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Abstract
We report on themotion of a spinning sleeping top on an inclined plane. Below a critical inclination
angle the sleeping tops are force free. The trajectory of a sleeping top onweakly inclined planes in the
adiabatic limit is invariant of the angular frequency of the top and thus invariant under a rescaling of
the time, however not invariant under time reversal. The stationary trajectory of the sleeping top is
characterized by itsHannay type geometric angle to the in plane horizontal direction. At larger
inclinations of the plane the stationarymotion of the top becomes unstable and the top accelerates
downhill. The behavior points towards a complex law of dry friction of the contact point between the
top tip and thematerial of the inclined plane that depends on a slip parameter.We propose a
phenomenological law of dry friction that can explain the relaxation of the top into the sleeping
position, the geometric behavior of the top trajectories, and the instability of the stationarymotion at
larger inclination angles.

1. Introduction

Ageometric phase is a phase difference acquired over each period of a cyclic adiabatic process. The geometric
phase is a powerful concept in both, quantum [1] and classical [2] physics. Geometric phases are connected to
the anholomony of non integrableHamiltonian systems, geometric phases however also appear under
dissipative conditions [3]. The geometric phase is accumulated under adiabatic, i.e. slow enough conditions
independent of the speed, while the system follows a path in parameter space. The geometric phase also named
Berry-phase in quantum systems andHannay-angle in classical systems is invariant under rescaling of the time
schedule withwhich one passes the path in parameter space. It also carries along a gauge freedomof choice of
reference points and the concept has been used in high energy particle physics [4], in solid state physics of
topologicalmaterials [5–7], in the explanation of the rotation of the Foucault-pendulum [8], in the explanation
of the propulsion of active swimmers in lowReynolds number fluids [9, 10], the propulsion of light in twisted
fibers [11, 12], the propulsion of acoustic [13] or stochastic [14]waves, themotion of edgewaves in coupled
gyroscope lattices [15], the rolling of nucleons [16] and in the control of the transport ofmacroscopic [17] and
colloidal [18–21] particles abovemagnetic lattices. The independence of the geometric phase of the speed,makes
the Foucault pendulum rotation independent of the length of the pendulumaswell as independent of the value
of the gravitational acceleration, similarly the propulsion of an active shape changing swimmer is independent of
the viscosity of the embedding fluid.

Experimental evidence for a geometric phase respectively aHannay angle thus requires the invariant
response of a self organizing phase or angle to the speed of the external drive respectively the speed of the
autonomousmotion. Theoretical proof of the existence of a geometric phase or angle in the non dissipative case
must express this angle in terms of action angle variables with the angle variable being part of the set of the
adiabatic variables. In the case of dissipative dynamics the phase respectively anglemust be part of the adiabatic
variables.
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Dry friction is a force counter acting relative lateralmotion of two solid surfaces in contact. Twonon-
moving surfaces resist a relativemotionwith static friction. Static friction is stronger than dynamic friction of
surfaces that are already in relativemotion. Coulomb’s law of friction states that dynamic friction is independent
of the sliding velocity. Dry friction is a phenomenological description of very complex underlying physical
processes occurring at both surfaces. It is therefore not surprising offinding situations where those
phenomenological equations fail [22].

Here we report on experiments on themotion of sleeping tops on inclined planes [23–26] that exhibits a
Hannay-like angle of its trajectory, that for somematerials of the top and the inclined plane is independent of the
spinning rate but not independent of the sign of the spin, and not independent of thematerial used. It can be
explained using a phenomenological generalized expression for the dry friction force of the topwith the inclined
plane thatwe postulate to be a homogeneousGalilei invariant function of the velocities at the contact point. The
velocity independent friction law of Coulomb is clearly violated andwemust replace it by a dry dynamic friction
force law that depends on the sliding velocity.

2. Experiments

Weperformed experiments with the three different tops each having a roughly spherical base of radiusR (see
figure 1(a)). Themidpoint rm of the spherical base is sitting on the position = + Rr r nm t ˆ with n̂ the outward
normal to the inclined plane and rt the point where the base of the top touches the inclined plane. Themidpoint
rm is part of thefigure axis of the axisymmetric top and thus the center ofmass rcm of the top is located at

= + +R fr r n fcm t ˆ ˆ with f̂ the unit vector along the figure axis and f the distance of the center ofmass from rm.

