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Zusammenfassung

Mit dem weltweit zunehmenden Bedarf an Transplantationen von Organen und Gewebe
ist die Entwicklung von Behandlungsmethoden der regenerativen Medizin eine der großen
Herausforderungen dieser Zeit. Eine vielversprechende Methode zur Herstellung von bio-
logischem Gewebe bietet die additive Fertigung, d. h. der 3D-Druck von Gewebe oder
Organen.
Mit speziellen Drucktechniken und darauf zugeschnittenen Biotinten – Mischungen aus
Flüssigkeiten mit bestimmten Eigenschaften und Zellen – können dreidimensionale Struk-
turen automatisiert nach vorgefertigtem Muster hergestellt werden. Neben biochemischen
Aspekten der Biotinten, beispielsweise ihrer Verträglichkeit mit den Zellen, spielen auch
rheologische Eigenschaften eine wichtige Rolle: Während des Druckvorgangs treten hydro-
dynamische Kräfte auf, die die Zellen beschädigen oder gar zerstören können, noch bevor
sie in die 3D-Struktur eingebaut werden.
Die in der Strömung auftretenden Scherkräfte sind vor allem in der Druckerdüse relevant,
da die Flüssigkeit einen Übergang von festen zu freien Randbedingungen durchläuft
und sich das Strömungsprofil stark ändert. Um nun die Strömungsprofile innerhalb und
außerhalb der Düse anzugleichen und damit die Unterschiede am Übergang zu minimieren,
können scherverdünnende Flüssigkeiten als Medium für die Zellen eingesetzt werden.
Treten hohe Schergradienten auf, wie etwa an der Innenseite eines Kanals, verringert sich
die Viskosität dieser Fluide, wodurch sie besser fließen. Sind die Schergradienten hingegen
klein, wie in der Mitte der Strömung, steigt die Viskosität an und der Fluss wird gebremst.
Dadurch entsteht ein breites Strömungsprofil, bei dem die Scherkräfte für Zellen in der
Kanalmitte abnehmen.
Die Deformation der Zellen vor und während des Druckvorgangs ist experimentell nur
schwer erfassbar und außerdem müssten sehr viele Experimente für verschiedene Zelltypen
und Biotinten-Mischungen durchgeführt werden.
An dieser Stelle kann die Simulation des Systems hilfreich sein. Reduziert auf die we-
sentlichen Bestandteile, die rheologischen Eigenschaften des Fluids und die elastischen
Eigenschaften der Zellen, kann das Verhalten von Zellen in Biotinten im Detail untersucht
werden.

Im Rahmen dieser Masterarbeit wird die Simulationssoftware ESPResSo daher um einige
scherverdünnende Viskositätsmodelle erweitert. Die darin implementierte Lattice Boltz-
mann Methode bietet dabei den Vorteil, dass lokal Scherraten berechnet werden können
und die Parallelisierbarkeit des Algorithmus nicht beeinträchtigt wird. Außerdem wird
ebenso die GPU-Implementierung um die Viskositätsmodelle erweitert, da diese gerade
für kleinere Systeme erheblich schneller ist.
Um die Methode zu validieren, werden analytische Lösungen der Navier-Stokes-Glei-
chungen für das power-law und das truncated power-law Modell hergeleitet und die
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Simulationsdaten anschließend damit verglichen.
Daraufhin werden Simulationen von kugelförmigen Zellen, die Stammzellen repräsentieren
sollen, in einem zylindrischen Kanal mit scherverdünnendem Fluid durchgeführt und das
Flussverhalten sowie die Verformung der Zellen mit mehreren Methoden analysiert. Es
stellt sich heraus, dass die mittlere Deformation der Zellen entgegen der ursprünglichen
Annahme mit zunehmender Scherverdünnung ebenfalls zunimmt. Der erwartete Effekt
tritt hingegen nur für sehr hohe Scherverdünnung auf und auch nur dann, wenn die
gesamte Zelle im Plateau-Bereich der Strömung liegt. Sobald die Zelle weiter von der
Mitte abweicht, wird sie mindestens so stark deformiert wie in einem Newtonschen Fluid.
Das liegt unter anderem daran, dass die Scherraten zum Rand des Kanals hin deutlich
höher werden, wenn das Strömungsprofil ein zentrales Plateau besitzt.
Abschließend werden Simulationen durchgeführt, die den Übergang an der Düse eines
3D-Druckers modellieren sollen. Durch die Kombination von festen und freien Randbedin-
gungen wird so zunächst das Strömungsprofil am Übergang betrachtet. Daraufhin wird eine
einzelne sphärische Zelle mit unterschiedlichen radialen Startpositionen für verschiedene
Scherverdünnungen simuliert und die Verformung analysiert. Auch hier ergibt sich dasselbe
Bild – je höher die Scherverdünnung, desto mehr wird die Zelle am Übergang deformiert.
Auch Zellen in der Kanalmitte, die vor dem Austritt aus der Düse weniger verformt sind,
werden während des Übergangs für höhere Scherverdünnung stärker deformiert. Nach
dem Übergang benötigen diese Zellen auch erheblich länger, um in ihre ursprüngliche
Form zu relaxieren. Letztes ist auf das verwendete Viskositätsmodell zurückzuführen, da
die Viskosität hinter dem Übergang für scherverdünnendere Flüssigkeiten grundsätzlich
höher ist. Die höhere Deformation lässt sich in diesem Simulationssetup nur auf das
Verhältnis von viskosen Fluidkräften zu elastischen Zellkräften zurückführen. Auch wenn
die Unterschiede im Strömungsprofil für höhere Scherverdünnung kleiner sind, so sind
dennoch radiale Strömungen vorhanden, die an der Zelle ziehen. Da die Kapillarzahl
in diesen Fällen bis zu doppelt so groß ist als im Newtonschen Fluid, wird die Zelle
dementsprechend stärker verformt. Diese Effekte werden voraussichtlich geringer, wenn
der Kanal erheblich breiter gewählt wird und dadurch die radiale Strömung am Übergang
auf den Rand konzentriert wird.
Es wird also gezeigt, dass die Deformation der Zellen in einer scherverdünnenden Flüssig-
keit wie erwartet abnimmt, wenn sie mittig genug, d. h. im Plateau-Bereich der Strömung,
fließen. Am Übergang einer Druckerdüse hingegen werden die Zellen signifikant stärker
verformt als es in einem Newtonschen Fluid der Fall wäre.

Alle Simulationen in dieser Arbeit wurden mit der erweiterten Version von ESPRes-
So [1] gerechnet, Bilder aus den Simulationen wurden mit ParaView [2] erstellt und
mit der Bildbearbeitungssoftware GIMP [3] bzw. mit dem LATEX-Paket TikZ arrangiert.
Datenanalyse wurde mit eigenen Skripten betrieben oder mit Funktionen der Software
Gnuplot [4]. Gnuplot wurde weiterhin verwendet, um alle Plots zu erstellen.
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Summary

Facing the world’s growing demand on tissue and organ transplants, the research and
development of methods of treatment in the field of regenerative medicine is a great
challenge of our time. Very promising among techniques to fabricate biological tissues are
additive manufacturing processes, i. e. the 3D printing of organs and tissues.
Special printing methods and tailored bioinks, i. e. mixtures of cells and fluids with cer-
tain properties, allow the fabrication of three dimensional structures in a reproducible,
controlled and automated manner. Besides biochemical properties of these inks, e. g.
their compatibility with living cells, the rheological properties play an important role:
Hydrodynamic forces occurring during the printing process can damage or even destroy
the cell before it is incorporated into the 3D structure.
Those shear forces are especially present inside the printer nozzle, where a transition
from no-slip to free-slip boundary conditions happens and, thus, the flow profile strongly
changes. To now level the different flow profiles in front of and behind the nozzle, fluids
with shear thinning properties can be utilized as media for the cell. For these liquids,
large shear rates result in a low viscosity, making the fluid flow better in the vicinity of a
channel wall. Small shear rates, instead, make the fluid increasingly viscous and decelerate
the flow in the channel center. Altogether, this results in a broad velocity profile, which
reduces the shear forces for cells in the channel center.
Measuring cell deformations during a real printing process is challenging and would
require a lot of experiments with different cell types and bioink formulations. At this
point, simulations can help to look closely inside the system. Reducing the system to
its geometry, the rheological model for the fluid and the elastic model for the cell, the
behavior of cells in bioinks can be studied in detail.

Therefore, the simulation software ESPResSo has been extended with several shear
thinning viscosity models during this thesis. Using the Lattice Boltzmann method, it
is possible to calculate shear rates locally and, thus, the extension does not affect its
advantageous parallelization capability. Furthermore, the respective GPU version has
been extended, providing immense simulation speed up – especially for smaller systems.
For validating this method, analytical solutions to the Navier-Stokes equations are derived
using the power-law and the truncated power-law viscosity model to subsequently compare
them with the simulated data.
Afterwards, spherical cells – representing stem cells – are simulated in a cylindrical channel
containing shear thinning fluid. The flow behavior and the cell deformation are investi-
gated using different methods. Contrary to the primary assumption, it appears that the
average deformation of the cell increases with increasing shear thinning strength. The
expected effect, however, is solely observed for high shear thinning and centered cells. As
the cell deviates from a central position, it deforms at least as much as in a Newtonian
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fluid. That is a consequence of the higher shear rates near the channel wall and those, in
turn, stem from the broad velocity profile.
Finally, simulations are performed in a system modeling a 3D printer nozzle. Combining
both no-slip and free-slip boundary algorithms, the flow is studied at the transition. Af-
terwards, a spherical cell is included, starting at different radial offsets in the channel, and
its deformation is analyzed with respect to the shear thinning strength of the liquid. The
same behavior as before is observed – the higher the shear thinning, the greater deforms
the cell during the transition. Even in the channel center, where the cell is significantly
less deformed in front of the transition, it is stretched more in lateral direction while
passing through it. The relaxation towards the cell’s original shape after the transition
also takes longer, which is a consequence of the incorporated viscosity model that causes
large viscosities to occur in the free-slip region. The greater deformation during the
transition, however, can be explained considering the ratio of viscous fluid forces and
the cell’s elastic restoring forces in this simulation setup. Although the flow profiles in
front of and behind the transition are more similar for increased shear thinning, there
exist radial flow components pulling on the cell. Due to the capillary number being up to
twice as large as in the Newtonian fluid, the cell is deformed accordingly stronger. Those
effects will probably reduce in a wider channel, where this radial flow is concentrated
more towards the region around the boundary.
To summarize, it is shown that the expected decreasing deformation for cells in shear
thinning fluids can only be observed for cells located in the plateau region of the flow. In
contrast, the deformation of a cell passing the nozzle transition is significantly larger than
in a Newtonian fluid, irrespective of its radial position.

All simulations in this thesis were performed with the extended version of ESPResSo
[1]. Images from simulations were created using the visualization software ParaView [2]
and they were arranged using GIMP [3] and the LATEX package TikZ. Data analysis was
performed using custom scripts and functionalities of the software Gnuplot [4]. Gnuplot
was further used to create all plots shown in the present work.
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Part I

Introduction

1 Motivation

Facing the world’s steadily increasing demand for organ replacement and tissue regen-
eration, the emerging technology of 3D bioprinting comes with a tremendous potential.
Possible applications span from substitutes for 2D cell cultures in drug testing to the
automated fabrication of a functional, living organ.
The replacement of cell cultures for drug testing would enable the field of pharmaceutical
medicine to test drugs in vitro and replace animal models with human tissues. This is
important, because animals usually respond differently to drug candidates than humans
do, and thus, can be ineffective as models of human disease.[5]
Another interesting opportunity offered by 3D bioprinting is the production of organic
materials that are usually obtained from animals, e. g. leather and meat. The ability to
print those on demand would be a huge step in livestock and food industry.
But the most outstanding application of biofabrication techniques would be the automated
production of personalized, living tissues or even organs for replacement of damaged or
deseased tissues or organs. Not only would that solve the problem of the limited offer
but high demand of transplants, but also approach the lack of patient-compatible donor
organs, as the cells used for printing can be cultivated from the patient’s.[5]
However, biofabrication techniques are still at an early stage in research and development
and various challenges need to be faced in all involved disciplines.

The two key elements that constitute biofabrication processes are the bioink and the
bioprinter. Therefore, several techniques have been developed to print bioinks in a three-
dimensional structure.
One of these methods is the inkjet printing, which belongs to the so called droplet
based bioprinting techniques. Layering the bioink by placing picoliter droplets on a
substrate, the final structure is built up. Other popular methods are laser-assisted
bioprinting or stereolithography. The technique most relevant for this thesis is the so
called extrusion-based bioprinting. In this method, 2D or 3D structures are created by
continuously dispersing a highly viscous hydrogel-cell mixture through a micro nozzle.
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1 Motivation

Advantages of this method include the ability to print different bioink mixtures ranging
from high cell density to tissue strands and the high cell viability of typically above 90%.[5]

The bioinks, on the other hand, need to provide many properties, which are vital for a
successful printing process.
First of all, and most important, is the biocompatibility with live cells. The materials
in the biomaterial solution should not damage the cells or prohibit their functionality.
Other desirable properties are biodegradation, tissue regeneration, in situ gelation and the
permeability of nutrients and metabolic waste [6]. The printed structure should further-
more posess certain mechanical properties to attain stability and stiffness in its final shape.

Regarding the printability of a bioink using extrusion-based techniques, shear thinning
properties are a crucial component to produce a continuous stream of the highly viscous
fluid out of the nozzle. They are also necessary to compensate for the high shear stress
developed during the printing process.
Considering a free liquid jet, the pressure must be constant in the whole fluid volume.
Consequently, a plug flow is assumed. A liquid flowing through a pipe, instead, cannot
exhibit a plug flow, because the fluid must fulfill the no-slip boundary condition at the
inner surface of the pipe, i. e. the liquid moves with the same velocity as the wall.
Therefore, the cells are exposed to different hydrodynamic forces, either when the bioink
is flowing inside the printer nozzle or outside.
A fluid with shear thinning properties exhibits a velocity profile with a broader maximum
than a Newtonian fluid does. With increasing strength of the shear thinning, the flow in
a constrained channel becomes more similar to a plug flow, which makes for minimizing
the differences between the two flow regimes inside and outside the nozzle.
As a consequence, the deformation of cells passing the transition is expected to decrease
when a shear thinning fluid is used.

This expectation is investigated in this work. As a first approach to simulating stem
cells in bioinks, spherical cells are included into cylindrical channels filled with a shear
thinning power-law fluid. The deformation of the cells is then analyzed with respect to
their initial and radial position and the strength of the shear thinning. Also, different
boundary conditions are utilized to model the supply channels and the nozzle of a 3D
bioprinter.
The thesis has three parts: The first one is meant to provide the necessary theoretical
background of the hydrodynamics with non-Newtonian fluids and of the simulation method.
The second part serves as a short user guide, explaining the features that were added to
ESPResSo during this work. The last part concentrates on the simulations performed
during this work: The validation of the method and the deformation of cells in shear
thinning fluids.
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2 Nomenclature and notation

2.1 Declaration of symbols

The following tables list the frequently used symbols for physical quantities in this thesis
and their meaning.
Coordinates:
Symbol Meaning

x, y, z Spatial coordinates (Cartesian)
r, φ, z Spatial coordinates (cylindrical)
t Temporal coordinate
ξ Coordinate in velocity-space

Hydrodynamic quantities:
Symbol Physical unit Meaning

% kg
m3 Fluid mass density

ν m2

s Kinematic viscosity of the fluid
η Pa s Dynamic viscosity of the fluid
p Pa Pressure
G Pa

m Pressure gradient = ∆p
L

f N ( N
m3 ) External force (density)

γ̇ 1
s Shear rate

u m
s Velocity

τ Pa Viscous stress tensor, deviatoric stress tensor
σ Pa Stress tensor
ε 1

s Strain rate tensor
m m2

s2− n (Pa sn) Kinematic (dynamic) consistency parameter of
the power-law viscosity model

n − Exponent of the power-law viscosity model
Ω m3

s Flow rate
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2 Nomenclature and notation

Lattice Boltzmann quantities:
Symbol Meaning

f, f i,f Particle distribution function or populations
∆x Lattice spacing
∆t Time step
cs Lattice speed of sound = ∆x√

3∆t
c Discretized grid velocities
wi Velocity weights
τ SRT relaxation time
S MRT relaxation frequency matrix
ωS Relaxation frequency of shear moments
M,M−1 Matrix for (inverse) transformation into moment space

Dimensionless numbers:
Symbol Meaning

Re Reynolds number
Ca Capillary number
Ma Mach number

2.2 Acronyms

The following abbreviations for important equations and methods will be used.
Acronym written out

LB Lattice Boltzmann

LBM Lattice Boltzmann method

LBE Lattice Boltzmann equation

NSE Navier-Stokes equation(s)

CFD Computational fluid dynamics

BGK Bhatnagar-Gross-Krook

IBM Immersed-Boundary method

COM Center of mass
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2.3 Mathematical notation and conventions

2.3 Mathematical notation and conventions
The following table lists the conventions and mathematical notation used in this thesis.

Notation Meaning Explanation

a

a1
...
aN

 A column vector

aᵀ (a1, . . . , aN ) Transpose of a vector

aα α ∈ {1, . . . , N} Greek symbols for vector components

A

A11 . . . A1N
... . . . ...

