
Examples for existence and non-existence
of separable control Lyapunov functions ?

Lars Grüne ∗ Mario Sperl ∗

∗ Chair of Applied Mathematics, Mathematical Institute,
University of Bayreuth, 95440 Bayreuth, Germany

Abstract: In this paper, we consider nonlinear control systems and discuss the existence of a
separable control Lyapunov function. To this end, we assume that the system can be decomposed
into subsystems and formulate conditions such that a weighted sum of Lyapunov functions of
the subsystems yields a control Lyapunov function of the overall system. Since deep neural
networks are capable of approximating separable functions without suffering from the curse
of dimensionality, we can thus identify systems where an efficient approximating of a control
Lyapunov function via a deep neural network is possible. A corresponding network architecture
and training algorithm are proposed. Further, numerical examples illustrate the behavior of the
algorithm.

Keywords: deep neural network, curse of dimensionality, separable function, control Lyapunov
function, nonlinear control system, small-gain theory

1. INTRODUCTION

Control Lyapunov functions provide a tool for studying
stability and controllability issues of nonlinear control
systems. They do not only serve as a certificate for
asymptotic null-controllability, cf. Sontag (1983), but can
also be used to construct stabilizing feedback laws. Since,
in general, there is no explicit analytic expression for a
control Lyapunov function, we rely on numerical methods.

Common numerical approaches suffer from the so-called
curse of dimensionality, which describes an exponential
growth of the computational effort in the state dimension.
More precisely, the number of degrees of freedom for stor-
ing a control Lyapunov function grows exponentially with
the dimension of the state space. Thus, these approaches
are limited to low-dimensional systems. In this paper, we
discuss the use of neural networks in order to overcome the
curse of dimensionality for computing control Lyapunov
functions.

The well-known universal approximation theorem for neu-
ral networks states that a neural network with one hidden
layer is capable of approximating any continuous function
arbitrarily well, see, e.g., Cybenko (1989) and Hornik
(1991). For continuously differentiable functions, the func-
tion as well as its derivative can be approximated, see, e.g.,
(Pinkus, 1999, Chapter 4). However, in general, the num-
ber of neurons needed still grows exponentially in the state
dimension (Mhaskar, 1996, Theorem 2.1). Hence, the curse
of dimensionality still applies. This situation changes for
functions with certain beneficial structures. One example
of such functions are so-called Barron functions, cf. Barron
(1993). Roughly speaking, these are functions with a high
degree of smoothness and suitable form of the Fourier

? This research has been supported by the German Research Foun-
dation (DFG) under project GR 1569/23-1 within the priority pro-
gram 2298 “Theoretical Foundations of Deep Learning”.

transformation. Such functions were recently exploited for
approximating solutions of partial differential equations
and optimal value functions, see, e.g., Han et al. (2018),
Darbon et al. (2020), and Gonon and Schwab (2021).

Another class of functions with a beneficial structure are
compositional functions. These are functions that consist
of several component functions that depend only on a num-
ber of arguments that is independent of the dimension of
the original domain. This compositional structure enables
neural networks to approximate such functions with an ef-
fort that grows only polynomially, see Poggio et al. (2017),
Beneventano et al. (2021), Kang et al. (2021), and Kang
and Gong (2022). A particular case of compositional func-
tions are separable functions. In Grüne (2021) it was shown
that nonlinear ordinary differential equations satisfying a
small-gain condition admit separable Lyapunov functions
which can be approximated by neural networks with a
polynomial effort. In this paper, we discuss an extension of
the result in Grüne (2021) for nonlinear control systems.
To this end, we represent the overall system dynamics
as an interconnected graph and formulate conditions on
the nodes of this graph for existence and non-existence
of separable control Lyapunov functions. In particular,
the theory about so-called active nodes that is presented
in Chen and Astolfi (2020) can be used to establish an
existence result.

Moreover, we propose a neural network architecture and
a training algorithm that are used to approximate sep-
arable control Lyapunov functions. As opposed to other
algorithms, this algorithm does not rely on a predefined
decomposition of the system into subsystems, but learns
an appropriate decomposition during the training process.
This is a crucial advantage provided by the usage of deep
neural networks. Furthermore, we note that while in our
numerical examples we use ideas from reinforcement learn-
ing, the presented complexity analysis is independent of

the concrete learning method. There exist several algorith-
mically orientated papers that use neural networks for the
computation of control Lyapunov functions, see, e.g., Long
and Bayoumi (1993); Khansari-Zadeh and Billard (2014);
Richards et al. (2018). While our study is inspired by some
of the algorithmic ideas therein, we note that these papers
do not provide an analytical investigation concerning the
curse of dimensionality.

