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Abstract 

Growing international interest in climate change and the ambitious climate goals of the Paris Climate 

Agreement requires policy decisions and actions to curb the adverse effects of human-made climate 

change. The buildings sector accounts for more than one-third of global greenhouse gas emissions and 

energy consumption, with space heating and water heating accounting for most of these, and offers great 

potential for progress toward climate goal achievement. Moreover, most of today's existing buildings 

were built before introducing more strict building codes than today and are therefore not sufficiently 

energy efficient. Due to the low number of new buildings compared to the existing building stock, 

extensive retrofitting is necessary, as the current building stock will continue to account for the largest 

share of energy consumption in buildings in the future. However, retrofits of these buildings are sparse, 

and the retrofit rate - the percentage of buildings that undergo retrofits in a year - is too low to meet 

climate goals. Therefore, this cumulative doctoral thesis examines two aspects for a successful heat 

transition in the building sector. The first aspect deals with the identification of general factors 

influencing energy efficiency and retrofitting practices on a regional level. It is not yet fully understood 

which local differences exist in building performance, energy efficiency, and retrofitting practices and 

how socio-economic factors influence these. Thus, this doctoral thesis follows the call to use the 

opportunities of advancing digitalization and data availability to examine this aspect. The findings 

indicate strong evidence for regional differences in building energy efficiency, confirm existing 

qualitative and small-scale studies regarding the influence of socio-economic factors and classify 

retrofitting-related CO2 taxes as reasonable and easy to implement. The second aspect shifts the focus 

from a regional level to individual retrofit decisions. It examines risk in general and inaccurate 

predictions of building energy performance in particular as barriers to individual retrofit decisions. The 

results show that promoting energy efficiency reduces the variance – and thus the risk - of future energy 

bills and opens up opportunities for more sustainable investment behavior. In addition, policy 

instruments such as energy efficiency insurance are more effective and cost-efficient than subsidies in 

mitigating the risk of environmentally friendlier investments. Regarding building energy performance 

prediction, data-driven approaches exceed the currently prescribed engineering method (in Germany) 

by almost 50% in prediction accuracy and provide insights into influencing factors. In summary, this 

doctoral thesis provides insights using data-driven and risk-modeling approaches for a better 

understanding of factors influencing energy efficiency and retrofitting on a regional level and risk in 

retrofit decisions and contributes managerial and policy implications that support a successful heat 

transition in the building sector.  

 

Keywords:  Energy Efficiency, Risk, Building Sector, Energy Performance Certificates, Energy 

Informatics, Data Analytics, Building Energy Performance  
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I. Introduction 

I.1. Motivation 

Human-induced climate change is showing its first adverse effects and rapidly increases society's 

interest and eagerness for discussion (Dziminska et al., 2021). Concerns about other harmful effects on 

ecosystems and people caused by the rise in global temperatures associated with climate change are 

fueling societal demands for greater sustainability in all sectors (Magnan et al., 2021). With the Paris 

Agreement concluded in 2015 at the international climate conference, also known as the "United Nations 

Framework Convention on Climate Change, 21st Conference of the Parties (COP 21)", almost all the 

countries worldwide committed themselves to shape the global economy in a more climate-friendly way, 

thus setting important impulses (Falkner, 2016). Unlike the Kyoto Protocol, where only a few 

industrialized countries were involved, almost all participating countries have defined national climate 

protection targets (Savaresi, 2016). By ratifying the Paris Agreement, the countries have committed 

themselves under international law to take appropriate measures to achieve the targets set (Savaresi, 

2016). As a common goal of the Paris Agreement, the countries agreed to limit global warming to well 

below two degrees Celsius compared to pre-industrial levels, ideally to 1.5 degrees (Glanemann et al., 

2020). Despite the set targets, the implemented policies seem insufficient and lead to an average 

emission gap of 22.4 to 28.2 GtCO2eq by 2030 (Roelfsema et al., 2020). Even though the COVID-19 

pandemic has led to a short-term global decrease in energy consumption and reduction of Greenhouse 

Gas (GHG) emissions as well as air pollutants, measures and long-term system-wide investments in 

decarbonization of economies need to be intensified to reduce global warming (Forster et al., 2020; Shan 

et al., 2021).  

To achieve the climate goals, a reduction in energy consumption across all sectors and an increase in 

the share of renewable energies are crucial (Da Graça Carvalho, 2012). The building sector, including 

residential and commercial buildings, is the largest energy consumer, accounting for 38% and 39% of 

global GHG emissions and energy consumption, respectively, and therefore offers great potential for 

progress toward climate goals (Somu et al., 2020). Thereby, space heating accounts on average for 32% 

of total energy consumption in residential buildings and 33% in commercial buildings worldwide, giving 

energy efficiency in the building sector an important role (Ürge-Vorsatz et al., 2015). The share of 

energy consumption for space heating can vary significantly due to climatic conditions. In particular, 

there is a high potential for energy savings in more northerly countries, where space heating can account 

for 60-80% of total energy consumption in buildings (European Commission, 2013). For instance, space 

heating and hot water production account for 84% of the overall final energy consumption in German 

residential single- and two-family buildings (Cao et al., 2016; Federal Ministry for Economic Affairs 

and Energy, 2018). In addition, the current building stock will continue to be responsible for the largest 

share of energy consumption in buildings in the future due to a low number of new buildings compared 
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to the existing building stock (Deutsche Energie-Agentur GmbH, 2016; Fylan et al., 2016). The German 

building stock, where more than 64% of residential buildings were constructed before 1979, suffers from 

less stringent building codes than today and poor insulation (Federal Statistical Office of Germany, 

2011). Thus, a successful heat transition, defined as “expanding renewable energy sources and energy 

efficiency in heat generation and demand“ (Töppel, 2020, p. 7), and extensive retrofitting are necessary 

to meet climate goals (Stanica et al., 2021).  

Although the targets and potential are ubiquitously known, and policies and subsidies such as those for 

replacing oil-fired heating systems in Germany are made available, the achievements fall far short of 

the necessary targets to curb global warming (Häckel et al., 2017; Michelsen and Madlener, 2016). In 

Germany, the retrofit rate - the percentage of buildings that undergo retrofits in a year - has stagnated at 

around 1% for about a decade. However, a doubling of at least 2% would be necessary (Deutsche 

Energie-Agentur GmbH, 2021). Nevertheless, it is essential to overcome the failure of current incentives 

and policy instruments to successfully master the heat transition (Achtnicht and Madlener, 2014). Policy 

instruments to increase the retrofit rate must be effective and efficient against the background of limited 

financial resources (Csutora and Zsóka, 2011). Therefore, maximizing GHG reductions per unit of 

money invested in retrofit and energy efficiency projects must be sought. 

I.2. Research Aim 

In order to increase the retrofit rate and energy efficiency in the building sector, a broad mix of different 

policy instruments is already available today, which can vary both nationally and locally (Weiss et al., 

2012). These instruments range from legal requirements for energy efficiency levels in new buildings 

to information campaigns or financial support through subsidies or tax incentives (Tan et al., 2018). 

They can be categorized as direction-based policies, regulation-based, organization & professional 

training, evaluation-based, knowledge & information, and financial support instruments (Liu et al., 

2020; Tan et al., 2018). Table 1 provides an overview and understanding of the wide range of possible 

retrofitting policy instruments. Even though the instruments can be distinguished in terms of objective 

and functionality, in practice, the combination and close interaction of different instruments are shown 

to be more effective and efficient (Iwaro and Mwasha, 2010). 

Researchers are intensively investigating various aspects of retrofitting and the heat transition in 

qualitative and quantitative studies to efficiently design policy instruments and specific measures. Most 

of this research can be summarized under the term energy efficiency gap (Ahlrichs et al., 2020). The 

energy efficiency gap, also referred to as the energy efficiency paradox, describes the phenomenon that 

although energy efficiency investments “seem to present clear economic and environmental advantages, 

the level of investment in them does not reach the levels which would correspond to such benefits” 

(Linares and Labandeira, 2010).  
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Policy instrument Description Example 

Direction-based Provide and outline future directions and 

roadmaps for retrofitting and energy 

efficiency, setting the foundation for other 

policy instruments. 

EU’s directive on the energy 

performance of buildings and 

energy efficiency 2018/844 (EU 

Parliament, 2018) 

Regulation-based Enforcing a government's 

retrofitting/energy efficiency goals 

through laws, standards, and regulations. 

Building Energy Law 

(Gebäudeenergiegesetz (GEG) 

(Federal Ministry of Justice and 

Consumer Protection, 2020) 

Financial support Subsidies or other incentives to minimize 

residents’ resistance to regulation 

measures and to increase the willingness 

to implement retrofits.  

Replacement premium for oil 

heating systems in Germany 

(Federal Office for Economic 

Affairs and Export Control, 

2020) 

Evaluation-based Tools and measures that assist and inform 

stakeholders in making decisions for or 

against retrofits, as well as tools that assist 

in evaluating the energy performance of 

buildings and allow for the derivation or 

evaluation of retrofit strategies. 

Energy Performance 

certificates available through 

Europe (Arcipowska et al., 

2014b) 

Knowledge & 

information 

Increase stakeholders' knowledge and 

awareness by providing easily accessible 

information on successful retrofit 

experiences, benefits, measures, 

subsidies, loans, or qualified experts. 

Online accessible overview of 

possible funding programs (in 

Germany) (Federal Office for 

Economic Affairs and Export 

Control, 2020) 

Organization & 

professional training 

Establishment of relevant professional 

associations and the training of competent 

experts for a professional implementation 

of retrofits. 

Training programs for qualified 

auditors/energy consultants 

(Arcipowska et al., 2014b) 

Table 1. Categorization of retrofitting policy instruments (according to Liu et al., 2020 and Tan et al., 2018) 

Literature identified multitudes of energy efficiency barriers classified as behavioral barriers and 

structural barriers preventing higher and more investments in energy efficiency and retrofits (Brown, 

2001; Shogren and Taylor, 2008; Weber, 1997). Behavioral barriers include social influences, emotional 

and moral motivations, or decision heuristics caused by bounded rationality. Structural barriers instead 

can be divided into non-market failures and market failures addressing barriers such as institutional 

barriers, organizational barriers, the riskiness of energy efficiency investments, or the effects of 

imperfect capital markets and imperfect information (Brown, 2001; Hilbert, 2012; Shogren and Taylor, 

2008; Weber, 1997). Understanding these energy efficiency barriers and their impact on retrofitting 

behavior is of significant relevance for closing the energy efficiency gap and achieving the climate goals 

set. 