Themoment of inertia = - +I II ff ffd f( ˆˆ) ˆˆ has the largest eigenvalue If along thefigure axis and is degenerate
Id in the directions perpendicular to f̂ . The properties of each of the three tops are listed infigure 1(c).We placed
the tops on an inclined planesmade of either steel or PMMA.The inclination angleα of the plane is given by
a = -n garccos( ˆ · ˆ), where ĝ denotes the unit vector in direction of gravity.

Figure 2 shows trajectories with snapshots of the tops on a steel inclined planewith inclination a = 0.09.
Contrary to non spinning objects that exhibit force free and non accelerated steadymotion only for one specific
inclination angle of the plane ( a m=tan g), all tops aremoving along force free trajectories of their center of
mass at constant speed for all angles below a critical inclination angle a a m< = arctanc c once they are asleep,

i.e. once their figure axis f̂ andmomentary angular frequencyω are aligned parallel to each other. They reach the
sleeping position via a cascade of relaxations first nutating and later precessing before they reach their quiet life
[27] behavior. Thewooden top shows trajectories that are nonadiabatic, i.e. the slope jtan * of the force free

Figure 1. (a) Scheme of a spinning top on an inclined planewith touching point rt , center of curvature rm and center ofmass rcm, unit
vector along gravity ĝ , normal vector n̂ , andfigure axis vector f̂ . (b)The trajectory of a force free sleeping top in the stationary state is
at an angle j* to the horizontal of the inclined plane. (c)The characteristics of the three tops used in the experiment.
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trajectorymeasuredwith respect to horizontal direction ´n gˆ ˆ of the inclined plane (see figure 1(b)) depends on
the angular frequency of the top j w ¹d d 0wood

* * . Thismeans that for wooden tops the anglej* is not a
geometric phase. Only in the adiabatic limit, i.e. for low angular frequencies that not yet render the figure axis
instable does the slope of thewooden top become independent of the angular frequency. Themetal tops are in
the adiabatic limit for all three angular frequencies, with an angular frequency independent slope
j w »d d 0metal
* * of the trajectory. The invariance of the trajectory of the top under a change of the stationary

angular frequency of the top is evidence forj*being a geometric phase.
The dependence of the slope of a top on the angular frequencies can be shownmost prominently when using

a top rotating at angular frequency wt loadedwith a gyroscope rotating in opposite direction at amuch larger
frequency wg ( w w w< -0 1gt g

2·  ) that keeps the figure axis of the top stable even at zero angular frequency
of the top w = 0t . In this configuration the coupling between the top and the loaded gyroscopes lets the angular
frequency slowly pass through zero and reverse direction. The resulting trajectory of the gyroscope loaded top is
shown infigure 3. It does not reverse direction since only the horizontalmotionflips while the downhillmotion
remains the same proving that the problem is not time reversal invariant a property it shares with the behavior of
a tippy top [28]. The gyroscope loaded top however neither changes directionwhile the angular frequency wt

slows downnorwhen it speeds up again nomatter themagnitude of wt . This again is strong evidence thatj* is
indeed a geometric, not a dynamic angle.

Infigure 4we plot jtan
2

* as a function of atan . The experimental data shows stationary geometric behavior

with a frequency independent value of jtan
2

* for a m<tan c . The stationary behavior of the top becomes

Figure 2.Trajectories of sleeping topsmade of wood (top) and aluminum (bottom) on an inclined a = 0.09 steel plane. In the
adiabatic limit for low angular frequencies the slope of the trajectory jtan * ofmetal tops becomes independent of the angular
frequencywhich provides evidence for j* being a geometric phase. The scale box is 32×32 mm2.

Figure 3.Trajectory of a top (red in the scheme) incorporating a counter rotating gyroscope (black in the scheme) having a steel tip
and precessing on an inclined a = 0.07 steel plate. The trajectoryflips the direction from j j p j = -i f i

* * *while the rotation
frequency is slowly reversed by the gyroscope loaded top. The behavior is in accordancewith equation (11) of the phenomenological
model. The independence of the travel direction of themagnitude of the top’s angular frequency in both branches of the zig-zag
trajectory points toward j* being a geometric angle.
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unstable at a m=tan c c and =j stan c2

* . For a m>tan c there is no stationary behavior and the top rather

accelerates downhill along ´ ´n g n( ˆ ˆ) ˆ with an asymptotic value of =jtan 1
2

* .

