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Abstract: This work is the final one in a series of three papers devoted to shedding light on the perfor-
mance of fixed grid methods, also known as enthalpy methods, for the modeling and the simulation of
solid/liquid phase transition. After a detailed analysis of five of the most common enthalpy methods
for conductive-dominated and conductive-convective problems and then a study concerning the
formulation of the advective term in the energy balance equation, the aim of the present paper is to
extend the above-mentioned studies by an investigation of the numerical performance. Such a goal is
achieved by comparing the required iterations and, even if it is shown to be only a rough guide, the
simulation time of each method, for a great variety of parameter variations. In terms of contribution,
the main conclusions of this overall work are to demonstrate that almost all solvers give similar
results when stable. However, there are still distinctive deviations with the experiments, highlighting
the need for a proper validation experiment. The second important assessment concerns resilience:
almost all solvers work well, with only the applied apparent heat capacity method being the major
exception as it often leads to unrealistic results. As a rule of thumb, models are more resilient when
only the sensible enthalpy is advected. As far as the average of the required iterations is concerned,
the so-called optimum approach needs the least. The order of the other solvers depends on the
advective formulation, whereas source-based methods perform averagely and the tested apparent
heat capacity method poorly. Cases with only sensible enthalpy advected need fewer iterations for
four of the five solvers and less computational time for all solvers.

Keywords: phase change; melting; diffuse interface methods; numerical performances; consistency;
energy formulation

1. Introduction

Since energy storage and more specifically thermal energy storage (TES) is going
to play a significant role in the future energy transition, from the current paradigm to a
more sustainable one, the use of numerical simulations for the design, management or
reverse engineering of such technologies should be more and more widespread. Among
the various available TES—an overview can be found in [1]—latent heat thermal energy
storage (LHTES) appears as an interesting candidate. However, it involves solid/liquid
phase change phenomena whose modeling is known to be tricky, despite the attention of
many researchers [2–6].

Surprisingly enough and contrary to many other fields, e.g., turbulent or compress-
ible flows, the level of validation of such modelings remains undeniably low [7,8]. Thus,
for natural convection dominated solid/liquid transition, benchmarks or validation ex-
ercises (on a rigorous numerical basis) remain scant, be it for melting [7,9–11] or for
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solidification [8,12,13]. Conductive-dominated situations apart, which are presented in [6],
the first real attempt to compare different methods for the modeling of fusion was proposed
by Lacroix and Voller [9]. The prediction of the interface position was investigated, with
a transformed grid method and a fixed grid method. Then, Viswanath and Voller [10]
extended this work for studying solidification of tin and fusion of gallium. The front
positions were compared, as well as the experimental and numerical liquid temperatures
at three different heights. Nonetheless, despite having the primacy, the previous studies
were limited for two important reasons: (i) the comparisons were mainly qualitative; and
(ii) the varied parameters or conditions were too few to allow for general conclusions.
Since then, a very large effort has been made by several groups gathered in an interna-
tional program to tackle the first issue. Thus, two major contributions were performed by
Bertrand et al. [11] and Gobin et al. [7] to propose a benchmark for the simulation of two
materials (with low and high Prandtl numbers, i.e., tin and octadecane). In each case, two
Rayleigh numbers were investigated. Despite being purely numerical, these tests were
systematically reviewing the temporal evolution of the average Nusselt number and of
the liquid fraction, while interface positions were screened at four different times. To the
best of the authors’ knowledge, this was the first time that dispersion between the results
was studied from a quantitative point of view. Similarly, for solidification processes, a
quantitative comparison of FEM and FVM was first performed by Ahmad et al. for Pb-Sn
alloys [12] and then extended into a benchmark for columnar solidification of another
Pb-Sn alloy by Combeau et al. in a larger international group [8]. In both cases, deviations
between the numerical results and behavioral differences were systematically analyzed and
comparison with experiments was performed. Despite the large efforts made, these works
have shown that, even if rather high agreement was generally observed (with some minor
exceptions), there were still notable caveats that hampered the reliability and confidence in
the numerical codes. To summarize, this drawback principally lies in the liquid region, in
the vicinity of the interface. For example, once discarded the unrealistic results, the best
agreement for the interface location was only ±15% for fusion of gallium [7]; similarly, the
number of channels and the intensity of segregation inside could vary greatly [8]. More
recently, the authors continued this work for melting in presence of natural convection [6].
Thus, they studied five different formulations of the energy equation and performed as
well an exhaustive analysis of several parameters. Following the advice raised in the
conclusions of Bertrand et al. [11] and Gobin et al. [7], convergence and accuracy of the
methods were analyzed, together with grids and time steps dependency, respectively. At
the same time, the pure conduction limit was investigated. In addition, the same group
extended this work to consider the role of the convective term (for the enthalpy) involved
in the energy equation [14].