Therefore, the overall aim of this doctoral thesis is to contribute to a successful heat transition and 

provide the basis for deriving managerial and policy implications by addressing two aspects of energy 

efficiency barriers and their impact. Specifically: (1) analysis of general factors influencing retrofitting 

practices at the regional level, (2) investigation of risk in general and inaccurate predictions of building 

energy performance (BEP) in particular as barriers to individual retrofit decisions. 
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The need to explore aspect (1) results from limitations of existing studies and is methodologically 

motivated by numerous studies calling for leveraging the potentials of data-driven approaches. Existent 

research on circumstances of and barriers against retrofitting is diverse (Ben and Steemers, 2018; 

Bertoldi and Mosconi, 2020). For instance, Tziogas et al. (2021) identify regional differences in the 

number and costs of retrofits in Greece. Magnani et al. (2020) find that tax incentives for retrofits are 

ineffective and local intermediaries strongly influence the local retrofit level in Italy using a mixed-

methods approach. Further, Gómez-Navarro et al. (2021) analyze survey-based energy poverty in 

Valencia, Spain. However, research to date is often limited to qualitative studies. It is not yet fully 

understood which local differences exist in building performance, energy efficiency, and retrofitting 

practices and how socio-economic factors influence these. From the methodological perspective, 

research does not fully exploit the opportunities created by advancing digitization and data availability. 

Recently published papers highlighted two different needs for future research. First, Pasichnyi et al. 

(2019) proposed using the (openly accessible) databases of building Energy Performance Certificates 

(EPC) for data-enabled energy policy instruments. They conclude that EPC data might have a broader 

spectrum of applications than initially intended and are suitable to design policy instruments for energy 

efficiency. Second, literature suggests using explainable artificial intelligence (XAI) in the building 

sector to derive insights about the relations of different parameters and variables (Golizadeh Akhlaghi 

et al., 2021). In this context, prior research such as Athey (2017) also encouraged using artificial 

intelligence (AI) beyond plain predictions to derive data-driven policy implications. Therefore, this 

doctoral thesis aims to contribute to the existing research gap using data-driven approaches as 

highlighted in literature. 

Investigating aspect (2) goes back to Mills’ (2003) findings. He found that the financial risk of energy 

savings is a central barrier for investments in energy efficiency, and therefore, a significant inhibitor of 

the allure of retrofits. Future energy prices, among other sources of risk, are uncertain and typically 

result in volatile energy (cost) savings as financial risk. Risk in retrofit investment decisions is driven 

by extrinsic factors such as energy prices or weather conditions and intrinsic factors such as occupants' 

behavior or insufficient calculations (Wilde, 2014). Thus, this doctoral thesis aims to analyze risk in 

retrofitting decisions and the impact of different policy instruments on these decisions. Further, since 

BEP predictions prior and after retrofitting, such as depicted in EPCs, are central for deciding whether 

retrofitting is economical or not, BEP prediction accuracy as a barrier to individual retrofit decisions 

should be investigated in more detail. EPCs and BEP prediction are hotly debated in the research 

community, as they exhibit low prediction accuracy – thus representing high risk (Hardy and Glew, 

2019). Research sees potential in using data-driven methods to predict BEP instead of using the legally 

prescribed engineering methods typically applied by qualified auditors, e.g., energy consultants 

(Arcipowska et al., 2014b; Foucquier et al., 2013). This risk-reducing potential of data-driven methods 

will be investigated additionally within aspect (2) of this doctoral thesis. 
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I.3. Structure of the Thesis and Embedding of the Research Papers 

This doctoral thesis is cumulative and consists of six research articles contributing to the elaborated 

research aim. Using data-driven methods and risk modeling approaches, it discusses aspects for a 

successful heat transition in the building sector. Accordingly – and as illustrated in Figure 1 – the 

research articles in this doctoral thesis are structured in terms of two overarching topics: Identifying 

influencing factors on energy efficiency and retrofitting practices and risk and inaccurate BEP 

predictions as barriers for retrofitting.  

Following the research aim, the first aspect (Section II) deals with the identification of general factors 

influencing energy efficiency and retrofitting practices on a regional level, for the example of the 

residential building stock of the UK. On the one hand, the residential building stock of the UK is well 

suited as it represents the oldest building stock in Western Europe and is responsible for more than a 

quarter of the total energy consumption of the UK consumption (Dowson et al., 2012; Filippini et al., 

2014; Fylan et al., 2016; Piddington et al., 2020). On the other hand, much data is publicly available in 

the UK, allowing for large-scale analyses compared to other countries. Research Articles #1 and #2 

apply data-driven methods to publicly available EPC data, additional house price data, and 

sociodemographic data. Research Article #1 uses unsupervised methods to fundamentally examine 

regional differences in the UK housing stock and the influence of socio-economic factors on building 

energy efficiency. Building on this, Research Article #2 changes the focus from factors influencing 

regional building energy efficiency in general to factors influencing retrofitting practices. Data 

availability issues for retrofitting measures conducted require a combination of supervised machine 

learning (ML) and XAI methods to identify socio-economic factors influencing retrofitting practices. 

Both research articles allow deriving policy implications on regional and local levels to increase energy 

efficiency in the residential building stock through targeted incentives and programs. 

The second aspect (Section III) examines risk in general and inaccurate predictions of BEP in particular 

as barriers to individual retrofit decisions. The focus is shifted from regional factors discussed in Section 

II to individual retrofit decisions and thus also investment decisions in energy efficiency. Research 

Article #3 lays the theoretical foundation for the influence of (financial) risk and its perception on 

individual retrofit decisions. Two perspectives on risk are identified in literature and subsequently 

compared by developing a theoretical model and a case study to analyze their influence on retrofit 

decisions. Research Article #4 builds on this by examining the impact of policy instruments on risk and 

return of investment in retrofit measures using a risk-integrated thermal energy hub approach. Given 

that prediction of BEP, especially its accuracy plays a central role in retrofit decisions, Research Articles 

#5 and #6 analyze the potential of data-driven approaches (especially ML) for BEP predictions. With 

the help of accurate BEP predictions, the financial risk in retrofit decisions can be significantly reduced, 

which positively impacts retrofit rates and investment levels. Therefore, Research Article #5 compares 
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the currently by law required Energy Quantification Methods (EQM) with state-of-the-art data-driven 

EQMs in terms of BEP prediction accuracy. Upon this, Research Article #6 compares different data-

driven EQMs with the novel algorithm QLattice regarding BEP prediction accuracy, computational 

times, and explainability in a case study. Exploring aspects of explainability allows deriving further 

insights from data-driven EQMs often referred to as black-box models. Summing up, Research Articles 

#3 through #6 thus contribute to individual retrofit decisions and enable more efficient policy design 

using digital and data-driven technologies. 

 

Figure 1. Structure of the Doctoral Thesis and Classification of the research articles 

This doctoral thesis then concludes in Section IV with a summary of all key findings (cf. subsection 

IV.1) and provides pertinent limitations as well as prospects for further research (cf. subsection IV.2) 

before discussing earlier, related and work published during the time this thesis was written (cf. 

subsection IV.3). 

Section V contains the thesis references. The appendix in Section VI provides additional information on 

the six research articles included in this thesis (cf. Subsection VI.1). Subsection VI.2 details the 

contributions of the author of this thesis to each of the research articles. All research articles' (extended) 

abstracts are depicted in subsection VI.3. The supplementary material not intended for publication 

contains the full texts of all research articles. 
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II. Factors Influencing Energy Efficiency and Retrofitting Practices 

II.1. Impact of Socio-Economic Factors on Local Energetic Retrofitting Needs  

The current policy instruments in England, Scotland, and Wales fail in increasing the energetic retrofit 

rate for residential buildings and thus do not sufficiently counteract climate change (Brown, 2018; CCC, 

2019; Rosenow and Eyre, 2016). Possible explanations are local differences in building properties and 

socio-economic factors that might influence the effectiveness of policy instruments incentivizing 

retrofitting (Jones et al., 2009; Kastner and Stern, 2015). Thus, understanding the interdependencies 

between building energy efficiency and these factors are required to enable locally tailored policy for 

an effective and efficient resource allocation (Fylan et al., 2016; Gerarden et al., 2017; Rosenow and 

Eyre, 2016). Local authorities already provide a range of energy services, are committed to reducing 

GHG emissions (Comodi et al., 2012; Wade et al., 2020), and are responsible for coordinating policies 

and measures to reduce residential energy use (Morris et al., 2017). Thus, examining the influence of 

socio-economic factors on building energy efficiency at a local level is essential. Despite growing 

empirical research on energy efficiency in general (Ben and Steemers, 2018; Bertoldi and Mosconi, 

2020; Zhang et al., 2012) and enhanced application of data mining methodologies, it is not fully 

understood yet which local differences regarding building characteristics and buildings' energy 

efficiency exist and how socio-economic factors influence them.  

Therefore, Research Article #1 sets out to analyze if there are local differences in the energetic 

retrofitting needs of the residential building stock in England, Scotland, and Wales, and which socio-

economic factors might explain these local differences. Using a data-driven approach on an extensive 

real-world dataset of more than 10.5 million EPCs in England, Scotland, and Wales local differences of 

residential buildings energy efficiency on local authority level by using a 𝜒2 independence test are 

derived in a first step. Finding significant differences already at such an aggregated level reinforces the 

importance of locally tailored policies. Second, local differences in the building stock retrofitting needs 

are determined by deriving the most important building parameters influencing the energy efficiency by 

applying a Random Forest Classifier prior to using a K-means cluster analysis to obtain building 

archetypes with their different retrofitting needs. A second 𝜒2 independence test on the distributions of 

the resulting archetypes per local authority confirms small but significant differences in the building 

stock and their retrofitting needs for a 5% significance level. Moreover, the effect strength might 

increase with more granular data (e.g., district level), such that even bigger local differences become 

apparent. 

To identify socio-economic factors influencing local authority energy efficiency, several Random Forest 

Regressions of socio-economic factors obtained from the last census 2011 are applied on different 

quantiles of the local authorities’ energy efficiency. Findings reveal that the correlation of socio-
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economic factors with building energy efficiency varies with the energy efficiency level. Figure 2 

illustrates the overall weighted importance of the superordinate domains (of socio-economic factors) 

Demographic, Economic, Employment, Household Composition, Housing, and Socio-Economic for 

each quantile1. Leaving out the extreme 1 and 99% quantiles, there are pronounced trends in the domain 

importance. The importance of the domains “Employment” and “Housing” decreases with increasing 

energy efficiency of the buildings from 22% to 14% and 26% to 12%, respectively. Further, there is a 

slight decrease in importance of “Demographics”. In contrast, the “Socio-Economic” and “Economic” 

domains gain importance with increasing energy efficiency. The overall importance of “Household 

Composition” is almost constant.  

