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Abstract

An affine vector space partition of AG(n, q) is a set of proper affine subspaces that partitions
the set of points. Here we determine minimum sizes and enumerate equivalence classes of affine
vector space partitions for small parameters. We also give parametric constructions for arbitrary
field sizes.
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1 Introduction

A vector space partition P of the projective space PG(n − 1, q) is a set of subspaces in PG(n − 1, q) which
partitions the set of points. For a survey on known results we refer to [Hed12]. We say that a vector
space partition P has type (n − 1)mn−1 . . . 2m21m1 if precisely mi of its elements have dimension i, where
1 ≤ i ≤ n. The classification of the possible types of a vector space partition, given the parameters n and
q, is an important and difficult problem. Based on [Hed86], the classification for the binary case q = 2 was
completed for n ≤ 7 in [EZSS+09]. Under the assumption m1 = 0 the case (q, n) = (2, 8) has been treated in
[EZHS+10]. It seems quite natural to define a vector space partition A of the affine space AG(n, q) as a set of
subspaces in AG(n, q) that partitions the set of points. However, it turns out that those partitions exist for
all types which satisfy a very natural numerical condition. If we impose the additional condition of tightness,
that is that the projective closures of the elements of A have an empty intersection, then the classification
problem becomes interesting and challenging. This condition is natural in the context of hitting formulas
as introduced in [Iwa89], that is for logical formulas in full disjunctive normal form (DNF) such that each
truth assignment to the underlying variables satisfies precisely one term. For a more recent treatment and
applications we refer to [PS22]. Here we consider the geometrical and the combinatorial point of view.

Variants of vector space partitions of PG(n− 1, q) have been studied in the literature. In [EZSS+11] the
authors study (multi-)sets of subspaces covering each point exactly λ times. The problem of covering each
k-space exactly once is considered in [HHKK19]. A more general partition problem for groups is studied in
[Hed86]. However, we are not aware of any publication directly treating the introduced affine vector space
partitions.

The paper is organized as follows. In Section 2 we formally introduce affine vector space partitions,
state the preliminaries, and develop the first necessary existence conditions. Here we are guided by the
published necessary conditions for vector space partitions. We also argue why tightness (see above) and
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irreducibility, that is there exists no proper subset A′ ⊊ A such that the union of all elements of A′ is a
subspace of AG(n, q), are necessary to obtain an interesting existence question. In Section 3 we classify
affine vector space partitions for arbitrary field sizes but small dimensions. Section 4 is concerned with
the binary case. We completely determine the possible dimension distributions of tight irreducible affine
vector space partitions of PG(n − 1, 2) for all n ≤ 7. In a few cases we give theoretical or computational
classifications of the corresponding equivalence classes of tight irreducible vector space partitions. A very
nice example consists of eight solids in PG(6, 2) whose parts at infinity live on the Klein quadric Q+(5, 2). A
generalization to arbitrary finite fields of characteristic 2 is given in Subsection 5.2. Parametric constructions
of tight irreducible affine vector space partitions using spreads or hitting formulas complete Section 5. In
Section 6 we determine the smallest possible size of an irreducible tight affine vector space partition of
PG(7, 2) and give a parametric upper bound for PG(n − 1, 2) of size roughly 3n

2 , which is significantly
smaller than the conjectured smallest size of an irreducible hitting formula mentioning all variables. We
close with a conclusion and a list of open problems in Section 7. To keep the paper self-contained we
present some additional material in an appendix. Section A contains details on integer linear programming
formulations that we have utilized to obtain some computational results. Section B contains a few technical
results that might be left to the reader or collected from the literature. Lists of hitting formulas that can be
used to construct tight irreducible affine vector space partitions of the minimum possible size are given in
Section C.

2 Preliminaries and necessary conditions

Definition 1. An affine vector space partition A of AG(n, q) is a set {A1, . . . , Ar} of subspaces of AG(n, q)
such that 0 ≤ dim(Ai) ≤ n − 1 for all 1 ≤ i ≤ r and every point (element of Fn

q \0) is contained in exactly
one element Ai. The integer r is called the size of the affine vector space partition.

We write #A for the size ofA. For each affine subspace A ∈ AG(n, q) we write A for its projective closure.
With this A :=

{
A : A ∈ A

}
is the natural embedding of an affine vector space partition of AG(n, q) in

PG(n, q). Denoting the hyperplane at infinity by H∞, we can directly define an affine vector space partition
in PG(n, q):

Definition 2. An affine vector space partition U of PG(n − 1, q) is a set {U1, . . . , Ur} of subspaces of
PG(n − 1, q) such that 1 ≤ dim(Ui) ≤ n − 1 for all 1 ≤ i ≤ r and there exists a hyperplane H∞ such that
every point (1-dimensional subspace) outside of H∞ is contained in exactly one element Ui and Ui ̸≤ H∞
for all 1 ≤ i ≤ r. The integer r is called the size of the affine vector space partition and also denoted by #U .

Here we use the algebraic dimension for subspaces in PG(n−1, q), i.e., if dim(U) = u, then #U =
[
u
1

]
q
:=

qu−1
q−1 and we also speak of u-spaces. Using the geometric language, we call 1-, 2-, 3-, 4-, and n−1-spaces
points, lines, planes, solids, and hyperplanes, respectively. For each 1 ≤ i ≤ r the set Ui\H∞ is an affine
space containing qdim(Ui)−1-points.

In the following we will mostly speak of an affine vector space partition, abbreviated as avsp, and
will consider its embedding in PG(n − 1, q). The type of an avsp U = {U1, . . . , Ur} is given by (n −
1)mn−1 . . . 2m21m1 , where mi = # {Uj : 1 ≤ j ≤ r, dim(Uj) = i}. Counting points outside of H∞ gives

n−1∑
i=1

mi · qi−1 = qn−1. (1)

The analog of Equation (1) for vector space partitions of PG(n− 1, q) is called the packing condition. While
the packing condition for vector space partitions of PG(n − 1, q) is just a necessary but not a sufficient
condition for the existence with a given type, for avsps Equation (1) is both necessary and sufficient.

Lemma 3. For each type (n−1)mn−1 . . . 2m21m1 that satisfies the packing condition (1) there exists an avsp
U of PG(n− 1, q) attaining that type.
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Proof. Consider a subspace K of H∞ with dim(K) = n − 2. By H1, . . . ,Hq we denote the q hyperplanes
containing K that are not equal to H∞. Clearly, we have 0 ≤ mn−1 ≤ q and we can choose H1, . . . ,Hmn−1

as
the first elements of U . The remaining elements are constructed recursively. For each index mn−1+1 ≤ j ≤ q

we consider an avsp of type (n− 2)m
(j)
n−2 . . . 2m

(j)
2 1m

(j)
1 where the m

(j)
i ∈ N0 are chosen such that the packing

condition is satisfied for Hj and
q∑

j=mn−1+1

m
(j)
i = mi (2)

for all 1 ≤ i ≤ n− 2. Such a decomposition can be easily constructed, see e.g. Algorithm 1 in Section B.

Definition 4. We call an avsp U = {U1, . . . , Ur} reducible if there exists a subspace U and a subset S ⊊
{1, . . . , r} such that dim(U) < n, #S > 1 and {Ui : i ∈ S} is an avsp of S. Otherwise U is called irreducible.

Lemma 5. The smallest size of an irreducible avsp U of PG(n− 1, q) is given by #U = q.

Proof. Let U be an avsp of PG(n− 1, q). Since there are qn−1 points to cover and each subspace covers at
most qn−2 points, we have #U ≥ q. Now consider a hyperplane K of H∞. By H1, . . . ,Hq we denote the
q hyperplanes containing K and not being equal to H∞. With this, {H1, . . . ,Hq} is an irreducible avsp of
PG(n− 1, q).

For a vector space partition P of PG(n − 1, q) we have dim(A) + dim(B) ≤ n for each pair {A,B} of
different elements of P, which is also called dimension condition. Using this it can be easily shown that
#P ≥ qn−1

qn/2−1
= qn/2 + 1 if n is even and #P ≥ q(n+1)/2 + 1 if n is odd. Both bounds can be attained

by spreads, i.e., vector space partitions of type (n/2)q
n/2+1, and lifted MRD codes of maximum possible

rank distance, i.e., vector space partitions of type ((n+1)/2)1((n− 1)/2)q
(n+1)/2

, respectively. In [NS11] the
authors determine the minimum size σq(n, t) of a vector space partition of PG(n, q) whose largest subspace
has dimension t.

Lemma 6. Let U be an irreducible avsp of PG(n − 1, q) and U1, . . . , Uq ∈ U be q different elements with
dim(U1) = · · · = dim(Uq) and dim (⟨U1, . . . , Uq⟩) = dim(U1) + 1. Then we have dim(U1) = · · · = dim(Uq) =
n− 1.

Proof. Let U := ⟨U1, . . . , Uq⟩ and u := dim(U1). Since U\H∞ contains qu points and Ui\H∞ contains qu−1

points for each 1 ≤ i ≤ q, the set U\ {U1, . . . , Uq} ∪ {U} is an avsp unless dim(U) = u+ 1 = n.

Corollary 7. Let U be an irreducible avsp of PG(n − 1, 2) and U1, U2 ∈ U be two different elements with
dim(U1) = dim(U2) = dim(U1 ∩ U2) + 1. Then, we have dim(U1) = dim(U2) = n− 1.

As an analog of the dimension condition for vector space partitions in PG(n− 1, q) we have:

Lemma 8. Let U be an avsp in U . For each U,U ′ ∈ U we have

dim(U ∩ U ′) = dim(U ∩ U ′ ∩H∞) ≥ dim(U) + dim(U ′)− n. (3)

Proof. Since U\H∞, U ′\H∞ are disjoint and U,U ′ ̸≤ H∞ we have dim(U ∩ U ′) = dim(U ∩ U ′ ∩H∞). The
inequality follows from dim(U1 ∪ U2) + dim(⟨U1, U2⟩) = dim(U1) + dim(U2) and dim(⟨U1, U2⟩) ≤ n.

Due to the following general construction for (irreducible) avsps we introduce a further condition.

Lemma 9. Let U = {U1, . . . , Ur} be an avsp of PG(n− 1, q) =: V and P be a point outside of V (embedded
in PG(n′ − 1, q) for some larger value of n′). Then, U ′ := {⟨U1, P ⟩ , . . . , ⟨Ur, P ⟩} is an avsp of ⟨V, P ⟩ ∼=
PG((n+ 1)− 1, q). Reducability inherits, i.e. U ′ is irreducible iff U is irreducible.

