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Abstract

At the turning point from the digital to the quantum era, research on technologically viable
quantum systems is active as never before. Many innovative ideas in all areas of quantum sci-
ences and technologies, ranging from quantum metrology, quantum communication and quan-
tum cryptography to quantum computation, are based on the exchange of information between
different systems. As photons, being the quanta of light, travel at the highest possible speed,
using them is an attractive pathway to encode information. Semiconductor systems are partic-
ularly interesting candidates for sources of such quanta of light, since they are expected to be
directly integrable into existing semiconductor technologies.
This cumulative thesis theoretically explores the suitability of self-assembled semiconductor

quantum dots (QDs) in microcavities as sources of nonclassical photonic states and thus con-
tributes to this fast-growing research area. In contrast to atomic devices, a QD is embedded in
a solid-state bulk material and is therefore prone to its temperature-dependent vibrations called
phonons once they are quantized. Even at cryogenic temperatures of a few kelvin, at which
QDs are commonly operated, the phonon influence is known to have a profound impact on
the QD state dynamics. Understanding the effect of this environment of longitudinal acoustic
phonons on the joint QD electronic and cavity photonic dynamics is a prerequisite for harness-
ing these systems to generate specific photon states on demand. To this end, a numerically
exact path-integral formalism is employed that does not rely on any further approximations,
once the model is stated. Thus, all system–environment correlations are fully accounted for,
thereby clearly going beyond a Born–Markov treatment of the phonon environment.
This thesis is organized following the increasing complexity of exemplary photonic states as

measured by the contributing photon number. Starting out with single photons, a phonon
enhancement of their quality is reported and a protocol to store single photons in a QD–
cavity system is proposed. Entanglement, being one of the most notorious consequences of
quantum theory, is investigated in terms of polarization-entangled photon pairs. The generation
of different types of Bell-state entanglement is discussed and a protocol to switch between
them in a time-dependent manner is suggested. The analysis of the preparation of higher-
order Fock states and N -photon bundles in QD–cavity systems showcases the different impact
phonons might have on a protocol’s success. The influence of phonons on the shape-changing of
photon number distributions due to varying excitation conditions of the QD is discussed. The
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investigation is closed by a proposal to generate Schrödinger-cat states in QD–cavity systems.
These studies are framed by two methodological considerations. While the analysis of the

accuracy of the quantum regression theorem applied to photonic figures of merit in QD–cavity
systems provides a groundwork, the discussion of a new numerically exact method to simulate
arbitrary open quantum systems gives an outlook for future studies.
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Kurzfassung

Am Wendepunkt zwischen dem digitalen und dem Quantenzeitalter ist die Forschung an tech-
nologisch praktikablen Quantensystemen so aktiv wie niemals zuvor. Da Photonen die Quan-
ten des Lichts sind und sich mit dessen Geschwindigkeit fortbewegen, ist deren Gebrauch zur
Informationskodierung ein attraktiver Weg, um innovative Ideen in allen Bereichen der Quan-
tenwissenschaften und -technologien zu realisieren: von der Quantenmetrologie über die Quan-
tenkommunikation und -kryptographie bis hin zum Quantencomputing. Halbleitersysteme sind
besonders interessante Kandidaten als Quellen solcher Quantenzustände des Lichts, da sie vor-
aussichtlich direkt in existierende Halbleitertechnologien integrierbar sind.
Diese kumulative Dissertation untersucht theoretisch die Eignung von selbstorganisierten

Halbleiterquantenpunkten (im folgenden QP genannt) in Mikroresonatoren als Quellen nicht-
klassischer Photonzustände und trägt so zu diesem schnell wachsenden Forschungsfeld bei. Im
Gegensatz zu Geräten, die auf atomaren Systemen beruhen, ist ein QP in ein Festkörpermate-
rial eingebettet und daher den temperaturabhängigen Schwingungen ausgesetzt, die nach ihrer
Quantisierung Phononen genannt werden. Selbst bei kryogenen Temperaturen von wenigen Kel-
vin, bei denen ein QP üblicherweise verwendet wird, haben die Phononen bekannterweise einen
großen Einfluss auf die Dynamik der QP-Zustände. Letztere interagieren wiederum mit den
Resonatorphotonen. Das Verständnis des Einflusses einer Umgebung longitudinal akustischer
Phononen auf diese gemeinsame Dynamik ist eine Voraussetzung zur Nutzbarmachung solcher
Systeme zur Erzeugung von bestimmten Photonzuständen auf Abruf.
Zu diesem Zweck wird ein numerisch exakter Pfadintegralformalismus verwendet, der sich

auf keine weiteren Näherungen stützt, sobald das Modell formuliert ist. Alle Korrelationen
zwischen dem System und der Umgebung werden also vollständig berücksichtigt, so dass diese
Theoriestufe klar über eine Behandlung der Phononumgebung im Rahmen einer Born-Markov-
Näherung hinausgeht.
Die vorliegende Dissertation ist anhand der wachsenden Komplexität beispielhafter Pho-

tonzustände aufgebaut, die durch die beitragende Photonzahl gemessen wird. Beginnend mit
einzelnen Photonen wird eine Erhöhung deren Qualität durch Phononen vorhergesagt und ein
Protokoll zur Speicherung von einzelnen Photonen in QP-Resonator-Systemen vorgeschlagen.
Verschränkung als eine der bekanntesten Folgen der Quantentheorie wird anhand polarisa-
tionsverschränkter Photonpaare eruiert. Die Erzeugung von verschiedenen Typen einer Bell-
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Zustandsverschränkung wird diskutiert und ein Protokoll zum zeitabhängigen Schalten zwi-
schen ihnen vorgeschlagen. Die Analyse der Gewinnung von Fockzuständen höherer Ordnung
und N -Photon-Bündeln in QP-Resonator-Systemen unterstreicht den unterschiedlichen Ein-
fluss, den Phononen auf den Erfolg eines Protokolls haben können. Ein veränderlicher Phonon-
einfluss auf formverändernde Photonzahlverteilungen, abhängig von den Anregungsbedingun-
gen des QPs, wird diskutiert und die Untersuchung durch den Vorschlag eines Protokolls zur
Erzeugung von Schrödinger-Katzen-Zuständen in QP-Resonator-Systemen abgeschlossen.
Zwei methodische Überlegungen rahmen diese Studien ein:
Während die Analyse der Genauigkeit des Quantenregressionstheorems, angewandt auf pho-

tonische Kennzahlen in QP-Resonator-Systemen, eine Grundlage dieser Arbeit bildet, gibt die
Diskussion einer neuen, numerisch exakten Methode zur Simulation von beliebigen offenen
Quantensystemen einen Ausblick auf künftige Untersuchungen.
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1 Introduction to the field

1.1 Motivation – a popular introduction

Novel technologies permeate our world in ways unimaginable only a few decades ago. The
advent of online communication via various social media platforms roughly twenty years ago
heralded a society so reliant on their proper functioning, that a six-hour outage of products and
services of Facebook Inc. in October 2021 affected 3.5 billion users [1]. The shift of large sections
of infrastructure to cyberspace critical even to national security has led US president Biden in
a summit with Russian president Putin in June 2021 to define red lines of cyberwarfare, which
once crossed would trigger an offline military response [2]. The ongoing COVID-19 pandemic
forced a large portion of the global workforce into home office to a degree that some companies
consider maintaining this mode of employment even after the pandemic [3], thus fostering the
global online interconnectedness.
All of these developments increase the demand on computational and communication hard-

ware dramatically. In sharp contrast, Moore’s law predicting the doubling of the on-chip tran-
sistor density every two years was officially abandoned in 2016, while the CPU clock speeds have
already been capped to limit heat since 2004 [4]. There are various propositions to overcome
this tradeoff situation. Tackling the problem of heat would be possible using millivolt switches
like spintronic materials [5], that would consume less power while still operating in the digital
realm.
A fundamental paradigm shift to solve some problems of the binary is to go quantum. Quan-

tum computation allows certain tasks to be solved exponentially faster, while quantum cryp-
tography could base communication security on physical laws, in essence creating unbreakable
codes [6]. Awareness of the qualitative changes to all aspects of our modern society that quan-
tum innovation and quantum technologies will herald, has risen to such a degree that various
governments started investing significantly in research and development in recent years. Ex-
amples are the US ‘National Quantum Initiative Act’ [7] pledging $1.2 billion, the ‘Quantum
Flagship’ of the European Commission [8] with a budget of €1 billion, and the German ‘Quantum
Technologies Federal Government Framework Programme’ [9] investing €650 million.
This thesis focuses on light quanta, the photons, as the carrier of quantum information. Non-

classical quantum states of light are at the heart of many innovative applications in the quantum
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1 Introduction to the field

information sciences, covering quantum communication [10,11] and cryptography [12,13], quantum
metrology [14–16], and quantum computation [17–20]. Self-assembled semiconductor quantum dots
(QDs) in microcavities are widely discussed as on-demand, deterministic sources of such states
of light. These nanostructures are often called ‘artificial atoms’ because of their discrete spec-
trum arising from their confinement in all three spatial directions. While they are versatile in
terms of the energetic level structure established during the growth process, their embedding
in the surrounding solid-state crystal matrix introduces a special kind of environment. Even at
cryogenic temperatures of a few kelvin, a QD is coupled to a continuum of longitudinal acoustic
phonons, which has been shown to be the main source of decoherence in the QD’s quantum
few-level system [21–25].

1.2 Self-assembled semiconductor quantum dots
Semiconductor quantum dots (QDs) are nanostructures that are strongly confined in space [26].
Self-assembled QDs that are grown by the Stranski-Krastanov mechanism [27] are typically up
to about 10 nm in diameter. These self-organized three-dimensional lens-shaped islands spon-
taneously form due to strain out of a thin film deposited on a bulk material with a similar but
slightly different lattice constant. Predominantly, InAs QDs grown on GaAs bulk materials are
considered in this thesis.
Due to the strong spatial confinement, the carrier wave functions are highly localized and

their corresponding energies are discrete and well separated. Therefore, it is often sufficient to
take the lowest conduction band and the highest valence (heavy-hole) band state into account.
Excitons form as pairs of an s-like conduction band electron and a p-like valence band heavy
hole. Since both the light-hole and the split-off band are energetically detuned from the heavy-
hole band and transitions into them are thus unlikely, only the heavy-hole band is taken into
account.
Because of the heavy-hole spin component of Sh

z = ±3
2 , pairing up with a spin-1

2 electron
leads to two types of excitons: the optically active bright excitons with spin ±1 and the dipole-
dark states with spin ±2. For the description of most optical experiments, the latter can be
neglected due to their lack of direct optical addressability. Furthermore, there is a bound state
composed of two bright excitons called the biexciton that has a typical binding energy EB of a
few meV.

1.2.1 The driven two-level QD

This state space can be further reduced when external driving of a defined circular polarization
is considered. For typical fine-structure splittings of a few tens of µeV [28] between the two
bright states with spin ±1, only the ground state |G〉 without any excitations and the bright
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1.2 Self-assembled semiconductor quantum dots

exciton |X〉 with a spin corresponding to the circular polarization of the external driving need
to be considered [29,30].

Thus, one arrives at a two-level model for the electronic subspace of a QD, which is the
description predominantly used in this thesis. For certain applications, though, the biexciton
state, the dark exciton, and energetically higher lying exciton states are taken into account (cf.,
[Pub 3, Pub 4, Pub 5, Pub 6]). Including the external driving into the model as a classical
amplitude, the Hamiltonian of the driven two-level QD is

HQD = −~∆ωLX|X〉〈X| −
~
2f(t)

(
σX + σ†X

)
, (1.1)

where the dipole and rotating wave approximations have been used. The ground state is chosen
as the zero point of the energy scale, the energy of the exciton is ~ωX, the polarization operator
describing the transition between the exciton and the ground state is defined as σX := |G〉〈X|,
and the Hamiltonian is written down in a frame co-rotating with the frequency of the external
driving laser ωL. f(t) denotes the real envelope function of the laser and ∆ωLX := ωL− ωX the
laser-exciton detuning.

1.2.2 The Jaynes–Cummings coupling to individual cavity modes

When electron and hole recombine radiatively and the QD transitions from the exciton to the
ground state, a photon is created in the continuum of the electromagnetic field coupled to the
QD. In this sense, the polarization operator σX can be interpreted as the source of a photon
(cf., [Pub 1]). In cavity quantum electrodynamics (cQED), though, the interaction between
a few-level quantum system and well-separated individual electromagnetic field modes is of
interest. The coupling of the two-level QD to a single mode of a solid-state microcavity [31] is
well described within the rotating wave approximation using the Jaynes-Cummings model [32]

HC = ~∆ωCLa
†a+ ~g

(
a†σX + aσ†X

)
, (1.2)

where a† (a) creates (annihilates) a photon with the cavity mode frequency ωC. The coupling
strength is given by ~g and the cavity-laser detuning is defined as ∆ωCL := ωC − ωL. This
Hamiltonian is again written in a rotating frame with the laser frequency as reference.

If two modes of opposite polarization simultaneously interact with the QD, a Jaynes-Cummings
model can be used for each mode. In particular, this extension is necessary when considering
the biexciton-exciton cascade in a cavity or discussing the influence of a finite fine-structure
splitting (cf., [Pub 4, Pub 5, Pub 6]).
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1 Introduction to the field

1.2.3 Phenomenological losses

A realistic model for an experimental setup needs to account for inevitable imperfections of the
system. The most important ones in cQED are the losses of the microcavity with rate κ due
to, e.g., non-unity reflectance, and the radiative decay of the few-level emitter orthogonal to
the cavity into the continuum of the electromagnetic field with rate γ. This geometry reflects
the driving of the QD, which is performed orthogonal to the cavity [33], whereas the detection
takes place on the axis distinguished by the cavity.
These processes are well described phenomenologically using a Markovian Lindblad super-

operator [34–36] acting on the density matrix ρ of the QD–cavity system

LO,Γρ = Γ
(
OρO† − 1

2
{
ρ,O†O

}
+

)
. (1.3)

The action of the loss process is captured by the corresponding system operator O and loss
rate Γ. The anti-commutator between operators A and B is denoted as {A,B}+.

1.3 The phonon environment

QDs are embedded in a surrounding solid-state crystal matrix. Even at cryogenic temperatures
of a few kelvin, this leads to a coupling of the QD excitations to a phonon continuum. The
deformation potential coupling to longitudinal acoustic (LA) phonons is the most important
decoherence mechanism in QDs [21,23,25,37]. This interaction is of the so-called pure-dephasing
type and has the form [21–24]

HPh = ~
∑

q
ωqb

†
qbq + ~

∑

q

(
γXq b

†
q + γX∗q bq

)
|X〉〈X| . (1.4)

The bosonic operator bq (b†q) annihilates (creates) a phonon of energy ~ωq in mode q with the
coupling strength γXq . As the initial condition of the dynamics, the QD–cavity and the phonon
subsystems are assumed to factorize, while the latter is in thermal equilibrium at temperature
T . Note that bulk phonon modes are considered rather than modes confined in the QD [21], since
the elastic properties of the QD and substrate materials are similar in self-assembled QDs.
Several important phenomena arise from this interaction, such as the appearance of phonon

sidebands in the emission spectrum [21,23,38], the damping of Rabi oscillations [39–43] and the
renormalization of their frequency [44,45], a dynamic decoupling of electronic and phononic sub-
systems [46,47], and the degradation of the quality of emitted photons [48]. Note that in strongly
polar materials like GaN, the piezoelectric coupling becomes important [23,37], but in the GaAs
structures considered in this thesis it is negligible. Furthermore, optical phonons that interact
with the QD via the Fröhlich coupling have typical energies of a few 10meV. Their contribution
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1.4 The dynamical equation

Figure 1.1: [(a) taken from [Pub 2]] (a) Sketch of the QD–cavity system. (b) The phonon
spectral density J(ω) according to Eq. (1.5) for GaAs material parameters and an electron
confinement length of ae = 3 nm.

to the dephasing in QDs has been shown to be rather minor [23].
The coupling constant γXq in Eq. (1.4) determines the phonon spectral density J(ω) =

∑
q
|γXq |2δ(ω − ωq). Under the assumptions of a spherically symmetric potential, a harmonic

confinement, and a linear dispersion ωq = cs|q| with sound velocity cs, an expression for J(ω)
can be obtained, which contains only geometric and material parameters:

J(ω) = ω3

4π2ρD~c5
s

(
Dee

−ω2a2
e/(4c2

s) −Dhe
−ω2a2

h/(4c
2
s)
)2
. (1.5)

ρD is the density of the material, De (Dh) the electron (hole) deformation potential, and ae

(ah) the electron (hole) confinement length. The parameter values for GaAs, which is the
predominantly considered substrate material in this thesis, are listed in Refs. [37,49] and are
repeated in Tab. I in the supplementary material of [Pub 1]. When identical confinement
potentials for electrons and holes are presumed, the confinement ratio is fixed by the effective
masses as ah = ae/1.15. Therefore, the electron confinement length ae is the only free parameter
in Eq. (1.5). It is interpreted as a measure for the size of the QD. Values between 3 nm and 5 nm
have produced results in good agreement with experiment [46,50,51]. Exemplarily, the spectral
density is shown in Fig. 1.1(b) for ae = 3 nm.

