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The plant economics spectrum hypothesizes a correlation among resource-use related 
traits along one single axis, which determines species’ growth rates and their ecological 
filtering along resource gradients. This concept has been mostly investigated and shown 
in perennial species, but has rarely been tested in annual species. Annuals evade 
unfavorable seasons as seeds and thus may underlie different constraints, with 
consequences for interspecific trait-trait, trait-growth, and trait-environment relations. To 
test the hypotheses of the plant economics spectrum in annual species, we measured 
twelve resource-use related leaf and root traits in 30 winter annuals from Israel under 
controlled conditions. Traits and their coordinations were related to species’ growth rates 
(for 19 species) and their distribution along a steep rainfall gradient. Contrary to the 
hypotheses of the plant economics spectrum, in the investigated annuals traits were 
correlated along two independent axes, one of structural traits and one of carbon gain 
traits. Consequently, species’ growth rates were related to carbon gain traits, but 
independent from structural traits. Species’ distribution along the rainfall gradient was 
unexpectedly neither associated with species’ scores along the axes of carbon gain or 
structural traits nor with growth rate. Nevertheless, root traits were related with species’ 
distribution, indicating that they are relevant for species’ filtering along rainfall gradients 
in winter annuals. Overall, our results showed that the functional constraints hypothesized 
by the plant economics spectrum do not apply to winter annuals, leading to unexpected 
trait-growth and trait-rainfall relations. Our study thus cautions to generalize trait-based 
concepts and findings between life-history strategies. To predict responses to global 
change, trait-based concepts should be explicitly tested for different species groups.

Keywords: annual species, drylands, growth rate, life-history strategy, leaf structure, rainfall gradient, resource-use 
strategy, root morphology
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INTRODUCTION

Trait-based schemes, such as the plant economics spectrum, 
characterize general combinations and trade-offs among 
functional traits and their relations to environmental conditions 
(e.g., Grime, 1977; Westoby et  al., 2002; Wright et  al., 2004; 
Reich, 2014). They are widely used for assessing and predicting 
community assembly and ecosystem functioning under current 
and future conditions (e.g., Westoby et  al., 2002; Wright et  al., 
2004; Reich, 2014). However, the plant economics spectrum 
has been mainly developed and tested for woody and perennial 
herbaceous species (reviewed in Reich, 2014), whereas 
investigations of this concept in annual species are virtually 
missing (but see Brouillette et  al., 2014). The universality of 
the plant economics spectrum to reflect functional constraints 
and interspecific trait-environment relations across life-history 
strategies (annuals vs. perennials) therefore remains unclear.

Annual species substantially contribute to species diversity, 
primary production, and ecosystem services in many dryland 
ecosystems worldwide (Noy-Meir, 1973; Tielbörger et al., 2014; 
Ruppert et al., 2015). These ecosystems have been characterized 
as particularly vulnerable to global change (Sala et  al., 2000; 
Schröter et  al., 2005), underscoring the relevance of assessing 
and predicting species’ responses to climate and land-use change. 
Environmental changes may affect annual plant communities 
even faster than perennial ones due to their short life cycle. 
Understanding interspecific trait-trait relations and the ecological 
filtering of annuals is therefore timely and of practical relevance.

The plant economics spectrum hypothesizes an interspecific 
trade-off between trait attributes conferring rapid resource 
acquisition (i.e., acquisitive or fast attributes, e.g., high assimilation 
rate and nutrient concentrations, low tissue density, Table  1) 
and those conserving resources (i.e., conservative or slow 
attributes, e.g., low assimilation rate and nutrient concentrations, 
and high tissue density) at the whole plant level, i.e., among 
and within leaves, stems, and roots (Reich, 2014). Due to 
functional constraints to avoid resource shortage or excess, 
interspecific variation of resource-use related leaf, stem, and 
root traits should thus be  coordinated along one single axis 
of variation (Freschet et  al., 2010; Reich, 2014).

According to the plant economics spectrum, the trade-off 
among resource-use related traits should influence species’ 
growth rates and their ecological filtering along resource gradients 
(Reich, 2014). Species with acquisitive trait attributes should 
exhibit high growth rates under high resource availability, but 
exhibit low performance under resource-poor conditions because 
of their higher resource demand (Reich, 2014). In contrast, 
species with conservative trait attributes minimize performance 
losses under resource-poor conditions (i.e., they exhibit high 
stress resistance) but at the cost of lower growth rates (Reich, 
2014). The resulting interspecific growth-stress resistance trade-off 
should lead to ecological filtering of species along resource 
gradients, with acquisitive/fast species predominating under 
high resource availability, and conservative/slow species under 
low resource availability (Grime and Hunt, 1975; Reich, 2014).