 

Figure 2. Comparison of the importance of the different socio-economic domains shows how the influence of the domains shifts 

with different levels of local energy efficiency 

On the level of individual socio-economic factors, some more important factors impact regressions, e.g., 

the rurality of a region. Generally, factors from the domain “Employment” appear to be highly 

important. Further major influences are “share of vacancy”, “living rent-free”, “residents age above 60”, 

and “travel to work”. These findings allowed deriving policy implications to effectively increase the 

energy efficiency of residential buildings: First, there is strong evidence for local differences in energy 

efficiency and the residential building stock across England, Scotland, and Wales. Thus, policy 

instruments should be locally tailored to be most effective and might be even more effective on a more 

detailed, less aggregated level. Second, deriving archetypes of buildings support the prioritization of 

necessary retrofits for the residential building stock in a local authority and thus gives guidance on which 

instruments to implement. Third, policymakers should consider the local population with their 

respective socio-economic factors and the intended target in terms of current and future levels of energy 

efficiency when implementing policy measures to maximize the effect of resource allocation. Even for 

the same energetic retrofitting need in two areas, influencing socio-economic factors might differ. For 

instance, the Scottish rural local authority “South Ayrshire” and the London local authority “Islington“ 

 
1 Note, that “socio-economic” is both an individual superordinate domain and the generic term for all factors. The 

naming of these superordinate domains and the assignment of each socio-economic factor originate from the 

census 2011. Consider that each superordinate domain includes a different number of factors. 
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require roof retrofitting. However, differences may arise from the availability of local skilled labor or 

the share of professionals working from home, in addition to material availability and constraints in the 

construction process. Fourth, for instance, a specific policy could aim to reduce the construction time in 

areas where many people work from home since disruption of life is an obstacle, which can be mitigated 

by shorter construction times (Caird et al., 2008). To this end, initiatives such as "Energiesprong" using 

prefabricated building facades, roof elements, and building services modules might help to increase the 

retrofit rate (Brown et al., 2019). Further, as travel time is longer and skilled labor is less available in 

rural areas, local policymakers should support traffic and accommodation for workers. In addition, 

education and training programs for craftsmen should be redesigned to meet local retrofitting needs with 

specific upgrade courses alongside basic nationwide training (Gram-Hanssen et al., 2018). 

II.2. Identifying Residential Building Retrofitting Practices Using Explainable 

Artificial Intelligence 

After Research Article #1 examined the impact of socio-economic factors on local energetic retrofitting 

needs - the building stocks' energy efficiency - the influence of various factors on the implementation 

of retrofits also needs to be analyzed. This can provide further essential insights for the design of policy 

instruments. However, a challenge in large-scale analyses of this kind is data availability. Either 

information on retrofitting measures carried out or time-series data (from EPCs) must be available to 

derive conducted retrofits. The low data availability, the high effort to extract the necessary information, 

and the necessary methodological procedures are possible reasons for the lack of such studies. Research 

Article #2, motivated by the suggestions in literature for the use of XAI in the building sector to derive 

insights about the relations of different parameters and variables (Golizadeh Akhlaghi et al., 2021), is 

dedicated to this topic. Building on Research Article #1, Research Article #2 investigates to what extent 

XAI approaches based on EPC, house price, and socio-economic data contribute to the derivation of 

policy implications for retrofitting behavior in residential buildings. Therefore, the data prepared in 

Research Article #1 is enriched with additional house price data of the residential building stock in 

England and Wales. Then, whether a building has been retrofitted and which measures have been carried 

out are extracted from the EPC data using a self-developed method. Supervised ML is applied to the 

datasets using an XGBoost (eXtreme Gradient Boosting) model to classify whether a building has been 

retrofitted or not before using SHapley Additive exPlanations values (SHAP) as an XAI technique to 

identify the key factors and relationships that influence this classification. 

Figure 3 reports on the SHAP values of the top influencing factors on retrofitting with higher values 

indicating a more substantial influence. Positive SHAP values indicate that a retrofit has been carried 

out, while negative SHAP values indicate the opposite effect. Further information on SHAP values, their 

detailed analysis, and factor abbreviations can be found in the supplementary material. The most 

important factors represent a mixture of building properties (e.g., current heating costs, glazing 
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proportion or wall and roof energy efficiency), economic properties (median and mean houses prices) 

and sociodemographic properties (e.g., a population from age 0 to 15, employment rate, Gross 

Disposable Household Income (GDHI)). 

 

Figure 3. SHAP values for top influencing factors for and against retrofitting 

The analysis succeeds in demonstrating very clearly which factors influence the implementation of 

retrofits and how suitable policy implications can be derived. Contributions and identified policy 

implications are as follows. First, combining supervised ML with approaches of XAI allows to 

corroborate findings previously obtained in qualitative or small-scale studies with a quantitative study 

using real-world data and identify additional influencing factors. Second, a method for extracting 

building retrofits from the UK EPC data that can be reproducibly applied in further studies is developed. 

In addition, the method can be used to extract and analyze changes in buildings over time from EPCs. 

Third, existing studies on the influence of house prices on retrofit behaviors can be confirmed. Since 

higher house prices lead to a lower likelihood of retrofits, making at least some comparatively low-cost 

retrofit measures mandatory for new rentals and sales in local authorities with high average house prices 

(e.g., London) seems appropriate. Further, green mortgages offering the customer beneficial mortgaging 

conditions might improve retrofit rates in high-price areas. Fourth, since families with children aged 15 

or younger are less likely to carry out retrofits, special programs for families with children might be 

helpful considering their specific needs. These programs should be characterized by financial support 
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and provide transparent information and quick, straightforward help in implementing retrofits 

minimizing burdens on families. Local authorities where the " Better Homes for Yorkshire" initiative 

was effective with corresponding characteristics showed a high number of retrofits, so the initiative 

might be replicated by other regions. Fifth, since low energy efficiency of walls and roofs is an important 

criterion for energy efficiency and has a positive impact on retrofits, incentivizing retrofits for buildings 

with EPCs, that exhibit poor levels of energy efficiency in walls and roofs might be suitable. Moreover, 

the abundance of problems related to the wall and roof efficiency evaluation process must be considered, 

which may require the introduction of higher quality standards in the preparation of EPCs. Sixth, with 

fuel poverty being a widespread phenomenon in England and Wales, retrofit-related carbon taxes are 

sensible. For higher-income households with a high energy consumption raising retrofitting-related CO2 

taxes would be an incentive to retrofit. No taxes could be levied on low-income households, and a 

cumulative subsidy could be granted depending on the heating costs for each year. This approach could 

be implemented through Her Majesty Revenue & Customs (UK Government department, responsible 

for collecting taxes) without much additional effort, as it already collects income taxes and is already 

aware of each household's income. Thus, an energy bill is the only additional document needed to 

calculate an additional CO2 tax or retrofit grant. Summarizing, the findings show that existing studies 

can be confirmed with the help of data-driven approaches and that policy measures already found in 

individual cases should be rolled out broadly in the UK to increase retrofits in the domestic sector to 

achieve climate goals.  
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III. Risk and Inaccurate Building Energy Performance Predictions as 

Barriers for Retrofitting 

III.1. Understanding the Risk Perception of Energy Efficiency Investments: 

Investment Perspective vs. Energy Bill Perspective 

Achtnicht and Madlener (2014) attribute the failure to meet climate goals and low retrofit rates, i.e., the 

failure of current policy instruments, to a lack of understanding of individual investment decisions. 

Research Article #3, therefore, aims to contribute to a better understanding of investment decision-

making in the field of energy efficiency. Energy efficiency investments are defined as investments 

resulting in reduced energy demand (Häckel, Pfosser and Tränkler, 2017; Ahlrichs et al., 2020). Thus, 

upfront investments are followed by (uncertain) cash flows, i.e., a reduced energy bill. Research Article 

#3 divides existing literature on investment decision-making behavior considering risk connected to 

energy efficiency in two streams and ends up in either one of two contrary conclusions. One stream of 

literature sees energy efficiency investments as projects with upfront investment and uncertain cash 

flows resulting from increased energy efficiency (Häckel, Pfosser and Tränkler, 2017). Here, literature 

defines cash flows as the resulting energy bill savings and argues that the uncertainty of these future 

cash flows is a central barrier to investment that prevents decision-makers from carrying out 

economically and ecologically beneficial energy efficiency measures due to their risk-aversion (Hirst 

and Brown, 1990; Mills, 2003; Farsi, 2010). These studies model energy efficiency measures as 

investments associated with financial risk of future cash flows. As future energy prices, among other 

sources of risk, are uncertain, investment in energy efficiency typically leads to volatile energy bill 

savings. To avoid this perceived risk, decision-makers invest less in energy efficiency. Research Article 

#3 summarizes this stream of literature under the investment perspective. The second stream of literature 

models energy efficiency measures as a mitigation of the uncertainty of future cash flows – future energy 

bill cost streams. Thompson (1997) was among the first to point out that energy efficiency is not a risky 

investment to invest in or not, but rather that a decision-maker faces the choice between two uncertain 

future cost streams. As Naumoff and Shipley (2007) illustrate, energy efficiency leads to a future cost 

stream with less uncertainty due to reduced energy price exposure and helps to reduce overall risk. This 

stream of literature represents the energy bill perspective. The differences between both perspectives in 

future cash flows, energy bill costs for the energy bill perspective and energy bill savings for the 

investment perspective, are illustrated in Figure 4. Simply, assuming a linear relation between the 

invested amount and energy saved, larger investments are followed by larger energy bill savings but 

also higher absolute volatility. Thus, the rationale in the investment perspective is that if I want to 

minimize risk, I minimize investment. Since larger investments simultaneously reduce the volatility of 

the remaining energy bill costs, the rationale in the energy bill perspective is to maximize the 

investments to minimize risk.  
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Figure 4. The different perspectives on risk: investment perspective (white area) vs. energy bill perspective (green area). 

Grey-dashed line for energy bill costs without and green line for energy bill costs with energy efficiency investment. 

The two perspectives might give the impression that there exist two different types of risk connected to 

energy efficiency. However, as the sources of risk, e.g., uncertain energy prices, stay the same 

independent of the perspective, the two perspectives are not different types of objective risk but different 

perceptions of risk. The phenomenon of different perceptions of risk was, among others, analyzed by 

Slovic and Weber (2002). They pointed out that decision-makers use different models and assumptions 

to evaluate risk, leading to different perceptions of risk and behavior. Research Article #3 concludes 

that the two different streams in literature describe two different perceptions of risk, i.e., two different 

types of decision-makers, applying different models and assumptions impacting the effectiveness of 

policy instruments. To address the lack of understanding of investment decision-making for energy 

efficiency investments (Achtnicht and Madlener, 2014), Research Article #3 additionally illustrates with 

the help of Expected Utility Theory (EUT) (Bernoulli, 1954) the differences between both perspectives 

and their combination using a simple and understandable mathematical model with a Constant Absolute 

Risk Aversion utility function. Since categorizing decision-makers in either one of the two perspectives 

might not be sufficient, decision-makers accounting for both perspectives are analyzed. Consequently, 

the theoretical insights are validated with a Monte Carlo Simulation to predict the distribution of energy 

bill costs and savings after energetic retrofitting of a commercial building based on averaged data of 

German commercial buildings. Commercial buildings represent a suitable validation object, since 

decision-makers in a professional context tend to act more rationally than private decision-makers, and 

commercial buildings are the second largest energy consumer, accounting for 34% of the German 

building sector (Deutsche Energie-Agentur GmbH, 2021). 
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The theoretical and empirical analyses show how differently the two perspectives influence the decision-

making for energy efficiency investments. Within the energy bill perspective, decision-makers invest 

much more in energy efficiency due to the mitigating effect on their perceived risk. Thereby, their 

expected utility grows with an increased investment amount. Contrarily, evaluating energy efficiency 

from an investment perspective results in a significantly lower optimal investment amount. A decision-

maker integrating both perspectives in her/his decision has an optimal investment amount between the 

optima of the two stand-alone perspectives. 