1.4 The dynamical equation

The QD–cavity model described in Secs. 1.2 and 1.3 is comprised of a Hamiltonian part for
the subsystem of interest HS := HQD + HC, a Hamiltonian part for the phonon environment
HPh, and a Lindbladian part for the phenomenological description of losses. A sketch of this
system is shown in Fig. 1.1(a). The dynamics of the QD–cavity system is fully determined by
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1 Introduction to the field

the Liouville–von Neumann equation for the density matrix ρ

∂

∂t
ρ = − i

~
{HS, ρ}− −

i

~
{HPh, ρ}− + La,κρ+ LσX ,γρ . (1.6)

The commutator between operators A and B is denoted as {A,B}−.
Due to the sum in Eq. (1.4), the pure-dephasing coupling to LA phonons expands the Hilbert

space of the problem infinitely. Analytical solutions for arbitrary external driving f(t) are not
known. Nonetheless, this phonon Hamiltonian can be treated in an numerically exact way using
an iterative real-time path-integral method, presented in the following section.

1.5 The numerically exact path-integral method

1.5.1 Expectation values

In order to solve Eq. (1.6) for the QD–cavity subsystem dynamics using an iterative real-
time path-integral method, first the propagator defined by the dynamical equation has to be
discretized into small chunks of ∆t. Then, the phonon subspace is traced out analytically,
yielding a solution for the reduced density matrix (RDM) ρ̄(t) := TrPh [ρ(t)] of the subsystem.
This derivation is correct up to O (∆t2).
The cost of this simplification is a memory kernel induced by the phonon environment that

renders the subsystem dynamics non-local in time. The memory kernel for an InAs/GaAs QD
with a confinement length of 3 nm decays to zero in roughly τmem = 3 ps [52]. Since this memory
depth is on the same order of magnitude as the dynamical scale of the QD–cavity subsystem, it
cannot be neglected using a Markov approximation, for which a phenomenological description
using a Lindbladian would be sufficient.
The crucial point is the fact that the memory depth for a QD is not negligible, but finite.

Thus, the system at time t+ ∆t is fully determined by the knowledge of the system in the time
interval [t− τmem, t]. This insight allows for an iterative formulation of the solution [52–54] in the
form of the so-called augmented density matrix (ADM). The ADM contains all the information
about the subsystem during the length of the memory, which is discretized as τmem = nmem∆t.
It is thus a 2nmem-rank tensor, which is propagated according to [55]

ρ̄µn...µn−nmem+1
νn...νn−nmem+1 =Mνn−1µn−1

νnµn

∑

νn−nmem
µn−nmem

exp



n∑

l=n−nmem

Sνnνlµnµl


ρ̄µn−1...µn−nmem

νn−1...νn−nmem
. (1.7)

The object Mνn−1µn−1
νnµn is the subsystem propagator, including the non-Hamiltonian Lindblad

contributions, and Sνnνlµnµl is the phonon influence functional. For a detailed definition of both
objects cf., Ref. [55]. The subsystem state µ and ν at the j-th time step is described by the

6



1.5 The numerically exact path-integral method

indices µj and νj, respectively. The RDM at time t = n∆t is retrieved by tracing out the
memory contained in the ADM

ρ̄νnµn =
∑

νn−1...νn−nmem+1

µn−1...µn−nmem+1

ρ̄µn...µn−nmem+1
νn...νn−nmem+1 . (1.8)

The dynamics of every (single-time) expectation value of any subsystem observable can be
obtained with the knowledge of the RDM. Only two parameters can introduce errors to this
solution: (i) the time discretization ∆t and (ii) the memory depth τmem taken into account.
Both convergence parameters are easily controllable. A solution is denoted as numerically
exact, when decreasing ∆t or increasing τmem leads to no noticeable change. In particular, it
follows that no further approximations are necessary to obtain a solution for the time evolution
of the QD–cavity system once the model is stated in terms of a Hamiltonian and a Lindbladian.
While the iterative formulation allows for long-time studies of a few-level system, the investi-

gation of multi-level systems remains illusive with Eq. (1.7), since the number of ADM elements
to be stored during computation scales exponentially as N2nmem

S with the subsystem’s dimen-
sion NS. Calculations including up to 20 photons require the treatment of a 41-dimensional
subsystem. With nmem = 7 and ∆t = 0.5 ps, which typically leads to converged results for a
3 nm-InAs/GaAs QD, roughly 3.8×1022 ADM elements have to be stored – a number completely
out of reach for current computational equipment.
In a QD–cavity system, only the QD states couple to the phonons [49]. This observation allows

for an organization of the states into groups with identical phonon coupling. Then, the ADM
can be partially summed within each group [49], such that the number of elements to be iterated
scales as N2

SN
(2nmem−1)
g with the number of groups Ng – two in the case of a two-level QD. In

the example above, this decreases the ADM elements to roughly 6.9× 106. Only this reduction
of more than 15 orders of magnitude in computational demand makes the numerically exact
study of realistic QD–cavity systems possible.

1.5.2 Two-time correlation functions

Properties of a photon source and the generated state of light are often characterized in coin-
cidence experiments. A famous example is the Hanbury Brown–Twiss setup [56], which yields a
measure for the multiphoton component of the analyzed photonic state. Glauber formulated a
model for this setup [57], yielding a second-order two-time correlation function of the electrical
field operators, i.e., the cavity photon operators in a QD–cavity system

G(2)(t, τ) = 〈a†(t)a†(t+ τ)a(t+ τ)a(t)〉 , (1.9)

7



1 Introduction to the field

where t is the real time of the experiment and τ is the delay time between detector clicks.

A numerically exact path-integral scheme for a multitime correlation function as in Eq. (1.9)
has been derived in [FPub 2]. First, the ADM is propagated until time t = n∆t. Here, the
operators evaluated at this time are multiplied to produce a modified ADM (MADM):

ρ̄
µn...µn−nmem+1

aa†νn...νn−nmem+1
=
∑

ν′nµ
′
n

(a)νnν′nM
νn−1µn−1
ν′nµ
′
n

(a†)µ′nµn
∑

νn−nmem
µn−nmem

exp



n∑

l=n−nmem

Sνnνlµnµl


ρ̄µn−1...µn−nmem

νn−1...νn−nmem
.

(1.10)

For the subsequent m steps until t + τ with τ = m∆t, the MADM is iterated instead of the
ADM. Finally, the operators evaluated at time t+ τ are multiplied and the correlation function
is obtained by performing the trace over the memory

G(2)(t, τ) =
∑

νn+m...νn+m−nmem+1

µn+m...µn+m−nmem+1

[
a†a

]
µn+mνn+m

ρ̄
µn+m...µn+m−nmem+1

aa†νn+m...νn+m−nmem+1
. (1.11)

This scheme ensures that the memory accumulated during the t-propagation is properly
transferred to the τ -propagation. Thus, this numerically exact method reaches clearly beyond
the so-called quantum regression theorem (QRT) [35,36], which is the most widely used tool to
calculate multitime correlation functions, even in non-Markovian situations [38,48].

1.5.3 Comparison with other methods

Taking the phonon-induced memory into account beyond a Born–Markov approximation is
possible without having to resort to the above presented numerically exact path-integral (PI)
formalism. In this section, two state-of-the-art approximative methods are presented that yield
accurate predictions of the QD–phonon dynamics in many cases with less numerical demand:
the polaron master equation (PME) approach and a fourth-order correlation expansion (CE4).
During the studies presented in this thesis both methods have been employed either to conduct
methodological comparisons or in cooperation with the theoretical physics group on ‘Ultrafast
Optics in Nanostructured Solids’ headed by D. E. Reiter at the University of Münster. The
PME approach is applied in [Pub 1] to discuss the frame dependence of the quantum regression
theorem, while the CE4 method is used in [FPub 4] and for extensive parameter studies in
the aftermath of [FPub 5]. Finally, a motivation is given why nonetheless the PI formalism is
employed throughout the studies discussed in this thesis.
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1.5 The numerically exact path-integral method

Figure 1.2: [(b) Data on the CE4 method kindly provided by T. K. Bracht, Reiter group,
University of Münster] Two-level QD of size 3 nm driven by a constant external laser and
coupled to a phonon environment. (a) Path-integral (PI) results (solid lines) compared with
PME results (open circles) for two different temperatures T = 4K and T = 77K for a driving
strength of ~f = 0.2meV. (b) PI results (blue solid line) compared with CE4 results for a
driving strength of f = 1 ps−1 at T = 4K. The orange dotted line corresponds to 200 grid
points and orange open circles to 400 within the considered phonon wave vector interval. Red
circles indicate the time Tmax at which the CE4 method is predicted to break down for the
respective discretization.

The polaron master equation

The transformation of the system into the polaron frame is at the heart of the PME ap-
proach [58–60], which is given by

H ′ = eSHe−S (1.12a)

S =σ†XσX
∑

q

1
ωq

(
γXq b

†
q − γX∗q bq

)
. (1.12b)

A time-local master equation for the reduced system dynamics is derived in this frame employing
a Born–Markov approximation (explicitly given in, e.g., the supplemental material of Ref. [49]).
This procedure allows for the consideration of a variety of non-Markovian features beyond a
Born–Markov treatment in the original laboratory frame, e.g., the prediction of the phonon
sidebands in the QD emission spectra (cf., Fig. 1 in the supplement of [Pub 1]). A validity
analysis in Ref. [61] suggests that the exploration of the strong-driving regime is possible as
long as the QD–phonon coupling is rather weak or the temperature T low and vice versa. In
Fig. 1.2(a) PI and PME results are compared with each other for a two-level QD of size 3 nm
driven by a constant external laser and coupled to a phonon environment. A strong driving
of ~f = 0.2meV is chosen here. Nonetheless, the results coincide at T = 4K. At a higher
temperature of 77K, though, differences become visible consolidating the validity claims in
Ref. [61].

9



1 Introduction to the field

A strict quantitative limit of the PME validity is elusive, though, as the authors of Ref. [61]
concede. Thus, one should be wary of using the PME approach in strongly-pulsed systems at
high temperatures. Moreover, the phonon influence might be overestimated when the pulse
length is of the same order or shorter than the phonon-induced memory [62]. The reason is the
time-local property of the PME method. The gradual buildup of the phonon influence during
the memory time is not captured by this approach.
Therefore, exploring a parameter space where it is a priori unclear whether the PME approach

is accurate is ill-advised. Since both strong and short pulses, high temperatures, and strong
QD–phonon coupling are cases of interest in the studies discussed in this thesis, the numerically
exact path-integral method is advantageous. When the convergence parameters are taken care
of, the entire parameter space can be studied without methodological restrictions.

The correlation expansion

Deriving equations of motion for the exciton occupation and the polarisation of a two-level QD
using the Heisenberg equation and subsequently taking expectation values yields no closed set,
as is common for many-body problems. Rather, expectation values of the type 〈σXbq〉 appear
as sources on the right-hand side of the differential equations. Factorizing these as

〈σXbq〉 = 〈σX〉〈bq〉+ δ〈σXbq〉 (1.13)

introduces the correlation δ〈σXbq〉 as a new dynamical variable, which is defined by Eq. (1.13)
and for which an additional equation of motion has to be derived. This procedure leads to an
infinite hierarchy of equations of motions. To render this hierarchy numerically tractable, a
truncation is necessary, the expectation being that the importance of higher-order correlations
decreases.
In the fourth-order correlation expansion (CE4) formalism [44,63], five-point correlations are

neglected. Thus, the CE4 method takes two-phonon processes into account, which yields good
agreement with experiment [46]. In contrast to the PI or the PME approaches, which both
rely on a trace over the environment, the CE4 formalism can access the phonon dynamics. For
example, it is possible to observe the propagation of a phonon wave packet after excitation of the
QD [64]. Even the phenomenon of phonon squeezing can be described using the CE4 method [65].
One drawback of this method is the inverse connection between the q-discretization of the
phonon environment and the stable simulation time, which can be derived from the energy-
time uncertainty relation [66]. This property of the CE4 method is demonstrated in Fig. 1.2(b)
for a two-level QD driven by a laser of strength f = 1 ps−1. While both methods perfectly agree
at the beginning of the simulation, after a maximum time predicted by Tmax = 1.23/∆q ps nm−1

for GaAs parameters [66], the CE4 results strongly deviate from the PI dynamics. Red circles

10



1.5 The numerically exact path-integral method

indicate the values of Tmax for the respective discretizations ∆q given in the figure’s legend.
Thus, with reasonable computational demand, the simulation of a few hundred picoseconds

is feasible, but the nanosecond-regime remains out of reach. Therefore, long-time studies as
necessary for modeling coincidence experiments are challenging using the CE4 formalism. An
iterative scheme as the PI method has thus a clear advantage in this regard.
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2 A guide for the publications

In this thesis, the phonon influence on the preparation of quantum states of light in QD–cavity
systems as described in Chap. 1 is studied. The number of photons that constitute the various
photonic states under scrutiny is chosen as the leitmotif of the following investigation, starting
from single photons and progressing to more and more complex multiphoton states. Here, a
guide shall be given to concisely connect the publications that are at the heart of this thesis by
picking the highlights of each one of them.
The overall storyline of this work is the following. The on-demand generation of single

photons is technologically very important, in particular, in quantum communication and cryp-
tography. After a section devoted to this task (Sec. 2.2.1), a QD single-photon buffer is proposed
to store the generated photon for a predetermined amount of time in Sec. 2.2.2. Pairs of en-
tangled photons allow for both advanced technological applications and fundamental questions
regarding the quantum theory. The corresponding section (Sec. 2.3) explores the possibility to
generate different types of Bell-state entanglement in diamond-shaped four-level emitters and
proposes a time-dependent protocol to deterministically switch between them. Higher-order
Fock states are the simplest kind of multiphoton states. Discussing the possibility to prepare
them in QD–cavity systems is taken as the starting point of the studies on multiphoton states
and structures presented in Sec. 2.4. N -photon bundles are related to higher-order Fock states,
insofar as they are connected to the emission properties of a cavity. This trait results in a charac-
teristic fingerprint in the photon number distribution, which is exploited in the corresponding
analysis. Photon number distributions as such are interesting tools to analyze multiphoton
states. In particular, a vast variety of qualitative shape changes can be found depending on
the excitation condition. The interplay with the phonon environment is of special interest here.
A section devoted to the preparation of Schrödinger-cat states in QD–cavity systems crowns
the investigation of multiphoton states. These prime examples of nonclassical, purely quantum
states are worth studying both from a technological and a fundamental point of view.
Two methodological studies frame this storyline. The investigation of the accuracy of the

quantum regression theorem can be considered a groundwork for the characterization of single
photons in terms of coincidence experiments and is therefore the topic of the first section
(Sec. 2.1). The last section (Sec. 2.5) is devoted to the question of additivity concerning
multiple environments on the one hand, while giving an outlook using a new numerically exact
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method on the other hand.

2.1 The quantum regression theorem and beyond

A single-photon source is commonly characterized in terms of three quantities, the so-called
figures of merit: the single-photon purity P , which is a measure for the multiphoton contribution
present in the detected state, the indistinguishability I of two successively emitted photons,
and the brightness B, which is the amount of photons generated by the source. If all three
quantities equal unity, the source produces perfect single photons. Models and definitions
of these quantities are given in Eqs. (1)–(5) in [Pub 1], respectively. Note that this specific
definition of the indistinguishability incorporates the effect of a non-unity single-photon purity.
The consequence is a codomain of I ∈ [0.5, 1] [67].
Two of these quantities, P and I, contain two-time correlation functions in their definitions.

The QRT is the most widely used tool to obtain multitime correlation functions in an open
quantum system setting [35,36]. It is a prescription to use the same dynamical equation for the
propagation of a correlation function in both the real time t and the delay time τ . A density
matrix modified by multiplying the operators evaluated at time t is taken as the initial value
for the τ -propagation. This procedure presumes a factorization of system and environment for
τ = 0, i.e., for every t. It is therefore quite probable that the QRT breaks down in a system
exhibiting strong non-Markovian features.
Interestingly, the QRT is commonly used in the analysis of the photonic properties of a QD,

where the coupling to the LA phonon environment requires the consideration of non-Markovian
effects [48,68,69]. It was shown in Ref. [38] that naively applying the QRT to the calculation of
a QD emission spectrum results in the prediction of the phonon sideband on the energetically
wrong side of the zero phonon line (ZPL). This qualitatively false result on the one hand and
the still widespread usage of the QRT on the other hand call for a detailed discussion of the
accuracy of the QRT, which is provided in [Pub 1].
To enable a direct comparison between numerically exact results and the QRT, an implemen-

tation of the latter within the path-integral formalism has to be formulated. To this end, the
memory contained in the ADM is traced out as in Eq. (1.8) after the time t = n∆t is reached.
Then, a modified RDM (MRDM) is introduced

ρ̄ µn
aa†νn

=
∑

ν′nµ
′
n

(a)νnν′n ρ̄ν′nµ′n(a†)µ′nµn (2.1)

and used as the initial RDM for the subsequent m steps of propagation in the delay time argu-
ment τ . This procedure captures the essence of the QRT to neglect the memory accumulated
during the t-propagation at the switch between real time and delay time, while ensuring the
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2.1 The quantum regression theorem and beyond

Figure 2.1: [Taken from [Pub 1]] Photonic figures of merit of a two-level QD single-photon
source using the numerically exact path-integral formalism: (a) the single-photon purity, (b)
the indistinguishability, and (c) the brightness. Their dependencies on the temperature T
and the phonon scaling λ (cf., main text) are shown. Yellow boxes highlight the physically
most interesting parameter region around λ = 1 for GaAs material parameters and the low-
temperature regime below 10K.

incorporation of all memory effects during the respective single-time propagations. In order to
test the validity of this implementation, the prediction of the phonon sideband on the wrong
side of the ZPL when using the QRT [38] is successfully reproduced in Fig. 1 in the supplement
of [Pub 1].
In order to keep this rather fundamental methodological analysis as simple and transparent

as possible, a two-level QD without the coupling to a cavity is studied in [Pub 1]. The driving
pulse train consists of resonant π pulses of 3 ps length with Gaussian envelopes. The QD’s
polarization operator is considered as the source of photon emissions. Therefore, the cavity
operators are replaced in all correlation functions necessary to obtain P , I, and B by QD
operators.
Furthermore, to analyze the influence of the strength of the non-Markovian coupling to the

phonon environment, a scaling parameter λ is introduced as a prefactor to the phonon spectral
density J(ω). Thus, the coupling constant γXq in Eq. (1.4) is scaled by

√
λ. While a scaling

of λ = 0 models a situation without a phonon environment and 1 < λ ≤ 10 provides a rough
estimate for stronger couplings as in piezoelectric materials like GaN [37], the full GaAs model
is recovered for λ = 1.
The dependence of the three figures of merit P , I, and B on the temperature T and the

phonon scaling λ is shown in Fig. 2.1 using the numerically exact path-integral approach. All
three quantities decrease for high temperatures and large coupling. The highest values of I
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2 A guide for the publications

Figure 2.2: [Adapted from [Pub 1]] (a) The non-Markovianity measure N , (b) the error QI
introduced by the QRT, and (c) the indistinguishability at T = 4K as a function of the phonon
scaling λ. The latter is calculated using the numerically exact approach (num. exact), the QRT
applied in the lab frame (QRT), and the QRT applied in a polaron transformed frame (PME).

and B are found in the limit of weak coupling and low temperatures, confirming previous ob-
servations of a degrading influence of the phonon environment on photonic properties [48]. The
single-photon purity shows a slightly different behavior compared with the indistinguishabil-
ity or the brightness in the region of interest [marked by yellow boxes in Fig. 2.1(c)]. It is
nonmonotonic as a function of λ at higher temperatures with large values around λ = 1 [cf.,
Fig. 2.1(a)] and reaches its maximum value at large scalings and low temperatures. Phonons
inhibit the full preparation of the QD exciton. Therefore, the reexcitation of the QD during
the length of the pulse is suppressed even more. This leads to a lower multiphoton compo-
nent explaining the higher single-photon purity. It is possible to take this phenomenon even
further by using phonon-assisted off-resonant excitation, which can lead to phonon-enhanced
single-photon purities. The mechanism of this enhancement is the topic of [Pub 2] outlined in
Sec. 2.2.

