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Abstract

We report on the motion of a spinning sleeping top on an inclined plane. Below a critical inclination
angle the sleeping tops are force free. The trajectory of a sleeping top on weakly inclined planes in the
adiabatic limit is invariant of the angular frequency of the top and thus invariant under a rescaling of
the time, however not invariant under time reversal. The stationary trajectory of the sleeping top is
characterized by its Hannay type geometric angle to the in plane horizontal direction. At larger
inclinations of the plane the stationary motion of the top becomes unstable and the top accelerates
downhill. The behavior points towards a complex law of dry friction of the contact point between the
top tip and the material of the inclined plane that depends on a slip parameter. We propose a
phenomenological law of dry friction that can explain the relaxation of the top into the sleeping
position, the geometric behavior of the top trajectories, and the instability of the stationary motion at
larger inclination angles.

1. Introduction

A geometric phase is a phase difference acquired over each period of a cyclic adiabatic process. The geometric
phase is a powerful concept in both, quantum [1] and classical [2] physics. Geometric phases are connected to
the anholomony of non integrable Hamiltonian systems, geometric phases however also appear under
dissipative conditions [3]. The geometric phase is accumulated under adiabatic, i.e. slow enough conditions
independent of the speed, while the system follows a path in parameter space. The geometric phase also named
Berry-phase in quantum systems and Hannay-angle in classical systems is invariant under rescaling of the time
schedule with which one passes the path in parameter space. It also carries along a gauge freedom of choice of
reference points and the concept has been used in high energy particle physics [4], in solid state physics of
topological materials [5—7], in the explanation of the rotation of the Foucault-pendulum [8], in the explanation
of the propulsion of active swimmers in low Reynolds number fluids [9, 10], the propulsion of light in twisted
fibers [11, 12], the propulsion of acoustic [13] or stochastic [ 14] waves, the motion of edge waves in coupled
gyroscope lattices [ 15], the rolling of nucleons [16] and in the control of the transport of macroscopic [17] and
colloidal [18-21] particles above magnetic lattices. The independence of the geometric phase of the speed, makes
the Foucault pendulum rotation independent of the length of the pendulum as well as independent of the value
of the gravitational acceleration, similarly the propulsion of an active shape changing swimmer is independent of
the viscosity of the embedding fluid.

Experimental evidence for a geometric phase respectively a Hannay angle thus requires the invariant
response of a self organizing phase or angle to the speed of the external drive respectively the speed of the
autonomous motion. Theoretical proof of the existence of a geometric phase or angle in the non dissipative case
must express this angle in terms of action angle variables with the angle variable being part of the set of the
adiabatic variables. In the case of dissipative dynamics the phase respectively angle must be part of the adiabatic
variables.

©2021 The Author(s). Published by IOP Publishing Ltd
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a)

c)

material wood aluminum steel

m 4.7g 13949 3844

I 1.9 gcm? 9.5 gcm? 52 gcm?

Iy 1.2 gcm? 7.9 gcm? 44 gcm?

f 1.0cm 0,9 cm 1.5cm

R 0.2cm 0.1cm 0.5cm
Figure 1. (a) Scheme of a spinning top on an inclined plane with touching point r, center of curvature r,, and center of mass r.,,, unit
vector along gravity g, normal vector fi, and figure axis vector f. (b) The trajectory of a force free sleeping top in the stationary state is
atan angle ¢* to the horizontal of the inclined plane. (c) The characteristics of the three tops used in the experiment.

Dry friction is a force counter acting relative lateral motion of two solid surfaces in contact. Two non-
moving surfaces resist a relative motion with static friction. Static friction is stronger than dynamic friction of
surfaces that are already in relative motion. Coulomb’s law of friction states that dynamic friction is independent
of the sliding velocity. Dry friction is a phenomenological description of very complex underlying physical
processes occurring at both surfaces. It is therefore not surprising of finding situations where those
phenomenological equations fail [22].