Definition 10. Let U = {U1, . . . , Ur} be an avsp of PG(n− 1, q). We call U tight iff the intersection of all
Ui does not contain a point, i.e. the intersection is trivial.
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We remark that an avsp A of AG(n, 2) is tight iff for any x ∈ Fn
2 , there exists an A ∈ A such that A is

not invariant under addition of x, that is A+ x ̸= A.

Lemma 11. For each integer n ≥ 2 there exists a tight avsp of PG(n− 1, q) with size (q − 1) · (n− 1) + 1.

Proof. Apply the following recursive construction. Start with an (n−2)-dimensional subspace K of H∞ and
consider the q hyperplanes H1, . . . ,Hq containing K but not being equal to H∞. Choose q − 1 out of these
and continue the iteration with the remaining hyperplane until it becomes 2-dimensional, i.e. a line. In the
final step replace the affine line by q points, so that the resulting avsp is trivially tight.

A classical result in computer science, attributed to Tarsi, states that a minimally unsatisfiable CNF
with m clauses mentions at most m− 1 variables, see e.g. [DDKB98, Theorem 8]. The proof can be slightly
modified to show that for n ≥ 2 each tight avsp of PG(n − 1, 2) has size at least n. We will prove the
conjecture that Lemma 11 is tight in a subsequent paper. The determination of the minimum size of an
irreducible tight avsp is quite a challenge and we will present our preliminary results in Sections 3 and 4.

Note that tightness and irreducibility can be checked efficiently. In particular, for irreducibility it suffices
to calculate the affine closure for all pairs of subspaces in the avsp. We will show efficiency formally and
provide detailed algorithms in future work on hitting formulas.

Lemma 12. Let U , K, and H∞ be subspaces in PG(n− 1, q) with K ≤ H∞, dim(K) = n− 2, dim(H∞) =
n−1, and dim(U ∩H∞) = dim(U)−1, i.e. U ̸≤ H∞. By H1, . . . ,Hq we denote the q hyperplanes containing
K but not being equal to H∞. Then the following statements are equivalent:

(1) U ∩H∞ ≤ K;

(2) there exists an index 1 ≤ i ≤ q with U ≤ Hi;

(3) there exists an index 1 ≤ i ≤ q with U ≤ Hi and U∩Hj = U∩H∞ = U∩K for all 1 ≤ j ≤ q with j ̸= i;

(4) dim(U ∩K) = dim(U)− 1.

Lemma 13. Let U , K, and H∞ be subspaces in PG(n− 1, q) with K ≤ H∞, dim(K) = n− 2, dim(H∞) =
n−1, and dim(U ∩H∞) = dim(U)−1, i.e. U ̸≤ H∞. By H1, . . . ,Hq we denote the q hyperplanes containing
K but not being equal to H∞. Then the following statements are equivalent:

(1) U ∩H∞ ̸≤ K;

(2) dim(U ∩Hi) = dim(U) for all 1 ≤ i ≤ q;

(3) there are q (dim(U)− 1)-spaces in U containing U ∩K and not being contained in H∞;

(4) dim(U ∩K) = dim(U)− 2.

Assume that P is a vector space partition of PG(n − 1, q) with type km1
1 . . . kml

l , where k1 > · · · > kl
and ki > 0 for all 1 ≤ i ≤ l. The so-called tail T of P is the set of all kl-spaces in P, i.e., the set of all
elements with the smallest occurring dimension. In [Hed09] several conditions on #T have been obtained.
In our situation we can also consider the tail T := {U ∈ U : dim(U) = kl} of an avsp of PG(n− 1, q) with
type km1

1 . . . kml

l , where k1 > · · · > kl and ki > 0 for all 1 ≤ i ≤ l. The packing condition (1) directly implies
that qkl−1−kl divides #T = ml if l ≥ 2 and that q divides #T = ml if l = 1. In [Kur18] the results on the
tail of a vector space partition of PG(n− 1, q) were refined using the notion of ∆-divisible sets of k-spaces.

Definition 14. A (multi-)set S of k-spaces in PG(n−1, q) is called ∆-divisible iff #S ≡ #(H∩S) (mod ∆)
for every hyperplane H, where H ∩ S denotes the (multi-)set of elements of S that are contained in H.

Lemma 15. Let U be an avsp of PG(n−1, q) of type km1
1 . . . kml

l , where k1 > · · · > kl > 1 and ki > 0 for all
1 ≤ i ≤ l. Let T := {U ∈ U : dim(U) = kl} be the tail of U and T ′ := {T ∩H∞ : T ∈ T }. If l ≥ 2, then T ′

is qkl−1−kl-divisible and #T = #T ′ ≡ 0 (mod qkl−1−kl). If l = 1, then T ′ is q-divisible and #T = #T ′ ≡ 0
(mod q).
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Proof. Clearly we have #T = #T ′. From the packing condition (1) we directly conclude #T ≡ 0
(mod qkl−1−kl) if l ≥ 2 and #T ≡ 0 (mod q) if l = 1. Let K be an arbitrary hyperplane of H∞ and
H1, . . . ,Hq be the q hyperplanes of PG(n− 1, q) not being equal to H∞. Call the points outside of H∞ that
are contained in some element of U with dimension strictly larger than kl covered and all others outside of
H∞ uncovered. Since each k-space covers either qk−1 or qk−2 points of Hi\H∞, the number of uncovered
points in Hi\H∞ is divisible by qkl−1−2 if l ≥ 2 and by qkl−1 if l = 1, where 1 ≤ i ≤ q is arbitrary. Let a be
the number of kl-spaces in U that are completely contained in Hi, so that the number of uncovered points
in Hi equals

x := a · qkl−1 + (#T − a) · qkl−2.

If l ≥ 2 we have x ≡ 0 (mod qkl−1−2) and #T ≡ 0 (mod qkl−1−kl), so that (q − 1)a ≡ 0 (mod qkl−1−kl)
and a ≡ 0 (mod qkl−1−kl). If l = 1 we have x ≡ 0 (mod qkl−1) and #T ≡ 0 (mod q), so that (q − 1)a ≡ 0
(mod q) and a ≡ 0 (mod q).

∆-divisible (multi-)sets S of k-spaces in PG(n − 1, q) have been studied in [Kur18]. If we replace each

k-space by its qk−1
q−1 points we obtain a ∆qk−1-divisible multiset of #S · q

k−1
q−1 points in PG(n − 1, q). The

possible cardinalities, given the divisibility constant and the field size, have been completely characterized
in [KK20, Theorem 1]. Here we will use only a few results on the possible structure of the tail (or more
precisely of T ′) which allow more direct proofs.

Lemma 16. Let U be an avsp of PG(n− 1, q) with tail T . If #T = q, then either U is reducible or we have
U = T and n = 2.

Proof. Denote the dimension of the elements of T by k. Lemma 15 yields that T ′ := {T\H∞ : T ∈ T } is a
q-divisible multiset of (k− 1)-spaces. So, each hyperplane of H∞ contains either all q or zero elements from
T ′, so that T ′ is a q-fold (k − 1)-space. With this, the stated results follows from Lemma 6.

Corollary 17. Let U be an irreducible avsp of PG(n − 1, q) of type km1
1 . . . kml

l , where k1 > · · · > kl and
ki > 0 for all 1 ≤ i ≤ l. If ml = q, then we have l = 1 and k1 = n− 1.

2.1 The structure of the tail for small parameters

If #T is small, then we can also characterize the tail. To this end, let S denote a set of k-spaces in
PG(n− 1, q). The corresponding spectrum (ai)i∈N0

is given by the numbers ai of hyperplanes that contain
exactly i elements from S, so that

#S∑
i=0

ai =
qn − 1

q − 1
. (4)

The condition that S is spanning, i.e. ⟨S : S ∈ S⟩ = PG(n−1, q), is equivalent to a#S = 0. Double-counting
the k-spaces gives

#S∑
i=0

iai = #S · q
n−k − 1

q − 1
. (5)

Lemma 18. Let S be a 2-divisible set of four k-spaces in PG(n − 1, 2). Then there exists a (k − 1)-space
B, a plane E, and a line L ≤ E with dim(⟨E,B⟩) = k + 2, such that S = {⟨P,B⟩ : P ∈ E\L}.

Proof. Assume that P is a point that is contained in at least one but not all elements from S. Let x denote
the number of elements of S that contain P . Since all hyperplanes contain an even number of elements from
S we have x ̸= 3. Assume x = 2 for a moment and let S, S′ ∈ S be the two elements not containing P .
There are 2n−k−1 hyperplanes that contain S but do not contain P , so that all of those hyperplanes contain
S and S′. The intersection of these hyperplanes has dimension at most k and contains S as well as S′, so
that S = S′, which is a contradiction. Thus, each point P in PG(n− 1, 2) is contained in 0, 1 or 4 elements
of S.
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By (ai)i∈N0
we denote the spectrum of S. W.l.o.g. we assume that S is spanning, i.e., we have a4 = 0.

From the equations (4) and (5) we conclude

a0 = 2n − 2n−k+1 + 1 and a2 = 2n−k+1 − 2.

If there is no point P that is contained in all four elements of S, then the elements of S are pairwise disjoint
and double-counting pairs yields (

2

2

)
a2 =

(
4

2

)
·
(
2n−2k − 1

)
, (6)

so that
2n−k+1 − 2 = 6 ·

(
2n−2k − 1

)
⇔ 2n−k − 3 · 2n−2k + 2 = 0,

which has the unique solution n = 3, k = 1.
So, by recursively quotienting out points P that are contained in all elements of S we conclude the

existence of a (k − 1)-space B that is contained in all four elements of S. Quotienting out B yields a
spanning 2-divisible set of points in PG(2, 2) with a0 = 1 and a2 = 6. Choosing E as the ambient space and
L as the empty hyperplane yields the stated characterization since in PG(2, 2) there are exactly four points
outside a hyperplane.

If k = 1, i.e., the k-spaces are points, the equations (4)-(6) are also known as “standard equations” or
the first three MacWilliams equations for the corresponding linear code.

We remark that Lemma 18 is based on the fact that each 2-divisible set of 4 points is an affine plane.
For q > 2 there there further possibilities for q-divisible sets of q2 points over Fq, see [DBDMS19, KM21] on
the so-called cylinder conjecture.

3 Classification of avsps in PG(n− 1,q) for small parameters

By definition, there is no avsp in PG(1− 1, q). In PG(2− 1, q) there is a unique avsp. It has type 1q and is
irreducible and tight.

