this effect which the end of this section explains in more detail.

I Database Content and Graph Product Line

Results DBC The trace-based propagation, executed after the reused advanced UML2Java
BXtend transformation, creates 788 target mapping elements out of which 63 elements are anno-
tated based on trace information in the DBC product line. Fig. 10.3.3 depicts the mapping model
for the DBC product line resulting from the propagation based on the container completion strat-
egy. At the coarse-grained level, the figure highlights model elements, which are referenced by a
trace element, and their annotation with blue colored rectangles, on the one hand. On the other

278

10.3. RESULTS

hand, red rectangles enclose the model elements which are not referenced by BXtend trace element
and, thus, receive their annotation from one of the completion strategies. The figure refrains from
demonstrating all created primitive and array types because their annotations do not differ from
the base UML2Java transformation and therefore do not add new insights. The annotations of
the additionally created package impl, the interfaces created for a class, the parameterized types,
and compilation units are computed based on the parent annotation in this example.

Annotations of 1:1 Mappings The algorithm maps the annotation of the source model ele-
ment onto the Java element which the incomplete trace records as target element. As examples,
the package database, the enumeration EmploymentState, the classes created for associations
(e.g., Database_To_persons), and the regular class declarations receive annotations in this way.

Annotations of Interface Declarations Due to the container completion strategy, each of the
declared interfaces receives the annotation of its parent, the package database, which means the
root feature DBContent. This annotation is too broad for the majority of interfaces in this package.
For instance, the interfaces IPerson and IMedia, depicted below the enumeration declaration in
Fig. 10.3.3, should be integrated in variants only which select the features Person and Media,
respectively. Conversely, the annotation of the interface declaration IDatabaseContent is correct
as it is the same as the corresponding source annotation.

Annotations of Elements Stored in Root of Model The same fact holds for the parame-
terized types and compilation units, onto which the annotation DBContent of the Java model is
mapped. Besides the annotations of the additionally created interface declarations, the annota-
tions assigned to the parameterized type and compilation unit created for the enumeration type
are too broad, too. This unveils the same effect as in the base BXtend UML2Java transforma-
tion: The trace records none of the parameterized types or compilation units and the Java model,
annotated with the root feature DBContent, constitutes the parent annotation.

Annotation of Package impl The annotation of the package impl deviates in the completion
strategies: The contained strategy computes the annotation by combining the annotations of the
contained class declarations, which receive the annotation of the corresponding source object, in
a disjunctive expression. This annotation is mapped onto the package impl. Since in the DBC
product line the class DBContent, which is annotated with the mandatory root feature, is contained
in the package, the computed annotation does not affect the presence of the package in derived
variant: the package is present in every variant due to the annotation of the class DBContent.

Further Created Target Mapping Models Even though the annotations resulting from the
remaining completion strategies are not depicted in the figure, they are of the same accuracy for
the parameterized types and compilation units in the DBC product line as well as in the Graph
product line. Furthermore, since the interface declarations do not comprise method stubs, the
completion algorithm needs to compute the annotation of a leaf node meaning that the contained
and the combined strategy either assign the root feature or the annotation of the parent which is
also the root feature.

II HAS Product Line

As opposed to the DBC and Graph product lines, the HAS product line constitutes more complex
and contains, for example, package hierarchies which are not annotated with the root feature.
As a consequence, compared to the DBC and Graph product line less annotations of interface
declarations have to be repaired after the trace-based propagation.
In the DBC and Graph product line, all annotations of interface declarations which do not corre-
spond with a mandatory source element, such as the class Color in the Graph product line, have
to be repaired. Conversely, since some of the packages in the HAS product line carry the same
optional annotation as their contained interface declarations, less annotations of interfaces have to
be fixed. In total, the annotations of only 15 out of 35 additionally created interface declarations

279

CHAPTER 10. EVALUATION

container

completion strategy

annotation based

on trace element

contained

completion strategy

annotation
 based on

completion strategy

annotation
based on

trace element

contained strategycontainer strategy

container

container

container

contained
elements

contained
elements

contained
elements

Figure 10.3.4: Effect of container and contained completion strategy in HAS Java F2DMM model.

(i.e., approximately 43%) have to be exchanged manually. In contrast, in the Graph product line 5
out of 8 (i.e., 62.5%) and in the DBC product line 9 out of 10 annotations of interface declarations
have to be repaired.
The parameterized types and compilations units represent the majority of elements with wrong
annotations mapped onto them similar as in the DBC and Graph product lines. The packages
impl stored in each regular package which contains classifier declarations are not annotated with
the root feature but either equally with the annotation of its parent package in the container
strategy or with the annotations of the contained class declaration combined in a disjunctive
Boolean expression in the contained strategy.

Effect of Container Strategy Fig. 10.3.4 presents the HAS mapping model which results
from applying the container completion strategy. The figure highlights some annotations which
are assigned to the implementation packages and which indicate that relatively6 less annotations
have to be repaired than in the base version. On the left, the figure shows excerpts of the model
resulting from applying the container completion strategy whereas the right side depicts excerpts
of the model resulting from applying the contained strategy.
Again, annotations which were not computed by a completion strategy but are recorded in trace
elements are surrounded with blue rectangles whereas the figure highlights each of the implemen-
tation packages, which are not referenced by a trace element and receive the annotation by the
completion strategy, with red rectangles. The annotation "Secure Connection" is mapped onto
the first (from top to bottom) highlighted package security. Accordingly, each of the interfaces
and the contained package impl are assigned the same annotation. While the annotation is more
specific than assigning the root feature, the contained class declarations carry annotations which
realize distinct optional features that are contained in the feature group "Secure Connection"
(i.e., VPN and SSH), of the respective feature model. As a consequence, while the annotation suf-

6 For determining the influence of the model structure on the accuracy of annotations, the ratio between the
number of target elements annotated based on trace information and the number of target elements annotated
based on a completion strategy must be considered.

280

10.3. RESULTS

fices for the package impl, the annotation of some of the interfaces is too broad. Except for the
annotation of the SecureConnectionProvider, the annotations of the remaining interfaces in the
package security have to be refined.
The same effect can be observed in the package wifi. The broad annotation Wireless or
Bluetooth assigned to each of the interfaces contained in the package implies that each one
is present whenever one of the two features is selected. This annotation correctly represents the
visibility of the contained package impl because it contains class declarations with annotations
stating only either one of the features. Conversely, the annotation is too broad for the interface
declarations in this package: The different IEEE wireless standards are each represented with a
distinct feature and constraints among them. Consequently, the annotation Wireless does not
suffice to satisfy commutativity as, for instance, the interface IIEEE802_11bConnector should
only be present when the feature "IIEEE802.11b" is selected and not when any of the features
representing one of the standards is selected in a feature configuration.
In contrast, the specificity of the annotations of all elements contained in the package cable suffices
to satisfy commutativity and does not require a manual modification. The corresponding source
elements and target elements, the class declarations CableBoundConnectionDriver and Patch-
Support are both annotated with the same expression "Cable Bound". Accordingly, no manual
modifications are required in this case. Similarly, the annotations mapped onto the elements in the
packages oven, shutters and addOnPackage suffice to satisfy commutativity. The annotations of
interfaces in the package cond (representing the logic for the two optional features air condition and
temperature control) and identification (representing several distinct optional authorization
mechanisms) require to manually modify the annotations of some of the contained interfaces.

Effect of Contained Strategy The right-hand side of Fig. 10.3.4 demonstrates the same ex-
cerpts of the resulting mapping model when applying the contained completion strategy which
computes the annotation of elements missing one based on the annotation of their children ele-
ments. The completion algorithm maps the root feature, "Home Automation System", onto each
of the interfaces because they do not comprise any child element7. Conversely, the annotation
mapped onto the package impl combines the annotation of each of its contained class declara-
tions in a disjunctive form. As an example, the annotation of the package impl contained in
the package security combines the annotation of each of the three contained classes in the dis-
junctive form: VPN or SSH or (VPN and "Secure Connection"). Consequently, it reflects the
contained annotations accurately and satisfies the same set of configurations as all of its contained
class declarations. The same effect holds for each of the implementation packages.

Effect of Combined Completion Strategy In the combined strategy, which combines the
annotations computed by the container and contained strategy, no different effects can be observed.
For that reason, the figure does not explicitly show the results. The annotations mapped onto
the interfaces are the same as in the container strategy. Therefore, the annotations of the same
interfaces have to be repaired. The annotations mapped onto the packages named impl combine
the annotation of the container and the contained elements in the conjunction. Although, they
are more complex, they are semantically equal as the one computed with the contained strategy
which also does not affect the accuracy.

Equal Error Rates in Completion Strategies When comparing the effect of the strategies,
the measured error values are equal in each completion strategy. This effect is mostly caused by
the Famile filter together with the chosen subject product lines and boils down to two points:
On the one hand, the hierarchical filter provokes this effect. For instance, deriving a single-variant
model from the mapping model resulting from applying the contained strategy with a flat filter,
would pertain each of the interfaces in the model regardless whether the container is present.
The Famile filter, in contrast, will keep an element in a configuration only if its parent element is
kept, too. Accordingly, a flat filter would derive an invalid product which could not be persisted
7 If the interfaces created for a class were containing methods, the pivot element recorded in the incomplete

trace would be the method stored in the class declaration. Thus, the methods in the interface would miss an
annotation, too.

281

CHAPTER 10. EVALUATION

Table 10.5: Effects on annotation correctness by the presence of annotated elements in the target
model. 1 Calculated by subtracting the number of trace elements from all mappings.

UML2Java Product
Line

#target
mappings

#incomplete
mappings1

#repaired
annotations

ratiorepaired [%]

DBC 688 625 29 0.47
base Graph 753 682 21 0.32

HAS 1342 1192 82 0.87
DBC 788 725 47 0.56

advanced Graph 827 756 31 0.39
HAS 1714 1564 132 0.81

due to pending references whereas the hierarchical filter prevents this situation by keeping only
elements, the container of which is also selected. As consequence, while the contained strategy
would provoke a higher error rate and potentially invalid products when using a flat filter, the
hierarchical filter prevents this situation and gives rise to the same error rate.
On the other hand, annotated contained element may include the same annotation as the container
of the element missing an annotation. Then, the container and contained strategy, and, conse-
quently, the combined one have the same effect. In this scenario, the package impl exhibits this
effect. A broad annotation is mapped onto its container which subsumes the annotation of each of
the contained elements. As a consequence, combining the annotation of the contained element in
a disjunctive form has the same effect on commutativity. Furthermore, the annotations mapped
onto interface by the contained strategy would be too broad. Here the model filter eliminates the
distinguishing factor as discussed as first point.

Influence of Model Structure This example demonstrates that the annotations assigned to
containers, particularly the packages in this example, influence the size of the actual error. Given
the number of elements without an annotation automatically assigned by the trace-propagation,
in the advanced UML2Java transformation the ratio of annotations that have to be repaired
decreases compared to the base version. This is in contrast to the DBC and the Graph product
line where the number of annotations which have to be repaired increases compared to the number
of incomplete annotations.
In concrete, from left to right, Table 10.5 gives an overview of the number of all mapping elements
that are present in the created target models (i.e., #target mappings), the number of mappings for
target elements not recorded in the trace (i.e., #incomplete mappings) and the number of anno-
tations that have to be manually repaired. To consider the effect of the automatically propagated
annotations, the ratiorepaired measure takes them into account as follows:

ratiorepaired = #repaired
#incomplete mappings ×

#annotated by trace
#incomplete mappings

Accordingly, the measure takes the ratio of annotation information provided by the trace into ac-
count in the second term. The number of annotations provided by the trace (#annotated by trace)
results from subtracting the number of incomplete mappings from all mappings. This number is
divided by the number of incomplete mappings. For example, in the base DBC product line the
information ratio is 10.1% meaning that one annotation provided by the trace is used for approx-
imately 9.9 elements on average. The ratio of information is multiplied by the ration of wrong
annotations that have to be repaired out of all incomplete mappings. Thus the measure indicates
how many annotations computed by a completion strategy have to be repaired with respect to
the present trace information. This measure targets the fact that the actual error will increase if
more elements remain without annotation but the present trace information stays the same.
In the DBC product line, it is necessary to fix the annotations of 29 out of 625 mapping elements
which received the annotation by a completion strategy when conducting the base UML2Java
transformation. 63 elements are annotated based on trace information such that the ratio of

282

10.3. RESULTS

Table 10.6: Results of conducting the Ecore2SQL transformations. 1 in [%]

Product
Line

#target
mappings

BXtend ATL/EMFTVM QVT-O

errabs
1 errsev

1 erract
1 errabs

1 errsev
1 erract

1 errabs
1 errsev

1 erract
1

DBC 623 100.00 1.47 2.89 0.00 100.00 30.99 0.00%
Graph 605 86.67 1.18 1.82 0.00 100.00 42.38 0.00

repaired annotation in sight of these elements remains at 0.47%. Similarly, the values of the
remaining examined scenarios are calculated.
From the table the effect of the model structure and the annotations becomes obvious. In the
advanced version, the interfaces and packages are added to the package mapped in the trace while
the trace information stays the same. While the ratio of repairs increases for the DBC and Graph
product line, it decreases for the HAS product line. As discussed above, this confirms that less
annotations have to be repaired due to the structure and that more specific annotations assigned
to those elements can positively affect accuracy. In the HAS product line, less annotations of
interfaces have to be exchanged because their containing package is annotated more specifically
as in the DBC and Graph product line.

Summary All in all, the examination of the two versions of the UML2Java transformation
reveals that more than 90% of the annotations are computed correctly despite the absolute error
of 100%. Furthermore, in the base and advanced version, the accuracy of the three completion
strategies is exactly the same. This is, however, mainly an effect of the hierarchical filter used
in Famile. If a flat filter was used, the contained strategy would provoke worse accuracy because
it would retain several model elements (e.g., the modifier of type declarations or the interface
declarations created for class declarations) in the derived variant despite a missing containing
element. To this end, a variant derived in this way cannot be persisted as EMF resource and
would therefore, render an entire mismatch between the filter-transform and the consequently
missing transform-filter variant. Finally, the evaluation also indicates that the more specific the
annotations are that serve for computing the missing annotations, as is the case in the advanced
transformation of the HAS product line the less annotations have to be repaired.

10.3.4 Ecore2SQL
In contrast to the Ecore2UML and the UML2Java transformation, which are implemented in one
language only, we implemented the Ecore2SQL transformation in BXtend, ATL/EMFTVM, and
QVT-O to compare the propagation result based on traces of different completeness levels.
In this scenario, the propagation based on the generation-complete ATL/EMFTVM and the
(generation-)complete QVT-O traces results in 100% correctness each. In contrast, the miss-
ing information in the BXtend trace causes an absolute error of 100% in the DBC product line and
of about 86% in the Graph product line whereas the severity and, particularly, the actual error
remain at less than 5% percent meaning that 95% of the annotations are computed correctly.

Details In more detail, Fig. 10.3.5 depicts the F2DMM models which result from performing
the trace-based propagation based on the three traces of different granularity. The left side
depicts the mapping model resulting from propagating annotations based on the information
of the incomplete BXtend trace whereas the right side depicts the mapping model resulting from
using the information of the complete QVT-O trace. The middle of the figure depicts the mapping
model resulting from the propagation based on the generation-complete ATL/EMFTVM trace.
Moreover, the red rectangles highlight the annotations mapped onto the object-table in all three
models. Thereby, the figure illustrates the differences between the annotations computed by the
completion strategies. Similarly, the blue rectangles highlight the annotations mapped onto the
contents of the table Person as one representative of the remaining tables that are created.

283

CHAPTER 10. EVALUATION
b

a
s
e
d

 o
n

 B
X

te
n

d
 t

ra
c
e
 (

+
 c

o
n

ta
in

e
r

c
o
m

p
le

ti
o
n

)
b

a
s
e
d

 o
n

 A
T
L
/E

M
F
T
V

M
 t

ra
c
e

b
a
s
e
d

 o
n

 Q
V

T-
O

 t
ra

c
e

c
o
n

ta
in

e
r

a
n

n
o
ta

ti
o
n

s

s
o
u

rc
e

a
n

n
o
ta

ti
o
n

s

s
o
u

rc
e
 a

n
d

 c
o
n

te
x
t

 a
n

n
o
ta

ti
o
n

s

Figure 10.3.5: Relational database F2DMM models created by the Ecore2SQL transformation.

284

10.3. RESULTS

ATL/EMFTVM Annotations Comparing the annotations mapped onto the columns of the
table Person allows drawing conclusions on the effect of trace completeness. The annotations
of the corresponding elements resulting from the propagation based on the BXtend and the
ATL/EMFTVM trace do not deviate. This is due to the fact, that the BXtend trace records
the Table and the columns apart from the id-column as pivot target elements. The additional el-
ements created in the table (e.g., the SQL annotations) do not require a more specific annotation.
Similarly, the table and the columns are target elements of trace elements in the ATL/EMFTVM
trace and receive the same annotation as mapped onto the respective source element.

QVT-O Annotations In contrast, the elements of the mapping resulting from the propagation
based on the QVT-O trace combine the source annotation with the annotation of the context
elements. In the case of the table Person, the Schema (annotation: DBContent) is the context
element of the Class2Table rule. The rule creates the id-column, annotations, a primary key, and
one foreign key into the object-table. Accordingly, the annotation Person and DBContent, which
combines the annotation of the source and the context element in a conjunction, is mapped onto
these elements. The remaining columns stem from the rule which transforms EAttributes, where
the table (annotation: Person and DBContent) serves as context element. Conversely, the second
foreign key, stated as last contained element in the table Person, is created by the transformation
rule which converts containment-references (i.e., no context elements in the trace).
As explained in Sec. 10.2.3, the Ecore2SQL transformation employs the main method (entrypoint)
to prescribe the sequence of executing rules and requires the classifiers to be transformed before
their references. For that reason, the mapping-rules which transform EReferences do not receive
the containing classifier explicitly as parameter. Therefore, the classifiers are not recorded in the
trace as context elements. As a result, the annotation of the column persons_inverse and the
foreign key into the database are assigned the annotation Person which is mapped onto the source
element, the EReference, but it is not combined with the annotation of its container.

BXtend Annotations Conversely, the annotations of the columns contained in the table
EObject differ among each of the three mapping models. The annotations assigned by using
the BXtend trace information, reside at the lowest level of specificity and result from the parent
completion strategy in this example. Since neither the object-table nor any of its contained ele-
ments is the target element of a trace element, the propagation cannot compute their annotation
based on trace information. Therefore, the completion strategy first determines the annotation
of the tables’ parent, which is the annotation DBContent mapped onto the Schema. Thereafter,
the completion strategy assigns this annotations to the remaining elements contained in the table.
Since none of the elements contained in the table is assigned an annotation and possesses children
elements, the contained and combined completion strategies do not compute different annotations.
In any completion strategy, the root annotation is assigned to the table EObject and its columns,
causing the inaccuracy and violation of commutativity.

Results BXtend Despite the fact that each configuration encompasses at least one element onto
which a wrong annotation is mapped in the BXtend trace-based propagation in the DBC product
line, the actual number of differences remains low: The DBC product line exhibits a severity error
of less than 2% for any of the completion strategies. Moreover, at minimum, 18 annotations of 623
mapping elements have to be repaired manually, resulting in an actual error of 2.89%. After these
annotations are manually corrected and the transformation and comparison is executed again, an
absolute error of 0% is measured meaning that annotations were assigned in the correct way to
achieve commutativity. Similarly, in the Graph product line, the annotations of five columns and
corresponding foreign keys have to be repaired manually in the table EObject. Additionally, the
table Nodes comprises a foreign key into the table Color which receives the annotation Nodes
or GraphProductLine (depending on the completion strategy). The annotation of this element
has to be refined to Color, too, in order to achieve commutativity. In total, at minimum eleven
annotations have to be repaired provoking an actual error of 1.82%.

285

CHAPTER 10. EVALUATION

Results ATL/EMFTVM and QVT-Os Finally, the annotations of the mapping model re-
sulting from the propagation based on the ATL/EMFTVM trace and the QVT-O trace, differ
only with respect to their specificity. Since the context element of creating the table EObject
is the Schema, the annotation of the source element is combined in a conjunction with the root
feature and assigned in that way to the columns contained in the table EObject created by the
QVT-O transformation. In contrast, the mapping created based on the ATL/EMFTVM trace
only maps the annotations of the respective source elements onto the column. However, the effect
on commutativity is the same. Both mapping models created by exploiting the ATL/EMFTVM
and the QVT-O traces, satisfy commutativity.
While no mismatching configuration and, thus, no wrong annotation can be found in the Graph
product line for each of the two transformations, the comparison of the EMFCompare framework
records differences between the filter-transform and the transform-filter variants in the DBC mod-
els created by the QVT-O transformation. Conducting a manual textual comparison of a sample
of the xmi-files storing the filter-transform and the transform-filter variants, however, proves that
there is not a single difference between both. Inspecting the comparison file reveals that, for
instance, foreign keys are detected as deleted and added on both sides but are not recognized as
equivalent. Manually overriding the equals() method of the class representing the metamodel
element ForeignKey did not help to recognize matching foreign keys correctly. Therefore, we
record the error but could not repair any annotation. Thus, the actual error is of 0.00%.

Summary In summary, in the Ecore2SQL transformation, the propagation based on the gen-
eration-complete ATL/EMFTVM and QVT-O traces results in correctly annotated target models
in both transformation scenarios, the Graph and the DBC product line. Since in this example and
with the given filter, the information of the generation-complete trace suffices to satisfy commu-
tativity, the additional information about context elements in the QVT-O trace cannot improve
the already correct result. Furthermore, the subject systems show that the completion strategies
work as expected and generate mappings models which are completely annotated. However, the
completion strategies make no difference so that it suffices to employ the container strategy which
is less computational-expensive as accurate as possible.

10.3.5 Model-To-Text
After having examined commutativity in M2M transformation scenarios, this section presents the
results of evaluating commutativity in the M2T multi-variant transformations using the aspect-
oriented propagation of Xpand. In contrast to the model comparisons, the evaluation compares
source code directories and files. Consequently, the first part of this section introduces adapted
metrics which allow measuring commutativity. The second and third part illuminate details of
the evaluation results in the Ecore2Java and the MoDisco2Java transformations, respectively.

I Error Computation

In contrast to comparing models and their elements, in text representations several files build a
derived variant and may incorporate erroneous annotations. As a consequence, not only the text
inside a file may be mismatching due to a wrong annotation but also an entire file may be missing.

Preliminaries For evaluating commutativity, we perform a String comparison which neglects
differences in white spaces and focuses on the remaining text. The resulting String comparison
value states the distance between the first two non-matching characters inside the String which
does not allow to draw a conclusion about the quantity of the mismatches. Therefore, for com-
puting the error we consider only a Boolean value at the level of files. Either the text contained
in two files matches entirely or at least one textual difference exists. The latter also includes
the possibility that the corresponding source code file is not present. For that reason, the error
computation does not regard the concrete difference value resulting from the String comparison
but only the number of files which contain an error. The severity error does not count how many
lines of the generated source code or how many single characters in the compared files do not
match but the number of files.

286

10.3. RESULTS

Table 10.7: Statistical data and error measurements of the Ecore2Java M2T transformation.

product
line

#all derived
files

#files with
mismatches

#wrong an-
notations

errabs_mt errsev_mt erract_mt

Graph 2196 0 0 0.00% 0.00% 0.00%
DBC 2885 216 4 7.49% 7.05% 1.83%

Adapted Metrics Firstly, the textual absolute error weighs the number of all erroneous files
(including missing ones) in all derived directories against the total number of files that are derived:

errabs_mt = #files with mismatches
#all derived files (10.1)

Secondly, the textual severity error regards the fact that each variant may comprise a different
number of files. The number of all configurations is n:

errsev_mt =
∑n−1
i=0

#files in i with mismatches
#all derived files in i

n
(10.2)

errsev_mt is more fine-tuned than errabs_mt because it considers the fact that the number of
created files can vary among the feature configurations. However, it is expected to be of same
magnitude as the absolute error.
Finally, the actual error can be determined again manually by repairing and counting the number
of wrong annotations. This number can be weighed against all lines that incorporate a directive
in the multi-variant source code platform.

erract_mt = #wrong annotations
#all directives (10.3)

Based on these values, we can quantitatively evaluate and discuss the correctness of the generated
source code annotations in the following sections.

II Ecore to Java Source Code

The transformation that generates Java source code from Ecore models is able to achieve high
accuracy in the assigned annotations as summarized in Table 10.7. All annotations assigned to
the source code representing the Graph product line are correct and satisfy commutativity. In
contrast, the evaluation determines an absolute error of 7.49% when generating source code for the
database content Ecore model implying that more than 90% of the files are annotated correctly.
The following paragraphs explain the reasons for these results. Notice: As the HAS product line
is modeled as UML model, it cannot serve as input to the transformation.

Graph Product Line The multi-variant M2T transformation generates 16 files for the Graph
Ecore model, an interface as well as a class for each of the 8 EClasses. Each of the files starts
with the package declaration followed by import-statements computed from the types that are
used in the classifier. After declaring the name of the interface or class, the field declarations or
corresponding methods are written followed by the method declarations for EOperations.
Fig. 10.3.6 shows the generated directory and its contained files on the left side and parts of the
text fragments created for the EClass Graph on the right side. The middle of the figure depicts the
interface that is created and stored in the main directory de.ubt.ai1.famile.example.graph
whereas the right side presents the class stored in the contained directory impl. At the bottom,
the figure highlights the method declaration getEdge() which is given a name and created from
a corresponding EOperation stored in the EClass. The blue rectangles highlight the text frag-
ment(s) that are created by the original (single-variant) transformation whereas the red rectangles,
which surround the blue ones, stress the fragments which are added by the generic aspect.

287

CHAPTER 10. EVALUATION

 directory Graph interface Graph class

original
text

production

advice
injected

text

Figure 10.3.6: Excerpt of Graph Java source code created by the Ecore2Java transformation.

In both files, the generated annotations combine the annotation of the source element with the
annotation of its container. In the highlighted method, the source element is the EOperation
getEdge() and the container is the EClass Graph, onto which the annotations Edges and Graph-
ProductLine, respectively, are mapped. Consequently, the opening directive (#IFDEF) stated as
Java comment before the method declaration requires both features, Edges and GraphProduct-
Line, to be selected in order to be present in a derived variant. Thus, they are combined in a
conjunction. The remaining annotations of similar model elements are computed in the same way.
If the parent annotation already occurs in the source annotation literally, it is not included in
the conjunction. For example, the annotation of the class and interface declarations or of the
method printContents() would require combining the annotation of the source element (anno-
tation: DBContent) with exactly the same annotation of the parent element. Thus, the computed
annotation states the same feature only once in a conjunction.
Lastly, the figure demonstrates the text generated as body of a method on the right side, for
instance in the method getEdge(). The transformation rule creates a protected block in which
the default value corresponding with the return type of the method is returned. Accordingly, the
entire body can be customized and this modification is prevented from being overwritten in a
consecutive incremental execution of the same transformation as long as the same source node
remains in the source model.
In summary, as Table 10.8 mentions in its first row, the multi-variant transformation creates 16
files comprising 954 lines of code in total for the Graph Ecore model as input. Furthermore,
the multi-variant transformation creates 244 lines of code which incorporate an opening or closing

288

10.3. RESULTS

Table 10.8: Different types of counted Lines of Code in the Ecore2Java M2T transformation.

product line #files #all #directive #other
comment

#source
code

Graph 16 954 244 166 327
DBC 21 843 218 131 317

directive (line including either the String "#IFDEF" or "#ENDIF") and 166 lines including another
form of comment (i.e., "//", "/*", "/**" or "*/"). 217 lines are counted as empty such that 327
lines remain that include implementation code. As a consequence, the generic aspect adds more
lines of codes (244+166 = 410), which make up 42.98% of all created lines, than the original text
production which creates the implementation source code, which makes up 34.28%.
As the text comparison does not detect mismatches between the filter-transform files and transform-
filter files in any configuration, the absolute as well as the severity and the actual error remain at
0%. Table 10.7 summarizes the data from which the error measurements are created and lists the
error values as well as the number of derived files and potentially wrong annotations. Its first row
shows that no annotation is wrong in the text generated for the Graph product line such that we
conclude that the created multi-variant files are annotated correctly.