The research article’s findings allow deriving two main implications for energy policy. First, the 

theoretical construct of the investment and energy bill perspective, at least in the context of rational 

decision-making, opens possibilities towards more sustainable investment behavior by promoting the 

energy bill perspective and convincing decision-makers that energy efficiency reduces the variance of 

their future energy bill. Naturally, this hypothesis that the energy bill perspective promotes investment 

requires real-world validation. Nevertheless, the potential for the theoretical considerations to enrich 

future information campaigns on energy efficiency by promoting the energy bill perspective and 

drawing attention to the risk mitigation potential of energy efficiency seems viable. Current subsidy 

programs and information campaigns (e.g., KfW (2021)) could elaborate on risk mitigation potential to 

set further effective incentives for sustainable investments. Second, the research article extends the 

current literature on influences of risk perception on energy efficiency investment decisions. The 

knowledge that decision-makers evaluate energy efficiency from different perspectives is important to 

evaluate, develop, and implement effective policy instruments. For instance, the effectiveness of 

traditional instruments like carbon taxes or subsidies depends on the risk perception of the decision-

maker. Both instruments are designed to increase the expected financial return of energy efficiency 

investment. Nevertheless, decision-makers within the investment perspective demand an increased 

expected return of energy efficiency measures and decreased financial risk, resulting in potentially lower 

instrument effectiveness for these types of decision-makers. Above these implications for energy policy, 

the research’s findings explain contradictions in existing literature. Potentially, differing results, which 

sparked discussions, align with either one of the two perspectives. Thus, important insights into 

decision-making for energy efficiency investments are added.  

III.2. Risk Mitigating Effects of Political Instruments on Building Energy 

Retrofits 

While Research Article #3 builds a solid basis for understanding the influence of risk on decision-

making in energy efficiency investments, Research Article #4 investigates the risk-mitigating effect of 

different policy instruments on building energy retrofits. Therefore, a Risk-Integrated Thermal Energy 

Hub (RITEH) is developed utilizing the work by Fabrizio et al. (2010) and Mills et al. (2006) to address 

extrinsic and intrinsic factors driving risk (Wilde, 2014). The RITEH allows demonstrating how 
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individuals evaluate thermal building retrofits based on financial risk and return. Given two retrofit 

options with the same expected financial return, rational decision makers will prefer the one with the 

lower financial risk. The RITEH is fitted with real-world data from 342 German one and two-family 

houses and calculates the mean and variance of the Net Present Value (NPV) of thermal building 

retrofits. Financial risk and return are evaluated within a two-dimensional mean-variance portrayal 

simultaneously. With this portrayal, estimating Pareto efficient thermal building retrofits and modeling 

the investment decision-making of rational acting individuals is possible. In a case study on an 

exemplary German two-story single-family house using the RITEH, retrofits with relatively high CO2-

equivalent Emission Savings (CES) are found to have higher financial risk and lower financial return 

for the homeowner what is in line with other studies (cf. Mills, 2003; Häckel et al., 2017). Consequently, 

political interventions are necessary to change this circumstance. 

Additionally, the effect of Pigouvian emission taxes as a general regulatory instrument, indirect 

subsidies on investment costs, and energy efficiency insurances as technology-specific financial 

instruments on the attractiveness of environmentally friendly thermal building retrofits for investors are 

analyzed. Above that, comparative costs after implementing a specific instrument for either the 

policymaker (subsidy, insurance) or the homeowner (tax) are extracted. Findings illustrate that subsidies 

solely increased the financial return of a thermal building retrofit. Therefore, subsidies can save up to 

an additional 50% of CO2 emissions. These findings support the presumption of Achtnicht and Madlener 

(2014) that subsidies, notwithstanding efficiency problems, can help promote investments in energy 

efficiency for the building sector. Additionally, it is demonstrated how energy efficiency insurance 

increases financial return and mitigates risk. By implementing insurance, policymakers would assume 

part of the risk inherent to thermal building retrofit investment. Therefore, energy efficiency insurance 

can influence the incentive of retrofitting efficiency and decrease emissions up to additional 35% for the 

example house analyzed. The results for energy efficiency insurance matches the results of Mills (2003) 

and Töppel and Tränkler (2019). They both found that energy efficiency insurances can positively affect 

investment decisions in energy efficiency by mitigating financial risk. Comparing subsidies and 

insurances leads to the conclusion that insurance is overall more efficient, compared to environmental 

impact and costs, but subsidies can be scaled up easily. Also, the article shows how an instrument 

without direct costs for the government, such as emission taxes, can help increase the allure of 

environmentally friendly retrofits. Nevertheless, CO2 emission taxes must be sufficiently high to 

significantly change the decision-making regarding thermal building retrofits, which leads to higher 

costs for the homeowner. These findings are in line with the research team of Aasness et al. (1996) and 

Thonipara et al. (2019) who both found that a high emission tax causes “markedly different reductions 

in energy consumption” compared to lower taxes (Thonipara et al., 2019, p. 1166). 

The research article’s results lead to multiple suggestions for policymakers. First, the results show an 

opposite pattern of environmental and financial benefits of energy efficiency investments. Policymakers 
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must address this trade-off. Second, without any political intervention, private households cannot 

achieve current environmental policy targets. This is because of the high financial risk of thermal 

building retrofits combined with the loss aversion of investors. Therefore, it is not enough to consider 

only the estimated financial return of an energy efficiency investment for the design of political 

instruments. Risk must also be considered. Consequently, policymakers should consider supporting the 

development of innovative instruments like the proposed energy efficiency insurance that 

simultaneously reduce risk and increase return. Thus, resulting in higher investments in retrofits. Third, 

the case study shows how expensive it would be for policymakers to achieve a goal such as the German 

government's 2010 goal of reducing GHG emissions by 80% below 1990 levels by 2050 using only the 

instruments discussed2. Policymakers could consider the support of research for new technologies that 

are environmentally friendly and profitable for the homeowner concurrently. Fourth, the article shows 

how emission taxes that have an appreciable impact on environmental investments would burden private 

homeowners. In this case study, a CO2 tax that leads to expected CES of 50% would result in additional 

costs for the homeowner at 1,000€ per year. Therefore, policymakers should reconsider how they could 

exonerate the population after implementing high CO2 taxes. Promising ideas on how to do this were 

discussed by Diekmann (2019).  

Based on the recent efforts in environmental policy, the German government announced a new climate 

protection program (Klimaschutzprogramm 2030) in October 2019 (Federal Government Germany, 

2019). This package's two key points are especially interesting to Research Article #4. First, the German 

government announced that they plan to implement a CO2 emission tax of 25€ per CO2 ton by 2021 and 

increase the tax to a maximum of 60€ in the following years. The results of this and previous works (cf. 

Thonipara et al., 2019) emphasize that this emission tax is far too low to significantly impact investment 

decisions for private households since emission taxes would need to exceed 140€ per CO2 ton. Second, 

Germany wants to implement subsidies for new heating systems at 40%.3 The study results show that 

this could be a helpful instrument to promote environmental investment in thermal building retrofits. 

Nevertheless, energy efficiency insurance would have a more cost-effective impact.  

 
2 Note that the goal of reducing GHG emissions in Germany by 80% below 1990 levels by 2050 has now been 

tightened in the Climate Protection Act (Klimaschutzgesetz). 
3 For the sake of completeness, it should be mentioned that the regulations adopted in October 2019 have been 

tightened during the course of writing this doctoral thesis. Regarding the CO2 emission tax, the tax is to rise 

steadily until 2025 and a price corridor of at least 55 and at most 65 euros is planned from 2026 (Federal 

Government Germany, 2021). For the replacement of oil heating systems that use only renewable energies, the 

current subsidy rate is 45% and for oil heating systems that use both renewable energies and natural gas, the 

subsidy rate is 40% (Federal Office for Economic Affairs and Export Control, 2020). 
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III.3. The Potential of Data-Driven Approaches for Accurate Building Energy 

Performance Predictions 

BEP prediction, especially its accuracy, plays a central role in retrofit decisions. EPCs, issued by 

qualified auditors, are intended to increase the retrofit rate by providing general information about 

buildings, their current BEP and BEP after possible retrofit measures (Arcipowska et al., 2014a). To 

achieve its full effect, accurate prediction of the BEP is important to decide on purposeful retrofit 

measures, as uncertainty and incomplete information are substantial investment barriers (Amecke, 

2012). However, today’s most frequently used and by law prescribed EQMs are strongly discussed in 

the research community, as they exhibit low prediction accuracy (Hardy and Glew, 2019). The 

prescribed engineering EQM is based on physical laws to calculate thermal dynamics and energy 

behavior (Zhao and Magoulès, 2012), requiring detailed information on building components gathered 

by auditors during on-site inspections (Arcipowska et al., 2014a). If the input data quality is low, e.g., 

because the insulation materials are unknown and cannot be determined with reasonable effort, the result 

will also be erroneous.  

Data-driven EQMs were introduced in research to enhance the prediction accuracy and obtained 

promising results in preliminary studies (Sutherland, 2020). They learn underlying dependency 

structures from available data without relying on expert knowledge of building physics or precise 

information on building components (Amasyali and El-Gohary, 2018). This allows data-driven EQMs 

to potentially overcome the shortcomings of engineering EQMs. However, there is a lack of studies on 

data-driven EQMs in residential buildings considering heating energy focusing on long-term (annual) 

energy prediction, as required for EPCs (Amasyali and El-Gohary, 2018). Furthermore, most studies are 

based on simulated building and energy data, limiting their practical applicability and the validity of the 

findings (Wei et al., 2018). Therefore, it is unclear whether data-driven methods can outperform the 

engineering EQM concerning the annual BEP prediction of residential buildings necessary for EPCs. 

Moreover, if so, it is unclear which data-driven EQMs are particularly suited. Thus, for full 

comparability and transparency of the algorithms’ performance in practice, Research Article #4 

investigates which EQM yields the highest accuracy for predicting the BEP of real-world residential 

single- and two-family buildings in Germany. 

