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We consider the problem of approximating the branch and size dependent demand of a fashion
discounter with many branches by a distributing process being based on the branch delivery
restricted to integral multiples of lots from a small set of available lot-types. We propose a
formalized model which arises from a practical cooperation with an industry partner. Besides
an integer linear programming formulation we provide an appropriate primal heuristic for this
problem.
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1. Introduction

Fashion discounters usually achieve only small profit margins. Their economic suc-
cess depends mostly in the ability to meet the customers’ demands for individual
products. More specifically: offer exactly what you can sell to your customers. This
task has two aspects: offer what the customers would like to wear (attractive prod-
ucts) and offer the right volumes in the right places and the right sizes (demand
consistent branch and size distribution).

In this paper we deal with the second aspect only: meet the branch and size spe-
cific demand for products as closely as possible. Our industry partner is a fashion
discounter with more than 1 000 branches most of whose products are never re-
plenished, except for the very few “never-out-of-stock”-products (NOS products):
because of lead times of around three months, apparel replenishments would be
too late anyway. In most cases the supplied items per product and apparel size
lie in the range between 1 and 6. Clearly, it is a challenge to determine a good
estimate for the branch and size dependent demand, but besides a few practical
comments on this problem we will blind out this aspect of the problem completely.
We assume that for a product we know the mean demand for each size in each
branch. In general, this will be a fractional value for each branch-size combination.

The problem studied in this article is motivated by a special feature of the
ordering process: For each product that hits the shelves, the internal stock-turnover
has to distribute around 10 000 pieces among the around 1 000 branches, correctly
assorted by size. This would mean 10 000 picks with high error probability in the
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central-warehouse (in our case in the high-wage country Germany). In order to
reduce the handling costs and the error proneness in the central warehouse, all
products are ordered in multiples of so-called lot-types from the suppliers who in
general are located in extremely low-wage countries.

A lot-type specifies a number of pieces of a product for each available size, e.g.,
(2,2,2,2,2) if the sizes are (S, M, L, XL, XXL) means two pieces of each size. A lot
of a certain lot-type is a foiled pre-pack that contains as many pieces of each size
as specified in its lot-type. Assume that, e.g., the 10 000 pieces of a product arrive
in 1 000 lots of lot-type (2,2,2,2,2) and every branch receives exactly one lot of that
lot-type, then the number of error-prone picks in the central warehouse has been
reduced to 1

10 .
The real-world is, of course, more complicated than this example. This is mainly

because the mean demands for each branch and each size differ. Moreover, it is not
possible to order the supply in 1 000 lot-types, one for each branch. The suppliers
accept at most five or so different lot-types for an order. This leads to the problem
that even if we know the branch and size dependent mean demand we cannot
simply supply the branches by volumes for each size according to the demands
rounded to the nearest integer. We have to choose lot-types first and specify the
order volume in terms of multiplicities of these lot-types, which maybe much more
restrictive. Similarly, the volume delivered to the branches must be specified in
terms of multiplicities of the ordered lot-types.

So we face an approximation problem: which (integral) multiples of which (in-
tegral) lot-types should be supplied to a branch in order to meet a (fractional)
mean demand as closely as possible? We call this specific demand approximation
problem the lot-type design problem (LDP).

1.1. Related Work

The LDP is closely related to the extensively studied p-median and the facility
location problem: a set of customers has to be connected to exactly p locations,
where in the capacitated version each customer has a demand and each location
can only serve a bounded total demand (see [8, 10] for recent progress in heuristic
approaches and [1] for recent computational results on large instances of the unca-
pacitated p-median problem; see [3, 4] for recent results on ILP techniques to the
capacitated p-median problem). The p-median problem models (beyond the true
location problem), e.g., clustering problems in various contexts. Loads of heuris-
tics and ILP techniques have been applied to it. Nevertheless the first constant-
factor approximation algorithm, based on LP rounding, was given not until 1999
by Charikar, Guha, Tardos, and Shmoys [5]. We can not take advantage of this
result because our ILP model solves nearly as fast as its LP relaxation, the basis
for the approximation algorithm.