DBC Product Line In the second place, the evaluation examines the correctness of the same
transformation given the DBC Ecore model as input. The transformation creates 21 files for the
database Ecore model. The source model comprises 10 EClasses, for each of which an interface
and a class declaration are created, and one enumeration which is transformed into a corresponding
declaration stored in a separate file.
Similar to Fig. 10.3.6, which demonstrates resulting annotated files of the Graph product line,
Fig. 10.3.7 depicts the directory and files that are created by the transformation on the left side
whereas the middle and the right side depict the multi-variant interface and class, respectively,
created for the EClass DBContent. Moreover, similar as in the exemplary description of the
outcome of transforming the Graph Ecore model, the annotations of the text fragments shown in
the figure combine the annotation of the source node with the annotation of its container.
Furthermore, the figure spotlights the text produced for the containment reference songs stored
in the class DBContent. The text production generates method headers in the Java interface and
method bodies as well as a field declaration in the Java class. Preprocessor directives surround
these source code fragments which result from applying the respective text-producing rule ϑ and,
thus, represent the outcome of the original text production.

Cause of Wrong Annotation While in each configuration the majority of the created class and
interface files does not exhibit textual differences, the four files Person.java, PersonImpl.java,
Domesticated.java and DomesticatedImpl.java provoke a mismatch when the feature Pet is
not selected8. Fig. 10.3.8 displays the relevant excerpts of the feature model and mapping model
as well as the relevant source code fragments causing this error.
The mismatch in derived variants occurs in the import statements before opening the type decla-
rations. The corresponding rule creates such statement for each non-primitive type that is used
as type of property or of a parameter in the source EClass. The advice looks up the annotation
of the source element (i.e., of the type that is imported) and of its container (i.e., the package
in which the EClass or EEnum is stored) to compute the annotation. Consequently, the inter-
face Domesticated is imported in the interface Person, depicted on the right side of the figure,
whenever the features Domesticated, Animal, and DBContent are selected. However, the import
is only required when the feature Pet is selected additionally because, only then, the interface is
used as parameter of the methods declared in Lines 58 and 59 of the interface.
Although the import is not needed, this fact does not violate commutativity in isolation. While the
import is present in the source code derived from the multi-variant source code platform regardless

8 We deduced this fact by manually inspecting a random sample of mismatching files in erroneous configurations.

289

CHAPTER 10. EVALUATION
c
re

a
te

d
 d

ir
e
c
to

ry
D

a
ta

b
a
s
e
C

o
n

te
n

t
in

te
rf

a
c
e

D
a
ta

b
a
s
e
C

o
n

te
n

t
c
la

s
s

o
ri

g
in

a
l

te
x
t

p
ro

d
u

c
ti

o
n

a
d

v
ic

e
in

je
c
te

d

te
x
t

Figure 10.3.7: Excerpt of DBC Java source code created by the Ecore2Java transformation.

of the feature Pet being selected, it will not be present in the source code transformed from the
derived source variant when the feature Pet is deselected. In that case, the derived source model
would not incorporate the EReference pets at all. For that reason, the collection of types to be
imported in the created Java interface or class does not include this class and, therefore, would
not generate a corresponding import-statement. As a consequence, the filter-transform and the
transform-filter variants deviate in the presence of importing the interface Domesticated.java.

For the same reason, the interface Domesticated will also provoke the same situation if the feature
Pet or Domesticated are not selected but the Person is. As shown in the bottom left corner of
the figure, the import statement will be included in the source code derived from the multi-variant
source code platform in each configuration in which the feature Person is selected although it is

290

10.3. RESULTS

feature model
and

mapping model

Domesticated.java Person.java

wrong
annotation

('Pet' missing)

Figure 10.3.8: Commutativity violation in multi-variant interfaces of DBC product line.

only present in the transformed source code when also the features Domesticated and Pet are
selected.

Summary On the whole, the transformation of the database product line and the following
commutativity evaluation computes an absolute error of 7.49% where 216 out of the 2885 generated
files contain at least one syntactic mismatch. While the order of the severity error is of the same
size, the actual error remains below two% and requires to change four annotations (i.e., four
lines of the all non-empty lines) in total. Only the single import statements in each of the two
interfaces Person and Domesticated and of their respective implementation has to be refined in
order to satisfy commutativity.

III MoDisco to Java Source Code

As second example, we performed a transformation of the structural parts of the MoDisco model
into Java source code. This transformation serves to demonstrate the feasibility of the generic
advice. Without any adaptation the same generic advice can be injected in the original MWE2
workflow which triggers the mentioned transformation. Thus, it offers evidence that the advice
is completely definition-independent. Table 10.9 offers an overview of the source code statistics
created in this transformation scenario.

Generated Directories Fig. 10.3.9 presents the directory and files which are created for the
input model on the left hand-side. On the right hand-side, it depicts the contents of two of the
created files. The UML2Java transformation created a class declaration and a corresponding com-
pilation unit for the UML association database_to_persons. The MoDisco2Java transformation
transformed the compilation unit into the file depicted in the top right corner. First, the contents

291

CHAPTER 10. EVALUATION

Table 10.9: Different types of counted Lines of Code in the MoDisco2Java M2T transformation.

product line #files #all #directive #other
comment

#source
code

Graph 21 422 124 62 121
DBC 20 455 98 49 89

mention the package and open the class declaration which is only present when the features Person
(source element) and DBContent (container) are both selected. Inside the class, it represents the
two field declarations as two private object field declarations. The visibility is retrieved based on
the modifier and the type based on the types stored in the type access. Since both, the visibility
and the type, are not generated by the means of a self-contained rule, they are not annotated in
a more fine-grained way than their container, the field declaration. The field declaration, on the
other hand, receives the annotation Person only because the container is not annotated differently.
As explained before, the advice includes the same feature in a single conjunction only ones.
The lower part of the figure depicts the text written to the generated file Person.java. Similar
to the contents of the Database_To_persons.java file, only the field declaration in its entirety
is embraced with the annotation of the source element combined with the parent annotation. In
contrast to the second depicted class, annotations which are more fine-grained than the annotation
of the container are mapped onto the source field declaration. Accordingly, the corresponding
generated text fragments, such as the field lastname, combine the annotation of their source
element with the annotation of its container. In this example, the annotation !Family && Person
is mapped onto the text line ‘private String lastname;’.

Results Graph Product Line The same situation can be observed when transforming the
MoDisco model representing the Graph product line contents. 21 files are created which contain
the source code for representing (regular) class declarations holding field and method declarations
as well as for representing association classes which only record two field declarations in this
example. Annotations are computed and assigned in the same way such that the evaluation of
commutativity does not detect any difference among the derived source code variants. Thus, the
results allow for concluding that the advice annotates the source code correctly.

Summary The results of computing commutativity reveal that the propagation of annotations is
correct because no mismatches are detected in any of the configurations of the DBC and the Graph
product lines. This effect is caused by the nature of the transformation which only transforms
core elements of the source model the annotations of which suffice to achieve commutativity.

10.4 Discussion

As concluding part of this chapter, this section summarizes and discusses the results of the eval-
uation. Accordingly, for the trace-based and the aspect-oriented propagation of annotations it
shortly summarizes the main insights and discusses them with respect to satisfying commutativ-
ity and the implications on the computational model based on the measured metrics. Thereby it
answers the evaluation questions.

Road Map In the first place, Sec. 10.4.1 answers the evaluation questions by summarizing the
results of evaluating the trace-based propagation. In addition, the section discusses the properties
postulated in the computational model and the effects of deviations from it in the examined trans-
formation scenarios. In the second place, Sec. 10.4.2 similarly summarizes the results and discusses
effects of deviating from the computational model of the aspect-oriented propagation followed by
answering the evaluation questions based on the findings. The concluding section, Sec. 10.4.3,
progresses to analyze the threats to validity of the evaluation and the drawn conclusions.

292

10.4. DISCUSSION

created directory excerpt of contents

original
text

production

advice
injected

text

Figure 10.3.9: Excerpts of DBC source code created by MoDisco2Java transformation.

10.4.1 Trace-Based Propagation
From conducting the evaluation based on the different scenarios, we answer the evaluation question
after giving an overview of the results. While the first part of this section discusses the conclusions
we draw from applying trace-based propagation to the three subject product lines, the second part
answers the evaluation questions based this discussion.

I Summary of Results

The following summary first gives an overview of the results, followed by a discussion of the details
that may cause the results. The following parts

Overview The results of examining M2M transformation scenarios demonstrate that the trace-
based a posteriori annotation propagation is able to construct a mapping model which is completely
annotated despite violations to the computational model. Although the propagation based on a
generation-complete trace violates the computational model, in general, the propagation based on
this trace information in the examined scenarios annotated the target model correctly.
Furthermore, the evaluation gives evidence that the majority of annotations (more than 90%) is
also correct when propagating annotations based on incomplete trace information and complet-
ing the annotations based on a completion strategy in each transformation scenario and subject
product line. However, in our subject product lines, the results could not determine a difference
in accuracy between the completion strategies which is an effect partly caused by the employed
model filter. The sequel dives into the effects of (violating) the properties of the computational
model.

293

CHAPTER 10. EVALUATION

 tr1 : Rule1

R

s1 : Src1
 t1 : Trg1

 t2 : Trg2

:trg

:src
:trg

 tr2 : Rule2s2 : Src2
 t3 : Trg3

:src
:trg

BA

B

A
A

A

B
R

B

A

generation-complete

trace

Fb

 tr1 : Rule1s1 : Src1
 t1 : Trg1

 t2 : Trg2

:trg
:src

:trg

 tr2 : Rule2s2 : Src2
 t3 : Trg3

:src
:trg

:ctx

B

A
A

A

A∧B

:src

Fa

complete

trace
R

A

BFc

Figure 10.4.1: Influences of annotations, feature model, and trace completeness.

Trace Completeness As a first point, the computational model fosters complete traces to guar-
antee commutativity of trace-based propagation. Therefore, we would expect that the information
in generation-complete and incomplete traces does not suffice to satisfy commutativity, such that
some of the filter-transform and transform-filter variants deviate from each other.
In the subject systems and transformations which we executed, however, we found that the propa-
gation based on a generation-complete trace was able to satisfy commutativity. On the one hand,
this may be caused by the kind of annotations, which are mapped onto the source model: If the
annotation mapped onto the recorded source elements implies the annotation of the non-recorded
context information, the source annotation will encode the information that would be computed
based on the context elements otherwise. Thus, it suffices to assign the source annotation. For
instance, the annotation Color implies the annotation Nodes and the corresponding class Node
needs to be present in order to add a reference to the class Color in the Graph product line.
However, it suffices to map the annotation Color onto the reference because it is a child feature of
the feature Nodes according to the feature model. The same holds for each created target element
in our subject product lines which would be recorded as a context element: The annotation of
primitive types (i.e., the root feature), for instance, is implied by any annotation that is mapped
onto an attribute. Similarly, the annotation of general types is implied by the specific classes and
method parameters which are more specific than the annotation of the method itself do not occur.

Example Trace Completeness Ex. 10.4.1 sketches and discusses the influence of the feature
model and the trace completeness on the correctness in an abstract way:

Example 10.4.1: Trace Completeness and Annotation Interplay

On its left hand-side, Fig. 10.4.1 depicts three different feature models, Fa, Fb and Fc,
comprising the same set of three features, R, A and B, and two equal STT model instances
on its right hand-side. Two traces of different completeness levels connect the source with
the target model elements. The scenarios on the right side show the application of two
transformation rules, Rule1 and Rule2. Rule1 transforms source elements of type Src1
into two target elements of types, Trg1 and Trg2. Rule2 requires the second target element
of type Trg2 to create a third target element of type Trg3 for a source element of another
type Src2. While the generation-complete trace, depicted in the upper part of the figure,
records only the created target elements, the complete trace, depicted in the lower part,
records the target element t2 as context element of Rule2 additionally.

294

10.4. DISCUSSION

The trace-based propagation maps the annotations A onto t1 and t2 regardless of the trace
completeness. It will map the annotation B onto t3, if the trace is generation-complete
because the propagation regards only the source element of Rule2. Since the complete trace
records the element t2 (annotation A) as context element of Rule2 in addition, the anno-
tation which is mapped onto the target element t3 is the conjunction of the annotations
of the source and context element: A ∧ B.
Depending on the feature model constraints, the annotations computed based on
generation-complete and complete trace information affect the presence of the target ele-
ment t3 in derived variants differently: If the feature model expresses constraints as in Fa
or Fc, the annotation A ∧ B, computed based on the complete trace, will not convey the
same visibility as the annotation B, computed based on the generation-complete trace.
If A and B are optional features without any other constraint as in Fa, a configuration
may deselect A and select B. The transform-filter variant derived from the multi-variant
model which was created based on the generation-complete trace will contain the target
element t3. Although the derived source variant comprises s2, Rule2 cannot be executed
in this situation because it requires the presence of s1 and t2. Since the source element
s1 will not be part of the derived source variant, the single-variant transformation cannot
create the target element t2. Therefore, t2 will be missing and prevent the single-variant
transformation to create t3. Consequently, the filter-transform and the transform-filter
variant will not be equivalent and, thus, violate commutativity. Assigning the annotation
based on the complete trace will prevent this situation because the computed annotation
prohibits to include t3 in the transform-filter variant.
Similarly, it is possible to select B but not A in Fc. Then, each element the annotation B
is mapped onto will be present in the derived variants but Rule2 will not be executed in
the single-variant transformation due to the missing source and target elements, s1 and
t2. Thus, for the same reasons as with annotations conforming to Fa, the same set of
annotations will violate commutativity if the feature model constitutes equally as Fc.
Finally, if the feature model constitutes as Fb, the annotations will suffice to satisfy commu-
tativity regardless of the trace completeness. According to Fb, B implies A, such that either
only A is selected or A and B, are both selected. As a consequence, either only s1 is present
and transformed or s2 is present in addition. If s2 is present, the context element of Rule2
will be present, too. Therefore, t3 is included in the filter-transform variant whenever it
is present in the transform-filter variant. Thus, this scenario satisfies commutativity.

Consequences As the transformations, the annotations and the feature model in our subject
product lines exhibit similar relationships and constraints as the mapped annotations and feature
model Fb in Ex. 10.4.1, the generation-complete trace suffices to satisfy commutativity. Another
reason why a generation-complete trace may suffice is that either no context elements are required
in the transformation rules (such that the generation-complete and the complete trace persist
exactly the same information) or because all relevant source elements are recorded in the trace:
Firstly, to create target models which comprise differently typed elements which require the pres-
ence of another element to be created, the transformation definition needs access context elements.
Thus, it is unlikely that a transformation definition can be executed without accessing context ele-
ments at all. Secondly, it may suffice to record all source elements, which are relevant for creating
the target element. This should include source elements which were responsible for creating the
context elements which are missing in the generation-complete trace. Then, the information which
is redundantly present in a complete trace would suffice. In Ex. 10.4.1, it would suffice to add a
link originating from the trace element tr2 targeting s1 because it conveys the same annotation
information as the context element t2 (referenced by the ctx edge). However, the traces that we
examined either stored the entire information (all source and all context) elements or only the
single source element and no context element.

Incomplete Traces As opposed to the sufficient information in generation-complete traces,
solely the information persistent in incomplete traces does not suffice to satisfy commutativity. In
neither subject system it is possible to satisfy commutativity based on this information. While we

295

CHAPTER 10. EVALUATION

do not evaluate the effect of an incomplete trace in isolation (i.e., the model filter may influence
the result), we can draw the conclusion of its insufficiency from the fact that the annotations
computed by the completion strategies based on the annotations assigned by the incomplete trace
propagation are also not able to satisfy commutativity. Since we assume that the annotation
completion does not worsen the commutativity result9, we conclude that the propagation without
completion strategy (i.e., based on the incomplete trace only) cannot satisfy commutativity, too.

Trace Granularity As a second point, the trace granularity postulated by the computational
model requires traces that record information at a level which is as fine-grained as the mapping
and filter mechanism (c.f., Prop. 5.3.8). The mapping model as well as the filter of the tool
Famile are able to define and process annotations which are mapped onto the structural features
of objects. However, none of the traces which resulted from transformation engines we examined
records corresponding elements at this trace granularity. Consequently, we would expect that the
coarse-grained trace causes a violation of commutativity (HG1).
In contrast to this hypothesis, the results of the evaluation indicate that the missing fine-grained
information does not affect the correctness of the assigned annotations negatively. On the one
hand, none of the structural features of the source objects carries an annotation which is more
specific than the annotation of the source object. Thus, the structural features are present in any
derived variant where the source object is present and therefore, a more fine-grained annotation
does not have to be propagated to the target mapping model.
On the other hand, if the mapping mechanism allows for fine-grained annotations and none are
provided, the Famile model filter will consider them incomplete and assumes the annotation true.
Thus, the structural features of a source object are present whenever the object is present in
the source model. Alternatively, a completion strategy may compute the target annotations in
their entirety assigning the annotation of the containing object to the structural features. As
a consequence, in effect, insight of hierarchical filters the coarse-grained trace will affect the
correctness negatively only if the source multi-variant model exploits the possibility to assign
more specific annotations to structural features.

Properties of Transformation (Rules) Furthermore, we would expect a negative impact
on the accuracy, if the transformation was performed in-place, incrementally, was not rule-based
and if the transformation rules were either not functional, monotonic or local. To reduce these
effects and isolate the influence of the trace completeness, we only consider rule-based out-place
transformations composed of monotonic and functional rules in batch mode.
However, not all of the rules in the transformations that we employed are local. The Ecore2Java
transformation, for instance, employs positive application conditions to create different elements
for classes, where the structural feature interface is set true and false. Similarly, the Ecore2SQL
transformation creates either a column or an entire table for a given EReference depending
on whether the reference is a containment reference, single- or multi-valued. Similar to the
Ecore2UML transformation definition, the UML2Java transformation definition creates different
elements (e.g., different contents of comments attached to a field declaration depending on the
type of association).
Although some of the rules are non-local, not all of them affect the correctness of the propagation.
Particularly, if the presence or absence of an EAttribute of a source object varies the transforma-
tion, it will not have an effect on the examined transformations because we only map annotations
onto the objects. However, if the presence or absence of a referenced object might create two
distinct elements, the propagation cannot guarantee commutativity.
Because of the assigned annotations of the subject product lines the transformation does not
execute different branches in sight of missing or additionally referenced objects. For instance, in
the examined product lines whenever a class inherits from another class, the annotation of the

9 The annotation completion is based on already existing annotations which convey exactly the same information
as present in the source model. Thus, it does not invent new behavior but propagates the same information
of the source model to further dependent elements. The model filter further prevents that elements carrying a
too broad annotation (e.g., the root feature) to remain in a variant without proper container and removes these
elements. Thus, the completion strategy cannot exacerbate the commutativity result.

296

10.4. DISCUSSION

specific class implies the annotation of the general class. Therefore, it is not possible for the
specific class to exist without the general. Similar annotations prevent non-local rules to provoke
the execution of a different program path.
On the whole, the properties restricting the execution of the transformation definition do not
violate the computational model but the transformation rules violate locality. However, either
no annotation is mapped onto elements provoking non-locality or the annotations prevent the
violation to happen.

Completion Strategies As a second point, we examined the effect of the completion strategy.
Firstly, we would expect that the completion strategies establish a multi-variant model which is
completely annotated (HC1). Secondly, we would expect that the container strategy is beneficial
whenever a transformation rule creates a hierarchy of elements contained in the pivot model ele-
ment which carries an annotation (HC2). Thirdly, we would expect that the combined strategy
achieves the highest accuracy whenever the target model forms a hierarchical structure (without
crossreferences, relevant for the presence of an annotated element) (HC3).
In the subject product lines, which were transformed with BXtend and corresponding trace in-
formation together with a completion strategy, the resulting mapping models are annotated com-
pletely regardless of the chosen completion strategy. Thus, the findings confirm expectation HC1.
The result is a consequence of the design of the three completion algorithms: The algorithms it-
erate the elements without annotation either top-down or bottom-up to ensure the algorithm can
retrieve the annotation for an element either from its container or from the contained elements. If
the container and contained elements are not annotated, the algorithm will assign the root feature.
Furthermore, we observe that the container strategy makes a difference when the model is struc-
tured mostly hierarchically whenever the container is the pivot element stored in the trace and
the target elements not recorded in the trace are contained directly or transitively in this pivot
element. For example, in the sql model most of the created pivot model elements (Table, Column)
contain objects of type Annotation, which do not receive an annotation by the trace-based prop-
agation due to the incomplete trace information. However, the annotation of the last annotated
container is specific enough to satisfy commutativity. Therefore, compared to the UML2Java base
version, about three times less (31.52% and 34.77% in the DBC and Graph product lines, respec-
tively) annotations of all target annotations in the respective model have to be repaired in the
Ecore2SQL transformation according to the actual error. In a similar way, the repair ratio which
regards the trace information per incomplete mapping (c.f.,Table 10.5) decreases when comparing
the base with the advanced UML2Java transformation definition in the HAS model. While the
model structure does not affect the actual error positively in the DBC and Graph product lines
(because the relevant pivot container is annotated with the root feature), the hierarchical struc-
ture of the HAS with more specific annotations mapped onto the packages decreases the number
of annotations that have to be repaired in relation to the number of annotations assigned by the
trace propagation. In summary, while we would expect a positive effect of the container comple-
tion strategy in hierarchical models, the effect strongly depends on the kind of annotation that is
mapped onto the container which is considered for computing the missing annotations. Thus, the
evaluation cannot confirm expectation HC2 without restrictions.
Thirdly, we would expect that the combined strategy achieves the highest accuracy of all comple-
tion strategies. However, the findings show that in the subject product lines it does not achieve a
better effect than the container strategy. As discussed above, this is mostly caused by one of the
children annotations which is the same as the annotation of the container element. Therefore, the
accuracy boils down to the accuracy of assigning the parent annotation.
Despite this effect in the chosen product lines, Fig. 10.4.2 sketches a situation where the combined
strategy can pay off. Ex. 10.4.2 explains the situation in detail.

Example 10.4.2: Combined Strategy Effect

Fig. 10.4.2 demonstrates a situation where the feature model consists of a root feature R
and two optional features A and B (as representative of a similar sub-group of features in
a larger feature model). The source model comprises three elements: the source element

297

CHAPTER 10. EVALUATION

 tr1 : Rule1

R

s1 : Src1
 t1 : Trg1

 t2 : Trg2

:trg

:src

:trg

 tr2 : Rule2s2 : Src2

 t3 : Trg3

:src

:trgBA

R

A

?

incomplete tracefeature
model

A

s3 : Src2
B

 t4 : Trg3
 tr3 : Rule2

R

B
:src

:trg

:ctx

Figure 10.4.2: Example of combined completion strategy with positive effect.

s1 of type Src1 (annotation A) contains the elements s2 and s3 of type Src2 which are
annotated with the features A and B, respectively. Two transformation rules are applied
in sequence to create the four target elements depicted on the right side. Particularly, the
second rule Rule2 creates a target element of type Trg2 whenever no appropriate container
exists for the pivot target element of type Trg3 it creates.
The incomplete trace records three trace elements for each rule application and references
the source and target elements with solid arrows. The dotted references mark elements
which are created either additionally in the rule application (i.e., t2 by Rule2) or serve
as context element (t2 by Rule3). The element t2 misses an annotation because it is
not referenced as target element by the incomplete trace. If the container strategy was
applied, the annotation R would be mapped onto the target element. As a consequence,
element t2 would be present in every derived variant although neither the target elements
t3 and t4 were present nor the source element s2. Thus, the container strategy computes
an annotation which would violate commutativity.
If instead the combined or contained strategy computed an annotation for t2, the resulting
annotation would either be R ∧ (A ∨ B) or (A ∨ B), respectively. In contrast to the
annotation computed by the container strategy, the annotation computed by both, the
contained and the combined strategy is specific enough to satisfy commutativity in this
scenario. The element t2 will only be present in a derived variant if either the element t2
or t3 are present in this variant, too.

Consequently, Ex. 10.4.2 emphasizes that the combined strategy is beneficial in a multi-variant
model where the element missing an annotation contains annotations which are optional and
which are more restrictive than the annotation of its container. Although the transformation of
packages and classes in the advanced UML2Java transformation assumes the same pattern, the
combined strategy cannot achieve a more accurate result than any of the other strategies due to
the annotations assigned to the contained elements as discussed above. A similar model element
constellation occurs, for instance, in the backward transformation of a benchmark for bidirectional
incremental transformations [Anj+20] which converts a person register into a family register. We
examined this transformation to show the benefits of the combined completion strategy based on
a small theoretical product line example [GW18c; GW19c]. Thus, we state that – even if the
examined subject product lines do not confirm our expectation HC3 – the combined strategy may
increase the accuracy in situations equivalent to the one abstracted in Ex. 10.4.2.

II Answers to Evaluation Questions

Based on the explanations and discussion of the results of the trace-based propagation, we answer
the evaluation questions as follows:

EQ1 a) To what extent is commutativity achieved? The results show that reused single-
variant transformations which propagate annotations based on generation-complete traces are able
to satisfy commutativity. Although this is partly caused by the structure of the domain model, the
assigned annotations and the transformation rules, we do not trim any annotation on purpose to

298

10.4. DISCUSSION

DBC Graph HAS DBC Graph HAS DBC Graph
0

10

20

30

40

50

60

70

80

90

100

4.22 2.79 6.11 5.96 3.75 7.7 2.89 1.82

95
.7

8

97
.2

1

93
.8

9

94
.0

4

96
.2

5

92
.3

97
.1

1

98
.1

8

Error Rates in BXtend Transformations (Completion Strategies)

correct

err_act

 base UML2Java advanced UML2Java Ecore2SQL

A
ct

u
a

l E
rr

o
r/

C
o

rr
e

ct
n

e
ss

 [%
]

Figure 10.4.3: Statistics of correct vs. repaired annotations.

achieve the result but reused the Graph and HAS product lines as they has been designed before
and created the DBC product line for demonstrating concepts in the course of this thesis. Thus,
we draw the promising conclusion that a deviation from the computational model in form of using
generation-complete traces, suffices in several transformation scenarios to achieve commutativity.

EQ1 b) How much manual effort has to be invested to repair wrong annotations?
The actual error states the minimum amount of annotations which have to be repaired manually.
If generation-complete traces serve to compute annotations, no manual actions will be required.
In contrast, Fig. 10.4.3 provides – from left to right – an overview of the computed actual error rates
in the base and advanced UML2Java transformation as well as in the Ecore2SQL transformation
where annotations are computed based on an incomplete trace and a completion strategy. The
figure visualizes that in every subject product line less than 10% of all possible target annotations
have to be repaired which corresponds with the manual effort that has to be invested. Without a
propagation approach all target elements have to be annotated manually.

EQ2: How much manual effort is saved? In other words, answering EQ1 b allows to
answer EQ2, how much manual effort is saved. As stated as answer to EQ1 b, less than 10%
of the annotations have to be repaired. Consequently, more than 90% of the annotations are
computed correctly and assigned correctly even if the trace is incomplete. Therefore, also 90%
of the manual annotation effort is saved because potentially all target annotations have to be
assigned manually without the proper tool support. In case of a generation-complete trace, the
manual annotation effort is saved completely in the subject product lines which we examined.