As mentioned above, numerical performances of the aforementioned models have
not raised so much attention [9,15,16], although it is clear that speed will be a paramount
factor when performing such simulations. In the former case, transformed grid methods
and fixed grid methods were finally said to be comparable when large time steps are used;
for lower time steps, the fixed grid methods use less computational time. In the latter
one, the comparison is more limited since only the energy equation is solved, convection
being handled by an effective thermal heat conductivity approach. Unfortunately, this
is possibly a limiting flaw since calculation costs seem to be highly correlated with the
interaction of the melt with the liquid zone [7]. Furthermore, the comparisons proposed
are also done with different computers and with various implementations of different
methods, e.g., Matlab optimized code with an enthalpy or source term method against a
non-optimized in-house C++ code for a heat capacity method. Finally, when using a coarse
grid, Swaminathan and Voller showed that the source-term method was rather slow for
isothermal phase change but also that an optimal formulation could limit these caveats [15].

In the sequel of these preliminary studies, the main goal of the present work is to
further improve the analysis of the five fixed grid methods (all iterated until convergence)
studied by the authors earlier [6,14]. After the detailed assessment of their results with
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each other and experimental results, their numerical performances is handled in the
current contribution. Since most of the solvers provide similar results, a comparison
of the numerical performance helps the user to select a solver and the convection term
formulation for his case. For each of the five enthalpy methods, two formulations for the
enthalpy convecting term, with either all enthalpy (AE) or only sensible enthalpy (SE), are
considered. Eventually, an exhaustive numerical experiment plan is considered once again,
with variations of several main parameters.

The paper is organized as follows. The physical and numerical modeling are presented
in Section 2 and the retained test case for the benchmark is described in Section 3. Then,
Sections 4 and 5 are devoted to the presentation of the entire set of results, together with the
associated discussions as well as the practical consequences. Lastly, some final conclusions
and perspectives are discussed in Section 6.

2. Problem Statement
2.1. Flow Modeling

In the sequel of the aforementioned studies [6,14], this study concerns laminar incom-
pressible flows of Newtonian fluids, under the Boussinesq approximation. The canceling
of the solid velocity is achieved by the classic Darcy approach, which adds a damping term
in the momentum equation [17–21]. The fluid motion equations are as follows:

−→∇ · −→V = 0 (1)

ρ
(∂
−→
V

∂ t
+
−→
V · −→∇−→V

)
= −−→∇P +

−→∇ ·
(

µ
−→∇−→V

)
−A−→V + ρβ

(
T − Tref

)−→g (2)

where A denotes the porosity function, which follows a Carman–Kozeny type relation:

A = C
(1− αl)

2

αl
3 + q

(3)

Concerning the values of the porosity function, its parameters are set to
C = 9.7488× 109 kg m−3 s−1 which is the value of Brent et al. [21] times the density and
q = 10−3 [6,14].

2.2. Thermal Modeling

Here, five different formulations are tested. Two of them are based on enthalpy
formulations, while the others are temperature formulations. In all cases, it is assumed
that viscous dissipation and pressure works are negligible. Moreover, for all the various
formulations, two cases are considered: either all the enthalpy (AE) or only the sensible
enthalpy (SE) is convected [14].

The energy equation being somehow written in terms of the temperature, the equation
of state, i.e., the thermodynamical behavior of the material, must be defined. To be as
general as possible, both pure substance and mixture behaviors are considered. In this latter
case, it is nevertheless assumed that a linear variation holds for the enthalpy–temperature
relation during the phase change. In summary, the enthalpy function follows the profiles
depicted in Figure 1.
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∆T

T [K]

h [J kg−1]

(a) High purity / almost pure substances.