Although the name “lot” suggests a similarity to the classical lot sizing prob-
lems (see [9, 12] for a classification, references, and mixed integer programming
formulations) there is not much that the LDP has in common with lot sizing. The
main difference is that in the LDP the order volumes for all branches and sizes are
not independent because they must fit to the lot-type patterns that are in turn
consequences of our lot-type selection decision. Moreover, in the LDP we are only
concerned with a single period problem (no replenishment). It is conceivable that
some sort of multi-period LDP is relevant in other applications, though.

There is a line of research in retail revenue management that links the classical
revenue management decision in fashion retail (mark-downs) to the inventory deci-
sions (see [6] for a survey). We did not find any published research that considered
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combinatorial restrictions (like the one implied by the lot-type based supply) for
the start inventory decisions. Moreover, in our case, the inventory restrictions we
face are the result of our lot-type design decisions, and such a two-stage inventory
optimization we could not find anywhere in the literature.

Another interesting connection can be drawn to assortment optimization (see [7]
for recent progress). In this problem, a start inventory for a portfolio of styles of a
piece of garment is computed so as to maximize expected revenue. The practical
difficulty of this problem lies in the estimation of the demand depending on the
stock levels, since substitution effects (the customer may buy the blue T-shirt
instead of the sold-out black one) contaminate the historical data. The difficulties
tackled in assortment optimization are much more due to the stochasticity of the
problem than on combinatorial restrictions on the shapes of assortments, which
have, to the best of our knowledge, not been investigated so far.

There are traces of so-called pre-pack optimization work-flows of commercial
providers of revenue management software. It is, however, not easy to find out
what the exact problem is that they solve. There is, e.g., a sketch of a solution
approach in a white paper of Chettri and Sharma from Cognizant Technology
Solutions.1 A closer inspection shows that in this paper the pre-pack based supply
can be completed by single items so that exactly our approximation problem is
by-passed (at the cost of a more complicated handling).

We note that all of the above connections motivate extended versions of the
cited problems by simply adding our lot-type design phase and the corresponding
start inventory restrictions to the problem. Only the p-median problem captures
a design phase at all (which lot-types to choose in the first place); it neglects the
choice of multiplicities and the total capacity delivered, though.

Instead of adding the lot-type design phase to one of the more retail oriented
problem classes like assortment optimization (which makes perfect sense because
also in our case there exist difficulties in the demand estimation), we chose to
investigate the pure, deterministic lot-type design problem first (which generalizes
the p-median problem) in order to start with the simplest possible new problem
class modeling a crucial aspect of the work-flow under consideration.

1.2. Our contribution

We define the lot-type design problem LDP for the order and distribution process
of a fashion discounter with many branches. This optimization problem has, to
the best of our knowledge, not been studied in the literature so far. We briefly
relate the LDP to the p-median problem and show that the LDP is strictly more
general. We present an integer linear programming model for the LDP that has
tight LP relaxations on our instances. Commercial ILP solver can therefore solve
our large-scale real-world instances in at most half an hour. Moreover, we devise
a fast primal any-time heuristic SFA that achieves optimality gaps of around 1 %
in a second on real-world instances of our industry partner. SFA can therefore be
used interactively in practice in the process of order negotiations. Meanwhile, a
prototype of SFA was put to operation in our industry partner’s IT.

1.3. Outline of the paper

In Section 2, we give the formal statement of the lot-type design problem LDP
and relate it to the p-median problem. In Section 3, we provide an integer linear

1http://www.cognizant.com/html/content/bluepapers/Pre_Pack_Optimization.pdf
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programming model for the LDP. In Section 4 we present a primal heuristic for the
LDP, which we applied to our real world problem. We give some real-world numer-
ical data on the optimality gap of our heuristic, before we draw some conclusions
and possible future directions in Section 5.

2. Formal problem statement

Consider a fashion discounter with branches b ∈ B who wants to place an order
for a certain product that can be obtained in sizes s ∈ S and that can be pre-
packed in lot-types l ∈ L. Each lot-type is a vector (ls)s∈S specifying the number
of pieces of each size contained in the pre-pack. Only k different lot-types from L
are allowed in this order, and each branch receives only lots of a single lot-type.
We are given lower and upper bounds I, I for the total supply of this product.
Moreover, we assume that a the branch and size dependent mean demand db,s for
the corresponding type of product is known to us.