EQ1 c) Which completion strategy achieves the highest accuracy? In the examined
subject product lines executed with the three distinct transformation definitions, the three com-
pletion strategies achieve the same accuracy.
On the one hand, this effect is caused by the Famile model filter, which will only keep an element
if its container is also present. The combined strategy assigns the root feature or the one of
the container to elements which do not possess children elements.. While the annotation would
provoke an invalid derived variant when a flat filter is used, the Famile filter prevents this situation
to occur. However, as a consequence, the container and the contained strategy provoke the same
effect if an element missing an annotation does not possess children. Similarly, the contained

299

CHAPTER 10. EVALUATION

strategy provokes the same effect if one of the children is annotated with an equally broad or
even broader annotation than the parent of the model element missing the annotation. Since the
combined strategy can only become as accurate as the more accurate of both the container and
the contained strategy, it depends on their effect. Consequently, only if the children are annotated
with a more specific annotation than the parent of the element missing the annotation and all
three of them are annotated with an optional annotation, the combined strategy will achieve the
highest accuracy.

10.4.2 Aspect-Oriented Propagation
Similar to Sec. 10.4.2, I, this section first summarizes the findings of conducting the aspect-oriented
propagation with the language Xpand. The first part not only provides a short summary but also
discusses the effects of the computational model whereas the second part answers the evaluation
questions.

I Summary of Results

The M2T transformations which employs the aspect-oriented propagation approach, are able to
satisfy commutativity if they conform to the properties postulated in Sec. 8.3.3. This is the case
for the MoDisco2Java transformation which does not dynamically compute the set of elements
matching an invoked rule. In contrast, the Ecore2Java transformation may violate commutativity
since the transformation deviates from the computational model. The following paragraphs first
offer an overview of the results and continue with analyzing details of how the transformation
definitions and the subject systems influenced the correctness of the propagated annotations.
In more detail, the results of conducting the commutativity evaluation with the two Ecore models
of the DBC and the Graph product lines, demonstrate that the transformation properties and the
annotated multi-variant transformation influence the correctness of the propagation. Again, the
Ecore2Java transformation deviates from the computational model inasmuch as one rule invokes
another rule on linked (not necessarily contained) objects of the source node. Despite this violation
of the computational model, given the Graph product line model as input, the transformation
satisfies commutativity and the error in the DBC product line requires to change the annotation
of four text fragments, in total. Furthermore, the MoDisco2Java transformation which does not
violate the computational model satisfies commutativity to full extent by applying the same advice.
Consequently, the results indicate that the properties of the computational model sufficiently
reflect the implications on the correctness of a transformation scenario.

Computational Model Commutativity may be violated whenever the transformation execu-
tion

• applies the same rule more often than once to the same source node (Prop. 8.3.1),
• modifies the source model (Prop. 8.3.2),
• does not terminate due to infinitely iterating or recurring rule applications (Prop. 8.3.3 and

Prop. 8.3.4).
Furthermore, the rules need to be

• functional (Prop. 8.3.5),
• local (Prop. 8.3.6),
• monotonic (Prop. 8.3.7) and
• need to preserve the order defined for the target elements (Prop. 8.3.8).

Similarly, the aspect needs
• to preserve the already existing order of the created fragments (Prop. 8.3.9) and
• to assign hierarchical annotations (Prop. 8.3.10).

Finally the computational model relies on the usage of coarse-grained annotations (Prop. 8.3.11)
as well as a hierarchical filter which preserves the order of the text fragments (Prop. 8.3.12).

Termination With respect to the properties of the transformation engine, we employ Xpand
transformations executed via MWE2 workflows to implement the aspect-oriented propagation. In

300

10.4. DISCUSSION

the first place, the language capabilities allow to define a transformation rule which can invoke
itself and can be invoked on the input object. Thus, it violates the necessary property for the
transformation rules to apply the same rule only once to the same source object (Prop. 8.3.1) in
order to guarantee termination. The remaining property of preserving the source model and not
modifying it by applying a rule is satisfied by the default properties of Xpand transformations.
However, the possibility to execute almost arbitrary Java source code (only static methods), can
provoke modifying the source model. In summary, although Xpand violates the three criteria,
uniquely matching a source node with the same rule, preserving the source model and terminating
each execution branch with a ’leaf’ rule, the transformation definitions which we examined adhere
to these properties and therefore, terminate the execution.

Transformation Rules In order to ensure that the generated single-variant source code can
be embedded into the multi-variant source code, the rules further need to be functional, local,
monotonic and preserve the order of the generated text. By design, Xpand rules are functional,
monotonic and executed in the ordered defined in the specification. However, the rules are not
local and injected advices can prevent text created by the original rule from being written to the
target file. As a consequence, we expect that correctness is violated when rules are defined in a
non-local way and when advices prevent the inclusion of original text in the multi-variant target
files.
The examined transformation definitions do not involve advices which would prevent text gener-
ated by the original text production from being included in the created file. Therefore, correctness
is not threatened and the specifications conform to Prop. 8.3.9, which fosters that the advice pre-
serves the execution and the target tree. In contrast, the Ecore2Java specification comprises rules
which collect types used in parameters and structural features of a given EClass to invoke another
rule on them for creating their import statements. Furthermore, several define-blocks access in-
formation of structural features (e.g., inheritance of class when eSuperTypes comprises elements)
of the matched input element and vary the transformation based on their values. However, vary-
ing the text-production based on the structural features of the matched source object does not
influence the correctness in the examined scenarios because we postulated only coarse-grained
annotations at the level of objects and the input multi-variant models adhere to this property.
Consequently, only the deviation based on executing other rules which get annotations assigned
threatens commutativity in this context. While this is the case in the DBC product line for only
four annotations that are too broad, the situation does not occur in the Graph product line so
that the latter created multi-variant models is annotated correctly.
Furthermore, we would expect a threat to the correctness when the computed annotation for the
target element is not combined with the annotation mapped onto the containing block. Since the
annotation is computed by the advice which only receives the source object as input, information
about the outer block is per se not available to the advice. Therefore, our implementation accesses
the parent object of the input object and looks up its annotation to combine it in a conjunction
with the annotation of the input object. Although this does not have to be necessarily the same
annotation mapped onto the surrounding text, the computed annotation do not harm correctness.
Last but not the least, as discussed above, we employ only mapping models with coarse-grained
annotations as input models. Furthermore, the Famile model filter served to derive model variants
and a custom preprocessor to derive text variants. Since both filters work hierarchically, we did not
expect a threat to correctness introduced by them and the results corroborated this expectation.

II Answers to Evaluation Questions

The results of the examined M2T transformations allow to answer the evaluation questions as
follows:

EQ1 a) To what extent is commutativity achieved? The results demonstrate that the
reused single-variant transformation which transforms core elements of a Java MoDisco model
into Java source code satisfies commutativity to full extent. On the contrary, the Ecore2Java
definition satisfies commutativity to full extent only for the Graph product line whereas four

301

CHAPTER 10. EVALUATION

annotations were assigned erroneously by the advice when generating source code for the DBC
product line. Thus, although wrong annotations were introduced, less than 2% of all generated
annotations had to be repaired to satisfy commutativity.

EQ1 b) How much manual effort has to be invested to repair wrong annotations? As
explained in the answer of EQ1 a, it was necessary to repair less than 2% of the automatically
created directives. In absolute numbers four annotations had to be refined in the text generated
for the Graph product line in the Ecore2Java transformation only. Therefore, we argue that even
if the transformation rules violate the computational model for the aspect-oriented propagation,
the repair effort remains very low compared to the number of annotating directives that are
automatically and correctly assigned.

EQ2: How much manual effort is saved? As a consequence of answering EQ1 b, more than
98% of the directives created in the Ecore2Java transformation for both input product lines are
assigned correctly. Consequently, the effort of the product line developer is reduced significantly
compared to stating each directives manually. In fact, more additional lines for directives and
other comments are created automatically as are for the original text production as indicated in
Table 10.8 and Table 10.9 10.

EQ1 c) Which completion strategy achieves the highest accuracy? This question cannot
be answered adequately for M2T transformation because they do not employ a completion strategy.

10.4.3 Threats to Validity
On the whole, the chosen subject product lines and the observed results demonstrate that the
correctness of the annotations depends on the kind of the computed annotation as well as on the
model filter, the model structure and the trace completeness. Therefore, the remaining factors as
well as the chosen subject product lines may introduce threats to validity of the experiment results
and the drawn conclusions. The following discussion in this section is based on the descriptions of
threats to validity by Wohlin et al. [Woh+12], who distinguish four kinds of threats: conclusion
and construct validity as well as internal and external validity.
The conclusion validity considers the relationship between the evaluated solution strategy and
the outcome of the evaluation. It requires that there is a statistical (significant) dependency
between both. As an example, fishing for a product line and transformation definition which
satisfy commutativity completely despite violating the computational model would be an example
of conclusion invalidity.
Similarly, construct validity regards the causality between the evaluated solution strategy and the
observed outcome. If causality is given, construct validity is concerned with representing the cause
in the input and the effect in the outcome with adequate constructs. For instance, measuring one
type of value only or not defining the input at an adequate level may threaten the evaluation
design.
While internal threats regard the selection of subject systems with respect to being adequate to
indicate a causal relationship between the solution strategy and the result, external threats regard
the fact to what extent the results transfer to input subjects outside the setting of the experiment.
Again, both, the internal and external validity, can be threatened by the selection of the input
subjects. Furthermore, for instance, grouping the input and the potential of it being influenced
by maturation or its history may threaten internal validity whereas the interaction of the history
or setting with the examined solution strategy may threaten external validity.

10 The amount of automatically created lines of codes adds the numbers of the columns #directives and
#other comment which is in each transformation scenario higher than the number of originally created source
code (column: #source code).

302

10.4. DISCUSSION

I Conclusion Validity

As a first threat, this section discusses threats to conclusion validity [Woh+12] which can be
introduced by

(1) low statistical power,
(2) violating the assumptions of the employed statistical tests,
(3) “fishing” for adequate subjects and the error rates in statistical tests,
(4) the reliability of the measured values and
(5) the reliability of the solution implementation,
(6) disturbing the experiment with random irrelevancies and
(7) a random heterogeneity in the subject systems.

Replication of Results Since we do not conduct statistical tests, we cannot introduce threats
to the statistical power (1) and violate the test assumptions(2). Furthermore, the measured values
and the solution implementation are reliable with respect to producing a deterministic result (4).
Conducting the experiments again will result exactly in the same measured values if the input
product lines and transformations are not modified beforehand. Thus, also the error rates do not
diverge in executing the tests repeatedly. Similarly, the implementation of the transformation
definitions does not change unexpectedly so that the examined effects remain stable in iterating
the experiment (5). In addition, disturbance provoked by outside factors such as noise cannot
threaten the experiment since we evaluate correctness only (6).

Subject Product Lines Regarding fishing (3) and the heterogeneity of the subjects systems
(7), the number of subject systems does not represent the entire universe of potential model-driven
product lines and transformation definitions:
We picked a set of input product lines which covers a significant variety of modeling concepts. The
domain models are complementary, which allows to cover several constellations in this exploratory
study. The selection of product lines with three diverse feature models allows to discover three
small- to medium-sized product lines where two impose a lower and the HAS a of valid configura-
tions which challenges the commutativity evaluation. The feature models vary inasmuch as they
incorporate requires- and excludes-dependencies, OR- and XOR-groups and mandatory as well as
optional features. Thus, they cover each possible type of constraint that can be expressed with
the (non-cardinality-based) feature models we presume in our approach.
Similarly, the kind of mappings that are applied range from annotating a model element with a
single (optional) feature to including positive and negative selection conditions (e.g., Directed
vs. not Directed edges in the Graph product line) and expression over the features, such as
Wireless or Bluetooth or Pet and Person and Domesticated. As an example, the latter of
which is mapped onto the bidirectional reference between the class Domesticated and the class
Person in the DBC product line to realize the ownership of a pet for a person and the expression
involves features of different feature groups.
However, it must be considered that the subject product lines cannot be more diverse than the
transformation definitions: it is not possible to transform a state chart, persons model or finite
automaton with a specification that expects class models as input. Therefore, we employed Ecore
and UML models as input only because we executed transformation definitions which expected
these types of models as input. Despite the fact that this selection may seem limited, we argue,
on the one hand, that in this way we reduce the threat of heterogeneity and thereby reduce the
potential of large variation. On the other hand, we expect that class models are commonly used
to design a product line. Therefore, they require an automated propagation of annotations more
necessarily than artificial product lines which pass a specific transformation benchmark (e.g.,
converting a person into a family register [ABW17]).
In summary, while the set of different product line and transformation definitions could have been
larger, we expect that new insights on the correctness of the propagated annotations gained by
executing further transformations would be marginal because the constellations that we examined
are diverse. Furthermore, we shortly discussed that the correctness might have benefited from
conducting the examination based on smaller product lines which would have fitted the design

303

CHAPTER 10. EVALUATION

of the completion strategies better, such as strict hierarchical models (no crossreferences) with
annotations attached to children elements which are not as coarse-grained as the one of the parent
element of an element missing an annotation.

II Construct Validity

As second threat, this section deals with the validity of constructs which is concerned with gen-
eralizing the results to the concept of the solution strategy. According to Cook and Campbell [],
constructs are threatened by

1) inadequately explicating the constructs before the execution,
2) bias due to single operation,
3) bias due to a single method,
4) inherent levels of constructs and confounding constructs,
5) interacting solution strategies,
6) interacting of the experiment with the solution strategy and the
7) restricted possibility to generalize across the constructs.

In addition, when a group of persons is subject to the evaluation, social threats might be intro-
duced which we do not consider.

Input Selection We reduced the threats to the inadequate explication of constructs before
the execution (1) by scrutinizing them in Sec. 10.2.2 and Sec. 10.2.3. Furthermore, we do not
employ only a single subject system but a diverse set of up to three product lines and up to four
M2M transformations specifications and two M2T specifications to examine the effects on the
correctness. Thus, we decrease the influence of the single-operation bias (2). Similarly, we do
not employ a single measurement value in the M2M transformations but consider at least three
error values (errabs, errsev and erract) to assert the implication of the result. This decreases the
influence of the single-method threat (3).

Influence of Model Filter While confounding constructs and levels of constructs do not exist
in the subject systems that influence the results (4), there may be an interaction with the model
filter which harms the expressiveness of our findings (5). We keep the influence of the filter as
realistic as when employing the tool Famile to build a product line where the default filter would
work hierarchically and include elements without an annotation whenever their parent element is
present, too. Particularly, this filter is present on the source mapping models as well and ensures
that the structural features of the objects do not have to be annotated in order to be present.
For instance, therefore the name of each source class does not have to be annotated with the
annotation mapped onto the class. Accordingly, we employed the same filter on the target side to
keep this effect comparable.
However, the model filter directly influences the meaning of the completion strategies which were
designed for general purposes where no such filter is available. On the one hand, it may ’repair’
annotations that would be too broad and keep elements in the model when their parent does not
exist. On the other hand, it prevents to detect differences between the propagation strategies.

III Internal Validity

Internal threats can be caused by single groups or multiple groups [Woh+12]. As the evaluation
does not conduct experiments with persons, social threats do not play a role in our experiments
as neither do multiple group threats because there is no maturation effect among them. However,
we can detect some of the following single-group threats:

(1) influence of history
(2) influence of maturation
(3) repeated testing
(4) instrumentation
(5) statistical regression
(6) selection
(7) mortality

304

10.4. DISCUSSION

(8) ambiguous direction of the causality.
While history (1), maturation (2), statistical regression (5), and mortality (7) do not apply to our
test settings, repeating the tests does not change the outcome as there are no learning or outside
noise involved (e.g., CPU power, threading, etc.) as it would be, for example, in measuring the
execution time.
In contrast, the instrumentation (4) and selection (5) influence the results. As we discussed in
Sec. 10.4.3, I, the selection of subject product lines may influence the results but we employed a
diverse set of input models for realistic transformations. Regarding the selection of transformation
definitions, the following points have to be respected, in addition:

Transformation Definition Selection Sec. 10.2.3 presents different M2M and two M2T trans-
formation definitions which we use for evaluating the annotation propagation mechanisms. There
is no denying the fact, that a plethora of further transformation scenarios converting instances
of other metamodels exists. For instance, the ATL zoo [All22] offers a large collection of vari-
ous ATL transformations which are compiled with the default ATL compiler (i.e., no persistent
trace or execution model). Similarly, the Benchmarx framework [Anj+20] collects a multitude of
challenging incremental bidirectional transformation scenarios.
Further transformations are not examined for two reasons: Firstly, existing transformation defini-
tions frequently only allow to transforms instances of simplified metamodels for which no product
line models exist. As an example, the ATL zoo [All22] collects more than 100 specifications
which, however, for instance, the class to relational database transformation definition is defined
over simplistic source and target metamodels for which we are not aware of product line models.
Consequently, it would be necessary to artificially create feature models and annotate domain
models for executing multi-variant transformations. For the ATL transformations it would be
further necessary to compile them with the EMFTVM compiler or to extend the transformation
engine to persist the volatile trace information created during the transformation.
Secondly, the additional amount of knowledge gained from evaluating further transformations can
be expected to be low. Our examined scenarios cover straight-forward transformations with mostly
1:1 or 1:n mappings, such as the Ecore2UML transformation, but also complex transformation
scenarios which involve non-confluent rules, situations where (hierarchical) relationships cannot
be mapped 1:1 or source and target elements do not correspond with an element in the respective
opposite model.
As a consequence, the selection of transformation definitions allows to draw several conclusions
on the accuracy of computed annotations. For rigorous testing, however, an automated testing
tool which covers all dependencies in the feature model together with relationships between model
elements of arbitrary metamodels could extract a more fine-grained result.

Instrumentation Influence Considering the evaluation results, it becomes obvious that the
usage of the EMFCompare framework influences the measurement of the correctness strongly.
While this framework produces the most accurate results when model elements are recognized
with unique identifiers, we cannot rely on this comparison mechanism: The filter-transform and
transform-filter variants need to be equivalent but they are not equal, meaning the identifiers
would be different for equivalent elements. Therefore, we rely on a structural comparison which
depends on the order of comparing model elements as it recognizes several mismatches among
SQL models created with the QVT-O transformation but non in the same models created with
the ATL/EMFTVM transformation. These models only differ in the order in which the tables and
columns are integrated in the schema. Consequently, the error rates which rely on the differences
counted by the EMFCompare framework, may be higher than when comparing the models by
visual (i.e., manual) inspection. Therefore, we introduced the third measurement, the actual error,
which however, requires to manually inspect and repair annotations. Accordingly, it required the
author of the thesis to count the number of annotations which may introduce human error but on
the whole reduced the error rate significantly. As the purpose of the automated propagation is to
reduce manual effort and its benefit correlates with the number of annotations which have to be
repaired thereafter, the actual error provides a realistic additional measurement.

305

CHAPTER 10. EVALUATION

As a second threat introduced by the instrumentation, the Famile model filter needs to be con-
sidered. Its effect is discussed in the part on construct validity.

Direction of Causality Finally, the direction of causality may be ambiguous. For example, it
may be internal factors, such as implementation faults or the instrumentation, that cause an error
or the error may be inherent to the problem.
On the one hand, as the trace-based propagation algorithm is formally defined and proven to be
correct, the corresponding class which implements the algorithm in exactly the same way can be
assumed to behave correctly. This is also confirmed by target models (Ecore2UML, Ecore2SQL
based on generation-complete traces) which are annotated completely correctly. The commuta-
tivity evaluation confirms this fact as well as a manual inspection of the resulting annotations.
On the other hand, as stated before, the model filter may influence the correctness. Without any
annotation at hand, the filter pertains all elements in a derived variant. Therefore, it can only
influence the derivation result in the presence of annotations. As its behavior is similar to the one
of the container strategy, which completes annotations which are too broad, we can assume that
commutativity is not caused by the filter but by the correctly computed annotations. Thirdly,
the annotations assigned to the source model may affect the correctness. As explained in the first
part, we selected realistic subject product lines without significant adaptations. We only ensured
that they are annotated completely. However, it can be argued that developers map meaning-
ful annotations onto the implemented artifacts [KDO14] and this is exactly the information that
should be propagated by the contributions of this thesis.
In case of the aspect-oriented creation the model filter does not influence the transform-filter
variant but a preprocessor instead. Similar as a compiler, if the preprocessor behaved incorrectly
or annotations were assigned wrongly, no transform-filter variants would be created. Consequently,
we can assume that commuting transformations result from correctly assigned annotations.

IV External Validity

External validity regards the experiment design and conclusions with respect to generalize them
from the laboratory settings to apply them in practice. While field experiments, which we did not
conduct, allow for greater generalizability in general, laboratory controlled experiments tend to
be applicable in more restrictive scenarios [SF18].
External validity is threatened by the chosen subjects (1), and experimentation at the wrong time
(2) or in the wrong environment (3) [Woh+12]. These represent the three major factors to interact
with the solution strategy to generalize it.
While the history and the time (2) of conducting the experiments does not influence the validity
of the experiments, the selection (1) of subject product lines and transformations was discussed
before: The chosen subject product lines represent a realistic set of product lines which cover all
constraints in the feature models and map diverse annotations on different model elements. Fur-
thermore, the transformation definitions represent more complex but real-world-oriented scenarios
such that the included patterns can serve to generalize the behavior for real-world applications.
Thus, we argue that we decrease this threat of selecting adequate subjects (1) significantly.

Generalization of Propagation Concepts In contrast, the environment of the experimental
setting might threaten the generalization possibilities (3). The employed M2M transformation
engines are open source and developed actively but may not be the state-of-the-art in industry. In
the same way, we cannot guarantee that the approaches work for every transformation language
and every specification. Particularly, we cannot presume which trace-generating single-variant
transformations are yet to be developed. However, we diversify the experimental evaluation and
offer evidence of genericity by varying the transformation languages for the M2M transformations,
the transformation definitions for different types of models and the product lines from small-sized
and artificial to medium-sized and academic real-world simulations.
Additionally, we argue that the concepts of using a trace is general and can be employed even if
no trace-generating transformation is available but, for instance, correspondences are expressed
by the means of unique identifiers in another form of representation.

306

10.5. SUMMARY

On the contrary, Xpand transformations are still supported in the Eclipse framework but are
almost replaced by Xtend which however, removed the aspect-oriented capabilities. Despite this
legacy technology, the concept of using an advice and propagating annotations by weaving them
into the execution goes beyond the language and might be applicable in different settings in form
of a replication.

V Further Remarks

Validity of Derived Variant In addition to the systematic analysis of the threats to validity,
this section shortly discusses two further assumptions on the overall propagation approaches.

Validity of Derived Variant The evaluation focuses on creating commuting derived variants.
On the one hand, there is no final validation of the derived source models to check whether they
conform syntactically (and semantically) to their metamodel. However, it is ensured that the
models can be saved as EMF Resource such that it is ensured that they do not expose dangling
references. On the other hand, while we compare the source code variants syntactically, we do
not examine whether they result in compilation and runtime errors. Different stages of the source
code correctness in derived variants could be analyzed in addition, in a similarly staged way as
suggested by Ratzenböck et al. [Rat+22].

10.5 Summary
All in all, this chapter presented the evaluation of the propagation strategies proposed in Chp. 6-8.
Particularly, it examined to what extent the solutions satisfy the research objectives qualitatively
and quantitatively. All solutions propagate annotations automatically and all, except for the
propagation DSL, reuse existing model transformation technology. While the DSL approach is
definition-specific, all concepts are language-independent11 and the remaining ones definition-
independent. Thus, they perform the annotation propagation generically.
For examining the correctness, the chapter introduced three diverse small- to medium-sized model-
driven product lines and four types of M2M transformation definitions specified in varying trace-
generating languages. The transformation served to investigate the effects of different trace com-
pleteness level on the accuracy of th propagated annotations. Moreover, it introduced two M2T
Xpand transformations which served to evaluate correctness of the aspect-oriented propagation.
The results give evidence that the aspect-oriented and the trace-based propagation both assign
the large majority of annotations correctly and thereby reduce the manual annotation efforts sig-
nificantly. Contrary to the postulations of the computational model, in all examined scenarios
annotations propagated based on generation-complete trace were mapped onto elements com-
pletely correctly. In contrast, the propagation based on completion strategies resulted in some
too broad annotation and they could not achieve a difference in accuracy. Particularly, in sight of
completing annotations, however, the employed hierarchical model filter may influence the results
Similarly, if the computational model for aspect-oriented propagation is satisfied, the transforma-
tion will commute, too.

11 The aspect-oriented approach was realized in Xpand and the bytecode instruction analysis based propagation
employs the ATL/EMFTVM but the concepts can be replicated in other languages.

307

Part VI

Conclusion

309

Chapter 11 Resume

One never notices what has been done;
one can only see what remains to be done

Marie Skłodowska-Curie

∼

The thesis contributes generic strategies to automatically propagate annotations by
reusing existing model transformation technology without adaptions. The preceding
chapters did not only derive them conceptually but also presented their implementa-
tion and an evaluation in diverse scenarios. To conclude this thesis, this final chapter
summarizes the achievements of this work and reflects on them.

Firstly, Sec. 11.1 summarizes the contents by presenting a chapter-wise overview of the
contribution and highlights the important insights. Furthermore, it reflects critically
on the limitations implied by the design decisions. In contrast, Sec. 11.2 illuminates
the benefits of the presented annotation propagation approaches, particularly, for re-
search and industry. Finally, Sec. 11.3 sketches an outlook on future work which can
build on and extend the propagation strategies, for instance to allow for synchronizing
annotations.

311

CHAPTER 11. RESUME

11.1 Summary of Contribution
This concluding chapter reflects on the contributions of the thesis. Therefore, this section ini-
tiates with summarizing the contents chapter-wise, particularly the contributed novelties, of the
thesis. Based on this recollection, Sec. 11.1.2 emphasizes the main strengths of the contributed
propagation approaches whereas Sec. 11.1.3 discusses the impact of the design decisions.

11.1.1 Overview of Content
Background When recollecting the contents of this thesis, the introductory part served to mo-
tivate the necessity for propagating annotations in the model-driven development of a product line
and gave an introduction to the problem solved in this thesis. Chp. 2 and Chp. 3 explained the dis-
ciplines, model-driven software engineering and software product line engineering, in more detail.
Both chapters presented key techniques used in both disciplines which serves particularly readers
who are not familiar with either discipline. Additionally, the first part of Chp. 4 summarized and
classified existing techniques to realize model-driven product line engineering, the combination of
both disciplines. In contrast, the second part of Chp. 4, Sec. 4.2 and Sec. 4.3, categorized the
related work of propagating annotations in MDPLE approaches. The latter study forms part of
the contribution, too, as it analyzes how to categorize the approaches and investigates the presence
of multi-variant model transformations in existing MDPLE tools.

Summary of Contribution The remaining chapters presented the contributions of this thesis
combined with delimiting them from closely related work on the specific approaches. This includes

• a study of related work on keeping annotations consistent across model-driven product line
artifacts (i.e., mostly models) and on treating variability in model transformations in Sec. 4.2
and Sec. 4.3, respectively.

• an informal description and formal definition of trace-based propagation in Chp. 5 and Chp. 6,
respectively.

• alternative strategies in case transformation scenarios violate the computational model of
the trace-based propagation, including

• a bytecode instruction analysis (Sec. 7.2),
• annotation completion strategies (Sec. 7.3),
• reconstructing information about corresponding elements (Sec. 7.4) and
• preserving manual annotations from being overwritten in incremental transformation

executions (Sec. 7.5)

• the informal and formal description of employing an aspect-oriented approach to generate
target text representations (to derive source code variants) in Chp. 8

• a prototype of an implementation framework to realize multi-variant model transformations
in Chp. 9

• an evaluation of trace-based propagation in academic product lines in situations which may
violate the computational model in Sec. 10.3.1-Sec. 10.3.4. This includes

• the design and modeling of a demonstrative model-driven product line (DBC)
• an Ecore2UML transformation specified in ATL/EMFTVM
• Ecore2SQL transformations specified in QVT-O and ATL/EMFTVM

• an evaluation of aspect-oriented propagation in academic product lines in Sec. 10.3.5. This
includes:

• an Ecore2Java transformation specified in Xpand
• a MoDisco2Java transformation specified in Xpand

312

11.1. SUMMARY OF CONTRIBUTION

11.1.2 Consequences
The summary of our contribution entails the strengths of this thesis:

Pragmatic Solutions The thesis examines the field of propagating annotations in a reuse-
based way and offers a set of solutions to diverse realistic scenarios. Particularly, the thesis offers
pragmatic and widely applicable solutions to propagate annotations. These solutions are generic
inasmuch as they do not foster to use a specific transformation language or mapping mecha-
nism1. We sketch how to automate the extraction of trace information in situations where this
information is unavailable, for instance, by employing model matching techniques and thereafter
the propagation DSL. Furthermore, the aspect-oriented approach demonstrates an alternative to
propagate annotations while executing the reused model transformation. Although our derived
computational model considers the creation of text (represented as trees), the design of the generic
advice may also be applicable in generating models. In case an aspect-oriented approach is un-
available, we recommend to employ a trace-based propagation and to reconstruct the traceability
information.