Lemma 19. Let U be an avsp of PG(n − 1, q), where n ≥ 3. If there exist pairwise different hyperplanes
U1, . . . , Ul ∈ U , then there exists an (n− 2)-space K ≤ H∞ such that K ≤ Ui for all 1 ≤ i ≤ l.

Proof. The statement is trivial for l ≤ 1, so that we assume l ≥ 2. Due to the dimensions we have
dim(Ui ∩ Uj) = n− 2 for all 1 ≤ i < j ≤ l. Since the sets of points Ui\H∞ and Uj\H∞ are disjoint we have
Ui ∩ Uj ≤ H∞ and Ui ∩ Uj = Ui ∩H∞ = Uj ∩H∞. So, we set K = U1 ∩H∞.

Proposition 20. Let U be an irreducible avsp of PG(n − 1, q), where n ≥ 3. If U is of type (n −
1)mn−1 . . . 2m21m1 , then we have mn−1 ≤ q − 2 or mn−1 = q. In the latter case U is not tight.

Proof. We assume mn−1 = q − 1 ≥ 1 and let K ≤ H∞ as in Lemma 19. With this, let H ̸= H∞ be the
unique hyperplane with K ≤ H that is not contained as an element in U and U ′ arise from U by removing
the q − 1 (n− 1)-dimensional elements. Thus, U ′ is an avsp of H, i.e., U is reducible.

If mn−1 = q, then the (n− 2)-space K ≤ H∞ (as in Lemma 19) is contained in all elements of U , i.e., U
is not tight.

Corollary 21. Let U be an irreducible tight avsp of PG(n− 1, 2) of type (n− 1)mn−1 . . . 1m1 , where n ≥ 3.
Then we have mn−1 = 0.

Let U = {U1, . . . , Ur} be an avsp of PG(n − 1, q), I ⊆ {1, . . . , r}, and V be a proper subspace with
V ̸≤ H∞. If #I ≥ 2 and {Ui : i ∈ I} is an avsp of V , then we say that the spaces Ui with i ∈ I can be
joined to V . Note that this is exactly the situation when U is reducible. In PG(n − 1, 2) any two points
outside of H∞ can be joined to a line, so that:
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Lemma 22. Let U be an irreducible tight avsp of PG(n − 1, 2) of type (n − 1)mn−1 . . . 1m1 , where n ≥ 3.
Then,we have m1 = 0.

Theorem 23. Let U be an avsp of PG(3 − 1, q) with type 2m21m1 . Then, we have 0 ≤ m2 ≤ q, m1 =
q · (q −m2), all lines in U contain a common point P ≤ H∞, and the 1-dimensional elements can be grouped
into pairwise disjoint sets of size q that can be joint to a line each.

Proof. The existence of P follows from Lemma 19 and the parameterization of m2,m1 follows from the
packing condition (1). If m2 = 0 then choose an arbitrary point P ≤ H∞. By L1, . . . , Lq we denote the
q lines containing P that are not equal to H∞. For each line Li that is not an element of U there exist q
points in U that can be joined to Li. (Note that Li ∩ Lj = P for all 1 ≤ i < j ≤ q.)

We remark that all possibilities for 0 ≤ m2 ≤ q can indeed by attained. In general there exist several
non-isomorphic examples.

Corollary 24.

(1) Let U be an irreducible avsp of PG(3− 1, q). Then U is of type 2q and non-tight.

(2) Let U be an avsp of PG(3 − 1, q) with type 2m21m1 . Then, U is tight iff m1 ≥ 1. In that case U is
reducible.

(3) No irreducible tight avsp of PG(3− 1, q) exists.

Let U be an avsp of PG(n− 1, q), where n ≥ 3, and K ≤ H∞ be an arbitrary (n− 2)-space. We say that
U (1), . . . ,U (q) is a K-decomposition of U if the q hyperplanes containing K and not being equal to H∞ can
be labeled as H1, . . . ,Hq such that

U (i) = {U ∩Hi : U ∈ U , U ∩Hi ̸≤ H∞} (7)

for all 1 ≤ i ≤ q. Note that U (i) is an avsp of Hi for each 1 ≤ i ≤ q (including the case U (i) = {Hi}).
Moreover, any labeling of the q hyperplanes Hi induces a K-decomposition. Observe that for a fixed
(n− 2)-space K ≤ H∞ each pair of K-decompositions arises just by relabeling, so that we also speak of the
K-decomposition of U since the actual labeling will not matter in our context.

Proposition 25. Let U be an avsp of PG(n − 1, q), where n ≥ 3, with type (n − 1)mn−1 . . . 2m21m1 . If
1 ≤ mn−1 ≤ q, then there exists an (n − 2)-space K ≤ H∞ such that the K-decomposition U (1), . . . ,U (q)

partitions U , i.e., ⋃
1≤i≤q

U (i) = U .

Moreover, if mn−1 ≤ q − 1, then U is reducible. (More precisely, for each index 1 ≤ i ≤ q with #U (i) > 1
the elements in U (i) can be joined to Hi.)

Proof. Choose some arbitrary U ∈ U with dim(U) = n− 1, set K := U ∩H∞, and let U (1), . . . ,U (q) be the
K-decomposition of U and H1, . . . ,Hq be the corresponding hyperplanes. Due to Lemma 19 each U ∈ U
with dim(U) = n− 1 results in the same (n− 2)-space K and the same K-decomposition U (1), . . . ,U (q) (up
to relabeling). Especially we have that for each U ′ ∈ U with dim(U ′) = n− 1 there exists an index 1 ≤ i ≤ q
with U (i) = {U ′}. W.l.o.g. we assume #U (1) = 1.

Now consider an element U ∈ U with dim(U) < n− 1. From Lemma 13 we conclude U ∩H∞ ≤ K since
otherwise #U (1) > 1 (more precisely, U would split into q (dim(U) − 1)-spaces where one of these would
be contained in U (1) that also contains an entire hyperplane, which contradicts the packing condition (1)),
which would contradict our assumption. Thus, for each U ∈ U there exists exactly one index 1 ≤ i ≤ q with
U ∈ U (i) and for each index 1 ≤ j ≤ q either U ∈ Hj or U ∩Hj ≤ K ≤ H∞.

Corollary 26. Let U be an avsp of PG(n − 1, q) with type (n − 1)mn−1 . . . 2m21m1 , where n ≥ 3. If U is
irreducible, then we have mn−1 = 0.
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Affine vector space partitions of PG(4− 1, q) that contain at least one hyperplane as an element can be
characterized easily.

Proposition 27. Let U be an avsp of PG(4 − 1, q) of type 3m32m21m1 with m3 ≥ 1. Then, we have
1 ≤ m3 ≤ q, 0 ≤ m2q · (q −m3), and m1 = q3 − q2m3 − qm2. Moreover, there exists an (n − 2)-space
K ≤ H∞ such that the K-decomposition U (1), . . . ,U (q) partitions U , so that U especially is reducible if
mn−1 ≤ q − 1.

Proof. The equation m1 = q3 − q2m3 − qm2 directly follows from the packing condition (1) and the ranges
0 ≤ m2 ≤ q · (q −m3), 0 ≤ m3 ≤ q follow from the non-negativity of m1,m2,m3. Note that we have m3 ≥ 1
by assumption. The remaining part follows from Proposition 25.

4 Classification of tight irreducible avsps in PG(n− 1,2) for small
dimensions n

The cases n ≤ 3 have already been treated in Section 3, so that we assume n ≥ 4 in the following. Our aim
is to classify all possible types (n−1)mn−1 . . . 1m1 such that a tight irreducible avsp U exists in PG(n−1, 2).
We have mn−1 = 0 and m1 = 0 due to Corollary 21 and Lemma 22. From Lemma 17 we conclude ml ̸= 2
for the smallest index 1 ≤ l ≤ n − 1 with ml > 0. The possible vectors (mn−2, . . . ,m2) ∈ Nn−3

0 are quite
restricted by the packing condition (1). For n = 4 the only remaining possibility is type 24. From Lemma 6
we conclude that the four lines are pairwise disjoint, i.e., they form a partial line spread of cardinality 4. It
is well known that each partial line spread of cardinality q2 in PG(3, q) can be extended to a line spread,
which has size q2 + 1.1 For q = 2 there is only the Desarguesian line spread and since it has a transitive
automorphism group, there is only one equivalence class. The numbers of line spreads in PG(3, q) are 1, 2,
3, 21, 1347 for q = 2, 3, 4, 5, 7.

In the three subsequent subsections we will consider tight irreducible avsps in PG(n−1, 2) for n ∈ {5, 6, 7}.
The possible types are completely determined in all cases, where realizations are computed using an integer
linear programming (ILP) formulation, see Section A in the appendix for the details. If the sizes of the avsps
are not too large we were able to also compute all equivalence classes of avsps using a slight modification of
an algorithm from [Lin04], see also [KÖ06, Algorithm 4.5]. A GAP implementation , based on the GAP package
“FinInG” [BBC+18] for computations in finite incidence geometry, can be obtained from the authors upon
request. In the theoretical parts we will also use classification for 2-divisible sets points that can e.g. be
found in [HHK+17] or [Kur21]. For the convenience of the reader we will also give a few selected proofs in
Section B in the appendix.

4.1 Tight irreducible avsps in PG(4,2)

We may use Lemma 15 and Lemma 18 to conclude that each avsp of PG(n−1, 2) of type (n−2)4 is non-tight
if n ≥ 5. However, we can further tighten the statement to:

Proposition 28. Let U = {U1, . . . , Ur} be an avsp of PG(n−1, 2), where n ≥ 4, r ≥ 4, and dim(Ui) = n−2
for all 1 ≤ i ≤ 3. Then, the elements {U4, . . . , Ur} can be joined to an (n − 2)-space B (including the case
r = 4 and U4 = B) and there exists an (n− 4)-space C that is contained in all elements of {U1, U2, U3, B}.

Proof. First we assume that two elements of {U1, U2, U3} can be joined to an (n−1)-spaceH. Without loss of
generality, we assume that U1 and U2 can be joined to H. Let K := H∩H∞, so that dim(K) = n−2. By H ′

we denote the unique hyperplane containing K that is not equal to H or H∞. Observe that {U3, . . . , Ur} is an
avsp of H ′ and K is “the hyperplane at infinity” of H ′. Next we set K ′ := K ∩U3, so that dim(K ′) = n− 3.
Let B denote the unique (n − 2)-space in H ′ that contains K ′ and is not equal to U3 or K. With this,

1One argumentation is based on the fact that each qk-divisible (multi-) set of qk+1−1
q−1

points forms a (k+1)-space
for each positive integer k, see e.g. [HKK18].
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{U4, . . . , Ur} is an avsp of B (including the case r = 4, U4 = B). Note that the (n−3)-space K ′ is contained
in all elements of {H,U3, B}. Since {U1, U2} forms an avsp of H and dim(U1) = dim( U2) = n − 2, there
exists an (n− 4)-space C that is contained in all elements of {U1, U2, U3, B}.