∆T

αl =
T − Tsol

Tliq − Tsol

T [K]

h [J kg−1]

(b) Mixtures

Figure 1. Examples of the enthalpy formulation [14].

Given the previous remarks, the energy equation will be written under five different
ways, with two supplementary variations each time. The associated taxonomy is based
on the one used in the former papers [6,14]. All methods are corrected and iterated until
the change in the liquid fraction was less than 10−6 in consecutive iterations. Here, only
a brief description of the solvers is given. More details can be found in the work of
König-Haagen et al. [14].

Happarent solver [22,23] corresponds to the usual energy equation, written either for
AE (Equation (4a)) or for SE (Equation (4b)):

ρ
(∂ h

∂ t
+
−→
V · −→∇h

)
=
−→∇ ·

(
λ
−→∇T

)
(4a)

ρ
(∂ h

∂ t
+ c
−→
V · −→∇T

)
=
−→∇ ·

(
λ
−→∇T

)
(4b)

Hsource solver [24] relies on writing Fourier’s law in terms of the enthalpy, which
leads to the following variants for AE (Equation (5a)) and SE (Equation (5b)):

ρ
(∂ h

∂ t
+
−→
V · −→∇h

)
=
−→∇ ·

(
λ

c
−→∇h

)
− λ

c
L∆αl (5a)

ρ
(∂ h

∂ t
+ c
−→
V · −→∇T

)
=
−→∇ ·

(
λ

c
−→∇h

)
− λ

c
L∆αl (5b)

Tapparentlinear solver uses a modified specific capacity to take into account the
latent effects. AE (Equation (6a)) and SE (Equation (6b)) cases lead to:

ρ
(

capp
∂ T
∂ t

+
−→
V · −→∇h

)
=
−→∇ ·

(
λ
−→∇T

)
(6a)

ρ
(

capp
∂ T
∂ t

+ c
−→
V · −→∇T

)
=
−→∇ ·

(
λ
−→∇T

)
(6b)

In Equation (6a), the enthalpy is used in the convective term as a formulation with
the temperature and the apparent heat capacity leading to an unstable behavior [6].
Among the variable possibilities, the expression for the apparent heat capacity is the
one of Morgan et al. [25]:

capp =
hn − hn−1

Tn − Tn−1 (7)

Tlinear solver [26] is based on Equations (4a) and (4b) and uses a Taylor expansion
of enthalpy. This results in a correction directly on the enthalpy/temperature curve
with an apparent heat capacity corresponding to the old iteration step.
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Tsource solver [27] is based on the splitting of the enthalpy into its sensible and latent
parts and becomes Equations (8a) and (8b) for AE and SE respectively.

ρc
(∂ T

∂ t
+
−→
V · −→∇T

)
=
−→∇ ·

(
λ
−→∇T

)
− ρL

(∂ αl
∂ t

+
−→
V · −→∇αl

)
(8a)

ρc
(∂ T

∂ t
+
−→
V · −→∇T

)
=
−→∇ ·

(
λ
−→∇T

)
− ρL

∂ αl
∂ t

(8b)

2.3. Numerical Implementation

Calculations are done with OpenFOAM 2.2.2, a finite-volume method open source
CFD code [28]. Since we deal with incompressible Navier–Stokes equations, the classic
PISO-SIMPLE algorithm is used for the pressure–velocity coupling. Convective and diffu-
sive fluxes are computed with upwind and linear schemes and Euler implicit integration is
taken for the time. Interested readers are referred to [6,14] for more details, especially the
discrete formulations and their OpenFOAM implementation.

2.4. Threshold and Evaluation

A filter is used to exclude crashed simulations and simulations with clearly wrong
results that would influence the evaluation of the numerical performance. For this purpose,
upper and lower thresholds of the final liquid fraction are introduced and simulations with
results outside the thresholds are not considered in the performance evaluation. Based on
the results of resilient solvers, the thresholds were set to 60% and 70%. It is important to
note that a fully mesh-independent solution can lie outside these thresholds. Therefore,
these thresholds should only be seen as a guide for the parameters used in this study.