The relative error of a figure of merit M introduced by using the QRT QM is taken as
a measure for the accuracy of the QRT. Fig. 2.2(b) shows this quantity with respect to the
indistinguishability QI . In the physically interesting region marked by yellow boxes in Fig. 2.1
it is particularly high and reaches up to 18 %. In the race for a perfect single-photon source [70]

where improvements in the sub-per mill regime matter [71], this is a huge value.

In order to explain the physical origin of this error, a non-Markovianity measure N is in-
troduced to assess the relevant parameter space. Its definition is stated in Eq. (8) of [Pub 1]
and taken from Refs. [38,72–74] and its most important property is the implication of the in-
divisibility of the underlying dynamical map when N 6= 0. This is a fundamental aspect of
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non-Markovianity. Consequently, N = 0 implies Markovian dynamics. Thus, the appearance
of memory effects in the system dynamics can be traced using this measure.
The temperature and phonon scaling dependence of N is shown in Fig. 2.2(a) alongside the

error QI introduced by the QRT. Qualitatively, it exhibits exactly the same behavior, fostering
the conclusion that the breakdown of the QRT is related to the non-Markovianity of the system
dynamics. This connection, though, is highly dependent on the considered quantity: the error
QP regarding the single-photon purity is of the order of 10−4 for the entire parameter range
studied in [Pub 1]. The physical origin of this finding is explained ibidem.
Interestingly, using the QRT one consistently overestimates the phonon influence on the

indistinguishability, shown in Fig. 2.2(c) as a function of the phonon scaling λ for a slice at
T = 4K. Therefore, the numerically exact path-integral method shows that the theoretical
upper bound for the indistinguishability of photons from a QD source is higher than previously
predicted by studies using the QRT.
The polaron transform captures many essential features of the non-Markovian dynamics

induced by the phonon environment, as explained in Sec. 1.5.3. It is therefore quite surprising
that the accuracy of the QRT does not depend on the frame. Applying it not in the lab
frame, but in a polaron transformed frame using the PME technique [58–60], the prediction of
the indistinguishability does not improve at all [cf., Fig. 2.2(c)]. The reason is the following:
The PME approach captures the phonon influence on the dynamics of (single-time) expectation
values as the exciton occupation extremely well for the considered temperature and phonon
scaling parameters [cf., Fig. (2) in the Erratum to [Pub 1]]. Therefore, a comparable error
enters the calculation at the switch between the t- and the τ -propagation, when the memory
is traced out, regardless of the frame. While using the QRT in the polaron frame can, in
fact, predict the phonon sideband on the correct side of the ZPL in contrast to its lab frame
counterpart, this sign flip does not affect the indistinguishability, which is why the application
of the QRT in both frames produces agreeing results. Technical details concerning this finding
are explained in the Erratum to [Pub 1].
To summarize, the accuracy of the QRT in a fundamentally non-Markovian system is not

known a priori, although it can be applied in specific settings or for the calculation of specific
quantities like the single-photon purity. Therefore, all subsequent studies are undertaken using
the path-integral formalism[FPub 2].

2.2 Quantum dots and single photons

Single photons are a key building block in many innovative applications, in particular, in quan-
tum communication and cryptography [12,75]. Generating them on demand with high brightness
and vanishing multiphoton component is key to these technologies. QDs are widely discussed
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Figure 2.3: [Adapted from [Pub 2]] The
brightness [panels (a) and (b)] and the single-
photon purity [panels (c) and (d)] of a QD–
cavity single-photon source as functions of the
laser-exciton detuning and the laser pulse area.
Calculations with phonons [panels (b) and (d)]
are compared with phonon-free results [pan-
els (a) and (c)]. Blue circle: the case of reso-
nant π-pulse excitation. Red circle: the point
of maximum single-photon purity including
phonons. Red square: simultaneous optimiza-
tion of the single-photon purity and brightness.

as a candidate system that satisfies these requirements [71,76–80]. After discussing the phonon
influence on the single-photon purity in QD–cavity systems, in this section, a protocol is pro-
posed to store the generated photon deterministically. Such buffering devices are necessary for
synchronization in quantum networks.

2.2.1 Phonon-enhanced single-photon sources

The interaction with the LA phonon environment is often stigmatized as a purely destructive
phenomenon regarding the technological usage of QDs. In particular, limits of the single-photon
quality due to the phonon coupling have been predicted [48].
In [Pub 2], it is discovered that on the contrary, phonons can play a beneficial role. Using off-

resonant phonon-assisted excitation of the QD exciton, an enhancement of the single-photon
purity compared with the resonant case under otherwise identical conditions is found. In
Fig. 2.3, single-photon figures of merit are shown for a QD–cavity system under various excita-
tion conditions. The center frequency of the Gaussian-shaped pulses is varied with respect to the
two-level QD transition frequency as measured by the laser-exciton detuning ∆ωLX := ωL−ωX.
Furthermore, their pulse area is chosen as a second parameter freely adjustable in experiment.
The pulse width is kept fixed at 7 ps. The pulsed-excitation technique ascertains that the QD–
cavity system is an on-demand source. The photon emission is triggered by the arrival of the
external pulse in contrast to, e.g., sources exploiting spontaneous parametric down conversion
(SPDC) [81].
In the case without phonons [panels (a) and (c) in Fig. 2.3] both the brightness and the

single-photon purity are symmetric with respect to the detuning and display Rabi rotations
with respect to the pulse area. This is expected since at all odd multiples of π the QD is
inverted and has therefore the capacity to emit a photon. The phonon influence [panels (b)
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Figure 2.4: [Taken from [Pub 2]] Occupation dynamics of the QD–cavity states during and
after the pulse (driving). The resonant (a) (cf., blue circle in Fig. 2.3) and the off-resonant
phonon-assisted excitation schemes (b) (cf., red circle in Fig. 2.3) are compared with each other.
The latter exhibits a two-step process in the exciton occupation (blue line) of phonon-induced
relaxation in the dressed-state basis and subsequent adiabatic undressing.

and (d) in Fig. 2.3] renders the picture completely asymmetric. The reason is the asymmetry
of phonon emission and absorption at low temperatures. While the former is always possible,
the latter is less probable due to the absence of phonon occupation at temperatures of a few
kelvin. A large parameter regime appears for ∆ωLX > 0, where both the brightness and the
single-photon purity take on high values. This phonon impact even significantly enhances the
single-photon purity compared with the resonant π-pulse excitation [blue circle in Fig. 2.3(d)].
Its maximum value of 98.8 % [red circle in Fig. 2.3(d)] is comparable to experimentally obtained
values for the optimum-case resonant excitation, which is found for shorter pulse lengths of
around 3 ps, namely 98.8 % [78] and 99.1 % [79].
The vital advantage of the off-resonant scheme compared with its resonant counterpart lies

in its robustness against small fluctuations of pulse parameters, such as the central frequency
or the area (cf., Fig. 2.3). Furthermore, off-resonant excitation allows for a spectral separation
of pump and signal, thus providing a background-free single-photon source.
The reason for this finding is the two-step nature of the phonon-assisted exciton preparation.

During the pulse, the phonons induce a relaxation in the dressed-state basis, the eigenbasis of
the laser-driven two-level problem, into the lower-energy dressed state. In the original bare-
state basis, this means that the exciton is only occupied by half [cf., Fig. 2.4(b)]. When
switching off the pulse, the system is adiabatically undressed [82], yielding a boost of the exciton
occupation only at a time when the pulse amplitude has essentially vanished [cf., Fig. 2.4(b)].
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Figure 2.5: [Taken from [Pub 3]] Sketch of the Λ-type three-
level system. The left arm is coupled to a cavity and is driven
by an off-resonant AC-Stark pulse. The right arm is coupled
by the flip-flop term that induces simultaneous spin flips of
the electron (blue arrows) and the Mn spin. The red arrows
represent the hole spin, which is pinned in a pure heavy-hole
system.

Therefore, reexcitation of the QD and subsequently the possibility of multiphoton emission are
strongly suppressed. The dynamics of the QD–cavity state occupations in the off-resonant case
is compared with the resonant one in Fig. 2.4.

2.2.2 Deterministic storage and readout of a single photon

To technologically use a single photon in an optical quantum network, synchronization is
paramount. Therefore, buffering a single photon to control the exact emission time is nec-
essary. In [Pub 3], a QD-based single-photon buffering device is proposed.
Buffering, i.e., temporary storage and readout can be achieved by exploiting a metastable

state. The dipole-dark exciton states with a total spin of ±2 are interesting candidates for this
application, since their decay time is about two orders of magnitude longer than that of the
bright exciton. To this end, the model of the two-level QD has to be expanded.
In particular, a mechanism is needed that allows for optically addressing the dark state.

Introducing a single magnetic atom as a dopand couples the bright and dark states via the
exchange interaction. Manganese (Mn) stands out because of its large spin of 5

2 . To enable
isoelectric doping, this analysis is performed for a CdTe/ZnTe QD.
Assuming the Mn spin to be initially prepared in the state with orientation Mz = −5

2 and a
circular polarization of the external laser of −1, the QD can be modeled as a Λ-type three-level
system. Using the projection of the total spin of the electronic excitation and the Mn spin
orientation as labels, the three product states are the ground state |G〉 := |0,−5

2〉, the bright
exciton |X〉 := | − 1,−5

2〉, and the dark exciton |D〉 = | − 2,−3
2〉.

A sketch of the corresponding level scheme including its couplings is shown in Fig. 2.5. The
transition between the ground and the bright state interacts with a single-mode microcavity.
The electron-Mn exchange interaction leads to a coupling between the bright and the dark state.
These two states are split by δeff, consisting of a material dependent intrinsic splitting due to
the electron-hole exchange interaction and a splitting arising from an Ising-term contribution
to the carrier-Mn exchange. By applying an external magnetic field in Faraday configuration,
δeff can be tuned.
To obtain full-amplitude oscillations between the two exciton states and thus facilitate an
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Figure 2.6: [Adapted from [Pub 3]] (a) The occupation dynamics of the QD states and the
single-photon Fock state. The bottom panel shows the two AC-Stark pulses to write the
excitation to the dark state and then read it out again after the storage time τ . The ideal case
without phonons and losses (dashed lines) is compared with the case including radiative decay
and cavity losses (solid lines). (b) The decay time τ ∗ and (c) the maximum captured 1-photon
occupation (C1PO) at τ = 0 depending on the temperature T . The dashed lines mark the
phonon-free value.

excitation transfer, they need to be brought into resonance for half an oscillation period. To
enable this energetic shift on such fast timescales, the optical or AC-Stark effect is exploited.
An external laser driving the transition between the ground and the bright state off-resonantly
induces an energetic shift [FPub 4]. Choosing a rectangular pulse with appropriate specifications,
the effective splitting δeff can be canceled during the plateau time of the pulse [cf., Sec. IV.A.
in [Pub 3]].

Suppose that the cavity contains a single photon that needs to be buffered. The initial
state of the dynamics is thus |G, 1〉. In Fig. 2.6(a), the occupation dynamics of the three QD
states and the single-photon Fock state of the cavity are shown. After half a Rabi oscillation
between the cavity and the QD, the bright state |X〉 is occupied. Then, an AC-Stark pulse,
the writing pulse, is switched on, such that |X〉 and |D〉 are effectively put to resonance. The
exchange coupling J leads to the occupation of the dark state |D〉. After the storage time τ , a
second readout pulse reverses the entire writing process to eventually put back the excitation
to the cavity as a single photon, which then oscillates with the bright exciton. In the ideal case
without losses and phonons [dashed lines in Fig. 2.6(a)], the first maximum after the readout
pulse is close to unity, thus proving the concept of the buffering device.

This maximum captured 1-photon occupation (C1PO) after the readout pulse is now taken
as a measure for the performance of the protocol. Its value at τ = 0 shows how much of the
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Figure 2.7: [(a) Taken from [Pub 5], (b) taken from [Pub 4]] (a) Sketch of the four-level
emitter (FLE) coupled to two oppositely polarized cavity modes. The two-photon resonance
of the FLE is driven externally. (b) The energies of the four laser-dressed states depending on
the driving strength.

excitation initially present in the cavity is lost during writing and readout. The dashed line
in Fig. 2.6(c) displays its value including radiative and cavity loss effects, but without taking
phonons into account. The yellow points show its temperature dependence. While it is well
above 80 % for low temperatures, more than 50 % of the excitation is lost at 77K only because
of the writing and readout processes.
Simulating the storage time dependence C1PO(τ) and fitting an exponential function yields a

decay time τ ∗ that can be interpreted as a characteristic length for which storage is reasonably
possible. At T = 4K, this value reaches 17 ns and at high temperatures it is still around 5 ns.
Thus, even under realistic conditions, the proposed buffering device can store a single photon
about two orders of magnitude longer than state-of-the-art high-quality microcavities alone.

2.3 Polarization-entangled photon pairs

Entanglement is a phenomenon entirely native to the quantum realm. It is a feature of quantum
mechanics which is at the heart of many innovative applications, predominantly in quantum
communication [10,11] and cryptography [12,13]. Moreover, from the point of view of basic research,
it allows for the inspection of Bell’s inequalities [83,84], thus ultimately testing the fundamental
principles of quantum mechanics itself.
Polarization-entangled photon pairs are a particularly interesting realization of an entangled

bipartite system because of their traveling with the velocity of light and their robustness against
environmental disturbance. An attractive platform to generate such pairs are diamond-shaped
four-level emitters (FLEs). A sketch of an FLE coupled to two degenerate modes of opposite
polarization in a cavity is shown in Fig. 2.7(a). In addition to the ground state and two
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oppositely polarized excited states, there is a doubly excited state |XX〉, which typically has
an energy less than twice the excited-state energy. In a QD, this is the biexciton state, a bound
state composed of two excitons, which leads to a biexciton binding energy EB corresponding
to the reduction of its energy.
The two different types of Bell states (BS) are famous examples of maximally entangled

states
Φ± = 1√

2
(|HH〉 ± |V V 〉) (2.2a)

Ψ± = 1√
2

(|HV 〉 ± |V H〉) , (2.2b)

henceforth called ΦBS and ΨBS, respectively. H (V ) denotes a horizontally (vertically) polar-
ized photon and the order of their notation in Eq. (2.2) corresponds to the temporal order of
their detection.
Preparing the state |XX〉 and subsequently leaving the system to cascaded decay has been

demonstrated as a pathway to generate ΦBS in numerous works [11,84–90]. The addition of a
constant external driving [cf., Fig. 2.7(a)] opens up the possibility to create ΨBS using the
presented FLE [91]. Driving the two-photon resonance leaves two free parameters, the cavity-
laser detuning ∆ and the driving strength Ω.
[Pub 4] is devoted to analyzing this parameter space and predicting the type of the resulting

entanglement. To this end, a discussion in terms of the laser-dressed states turns out to be
beneficial. The eigenenergies of the driven electronic subsystem are depicted in Fig. 2.7(b).
The four states are denoted as the upper (U), middle (M), null (N), and lower (L) state.
While the energies of M and N do not depend on the driving strength, U and L exhibit such
a dependency [cf., Eqs. (10)–(12) in [Pub 4]]. Now, the emission of an entangled photon pair
is connected to two-photon transitions in the FLE system. Its probability in the driven case
is highest when the dressed states offer a two-photon transition, i.e., when twice the photon
energy matches the energy difference between two laser-dressed states. Combinatorially, this
state of affairs presents numerous opportunities of entanglement generation.
Technically, one measure to quantify the degree of entanglement is the concurrence [92] [for a

formal definition, cf., Eqs. (19) and (20) in [Pub 4]], which is widely accepted to characterize
an entangled bipartite system. The input quantity for this measure is the two-photon density
matrix, which is reconstructed in experiment using quantum state tomography [93] and modeled
by two-time correlation functions [cf., Eqs. (16)–(18) in [Pub 4]], which are obtained following
the phonon-free method in [FPub 2]. The qualitatively most important point of this definition
is the fact that the concurrence has a monotonic relation to the entanglement of formation [94]

and can thus be considered a direct measure for the entanglement of the given bipartite system
in its own right.
[Pub 4] delivers a detailed analysis of the different two-photon resonances. Analytic approx-
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Figure 2.8: [Taken from [Pub 5]] (a) Time-dependent step-like protocol to achieve entan-
glement switching. (b) Concurrence depending on the starting time t0 of the coincidence
measurement. The entanglement type is color-coded. (c)–(e) Two-photon density matrices
corresponding to the different types of entanglement as measured at the respective t0.