The original goal is to find a set of at most k lot-types, an order volume for
each of these chosen lot-types, and a distribution of lots to branches such that the
revenue is maximized. In order to separate the order process from the sales process
(which involves mark-downs, promotions, etc.), we restrict ourselves in this paper
to the minimization of the distance between supply and mean demand defined by
a vector norm.

Let us first state the assumptions under which it is plausible that a solution to
our optimization problem defined below will yield a good revenue.

Assumption 2.1: We make the following assumptions:

(1) All products can be considered separately
(2) There is a significant negative correlation between distance of supply from
mean demand and revenue (i.e., on average we have: the smaller the distance,
the larger the revenue)

Moreover, in order to simplify the presentation, we assume that each branch must
be supplied, i.e., has to receive a strictly positive number of lots of some lot-type.

We claim that, under these assumptions, the order and distribution according to
any (almost) optimal solution of the following lot-type design problem (LDP) will
have a significant desirable impact on the revenue:

Problem 2.2: The Lot-Type Design Problem (LDP) is the following optimization
problem:
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Instance: We are given

• a set of branches b ∈ B
• a set of sizes s ∈ S
• a mean demand table db,s, b ∈ B, s ∈ S
• a norm ‖·‖ on RB×S

• a set L of feasible lot types (ls)s∈S ∈ NS0
• a maximal number M ∈ N of possible multiplicities
• a maximal number k ∈ N of lot types to use
• lower and upper bounds I, I for the total supply

Task: For each branch b ∈ B choose a lot type l(b) ∈ L and a number
m(b) ∈ N, 1 ≤ m(b) ≤M of lots to order for b such that

• the total number of ordered lot types is at most k
• the total number of ordered pieces is in [I, I]

(the total capacity constraint)
• the distance of the order from the demand measured by ‖·‖

is minimal

We can easily see that our assumption that each branch must be supplied does
not mean any loss of generality: if a branch can remain unsupplied then simply
allow zero as a multiplicity for it.

Depending on the norm we pick, we can influence the properties of optimal
solutions w.r.t. fairness among branches and sizes and robustness w.r.t. outliers of
the mean demand estimations.

L∞-Norm: Fair w.r.t. inconsistent supply of individual branches in an optimal
solution but not robust w.r.t. outliers in the demand data

L1-Norm: Unfair w.r.t. inconsistent supply of individual branches in an op-
timal solution but robust w.r.t. outliers in the demand data

L2-Norm: Somewhere inbetween

For the rest of the paper we deal with the L1-norm for two reasons: first, the
mean demand estimations are very delicate, and outliers for some branch-size com-
binations can hardly be avoided, and second, our industry partner is risk neutral
w.r.t. individual branches, i.e., the total revenue is what counts, even when this
means that a single branch-size combination individually produces a low revenue.

Remark 1 : When we fix the total quantities for all lot-types (at most k non-
zero), then the resulting problem models the search for the best distribution of a
given inventory from the central warehouse among the branches without breaking
lots in pieces. This problem is also relevant for our industry partner, since more
often than not the actual delivery of the supplier deviates from the order (and only
for this order we have a good distribution from the solution of the LDP prior to
the order). The resulting inventory then has to be distributed in the best possible
way.

Remark 2 : Why are we using a total capacity interval and not a fixed total
capacity? The first reason lies in number theoretic problems: if, e.g., the total
capacity is prime and there is only one lot-type containing more than one piece,
then the problem is infeasible. A second reason is that the total capacity to be
ordered is (at least partially) based on rough estimations that might contain errors
anyway. The third reason comes from the fact that the delivery can deviate up to
5 % from the order volume in practice. An alternative approach would be to turn
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the total capacity constraint into a soft constraint. However, then we are left with
the problem of finding good penalty values for its violation.