Within this paper, the number of iterations required is also presented. Here, the
difficulty arises that the results of simulations with many iterations dominate those with
fewer iterations (e.g., with fine and coarse grids). For this reason, the iterations are also
given in normalized form. Thereby, the normalization is always related to the solver with
the fewest iterations per parameter combination.

3. Test Case

In the same way as the previous studies [6,14], the present benchmark deals with
the fusion of gallium in a rectangular cavity (8.89 cm× 6.35 cm× 3.81 cm), heated and
cooled on its left and right parts, respectively (other walls being adiabatic) [29]. The
corresponding setting temperatures are Th = 38.0 °C and Tc = 28.3 °C. The setup is shown
in Figure 2. Initially, the temperature is fixed at 28.3 °C in the entire domain. To perform the
current simulations, the adopted thermophysical properties for gallium, based on literature
review [6], are those summarized in Table 1. C = 9.7488× 109 kg m−3 s−1 q = 10−3 [6,14].

The underrelaxation factor for updating the temperature or enthalpy is initially set to
1.0 for every simulation and divided by ten when required, i.e., when convergence was not
reached. Then, the simulation is restarted with the new underrelaxation factor. Besides,
a structured mesh with equidistant cell length is used. Finally, the parameters and their
variations within this work are given in Table 2. This analysis thus involves more than
2000 simulations. This simulations were performed on a workstation with two Intel(R)
Xeon(R) CPU E5-2643 v2 @ 3.50 GHz. About 20 simulations were run in parallel; however,
the number fluctuated, especially towards the end of a set of simulations. Therefore, long
running simulations were more likely to run in parallel with fewer other simulations.
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38.3°C 28.3°C

Figure 2. Sketch of the simulated experiment.

Table 1. Thermophysical properties for gallium.

Property Value Unit

ρs 6093 kg m−3

ρl 6093 kg m−3

cs 381.5 J K−1 kg−1

cl 381.5 J K−1 kg−1

λs 32 W K−1 m−1

λl 32 W K−1 m−1

TM 29.78 °C
L 80 160 J kg−1

µ 1.81× 10−3 kg m−1 s−1

ν 0.29706× 10−6 m2 s−1

β 1.2× 10−4 K−1

Table 2. Overview of the varied parameters.

Variable Remarks Variation Unit

∆T
Tlinear, Tapparentlinear 10−2, 10−1, 2× 10−1, 5× 10−1, 1, 2 K

Tsource 10−2, 2× 10−1, 2 K
Happarent, Hsource 0, 2× 10−1, 2 K

∆x number of cells 50 × 50, 100 × 100, 150 × 150, 200 × 200 −
∆t time step 0.1, 1 s

CFL 1, 4, 8 −
tol tolerance for the energy equation 10−6, 10−10 −

form formulation of the convective term AE, SE −
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4. Results

An overview of which simulations are affected by the chosen threshold (see Section 2.4)
is shown in Table 3 in Section 4.1 and subsequently the performance of the different solvers
is presented. Here, the results are shown starting with the number of required iterations
and ending with the vague computational time and the required underrelaxation. For
a more detailed evaluation of the liquid fraction and a representation of the phase front
profile, the reader is referred to our previous publications [6,14].

Table 3. Ratio of simulations with a final liquid fraction from 60% to 70%.

Parameter AE SE
Variation Happ Hsou Tsou Tlin Tapp Happ Hsou Tsou Tlin Tapp

∆x

50 × 50 1.000 1.000 1.000 1.000 0.306 1.000 1.000 1.000 1.000 0.597
100 × 100 1.000 1.000 1.000 1.000 0.375 1.000 1.000 1.000 1.000 0.569
150 × 150 1.000 1.000 0.944 0.972 0.347 1.000 1.000 0.972 1.000 0.431
200 × 200 0.778 1.000 0.861 0.944 0.181 0.778 1.000 0.917 1.000 0.236

∆t 1 s 0.889 1.000 0.931 0.972 0.264 0.889 1.000 0.944 1.000 0.403
0.1 s 1.000 1.000 0.972 0.986 0.340 1.000 1.000 1.000 1.000 0.514

ε
10−6 0.944 1.000 0.917 0.958 0.257 0.944 1.000 0.944 1.000 0.396
10−10 0.944 1.000 0.986 1.000 0.347 0.944 1.000 1.000 1.000 0.521