imations are found in terms of the Schrieffer-Wolff transformation, which reduces the problem
to the subspace of the most relevant states. Thus, for each resonance and combination of laser
parameters, a prediction is possible, whether the system exhibits entanglement at all and, if so,
whether the entanglement type is ΦBS or ΨBS. The numerical results confirm these predictions.
While the entanglement type could be changed after the generation of the photon pair using

waveplates or polarization filters, in a chosen basis, the two types are clearly distinguishable.
Targeting each type in a given basis by just adding external driving thus allows for the time-
dependent switching between the entanglement types by adjusting the laser parameters. In
[Pub 5], a step-like protocol is proposed that realizes this idea.
In experiment, the reconstructed two-photon density matrix depends on three measurement

parameters: the starting time of the measurement t0, its real-time length ∆t, and the delay-
time window τ of the coincidence experiment. Thus, the concurrence also depends on these
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parameters. Fig. 2.8(b) shows the concurrence as a function of t0 for fixed τ and ∆t, while
the driving protocol is displayed in panel (a) of the same figure. Clearly, high ΦBS and ΨBS
entanglement is achieved deterministically depending on the external driving. Also, for a cer-
tain laser parameter set, a nonentangled state is found. Furthermore, this switching does not
depend on the order, which is demonstrated in steps 4 to 6 in Fig. 2.8(a) and (b). The corre-
sponding two-photon density matrices are shown in Fig. 2.8(c)–(e). For ΦBS, the occupations
and coherences between the states |HH〉 and |V V 〉 clearly dominate, while the corresponding
values of the states |HV 〉 and |V H〉 are high for ΨBS. In the nonentangled case, the density
matrix is close to a mixed state, which exhibits no entanglement.
To analyze the stability of this protocol against small disturbances of the system, a finite

splitting δ between the two exited states is introduced. In QDs, this splitting is known as the
fine-structure splitting. Choosing a value realistically encountered in QDs, the concurrence is
decreased only slightly [cf., dashed line in Fig. 2.8(b)]. Furthermore, including a phenomenolog-
ical dephasing model with a rate observed in QDs at low temperatures leads to a quantitative
reduction of the concurrence, while the qualitative feature of the switching process is preserved
[cf., dotted line in Fig. 2.8(b)].

2.4 Multiphoton states and structures

Having started with QDs as single-photon sources and discussed the generation of entangled
photon pairs, the investigation of multiphoton states and structures ensues. While the simplest
multiphoton state is a higher-order Fock state, N -photon bundles are their close relatives, since
they are created by the cascaded emission from a cavity starting with the Fock state |N〉.
This process leaves a characteristic fingerprint in the photon number distribution, which is
used as an identifying feature in the corresponding analysis. The utility of photon number
distributions in studying multiphoton states is further demonstrated, when transiently and
qualitatively changing overall shapes are observed for different excitation conditions of the QD,
in particular, under consideration of the phonon environment. This section culminates with
the proposal of QDs as sources of photonic Schrödinger-cat states.

2.4.1 Higher-order Fock states

Inspired from the field of atomic physics, [Pub 6] transfers existing protocols to prepare higher-
order Fock states from the atomic to the solid-state realm and proposes an additional one
specific to the solid state. The general idea for atoms in cavities is a limitation of the atom–
cavity coupling to the time of flight through the cavity [95–97]: an excited atom is sent through
a cavity, to which it couples resonantly. The velocity is adjusted such that its time of flight is
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Figure 2.9: [Taken from [Pub 6]] Dynamics
of the protocol with uninterrupted coupling
(PUC). The exciton occupation and the fi-
delities to the Fock states with n = 1, 2, ..., 5
are shown. Dashed lines: ideal case without
phonons or losses. Solid lines: results includ-
ing phonon effects as well as cavity and radia-
tive losses at 4K. The lowest panels show the
envelope functions of the driving lasers.

exactly half a Rabi oscillation between atom and cavity. Repeating this process subsequently
increases the order of the Fock state created inside the cavity.
Since a QD has a fixed location in space, the temporal coupling has to be achieved otherwise.

In [Pub 6], an off-resonant AC-Stark pulse is used to bridge the detuning between the QD and
the cavity. The length of the pulse controls the time interval, in which the excitation transfer
from the QD to the cavity takes place. This protocol with interrupted coupling (PIC) yields
a 5-photon Fock state with a fidelity of 96.3 % in the ideal case without taking loss or phonon
effects into account. Including both at T = 4K reduces this number to 38.5 %.
In superconducting qubits placed in microwave cavities, the preparation of higher-order Fock

states has been demonstrated [98]. Although Ref. [98] gives no value for the fidelity, an estimation
is possible by reproducing their experimental result in the simulations yielding roughly 20 %.
Higher-order Fock states have also been prepared using SPDC [81] with fidelities not exceeding
50 % regarding the state |5〉. Thus, the PIC result is competitive with existing schemes on
other platforms. The advantage of the PIC in QDs is its on-demand character compared with
SPDC sources. Furthermore, a cooling to the mK-regime as in superconducting qubits is not
necessary.
Exploiting the spatial localization of the QD, a protocol with uninterrupted coupling (PUC)

is proposed in [Pub 6]. A QD grown on resonance with the single cavity mode is assumed. The
preparation of the exciton is accomplished by an ultrashort 100 fs-pulse. Thus, the timescales
of the preparation and the cavity coupling are separated, such that during the preparation
process the cavity coupling can be neglected. The lowest panels of Fig. 2.9 show the PUC to
prepare a 5-photon Fock state. The exciton occupation and the fidelities to the Fock states
|n〉 with n ∈ {1, 2, 3, 4, 5} are displayed in the upper panels. Only at the end of the protocol
an AC-Stark pulse is needed to effectively decouple the QD from the cavity to preserve the
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target state there without interference from the QD. In the ideal case (dashed lines), a fidelity
to the state |5〉 of 99.4 % is achieved. Including phonon effects at T = 4K as well as realistic
cavity loss and radiative decay rates yields a fidelity of 45.1 %, which is 17 % higher than the
PIC result. The reason is the 15 % shorter runtime of the PUC compared with the PIC, which
leaves the loss processes less time to act on the QD–cavity system.
To analyze the robustness of the PUC against the two-level approximation, a variety of

extended models is discussed in [Pub 6]. Using ultrashort pulses to excite the QD could lead to
the excitation of higher-energetic exciton states (HEES) due to the large spectral width of the
pulses. A finite exchange coupling between the two oppositely circularly polarized excitons can
introduce the biexciton to the system dynamics. Furthermore, a linearly polarized excitation
can address the biexciton directly as a parasitic state. It is shown in [Pub 6] that the influence
of a HEES and a finite exchange coupling on the PUC is only minor. While the inclusion of the
parasitic biexciton state when linearly polarized lasers are used is quite detrimental, a simple
pulse-shaping technique can salvage a nonzero fidelity.

2.4.2 N-photon bundles

An N -photon bundle is a recently proposed [99] quantum structure of light related to Fock states
that is defined by its temporal emission properties. Bundle emission takes place as a cascade
over successive Fock states starting from |N〉 in the stationary case of a constantly driven
cQED system. Since a Fock state |n〉 effectively decays with nκ in a resonator with loss rate
κ, the temporal spacing between the photons forming the bundle is a direct consequence of the
outcoupling process. The corresponding photon statistics reflects this property

PN(n) =





1− 〈n〉
N

N∑
j=1

1
j

n = 0
〈n〉
N

1
n

1 ≤ n ≤ N

0 n > N

(2.3)

and can thus be considered a fingerprint of an N -photon bundle. Here, 〈n〉 is the stationary
mean photon number.
In [Pub 7], the suitability of solid-state implementations of the generic cQED system discussed

in Ref. [99] is investigated, in particular a QD–cavity system. The analysis is focused on the
case N = 2, using Eq. (2.3) as the defining property to characterize the bundle. This implies
a number distribution, where the Fock state |2〉 has half the occupation of the state |1〉, while
all higher-order Fock states are not occupied at all.
For the numerical studies, system parameters, in particular the cavity loss and radiative decay

rates, are chosen such that they are realistically achievable with current equipment. While the
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Figure 2.10: [Adapted from [Pub 7]] (a) The photon number distribution normalized to the
1-photon Fock state. The value 0.5, indicative of a 2-photon bundle, is marked by a dashed
line. (b) Stationary 2- to 1-photon ratio r as a function of a pure-dephasing rate, when a
Lindbladian model is used instead of the full microscopic phonon Hamiltonian. Red squares
mark special cases of model calibrations, cf., main text.

bundle statistics is reasonably observable in the phonon-free case [cf., black bar in Fig. 2.10(a)],
choosing a set of weaker loss parameters as in Ref. [99] yields a ratio r of the stationary 2-
to 1-photon occupation closer to the target r = 0.5 [cf., gray bar in Fig. 2.10(a)]. Including
the phonon coupling leads to a number distribution, which can no longer be considered to
characterize a 2-photon bundle. Already at T = 1K, the ratio drops to r = 0.2.
In contrast to the analysis of the phonon impact in [Pub 7] based on the microscopic model

HPh [cf., Eq. (1.4)], in Ref. [99] the impact of pure dephasing on the generation of N -photon
bundles is studied in terms of a Lindbladian L|X〉〈X|,γφ . Therefore, this case constitutes an
opportunity to investigate the range of validity of a Lindbladian model compared with the full
microscopic analysis. To this end, the ratio r is calculated for different values of the phenomeno-
logical pure-dephasing rate γφ in Fig. 2.10(b) by exchanging the microscopic phonon model HPh

for a Lindblad contribution L|X〉〈X|,γφ to the Liouville–von Neumann equation, Eq. (1.6).
In the limit of vanishing γφ, the value r = 0.45 is reclaimed [cf., black bar in Fig. 2.10(a)].

A large plateau region is found where the addition of L|X〉〈X|,γφ has only a marginal effect on
the bundle generation. Therefore, the question arises which value of γφ best approximates the
full microscopic model. For this purpose, the Lindbladian is calibrated to three different cases,
where the microscopic model HPh is used, indicated by red squares in Fig. 2.10(b): (1) a driven
Jaynes-Cummings model with |G, 0〉 as the initial state, (2) Jaynes-Cummings model without
driving with the initial state |G, 1〉, and (3) Jaynes-Cummings model again without driving,
but with |G, 2〉 as the initial state. This comparison is performed for the all-resonant case at
T = 4K without taking cavity and radiative losses into account, in order to compare the pure
phonon influence without interference from other effects. The exciton dynamics is compared
for varying γφ until the envelopes of the two results agree.
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Case (1) is the closest approximation to the full model, where the calibration yields a large
pure-dephasing rate of the order of 0.1meV. As the full microscopic model, the phenomenolog-
ical Lindbladian predicts the destruction of the bundle in terms of a nearly vanishing ratio r
when the rate γφ is chosen properly. Often, rates in the µeV regime are quoted when a rough
estimate of the phonon influence in QD–cavity systems is sought after. From the above calibra-
tion, it becomes clear that such a rate is valid only when the system is not driven. Furthermore,
care has to be taken concerning multiphoton states and structures, since the rate turns out to
depend on the photon number inside the cavity [cf., cases (2) and (3)].
Thus, for special a posteriori justified cases, the use of a phenomenological Lindbladian model

instead of the full microscopic one is possible. To freely roam the parameter space of a QD–
cavity system, though, it is advisable to use the full model lest a priori elusive dependencies
are overlooked.

2.4.3 Shape-shifting photon number distributions

Photon number distributions are a versatile tool to visualize superpositions of many Fock states.
Although they contain no information on the coherences, number distributions allow for a quick
overview over some important features of the state. In particular, the qualitative shape of such
a distribution and its evolution in time are the topic of [Pub 8].
Rough features of a number distribution can be captured using just a few numbers like the

mean photon number 〈n〉 and the Mandel parameter

Q :=
(
〈∆n〉2 − 〈n〉

)
/〈n〉 . (2.4)

The latter measures the normalized deviation of the mean-square fluctuation 〈∆n〉2 from the
mean photon number 〈n〉. For Poissonian distributions corresponding to coherent states, which
are considered to be the closest to the classical realm, the Mandel parameter vanishes, thus
drawing a line between the super-Poissonian regime with Q > 0 and the sub-Poissonian regime
for Q < 0, which implies a quantum state since there is no classical analog to this situation [100].
In [Pub 8], the excitation of a two-level QD in a cavity with chirped laser pulses is studied,

i.e., pulses with frequencies changing linearly in time. The shape of number distributions and
its evolution are investigated for various excitation conditions, in particular, the pulse length
and the sign of the chirp, which determines a linearly increasing or decreasing pulse frequency.
The pulse length has a profound impact on the distribution, which is first analyzed using

chirp-free pulses. For short pulses around a few picoseconds, the result is known from the usage
of QD–cavity systems as single-photon sources: The single-photon component Rabi-oscillates
with the vacuum, which translates to an oscillating mean photon number [cf., orange line in
Fig. 2.11(a)]. The Mandel parameter, shown in Fig. 2.11(b), oscillates between at most −1
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Figure 2.11: [Taken from [Pub 8]] (a) Mean photon number and (b) Mandel parameter for
different excitation conditions. The pulse with chirp α has its maximum at t = t0. Phonon
effects at T = 4K are taken into account, unless noted otherwise. Choosing a chirp-free pulse
with pulse area and length corresponding to the effective values obtained after passing the chirp
filter results in the blue lines. Note that these results are scaled down by a factor of 5.

and basically 0, thus indicating the quantumness of the investigated state. This implication is
correct, since two Fock states perform an oscillatory dynamics. For longer pulses around 100 ps
with larger pulse area, a bell-shaped distribution moves up and down the Jaynes-Cummings
ladder, while keeping its shape (cf., Fig. 1 in [Pub 8]). Thus, it reaches large mean photon
numbers [cf., blue line in Fig. 2.11(a)]. This is qualitatively different from the situation with
shorter pulses.
Sending a Gaussian pulse through a chirp filter results in adjusted pulse parameters [cf.,

Eq. (11) in [Pub 8]]. Most importantly, the pulse length is effectively prolonged. The parameters
in [Pub 8] are chosen such that after applying the chirp filter, both the effective pulse area and
length correspond to the parameters of the long pulse considered in the chirp-free case. Thus,
the influence of a linearly changing frequency is distilled from all other effects.
In the phonon-free case, chirped excitation leads to distributions that stay close to the vac-

uum, instead of moving up and down the Jaynes-Cummings ladder, as monitored by the much
lower mean photon number [cf., gray line in Fig. 2.11(a)]. Moreover, the shape changes dynam-
ically: Distributions with two smooth peaks as well as jagged shapes with multiple maxima are
observed [cf., Figs. 2(a) and (b) in [Pub 8]]. The dynamics is symmetric with respect to the
sign of the chirp. The phonons have an asymmetric influence on the distributions depending on
this sign. While the jaggedness is smoothed out for positive chirp, the distribution thermalizes
for a negative sign [cf., Figs. 2(c) and (d) in [Pub 8]]. The reason is the asymmetry of phonon
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emission and absorption at low temperatures. Analyses in terms of laser- and cavity-dressed
states described in detail in [Pub 8] yield insights into the behavior of the mean photon number
shortly before and after the pulse maximum as well as the origin of the double-peaked shape.
Notably, in all considered cases the Mandel parameter assumes a value of zero at some point

of the time evolution. Interestingly, though, the corresponding shape of the distribution might
be far off the bell shape of a Poissonian. Already at about 40 ps, Q is close to zero in the
phonon-free case with chirped excitation [cf., gray line in Fig. 2.11(b)]. Often, this finding is
taken as an indication of the Poissonian nature of the distribution. In [Pub 8], it is shown
that the corresponding distribution has a jagged shape with two maxima, thus being far from
having a Poissonian bell shape. It is therefore an important conclusion that there are physically
relevant situations, where the Mandel parameter fails as a measure for the deviation from a
Poissonian distribution.