AN1 . . . ANN

 A matrix (or tensor in general)

I

1 . . . 0
... . . . ...
0 . . . 1

 Identity matrix

∂α
∂
∂α or ∂

∂xα
Abbreviation for partial derivatives

∇ (∂x, ∂y, ∂z) Nabla operator

a · b
N∑
i=1

aibi Scalar product

aαbα
N∑
i=1

aibi = a · b Einstein summation convention

ab (ab)αβ = aαbβ Outer vector product (dyadic product)
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Part II

Hydrodynamic and kinetic theory

3 Overview

This part of the thesis is meant to sufficiently provide the theoretical background that
is necessary to understand the rest of this work. The first chapters give an overview
of the hydrodynamic background, the viscosity models and analytical solutions to the
macroscopic quantities. The following chapters explain the theoretical background of the
Lattice Boltzmann method, i. e. the kinetic theory. The last parts focus on the actual
simulation method, which is the discretized form of the kinetic theory.

The first chapter outlines the hydrodynamic theory, i. e. the macroscopic behavior of
flowing fluid, which is described by the Navier-Stokes equation (4.12). A brief derivation
of the governing equation will be given in 4.1.
The next chapter focuses on different types of fluid behavior, e. g. Newtonian, non-
Newtonian or viscoelastic fluids, which are distinguished by their viscous and elastic
properties. It contains a more detailed explanation of the class of generalized Newtonian
fluids – some of which were implemented during this thesis.
Knowing about the fluid properties, an analytical solution to the flow velocity profile can
be found for selected models in simple geonetries and for stationary flow. The analytical
solutions are used afterwards to benchmark the simulation method.

The kinetic theory as a mesoscopic theory is the basis of the Lattice Boltzmann method.
Therefore, a brief overview is given in chapter 7.
The fundamentals of the simulation method are explained in the last chapter of this
part. It includes the phase space discretization, discretization in time and space and
the Chapman-Enskog analysis to obtain the Navier-Stokes equation from the Boltzmann
equation. Furthermore, it provides some basic background to the numerical algorithms
and the simulation procedure, with a special focus on the extensions added for this thesis.
A brief idea of the immersed-boundary method and the cell model is given at the end of
this part.
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4 Basic hydrodynamic theory

The following chapter shall give a brief introduction to the underlying hydrodynamic
theory. The derivation of the Navier-Stokes equation (eq. 4.12) is strongly oriented at the
one in Krüger’s book [7] and condensed here for the sake of completeness. For a more
detailed description, see e. g. [8].

4.1 Derivation of the Navier-Stokes equations

Consider a fluid element within the volume V0 with a mass density %. The change of mass
in this fluid element per unit time is given by the inflow and outflow of mass with the
velocity u by

∂

∂t

∫
V0

%dV = −
∮
∂V0

%u · dA . (4.1)

Applying the divergence theorem on the right hand side yields∫
V0

∂%

∂t
dV = −

∫
V0

∇ · (%u) dV , (4.2)

and, since V0 is arbitrary, the continuity equation is obtained by the equality of the
integrands:

∂%

∂t
= ∇ · (%u) = 0 (4.3)

Analogously, the change of the momentum density %u can be considered:

d
dt

∫
V0

%udV = −
∮
∂V0

%uu · dA

︸ ︷︷ ︸
(1)

−
∮
∂V0

p dA

︸ ︷︷ ︸
(2)

+
∫
V0

fdV

︸ ︷︷ ︸
(3)

(4.4)

In opposite to the change of mass, momentum change can be not only due to inflow and
outflow (1), but also due to differences in pressure (2) and external forces (3). Here, f is
considered a bodyforce with the physical unit N

m3 . This equation can be rewritten, again
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4 Basic hydrodynamic theory

Figure 4.1: Components of the stress
tensor in a Cartesian coordinate sys-
tem shown at the faces of a cube. z
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using the divergence theorem, giving∫
V0

∂%u

∂t
dV = −

∫
V0

∇ · (%uu) dV −
∫
V0

∇p dV +
∫
V0

fdV , (4.5)

and, for an arbitrary volume V0, one gains the Euler equation

∂%u

∂t
+ ∇ · (%uu) = −∇p+ f . (4.6)

By defining the momentum flux densiy tensor,

Π = %uu− σ (4.7)

with the stress tensor σ = −pI, one can transform the Euler equation into the more general
Cauchy momentum equation

∂%u

∂t
+ ∇ ·Π = f . (4.8)

The components of the stress tensor are depicted in fig. 4.1. Considering the above
definitions, this equation describes simple liquids with an isotropic stress. In a real fluid,
dissipative and irreversible processes on molecular level result on an additional momentum
transfer due to internal friction or viscosity. To account for these effects, the isotropic
stress tensor from eq. (4.7) is extended by the viscous stress tensor or stress deviator
tensor τ , defined by

τ = η
[
∇u+ (∇u)ᵀ − 2

3 (∇ · u) I
]

+ ηB (∇ · u) I . (4.9)
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4.1 Derivation of the Navier-Stokes equations

The first term, starting with the shear viscosity η is traceless and stands for the shear
stress present in the fluid. The isotropic latter part represents the normal stress, its
coefficient is usually referred to as bulk (or volume) viscosity.
Inserting the extended stress tensor,

σ = τ − pI , (4.10)

into the Euler equation (4.6) yields the Navier-Stokes equation (NSE) for compressible
fluids:

∂%u

∂t
+ ∇ · (%uu) =−∇p+ ∇ · {η [∇u+ (∇u)ᵀ]}

+
(
ηB − 2

3η
)

∇ (∇ · u) + f
(4.11)

Regarding the fluid as incompressible, i. e. % = const., and substituting the rate of strain
tensor, ε = 1

2 [∇u+ (∇u)ᵀ], yields the incompressible Navier-Stokes equation, that is
used for the analytical calculations in this thesis:

%

[
∂u

∂t
+ (u ·∇)u

]
= −∇p+ ∇ · (2η ε) + f (4.12)

In this form, the Navier-Stokes equation includes Newton’s postulate of viscosity, i. e. the
viscous stress is directly propotional to the rate of strain:

τ = 2η ε (4.13)

A further simplification of eq. (4.12),

∇ · (2η ε) = η∆u , (4.14)

is possible if the viscosity η is considered constant. However, this is only given for Newto-
nian fluids and, at least in this thesis, the special case.

For completeness, the tables 4.1 and 4.2 list all components of the Navier-Stokes equa-
tion (4.12) as well as the continuity equation (4.3) for Cartesian and cylindrical coordinates.
They also include the components of the viscous stress tensor in the respective coordinate
system.
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4 Basic hydrodynamic theory

Table 4.1: Components of the incompressible NSE in Cartesian coordinates (x, y, z).
Incompressibility:

∂ux
∂x + ∂uy

∂y + ∂uz
∂z = 0

x-Component:
%
(
∂ux
∂t + ux

∂ux
∂x + uy

∂ux
∂y + uz

∂ux
∂z

)
= − ∂p

∂x +
(
∂τxx
∂x + ∂τyx

∂y + ∂τzx
∂z

)
+ %fx

y-Component:
%
(
∂uy
∂t + ux

∂uy
∂x + uy

∂uy
∂y + uz

∂uy
∂z

)
= −∂p

∂y +
(
∂τxy
∂x + ∂τyy

∂y + ∂τzy
∂z

)
+ %fy

z-Component:
%
(
∂uz
∂t + ux

∂uz
∂x + uy

∂uz
∂y + uz

∂uz
∂z

)
= −∂p

∂z +
(
∂τxz
∂x + ∂τyz

∂y + ∂τzz
∂z

)
+ %fz

Viscous stress tensor:
ταβ = η

(
∂uα
∂β + ∂uβ

∂α

)

Table 4.2: Components of the incompressible NSE in cylindrical coordinates (r, φ, z).
Incompressibility:

1
r
∂
∂r (rur) + 1

r
∂uφ
∂φ + ∂uz

∂z = 0

r-Component:

%

(
∂ur
∂t + ur

∂ur
∂r + uφ

r
∂ur
∂φ −

u2
φ

r + uz
∂ur
∂z

)
= −∂p

∂r +
(

1
r
∂
∂r (rτ rr) + 1

r
∂τφr
∂φ −

τφφ
r + ∂τzr

∂z

)
+ %fr

φ-Component:
%
(
∂uφ
∂t + ur

∂uφ
∂r + uφ

r
∂uφ
∂φ −

uruφ
r + uz

∂uφ
∂z

)
= −1

r
∂p
∂φ +

(
1
r2

∂
∂r

(
r2τ rφ

)
+ 1

r
∂τφφ
∂φ + ∂τzφ

∂z + τφr−τrφ
r

)
+ %fφ

z-Component:
%
(
∂uz
∂t + ur

∂uz
∂r + uφ

r
∂uz
∂φ + uz

∂uz
∂z

)
= −∂p

∂z +
(

1
r
∂
∂r (rτ rz) + 1

r
∂τφz
∂φ + ∂τzz

∂z

)
+ %fz

Viscous stress tensor:

τ = η


2∂ur∂r

∂uφ
∂r + 1

r
∂ur
∂φ −

uφ
r

∂ur
∂z + ∂uz

∂r
∂uφ
∂r + 1

r
∂ur
∂φ −

uφ
r

2
r
∂uφ
∂φ + 2ur

r
1
r
∂uz
∂φ + ∂uφ

∂z
∂ur
∂z + ∂uz

∂r
1
r
∂uz
∂φ + ∂uφ

∂z 2∂uz∂z
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5 Non-Newtonian fluids

This chapter shall provide a brief overview of the models that are used to describe non-
Newtonian fluid behavior. The first part explains the main characteristics of these models
and how they differ regarding their theoretical description. The second part is about the
inelastic viscosity models that are implemented during this work and how their properties
correspond to the flow behavior of real fluids.

5.1 Introduction

One can define a liquid as a “material that will continuously change its shape (i. e. will
flow) when subjected to a given stress, irrespective of how small that stress may be” [9].
Even in everyday life, one can observe a wide range of viscosities for different materials.
Table 5.1 lists the order of magnitude of the viscosity for some familiar materials.
The Newtonian postulate defines the relationship of shear stress τ and rate of strain ε as

τ = 2 ηε . (5.1)

The viscosity, in this case, is the proportionality constant η. However, what can be
seen from the first two entries of the table, is the strong dependency of the viscosity on
the temperature. This is not subject of this thesis, but it is important to state that a
Newtonian fluid exhibits a constant viscosity only with respect to the shear rate. That
means that other parameters, like the temperature or the pressure, can still have an effect
on the flow properties of a Newtonian liquid. For many fluids, the viscosity follows an
Arrhenius relationship, i. e.

η (T ) = Ae−B/T (5.2)

where T denotes the absolute temperature and A and B are material constants.
Fluids that do not follow this Newtonian law of viscosity, however, are present in many
different fields in everyday life: A lot of liquid foods exhibit special flow behaviour [10 – 12],
as well as construction materials [13] or physiologically important fluids like blood [14].
It is necessary to investigate their rheological properties in order to optimize manufacturing
processes or understand physiological phenomena.
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5 Non-Newtonian fluids

Table 5.1: The order of magnitude of the dynamic viscosity given for some familiar
materials. (from [9])

Liquid η (Pa s)

Glass 1040

Molten glass (500 ◦C) 1012

Bitumen 108

Liquid honey 101

Glycerol 1
Water 10−3

Air 10−5

Figure 5.1: Different types of flow behavior: Shear thinning (pseudoplastic), shear thick-
ening (dilatant) and Newtonian properties can be described by the stress – shear rate
relationship of generalized Newtonian fluids. There are also fluids that require a finite
yield stress before flowing, like the Bingham plastics.
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5.2 Types of non-Newtonian fluids

5.2 Types of non-Newtonian fluids

5.2.1 Inelastic models
There are several types of non-Newtonian fluids that can be distinguished by their be-
haviour. Starting from a Newtonian fluid, the viscous stress tensor is directly proportional
to the strain rate tensor like

τ = η [∇u+ (∇u)ᵀ] = 2 ηε , (5.3)

where the proportionality constant η denotes the constant dynamic viscosity of the fluid.
Furhtermore, the rate of strain tensor is defined as

ε = 1
2 [∇u+ (∇u)ᵀ] (5.4)

A generalization of this equation leads to the so called generalized Newtonian fluids, with
the viscous stress following the equation

τ = η (γ̇) [∇u+ (∇u)ᵀ] , (5.5)

η being a function of the rate of shear γ̇. This function is usually referred to as apparent
viscosity. The shear rate is defined via the second invariant of the strain rate tensor [15]

γ̇ =
√

2 IIε =
√

2 εαβεαβ (5.6)

The generalized Newtonian fluids can also be seen as a special case of the Reiner-Rivlin
model, which has constitutive equations of the form [9]

τ = 2η (IIε, IIIε) ε+ 4ζ (IIε, IIIε) ε2 . (5.7)

Here, η and ζ are functions of the second and third principal invariant of the strain rate
tensor, IIε and IIIε respectively. This model is in general inelastic, although it predicts
normal stresses if ζ 6= 0. However, the behavior of the fluid does not match experimental
results for steady simple shear flow in this case. Consequently, the generalized Newtonian
fluids with ζ = 0 and η only depending on the second Invariant of ε have become more
popular. [9, 16]

5.2.2 Time dependent models
In addition to the viscosity being dependent on the shear rate in a flow, it is also observed
that it can depend on the duration of applied stress. Such materials are called rheopex,
if the apparent viscosity increases with the duration of the stress, and thixotropic if it
decreases, respectively. When the stress is removed, the material gradually recovers until
the viscosity at zero shear is reached.
Examples for those types are printer ink or gypsum paste (rheopex), and yogurt, gelatin
gels, wall paints and many colloidal suspensions (thixotropic).[15, 17]
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5 Non-Newtonian fluids

5.2.3 Viscoelastic models
The term viscoelastic describes fluids that exhibit viscous as well as elastic behavior. The
definition falls between the classical extremes of Hookean elastic response and Newtonian
viscous behavior [9].
If the elastic behavior is modeled with a Hookean spring, the stress σ relates to the
deformation ε as

σ = Eε , (5.8)

where E is the elastic modulus. Using the same terminology, Newton’s postulate of
viscosity reads

σ = η
∂ε

∂t
. (5.9)

The linear combination of these equations leads to the Kelvin-Voigt model, with its
constitutive equation

σ = Eε+ η
∂ε

∂t
. (5.10)

There exist numerous linear and also nonlinear viscoelastic models to describe the proper-
ties of different materials and a detailed introduction can be found in [9]. Some examples
for such materials are whipped cream or silly putty.

5.2.4 Newtonian limits
Most real fluids have been observed to exhibit non-Newtonian behavior only in a limited
range of shear rates. In the limits of very low (γ̇ → 0) or high (γ̇ →∞) rates of shear, a
constant viscosity is observed, i. e. Newtonian behavior.
A rather practical way of explaining the Newtonian limits of the viscosity for most
real shear thinning liquids can be given by looking at a sufficiently high concentrated
biopolymer dispersion. At very low shear rates, there is only little rearrangement in the
configuration of the molecules, while it undergoes gradual rearrangement for intermediate
shear rates resulting in power-law behavior. When all molecules are fully arranged, i. e.
no further rearrangement is possible, the second Newtonian region is reached.[12]

5.3 Implemented inelastic models
This section provides an overview of the viscosity models that have been implemented
during this thesis. All of them belong to the class of generalized Newtonian fluids and
have different advantages and disadvantages regarding their applicability and analytical
solvability, which are discussed in the following. The models and their parameters are
chosen according to [18] and [19].
The viscosity-shear rate relationship of these models is depicted in fig. 5.2. The parameters
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5.3 Implemented inelastic models

are chosen in a way that the power-law behavior is the same for all models, which makes
for comparing the influence of the different parameters.

5.3.1 Power-law model

One of the simplest generalized Newtonian fluid models is the power-law model, defined
by the Ostwald-de Waele relationship

τ = mγ̇n = η (γ̇) γ̇ , (5.11)

with η denoting the apparent viscosity as a function of the shear rate. The parameter m
is usually referred to as consistency parameter or consistency index, as it has a physical
unit of Pa sn and no real physical meaning in this sense. For n = 1, the power-law model
becomes Newtonian and the consistency parameter denotes the dynamic viscosity.
The model is capable of describing both shear thinning and shear thickening behavior of
a fluid by the choice of the power-law exponent n:

n < 1 shear thinning (pseudoplastic)
n = 1 Newtonian
n > 1 shear thickening (dilatant)

This behavior is easy to see by a look at the apparent viscosity, which takes the form

η (γ̇) = mγ̇n−1 . (5.12)

Due to its simplicity, it is possible to find an analytical expression for the velocity profile
by solving the Navier-Stokes equation for stationary flow in simple geometries. In this
thesis, the flow profile for a power-law fluid in a cylinder is derived in 6.3.
However, this simplicity has its price: For n < 1 the viscosity of the fluid would reach
zero in the limit of γ̇ →∞ and would become infinite for vanishing shear rates. This is
not what is typically observed for real fluids, because physical and chemical processes at
the molecular level make for Newtonian behavior in the limits of zero and infinite rates
of shear. Thus, the power-law model is only a useful description for the viscosity of a
fluid when the considered range of γ̇ corresponds to the range that was used to fit the
parameters to experimental data.
Nevertheless, its use in literature is widely spread from modeling physiological fluids like
blood [20, 21] to construction materials like concrete [22].