Here we report on experiments on the motion of sleeping tops on inclined planes [23-26] that exhibits a
Hannay-like angle of its trajectory, that for some materials of the top and the inclined plane is independent of the
spinning rate but not independent of the sign of the spin, and not independent of the material used. It can be
explained using a phenomenological generalized expression for the dry friction force of the top with the inclined
plane that we postulate to be a homogeneous Galilei invariant function of the velocities at the contact point. The
velocity independent friction law of Coulomb is clearly violated and we must replace it by a dry dynamic friction
force law that depends on the sliding velocity.

2. Experiments

We performed experiments with the three different tops each having a roughly spherical base of radius R (see
figure 1(a)). The midpoint r,, of the spherical base is sitting on the position r,, = 1, + Ri with i the outward
normal to the inclined plane and r; the point where the base of the top touches the inclined plane. The midpoint
I, is part of the figure axis of the axisymmetric top and thus the center of mass 1., of the top is located at

Iy =1+ Ra+ f f with f the unit vector along the figure axis and fthe distance of the center of mass from r,,,.
The moment of inertia I = I;(1 — ff) + I ¢ ff has the largest eigenvalue Iralong the figure axis and is degenerate

I;in the directions perpendicular to f. The properties of each of the three tops are listed in figure 1(c). We placed
the tops on an inclined planes made of either steel or PMMA. The inclination angle « of the plane is given by
« = arccos(—1i - §), where § denotes the unit vector in direction of gravity.

Figure 2 shows trajectories with snapshots of the tops on a steel inclined plane with inclination o« = 0.09.
Contrary to non spinning objects that exhibit force free and non accelerated steady motion only for one specific
inclination angle of the plane (tan ov = 41,), all tops are moving along force free trajectories of their center of
mass at constant speed for all angles below a critical inclination angle o < a, = arctan p_ once they are asleep,
i.e. once their figure axis f and momentary angular frequency w are aligned parallel to each other. They reach the
sleeping position via a cascade of relaxations first nutating and later precessing before they reach their quiet life
[27] behavior. The wooden top shows trajectories that are nonadiabatic, i.e. the slope tan ¢* of the force free
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Figure 2. Trajectories of sleeping tops made of wood (top) and aluminum (bottom) on an inclined o = 0.09 steel plane. In the
adiabatic limit for low angular frequencies the slope of the trajectory tan ¢* of metal tops becomes independent of the angular
frequency which provides evidence for ©* being a geometric phase. The scale boxis 32 x 32 mm?.

Figure 3. Trajectory of a top (red in the scheme) incorporating a counter rotating gyroscope (black in the scheme) having a steel tip
and precessing on an inclined o = 0.07 steel plate. The trajectory flips the direction from gp;k — @? =7 - @f while the rotation
frequency is slowly reversed by the gyroscope loaded top. The behavior is in accordance with equation (11) of the phenomenological
model. The independence of the travel direction of the magnitude of the top’s angular frequency in both branches of the zig-zag
trajectory points toward ¢* being a geometric angle.

trajectory measured with respect to horizontal direction fi x § ofthe inclined plane (see figure 1(b)) depends on
the angular frequency of the top d(pioo d / dw* = 0. This means that for wooden tops the angle ©* isnota
geometric phase. Only in the adiabatic limit, i.e. for low angular frequencies that not yet render the figure axis
instable does the slope of the wooden top become independent of the angular frequency. The metal tops are in
the adiabatic limit for all three angular frequencies, with an angular frequency independent slope

dgo"r;et " / dw* ~ 0 of the trajectory. The invariance of the trajectory of the top under a change of the stationary
angular frequency of the top is evidence for ¢* being a geometric phase.

The dependence of the slope of a top on the angular frequencies can be shown most prominently when using
atop rotating at angular frequency w, loaded with a gyroscope rotating in opposite direction at a much larger
frequency wy (0 < —w; - w, / wi, < 1) that keeps the figure axis of the top stable even at zero angular frequency
of the top w; = 0. In this configuration the coupling between the top and the loaded gyroscopes lets the angular
frequency slowly pass through zero and reverse direction. The resulting trajectory of the gyroscope loaded top is
shown in figure 3. It does not reverse direction since only the horizontal motion flips while the downhill motion
remains the same proving that the problem is not time reversal invariant a property it shares with the behavior of
atippy top [28]. The gyroscope loaded top however neither changes direction while the angular frequency wy
slows down nor when it speeds up again no matter the magnitude of w;. This again is strong evidence that ™ is
indeed a geometric, not a dynamic angle.