Holistic Automation of Propagating Annotations The summary further shows that the
thesis does not only develop some tool for propagating annotations in one scenario but the prob-
lem is addressed holistically. For the trace-based propagation, the bytecode instruction analysis
and the aspect-oriented propagation we present the theoretical aspects including closely related
work, continue to formalize the solution, and demonstrate the implementations. The provided
formal computational models define in which situations the trace-based and the aspect-oriented
propagation may compute correct annotations. The subsequent evaluation further confirms most
of the properties of the computational models. Surprisingly, in the examined scenarios, however,
the generation-complete trace (together with a given hierarchical model filter) suffices to propa-
gate annotations completely correctly. This fact indicates that the specificity of the annotations
mapped onto the source model as well as the filter mechanism impact the correctness positively.

Reduction of Manual Efforts A further result of the evaluation affirms that our proposed
strategies reduce the manual efforts significantly. The propagation based on generation-complete
traces annotates the target model correctly in its entirety. Similarly, the completion strategies
which compute annotations for target elements without corresponding trace elements together
with the trace-based propagation assign more than 90% of the annotations correctly, thereby
reducing the manual efforts of assigning annotations significantly. Furthermore, if the reused
model transformation adheres to the computational model for aspect-oriented propagation, all
annotations are computed correctly. In case of violations, in the examined transformations more
than 95% of the annotations were mapped onto source code fragments correctly.

11.1.3 Design Decision
In developing the propagation mechanisms to address the research objectives, we made assump-
tions and design decisions which influence and potentially limit the applicability of the concepts
but also represent a generic and unique approach.
To recapitulate, the main design decisions assume
D1 an annotative model-driven product line development.
D2 element-wise mapping representations.
D3 constrained variability.
D4 a proactive development.
D5 approaches which neither extend the syntax of existing transformation languages nor manip-

ulate existing transformations engines to extend them with modified execution semantics.
D6 the commutativity criterion as correctness criterion.

1 The aspect-oriented approach is a language-independent concept and the concept of analyzing bytecode instruc-
tions is language-independent, too.

313

CHAPTER 11. RESUME

Accordingly, questions may arise whether 1) it is a realistic setting to assume a proactive devel-
opment of an annotative product line with element-wise mappings and 2) the research objectives
are too restrictive to support a broader set of software product line engineering approaches.

Element-Wise Annotative MDPLE The answer to the first question centers around two
aspects:
Firstly, annotative product lines with element-wise mappings are a straight-forward way to in-
tegrate variability in software [Ape+13]. Preprocessor directives are mapped onto single source
code fragments and thereby realize an element-wise mapping. Similarly, in MDPLE applying
annotations onto model elements can be accomplished by employing mapping models which offer
the benefit to separate the concerns of modeling and annotating.
Instead, applying feature-oriented programming requires either a 1:1 mapping of one feature onto
one module or to maintain crosscutting features with additional glue code or further non-trivial
dependencies between the modules. Similarly, delta-oriented programming requires either the
definition of delta operations bundled in modules or their derivation from edit operations as well
as adequate composition sequences that generate a well-formed variant. Therefore, we decided to
focus on the practical setting of annotative product lines.
Secondly, it may be true that frequently product line development initiates with one product which
is enriched with further functionality. Thus, reactive or extractive approaches may be required
by industry. However, once a product line is extracted, it can be maintained in a proactive
way. Then, the maintenance of annotations will remain a manual task if no technique, such
as the annotation propagation mechanisms contributed in this thesis is available. In addition,
the automated propagation of annotations may mitigate the obstacles and doubts which hinder
practitioners to develop model-driven product lines from scratch.

Research Objectives The research objectives postulate automation approaches which reuse
existing model transformation technology without modifications and which are generically appli-
cable and compute annotations correctly. In fact, correctness (or accuracy) may decrease the
increase of genericity. Thus, it would have been possible to define a solution, such as the prop-
agation DSL, which allows for transferring annotations from UML class models to created Java
MoDisco models only, by declaring each correspondence at a fine-grained level. Similarly, the
target mapping could also be created as additional model by the reused model transformation. As
such solution would only work for one mapping representation and one transformation scenario,
we refrained from developing a tool- and definition-specific solution. To offer a method which is
widely applicable because it does not require a specific MDPLE tool or specific transformation
engine, we contribute language- and definition-independent solutions.

11.2 Benefits and Take-Away

Although the design decisions may limit the development and applicability of the proposed prop-
agation strategies, we identify significant benefits for research, practitioners, and industry in our
contributed approaches. While Sec. 11.2.1 summarizes important benefits for research, Sec. 11.2.2
collects benefits for industry and, particularly, describes how to integrate our solutions.

11.2.1 For Research
For research, this thesis summarizes important insights and collects the techniques which reduce the
manual maintenance efforts and increase the consistency of variability information in annotative
model-driven product lines.

Holistically Contributed Propagation Strategies On the one hand, the thesis contributes
the concepts how to reuse existing model transformation technology to generically propagate an-
notations from a source model to a target representation. For each of the contributed strategies,

314

11.2. BENEFITS AND TAKE-AWAY

the bytecode instruction analysis, the aspect-oriented propagation, and the trace-based propaga-
tion we illuminate if and in case how the solution has been approached before, can be approached,
and disseminate our novel solution. Thereby we define the properties which have to be met for
their applicability. The evaluation provides further insights to what extent the conceptual models
can correctly propagate annotations in realistic scenarios where the transformation properties may
violate the computational models.

Promising Evaluation Result On the one hand, the outcome of the thesis emphasizes that it is
feasible to reuse the existing technique of model transformations and to utilize their capabilities to
propagate annotations on top of them. By exploiting transformation traces and aspect-orientation,
the thesis contributes propagation strategies which integrate the maintenance of variability in space
seamlessly in existing technologies.
On the other hand, the evaluation demonstrates that the trace-based propagation and the aspect-
oriented propagation deliver promising results and correctly annotate the target representations
in most situations which even deviated from the computational model. In sight of a trend to-
wards increasing traceability and refining the information stored in traces (e.g., [Mar+22; Bit+21;
EPT18]), the limitations of propagating annotations based on incomplete or no traces diminish.
Therefore, the thesis confirms that a reuse-based approach can work generically, particularly, in-
dependent of the source metamodel and target representation and does not assume a specific
transformation language to be used, as long as trace information is present. Most importantly, in
contrast to prior work on this topic, our contributions do not require changing the semantics or
even the syntax of existing transformation languages.

11.2.2 For Practitioners and Industry

Although it might be argued that, still, industry and practitioners develop products in a clone-and-
own manner and, in any case, based on source code only, this section first discusses the practicality
of the chosen variability mechanism. Furthermore, it emphasizes the benefits for practitioners by
explaining how to integrate our solutions.

Benefit of Annotative Product Line Engineering First of all, we support product line de-
velopment processes building on the annotative variability mechanism. Compared to the remaining
systematic variability mechanisms, the compositional and transformational, annotative variability
can be claimed to be the most prevalent one in practice. Using preprocessor directives to employ
conditional compilation is not only common to built-in preprocessor-based GPLs but also possible,
for instance, in Java. Defining a base version and extending it with modules works to some extent
only because, in reality, features typically interact which hinders a strict separation. Therefore,
a 1:1 mapping of a feature onto a module is either impossible or causes several dependencies in-
cluding potentially conflicts among the modules [Ape+13]. Similarly, delta-oriented programming
either requires to declare the edit operations performed in one delta module explicitly. Likewise,
it provokes an even higher potential for conflicts between applying a multitude of delta modules
to one base version. Finally, clone-and-own approaches do not scale for many products and either
remain on a two or three clone basis, neglecting the need for systematic product line engineering,
or require an integration into a platform [Keh+21]. Thus, consistent variability management will
be necessary, too, after this integration. On the whole, for these reasons we recommend employing
annotative product line engineering and contribute an automated consistency management for the
annotative variability mechanism.

Generic Reuse of Existing (Model-Driven) Technology Besides relying on the annotative
variability mechanism, we provide strategies to automate annotating corresponding artifacts based
on reusing existing technology. Thus, we discuss the requirements for a company to employ one of
our contributed solutions. In any case it is necessary to respect the company’s proprietary mapping
representation (e.g., by the means of an adapter) to maintain it in the company’s specific way.

315

CHAPTER 11. RESUME

Aspect-Oriented Propagation Assuming that a company employs an aspect-oriented mech-
anism to create source code from a given multi-variant model. Then, it could weave our generic
advice into the execution during the creation. The advice needs to match each source element
which can be annotated by the companies annotative mechanism. In the background, a custom
realization needs to look up the company’s mapping representation to retrieve the annotation
mapped onto the matched source element. Based on this information, the advice can enclose the
element created by the transformation rule with the target annotation. Even though we have
implemented and examined the aspect-oriented propagation in M2T transformations with Xpand,
the concepts are generic. Thus, they can be employed whenever the advice allows for 1) a wildcard
which matches each annotated source element, 2) a method invocation to retrieve the annotation
of the mapping representation, and 3) a way to represent the annotation mapped onto the created
target element.

Usage of Trace Information Assuming a company collects traceability information among its
artifacts, instead, this information can be used to propagate annotations. While with a classical
traceability approach which links several different artifacts an annotation-wise mapping might be
preferred to assign an annotation only once to all corresponding elements, with model transfor-
mation traces the trace-based propagation can be used almost out of the box. It is necessary
that the annotations mapped onto source elements are available and the corresponding target
elements. Furthermore, the way the target mapping is represented might be specialized. Based
on that information the trace can be iterated. When no trace information is available and the
target model was created manually, it might be possible to specify links between the source and
target model manually based on a DSL or to perform an automated derivation of a trace.

Bytecode Analysis Finally to employ, the fine-grained annotation assignment based on analyz-
ing rules, it is necessary to use ATL/EMFTVM specifications. If another bytecode representation
is available, instead, Sec. 7.2.3 describes general assignment patterns of values and their mapping
onto bytecode instructions. This knowledge may be employed to identify assignment patterns in
different bytecode representations, such as the Java virtual machine.

Usage in Commercial MDPLE Tools Although we have built prototypes of our approaches
in an academic tool, several commercial tools, such as BigLever gears [Big] and pure::variants
[Beu13; Gmb22], support (at least) model-based engineering and sell the consistent management
of variability information across artifacts. Therefore, our propagation strategies may be beneficial
in these tools to automatically keep the variability information consistent.

Summary On the whole, we offer a toolbox of different strategies which are generic and may
be accurate enough to be applied in industry. Potentially the highest amount of integration work
has to be invested to adapt the mapping representation and to build on trace information.

11.2.3 Take Away
Before providing an outlook, this section summarizes important points to remember.

Independence of Variability Realization Firstly, one obstacle to defining a specific annota-
tion propagation mechanism are missing standards for expressing variability. Although an ongoing
community effort works on establishing a common variability model [Sun+21; Ach+20], so far no
standardized representation is available. As a further consequence, without a standardized defini-
tion of expressing variability, a standardized representation for defining annotations and mapping
them onto product line artifacts is available neither. Thus, we cannot offer a solution that propa-
gates standardized variability expressions. In contrast, the concepts of our annotation propagation
approaches per se are independent of the concrete variability representation. Consequently, in the
case of an available standardized form of mapping variability information onto model elements,
our annotation propagation solutions should still work.

316

11.3. FUTURE RESEARCH

Model Matching represents one strategy to extract trace information [Gra14] or, in case of
metamodel matching [Kes+14], to synthesize model transformations [LF20]. Although model and
metamodel matching forms an important direction to further establish or integrate model-driven
development in practice, the accuracy of extracting out-place mappings still resides at a high level
mainly for evolving models and metamodels. If a matching technique was used for propagating
annotations, it would require improvements in matching corresponding elements which do not
carry the same id’s, constitute a similar model structure, and are not named similarly. Thus,
to apply trace-based propagation we recommend to employ state-of-the-art trace-writing model
transformations.

Interplay Annotation and Filter Capability We observed that the specificity of annotations
and the granularity of the derivation mechanism (model filter) interplay and can influence the
correctness of derived products. This observation confirms that it is essential to carefully map
annotations onto (model) elements of the product line and to consider the specificity also when
automating the annotation assignment differently (e.g., by using variation control systems).

11.3 Future Research
Last but not the least, this thesis can be considered as one step towards a holistic management of
variability across multiple artifacts building a product line which is engineered in a model-driven
way. This section sketches ways which subsequent research efforts can build on and how they can
extend the contributed propagation strategies and complement the set of automated techniques
to construct and maintain annotative model-driven product lines.

Multi-Variant Transformation Language
Based on the computational models derived in this thesis, it would be possible to design a custom
multi-variant transformation language. Particularly, if the rules that can be declared conform to
the computational model for trace-based propagation and the transformation records fine-grained
trace information, it can be guaranteed that the multi-variant target model is annotated correctly.

(N-Way-)Synchronization of Multi-Variant Models Firstly, this thesis provides mecha-
nisms to propagate annotations from one model to another representation (i.e., model or text).
In practical workflows, particularly in incremental development, firstly, the source models may be
subject to changes. Elements might be added or deleted and the same holds for their annotations.
Furthermore, not only the source model may change but also the target model or source code
which may require to reintegrate these changes (if possible) into a corresponding source model.
Therefore, a bidirectional incremental exchange of annotations might be useful to fully support
incremental and continuous development of a model-driven product line. Due to the possibility of
manually editing annotations and due to a missing uniqueness of annotations, a synchronization
of annotations is not a straightforward task. The easiest solution to this problem is to select one
transformation direction and in a batch behavior overwrite the entire target side of the trans-
formation direction. As this solution may delete manual modifications performed on the target
side, an incremental approach may be necessary which particularly needs to compare each pair
of annotations and check whether and in which way they have changed [GNS22]. Furthermore,
when considering dependencies between a set of models, a synchronization may not be required
only pairwise but n-wise. Consequently, since several matching constellations can occur and the
complexity of the matched pairs increases with the complexity of the trace and the freedom of the
product line developer, a sound solution may require further investigation.

Unconstrained Variability and Static Analysis Ideally, multi-variant models should not be
limited by the single-variant syntax and semantics of state-of-the-art metamodels and modeling
languages (i.e., they should support unconstrained variability). Thus, one step in this direction
could involve defining the structure of a multi-variant model and the mechanisms how develop-
ers should interact with this representation such that the level of complexity does not increase

317

CHAPTER 11. RESUME

significantly (e.g., by editing projections [SBW21; BPB17]). Furthermore, program analyses may
inspect, for instance, the control flow of the transformation specification or the facility that creates
the target representation, to extract assignment patterns thereof. Based on this information, an
unconstrained multi-variant target model could be built which may include elements and annota-
tions resulting from executing different execution paths.

318

Chapter A Appendix

A.1 Classification of Annotation Maintenance in MDPLE
Approaches

Table A.1: MDPLE approaches: The first third of the table lists approaches realizing positive
variability, the second part annotative variability mechanisms including a projectional mechanism
to switch between representations. The last two rows hold multi-view approaches.

Ref-
erence

short de-
scription

mapping
notation

mapping
placement

intra prop-
agation

inter prop-
agation

consis-
tency

[GV09] aspect-
oriented
MDPLE

element-
wise

internal,
reuse

manual - none

[Whi+09] MATA element-
wise

proprietary manual manual none

[Ape+09] composing
super-
imposed
models

module-wise internal,
reuse

manual none1

[SSA14b;
Pie+15]

delta-
oriented
tools

module-wise internal,
proprietary

manual manual none

[Hau+08;
Fon+15]

CVL element-
wise

internal,
proprietary

manual – none

[Zsc+09] VML* element-
wise

external manual manual none

[CA05;
CP06]

template-
based

element-
wise

internal,
reuse

manual – none

[BCW11;
Juo+19]

Clafer element-
wise

internal,
proprietary

manual – none

[HKW08] Feature-
Mapper

element-
wise

external manual manual none

[BS12] Famile element-
wise

external automated manual none

[SW16] SuperMod element-
wise

internal, ex-
tending

automated automated none

[Reu+20] projectional
editing

element-
wise

internal, ex-
tending

automated manual none

[GS02] multiple
UML views

annotation-
wise

external – – by con-
struction

[Ana+18] VaVe annotation-
wise

external – – by con-
struction

319

A.2 ATL/EMFTVM Bytecode Instruction Opcodes
The excerpt in Fig. A.2.1 lists the ATL/EMFTVM bytecode instruction opcodes in the way they
are enumerated in the ATL/EMFTVM execution metamodel.

Figure A.2.1: Complete list of ATL/EMFTVM bytecode instruction opcodes as de-
fined in its execution metamodel (in Eclipse plugin project org.eclipse.m2m.atl.emftvm
v4.3.0.v202102071102).

A.3 Flexible Preprocessor
For deriving products from annotated source code we employ a preprocessor. Since we generates
Java source code, which does not support a built-in preprocessor, we provided annotations in
form of comments with a custom annotation style. Some Java preprocessors exist already but are
mostly not compatible with current Eclipse projects (e.g., Prebop2) or require a manual adaptation
of the build process, (e.g., when using the Java Comment Preprocessor3). For that reason, in a
student project we developed a flexible (i.e., customizable) Xtext-based preprocessor.
The preprocessor is flexible inasmuch as it allows to configure
2 http://prebop.sourceforge.net/
3 https://github.com/raydac/java-comment-preprocessor

• the file-ending of the source code files which should be preprocessed (e.g., ‘java’ or ‘py’),

• the pair of opening and closing comment literals which define the opening and closing direc-
tive of the comment containing the annotation (e.g., ‘/*’ and ‘*/’ or ‘///’ and ‘///’)

• the keywords for opening, closing and possible branching an annotation (e.g., ‘#ifdef’ and
‘#endif’ or ‘#IFDEF’ and ‘#END’).

Based on a given flag-file, which provides feature names and their selection state, the preprocessor
parses the given Java project. If the annotation stated in a directive is represented by the feature
configuration (satisfiable), the source code stated inside the annotation will be included in the
derived variant. If not, it will be excluded from the variant.
To employ this behavior for filtering source code based on a Famile feature configuration, we
added a FlagConverter which transforms a Famile feature configuration into a flag file. Given
that file, the AspectEvaluator can derive products from the multi-variant source code platform
by executing the preprocessor API.

List of Figures

1.2.1 Commutativity of transformations noted informally. 6
1.4.1 Overview of contributions and their appearance in the thesis. 9

2.1.1 Automation and abstraction climax. 15
2.1.2 Classical MOF modeling hierarchy. 16
2.1.3 Modeling hierarchy for UML class models. 17
2.1.4 UML association in concrete syntax and in abstract syntax. 18
2.1.5 Classical software engineering directions. 20
2.2.1 Schematic overview of a model transformation. 21
2.2.2 Classification of model transformations. 22
2.2.3 Schematic overview of M2T transformations. 25
2.2.4 Parts of the MOF 2.0 Query View Transformation standard. 28

3.0.1 Overview of software product line engineering. 30
3.2.1 Four-clustered process to develop a software product line. 35
3.3.1 Feature model for database contents. 37
3.4.1 Compositional implementation of database contents. 41
3.4.2 Delta-oriented implementation of database contents. 42
3.4.3 Annotative implementation of database contents. 43

4.1.1 Engineering directions in MDPLE. 47
4.1.2 Multi-variant (superimposed) UML class model 48
4.1.3 Annotated multi-variant UML class model . 52
4.1.4 Mapping notations. 53
4.2.1 Formal concept lattice for mapping maintenance of MDPLE tools. 61
4.2.2 Feature-based classification of annotation maintenance in MDPLE. 62
4.3.1 Feature-based classification of multi-variant model transformations. 64
4.3.2 Formal concept lattice for multi-variant model transformation properties. 68

5.1.1 Fragments of database contents as UML class and Java MoDisco models. 74
5.1.2 Rule which transforms UML packages into Java packages. 75
5.1.3 Rule which transforms UML classes into respective Java elements. 76
5.1.4 Rule applications to multi-variant model in triple-graph representation. 77
5.2.1 Feature-based classification of M2M transformation traces. 79
5.2.2 Trace completeness levels. 81
5.2.3 Common trace metamodel. 82
5.3.1 Schema of trace-based annotation propagation. 82

6.1.1 UML class model in graph notation. 88
6.2.1 Multi-variant model in graph notation. 92
6.2.2 Filtered variants in graph notation. 93
6.3.1 Rule application diagram for match in G and direct derivation of H. 94
6.3.2 Source-to-target rule of P2P rule. 97
6.3.3 STT rule representing C2C rule. 98
6.3.4 Trace-generating STT rule of C2C rule. 99
6.4.1 Commutativity in graph formalism. 104
6.4.2 Monomorphism preservation by complete derivations. 104

323

6.4.3 Application of the monomorphism preservation to commutativity diagram. . . . 105

7.0.1 Overview and interplay of strategies to maintain missing trace information. . . . 110
7.1.1 Complete vs. generation-complete trace. 112
7.2.1 Commutativity violation due to fine-grained annotation mapping. 114
7.2.2 Schematic overview of bytecode instruction analysis-based propagation. 116
7.2.3 Mapping of ATL/EMFTVM rule onto bytecode instructions. 118
7.2.4 Classification of assignment patterns in model transformation languages. 120
7.2.5 Overview of bytecode instruction-based analysis. 126
7.2.6 Steps of bytecode instruction-based propagation. 127
7.3.1 Commutativity violation due to incomplete trace information. 136
7.3.2 Schematic overview of employing completion strategies. 140
7.3.3 Overview of steps to complete annotations. 141
7.3.4 Commutativity violation due to incomplete traces in extended example. 143
7.3.5 Computed annotations by container completion strategy (Alg. 4). 145
7.3.6 Computed annotations by combined completion strategy (Alg. 6). 148
7.3.7 Computed annotations for edges (Alg. 7). 149
7.4.1 Schematic overview of propagation DSL-based propagation. 157
7.4.2 Feature-based classification of designing propagation DSLs. 157
7.4.3 Commutativity without model transformations. 159
7.4.4 Model matching framework for generating trace links. 165
7.4.5 Schematic overview of DSL-based propagation by metamodel matching. 167
7.4.6 Schematic overview of trace-based propagation by model matching. 168
7.5.1 Manually repaired broad annotations. 170

8.1.1 Integration of method body in multi-variant vs. single-variant source code. . . 182
8.3.1 Schematic overview of aspect-oriented propagation. 191
8.3.2 Preprocessor directives enclosing text fragments in hierarchy of text blocks. . . 192
8.3.3 Representations of text generated by a M2T transformation. 193
8.3.4 STT-graph representation of Ecore2Java M2T transformation. 194
8.3.5 Commutativity of M2T transformations. 197
8.3.6 Execution tree building tp-STT rule (Def. 8.3.4). 205

9.1.1 Ecore metamodel. 216
9.1.2 Famile mapping model editor. 218
9.1.3 Database Content mappings with missing annotations in F2DMM editor. 219
9.2.1 Overview of architecture of MuVaTra framework. 221
9.2.2 Core of MuVaTra framework. 223
9.2.3 Adapter for Famile Mapping. 224
9.3.1 Trace metamodels. 225
9.3.2 ATL/EMFTVM trace between Ecore and UML database content model. 227
9.3.3 Simplified EMFTVM execution metamodel of its bytecode instructions. 229
9.3.4 AnalyzedRule as data structure. 230
9.3.5 Instance of AnalyzedRule representing ATL rule of Figure 7.2.3. 231

10.2.1 Schematic overview of commutativity evaluation framework. 245
10.2.2 EMFCompare difference model of database content model variants 248
10.2.3 Graph product line feature model and F2DMM model. 251
10.2.4 Home Automation System product line feature model and F2DMM model. . . . 253
10.2.5 Relational database schema metamodel. 254
10.2.6 Transformed EReferences into columns, foreign keys, events, and tables. 258
10.2.7 QVT-O mapping rule producing incomplete vs. (generation-) complete traces. . 261
10.2.8 Simplified UML metamodel including to represent class models. 262
10.2.9 DBC UML class model resulting from Ecore2UML transformation. 266
10.2.10 Simplified Java MoDisco metamodel. 267
10.3.1 DBC and Graph UML F2DMM models created by Ecore2UML. 274

10.3.2 DBC Java MoDisco F2DMM models created by base UML2Java 276
10.3.3 DBC Java F2DMM model created by advanced UML2Java transformation. . . . 278
10.3.4 Container vs. contained strategy in HAS Java MoDisco. 280
10.3.5 Relational database F2DMM models created by the Ecore2SQL transformation. 284
10.3.6 Excerpt of Graph Java source code created by the Ecore2Java transformation. . 288
10.3.7 Excerpt of DBC Java source code created by the Ecore2Java transformation. . . 290
10.3.8 Commutativity violation in multi-variant interfaces of DBC product line. 291
10.3.9 Excerpts of DBC source code created by MoDisco2Java transformation. 293
10.4.1 Influences of annotations, feature model, and trace completeness. 294
10.4.2 Example of combined completion strategy with positive effect. 298
10.4.3 Statistics of correct vs. repaired annotations. 299

A.2.1 Complete list of ATL/EMFTVM bytecode instruction opcodes. 320

List of Tables

4.1 Terminology in MDSE and SPLE. 49
4.2 Classification of related multi-variant model transformations. 66

5.1 Categorization of an exemplary set of M2M transformation traces. 80

7.1 Overview of basic ATL/EMFTVM bytecode instructions. 117
7.2 Bytecode opcodes of direct assignment patterns of a single value. 121
7.3 Bytecode opcodes of direct assignment patterns of multiple values. 122

10.1 Statistics of subject product lines. 251
10.2 Traced elements in Ecore2SQL transformations. 260
10.3 Results of Ecore2UML transformations. 273
10.4 Results of UML2Java transformation. 275
10.5 Computed effect on correctness of existing annotations. 282
10.6 Results of Ecore2SQL transformations . 283
10.7 Measured Error in Ecore2Java transformations. 287
10.8 Counted Lines of Code in Ecore2Java transformations. 289
10.9 Counted Lines of Code in MoDisco2Java transformations. 292

A.1 MDPLE approaches. 319

325

List of Listings

7.2.1 ATL/EFTVM rule with complex assignments and respective bytecode opcodes. . 124
7.4.1 Excerpt of ModelSync grammar. 160
7.4.2 ModelSync correspondence definition of UML class and Java metamodel. 161
8.2.1 Example of an Acceleo module composed of three text production rules (template).185
8.2.2 Example of Xpand text production rules for EClasses. 187
8.2.3 Excerpt of MWE2 workflow for generating text from an Ecore model. 188
8.3.1 Xpand rules which generate a Java class declaration for a given EClass. 195
8.3.2 Generic advice to enclose every text production with a preprocessor directive. . . 196
9.3.1 Simplified generic advice which embraces an original text generation. 234
9.3.2 Java field declaration annotated with JavaDoc comments. 234
9.3.3 Reused single-variant MWE2 workflow for an Ecore to Java transformation. . . . 235
9.3.4 Advice-injecting workflow for Ecore to Java transformation. 236
9.3.5 Protected text production of generating a method declaration for an EOperation. 237
9.3.6 MWE2 workflow for incremental Ecore to Java transformation. 238
10.2.1 BXtend forward transformation rule creating a Table for a given EClass. 256
10.2.2 Ecore2UML ATL/EMFTVM rule for transforming subclasses. 265

326

Abbreviations

AGG Attributed Graph Grammar
AOP Aspect-Oriented Programming
ATL Atlas Transformation Language
CVL Common Variability Language
DBC Database Content
DSL Domain Specific Language
F2DMM Feature To Domain Model Mapping
FCA Formal Concept Analysis
FOP Feature Oriented Programming
GQM Goal Question Metric
HAS Home Automation System

M2M Model-to-Model
M2T Model-to-Text
MBE Model-Based Engineering
MDD Model-Driven Development
MDPLE Model-Driven Software Product Line Engineering
MDSE Model-Driven Software Engineering
MVMT Multi-Variant Model Transformation

oAW open Architecture Ware
OCL Object Constraint Language
OMG Object Management Group
OVM Orthogonal Variability Model
PIM Platform-Independent Model
PSM Platform-Specific Model
QVT Queries/Views/Transformations
QVT-O Queries/Views/Transformations Operational Mappings
QVT-R Queries/Views/Transformations Relational
SE Software Engineering
SPLE Software Product Line Engineering
SVMT Single-Variant Model Transformation
SUMM Single Underlying Metamodel
TGG Triple Graph Grammar
TGTS Triple Graph Transformation System
UML Unified Modeling Language
UVM Uniform Version Model
VASG Variational Abstract Syntax Graph

Chapter B Bibliography

B.1 Third-Party Publications
[200+] 2015 Obeo 2006 et al. Comparison (EMF Compare API Specification). Modified:

March 9, 2020, 09:54:59 GMT+1. url: https://www.eclipse.org/emf/compare/
documentation/latest/developer/javadoc/org/eclipse/emf/compare/Comparison.
html.