5.3.2 Truncated power-law model

An approach to overcome the problem with the restricted range of applicability is to extend
the power-law model with two Newtonian plateau regions for low and high shear rates.
Let γ̇0 and γ̇∞ be the limiting shear rates for Newtonian behavior, then the apparent
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5 Non-Newtonian fluids

viscosity of the so called truncated power-law model takes the form

η (γ̇) =


η0 γ̇ ≤ γ̇0

mγ̇n−1 γ̇0 < γ̇ < γ̇∞

η∞ γ̇ ≥ γ̇∞
, (5.13)

where η0 = mγ̇n−1
0 and η∞ = mγ̇n−1

∞ denote the constant viscosity in the range of low
and high shear rates, respectively.
Similar to the power-law model, the truncated one also provides the possibility to derive
an analytical expression for the steady flow profile in simple geometries, as shown in 6.4.

5.3.3 Sisko model
A simple extension to the power-law model that accounts for a finite viscosity in the limit
of infinite shear rates is the Sisko model. However, a finite viscosity for low shear rates
and n < 1 is not included, which can be easily seen by a look at the equation:

η (γ̇) = mγ̇n−1 + η∞ (5.14)

5.3.4 Carreau-Yasuda model
Another possibility to account for the Newtonian behavior in the limit of zero and infinite
shear rate is given by the Carreau-Yasuda model, desribed by the equation

η (γ̇) = η0 − η∞
(1 + (Kγ̇)a1)

a2
a1

+ η∞ , (5.15)

with a constant inverse shear rate K and two exponents a1 and a2, which determine the
shape of the viscosity curve with respect to the shear rate.
This model offers a smoother transition between the Newtonian plateaus and the power-law
behavior than the truncated power-law , and thus, is very well suited for describing the
viscosity of a fluid over the full range of shear rates. However, it does so at the expense of
simplicity: An analytical solution is only possible for a very limited set of parameters, i. e.
a1 = a2 = 1 and η∞ = 0.
The Carreau-Yasuda model is employed frequently, e. g. to describe the rheological prop-
erties of blood [20, 23] or polymer dispersions [24].

5.3.5 Carreau model
The above mentioned Carreau-Yasuda model is a combination or extension of earlier
viscosity models, which are obtained by choosing special parameters. Setting a1 = 2 and

18



5.3 Implemented inelastic models

a2 = a in eq. (5.15), one gets the equation for the Carreau model:

η (γ̇) = η0 − η∞(
1 + (Kγ̇)2

)a
2

+ η∞ . (5.16)

5.3.6 Cross model
By choosing a1 = a2 = a in eq. (5.15), the Cross model is obtained, with the apparent
viscosity described by

η (γ̇) = η0 − η∞
1 + (Kγ̇)a + η∞ . (5.17)

Figure 5.2: The viscosity of the inelastic models plotted with respect to the shear rate in
a log-log-diagram. The parameters are chosen in a way that the power-law behavior for
intermediate shear rates is the same for all models. The Carreau-Yasuda model has an
additional free parameter a1, the effect of which is shown by the three red lines.
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6 Derivation of analytical solutions to
the NSE

In this chapter, the velocity and shear rate profile will be derived for the viscosity models
that allow an analytical solution. In general, the more sophisticated a model is, the more
complicated is the corresponding analytical solution. The equations used here are the
continuity equation, the components of the Navier-Stokes equation and the viscous stress
tensor for cylindrical coordinates, which are all listed in table 4.2.

6.1 Assumptions
The channel shall be a cylinder with radius R and length L that is oriented along the
z-axis. Furthermore, the following assumptions are made for all derivations:

1. There are no external body forces present:

f = 0 (6.1)

2. The flow is stationary:

∂u

∂t
= 0 (6.2)

3. The flow is fully developed, i. e. there is no variation in flow direction:

∂(. . . )
∂z

= 0 (6.3)

4. The flow is axial symmetric and only in z-direction:

∂u

∂φ
= 0 (6.4)

ur = uφ = 0 (6.5)

The last assumption reduces the viscous stress tensor to just two components, which are

τ zr = τ rz = ∂uz
∂r

. (6.6)
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6 Derivation of analytical solutions to the NSE

Inserting this and the assumptions into the components of the Navier-Stokes equation
yields that the pressure gradient has its only non-zero component in z-direction:

∇p = ∂p

∂z
êz = ∆p

L
êz (6.7)

Thus, the remaining equation to solve is the z-component of the NSE, which reduces to

∂p

∂z
= 1
r

∂

∂r
(rτ rz) = 1

r

∂

∂r

(
rη (γ̇) ∂uz

∂r

)
, (6.8)

with the shear rate γ̇ ..= −∂uz
∂r > 0 and G ..= ∂p

∂z < 0.

6.2 Boundary conditions
The first boundary condition is a no-slip condition at the channel wall, i. e. the fluid must
have the same velocity as the wall, which is zero in this case:

u
∣∣
r=R = 0 (6.9)

The second boundary condition is motivated by the channel symmetry: In the center, at
r = 0, the profile shall be continuously differentiable. Thus, the maximum of the velocity
has to be at the channel center and the radial derivative, i. e. the shear rate, vanishes:

∂uz
∂r

∣∣∣∣
r=0

= γ̇
∣∣
r=0 = 0 (6.10)

6.3 Power-law model
The viscosity as a function of the shear rate was defined in chap. 5.3.1 as

η (γ̇) = mγ̇n−1 . (6.11)

Inserting this into eq. (6.8) yields

G = 1
r

∂

∂r

(
rmγ̇n−1∂uz

∂r

)
(6.12)

⇔ −Gr = ∂

∂r
(rmγ̇n) . (6.13)

Integration over r and rearrangement leads to

γ̇n = − G

2mr + c1
rm

. (6.14)
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6.3 Power-law model

The integration constant c1 must vanish to fulfill the second boundary condition in
eq. (6.10), thus an expression for the shear rate is given by

γ̇ =
(
− G

2m

) 1
n
r

1
n . (6.15)

Inserting the defintion of γ̇ as derivative of the velocity and another integration give

∂uz
∂r

= −
(
− G

2m

) 1
n
r

1
n (6.16)

⇔ uz (r) = −
(
− G

2m

) 1
n 1

1 + 1
n

r
1
n+1 + c2 , (6.17)

where the second integration constant c2 is determined by the no-slip boundary condition
in eq. (6.9):

c2 =
(
− G

2m

) 1
n 1

1 + 1
n

R
1
n+1 (6.18)

The analytical solutions for the power-law fluid are therefore given as:

uz (r) = umax

1−
(
r

R

) 1
n+1

 ,

γ̇ (r) =
(
− G

2m

) 1
n
r

1
n

with

umax =
(
− G

2m

) 1
n 1

1 + 1
n

R
1
n+1

(6.19)

(6.20)

(6.21)

Here umax = uz (0) is the maximum velocity at the channel center.
As it is later used to tune simulation input parameters, the formula for the flow rate Ω is
quickly derived in the following. It is defined as surface integral of the velocity field and
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6 Derivation of analytical solutions to the NSE

can be expressed in terms of the power-law exponent and the maximum velocity as:

Ω =
2π∫
0

R∫
0

ruz (r) dφ dr (6.22)

Ω (n) =
2π∫
0

R∫
0

rumax

1−
(
r

R

) 1
n+1

 dφ dr (6.23)

= πR2umax

(
1− 2

3 + 1
n

)
(6.24)

6.4 Truncated power-law model

η (γ̇) =


η0 = mγ̇n−1

0 γ̇ ≤ γ̇0

mγ̇n−1 γ̇0 < γ̇ < γ̇∞

η∞ = mγ̇n−1
∞ γ̇ ≥ γ̇∞

. (6.25)

The solution to the truncated power-law model is a bit more complex, as the different
cases in the viscosity model require to solve a system of partial differential equations that
is connected through the boundary conditions of each equation. The solution for the
velocity profile is made of three parts,

uz (r) =


u1 (r) r ≤ r0

u2 (r) r0 < r < r∞

u3 (r) r ≥ r∞
, (6.26)

with u1 and u3 being the Newtonian regions and u2 the power-law region in the range
[r0 , r∞], where r0 and r∞ are the radial positions at which the shear rate reaches the
limits γ̇0 and γ̇∞, respectively.
The equations to solve are:

G = 1
r

∂

∂r
(−rη0γ̇1) with γ̇1 = −∂u1

∂r
(6.27)

G = 1
r

∂

∂r
(−rmγ̇n2 ) with γ̇2 = −∂u2

∂r
(6.28)

G = 1
r

∂

∂r
(−rη∞γ̇3) with γ̇3 = −∂u3

∂r
(6.29)

Note that γ̇1,2,3 are functions of r as well, the abbreviation is used for better readability.
To solve this system of second order differential equations, six boundary conditions are
necessary. The first two correspond to the general boundary conditions defined by eq. (6.9)
and eq. (6.10). The latter four ensure that uz (r) is continuously differentiable at r0 and
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6.4 Truncated power-law model

Figure 6.1: Analytical solutions to the power-law model for the velocity, the shear rate
and the viscosity in a cylindrical channel with radius R. The normalization is with respect
to the maximum velocity at the channel center, the shear rate at the channel wall and the
Newtonian viscosity (n = 1.0).
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6 Derivation of analytical solutions to the NSE

r∞. The conditions are:

1. γ̇1 (0) = 0

2. u3 (R) = 0

3. γ̇1 (r0) = γ̇2 (r0)

4. γ̇2 (r∞) = γ̇3 (r∞)

5. u1 (r0) = u2 (r0)

6. u2 (r∞) = u3 (r∞)

Starting with the central region (0 ≤ r ≤ r0), one can integrate eq. (6.27) once to obtain
a solution for the shear rate γ̇1:

G = 1
r

∂

∂r
(−rη0γ̇1) (6.30)

⇔ γ̇1 = −Gr2η0
− c1a
η0r

(6.31)

(6.32)

The integration constant c1a is determined by the first boundary condition. γ̇1 is only
finite for r = 0 if the constant is zero. Therefore, the analytical solution for the shear rate
in the central Newtonian region is already defined and determines the expressions for the
limiting shear rate γ̇0 and its radial position r0:

γ̇1 (0) = 0 ⇒ c1a = 0 (6.33)

γ̇0 = γ̇1 (r0) = −Gr0
2η0

(6.34)

⇒ r0 = −2mγ̇n0
G

(6.35)

Another integration yields the expression for the velocity,

u1 (r) = −
(
− G

4η0

)
r2 − c1b , (6.36)

where the second constant c1b will be derived later using the fifth condition.
The solution for the power-law region is similar to the derivation of the velocity profile
with the power-law model:

G = 1
r

∂

∂r
(−rmγ̇n2 ) (6.37)

⇔ γ̇2 =
(
−Gr2m −

c2a
mr

) 1
n

(6.38)
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6.4 Truncated power-law model

The integration constant c2a is determined by the third condition and using the expression
for r0 (eq. 6.35):

γ̇2 (r0) = γ̇0 (6.39)

⇔
(
−Gr0

2m −
c2a
mr0

) 1
n

= γ̇0 (6.40)

⇔
[(
− G

2m

)(
−2mγ̇n0

G

)
+
(
− c2a
mr0

)(
− G

2mγ̇n0

)] 1
n

= γ̇0 (6.41)

⇔
(
γ̇n0 + c2a

G

2m2γ̇n0

) 1
n

= γ̇0 (6.42)

⇒ c2a = 0 (6.43)

Thus, the analytical expression for the shear rate in the power-law region is defined and
γ̇∞ at the radial position r∞ are determined as

γ̇∞ = γ̇2 (r∞) =
(
−Gr∞2m

) 1
n

(6.44)

⇒ r∞ = −2mγ̇n∞
G

. (6.45)

The velocity profile is obtained after integration:

u2 (r) = −
(
− G

2m

) 1
n 1

1 + 1
n

r1+ 1
n − c2b (6.46)

The wall region is again Newtonian. Thus, the derivation of u3 is similar to the one of u1:

G = 1
r

∂

∂r
(−rη∞γ̇3) (6.47)

⇔ γ̇3 = − Gr

2η∞
− c3a
η∞r

(6.48)

(6.49)

The forth condition determines the integration constant c3a using eq. (6.45) like

γ̇3 (r∞) = γ̇∞ (6.50)

⇒ − Gr∞
2η∞

− c3a
η∞r∞

= γ̇∞ (6.51)

⇒
(
− G

2mγ̇n−1
∞

)(
−2mγ̇n∞

G

)
+
(
− c3a

mγ̇n−1
∞

)(
− G

2mγ̇n∞

)
= γ̇∞ (6.52)

⇒ γ̇∞ + c3a
G

2m2γ̇2n−1
∞

= γ̇∞ (6.53)

⇒ c3a = 0 . (6.54)

27



6 Derivation of analytical solutions to the NSE

A last integration yields the flow profile in the wall region:

u3 (r) = −
(
− G

4η∞

)
r2 − c3b (6.55)

Here, the no-slip boundary condition at r = R can be applied to find c3b, i. e.

u3 (R) = 0 (6.56)

⇔ −
(
− G

4η∞

)
R2 − c3b (6.57)

⇔ c3b = −
(
− G

4η∞

)
R2 (6.58)

⇒ u3 (r) =
(
− G

4η∞

)(
R2 − r2

)
(6.59)

With the velocity fully defined in the Newtonian wall region, the remaining integration
constants of the power-law and central region can be calculated using the last conditions.
The sixth condition determines c2b as follows:

u2 (r∞) = u3 (r∞) (6.60)

⇔ −
(
− G

2m

) 1
n 1

1 + 1
n

r
1+ 1

n∞ − c2b =
(
− G

4η∞

)(
R2 − r2

∞

)
(6.61)

⇒ c2b = −
(
− G

4η∞

)(
R2 − r2

∞

)
−
(
− G

2m

) 1
n 1

1 + 1
n

r
1+ 1

n∞ (6.62)

The fifth condition determines c1b:

u1 (r0) = u2 (r0) (6.63)

⇔ −
(
− G

4η0

)
r2

0 − c1b = −
(
− G

2m

) 1
n 1

1 + 1
n

r
1+ 1

n
0 − c2b (6.64)

⇒ c1b = −
(
− G

4η0

)
r2

0 +
(
− G

2m

) 1
n 1

1 + 1
n

r
1+ 1

n
0 + c2b (6.65)

= −
(
− G

4η0

)
r2

0 −
(
− G

4η∞

)(
R2 − r2

∞

)
+
(
− G

2m

) 1
n 1

1 + 1
n

(
r

1+ 1
n

0 − r
1+ 1

n∞

)
(6.66)
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6.4 Truncated power-law model

For conclusion, the radial velocity and the shear rate profile for the truncated power-law
viscosity model are given by:

uz (r) =



(
− G

4η0

) (
r2

0 − r2)+ ζ1 + ζ2 r ≤ r0(
− G

2m

) 1
n 1

1+ 1
n

(
r

1+ 1
n∞ − r1+ 1

n

)
+ ζ1 r0 < r < r∞(

− G
4η∞

) (
R2 − r2) r ≥ r∞

γ̇ (r) =


− G

2η0
r r ≤ r0(

− G
2m

) 1
n r

1
n r0 < r < r∞

− G
2η∞ r r ≥ r∞

where

ζ1 =
(
− G

4η∞

)(
R2 − r2

∞

)
ζ2 =

(
− G

2m

) 1
n 1

1 + 1
n

(
r

1+ 1
n∞ − r

1+ 1
n

0

)

r0 = −2mγ̇n0
G

r∞ = −2mγ̇n∞
G

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)
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6 Derivation of analytical solutions to the NSE

Figure 6.2: Analytical solutions to the truncated power-law model for the velocity, the
shear rate and the viscosity in a cylindrical channel with radius R. The normalization is
with respect to the maximum velocity at the channel center, the shear rate at the channel
wall and the highest Newtonian viscosity, i. e. the channel center viscosity for n < 1 and
the wall viscosity for n > 1. The gray vertical lines indicate the transition points from
power-law to Newtonian regions.
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7 Basic kinetic theory

This chapter is meant to give a very brief overview of the underlying kinetic theory that is
employed by the Lattice Boltzmann method to do computational fluid dynamics (CFD).
Further explanations on the non-equilibrium thermodynamics can be found in [25] or [26],
an introduction especially to the Boltzmann equation is given, for example, in [27]. The
following parts are mostly summarized according to [26] and [7].