The remainder of this paper is organized as follows. In
the next section we introduce the problem. Afterwards,
we recall the concept of deep neural networks and the
approximation result for separable Lyapunov functions
that was presented in Grüne (2021). In Section 4 we dicuss
the existence of a separable control Lyapunov function of
an interconnected control system. A neural network archi-
tecture and a corresponding training algorithm together
with numerical examples are presented in the last section.

2. PROBLEM FORMULATION

We consider a nonlinear control system of the form

ẋ(t) = f(x(t), u(t)), (1)

where u ∈ L∞(R, U) with U ⊂ Rm and f : Rn×Rm → Rn
is continuous and Lipschitz continuous in x. We assume
that the system (1) has an equilibrium at the origin, i.e.,
f(0, 0) = 0.

Definition 1. Let 0 ∈ D ⊂ Rn be open. A C1-function
V : D → R is called (local) smooth control Lyapunov
function (CLF) for (1) if there exist 1 α1, α2, α3 ∈ K∞
such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2)

inf
u∈U

DV (x)f(x, u) ≤ −α3(‖x‖), (3)

for all x ∈ D, where DV (x)f(x, u) is the directional
derivative of V at x in direction f(x, u).

As requiring the existence of a smooth CLF is too re-
strictive in many cases, we need to take into account the
following more general definition of a control Lyapunov
function in the sense of Dini, see (Braun et al., 2021,
Definition 4.4).

Definition 2. Let 0 ∈ D ⊂ Rn be open and let F : Rn ⇒
Rn be a set-valued map with 0 ∈ F (0) that takes non-
empty and convex values and is upper-semicontinuous.
Then a continuous function V : D → R is called (local)
control Lyapunov function for the differential inclusion

ẋ(t) ∈ F (x(t))

if there exist α1, α2, α3 ∈ K∞ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),
inf

w∈F (x)
D+V (x;w) ≤ −α3(‖x‖),

for all x ∈ D, where D+V (x;w) denotes the lower right
Dini derivative of V at x in direction w.

In order to be able to apply Definition 2 to control
systems of the form (1) we define the differential inclusion
associated to (1) as

ẋ(t) ∈ F (x(t)) := conv f(x(t), U). (4)

1 We define K∞ as the space of all continuous and strictly increasing
functions α : [0,∞) → [0,∞) with α(0) = 0 and limτ→∞ α(τ) = ∞.

Note that the mapping F defined in (4) satisfies the
requirements of Definition 2. We then say that V is a
control Lyapunov function in the Dini sense for the control
system (1) if V is a control Lyapunov function in the Dini
sense for the differential inclusion (4). If V is continuously
differentiable this definition matches Definition 1 of a
smooth CLF. In the following, we always assume that there
exists a control Lyapunov function for the system (1).

We are interested in control Lyapunov functions that have
a separable form.

Definition 3. Let V : D ⊂ Rn → R. We call V a separable
function of degree dmax ∈ N, dmax < n, if there exist s ∈ N,
s < n, and functions Vj : Rdj → R with dj ≤ dmax for
j = 1, . . . , s such that

V (x) =

s∑
j=1

Vj(zj), x ∈ D,

where zj = (xj1 , xj2 , . . . , xjdj) for some ji ∈ {1, . . . , n}.

It is our goal to investigate conditions for the existence
and non-existence of a separable CLF with a degree dmax

that is independent of the state dimension n.

3. DEEP NEURAL NETWORKS APPROXIMATING
LYAPUNOV FUNCTIONS

In this section, we briefly recall the concept of deep neural
networks as well as the result presented in Grüne (2021)
that states the ability of neural networks to overcome the
curse of dimensionality for separable Lyapunov functions.