Remark 3 : If we drop the total capacity constraint in the special case M = 1,
then we obtain a standard model for the well-studied p-median problem. This
means, in particular, that the LDP is NP-hard. Conversely, even if M > 1, the
LDP without the total capacity constraint can be reduced to a p-median instance:
Define for each branch b and each lot-type l the locally optimal multiplicity m∗b,l to
be the optimizer of minm

∑
s∈S cb,l,m. It is easy to see that if Lot-type l is chosen for

Branch b, then it can be chosen w.l.o.g. with the locally optimal multiplicity m∗b,l.
It remains to choose a lot-type for each branch, which can be solved by a p-median
computation with distance cb,l,m∗b,l

between b and l.

Unfortunately, in the presence of the total capacity constraint we have found
no way to take advantage from the relationship to the p-median problem. This
is mainly due to the fact that the locally optimal multiplicities might become
infeasible. This can easily be seen from the following example.

Example 2.3 Assume, there is one branch, one size, one lot-type l = 1, a demand
of 2, and an identical upper and lower bound of the total supply of 1. Then,
obviously a supply of two lots would be locally optimal, but would also violate the
total capacity constraint.

This seems too far-fetched to be surprising. In particular, the total number of
pieces in the previous example was different from the total demand. However: even
if the total demand

∑
b∈B

∑
s∈S db,s is in the center of an arbitrarily large interval

[I, I], the total capacity constraint can lead to the infeasibility of locally optimal
multiplicities. This can be seen in the following example.

Example 2.4 Consider an instance of the LDP with a single size s and a single
lot-type l = ls = 1.

Assume, I = I − i for some positive integer i, I = I + i with I =
∑

b∈B db,s.
Let N :=|B| be the number of branches, and for a given positive integer D > 1
let d := db,s = D − i+j

N for some positive integer j. Whenever i+j
N < 1

2 , we have
for each branch that the locally optimal multiplicity is D. However, choosing the
locally optimal multiplicity throughout leads to N · D pieces. Since D = d + i+j

N
and N · d = I, we get:

N ·D = N

(
d+

i+ j

N

)
= I + i+ j = I + j (1)

Still, the problem is feasible: just deliver D−1 lots to an arbitrary set of j branches
and D lots to the rest. By symmetry, this is even optimal.

That means, a consequence of the total capacity constraint is that in an optimal
solution there may be an arbitrary subset of branches that is supplied by locally
suboptimal multiplicities, and if there is no symmetry as in the example, an optimal
solution may be hard to find.

3. A mathematical model for the LDP

The problem stated in the previous section can be formulated as an Integer Linear
Program, mainly because we restrict ourselves to the L1-norm for measuring the
distance between supply and demand.
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We use binary variables xb,l,m, which are equal to 1 if and only if lot-type l is
delivered with multiplicity m to Branch b, and binary variables yl, which are 1 if
and only if at least one branch in B is supplied with Lottype l. The deviation of
the demand from the supply if Branch b is supplied by m lots of lot-type l is given
by cb,l,m :=

∑
s∈S |db,s −m · ls|.

The following integer linear program models the LDP with L1-norm.

min
∑
b∈B

∑
l∈L

M∑
m=1

cb,l,m · xb,l,m (2)

s.t.
∑
l∈L

M∑
m=1

xb,l,m = 1 ∀b ∈ B (3)

∑
l∈L

yl ≤ k (4)

M∑
m=1

xb,l,m ≤ yl ∀b ∈ B,∀l ∈ L (5)

I ≤
∑
b∈B

∑
l∈L

M∑
m=1

∑
s∈S

m · ls · xb,l,m ≤ I (6)

xb,l,m ∈ {0, 1} ∀b ∈ B, ∀l ∈ L,∀m = 1, . . . ,M
(7)

yl ∈ {0, 1} ∀l ∈ L (8)

The objective function (2) computes the L1-distance of the supply specified by
x from the demand. Condition (3) enforces that each branch is assigned a unique
lot-type and a unique multiplicity. Condition (4) models that at most k different lot-
types can be chosen. Condition (5) forces the selection of a lot-type whenever it is
assigned to some branch with some multiplicity. Finally, Condition (6) ensures that
the total number of pieces is in the desired interval – the total capacity constraint.