The interspecific trait-trait, trait-growth, and trait-environment 
relations expected by the plant economics spectrum have been 

demonstrated in woody and perennial herbaceous species from 
various ecosystems (reviewed in Reich, 2014). Only a few 
studies showed trait-trait or trait-environment relations deviating 
from the hypotheses of this concept (Baraloto et  al., 2010; 
Fortunel et  al., 2012; Kramer-Walter et  al., 2016). However, 
these few studies are significant, because they indicate that 
the plant economics spectrum may not be  universally  
applicable across different ecosystems, life forms, and/or life-
history strategies.

In contrast to perennial species, annuals are characterized 
by early reproduction at small vegetative size, a short lifespan, 
high reproductive allocation, and especially annuals from 
drylands by a pronounced between-year seed dormancy, acting 
as bet-hedging mechanism against unpredictable reproductive 
failure (Grime, 1977; Philippi and Seger, 1989; Kooyers, 2015). 
Additionally, annuals have been assumed and shown to exhibit 
pronounced acquisitive trait attributes and high growth rates 
(Grime, 1977; Garnier and Laurent, 1994; Roumet et  al., 2006; 
Kooyers, 2015). This trait combination enables them to evade 
unfavorable conditions in time, i.e., annuals exhibit an escape 
strategy (sensu Levitt, 1980; Kooyers, 2015). Although all annuals 
show this strategy, they differ in their trait attributes and occur 
in a wide range of environmental conditions (Bilton et  al., 
2016; Li and Shipley, 2017; Blumenthal et  al., 2020). The 
consequences of annual’s life-history on interspecific trait-trait, 
and trait-growth relations, and on their ecological filtering 
along resource gradients, however, remain almost unexplored.

To our knowledge, interspecific studies testing the plant 
economics spectrum in annuals are missing. Intraspecifically, 
one study has addressed differences of resource-use related 

TABLE 1 | Studied resource-use related traits, and relative growth rate with their 
abbreviation (abb.), unit, and hypothesized association with the resource-use 
strategy according to the plant economics spectrum.

Trait abb. Unit Association with 
resource-use 
strategy

Specific leaf area SLA mm2/mg a
Leaf dry matter 
content

LDMC mg/g c

Leaf tissue density LTD g/cm3 c
Leaf thickness Lthick mm c
Area-based 
photosynthetic rate

Aarea μmol/(m2·s) a

Area-based nitrogen 
content

Narea mg/mm2 a

Mass-based 
photosynthetic rate

Amass μmol/(g·s) a

Mass-based nitrogen 
content

Nmass mg/g a

Mass-based carbon 
content

Cmass mg/g c

Specific root length SRL m/g a
Root tissue density RTD g/cm3 c
Root diameter Rdia mm c
Relative growth rate RGR g/(g·day) a

a and c, respectively, indicate whether a high trait value is considered to be associated 
with an acquisitive or conservative resource-use strategy as the opposite extremes 
along a continuum.
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leaf traits along a rainfall and nutrient gradient in an annual 
desert forb (Brouillette et  al., 2014). Populations showed the 
expected trait-trait correlations, but contrary to the assumptions 
of the plant economics spectrum, acquisitive trait attributes 
were associated with low resource availability (dry and nutrient-
poor habitats) and conservative attributes with high resource 
availability (wetter, nutrient-rich habitats; Brouillette et al., 2014). 
However, to rigorously test the applicability of the plant economics 
spectrum in annuals, we need multi-species studies that directly 
link comparative trait assessments across species with their 
growth rates and their distribution along resource gradients.

In the present study, we  addressed this gap and tested 
interspecific trait-trait, trait-growth, and trait-environment 
relations in winter annuals from rangelands in Israel. Israel is 
characterized by a high diversity of annual species (Tielbörger 
et  al., 2014) and by steep rainfall gradients, ranging from arid 
conditions (short growing season, low, unpredictable rainfall) 
to mesic-Mediterranean conditions (longer growing season, 
high, predictable rainfall). The region thus provides an ideal 
study system to investigate the variation of traits and growth 
rates across annual species, and to relate them to their distribution 
along rainfall gradients to assess species’ ecological filtering.

Winter annuals grow and reproduce in the mild, rainy season 
(winter), and survive the dry, hot season (summer) as seeds, 
i.e., they escape the dry season. Accordingly in winter annuals, 
arid (i.e., resource poor) conditions should favor species with 
pronounced escape traits, which are considered to be associated 
with acquisitive trait attributes and high growth rates (see 
above, Grime, 1977; Kooyers, 2015). This trait combination 
should enable them to grow and reproduce within the short 
rainfall season. Toward the opposite, moist side of rainfall 
gradients, resource availability and competition intensity increase, 
but rainfall season is still interrupted by occasional dry spells 
(Noy-Meir, 1973; Schiffers and Tielbörger, 2006; Ziv et  al., 
2014). Under these conditions, annuals with sufficient drought 
resistance to withstand dry spells in the vegetative and 
reproductive phase should be  favored, since they can utilize 
the whole length of the growing season to attain larger heights 
for an increased competitive effect. Higher stress (drought) 
resistance is associated with conservative trait attributes and 
slow growth according to the hypotheses of the plant economics 
spectrum (Reich, 2014). Ecological filtering in winter annuals 
should favor species with acquisitive (instead of conservative) 
traits in arid conditions and species with conservative (instead 
of acquisitive) traits in more mesic Mediterranean conditions. 
The expected interspecific trait changes along rainfall gradients 
in winter annuals are thus opposite to the predictions of the 
plant economics spectrum and the patterns in perennials (Reich, 
2014), but consistent with the findings on intraspecific trait 
variation in an annual forb (Brouillette et  al., 2014).