CFL
1 1.000 1.000 1.000 1.000 0.438 1.000 1.000 1.000 1.000 0.542
4 0.917 1.000 1.000 0.969 0.250 0.917 1.000 1.000 1.000 0.427
8 0.917 1.000 0.854 0.969 0.219 0.917 1.000 0.917 1.000 0.406

∆T

2 K 1.000 1.000 0.958 1.000 0.688 1.000 1.000 0.958 1.000 0.708
1 K - - - 1.000 0.521 - - - 1.000 0.458

0.5 K - - - 1.000 0.521 - - - 1.000 0.604
0.2 K 0.917 1.000 0.958 1.000 0.083 0.917 1.000 0.979 1.000 0.646
0.1 K - - - 1.000 0.000 - - - 1.000 0.333
0 K 0.917 1.000 0.938 0.875 0.000 0.917 1.000 0.979 1.000 0.000

4.1. Summary of the Liquid Fraction Evaluation

Only Hsource-AE, Hsource-SE and Tlinear-SE provide results within the thresholds
for all parameter combinations (Table 3). On the contrary, for Tapparentlinear-AE and
-SE, a large part of calculations is always disregarded. The other methods lie between
these, although distinctly closer to the resilient ones. In addition, more simulations are
disregarded for AE than for SE.

4.2. Total Iterations

The most important results for the number of required iterations are as follows
(Figure 3):

• On average, SE needs fewer iterations than AE except for Happarent where AE needs
slightly fewer than SE.

• The differences between the minimum and the maximum number of iterations within
one solver, but for different parameter combinations are between one and two orders
of magnitude.

• For SE, the ranking is in ascending order: Tlinear, Hsource, Tsource, Happarent,
Tapparentlinear.

• For AE, the ranking is in ascending order: Tlinear, Happarent, Hsource, Tsource,
Tapparentlinear.

On average, both Tlinear formulations require fewer iterations than any other solver
and Tlinear-SE—which had about 0.32× 106 iterations on average—needs less than 50%
of the iterations of Tlinear-AE. Tapparentlinear needs on average (4.65× 106 for SE and
5.83× 106 for AE) more than twice as many iterations than the solver with the second most
iterations, whatever the regarding convective formulation. The results for the normalized
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iterations (the procedure is explained in Section 2.4) are depicted in Figure 4 and Table 4.
When analyzing these values, one has to keep in mind that, for Tlinear and Tapparentlinear,
the normalizing and averaging were performed for six different mushy zone widths instead
of three. Therefore, the comparison of all five solvers together is best done for a mushy
zone width of 2 K, 0.2 K or 0 K. Again Tlinear-SE shows the best performance, followed
by Happarent-AE and Tlinear-AE. For SE as well as AE, Tapparentlinear performs by far
the worst.
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The influence of the time step on the average number of iterations is depicted in
Figure 5a. In general, a smaller time step leads to more iterations, except for Happarent-
SE and Tlinear-SE. Apart from Happarent-SE and Tapparentlinear-SE the influence of
the time step is rather small. The tolerance has only a small influence on Happarent-SE,
Tlinear and Tapparentlinear-SE. A tighter tolerance increases the number of iterations
for Happarent-AE and Hsource and decreases the number of iterations for Tsource and
Tapparentlinear-AE (Figure 5b). In general, a smaller CFL results in more iterations, except
for Hsource-AE and Tlinear. For Hsource, Happarent-AE and Tsource-SE, the influence is
minor (Figure 5c).

For all solvers, a finer mesh leads to a lot of more iterations (Figure 5d). On average, a
larger ∆T requires fewer iterations for all solvers. Only with Tlinear-SE there is almost no
influence of ∆T on the iterations and for Tapparentlinear-SE there is an exception for 2 K
(Figure 5e).
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4.3. Iterations per Time Step

The min, mean and max of the iterations needed per time step can be seen for all
solvers and convective formulations in Figure 6.