In figure 4 we plot tan %* asafunction of tan . The experimental data shows stationary geometric behavior

*
with a frequency independent value of tan % for tan v < p,. The stationary behavior of the top becomes
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Figure 4. Measurement of tan(¢*/2) as a function of tan « for different tops on different planes. The initial angular frequency of the
tops were w A 200s™". For the metal tops the angular frequencies fell in a range where the trajectory angle does not depend on the
angular frequency dp*/dw = 0, i.e. where ¢* behaves consistent with the predictions for a geometric phase. The experimental tops
exhibit a phase transition with stationary behavior for tan o« < p. and down hill acceleration for tan o > .. The solid lines are fits to
the stable branches of equation (1) including the dynamic instability near tan o = 11, with parameters indicated in the legend. The
dashed lines are the instable branches of equation (1). We believe the deviation of the experimental data at very small angles from our
model to be due to effects of surface roughness.

"
unstable at tan o, = j1_and tan 2~ = s.. For tan o > y_there is no stationary behavior and the top rather
c 2 c (4

accelerates downbhill along (i x §) x f with an asymptotic value of tan Ly

If we have a stable stationary solution that can be described by our model explained in section 3 then the
tangent of the inclination angle must be equal to the dynamic friction coefficient 11,,,(s*) of the model, i.e.
tano = fu, (5™). The model friction coefficient depends on the stationary slip parameter s* which if the model
is right must relate to the slope of bisector between the horizontal and the trajectory tan(¢*/2) = s*. Wefind a
regime where both ds*/dy. > 0and dyp*/da > 0 where we can fit the data nicely to the model using the
empirical equation:

g (5) = po, 2 =9 )
SC

for the dependence of the friction coefficient on the slip parameter that predicts pn = 0 for zero slip s* = 0and
maximal p¢ = p1, forslip s = s.. The experimental data agrees with the model also in the regime 11 > p_since
there ds*/dy < 0and the stationary solution is predicted to be unstable and thus the experimental top and the
model top accelerates downhill ¢* = 7/2 with maximal slip s = 1. At very low inclination angles tan o < 1
the experimental data exhibits negative slope dp*/da; < 0 which is incompatible with our model because it
predicts such states to be unstable. It is however clear that rolling without slip becomes impossible when the
leverarm R(f X #) of the top for very low inclination angles of the plane becomes so small that surface
roughness prevents the material velocity of the top at the contact point to adapt to the zero material velocity of
the inclined plane. We have not incorporated effects of surface roughness into our model. We thus believe these
deviations of the experimental data from our simple model to be caused by surface roughness. Surprisingly the
behavior of the metal tops nevertheless is geometric e.g. the experimentally measured angle ¢* remains
independent of the angular frequency w of the top. The behavior at low inclination angles, however, becomes
shape dependent and tops with different tip radius R deviate from each other (see the the data of the aluminum
and steel top on PMMA). The trajectory of the wooden top is neither angular frequency independent nor does it
follow the empirical equation (1) up to the critical inclination.

3. Phenomenological model

In order to get a force free behavior of the top for not only one marginal inclination angle, we have to postulate a
constitutive equation for the dry friction differing from the standard Coulomb friction law. We propose a
constitutive phenomenological equation of the friction force on a body 1 sliding and rolling on a support 2 that

reads
1 2
. v, —V
Fg = —p14,,(0 - Fay) f ; ) (2)
v, — v;
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where 41, denotes the friction coefficient. The expression fi - F,; denotes the normal force of the support 2
onto the body 1, i is the outward normal to the support 2. There are three velocities defining the local dynamics
near the contact point: the first two velocities v', i = 1, 2 are the material velocities of the two bodies i = 1,2 at
the contact point. The third velocity is the velocity of the contact point dr, /dt. The difference between the
contact point velocity and the material velocity at the contact point dr; /dt — v' is the relative velocity of contact
point renewal, i.e. the velocity with which new material points of the surface of body i are explored.