7.1 The Boltzmann equation
The kinetic theory lies between the microscopic and the macroscopic scale. In the macro-
scopic scale, the physical quantities of interest are usually measurable in an experiment.
In contrast, microscopic theories are based on the motion of individual particles, e. g. the
temporal evolution of position and momentum of every single molecule in a liquid or gas.
The mesoscopic kinetic theory, however, describes the evolution of particle distributions
in phase space that include the microscopic quantities, and macroscopic variables are
obtained using multiscale analysis techniques like the Chapman-Enskog analysis method
[28].
The core quantity, therefore, is the particle distribution function

f (x, ξ, t) ,with [f ] = kg s3
m6 . (7.1)

It represents the density of particles at position x and time t that have a velocity ξ ∈ R3.
The Boltzmann equation, which describes the time evolution of the distribution function
f originates from the statistical mechanics, providing a complete treatment of dynamical
processes in a monoatomic gas at sufficiently low density.
The general form of the Boltzmann equation is

∂f

∂t
+ ξ ·∇xf + 1

m
f (x) ·∇ξf =

(
∂f

∂t

)
collision

, (7.2)

where ∇x = (∂x, ∂y, ∂z) is the usual spatial gradient and ∇ξ =
(
∂ξx , ∂ξy , ∂ξz

)
the gradient

in velocity space. f (x) is an external force on a molecule of molecular mass m. The
central term that determines the actual physics described by this equation is the so called
collision integral

(
∂f
∂t

)
collision

, which is approximated to obtain kinetic models.
In this thesis, focus is put to the BGK approximation made by Bhatnagar, Gross and Krook
[29], which leads to the hydrodynamic equations, i. e. the mass (continuity equation (4.3))
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7 Basic kinetic theory

and momentum (NSE (4.12)) conservation.
The BGK approximation reads(

∂f

∂t

)
collision

= −1
τ

(f − f eq) , (7.3)

which describes the evolution of the distribution function f towards its equilibrated form
f eq. The coefficient τ is the average time between collisions and often referred to as
relaxation time, its inverse τ−1 is called relaxation frequency.
The macroscopic variables can be found by calculating the moments of the distribution
function. The fluid mass density is given by the first moment, i. e.

% (x, t) =
∫
f (x, ξ, t) dξ , (7.4)

the momentum density by its second moment, i. e.

% (x, t)u (x, t) =
∫
ξf (x, ξ, t) dξ , (7.5)

and the total energy density by the third moment of f , i. e.

% (x, t)E (x, t) =
∫
‖ξ‖2 f (x, ξ, t) dξ . (7.6)

Furthermore, the velocity average of any quantity q is defined as

〈q〉 ..= 1
% (x, t)

∫
qf (x, ξ, t) dξ and (7.7)

〈q〉eq ..= 1
% (x, t)

∫
qf eq (x, ξ, t) dξ (7.8)

in the equilibrium. The equilibrium distribution function f eq is constructed using the
assumption that it must be isotropic in velocity space in a reference frame moving with
the velocity Ξ. It is further chosen in a way that the actual hydrodynamic fields equal
those in the local equilibrium:

% = 〈1〉 = 〈1〉eq (7.9)
u = 〈ξ〉 = 〈ξ〉eq (7.10)

〈‖ξ −Ξ‖2〉 = 〈‖ξ −Ξ‖2〉eq (7.11)

The last quantity describes the internal energy density. Thus, the local equilibrium
distribution function is given as the three dimensional Gaussian distribution

f eq (x, ξ, t) = % (x, t)
( 1

2πRT

) 3
2
e−
‖ξ−Ξ‖2

2RT , (7.12)

with R denoting the ideal gas constant and T the temperature.
Now, the hydrodynamic equations can be derived from the BGK equation, i. e. the
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7.2 Chapman-Enskog procedure

Boltzmann equation (7.2) using the BGK approximation (7.3), on multiplying it with
some function q and integrating over velocity space. That yields

∂

∂t
%〈q〉 = −∇ · %〈ξq〉 + %〈ξ ·∇q〉 − 1

τ
% (〈q〉 − 〈q〉eq) , (7.13)

where ∇ denotes the usual spatial gradient and the dependency on (x, t) are left implicit
for simplicity.
Using now the conditions of the equilibrium distribution from eq. (7.9) and choosing q = 1,
the last term drops out, i. e. the collision term has no effect, and the continuity equation
is obtained:

∂

∂t
% = −∇ · (%u) (7.14)

The momentum conservation is derived using q = ξ, which yields

∂

∂t
(%u) = −∇ ·

∫
ξξf dξ . (7.15)

Introducing the relative velocity v ..= ξ −Ξ gives the desired equation,

∂

∂t
(%u) = −∇ · (%uu)−∇ · σ , (7.16)

with the stress tensor defined by

σ ..=
∫
vvf dξ . (7.17)

7.2 Chapman-Enskog procedure
To obtain the macroscopic Navier-Stokes equations from the BGK equation, a technique
called the Chapman-Enskog analysis is utilized. The idea behind this method is that
different physical phenomena are observed on different time scales.
Here, only the general background will be presented. A detailed introduction to the
Chapman-Enskog procedure for the continuous Boltzmann equation can be read in [27].
The derivation of macroscopic quantities from the discretized Lattice Boltzmann equation
can be found in [30].
As the method is a multiscale analysis with respect to the time, the time derivative is
expressed in orders of the Knudsen number1 β:

∂t = β∂t0 + β2∂t1 +O
(
β3
)

(7.18)

Spatial variations are all of the same order, thus one can rewrite the gradient simply as

∇ = β∇ . (7.19)
1The Knudsen number is the ratio of mean free path to a characteristic length in the system.
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7 Basic kinetic theory

The distribution function is expanded about the equilibrium f eq = f (0):

f = f (0) + βf (1) + β2f (2) +O
(
β3
)

(7.20)

If these definitions are inserted into a Taylor expanded BGK equation, the macroscopic
equations can be obtain by sorting the resulting term by the powers of β.
The first order,for example, yields the continuity equation, the second order the NSE. The
equations for higher momenta of the distribution function can be obtained by extending
the expansion to higher orders of β.
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8 Numerical methods

In this chapter, the fundamentals of the Lattice Boltzmann method are briefly explained.
The first part describes the basic principles that are employed to obtain the Lattice
Boltzmann equation (LBE) from the kinetic theory. The second part gives a simple
overview the multiple relaxation time (MRT) Lattice Boltzmann method that is used
in the thesis. A special focus is put on the quantities that are necessary to include the
inelastic viscosity models of chap. 5 into the numerical scheme. The content is mostly
taken and summarized from the book of Timm Krüger et. al. [7]. The last part is about
the immersed boundary method utilized to include cell motion into the simulation and
the respective cell model.

8.1 Derivation of the Lattice Boltzmann equation
As stated already before, the simulation method is a discretized form of the BGK equation.
The derivation will not be provided in its whole mathematical beauty, but rather in a
simple form to offer the basic idea behind it.
Starting point is the BGK equation,

∂f

∂t
+ ξ ·∇xf + 1

m
f (x) ·∇ξf = −1

τ
(f − f eq) , (8.1)

where the external force term f is set to zero. Note, that the collision term in this form
is only valid for the single relaxation time Lattice Boltzmann scheme and will later be
replaced by the MRT BGK operator. In the following, index notation will be used as it
makes the numerical procedure more clear. The above equation then reads

∂tf + ξα∂xαf = −1
τ

(f − f eq) . (8.2)

8.1.1 Velocity space discretization
In contrast to many other CFD methods, not only space and time need to be discretized
for the Lattice Boltzmann method, but also the velocity space. This is done by defining a
set of allowed velocities or directions that the populations can stream towards.
These velocity sets are usually denoted by DdQq, with the number of spatial dimensions
d and the number of dimensions in velocity space q. The discretized velocities or grid
velocities will be denoted by ci, where i ∈ {0, . . . , q − 1}.
Furthermore, the space is divided into a uniform grid in all dimensions, the distance
between two grid nodes denoted by ∆x. The ci are therefore chosen such that they point
from one lattice point to another, usually adjacent or diagonal, and c0 points to the
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8 Numerical methods

current node, i. e. the resting particle distribution. Fig. 8.1 shows the D3Q19 velocity set
that is used in this work.
Velocity space discretization is done mathematically using a Hermite series expansion2 of
the particle distribution function, i. e.

f (x, ξ, t) ≈ ω (ξ)
N∑
n=0

1
n!a

(n) (x, t) ·H(n) (ξ) , (8.3)

where a(n) (x, t) are the series coefficients and ω (ξ) = (2π)−
1
2 e−

1
2‖ξ‖

2
is a weight function

or generating function used to obtain the Hemite polynomial of n-th order via

H(n) (ξ) = (−1)n 1
ω (ξ)∇(n)ω (ξ) . (8.4)

The special properties of the Hermite polynomials, e. g. the orthogonality, make the series
expansion possible. Applying the mathematical procedure that is described in detail in
[7], one finds the particle distribution function discretized in velocity space as

f i (x, t) = wi
ω (ci)

f (x, ci, t) , (8.5)

and its equilibrium form

f eq
i (x, t) = wi% (x, t)

(
1 + ciαuα (x, t)

cs2 + uα (x, t)uβ (x, t)
(
ciαciβ − cs

2δαβ
)

2cs2

)
, (8.6)

where wi are weighting factors for each of the velocity directions i that depend on the
chosen velocity set. The parameter cs denotes the lattice speed of sound which is defined
by the space and time discretization as

cs = 1√
3

∆x
∆t . (8.7)

The remaining variables ρ and uα are the fluid mass density and the macroscopic fluid
velocity (xα-component), respectively, and need to be calculated from the moments of the
discretized particle distribution function. f i and f eq

i are usually referred to as population
of particles moving in direction ci, or just populations, when speaking abut the numerical
quantity.
The calculation of the moments of the populations after velocity discretization reduces to

2An expansion up to the 3rd order, i. e. (N = 3, is sufficient to fulfill the moment conservation up to
Navier-Stokes hydrodynamics.
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8.1 Derivation of the Lattice Boltzmann equation

simple finite sums that are straight forward to implement:

% =
∑
i

f i =
∑
i

f eq
i (8.8)

%u =
∑
i

f ici =
∑
i

f eq
i ci (8.9)

8.1.2 Discretization in space and time

After discretization, the discrete-velocity BGK equation reads

∂tf i + ciα∂αf i = −1
τ

(f i − f eq
i ) . (8.10)

The left hand side can be converted into a total derivative with respect to the variable Λ,
using the method of characteristics:

df i
dΛ =

(
∂f i
∂t

) dt
dΛ︸︷︷︸
=1

+
(
∂f i
∂xα

) dxα
dΛ︸︷︷ ︸
=ciα

= −1
τ

(f i − f eq
i ) = Ωi (8.11)

The abbreviation for the BGK operator Ωi (x, t) is introduced for better readability of
the equations. Integration from Λ = 0 with t (Λ = 0) = t0 and x (Λ = 0) = x0 to Λ = ∆t
yields

f i

(
x0 + ∂x

∂Λ∆Λ, t0 + ∂t

∂Λ∆Λ
)
− f i (x0, t0) =

∆t∫
0

Ωi

(
x0 + ∂x

∂ΛΛ, t0 + ∂t

∂ΛΛ
)

dΛ ,

(8.12)

replacing the derivatives in the coordinate functions and further considering that the
integration starting point is arbitrary gives

f i (x+ ci∆t, t+ ∆t)− f i (x, t) =
∆t∫
0

Ωi (x+ ciΛ, t+ Λ) dΛ . (8.13)

From this point, the right hand side has to be approximated. The most simple way is the
approximation of the collision operator by a single point Ωi (x, t), which yields the Lattice
Boltzmann equation for the BGK operator

f i (x+ ci∆t, t+ ∆t)− f i (x, t) = −∆t
τ

[f i (x, t)− f eq
i (x, t)] . (8.14)

The first term on the left-hand side are the so-called post-collision populations, usually
denoted by f?i , the second term are the pre-collision populations, abbreviated as just f i.
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8 Numerical methods

Figure 8.1: Discretized velocities in
the D3Q19 velocity set shown for
a 3 × 3 × 3 cube. The numbers
in the circles correspond to the in-
dices of the populations used in the
ESPResSo software package. x
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This notation shortens the LBE to

f?i = f i −
∆t
τ

(f i − f eq
i ) , (8.15)

which is a form of the equation that can directly be implemented, as the right-hand
side contains all known variables at a given time step that are needed to calculate the
populations for the next time step.

8.2 LBM with external forces

As yet, The presence of external forces in the simulated system has been neglected for
simplicity. The mathematical treatment utilizes the same means for discretization as in
the derivation of the LBE. A structured derivation is given in [7], in the present work,
only the additional terms in the important equations are presented.
Let f = f (x, t) be the external force density, then the calculation of the velocity field
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8.3 Multiple relaxation time Lattice Boltzmann

includes an additional term, while the density calculation stays the same:

% =
∑
i

f i (8.16)

u = 1
%

∑
i

f ici + f

2%∆t (8.17)

The Lattice Boltzmann equation (8.15) is extended with a source term, giving

f?i = f i −
∆t
τ

(f i − f eq
i ) + ∆tSi , (8.18)

with the last term defined as

Si =
(

1− ∆t
2τ

)
wi

(
ciα
cs2 +

(
ciαciβ − cs

2δαβ
)
uβ

cs4

)
fα . (8.19)

Note that the velocity discretized forcing term fi is related to the source term via

Si =
(

1− ∆t
2τ

)
fi . (8.20)

8.3 Multiple relaxation time Lattice Boltzmann
It was stated before that the actual collision operator of the simulation method in this
thesis is not the BGK operator with a single relaxation frequency ω = τ−1, but rather
an extended version of this scheme [31]. The main extension to the LBE is that the
populations are mapped to moment space before collision and transformed back before
streaming.
The transformation into moment space is performed using the q × q-matrix M and
calculating the k-th moment from the populations via

mk =
∑
i

Mkif i , (8.21)

or, using the vector notation for the populations f = (f0, . . . , fq−1)ᵀ,

m (x, t) = Mf (x, t) and (8.22)
meq (x, t) = Mf eq (x, t) . (8.23)

The transformation matrix can be constructed using different methods, e. g. the Gram-
Schmidt procedure or, again, Hermite polynomials. Ten of the calculated models are
connected to hydrodynamic quantities, i. e. the density, the three velocity components
and the six components of the symmetrical stress tensor. The remaining modes are often
referred to as ghost or non-hydrodynamic moments, as they do not affect the Navier-Stokes
hydrodynamics.
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The Lattice Boltzmann equation can be rewritten the following way to include the mode
transformation:

f? − f = −M−1M︸ ︷︷ ︸
=I

ω (f − f eq) ∆t (8.24)

= −M−1ω [Mf −Mf eq] ∆t (8.25)
= −M−1 ωI︸︷︷︸

=S

(m−meq) ∆t (8.26)

= −M−1S (m−meq) ∆t (8.27)

The relaxation (frequency) matrix S = diag (ω, . . . , ω) is a diagonal q × q-matrix with
the diagonal elements being the relaxation frequency ω of the BGK operator. The term
S (m−meq) describes the full relaxation of the moments, i. e. the collision, and M−1

transformes the collided moments back into population space.
The idea behind MRT is now, straightforward, replacing the single relaxation frequency ω
by multiple ones for the different hydrodynamic and ghost moments:

S = diag (ω0, ω1, . . . , ωq−1) (8.28)

This makes for controlling the relaxation of the conserved quantities, i. e. density and
momentum, and the rest, e. g. the shear moments, separately.
Chapman-Enskog analysis of the LBE recovers that pressure p, (shear) viscosity η and
bulk viscosity ηB are connected to the simulation parameters as follows: [7, 32]

p = %cs
2 (8.29)

η = %cs
2
( 1
ωS
− 1

2

)
(8.30)

ηB = %cs
2
( 1
ωB
− 1

2

)
− η

3 (8.31)

(8.32)

Here, ωB denotes the relaxation frequency of the bulk moments.
In order to include the shear thinning fluid models of this thesis, only the relaxation
frequency of the shear moments ωS has to be modified, which is explained in the next
section.

8.4 Inlusion of Shear Thinning fluid models
Several inelastic viscosity models have been introduced in 5.3 and all of them depend on
the rate of shear γ̇ as variable and a set of different, fixed, parameters.
This section explains how the shear rate can be obtained in Lattice Boltzmann simulations,
and further, that it can be obtained locally. There exist several methods to obtain the
strain rate tensor ε in Lattice Boltzmann simulations, two of which are analyzed in detail
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8.4 Inlusion of Shear Thinning fluid models

in [33]. A further analysis of the strain rate in Lattice Boltzmann simulations is given in
[30] and [30]. In this thesis, the Chai-method [34] is utilized and outlined in the following.
The MRT Lattice Boltzmann equation reads

f? − f = −M−1SM (f − f eq) ∆t , (8.33)

or, for every velocity component i

f?i − f i = −
∑
j

(
M−1SM

)
ij

(
f j − f eq

j

)
∆t . (8.34)

This mixture of the matrix and component notation is not completely consistent with this
thesis, but it used in the main reference [34] and underlines the way of implementing the
strain rate calculation. Its correctness is easily verified by inserting the BGK operator
for the relaxation matrix S = ωI = 1

τ I. This reduces the matrix multiplications to(
M−1SM

)
ij

= 1
τ δij and the sum remains to be the SRT BGK operator 1

τ (f i − f eq
i ).