For the mean values, the overall picture is very similar to the one of the total number
of iterations. Shifts should only occur when simulations are not considered due to the
threshold. In general, SE requires on average fewer iterations per time step than AE, except
for Happarent and Tapparentlinear, where slightly more iterations are needed. Tlinear-
SE needs the fewest iterations per time step (34.1 on average), followed by Hsource-SE
(70.7 on average) and Tlinear-AE (80.7 on average). Tapparentlinear needs more than
235 iterations per time step on average and the remaining solvers require about 100–150
iterations accordingly. Since there are two external iterations with at least 3 and at most
151 internal iterations each, the theoretical minimum of iterations per time step is 2 × 3
iterations and the theoretical maximum is 2 × 151 iterations. All solvers except Tlinear-
SE need at least once more than 300 iterations per time step and all solvers except for
Happarent-AE, Tsource and Tapparentlinear-AE obtain at least once close to the minimum
of six iterations per time step.
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4.4. Computational Time

The mean computational time needed for one simulation can be seen for all solvers
and convective formulations in Figure 7. Comparing the computational time is very vague
due to at least the following reasons. First, the simulations were run in parallel with a
slightly varying number of parallel simulations. Second, the implementation and the
hardware affect the simulation time. Third, the calculations that are not considered due
to the threshold have an influence on the average simulation time—e.g., simulations with
a fine mesh take much longer than calculations on a coarse mesh. For all solvers, the
SE formulation is on average faster than the AE formulation. However, the maximum
simulation time may appear for SE. The fastest solver is on average Tlinear-SE followed by
Happarent, Hsource-SE and Tlinear-AE. The slowest solver is clearly Tapparentlinear-AE
followed by Tapparentlinear-SE. The average computing time for Tlinear-SE was about
3.5 h, while for Tapparentlinear-AE it was almost one day.

4.5. Computational Time per Iteration

The mean of the computational time needed per iteration, which is the computational
time required divided by the number of iterations, can be seen for all solvers and convective
formulations in Figure 8. Due to the aforementioned points regarding the computing time
and the influence of sections of the solver that are not part of the calculation of the energy
conservation, the computational time per iteration is very vague, too. For Hsource, Tsource
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and Tapparentlinear, the computational time is on average 0.01–0.015 s. For Hsource
and Tsource, one cannot detect large differences between both formulations (AE and SE).
Happarent-SE is on average the fastest solver per iteration with 6.8× 10−6 s and Happarent-
AE, Tlinear-AE and Tlinear-SE are much slower with computational times per iterations of
0.026, 0.031 and 0.045 s, respectively. Possible reasons for the high computational time per
iteration for Tlinear are the rather high number of steps performed within one iteration
and the small number of iterations needed (other time-consuming parts within the solver
have a higher impact on the computational time per iteration for less iterations). The
difference between Tlinear-SE and Tlinear-AE might be explained by the simulations that
are not considered for AE due to the threshold. These calculations always had a fine
mesh and in consequence a rather long computational time per iteration, which leads to a
reduced average computational time for the remaining simulations. One reason for the
large difference between Happarent-AE and Happarent-SE could be that Happarent-SE
is solved completely explicitly within one iteration (no matrix equation system has to be
solved), whereas Happarent-AE has an implicitly formulated convective term.
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4.6. Underrelaxation

A histogram of the underrelaxation for the different solvers and convective formula-
tions can be seen in Figure 9. Hsource-AE requires no underrelaxation and Hsource-SE
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as well as Tsource need for more than 90% of the cases no underrelaxation. Happarent
got the strongest underrelaxation with more than 80% of underrelaxation factors ≤0.01,
followed by Tapparentlinear. Both solvers always depend on underrelaxation. Tlinear-SE
is underrelaxed in about 1/3 of the cases and an underrelaxation of 0.1 is always sufficient.
Tlinear-AE requires underrelaxation in slightly more than 50% of the cases and only a very
few times an underrelaxation factor of ≤0.01 is needed.
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Figure 9. Underrelaxation factors for the AE and the SE case (clear and striped, respectively).

Table 4. Mean values of the normalized iterations.