Neural networks take an input vector and process it
through a certain number of layers in order to produce
an output. For our purpose of representing a control
Lyapunov function, we use the input vector x ∈ Rn and a
one-dimensional output W (x; θ) ∈ R. This means that the
input layer possesses N0 = n neurons and the output layer
consists of only one neuron. The numbers Nl of neurons
in the remaining layers (called hidden layers) may vary.
The vector θ ∈ Rp represents parameters that determine
the output of the neural network and have to be learned
during the training process. Denote with ylk ∈ R the value
of the neuron at position k in layer l. It is determined by
the values of the neurons at the previous layer via

ylk = σl

Nl−1∑
i=1

wlk,i y
l−1
i + blk

 ,

where σl : R → R is the so-called activation function of
the l-th layer and wlk,i, b

l
k ∈ R are parameters that are

comprised in θ. The activation function of the output layer
is usually chosen to be an affine function. Figure 1 shows a
neural network with one hidden layer, where the activation
of the neuron y11 is highlighted. Note that in our setting
we have y0i = xi for i = 1, . . . , n and y21 = W (x; θ).
In Grüne (2021) it was shown that deep neural networks
can overcome the curse of dimensionality for Lyapunov
functions. To this end, consider the particular case of
system (1), where the right-hand side does not depend on
u, i.e., we have a differential equation and the definition
of a smooth control Lyapunov function simplifies to the
classical definition of a Lyapunov function.

y01

y02

y0n

y1N1

y13

y12

y11
w1

1,1w1
1,1

w1
1,2w1
1,2

w1
1,nw1
1,n

y21...
...

Fig. 1. Neural network with one hidden layer.

Theorem 4. (see Grüne (2021)). Let b, c, ε > 0 and
dmax ∈ N. Consider a sequence of compact sets Kn ⊂
[−c, c]n. Define F to be the set of Lipschitz functions
f : Rn → Rn, n ∈ N, such that there exists an invertible
matrix T ∈ Rn×n, ‖T‖ ≤ b, such that there exists a
separable Lyapunov function with degree dmax for the
differential equation ẋ(t) = Tf(T−1x(t)). Then we can
construct a neural network that approximates for every
f ∈ F a Lyapunov function V with

inf
θ∈Rp

max
x∈Kn

‖W (x; θ)− V (x)‖∞ ≤ ε

and a complexity of

Nε = O(n1+dmaxεdmax).

Theorem 3.3 in Grüne (2021) identifies systems that admit
a separable Lyapunov function, i.e., systems with a right
hand side function f ∈ F . To this end, nonlinear small-
gain theory for large-scale systems is used, see, e.g., Rüffer
(2007), Dashkovskiy et al. (2010), and Dashkovskiy et al.
(2011). The state space together with the right-hand side
function are decomposed into s subsystems. If each of
the subsystems possesses an ISS-Lyapunov function (see
Sontag and Wang (1995)) with suitable assumptions on
its gains, we can conclude the existence of a separable
Lyapunov function for the original system. In the next
section, we discuss the potential of extending this approach
for nonlinear control systems.

4. EXISTENCE OF SEPARABLE CONTROL
LYAPUNOV FUNCTIONS

Consider a nonlinear control system of the form (1). We
assume that the state space, the control space, and the
controlled vector field can be decomposed as

x =

z1
z2
...
zs

 , u =

ũ1
ũ2
...
ũs

 , f(x) =

f1(x, ũ1)
f2(x, ũ2)

...
fs(x, ũs)

 ,

with zj ∈ Rdj , fj : Rn → Rdj , and ũj ∈ Rβj such that∑s
j=1 dj = n and

∑s
j=1 βj = m. Using this notation we

allow the case βj = 0 for some j, i.e., there may exist
subsystems that do not depend on the control input u. By
defining

z−j := (z1, . . . , zj−1, zj+1, . . . , zs)
T

we can now write the control system ẋ = f(x, u) as s
subsystems of the form

Σj : żj = fj(x, ũj) = fj(zj , z−j , ũj), 1 ≤ j ≤ s. (5)

This decomposition can be represented with a directed
graph that consists of s vertices representing the respective
subsystems. Further, there exists an edge from node i to
node j if the subsystem i influences the subsystem j, i.e.,
if the function fj depends on the vector zi. Let us consider
the following nonlinear control system that is proposed in
Section 4 in Chen and Astolfi (2020):

ẋ1 = x3 + u,

ẋ2 = x1 − x2 + x21,

ẋ3 = x2 − x3.
(6)

The graph corresponding to example (6) is shown in Fig-
ure 2. Applying the backstepping procedure (cf. Section

x1

x2 x3

Fig. 2. The graph corresponding to the system (6).