2.4.4 Schrödinger-cat states

Time and time again, effects were predicted on the basis of the quantum theory that were
considered to be absurd and thus prove quantum mechanics wrong, just before being experi-
mentally observed and backing precisely these absurd aspects of the theory and nature itself. A
famous example is Schrödinger’s gedankenexperiment of the cat in a box [101] supposedly being
alive and dead simultaneously

|cat〉 = N
(
|alive〉+ eiϕ|dead〉

)
, (2.5)

where N is the normalization and ϕ a phase. Such Schrödinger-cat states |cat〉 are interesting
both from a technological [18,102–104] and a fundamental point of view to understand the quantum-
to-classical transition [105].
A possible implementation of a Schrödinger-cat state in quantum optics is the coherent su-

perposition of two macroscopically distinguishable states. In [Pub 9], two protocols to generate
Schrödinger cats in QD–cavity systems are analyzed, one driving the QD, thus indirectly trans-
ferring excitations to the cavity, and the other driving the cavity directly. The dot-driven
protocol (DOD) targets the superposition of two coherent states and is adapted from a proto-
col first proposed by Law and Eberly [106] employed in a QD–cavity setup. Indeed, in the ideal
case without phonons and losses, this protocol yields a Schrödinger cat with near-unity fidelity.
Its Wigner function [cf., Fig. 2.12(a)] is a textbook example of a Schrödinger-cat state’s: two
packets representing the two coherent states are coherently superposed, which is indicated by
the oscillations to negative values between them. Note that there is no classical analog for a
negative-valued Wigner function, which is why it can be used to define a nonclassicality measure
δ [107] [cf., Eq. (9) in [Pub 9]]. While considering radiative decay of the QD and cavity losses
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Figure 2.12: [Adapted from [Pub 9]] (a) Optical Wigner functions of the photonic states at
the times of their respective preparation after the DOD [panels (a), (b), and (c)] and the CAD
[panels (d), (e), and (f)]. Their argument is the complex coherent amplitude α [cf., Eq. (B1)
in [Pub 9]]. Three different model cases are shown: [(a), (d)] the ideal case without losses or
phonons, [(b), (e)] including radiative decay and cavity losses, [(c), (f)] considering both, loss
and phonon effects at T = 4K. For each Wigner function, the corresponding nonclassicality
measure δ is given.

reduces the nonclassicality [cf., Fig. 2.12(b)], already at T = 4K the phonon influence destroys
the superposition completely. Indeed, the corresponding Wigner function in Fig. 2.12(c) is
positive-valued and resembles the incoherent superposition of two macroscopically distinguish-
able states.

The cavity-driven protocol (CAD) is based on an observation in Refs. [108,109]: In the
textbook collapse-and-revival phenomenon of the Jaynes-Cummings model a Schrödinger-cat
state emerges at half the revival time in the limit 〈n〉 → ∞, at which the two-level system and
the cavity even factorize. To harness this feature, a suitable initial state has to be prepared
in the cavity and an appropriate 〈n〉 has to be found that yields a high fidelity to the target
Schrödinger cat. The resulting CAD in [Pub 9] is a one-pulse protocol, compared with the
ten pulses necessary in the DOD, that yields a Schrödinger cat not only in the ideal case [cf.,
Fig. 2.12(d)]. Including losses and even phonons [cf., Figs. 2.12(e) and (f)] diminishes the
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amplitude of the oscillations to negative values in the Wigner function without damping them
out completely. In particular, the nonclassicality as measured by δ is finite. Note that an
AC-Stark pulse is necessary in both protocols to effectively decouple the QD from the cavity
to preserve the target state directly after its preparation, exactly as in Sec. 2.4.1.
Thus, the Wigner function in Fig. 2.12(f) predicts the possibility of preparing a Schrödinger-

cat state in QD–cavity systems under realistic conditions. This discovery crowns and concludes
the study of multiphoton states and structures in QD–cavity systems under phonon influence.

2.5 Methodological outlook and perspectives

In all previous studies of this thesis, a numerically exact iterative real-time path-integral method
including Markovian loss effects by Lindblad superoperators in Liouville space has been applied,
which is also known as the iterative quasi-adiabatic path integral (iQUAPI). In particular, the
phonon environment has been treated, fully accounting for the system-environment correlations
and the finite memory time, while the electromagnetic environment is assumed to be flat jus-
tifying the Born-Markov approximation used in deriving the Lindblad term, both for radiative
decay and cavity losses. This clear distinction between baths presumes an additive coupling of
each environment to the system, i.e., the dynamics induced by the baths are assumed not to
interfere with each other.
In [Pub 10], a numerically exact method is presented that is suitable for arbitrary envi-

ronments using the so-called automated compression of environments (ACE). In particular, it
can treat multiple environments on the same microscopic level. The only prerequisite is the
environment Hamiltonian to be composed of non-interacting degrees of freedom. Thus, ACE
gives a methodological outlook beyond the diagonal pure-dephasing type coupling tractable
by iQUAPI. Bosonic, fermionic, and spin environments, environments ranging from infinite
to Markovian memory, strong and weak system-environment correlations, Gaussian and non-
Gaussian environments, linear and non-linear system-environment coupling: All can be treated
numerically exactly within the single method ACE. This renders ACE a general-purpose tool
for open quantum systems.
Writing an expression for the system’s RDM in analogy to Eqs. (1.7) and (1.8) (but without

a memory cutoff) for a general set of independent environmental modes yields a generalized
influence functional called the process tensor (PT) [cf., Eq. (1) in [Pub 10]], which has the
form of a matrix product operator (MPO). While the MPO form contains the dimensionality
of the environmental Liouville space as the dimension of the so called inner indices, standard
MPO compression algorithms using singular value decomposition automatically select the most
important environment modes.
To showcase each claim about the generality of ACE, [Pub 10] features a variety of physi-
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Figure 2.13: [Taken from [Pub 10]] (a) Phonon-assisted exciton preparation in a two-level
QD without cavity. Different theory levels accounting for the phonon and electromagnetic
environment are compared, where the latter is assumed flat. (b) Dynamics of an initially
fully occupied exciton without driving. Results of different theory levels are shown for two
bandwidths of the electromagnetic environment. The smaller bandwidth induces a photon
memory time comparable to the phononic one.

cal systems to which ACE is applied: electron transport between localized states, central spin
dynamics, coupling of a two-level system to an anharmonic Morse-type environment, superra-
diance of two quantum emitters, and dispersive coupling of a two-level system to a multi-mode
cavity. Extensive analyses of the numerical convergence and computational performance are
provided. In particular, limits of the method are discussed in detail.

One important constraint are environments that intrinsically do not allow for a selection
of relevant modes, when all modes might potentially contribute equally significantly. Then,
convergence within ACE is hard to achieve [cf., the coupling of a central spin to an environ-
ment of randomly oriented, unpolarized spins in [Pub 10]]. The most important limitation
of ACE concerning applications in QD–cavity systems is its simulation time. While lengths
around 100 ps are possible, the non-iterative nature of the algorithm prohibits long-time stud-
ies in the nanosecond-regime necessary to obtain multitime correlation functions in setups using
pulse trains. Nonetheless, numerically exact studies of phenomena manageable within a 100 ps
simulation time are feasible using ACE.

Fig. 2.13(a) shows the off-resonant LA phonon-assisted excitation of a two-level QD without
a cavity treated on different theory levels concerning the phonon and the photon environment.
Since the latter is assumed flat in this example, ACE and iQUAPI should yield the same
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result. In the case without considering phonons and treating the photonic environment on the
Lindblad level, only a transient occupation is observed, since there are no phonons to assist
the excitation scheme. Treating the phonons with ACE without considering photons yields a
finite, stationary exciton occupation as expected from phonon-assisted preparation. Including
both environments yields an additional exponential decay due to losses to the electromagnetic
bath. No noteworthy difference is observed between treating both baths with ACE and using
iQUAPI for the phonons and a Lindblad term for the photons. This observation underlines the
additivity of the two environments when the photonic one is flat.
The initial value problem of an excited QD without driving further strengthens this argument

in the case of a finite, but large bandwidth, shown in Fig. 2.13(b). For a bandwidth of ~×10 ps−1

no cross-interaction between baths is observed, such that iQUAPI with a Lindblad term for the
photons is employable. When decreasing the bandwidth, though, to ~ × 0.4 ps−1, the photon
environment acquires a memory similar to the phononic one. The influence on the exciton
dynamics is rendered non-additive: including the phonon influence slows the decay compared
with the case, where only the photon bath is accounted for.
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Self-assembled semiconductor quantum dots (QDs) in microcavities are indeed a versatile plat-
form for the generation of highly nonclassical states of light. In this thesis, QD–cavity sys-
tems have been discussed as on-demand high-quality single-photon sources. The influence of
environmental longitudinal acoustic (LA) phonons often considered to be detrimental to the
preparation of quantum states could even be exploited to enhance the single-photon purity.
QDs have been proposed as a candidate for a single-photon buffering device. To this end, a
single Mn atom as a dopant has been suggested to facilitate a coupling between the optically
bright and dipole-dark excitons, the latter being a metastable state used in the storage scheme.
The generation of different types of entanglement in a driven four-level emitter inside a cavity

has been discussed, QD–cavity systems being a possible candidate for experimental realization.
A protocol to switch between the two types of Bell-state entanglement time-dependently has
been proposed. The generation of multiphoton states and structures in QD–cavity systems
has been investigated, in particular, the LA phonon influence on various preparation protocols.
While the generation of higher-order Fock states up to n = 5 could be shown to be feasible, the
emission of N -photon bundles in QD–cavity systems does not seem to be possible. Transiently
changing photon number distributions due to different excitation conditions, in particular, a
frequency chirp have been studied. The phonon influence has been shown to be grave when
the chirp is finite. Finally, two protocols to prepare optical Schrödinger-cat states have been
compared. While the phonon influence renders the preparation of these textbook examples of
purely quantum states impossible, if the QD-driven protocol is being used, the cavity-driven
protocol yields a Schrödinger-cat state with reasonable fidelity and nonclassicality.
The core result of the application-oriented part of this thesis is therefore the prediction of

the possibility to generate various nonclassical states of light in QD–cavity systems, even under
realistic conditions, in particular, regarding the phonon environment. Especially the predic-
tion that the single-photon purity following from LA phonon-assisted excitation benefits from
phonon enhancement such that values at least as high as for resonant excitation are encountered,
can be considered an important step both from an experimental point of view and regarding
the physical explanation of the underlying mechanism. Above all, this prediction was recently
confirmed in experiment [110,111]. Furthermore, an ongoing cooperation of the main supervisor’s
group with the Universities of Vienna and Stuttgart explores the advantages of single photons
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generated in LA phonon-assisted schemes for quantum cryptographic applications. Finally, it
is noteworthy that equipment available to groups in Vienna, Linz, Innsbruck, or Paderborn
might permit proof-of-principle experiments on the presented multiphoton states in the near
future.
Methodologically, the impact of using the quantum regression theorem (QRT) on the pre-

diction of single-photon figures of merit has been analyzed. Benchmarking the QRT to the
numerically exact path-integral method has brought a systematic overestimation of the phonon
influence on the indistinguishability using the QRT to light, while the impact on the single-
photon purity has turned out to be negligible. This finding pushes the phonon-imposed limits
on the single-photon source quality beyond previous estimates and gives fresh impetus to future
experimental work, which is why it can be considered a key methodological result of this thesis.
Finally, a new general-purpose formalism to simulate open quantum systems has been dis-

cussed. The ACE algorithm has provided a microscopic justification of the assumption used
throughout this thesis that the phonon and a flat electromagnetic field environment couple
additively. But ACE allows for the exploration of new physics beyond current frontiers. The
influence of placing a QD inside a structured electromagnetic environment provided by a pho-
tonic crystal has become accessible, to name an example already studied in the first supervisor’s
group. Various other experimentally and technologically relevant open quantum systems are
now laid open to numerically exact investigation owing to ACE.
Thus, it seems to be true as ever before to be extraordinarily wary of complacency, as

encountered at the end of the 19th century, when Albert Michelson stated in 1894 [112]:

“An eminent physicist has remarked that the future truths of Physical Science are
to be looked for in the sixth place of decimals.”

On the contrary, at this turning point from the digital to a quantum age, a quote attributed to
Isaac Newton is more appropriate:

“What we know is a drop, what we don’t know is an ocean.”
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The quantum regression theorem (QRT) is the most widely used tool for calculating multitime
correlation functions for the assessment of quantum emitters. It is an approximate method based on a
Markov assumption for environmental coupling. In this Letter we quantify properties of photons emitted
from a single quantum dot coupled to phonons. For the single-photon purity and the indistinguishability,
we compare numerically exact path-integral results with those obtained from the QRT. It is demonstrated
that the QRT systematically overestimates the influence of the environment for typical quantum dots used
in quantum information technology.

DOI: 10.1103/PhysRevLett.127.100402

To be used as photon sources for quantum information
technology [1,2], semiconductor quantum dots (QDs) must
deliver photons with high-quality characteristics such as a
high brightness, a perfect single-photon purity, and indis-
tinguishability. However, due to the electron-phonon inter-
action in QDs these quantities can be degraded [3,4]. In the
current race for the perfect single-photon source [5,6] with
achieved purities and indistinguishabilities close to unity
[4,7–12], it is crucial to understand the influence of the
phonon-induced dephasing on the properties of emitted
photons. The coupling to environmental phonons has been
shown to lead to several important phenomena like the
phonon sidebands [13,14], damping of Rabi oscillations
[15–19], and the possibility for a dynamic decoupling of
electronic and phononic subsystems [20,21], or degrada-
tion of photon properties [22].
The quantum regression theorem (QRT) known from

quantum optics is probably the most widely used standard
tool to investigate the above photon properties [23]. In esse-
nce, the QRT prescribes to calculate the two- (or multi-)
time correlation functions using the same dynamical
equation for both the (real-) time and the delay-time
arguments, which is used to determine the time evolution
of the single-time correlations. Solving an initial value
problem for the delay-time propagation as done in the QRT
disregards the memory that has build up until the start of the
propagation, and thus, the use of the QRT may become
critical when used for non-Markovian dynamics. With the
help of the QRT, multitime correlation functions yielding,
e.g., the purity and indistinguishability can be deduced. The
QRT can be extended such that it also accounts for the
electron-phonon interaction [24–28]. For our current study
it is most important that phonons are known to induce non-
Markovian dynamics [24,26,29–32] which provides a

situation where the QRT may come to its limits [33–37].
Because the QRT is an approximation it is not always clear,
whether the assumptions made in the derivation are
fulfilled.
Testing the limits of the QRT has recently become

possible by a path-integral approach to calculate multitime
photon correlation functions [38]. This approach is numeri-
cally exact meaning that the time-dependent solution to the
many-body Hamiltionian model is obtained without any
further approximations, and thus the phonon influence
including its non-Markovian part is fully taken into account
[39–41]. The accuracy of the result is controlled by choosing
an appropriate time discretization and memory length.
In this Letter, we explore the limits of the QRT

approximation for calculating multitime correlation func-
tions using a QD coupled to phonons as an example. To
compare numerically exact results with the QRT approxi-
mation in the most transparent way, we implement the
QRT directly within the path-integral method. Since apart
from the QRT no further approximations are involved, this
approach offers a direct way to evaluate the influence of the
QRT on the multitime correlations. Details of the imple-
mentations are found in the Supplemental Material [42].
We demonstrate that the QRT systematically overesti-

mates the phonon impact on the indistinguishability, in
particular for standard GaAs QDs relevant for technological
applications [51–58]. We show that this is connected to the
non-Markovian part of the dynamics. In contrast, the QRT
yields quantitatively correct results for the purity.
We consider a model where a two-level QD can emit

photons and interacts with environmental longitudinal
acoustic (LA) phonons [14,32,59]. For the calculations
we consider GaAs QDs of radius 3 nm and standard
material parameters for the phonon coupling with the
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exception that we introduce a scaling factor λmodifying the
overall coupling amplitude. Details of the model are found
in the Supplemental Material [42]. We assume that this
scaling is a variable in the interval λ ∈ ½0; 10�, where 0
means the absence of phonons, 1 corresponds to the GaAs
QDs, and larger values allow us to explore strongly coupled
QD-phonon systems [39,60]. Larger couplings 1 < λ ≤ 10
can be found in piezoelectric materials like GaN [61]. We
further account for the radiative decay of the QD exciton by
introducing a Lindblad superoperator, setting the radiative
decay rate to γ ¼ 1 ns−1. The QD is excited by an external
laser pulse with a Gaussian envelope. We consider a
resonant [62] excitation scheme with a π pulse of 3 ps
length (full width at half maximum) [63] to prepare the
excited state in the QD [7,28]. Using this model, we can
then calculate the photonic properties.
The single-photon purity P is defined as

P ¼ 1 − p with p ¼
R TPulse=2
−TPulse=2

dτGð2ÞðτÞ
R 3TPulse=2
TPulse=2

dτGð2ÞðτÞ
: ð1Þ

TPulse is the separation of the pulses in the excitation pulse
train, and

Gð2ÞðτÞ ≔ lim
T→∞

1

T

Z
T

−T
dtGð2Þðt; τÞ; ð2aÞ

Gð2Þðt; τÞ ≔ hσ†XðtÞσ†Xðtþ τÞσXðtþ τÞσXðtÞi ð2bÞ

with σX describing the QD transition from the excited to the
ground state. P is a measure for the single-photon compo-
nent of the photonic state [1,7,8,64–68]. It is measured
using a Hanbury Brown-Twiss setup [69], which is a
coincidence measurement and can thus be modeled with
a second-order two-time correlation function Gð2ÞðτÞ. P ¼
1 implies a perfect single-photon purity. The quantity has
no lower bound, −∞ < P ≤ 1, since p can be larger than 1
in the case of bunching instead of antibunching behavior.
The indistinguishability I of two successively emitted

photons is obtained as

I ¼ 1 − pHOM with pHOM ¼
R TPulse=2
−TPulse=2

dτGð2Þ
HOMðτÞR 3TPulse=2

TPulse=2
dτGð2Þ

HOMðτÞ
ð3Þ

with the correlation functions [28,70,71]