Otherwise, we assume that no two elements of {U1, U2, U3} can be joined to an (n − 1)-space, so that
dim(Ui ∩Uj) = n− 4 for all 1 ≤ i < j ≤ 3. We set Ei := Ui ∩H∞, so that dim(Ei) = n− 3, for all 1 ≤ i ≤ 3
and dim(Ei∩Ej) = n−4 for all 1 ≤ i < j ≤ 3. Let K := ⟨E1, E2, E3⟩ ≤ H∞, so that n−2 ≤ dim(K) ≤ n−1.
If dim(K) = n− 2, then consider the K-decomposition U (1),U (2) of U and let H1, H2 be the corresponding
hyperplanes. Since E1, E2, E3 ≤ K, we have that either Ui ≤ H1 or Ui ≤ H2 for all indices 1 ≤ i ≤ 3. By
the pigeonhole principle two of the three (n− 2)-spaces in U have to be contained in the same hyperplane,
so that they can be joined, which is a contradiction. Thus, we have dim(K) = n − 1, i.e., K = H∞. Since
dim (⟨E1, E2⟩) = n− 2, dim(E3) = n− 3, and dim(K) = n− 1, we have

dim(⟨E1, E2⟩ ∩ E3) = n− 4.

Since dim(E1∩E3) = dim(E2∩E3) = n−4, we have dim(C) = n−4 for C := E1∩E2∩E3. Pick three linearly
independent vectors v1, v2, v3 such that E1 = ⟨C, v1⟩, E2 = ⟨C, v2⟩, E3 = ⟨C, v3⟩, and H∞ = ⟨C, v1, v2, v3⟩.
Let P1, P2 be two different arbitrary points outside of H∞ that or not covered by U1, U2, or U3. For
pairwise different i, j, h ∈ {1, 2, 3} consider the (n − 2)-space Ki,j,j := ⟨C, vi, vj + vh⟩ and let Hi,j,j be the
hyperplane that contains Ki,j,h and Ui. Since all points in Hi,j,h\H∞ are covered by U1, U2, U3 the points
P1, P2 have to be contained in the other hyperplane containing Ki,j,h not equal to Hi,j,h and H∞, so that
P1 − P2 ∈ ⟨C, vi, vj + vh⟩. Since

⟨C, v1, v2 + v3⟩ ∩ ⟨C, v2, v1 + v3⟩ ∩ ⟨C, v3, v1 + v2⟩ = ⟨C, v1 + v2 + v3⟩ ,

the 2n−3 points outside of H∞ that are not covered by U1, U2, or U3 have to form an affine subspace B ≥ C.
If #U = r = 4, then B = U4. If #U > 5, then the elements in {U4, . . . , Ur} form an avsp of B.

Corollary 29. Let U be an irreducible tight avsp of PG(n− 1, 2) of type (n− 2)mn−2 . . . 2m2 , where n ≥ 5.
Then, we have mn−2 ≤ 2.

Together with the conditions mn−1 = m1 = 0 and the packing condition (1) we obtain:

Corollary 30. Let U be an irreducible tight avsp of PG(5− 1, 2). Then the type of U is given by 3224, 3126,
or 28.

All types can indeed be realized and corresponding numbers of equivalence classes are given by 3, 4, and
2, respectively. I.e., for n = 4 we have 9 non-isomorphic examples in total. Below are representatives:

E1, 28: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01100⟩, ⟨11010, 00101⟩, ⟨10001, 01010⟩, ⟨10011, 00110⟩, ⟨10111,
01110⟩.
E2, 2631: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01100⟩, ⟨10001, 00100⟩, ⟨11001, 00011⟩, ⟨10011, 01000, 00100⟩.
E3, 2631: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01100⟩, ⟨10001, 01010⟩, ⟨10111, 01101⟩, ⟨10011, 01010, 00110⟩.
E4, 2631: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01100⟩, ⟨11001, 00011⟩, ⟨10011, 00100⟩, ⟨10001, 01010, 00100⟩.
E5, 2631: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01001⟩, ⟨10001, 01111⟩, ⟨10111, 01101⟩, ⟨10011, 01010, 00110⟩.
E6, 28: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01101⟩, ⟨10001, 01011⟩, ⟨11001, 00111⟩, ⟨10101, 01110⟩, ⟨10011,
00100⟩.
E7, 2432: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01011⟩, ⟨11010, 00100, 00001⟩, ⟨10001, 00100, 00010⟩.
E8, 2432: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10010, 01011⟩, ⟨10001, 01010, 00100⟩, ⟨10011, 01001, 00100⟩.
E9, 2432: ⟨10000, 01000⟩, ⟨10100, 00010⟩, ⟨11100, 00001⟩, ⟨10101, 01011⟩, ⟨10010, 01000, 00001⟩, ⟨10001, 01000, 00110⟩.

We remark that the hypothetical type 3322 is also excluded by Corollary 17.

Similarly as we have constructed T ′ from the tail T in Lemma 15, we can consider the set U ′ :=
{U ∩H∞ : U ∈ U} for an avsp U of PG(n − 1, q). If U is an irreducible tight avsp of PG(n − 1, q) of type
2m23m3 , where m2 = qn−1−qm3, then U ′ is a configuration of m2 points and m3 lines in H∞ ∼= PG(n−2, q).
The points are pairwise disjoint, so that Lemma 15 yields that they form a q-divisible set. Any two lines can
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meet in at most a point. If n = 5, then any two lines indeed intersect in a point. So, the maximum point
multiplicity is at most m3 + 1. In the following we will theoretically classify the possibilities for U ′ for tight
irreducible avsps of PG(4, 2) of type 2m23m3 up to symmetry. Corollary 29 gives m3 ∈ {0, 1, 2}. First we
will deduce two general necessary criteria for U ′.

Lemma 31. Let U be an irreducible avsp of PG(n−1, q) not of type (n−1)q and U ′ := {U ∩H∞ : U ∈ U}.
Then U ′ is spanning, i.e., U ′ spans H∞.

Proof. Assume that K is a hyperplane of H∞ that contains all elements of U ′. From Lemma 12 we can
conclude that the K-decomposition U (1), . . . ,U (q), with corresponding hyperplanes H1, . . . ,Hq, is a partition
of U , i.e., the elements of U (i) can be joined to Hi for all 1 ≤ i ≤ q. Since we have assumed that U is not of
type (n− 1)q we obtain a contradiction.

Lemma 32. Let U be an avsp of PG(n − 1, q) of type (n − 1)mn−1 . . . 2m2 and U ′ := {U ∩H∞ : U ∈ U}.
For each hyperplane K of H∞ let aKi denote the number of i-dimensional elements of U ′ that are contained
in K and bKi = mi+1 − aKi the number of i-dimensional elements of U ′ that are contained in K, where
1 ≤ i ≤ n− 2. Then there exist cKi,j ∈ N0 for all 1 ≤ j ≤ q, 1 ≤ i ≤ n− 2 such that

q∑
j=1

cKi,j = aKi ∀1 ≤ i ≤ n− 2, (8)

n−2∑
i=1

cKi,j · qi + bKi · qi−1 = qn−2 ∀1 ≤ j ≤ q. (9)

Proof. For an arbitrary but fix hyperplane K of H∞ let U (1), . . . ,U (q) be the K-decomposition of U with
corresponding hyperplanes H1, . . . ,Hq. From Lemma 12 we conclude that for each element U ∈ U with
U ∩ H∞ ≤ K there exists an index 1 ≤ j ≤ q such that U ≤ Hj . The cKi,j just count how many (i + 1)-
dimensional elements of that type are contained in Hj . Since the hyperplanes H1, . . . ,Hq are pairwise
disjoint, we obtain Equation (8). From Lemma 13 we conclude that for each element U ∈ U such that
U ∩H∞ ̸≤ K we have # (U ∩Hj\H∞) = qdim(U)−2, so that the packing condition yields Equation (9).

Let us consider the case m3 = 0 first. Here the 23 points in H∞ ∼= PG(3, 2) form a spanning 2-divisible
set P of points. So, P is either an affine solid attained in Example E6 or given by the points of a plane and
an intersecting line without the intersection point attained in Example E1, cf. Lemma 52. In the first case
the geometrical object of the pairwise disjoint eight lines, that are disjoint from a special plane, in PG(4, 2)
is also known under the name of a lifted MRD code or a vector space partition of PG(4, 2) of type 2831. The
uniqueness up to symmetry is a well known result.

For m3 = 1 the six points in H∞ ∼= PG(3, 2) form a 2-divisible set P of points, so that P is given by two
disjoint lines L1, L2, cf. Lemma 51. Let us denote the unique line in H∞ by L. Up to symmetry, the lines
L1, L2, and L can be arranged as follows:

• all three lines are pairwise disjoint, so that there are no multiple points, see Example E5;

• L = L1, so that there are three double points forming a line, see Example E2;

• L intersects both L1 and L2 in a point, so that we have two double points, see Example E3;

• L intersects exactly one of the lines L1 and L2 in a point, so that we have a unique double points, see
Example E4.

For m3 = 2 let us denote the two lines by L1, L2, their intersection point by P , and their span by E,
which is a plane. The four points in P form an affine plane, cf. Lemma 18. I.e., there exist a plane E′ and
a line L′ ≤ E′ with P = E′\L′. From Lemma 31 we conclude E ̸= E′, so that we set L∗ := E ∩ E′ with
dim(L∗) = 2. From Lemma 32 we conclude that each hyperplane H of H∞ that contains either the line L1

or the line L2, but not both, has to intersect P in at least two points. (More technically, aK2 = 1 implies
aK1 ≥ 2.) With this we obtain the following list of possible arrangements of L1, L2, and E′\L′:
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• P is outside of E′. Since Li ̸≤ ⟨P,L′⟩ for i = 1, 2, we have that |Li ∩ E′\L′| = 1 for i = 1, 2, i.e., we
have three double points forming a basis, see Example E7;

• P ∈ P = E′\L′. Since E ̸= E′, one of lines L1, L2 intersects E′ exactly in the point P , so that the
other line meets P in a second point, i.e., we have one triple and one double point, see Example E9;

• P ∈ L′. W.l.o.g. we assume L1 ∩E′ = P , so that L2 ≤ E′. Since the plane π := ⟨L1, L
′⟩ is disjoint to

P, we conclude L2 ∈ π, so that L2 = L′. So, P is the unique double point, see Example E8.