In the present study, we  measured twelve traits that are 
considered relevant for resource-use by the plant economics 
spectrum (Table 1) in 30 winter annual species from Israel under 
common, controlled conditions. We  analyzed trait-trait relations, 
as well as the relations of traits to species’ growth rates (for 19 
species) and to their distribution across a steep regional rainfall 
gradient. Specifically, we  addressed the following hypotheses:

 (i)   Resource-use related leaf and root traits are correlated 
along one main axis of variation, reflecting a trade-off 
between acquisitive and conservative trait attributes.

 (ii)   Species’ growth rates are influenced by their trait combinations, 
i.e., their positions along the main trait axis. Species with 
acquisitive traits exhibit high growth rates, while species 
with conservative traits exhibit low growth rates.

 (iii)  Species’ distributions along a rainfall gradient are related 
with their trait combinations and growth rates. Fast-growing 
annuals with acquisitive traits are associated with arid 
conditions, whereas slow-growing species with conservative 
traits are associated with wetter conditions.

MATERIALS AND METHODS

Study System
Israel in the Eastern Mediterranean Basin comprises steep 
regional rainfall gradients from both East-West (across 50 km) 
and North-South (across 350 km) with high and more predictable 
mean annual rainfall (MAR) in mesic-Mediterranean areas in 
the north and west (up to 800  mm/year  ±  18%, mean  ±  CV) 
and less, very unpredictable rainfall in the desert in the south 
(20  mm/year  ±  55%) and toward the Dead Sea (east). The 
length of the rainfall season, which corresponds to the main 
growing season, as well as primary productivity and competition 
intensity decrease toward arid conditions, while average 
temperature hardly changes (Schiffers and Tielbörger, 2006; 
Tielbörger et  al., 2014). The region is characterized by semi-
arid shrublands with mostly winter annual species dominating 
the inter-shrub matrix. They account for up to 90% of species 
diversity, and between 55% and 99% of net primary production 
(Tielbörger et  al., 2014).

Study Species and Plant Material
The study focused on 30 winter annual species comprising 22 
forbs (including six legumes) and eight grasses 
(Supplementary Table S1). Species selection considered the 
following criteria: (1) high abundance in the region, (2) inclusion 
of several plant families, (3) wide differences in their distribution 
along the rainfall gradients (based on BioGIS, 2018), and (4) 
seed availability. The 30 species belonged to 27 genera and seven 
families, and all had C3 photosynthesis. Seeds were collected in 
the mid-range of the regional rainfall gradient from natural 
habitats in two sites that are about 40  km apart from each other 
(Lahav, N 31°23' E 34°54', 300  mm MAR and Matta, N 31°42' 
E 35°3', 540  mm MAR; for details see Tielbörger et  al., 2014) 
in April 2012. The sampling comprised at least 50 plants per 
species distributed in an area of 1.0–1.5  km2.

The field-collected seeds were germinated and grown under 
common conditions with natural light and ample water supply 
in a greenhouse in Tübingen (Germany) during winter 2013/2014 
to produce F1 seeds (inbred lines) with homogenized parental 
effects. F1 seeds were over-summered for two  months (mid-
June to mid-August) in a greenhouse in Bayreuth (Germany) 
to break summer dormancy before the start of the experiments 
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(see Tielbörger et  al., 2012). The plants for trait measurements 
were grown from F1 seeds under common conditions in a 
greenhouse in Bayreuth (Germany) during winter 2017/2018 
(except for growth rate, grown in 2018/2019 under similar 
conditions). The comparative approach focused on trait differences 
across species, the level considered in the plant economics 
spectrum, and allowed to exclude intraspecific trait variation 
introduced by phenotypic plasticity or ecotypic differentiation.