4. The SFA heuristic for the lot-type design problem

Our ILP formulation can be used to solve all real world instances of our business
partner in at most 30 minutes by using a standard ILP solver like CPLEX 11.
Interestingly, the model seems quite tight – most of the time is spent in solving
the root LP.

Even without Condition (6) the root LP takes minutes to solve. That is: in
practice, even if we found a way to tweak the known LP rounding approximation
algorithms for the p-median problem like the one in [5], we probably would not
achieve a significant speed-up.

Although 30 minutes may mean a feasible computation time for an offline-
optimization in many contexts, this is not fast enough for our real world appli-
cation. The buyers of our retailer need a software tool which can produce a near
optimal order recommendation in real time on a standard laptop. For this reason,
we present a fast anytime-heuristic, which has only a small gap compared to the
optimal solution on a test set of real world data of our business partner.

We explain the idea of the heuristic in the sequel. A very important decision is:
which lot-types should be used in the first place? Here one should have in mind
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that the cardinality |L| of the set of feasible lot-types is very large compared to
the number k of lot-types which can be used for the delivery process. Therefore, in
large-scale problems it will be impossible to enumerate all possible combinations
unless

(|L|
k

)
is small.

In the following, we present the heuristic Score-Fix-Adjust (SFA) that

(1) sorts all lot-types according to certain scores, coming from a count for how
many branches the lot-type fits best, second best, . . . (Score);
(2) fixes k-subsets of lot-types in the order of decreasing score sums (Fix);
(3) greedily adjusts the multiplicities so as to achieve feasibility w.r.t. the total
capacity constraint (Adjust).

4.1. How to score

In order to prepare for the selection of lot-types, we define a score for each
lot-type. For every branch b ∈ B with demand db there exists a lot-type l ∈
L and a multiplicity m ∈ N such that ‖db − m · l‖ is minimal in the set
{‖db −m′ · l′‖ : l′ ∈ L, m′ ∈ {1, . . . ,M}}. So for every branch b ∈ B there exists
a lot-type that fits best. More general, for a given k ≤ |L| there exist lot-types
l1, . . . , lk such that li fits ith-best if one uses the corresponding locally optimal
multiplicity.

Let us examine this situation from the point of view of the different lot-types.
A given lot-type l ∈ L is the ith-best fitting lot-type for a number %l,i of branches
in B. Writing these numbers %l,i as a vector %l ∈ Nk we obtain score vectors for all
lot-types l ∈ L.

Now we want to use these score vectors %l to sort the lot-types of L in decreas-
ing approximation quality. Using the lexicographic ordering � on vectors we can
determine a bijective rank function λ : L → {1, . . . , |L|}: we simply sort the score
vectors according to � with ties broken arbitrarily. We extend λ to subsets L′ ⊆ L
by λ(L′) =

∑
l∈L′

λ(l) ∈ N. (An alternative would be the lexicographic total order,

but this one worked better for us.)
The main idea behind this scoring method is that by assigning a score to only
|L| many individual lot-types we implicitly get an order on the set of

(|L|
k

)
many

feasible lot-type combinations. Note that we can easily traverse this order element
by element without explicitly generating it beforehand.

4.2. How to fix

Now, we fix subsets L′ ⊆ L of cardinality k in decreasing order with respect to
λ(L′). For each new lot-type combination, we adjust as in Section 4.3 and report
every feasible (adjusted) solution that improves the current best.

In principle we could consider all possible selections L′ of k lot-types, but in
practice we stop our computations after an adequate time period. The hope is
that, by then, we have checked the most promising selections L′ first.

We remark that for large M we can determine an optimal multiplier m for a
given branch b and a given lot-type l by binary search.

4.3. How to adjust

If we generate assignments l : B → L, b 7→ l(b) with corresponding multipliers
m : B → N, b 7→ m(b) as in the previous section, then in some cases we will
not satisfy the total capacity constraint (6), since it is totally unaccounted by
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the “Score”-step. Our strategy to satisfy the total capacity constraint (6) is to
adjustm(b) afterwards by decreasing or increasing the calculated multipliers, unless
Condition (6) is fulfilled by pure chance.