The second order accurate [30] equation for the components of the strain rate tensor is
given by

εαβ = − 1
2%cs2∆t

∑
i

ciαciβ
∑
j

(
M−1SM

)
ij

(
f j − f eq

j

)
, (8.35)

where α, β = x, y, z denote the spatial components and i, j ∈ [0, . . . , q − 1] the velocity
space components. The last sum on the right hand side is given by the Lattice Boltzmann
equation, thus,

εαβ = 1
2%cs2∆t2

∑
i

ciαciβ (f?i − f i) . (8.36)

Using the equations from 5.2.1, the strain rate tensor can then be used to calculate the
shear rate γ̇ via

γ̇ =
√

2 IIε =
√

2
∑
α

∑
β

εαβεαβ , (8.37)

and the local viscosity η (γ̇) can be determined.
Inverting eq. (8.29) finally yields an expression for the shear relaxation frequency,

ωS =
( 2η
%cs2 + 1

)−1
, (8.38)

that is used for the relaxation of the moments during the next time step.
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8 Numerical methods

8.5 Boundary conditions
In the simulations in this thesis, geometries with different boundary conditions are used.
The numerical algorithms presented in the following are implemented in the simulations
package ESPResSo . A 2-dimensional depiction of the lattice near a boundary is shown in
the figures 8.2 and 8.3. The domain is divided into two parts: fluid nodes and solid nodes.
The boundaries algorithms ensure that the restrictions on the normal and tangential
velocity components are fulfilled on the solid nodes. The actual position of the physical
wall is approximately midway between solid and fluid nodes. This choice makes the
method formally second order accurate [7].

8.5.1 Bounce-back algorithm
The realization of the no-slip boundary condition, i. e. vanishing velocity components
tangential and normal to the boundary at the wall, is done using the bounce-back algorithm
described in the following. If a component of the post-collision populations f?i is streaming
towards a boundary node, the populations are bounced back towards the lattice node
they have come from and their directions are inverted, as depicted in fig. 8.2 by the blue
arrows.

8.5.2 Extended bounce-back algorithm
For a free-slip boundary condition, i. e. when the normal velocity component vanishes but
the tangential component is finite, an extended version of the bounce-back algorithm is
used. Similar to the bounce-back, the populations streaming towards a wall invert their
direction perpendicular to the wall. But instead of bouncing back to the initial lattice
node, they still propagate in tangential direction. As shown in fig. 8.3, the populations
are reflected specularly at the physical boundary [7].
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8.5 Boundary conditions

Figure 8.2: Decpiction of the bounce-back algorithm shown in 2D for simplicity. Post-
collision populations that move towards a wall during the propagation are bounced back to
the node they have come from and their direction is reversed to obtain the post-streaming
populations. Red arrows denote populations that are not affected by the bounce-back
algorithm and blue arrows denote populations that are bounced back.

∆t

f?i (t) f i (t+ ∆t)

solid
boundary

fluid

Figure 8.3: Decpiction of the extended bounce-back algorithm. Post-collision populations
that move towards a wall during the propagation are reflected from the wall towards the
next node, i. e. only the perpendicular component of their direction is inverted.

∆t

f?i (t) f i (t+ ∆t)

solid
boundary

fluid
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8 Numerical methods

8.6 Lattice Boltzmann Simulation
Knowing the theory behind the method and all important equations given in the last
sections, a brief outline of an actual simulation step shall be provided in the following the
depiction in fig. 8.4.
A hydrodynamic simulation begins, of course, with the correct initialization of all parame-
ters and simulation variables, which is not gone into for this thesis but described rich in
detail in [7].
In every subsequent time step, the following steps are performed:

1. First of all, the time t is updated, incrementing it by the time step ∆t

2. Then, the additional force terms f are computed. Hydrodynamic forces can be either
due to real external forces, i. e. gravity or, as it is implemented in ESPResSo , a
pressure gradient interpreted as body force. Or contributions can be a consequence
of particle-fluid interactions, e. g. when cells are included into the fluid simulation.
In the present work, cell motion and cell-fluid interaction are computed using the
immersed-boundary method (IBM).

3. Given the force contributions, the hydrodynamic moments can be calculated from
the pre-collision populations f i and f. This includes the computation of the fluid
mass density %, the macroscopic velocity field u and, especially important for this
thesis, the strain rate tensor ε.
As described above, the strain rate tensor is used to update the shear relaxation
frequency ωS according to the local shear rate and the chosen viscosity model.

4. The equilibrium populations are computed from the macroscopic fields.

5. Then, the source terms that enter the collision are calculated.

6. Afterwards, the main parts of the Lattice Boltzmann algorithm are performed, i. e.
collision and propagation. The realization of the collision depends on the chosen LB
scheme:

• Using SRT, the collision is performed in population space.
• For MRT, at first, the populations are mapped onto the hydrodynamic moment

space. Then they are relaxed regarding their individual relaxation frequency.
Finally they are transformed back to obtain the post-collision populations f?i .

7. During the last step, the post-collision populations f i (x, t) are propagated towards
their respective direction ci and assigned to the pre-collision populations of the next
time step f i (x+ ci∆t, t+ ∆t).

8. The final step also includes the treatment of boundary conditions using the respective
algorithms.

After the streaming step, there is usually done some output of the desired data that was
computed during the time step. The steps are performed for each time step until the
maximum number of time steps is reached or a convergence criterion is fulfilled.
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8.6 Lattice Boltzmann Simulation

Figure 8.4: Depiction of the calculations that are performed during one Lattice Boltzmann
time step, differentiating between SRT and MRT method. The additional calculations
that are added to the original algorithm in this thesis are highlighted.
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8 Numerical methods

Figure 8.5: A cell consisting of nodes immersed into the
uniform lattice. The membrane is advected with the inter-
polated macroscopic fluid velocity ũ (x). The deformation
of the cell due to this motion, in turn, causes the elastic
restoring forces felastic (r) to react on the fluid. This is done
by spreading the force to the adjacent lattice nodes. cell nodes

felastic

ũ

8.7 Immersed-boundary method

Later in this thesis, stem cells will be represented using spherical membranes. Therefore,
this section briefly summarizes the idea behind the immersed-boundary method that is
used to model fluid-structure interactions. A detailed derivation of the governing equations
can be found in [35] and [36].
If one considers a cell in a fluid, both the cell is deformed by the hydrodynamic forces of
the surrounding fluid and the elastic restoring forces of the cell, in turn, react on the fluid.
This behavior can be formulated in the (continuous) equation

∂r

∂t
= u (r (t) , t) , (8.39)

where r (t) denotes the position of the cell membrane at time t and u is the macroscopic
velocity field of the fluid. The cell is therefore simply advected with the velocity of the
surrounding fluid that in turn depends on the current shape of the cell. This affects the
fluid due to its deformation and the resulting elastic restoring forces. That is equivalent
to saying that a no-slip boundary condition is fulfilled at the cell surface r.
The cell, however, needs to be discretized in order to simulate it. Several methods for
object discretization are mentioned in [37], in the present thesis, a triangulated mesh as
shown in fig. 8.6 is used.
In Lattice Boltzmann simulations, an arbitrary shape could in principle be discretized
using a staircase approximation of the structure, but the immersed boundary method is
easy to implement and makes for a smoother and more accurate representation of the
cell’s shape.
Fig. 8.5 shows an arbitrarily shaped membrane that is immersed into the uniform Lattice
Boltzmann grid. In order to calculate the cell movement correctly, the macroscopic velocity
field is interpolated to obtain values between neighboring lattice nodes using an eight-point
stencil. Then, the elastic forces that react on the fluid due to the cell deformation are
spread to the neighboring lattice nodes for each membrane node.

In the context of this thesis, it is important to note that the fluid inside the cell is
the same as outside, i. e. in general a non-Newtonian fluid.
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8.8 Cell model

Figure 8.6: Discretization and subdivision of the spherical cell model. Starting from an
icosahedron, every surface triangle is split into 4 triangles which are then radially shifted
to match the circumsphere of the cell. The number of faces is given by Nf . (cf. [36])

Nf = 20 Nf = 80 Nf = 320 Nf = 1280 Nf = 5120

8.8 Cell model
The above mentioned elastic restoring forces of the discretized cell are the last simulation-
related part that needs to be defined in the following. The implementation used in this
thesis is oriented at Krüger’s PhD thesis [36].
To account for local forces due to shear elasticity and area dilatation, the Skalak model [38]
is employed. It models the energy density as

εS = κ1
12
(
I2
D + 2ID − 2IID

)
+ κ2

12II2
D , (8.40)

where the coefficients κ1 and κ2 are the elastic shear modulus and area dilation modulus,
respectively. ID and IID are the first and second invariant of the displacement gradient
tensor D, which is a measure for the deformation of the cell with respect to its reference
shape.
To account for the bending rigidity of the lipid bilayer of a cell, the Helfrich model [39]
for the bending energy density εB is utilized, its scale given by the bending modulus κB:

ε = κB
2
(
H −H(0)

)2
(8.41)

Here, H and H(0) are the trace of the surface curvature tensor and the spontaneous
curvature, respectively. The implementaion used in this thesis is the one of Gompper and
Kroll [40], which is also described as “Method B” in [41].
Finally, the volume of the cell is kept approximately constant using

EV = κV
2

(
V − V (0)

)2

V (0) (8.42)

as expression for the volume energy EV [42]. This term introduces an energetic penalty
for deviations from the reference volume V (0) that is scaled via the empirical volume
modulus κV.
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Part III

Implementation of shear thinning
fluid models into ESPResSo

9 The software package ESPResSo

The software package ESPResSo [43] is originally a molecular dynamics program for
simulations of coarse-grained atomistic models for soft matter research, but it has been
extended with a lot of other features, including a Lattice Boltzmann and immersed-
boundary algorithm. The GPU implementation and the parallelized CPU implementation
are its main advantages, as they make large scale simulations possible in a considerable
amount of time.
The control interface in the present version is realized using the script language TCL.
The main LB implementation uses the D3Q19 velocity set as depicted in fig. 8.1 and the
MRT algorithm. It includes external forces, a bounce-back boundary algorithm, extended
bounce-back (only for GPU) and an immersed-boundary algorithm, to just mention the
parts used in the present work.
The time step algorithm follows in principle the depiction in fig. 8.4, the only notable
difference is that ESPResSo combines the back-transformation and the propagation step.

Figure 9.1: The logo of the ESPResSo software package was
made by the developers using the software itself.[1]
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10 Implementation of the shear thinning
fluid models

This chapter provides a brief overview of how the actual implementation of the shear
thinning viscosity models is realized. The first section is meant to serve as a short usage
guide, explaining the implemented commands that the user is able to execute during
initialization and simulation. The remaining parts focus on the actual modification of the
source code of the ESPResSo software package.

10.1 Usage
This section explains all the commands that can be used in the tcl-script to activate
the SHEAR_THINNING features to define the fluid properties or print specified output data,
respectively. Every instruction must begin with stmodel and is followed by one of the
commands listed in tab. 10.1.
An example for setting up a the fluid with the power-law model would be:

stmodel PowerLaw 1.2e-3 0.4

This sets the consistency parameter to 1.2× 10−3 and the power-law exponent to 0.4.
Two of the implemented models need some further explanation:

1. The actual implementation of the truncated power-law model does not use the
limiting shear rates γ̇0 and γ̇∞ as in the definition in eq. (5.13), but rather expects
the user to set a minimum and maximum viscosity, νmin and νmax, respectively.
It is, nevertheless, possible to convert these parameters into each other by simply
calculating

νmax = 1
%η0 = 1

%mγ̇
n−1
0 and

νmin = 1
%η∞ = 1

%mγ̇
n−1
∞ .

Also note that this equation is only true for a shear thinning fluid, i. e. n < 1. For
shear thickening behavior, νmax and νmin switch places.

2. The inout model is not primarily part of the SHEAR_THINNING feature, but utilizes
its function to set different Newtonian viscosites at a given positions. It can be used
to account for the viscosity difference between the inside and outside of cells and is
part of the method presented in [44].
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10 Implementation of the shear thinning fluid models

To output macroscopic quantities in a VTK-format, the keywords are

stmodel print vtk <quantity> <filename> <conversion-factor> .

The available fields for output are the velocity vector field and the scalar fields shear
rate, viscosity and relaxation frequency. Additional to the output file, a conversion factor
is required. This is done for convenience: Converting simulation output data between
the different formats can get tedious, providing the conversion factor is rather simple. If
nevertheless the output in simulation units is desired, the conversion factor is simply 1.
Another useful output that comes in handy if the viscosity is hard to approximate
analytically for a simulation, e. g. if a complicated geometry is used, is provided using the
command

stmodel print timestep_recommendation <filename> .

It prints the maximum and minimum viscosity present in the simulation box and gives a
rough estimate on how large time step should be chosen. During the tests performed on
the power-law model, a time step chosen too large resulted in the velocity profile shifted
about a constant value. It appeared, however, that the minimum viscosity was a sufficient
reference to tune the time step according to the method presented in section 13.5.
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10.1 Usage

Table 10.1: All possible commands that can be used to incorporate the features of the
SHEAR_THINNING extension with the corresponding arguments and their meaning. Each
command must begin with stmodel. q̃ denotes the quantity q in dimensionless simulation
units, with cq being the conversion factor.

command arguments effect

Standard (std) ν̃ Sets up the internal data
structures for the chosen
viscosity model with the
given parameters. For the
model definitions see
chap. 5.3

PowerLaw (pl) m̃ ñ
Truncated (trunc) m̃ ñ ν̃min ν̃max
Carreau-Yasuda (cy) K̃ ã1 ν̃0 ν̃∞ ã2
Sisko (sisko) m̃ ñ ν̃∞
Cross (cr) K̃ ã ν̃0 ν̃∞
Inout (io) ν̃in ν̃out

print vtk velocity <filename> cu Output data in
VTK-format, scaled with
the provided conversion
factor. For output in
simulation units type 1.0

print vtk shearrate <filename> cγ̇
print vtk viscosity <filename> cν
print vtk relaxfreq <filename> cωS

print timestep_recommendation <filename>

Prints the maximum and
minimum viscosity in the
system and give an
estimate on how large to
choose the time step

info
Prints the commands and
their usage in the terminal
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10 Implementation of the shear thinning fluid models

10.2 Modified files
This is a list containing the hierarchy of the added and modified files of the ESPResSo
software package:

Espresso

src

core

shear_thinning?

shear_thinning_cuda.cuh?

shear_thinning.hpp?

shear_thinning.cpp?

Makefile.am

communication.cpp

lb.hpp

lb.cpp

lbgpu.hpp

lbgpu_cuda.cu

tcl

shear_thinning?

shear_thinning_tcl.hpp?

shear_thinning_tcl.cpp?

Makefile.am

initialize_interpreter.cpp

features.def

All changes apply only if SHEAR_THINNING is defined in build/myconfig.hpp.
The modifications to the main ESPResSo code are all embraced by the following keywords:

#ifdef SHEAR_THINNING

/* code */

#endif
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Part IV

Simulations

11 Overview

This part presents the results of the simulations that have been performed during the
work on this thesis.
The first chapter contains a series of benchmarking simulations, providing a qualitative
comparison between simulation data and analytical flow and shear rate profiles for simple
geometries. Afterwards, the scaling of the relative error of the simulation method is
investigated quantitatively.
The next chapter explains the analysis methods that are utilized to obtain a measure for
the deformation of a cell. Two of the methods can be employed for arbitrarily shaped
cells: The maximum elongation of a cell and its asphericity. The third method is only
applicable to spherical cells with conserved volume.
Another important point to treat before the simulations is the non-dimensionalization,
explaining how real physical quantities can be transferred to their dimensionless equivalents
in the simulation. This includes the introduction of the two main dimensionless numbers
used in this work, the Reynolds number Re and the Capillary number Ca. Furthermore,
certain ways of fixing other parameters will be presented, e. g. the flow rate or the maximum
velocity.
Afterwards, cells are included into a periodic cylindrical channel and their deformation
is analyzed with respect to the shear thinning strength of the fluid. Simulations with a
single cell provide knowledge about the general influence of the fluid itself and of the radial
position of the cell. Adding more cells gives insight to the effects of cell-cell interactions
on the deformation and provides statistical data.
The last part concentrates on the numerical realization of a 3D-printer nozzle using no-slip
and free-slip boundary conditions. The flow behavior of a single cell and its deformation
is investigated in the setup, especially at the transition between the two boundary types.
An interesting aspect at this is the behavior of a cell for even stronger shear thinning
fluids, as the flow profiles in the two regions get more and more similar and the transition
decreases.
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12 Benchmarking and error analysis

12.1 Simulation setup

For this chapter, a series of benchmarking simulations is performed to determine the
accuracy of the implemented method. The setup as depicted in fig. 12.1 is applied:
A channel constrained by two planes at y = 0 and y = ymax with periodic boundary
conditions in x- and z-direction. All simulations are performed for a channel with fixed
number of nodes Nx = 10 and Nz = 10 in x- and z-direction, respectively. The number
of lateral nodes Ny is varied between 10 and 200. To obtain a velocity profile solely
depending on y, the simulation output data is averaged over the remaining directions.