If we have a stable stationary solution that can be described by ourmodel explained in section 3 then the
tangent of the inclination anglemust be equal to the dynamic friction coefficient m sdyn *( ) of themodel, i.e.

a m= stan dyn *( ). Themodel friction coefficient depends on the stationary slip parameter s*which if themodel

is rightmust relate to the slope of bisector between the horizontal and the trajectory j = stan 2* *( ) .We find a
regimewhere both m >ds d 0* and j a >d d 0* wherewe can fit the data nicely to themodel using the
empirical equation:

m m=
-

s
s s s

s

2
1dyn c

c

c
2

( ) ( ) ( )

for the dependence of the friction coefficient on the slip parameter that predicts m = 0 for zero slip =s 0* and
maximal m m= c for slip =s sc. The experimental data agrees with themodel also in the regime m m> c since
there m <ds d 0* and the stationary solution is predicted to be unstable and thus the experimental top and the
model top accelerates downhillj p= 2* withmaximal slip s=1. At very low inclination angles atan 1
the experimental data exhibits negative slope j a <d d 0* which is incompatible with ourmodel because it
predicts such states to be unstable. It is however clear that rolling without slip becomes impossible when the
lever arm ´f nR ( ˆ ˆ) of the top for very low inclination angles of the plane becomes so small that surface
roughness prevents thematerial velocity of the top at the contact point to adapt to the zeromaterial velocity of
the inclined plane.We have not incorporated effects of surface roughness into ourmodel.We thus believe these
deviations of the experimental data fromour simplemodel to be caused by surface roughness. Surprisingly the
behavior of themetal tops nevertheless is geometric e.g. the experimentallymeasured anglej* remains
independent of the angular frequencyω of the top. The behavior at low inclination angles, however, becomes
shape dependent and topswith different tip radiusR deviate from each other (see the the data of the aluminum
and steel top on PMMA). The trajectory of thewooden top is neither angular frequency independent nor does it
follow the empirical equation (1)up to the critical inclination.

3. Phenomenologicalmodel

In order to get a force free behavior of the top for not only onemarginal inclination angle, we have to postulate a
constitutive equation for the dry friction differing from the standardCoulomb friction law.We propose a
constitutive phenomenological equation of the friction force on a body 1 sliding and rolling on a support 2 that
reads

m= -
-
-

F n F
v v

v v
, 2dyn

t t

t t
fr 21

1 2

1 2
( ˆ · )

∣ ∣
( )

Figure 4.Measurement of jtan 2*( ) as a function of atan for different tops on different planes. The initial angular frequency of the
topswere w » -s200 1. For themetal tops the angular frequencies fell in a rangewhere the trajectory angle does not depend on the
angular frequency j w¶ ¶ » 0* , i.e. where j* behaves consistent with the predictions for a geometric phase. The experimental tops
exhibit a phase transitionwith stationary behavior for a m<tan c and downhill acceleration for a m>tan c . The solid lines arefits to
the stable branches of equation (1) including the dynamic instability near a m=tan c with parameters indicated in the legend. The
dashed lines are the instable branches of equation (1).We believe the deviation of the experimental data at very small angles fromour
model to be due to effects of surface roughness.
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where mdyn denotes the friction coefficient. The expression n F21ˆ · denotes the normal force of the support 2
onto the body 1, n̂ is the outward normal to the support 2. There are three velocities defining the local dynamics
near the contact point: the first two velocities =iv , 1, 2t

i are thematerial velocities of the two bodies i=1, 2 at
the contact point. The third velocity is the velocity of the contact point d dtrt . The difference between the
contact point velocity and thematerial velocity at the contact point -d dtr vt t

i is the relative velocity of contact
point renewal, i.e. the velocity withwhich newmaterial points of the surface of body i are explored.

- + -d dt d dtr v r vt t t t
1 2∣ ∣ ∣ ∣ is the speedwithwhich new contacts between the surfaces of both bodies are

explored. The key to achieve geometric behavior in the adiabatic limit is to approximate the dynamic friction
coefficient to be a homogeneous function of the three velocities:

m l l l l m=d dt d dtv v r v v r, , , , 3dyn t t t dyn t t t
1 2 0 1 2( ) ( ) ( )

equation(3) is probably violated by thewooden top but should be a good approximation for themetal tops.
Equation (3) is compatible with the standardCoulomb law of dry friction, and it is necessary to achieve a
geometric behavior of the trajectory direction of the spinning top. If we also assume the friction to be surface
isotropic andGalilei invariant, we canwrite the friction as

m m= s , 4dyn dyn( ) ( )

where theGalilei invariant scalar

=
-

- + -
s

d dt d dt

v v

r v r v
, 5t t

t t t t

1 2

1 2

∣ ∣
∣ ∣ ∣ ∣

( )

describes the ratio of sliding speedwith respect to the total speed of contact point renewal. If s=0 the relative
material velocities of both bodies at the contact point coincide such that both bodies roll on each other. For