Plant Cultivation in the Greenhouse
Plants were germinated and grown in cylindrical pots (1  L 
volume, diameter 6.5  cm, depth 36  cm, Deepot Cells, Stuewe 
& Sons, Oregon, United  States) with a 1:1 mixture of sand 
and compost supplemented with 5  g of amorphous silicon 
(Aerosil 300, Evonik Industries AG, Essen, Germany). 
Temperature was set to 20–23°C in winter and 20–26°C in 
spring. Natural light was supplemented by artificial lights, and 
day length was adapted to natural variation in Israel for unbiased 
phenology. All plants received water in ample supply and were 
fertilized several times with Wuxal Super (NPK fertilizer 8–8-6, 
Wilhelm Haug GmbH & Co) to preclude nutrient limitation. 
The pots with the different species were randomly distributed 
in the greenhouse and rearranged every two  weeks. Plants 
were grown until the end of their life cycle (31–34  weeks 
after sowing) indicated by leaf senescence in most of the species.

Trait Measurements
Twelve resource-use related traits, including leaf and root traits 
as well as structural and carbon gain related traits, were 
measured on 5–14 individuals per species (Supplementary 
Table S2). Leaf traits were assessed on one randomly chosen, 
healthy, mature leaf per plant 8–12  weeks after sowing. Root 
traits were measured 14–20  weeks after sowing.

To determine specific leaf area (SLA  =  LA/DW) and leaf 
dry matter content (LDMC  =  DW/FW, LDMC is the inverse 
of leaf water content, LWC in mg/g, LWC  =  1,000-LDMC), 
we  measured saturated fresh weight (FW) of the leaf after 
hydrating plants overnight (approx. 15  h), and dry weight 
(DW) after oven-drying. Leaf area (LA) was quantified with 
an Area-meter (Model LI 3100, Li-Cor Bioscience, Lincoln, 
NE, United  States). Leaf thickness (Lthick) was measured with 
a micrometer (Mitutoyo M110-25, graduation 0.01  mm) at 
three points in the center of the leaf blade, avoiding the midrib 
and primary veins, and averaged. Leaf tissue density (LTD) 
was calculated as ratio of dry weight to leaf volume (leaf 
volume  =  LA·Lthick).

Maximum photosynthetic rate per leaf area (Aarea) was 
measured with an infra-red gas analyzer Li-Cor 6400 (Li-Cor, 
Lincoln, NE, United  States) between 8.30 and 11.00  h at a 
light intensity of 2000  μmol·photons/(m2·s1) (based on light 
response curves for a species subset), 25°C, and 400  ppm 
CO2. If the leaf did not fill the measurement chamber, 
photosynthetic rate was re-calculated based on leaf area 
measurements with an Area Meter (see above). Usually, one 
leaf per individual was measured, but in species with very 
small or thin leaves (e.g., a few grasses, Filago, and Helianthemum) 

several leaves were jointly arranged in the measurement chamber. 
The leaves used for photosynthesis measurements (few exceptions 
in Psilurus incurvus, Rostraria cristata) were oven-dried and 
ground to analyze their mass-based nitrogen content (Nmass) 
and carbon content (Cmass) with an EA-IRMS coupling (Elemental 
Analyzer NA 1108, CE Instruments, Milan, Italy; Interface 
ConFlo III, Finnigan MAT, Bremen, Germany; Isotope ratio 
mass spectrometer: delta S, Finnigan MAT, Bremen, Germany). 
Photosynthetic rate and nitrogen content were converted to 
their area- or mass-based equivalent (Amass, Narea) via SLA based 
on species’ average values.

Morphological root traits were determined on three 
subsamples of fine roots (diameter  <  2  mm, stored in 35% 
ethanol before the measurements) from the upper, middle, 
and lower part of the root (except whole roots in Filago and 
Helianthemum salicifolium). The root samples were stained with 
toluidine blue (0.2 g/l) and scanned (Scanner Epson Perfection 
V800/V850 photo scanner, 600  dpi). Images were analyzed 
with WinRHIZO © Reg 2017 (Regent Instruments Inc., Quebec, 
Canada) to determine mean diameter (Rdia), volume, and 
length of the scanned root sample. Samples were oven-dried 
to measure dry weight, and to calculate specific root length 
(SRL  =  root length/root dry weight) and root tissue density 
(RTD = root mass/root volume). Calculations of SRL and RTD 
considered diameter heterogeneity by using summed root length 
and volume from 40 diameter classes (see Rose, 2017), 
respectively.

Species’ average relative growth rate (RGR) was assessed in 
19 species (see Supplementary Table S1) in a separate plant set 
that was grown under similar conditions (see Plant cultivation) 
in winter 2018/19. RGR was calculated based on species-specific 
averages of aboveground biomass (AB) in week 16 (t1) and week 
22–23 (t2) after sowing as: RGR  =  (AB2–AB1)/[AB1 · (t2-t1)].

Species’ Distribution Along Rainfall 
Gradients
Species’ distribution along the regional rainfall gradients in 
Israel was characterized based on their occurrences (presence/
absence data) in independent biological records (BioGIS, 2018). 
The BioGIS database provides the mean annual rainfall niche 
of each species, which is modeled as the average of local 
mean annual rainfall across all occurrence sites of a respective 
species. Our study species covered mean annual rainfall niches 
between 120 mm/year (association with arid conditions) and 
580  mm/year (association with Mediterranean conditions, 
Supplementary Table S1).