Thus we have completed the classification of possibilities for U ′ that may correspond to tight irreducible
avsps U of PG(4, 2). We call the process of moving from U ′ to U the extension problem. An integer linear
programming formulation is given in Section A in the appendix. Note that the extension problem comprises
additional symmetry given by the pointwise stabilizer of H∞ of order qn−1.

Given a set U ′ satisfying all of the necessary conditions mentioned so far it is neither clear that an
extension to a corresponding avsp U always exists nor that it is, in the case of existence, unique up to
symmetry. Indeed, we will give counter examples later on. However, for the nine classified configurations U ′

in PG(3, 2) it turns out that there always is an up to symmetry unique extension.

4.2 Tight irreducible avsps in PG(5,2)

Lemma 33. For n ≥ 6 no tight irreducible avsp of type (n− 2)2(n− 3)4 in PG(n− 1, 2) exists.

Proof. Assume that such an avsp U exists and consider the intersections of the elements with the hyperplane
H∞ at infinity, i.e., U ′ := {U ∩H∞ : U ∈ U}. By E1, E2 we denote the two (n−3)-spaces and by L1, . . . , L4

the four (n − 4)-spaces. The intersection of E1 and E2 is an (n − 4)-space L′ and dim(Ei, Lj) ≥ n − 5 for
all i = 1, 2 and j = 1, . . . , 4. From Lemma 15 we conclude that T ′ = {L1, . . . , L4} is a 2-divisible set of
four (n − 4)-spaces, so that Lemma 18 implies the existence of a plane E ≤ H∞, a line L ≤ E, and an
(n− 5)-space B ≤ H∞ with B ∩ E = ∅ and

{L1, . . . , L4} = {⟨Q,B⟩ : Q ∈ E\L} .

Since U is tight we have B ∩ L′ = ∅. However, dim(Ei, Lj) ≥ n − 5 implies dim(L′, Lj) ≥ n − 6 for all
1 ≤ j ≤ 4. So, we clearly have n ≤ 7.

For n = 7 we conclude E ≤ E1, E ≤ E2, dim(B) = 2, dim(E1) = dim(E2) = 4, dim(E) = 3, and
dim(L′) = 3, so that L′ = E and dim(Ei ∩ B) ≥ 1 for i = 1, 2. Thus, we have ⟨U ′⟩ ≤ ⟨E,B⟩, i.e., U ′ is not
spanning, which is a contradiction.

For n = 6 we have dim(B) = 1, i.e., B is a point. Since U is tight we have B ̸≤ L′. W.l.o.g. we
assume B ̸≤ E1. Since E1 intersects each of the lines Lj in at least a point, we have E1 = E. Since U is
irreducible E2 is not contained in the solid S := ⟨E,B⟩. Since E1 intersects each of the lines Lj in at least
a point, we have that the line L′ ≤ E intersects each of the lines Lj in at least a point. Since B ̸≤ L′ this is
impossible.

Proposition 34. Let U be a tight irreducible avsp of PG(5, 2), then U has one of the following types:

• 423i28−2i for i ∈ {0, 1, 2};

• 413i212−2i for i ∈ {0, . . . , 6}\{5}; and

• 3i216−2i for i ∈ {0, . . . , 8}\{7}.

All types are realizable.

Proof. Let the type of U be 5m5 . . . 1m1 . From Corollary 21 and Lemma 22 we conclude m5 = 0 and
m1 = 0, so that the packing condition (1) gives 4m4 + 2m3 + m2 = 16. Corollary 29 gives m4 ≤ 2
and Lemma 33 excludes (m4,m3,m2) = (2, 4, 0). Moreover, Corollary 17 implies m2 ̸= 2. All remaining
possibilities (m4,m3,m2) ∈ N3

0 are listed in the statement and for each type we found a realization using
ILP computations.
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Corollary 35. If U is a tight irreducible avsp of PG(5, 2) of minimum possible size, then #U = 7 and U
has type 4136.

For small sizes we have enumerated the isomorphism types of tight irreducible avsps in PG(5, 2), see
Table 1. The last row concerns the parts U ′ at the hyperplane H∞ at infinity w.r.t. the avsps U counted up
to isomorphy in the second row. So, for e.g. types 413424 and 4228 there exist configurations U ′ that allow
more than one extension up to symmetry.

type 4136 423224 38 423126 413424 4228

# 6 38 32 55 827 83
in H∞ 6 38 32 55 811 50

Table 1: Number of isomorphism types of tight irreducible avsps in PG(5, 2).

For the minimum possible size of a tight irreducible avsp in PG(5, 2) we can write down all implications
of the stated necessary conditions for the part U ′ at infinity. So, for type 4136 configuration U ′ consists of
one plane E and six lines L = {L1, . . . , L6} satisfying the following conditions:

(1) the configuration is spanning, i.e., ⟨E,L1, . . . , L6⟩ = PG(4, 2);

(2) the configuration is tight, i.e., there does not exist a point P that is contained in E and all lines in L;
(3) the lines in L form a 2-divisible set of lines, i.e., each hyperplane contains an even number of lines;

(4) each line Li intersects E in at least a point;

(5) hyperplanes that contain E also contain at least two lines.

Up to symmetry ten such configurations exist:

E1: ⟨10000, 01000, 00100⟩, ⟨10000, 01000⟩, ⟨10000, 00100⟩, ⟨01000, 00010⟩, ⟨01000, 00110⟩, ⟨10100, 00001⟩, ⟨10100, 01101⟩
E2: ⟨10000, 01000, 00100⟩, ⟨10000, 01000⟩, ⟨10000, 00010⟩, ⟨10000, 00110⟩, ⟨01100, 00010⟩, ⟨01100, 00001⟩, ⟨10011, 01100⟩
E3: ⟨10000, 01000, 00100⟩, ⟨10000, 01000⟩, ⟨10000, 00010⟩, ⟨10000, 00001⟩, ⟨01000, 00011⟩, ⟨10100, 01011⟩, ⟨01011, 00111⟩
E4: ⟨10000, 01000, 00100⟩, ⟨10000, 01000⟩, ⟨10000, 00010⟩, ⟨01000, 00110⟩, ⟨00100, 00010⟩, ⟨11100, 00001⟩, ⟨10111, 01011⟩
E5: ⟨10000, 01000, 00100⟩, ⟨10000, 00010⟩, ⟨10000, 01010⟩, ⟨00100, 00001⟩, ⟨01100, 00011⟩, ⟨11001, 00100⟩, ⟨10111, 01100⟩
E6: ⟨10000, 01000, 00100⟩, ⟨10000, 00010⟩, ⟨10000, 00001⟩, ⟨10000, 01011⟩, ⟨01000, 00010⟩, ⟨01000, 00001⟩, ⟨10011, 01000⟩
E7: ⟨10000, 01000, 00100⟩, ⟨10000, 00010⟩, ⟨10000, 00001⟩, ⟨10000, 01011⟩, ⟨01000, 00010⟩, ⟨01000, 00101⟩, ⟨10111, 01000⟩
E8: ⟨10000, 01000, 00100⟩, ⟨10000, 00010⟩, ⟨10000, 00001⟩, ⟨01000, 00010⟩, ⟨01000, 00001⟩, ⟨10100, 01111⟩, ⟨10111, 01100⟩
E9: ⟨10000, 01000, 00100⟩, ⟨10000, 00010⟩, ⟨10000, 00001⟩, ⟨01000, 00110⟩, ⟨01000, 00101⟩, ⟨10100, 01111⟩, ⟨10111, 01100⟩

E10: ⟨10000, 01000, 00100⟩, ⟨10000, 00010⟩, ⟨01000, 00010⟩, ⟨00100, 00001⟩, ⟨10100, 01011⟩, ⟨11001, 00101⟩, ⟨10011, 01100⟩

It turns out that E2, E4, E7, and E9 are not extendable to an avsp while the other six cases are. Moreover,
the extension is unique up to symmetry in these cases.

4.3 Tight irreducible avsps in PG(6,2)

Lemma 36. In PG(6, 2) no tight irreducible avsp of type 524234 or 5146 exists.

Proof. All two possibilities are excluded using ILP computations, see Section A. They are also excluded
using GAP computations.

Proposition 37. Let U be a tight irreducible avsp of PG(6, 2), then U has one of the following types:

• 524i3j216−2j−4i for i ∈ {0, 1, 2} and 0 ≤ j ≤ 8− 2i, where j + 2i ̸= 7 and (i, j) ̸= (2, 4);

• 514i3j224−2j−4i for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 12− 2i, where j + 2i ̸= 11;

• 4i3j232−2j−4i for 0 ≤ i ≤ 8 and 0 ≤ j ≤ 16− 2i, where j + 2i ̸= 15 and i ̸= 7.

All types are realizable.
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Proof. Let the type of U be 6m6 . . . 1m1 . From Corollary 21 and Lemma 22 we conclude m6 = 0 and m1 = 0,
so that the packing condition (1) gives 8m5 + 4m4 + 2m3 + m2 = 32. Corollary 29 yields m5 ≤ 2 and
Lemma 33 excludes (m5,m4,m3,m2) = (2, 4, 0, 0). Moreover, Corollary 17 implies ml ̸= 2 for the smallest
index with ml > 0. The two hypothetical types 524234 and 5146 are excluded in Lemma 36. All remaining
possibilities (m5,m4,m3,m2) ∈ N4

0 are listed in the statement and for each type we found a realization using
an ILP formulation, see Section A.

Corollary 38. If U is a tight irreducible avsp of PG(6, 2) of minimum possible size, then #U = 8 and U
has type 48.

Here we describe all four isomorphism types of homogeneous irreducible tight avsps U of PG(6, 2) of
type 48. Geometrically each U is given by eight solids S1, . . . , S8 in PG(6, 2) intersecting a hyperplane H∞
in a plane (plus some extra conditions). Here we directly consider the part U ′ at infinity, i.e. the eight planes
π1, . . . , π8 ∈ H∞ ∼= PG(5, 2) given by πi = Si ∩H∞. The conditions for the pairwise intersections are

1 ≤ dim(πi ∩ πj) ≤ 2 ∀1 ≤ i < j ≤ 8. (10)

Since the planes form a spanning 2-divisible set we have

# {1 ≤ i ≤ 8 : πi ̸≤ H} ∈ {2, 4, 6, 8} (11)

for every hyperplane H of H∞ ∼= PG(5, 2).
Let ei denote the ith unit vector, i.e., the vector with a 1 at the i-th position and zeros everywhere else.