= -v vt t
1 2 and =d dtr 0t we have a value of s=1 and both bodies slide on a resting contact point into opposite

directions. Hence ourmodel generalizes the Coulomb law of friction for sliding and rolling to amixed situation,
where both bodies slide and roll at the same time. For a sliding and rolling spherical surfaced body 1 of isotropic
local curvature -R 1on aflat resting support 2 ( w= =v 02 2 ) the velocity of the contact point is

w= + ´d dt Rr v nt t
1 1( ˆ ), where w1 is the angular frequency. The parameter s simplifies to
w w= ´ + + ´s v R Rn v nt t

1 1 1 1( ∣ ˆ ∣ ∣ ( ˆ )∣) andwe anticipate the friction constant of ideally smooth surfaces to
be a function of the slip parameter m m= sdyn dyn( ). Let us see what thismodel of friction predicts for a top
spinning on an inclined plane.

Since the top is a solid body the velocities of the touching point of the top and the center ofmass are related
by w= - ´ +R fv v n ft cm ( ˆ ˆ), where w = -I L1 · is the angular velocity of the top, I themoment of inertia
and L the angularmomentum. The gravitational weight = mF gcm acts on the center ofmass of the top ofmass
m. The vector = gg ĝ is the gravitational accelerationwith g itsmagnitude and ĝ the unit vector in direction of
g . Contrary to the standard law of dry frictionwe anticipate a friction force m= - -s mF n gdyn v

v
fr

t

t
( )( ˆ · )

according to equation (2). The total force = +F F Ft 21 fr acting on the touching point therefore is the sumof the
normal counterforce of the inclined plane = -mF nn g21 ˆ ˆ · preventing the top from accelerating into the plane
and the unconventional friction force.Wemeasure the torque t = - ´r r Ft cm t( ) with respect of the center of

mass position. The equation ofmotion for the orientation of the top reads t = Ld

dt
, where w= ´f fd

dt
ˆ ˆ and the

equation ofmotion of the center ofmass position is given by = +m v F Fd

dt cm cm t .

It is straightforward to compute the stationary state for which all time derivatives, forces, and torques vanish.
Wemark the quantities of the stationary state with a star and they are given by

w

j
= ´ ´

Rf

v
n g ntan

2
6t

g

*

* *
*

∣ ˆ ∣
( ˆ ˆ) ˆ ( )

= - +
R

f
ff n g 7
g

* *ˆ ˆ ˆ ˆ ( )

w w= f 8* * *ˆ ( )

w w
w= + ´

Rf Rf

v v
n gsign , 9cm

g

t

g

*

* *

*

* *
*

∣ ˆ ∣ ∣ ˆ ∣
( )( ˆ ˆ) ( )

where

= - -
´

f
R

f

R

f

n g n g
1 10

g

2
*

⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( ˆ · ˆ) ( ˆ ˆ) ( )

is the stationary component of f*ˆ along ĝ and the stationary angular frequency has an arbitrarymagnitude w*.
Themodel predicts:
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• a down hill stationary sliding velocity of the spinning top for inclination angles where a non spinning top
sticks to the support.

• a horizontal stationary velocity independent of thematerial of the top and independent of thematerial of the
inclined plane

• a stationary orientation such that the center ofmass resides vertically above the touching point

• a stationary trajectory of the top that depends only on the friction coefficient, the inclination angle, and the
sign of the angular frequency.

The stationary state is stable if m >d ds 0dyn and unstable otherwise as can be checked by numerically
solving the equations ofmotion for various sets of parameters ormore generally via a linear stability analysis.
Figure 5 shows a simulation of a top not yet at the stationary velocity but slowly approaching it. The spinning top
initially nutates, accelerates and then reaches a state where the nutations have died away. In the second stage the
top precesses and the velocity spirals around an average velocity of the top. In the final state the top is asleepwith
thefigure axis alignedwith themomentary angular frequency and the top rolling along the inclined plane
horizontal direction and the same time sliding into the down hill direction, i.e. the travel direction is with an
angle

m
j

w a= = -s tan
2

sign tan 11dyn *
*

*⎛
⎝

⎞
⎠

( ) ( ) ( )

to the horizontal direction and the top ismoving at constant speed along a path, that is completely independent
of the geometric properties and themagnitude of the angular velocity of the top. The theoretical dissipative
model for this reason predicts thatj* is indeed a geometricHannay type angle. The top travelsmore andmore
downhill the closer the inclination angle is to the critical inclination angle where the velocity of the top diverges.
There is no stationary state beyond the critical inclination angle.