6.1 in Sepulchre et al. (1997)) yields the existence of a
control Lyapunov function for the system (6). However,
the obtained control Lyapunov function does not have the
desired separable form.
We now want to use small-gain theory in order to construct
a separable control Lyapunov function as sum of Lyapunov
functions of the single subsystems. To this end, we as-
sume that for every subsystem Σj there exist a function
Vj : Rdj → R, gains αj ∈ K∞ and γi,j ∈ K∞, 1 ≤ i ≤ s,
and (provided βj > 0) a feedback function Fj : Rdj → Rβj

such that

DVj(zj)fj(zj , z−j , Fj(zj)) ≤ −αj(‖zj‖) +
∑
i 6=j

γi,j(‖zi‖).

(7)
In other words, Vj is an ISS-Lyapunov function for the
system

żj = fj(zj , z−j , Fj(zj)), (8)

where z−j is seen as the control input. In the following, we
discuss whether there exists a vector r ∈ Rs such that the
function

V (x) :=

s∑
j=1

rjVj(zj) (9)

is a Lyapunov function for the ordinary differential equa-
tion

ż1 = f1(z1, z−1, F1(z1)),

...

żs = fs(zs, z−s, Fs(zs)).

In this case, Theorem 4 yields that V can be approximated
with a neural network without suffering from the curse of
dimensionality. Furthermore, note that this immediately
implies that V defined in (9) is a control Lyapunov
function for the system (1), which we assumed to be given
through the subsystems (5).
In Chen and Astolfi (2020), the authors formulate a
sufficient condition on the structure of the corresponding
graph together with a condition on a subset of the nodes.

To this end, the notion of an active node is defined. The
node number j is called active if for a given ISS-Lyapunov
function Vj and gains γi,j it holds that for any arbitrary
small gain αj , there exists an appropriate feedback Fj
such that the inequality (7) holds. This means the gain
αj of an active node j can be chosen arbitrarily small.
For the case of quadratic gain functions, it is then shown
that there exists a coefficient vector r ∈ Rs such that V
defined in (9) is in fact a control Lyapunov function for (1)
if each directed cycle of the graph describing the system
contains at least one active node, see (Chen and Astolfi,
2020, Proposition 3). In the case of non-quadratic gain
functions, the authors use augmented nodes in order to
reduce this case to the case of quadratic gains. Together
with a condition on these augmented states, the property
of having at least one active node in every directed cycle of
the graph again leads that V is a CLF for an appropriate
choice of coefficients r ∈ Rs, see (Chen and Astolfi, 2020,
Chapter 3).
Overall we conclude that provided there exists an ISS-
Lyapunov function for every subsystem (8), we can use
nonlinear small-gain theory to establish the existence of
a separable CLF, i.e., to establish the existence of a CLF
that can be approximated without suffering from the curse
of dimensionality.
Let us come back to example (6). For each subsystem
Σj , 1 ≤ j ≤ 3, the function Vj(xj) = x2j is an ISS-
Lyapunov function. As there is only one directed cycle
in the corresponding graph (cf. Figure 2) and since x1 is
an active node, cf. (Chen and Astolfi, 2020, Chapter 4),

we can conclude that V (x) =
∑3
j=1 rjx

2
j is a CLF for

an appropriate choice of the coefficients rj . For example,
those can be chosen as rj = 1, 1 ≤ j ≤ 3. The use of a
neural network in order to compute such a CLF is shown
in Section 5.
Let us now consider a variation of the system (6):

ẋ1 = x3 + u,

ẋ2 = x1 − x2 + x22,

ẋ3 = x2 + x3.

(10)

Again, we are concerned with the existence of a separable
CLF of the form

V (x) =

3∑
j=1

Vj(xj). (11)

However, the third subsystem ẋ3 = x2 + x3 is not ISS,
whence we cannot apply the same construction as in ex-
ample (6). The fact that the third subsystem is not asymp-
totically stable if all influences from other subsystems are
neglected even implies that there cannot exist a CLF of
the form (11). This is proven in the following lemma.

Lemma 5. Consider a control system ẋ = f(x, u) of the
form

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2, u),
(12)

which has an asymptotically controllable equilibrium at
the origin. Let V be a possibly nonsmooth, Lipschitz
continuous control Lyapunov function in the Dini sense
for the system. Assume that for the ODE ẋ1 = f(x1, 0)
the origin is not asymptotically stable. Then V is not of
the form

V (x) = V1(x1) + V2(x2).