If the pairwise intersection of the planes πi is a line in all cases then they span a solid, which contradicts the
condition that not all eight planes can be contained in a hyperplane. W.l.o.g. we assume π1 = ⟨e1, e2, e3⟩
and π2 = ⟨e3, e4, e5⟩, i.e., the intersection point between π1 and π2 is ⟨e3⟩. Since the intersection of all eight
planes is empty we assume w.l.o.g. that π3 does not contain π1 ∩ π2 = e3. Up to symmetry we have the
following three cases for π3:

(a) dim(π1 ∩ π3) = 2, dim(π2 ∩ π3) = 1: π3 = ⟨e1, e2, e4⟩;

(b) dim(π1 ∩ π3) = dim(π2 ∩ π3) = 1, dim(⟨π1, π2, π3⟩) = 5: π3 = ⟨e1, e4, e2 + e5⟩; and

(c) dim(π1 ∩ π3) = dim(π2 ∩ π3) = 1, dim(⟨π1, π2, π3⟩) = 6: π3 = ⟨e1, e4, e6⟩.

Starting from the three possibilities for π1, π2, π3 we build up a graph whose vertices consist of the planes
that have intersection dimension 1 or 2 with πi for 1 ≤ i ≤ 3, c.f. Condition (10). Two vertices π and π′ are
connected by an edge if 1 ≤ dim(π ∩ π′) ≤ 2, c.f. Condition (10). For these graphs we determine all cliques
of size five and check Condition (11) afterwards:

(a) 3,014,435,152 cliques → 432 cases;

(b) 2,198,293,872 cliques → 0 cases;

(c) 1,218,975,648 cliques → 320 cases.

The overall computation took just a few minutes. Note that the constructed 752 cases are just candidates
for the extension problem to eight solids. Up to symmetry they decompose into just four non-isomorphic
examples. It turns out that they can be distinguished by the maximum number γ0 of incidences of a point
and the eight planes, which has to lie between 2 and 5. In Table 2 we summarize incidence counts.

For γ0 = 2 we consider an arbitrary plane π contained in the hyperbolic quadric Q = Q+(5, 2), which
form a single orbit under its collineation group PGO+(6, 2) = C2 × PGL(3, 2) = S8 of order 40,320. From
the 35 points on Q the points in π have no incidences with the eight planes while all other 28 points on Q
have exactly two incidences. This example is obtained in 16 cases. The symmetry group of the eight planes
has order 1344 and type C3

2 : PGL(3, 2).
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γ0 2 3 4 5

point incidences 228 1212737 11621244 12026324252

line incidences: 156 156 14824 1462232

solid incidences: 156 156 14824 14028

hyperplane incidences: 228 228 22442 2234161

case triples: c168 c168 a48c96 a72c48

Table 2: Irreducible tight avsps of PG(6, 2) of type 48.

For γ0 = 3 choose a projective base of PG(5, 2), i.e., put fi = ei for 1 ≤ i ≤ 6 and f7 =
∑6

i=1 ei.
Consider a Fano plane on the set {1, 2, 3, 4, 5, 6, 7}:

ℓ1 = {1, 2, 3}, ℓ2 = {1, 4, 5}, ℓ3 = {1, 6, 7}, ℓ4 = {2, 4, 6},
ℓ5 = {3, 4, 7}, ℓ6 = {2, 5, 7}, ℓ7 = {3, 5, 6}.

Choose seven planes πi := ⟨fj : j ∈ ℓi⟩ for 1 ≤ i ≤ 7 and an eight plane. π8 = K := ⟨
∑

j∈ℓi
fj : 1 ≤ j ≤ 7⟩.

Note that K itself is also a Fano plane (of course with a different embedding). The points with three
incidences with the eight planes are the fi for 1 ≤ i ≤ 7 and the points with two incidences with the eight
planes are the points of K. This example is obtained in 112 cases. The symmetry group of the eight planes
has order 168 and type PGL(3, 2).

For γ0 = 4 let {Q1, Q2, Q3, Q4, R1, R2} be a basis of H∞. With this, we construct the eight planes as

⟨Qi+j , Qi+j+1, Ri⟩ for i ∈ {1, 2}.j ∈ {0, 2},
⟨Qi+j , Qi+j+1, Ri +A⟩ for i ∈ {1, 2}.j ∈ {0, 2},

where A = Q1 + Q2 + Q3 + Q4 and Q5 = Q1. The points with four incidences with the eight planes are
Q1, . . . , Q4. The lines with two incidences with the eight planes are ⟨Qi, Qi+1⟩ for 1 ≤ i ≤ 4 (again setting
Q5 = Q1; so this is some kind of a cyclic construction). This example is obtained in 192 cases. The symmetry
group of the eight planes has order 128 and type D2

8 : C2.
For γ0 = 5 let {Q1, Q2, R1, R2, S1, T1} be a basis of H∞. With this, we set S2 := S1 + Q1 + Q2,

T2 := T1 +Q1 +Q2 +R1 +R2 and construct the eight planes as

⟨Q1, Q2, Ri⟩ for i ∈ {1, 2},
⟨R1, R2, Si⟩ for i ∈ {1, 2}, and
⟨Qi, Ri, Tj⟩ for i, j ∈ {1, 2},

which also reflects the three orbits of the eight planes w.r.t. the action of their automorphism group. The
points with five incidences with the eight planes are R1 and R2. The points with four incidences with
the eight planes are Q1 and Q2. The points with three incidences with the eight planes are R1 + Q1 and
R2 + Q2. The lines with three incidences with the eight planes are ⟨R1, Q1⟩ and ⟨R2, Q2⟩. The lines with
two incidences with the eight planes are ⟨R1, R2⟩ and ⟨Q1, Q2⟩. This example is obtained in 432 cases. The
symmetry group of the eight planes has order 1024.

5 Constructions of tight irreducible avsps

In this section we collect a few general constructions for tight irreducible avsps using different combinatorial
objects. We use spreads, the Klein quadric, and hitting formulas in sections 5.1, 5.2, and 5.3, respectively.
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5.1 Constructions from projective spreads

A k-spread in PG(n − 1, q) is a disjoint set of k-spaces that partitions PG(n − 1, q). It is well known that
k-spreads exist iff k divides n.

Proposition 39. For each positive even integer n there exists a tight irreducible avsp U of PG(n− 1, q) of
type (n/2)m, where m = qn/2.

Proof. Let k = n/2 and P be a k-spread of PG(n − 1, q), which has size qk + 1. Now choose an arbitrary
element K ∈ P and an arbitrary hyperplane H containing K. With this we set U = P\{K} where we choose
H as the hyperplane at infinity. By construction U is an avsp of PG(n−1, q). Since all elements are pairwise
disjoint U is tight and since any two elements span PG(n− 1, q) U is irreducible.

We have seen that in PG(5, 2) there exist tight irreducible avsps of types 38 and 216. Starting from a
2-spread of PG(5, q) we can clearly obtain a tight avsp U by removing all lines that are completely contained
in an arbitrarily chosen hyperplane H. However, it may happen that U is reducible. This is indeed the case
if we start with the Desarguesian line spread. In PG(5, 2) there exist 131,044 non-isomorphic line spreads
[MT09].

Conjecture 40. For each integer 1 < k < n that divides n there exists a tight irreducible avsp U of
PG(n− 1, q) of type km, where m = qn−k.

If n is odd no ⌊(n− 1)/2⌋-spread exists, but we can construct tight irreducible avsps from some special
large partial spreads.

Proposition 41. For each odd integer n ≥ 5 there exists a tight irreducible avsp U of PG(n− 1, q) of type
((n− 1)/2)m, where m = q(n+1)/2.

Proof. Let k = (n − 1)/2 and P be a vector space partition of PG(n − 1, q) of type (k + 1)2km, where
m = qk+1. Now choose an arbitrary hyperplane H containing the unique (k + 1)-dimensional element K of
P. With this we set U = P\{K} where we choose H as the hyperplane at infinity. By construction U is
an avsp of PG(n − 1, q). Since all elements are pairwise disjoint U is tight. Any two elements of U span a
hyperplane of PG(n − 1, q). Since the elements of U ′ := {U ∩H∞ : U ∈ U} span H∞, not all elements of
U ′ can be contained in a hyperplane of H∞ and U is irreducible.

Vector space partitions of the used type can be obtained from lifted MRD codes, see e.g. [SSW19] for a
survey on MRD codes. They also occur as extendible partial k-spreads, where k = (n− 1)/2, of the second
largest size qk+1 and are the main building block in the construction of partial k-spreads of size qk+1 + 1 as
described by Beutelspacher [Beu75]. For more details on the relations between these different geometrical
objects we refer e.g. to [HKK19].

For each n ≥ 5 there also exist a vector space partition P of PG(n − 1, q) of type (n − 2)12m, where
m = qn−2. Choosing a hyperplane that contains the unique (n − 2)-space as the hyperplane at infinity we

can obtain a tight avsp U of PG(n − 1, q) of type 2q
n−2

. The remaining question is whether we can choose
P in such a way that U becomes irreducible.

5.2 Constructions from the Klein quadric

It seems very likely that the avsp of PG(6, 2) of type 48 with maximum point multiplicity 2, see Subsection 4.2,
can be generalized to arbitrary field sizes.

Theorem 42. There exists a tight irreducible avsp of type 4q
3

in AG(6, q) for q even.

15



Proof. We will use the following finite field model of AG(6, q). Let V = Fq3 × Fq3 × Fq and let H∞ be
the hyperplane X3 = 0. So we identify AG(6, q) with the elements of V of the form (a, b, c), where c ̸= 0.
Consider the following quadratic form on H∞:

Q(x, y, 0) := Trq3/q(xy).

Then Q defines the points of a hyperbolic quadric Q. Next, let π be the plane {(0, y, 0) : y ∈ F∗
q3}. Then π

is totally singular with respect to Q. Let S0 := {(x, 0, 1) : x ∈ Fq3} and S1 := {(y, yq2 + yq +1, 1) : y ∈ Fq3}.
Let α be a primitive element of Fq3 , let σ be the map

σ : (x, y, z) 7→ (α−1x, αy, z),

and let G := ⟨σ⟩. We will show that S := {S0} ∪ SG
1 is a tight irreducible avsp of size q3 in AG(6, q).