Parameter AE SE
Variation Happ Hsou Tsou Tlin Tapp Happ Hsou Tsou Tlin Tapp

∆x

50 × 50 1.878 2.418 4.262 1.638 32.011 2.897 2.403 3.745 1.067 27.470
100 × 100 2.936 3.968 8.191 2.808 10.977 6.360 4.034 6.518 1.048 27.007
150 × 150 2.558 6.532 12.141 3.527 9.497 12.228 6.005 9.509 1.016 23.352
200 × 200 2.789 5.401 10.372 1.708 16.653 10.583 6.808 12.049 1.012 30.389

∆t 1 s 2.596 4.018 7.152 1.966 14.728 8.808 4.010 6.782 1.069 17.906
0.1 s 2.484 5.141 10.137 2.921 19.174 7.040 5.615 8.909 1.002 34.894

ε
10−6 1.370 6.139 14.863 4.319 30.659 8.672 3.189 9.428 1.068 34.982
10−10 3.713 3.020 3.014 1.014 10.717 7.220 6.436 6.502 1.003 25.128

CFL
1 3.556 3.720 8.948 1.009 31.252 7.971 3.654 6.450 1.000 40.446
4 2.123 4.964 9.869 3.404 8.329 11.317 7.736 12.519 1.070 25.253
8 1.945 5.055 7.290 2.998 8.696 4.550 3.048 4.826 1.038 18.398

∆T

2 K 2.726 2.816 5.908 2.713 11.819 6.834 3.497 6.380 1.150 6.775
1 K - - - 1.007 16.747 - - - 1.000 30.995

0.5 K - - - 1.000 17.355 - - - 1.000 35.913
0.2 K 2.274 5.324 9.572 4.178 38.320 7.061 5.152 7.833 1.039 35.391
0.1 K - - - 1.000 NaN - - - 1.000 31.088
0 K 2.625 5.599 10.626 4.923 NaN 9.943 5.789 9.581 1.025 NaN

5. Discussion
5.1. General Results

Four of the five tested solvers give stable and very similar results over a broad range
of parameters. Only Tapparentlinear gives strongly divergent results for the majority
of simulations. Hsource and Tlinear-SE are the most resilient solvers—no simulations
returned a final liquid fraction outside the chosen threshold of 60–70%. As highlighted
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above, these thresholds only refer to the chosen conditions and a mesh independent
solution might give different results. On average, the SE formulation leads to slightly
more resilient simulations than the AE formulation. Tlinear, especially Tlinear-SE, clearly
requires the fewest iterations. On the contrary, Tapparentlinear needs by far the most
iterations. The remaining solvers lie in between and perform more or less similarly to each
other. For a more detailed analysis, the underrelaxation factors would have to be varied at
finer intervals than here. Except for Happarent, the SE formulation requires fewer iterations
than AE, and the difference in the liquid fraction between both formulations decreases
with finer meshes [14]. Therefore, the SE formulation is recommended unless there are
physical reasons for applying AE. The simulation time, which is very vague due to many
reasons, cannot be used as a reliable and detailed criterion for the solver performance.
However, one can see that Tlinear has rather a long calculation time per iteration, whereas
Happarent-SE requires a relatively short time. An overview of the resilience, the numerical
performance, the implementation effort and the underrelaxation is given for every solver
in Table 5.

Table 5. Solver specific summary of the overall results including practical aspects. The characters indicate how the solvers
perform in each area. The order is ++, +, o, - and --, where ++ is the most favorable rating.

AE SE
Happ Hsou Tsou Tlin Tapp Happ Hsou Tsou Tlin Tapp

resilience + ++ + + -- + ++ + ++ --
iterations o o - + -- o + o ++ --
time per iteration - o o - o + o o - o
numerical implementation + o o - o + o o - o
underrelaxation -- + + o -- -- ++ + o --

5.2. Solver Specific Analysis

In the following, a discussion is conducted on the solvers by discussing each solver
separately.