12.2 Benchmarking

At first, the actual simulation output shall be compared to the analytical solution qualita-
tively. For this purpose, fig. 12.2 and 12.3 plot the simulated velocity and shear rate profile
with respect to the lateral channel position and the corresponding analytical solution.
The number of lateral nodes is Ny = 50. Furthermore, the profiles are normalized using
the maximum velocity at the channel center and the maximum shear rate at the channel
wall, respectively. This is only for convenience, as the maximum velocities for n = 1 and
n = 0.4 are ten orders of magnitude apart and the normalization makes it easier to look
at all curves at once.
So far, there is no unit conversion employed to transfer the simulation units into actual
physical quantities. However, these non-dimensional units are only used in this chapter as
it is sufficient for the comparison of simulation and analytical solution.

Ny

Nz = 10

Nx = 10

Figure 12.1: The simulation box setup for the benchmark-
ing simulations. Two parallel (x, z)-planes with periodic
boundary conditions and a flow in x-direction. The number
of lateral nodes Ny is varied.
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12 Benchmarking and error analysis

12.2.1 Power-law model
In fig. 12.2, the velocity and shear rate profile is plotted for power-law exponents ranging
from n = 0.4− 1.0. It can be seen that simulation and analytical solution agree very well.
The (dimensionless) simulation input parameters and some important derived quantities
are listed in the following table for the maximum and minimum power-law exponent:

n 0.4 1.0

m 104

G 10−3

umax 6.1× 10−14 2.9× 10−5

Re 1.7× 10−24 7.2× 10−6

The Reynolds number Re will be defined in chap. 13 about non-dimensionalization. The
huge difference at this point is due to the consideration of n in this definition. As Re� 1,
the flow can be considered laminar.

12.2.2 Truncated power-law model
The simulation and analytical solution also agree very well for the truncated power-law
model, which is shown in fig. 12.3. In addition to the simple power-law model, the
viscosity limits ν0 and ν∞ have to be defined. They are chosen in a way that the regions
of Newtonian and power-law behavior are the same for all power-law exponents by simply
inverting the analytical expression for the limits in the channel from eq. (6.35) and eq (6.45)
and solving them for the viscosity limits. Therefore,

ν0% = m

(
− G

2mr0

)1− 1
n

and (12.1)

ν∞% = m

(
− G

2mr∞

)1− 1
n

. (12.2)

Similar to the power-law, the range of these parameters is very large for the different
exponents, as shown in the following table:

n 0.4 1.0

m 104

G 10−3

ν0 3.0× 1013 104

ν∞ 3.8× 1012 104

umax 5.6× 10−14 2.9× 10−5

Re 1.7× 10−24 7.2× 10−6

For the Reynolds number the same definition is used as before.
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12.2 Benchmarking

Figure 12.2: Comparison of the simulated velocity and shear rate (squares) and the
corresponding analytical profile (lines) in dependence of the power-law exponent for the
simple power-law model. The black curve denotes the Newtonian case, which is similar to
n = 1.0. A good agreement between simulation and analytical solution can be seen.
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12 Benchmarking and error analysis

Figure 12.3: Comparison of the simulated velocity and shear rate (squares) and the
corresponding analytical profile (lines) in dependence of the power-law exponent for the
truncated power-law model. The black curve denotes the Newtonian case, which is similar
to n = 1.0. The Newtonian and power-law regions are indicated by the gray vertical lines.
The Newtonian regions can easily be seen in the shear rate plot, where they appear as
straight lines. Simulation and analytical profiles agree very well.
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12.3 Error analysis

12.3 Error analysis
Now, a quantitative analysis of the error of the simulation method is utilized. Therefore,
simulations are performed with varying number of lateral nodes. The accuracy of the
unmodified LBM implementation is of second order [7], i. e. ε ∝ N−2

y . Several works
determined the accuracy of 2D SRT Lattice Boltzmann simulations for power-law fluids
in a similar setup as second order accurate [18, 45]. For a 2D MRT model, second order
accuracy has been shown for a lid-driven cavity flow [34].
In the following, us (y) denotes the averaged simulated velocity and ua (y) the analytical
solution for the corresponding viscosity model. One of the assumptions in the derivation
of the analytical profile is an uniaxial flow, thus, only the component in flow direction
exists. This is not given for the simulation output and there are still non-zero components
in the other directions, but those are usually at least two orders of magnitude smaller.
The relative error ε of a simulation is then calculated via the deviation of the simulation
from the analytical solution, scaled with the maximum velocity:

ε =

√√√√√Ny−1∑
y=0

∥∥∥∥us (y)− ua (y)
umax

a

∥∥∥∥2
. (12.3)

Written out, this equation gives the final form of the error calculation used in this chapter:

ε =

√√√√√Ny−1∑
y=0

(uxs (y)− ua (y))2 + (uys (y))2 + (uzs (y))2

(umax
a )2 (12.4)

12.3.1 Power-law model
Fig. 12.4 shows the scaling of the simple power-law model with the number of lateral
nodes and a line indicating second order accuracy. It can be seen that the error fulfills the
expectation and scales as ε ∝ N−2

y . The error is below 1% for all power-law exponents
for more than 20 nodes. In general, the error increases for lower power-law exponents, i. e.
with higher shear thinning. The deviation for low n and Ny, here Ny = 10, n = 0.4, has
also be observed in [18] for a 2D flow. For some reason which is yet to investigate, the
error increases again if Ny > 70.

12.3.2 Truncated power-law model
The same analysis for the simulations with the truncated power-law model yield the
plot in fig. 12.5. Also here, the error shows the second order scaling with the number of
lateral nodes as well as an increasing error with decreasing power-law exponent. However,
the error is less compared to the power-law model. This might be a consequence of the
Newtonian regions that prevent the viscosity and therefore the shear relaxation frequency
to assume very low or high values that might cause numerical issues. Similar to the
power-law model, the error increases here for Ny > 70 as well.
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12 Benchmarking and error analysis

Figure 12.4: The scaling of the relative error ε with the number of lateral nodes Ny

is approximately of second order for the power-law model. The error increases with
decreasing power-law exponent, i. e. higher shear thinning.
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Figure 12.5: The scaling of the relative error ε with the number of lateral nodes Ny is also
approximately of second order for the truncated power-law model. The error does not
increase so strong with decreasing power-law exponent as in the simple power-law model.
This might be a consequence of the Newtonian regions that prevent numerical stabilities.
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13 Non-dimensionalization

In this chapter, a brief introduction into the basic principles of non-dimensionalization is
given based on [8] and [7]. The law of similarity will be employed to choose the simulation
parameters in a way that they represent the dynamics of the real physical system. At
first, the important dimensionless numbers for this thesis, i. e. the Reynolds number and
the capillary number, will be defined considering a power-law viscosity model for the fluid.
Afterwards, the choice of the simulation parameters will be explained in detail.

13.1 Notation
The following notation will be used for distinguishing between simulation units, physical
units and their conversion factors. Assume a physical quantity q, then

• q denotes the physical quantity in SI-units,

• q̃ denotes the dimensionless simulation quantity and

• cq denotes the conversion factor including the unit.

The conversion is given by the equation

q = q̃ cq . (13.1)

13.2 Dimensionless numbers
In general, a physical system can be non-dimensionalized by fixing a certain number of
independent scales in the system. For a hydrodynamic system, it is common to scale
with respect to the fluid density ρ̂, a length L̂, typically the width of a channel or a cell
diameter, and a viscosity ν̂. Another possibility is to fix the velocity scale instead of the
viscosity. Either way, three independent scales are fixed and the conversion factors for
other quantities can be derives, e. g. the time scale can be derived from length and velocity
as

t̃ = t

(
L̂

û

)−1

. (13.2)

As non-Newtonian fluids are topic of this work, the following derivations of the Reynolds
and capillary number assume the kinematic viscosity according to the power-law model,
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13 Non-dimensionalization

i. e.

ν = mγ̇n−1 . (13.3)

In this work, the Navier-Stokes equations are non-dimensionalized fixing the three scales
for

• the fluid mass density % in kg
m3 ,

• the typical system length L̂ in m and

• the (kinematic) power-law consistency index m in m2

s2− n , which is depending on the
power-law exponent n.

13.2.1 Reynolds number

Reynolds number is given as the ratio of inertial to viscous forces in a fluid. Generally, a
low Reynolds number implies a more laminar flow while a high Reynolds number describes
rather turbulent dynamics. This thesis will only consider the first case, i. e. Re� 1.
Starting point of the derivation is the Navier-Stokes equation

∂u

∂t
+ (u ·∇)u = −1

%
∇p+ ∇ ·

[
mγ̇n−1 (∇u+ (∇u)ᵀ)

]
+ 1
%
f (13.4)

Dimensionless expressions for the remaining parameters according to the fixed scales are
found through combination:

ũ = u
(
mL̂−n

)− 1
2−n = u

cu
[cu] = m

s (13.5)

˜̇γ = γ̇

(
cu

L̂

)−1
= γ̇

cγ̇
[cγ̇ ] = 1

s (13.6)

f̃ = f

(
%c2
u

L̂

)−1

= f

cf
[cf] = kg

m2 s2
(13.7)

p̃ = p
(
%c2
u

)−1
= p

cp
[cp] = kg

m s2
(13.8)

Furthermore, the derivatives are non-dimensionalized according to

∂

∂t̃
=
(
L̂

cu

)
∂

∂t
and (13.9)

∇̃ = L̂∇ . (13.10)
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13.2 Dimensionless numbers

Inserting the above into the NSE yields

∂

∂t̃
ũ+

(
ũ · ∇̃

)
ũ = −∇̃p̃+ mcn−2

u

L̂n︸ ︷︷ ︸
= 1

Re

∇̃ ·
[
˜̇γn−1

(
∇̃ũ+

(
∇̃ũᵀ

))]
+ f̃ , (13.11)

and the Reynolds number can be obtained as

Re ..= c2−n
u L̂n

m
. (13.12)

This form is also used for power-law fluids in the literature, e. g. in [46].
The usual expression for the Reynolds number in a Newtonian fluid follows by setting
the power-law exponent to n = 1, which sets the consistency parameter m equal to the
kinematic viscosity ν, hence

ReNewtonian = cuL̂

ν
. (13.13)

Alternatively, the Reynolds number for the power-law model can be directly obtained
from the expression for the Newtonian fluid by replacing the kinematic viscosity with
ν = mcn−1

γ̇ :

Re = cuL̂

ν
= cuL̂

mcn−1
γ̇

= cuL̂

m

(
L̂

cu

)n−1

= c2−n
u L̂n

m
(13.14)

13.2.2 Capillary number
The second important dimensionless number in this thesis is the so called capillary number,
denoted by Ca, which is defined as the ratio of fluid forces and elastic forces of a cell. A
detailed derivation of the formula below can be found in [47]. For this thesis, an approach
similar to the alternative way to construct the power-law Reynolds number is chosen.
The Capillary number is given as [36]

Ca = ν%cu
κS

, (13.15)

where κS denotes one of the elastic moduli in the cell model. Here, it is chosen as the
elastic shear modulus κ1 from the Skalak model explained in 8.8. If the kinematic viscosity
is then, like above, expressed as ν = mcn−1

γ̇ , an expression for the capillary number for
cells in a power-law fluid is obtained:

Ca ..= %mcnu
κ1L̂n−1

(13.16)

65



13 Non-dimensionalization

This form is also used in [48].

13.3 Fixed scales in the simulation
Given the theory of non-dimensionalization, the following sections provide the numbers
that are used in the actual simulation. Most parameters are chosen in the very same way
in all simulation as it makes for better comparability.

13.3.1 Length
The simulated cell are spheres with radius R that consist of 1280 surface triangles. The
radius in physical units is chosen to be approximately the long radius of a red blood cell.
By choosing the radius of the cell in lattice distances, the conversion factor cL for the
length of a grid cell is determined.

rcell = 4.0× 10−6 m (13.17)
r̃cell = 7 (13.18)
cL = 5.714× 10−7 m (13.19)

Therefore, the physical length of a grid cell is ∆x = 5.714× 10−7 m. The radius also
serves as the typical length L̂ in the system for the calculation of Re and Ca.

13.3.2 Density
The mass density of the fluid is chosen to be that of water, or roughly that of blood
plasma, which would serve as a typical fluid that encounters with cells.

ρ = 1.0× 103 kg
m3 (13.20)

ρ̃ = 1 (13.21)

cρ = 1.0× 103 kg
m3 (13.22)

13.3.3 Power-law consistency parameter
The last fixed parameter is the consistency index, which is chosen to be 1 in simulation
units:

m̃ = 1 (13.23)
(13.24)

To be more consistent with the idea of simulating bioinks, m is chosen in a way that the
viscosity is never less than that of blood plasma (1.2× 10−3 Pa s) in a cylindrical channel.
As long as the analytical solution of the flow is valid and not disturbed too much by the
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13.3 Fixed scales in the simulation

presence of cells, the following approaches are used to determine m for a system with
fixed maximum velocity umax or fixed flow rate Ω, respectively.

13.3.3.1 Fixed maximum velocity

At first, the analytical profile for the viscosity in a channel is constructed by inserting the
solution of the shear rate profile (cf. eq. 6.19) into the power-law model equation, which
yields

ν (r) = m [γ̇ (r)]n−1 = m

umax
(
1 + 1

n

)
r

n−1

. (13.25)

The minimum viscosity ν0 for a shear thinning fluid is at the channel wall, i. e. r = R,
hence

ν0 = m

umax
(
1 + 1

n

)
R

n−1

. (13.26)

This equation is solved for m to obtain the consistency index as

m (n) = ν0

umax
(
1 + 1

n

)
R


1

n−1

. (13.27)

13.3.3.2 Fixed inflow rate

As the maximum velocity obviously depends on the power-law exponent n the above
approach is only valid if the maximum velocity is fixed and the remaining parameters are
derived from it.
Another possibility is to fix the rate of inflow Ω at the channel entrance. It is defined as

Ω = πR2uavg = πR2umax

(
1 + 2

3 + 1
n

)
, (13.28)

using the expression for uavg derived in eq. (6.22). Thus, the consistency parameter is
computed as

m (n) = ν0

umax
(
1 + 1

n

)
2R

3+ 1
n


1

n−1

. (13.29)
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13 Non-dimensionalization

13.3.3.3 Fixed pressure gradient

If instead the pressure gradient G is fixed, the consistency parameter is calulated via:

m (n) =

ν0

(
−GR2

) 1
n


1

1−
1
n (13.30)

13.4 Fixed cell parameters
The parameters of the cell are fixed in all simulations, as only the influence of the shear
thinning effects in the fluid is to be investigated. To be able to compare the cell behavior
with other work from our research group, the properties are chosen to be those of red
blood cells.
The elastic moduli of the Skalak law are chosen as follows:[49]

κ1 = 5.0× 10−6 N
m (13.31)

κ2 = 5.0× 10−4 N
m = 100κ1 (13.32)

κB = 3.0× 10−19 Nm (13.33)

κV = 5.0× 10−4 N
m (13.34)

13.5 Time step adjustment
The given maximum or average flow velocity also determines the analytical viscosity
profile in the channel, which is used to tune the time step. If the time step is too large,
the simulated data can have an offset or the simulation can get unstable.
Simulations with pure fluid have shown that it is sufficient to choose the minimal viscosity
as a reference for the time step.
The time step is then calculated, with τ = 1, as [36]

∆t = ∆x2

6ν̃min
= (τ − 1

2) ∆x2

3ν̃min
. (13.35)
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14 Analysis methods for cell deformation

This chapter gives an overview of the different methods that are used to get a measure for
the deformation of a cell.

14.1 Maximum elongation

This method finds the maximum distance between two nodes of the cell. With N being the
total number of nodes on the cell surface, i and j numbering the nodes and rk denoting
the vector pointing to the k-th node, the mathematical formulation of this analysis method
is

dmax ..= max
i,j
{‖rj − rj‖ | 0 ≤ i, j < N} . (14.1)

The implemented algorithm simply loops over the surface N times, calculating the
distance between the i-th and j-th surface point and storing the maximum distance
found. Obviously, the maximum elongation has the unit of a length, but it can be
nondimensionalized, e. g. by using the diameter of a reference sphere.

14.2 Deviation from reference sphere

This method results in similar output as the calculation of the asphericity, given that the
reference shape is a sphere and volume is conserved.
Let Rref be the radius of the reference sphere, e. g. the initial shape, N the number of
surface nodes and rk a vector pointing from the center of mass (COM) towards the k-th
node. The deviation from the sphere Γ is then defined by the averaged difference between
the radial position of a node and the reference sphere radius

Γ ..= 1
N

N−1∑
i=0
|‖ri‖ −Rref | . (14.2)

The absolute is taken to ensure that elongation and contraction in different regions do
not cancel each other.
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14 Analysis methods for cell deformation

Figure 14.1: Depiction of the maximum elongation of a cell (left) and the average deviation
from a sphere (right).

rmax COM

ri

rj

14.3 Asphericity
The asphericity characterizes the deviation from a spherical shape without the necessity
of a given spherical reference shape. It is defined as [50]

α ..= 1
2R4

G

[
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

]
, (14.3)

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the gyration tensor G and

R2
G = λ1 + λ2 + λ3 (14.4)

is the sum of its eigenvalues.
The gyration tensor is given by the second moments of position of the surface nodes:

G ..= 1
N

N−1∑
i=0

riri (14.5)

Like above, the number of nodes is given by N and rk denotes the position vector of the
k-th surface point. For a sphere, all eigenvalues are equal and the asphericity vanishes.
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15 Simulations of cells in a cylindrical
channel

In this chapter, the deformation of cells in a power-law fluid with respect to the strength of
the shear thinning will be investigated in a cylindrical channel. Before the bioink reaches
the printer nozzle, fluid and cells need to stream a much longer way through supply
channels. Therefore, the corresponding simulations model an infinitely long cylindrical
pipe.
After an introduction to the simulation setup, the first section focuses on the behavior of a
single cell and provides reference values for the deformation with respect to the power-law
exponent. Afterwards, simulations with four and nine cells are performed to investigate
additional effects that originate in cell-cell interaction.