First note that σ has order q3−1. Let (a, b, 1) be a point P of AG(6, q). We show that P lies in a unique
element of S. If b = 0, then P lies in S0. The condition that P lies in Sσm

1 (where 1 ≤ m ≤ q3 − 1) can be
restated as

a = α−my, b = αm(yq
2

+ yq + 1).

for some y ∈ Fq3 . We have

ab = yq
2+1 + yq+1 + y

and the polynomial yq
2+1 + yq+1 + y is a permutation on Fq3 , by [TZH14, Theorem 4]. Hence, y and, thus,

m are determined by a and b. Therefore, S is an avsp.
Note that π1 := S1 ∩H∞ = {(y, yq2 + yq, 0) : y ∈ Fq3} and π0 := S0 ∩H∞ = {(x, 0, 0) : x ∈ Fq3}. To

compute the image of π1 under σm, notice that

(α−my, αm(yq
2

+ yq), 0) = (α−my, α(q2+1)m(α−my)q
2

+ α(q+1)m(α−my)q, 0) = (w, ζwq2 + ζqwq, 0)

where w = α−my and ζ = α(q2+1)m. Therefore, upon application of G,

S∞ := {S ∩H∞ : S ∈ S} = {π0} ∪ πG
1 = {πζ : ζ ∈ Fq3}

where πζ := {(y, ζyq2 + ζqyq, 0) : y ∈ F∗
q3}. Note that |S∞| = q3 and that S consists of totally singular

planes of Q disjoint from π. As these are all totally singular planes of Q disjoint from π, these cover the
points of Q uniformly and their common intersection is empty and, thus, S is tight. As these pairwise meet
in a point, any two elements of S span PG(6, q). This shows irreducibility.

Let P be the set of planes in the Klein quadric Q = Q+(5, q) that is disjoint to an arbitrary but fixed
plane π in Q. One can verify that P is a spanning q-divisible set of q3 planes in PG(5, q) such that the
intersection of a pair of planes is a point, i.e., all known conditions for the part U ′ at infinity of a tight
irreducible avsp of PG(6, q) of type 4q

3

are satisfied. The remaining question is whether a solution of the
extension problem for P exists.

Conjecture 43. The extension problem for P admits a solution for all prime powers q.

Theorem 42 shows the conjecture for q even. By computer we showed Conjecture 43 for q = 3, 5.

5.3 Constructions using hitting formulas

A hitting formula is a DNF such that each truth assignment to the underlying variables satisfies precisely
one term [Iwa89]. For example:

(x ∧ y ∧ z) ∨ (x̄ ∧ ȳ ∧ z̄) ∨ (x̄ ∧ y) ∨ (ȳ ∧ z) ∨ (z̄ ∧ x).
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We say that a variable appears in the DNF if one of the two corresponding literals appears in one of the terms.
The variables mentioned in the above DNF are x, y, z. We can represent hitting formulas over x1, . . . , xn as
collections of strings in {0, 1, ∗}n, where 0 in the i’th position represents x̄i, 1 in the i’th position represents
xi, and ∗ in the i’th position represents the absence of xi in the term. For example, the above hitting formula
corresponds to the strings 111, 000, 01∗, ∗01, 1∗0.

This notion describes subcubes of affine points. Taking the projective closure we end up with the list

⟨1111⟩, ⟨1000⟩, ⟨1010, 0001⟩, ⟨1001, 0100⟩, ⟨1100, 0010⟩

of subspaces of PG(3, 2) that form an avsp, which obviously is not irreducible. However, we can join the
first two elements to ⟨1000, 0111⟩ and obtain a tight irreducible avsp. While every string corresponds to an
affine subspace, not every affine subspace corresponds to a string. It turns out that any two strings having
its stars at the same positions can be joined to an affine subspace. For brevity, we speak of compression.
Interestingly enough, several tight irreducible avsps of PG(n − 1, 2) of the minimum possible size can be
obtained by compression, see Section C in the appendix. More theoretical insights on the relations between
hitting formulas and avsps will be treated in an upcoming article focusing on irreducible hitting formulas.

6 The minimum possible size of tight irreducible avsps

We have discussed the minimum possible size of a (tight) avsp of PG(n−1, q) in Section 2. Before we consider
the minimum possible size σq(n) of a tight irreducible avsp U of PG(n − 1, q) we remark that Lemma 22
implies the upper bound #U ≤ 2n−2 for q = 2. The constructions mentioned in Section 5 suggest that this
upper bound can be attained. In Section 3 and Section 4 we have determined the exact values σq(2) = q,
σq(3) =∞, σ2(4) = 4, σ2(5) = 6, σ2(6) = 7, and σ2(7) = 8.

Lemma 44. Let U ′ be a configuration of a 5-space K ′, four 4-spaces S′
1, . . . , S

′
4, and four planes E′

1, . . . , E
′
4

in PG(6, 2) such that there exists a 5-space A′ and three 6-spaces B′
1, B

′
2, B

′
3 satisfying

• dim(K ′ ∩A′) = 4, S′
1, S2 ≤ A′, dim(S′

3 ∩A′) = dim(S′
4 ∩A′) = 3;

• K ′ ̸≤ B′
1, S

′
3, S

′
4 ≤ B′

1, K
′, S′

3, S
′
4 ̸≤ B′

2, K
′ ≤ B′

3, S
′
3, S

′
4 ̸≤ B′

3.

Then, then extension problem of U ′ to a tight irreducible avsp U of PG(7, 2) has no solution.

Proof. Assume that U = {K,S1, . . . , S4, E1, . . . , E4} is an irreducible avsp of PG(7, 2) with K ∩H∞ = K ′,
Si ∩H∞ = S′

i, Ei ∩H∞ = E′
i for all 1 ≤ i ≤ 4. Let A1, . . . , A4 be the four 6-spaces that contain A′ but are

not contained in H∞. From the known intersections with A′ we conclude

• #(K\H∞ ∩Ai) ∈
{
0, 24

}
;

• #(Sj\H∞ ∩Ai) ∈
{
0, 24

}
for j = 1, 2;

• #(Sj\H∞ ∩Ai) ∈
{
0, 23

}
for j = 3, 4;

• #(Ej\H∞ ∩Ai) ∈
{
0, 23

}
for j = 1, . . . , 4

for all 1 ≤ i ≤ 4. From the intersections of the B′
i, where 1 ≤ i ≤ 3, with S′

3 and S′
4 we conclude

# (S3\H∞ ∩Aj) = # (S4\H∞ ∩Aj) for all 1 ≤ j ≤ 4. W.l.o.g. we assume Si\H∞ ∩ Aj ̸= ∅ for all i = 1, 2
and j = 1, 2. From the intersection of K ′ with B′

1 we conclude that either # (K\H∞ ∩A1) = 24 or
# (K\H∞ ∩A2) = 24. W.l.o.g. we assume K\H∞ ∩ A4 = ∅. With this the affine points of the elements
of U are either completely contained in A4 or disjoint to A4. This contradicts our assumption that U is
irreducible.

Lemma 45. In PG(6, 2) every configuration U ′ of type 524234, 524136, 5146, 514434, or 48 that does not
contain a configuration as in Lemma 44 and satisfies the conditions of Lemma 31, Lemma 32, and the
dimension condition, cf. Lemma 8, admits a point P that is contained in all elements of U ′.
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Proof. All cases have been excluded by ILP computations.

Corollary 46. In PG(7, 2) no tight irreducible avsp of the following types exist: 625244, 625146, 6156,
615444, 58.

Corollary 47. The minimum size σ2(8) of an irreducible tight avsp of PG(7, 2) is given by 10.

For attaining examples we refer to Section C in the appendix.

Our next aim is a recursive construction which implies an asymptotic upper bound of roughly 3n
2 for σ2(n).

Theorem 48. Let U = {U1, . . . , Ur} be an irreducible tight avsp of PG(n− 1, 2) with dim(U1) = n− 2 and
n ≥ 3. Then, there exists an irreducible tight avsp U ′ of PG(n+2−1, 2) of size #U +3 = r+3 that contains
an element of dimension n.

Proof. Let V = PG(n+ 2− 1, 2), H∞ be the hyperplane at infinity, and K ≤ H∞ be an arbitrary subspace
with dim(K) = n. With this, denote the two hyperplanes containing K and not being equal to H∞ by
H1 and H2. Choose an arbitrary point P ≤ K and a subspace K ′ ≤ K such that dim(K ′) = n − 1 and
⟨P,K ′⟩ = K. Now choose an irreducible tight avsp U = {U1, . . . , Ur} of H1/P such that dim(U1) = n − 2.
We set Ai := ⟨Ui, P ⟩ for all 1 ≤ i ≤ r. Choose an n-space B with B ∩ H1 = A1 and B ̸≤ H∞, so
that C1 := B ∩ H2 is an (n − 1)-space in H2 with C1 ̸≤ H∞ and P ≤ C1. In H2 choose three further
(n − 1)-spaces C2, C3, C4 such that dim(Ci ∩ Cj) = dim(C1 ∩ C2 ∩ C3 ∩ C4) = n − 3 for all 1 ≤ i < j ≤ 4,
C1 ∩ C2 ∩ C3 ∩ C4 ≤ K ′, and that {C1, C2, C3, C4} forms an avsp of H2. (This boils down to an avsp of
PG(4− 1, 2) of type 24, which is a union of four disjoint lines.) Then,

U ′ := {A2, . . . , Ar, B, C2, C3, C4}

is an irreducible tight avsp of V of size #U + 3 = r+ 3. The size follows directly from the construction and
dim(B) = n. Since B ∩H1 ∩H∞ = B ∩H2 ∩H∞ we have B ∩C2 ∩C3 ∩C4 = C1 ∩C2 ∩C3 ∩C4 ≤ K ′ and
B ∩A2 ∩ · · · ∩Ar = A1 ∩ · · · ∩Ar = P , so that U ′ is tight. Noting that U ′′ := {A1, . . . , Ar} is an avsp of H1,
{C1, . . . , C4} is an avsp of H2, and {A1, C1} is an avsp of B, we conclude that U ′ is indeed an avsp of V .

It remains to show that U ′ is irreducible. So, assume that there exists a proper subset Ũ ⊊ U ′ that can
be joined to an x-space X. If Ũ ∩ {B,C2, C3, C4} = ∅, then we have Ũ ⊆ U ′′ contradicting the fact that U ′′

is irreducible. So, especially we have x ∈ {n, n+ 1}. Noting that any two elements in {C1, C2, C3, C4} span
H2, we conclude #

(
Ũ ∩ {B,C2, C3, C4}

)
= 1.

(i) If x = n, then let 2 ≤ i ≤ 4 be the unique index such Ci ∈ Ũ . Clearly, B /∈ Ũ . Let C̃ be the the
other (n − 1) space in X not contained in H∞ and not equal to Ci with C̃ ∩H∞ = Ci ∩ C̃, so that
the elements of Ũ\{Ci} form a vector space partition of C̃. However, since P ̸≤ Ci and all elements
in U\ {B,C1, C2, C3} contain P , this is impossible.