Gð2Þ
HOMðτÞ ≔ lim

T→∞

1

T

Z
T

−T
dtGð2Þ

HOMðt; τÞ ð4aÞ

Gð2Þ
HOMðt; τÞ ≔

1

2
½hσ†XðtÞσXðtÞihσ†Xðtþ τÞσXðtþ τÞi

− jhσ†Xðtþ τÞσXðtÞij2 þGð2Þðt; τÞ�; ð4bÞ

where the last term in Eq. (4b) accounts for nonunity
single-photon purities. This quantity is measured in a
Hong-Ou-Mandel setup [72]. Perfect indistinguishability
corresponds to I ¼ 1, and using the definition Eq. (4b) it is
bounded by 0.5 ≤ I ≤ 1 [71]. We note that other defini-
tions of I are often used which are not applicable when the
single-photon purity deviates from unity and where the
lower bound is 0 rather than 0.5 [22,73].
The brightness B of a photon source is defined as the

number of photons emitted per excitation laser pulse [8]. It
is given as [28,74]

B ≔ γ

Z
t0þTPulse=2

t0−TPulse=2
dt hσ†XðtÞσXðtÞi; ð5Þ

where t0 is the center time of the pulse and 0 ≤ B ≤ γTPulse.
A value of B of 100% corresponds to the ideal case of a
delta-pulse excitation.
To calculate these quantities we use the path-integral

method both without and with the QRT. The path-integral
method propagates the augmented density matrix that
contains the information about the memory induced by
the environment to the QD dynamics. Since the phonon-
induced memory depth is finite, a memory window is
formed in each time step. To implement the QRT, the
augmented density matrix is traced over all memory-related
variables at the end of the t propagation to yield a new
initial reduced density matrix before the subsequent τ
propagation. Thus, the accumulated phonon memory is
discarded for the τ propagation. Therefore, the τ propaga-
tion becomes independent from the past evolution in t,
which is the central assumption of the QRT. We have
checked the validity of this approach by comparing our
results with a standard implementation of the QRT as
discussed in Ref. [26] and verify the finding therein that the
QRT yields the phonon sidebands in emission spectra on
the energetically wrong side, cf., Fig. 2 in the Supplemental
Material [42].
Using the path-integral method, we calculate the photon

properties P, I , and B for a wide parameter range as shown
in Fig. 1, which displays the results using the path-integral
approach without the QRT approximation. In the phonon-
free case, λ ¼ 0, the excitation of the QD leads to a
near-optimal single-photon source with P ¼ 99.76%,
I¼99.76%, and B¼99.82%. Slight deviations (< 0.3%)
from the perfect source can be traced back to the finite pulse
length.
While the single-photon purity is close to unity for the

entire parameter range under consideration, for a finite
phonon scaling λ, the indistinguishability rapidly deterio-
rates with rising temperature T, such that for λ ¼ 1 it falls
below 70% when T > 30 K. For large phonon scalings, the
indistinguishability cannot exceed 60% even at T ¼ 4 K.
At higher temperatures and for large phonon scaling, the
indistinguishability decreases to its lowest possible value of
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50%. Nonetheless, the corresponding brightness is non-
vanishing, such that the QD becomes a source of dis-
tinguishable single photons in this regime of higher
temperatures and stronger QD-phonon coupling.
We have marked the most physically relevant regions

with yellow boxes in Fig. 1(c). They correspond to the low-
temperature regime in which experiments are typically
conducted for different QD materials from GaAs to GaN
modeled here by different scalings λ (vertical box) as well
as over a temperature range between liquid helium and
nitrogen temperatures (horizontal box) for GaAs (λ ¼ 1). In
the parameter range of highest interest, i.e., where the boxes
overlap at λ ¼ 1 and T ¼ 4 K, we find P ¼ 99.79%,
I ¼ 93.16%, and B ¼ 96.75%.

We now evaluate how the QRT approximation changes
these results. It is usually conjectured that the QRT might
fail when the dynamics is non-Markovian, i.e., when
memory effects are nonnegligible [34,35]. Furthermore,
there is a class of environmental couplings for which the
QRT cannot be accurately applied, even when the single-
time dynamics is Markovian [36]. In order to describe the
contribution of the memory effects quantitatively, we
consider a non-Markovianity measure for our system.
In contrast to classical Markovian stochastic processes,

in open quantum systems there is no single definition of
Markovianity (or non-Markovianity) that is agreed upon.
Rather, there are different measures that capture different
aspects of Markovian quantum dynamics [75–81], one of

FIG. 1. The single-photon purity (a), the indistinguishability of two successively emitted photons (b), and their brightness (c) in a two-
level QD for a temperature range between 4 and 70K and phonon scalings from 0 to 10. Yellow rectangles in panel (c) mark the
physically important parameter regime of GaAs around λ ¼ 1 for different temperatures and different phonon scalings for temperatures
below 10K.

FIG. 2. The non-Markovianity measure N (a) and the relative error QI for the indistinguishability (b) as a function of temperature T
and phonon scaling λ. (c) The indistinguishability as a function of the phonon scaling parameter l at 4K, calculated with the numerically
exact path-integral method (num. exact), by using the QRT in the lab frame (QRT), and by applying the QRT in the polaron transformed
frame within the PME approach (PME).
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which is the trace distance measure. The trace distance
between two states described by the reduced density
matrices ρ1 and ρ2 is defined as

D½ρ1ðtÞ; ρ2ðtÞ� ≔
1

2
jjρ1ðtÞ − ρ2ðtÞjj1 ¼

1

2

X

k

jxkðtÞj; ð6Þ

where xkðtÞ are the eigenvalues of the difference matrix
ρ1ðtÞ − ρ2ðtÞ. In our case, ρ1 and ρ2 correspond to arbitrary
states chosen on the Bloch sphere of the two-level QD.
For Markovian dynamics, this quantity is a contraction:

d
dt

D½ρ1ðtÞ; ρ2ðtÞ� ≤ 0: ð7Þ

The intuitive explanation for this behavior lies in the loss of
information in a Markovian system: two originally distinct
states monotonically lose their distinguishability over time.
Only in a non-Markovian system, information can flow
back from the environment to the system, making the trace
distance a nonmonotonic function of time. Therefore, the
non-Markovianity of a system can be quantified as
[26,36,75]

N ≔ max
ρ1;ρ2

Z

Ωþ

d
dt

D½ρ1ðtÞ; ρ2ðtÞ�dt: ð8Þ

Ωþ is the union of the intervals on which
ðd=dtÞD½ρ1ðtÞ; ρ2ðtÞ� > 0. The maximum is taken over
all pairs of possible initial states. Fortunately, only the
subset of those states, which are orthogonal to each other,
needs to be considered [82]. For our two-level system, this
means that the corresponding Bloch sphere needs to be
sampled only for pairs of opposing points on its surface.
While N ¼ 0 implies Markovianity, it is important to

realize that N ≠ 0 implies that the underlying dynamical
map is indivisible [36]. Therefore, the measure N captures
the appearance of memory effects in the dynamics of the
system, which is a fundamental aspect of non-Markovianity
both in classical stochastic processes and open quantum
systems.
To quantify the deviations introduced by the QRT, we

define the relative error of evaluating a target quantity M
using the QRTas a measure for the validity of the QRTwith
respect to M:

QM ¼
����
M −MQRT

M

����; ð9Þ

where M is calculated numerically exact and MQRT using
the QRT.
The QRT states that the same dynamical map that is used

to evolve the density matrix and, in extension, expectation
values of any subsystem operator, can be used for the time
evolution of multitime correlation functions used in

Eqs. (2b) and (4b). In particular, the differential equation
propagating the density matrix in the real time t is reused for
the propagation in the delay time τ [83,84]. This assumption
presumes that the initial factorization of subsystem and
environment common in the description of open quantum
systems is also used at the beginning of the τ dynamics. In
other words, this factorization is assumed for every t.
Now, we examine the impact of the QRT approximation

on the photon source characteristics considered above. The
non-Markovianity measureN and the relative error QI for
the indistinguishability are depicted in Figs. 2(a) and 2(b)
as a function of T and λ. We see large values ofN andQI ,
in particular, in the physically relevant parameter regimes,
i.e., at λ ¼ 1 and low temperatures. The largest N is found
for λ > 1 and T < 10 K [cf., Fig. 2(a)], where the error
introduced by using the QRT also rises up to roughly 18%.
This behavior can be related to the connection between
Markovianity and the QRT. Interestingly, there are also
parameter ranges with a nonzeroN , where the QRTerror is
insignificant, e.g., at λ ¼ 10 and T ¼ 20 K, where
N ¼ 0.0125, while QI ¼ 0.3%. This means that there
are parameter sets where the QRT approximation is valid to
a better degree than a Markovian description. This is
unexpected since the former imposes more restrictive
conditions on the system dynamics: for the QRT to hold,
the subsystem and environment have to factorize for all
times t, not only at the initial time. In the entire parameter
regime considered here, the QRT overestimates the phonon
influence on I , that is I > IQRT, cf., Fig. 2(c) for a slice
at 4K.
In contrast, the error QP introduced by the QRT to the

single-photon purity is negligible, and the brightness is
unaffected by the QRT, since its definition in Eq. (5)
contains only expectation values at a single time.
Surprisingly, QP is also extraordinarily small, being on
the order of 10−4 for all considered parameter values (not
shown), in contrast to QI .
In order to understand this, we examine the multitime

correlation functions. While the purity contains only the
second-order correlation Gð2Þðt; τÞ, the indistinguishability
also includes the correlation Gð1Þðt; τÞ ≔ hσ†Xðtþ τÞσXðtÞi.
In Gð2Þðt; τÞ the operators σ†X and σX appear in pairs at each
time t and tþ τ, respectively, hence modeling intensity-
intensity correlation measurements, i.e., the correlation
between occupations. In Gð1Þðt; τÞ on the other hand, σ†X
and σX appear as stand-alone operators for each time
argument in Gð1Þðt; τÞ. Therefore, this function correlates
coherences rather than occupations. Because the coupling
to the LA phonon environment has a stronger impact on
coherences than on occupations, it becomes clear why the
approximations introduced by the QRT have a significantly
stronger impact on I than on P.
This finding implies two consequences: first, the single-

photon purity can be calculated using the QRT with
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negligible error, even for those parameters, where the
dynamics is clearly non-Markovian according to the
measure N [cf., Fig. 2(a)]. Second, one cannot use QP
as a generalmeasure for the validity of the QRT. Using it in
such a way would imply the validity of the QRT, which is
misleading since in the same parameter regimes considered,
the indistinguishability is off by up to 18% when evaluating
with the QRT.
Finally, we analyze the frame dependence of the QRT by

applying it in a polaron transformed frame. This technique
is widely used in the polaron master equation approach
(PME) [85–87] (see also Supplemental Material [42]). In
Fig. 2(c), the indistinguishability is shown for a varying
phonon scaling parameter λ at T ¼ 4 K. The numerically
exact result (black solid line) is compared with the
calculation using the QRT in the lab frame (red dashed
line) and the PME approach applying the QRT in the
polaron frame (blue dotted line). While all methods yield
qualitatively the same dependency, the PME produces
results closer to the numerically exact calculation. While
the largest relative error encountered in the slice shown in
Fig. 2(c) is 18% for the QRT in the lab frame (red dashed
line), it is only 6% when the QRT is applied in the polaron
frame within the PME. The better performance of the PME
is expected because due to the transformation to the polaron
frame a variety of, but not all, non-Markovian effects are
captured. Therefore, changing the frame improves the
usage of the QRT, but still a significant systematic
overestimation of phonon effects on the photon indistin-
guishability is obtained.
In summary, assessing the validity of the commonly used

QRT is dependent on the target quantity that is calculated.
In particular, there is no single measure by which the
validity of the QRT could be estimated for all possible
figures of merit derived from multitime correlation func-
tions. Using a numerically exact path-integral method to
calculate the properties of photons emitted from a QD
coupled to LA phonons enabled us to explore the bounda-
ries of the QRT, showing that the phonon effect on photon
indistinguishability is systematically overestimated by the
QRT, while the purity can be safely calculated using the
QRT. Unlike what is found for other systems [36], the QRT
induces errors in the photon emission from QDs typically
only when the dynamics is non-Markovian. Though we
show that due to the phonons the photon properties are
limited close to but below unity in typical cases, there is
still room for improvement, e.g., by placing the QD in a
cavity. Furthermore, our results should be applicable to a
broad range of physical two-level systems, such as defects
in diamonds [88–93], silicon [94,95], hexagonal boron
nitride [96,97], or other solid-state emitters [98] coupled to
a continuum of environmental oscillators.
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I. HAMILTONIAN AND MODEL EQUATION

Our model Hamiltonian reads as:

H =HQD +HPh +Hdriving . (1)

The two-level quantum dot (QD) has an excited state |X〉 at energy ~ωX and the energy of the ground state |G〉 is
set to zero. In a frame co-rotating with the laser frequency ωL the corresponding Hamiltonian is

HQD = ~∆ωXL|X〉〈X| (2)

with the exciton-laser detuning ∆ωXL = ωX − ωL. The QD interacts with an environment of longitudinal acoustic
(LA) phonons via a pure-dephasing coupling Hamiltonian [1–5]

HPh = ~
∑

q

ωqb
†
qbq + ~

√
λ
∑

q

(
γX
q b
†
q + γX∗

q bq
)
|X〉〈X| , (3)

where bq (b†q) annihilates (creates) a phonon in the mode q with energy ~ωq. The coupling strength to the QD is
denoted by γX

q . In order to analyze the impact of the phonon coupling, we introduce a scaling parameter λ, with
0 ≤ λ ≤ 10. λ = 0 describes the phonon-free case, λ = 1 the coupling in a GaAs QD. 1 < λ ≤ 10 roughly estimates
the stronger phonon coupling in piezoelectric materials like GaN [6]. λ is referred to as the phonon scaling in the main
text. Note that we followed the standard way to write the phonon coupling in Eq. (3) to the exciton state |X〉 only.
But in fact, it can be written to the ground state |G〉 without any influence on the stationary emission spectrum,
which we checked numerically by calculating the QRT spectrum in Fig. 1 (red dashed line) both ways.

The QD is driven by an external laser pulse described by

Hdriving = −~
2
fp(t)

(
σX + σ†X

)
. (4)

σX := |G〉〈X| is the operator for the transition between |X〉 and the ground state |G〉. fp(t) is the real envelope
function of the external laser pulse. Throughout the main text, we consider a Gaussian pulse with an area of π
and pulse duration as measured by the full width at half maximum τFWHM = 3 ps resonant to the polaron shifted
QD transition energy. We further account for the radiative decay of the QD exciton by introducing a Lindblad
superoperator acting on the density matrix ρ to our model

LσX ,γρ = γ

(
σXρσ

†
X −

1

2

{
ρ, σ†XσX

}
+

)
, (5)

where {A,B}+ denotes the anti-commutator of operators A and B and γ the radiative decay rate set to a typical
value of 1 ns−1 unless noted otherwise.

In this model the QD environment consists of two parts: the coupling to photon modes which is responsible for
the radiative decay and the coupling to phonons. Since the radiative decay is modeled by a Markovian rate, it is not
expected to limit the validity of the QRT. Phonons are known to influence the QD dynamics profoundly [1, 7–18] and
to be the origin of non-Markovian behavior [5, 19–23], which might entail errors of the QRT.

While the Hamiltonian in Eq. (1) defines the model, the corresponding Liouville-von Neumann equation for the
density matrix ρ reads

∂

∂t
ρ = − i

~
{H, ρ}− + LσX ,γρ (6)



2

TABLE I. Parameters typical for GaAs QDs [6].

Electron deformation potential De (eV) 7.0
Hole deformation potential Dh (eV) -3.5
Density ρD (kg/m3) 5370
Sound velocity cs (m/s) 5110
Electron-to-hole confinement ratio ae/ah 1.15
Electron confinement radius ae (nm) 3.0

with the commutator {A,B}− of operators A and B. This equation is solved in a numerically exact way for the
time evolution of the QD subsystem’s reduced density matrix ρ̄ = TrPh[ρ], where the trace is taken over the phonon
subspace, by employing an iterative real-time path-integral formalism (details are explained in Refs. 24–26).

The deformation potential coupling of the QD to LA phonons influences the reduced electronic density matrix via
the phonon spectral density J(ω) =

∑
q |γXq |2δ(ω − ωq). Note that the sign or even the phase of the coupling has no

influence on the electronic dynamics, since only the absolute square enters the spectral density. Assuming a linear
dispersion ωq = cs|q| with sound velocity cs and Gaussian wave functions for both electrons and holes with radii ae
and ah, the spectral density becomes [24, 26, 27]

J(ω) =
ω3

4π2ρD~c5s

(
Dee

−ω2a2e/(4c
2
s) −Dhe

−ω2a2h/(4c
2
s)
)2

. (7)

We use typical GaAs parameters for a QD with radius ae = 3.0nm listed in Tab. I. Note that scaling the phonon
coupling γXq with

√
λ as in Eq. (3) implies that the spectral density J(ω) is scaled with λ.

The low-frequency behavior of this spectral density is given by J(ω) ∝ ωs with s = 3. Spectral densities with
such a power law dependence are classified as super-Ohmic, in contrast to the Ohmic case, for which s = 1, and
the sub-Ohmic case with 0 ≤ s < 1. The super-Ohmic case is known to result in a nonexponential and only partial
polarization decay [3] which is a clear signature of non-Markovian dynamics. Rather generally, the low-frequency
behavior has been shown to potentially play a decisive role for the relation between Markovianity and QRT errors
[28].