Proof. Assume that there exists a CLF V (x1, x2) =
V1(x1) + V2(x2) for the ODE (12). Since we assumed that
the first system with x2 = 0 is not asymptotically stable,
there exists an x1 6= 0 in the domain of V1 such that

D+(V1(x1), f1(x1, 0)) ≥ 0,

because otherwise V1 would be a Lyapunov function in the
Dini sense for ẋ1 = f(x1, 0), implying asymptotic stability
of the origin by, e.g., (Braun et al., 2021, Theorem 4.5),
contrary to the assumption.
Since V is assumed to be a Lyapunov function we can
conclude that V2 has a minimum at the origin. Thus, the
Dini derivative of V2 in direction f2(x1, 0, u) satisfies

D+(V2(0), f2(x1, 0, u)) ≥ 0

for all u ∈ U . This implies that D+(V2(0), w2) ≥ 0 for all
w2 ∈ conv f2(x1, 0, U). Since all w ∈ conv f(x1, 0, U) are
of the form wT = (wT1 , w

T
2) with w1 = f1(x1, 0) and w2 as

above, this yields

D+(V (x1, 0), w) ≥D+(V1(x1, 0), w1)

+D+(V2(x1, 0), w2) ≥ 0

for all w ∈ conv f(x1, 0, U). This is a contradiction to V
being a CLF for (12). 2

In this section we have discussed a sufficient as well as
a necessary condition for the existence of a separable
CLF, i.e., conditions regarding a curse-of-dimensionality-
free computation with deep neural networks. In the next
section we illustrate these results with numerical examples.

5. TRAINING ALGORITHM AND NUMERICAL
EXAMPLES

We start with proposing a suitable network architecture.
Our neural network consists of 2 hidden layers, see Fig-
ure 3. The input layer matches the state space. The first
hidden layer is used to compute a linear transformation
that decomposes the system into subsystems, cf. (5). Thus,
we construct this layer as s sublayers with a chosen number
of dmax nodes each and use the identity as activation func-
tion. The node zij represents the i-th entry of the vector
zj . The second hidden layer is then designed to compute
the ISS Lyapunov functions for each of the subsystems.
To this end, we have s sublayers Y1, . . . , Ys, whose inputs
are the nodes z1, . . . , zs, respectively. We set the activation
function to be the softplus function σ(·) = ln(e(·)+1). Each
sublayer has M nodes y1j , . . . , y

M
j . A linear combination

of the outputs of these sublayers then yields the output
value of the neural network W (x; θ). Note that a crucial
point of the network design is that the decomposition into
subsystems is not given a priori, but computed by the first
hidden layer. Moreover, we want to stress that it is possible
to merge the two hidden layers into one hidden layer.

In order to be able to train the neural network, we need
to define a loss function that measures for a given point
x ∈ Rn whether the output W (x; θ) satisfies the conditions
(2) and (3). Thus, we define the loss function as weighted
sum of functions that model the three inequalities in (2)
and (3). To this end, we first state a Lemma that simplifies
the inequality (3) for systems with an affine linear control
input.

x1

x2

xn

z1
1

zdm1

z1
s

zdms

y1
1

yM1

y1
s

yMs

W

Y1

Ys

...

...
...

...
...

... ...

Fig. 3. Architecture of the neural network with the abbre-
viations dm := dmax and W := W (x; θ).

Lemma 6. Assume we have given a system (1) that is of
the form

ẋ = f(x(t), u(t)) = h(x(t)) + g(x(t))u,

where h : Rn → Rn and g : Rn → Rn×m. Let V ∈ C1(D,R)
for some D ⊂ Rn and let α3 ∈ K∞.

(i) Let U = [−C,C]m for some C > 0. Then the
inequality (3) holds if and only if

α3(‖x‖) +DV (x)h(x)− C‖DV (x)g(x)‖1 ≤ 0. (13)

(ii) Let U = Rm. Then the inequality (3) holds if and
only if the following implication holds:

DV (x)g(x) = 0 =⇒ α3(‖x‖) +DV (x)h(x) ≤ 0.