(ii) If x = n+1 and #
(
Ũ ∩ {B,C2, C3, C4}

)
= 1, then we have dim(X ′) = n for X ′ := X ∩H1. If B ∈ Ũ ,

then Ũ\{B} ∪ {A1} can be joined to X ′ in H1, which is a contradiction. If Ci ∈ Ũ , then Ũ\{Ci} can
be joined to X ′ in H1, which is also a contradiction.

Thus, U ′ is irreducible.

Corollary 49. For each n ≥ 4 an irreducible tight avsp U of PG(n− 1, 2) of size
⌊
3n−3

2

⌋
exists.

Proof. For n = 4 there exists such an example with type 24 and for n = 5 there exists such an example with
type 3224. Then, iteratively apply the construction from Theorem 48.

We remark that the constructive upper bound for q2(n) is tight for n ∈ {4, 5, 6, 8}.
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7 Conclusion

We have introduced the geometrical object of affine vector space partitions. To make their study interesting
we need the additional conditions of tightness and irreducibility, which are natural in the context of hitting
formulas. A very challenging problem is the determination of the minimum possible size of an irreducible
tight avsp of PG(n − 1, q). To this end we have obtained some preliminary results for arbitrary field sizes
but small dimensions and for the binary case with medium sized dimensions. We also gave a parametric
construction that matches the known exact values in many cases. That irreducible tight avsps are nice
geometric objects can be e.g. seen at their sometimes large automorphism groups as well as the mentioned
connection to the hyperbolic quadric Q+(5, q). While we have obtained a few insights, many questions
remain open. So, we would like to close with a list of a few open problems:

1. Consider tight irreducible avsps of PG(4, q) of type 2m23m3 . What is the largest possible value for m3?

2. Determine a solution of the extension problem for the set P of q3 planes in PG(5, q) obtained from
the hyperbolic quadric Q+(5, q) for q odd, cf. Conjecture 43.

3. Determine further constructions for tight irreducible avsps of PG(n − 1, q) with large automorphism
groups.

4. Construct a tight irreducible avsp of PG(n− 1, q) of type 2q
n−2

for all n ≥ 5.

5. Is it possible that a tight irreducible avsp of PG(n − 1, q) contains 1-dimensional elements if n ≥ 3
and q ≥ 3?

6. Determine further exact values of the minimum size σq(n) of a tight irreducible avsp of PG(n− 1, q).

7. Determine limn→∞ σq(n)/n.

8. Is σq(n) strictly increasing in n?
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A Integer linear programming formulations

Let U ′ be an arbitrary set of subspaces of H∞ in PG(n− 1, q). For the question whether U ′ can be extended
to an avsp U of PG(n − 1, q) we utilize binary variables xC for all subspaces C of PG(n − 1, q) such that
C ̸≤ H∞ and C ∩H∞ ∈ U ′ with the meaning xC = 1 iff C ∈ U . We denote the set of all of these subspaces
by C. For each point P in PG(n− 1, q)\H∞ the equation∑

c∈C :P≤C

xC = 1 (12)

and for each U ∈ U ′ the equation ∑
c∈C :U≤C

xC = 1 (13)

has to be satisfied. The 0/1 solutions of this equation system are in one-to-one correspondence to extensions
of U ′ to avsps U in PG(n− 1, q).
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Searching a tight irreducible avsp U in PG(n − 1, q) directly can be achieved by a similar model. Now
let C be the set of subspaces of PG(n− 1, q) that are not incident with H∞. Again we use binary variables
xC for all C ∈ C with the meaning xC = 1 iff C ∈ U . Partitioning the affine points is modeled by∑

c∈C :P≤C

xC = 1 (14)

for all points P not contained in H∞. The condition that U is tight can be written as∑
C∈C :Q≤C

xC + 1 ≤
∑
C∈C

xC (15)

for all points Q ≤ H∞. In order to model the condition that U is irreducible we say that a subspace A
escapes a subspace B if A has both points that are contained and points that are not contained in B. So,
for each B ∈ C we require

xB +
∑

C∈C such that C escapes B

xC ≥ 1. (16)

Of course we can fix the type of U by additional equations. Using a target function we can minimize or
maximize #U as well as the number of i-dimensional elements. We have to mention that this ILP formulation
comprises a lot of symmetry, so that it can be solved in reasonable time for small parameters n and q only.
However, we can use the inherent symmetry to fix some of the xC variables. I.e. the symmetry group acts
transitively on the set of a-spaces that are not contained in H∞. For pairs of an a-space A and a b-space
B that both are not contained in H∞, the different orbits under the action of the symmetry group are
characterized by the invariant dim(A ∩B).

B Technical details

In order to keep the paper more readable, we have moved some technical details, that may also be left to

the reader, to this section. The proof of Lemma 3 uses the numbers m
(j)
i satisfying certain constraints. For

completeness we state how those number can be computed in Algorithm 1.

In the three subsequent lemmas we characterize 2-divisible sets in PG(3, 2) of cardinality s ∈ {3, 6, 8}.

Lemma 50. Let P be a 2-divisible set of three points in PG(3, 2) then P forms a line.

Proof. Let P = {P1, P2, P3} and L := ⟨P1, P2⟩. Since all hyperplanes containing L have to contain P, we
have P3 ∈ L.

Lemma 51. Let P be a 2-divisible set of six points in PG(3, 2) then P is the disjoint union of two lines.

Proof. If H is a hyperplane containing all points of P, then there is a unique point P ≤ H with P /∈ P.
Since every hyperplane H ′ that does not contain P intersects P in cardinality 3, so that this case cannot
occur, i.e., P is spanning. From the standard equations we compute a0 = 0, a2 = 9, and a4 = 6 for the
spectrum. From the MacWilliams transform for the corresponding linear code we conclude the existence of
a triple of points P ′ forming a line. Since P\P ′ is also 2-divisible the statement follows from Lemma 50.

We remark that there exists a second 2-divisible set of six points – a projective base of dimension 5,
which clearly cannot be embedded in PG(3, 2).

Lemma 52. Let P be a 2-divisible set of eight points in PG(3, 2) then P is either an affine solid or given
by the points of a plane and an intersecting line without the intersection point.
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Algorithm 1 Computing m
(j)
i

Input: mn−1, . . . ,m1 ∈ N0 with
∑n−1

i=1 mi · qi−1 = qn−1

Output: m
(j)
i ∈ N0 with

∑n−2
i=1 m

(j)
i · qi−1 = qn−2 for all nn−1 + 1 ≤ j ≤ q

and
∑q

j=mn−1+1m
(j)
i = mi for all 1 ≤ i ≤ n− 2

h← n− 2
for mn−1 + 1 ≤ j ≤ q do
r ← qn−2

while r > 0 do
t← min

{
r/qh−1,mh

}
mh ← mh − t
r ← r − t · qh−1

if t = 0 then
h← h− 1

end if
end while

end for
return m

(j)
i

Proof. Assume that π is a hyperplane, which is a plane in our situation, containing six of the eight points
and denote the unique uncovered point of π by P . Each hyperplane that is incident with P contains either
two or six of the points in π. Thus, the remaining two points form a line L containing P . Clearly, there is
a unique example up to symmetry. Otherwise each hyperplane contains either 0, 2, or 4 points, so that the
standard equations yield that there is a unique empty hyperplane and all other hyperplanes contain exactly
four points, i.e., the point set is given by an affine solid.

We remark that both point sets can also be described as unions of two 2-divisible point sets, i.e., the
union of two affine planes in the first case and the union of a line and a projective basis of size five in the
second case.

C Tight irreducible affine vector space partitions of minimum size
that can be obtained by compression

In Subsection 5.3 we have shown how avsps of PG(n − 1, 2) can be obtained from hitting formulas by
compression. In [PS22] irreducible hitting formulas of minimum possible mentioning all variables where
enumerated up to seven variables. Going over their list we obtain the following examples of tight irreducible
avsps that can be obtained by compression and that have the minimum possible size σ2(n), see Section 6.
The pairs of strings that can be compressed to an affine subspace are separated by horizontal lines.
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Examples for n = 5:

00∗∗ 00∗∗
1∗0∗ 1∗0∗
010∗ 01∗0
1∗10 1∗10
∗111 ∗111
0110 0101

1011 1011

Examples for n = 6:

00∗∗∗ 00∗∗∗ 00∗∗∗
100∗∗ 1∗00∗ 100∗∗
∗100∗ 1∗1∗0 01∗0∗
1∗1∗0 ∗101∗ 1∗1∗0
∗1∗11 ∗11∗1 ∗1∗11
101∗1 0100∗ 01∗10
011∗0 1001∗ 11∗01
∗1101 011∗0 101∗1
∗1010 101∗1 110∗0

For n = 7 there is a unique example:

000∗∗∗
10∗0∗∗
∗1∗∗00
∗∗111∗
∗10∗∗1
∗0110∗
∗1101∗
∗11∗01
∗10∗10
0010∗∗
1001∗∗

For n = 8, there are 26 irreducible hitting formulas of size 13 mentioning all n−1 = 7 variables. Curiously
enough, compression was always successful. Moreover, we can also obtain tight irreducible avsps of PG(7, 2)
of minimum size σ2(8) = 10 by compression starting from an irreducible hitting formulas with strictly more
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than 13 terms:

∗∗∗1∗∗0 ∗10∗∗∗∗ 1∗10∗1∗
∗∗∗10∗1 ∗000∗0∗ 0∗11∗∗0
00∗0∗1∗ 100∗∗1∗ 111∗∗0∗
0∗00∗0∗ 00∗11∗∗ 001∗∗∗1
1∗∗∗1∗1 1∗100∗∗ 0010∗∗0
∗110∗∗0 1001∗0∗ 0111∗∗1
∗010∗00 0000∗1∗ 110∗1∗∗
∗100∗10 0∗10∗∗1 000∗0∗∗
0∗∗11∗1 1∗11∗∗0 01∗0∗∗∗
1∗∗00∗1 0∗1∗0∗0 10∗1∗∗∗
1∗00∗00 1∗1∗1∗1 0∗011∗∗
0∗10∗01 01111∗∗ 1∗000∗∗
10∗0∗10 00010∗∗ 1010∗0∗
01∗0∗11 ∗∗101∗0 1111∗1∗

∗∗110∗1 ∗0001∗∗
∗1010∗∗
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[NS11] Esmeralda L. Năstase and Papa Amar Sissokho. The minimum size of a finite subspace parti-
tion. Linear Algebra and its Applications, 435(6):1213–1221, 2011.
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