Statistical Analyses
Trait differences across species were tested with F-tests on 
linear models (LM) with species’ identity as explanatory factor. 
Traits (except Rdia and Cmass) were natural log-transformed to 
improve normality and homoscedasticity. Pairwise trait 
correlations were calculated with Spearman rank correlation 
coefficients based on species’ average values.

The main axes of correlations among the resource-use related 
traits were assessed with a principal component analysis (PCA) 
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at the plant level (i.e., combining leaf and root traits) based 
on species’ average trait values. Since mass- but not area-based 
traits are explicitly included in the leaf economics spectrum 
(Wright et  al., 2004), we  equivalently considered only Amass, 
Nmass, and Cmass in the PCA. The main trait correlations though 
were similar between a PCA with these mass-based traits and 
a PCA considering instead Aarea, Narea, and Carea (Pearson 
correlation coefficients among species’ scores along the trait 
axes |0.48|  ≤  r  ≤  |0.87|). We  also calculated PCAs separately 
for leaf and for root traits. The trait coordinations in leaf and 
root traits were similar to those observed at the whole plant 
level (Supplementary Table S3). Species’ scores along the 
principal components (PC, in the following referred to as trait 
axes) calculated for the whole plant level were therefore used 
to characterize species’ trait combinations.

We tested for differences among life forms (i.e., grasses, 
non-legume forbs, legumes) in species’ scores along the main 
trait axes (PC 1, PC 2) with F-tests on LMs separately calculated 
for each trait axis and Tukey post-hoc tests. Additionally, the 
main axes of trait correlations were separately assessed for 
forbs (including legumes) and grasses with PCAs as described 
above for all species. Trait correlations within life forms were 
similar to the ones among all species (Pearson correlation 
coefficients among species’ scores along the trait axes 
|0.60| ≤  r ≤  |0.98|). The relations between species’ scores along 
the trait axes or single traits, species’ growth rate and distribution 
were therefore calculated for the whole species set.

The relations between species’ scores along the main trait 
axes (PC 1, PC 2, i.e., species’ trait combinations) and their 
relative growth rates were tested with F-tests on LMs separately 
calculated for each trait axis. The relations between the species’ 
scores along the trait axes and relative growth rates did not 
qualitatively differ depending on whether the species’ scores 
were derived from a PCA with the full species set (30 species, 
Figure  1) or from a PCA with the species set with growth 
rate measurements (19 species, Supplementary Figure S1). 
For consistency among all analyses, we  therefore presented 
the findings with the PCA based on the full species set. Relations 
between single traits and relative growth rates were also tested 
with F-tests on LMs separately calculated for each trait. Relative 
growth rates were natural log-transformed in the LM with 
Cmass to improve normality and homoscedasticity.

The relations of species’ scores along the main trait axes (PC 
1, PC 2, i.e., species’ trait combination) or single traits with 
species’ distribution along the rainfall gradient (i.e., mean annual 
rainfall niche) were tested with F-tests on LMs separately calculated 
for each axis or trait. Relations were also calculated with minimum 
and maximum rainfall niche based on BioGIS (2018), but 
qualitative results hardly changed (results not shown).

Adjusted significance level according to Holm-Bonferroni 
sequential correction (Holm, 1979; Gaetano, 2013) was applied 
to the multiple tests for species’ differences in the traits, and 
for trait (axes) relations to species’ growth rates and distribution. 
Since we  tested only pre-planned hypotheses (see Table  1), 
we  interpreted the results based on unadjusted significance 
level (see Armstrong, 2014).

All analyses were conducted with R 3.6.1 (R Core Team, 2019).

RESULTS

The twelve resource-use related traits differed significantly across 
the 30 winter annuals, with almost 2–5 fold variation, and in 
relative growth rate with about 26 fold variation, respectively 
(F-values between 2.4 and 93.2, all p  <  0.001, 
Supplementary Table S2). The attribute range of several leaf 
traits in the studied annuals almost corresponded to 60–80% of 
the globally documented trait ranges in plant species from different 
ecosystems and life forms worldwide (Kattge et  al., 2020, see 
details in Supplementary Table S2). In all traits, the values of 
the investigated annuals fall within the acquisitive end of the 
global trait range (e.g., high SLA, Nmass, Supplementary Table S2).