15.1 Simulation setup
The channel is a cylinder of 41.14 µm length with a radius of 13.14 µm. The total width
and height of the simulation channel are 27.43 µm each. The radius of the inserted cells is
4 µm, according to chap. 13.
As periodic boundary conditions are used in x-direction, the pressure gradient G is chosen
to match an inflow rate with average velocity uavg = 0.5 mm

s for the single cell simulations
and uavg = 2.5 mm

s for the simulations with multiple cells. As the flow rate determines
the speed of the bioprinting process, the latter value seems more realistic.

15.2 Single spherical cell

15.2.1 Centered in channel
At first, simulations are performed with a single cell that is centered in y- and z-direction.
Due to the axial symmetry, the radial position of the cell does not change during the

Table 15.1: Reynolds number and capillary number in the simulations with a single cell in
the cylindrical channel. The capillary number for n = 0.4 is nearly twice as large as in
the Newtonian case.

n 1.0 0.9 0.8 0.7 0.6 0.5 0.4

Re 0.011 0.010 0.009 0.008 0.007 0.006 0.005
Ca 0.24 0.26 0.28 0.31 0.36 0.42 0.51
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15 Simulations of cells in a cylindrical channel

Figure 15.1: Simulation setup
for a single cell in a cylindri-
cal channel. The initial offset
in y-direction is given by rinit.
The cylinder length and radius
measured in grid cells are 72
and 23, respectively.

y

z

x

41 µm

26 µm

rinit

simulation.
The plots in fig. A.1 depict the temporal evolution of the three measures for deformation,
i. e. the maximum elongation dmax, the deviation from a sphere Γ and the asphericity α.
The red colors corresponds to a centered initial position, darker colors indicate a more
shear thinning fluid, i. e. lower n. It can be seen that the deformation increases strongly in
the beginning of the simulation, but reaches a rather stable value after a certain amount
of simulation steps. For Γ and α, a trend regarding the power-law exponent is visible:
Starting from the Newtonian case (n = 1.0), the deformations increase with stronger shear
thinning, but decrease again for lower n. This means that a fluid that exhibits more of a
plug flow deforms the cell greater than a Poiseuille-flow. What seems counterintuitive at
first glance is easily explained if one considers the Capillary number in the different cases,
listed in tab. 15.1. For decreasing n, Ca increases up to twice the value in the Newtonian
case, which means that the viscous fluid forces are twice as strong as the elastic restoring
forces trying to remain the cell shape. As long as the velocity gradients in the region
r ∈ [−rcell, rcell] are significant, the cell deformation is higher than in the Newtonian case.
For n = 0.4, the plug flow region is wide enough to fit in a cell, resulting in a lower
deformation.
The average deformation of the cell in the stationary flow with respect to n is shown
in fig. 15.2 and also listed in tab. 15.2. The trend mentioned above is clearly visible.
It is worth noting that the values of the asphericity α are very small for symmetrical
deformations. Even for deformations that visibly differ from a spherical shape, it is in
the order of 10−6. To quantify the symmetrical deformations, Γ seems a better choice.
However, the difference between the maximum and minimum deformation is roughly just
5%. Nevertheless, the maximum elongation of a cell decreases with the shear thinning
and the time series shows a clear trend that the stationary shape of this deformation is
not fully reached during the simulation.
That the actual dependency on the power-law exponent is not so strong in the end can
also be seen in fig. 15.3, where the shape of the cell is shown for different n. There is no
significant difference visible in the stationary shape.
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15.2 Single spherical cell

Figure 15.2: Average deformations of a single cell in channel center with respect to the
power-law exponent. The error bars indicate the standard deviation. The data is obtained
by processing the deformation data in fig. A.1 over the second half of the simulation. This
is done to discard the effects of the equilibration, which takes quite long for the lowest
power-law exponent. The data is also listed in tab. 15.2.
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15 Simulations of cells in a cylindrical channel

Figure 15.3: Depiction of the stationary cell shape at channel center for different shear
thinning strength - a darker blue indicates a lower power-law exponent. A significant
difference is barely visible.

n = 1.0 0.9 0.8 0.7 0.6 0.5 0.4

Table 15.2: Average deformation data of a single cell in channel center as depicted in
fig. 15.2. σq denotes the respective standard deviation.

n α± σα 1
rcell

(Γ± σΓ) 1
rcell

(dmax ± σd)

1.0 (4.5± 0.2)× 10−6 0.016 56± 0.000 01 2.0102± 0.0004
0.9 (5.3± 0.2)× 10−6 0.016 773± 0.000 004 2.0100± 0.0003
0.8 (6.4± 0.2)× 10−6 0.017 010± 0.000 001 2.0099± 0.0003
0.7 (7.7± 0.1)× 10−6 0.017 256± 0.000 002 2.0098± 0.0003
0.6 (8.75± 0.08)× 10−6 0.017 439± 0.000 002 2.0095± 0.0002
0.5 (8.08± 0.04)× 10−6 0.017 366± 0.000 001 2.0092± 0.0001
0.4 (4.14± 0.04)× 10−6 0.016 793± 0.000 001 2.0085± 0.0001
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15.2 Single spherical cell

15.2.2 Near channel wall
Due to the velocity gradients, soft particles tend to marginate in a channel towards
the center, where the maximum velocity and the lowest shear rates are present. In the
following simulation, the same setup as before is used, but the cell is initialized very close
to the channel boundary.
The margination of the cell is depicted in the figures 15.4 and 15.5 for the Newtonian case
and n = 0.4. Additionally, the left-hand side shows the magnitude of the velocity field
and the right-hand side the shear rate. The differences in the latter are clear: Near the
wall, the cell is exposed to significantly higher shear rates, while the shear rate is very
low in the central region. Looking at the cell shapes, there is again no great difference
visible considering n. The cell shape is much more determined by its radial position in
the channel.
This behavior is also clearly visible in the time series in fig. A.2. The data for all
deformation measures show the same characteristics, and, again, a consistently higher
deformation for lower power-law exponents.
If the simulations were run for a much longer time, the full margination could be visible,
with the deformations reaching their stationary value.
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15 Simulations of cells in a cylindrical channel

Figure 15.4: Depiction of the different cell shapes during the margination of the cell
towards the channel center in a Newtonian fluid. The velocity profile is indicated at the
left, the shear rate at the right. In the Newtonian case, shear rates are significantly smaller
at the channel wall, which explains the cell’s quantitatively smaller deformation

‖u‖ γ̇n = 1.0

Figure 15.5: Depiction of the different cell shapes during the margination of the cell
towards the channel center in a power-law fluid with n = 0.4.

‖u‖ γ̇n = 0.4
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15.3 Multiple spherical cells

Table 15.3: Reynolds number and capillary number in the simulations with four and nine
cells in the cylindrical channel. The capillary number for n = 0.4 is nearly twice as large
as in the Newtonian case.

n 1.0 0.9 0.8 0.7 0.6 0.5 0.4

Re 0.055 0.051 0.047 0.042 0.037 0.032 0.026
Ca 1.2 1.3 1.4 1.6 1.8 2.1 2.5

15.3 Multiple spherical cells

Now, that the influences of the capillary number and radial position on the deformation
are identified for a single cell in the channel, one can add more cells to investigate their
behavior. In the following, the results of simulation series with four and nine cells in the
channel are presented.
The cells are initialized at positions along a helix in the channel. The radial offset in
the beginning is 6.4 µm in the simulations with nine cells and 5.2 µm with four cells,
respectively. In x-direction, an equal distance of all cells is chosen.

15.3.1 Four cells

The figures A.3 and A.4 show the deformation averaged over all four cells during the
simulation for two different initial distributions. It is clearly visible that the different
measures for the deformation show the same characteristics: As in the simulation with
a single cell, stronger shear thinning results in a higher deformation. In fig. A.4, some
of the simulations show a margination of the four cells towards the channel center and
therefore a decreasing deformation compared to the cells that stay farther outside. This
is also depicted in fig. 15.6, showing the initial and final position of the cells.

15.3.2 Nine cells

The same procedure is applied in the simulations with nine cells. The figures A.5, A.6
and A.7 show the deformation during the simulation, again, consistently showing a
significantly higher deformation for lower power-law exponents. Compared to the first two,
the deformation data of the last series is less noisy and rather constant during the first
half of the simulation. This can again be explained by looking at the initial position. As
depicted in fig. 15.7, the cells are initialized directly behind each other and they maintain
this configuration during the whole simulation. Compared to the other series, the cells do
not marginate significantly during the simulation. The difference in deformation from the
Newtonian case to n = 0.4 can be be seen by comparing the elongation of the cyan-colored
(n = 1.0) and blue-colored (n = 0.4) cells.
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15 Simulations of cells in a cylindrical channel

Figure 15.6: Initial position of 4 cells in the channel shown from the side (top) and in
flow direction (middle). The images at the bottom show a state during the simulation.
Pictures are taken from two different simulation series with n = 0.7. The red cells show a
margination into the channel center while the green cells stay further away.
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15.3 Multiple spherical cells

Figure 15.7: Initial position of the three simulation series performed with nine cells viewed
from the side (top) and in flow direction (middle). The bottom images show a snapshot
of the cells in Newtonian fluid (cyan) and power-law fluid with n = 0.4 (blue) in the same
box for comparison. It can be seen that only little margination is happening. The images
on the right show that the regular pattern of the initialization stays stable during the
simulation in both cases.
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15 Simulations of cells in a cylindrical channel

Table 15.4: Average deformation data of four cells in a cylinder as depicted in fig. A.3 and
A.4. σq denotes the respective standard deviation.

n α± σα 1
rcell

(Γ± σΓ) 1
rcell

(dmax ± σd)

series 1
1.0 0.019± 0.004 0.066± 0.006 2.32± 0.04
0.9 0.015± 0.006 0.059± 0.009 2.28± 0.05
0.8 0.017± 0.005 0.062± 0.009 2.29± 0.05
0.7 0.022± 0.005 0.070± 0.007 2.34± 0.04
0.6 0.021± 0.004 0.068± 0.006 2.33± 0.04
0.5 0.023± 0.004 0.070± 0.006 2.34± 0.04
0.4 0.023± 0.005 0.071± 0.007 2.35± 0.04

series 2
1.0 0.021± 0.005 0.068± 0.008 2.33± 0.04
0.9 0.019± 0.005 0.064± 0.008 2.30± 0.04
0.8 0.004± 0.003 0.037± 0.008 2.15± 0.05
0.7 0.003± 0.003 0.035± 0.007 2.14± 0.04
0.6 0.004± 0.002 0.038± 0.006 2.16± 0.03
0.5 0.003± 0.002 0.035± 0.005 2.14± 0.03
0.4 0.02± 0.01 0.07± 0.01 2.35± 0.08

15.3.3 Comparison between the simulations with four and
nine cells

The graphs above have shown that the behavior of the cells during the simulation strongly
depends on the initialization. Qualitatively, the same results as for the simulations with
one cell have been observed. A quantitative view is provided in fig. 15.8. Here, the average
of the deformation measures is shown with respect to the power-law exponent. With the
only exception being the simulation series with four cells in which some are marginating
towards the channel center, the same tendency is given for all simulation series: With
decreasing power-law exponent n, the cell deformation is increasing. The explanation for
this behavior can be found in the power-law profile, because the plateau-region in the
channel center is not large enough to fit multiple cells in. A lower power-law exponent
has to be chosen to achieve the desired results, as it will be shown in the next chapter.
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15.3 Multiple spherical cells

Figure 15.8: Average deformation of cells with respect to the power-law exponent for
simulation series with four and nine cells. The deformation clearly increases with decreasing
power-law exponent.
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15 Simulations of cells in a cylindrical channel

Table 15.5: Average deformation data of nine cells in a cylinder as depicted in fig. A.5,
A.7 and A.6. σq denotes the respective standard deviation.

n α± σα 1
rcell

(Γ± σΓ) 1
rcell

(dmax ± σd)

series 1
1.0 0.029± 0.001 0.080± 0.002 2.34± 0.01
0.9 0.031± 0.002 0.082± 0.003 2.41± 0.02
0.8 0.032± 0.002 0.084± 0.003 2.42± 0.02
0.7 0.032± 0.001 0.083± 0.002 2.42± 0.01
0.6 0.036± 0.002 0.088± 0.003 2.44± 0.02
0.5 0.039± 0.002 0.091± 0.002 2.46± 0.01
0.4 0.044± 0.002 0.098± 0.003 2.50± 0.01

series 2
1.0 0.030± 0.002 0.081± 0.002 2.41± 0.01
0.9 0.030± 0.001 0.081± 0.002 2.41± 0.01
0.8 0.033± 0.002 0.085± 0.003 2.43± 0.02
0.7 0.034± 0.002 0.086± 0.003 2.44± 0.01
0.6 0.036± 0.002 0.088± 0.002 2.45± 0.01
0.5 0.039± 0.002 0.091± 0.002 2.47± 0.01
0.4 0.045± 0.002 0.098± 0.002 2.51± 0.01

series 3
1.0 0.027± 0.002 0.076± 0.002 2.38± 0.01
0.9 0.027± 0.001 0.077± 0.002 2.39± 0.01
0.8 0.028± 0.001 0.078± 0.001 2.396± 0.004
0.7 0.030± 0.001 0.081± 0.001 2.414± 0.004
0.6 0.034± 0.001 0.085± 0.001 2.439± 0.004
0.5 0.039± 0.001 0.091± 0.001 2.473± 0.004
0.4 0.047± 0.001 0.099± 0.001 2.524± 0.004
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16 Simulation of a 3D printer nozzle

This chapter is about the modeling of the nozzle of a real 3D bioprinter and the behavior
of cells in this geometry in dependency of the strength of shear thinning.
The first section explains the general setup of the simulation and how parameters are
chosen. Then, the effects of the transition on the fluid are investigated, characterizing the
width of the transition with respect to the power-law exponent.
Afterwards, a cell is included into the channel at different radial offsets and its deformation
is analyzed using different methods.

16.1 Simulation setup
The 3D printer nozzle is modeled using a cylindrical channel with radius 23 (13 µm) and
length 256 (146 µm) along the x-axis, like depicted in fig. 16.1. The caps of the cylinder
are used for inflow and outflow boundary conditions, i. e. an average fluid velocity is given
for each node of the first and last cross section of the cylinder. Further, the transition
from nozzle inside (e. g. a metal tube) to nozzle outside (e. g. air) is modeled with different
boundary conditions. The usual bounce-back algorithm is applied to the first region to
account for the no-slip boundary condition, the second region employs an extended version
of the algorithm that still ensures a vanishing radial flow component but allows for a finite
tangential component. This way a free-slip boundary condition is created. Note that this
setup is only a valid representation of the transition from tube to air if the width of the
liquid jet behind the transition is of the same size as the inner tube diameter.
The parameters are chosen as in chap. 13. The flow is driven using inflow and outflow
boundary conditions with an average velocity of uavg = 0.2 mm

s for the characterization of
the transition width and uavg = 0.5 mm

s for the cell simulations.

y

z

x

146 µm

26 µm

Figure 16.1: Simulation
setup for the 3D printer
nozzle. A cylindrical
channel with a length and
a diameter of 256 and 46
grid cells. The lighter color
dentoes the no-slip region
in the first half of the
channel, the darker color
the free-slip region.
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16 Simulation of a 3D printer nozzle

16.2 Characterization of the transition width
This section focuses on the behavior of the fluid in dependency of the power-law exponent,
i. e. the strength of shear thinning. The transition from the no-slip power-law profile to
the free-slip plug flow is one of the influences which the cells are exposed to during the
printing process. The present simulations are conducted to obtain a measure for the width
of the transition, i. e. the x-interval in which the power-law profile changes over to a plug
flow.
The figures 16.3 and 16.4 depict how such a measure can be defined. Both figures show a
range in x-direction in front of and behind the change of the boundary condition indicated
by the vertical gray line.
Fig. 16.3 plots the ratio of the channel center velocity ucenter and the velocity uwall at the
first node next to the wall. This fraction equals 1 if a plug flow is fully developed, i. e. the
velocity is the same for all lateral nodes at a given x-position. In the power-law region,
this ratio has a constant value that depends on the power-law exponent.
To simplify the analysis, the second fig. 16.4 plots the absolute of the derivative of this
fraction, calculated from the data using finite differences. Doing so, the range of influence
of the transition can be seen easily: The power-law and the plug flow region show a
constant in the ucenter

uwall
-plot, thus, the derivative vanishes there. What stays is a clear peak

of certain hight and width, that can be used to quantify the transition width. Since the
maximum height of the peaks depends on n, it is obvious that a fixed threshold for the
derivative would lead to a transition width that strongly depends on n. Instead using
the width at a certain percentage of the maximum height of each curve leads to the data
shown in fig. 16.2. If the full width at half maximum (FWHM) is considered, the transition
width is approximately constant and independent of the power-law exponent. For lower
percentages, the width of the transition decreases with n, i. e. more shear thinning fluids
exhibit a wider transition.
To get a qualitative impression of the transition, fig. 16.5 shows the x-component of the
velocity field in the whole simulation channel for different power-law exponents n. The
influence of the transition at the center and the inflow boundary at the very beginning can
be distinctly seen. It is also clear that the maximum velocity in the channel center in the
no-slip region must decrease with decreasing n, as the flow profile gets more and more flat
like the plug flow present in the right half. Fig.16.6 further shows the y-component of the
velocity field, i. e. the lateral flow components that affect the cell in later simulations.