Proof. Case 1 holds since we have

inf
u∈U

DV (x)f(x, u)

=DV (x)h(x) + inf
u∈U

m∑
i=1

(DV (x)g(x))i ui

=DV (x)h(x)− C
m∑
i=1

|(DV (x)g(x))i|

=DV (x)h(x)− C‖DV (x)g(x)‖1.
The second case follows from the first case as C can be
chosen arbitrarily large. 2

Since the implication in (ii) is difficult to be implemented
numerically, we use a mapping ν : Rn → R≥0 to circum-
vent it. Provided the values of ν are large enough such that
for all x ∈ D with DV (x)g(x) 6= 0 it holds that

ν(x) ≥ (α3(‖x‖) +DV (x)h(x))(‖DV (x)g(x)‖1)−1,

then the implication in (ii) holds if and only if

α3(‖x‖) +DV (x)h(x)− ν(x)‖DV (x)g(x)‖1 ≤ 0. (14)

Hence, we use the inequality (14) in our implementation.
By setting ν(x) ≡ C, we obtain the inequality (13) from
case (i). Overall, we arrive at the following cost function
L that depends on the state x as well as on the neural
network output W (x; θ) and its derivative:

L(x,W (x; θ), DW (x; θ)) := ([W (x; θ)− α1(‖x‖)]−)
2

+ ([W (x; θ)− α2(‖x‖)]+)
2

+ µ
([
α3(‖x‖) +DW (x; θ)h(x)

−ν(x)‖DW (x; θ)g(x)‖1
]
+

)2
,

where [·]+ := max(·, 0), [·]− := min(·, 0) and µ > 0
is a weighting factor. Our computations were performed
with Python 3.8.10 and TensorFlow 2.9.1 (see Abadi et al.
(2015)) on Ubuntu 20.04 with the following CPU: Intel(R)
Xeon(R) E-2278G (3.40GHz). At first, we consider ex-
ample (6) and want to approximate a CLF on the cube
[−1, 1]3. The network displayed in Figure 3 is used with
s = 3 sublayers, dmax = 1 and M = 256. The training
is performed using the Adam optimizer from TensorFlow
and 400 000 training points in [−1, 1]3. Further, we use the
comparison functions α1(r) = 0.01r2, α2(r) = 100r2, and
α3(r) = 0.1r2. The training was stopped after 30 epochs
with an error of

max
i=1,...,N

L(xi,W (xi; θ), DW (xi; θ)f(xi)) ≈ 4.56 ∗ 10−4,

where x1, . . . , xN are 400 000 validation points. The com-
putation time was 328 seconds. Figure 5 shows the com-
puted CLF on the (x1, x2)-plane. The mesh plot depicts
the directional derivative resulting from the control value
that we use in (14), i.e.,

DW (x; θ)f(x, ũ(x)) =

DW (x; θ)h(x)− ν(x)‖DW (x; θ)g(x)‖1.
We can extend example (6) to a higher dimensional state
space by extending the cycle of the graph in Figure 2. A
corresponding 6-dimensional example is then given by

ẋ1 = x6 + u,

ẋ2 = x1 − x2 + x21,

ẋj = xj−1 − xj , 3 ≤ j ≤ 6.

(15)

Performing the training algorithm with the same settings
as for the 3-dimensional example, but tighter bounds
α1(r) = 0.1r2 and α2(r) = 10r2 yields a maximal error
in the validation data less than 10−3. The computation
time was 820 seconds. Figure 5 shows the computed
approximate CLF on the (x2, x3)-plane.
Furthermore, for example (10) the training process does
not yield a satisfying result if we set the transformation
of the first hidden layer to be the identity, cf. Lemma 6.
However, the situation changes if we allow the neural
network to compute a suitable state transformation. This
effect as well as different graph structures and control
systems with a non-affine control input are part of current
research.

x1

1.0
0.5

0.0
0.5

1.0

x2

1.0
0.5

0.0
0.5

1.0

 W,
 DWf

4
3
2
1

0
1

Fig. 4. Approximate control Lyapunov function (solid) and
its corresponding orbital derivative (mesh) for the
system (10) on the (x1, x2)-plane.

x2

0.50 0.25 0.00 0.25 0.50
x3

0.50
0.25

0.00
0.25

0.50

 W,
 DWf

4

3

2

1

0

1

2

3

Fig. 5. Approximate control Lyapunov function on
[−0.5, 0.5]2 on the (x2, x3)-plane for the system (15)
as well as its corresponding orbital derivative on
[−0.5, 0.25]2.

6. CONCLUSION AND OUTLOOK

In this paper, we have discussed the use of neural networks
for computing control Lyapunov functions without suffer-
ing from the curse of dimensionality. To this end, we gave
examples concerning the existence and non-existence of
separable control Lyapunov functions. These examples mo-
tivate future research on conditions for the existence of a
separable CLF. Moreover, since Lyapunov functions can be
viewed as solutions of particular kinds of Hamilton-Jacobi
Bellman PDEs, we are interested in the generalization to
optimal control problems and a curse-of-dimensionality-
free computation of optimal value functions.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.
(2015). TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from tensor-
flow.org.