Therefore, several ML algorithms – Artificial Neural Network (ANN), D-vine copula quantile 

regression, Extreme Gradient Boosting (XGB), Random Forest (RF), and Support Vector Regression 

(SVR) – are implemented and tuned on an extensive first dataset containing 25,000 real-world single 

and two-family buildings in Germany (see Figure 5). The output accuracy (predictive power) is then 

calculated by predicting the BEP of 345 additional buildings from a second dataset and comparing the 

prediction with the actual metered energy consumption. This second dataset was gathered by qualified 

energy auditors and also encompasses the BEP stated in the EPCs based on the prescribed engineering 
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EQM, which allows comparing the data-driven EQMs to the engineering EQM. To ensure robust results 

and comply with state-of-the-art ML practices, benchmarking the ML algorithms against each other in-

depth is based on nested cross-validation on both building datasets. By stratifying the Performance 

Evaluation Measures (PEM) based on a third dataset containing information on the German building 

stock, representativeness is ensured.  

  

Figure 5. Descriptive statistics for the preprocessed dataset containing 25,000 real-world single- and two-family buildings in 

Germany 

The results provide strong evidence that the data-driven EQMs outperform the engineering EQM by a 

large margin, reducing the prediction error by almost 50% (see Figure 6). Further, the results show that 

the energy performance gap generally holds for single- and two-family buildings in Germany with 

approximately the expected values for the energy performance gap based on literature. However, the 

analyses do not confirm previous findings on data-driven EQMs in literature that ANN and SVR have 

generally better prediction accuracy for BEP than less complex ML algorithms like RF (Amasyali and 

El-Gohary, 2018). 

  

Figure 6. Coefficient of Variation as a performance measure for the different Energy Quantification Methods for instantiations 

of the variables building age on the left-hand side, aggregated into building age classes, and living space on the right-hand 

side, aggregated into living space bins 
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Instead, XGB exhibits the highest prediction accuracy for most analyses conducted, closely followed by 

SVR and RF. On the other hand, ANN performs worst to second-worst among the tested data-driven 

EQMs. However, the differences in prediction accuracy are slight, and the standard deviations indicate 

that these results should be treated with caution. Consequently, it cannot be argued that one specific 

data-driven EQM dominates all others in general for this task. Nonetheless, this supports that each 

application requires a specifically designed EQM to reach the highest accuracy and that there is no 

strictly dominant EQM (Kaymakci et al., 2021; Mosavi et al., 2019).  

The article’s findings lead to several managerial and policy implications. First, they provide clear 

guidelines for policymakers. The current low-carbon transition paths still require higher retrofit rates for 

residential buildings to reach the climate goals. Therefore, revising the current legislation to allow data-

driven EQMs instead of the prescribed engineering EQM with significantly worse prediction accuracy 

seems appropriate. This potentially levers the residential building retrofit rate by decreasing the 

uncertainty of energy efficiency measures, thereby removing investment barriers and contributing to 

achieving the climate goals as identified in Research Articles #3 and #4. Two different applications are 

conceivable at present, either the direct replacement of the engineering EQM or the complementary 

application used for transitional quality assurance of the engineering EQM to check for outliers or 

incorrect data. The verification could be automated and thus be realized cost-efficiently and without 

human involvement. The quality assurance can be rolled out nationwide, increasing confidence in the 

EPC, thus offering a more reliable foundation for decision-making. Potential challenges are the 

acceptance and ensured quality of the underlying models. Homeowners may perceive unfair treatment 

if EPCs depicting low energy efficiency are issued based on calculation methods that are not or hardly 

comprehensible such as black-box approaches, as this reduces the resale value of the houses (see also 

Section III.4). When putting data-driven EQMs into a use case perspective, a distinction must be made 

between EPCs for existing and new buildings. Data-driven EQMs learn from available data, limiting 

their suitability for creating EPCs for new buildings. Since the construction rate in Germany is 

comparatively low and the energy-saving potentials in existing buildings are much more remarkable, as 

well as the determination of consumption is more costly and error-prone, the focus should be placed on 

this use case (Deutsche Energie-Agentur GmbH, 2016). Second, it is suggested to use data-driven EQMs 

for other applications, such as asset management, city planning or insurance, to enhance their business 

models with more economic decision-making, minimization of risk, and higher profits. The energy 

efficiency evaluation of buildings is a central element in many areas and can be decisive for the 

economic success of companies (Bozorgi, 2015). Cost-efficient information gathering is particularly 

relevant for the initial energy evaluation of real estate if EPCs are not yet at hand, as energy-efficient 

buildings yield higher returns and higher rents than energy-inefficient buildings (Cajias and Piazolo, 

2013). Insurance companies could enhance claim prediction models, or asset management companies 

could optimize their portfolios with data-driven investment strategies. However, both should be 
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extremely careful in the implementation since miscalculations in investment portfolios are 

comparatively worse than miscalculations in EPCs.  

III.4. Unblackboxing Data-Driven Approaches for Building Energy Performance 

Predictions Using Explainable Artificial Intelligence 

Even though, as analyzed in Research Article #5, data-driven EQMs exhibit considerable gains in 

prediction accuracy compared to engineering EQMs, they possess one drawback. Data-driven EQMs, 

also referred to as black-box models, suffer from the drawback that the mechanisms behind the 

predictions that are important for increasing trust and accountability are (often) not clear (Mohseni et 

al., 2018). So far, most studies focused on established ML algorithms, e.g., ANN, SVR, Multiple Linear 

Regression (MLR), or XGB, concentrating on prediction performance and computational efficacy 

without considering XAI (Amasyali and El-Gohary, 2018; Arjunan et al., 2020; Wei et al., 2018). XAI 

refers to methods and techniques to generate more explainable models that human users can understand, 

appropriately trust, and derive implications from while maintaining a high level of prediction 

performance (Barredo Arrieta et al., 2020). Therefore, XAI holds significant potential for predicting 

BEP, enabling occupants to follow and understand the EQMs applied. For experts such as energy 

consultants, the importance and influence of several building characteristics on the BEP can be 

demonstrated in a comprehensible way. In addition, findings from XAI can enhance engineering EQMs 

by delivering insights from real-world data. To analyze these promised benefits, Research Article #6 

discovers the potential of the novel algorithm named QLattice to achieving the same BEP prediction 

performance compared to established data-driven EQMs while simultaneously increasing explainability. 

The QLattice, inspired by Richard Feynman’s path integrals, provides simple mathematical equations 

to solve classification and regression tasks (Broløs et al., 2021; Wilstup and Cave, 2021). 

To this end, building on Research Article #5, the established ML algorithms ANN, SVR, XGB, and 

MLR are compared with the QLattice regarding prediction performance, computational times, and 

explainability in a case study. The results show that the QLattice achieves good prediction performance, 

albeit being slightly less accurate than the established black-box models, and performs best in prediction 

time, although exhibiting relatively long training times. In terms of explainability, the results obtained 

by applying post-hoc techniques to the established ML algorithms to determine variable importance are 

mostly consistent with the QLattice. Additionally, due to the QLattice’s transparent model structure and 

simplicity by design, the interaction of several variables can be derived without additional analysis 

allowing to derive further insights. This concludes that the QLattice is suitable for predicting the final 

energy performance of residential buildings and proves to be a viable option by combining ease of use, 

high prediction performance, and explainability by design. 



21 

 

 

In addition, several implications for research and practice regarding the QLattice’s prediction 

performance and explainability can be derived. First, the QLattice may serve to improve existing white-

box and grey-box models, thereby linking the knowledge domains of engineers and data scientists. 

Especially for grey-box models, the need for interdisciplinary knowledge about both white-box and 

black-box models is considered a challenge (Wei et al., 2018). The QLattice could be used to bridge this 

gap by allowing comprehensible insights obtained with the QLattice about important variables and their 

complex interactions to be interpreted by engineers and used to improve white-box models. Second, the 

QLattice's relative ease of use makes it suitable for newcomers to research on data-driven EQMs. In 

contrast to established algorithms, less effort must be put into data preprocessing, which means that 

initial results can be achieved more quickly and are less error-prone. This can effectively reduce entry 

barriers and enable the application of data-driven EQMs to a broader target audience. Third, the 

transparent structure of the QLattice increases trust and understanding of data-driven EQMs, reducing 

uncertainty. Consequently, more energetic retrofits with higher energy savings and emission reductions 

might be achieved. Fourth, the formula derived from the QLattice model enables a simple 

implementation and calculation of the BEP, which can be understood even by non-experts. This could 

serve as an online service that allows owners or tenants to initially assess their energy consumption and 

compare their building with others. Fifth, the results imply that more focus should be placed on the 

application of various XAI techniques in ML algorithms, as the sole focus on prediction performance 

neglects potentials of data-based knowledge gain. 
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IV. Conclusion 

IV.1. Summary 

The building sector offers great potential to achieve the climate goals and face human-induced climate 

change. Since the current building stock also will account for the largest share of energy consumption 

of buildings in the future due to low new construction rates, a successful heat transition and extensive 

retrofitting are crucial (Fylan et al., 2016; Stanica et al., 2021). Although researchers are intensively 

investigating various aspects of retrofitting and the heat transition to design efficient policy instruments, 

nations struggle to meet climate goals by increasing retrofit rates. Addressing calls and research gaps in 

literature, this doctoral thesis focusses on two aspects of barriers against retrofitting and energy 

efficiency, allowing to derive managerial and policy implications. First, the analysis of general factors 

influencing retrofitting practices at the regional level. Second, the investigation of risk in general and 

inaccurate predictions of BEP in particular as barriers to individual retrofit decisions. 