[201] 2019 Eclipse Foundation, Inc. EMF Compare | Home. Modified: July 12, 2021,
10:42:37 GMT+2. url: https://www.eclipse.org/emf/compare.

[Ach+20] Mathieu Acher, Philippe Collet, David Benavides, and Rick Rabiser. “Third In-
ternational Workshop on Languages for Modelling Variability (MODEVAR@SPLC
2020)”. In: Proceedings of the 24th ACM Conference on Systems and Software Prod-
uct Line: Volume A - Volume A. SPLC ’20. Montreal, Quebec, Canada: ACM, 2020.
doi: 10.1145/3382025.3414948.

[Ach+12] Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe Lahire,
and Philippe Merle. “Feature Model Differences”. In: Advanced Information Systems
Engineering - 24th International Conference, CAiSE 2012. Proceedings. Vol. 7328.
Lecture Notes in Computer Science. Springer, 2012, pp. 629–645. doi: 10.1007/978-
3-642-31095-9_41.

[Add+16] Lorenzo Addazi, Antonio Cicchetti, Juri Di Rocco, Davide Di Ruscio, Ludovico
Iovino, and Alfonso Pierantonio. “Semantic-based Model Matching with EMFCom-
pare”. In: Proceedings of the 10th Workshop on Models and Evolution co-located with
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2016). Vol. 1706. CEUR Workshop Proceedings. CEUR-
WS.org, 2016, pp. 40–49. url: http://ceur-ws.org/Vol-1706/paper6.pdf.

[Aho+13] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Pear-
son New International Edition: Principles, Techniques, and Tools. (2nd Edition).
Pearson Education Limited, 2013. isbn: 1292024348.

[Aiz+06] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. “Model traceabil-
ity”. In: IBM Systems Journal 45.3 (2006), pp. 515–526. doi: 10.1147/sj.453.0515.

[All22] Freddie Allilaire. ATL Transformations | The Eclipse Foundation. Visited: May 31,
2022, 06:01:55 GMT+2. 2022. url: https://www.eclipse.org/atl/atlTransformations/.

[Alt+08] Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Mar-
tina Seidl, Wieland Schwinger, and Manuel Wimmer. “AMOR–towards adaptable
model versioning”. In: 1st International Workshop on Model Co-Evolution and Con-
sistency Management, in conjunction with MODELS. Vol. 8. Citeseer. 2008, pp. 4–
50.

[ASW09] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. “A survey on model
versioning approaches”. In: International Journal of Web Information Systems 5.3
(2009), pp. 271–304. doi: 10.1108/17440080910983556.

328

https://www.eclipse.org/emf/compare/documentation/latest/developer/javadoc/org/eclipse/emf/compare/Comparison.html
https://www.eclipse.org/emf/compare/documentation/latest/developer/javadoc/org/eclipse/emf/compare/Comparison.html
https://www.eclipse.org/emf/compare/documentation/latest/developer/javadoc/org/eclipse/emf/compare/Comparison.html
https://www.eclipse.org/emf/compare
https://doi.org/10.1145/3382025.3414948
https://doi.org/10.1007/978-3-642-31095-9_41
https://doi.org/10.1007/978-3-642-31095-9_41
http://ceur-ws.org/Vol-1706/paper6.pdf
https://doi.org/10.1147/sj.453.0515
https://www.eclipse.org/atl/atlTransformations/
https://doi.org/10.1108/17440080910983556

[Ana+18] Sofia Ananieva, Heiko Klare, Erik Burger, and Ralf H. Reussner. “Variants and
Versions Management for Models with Integrated Consistency Preservation”. In:
Proceedings of the 12th International Workshop on Variability Modelling of Software-
Intensive Systems, VAMOS 2018. ACM, 2018, pp. 3–10. doi: 10.1145/3168365.
3168377.

[ABW17] Anthony Anjorin, Thomas Buchmann, and Bernhard Westfechtel. “The Families
to Persons Case”. In: Proceedings of the 10th Transformation Tool Contest (TTC
2017), co-located with the 2017 Software Technologies: Applications and Foundations
(STAF 2017), 2017, pp. 27–34. url: http://ceur-ws.org/Vol-2026/paper2.pdf.

[Anj+20] Anthony Anjorin, Thomas Buchmann, BernhardWestfechtel, Zinovy Diskin, Hsiang-
Shang Ko, Romina Eramo, Georg Hinkel, Leila Samimi-Dehkordi, and Albert Zün-
dorf. “Benchmarking bidirectional transformations: theory, implementation, appli-
cation, and assessment”. In: Software and Systems Modeling 19.3 (2020), pp. 647–
691. doi: 10.1007/s10270-019-00752-x.

[Anq+10] Nicolas Anquetil, Uirá Kulesza, Ralf Mitschke, Ana Moreira, Jean-Claude Royer,
Andreas Rummler, and André Sousa. “A model-driven traceability framework for
software product lines”. In: Software and Systems Modeling 9.4 (2010), pp. 427–451.
doi: 10.1007/s10270-009-0120-9.

[Ape+13] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
Software Product Lines - Concepts and Implementation. Springer, 2013. isbn: 978-
3-642-37520-0. doi: 10.1007/978-3-642-37521-7.

[Ape+09] Sven Apel, Florian Janda, Salvador Trujillo, and Christian Kästner. “Model Super-
imposition in Software Product Lines”. In: Theory and Practice of Model Trans-
formations, ICMT@Tools. Vol. 5563. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2009, pp. 4–19. doi: 10.1007/978-3-642-02408-5_2.

[AK09] Sven Apel and Christian Kästner. “Virtual Separation of Concerns - A Second
Chance for Preprocessors”. In: Journal of Object Technology 8.6 (2009), pp. 59–
78. doi: 10.5381/jot.2009.8.6.c5.

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. “FEATUREHOUSE: Language-
independent, automated software composition”. In: 31st International Conference on
Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceed-
ings. IEEE, 2009, pp. 221–231. doi: 10.1109/ICSE.2009.5070523.

[AKL13] Sven Apel, Christian Kästner, and Christian Lengauer. “Language-Independent and
Automated Software Composition: The FeatureHouse Experience”. In: IEEE Trans-
actions on Software Engineering 39.1 (2013), pp. 63–79. doi: 10.1109/TSE.2011.
120.

[Ape+08] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner. “An Alge-
bra for Features and Feature Composition”. In: Algebraic Methodology and Software
Technology, AMAST. Vol. 5140. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2008, pp. 36–50. doi: 10.1007/978-3-540-79980-1_4.

[Are+10a] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. “Henshin: Advanced Concepts and Tools for In-Place EMF Model Trans-
formations”. In: Model Driven Engineering Languages and Systems - 13th Interna-
tional Conference, MODELS 2010, Proceedings, Part I. Ed. by Dorina C. Petriu,
Nicolas Rouquette, and Øystein Haugen. Vol. 6394. Lecture Notes in Computer Sci-
ence. Springer, 2010, pp. 121–135. url: https://doi.org/10.1007/978-3-642-
16145-2_9.

[Are+10b] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. “Henshin: Advanced Concepts and Tools for In-Place EMF Model Trans-
formations”. In:Model Driven Engineering Languages and Systems, MODELS. Vol. 6394.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 121–135.
doi: 10.1007/978-3-642-16145-2_9.

https://doi.org/10.1145/3168365.3168377
https://doi.org/10.1145/3168365.3168377
http://ceur-ws.org/Vol-2026/paper2.pdf
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1007/s10270-009-0120-9
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-02408-5_2
https://doi.org/10.5381/jot.2009.8.6.c5
https://doi.org/10.1109/ICSE.2009.5070523
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1007/978-3-540-79980-1_4
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16145-2_9

[Atk98] David L. Atkins. “Version Sensitive Editing: Change History as a Programming
Tool”. In: System Configuration Management, ECOOP’98 SCM-8 Symposium. Vol. 1439.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1998, pp. 146–157.
doi: 10.1007/BFb0053886.

[ABB02] Colin Atkinson, Christian Bunse, and Joachim Bayer. Component-based product line
engineering with UML. Pearson Education, 2002.

[AK08] Colin Atkinson and Thomas Kühne. “Reducing accidental complexity in domain
models”. In: Software and Systems Modeling 7.3 (2008), pp. 345–359. doi: 10.1007/
s10270-007-0061-0.

[ASB09] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Orthographic Software Mod-
eling: A Practical Approach to View-Based Development”. In: Evaluation of Novel
Approaches to Software Engineering, ENASE. Vol. 69. Communications in Com-
puter and Information Science. Berlin, Heidelberg: Springer, 2009, pp. 206–219. doi:
10.1007/978-3-642-14819-4_15.

[Bak+16] Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wasowski. “Clafer: unifying class and feature modeling”. In: Software and Systems
Modeling 15.3 (2016), pp. 811–845. doi: 10.1007/s10270-014-0441-1.

[BCW11] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. “Feature and Meta-Models
in Clafer: Mixed, Specialized, and Coupled”. In: Software Language Engineering,
SLE. Vol. 6563. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2011, pp. 102–122. doi: 10.1007/978-3-642-19440-5_7.

[BBW21] Matthias Bank, Thomas Buchmann, and BernhardWestfechtel. “Combining a Declar-
ative Language and an Imperative Language for Bidirectional Incremental Model
Transformations”. In: Proceedings of the 9th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD 2021. SCITEPRESS,
2021, pp. 15–27. doi: 10.5220/0010188200150027.

[Bar+10] Bruno Barroca, Levi Lucio, Vasco Amaral, Roberto Félix, and Vasco Sousa. “DSLTrans:
A Turing Incomplete Transformation Language”. In: Software Language Engineer-
ing, SLE. Vol. 6563. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2010, pp. 296–305. doi: 10.1007/978-3-642-19440-5_19.

[Bat04] Don S. Batory. “Feature-Oriented Programming and the AHEAD Tool Suite”. In:
Proceedings of the 26th International Conference on Software Engineering, (ICSE).
USA: IEEE Computer Society, 2004, pp. 702–703. doi: 10 . 1109 / ICSE . 2004 .
1317496.

[BSR04] Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. “Scaling Step-Wise
Refinement”. In: IEEE Transactions on Software Engineering 30.6 (2004), pp. 355–
371. doi: 10.1109/TSE.2004.23.

[Bec+07] Simon M. Becker, Sebastian Herold, Sebastian Lohmann, and Bernhard Westfechtel.
“A graph-based algorithm for consistency maintenance in incremental and interac-
tive integration tools”. In: Software and Systems Modeling 6.3 (2007), pp. 287–315.
doi: 10.1007/s10270-006-0045-5.

[BPB17] Benjamin Behringer, Jochen Palz, and Thorsten Berger. “PEoPL: projectional edit-
ing of product lines”. In: Proceedings of the 39th International Conference on Soft-
ware Engineering, ICSE. IEEE, 2017, pp. 563–574. doi: 10.1109/ICSE.2017.58.

[Ben+19] David Benavides, Rick Rabiser, Don S. Batory, and Mathieu Acher. “First inter-
national workshop on languages for modelling variability (MODEVAR 2019)”. In:
Proceedings of the 23rd International Systems and Software Product Line Confer-
ence, SPLC 2019, Volume A, Paris, France, September 9-13, 2019. ACM, 2019,
46:1. doi: 10.1145/3336294.3342364.

https://doi.org/10.1007/BFb0053886
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1007/s10270-014-0441-1
https://doi.org/10.1007/978-3-642-19440-5_7
https://doi.org/10.5220/0010188200150027
https://doi.org/10.1007/978-3-642-19440-5_19
https://doi.org/10.1109/ICSE.2004.1317496
https://doi.org/10.1109/ICSE.2004.1317496
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1007/s10270-006-0045-5
https://doi.org/10.1109/ICSE.2017.58
https://doi.org/10.1145/3336294.3342364

[BBM05] Kathrin Berg, Judith Bishop, and Dirk Muthig. “Tracing Software Product Line
Variability: From Problem to Solution Space”. In: White River, South Africa: South
African Institute for Computer Scientists and Information Technologists, 2005, pp. 182–
191. isbn: 1595932585.

[Ber84] Edward H. Bersoff. “Elements of Software Configuration Management”. In: IEEE
Transactions on Software Engineering 10.1 (1984), pp. 79–87. doi: 10.1109/TSE.
1984.5010202.

[Bet16] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd, 2016.

[Beu13] Danilo Beuche. “pure::variants”. In: Systems and Software Variability Management:
Concepts, Tools and Experiences. Springer, 2013, pp. 173–182. doi: 10.1007/978-
3-642-36583-6_12.

[Big] Inc. BigLever Software. Gears Product Line Engineering Lifecycle Framework™.
Visited: 2022-07-15. url: https://biglever.com/wp-content/uploads/2018/
11/BigLever-Enterprise-Gears-Data-Sheet.pdf.

[Bit+21] Paul Maximilian Bittner, Alexander Schultheiß, Thomas Thüm, Timo Kehrer, Jef-
frey M. Young, and Lukas Linsbauer. “Feature Trace Recording”. In: Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE. Athens, Greece:
ACM, 2021, pp. 1007–1020. doi: 10.1145/3468264.3468531.

[Boe88] Barry W. Boehm. “A Spiral Model of Software Development and Enhancement”.
In: IEEE Computer 21.5 (1988), pp. 61–72. doi: 10.1109/2.59.

[BJR96] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language
for Object-Oriented Development. Santa Monica, California: Rational Software Co-
operation, Sept. 1996.

[BTG12] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. “A theory of software product
line refinement”. In: Theoretical Computer Science 455 (2012), pp. 2–30. doi: 10.
1016/j.tcs.2012.01.031.

[Bos99] Jan Bosch. “Superimposition: a component adaptation technique”. In: Information
and Software Technology 41.5 (1999), pp. 257–273. doi: 10.1016/S0950-5849(99)
00007-5.

[BOT07] Goetz Botterweck, Liam O’Brien, and Steffen Thiel. “Model-driven derivation of
product architectures”. In: Proceedings of the 22nd IEEE/ACM International Con-
ference on Automated Software Engineering ASE. ACM, 2007, pp. 469–472. doi:
10.1145/1321631.1321711.

[BP14] Goetz Botterweck and Andreas Pleuss. “Evolution of Software Product Lines”. In:
Evolving Software Systems. Berlin, Heidelberg: Springer, 2014, pp. 265–295. doi:
10.1007/978-3-642-45398-4_9.

[BS13] Julian Bradfield and Perdita Stevens. “Enforcing QVT-R with mu-Calculus and
Games”. English. In: Fundamental Approaches to Software Engineering. Vol. 7793.
Lecture Notes in Computer Science. Springer, 2013, pp. 282–296. doi: 10.1007/978-
3-642-37057-1_21.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engi-
neering in Practice. Synthesis Lectures on Software Engineering. Morgan & Claypool
Publishers, 2012. doi: 10.2200/S00441ED1V01Y201208SWE001.

[BPV10] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. “Fine-Grained Metamodel-
Assisted Model Comparison”. In: Proceedings of the 1st International Workshop on
Model Comparison in Practice, IWMCP. Malaga, Spain: ACM, 2010, pp. 11–20.
doi: 10.1145/1826147.1826152.

https://doi.org/10.1109/TSE.1984.5010202
https://doi.org/10.1109/TSE.1984.5010202
https://doi.org/10.1007/978-3-642-36583-6_12
https://doi.org/10.1007/978-3-642-36583-6_12
https://biglever.com/wp-content/uploads/2018/11/BigLever-Enterprise-Gears-Data-Sheet.pdf
https://biglever.com/wp-content/uploads/2018/11/BigLever-Enterprise-Gears-Data-Sheet.pdf
https://doi.org/10.1145/3468264.3468531
https://doi.org/10.1109/2.59
https://doi.org/10.1016/j.tcs.2012.01.031
https://doi.org/10.1016/j.tcs.2012.01.031
https://doi.org/10.1016/S0950-5849(99)00007-5
https://doi.org/10.1016/S0950-5849(99)00007-5
https://doi.org/10.1145/1321631.1321711
https://doi.org/10.1007/978-3-642-45398-4_9
https://doi.org/10.1007/978-3-642-37057-1_21
https://doi.org/10.1007/978-3-642-37057-1_21
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.1145/1826147.1826152

[Bro+12] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland, and
Manuel Wimmer. “An Introduction to Model Versioning”. In: Formal Methods for
Model-Driven Engineering: 12th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems, SFM. Vol. 7320. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 336–398. doi:
10.1007/978-3-642-30982-3_10.

[Bru+20] Jean-Michel Bruel, Benoît Combemale, Esther Guerra, Jean-Marc Jézéquel, Jörg
Kienzle, Juan de Lara, Gunter Mussbacher, Eugene Syriani, and Hans Vangheluwe.
“Comparing and classifying model transformation reuse approaches across meta-
models”. In: Software and Systems Modeling 19.2 (2020), pp. 441–465. doi: 10.
1007/s10270-019-00762-9.

[BP08] Cédric Brun and Alfonso Pierantonio. “Model Differences in the Eclipse Modelling
Framework”. In: UPGRADE IX.2 (Apr. 2008), pp. 29–34.

[Bru+10] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. “MoDisco: a
generic and extensible framework for model driven reverse engineering”. In: Proceed-
ings of the IEEE/ACM international conference on Automated software engineering.
ASE ’10. Antwerp, Belgium: ACM, 2010, pp. 173–174. doi: http://doi.acm.org/
10.1145/1858996.1859032.

[Buc18] Thomas Buchmann. “BXtend - A Framework for (Bidirectional) Incremental Model
Transformations”. In: Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD 2018. 2018, pp. 336–
345. doi: 10.5220/0006563503360345.

[Buc12] Thomas Buchmann. “Valkyrie: A UML-based Model-driven Environment for Model-
driven Software Engineering”. In: ICSOFT 2012 - Proceedings of the 7th Interna-
tional Conference on Software Paradigm Trends. SciTePress, 2012, pp. 147–157. doi:
10.5220/0004027401470157.

[BDW08] Thomas Buchmann, Alexander Dotor, and Bernhard Westfechtel. “Triple Graph
Grammars or Triple Graph Transformation Systems?” In: Models in Software Engi-
neering, Workshops and Symposia at MODELS 2008, Toulouse, France, September
28 - October 3, 2008. Reports and Revised Selected Papers. Vol. 5421. Lecture Notes
in Computer Science. Springer, 2008, pp. 138–150. doi: 10.1007/978- 3- 642-
01648-6_15.

[BS16] Thomas Buchmann and Felix Schwägerl. “Breaking the Boundaries of Meta Mod-
els and Preventing Information Loss in Model-Driven Software Product Lines”. In:
ENASE 2016 - Proceedings of the 11th International Conference on Evaluation of
Novel Approaches to Software Engineering. SciTePress, 2016, pp. 73–83. doi: 10.
5220/0005789100730083.

[BS12] Thomas Buchmann and Felix Schwägerl. “FAMILE: Tool support for evolving model-
driven product lines”. In: Joint Proceedings of co-located Events at 8th European
Conference on Modelling Foundations and Applications (ECMFA). CEUR WS. Lyn-
gby, Denmark, 2012, pp. 59–62.

[BS15] Thomas Buchmann and Felix Schwägerl. “On A-posteriori Integration of Ecore Mod-
els and Hand-written Java Code”. In: ICSOFT-PT 2015 - Proceedings of the 10th
International Conference on Software Paradigm Trends. SciTePress, 2015, pp. 95–
102. doi: 10.5220/0005552200950102.

[BW14] Thomas Buchmann and Bernhard Westfechtel. “Mapping feature models onto do-
main models: ensuring consistency of configured domain models”. In: Software and
Systems Modeling 13.4 (2014), pp. 1495–1527. doi: 10.1007/s10270-012-0305-5.

[Bür+16] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schürr. “Reasoning about product-line evolution using complex feature model
differences”. In: Automated Software Engineering 23.4 (2016), pp. 687–733. doi:
10.1007/s10515-015-0185-3.

https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/s10270-019-00762-9
https://doi.org/10.1007/s10270-019-00762-9
https://doi.org/http://doi.acm.org/10.1145/1858996.1859032
https://doi.org/http://doi.acm.org/10.1145/1858996.1859032
https://doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0004027401470157
https://doi.org/10.1007/978-3-642-01648-6_15
https://doi.org/10.1007/978-3-642-01648-6_15
https://doi.org/10.5220/0005789100730083
https://doi.org/10.5220/0005789100730083
https://doi.org/10.5220/0005552200950102
https://doi.org/10.1007/s10270-012-0305-5
https://doi.org/10.1007/s10515-015-0185-3

[BCG19] Loli Burgueño, Jordi Cabot, and Sébastien Gérard. “An LSTM-Based Neural Net-
work Architecture for Model Transformations”. In: 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS 2019.
IEEE, 2019, pp. 294–299. doi: 10.1109/MODELS.2019.00013.

[Cal+19] Théo Le Calvar, Frédéric Jouault, Fabien Chhel, and Mickael Clavreul. “Efficient
ATL Incremental Transformations”. In: Journal of Object Technology 18.3 (July
2019). The 12th International Conference on Model Transformations, 2:1–17. issn:
1660-1769. doi: 10.5381/jot.2019.18.3.a2.

[Che+16] Marsha Chechik, Michalis Famelis, Rick Salay, and Daniel Strüber. “Perspectives of
Model Transformation Reuse”. In: Integrated Formal Methods - 12th International
Conference, IFM 2016. Vol. 9681. Lecture Notes in Computer Science. Springer,
2016, pp. 28–44. doi: 10.1007/978-3-319-33693-0_3.

[CHS15] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. “Abstract delta modelling”.
In: Mathematical Structures in Computer Sciences 25.3 (2015), pp. 482–527. doi:
10.1017/S0960129512000941.

[CHS08] Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. “What’s in a Fea-
ture: A Requirements Engineering Perspective”. In: Fundamental Approaches to
Software Engineering, 11th International Conference, FASE 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008. Vol. 4961. Lecture Notes in Computer Science. Springer, 2008, pp. 16–30. doi:
10.1007/978-3-540-78743-3_2.

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001. isbn: 9780201703320.

[Con91] Software Productivity Consortium. Synthesis Guidebook. Tech. rep. Technical report,
SPC-91122-MC. Herndon, Virginia, 1991.

[Cua+22] Jesús Sánchez Cuadrado, Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo.
“Efficient Execution of ATL Model Transformations Using Static Analysis and Par-
allelism”. In: IEEE Transactions on Software Engineering 48.4 (2022), pp. 1097–
1114. doi: 10.1109/TSE.2020.3011388.

[CGL18] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. “AnATLyzer: an ad-
vanced IDE for ATL model transformations”. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings, ICSE 2018.
ACM, 2018, pp. 85–88. doi: 10.1145/3183440.3183479.

[CGL17] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. “Static Analysis of
Model Transformations”. In: IEEE Transactions on Software Engineering 43.9 (2017),
pp. 868–897. doi: 10.1109/TSE.2016.2635137.

[CM09] Jesús Sánchez Cuadrado and Jesús García Molina. “Modularization of model trans-
formations through a phasing mechanism”. In: Software and Systems Modeling 8.3
(July 2009), pp. 325–345. issn: 1619-1374. doi: 10.1007/s10270-008-0093-0.

[CA05] Krzysztof Czarnecki and Michał Antkiewicz. “Mapping Features to Models: A Tem-
plate Approach Based on Superimposed Variants”. In: Generative Programming and
Component Engineering, 4th International Conference, GPCE 2005. Vol. 3676. Lec-
ture Notes in Computer Science. Tallinn, Estonia: Springer, 2005, pp. 422–437. doi:
10.1007/11561347_28.

[Cza+05] Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, Sean Lau, and
Krzysztof Pietroszek. “Model-driven software product lines”. In: Companion to the
20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2005. 2005, pp. 126–127. doi: 10.
1145/1094855.1094896.

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker.Generative Programming. Methods, Tools,
and Applications. Pearson Education, 2000. isbn: 0201309777.

https://doi.org/10.1109/MODELS.2019.00013
https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.1007/978-3-319-33693-0_3
https://doi.org/10.1017/S0960129512000941
https://doi.org/10.1007/978-3-540-78743-3_2
https://doi.org/10.1109/TSE.2020.3011388
https://doi.org/10.1145/3183440.3183479
https://doi.org/10.1109/TSE.2016.2635137
https://doi.org/10.1007/s10270-008-0093-0
https://doi.org/10.1007/11561347_28
https://doi.org/10.1145/1094855.1094896
https://doi.org/10.1145/1094855.1094896

[Cza+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,
and James F. Terwilliger. “Bidirectional Transformations: A Cross-Discipline Per-
spective”. In: Theory and Practice of Model Transformations - 2nd International
Conference, ICMT@TOOLS 2009. Vol. 5563. Lecture Notes in Computer Science.
Springer, 2009, pp. 260–283. doi: 10.1007/978-3-642-02408-5_19.

[Cza+12] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and Andrzej
Wasowski. “Cool features and tough decisions: a comparison of variability model-
ing approaches”. In: Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems. VaMoS. Leipzig, Germany: ACM, 2012,
pp. 173–182. doi: 10.1145/2110147.2110167.

[CH03] Krzysztof Czarnecki and Simon Helsen. “Classification of model transformation ap-
proaches”. In: Proceedings of the 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture. Vol. 45. 3. USA. 2003, pp. 1–17.

[CH06] Krzysztof Czarnecki and Simon Helsen. “Feature-based survey of model transfor-
mation approaches”. In: IBM Systems Journal 45.3 (2006), pp. 621–646. doi: 10.
1147/sj.453.0621.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and UlrichW. Eisenecker. “Formalizing cardinality-
based feature models and their specialization”. In: Software Process: Improvement
and Practice 10.1 (2005), pp. 7–29. doi: 10.1002/spip.213.

[CP06] Krzysztof Czarnecki and Krzysztof Pietroszek. “Verifying feature-based model tem-
plates against well-formedness OCL constraints”. In: Generative Programming and
Component Engineering, 5th International Conference, GPCE 2006. ACM, 2006,
pp. 211–220. doi: 10.1145/1173706.1173738.