Traits were correlated along two PCs, instead of one as 
we  had expected (Figure  1; Table  2). PC 1 corresponded in 
positive direction with Rdia and Lthick, and in negative direction 
with LDMC, SRL, RTD, and LTD (Figure  1; Table  2). PC 1 
thus summarized structural leaf and root traits (in the following 
referred to as structural trait axis). PC 2 was highly negatively 
correlated with Amass, Nmass, Cmass, and SLA, four traits associated 
with carbon gain (in the following referred to as carbon gain 
trait axis, Figure  1; Table  2). The independence between 
structural and carbon gain traits was also reflected in the 
pairwise trait correlations (Supplementary Table S4).

Grasses differed from non-legume forbs and legumes in 
their scores along the structural trait axis (PC 1, LM statistics 
F2,27  =  11.23, p  <  0.001, R2  =  0.41) with higher LTD and 
LDMC in grasses, but not along the carbon gain axis (PC 2, 
F2,27 = 0.12, p = 0.89, Figure 1). Non-legume forbs and legumes 
exhibited similar scores along both trait axes (Figure  1). The 
trait correlations along PC 1 and PC 2 within each life form 
(i.e., forbs vs. grasses) were similar to the ones among all 
species (Supplementary Figure S2).

Species’ scores along the carbon gain trait axis (PC 2) were 
related to relative growth rate, i.e., species with higher Amass, 
Nmass, Cmass, and SLA grew faster, but scores on the structural 
trait axis were unrelated to relative growth rate (Figure  2; 
Supplementary Table S5). Among single traits, only Amass and 
Aarea were positively related with relative growth rate 
(Supplementary Table S5).

Species’ scores along the carbon gain and structural trait axes 
(PC 1, PC 2) as well as relative growth rates were independent 
from their distribution along the rainfall gradient (mean annual 
rainfall niche; Figures 3A–C; Supplementary Table S6). However, 
among single traits, root traits were related with species’ distribution. 
Species with higher RTD and smaller Rdia were associated with 
arid conditions (Figures  3D,E; Supplementary Table S6).

DISCUSSION

The main premise of the plant economics spectrum is that 
resource-use related traits are correlated along a single axis, 
comprising both structural and carbon gain traits, as well as 
traits of different plant organs (Reich, 2014). In contrast, in 
the investigated winter annuals structural and carbon gain traits 
were decoupled, and correlated along two independent axes. 
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The unexpected decoupling contradicts the predictions of the 
plant economics spectrum and had pervasive consequences 
on trait relations to growth rates and species’ distributions 
along the rainfall gradient that were also inconsistent with the 
hypotheses of the plant economics spectrum.

Trait-Trait Relations: Structural and 
Carbon Gain Traits Are Independent
The decoupling between structural and carbon gain traits 
we  found in the investigated winter annuals has, to our 

knowledge, not been observed in perennial herbaceous or 
woody species. Instead, perennial herbaceous or woody species 
predominantly show the expected correlation of resource-use 
related traits along a single axis (e.g., Freschet et  al., 2010; 
Liu et al., 2010; de la Riva et al., 2016a). In perennials, variation 
of leaf structure, especially of leaf tissue density and thickness, 
is mainly due to differences in carbon content (Roderick et al., 
1999; de la Riva et  al., 2016b). Higher carbon contents are 
associated with a higher proportion of sclerenchyma, thicker 
mesophyll layers and/or thicker mesophyll cell walls (de la 
Riva et  al., 2016b; Onoda et  al., 2017). This leaf structure 
leads to lower mass-based photosynthetic rate due to higher 
diffusion resistance to carbon dioxide, shading of chloroplasts, 
or lower proportion of mass-based nitrogen content (Niinemets, 
1999; Shipley et  al., 2005; Onoda et  al., 2017). In the studied 
winter annuals, however, structural trait variation (i.e., the 
structural trait axis) was independent from carbon content. 
The unexpected decoupling between structural and carbon gain 
traits implies that structural trait variation is due to components 
that do not constrain photosynthetic rate.

Our study species exhibited high water contents, leaf hairiness, 
and silicon accumulation. These traits are assumed to increase 
species’ ability to cope with the environmental conditions in 
drylands by maximizing water storage, reflecting sunlight, 
decreasing transpiration, and deterring grazing herbivores 
(Ehleringer and Mooney, 1978; Woodman and Fernandes, 1991; 
Sack et  al., 2003; Katz, 2019). They have additionally been 
proposed to dilute the relations between mass-based nitrogen 
content and structural leaf traits expected by the leaf economics 

TABLE 2 | Trait loadings on the first two principal components (PC) of a principal 
component analysis (PCA) with ten resource-use related traits in 30 winter annual 
species (see Figure 1).

PC 1 PC 2

Eigenvalue 3.71 2.39
Explained variance [%] 37.1 23.9
LTD −0.47 0.06
LDMC −0.45 0.09
Rdia 0.46 0.06
Lthick 0.36 0.35
SRL −0.33 0.02
RTD −0.30 −0.04
SLA 0.13 −0.49
Nmass 0.09 −0.49
Cmass −0.04 −0.33
Amass −0.03 −0.53

The table shows the eigenvalues, the proportion of explained variance of both PCs, and 
the loadings of the traits. Traits were ordered according to their |loading| on PC 1. Trait 
loadings > |0.4| are marked in bold.