Barron, A. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transac-
tions on Information Theory, 39(3), 930–945.

Beneventano, P., Cheridito, P., Graeber, R., Jentzen, A.,
and Kuckuck, B. (2021). Deep neural network approxi-
mation theory for high-dimensional functions. Preprint,
arXiv: 2112.14523.

Braun, P., Grüne, L., and Kellett, C. (2021). (In-)Stability
of Differential Inclusions. Notions, Equivalences, and
Lyapunov-like Characterizations. Springer, Cham.

Chen, K. and Astolfi, A. (2020). On the active nodes of
network systems. In 59th IEEE Conference on Decision
and Control (CDC), 5561–5566. IEEE.

Cybenko, G. (1989). Approximation by superpositions of
a sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4), 303–314.

Darbon, J., Langlois, G., and Meng, T. (2020). Over-
coming the curse of dimensionality for some Hamilton-
Jacobi partial differential equations via neural network
architectures. Research in the Mathematical Sciences, 7.

Dashkovskiy, S., Ito, H., and Wirth, F. (2011). On a small
gain theorem for ISS networks in dissipative lyapunov
form. European Journal of Control, 17(4), 357–365.

Dashkovskiy, S., Rüffer, B., and Wirth, F. (2010). Small
gain theorems for large scale systems and construction
of ISS Lyapunov functions. SIAM Journal on Control
and Optimization, 48(6), 4089–4118.

Gonon, L. and Schwab, C. (2021). Deep relu neu-
ral networks overcome the curse of dimensionality for
partial integrodifferential equations. Preprint, arXiv:
2102.11707.

Grüne, L. (2021). Computing Lyapunov functions using
deep neural networks. Journal of Computational Dy-
namics, 8(2), 131–152.

Han, J., Jentzen, A., and E, W. (2018). Solving high-
dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sci-
ences, 115(34), 8505–8510.

Hornik, K. (1991). Approximation capabilities of multi-
layer feedforward networks. Neural Networks, 4(2), 251–
257.

Kang, W. and Gong, Q. (2022). Feedforward neural
networks and compositional functions with applications
to dynamical systems. SIAM Journal on Control and
Optimization, 60(2), 786–813.

Kang, W., Sun, K., and Xu, L. (2021). Data-driven
computational methods for the domain of attraction and
Zubov’s equation. Preprint, arXiv: 2112.14415.

Khansari-Zadeh, S. and Billard, A. (2014). Learning con-
trol Lyapunov function to ensure stability of dynamical
system-based robot reaching motions. Robotics and
Autonomous Systems, 62(6), 752–765.

Long, Y. and Bayoumi, M. (1993). Feedback stabiliza-
tion: Control Lyapunov functions modelled by neural
networks. In Proceedings of 32nd IEEE Conference on
Decision and Control, 2812–2814. IEEE.

Mhaskar, H. (1996). Neural networks for optimal ap-
proximation of smooth and analytic functions. Neural
Computation, 8(1), 164–177.

Pinkus, A. (1999). Approximation theory of the MLP
model in neural networks. Acta Numerica, 8, 143–195.

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and
Liao, Q. (2017). Why and when can deep-but not
shallow-networks avoid the curse of dimensionality: A
review. International Journal of Automation and Com-
puting, 14(5), 503–519.

Richards, S., Berkenkamp, F., and Krause, A. (2018).
The Lyapunov neural network: Adaptive stability cer-
tification for safe learning of dynamical systems. In
Proceedings of the 2nd Conference on Robot Learning,
466–476. PMLR.

Rüffer, B. (2007). Monotone dynamical systems, graphs,
and stability of large-scale interconnected systems. Ph.D.
thesis, Universität Bremen.

Sepulchre, R., Janković, M., and Kokotović, P. (1997).
Constructive Nonlinear Control. Springer, London.

Sontag, E. and Wang, Y. (1995). On characterizations of
the input-to-state stability property. Systems & Control
Letters, 24, 351–359.

Sontag, E. (1983). A Lyapunov-like characterization of
asymptotic controllability. SIAM Journal on Control
and Optimization, 21(3), 462–471. doi:10.1137/0321028.