Here we want to use a greedy algorithm and have to distinguish two cases. If
I(l,m) is smaller than I, then we increase m(b) for some b, otherwise we have
I(l,m) > I and we decrease m(b) for some b. Our procedure works iteratively,
and we assume that the current multipliers are given by m. We stop whenever
I ≤ I(l,m) ≤ I or there are no feasible operations left. Let us describe a single
step of the iteration. We restrict our explanation to the case where we want to
decrease m(b) for some b.

For every branch b ∈ B the reduction of m(b) by one produces costs

∆−b = cb,l(b),m(b)−1 − cb,l(b),m(b)

if the reduction of m(b) by one is feasible (i.e., if m(b) ≥ 1 if the branch need not
be supplied or m(b) ≥ 2 if the branch must be supplied) and ∆−b =∞ if we do not
have the possibility to reduce the multiplier m(b) by one. A suitable data structure
for the ∆−b values is a heap, for which the update after an iteration can be done
in O(log |B|) time. If we reach I(l,m) < I at some point, we simply discard this
particular lot-type assignment l (because it is alltogether infeasible) and consider
the next candidate in the total scoring order.

4.4. Optimality of SFA for k = 1

Since in the case k = 1 we can very often loop over all feasible lot-types, it is
interesting that in this case SFA always yields an optimal solution (for any norm).

Lemma 4.1: For k = 1 and costs cb,l,m = ‖db,· − m · l‖ for an arbitrary norm
‖·‖, our heuristic SFA produces an optimal solution whenever all lot-types l ∈ L
are checked.

Proof : Since we loop over all l ∈ L, the optimal lot-type is checked at some point.
Thus we may assume that we are in the case where the optimal lot-type l is chosen.

Without the total capacity constraint assigning to each branch b its locally op-
timal multiplicity m?(b) would be globally optimal. Now let us assume that the
number of items I in our assignment is larger than the upper bound I of the
total capacity constraint. Let us have a look at an optimal assignment m̃ of the
multipliers. If there exist two branches b1, b2 ∈ B such that m̃(b1) < m?(b1) and
m̃(b2) > m?(b2) then increasing m̃(b1) and decreasing m̃(b2) by one yields another
solution where the costs do not increase. Thus there exists an optimal solution
where no multiplier of a branch is larger then the locally optimal multiplier. This
optimal solution arises from our initial distribution plan (whenever it violates the
total capacity constraint) by deleting exactly

⌈
I−I
‖l‖1

⌉
lot packages. Due to the con-

vexity of the norm function the greedy way of deleting lot packages of our heuristic
ends up with this optimal solution. �

Since the adjustment step can be performed very fast, one might also take some
kind of generalized swapping techniques into account. Because for these techniques
there exists an overboarding amount of papers in the literature, we will not go into
detail here, but we would like to remark that in those cases (see Subsection 4.5),
where the optimality gap of our heuristic lies above 1 % swapping can improve the
solutions of our heuristic by a large part.
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4.5. Experimental optimality gap of SFA

In order to substantiate the usefullness of our heuristic, we have compared the
quality of the solutions, given by this heuristic after one second of computation
time (on a standard laptop: Intel R© CoreTM 2 CPU with 2 GHz and 1 GB RAM)
with respect to the solution given by CPLEX 11 (after solving to optimality).

Our business partner has provided us with historic sales information for nine
different commodity groups, each ranging over a sales period of at least one-and-
a-half years. From this we estimated mean demands via aggregating over products
in a commodity group. By normalizing the lengths of the products’ sales periods
to the point in time when half of the product was sold out, we were able to mod
out the effects of any product’s individual success or failure. Prior to each test
calculation, the resulting demands were scaled so that the total mean demand was
in the center of the total capacity interval given by the management for a new
order of a product in that commodity group.

For each commodity group we have performed a test calculation for k ∈
{2, 3, 4, 5} distributing some amount of items to almost all branches. The crucial
parameters are given in Table 1, the results are presented in Table 2.