II. EVALUATION OF G(2)(t, τ)

Numerically Exact Evaluation To evaluate the two-time correlation function introduced in the main text
G(2)(t, τ) = 〈σ†X(t)σ†X(t+τ)σX(t+τ)σX(t)〉 within the path-integral formalism, first, we assume a time discretization
of n equidistant time steps with length ∆t for the interval [0, t] and of another m time steps of the same length to
cover [t, t+ τ ], i.e., t = n∆t and τ = m∆t. The object propagated in time is the augmented density matrix (ADM),
a 2nc-rank tensor that contains all the information induced by the nc∆t long memory. The iterative propagation of
the ADM is summarized as [25]:

ρ̄
µn...µn−nc+1
νn...νn−nc+1 =Mνn−1µn−1

νnµn

∑

νn−nc
µn−nc

exp

(
n∑

l=n−nc

Sνnνlµnµl

)
ρ̄
µn−1...µn−nc
νn−1...νn−nc

, (8)

whereMνn−1µn−1
νnµn is the subsystem propagator and Sνnνlµnµl

the phonon influence functional. The indices µj and νj
describe the subsystem state µ and ν, respectively, at the time step j. The subsystem’s reduced density matrix at
time n∆t, which is the quantity necessary to calculate any expectation value of observables within the subsystem, is
obtained by tracing out the memory contained in the ADM, i.e.,

ρ̄νnµn
=

∑

νn−1...νn−nc+1

µn−1...µn−nc+1

ρ̄
µn...µn−nc+1
νn...νn−nc+1 . (9)

In order to calculate the two-time correlation function G(2)(t, τ), the ADM is propagated for the first n steps, after
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which the operators evaluated at time t are multiplied to produce a modified ADM (MADM):

ρ̄
µn...µn−nc+1

σXσ
†
Xνn...νn−nc+1

=
∑

ν′nµ
′
n

(σX)νnν′nM
νn−1µn−1

ν′nµ
′
n

(σ†X)µ′nµn

∑

νn−nc
µn−nc

exp

(
n∑

l=n−nc

Sνnνlµnµl

)
ρ̄
µn−1...µn−nc
νn−1...νn−nc

, (10)

The MADM follows the same recursion as the ADM, such that for the subsequent m steps until t + τ , the MADM
is iterated instead of the ADM. Finally, the two-time correlation function is obtained by multiplying the operators
evaluated at time t+ τ and the trace is performed to yield

G(2)(t, τ) =
∑

νn+m...νn+m−nc+1

µn+m...µn+m−nc+1

[
σ†XσX

]
µn+mνn+m

ρ̄
µn+m...µn+m−nc+1

σXσ
†
Xνn+m...νn+m−nc+1

. (11)

A derivation of this scheme with detailed explanations can be found in Ref. [29]. Note that the first-order correlation
function 〈σ†X(t+ τ)σX(t)〉 appearing in the main text can be obtained using the same method by simply exchanging
σ†X(t) and σX(t+ τ) with identity operators in G(2)(t, τ).

QRT Evaluation To implement the QRT within this framework, one traces out the memory of the ADM after
reaching the time n∆t as in Eq. (9) to obtain the reduced density matrix (RDM) ρ̄νnµn . Then, a modified RDM
(MRDM) which is defined as

ρ̄ µn

σXσ
†
Xνn

=
∑

ν′nµ
′
n

(σX)νnν′n ρ̄ν′nµ′n(σ†X)µ′nµn
(12)

is used as the new initial RDM for the next m time steps, which now describe the propagation in τ . The essential
difference to the exact propagation scheme is that here the memory acquired until the time t is discarded for the
subsequent τ -propagation. As for the initial (real) time t = 0, the phonon subspace is assumed to be in equilibrium at
a temperature of T at the time n∆t, when the propagation of the MRDM begins. The statistical operator of the total
system is approximated by the QRT at the beginning of the τ -propagation by a product of the statistical operators
for the two-level system and the environment, thus ignoring the entanglement between these subsystems that has
been built up during the t-propagation due to their mutual interaction [30].

III. EMISSION SPECTRA AND QRT IMPLEMENTATION

The emission spectrum S(ω) is obtained in a stationary nonequilibrium state of the system. To this end, the first-
order two-time correlation function G(1)(t, τ) = 〈σ†X(t+ τ)σX(t)〉 is considered in the limit t→∞. After subtraction
of the coherent part of the emission [29, 31] limt,τ→∞G(1)(t, τ) the Fourier transform is taken:

S(ω) = Re
[∫ ∞

−∞
dτ lim

t→∞

(
G(1)(t, τ)− lim

τ→∞
G(1)(t, τ)

)
e−iωτ

]
. (13)

In Fig. 1 QD emission spectra calculated for a constantly driven QD with a field strength of ~fp(t) = 0.079meV and
a radiative decay rate of γ = 0.01 ps−1 at T = 10K are shown. As a reference, the phonon-free result, i.e., for λ = 0,
is depicted (orange dashed-dotted line), where no sidebands appear. The inset in Fig. 1 shows the same data zoomed
in on the energy scale and zoomed out on the intensity axis. On this scale, the Mollow triplet becomes visible with the
peaks at ±~fp, which corresponds to the Rabi splitting. For finite temperature, the peaks shift to smaller energies and
broaden slightly, which corresponds to the phonon-induced renormalization of the Rabi frequency and its damping,
respectively. Note that the numerically exact result at 10K has been obtained by employing a matrix-product-state
representation of the iterative path-integral method [32] to enable calculations with very fine time discretization.

We stress that there is a clear physical picture that the phonon sideband has to be on the left side of the zero
phonon line (ZPL). At low temperatures, phonon emission is strongly favored over phonon absorption. Therefore, the
energies of the emitted photon and of the emitted phonon have to add up to the QD transition energy due to energy
conservation. Accordingly, in an emission spectrum, the energy of the emitted photon after phonon emission has to
be smaller than the QD transition energy. This results in the phonon emission sideband being on the energetically
lower side of the ZPL.

The numerically exact approach (black solid line) gives the physically correct results showing the phonon sideband
on the energetically lower side of the ZPL. In contrast, when the QRT is applied, the phonon sideband appears on
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FIG. 1. The QD emission spectrum [29] calculated for a constantly driven QD with ~fp(t) = 0.079meV and a radiative decay
rate of γ = 0.01ps−1 at T = 10K. The numerically exact result (num. exact) is compared with results obtained using the QRT
in the lab frame (QRT) and in the polaron frame (PME). As a reference, the phonon-free case λ = 0 is also shown. The inset
depicts the same data on a different scale, where the Mollow triplet becomes visible.

the energetically higher side (red dashed line). This wrong outcome of the QRT was already discussed in Ref. 22,
where it was explicitly shown that by neglecting correlations resulting in memory effects, physically wrong results are
obtained. We consider our implementation of the QRT as verified, since it reproduces this result of Ref. 22, which
was obtained within a completely different methodological framework. When including said correlations and memory
effects on the other hand, as they are in our numerically exact path-integral approach, the physically correct picture
of a phonon sideband at the lower energy side of the emission spectrum is found.

IV. THE QRT IN THE POLARON TRANSFORMED FRAME

An approximate method to account for the coupling to the LA phonon environment is the polaron master equation
approach (PME) [33–35]. The core idea of this method is to transform the system into the polaron frame by

H ′ = eSHe−S (14a)

S =σ†XσX
∑

q

√
λ

ωq

(
γXq b

†
q − γX∗q bq

)
. (14b)

Only then the Markov approximation is employed to obtain a time-local master equation for the reduced subsystem
dynamics. This method becomes exact in the weak-driving limit. Since we consider strong pulsed excitation, it is
not a priori clear if this condition is fulfilled. The PME approach captures a variety of non-Markovian features that
would be lost if the Markov approximation had been used in the original laboratory frame.

Therefore, the question arises whether the QRT is also frame dependent. Indeed, QD emission spectra calculated
within the PME approach by employing the QRT in the polaron frame show the correct phonon sidebands [36], cf.,
blue dotted line in Fig. 1.

In the following, we describe the procedure to compare the effect of using the QRT in the lab and the polaron frame
on the indistinguishability, cf., Fig. 2(c) in the main text. To obtain the indistinguishability in the lab frame within
the PME approach, one has to transform it back after using the QRT in the polaron frame. In this transformation, all
σ†X (σX) operators acquire a B+ (B−) operator with B± = exp

[
±∑q(

√
λ/ωq)(γX∗q bq − γXq b†q)

]
. Hence, whenever

the two transition operators appear in pairs at equal times as in the second-order correlation function G(2)(t, τ) the
back transform is the identity operation. In contrast, the function G(1)(t, τ) is influenced by the back transform. In
particular, a term 〈B+(τ)B−(0)〉 appears, which is simplified to 〈B〉2eφ(τ) [37]. The so-called Franck-Condon factor
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[16] 〈B〉 is defined as

〈B〉 = 〈B±〉 = exp

[
−1

2

∫ ∞

0

dω
J(ω)

ω2
coth (~ω/(2kBT ))

]
, (15)

where kB denotes the Boltzmann constant. The phonon correlation function is

φ(τ) =

∫ ∞

0

dω
J(ω)

ω2
[coth (~ω/(2kBT )) cos (ωτ)− i sin (ωτ)] . (16)
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Erratum: Accuracy of the quantum regression theorem for photon emission from a
quantum dot

M. Cosacchi, T. Seidelmann, M. Cygorek, A. Vagov, D. E. Reiter, and V. M. Axt

In our Letter, the main investigation was a comparison
between a numerically exact path-integral (PI) method
and the quantum regression theorem (QRT) to model
photonic figures of merit in quantum-dot–cavity systems
obtained from two-time correlation functions. As a side
aspect, we discussed the dependence of applying the
quantum regression theorem in different frames, in par-
ticular, the lab frame and the polaron frame. The latter
was achieved by considering the polaron master equa-
tion (PME) approach. Upon closer inspection of our nu-
merical analysis, we have found a parameter error as ex-
plained below that affects the results obtained within the
PME approach. We stress that the results do not affect
the majority and the main message of the Letter, namely
that the QRT overestimates the phonon influence on the
indistinguishability. Nonetheless, the corrected results
give rise to a number of additional insights regarding the
PME approach that we would like to present in the fol-
lowing.

Concerning Fig. 2(c) of our original Letter, the numer-
ically exact results and the ones obtained by using the
QRT in the lab frame were calculated for a quantum dot
(QD) with an electron confinement radius of ae = 3nm
(as defined in Tab. 1 in the supplemental material). In
contrast, the PME results were erroneously calculated for
ae = 4.175 nm, which prohibits a meaningful comparison
of the different methods. In Fig. 1, the corresponding
PME results for a 3 nm QD are shown (blue dotted line).

As was stated in the original Letter, both the QRT ap-
plied in the lab frame and in the polaron frame system-
atically overestimate the phonon influence on the indis-
tinguishability. In contrast to the previous comparison,
though, quite unexpectedly the correct PME results ba-
sically coincide with the QRT results (cf., Fig. 1). There-
fore, applying the QRT in the polaron frame does not im-
prove the accuracy of the indistinguishability. This new
insight calls for a more detailed explanation, which we
would like to provide in the following in two subsequent
steps: the comparison of numerically exact and PME re-
sults concerning single-time observables and then a dis-
cussion of the two-time correlation function G(1)(t, τ) :=
〈σ+

X(t + τ)σX〉, which enters the definitions of both the
QD emission spectrum and the indistinguishability I.

In Fig. 2 the dynamics of the exciton occupation after
resonant π-pulse excitation is shown. The numerically
exact results are compared with the PME approach for
two different phonon scalings λ = 1 and λ = 10. In the
PME community, two different ways to account for the
radiative decay by a phenomenological Lindblad term are
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FIG. 1. The indistinguishability as a function of the phonon
scaling parameter λ at 4K, calculated with the numerically
exact path-integral method (num. exact), by using the QRT
in the lab frame (QRT), and by applying the QRT in the
polaron transformed frame within the PME approach (PME).
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FIG. 2. The QD exciton dynamics at T = 4K after a Gaus-
sian π-pulse of length τfwhm = 3 ps centered around t0 = 0.
Numerically exact results are compared with PME results
that either use a radiative decay rate of γ or 〈B〉2γ. The
cases of two different phonon scalings λ are shown.

being used: either the corresponding rate is scaled by a
factor 〈B〉2 (as done in, e.g., Ref. [85] of our Letter) or not
(as done in, e.g., Ref. [87] of our Letter), where 〈B〉 is the
phonon Franck-Condon factor as given in Eq. (15) in the
supplemental material of our Letter. In the calculations
shown in our Letter, we had scaled the radiative decay
rate by the factor 〈B〉2.

Now, we show results for the exciton occupation ob-
tained by both versions in Fig. 2. It becomes clear that
the PME results without the additional factor 〈B〉2 agree
with the numerically exact path-integral results for both
phonon scalings λ. Therefore, both methods take into
account the phonon influence equally accurately concern-
ing (single-time) expectation values. Since both the QRT
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applied in the lab frame (labeled QRT in Fig. 1) and in
the polaron frame (labeled PME in Fig. 1) introduce the
same approximation to the method, this finding gives a
first hint at the agreement between the two-time results
obtained in the two frames.

Returning to Fig. 2, taking into account a rate 〈B〉2γ
leads to results far off the path-integral calculations with
an increasing difference for increasing phonon scaling λ.
The underlying assumption that the radiative decay of
the QD into a spectrally flat electromagnetic field envi-
ronment is not affected by the phonon environment has
recently been confirmed by taking into account both envi-
ronements microscopically within the numerically exact
algorithm ACE [M. Cygorek et. al., arXiv:2101.01653
(2021)]. Therefore, we continue here without using the
factor 〈B〉2. (Note that the PME results in Fig. 1 are
already calculated without 〈B〉2. This different scaling,
though, has only a marginal influence on the correspond-
ing results for our parameters. The different QD size ae
is responsible for the larger contribution to the change of
the results.)

In Fig. 3, which corresponds to Fig. 1 in the supplemen-
tal material of our Letter, we show an emission spectrum
obtained within the PME formalism without the factor
〈B〉2 (blue dotted line). All other curves are the same
as in the original figure. Strikingly, the PME spectrum
is now almost a mirror image of the spectrum obtained
by applying the QRT in the lab frame (red dashed line)
similar to what was found earlier by a perturbative ap-
proach (cf., Ref. [26] of our Letter). Since the emission
spectrum is essentially the Fourier transform of the two-
time correlation function G(1)(t, τ) [cf., Eq. (13) in the
supplemental material of our Letter], this finding implies
that using the QRT in the lab or in the polaron frame
affects essentially only the sign of the imaginary part of
G(1)(t, τ). We stress that there is a sizable quantitative
difference between the spectra resulting from the numer-
ically exact and the PME approaches. This difference
arises because the QRT applied in the polaron frame is
overestimating the phonon influence on the correlation
function G(1)(t, τ).

With the conclusions drawn from Figs. 2 and 3, we can
now explain, why the QRT applied in the lab and in the
polaron frame agree concerning the indistinguishability
I in Fig. 1. The indistinguishability is based upon the
Hong-Ou-Mandel correlation function

G
(2)
HOM(t, τ) :=

1

2

[
〈σ†

X(t)σX(t)〉〈σ†
X(t+ τ)σX(t+ τ)〉

−
∣∣〈σ†

X(t+ τ)σX(t)〉
∣∣2 +G(2)(t, τ)

]
(1)

[cf., Eqs. (3) and (4) in our Letter]. We now look at
each term of this expression and compare their derivation
within the different methods. The factors in the first term
are both (single-time) expectation values of the exciton
occupation. Fig. 2 gives a compelling argument that the
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FIG. 3. The QD emission spectrum calculated for a con-
stantly driven QD with ~fp(t) = 0.079meV and a radiative
decay rate of γ = 0.01 ps−1 at T = 10K. The numerically
exact result (num. exact) is compared with results obtained
using the quantum regression theorem in the lab frame (QRT)
and in the polaron frame (PME). In the latter, an unscaled
radiative decay rate γ is used instead of a factor 〈B〉2γ as in
the original plot (Fig. 1 in the supplemental material of our
Letter). As a reference, the phonon-free case λ = 0 is also
shown. The inset depicts the same data on a different scale,
where the Mollow triplet becomes visible.

PME approach agrees well with the path-integral method
regarding the exciton occupation for the parameters con-
cerned. The last term is the second-order two-time corre-
lation function G(2)(t, τ), upon which the single-photon
purity P is based. In our Letter, we found that the
QRT introduces basically no error to this quantity com-
pared with the numerically exact evaluation of the two-
time function. The second term |〈σ†

X(t + τ)σX(t)〉
∣∣2 is

the absolute square of the first-order correlation function
G(1)(t, τ). Fig. 3 implies that the QRT and PME results
differ basically only by the sign of the imaginary part of
this correlation function, which does not affect the abso-
lute square. Thus, we find that for all three terms there
is no difference between the QRT and the PME. This is
the reason why the QRT and PME results of the indis-
tinguishability I are in such good agreement in Fig. 1.
However, the large difference between the numerically
exact results and the QRT approximation remains. It
stems from the already noticed quantitative difference in
the G(1)(t, τ) function as observed earlier in the spectra.
This implies that the only error resulting in a reduced
indistinguishability is caused solely by the application of
the QRT, regardless of the frame it is used in.

Therefore, our correction sheds new light on the PME
formalism: For the considered parameters, the PME re-
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sults concerning (single-time) expectation values match
the numerically exact path-integral calculations well.
Nonetheless, a large difference is found regarding the in-
distinguishability, which is based upon two-time correla-
tion functions, the highest relative error being 18% in

the parameter space under scrutiny. Finally, the impact
of the application of the QRT on the indistinguishabil-
ity is independent of the frame: Applying the QRT in
the polaron frame does not yield an improvement of the
prediction of the indistinguishability.
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We demonstrate theoretically that the single-photon purity of photons emitted from a quantum dot
exciton prepared by phonon-assisted off-resonant excitation can be significantly higher in a wide range of
parameters than that obtained by resonant preparation for otherwise identical conditions. Despite the off-
resonant excitation, the brightness stays on a high level. These surprising findings exploit the fact that the
phonon-assisted preparation is a two-step process where phonons first lead to a relaxation between laser-
dressed states while high exciton occupations are reached only with a delay to the laser pulse maximum by
adiabatically undressing the dot states. Due to this delay, possible subsequent processes, in particular
multiphoton excitations, appear at a time when the laser pulse is almost gone. The resulting suppression of
reexcitation processes increases the single-photon purity. Due to the spectral separation of the signal
photons from the laser frequencies this enables the emission of high quality single photons not disturbed by
a laser background while taking advantage of the robustness of the phonon assisted scheme.