[DGR11] Deepak Dhungana, Paul Grünbacher, and Rick Rabiser. “The DOPLER meta-tool
for decision-oriented variability modeling: a multiple case study”. In: Automated
Software Engineering 18.1 (2011), pp. 77–114. doi: 10.1007/s10515-010-0076-6.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. isbn: 013215871X.
url: https://www.worldcat.org/oclc/01958445.

[Dij72] Edsger W. Dijkstra. “The Humble Programmer”. In: Communications of the ACM
15.10 (Oct. 1972), pp. 859–866. issn: 0001-0782. doi: 10.1145/355604.361591.

[Eff+04] Sven Efftinge, Peter Friese, Arno Hase, Dennis Hübner, Clemens Kadura, Bernd
Kolb, Jan Köhnlein, Dieter Moroff, Karsten Thoms, Markus Völter, et al. Xpand
documentation. Tech. rep. Technical report, 2004-2010.(cited on page 64), 2004.

[ES] Sven Efftinge and Miro Spoenemann. Xtend - Modernized Java. Modified: November
30, 2020 at 16:59:59 GMT+1. url: https://www.eclipse.org/xtend/index.html.

[EV06] Sven Efftinge and Markus Völter. “oAW xText: A framework for textual DSLs”. In:
Workshop on Modeling Symposium at Eclipse Summit. Vol. 32. 118. 2006.

[Ehr+08] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Transformation. Monographs in Theoretical Computer Science.
An EATCS Series. Springer, 3662569108. doi: 10.1007/3-540-31188-2.

[Ehr+15] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and Model
Transformation - General Framework and Applications. Monographs in Theoretical
Computer Science. An EATCS Series. Springer, 2015. doi: 10.1007/978-3-662-
47980-3.

[EPT04] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. “Fundamental Theory for
Typed Attributed Graph Transformation”. In: Graph Transformations. Berlin, Hei-
delberg: Springer, 2004, pp. 161–177. isbn: 978-3-540-30203-2.

https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1002/spip.213
https://doi.org/10.1145/1173706.1173738
https://doi.org/10.1007/s10515-010-0076-6
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1145/355604.361591
https://www.eclipse.org/xtend/index.html
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3

[EPT18] Romina Eramo, Alfonso Pierantonio, and Michele Tucci. “Improved traceability for
bidirectional model transformations”. In: Proceedings of MODELS 2018 Workshops:
ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools, GEMOC, MORSE,
MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-
located with ACM/IEEE 21st International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2018). Vol. 2245. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2018, pp. 306–315. url: http://ceur- ws.org/Vol-
2245/mdetools_paper_1.pdf.

[EW11] Martin Erwig and Eric Walkingshaw. “The Choice Calculus: A Representation for
Software Variation”. In: ACM Transactions on Software Engineering and Methodol-
ogy 21.1 (Dec. 2011). issn: 1049-331X. doi: 10.1145/2063239.2063245.

[FLW11] Uli Fahrenberg, Axel Legay, and Andrzej Wasowski. “Vision Paper: Make a Dif-
ference! (Semantically)”. In: Model Driven Engineering Languages and Systems.
14th International Conference, MODELS 2011, Wellington, New Zealand, October
2011. Proceedings. Vol. 6981. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2011, pp. 490–500. doi: 10.1007/978-3-642-24485-8_36.

[Fam+15] Michalis Famelis, Levi Lucio, Gehan M. K. Selim, Alessio Di Sandro, Rick Salay,
Marsha Chechik, James R. Cordy, Jürgen Dingel, Hans Vangheluwe, and S. Ramesh.
“Migrating Automotive Product Lines: A Case Study”. In: Theory and Practice of
Model Transformations. 8th International Conference, ICMT 2015, Held as Part of
STAF 2015, L’Aquila, Italy, July 20-21, 2015. Proceedings. 2015, pp. 82–97. doi:
10.1007/978-3-319-21155-8_7.

[FL19] Shichao Fang and Kevin Lano. “Extracting Correspondences from Metamodels Us-
ing Metamodel Matching”. In: STAF 2019 Co-Located Events Joint Proceedings:
1st Junior Researcher Community Event, 2nd International Workshop on Model-
Driven Engineering for Design-Runtime Interaction in Complex Systems, and 1st
Research Project Showcase Workshop co-located with Software Technologies: Appli-
cations and Foundations (STAF 2019). Vol. 2405. CEUR Workshop Proceedings.
CEUR-WS.org, 2019, pp. 3–8. url: http://ceur-ws.org/Vol-2405/02_paper.
pdf.

[Fei+13] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze, Raimund
Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. “Do background
colors improve program comprehension in the #ifdef hell?” In: Empirical Software
Engineering 18.4 (2013), pp. 699–745. doi: 10.1007/s10664-012-9208-x.

[Fel91] Stuart I. Feldman. “Software Configuration Management: Past Uses and Future
Challenges”. In: ESEC ’91. 3rd European Software Engineering Conference, ESEC
’91, Milan, Italy, October 21-24, 1991, Proceedings. Vol. 550. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1991, pp. 1–6. doi: 10 . 1007 /
3540547428_39.

[Fer+20] Fischer Ferreira, Markos Viggiato, Maurício Souza, and Eduardo Figueiredo. “Test-
ing Configurable Software Systems: The Failure Observation Challenge”. In: PLC
’20: Proceedings of the 24th ACM Conference on Systems and Software Product
Line: Volume A - Volume A. SPLC ’20. Montreal, Quebec, Canada: ACM, 2020.
doi: 10.1145/3382025.3414725.

[FF00] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quan-
tification and Obliviousness. Tech. rep. 2000.

[Fin+92] Anthony Finkelstein, Jeff Kramer, Bashar Nuseibeh, L. Finkelstein, and Michael
Goedicke. “Viewpoints: A Framework for Integrating Multiple Perspectives in Sys-
tem Development”. In: International Journal of Software Engineering and Knowl-
edge Engineering 2.1 (1992), pp. 31–57. doi: 10.1142/S0218194092000038.

http://ceur-ws.org/Vol-2245/mdetools_paper_1.pdf
http://ceur-ws.org/Vol-2245/mdetools_paper_1.pdf
https://doi.org/10.1145/2063239.2063245
https://doi.org/10.1007/978-3-642-24485-8_36
https://doi.org/10.1007/978-3-319-21155-8_7
http://ceur-ws.org/Vol-2405/02_paper.pdf
http://ceur-ws.org/Vol-2405/02_paper.pdf
https://doi.org/10.1007/s10664-012-9208-x
https://doi.org/10.1007/3540547428_39
https://doi.org/10.1007/3540547428_39
https://doi.org/10.1145/3382025.3414725
https://doi.org/10.1142/S0218194092000038

[Fon+15] Jaime Font, Manuel Ballarín, Øystein Haugen, and Carlos Cetina. “Automating
the variability formalization of a model family by means of common variability
language”. In: Proceedings of the 19th International Conference on Software Product
Line, SPLC 2015, Volume 1. New York, NY, USA: ACM, 2015, pp. 411–418. doi:
10.1145/2791060.2793678.

[Fow22] Martin Fowler. Visited: 2022-07-18. 2022. url: https://martinfowler.com/.
[Fow10] Martin Fowler. Domain-specific languages. Pearson Education, 2010.
[Gam+97] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns -

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Com-
puting Series. Addison-Wesley, 1997. isbn: 978-0201633610.

[GW99] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis. Mathematical Foun-
dations. Springer, 1999. isbn: 978-3-540-62771-5. doi: 10.1007/978-3-642-59830-
2.

[Ger+02] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew Wood.
“Transformation: The Missing Link of MDA”. In: Graph Transformation, First In-
ternational Conference, ICGT 2002, Proceedings. Vol. 2505. Lecture Notes in Com-
puter Science. Barcelona, Spain: Springer, 2002, pp. 90–105. doi: 10.1007/3-540-
45832-8_9.

[Gmb22] pure-systems GmbH. pure-systems: pure::variants basic capabilities | pure-systems.
Modified: July 29, 2022. 2022. url: https://www.pure-systems.com/purevariants/
purevariants-basic-capabilities.

[Gom06] Hassan Gomaa. “Designing Software Product Lines with UML 2.0: From Use Cases
to Pattern-Based Software Architectures”. In: Proceedings. 10th International Soft-
ware Product Line Conference, SPLC. 2006, p. 218. doi: 10.1109/SPLINE.2006.
1691600.

[Gom05] Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures. Boston, MA, USA: Addison-Wesley, 2005.

[GS02] Hassan Gomaa and Michael E. Shin. “Multiple-View Meta-Modeling of Software
Product Lines”. In: ICECCS 2002: 8th IEEE International Conference on Engi-
neering of Complex Computer Systems, 2002. Proceedings. IEEE Computer Society,
2002, pp. 238–246. doi: 10.1109/ICECCS.2002.1181517.

[Gra14] Birgit Grammel. “Automatic Generation of Trace Links in Model-driven Software
Development”. PhD thesis. Dresden University of Technology, 2014. url: https:
//nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-155839.

[GKV12] Birgit Grammel, Stefan Kastenholz, and Konrad Voigt. “Model Matching for Trace
Link Generation in Model-Driven Software Development”. In: Model Driven En-
gineering Languages and Systems: 15th International Conference, MODELS 2012.
Vol. 7590. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012,
pp. 609–625. doi: 10.1007/978-3-642-33666-9_39.

[Gre22] Sandra Greiner. Reuse of Model Transformations for Propagating Variability An-
notations in Annotative Software Product Lines - Evaluation Data. Version v1.0.0.
Zenodo, Dec. 2022. doi: 10.5281/zenodo.7367986. url: https://doi.org/10.
5281/zenodo.7367986.

[GV09] Iris Groher and Markus Voelter. “Aspect-Oriented Model-Driven Software Prod-
uct Line Engineering”. In: Transactions on Aspect-Oriented Software Development
VI: Special Issue on Aspects and Model-Driven Engineering. Berlin, Heidelberg:
Springer, 2009, pp. 111–152. doi: 10.1007/978-3-642-03764-1_4.

[GV07] Iris Groher and Markus Voelter. “XWeave: Models and Aspects in Concert”. In:
Proceedings of the 10th International Workshop on Aspect-Oriented Modeling. AOM
’07. Vancouver, Canada: ACM, 2007, pp. 35–40. doi: 10.1145/1229375.1229381.

[Hal17] Paul R. Halmos. Naive set theory. Courier Dover Publications, 2017.

https://doi.org/10.1145/2791060.2793678
https://martinfowler.com/
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/3-540-45832-8_9
https://doi.org/10.1007/3-540-45832-8_9
https://www.pure-systems.com/purevariants/purevariants-basic-capabilities
https://www.pure-systems.com/purevariants/purevariants-basic-capabilities
https://doi.org/10.1109/SPLINE.2006.1691600
https://doi.org/10.1109/SPLINE.2006.1691600
https://doi.org/10.1109/ICECCS.2002.1181517
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-155839
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-155839
https://doi.org/10.1007/978-3-642-33666-9_39
https://doi.org/10.5281/zenodo.7367986
https://doi.org/10.5281/zenodo.7367986
https://doi.org/10.5281/zenodo.7367986
https://doi.org/10.1007/978-3-642-03764-1_4
https://doi.org/10.1145/1229375.1229381

[Hau+08] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and Andreas
Svendsen. “Adding Standardized Variability to Domain Specific Languages”. In:
2008 12th International Software Product Line Conference. Limerick, Ireland, Sept.
2008, pp. 139–148. doi: 10.1109/SPLC.2008.25.

[Hei+09] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende. “Clos-
ing the Gap between Modelling and Java”. In: Software Language Engineering,
Second International Conference, SLE, Revised Selected Papers. Vol. 5969. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2009, pp. 374–383. doi:
10.1007/978-3-642-12107-4_25.

[HKW08] Florian Heidenreich, Jan Kopcsek, and Christian Wende. “FeatureMapper: Mapping
Features to Models”. In: Companion of the 30th International Conference on Soft-
ware Engineering. ICSE Companion ’08. Leipzig, Germany: ACM, 2008, pp. 943–
944. doi: 10.1145/1370175.1370199.

[HJH06] Scott A. Hendrickson, Bryan Jett, and André van der Hoek. “Layered Class Dia-
grams: Supporting the Design Process”. In: Model Driven Engineering Languages
and Systems, 9th International Conference, MoDELS 2006, Genova, Italy, October
1-6, 2006, Proceedings. Vol. 4199. Lecture Notes in Computer Science. Springer,
2006, pp. 722–736. doi: 10.1007/11880240_50.

[Her10] Markus Herrmannsdoerfer. “COPE - A Workbench for the Coupled Evolution of
Metamodels and Models”. In: Software Language Engineering - Third International
Conference, SLE 2010, Eindhoven, The Netherlands, October 12-13, 2010, Revised
Selected Papers. Vol. 6563. Lecture Notes in Computer Science. Springer, 2010,
pp. 286–295. doi: 10.1007/978-3-642-19440-5_18.

[Hoe20] Fabian Hoellerich. “Graph-basiertes Matching für Instanzen unterschiedlicher Meta-
modelle”. Bachelor Thesis. University of Bayreuth, 2020.

[Hof+10] Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. “Leviathan: SPL Support on Filesystem Level”. In: Software
Product Lines: Going Beyond - 14th International Conference, SPLC 2010, Jeju
Island, South Korea, September 13-17, 2010. Proceedings. Vol. 6287. Lecture Notes
in Computer Science. Springer, 2010, p. 491. doi: 10.1007/978-3-642-15579-6_43.

[HS77] J.W. Hunt and T.G. Szymanski. “A Fast Algorithm for Computing Longest Common
Subsequences”. In: Communications of the ACM 20.5 (May 1977), pp. 350–353.

[ikv18] ikv++ technologies. medini QVT. http://projects.ikv.de/qvt. ikv++ technolo-
gies. 2018.

[INR05] INRIA. ATL Transformation Example. Class to Relational. November 23, 2022 at
22:21:59 GMT+1. 2005. url: https://www.eclipse.org/atl/atlTransformations/
Class2Relational/ExampleClass2Relational[v00.01].pdf.

[Ji+15] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. “Main-
taining feature traceability with embedded annotations”. In: Proceedings of the 19th
International Conference on Software Product Line, SPLC 2015, Nashville, TN,
USA, July 20-24, 2015. ACM, 2015, pp. 61–70. doi: 10.1145/2791060.2791107.

[Jou+08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. “ATL: A model
transformation tool”. In: Science of Computer Programming 72.1-2 (2008), pp. 31–
39. doi: 10.1016/j.scico.2007.08.002.

[Juo+19] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz,
Krzysztof Czarnecki, and Andrzej Wasowski. “Clafer: Lightweight Modeling of Struc-
ture, Behaviour, and Variability”. In: The Art, Science, and Engineering of Program-
ming 3.1 (2019), p. 2. doi: 10.22152/programming-journal.org/2019/3/2.

[Kah+19] Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Dingel, and Dániel
Varró. “Survey and classification of model transformation tools”. In: Software and
Systems Modeling 18.4 (2019), pp. 2361–2397. doi: 10.1007/s10270-018-0665-6.

https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1007/978-3-642-12107-4_25
https://doi.org/10.1145/1370175.1370199
https://doi.org/10.1007/11880240_50
https://doi.org/10.1007/978-3-642-19440-5_18
https://doi.org/10.1007/978-3-642-15579-6_43
http://projects.ikv.de/qvt
https://www.eclipse.org/atl/atlTransformations/Class2Relational/ExampleClass2Relational[v00.01].pdf
https://www.eclipse.org/atl/atlTransformations/Class2Relational/ExampleClass2Relational[v00.01].pdf
https://doi.org/10.1145/2791060.2791107
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.1007/s10270-018-0665-6

[Kan+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech. rep.
CMU/SEI-90-TR-21. Carnegie-Mellon University, Software Engineering Institute,
Nov. 1990.

[Kar+03] Gabor Karsai, Aditya Agrawal, Feng Shi, and Jonathan Sprinkle. “On the Use of
Graph Transformation in the Formal Specification of Model Interpreters”. In: Jour-
nal of Universal Computer Science 9.11 (2003), pp. 1296–1321. url: http://www.
jucs.org/jucs_9_11/on_the_use_of.

[Käs07] Christian Kästner. “CIDE: Decomposing Legacy Applications into Features”. In:
Software Product Lines, 11th International Conference, SPLC 2007, Kyoto, Japan,
September 10-14, 2007, Proceedings. Second Volume (Workshops). Kindai Kagaku
Sha Co. Ltd., Tokyo, Japan, 2007, pp. 149–150.

[Käs12] Christian Kästner. “Virtual Separation of Concerns: Toward Preprocessors 2.0”. In:
it Inf. Technol. 54.1 (2012), pp. 42–46. doi: 10.1524/itit.2012.0662.

[Käs10] Christian Kästner. “Virtual separation of concerns: toward preprocessors 2.0”. PhD
thesis. Otto von Guericke University Magdeburg, 2010. isbn: 978-3-8325-2527-9.
url: http://edoc.bibliothek.uni-halle.de/servlets/DocumentServlet?id=
8044.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. “Granularity in software
product lines”. In: 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008. ACM, 2008, pp. 311–320. doi: 10 .
1145/1368088.1368131.

[KDO14] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. “Variability Mining:
Consistent Semi-automatic Detection of Product-Line Features”. In: IEEE Trans-
actions on Software Engineering 40.1 (Jan. 2014), pp. 67–82. issn: 0098-5589. doi:
10.1109/TSE.2013.45.

[Kav+11] Amogh Kavimandan, Aniruddha S. Gokhale, Gabor Karsai, and Jeff Gray. “Manag-
ing the quality of software product line architectures through reusable model trans-
formations”. In: Proceedings of the 7th International ACM SIGSOFT Conference on
the Quality of Software Architectures, QoSA 2011 and 2nd ACM SIGSOFT Interna-
tional Symposium on Architecting Critical Systems, ISARCS. ACM, 2011, pp. 13–
22. url: https://doi.org/10.1145/2000259.2000264.

[KKT13] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. “Consistency-preserving edit scripts
in model versioning”. In: 2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). Silicon Valley, CA, USA: IEEE, 2013, pp. 191–
201. doi: 10.1109/ASE.2013.6693079.

[Keh+21] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner.
“Bridging the Gap Between Clone-and-Own and Software Product Lines”. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). IEEE, 2021, pp. 21–25. doi: 10 . 1109 / ICSE -
NIER52604.2021.00013.

[KWN05] Udo Kelter, Jürgen Wehren, and Jörg Niere. “A Generic Difference Algorithm for
UML Models”. In: Software Engineering 2005, Fachtagung des GI-Fachbereichs Soft-
waretechnik, 8.-11.3.2005 in Essen. Vol. P-64. LNI. GI, 2005, pp. 105–116. url:
https://dl.gi.de/20.500.12116/28304.

[Ker03] Harold Kerzner. Project Management. A Systems Approach to Planning, Schedul-
ing and Controlling. 8th ed. Berea Ohio: John Wiley & Sons Inc., 2003. isbn:
0201309777.

[Kes+14] Marouane Kessentini, Ali Ouni, Philip Langer, Manuel Wimmer, and Slim Bechikh.
“Search-based metamodel matching with structural and syntactic measures”. In:
Journal of Systems and Software 97 (2014), pp. 1–14. doi: 10.1016/j.jss.2014.
06.040.

http://www.jucs.org/jucs_9_11/on_the_use_of
http://www.jucs.org/jucs_9_11/on_the_use_of
https://doi.org/10.1524/itit.2012.0662
http://edoc.bibliothek.uni-halle.de/servlets/DocumentServlet?id=8044
http://edoc.bibliothek.uni-halle.de/servlets/DocumentServlet?id=8044
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1109/TSE.2013.45
https://doi.org/10.1145/2000259.2000264
https://doi.org/10.1109/ASE.2013.6693079
https://doi.org/10.1109/ICSE-NIER52604.2021.00013
https://doi.org/10.1109/ICSE-NIER52604.2021.00013
https://dl.gi.de/20.500.12116/28304
https://doi.org/10.1016/j.jss.2014.06.040
https://doi.org/10.1016/j.jss.2014.06.040

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. “Aspect-oriented programming”. In: ECOOP’97–
Object-oriented programming (1997), pp. 220–242.

[Kir+21] Jörg Christian Kirchhof, Michael Nieke, Ina Schaefer, David Schmalzing, and Michael
Schulze. “Variant and Product Line Co-Evolution”. In: Model-Based Engineering
of Collaborative Embedded Systems: Extensions of the SPES Methodology. Cham:
Springer International Publishing, 2021, pp. 333–351. doi: 10.1007/978-3-030-
62136-0_18.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Anneal-
ing”. In: Science 220.4598 (1983), pp. 671–680. doi: 10.1126/science.220.4598.
671.

[Kla21] Heiko Klare. “Building Transformation Networks for Consistent Evolution of Interre-
lated Models”. PhD thesis. Karlsruhe Institute of Technology, Germany, 2021. url:
https://nbn-resolving.org/urn:nbn:de:101:1-2021080405072192372510.

[Kla07] Benjamin Klatt. “Xpand: A closer look at the model2text transformation language”.
In: Language 10.16 (2007), p. 2008.

[KH10] Maximilian Koegel and Jonas Helming. “EMFStore: a model repository for EMF
models”. In: Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010.
ACM, 2010, pp. 307–308. doi: 10.1145/1810295.1810364.

[Kol+09] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F. Paige.
“Different models for model matching: An analysis of approaches to support model
differencing”. In: 2009 ICSE Workshop on Comparison and Versioning of Software
Models. 2009, pp. 1–6. doi: 10.1109/CVSM.2009.5071714.

[KS04] Christian Koppen and Maximilian Störzer. “PCDiff: Attacking the fragile pointcut
problem”. In: European interactive workshop on aspects in software (EIWAS). Vol. 7.
2004.

[KBL13] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-Centric Engineer-
ing with Synchronized Heterogeneous Models”. In: Proceedings of the 1st Workshop
on View-Based, Aspect-Oriented and Orthographic Software Modelling. VAO ’13.
Montpellier, France: ACM, 2013. doi: 10.1145/2489861.2489864.

[Kra] Christian Krause. Henshin - Examples | The Eclipse Foundation. Visited: June 15,
2022, 06:01:55 GMT+2. url: https://www.eclipse.org/henshin/examples.
php?example=ecore2rdb.

[Kru92] Charles W. Krueger. “Software Reuse”. In: ACM Computing Surveys 24.2 (June
1992), pp. 131–183. issn: 0360-0300. doi: 10.1145/130844.130856.

[Küh06] Thomas Kühne. “Matters of (Meta-)Modeling”. In: Software and Systems Modeling
5.4 (2006), pp. 369–385. doi: 10.1007/s10270-006-0017-9.

[Kus+15] Angelika Kusel, Johannes Schönböck, Manuel Wimmer, Gerti Kappel, Werner Rets-
chitzegger, and Wieland Schwinger. “Reuse in model-to-model transformation lan-
guages: are we there yet?” In: Software and Systems Modeling 14.2 (2015), pp. 537–
572. doi: 10.1007/s10270-013-0343-7.

[LF20] Kevin Lano and Shichao Fang. “Automated Synthesis of ATL Transformations from
Metamodel Correspondences”. In: Proceedings of the 8th International Conference
on Model-Driven Engineering and Software Development - MODELSWARD. IN-
STICC. SciTePress, 2020, pp. 263–270. doi: 10.5220/0008873702630270.

[Lar+18] Juan de Lara, Esther Guerra, Marsha Chechik, and Rick Salay. “Model Trans-
formation Product Lines”. In: Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS 2018.
Copenhagen, Denmark, 2018, pp. 67–77. doi: 10.1145/3239372.3239377.

https://doi.org/10.1007/978-3-030-62136-0_18
https://doi.org/10.1007/978-3-030-62136-0_18
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://nbn-resolving.org/urn:nbn:de:101:1-2021080405072192372510
https://doi.org/10.1145/1810295.1810364
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.1145/2489861.2489864
https://www.eclipse.org/henshin/examples.php?example=ecore2rdb
https://www.eclipse.org/henshin/examples.php?example=ecore2rdb
https://doi.org/10.1145/130844.130856
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1007/s10270-013-0343-7
https://doi.org/10.5220/0008873702630270
https://doi.org/10.1145/3239372.3239377

[LB03] C. Larman and V.R. Basili. “Iterative and incremental developments. a brief his-
tory”. In: Computer 36.6 (2003), pp. 47–56. doi: 10.1109/MC.2003.1204375.

[LS05] Michael Lawley and Jim Steel. “Practical Declarative Model Transformation with
Tefkat”. In: Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 In-
ternational Workshops, Doctoral Symposium, Educators Symposium, Montego Bay,
Jamaica, October 2-7, 2005, Revised Selected Papers. Vol. 3844. Lecture Notes in
Computer Science. Springer, 2005, pp. 139–150. doi: 10.1007/11663430_15.

[LAS14] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. “Developing eMoflon with
eMoflon”. In: Theory and Practice of Model Transformations - 7th International
Conference, ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014.
Proceedings. 2014, pp. 138–145. doi: 10.1007/978-3-319-08789-4_10.

[LAS15] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. “Tool Support for Multi-
amalgamated Triple Graph Grammars”. In: Graph Transformation - 8th Interna-
tional Conference, ICGT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July
21-23, 2015. Proceedings. Vol. 9151. Lecture Notes in Computer Science. Springer,
2015, pp. 257–265. doi: 10.1007/978-3-319-21145-9_16.

[Lie+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.
“An analysis of the variability in forty preprocessor-based software product lines”.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software En-
gineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. ACM,
2010, pp. 105–114. doi: 10.1145/1806799.1806819.

[LGJ07] Yuehua Lin, Jeff Gray, and Frédéric Jouault. “DSMDiff: a differentiation tool for
domain-specific models”. In: European Journal of Information Systems 16.4 (2007),
pp. 349–361. doi: 10.1057/palgrave.ejis.3000685.

[Lin02] Frank van der Linden. “Software Product Families in Europe: The Esaps & Café
Projects”. In: IEEE Software 19.4 (2002), pp. 41–49. doi: 10 . 1109 / MS . 2002 .
1020286.

[Lin+15] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification - Java SE 8 Edition. 2015-02-13. https://docs.oracle.
com/javase/specs/jvms/se8/jvms8.pdf. Oracle America, Inc. 2015.

[Lin+21] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel Smith. The
Java Virtual Machine Specification - Java SE 17 Edition. 2021-08-09. https://
docs.oracle.com/javase/specs/jvms/se17/jvms17.pdf. Oracle America, Inc.
2021.

[LB01] Roberto E. Lopez-Herrejon and Don S. Batory. “A Standard Problem for Evaluating
Product-Line Methodologies”. In: Proceedings of the Third International Conference
on Generative and Component-Based Software Engineering. GCSE ’01. London, UK:
Springer, 2001, pp. 10–24. isbn: 3-540-42546-2.

[MS99] Christopher D. Manning and Hinrich SChütze. Foundations of Statistical Natural
Language Processing. 1st ed. Cambridge, Ma.; London, England: MIT Press, 1999.
isbn: 0-262-13360-1.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. “ADDiff: semantic dif-
ferencing for activity diagrams”. In: SIGSOFT/FSE’11 19th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th
European Software Engineering Conference (ESEC-13), Szeged, Hungary, September
5-9, 2011. ACM, 2011, pp. 179–189. doi: 10.1145/2025113.2025140.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. “CDDiff: Semantic Differ-
encing for Class Diagrams”. In: ECOOP 2011 - Object-Oriented Programming - 25th
European Conference, Lancaster, UK, July 25-29, 2011 Proceedings. Vol. 6813. Lec-
ture Notes in Computer Science. Springer, 2011, pp. 230–254. doi: 10.1007/978-
3-642-22655-7_12.

https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1007/11663430_15
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/978-3-319-21145-9_16
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1109/MS.2002.1020286
https://doi.org/10.1109/MS.2002.1020286
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se17/jvms17.pdf
https://docs.oracle.com/javase/specs/jvms/se17/jvms17.pdf
https://doi.org/10.1145/2025113.2025140
https://doi.org/10.1007/978-3-642-22655-7_12
https://doi.org/10.1007/978-3-642-22655-7_12

[Mar+22] Salome Maro, Jan-Philipp Steghöfer, Paolo Bozzelli, and Henry Muccini. “TracIMo:
a traceability introduction methodology and its evaluation in an Agile development
team”. In: Requirments Engineering 27.1 (2022), pp. 53–81. doi: 10.1007/s00766-
021-00361-5.