FIGURE 1 | Resource-use related traits are correlated along two axes in 30 winter annual species, the first axis corresponds to structural traits (PC 1), and the 
second to carbon gain traits (PC 2). Trait abbreviations and trait loadings are given in Tables 1, 2, and species abbreviations are given in Supplementary Table S1, 
respectively. Symbols indicate life form: triangles for grasses, points for non-legume forbs, asterisks for legumes. Grasses differed from non-legume forbs and 
legumes in their species’ scores along PC 1, but not along PC 2.
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A B

FIGURE 2 | Relations between relative growth rates and species’ scores along the two main trait axes of resource-use related traits: (A) structural trait axis (PC 1) 
and (B) carbon gain trait axis (PC 2) in 19 winter annual species. R2 values and significance are given (ns not significant, for details see Supplementary Table S5). 
Species’ scores were based on the PCA in Figure 1 with 30 species.

A B

C

E

D

FIGURE 3 | Relations between species’ mean annual rainfall niche (i.e., species’ distribution along the rainfall gradient) and (A,B) their scores along the two main 
axes of resource-use related traits (PC 1, PC 2), (C) relative growth rate, (D) root diameter, and (E) root tissue density in 30 winter annual species (relative growth 
rate was only assessed in 19 species). R2 values and significance were given (ns not significant, for details see Supplementary Table S6). Further single traits were 
unrelated to species’ mean annual rainfall niche (see Supplementary Table S6).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kurze et al. Plant Economics Spectrum in Annuals

Frontiers in Plant Science | www.frontiersin.org 8 March 2021 | Volume 12 | Article 640862

spectrum (Grubb, 2016). Consistently, they influenced leaf tissue 
density and thickness in our study species. Leaf tissue density 
was strongly influenced by silicon instead of carbon content 
(Supplementary Table S4; Supplementary Method 1); and in 
forbs, high tissue density was additionally associated with long 
and/or dense leaf hairs (pers. obs.). Similarly, high leaf thickness 
mainly resulted from high water content and was negatively 
associated with carbon content (Supplementary Table S4). Despite 
their influence on leaf structure, silicon content, leaf water 
content, and leaf hairiness did not affect mass-based photosynthetic 
rate, since they did not constrain the proportion of mass-based 
nitrogen content (Supplementary Table S4), or the diffusion 
resistance to carbon dioxide. Decoupling between structural and 
carbon gain traits, which is in contrast to the hypothesis of 
the plant economics spectrum, thus might not be  restricted to 
winter annuals, but should also emerge in other species groups, 
in which traits other than carbon content lead to leaf structure 
variation, e.g., in perennial grasses with high silicon accumulation 
or succulent perennials (compare to Grubb, 2016).

Despite the decoupling of structural and carbon gain traits, 
the structural traits of roots and leaves were correlated in the 
studied winter annuals (SRL, RTD, Rdia, and LTD, LDMC, Lthick, 
respectively), consistent with findings in perennials (Freschet et al., 
2010; Reich, 2014; de la Riva et al., 2016a). The structural analogy 
between leaves and roots thus is not a consequence of the 
correlation of resource-use related traits along one axis, but might 
result from tissues pervading the entire plant, such as xylem 
and phloem vessels (Wahl and Ryser, 2000; Hummel et al., 2007).

Trait-Growth Relations: Growth Rate Is 
Independent From Structural Traits
The plant economics spectrum proposes that species’ positions 
along the single axis of resource-use related traits determine 
their growth rates (Reich, 2014). Consistent with this hypothesis, 
winter annuals with higher carbon gain trait attributes exhibited 
higher relative growth rates. However, structural traits were 
unrelated to relative growth rate, reflecting their uncoupling from 
carbon gain. Winter annuals with a wide variation of structural 
traits thus exhibited similar relative growth rates in contrast to 
the findings in perennials and the hypothesis of the plant 
economics spectrum (Lambers and Poorter, 1992; Reich, 2014).

The structural traits should, however, influence species’ stress 
resistance. In our study species, the structural trait axis was 
associated with silicon content and leaf hairiness (see above), 
traits assumed to deter grazing herbivores (Woodman and 
Fernandes, 1991; Katz, 2019), as well as with turgor loss point, 
i.e., the water potential at which leaves lose turgor 
(Supplementary Figure S3; Supplementary Method 1). Turgor 
loss point is considered as a major physiological determinant 
of species’ drought response (Bartlett et  al., 2012; Sun et  al., 
2020). A relation between structural traits and species’ drought 
and grazing resistance has also been indicated across life forms 
in semi-arid ecosystems (Blumenthal et  al., 2020).