On the first aspect, Section II offers insights into factors influencing energy efficiency and retrofitting 

practices on a regional level in the residential building stock using the example of UK data, for 

evaluating data-driven approaches of unsupervised and supervised ML. Applying unsupervised ML 

methods on publicly available EPC data, additional house price data, and sociodemographic data, 

Research Article #1 finds strong evidence for regional differences in building energy efficiency and 

discovers that factors associated to employment mainly affect buildings with lower energy efficiency 

whereas the impact on more efficient buildings is limited. In addition, initiatives such as 

"Energiesprong", which use prefabricated building facades, roof elements, and home automation 

modules, could help shorten construction time for retrofits in areas where many people work from home 

and find life disruption a barrier to retrofitting. Upon this, combining supervised ML and XAI Research 

Article #2 identifies factors influencing retrofitting practices. Current heating costs, the regional 

employment rate, the mean regional gross disposable household income, and the share of people younger 

than 15 years in a region are among the top influencing factors. The results confirm the findings of 

previous qualitative or small-scale studies and lead to the conclusion that at least some comparatively 

low-cost retrofit measures should be mandatory for new rentals and sales in communities with high 

average house prices, since higher house prices reduce the likelihood of retrofits. Further, retrofitting-

related CO2 taxes might be reasonable and easy to implement. While higher-income households with 

high energy consumption would be incentivized to retrofit by charging retrofit-related CO2 taxes, lower-

income households could be exempt from taxes and receive a cumulative subsidy based on heating costs 

for each year. Findings from both research articles show the potential of data-driven approaches for 

targeted policy implications on the regional level to increase residential building stock energy efficiency. 
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On the second aspect, Section III provides insights on risk in general and inaccurate predictions of BEP 

in particular as barriers to individual retrofit decisions. Shifting the focus from regional factors 

previously examined to individual retrofit decisions enables further insights. Research Article #3 lays 

the theoretical foundation for the influence of risk perception on individual retrofit decisions. Based on 

a theoretical model and a case study, the results show that risk-averse decision-makers invest more in 

energy efficiency when evaluating from the energy bill perspective instead of the investment 

perspective. Thus, promoting the energy bill perspective and convincing decision-makers that energy 

efficiency reduces the variance of their future energy bill opens possibilities towards more sustainable 

investment behavior. Building on this, Research Article #4 examines the impact of policy instruments 

of risk and return on investment for retrofit measures. The findings reveal the effectiveness of energy 

efficiency insurances in mitigating risk by promoting environmentally friendlier investments relatively 

cost-efficient compared to subsidies. Further, findings indicate that current emission taxes are far too 

low and need to exceed 140€ per CO2 ton to significantly influence investment decisions. Research 

Article #5 analyzes the potential of data-driven approaches for BEP predictions to reduce uncertainty in 

retrofit decisions. The results, tested for robustness and systematic bias, show that data-driven 

approaches exceed the currently by law prescribed engineering method (in Germany) by almost 50% in 

prediction accuracy. Given this, revising the current legislation seems appropriate. Also, asset managers 

and insurance companies could benefit from data-driven EQMs to reduce financial risk and cut 

expenses. Regarding the disadvantage often associated with data-driven EQMs of being black-box 

approaches and thus untrustworthy, Research Article #6 shows that there are data-driven EQMs that are 

both explainable and accurate. The novel QLattice algorithm achieves good prediction performance, 

albeit somewhat less accurate than established black-box models, and that its transparent model structure 

and simple design allow further insights into the interaction and influence of multiple variables to be 

derived without additional analysis. Thus, data-driven EQMs can provide deeper insights into factors 

influencing BEP in addition to high prediction accuracy. 

Summarizing, this doctoral thesis emphasizes the potential of data-driven approaches in research on 

aspects for a successful heating transition in the building sector. Data-driven approaches are suitable for 

conceptual and analytical tasks, as Section II demonstrated, and for operational tasks such as BEP 

prediction for EPCs. By combining data-driven approaches with risk modeling, further potential can be 

leveraged. This and the multiple analyses in this doctoral thesis also indicate that the heat transition 

might not be solved with a single policy instrument or solution but rather with a broad mix of instruments 

to provide holistic incentives to achieve climate goals. 

IV.2. Limitations and Future Research 

Naturally, as any research endeavor, the results of this doctoral thesis have some limitations but likewise 

give rise to new research potentials. Rather than discussing the limitations and prospects for further 
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research of each research article, the following section presents overarching limitations and prospects 

for further research of this doctoral thesis. Further details on the research articles’ individual limitations 

can be found in the supplementary material.  

The first and central limiting factor is the quality and availability of the underlying data. All research 

articles are based on data to a certain extent, and Research Articles #3 and #4 considered data for the 

case studies conducted. More precisely, regarding data quality, a significant number of research papers 

have revealed quality problems concerning EPCs because, especially for older buildings, not all building 

characteristics have been recorded. Thus, EPCs are, to a certain degree, subjective since they rely on the 

conscientiousness of the energy advisor (Hardy and Glew, 2019). The same holds for the datasets used 

in Research Articles #5 and #6 since several important building characteristics were missing in the 

dataset, e.g., upper floor insulation and basement insulation. Thus, some assumptions were made to 

specify several variables and building characteristics following current norms. Moreover, for the 

rectification of weather effects, the mean of the climate factor for each weather station over the period 

the datasets were gathered was used because the datasets did not contain the exact year of data collection 

but a span of seven years. These assumptions and simplifications could lead to minor deviations in the 

articles’ results. More importantly, no information on socio-economic factors (for Research Articles #5 

and #6) or occupant behavior was available, which leaves a large margin of variance in the data 

unexplained. In terms of data availability, this doctoral thesis is limited to the analyzed geographical 

areas and focuses on residential buildings. Future research may relax this focus, incorporating other 

geographical areas with different characteristics of buildings, climate conditions, and other normative 

frameworks for EPC calculation to assess whether the findings are generalizable for these areas and 

circumstances. Summarizing data limitations, further research is necessary, as current research is scarce. 

This most likely is due to scarce publicly available and processable data as highlighted in literature 

(Carpino et al., 2019). Since there are mostly state-regulated institutions with the necessary database, it 

is evident that policymakers enter into cooperation with scientific institutions. A sufficiently large and 

high-quality database is essential to obtain reliable and more generally valid results from which to derive 

meaningful long-term political incentive mechanisms to curb climate change. In the same course of the 

structured recording of large quantities of quality-assured data, data on occupant behavior should be 

recorded. This enables analyzing the causes of the significant differences between measured and 

calculated EPCs and between the different EQMs. More precise statements can be made about energy 

consumption and savings after potential retrofit measures based on the obtained knowledge. This, in 

turn enables investment decisions to be made on a sound basis while at the same time reducing barriers 

to energy efficiency investments by minimizing the investment risk. Going hand in hand with the 

availability of data, Research Articles #1 and #2 are limited by using aggregated information of local 

authorities for the socio-economic factors since granular data with information about residents is not 

available. Even if these sensible data might harm privacy concerns, future research might use socio-
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economic data at a more granular level, preferably at the household level, to obtain a deeper 

understanding of socio-economic drivers and barriers to energy efficiency. This allows identifying the 

influence of socio-economic factors on individual behavior and decision-making for or against 

retrofitting. In addition, the factors investigated in research articles #1, #2, #5, and #6 that influence 

energy efficiency or BEP prediction do not allow for a statement about causality. Therefore, the results 

should be interpreted with caution, as correlation does not imply causality. Future studies might apply 

first ML approaches to discover aspects of causality to derive and design even more targeted policy 

implications. Approaches such as the counterfactuals proposed by Pearl et al. (2019), which build on 

retrospective reasoning, may prove helpful. 

Second, as the field of ML is growing rapidly, the articles’ findings are only valid at present and may 

have to be examined again in the future. Thus, in future research, further algorithms, different 

hyperparameter tuning techniques as evolutionary optimization instead of Bayesian optimization (Hutter 

et al., 2019), or other model-agnostic approaches to post-hoc explainability, such as SHAP or Local 

Interpretable Model-Agnostic Explanations (LIME), to explain data-driven EQMs that are not 

transparent by design can be investigated (Barredo Arrieta et al., 2020). With the help of such 

investigations, further insights can be obtained, and optimization potentials can be raised to enhance 

BEP predictions. In addition, with the increasing availability of data across the globe, federated learning 

might be a suitable approach to take advantage of decentralized datasets for large-scale ML. 

Third, to date, research has remarkably only examined whether and to what extent data-driven methods 

perform better than engineering-based methods in terms of BEP predictive accuracy (Tsanas and Xifara, 

2012; Wenninger and Wiethe, 2021). However, the reasons and cause-effect relationships leading to the 

frequently observed and reported better prediction accuracy of data-driven methods are less clear. To 

identify further potential improvements for both, it is essential to capture the mechanisms behind both 

methods embedded in the real-world process of issuing EPCs outside the laboratory. Therefore, 

developing and discussing a grounded and testable theory to identify reasons and causes why data-driven 

methods yield better prediction performance might be subject to future studies. 

Fourth, Research Article #5 focused on comparing and enhancing the BEP prediction accuracy of 

various EQMs. Although there is plenty of literature on the BEP prediction performance of different 

EQMs, the resulting impact of the prediction performance gain, i.e., the relationship to the retrofit rate 

and the CO2 emission reduction potential, has not yet been determined. Therefore, the question arises to 

what extent BEP prediction performance affects the retrofit rate and the CO2 emissions released in the 

residential building sector. Against the backdrop of limited (financial) resources, this question is 

important, especially on a national or even international level, so that the appropriate course can be set 

for the further development of EQMs and EPCs in particular. Future research may analyze this 

relationship within empirical or simulative studies. This allows determining the CO2-emission reduction 

potential of changing regulatory frameworks and altering the legally prescribed EQMs. 
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Fifth, in Research Article #3, it was shown with the help of a mathematical model that the perspective 

under which risk is considered in energy efficiency investments has a decisive influence. Since the 

article focuses on describing the decision-making process and does not advise how an optimal evaluation 

method could be based on the two perspectives, these descriptive analyses can be a good foundation for 

further normative studies. E.g., surveys could be used to empirically validate the theoretical findings 

and investigate how energy efficiency decision-making can be influenced from the outside or how a 

new evaluation method can be found. 

Sixth, Research Articles # 5 and #6 investigated data-driven EQMs from a prediction performance 

perspective. Thereby, aspects such as the often error-prone step of data collection done today by 

qualified auditors within on-site inspections and the general design of a data-driven EQM involving its 

entire process were neglected. Thus, there exceeds a gap between the theoretical findings and practical 

implementation. Future studies might address this research vacuum and analyze how to analyze 

systematically selected building variables that qualified auditors, or even occupants can reliably collect 

and that have high predictive power for more accurate BEP predictions. Here, findings from Research 

Articles #5 and #6 on variable importance may serve as a good starting point to identify variables and 

building parameters with high predictive power. 

Seventh, this doctoral thesis focused on the application of ML approaches for energy efficiency aspects. 

However, on the way to achieving the climate goals, the necessary expansion of renewable energies for 

power generation must also be considered, which poses major challenges for power grids due to the 

volatile power supply (Halbrügge et al., 2021; Lindner et al., 2022). Demand side management offers a 

potential solution to these challenges by increasing energy flexibility on the demand side, such as in 

buildings. Future research might apply data-driven methods also for the analysis of demand side 

management, i.e., to identify flexibility potential in buildings, or the prediction of future energy 

consumption to optimize the use of energy storages.  

In sum, there are various levers to address the necessary needs for a successful heat transition in the 

building sector. As a result, research, practice, and policymakers will face interdisciplinary questions 

towards meeting climate goals.  

IV.3. Acknowledgement of Previous and Related Work 

In all research projects, I worked closely with colleagues from the Project Group Business & Information 

Systems Engineering of the Fraunhofer Institute for Applied Information Technology (FIT), the 

Research Center Finance & Information Management (FIM) in Augsburg and Bayreuth, the Fraunhofer 

Institute for Manufacturing Engineering and Automation IPA, the Institute for Energy Efficiency in 

Production (EEP) of the University of Stuttgart, and the Institute of Production Management, 

Technology and Machine Tools (PTW) of the Technical University of Darmstadt. Therefore, I present 
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how my work builds on previous and related work at the various institutes and beyond in the following 

paragraphs. 