[Mar+21] Johan Martinson, Herman Jansson, Mukelabai Mukelabai, Thorsten Berger, Alexan-
dre Bergel, and Truong Ho-Quang. “HAnS: IDE-based editing support for embedded
feature annotations”. In: SPLC ’21: 25th ACM International Systems and Software
Product Line Conference, Leicester, United Kindom, September 6-11, 2021, Volume
B. ACM, 2021, pp. 28–31. doi: 10.1145/3461002.3473072.

[MGR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. “Similarity Flooding: A
Versatile Graph Matching Algorithm and Its Application to Schema Matching”. In:
Proceedings of the 18th International Conference on Data Engineering, San Jose,
CA, USA, February 26 - March 1, 2002. IEEE Computer Society, 2002, pp. 117–
128. doi: 10.1109/ICDE.2002.994702.

[MG06] Tom Mens and Pieter Van Gorp. “A Taxonomy of Model Transformation”. In:
Electronic Notes in Theoretical Computer Science 152 (2006), pp. 125–142. doi:
10.1016/j.entcs.2005.10.021.

[ML97] Marc H. Meyer and Alvin P. Lehnerd. The Power of Product Platforms. Simon and
Schuster, 1997.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. “The FUJABA environment”. In:
Proceedings of the 22nd International Conference on on Software Engineering, ICSE
2000, Limerick Ireland, June 4-11, 2000. 2000, pp. 742–745. doi: 10.1145/337180.
337620.

[NES17] Michael Nieke, Gil Engel, and Christoph Seidl. “DarwinSPL: an integrated tool
suite for modeling evolving context-aware software product lines”. In: Proceedings of
the Eleventh International Workshop on Variability Modelling of Software-intensive
Systems, VaMoS 2017, Eindhoven, Netherlands, February 1-3, 2017. ACM, 2017,
pp. 92–99. doi: 10.1145/3023956.3023962.

[Obj17a] Object Management Group (OMG). Action Language for Foundational UML (Alf).
Concrete Syntax for a UML Action Language. Version 1.1. formal/2017-07-04. https:
//www.omg.org/spec/ALF/1.1/PDF. Needham, MA, July 2017.

[Obj19a] Object Management Group (OMG). Business Process Model and Notation. Version
2.0.2. formal/2013-12-09. Needham, MA, 2019. url: https://www.omg.org/spec/
BPMN/2.0.2/PDF.

[Obj16] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. Version 1.3. formal/2016-06-03. https://www.omg.
org/spec/QVT/1.3/PDF. Needham, MA, June 2016.

[Obj19b] Object Management Group (OMG). Meta Object Facility (MOF). Version 2.5.1.
formal/2019-10-01. https://www.omg.org/spec/MOF/2.5.1. Needham, MA, 2019.

[Obj00] Object Management Group (OMG). Model Driven Architecture. Version 3.2. 00-11-
05. https://www.omg.org/cgi-bin/doc?omg/00-11-05. Boston, MA, 2000.

[Obj08] Object Management Group (OMG). MOF Model to Text Transformation Language,
v1.0. 08-01-16. https://www.omg.org/spec/MOFM2T/1.0/PDF. Needham, MA, Jan.
2008.

[Obj14] Object Management Group (OMG).Object Constraint Language. Version 2.4. formal/2014-
02-03. https://www.omg.org/spec/OCL/2.4/PDF. Needham, MA, Feb. 2014.

[Obj18] Object Management Group (OMG). Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML). Version 1.4. formal/2018-12-01. https://www.omg.
org/spec/FUML/1.4/PDF. Needham, MA, Dec. 2018.

[Obj17b] Object Management Group (OMG). Unified Modeling Language. Version 2.5.1.
formal/2017-12-05. https://www.omg.org/spec/UML/2.5.1/PDF. Needham,
MA, Dec. 2017.

https://doi.org/10.1007/s00766-021-00361-5
https://doi.org/10.1007/s00766-021-00361-5
https://doi.org/10.1145/3461002.3473072
https://doi.org/10.1109/ICDE.2002.994702
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1145/337180.337620
https://doi.org/10.1145/337180.337620
https://doi.org/10.1145/3023956.3023962
https://www.omg.org/spec/ALF/1.1/PDF
https://www.omg.org/spec/ALF/1.1/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/cgi-bin/doc?omg/00-11-05
https://www.omg.org/spec/MOFM2T/1.0/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/FUML/1.4/PDF
https://www.omg.org/spec/FUML/1.4/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

[OH07] Jon Oldevik and Øystein Haugen. “Higher-Order Transformations for Product Lines”.
In: Software Product Lines, 11th International Conference, SPLC 2007, Kyoto,
Japan, September 10-14, 2007, Proceedings. IEEE Computer Society, 2007, pp. 243–
254. doi: 10.1109/SPLINE.2007.11.

[OO07] Gøran K. Olsen and Jon Oldevik. “Scenarios of Traceability in Model to Text Trans-
formations”. In: Model Driven Architecture - Foundations and Applications, 3rd Eu-
ropean Conference, ECMDA-FA 2007, Haifa, Israel, June 11-15, 2007, Proccedings.
Vol. 4530. Lecture Notes in Computer Science. Springer, 2007, pp. 144–156. doi:
10.1007/978-3-540-72901-3_11.

[PMR16] Richard F. Paige, Nicholas Drivalos Matragkas, and Louis M. Rose. “Evolving mod-
els in Model-Driven Engineering: State-of-the-art and future challenges”. In: Journal
of Systems and Software 111 (2016), pp. 272–280. doi: 10.1016/j.jss.2015.08.
047.

[Par79] David Lorge Parnas. “Designing Software for Ease of Extension and Contraction”.
In: IEEE Transactions on Software Engineering 5.2 (1979), pp. 128–138. doi: 10.
1109/TSE.1979.234169.

[Par72] David Lorge Parnas. “On the Criteria To Be Used in Decomposing Systems into
Modules”. In: Communications of the ACM 15.12 (1972), pp. 1053–1058. doi: 10.
1145/361598.361623.

[Pet+19] Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. “Product sampling for product lines: the scalability challenge”. In: Pro-
ceedings of the 23rd International Systems and Software Product Line Conference,
SPLC 2019, Volume A, Paris, France, September 9-13, 2019. ACM, 2019, 14:1–14:6.
doi: 10.1145/3336294.3336322.

[Pie+15] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel Ohrn-
dorf. “SiPL - A Delta-Based Modeling Framework for Software Product Line En-
gineering”. In: Proc. 30th ASE. Lincoln, NE, USA, Nov. 2015, pp. 852–857. doi:
10.1109/ASE.2015.106.

[Pie+19] Christopher Pietsch, Udo Kelter, Timo Kehrer, and Christoph Seidl. “Formal foun-
dations for analyzing and refactoring delta-oriented model-based software product
lines”. In: Proceedings of the 23rd International Systems and Software Product Line
Conference, SPLC 2019, Volume A, Paris, France, September 9-13, 2019. ACM,
2019, 30:1–30:11. doi: 10.1145/3336294.3336299.

[PBL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line Engi-
neering: Foundations, Principles and Techniques. Berlin, Germany: Springer, 2005.

[Pra71] Terrence W. Pratt. “Pair Grammars, Graph Languages and String-to-Graph Trans-
lations”. In: Journal of Computer and System Sciences 5.6 (1971), pp. 560–595. doi:
10.1016/S0022-0000(71)80016-8.

[RJ01] Balasubramaniam Ramesh and Matthias Jarke. “Toward Reference Models of Re-
quirements Traceability”. In: IEEE Transactions on Software Engineering 27.1 (2001),
pp. 58–93. doi: 10.1109/32.895989.

[Rat+22] Michael Ratzenböck, Paul Grünbacher, Wesley K. G. Assunçao, Alexander Egyed,
and Lukas Linsbauer. “Refactoring Product Lines by Replaying Version Histories”.
In: Proceedings of the 16th International Working Conference on Variability Mod-
elling of Software-Intensive Systems (VaMoS ’22). New York, NY, USA: ACM, 2022.
doi: 10.1145/3510466.3510484.

[RLK19] Dennis Reuling, Malte Lochau, and Udo Kelter. “From Imprecise N-Way Model
Matching to Precise N-Way Model Merging”. In: Journal of Object Technology 18.2
(2019), 8:1–20. doi: 10.5381/jot.2019.18.2.a8.

https://doi.org/10.1109/SPLINE.2007.11
https://doi.org/10.1007/978-3-540-72901-3_11
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1109/TSE.1979.234169
https://doi.org/10.1109/TSE.1979.234169
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1109/ASE.2015.106
https://doi.org/10.1145/3336294.3336299
https://doi.org/10.1016/S0022-0000(71)80016-8
https://doi.org/10.1109/32.895989
https://doi.org/10.1145/3510466.3510484
https://doi.org/10.5381/jot.2019.18.2.a8

[Reu+20] Dennis Reuling, Christopher Pietsch, Udo Kelter, and Timo Kehrer. “Towards Pro-
jectional Editing for Model-Based SPLs”. In: Proceedings of the 14th International
Working Conference on Variability Modelling of Software-Intensive Systems. VA-
MOS ’20. Magdeburg, Germany: ACM, 2020. doi: 10.1145/3377024.3377030.

[Rhe+15] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk
Beyer, and Thorsten Berger. “Presence-Condition Simplification in Highly Config-
urable Systems”. In: 37th IEEE/ACM International Conference on Software Engi-
neering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. IEEE Computer
Society, 2015, pp. 178–188. doi: 10.1109/ICSE.2015.39.

[Rhe+18] Alexander Von Rhein, JöRG Liebig, Andreas Janker, Christian Kästner, and Sven
Apel. “Variability-Aware Static Analysis at Scale: An Empirical Study”. In: ACM
Transactions on Software Engineering and Methodology 27.4 (Nov. 2018). doi: 10.
1145/3280986.

[RV08] José Eduardo Rivera and Antonio Vallecillo. “Representing and Operating with
Model Differences”. In: Objects, Components, Models and Patterns, 46th Interna-
tional Conference, TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July
4, 2008. Proceedings. Vol. 11. Lecture Notes in Business Information Processing.
Springer, 2008, pp. 141–160. doi: 10.1007/978-3-540-69824-1_9.

[Roy87] W. W. Royce. “Managing the Development of Large Software Systems: Concepts and
Techniques”. In: Proceedings, 9th International Conference on Software Engineering,
Monterey, California, USA, March 30 - April 2, 1987. ACM Press, 1987, pp. 328–
339. url: http://dl.acm.org/citation.cfm?id=41801.

[RET11] Olga Runge, Claudia Ermel, and Gabriele Taentzer. “AGG 2.0 - New Features for
Specifying and Analyzing Algebraic Graph Transformations”. In: Applications of
Graph Transformations with Industrial Relevance - 4th International Symposium,
AGTIVE 2011, Revised Selected and Invited Papers. Vol. 7233. Lecture Notes in
Computer Science. Budapest, Hungary: Springer, 2011, pp. 81–88. doi: 10.1007/
978-3-642-34176-2_8.

[Sal+14] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Marsha Chechik.
“Lifting model transformations to product lines”. In: 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014.
2014, pp. 117–128. doi: 10.1145/2568225.2568267.

[Sch+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. “Delta-Oriented Programming of Software Product Lines”. In: Software
Product Lines: Going Beyond - 14th International Conference, SPLC 2010. Pro-
ceedings. Vol. 6287. Lecture Notes in Computer Science. Jeju Island, South Korea:
Springer, 2010, pp. 77–91. doi: 10.1007/978-3-642-15579-6_6.

[SBD11] Ina Schaefer, Lorenzo Bettini, and Ferruccio Damiani. “Compositional type-checking
for delta-oriented programming”. In: Proceedings of the 10th International Confer-
ence on Aspect-Oriented Software Development, AOSD 2011. Porto de Galinhas,
Brazil: ACM, 2011, pp. 43–56. doi: 10.1145/1960275.1960283.

[SJ04] Klaus Schmid and Isabel John. “A customizable approach to full lifecycle variability
management”. In: Science of Computer Programming 53.3 (2004), pp. 259–284. doi:
10.1016/j.scico.2003.04.002.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. “A comparison of decision
modeling approaches in product lines”. In: Fifth International Workshop on Vari-
ability Modelling of Software-Intensive Systems, Namur, Belgium, January 27-29,
2011. Proceedings. ACM International Conference Proceedings Series. ACM, 2011,
pp. 119–126. doi: 10.1145/1944892.1944907.

[Sch06] Douglas C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In:
IEEE Computer 39.2 (2006), pp. 25–31. doi: 10.1109/MC.2006.58.

https://doi.org/10.1145/3377024.3377030
https://doi.org/10.1109/ICSE.2015.39
https://doi.org/10.1145/3280986
https://doi.org/10.1145/3280986
https://doi.org/10.1007/978-3-540-69824-1_9
http://dl.acm.org/citation.cfm?id=41801
https://doi.org/10.1007/978-3-642-34176-2_8
https://doi.org/10.1007/978-3-642-34176-2_8
https://doi.org/10.1145/2568225.2568267
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1145/1960275.1960283
https://doi.org/10.1016/j.scico.2003.04.002
https://doi.org/10.1145/1944892.1944907
https://doi.org/10.1109/MC.2006.58

[SG08] Maik Schmidt and Tilman Gloetzner. “Constructing difference tools for models using
the SiDiff framework”. In: 30th International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008, Companion Volume. ACM, 2008,
pp. 947–948. doi: 10.1145/1370175.1370201.

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. “Feature
Diagrams: A Survey and a Formal Semantics”. In: 14th IEEE International Confer-
ence on Requirements Engineering (RE 2006), 11-15 September 2006, Minneapolis/St.Paul,
Minnesota, USA. IEEE Computer Society, 2006, pp. 136–145. doi: 10.1109/RE.
2006.23.

[SBW21] Johannes Schröpfer, Thomas Buchmann, and Bernhard Westfechtel. “A Framework
for Projectional Multi-variant Model Editors”. In: Proceedings of the 9th Interna-
tional Conference on Model-Driven Engineering and Software Development. MOD-
ELSWARD. SCITEPRESS, 2021, pp. 294–305. doi: 10.5220/0010310102940305.

[Sch+16] Sandro Schulze, Michael Schulze, Uwe Ryssel, and Christoph Seidl. “Aligning Co-
evolving Artifacts Between Software Product Lines and Products”. In: Proceed-
ings of the Tenth International Workshop on Variability Modelling of Software-
Intensive Systems. VaMoS ’16. Salvador, Brazil: ACM, 2016, pp. 9–16. doi: 10.
1145/2866614.2866616.

[Sch94] Andy Schürr. “Specification of Graph Translators with Triple Graph Grammars”.
In: Graph-Theoretic Concepts in Computer Science, 20th International Workshop,
WG ’94, Herrsching, Germany, June 16-18, 1994, Proceedings. 1994, pp. 151–163.
doi: 10.1007/3-540-59071-4_45.

[Sch18] Felix Schwägerl. “Version Control and Product Lines in Model-Driven Software
Engineering”. PhD thesis. University of Bayreuth, Germany, 2018. url: https :
//epub.uni-bayreuth.de/3554/.

[SBW16] Felix Schwägerl, Thomas Buchmann, and BernhardWestfechtel. “Multi-variant Model
Transformations - A Problem Statement”. In: ENASE 2016 - Proceedings of the 11th
International Conference on Evaluation of Novel Approaches to Software Engineer-
ing, Rome, Italy 27-28 April, 2016. 2016, pp. 203–209. doi: 10.5220/0005878702030209.

[SW19] Felix Schwägerl and Bernhard Westfechtel. “Integrated revision and variation con-
trol for evolving model-driven software product lines”. In: Software and Systems
Modeling 18.6 (2019), pp. 3373–3420. doi: 10.1007/s10270-019-00722-3.

[SW16] Felix Schwägerl and Bernhard Westfechtel. “SuperMod: tool support for collabo-
rative filtered model-driven software product line engineering”. In: Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2016, Singapore, September 3-7, 2016. ACM, 2016, pp. 822–827. doi:
10.1145/2970276.2970288.

[SHG12] Andreas Seibel, Regina Hebig, and Holger Giese. “Traceability in Model-Driven En-
gineering: Efficient and Scalable Traceability Maintenance”. In: Software and Sys-
tems Traceability. Springer, 2012, pp. 215–240. doi: 10.1007/978-1-4471-2239-
5_10.

[Sei17] Christoph Seidl. “Integrated Management of Variability in Space and Time in Soft-
ware Families”. PhD thesis. Dresden University of Technology, Germany, 2017. url:
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-218036.

[SSA14a] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. “Capturing variability in space
and time with hyper feature models”. In: Proceedings of the 8th International Work-
shop on Variability Modelling of Software-intensive Systems (VaMoS’14), Sophia
Antipolis. ACM, 2014, 6:1–6:8.

[SSA14b] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. “DeltaEcore - A Model-Based
Delta Language Generation Framework”. In: Modellierung 2014. Vol. P-225. LNI.
Wien, Österreich: GI, 2014, pp. 81–96. url: https://dl.gi.de/20.500.12116/
17067.

https://doi.org/10.1145/1370175.1370201
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.5220/0010310102940305
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1007/3-540-59071-4_45
https://epub.uni-bayreuth.de/3554/
https://epub.uni-bayreuth.de/3554/
https://doi.org/10.5220/0005878702030209
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1145/2970276.2970288
https://doi.org/10.1007/978-1-4471-2239-5_10
https://doi.org/10.1007/978-1-4471-2239-5_10
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-218036
https://dl.gi.de/20.500.12116/17067
https://dl.gi.de/20.500.12116/17067

[SSA14c] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. “Integrated management of vari-
ability in space and time in software families”. In: 18th International Software Prod-
uct Line Conference, SPLC ’14, Florence, Italy, September 15-19, 2014. ACM, 2014,
pp. 22–31. doi: 10.1145/2648511.2648514.

[SK03] Shane Sendall andWojtek Kozaczynski. “Model Transformation: The Heart and Soul
of Model-Driven Software Development”. In: IEEE Software 20.5 (2003), pp. 42–45.
doi: 10.1109/MS.2003.1231150.

[Sij10] Marten Sijtema. “Introducing variability rules in ATL for managing variability in
MDE-based product lines”. In: Proc. of MtATL 10 (2010), pp. 39–49.

[SB02] Yannis Smaragdakis and Don Batory. “Mixin Layers: An Object-Oriented Imple-
mentation Technique for Refinements and Collaboration-Based Designs”. In: ACM
Transactions on Software Engineering and Methodology 11.2 (Apr. 2002), pp. 215–
255. issn: 1049-331X. doi: 10.1145/505145.505148.

[SA20] Ferenc Attila Somogyi and Márk Asztalos. “Systematic review of matching tech-
niques used in model-driven methodologies”. In: Software and Systems Modeling
19.3 (2020), pp. 693–720. doi: 10.1007/s10270-019-00760-x.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Wien: Springer-Verlag, Dec. 5, 1973.
url: https://archive.org/details/Stachowiak1973AllgemeineModelltheorie
(visited on 04/05/2017).

[Sta+06] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, and Simon Helsen. Model-
driven software development - technology, engineering, management. Pitman, 2006.
isbn: 978-0-470-02570-3.

[Ste+09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and EdMerks. EMF: Eclipse
Modeling Framework 2.0. 2nd. Addison-Wesley Professional, 2009. isbn: 0321331885.

[Ste10] Perdita Stevens. “Bidirectional model transformations in QVT: semantic issues and
open questions”. English. In: Software and Systems Modeling 9.1 (2010), pp. 7–20.
issn: 1619-1366. doi: 10.1007/s10270-008-0109-9.

[SF18] Klaas-Jan Stol and Brian Fitzgerald. “The ABC of Software Engineering Research”.
In: ACM Transactions on Software Engineering and Methodology 27.3 (Sept. 2018).
doi: 10.1145/3241743.

[SG05] Maximilian Störzer and Jürgen Graf. “Using Pointcut Delta Analysis to Support
Evolution of Aspect-Oriented Software”. In: 21st IEEE International Conference
on Software Maintenance (ICSM 2005), 25-30 September 2005, Budapest, Hungary.
IEEE Computer Society, 2005, pp. 653–656. doi: 10.1109/ICSM.2005.99.

[Str13] Bjarne Stroustrup. The C++ programming language. 4th. Addison-Wesley Profes-
sional, 2013.

[Str+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer,
Manuel Ohrndorf, and Matthias Tichy. “Henshin: A Usability-Focused Framework
for EMF Model Transformation Development”. In: Graph Transformation - 10th
International Conference, ICGT 2017, Held as Part of STAF 2017, Marburg, Ger-
many, July 18-19, 2017, Proceedings. Vol. 10373. Lecture Notes in Computer Science.
Springer, 2017, pp. 196–208. doi: 10.1007/978-3-319-61470-0_12.

[Str+18a] Daniel Strüber, Alexandru Burdusel, Stefan John, and Steffen Zschaler. “Henshin:
A Model Transformation Language and its Use for Search-Based Model Optimi-
sation in MDEOptimiser”. In: Modellierung 2018. Vol. P-280. LNI. Braunschweig,
Germany: Gesellschaft für Informatik e.V., 2018, pp. 299–300. url: https://dl.
gi.de/20.500.12116/14948.

[SPJ18] Daniel Strüber, Sven Peldszus, and Jan Jürjens. “Taming Multi-Variability of Soft-
ware Product Line Transformations”. In: Fundamental Approaches to Software En-
gineering, 21st International Conference, FASE 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Proceedings.
Thessaloniki, Greece, 2018, pp. 337–355. doi: 10.1007/978-3-319-89363-1_19.

https://doi.org/10.1145/2648511.2648514
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1145/505145.505148
https://doi.org/10.1007/s10270-019-00760-x
https://archive.org/details/Stachowiak1973AllgemeineModelltheorie
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1145/3241743
https://doi.org/10.1109/ICSM.2005.99
https://doi.org/10.1007/978-3-319-61470-0_12
https://dl.gi.de/20.500.12116/14948
https://dl.gi.de/20.500.12116/14948
https://doi.org/10.1007/978-3-319-89363-1_19

[Str+18b] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele Taentzer,
and Jennifer Plöger. “Variability-based model transformation: formal foundation
and application”. In: Formal Aspects Comput. 30.1 (2018), pp. 133–162. doi: 10.
1007/s00165-017-0441-3.

[Str+15] Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer. “A Variability-
Based Approach to Reusable and Efficient Model Transformations”. In: Fundamental
Approaches to Software Engineering - 18th International Conference, FASE 2015,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Vol. 9033. Lecture Notes
in Computer Science. Springer, 2015, pp. 283–298. doi: 10.1007/978- 3- 662-
46675-9_19.

[SS16] Daniel Strüber and Stefan Schulz. “A Tool Environment for Managing Families of
Model Transformation Rules”. In: Graph Transformation. Cham: Springer Interna-
tional Publishing, 2016, pp. 89–101. isbn: 978-3-319-40530-8.

[Stü+20] Patrick Stünkel, Harald König, Yngve Lamo, and Adrian Rutle. “Towards Multiple
Model Synchronization with Comprehensive Systems”. In: Fundamental Approaches
to Software Engineering - 23rd International Conference, FASE 2020, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2020, Dublin, Ireland, April 25-30, 2020, Proceedings. Vol. 12076. Lecture Notes in
Computer Science. Springer, 2020, pp. 335–356. doi: 10.1007/978-3-030-45234-
6_17.

[Stü+21] Patrick Stünkel, Harald König, Adrian Rutle, and Yngve Lamo. “Multi-Model Evo-
lution through Model Repair”. In: Journal of Object Technology 20.1 (2021), 1:1–25.
doi: 10.5381/jot.2021.20.1.a2.

[Sun+21] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and Thomas
Thüm. “Yet Another Textual Variability Language? A Community Effort towards
a Unified Language”. In: SPLC ’21: 25th ACM International Systems and Software
Product Line Conference, Volume A. New York, NY, USA: ACM, 2021, pp. 136–147.
doi: 10.1145/3461001.3471145.

[SGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. “A taxonomy of variability real-
ization techniques”. In: Software: Practice and Experience 35.8 (2005), pp. 705–754.
doi: 10.1002/spe.652.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software. Be-
yond Object-Oriented Programming. 2nd ed. Addison-Wesley Component Software
Series, 2002. isbn: 0-201-74572-0.

[Tae03] Gabriele Taentzer. “AGG: A Graph Transformation Environment for Modeling and
Validation of Software”. In: Applications of Graph Transformations with Indus-
trial Relevance, Second International Workshop, AGTIVE 2003, Charlottesville,
VA, USA, September 27 - October 1, 2003, Revised Selected and Invited Papers.
Vol. 3062. Lecture Notes in Computer Science. Springer, 2003, pp. 446–453. doi:
10.1007/978-3-540-25959-6_35.

[Tae99] Gabriele Taentzer. “AGG: A Tool Environment for Algebraic Graph Transforma-
tion”. In: Applications of Graph Transformations with Industrial Relevance, Inter-
national Workshop, AGTIVE’99. Vol. 1779. Lecture Notes in Computer Science.
Springer, 1999, pp. 481–488. doi: 10.1007/3-540-45104-8_41.

[Tae+17] Gabriele Taentzer, Rick Salay, Daniel Strüber, and Marsha Chechik. “Transforma-
tions of Software Product Lines: A Generalizing Framework Based on Category
Theory”. In: 20th ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, MODELS 2017. 2017, pp. 101–111. doi: 10.1109/
MODELS.2017.22.

[Thü+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. “A
Classification and Survey of Analysis Strategies for Software Product Lines”. In:
ACM Computing Surveys 47.1 (2014), 6:1–6:45. doi: 10.1145/2580950.

https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/s00165-017-0441-3
https://doi.org/10.1007/978-3-662-46675-9_19
https://doi.org/10.1007/978-3-662-46675-9_19
https://doi.org/10.1007/978-3-030-45234-6_17
https://doi.org/10.1007/978-3-030-45234-6_17
https://doi.org/10.5381/jot.2021.20.1.a2
https://doi.org/10.1145/3461001.3471145
https://doi.org/10.1002/spe.652
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/3-540-45104-8_41
https://doi.org/10.1109/MODELS.2017.22
https://doi.org/10.1109/MODELS.2017.22
https://doi.org/10.1145/2580950

[TBK09] Thomas Thüm, Don S. Batory, and Christian Kästner. “Reasoning about edits to
feature models”. In: 31st International Conference on Software Engineering, ICSE
2009. IEEE, 2009, pp. 254–264. doi: 10.1109/ICSE.2009.5070526.

[Tis+09] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin.
“On the Use of Higher-Order Model Transformations”. In: Model Driven Architec-
ture - Foundations and Applications, 5th European Conference, ECMDA-FA 2009,
Enschede, The Netherlands, June 23-26, 2009. Proceedings. Vol. 5562. Lecture Notes
in Computer Science. Springer, 2009, pp. 18–33. doi: 10.1007/978-3-642-02674-
4_3.

[TI06] Antoine Toulmé and I Inc. “Presentation of EMF compare utility”. In: Eclipse Mod-
eling Symposium. Vol. 1. 2006, p. 2006.

[Uhr11] Sabrina Uhrig. “Korrespondenzberechnung auf Klassendiagrammen”. PhD thesis.
Universität Bayreuth, 2011.

[Var+21] Zahra VaraminyBahnemiry, Jessie Galasso, Khalid Belharbi, and Houari Sahraoui.
“Automated Patch Generation for Fixing Semantic Errors in ATL Transformation
Rules”. In: 24th International Conference on Model Driven Engineering Languages
and Systems, MODELS 2021, Fukuoka, Japan, October 10-15, 2021. IEEE, 2021,
pp. 13–23. doi: 10.1109/MODELS50736.2021.00011.