16.3 Cell deformation during transition
As in the simulations with spherical cells in a cylinder, this section presents the results
of the nozzle simulations. The deformation of the cell is again characterized using the
techniques in 14.
It has already been shown that the radial position of the cell has a strong influence on
the deformation. Therefore, simulations with three different offsets are performed. As it
is depicted in fig. 16.7, offset 0 denotes a cell starting at the center of the channel and is
colored red in all plots. Offset 1, colored in green, is shifted one cell radius rcell. The third

84



16.3 Cell deformation during transition

Figure 16.2: Transition width calculated by measuring the full width of the peak in fig. 16.4
at a given percentage of the maximum height.
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one, offset 2, is placed very close to the physical boundary and is colored blue. Note, that
the wall is approximately halfway between the two outer nodes.

16.3.1 Newtonian fluid
First of all, the effects of the nozzle geometry and the boundary conditions in a Newtonian
fluid have to be identified to later distinguish these from effects due to the shear thinning
fluid properties.
Fig. 16.9 shows the velocity profile in a part of the channel around the transition including
the cells for different initial offsets.
The first image shows the centered cell, which remains a axisymmetric shape during the
simulation. In front of the transition, a cone like shape is attained. This is due to the
symmetrical flow profile around the cell that has its maximum in the channel center.
During the transition, the cell is pushed together in axial and stretched in radial direction,
resulting in an ellipsoidal shape. In the plug flow region behind the transition, the shape
relaxes toward the original sphere.
The green cell in the second image depicts the deformation of an off-centered cell. The
shape in front of the transition is not symmetric, the center of mass (COM) being pulled
towards the channel center. During the transition, while being elongated in radial direction
as the centered cell, it moves radially outwards. After the transition, the cell shape relaxes,
the final offset being visibly larger than the initial.
Very similar looking to the second image is the blue cell with the highest offset in the
last image. However, in front the transition the deformation is visibly stronger than for
smaller offsets, which has already be seen for the simulations in a cylindrical channel and
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16 Simulation of a 3D printer nozzle

Table 16.1: Reynolds number and capillary number for the nozzle simulations for the
corresponding power-law exponents.

n 1.0 0.9 0.8 0.7 0.6 0.5 0.4

Re 0.011 0.010 0.009 0.008 0.007 0.006 0.005
Ca 0.24 0.26 0.28 0.31 0.36 0.42 0.51

is a results of the higher shear rate at the channel wall. During the transition, there is
again a shift in the radial offset observed.

16.3.2 Power-law exponent ranging from 0.4 to 1.0
16.3.2.1 Lateral shift during transition

Before analyzing the deformation, the shift in the radial offset of the cell is investigated
depending on the shear thinning strength. Fig. 16.10 shows the relative lateral position
of the center of mass of the cells during the transition, with a darker color indicating
stronger shear thinning.
In front of the transition in the middle of the channel, the cells with larger offset marginate
towards the center much stronger than the ones closer to the center. It is also visible that
the margination is weaker for lower power-law exponents.
During the transition, the lateral shift is clearly visible with the final offset being signifi-
cantly higher than the initial. The green curves show, furthermore, that the radial shift
is less for increasing shear thinning strength. This is not observed for the blue curves,
because the cells are already initialized very close to the boundary and the interaction
between wall and cell does not allow the cells for penetrating the boundary. Nevertheless,
an indication of the same trend is visible by looking closely at the blue curves behind the
transition: For the Newtonian case, the COM moves further outside than for the shear
thinning fluid, but after that it relaxes to approximately the same value as the other
curves. This behavior can also be observed in fig. 16.9, where the blue cell shows a clear
indentation at the side facing the boundary. This makes the COM move outside before
the cell relaxes back to its spherical shape.
The lateral movement of the cell can be explained considering the lateral velocity compo-
nents during the transition: The depiction in fig. 16.6 shows that the lateral components
of the flow velocity have the same magnitude but deceasing thickness with decreasing n.
Therefore, cells are dragged outwards less if the fluid is more shear thinning.

16.3.2.2 Cell velocity during transition

Another quantity helpful for analyzing the cell behavior is the center of mass velocity
uCOM shown in fig. 16.11. There are three things to note in this plot:
First of all, it can be seen that the assumption of the analytical profile in the no-slip
region is still approximately valid, because the average velocity that is derived from the
analytical expression and used for the inflow condition corresponds to the cell velocity in
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16.3 Cell deformation during transition

the plug flow region.
Secondly, for the red and green curves, which are closer to the center, the velocity in
the no-slip half is significantly higher with increasing n. This can be understood by
considering the velocity profiles in this region. As the flow rate is kept constant, the shear
thinning profiles exhibit a smaller maximum velocity than the Poiseuille profile. A cell
moving close to the center will therefore have a higher velocity in the Newtonian case.
The exact opposite is seen at the blue curves. The high offset means that the cell is in
a region where the velocity of the power-law profiles is above the Poiseuille profile and
therefore attains a greater speed. Due to the margination of the cell, however, the velocity
of the cell in Newtonian fluid increases stronger than the others.

16.3.2.3 Deformation during transition

The deformation during the transition is now analyzed with respect to the power-law
exponent n of the fluid. Like in the last chapter, the maximum elongation dmax, the
deviation from a spherical reference Γ and the asphericity α as defined in 14 are investigated.
By looking at fig. 16.12, it is clear that the different methods show again the same
characteristics. The only significant difference is given by the red curves in front of the
transition. Solely Γ shows a clear deviation from zero, dmax only little, and α nearly
vanishes in this case. This has already be seen in the simulations of a single cell in the
cylinder, where the asphericity is of order 10−6 (cf. fig. 15.2).
As expected from the simulations before, a higher offset results in a stronger deformation
in the no-slip region. Decreasing the power-law exponent results in a higher deformation
for the blue curves, and a rather constant value for the green ones. The green and red
curves do in most cases not reach a stable value before entering the transition.
During the transition, all cells show the same behavior: Immediately before the transition
the deformation decreases a bit to then increase strongly up to a maximum value and finally
relax back to the original shape. It is clearly visible that the deformation is consistently
higher for lower n and that the relaxation takes significantly longer, likewise. This longer
relaxation is a consequence of the chosen viscosity model. Applying a power-law in the
plug region, the viscosities become very large causing the viscous fluid forces to dominate
the cell’s elastic forces. The indentation right in front of the transition for the blue and
green curves is deeper for the Newtonian fluid. This is most probably due to the lateral
movement of the cell, which is also more significant in the Newtonian case.
The maximum value of the deformation seems to be very similar for both the red and
green curves, and for some cases of the blue curve as well. This can be coincidentally, or
could be identified as a pure influence of the shear thinning fluid in this geometry. The
assumption can be supported by the other analysis methods which show similar behavior
and further simulations in the next section, where the same is observed.
This result is especially counterintuitive regarding the behavior of the cell moving along
the central axis. Consider the velocity profiles in fig. 16.5: First of all, the difference in
maximum velocity from no-slip to free-slip region is much smaller for n = 0.4 than for the
Newtonian fluid. Furthermore, when considering the lateral flow during the transition as
depicted in fig. 16.6, the region where the radial flow can influence the cell movement is
visibly narrower.
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16 Simulation of a 3D printer nozzle

Table 16.2: Reynolds and capillary number for the simlations
with Newtonian and strongly shear thinning fluid. The capillary
number in the latter case is nearly nine times higher.

n 1.0 0.1

Re 0.011 0.001
Ca 0.24 2.1

An approach to explain this behavior is given by the value of the capillary number, listed
in tab. 16.1. As in the cylinder simulations, Ca is roughly twice as large for the lowest
power-law exponent compared to the Newtonian case. With the lateral flow velocity
having the same magnitude and the cell passing the transition with a lower velocity for
n = 0.4, a qualitative explanation for the higher deformation can be given.

16.3.3 Comparison between Newtonian and strongly shear
thinning fluid

In this section, the shear thinning properties are chosen even stronger than before,
comparing a Newtonian to a power-law flow with n = 0.1. The simulated profiles in
the no-slip region are depicted in fig. 16.7. Both the red and green cell are experiencing
vanishing velocity gradients and should not deform significantly in the no-slip region.
As the velocity profile for the shear thinning fluid is even closer to a plug flow than in
the previous simulations, one would expect less deformation during the transition if n is
chosen small enough.
Simulations have been performed for n = 1.0, 0.1, 0.01, 0.001, but the latter two appeared
to be unstable, and, considering the error of the method as discussed in chap. 12, the
simulation data would not be reliable either.
A look at the deformation data in fig. 16.8 confirms the expectation of the cells with offset
0 and 1 being nearly undeformed in the no-slip region in front of the transition. The
blue curve shows similar behavior like in the previous section. This can also be seen in
fig. 16.13, which shows the cell shapes during the simulation.
Nevertheless, when the cells reach the transition, they show no difference in behavior to
the previous simulations. The deformation is still increasing with decreasing n and the
red and green curves reach the same maximum deformation during the transition for a
given power-law exponent and relax very similar.
This effect is still explainable by the ratio of the fluid forces to the cell’s elastic forces
that is nine times higher for n = 0.1 (cf. tab. 16.2) and the lateral flow components at
the transition.
But as this effect must drop down if the no-slip region power-law profiles equals more
and more the free-slip plug profile, the expected behavior can possibly be observed if
the simulation setup is changed: A channel with a larger diameter and still a very low
power-law exponent could help reducing the lateral flow, at least in the central region
with the cell. This simulations are still to be performed and are, unfortunately, not part
of this thesis.
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16.3 Cell deformation during transition

Figure 16.3: The ratio between the velocity at the channel center ucenter and near the
channel wall uwall as a measure for the developed plug flow.
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using finite differences.
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16 Simulation of a 3D printer nozzle

Figure 16.5: Magnitude of the velocity field from no-slip to free-slip transition. The
influence of the inflow boundary at the left and the transition are less significant for lower
n. The plug flow region has the same velocity for all exponents.
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16.3 Cell deformation during transition

Figure 16.6: Magnitude of the lateral flow velocity. Red color denotes upward streaming,
blue downwards. The thickness of the lateral flow region at the transition decreases with
decreasing power-law exponent, but the maximum magnitude is the same.
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16 Simulation of a 3D printer nozzle

Figure 16.7: Color coding for the different offsets and a Newtonian (n = 1.0) and a strongly
shear thinning velocity profile (n = 0.1) obtained from simulation. They gray vertical line
indicates the channel center.
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16.3 Cell deformation during transition

Figure 16.9: Deformation of the cell in a Newtonian fluid during the transition from
no-slip to free-slip boundary for different intial radial offsets. The shift in lateral offset is
significant for the green and blue colored cell. The blue cell is furthermore visibly dented
in right behind the transition as a consequence of the cell-boundary repulsion.
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16 Simulation of a 3D printer nozzle

Figure 16.10: Center of mass position with respect to the channel radius of the cell during
the transition for different n. The green curves show a clear trend with decreasing shift
for decreasing exponent. The blue curves converge as the maximum offset is reached
considering the cell-wall repulsion.
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Figure 16.11: x-component of the COM velocity of the cell during the transition. Centered
cells move faster as they are closer to the flow maximum, which decreases with decreasing
n. The blue curves show the influence of the sharper edge of the power-law profile at the
channel wall, making cells faster for stronger shear thinning. As a consequence of the
fixed flow rate, all cells relax to the same velocity in the plug flow region.
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16.3 Cell deformation during transition

Figure 16.12: Deformation of the cell during transition. In front of the transition, cells
are deformed less with increasing shear thinning when they are closer to the center. At
the transition the deformation is consistently higher for lower n and the relaxation to the
original shape behind the transition takes longer as a consequence of the higher velocity.
Despite there is visible deformation in front of the transition, the asphericity is very small
for the red curves. However, the other methods show the expected behavior of a decreased
deformation for lower n.
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16 Simulation of a 3D printer nozzle

Figure 16.13: Deformation of the cell in a strongly shear thinning fluid (n = 0.1) during
the transition from no-slip to free-slip boundary for different intial radial offsets. Due to
the broad velocity profile, the red and green cells are nearly undeformed in front of the
transition. During the transition, the are stretched laterally. The offset shift for the green
cell is significantly less than in fig. 16.9. The blue cells are still deformed as they are close
to the boundary.
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Part V

Conclusion and outlook
The aim of this thesis has been the investigation of the deformation of cells in a shear
thinning fluid. It has been shown that the expected decreasing deformation for cells in
shear thinning fluids can only be observed for cells located in the plateau region of the
flow. In contrast, the deformation of a cell passing the nozzle transition is significantly
larger than in a Newtonian fluid, irrespective of its radial position.

During this thesis, the behavior of spherical cells in a flow of shear thinning fluids
has been investigated using the ESPResSo simulation software, which was therefore ex-
tended with several viscosity models.
The power-law model and the truncated power-law model have been shown to produce
second order accurate results for smaller systems by comparison of the simulation data
with analytical flow profiles.
The deformation of one and multiple cells in a cylindrical setup has been investigated
and it has been shown that the initial position and the radial position of cells during the
simulation have a strong influence on the deformation. When initialized in a certain way,
cells may migrate towards the channel center or stay off-center. Furthermore, cells that
are closer to the channel center are significantly less deformed, especially for low power-law
exponents, when the plug-flow region is large enough to fit a cell in. With increasing shear
thinning strength, however, the cell’s average deformation increases likewise. This is a
result of the power-law flow profile, which exhibits larger shear rates near the boundary.
The simulations of the cells passing through a 3D printer nozzle have shown that the
deformations in front of the transition still depend strongly on the radial position of
the cell. The more shear thinning the fluid is, the wider is the radial interval where
a cell is significantly less deformed than in a Newtonian fluid. Passing the transition
off-centered results in a radial shift that is larger for Newtonian fluids. This is followed
by the relaxation of the cell to its original shape, which takes significantly longer in a
shear thinning fluid as the viscosities are much larger. It has further been shown that
the cells are more deformed passing the transition when the shear thinning is stronger.
This is explained by the higher capillary number, which tells that the viscous fluid forces
dominate the cells’ elastic restoring forces. Thus, the lateral flow components stretching
on the cell at the transition are stronger for increasing shear thinning.

This thesis presents a first approach to simulating cells in shear thinning fluids and
shall lay the foundation for future studies on this topic. Since a big part of the work
on this thesis was the implementation and validation of the method, the parameters in
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16 Simulation of a 3D printer nozzle

the simulation were chosen in a way that – first of all – simulation stability is achieved.
Consequently, there is still a lot of room for possible improvements. Starting from this
point, focus can be shifted to a more detailed reproduction of a real 3D printer. This
includes the rheological properties of actually used bioinks and the elastic properties of
other cell types. Not least does the geometrical realization of the nozzle affect the fluid as
well, which can be considered in the simulations.
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16 Simulation of a 3D printer nozzle

Figure A.1: Deformation of a single cell flowing at the center of a cylinder. After an
equilibration, nearly stationary values are assumed in all simulations. With increasing
shear thinning, the deformation first increases due to the stronger fluid forces, then it
decreases again, when the power-law profile is wide anough to fit a cell.
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16.3 Cell deformation during transition

Figure A.2: Deformation of a single cell flowing through a cylinder initialized near the
boundary. The radial position of the cell is the major influence on the deformation. For
increasing shear thinning strength, the deformation is nevertheless consistently higher.
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16 Simulation of a 3D printer nozzle

Figure A.3: Series 1: Average deformation of four cells in a cylinder. Due to the strong
fluctuations, a clear result is not visible. But looking closely reveals that darker curves –
representing stronger shear thinning – attain higher values.
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16.3 Cell deformation during transition

Figure A.4: Series 2: Average deformation of four cells in a cylinder. Most probably due to
the initialization, the cells in several of these simulations marginate towards the channel
center and line up, resulting in the decreasing deformation.
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16 Simulation of a 3D printer nozzle

Figure A.5: Series 1: Average deformation of nine cells in a cylinder. Although strongly
fluctuating curves, the shear thinning fluid can be seen to cause higher cell deformation
on average.
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16.3 Cell deformation during transition

Figure A.6: Series 2: Average deformation of nine cells in a cylinder. Basically the same
behavior as in fig. A.5.
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16 Simulation of a 3D printer nozzle

Figure A.7: Series 3: Average deformation of nine cells in a cylinder. Due to the special
initial positions, the cells line up at fixed radial offset an maintain this state through the
simulation. This causes the deformation data to be significantly less noisy than in the
other two series. Consequently, it can be distinctly seen that the deformation is higher for
stronger shear thinning fluid for all analysis methods.
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