Happarent was resilient for AE as well as SE for a broad range of parameters. Al-
though it needed the strongest underrelaxation, it required one of the fewest iterations
for AE and was in midfield of needed iterations for SE. The SE formulation of Hap-
parent is the only solver not relying on the solving of a matrix equation system for the
energy equation—resulting in the shortest mean simulation time per iteration. The
implementation of Happarent is very simple so that it is the easiest solver to program.
Hsource was the most resilient solver for the tested conditions; for both formulations,
no simulations gave results outside the chosen thresholds of a final liquid fraction from
60% to 70%. It is also the solver that was the least dependent on underrelaxation—only
the AE formulation needs underrelaxation in very few cases. In terms of simulation
time and required iterations, Hsource is within the average of the resilient solvers.
The implementation of Hsource is moderately complex.
Tsource has proven to be resilient for a wide range of parameters and only in very
few cases underrelaxation was needed. Tsource is within the average of the resilient
solvers concerning the simulation time and required iterations. In addition, the
implementation of Tsource is moderately complex.
Tlinear AE was resilient and Tlinear SE was the most resilient together with Hsource—
no simulation gave results that were outside the chosen threshold of a final liquid
fraction from 60% to 70%. It should be mentioned that a parallel study [30] indicates
that an additional linearization of the convection term in the case of the AE formula-
tion would increase its resilience. Underrelaxation was necessary in roughly 50% of
the cases. Tlinear SE needed clearly the fewest iterations of all solvers followed by
Tlinear AE. The fact that Tlinear needs fewer iterations than other solvers confirms
results in the literature [26]. On the other hand, the calculation time for one iteration
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was long compared to the other solvers. The implementation of Tlinear is the most
complex one of all solvers tested.
Tapparentlinear in its present implementation (using the approach of
Morgan et al. [25] with additional iterative correction of the apparent heat capac-
ity) performed by far the worst and cannot be recommended. It was found that the
apparent heat capacity correction can be trapped in between several points for this
formulation [14]. However, it should be mentioned that many different apparent heat
capacity methods exist and it is conceivable that others work better.

6. Conclusions

The present work is devoted to the analysis of the numerical performances of various
fixed grid methods used for the simulation of melting. Five of the most encountered
and famous approaches applying an iterative correction until convergence are considered,
thus studying both enthalpy and temperature formulations. Meanwhile, the modeling
of the advective term in the energy balance equation is involved in the discussion. The
investigated parameters are the computational times and number of iterations, be it their
total number per iteration or time step. They are scrutinized—in function of the space
and time discretizations—together with the temperature range on which the phase change
occurs, as well as CFL and the residual of the energy equation.

After an extensive analysis, it is shown that all resilient solvers give almost identical
solutions for identical parameters. Nevertheless, the resilience differs strongly depending
on the retained formulation. In fact, the apparent heat capacity method tested regularly
leads to wrong results and all solvers are less resilient when the advective term of the
energy equation also contains the latent part of the enthalpy. In addition, the so-called
optimum approach needs the least iterations and the tested apparent heat capacity method
needs the most iterations. However, the optimum approach seems to have a rather long
computational time per iteration, which reduces its advantage somewhat. In general, the
formulation of the advective term of the energy equation that includes the latent part
of the enthalpy needs more iterations and computational time than the formulation that
only advects sensible enthalpy. Finally, an important deviation is always observed with
the reference experiment [6,14]. Following this, a specific discussion is necessary on the
development of an experimental reference solution and how it should be conducted. In
summary, it would have to contain specific thermal characterization of the involved PCM,
as well as thorough measurement of both the initial and boundary conditions. Moreover,
uncertainties accompanying all these measurements should be provided.

Finally, we plan to study the influence of different switch-off techniques as well as the
influence of temperature dependent material properties on melting processes.
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Nomenclature
Latin letters

A porosity function (kg m−3 s−1)
c specific capacity (J K−1 kg−1)
C Darcy constant (kg m−3 s−1)
g gravity acceleration (m s−2)
h specific enthalpy (J kg−1)
L latent heat (kJ kg−1)
P pressure (Pa)
q small Darcy constant (–)
T temperature (K)−→
V velocity (m s−1)
t time (s)

Greek letters

α volume fraction (–)
β volumetric coefficient of thermal expansion (K−1)
ε tolerance (–)
λ thermal conductivity (W K−1 m−1)
ρ density (kg m−3)
µ dynamic viscosity (kg m−1 s−1)
ν kinematic viscosity (m2 s−1)

Exponents and subscripts

app apparent
l liquid
liq liquidus
M melting
ref reference
s solid
sol solidus

Acronyms

AE all enthalpy convection
CFL Courant–Friedrichs–Lewy
DIM diffuse interface method
FGM fixed grid method
Happ Happarent
Hsou Hsource
SE sensible enthalpy convection
Tapp Tapparentlinear
Tlin Tlinear
Tsou Tsource
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