For themetal tops themodel seems to predictmost but not all characteristics observed in the experiments.
Thewooden tops behavior is farmore complex and out of the scope of the present geometric and thus adiabatic
dissipative description.

4. Conclusions

Ourmeasurements show a force freemotion of sleeping tops on inclined planes at constant velocity for
inclination angles below a critical angle. In the adiabatic limit a sleeping spinningmetal topmoves on aweakly
inclined plane along a trajectory that is invariant under rescaling of time, but not invariant under time reversal.
The angle of the trajectorywith the inplane horizontalj* thus is a geometricHannay type angle. The trajectory
in contrast to the trajectories of other dissipative systems such as shape changing swimmers in lowReynolds
numberfluids depends on the properties of both thematerial of the top tip and thematerial of the inclined
plane. For very low inclination angles the trajectory also depends on the radius of curvature of the tip of the top,

Figure 5. Simulated (a) center ofmass trajectory trcm( ), (b) center ofmass velocity tvcm( ), and (c)figure axis f tf̂ ( ) for the aluminum
top of table 1 on an inclined PMMAplane of inclination a = 0.1using a linearized frictionmodel m m m= + Ds s d ds s*( ) ( ) with
m =d ds 1. All trajectories are coloredwith one second colored in red and the next second in green. The angular frequency
independentHannay type angle j* is indicated in the trajectory in (a).
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while for larger inclination the behavior is independent of the shape of the top. The behavior undergoes a
dynamic instability near a m=tan c and tops on strongly inclined planes accelerate downhill similar to other
non spinning objects.We thus add another example of geometric physics to the rich collection of examples in
this exciting field.
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Appendix. Details of themeasurement and simulations

Thewooden top and aluminum topwere bought from a toyshop;the steel topwas built by ourmachine shop.
The shape of each topwas recorded by a camera and the shapes of all tops are as indicated infigure 1. Themasses
weremeasured by a balance. The volume of the topwas computed from its shape assuming axisymmetry of the
top. Themoments of inertia were computed assuming a constant density of thematerial. The radius of curvature
wasmeasured from the recorded images,the center ofmass was computed again assuming axisymmetry and a
constant density. The inclination of the planewasmeasuredwith a smart phone laid on top of the plane. The
accuracy of the inclinationwas better than aD < -5 10 4. The topwas softly attached and released from aDC-
motor spun at a frequency thatmonotonously increasedwith the driving voltage,roughly oriented along the
stationaryfigure axis. As in the simulations offigure 5. The experimental top immediately after release from the
motor started nutating and precessing due to themismatch of the contact point velocity with the velocity
required for a force freemotion.Wewaited until nutation and precession ceased to play amajor role before
starting the recording of the now sleeping topwith a camera having a frame rate of 30 (240) frames per second.
The stationary angular frequency of the topwas never the same as the angular frequency upon release from the
motor. It actually also decreased as a function of time due to dissipative processes not accounted for by our
theoreticalmodel. The trajectory direction however does not change significantly for themetal tops as the
angular frequency decreases along the path. The position of the top as a function of timewas either tracked
manually or automatically using a standard tracking routine. The stationary orientation of the figure axis was
checkedwith the eye and it lay in the plane spanned by n̂ and ĝ with a tilt of f̂ away from ĝ toward the inclined
plane as predicted by themodel. The stationaryHannay type geometric anglej*between ´n g( ˆ ˆ) and vcm* was
measured from the tracked trajectory.

The equations ofmotion of the topwere formulated as explicit differential equations usingMaple. The
friction force is discontinuous for vanishing relative velocities: - = - = - =d dt d dtv v r v r v 0t t t t t t

1 2 1 2∣ ∣ ∣ ∣ ∣ ∣
and the normal counter force onto the top from the inclined plane sets in abruptly when the top touches the
inclined plane. Those discontinuities have been regularized prior to applying one ofmaples numerical
differential equation routines.
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