|dr,/dt — v} + |dr,/dt — v?|is the speed with which new contacts between the surfaces of both bodies are
explored. The key to achieve geometric behavior in the adiabatic limit is to approximate the dynamic friction
coefficient to be a homogeneous function of the three velocities:

udyn()\vi, AvZ, )\drt/dt) = )\O,udyn(vi, V2, dr,/dt) (3)

equation(3) is probably violated by the wooden top but should be a good approximation for the metal tops.
Equation (3) is compatible with the standard Coulomb law of dry friction, and it is necessary to achieve a
geometric behavior of the trajectory direction of the spinning top. If we also assume the friction to be surface
isotropic and Galilei invariant, we can write the friction as

lu’dyn = /J‘dyn (5)s 4)
where the Galilei invariant scalar
N - v
dr,/dt — VY| + |dr,/dt — v’

describes the ratio of sliding speed with respect to the total speed of contact point renewal. If s = 0 the relative
material velocities of both bodies at the contact point coincide such that both bodies roll on each other. For

vi = —v?and dr,/dt = 0 wehaveavalue of s = 1 and both bodies slide on a resting contact point into opposite
directions. Hence our model generalizes the Coulomb law of friction for sliding and rolling to a mixed situation,
where both bodies slide and roll at the same time. For a sliding and rolling spherical surfaced body 1 of isotropic
local curvature R~! on a flat resting support 2 (v, = w, = 0) the velocity of the contact point is

dr,/dt = v} + R(w' x fi), where w' is the angular frequency. The parameter s simplifies to

s =1 /(Rlw' x A + v} + R(w' x fi)]) and we anticipate the friction constant of ideally smooth surfaces to
be a function of the slip parameter (1, = 1, (s). Let us see what this model of friction predicts for a top
spinning on an inclined plane.

Since the top is a solid body the velocities of the touching point of the top and the center of mass are related
byv =V — w x (RA+ f f), where w = I'! - Lis the angular velocity of the top, I the moment of inertia
and L the angular momentum. The gravitational weight E.,,, = mg acts on the center of mass of the top of mass
m. The vector g = g§ is the gravitational acceleration with gits magnitude and g the unit vector in direction of
g. Contrary to the standard law of dry friction we anticipate a friction force Fy = — 1, (s)(—m# - g)%

(€)

according to equation (2). The total force F, = F,; + Fy acting on the touching point therefore is the Slrlm ofthe
normal counterforce of the inclined plane F,; = —miif - g preventing the top from accelerating into the plane
and the unconventional friction force. We measure the torque 7 = (1, — r,;) X F, withrespect of the center of
mass position. The equation of motion for the orientation of the top reads 7 = %L, where %f = w x fandthe

equation of motion of the center of mass position is given by m%vcm =E, +FE.
Itis straightforward to compute the stationary state for which all time derivatives, forces, and torques vanish.
We mark the quantities of the stationary state with a star and they are given by

* *
/A —~ = tan w—(ﬁ X g) X n (6)

|w*Rf, | 2

A% R, Ak
f = —711 +/.8 (7)
x _ kg
wt = w*f 8)
Ve A . A A

- L + sign(w*) (B X §), ©)

PR
R R

where

FoRG® [ (u) (10)

¢ f f

is the stationary component of f * along ¢ and the stationary angular frequency has an arbitrary magnitude w*.
The model predicts:
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Figure 5. Simulated (a) center of mass trajectory r.,(t), (b) center of mass velocity v,(t), and (c) figure axis f f () for the aluminum
top of table 1 on an inclined PMMA plane of inclination o = 0.1 using a linearized friction model i (s) = p(s*) + du/dsAs with
dp/ds = 1. Alltrajectories are colored with one second colored in red and the next second in green. The angular frequency
independent Hannay type angle ©* is indicated in the trajectory in (a).

+ adown hill stationary sliding velocity of the spinning top for inclination angles where a non spinning top
sticks to the support.

+ ahorizontal stationary velocity independent of the material of the top and independent of the material of the
inclined plane

+ astationary orientation such that the center of mass resides vertically above the touching point

+ astationary trajectory of the top that depends only on the friction coefficient, the inclination angle, and the
sign of the angular frequency.