[Var+18] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Mohammad
Reza Mousavi, and Ina Schaefer. “A classification of product sampling for software
product lines”. In: Proceeedings of the 22nd International Systems and Software
Product Line Conference - Volume 1, SPLC 2018, Gothenburg, Sweden, September
10-14, 2018. ACM, 2018, pp. 1–13. doi: 10.1145/3233027.3233035.

[Voe10] Markus Voelter. “Implementing feature variability for models and code with projec-
tional language workbenches”. In: Proceedings of the Second International Workshop
on Feature-Oriented Software Development, FOSD 2010, Eindhoven, Netherlands,
October 10, 2010. ACM, 2010, pp. 41–48. doi: 10.1145/1868688.1868695.

[Voe11] Markus Voelter. “Language and IDE Modularization and Composition with MPS”.
In: Generative and Transformational Techniques in Software Engineering IV, Inter-
national Summer School, GTTSE 2011, Braga, Portugal, July 3-9, 2011. Revised
Papers. Vol. 7680. Lecture Notes in Computer Science. Springer, 2011, pp. 383–430.
doi: 10.1007/978-3-642-35992-7_11.

[Voe+13] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. “mbeddr: In-
stantiating a language workbench in the embedded software domain”. In: Automated
Software Engineering 20.3 (2013), pp. 339–390.

[VIR10] Konrad Voigt, Petko Ivanov, and Andreas Rummler. “MatchBox: combined meta-
model matching for semi-automatic mapping generation”. In: Proceedings of the 2010
ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-26,
2010. ACM, 2010, pp. 2281–2288. doi: 10.1145/1774088.1774563.

[VG07] Markus Völter and Iris Groher. “Product Line Implementation using Aspect-Oriented
and Model-Driven Software Development”. In: Software Product Lines, 11th Interna-
tional Conference, SPLC 2007, Kyoto, Japan, September 10-14, 2007, Proceedings.
IEEE Computer Society, 2007, pp. 233–242. doi: 10.1109/SPLINE.2007.23.

[Wac07] Guido Wachsmuth. “Metamodel Adaptation and Model Co-adaptation”. In: ECOOP
2007 - Object-Oriented Programming. Vol. 4609. Lecture Notes in Computer Science.
Springer, 2007, pp. 600–624. doi: 10.1007/978-3-540-73589-2_28.

[Wag+12] Dennis Wagelaar, Ludovico Iovino, Davide Di Ruscio, and Alfonso Pierantonio.
“Translational Semantics of a Co-evolution Specific Language with the EMF Trans-
formation Virtual Machine”. In: Theory and Practice of Model Transformations - 5th
International Conference, ICMT 2012, Prague, Czech Republic, May 28-29, 2012.
Proceedings. 2012, pp. 192–207. doi: 10.1007/978-3-642-30476-7_13.

https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1007/978-3-642-02674-4_3
https://doi.org/10.1007/978-3-642-02674-4_3
https://doi.org/10.1109/MODELS50736.2021.00011
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/1868688.1868695
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1145/1774088.1774563
https://doi.org/10.1109/SPLINE.2007.23
https://doi.org/10.1007/978-3-540-73589-2_28
https://doi.org/10.1007/978-3-642-30476-7_13

[WO14] Eric Walkingshaw and Klaus Ostermann. “Projectional editing of variational soft-
ware”. In: Proc. 13th GPCE. Västerås, Sweden, Sept. 2014, pp. 29–38.

[WL99] David M. Weiss and Chi Tau Robert Lai. Software Product Line Engineering. A
Family-Based Software Development Process. Addison Wesley Professional, 1999.

[Wes15] Bernhard Westfechtel. “A Case Study for a Bidirectional Transformation Between
Heterogeneous Metamodels in QVT Relations”. In: Evaluation of Novel Approaches
to Software Engineering - 10th International Conference, ENASE 2015, Revised
Selected Papers. Vol. 599. Communications in Computer and Information Science.
Springer, 2015, pp. 141–161. doi: 10.1007/978-3-319-30243-0_8.

[Wes14] Bernhard Westfechtel. “Merging of EMF models - Formal foundations”. In: Software
and Systems Modeling 13.2 (2014), pp. 757–788. doi: 10.1007/s10270-012-0279-3.

[WMC01] Bernhard Westfechtel, Björn P. Munch, and Reidar Conradi. “A Layered Architec-
ture for Uniform Version Management”. In: IEEE Transactions on Software Engi-
neering 27.12 (2001), pp. 1111–1133. doi: 10.1109/32.988710.

[Whi+09] Jon Whittle, Praveen K. Jayaraman, Ahmed M. Elkhodary, Ana Moreira, and João
Araújo. “MATA: A Unified Approach for Composing UML Aspect Models Based on
Graph Transformation”. In: Lecture Notes in Computer Science VI (2009), pp. 191–
237. doi: 10.1007/978-3-642-03764-1_6.

[Wil17] Edward D. Willink. “The Micromapping Model of Computation; The Foundation
for Optimized Execution of Eclipse QVTc/QVTr/UMLX”. In: Theory and Prac-
tice of Model Transformation - 10th International Conference, ICMT@STAF 2017.
Vol. 10374. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2017, pp. 51–65. doi: 10.1007/978-3-319-61473-1_4.

[Wim+11a] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck, and W.
Schwinger. “From the Heterogeneity Jungle to Systematic Benchmarking”. In: Mod-
els in Software Engineering. Workshops and Symposia at MODELS 2010. Vol. 6627.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, pp. 150–164.
doi: 10.1007/978-3-642-21210-9_15.

[Wim+11b] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Retschitzegger, Wieland
Schwinger, and Elizabeth Kapsammer. “A Survey on UML-based Aspect-oriented
Design Modeling”. In: ACM Computing Surveys 43.4 (Oct. 2011), 28:1–28:33. doi:
10.1145/1978802.1978807.

[WP10] Stefan Winkler and Jens von Pilgrim. “A survey of traceability in requirements
engineering and model-driven development”. In: Software and Systems Modeling 9.4
(2010), pp. 529–565. doi: 10.1007/s10270-009-0145-0.

[Woh+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, and Björn Regnell.
Experimentation in Software Engineering. Springer, 2012. doi: 10.1007/978-3-
642-29044-2.

[ZHJ03] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. “Towards a UML Profile for
Software Product Lines”. In: Software Product-Family Engineering, 5th Interna-
tional Workshop, PFE 2003, Revised Papers. Vol. 3014. Lecture Notes in Computer
Science. Springer, 2003, pp. 129–139. doi: 10.1007/978-3-540-24667-1_10.

[ZJ06] Tewfik Ziadi and Jean-Marc Jézéquel. “Software Product Line Engineering with the
UML: Deriving Products”. In: Software Product Lines - Research Issues in Engi-
neering and Management. Springer, 2006, pp. 557–588. doi: 10.1007/978-3-540-
33253-4_15.

[Zsc+09] Steffen Zschaler, Pablo Sánchez, João Pedro Santos, Mauricio Alférez, Awais Rashid,
Lidia Fuentes, Ana Moreira, João Araújo, and Uirá Kulesza. “VML* - A Family of
Languages for Variability Management in Software Product Lines”. In: Software
Language Engineering, Second International Conference, SLE 2009 Revised Selected
Papers. Vol. 5969. Lecture Notes in Computer Science. Springer, 2009, pp. 82–102.
doi: 10.1007/978-3-642-12107-4_7.

https://doi.org/10.1007/978-3-319-30243-0_8
https://doi.org/10.1007/s10270-012-0279-3
https://doi.org/10.1109/32.988710
https://doi.org/10.1007/978-3-642-03764-1_6
https://doi.org/10.1007/978-3-319-61473-1_4
https://doi.org/10.1007/978-3-642-21210-9_15
https://doi.org/10.1145/1978802.1978807
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-540-24667-1_10
https://doi.org/10.1007/978-3-540-33253-4_15
https://doi.org/10.1007/978-3-540-33253-4_15
https://doi.org/10.1007/978-3-642-12107-4_7

B.2 (Co-)Authored Publications Related with Thesis

[Gre19] Sandra Greiner. “On Extending Single-Variant Model Transformations for Reuse in
Software Product Line Engineering”. In: ESEC/FSE ’19: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. Tallinn, Estonia: ACM, 2019,
pp. 1160–1163. doi: 10.1145/3338906.3341467.

[GNS22] Sandra Greiner, Michael Nieke, and Christoph Seidl. “Towards Trace-Based Syn-
chronization of Variability Annotations in Evolving Model-Driven Product Lines”.
In: VaMoS ’22: Proceedings of the 16th International Working Conference on Vari-
ability Modelling of Software-Intensive Systems. Florence, Italy: ACM, 2022. doi:
10.1145/3510466.3510470.

[GSW17] Sandra Greiner, Felix Schwägerl, and BernhardWestfechtel. “Realizing Multi-variant
Model Transformations on Top of Reused ATL Specifications”. In: Proceedings of
the 5th International Conference on Model-Driven Engineering and Software Devel-
opment, MODELSWARD. Porto, Portugal: SCITEPRESS Science and Technology
Publications, Portugal, Feb. 2017, pp. 362–373. doi: 10.5220/0006137803620373.

[GW18a] Sandra Greiner and Bernhard Westfechtel. “Evaluating Multi-variant Model-To-
Text Transformations Realized by Generic Aspects”. In: Model-Driven Engineering
and Software Development: 6th International Conference, MODELSWARD. Vol. 991.
Communications in Computer and Information Science. Cham: Springer Interna-
tional Publishing, 2018, pp. 82–105. doi: 10.1007/978-3-030-11030-7_5.

[GW19a] Sandra Greiner and Bernhard Westfechtel. “Evaluating the Multi-variant Model
Transformation of UML Class Diagrams to Java Models”. In: Model-Driven Engi-
neering and Software Development: 7th International Conference, MODELSWARD
2019, Revised Selected Papers. Vol. 1161. Communications in Computer and Infor-
mation Science. Cham: Springer International Publishing, 2019, pp. 275–297. doi:
10.1007/978-3-030-37873-8_12.

[GW18b] Sandra Greiner and Bernhard Westfechtel. “Generating Multi-Variant Java Source
Code Using Generic Aspects”. In: Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD. 2018,
pp. 36–47. doi: 10.5220/0006536700360047.

[GW19b] Sandra Greiner and Bernhard Westfechtel. “Generic Framework for Evaluating Com-
mutativity of Multi-Variant Model Transformations”. In: Proceedings of the 7th In-
ternational Conference on Model-Driven Engineering and Software Development,
MODELSWARD. SciTePress, 2019, pp. 155–166. doi: 10.5220/0007585701570168.

[GW18c] Sandra Greiner and Bernhard Westfechtel. “Improving Trace-Based Propagation of
Feature Annotations in Model Transformations”. In: Proceedings of MODELS 2018
Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools,
GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AM-
MoRe, PAINS co-located with ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems (MODELS 2018). Vol. 2245. CEUR
Workshop Proceedings. CEUR-WS.org, 2018, pp. 584–593. url: http://ceur-
ws.org/Vol-2245/me_paper_2.pdf.

[GW19c] Sandra Greiner and BernhardWestfechtel. “On Determining Variability Annotations
In Partially Annotated Models”. In: Proceedings of the 13th International Workshop
on Variability Modelling of Software-Intensive Systems, VAMOS. ACM, 2019, 17:1–
17:10. doi: 10.1145/3302333.3302341.

https://doi.org/10.1145/3338906.3341467
https://doi.org/10.1145/3510466.3510470
https://doi.org/10.5220/0006137803620373
https://doi.org/10.1007/978-3-030-11030-7_5
https://doi.org/10.1007/978-3-030-37873-8_12
https://doi.org/10.5220/0006536700360047
https://doi.org/10.5220/0007585701570168
http://ceur-ws.org/Vol-2245/me_paper_2.pdf
http://ceur-ws.org/Vol-2245/me_paper_2.pdf
https://doi.org/10.1145/3302333.3302341

[GW21] Sandra Greiner and Bernhard Westfechtel. “On Preserving Variability Consistency
in Multiple Models”. In: VaMoS ’21: Proceedings of the 15th International Working
Conference on Variability Modelling of Software-Intensive Systems. ACM, 2021, 7:1–
7:10. doi: 10.1145/3442391.3442399.

[GW20] Sandra Greiner and Bernhard Westfechtel. “Towards iterative software product line
engineering with incremental multi-variant model transformations”. In: VaMos ’20:
Proceedings of the 14th International Working Conference on Variability Modelling
of Software-Intensive Systems. ACM, 2020, 22:1–22:9. doi: 10 . 1145 / 3377024 .
3377032.

[BG16a] Thomas Buchmann and Sandra Greiner. “Bidirectional Model Transformations Us-
ing a Handcrafted Triple Graph Transformation System”. In: Software Technologies.
ICSOFT 2016, Revised Selected Papers. Vol. 743. Communications in Computer and
Information Science. Springer, 2016, pp. 201–220. doi: 10.1007/978-3-319-62569-
0_10.

[BG16b] Thomas Buchmann and Sandra Greiner. “Handcrafting a Triple Graph Transfor-
mation System to Realize Round-trip Engineering Between UML Class Models and
Java Source Code”. In: Proceedings of the 11th International Joint Conference on
Software Technologies (ICSOFT 2016) - ICSOFT-PT. SciTePress, 2016, pp. 27–38.
doi: 10.5220/0005957100270038.

[BG18] Thomas Buchmann and Sandra Greiner. “Managing Variability in Models and De-
rived Artefacts in Model-driven Software Product Lines”. In: Proceedings of the 6th
International Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2018. 2018, pp. 326–335. doi: 10.5220/0006563403260335.

[WG20a] Bernhard Westfechtel and Sandra Greiner. “Extending single- to multi-variant model
transformations by trace-based propagation of variability annotations”. In: Software
and Systems Modeling 19.4 (2020), pp. 853–888. doi: 10.1007/s10270-020-00791-
9.

[WG18] Bernhard Westfechtel and Sandra Greiner. “From Single- to Multi-Variant Model
Transformations: Trace-Based Propagation of Variability Annotations”. In: Proceed-
ings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, MODELS 2018, Copenhagen, Denmark, October 14-19,
2018. ACM, 2018, pp. 46–56. doi: 10.1145/3239372.3239414.

[WG20b] Bernhard Westfechtel and Sandra Greiner. “Trace-Based Propagation of Variability
Annotations”. In: Software Engineering 2020. Bonn: Gesellschaft für Informatik e.V,
2020, pp. 59–60. doi: 1018420/SE2020_16.

https://doi.org/10.1145/3442391.3442399
https://doi.org/10.1145/3377024.3377032
https://doi.org/10.1145/3377024.3377032
https://doi.org/10.1007/978-3-319-62569-0_10
https://doi.org/10.1007/978-3-319-62569-0_10
https://doi.org/10.5220/0005957100270038
https://doi.org/10.5220/0006563403260335
https://doi.org/10.1007/s10270-020-00791-9
https://doi.org/10.1007/s10270-020-00791-9
https://doi.org/10.1145/3239372.3239414
https://doi.org/1018420/SE2020_16

B.3 Further (Co-)Authored Publications

[Ana+22a] Sofia Ananieva, Sandra Greiner, Timo Kehrer, Jacob Krüger, Thomas Kühn, Lukas
Linsbauer, Sten Grüner, Anne Koziolek, Henrik Lönn, S. Ramesh, and Ralf H.
Reussner. “A conceptual model for unifying variability in space and time: Ratio-
nale, validation, and illustrative applications”. In: Empirical Software Engineering
27.5 (2022), p. 101. doi: 10.1007/s10664-021-10097-z.

[Ana+22b] Sofia Ananieva, Sandra Greiner, Jacob Krueger, Lukas Linsbauer, Sten Gruener,
Timo Kehrer, Thomas Kuehn, Christoph Seidl, and Ralf Reussner. “Unified Oper-
ations for Variability in Space and Time”. In: Proceedings of the 16th International
Working Conference on Variability Modelling of Software-Intensive Systems. VaMoS
’22. Florence, Italy: ACM, 2022. doi: 10.1145/3510466.3510483.

[Ana+20] Sofia Ananieva, Sandra Greiner, Thomas Kühn, Jacob Krüger, Lukas Linsbauer,
Sten Grüner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn, Sebastian
Krieter, Christoph Seidl, S. Ramesh, Ralf H. Reussner, and Bernhard Westfechtel.
“A conceptual model for unifying variability in space and time”. In: SPLC ’20:
24th ACM International Systems and Software Product Line Conference, Volume
A. ACM, 2020, 15:1–15:12. doi: 10.1145/3382025.3414955.

[Ger+21] Lea Gerling, Sandra Greiner, Kristof Meixner, and Gabriela Karoline Michelon.
“Fourth International Workshop on Variability and Evolution of Software-Intensive
Systems (VariVolution 2021)”. In: Proceedings of the 25th ACM International Sys-
tems and Software Product Line Conference - Volume A. SPLC ’21. Leicester, United
Kingdom: ACM, 2021, p. 204. doi: 10.1145/3461001.3473055.

[GB16] Sandra Greiner and Thomas Buchmann. “Round-trip Engineering UML Class Mod-
els and Java Models: A Real-world Use Case for Bidirectional Transformations with
QVT-R”. In: International Journal on Information System Modeling and Design 7.3
(2016), pp. 72–92. doi: 10.4018/IJISMD.2016070104.

[GBW16] Sandra Greiner, Thomas Buchmann, and BernhardWestfechtel. “Bidirectional Trans-
formations with QVT-R: A Case Study in Round-trip Engineering UML Class Mod-
els and Java Source Code”. In: Proceedings of the 4th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD. 2016,
pp. 15–27. doi: 10.5220/0005644700150027.

https://doi.org/10.1007/s10664-021-10097-z
https://doi.org/10.1145/3510466.3510483
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1145/3461001.3473055
https://doi.org/10.4018/IJISMD.2016070104
https://doi.org/10.5220/0005644700150027

Acknowledgments
Writing this thesis in times of a pandemic and an uprising war was not an easy thing to go through.
Therefore, I am deeply grateful to precious friends and family members (Tom and Sam, particularly) who
lifted me up and helped me in various ways to stay focused. Most importantly, my parents encouraged me
to study and without their almost unconditional support everything would have been significantly harder:
Mama, Papa, ein riesiges Vergelt’s Gott für alles!
From an organizational point of view: Monika Glaser, Bern Schlesier, and Simon Melzner, Danke dafür,
dass Sie/Ihr den ‘Betrieb so gut am Laufen haltet’! Particularly, Simon’s technical almost Rund-Um-Die-
Uhr support already during studying is amazing and was always a great help!
Chatting and discussing with a coffee or beer helped to refresh and collect valuable thoughts: Thanks
to all colleagues and anyone at the university of Bayreuth who I had the pleasure to work with and/or
spend beneficial times: Felix Schwägerl, Thomas Buchmann, Nikita Dümmel, Johannes Schröpfer, Sab-
rina Uhrig, Johannes Doleschal, Matthias Niewirth, Tina Trautner, Christian Knauer, Wim Martens,
Matthias Stachowski, Johannes Seifert, Matthias Korch, Marvin Ferber, Tobias and Tim Werner, Oleg
Lobachev, Lars Ackermann, Stefan Schönig, Christian Sturm, and Matthias Ehmann. Particularly, to Na-
talia Kallinik, who is simply an amazing person, thanks so much! Similarly, a huge thanks to all colleagues
in my vicinity in the open-space office at the ITU Copenhagen for being so welcoming and integrating,
here particularly, to Holger Stadel-Borum and Adrian Hoff.
Support in the every day working life came from a lot of great student assistants, whom I had the chance
to guide but also to learn from: First and foremost, thanks to Philipp Dennerlein for all the feedback
in improving the exercises and encouraging students, but not the least to: Erik Rill, Oliver Hacker,
Jonas Fraas, Moritz Johlige, Sebastian Kaske, Matthias Bank, Ugur Can Özbay, Christopher Brunner,
Christian Birzer, Benjamin Schlosser, Lukas Bachmeier, Niklas Bauriedl, Lisa Hartl, Heiko Bächmann,
Sabine Fischer, and Michelle Reimann.
Turning to the thesis itself: First, several students lay foundations for some of the contributions in techni-
cal prototypes or (inclusive ;)) fruitful discussions: Marco Dmitrow, Johannes Doleschal, Christoph Vogler,
Sebastian Petter, Michael Bösch, Gerard Tchano, Lukas Schwarz, Sebastian Kaske, Valentin Strotzer, and
Fabian Höllerich. Second, I am thankful to get feedback in various forms from several computer science
academics I was able to present and discuss my work with: Sven Apel, Norbert Siegmund, Christian Käst-
ner, Thorsten Berger, Jacob Krüger, Regina Hebig, Michael Nieke, Andrzej Wasowski, Mahsa Varshosaz,
Raúl Pardo, Michael Siebers, Ute Schmid, Johannes Rabold, Johannes Meyer, Manuel Ohrndorf, Thomas
Thüm, Chico Sundermann, Alexander Schultheiß, Paul Bittner, Christof Tinnes, Christian Kaltenecker,
and Kristof Meixner. For having the pleasure to work with, I like to thank Philippe Collet, Lea Gerling,
Gabriela Michelon, Thomas Kühn, Sofia Ananieva, Lukas Linsbauer, Sten Grüner, Ralf Reussner, Anne
Koziolek, Henrik Lönn, and S. Ramesh. Particularly, I like to emphasize all the support and advice given
by Christoph Seidl during my research visit in Copenhagen and by Timo Kehrer in our joint community
research!
Keeping more than 350 pages without an exploding number of typos is only possible with several good
proof readers. Thanks in these respects to Angela and Serena, my Mama, Anna W., Erik, Olli, Tobi, and
Kalti for proofreading and commenting on parts of this thesis.
Preparing the ‘defense’ also weighs as an important part: I highly appreciate the challenging questions
with which Oscar Nierstraz, Alexandre Bergle, Timo Kehrer, and Christos Tsigkanos prepared me as
well as their mental uplifting, and Sebastian Krieter, Elias Kuiter, Alex Schultheiss, and Paul Bittner’s
tips and comments on the slides. Final fine-tuning was supported by Johannes Dorn, Stefan Mühlbauer,
Sabine, Michelle, Tobi, Philipp, Christian B., Erik, Christian K, Christof, Paul, and Alex.
For serving in the committee, final questions, and comments, I like to thank Prof. Stefan Jablonski
and Prof. Thomas Rauber. For additional valuable advice and always keeping an eye on the practical
perspective of my work, I highly appreciate inspiring comments from my external reviewer, Rick Rabiser.
And lastly, the most important thanks has to be granted to my supervisor, Bernhard Westfechtel. I
am extremely grateful for the freedom he gave me to broaden my horizons in various aspects during my
PhD. He certainly changed my way of approaching and solving software engineering problems. I highly
appreciate and value all the comments and feedback that I received in this time.
Several more people positively affected developing necessary skills and knowledge during working on my
PhD. To anyone I do not mention above I am equally thankful for contributing to where I am right now!

	Preface
	Abstract
	Zusammenfassung
	I Introduction
	Problem Statement
	Background
	Research Objective
	Scope of Contribution
	Overview
	Contribution
	Structure

	II Relevant Software Engineering Disciplines
	MDSE
	Modeling Concepts
	Preliminaries – Associated Engineering Disciplines
	Background
	Metamodels
	Classifying Properties
	Eclipse Modeling Framework

	Model Transformations
	Classification
	Transformation Languages and Tools

	SPLE
	Terminology
	Product Line Analysis
	Product Generation
	Engineering Strategies

	Development Processes
	Three Simultaneous Activities
	Two-Layered Process
	Double Spiral Model
	Four-Clustered Process

	Variability Modeling
	Feature Models
	Further Types of Variability Models
	Endnotes

	Variability Implementation Techniques
	Basics
	Compositional Variability
	Transformational (Delta-Oriented) Variability
	Annotative Variability
	Multi-Paradigmatic Approaches

	Product Well-Formedness
	Summary

	MDPLE
	Multi-Variant Models
	Preliminaries
	Variability Mechanisms

	Annotation Maintenance in Existing MDPLE Solutions
	Classifying Properties of Annotation Maintenance
	Annotation Maintenance in MDPLE Solutions
	Results

	Multi-Variant Model Transformations
	Model Transformation Reuse
	Classification
	Variation in Transformation
	Annotation Transformation
	Results

	Bottom Line

	III Trace-Based Propagation of Variability Annotations
	Informal Properties of Trace-Based Propagation
	Example of Trace-based Transformation
	Single-Variant Model
	Example Transformation
	Multi-Variant Model

	Properties of Transformation Traces
	Traces in Existing Model Transformation Solutions
	Feature-Based Trace Classification
	Common Trace Metamodel for Annotation Propagation

	Trace-Based Annotation Propagation
	Schematic Overview
	Annotation Propagation Procedure
	Computational Model

	Summary

	Formal Foundations
	Models as Graphs
	Single-Variant Models
	Graph Morphisms

	Variability in Graphs
	Graph Transformations
	(In-Place) Rules and Derivations
	Properties of Derivations
	Out-Place Rules and Derivations

	Trace-Based Annotation Propagation
	Propagation Algorithm
	Commutativity of Derivations

	Summary

	IV Extensions to Trace-Based Annotation Propagation
	Missing Trace Information
	Generation-Complete Traces
	Problem Description
	Completely Annotated Target Model
	Correctness of Propagated Annotations
	Consequences

	Coarse-Grained Traces
	Problem Statement
	Bytecode Instruction Analysis
	Classification of Patterns in Model Transformation Languages
	Propagation Process
	Foundations
	Discussion

	Incomplete Trace Information
	Problem Statement
	Foundations
	Computation of Missing Annotations
	Discussion

	No Persistent Trace Information
	Problem Statement
	Propagation DSL
	Trace Generation by Model Matching

	Incremental Annotation Propagation
	Problem Statement
	Background
	Incremental Annotation Maintenance
	Discussion

	Summary

	Model-To-Text Annotation Propagation
	Problem Statement
	Motivation
	Consequences

	Aspect-Oriented Multi-Variant Source Code Generation
	Template-Based Model-To-Text Transformation
	Aspect-Oriented Programming

	Foundations
	Descriptive Overview
	Computational Model
	Formal Foundations

	Discussion
	Computational Model
	Related Work

	Summary

	V Validation
	Implementation
	Preliminaries
	Eclipse Modeling Framework
	Famile
	Delimitation

	Multi-Variant Model Transformation Framework
	Overview
	MuVaTra Core
	Mapping Maintenance With Famile

	Realization Specifics
	Trace-Based Annotation Propagation
	ATL/EMFTVM Rule Analysis-Based Propagation
	Model-To-Text Aspect-Oriented Propagation

	Summary

	Evaluation
	Evaluation Goal
	Genericity of Propagation
	Correctness of Propagation
	Propagation Benefit

	Evaluation Setup
	Commutativity Evaluation Framework
	Product Lines
	Model-To-Model Transformations
	Model-To-Text Transformations

	Results
	Ecore2UML
	Base UML2Java
	Advanced UML2Java
	Ecore2SQL
	Model-To-Text

	Discussion
	Trace-Based Propagation
	Aspect-Oriented Propagation
	Threats to Validity

	Summary

	VI Conclusion
	Resume
	Summary of Contribution
	Overview of Content
	Consequences
	Design Decision

	Benefits and Take-Away
	For Research
	For Practitioners and Industry
	Take Away

	Future Research

	Appendix
	Classification of Annotation Maintenance in MDPLE Approaches
	ATL/EMFTVM Bytecode Instruction Opcodes
	Flexible Preprocessor
	List of Figures
	List of Tables
	List of Listings
	Abbreviations

	Bibliography
	Third-Party Publications
	(Co-)Authored Publications Related with Thesis
	Further (Co-)Authored Publications

	Acknowledgments