Independence between growth rate and structural traits thus 
implies that the assumptions of the growth-stress resistance 
trade-off (see Grime and Hunt, 1975; Reich, 2014) do not 

apply to the studied winter annuals. Growth rates indeed turned 
out to be  independent of species’ stress resistance (to grazing 
and drought) in our study species (Kurze et  al., in review). 
Similar findings emerged in a few studies of perennial herbaceous 
species (Fernández and Reynolds, 2000; Jung et  al., 2020).

Trait-Environment Relations: Species’ 
Filtering Along the Rainfall Gradient Is 
Only Reflected in Root Traits
We expected that arid conditions favor winter annuals with 
acquisitive trait attributes and high growth rates due to their 
ability to reproduce within a short period and thus to escape 
drought (see Levitt, 1980; Kooyers, 2015). However, in the 
investigated annuals, species’ distribution along the rainfall 
gradient was unrelated to their scores along the structural and 
carbon gain trait axis and to growth rate. It is improbable 
that this unanticipated result is due to our focus on trait 
variation across species, which did not consider ecotypic 
variation. Ecotypic trait variation is usually considerably smaller 
than interspecific variation (Garnier et al., 2001; Kazakou et al., 
2014; Siefert et  al., 2015). This has been also shown in some 
of our study species (Bergholz et  al., 2017; Kurze et  al., 2017; 
Álvarez-Cansino et  al., unpublished data). Additionally, at the 
intraspecific level, resource-use related leaf traits did not show 
directional changes along the rainfall gradient in our study 
system (Bergholz et  al., 2017; Kurze et  al., 2017).

Rather, this unexpected finding likely emerged from the 
independence of growth rate and stress resistance, which 
facilitates similar ecological success of species with alternative 
trait combinations and supports the co-occurrence of annuals 
with a wide range of structural and carbon gain traits and 
growth rates along the rainfall gradient. Theoretical models 
(Marks and Lechowicz, 2006) and studies on interspecific 
variation of leaf traits in woody and perennial herbaceous 
species support that different trait combinations can be successful 
in the same environment (Wright et  al., 2004; Cernusak et  al., 
2011; Forrestel et  al., 2017; Muir et  al., 2017). In our study 
species, the structural trait axis was associated with traits related 
to both drought and grazing resistance (e.g., turgor loss point, 
leaf silicon content, leaf hairiness, see above), which should 
be  differentially filtered along the rainfall gradient and may 
offset each other (Carmona et  al., 2012; Rota et  al., 2017). 
Similarly, fast and slow growth rates may confer species a 
high competitive effect and high competitive response under 
wetter conditions (Goldberg and Landa, 1991; Liancourt et  al., 
2009). Consequently, contrary to the expectations of the plant 
economics spectrum, neither species’ trait combinations along 
the structural or carbon gain trait axis nor growth rates led 
to ecological filtering along the rainfall gradient in winter annuals.

Nevertheless, fine root traits were associated with species’ 
distribution along the rainfall gradient in the studied annuals. 
Fine root traits should be more directly related to species’ drought 
resistance than the combination of structural traits (reflected in 
the structural trait axis), which comprised traits of both drought 
and grazing resistance. Root traits have indeed previously been 
shown to be  more strongly related to the drought survival of 
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annual species than leaf traits (Harrison and LaForgia, 2019). In 
our study species, root diameter decreased and root tissue density 
increased with increasing species’ association to arid conditions. 
Species with these trait attributes are assumed to exhibit higher 
drought resistance, since thin and dense roots decrease the 
resistance to radial water inflow and are less prone to cavitation 
due to smaller xylem vessels (Wahl and Ryser, 2000; Comas 
et  al., 2013). Woody species with these root trait attributes have 
been shown to be  favored under low water availability (Nicotra 
et  al., 2002; de la Riva et  al., 2018). The root trait changes along 
the rainfall gradient observed in our study species thus imply 
that the low water availability during the growing season imposes 
an ecological filter under arid conditions. Arid conditions thus 
favor winter annuals with high drought resistance in the vegetative 
phase conferred by root traits but not with acquisitive traits or 
high growth rate to escape drought, as we  initially expected.

CONCLUSION

Our findings showed that the functional constraints hypothesized 
by the plant economics spectrum do not apply to winter 
annuals. Winter annuals can thus not be  ranked along a single 
axis of resource-use related traits from acquisitive (or fast) to 
conservative (or slow), as proposed by the plant economics 
spectrum (Reich, 2014). The limited applicability of the plant 
economics spectrum to winter annuals cautions to generalize 
functional constraints, trait-growth, or trait-environment relations 
among life-history groups. Explicitly testing and establishing 
these relations for species groups that may be  subjected to 
different constraints is a precondition for using trait-based 
approaches to understand and predict species’ performance, 
community composition, or ecosystem functioning.
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