Previous work of Baltuttis et al. (2019), Töppel and Tränkler (2019), and Häckel et al. (2017) formed a 

viable basis for Research Articles #3 and #4 discussing various aspects of risk on retrofit decision-

making. For Research Article #5, the work of Kratsch et al. (2021), Kaymakci et al. (2021), and 

Niemierko et al. (2019), who address related topics on data-driven prediction and AI systems, were 

appropriate sources in terms of methodologically sound approaches and technical details on ML. 

Moreover, Arjunan et al. (2020) and Miller (2019) motivated Research Article #6 by concluding that 

more research is necessary to release the full potential of data-driven models in the building energy 

sector. Finally, Research Articles #1 and #2 were motivated twofold. From a methodological 

perspective, Athey (2017) encouraged the use of AI beyond plain predictions to derive data-driven 

policy implications. The thematic motivation that drives Research Articles #1 and #2 comes from the 

work of Tziogas et al. (2021), Magnani et al. (2020), and Gómez-Navarro et al. (2021) in the Energy 

Policy Journal, which indicates a trend toward data-driven research to analyze circumstances and 

barriers to implementing energetic retrofits. This doctoral thesis contributes to this trend and extends the 

work of Pasichnyi et al. (2019), who proposed to use EPC databases for data-driven urban energy policy 

instruments. 

With this thesis, I hope to encourage researchers, practitioners, and policymakers to use the potential of 

data-driven methods for effective and efficient policymaking to progress towards climate goals set. 
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VI.2. Individual Contribution to the Research Articles 

This doctoral thesis is cumulative and consists of six research articles that comprise the main body of 

work. All articles were developed in teams with multiple co-authors. This section provides details on 

the respective research settings and highlights my contributions to each article. 

Research Article #1, titled “Impact of Socio-Economic Factors on Local Energetic Retrofitting Needs 

- A Data Analytics Approach” (cf. Subsection VI.3), was written by a team of four. Three authors, 

including myself, were jointly responsible for writing the text of the originally submitted version and 

the revised versions of the article. As a team, we agreed that two co-authors and I should assume the 

roles of lead authors of the research article. The other co-author contributed as a subordinate author, 

mainly in the form of feedback during the submission and review process and in his role as a scientific 

supervisor and mentor. All lead authors jointly elaborated on the methodological approach to combine 

and analyze the different data sources so that the impact of socio-economic factors on local energetic 

retrofitting needs could be identified. Further, all lead authors contributed equally to evaluating and 

analyzing the results and the derivation of locally tailored policy measures considering retrofitting needs 

and socio-economic factors. Regarding the necessary intensive data preparation, I was particularly 

responsible for extracting and identifying variables from the engineering disciplines and their 

application. 

Research Article #2, titled “Data-Driven Policy Implications - Evidence for Residential Building 

Retrofitting Practices Using Explainable AI”, was co-authored by a team of five. All authors, including 

myself, were jointly responsible for writing the text of the originally submitted version of the article. As 

a team, we agreed that I should assume the role of the sole lead author of the research article. The other 

co-authors contributed as subordinate authors, mainly in the form of the implementation of the XGBoost 

and SHAP approaches and the graphical visualizations and literature work. Further, I was particularly 

responsible for supervision and management of the research project, for stimulating the idea of the work, 

the conception, and development of the methodological approach, the evaluation and interpretation of 

the results, and the revision of the article. 

Research Article #3, titled “Understanding the Risk Perception of Energy Efficiency Investments: 

Investment Perspective vs. Energy Bill Perspective”, was co-authored by a team of four. Three authors, 

including myself, were jointly responsible for writing the text of the originally submitted version and 

the revised versions of the article. As a team, we agreed that two of the co-authors and I should assume 

the roles of lead authors of the research article. The other co-author contributed as a subordinate author, 

mainly in the form of feedback during the submission and review process and in his role as a scientific 

supervisor and mentor. All lead authors jointly elaborated on the methodological approach to analyze 

how the investment and energy perspective influence decision-making with a theoretical model and a 

case study based on real-world data of the German retrofitting market. Further, all lead authors 



42 

 

 

contributed equally to the evaluation and analysis of the results and the derivation of policy measures 

promoting the energy bill perspective for higher investments in energetic retrofitting. In the case study 

conducted, I was particularly responsible for the correct settings of the underlying model to calculate 

accurate energy savings and to represent the building type used properly.  

Research Article #4, titled “The Impact of Political Instruments on Building Energy Retrofits: A Risk-

Integrated Thermal Energy Hub Approach”, was co-authored by a team of four. All co-authors were 

jointly responsible for writing the text of the originally submitted version and the revised versions of the 

article. All co-authors worked jointly on the analysis and interpretation of the case study results 

conducted. In addition, all co-authors contributed equally to the evaluation and analysis of the results 

and to the derivation of policies for risk-mitigating energy efficiency insurance, which is relatively 

inexpensive compared to subsidies. In the research project, I was particularly responsible for ensuring 

the high quality of submitted and revised article versions and contributing experience and feedback. 

Research Article #5, titled “Benchmarking Energy Quantification Methods to Predict Heating Energy 

Performance of Residential Buildings in Germany”, was co-authored by a team of two. Both co-authors 

were jointly responsible for writing the text of the originally submitted version and the revised versions 

of the article. All co-authors collaborated to develop a methodological approach for benchmarking 

different methods for quantifying the energy performance of buildings, which allows for comparing the 

predictive performance of approaches from engineering and data science. Further, all co-authors 

contributed equally to the evaluation and analysis of the results and the derivation of managerial and 

policy implications to enhance the prediction performance for BEP (e.g., in EPCs). In the research 

project, I was specifically responsible for literature review, extracting weather effects in the data used, 

and considering changing norms and standards that were in effect during the data collection period. 

Research Article #6, titled “Explainable Long-Term Building Energy Consumption Prediction Using 

QLattice”, was co-authored by a team of three. As the leading author of this article, I developed the 

basic idea and created its content to a large extent. Specifically, I determined the research methodology, 

analyzed and structured literature, graphically visualized the results, and was responsible for considering 

current norms and standards for comparing buildings at sites with different weather conditions. I was 

also largely responsible for evaluating and discussing the results and deriving implications for practice 

and research and communicating and managing with staff from "Abzu", who provided the algorithm 

"QLattice". Although I am the leading author of this project, the co-authors were involved in analyzing 

the results, implementation, and discussions throughout the project.   
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VI.3. Research Article #1: Impact of Socio-Economic Factors on Local Energetic 

Retrofitting Needs - A Data Analytics Approach 

 

Authors: Jakob Ahlrichs; Simon Wenninger; Christian Wiethe, Björn Häckel 

Published in: Energy Policy (2022) 

Abstract: Despite great efforts to increase energetic retrofitting rates in the residential 

building stock, greenhouse gas emissions are still too high to counteract climate 

change. One barrier is that policy measures are mostly national and do not address 

local differences. Even though there is plenty of research on instruments to 

overcome general barriers of energetic retrofitting, literature does not consider 

differences in local peculiarities. Thus, this paper aims to provide guidance for 

policy-makers by deriving evidence from over 19 million Energy Performance 

Certificates and socio-economic data from England, Scotland, and Wales. We find 

that building archetypes with their respective energetic retrofitting needs differ 

locally and that socio-economic factors show a strong correlation to the buildings’ 

energy efficiency, with the correlation varying depending on different degrees of 

this condition. For example, factors associated to employment mainly affect 

buildings with lower energy efficiency whereas the impact on more efficient 

buildings is limited. The findings of this paper allow for tailoring local policy 

instruments to fit the local peculiarities. We obtain a list of the most important 

socio-economic factors influencing the regional energy efficiency. Further, for two 

exemplary factors, we illustrate how local policy instruments should consider local 

retrofitting needs and socio-economic factors. 

Keywords: Energy Efficiency; Local Environmental Policy; Residential Building Stock; Socio-

Economic Effects; Data Mining; Environment; England; Scotland; Wales; Energy 

Performance Certificates; Socio-Economic 
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VI.4. Research Article #2: Data-Driven Policy Implications - Evidence for 

Residential Building Retrofitting Practices Using Explainable AI 

Authors: Simon Wenninger, Philip Karnebogen, Sven Lehmann, Tristan Menzinger, 

Michelle Reckstadt 

Extended Abstract4: Rising international interest in climate change and the ambitious climate 

goals defined under the Paris Climate Agreement require policy decisions 

and actions to limit the recent shift towards increased investments in fossil 

fuel-based infrastructure. The global buildings sector is responsible for 

nearly 38% of global greenhouse gas emissions and 39% of global energy 

consumption and thus holds great potential to progress towards climate goals 

(Somu et al., 2020).  

Therefore, extensive retrofitting of energy-inefficient buildings is necessary 

to achieve the climate goals (Fylan et al., 2016). Policymakers need to 

increase the effectiveness and attractiveness of support measures and 

programs, e.g., subsidies to maximize greenhouse gas savings per monetary 

value invested against the backdrop of limited financial resources to promote 

and incentivize retrofitting (Csutora and Zsóka, 2011). Thus, the 

circumstances of and existing barriers against retrofitting must be 

meticulously analyzed to design effective support measures for retrofits 

(Fylan et al., 2016). Research on these circumstances and barriers to 

implementing energetic retrofits is diverse (Ahlrichs et al., 2022; Ben and 

Steemers, 2018; Bertoldi and Mosconi, 2020; Gómez-Navarro et al., 2021; 

Tziogas et al., 2021). Most of this research can be summarized under the 

term energy efficiency gap, which discusses reasons against the 

implementation of retrofit investments with seemingly clear economic and 

environmental benefits (Ahlrichs et al., 2020).  

However, research to date is often limited to qualitative studies or only 

investigates influencing factors on energy efficiency (Ahlrichs et al., 2022) 

instead of factors influencing retrofitting. Thus, research does not fully 

exploit the opportunities created by advancing digitization and data 

availability. In recently published papers, two different needs for future 

research in the field of building energy consumption using data-driven 

 
4 At the time of writing, this research article is submitted for publication in a scientific journal. Therefore, 

an extended abstract is provided here. 
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methods were highlighted. On the one hand, Pasichnyi et al. (2019) proposed 

using the (openly accessible) databases of building Energy Performance 

Certificates (EPC) for data-enabled urban energy policy instruments. They 

conclude that EPC data might have a broader spectrum of applications than 

initially intended and is suitable to design policy instruments for energy 

efficiency. On the other hand, literature suggests using explainable artificial 

intelligence (XAI) in the building sector to derive insights about the relations 

of different parameters and variables (Golizadeh Akhlaghi et al., 2021). In 

this context, prior research such as (Athey, 2017) also encouraged using 

artificial intelligence (AI) beyond plain predictions to derive data-driven 

policy implications.  