Commodity group |B| |S|
ˆ
I, I

˜
|L| M

1 1119 5 [10 630, 11 749] 243 10

2 1091 5 [10 000, 12 000] 243 10

3 1030 5 [9 785, 10 815] 243 10

4 1119 5 [10 573, 11 686] 243 9

5 1175 5 [16 744, 18 506] 243 15

6 1030 5 [11 000, 13 000] 243 9

7 1098 5 [15 646, 17 293] 243 9

8 989 5 [11 274, 12 461] 243 9

9 808 5 [9 211, 10 181] 243 10

Table 1. Parameters for the test calculations.

Commodity group k = 2 k = 3 k = 4 k = 5

1 2.114 % 1.226 % 2.028 % 1.983 %

2 0.063 % 0.052 % 0.006 % 0.741 %

3 0.054 % 0.094 % 0.160 % 0.170 %

4 0.019 % 0.007 % 0.024 % 0.038 %

5 0.015 % 0.017 % 0.018 % 0.019 %

6 0.018 % 0.022 % 0.024 % 0.022 %

7 0.013 % 0.013 % 0.014 % 0.014 %

8 0.016 % 0.017 % 0.018 % 0.019 %

9 0.011 % 0.939 % 0.817 % 0.955 %

Table 2. Optimality gap in the ‖ · ‖1-norm for our heuristic on nine commodity groups and different values for the maximum

number k of used lot-types.

We have identified two aspects preventing our heuristic to reach an optimal solu-
tion for larger k. If the number k of applicatory lot-types increases, then obviously
the number of k-subsets of L increases on a larger scale. In some cases the optimal
k-subset hides from our heuristic and the time limit is reached before the optimal
subset is checked. If the time limit is relaxed to 2 seconds then for commodity
group 9 we obtain gaps of 0.011 % and of 0.012 % for k = 3 and k = 4, respectively.
For k = 5 the gap drops to 0.418 % after 2.4 seconds, to 0.250 % after 7.2 seconds,
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and to 0.114 % after 18.2 seconds. For commodity group 2 and k = 5 there remains
a gap of 0.472 % after 9.2 seconds and a gap of 0.044 % after 41.4 seconds.

In case of commodity group 1 the large gaps are due to a heavy violation of the
total capacity constraint for the best scored lot-type combinations. Here some kind
of general swapping techniques significantly help to improve the solution below a
gap of 1 % within the time limit.

Besides these nine test calculations we have done several calculations on our data
sets with different parameters, we have, e.g., considered case with fewer sizes, fewer
branches, smaller or larger intervals [I, I], larger k, or larger sets L of applicatory
lot-types. The results are from a qualitative point of view more or less the same as
for the presented test calculations.

5. Conclusion and outlook

Starting from a real world optimization problem we have formalized a new general
optimization problem, which we call the lot-type design problem.

In Subsection 3 we have given an integer linear programming formulation which
has a very strong LP-relaxation on our instances. Although this approach is quite
fast (computing times below half an hour), there was a practical need for fast
heuristics to solve the problem. We have presented the heuristic SFA, which per-
forms very well on real world data sets with respect to the optimality gap.

The question of a good approximation algorithm for the lot-type design problem
is left as an open problem.

For the practical problem the uncertainties and difficulties concerning the de-
mand estimation have to be faced. There are several ways to make solutions of
optimization problems more robust. One possibility is to utilize robust optimiza-
tion methods. Another possibility is to consider the branch- and size dependent
demands as stochastic variables and to utilize integer linear stochastic program-
ming techniques. See, e.g., [2] or more specifically [11]. These enhanced models,
however, will challenge the solution methods a lot, since the resulting problems are
of a much larger scale than the one presented in this paper. Nevertheless, this is
exactly what we are looking at next.

As a vision, we would like to consider integrated models containing both the as-
pects of mark-down optimization and assortment planning and the lot-type design
problem studied in this paper.

Finally, we report that thanks to very positive results in field tests conducted by
our industry partner, a prototype implementation the SFA heuristic is currently in
operation for generating the lot-type design of almost all current orders.
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