The stationary state is stable if dy1, ,, /ds > 0 and unstable otherwise as can be checked by numerically
solving the equations of motion for various sets of parameters or more generally via a linear stability analysis.
Figure 5 shows a simulation of a top not yet at the stationary velocity but slowly approaching it. The spinning top
initially nutates, accelerates and then reaches a state where the nutations have died away. In the second stage the
top precesses and the velocity spirals around an average velocity of the top. In the final state the top is asleep with
the figure axis aligned with the momentary angular frequency and the top rolling along the inclined plane
horizontal direction and the same time sliding into the down hill direction, i.e. the travel direction is with an
angle

*
pdyn(s* = tan %) = —sign(w*)tan(«) (11)

to the horizontal direction and the top is moving at constant speed along a path, that is completely independent
of the geometric properties and the magnitude of the angular velocity of the top. The theoretical dissipative
model for this reason predicts that ¢* is indeed a geometric Hannay type angle. The top travels more and more
downhill the closer the inclination angle is to the critical inclination angle where the velocity of the top diverges.
There is no stationary state beyond the critical inclination angle.

For the metal tops the model seems to predict most but not all characteristics observed in the experiments.
The wooden tops behavior is far more complex and out of the scope of the present geometric and thus adiabatic
dissipative description.

4. Conclusions

Our measurements show a force free motion of sleeping tops on inclined planes at constant velocity for
inclination angles below a critical angle. In the adiabatic limit a sleeping spinning metal top moves on a weakly
inclined plane along a trajectory that is invariant under rescaling of time, but not invariant under time reversal.
The angle of the trajectory with the inplane horizontal ¢* thus is a geometric Hannay type angle. The trajectory
in contrast to the trajectories of other dissipative systems such as shape changing swimmers in low Reynolds
number fluids depends on the properties of both the material of the top tip and the material of the inclined
plane. For very low inclination angles the trajectory also depends on the radius of curvature of the tip of the top,
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while for larger inclination the behavior is independent of the shape of the top. The behavior undergoes a
dynamic instability near tan o = 11, and tops on strongly inclined planes accelerate downhill similar to other
non spinning objects. We thus add another example of geometric physics to the rich collection of examples in
this exciting field.
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Appendix. Details of the measurement and simulations

The wooden top and aluminum top were bought from a toyshop;the steel top was built by our machine shop.
The shape of each top was recorded by a camera and the shapes of all tops are as indicated in figure 1. The masses
were measured by a balance. The volume of the top was computed from its shape assuming axisymmetry of the
top. The moments of inertia were computed assuming a constant density of the material. The radius of curvature
was measured from the recorded images,the center of mass was computed again assuming axisymmetry and a
constant density. The inclination of the plane was measured with a smart phone laid on top of the plane. The
accuracy of the inclination was better than A« < 5 107%. The top was softly attached and released from a DC-
motor spun at a frequency that monotonously increased with the driving voltage,roughly oriented along the
stationary figure axis. As in the simulations of figure 5. The experimental top immediately after release from the
motor started nutating and precessing due to the mismatch of the contact point velocity with the velocity
required for a force free motion. We waited until nutation and precession ceased to play a major role before
starting the recording of the now sleeping top with a camera having a frame rate of 30 (240) frames per second.
The stationary angular frequency of the top was never the same as the angular frequency upon release from the
motor. [t actually also decreased as a function of time due to dissipative processes not accounted for by our
theoretical model. The trajectory direction however does not change significantly for the metal tops as the
angular frequency decreases along the path. The position of the top as a function of time was either tracked
manually or automatically using a standard tracking routine. The stationary orientation of the figure axis was
checked with the eye and it lay in the plane spanned by # and § with atilt of f away from § toward the inclined
plane as predicted by the model. The stationary Hannay type geometric angle o* between (A x §) and v, was
measured from the tracked trajectory.

The equations of motion of the top were formulated as explicit differential equations using Maple. The
friction force is discontinuous for vanishing relative velocities: |[v! — v?| = |dr,/dt — v!| = |dr,/dt — v} = 0
and the normal counter force onto the top from the inclined plane sets in abruptly when the top touches the
inclined plane. Those discontinuities have been regularized prior to applying one of maples numerical
differential equation routines.
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