With our study, we addressed this research gap with a case study of the UK's 

residential building stock, which represents the oldest building stock in 

western Europe and accounts for more than a quarter of the UK's total energy 

consumption (Dowson et al., 2012; Filippini et al., 2014; Fylan et al., 2016; 

Piddington et al., 2020). With more than 82% of buildings constructed 

before 1991, the building stock is characterized by loose building regulations 

and poor insulation, reflected in high energy consumption and greenhouse 

gas emissions (Dowson et al., 2012). Thereby, we used multiple data sources 

of EPC data from England and Wales, additional house price data and socio-

demographic data, and the application of AI and XAI techniques. This 

involved extracting from the EPC data whether a building had been 

retrofitted and what measures had been implemented, using a self-developed 

method. We then applied machine learning to the datasets using an eXtreme 

Gradient Boosting (XGBoost) model to predict whether a building has been 

retrofitted or not before we used SHapley Additive exPlanations values 

(SHAP) as an XAI technique to identify the key factors and relationships 

that influence the implementation of retrofits. We finally derived policy 

implications for the effective design of support instruments and programs 

for retrofits based on the insights of building characteristics, house prices, 

and sociodemographic data.  

We succeeded in showing very clearly which factors have an influence on 

the implementation of retrofits and how suitable policy implications can be 

derived. Current heating costs, the regional employment rate, the mean 

regional gross disposable household income, and the share of people 

younger than 15 years in a region are among the top factors. Our contribution 
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to the theoretical body of knowledge, as well as identified policy 

implications, can be divided into several points. First, to the best of our 

knowledge, we are the first to introduce and use the combination of 

supervised machine learning to classify building retrofits and XAI 

techniques to derive important insights and correlations on retrofitting 

circumstances. Our approach allows us to corroborate findings previously 

obtained in qualitative or small-scale studies with a quantitative study using 

real-world data and additionally to identify additional influencing factors. 

Second, we present a method for extracting building retrofits from the UK 

EPC data that can be reproducibly applied in further studies. In addition, the 

method can be used to extract and analyze changes in buildings over time 

from EPCs referenced to a single point in time. Third, we confirm existing 

studies on the influence of house prices on retrofit behaviors. Since higher 

house prices lead to a lower likelihood of retrofits, we propose to make at 

least some comparatively low-cost retrofit measures mandatory for new 

rentals and sales in local authorities with high average house prices, such as 

London. Further, green mortgages offering the customer beneficial 

mortgaging conditions might improve retrofitting rates in high-price areas. 

Fourth, since families with children aged 15 or younger are less likely to 

carry out retrofits, special programs for families with children might be 

helpful considering their specific needs. These programs should be 

characterized by financial support and provide transparent information and 

quick, straightforward help in implementing retrofits minimizing burdens 

from families. Local authorities where the " Better Homes for Yorkshire" 

initiative was effective with corresponding characteristics showed a high 

number of retrofits, so the initiative might be replicated by other regions. 

Fifth, since low energy efficiency of walls and roofs is an important criterion 

for energy efficiency and has a positive impact on retrofits, we propose to 

emphasize the need for appropriate retrofits in EPCs that exhibit poor levels 

of energy efficiency in walls and roofs. Moreover, the abundance of 

problems related to the wall and roof efficiency evaluation process must be 

considered, which may require the introduction of higher quality standards 

in the preparation of EPCs. Sixth, with fuel poverty being a common 

phenomenon in England and Wales we consider retrofitting-related CO2 

taxes as reasonable. For higher-income households with a high energy 

consumption raising retrofitting-related CO2 taxes would be an incentive to 
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retrofit. No taxes could be levied on low-income households, and a 

cumulative subsidy could be granted depending on the heating costs for each 

year. This approach could be implemented through Her Majesty Revenue & 

Customs without much additional effort, as it already collects income taxes 

and is already aware of each household's income. Thus, an energy bill is the 

only additional document needed to calculate an additional CO2 tax or 

retrofit grant. In summary, our results demonstrate the great potential of 

data-driven policymaking by confirming and extending existing studies and 

conclude that policies already available in individual cases should be rolled 

out broadly. Despite some limitations, this study provides important insights 

to better understand retrofitting practices and thus assists policymakers in 

the UK to develop more effective measures to increase retrofits in the 

domestic sector to achieve climate goals. 

Keywords: Energy Performance Certificates; Retrofitting; Energy Efficiency Policy; 

Explainable AI; Data Analytics; Policy Implications 
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VI.5. Research Article #3: Understanding the Risk Perception of Energy 

Efficiency Investments: Investment Perspective vs. Energy Bill Perspective 

Authors: Sebastian Rockstuhl; Simon Wenninger; Christian Wiethe, Björn Häckel 

Published in: Energy Policy (2021) 

Abstract: Promoting energy efficiency is an important element of environmentally friendly 

energy policy and necessary to avert climate change. In this context, understanding 

the investment decision-making of individuals is important to develop and 

implement effective policy instruments. Literature analyzing decision-making of 

energy efficiency investments and especially the influence of connected risk 

finishes with two different conclusions, i.e., analyzes risk from two different 

perspectives. First, studies within the investment perspective describe investment 

risk, caused by volatile future energy bill savings, as a key barrier for energy 

efficiency investments. Second, studies within the energy bill perspective argue that 

energy efficiency is reducing energy price exposure and the resulting decrease of 

overall risk is described as investment promoting. This dichotomy in risk perception 

is the focus of our study. With the help of a theoretical model as well as a case study 

based on real-world data of the German retrofitting market, we analyze how the 

contrary perspectives influence expected utility, i.e., decision-making. Thereby, we 

find that decision-makers invest more in energy efficiency when evaluating from 

the energy bill perspective and derive important implications for environmentally 

friendly energy policymaking. 

Keywords: Energy Efficiency; Risk Evaluation; Expected Utility Theory; Case Study 
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VI.6. Research Article #4: The Impact of Political Instruments on Building 

Energy Retrofits: A Risk-Integrated Thermal Energy Hub Approach 

Authors: Jakob Ahlrichs, Sebastian Rockstuhl, Timm Tränkler, Simon Wenninger 

Published in: Energy Policy (2020) 

Abstract: Thermal building retrofits are one of the key approaches to mitigate greenhouse gas 

emissions. Nevertheless, the current rate of retrofits in Germany is around 1%, and 

the building sector lags behind environmental goals of saving damaging emissions. 

A potential reason inhibiting investments is the financial risk connected to thermal 

building retrofits. While recent research focuses on various political instruments to 

promote environmental investments, their influence on the financial risk of energy 

efficiency investments has scarcely been considered. In this study, a method to 

include risk in the financial evaluation of thermal building retrofits is developed. 

With this method, named as the Risk-Integrated Thermal Energy Hub, the impact 

of various political instruments such as emission taxes, subsidies, and energy 

efficiency insurances on investment decisions of homeowners is analyzed. Based 

on real-world data of 342 one and two-family houses in Germany, this study 

illustrates how political instruments influence the financial risk and return of 

example building retrofits. The findings reveal the effectiveness of energy 

efficiency insurances in mitigating risk, by promoting environmentally friendlier 

investments relatively cost-efficient compared to subsidies. Further, this case study 

indicates that emission taxes need to exceed 140€ per CO2 ton to significantly 

impact investment decisions. 

Keywords: Thermal Building Retrofit; Energy Efficiency Investment; Greenhouse Gas 

Emissions; Environmental Policy; Pareto Analysis; German Energy Transition 
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VI.7. Research Article #5: Benchmarking Energy Quantification Methods to 

Predict Heating Energy Performance of Residential Buildings in Germany 

Authors: Simon Wenninger, Christian Wiethe 

Published in: Business & Information Systems Engineering (2021) 

Abstract: To achieve ambitious climate goals, it is necessary to increase the rate of purposeful 

retrofit measures in the building sector. As a result, Energy Performance 

Certificates have been designed as important evaluation and rating criteria to 

increase the retrofit rate in the EU and Germany. Yet, today’s most frequently used 

and legally required methods to quantify building energy performance show low 

prediction accuracy, as recent research reveals. To enhance prediction accuracy, the 

research community introduced data-driven methods which obtained promising 

results. However, there are no insights in how far Energy Quantification Methods 

are particularly suited for energy performance prediction. In this research article the 

data-driven methods Artificial Neural Network, D-vine copula quantile regression, 

Extreme Gradient Boosting, Random Forest, and Support Vector Regression are 

compared with and validated by real-world Energy Performance Certificates of 

German residential buildings issued by qualified auditors using the engineering 

method required by law. The results, tested for robustness and systematic bias, show 

that all data-driven methods exceed the engineering method by almost 50% in terms 

of prediction accuracy. In contrast to existing literature favoring Artificial Neural 

Networks and Support Vector Regression, all tested methods show similar 

prediction accuracy with marginal advantages for Extreme Gradient Boosting and 

Support Vector Regression in terms of prediction accuracy. Given the higher 

prediction accuracy of data-driven methods, it seems appropriate to revise the 

current legislation prescribing engineering methods. In addition, data-driven 

methods could support different organizations, e.g., asset management, in decision-

making in order to reduce financial risk and to cut expenses. 

Keywords: Energy Informatics; Energy Quantification Methods; Energy Performance 

Certificate; Benchmarking; Data-Driven Methods; Machine Learning Algorithms; 

Building Energy; Data Analytics 
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VI.8. Research Article #6: Explainable Long-Term Building Energy 

Consumption Prediction Using QLattice 

Authors: Simon Wenninger, Can Kaymakci, Christian Wiethe 

Published in: Applied Energy (2022) 

Abstract: The global building sector is responsible for nearly 40% of total carbon emissions, 

offering great potential to move closer to set climate goals. Energy performance 

certificates designed to increase the energy efficiency of buildings require accurate 

predictions of building energy performance. With significant advances in 

information and communication technology, data-driven methods have been 

introduced into building energy performance research demonstrating high 

computational efficiency and prediction performance. However, most studies focus 

on prediction performance without considering the potential of explainable artificial 

intelligence. To bridge this gap, the novel QLattice algorithm, designed to satisfy 

both aspects, is applied to a dataset of over 25,000 German residential buildings for 

predicting annual building energy performance. The prediction performance, 

computation time, and explainability of the QLattice is compared to the established 

machine learning algorithms artificial neural network, support vector regression, 

extreme gradient boosting, and multiple-linear regression in a case study, variable 

importance analyzed, and appropriate applications proposed. The results show quite 

strongly that the QLattice should be further considered in the research of energy 

performance certificates and may be a potential alternative to established machine 

learning algorithms for other prediction tasks in energy research. 

Keywords: Building Energy Performance; Energy Quantification Methods; Energy 

Performance Certificates; Explainable AI; Machine Learning Algorithms; QLattice 

 

 

 

 

 

 