DOI: 10.1103/PhysRevLett.123.017403

On-demand single-photon sources continue to gain
attention as key building blocks in quantum technological
applications, ranging from novel metrology over quantum
communication to quantum computing. Semiconductor
quantum dots (QDs) have proven to be suitable single-
photon emitters [1–8] that, due to their high compatibility
with existing semiconductor technology, are promising
candidates for device applications. In contrast to atomic
systems, these nanoscale structures are prone to the
influence of the surrounding solid state crystal matrix.
Longitudinal acoustic (LA) phonons are the main source
of decoherence of excitons in semiconductor QDs even at
cryogenic temperatures of a few kelvin [9–13]. Nevertheless,
phonon-assisted off-resonant QD excitations have been
shown to provide a robust alternative to resonant exciton
preparation schemes [14–18]. In this Letter, we demonstrate
theoretically that, quite unexpectedly, the coupling to LA
phonons combined with off-resonant driving can be
extremely beneficial for a single-photon source based on
a QD-cavity system, allowing for the generation of high-
quality single-photons that are easily detectable due to their
spectral separation from the laser pulses used for the
excitation of the QD.
Placing a QD in a cavity strongly enhances the photon

emission by enlarging the effective dot-cavity coupling and
by setting a preferable emission axis. When exciting the
QD exciton resonantly, the frequencies of the excitation and
the signal are identical—separating the two is a formidable
experimental challenge. In fact, spectral separability is
achievable, e.g., by wetting layer excitation or by exciting
the biexcitonvia the two-photon resonance and subsequently

exploiting the biexciton-exciton cascade [8,19]. But while
the former introduces a time jitter that reduces the on-demand
character of the photon source, the latter is sensitive to small
fluctuations of excitation parameters such as the laser energy
and the pulse area. Both problems are overcome by an off-
resonant excitation of the quantum dot, which is thus
extremely advantageous. Indeed, it has recently been shown
that the robustness of off-resonant excitation schemes paves
the way to excite two spatially separated QDs with different
transition energies simultaneously with the same laser pulse,
which is a milestone towards the scalability of complex
quantum networks [20].
The quality of a QD-cavity system as an on-demand

single-photon source is typically quantified by several key
figures of merit, such as the single-photon purity P and the
brightness B. While the former measures whether indeed a
single photon is emitted by the source, the latter character-
izes its total photon yield [5]. When P ¼ B ¼ 1, the source
emits a single photon with a probability of unity at every
excitation pulse via the cavity. The single-photon purity
(SPP) can be extracted from a Hanbury Brown–Twiss
coincidence experiment [3,7,8,21–24], which gives a con-
ditional probability to detect a second photon when a first
one has already been detected. Suppressing this probability
is possible, e.g., by parametric down-conversion, which
enhances the SPP, albeit at the cost of a severely reduced
brightness of the photon source [25]. Maximizing both SPP
and brightness is of utmost importance to create efficient
single-photon emitters.
Simultaneously large P and B in a QD-cavity system can

be achieved by exciting the dot resonantly by ultrashort
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laser pulses [3,4,7]. However, shortening the pulse duration
is equivalent to widening it spectrally. The detrimental
influence of exciting higher-lying states, especially the
biexciton state of the QD by short pulses is discussed in
Ref. [26]. In view of the various advantages of phonon-
assisted off-resonant excitations listed above, the question
arises how photonic characteristics such as SPP and bright-
ness perform under off-resonant schemes. In short, we want
to explore whether all of the advantages of phonon-assisted
off-resonant schemes come at the cost of severely reduced
photonic properties.
It is expected that driving a QD off-resonantly is much

less efficient. For longer and stronger pulses the resulting
quantum state of a QD-cavity system contains an admixture
of multiphoton states, which reduces the SPP. Phonon-
induced dephasing is expected to degrade the quantum state
even further. But paradoxically quite the opposite can take
place: a combination of off-resonant driving with the
phonon-induced relaxation between laser-dressed QD
states leads eventually to high exciton occupations in a
subsequent adiabatic undressing process [27]. In this Letter,
we demonstrate that the delay of the exciton creation
caused by the undressing suppresses the probability for
multiphoton generation. Therefore, comparing off-resonant
and resonant excitation with otherwise same conditions
may, quite unexpectedly, yield enhanced SPPs in the off-
resonant case. The best values predicted in this Letter are
even comparable to the best values obtained so far within
resonant schemes addressing the exciton.
We model the QD-cavity system as a laser-driven two-

level system with a ground state jGi and an excited state
jXi, HDL¼−ℏΔωLXjXihXj−ðℏ=2ÞfðtÞðjXihGjþjGihXjÞ,
coupled to a single-mode microcavity (cf., Fig. 1), HC ¼
ℏΔωCLa†aþ ℏgða†jGihXj þ ajXihGjÞ, which is on reso-
nance with the QD exciton. Here, ΔωLX and ΔωCL are the
laser-exciton and cavity-laser detuning, respectively, and a
is the photon annihilation operator in the cavity, which is
coupled to the dot by the coupling constant g. A train of
Gaussian pulses is assumed represented by the laser envelope
function fðtÞ. The excitation can leave the system either via
radiative decay or cavity losses modeled by Lindblad rates γ

and κ, respectively. Finally, the exciton is coupled to a
continuum of LA phonons in a pure-dephasing manner [28],
HPh¼ℏ

P
qωqb

†
qbqþℏ

P
qðγXqb†qþγX�q bqÞjXihXj. bq anni-

hilates a phonon in the mode q coupled to the dot by the
coupling constant γXq . Full details of the model and of our
numerical approach are given in the Supplemental Material
[29]. It is worthwhile to note that we use path-integral
methods for our simulations that allow us to perform all
simulations without approximation to the model [29,36–38].
For the calculations, standard GaAs parameters are used

[39] for a QD of 6 nm diameter (for details on the phonon
coupling consider the Supplemental Material [29]). If not
stated otherwise, the excitation pulse full width at half
maximum is set to 7 ps, the cavity mode is resonant with
the QD transition, the dot-cavity coupling is ℏg ¼ 50 μeV,
the radiative decay rate is ℏγ ¼ 20 μeV, and the cavity loss
rate is ℏκ ¼ 50 μeV. This corresponds to a Purcell factor of
FP ¼ g2=ðγκÞ ¼ 2.5. The initial phonon distribution is
assumed to be thermal with a temperature of T ¼ 4.2 K.
The main target quantities of interest in this Letter, the

SPP P and the brightness B, are obtained from path-
integral simulations of the two-time photonic correlation
function Gð2Þðt; τÞ ¼ ha†ðtÞa†ðtþ τÞaðtþ τÞaðtÞi and the
time dependent photon occupation ha†aiðtÞ, respectively.
In order to express the SPP in terms of Gð2Þðt; τÞ one first
needs to take the average over the first time argument t,
i.e., Gð2ÞðτÞ ¼ R

∞
−∞ dtGð2Þðt; τÞ, which yields a function

with the delay time τ of the coincidence measurement as its
single argument. The probability p of detecting a second
photon during the same excitation pulse after a first one has
already been emitted thus can be obtained by

p ¼
R TPulse=2
−TPulse=2

dτGð2ÞðτÞ
R 3TPulse=2
TPulse=2

dτGð2ÞðτÞ
; ð1Þ

where TPulse is the separation of the pulses in the pulse train.
The SPP is then defined as P ¼ 1 − p. Note that −∞ <
P ≤ 1, where the lack of a lower bound is due to the
possibility of bunching instead of antibunching.
In this Letter, the brightness of the source is modeled as

the integrated leakage of the average photon number during
the duration of one pulse, i.e., B ¼ κ

R TPulse=2
−TPulse=2

dtha†aiðtÞ.
Due to the definition, this quantity formally ranges in 0 ≤
B < ∞ without an upper bound since in principal infinitely
many photons can exist in a single electromagnetic field
mode.
In Fig. 2(a) the brightness simulated without phonons is

shown as a function of the detuning ΔωLX between the
central laser frequency and the transition frequency con-
necting the ground and the exciton state of the QD as well
as the pulse area Θ. An oscillatory behavior as a function of
the pulse area with maxima at odd multiples of π is
observed [cf., Fig. 2(a)]. This is a consequence of the
well-known Rabi rotation of the exciton occupation since

FIG. 1. Sketch of the system under consideration. A two-level
QD with a ground state jGi and an exciton state jXi is coupled to
a lossy single-mode microcavity. The jGi → jXi transition is
driven by external laser pulses and the exciton state is coupled to
LA phonons in a pure-dephasing manner. Finally, the dot can
decay radiatively.
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the exciton feeds the cavity photons, which in turn are
measured by the brightness. As a function of the detuning,
the regions of high brightness are confined to a fairly small
range around resonance. The inclusion of phonons dras-
tically changes this picture [cf., Fig. 2(b)]. Through off-
resonant excitation with detunings that can be bridged by
the emission of LA phonons, a nonvaninshing brightness
can be obtained in a previously dark region. Note that the
asymmetry with respect to the sign of the detuning is due to
the low temperature of T ¼ 4.2 K considered here where
phonon absorption is largely suppressed.
The SPP in the phonon-free case [cf., Fig. 2(c)] also

displays Rabi rotational behavior but decreases with rising
pulse area close to resonance, which is due to a reexcitation
of the QD during the same laser pulse. This leads to the
emission of more than one photon per pulse, thus dimin-
ishing the SPP. Although a SPP can always be calculated,
one should be aware that it constitutes a physically mean-
ingful quantity only for finite brightness. Therefore, the
area of increased SPP in the upper right corner of Fig. 2(c)
is of no physical relevance.
It is intuitively expected that the continuum of LA

phonons reduces the quantum correlations of the system
and thus the SPP by inducing a manifold of transitions
between its quantum states. However, contrary to these
expectations Fig. 2(d) reveals a huge systematic increase in
P at ΔωLX ≳ 0.5 meV. Moreover, the maximum Pmax ¼
98.8% (red circle) is even larger than 90.7% obtained for
the resonantly driven system (blue circle). Combined with

an appreciably large B, this indicates a possibility to have a
good quality single-photon source in the off-resonant
excitation regime. Note that B ¼ 0.46 observed at the
point of Pmax [cf., red circle in Fig. 2(b)] is not much
smaller than the maximal value of 0.67 achieved in the
resonantly driven case [cf., blue circle in Fig. 2(b)]. It is
also noteworthy that it is possible to obtain a significantly
larger brightness at the cost of a slight decrease in the SSP.
For example, if we choose a trade-off by maximizing the
sum of the squares of the two figures of merit in the off-
resonant regime, we obtain B ¼ 0.53 and P ¼ 98.1% (red
square). This value for P is close to typical experimental
values obtained for resonant excitation of the quantum dot
exciton (98.8% [4], 99.1% [7]) even though the pulse
lengths in Refs. [4,7] have been slightly shorter [40].
To explain the mechanism behind this observation, one

needs to consider the dynamics of the QD-cavity states.
In Fig. 3, the time dependent occupations in the resonant
and the off-resonant case (cf., the blue and red circles in
Fig. 2, respectively) are compared. The considered states
are product states between the QD states and a photon state
with photon number n. After resonant π-pulse excitation
[cf., Fig. 3(a)], the exciton state jX; 0i without photons is
occupied (blue curve). The cavity coupling rotates the dot
back to its ground state and produces one photon in the
cavity (orange curve). Because the driving is still nonzero at
this point, the dot is reexcited to produce an occupation of
the state jX; 1i (green curve), which is shown in the inset of
Fig. 3(a). Finally, the cavity coupling leads to an occupa-
tion of the ground state with two photons jG; 2i (red curve),
such that the SPP is diminished.
In contrast to the π-pulse induced rotation of the Bloch

vector, the off-resonant excitation scheme exploits an effect
called adiabatic undressing [27]. Switching on the laser
transforms the dot states to a new energy eigenbasis
commonly known as laser-dressed states, the gap between
which can be bridged by LA phonons with typical energies
of a few meV. At low temperatures, the lower dressed
state becomes occupied via phonon emission. However, the
phonon-induced relaxation is only efficient when both
dressed states have roughly equal exciton components.
Thus, the exciton state exhibits typically occupations of the
order of 50% after the relaxation is completed [27]. When
the laser is turned off adiabatically, the lower dressed state
is subsequently transformed to the exciton state in the
original basis provided the detuning is positive (otherwise
the ground state is reached [27]). This adiabatic undressing
of the dot states therefore boosts the exciton occupation
only at the end of the pulse [cf., the blue curve in Fig. 3(b)].
This in turn means that during the phase of phonon
relaxation no photon can be put into the cavity efficiently
[cf., the orange curve in Fig. 3(b)].When finally the adiabatic
undressing-induced exciton boost occurs, the occupation of
jG; 1i follows [cf., Fig. 3(b)]. Since the excitation pulse is
basically gone by then, the reexcitation of the QD is strongly

(a) (b)

(c) (d)

FIG. 2. Brightness B [panels (a) and (b)] and SPP P [panels (c)
and (d)] as a function of the laser-exciton detuning ΔωLX and the
excitation pulse area Θ of a pulse in the pulse train. The left
column (a), (c) is the result of a phonon-free calculation, the right
column (b), (d) includes the coupling to a continuum of LA
phonons. Blue circle: resonant π-pulse excitation. Red circle:
maximal SPP (with phonons). Red square: optimal SPP and
brightness for off-resonant excitation (with phonons).
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suppressed (green curve), such that effectively no second
photon can be put into the cavity (red curve). This implies a
far higher SPP than in the resonant counterpart, as is observed
in Fig. 2(d). In summary, the delay of the exciton occupation
caused by the two-step procedure of first relaxing to a dressed
state via phonon emission and then reaching the exciton by
adiabatic undressing is responsible for the enhancement of
the SPP.
To quantify the robustness of the phonon-induced SPP

enhancement against variations of other system parameters,

the difference between the SPP after off-resonant excitation
and after the resonant one is shown as a function of
the radiative decay γ and the cavity loss rate κ in Fig. 4.
A positive value (reddish shade) indicates a set of param-
eters where the SPP is enhanced for off-resonant excitation.
We find such an enhancement for a wide parameter regime
in κ and γ that is experimentally well accessible. Also,
changing the pulse length from 7 ps in Fig. 4(a) to 14 ps in
Fig. 4(b) does not change the phonon-induced SPP
enhancement qualitatively. The reason why the SPP for
off-resonant excitation falls below the resonant one in the
bad cavity limit and/or in the limit of high radiative losses is
that relaxation processes limit the time available for the
adiabatic undressing which eventually becomes incomplete.
In conclusion, we have presented a seemingly paradoxical

scheme for the phonon-assisted operation of a QD-cavity
system as a single-photon source, where the excitation is
spectrally separated from the generated photons. Two factors
that would separately lead to a quality degradation—off-
resonant driving and dot-phonon coupling—in combination
result in a huge boost in critical characteristics of a single-
photon source. We have demonstrated that the achievable
single-photon purity can be noticeably higher than for
resonant excitation while the brightness is still at an accept-
able level. The physical mechanism of this enhancement—
the adiabatic undressing—is realized in a wide interval of
physically accessible parameters.

M. Cy. thanks the Alexander-von-Humboldt foundation
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(a) (b)

FIG. 3. Time-dependent occupations: (a) after resonant π-pulse excitation (cf., blue circle in Fig. 2) and (b) in the off-resonant phonon-
assisted case (cf., red circle in Fig. 2). The occupations of the states jX; 0i, jG; 1i, jX; 1i, and jG; 2i are shown as colored filled curves.
The Gaussian envelope of the laser driving pulse normalized to its maximum value centered at tp is shown as a black dashed line. The
insets show the same curves, respectively, on an enlarged scale for the occupations.

(a) (b)

FIG. 4. The difference between the SPP after off-resonant
phonon-assisted excitation Poff-res and after resonant π-pulse
rotation Pres is shown for two different pulse lengths (FWHM),
namely: (a) 7 ps and (b) 14 ps, as a function of radiative decay ℏγ
and cavity losses ℏκ. The cavity quality factor Q ¼ ωc=κ is
obtained via the cavity losses assuming a cavity single-mode
energy of ℏωc ¼ 1.5 eV. The pulse area is set to 12.75π and
ΔωLX ¼ 1.1 meV.
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MODEL AND NUMERICAL METHOD

In this supplement we specify in detail the model used in the main paper and outline the numerical procedure used
for our simulations. We represent the quantum dot (QD)-cavity system by a Hamiltonian comprising three parts:

H = HDL +HC +HPh, (1)

where HDL describes the QD driven by an external laser, HC accounts for the coupling of the QD to a quantized
cavity mode, while HPh represent the interaction with a continuum of longitudinal acoustic (LA) phonons.

Within the usual dipole and rotating wave approximations, the dot-laser Hamiltonian takes the form

HDL = −~∆ωLX|X〉〈X| −
~
2
f(t) (|X〉〈G|+ |G〉〈X|) (2)

in a frame co-rotating with the laser frequency ωL. Here, |G〉 denotes the QD ground state and |X〉 is the exciton
state and a detuning between the laser and exciton frequency ∆ωLX := ωL − ωX is introduced. d is the transition
dipole and E(t) the laser field, such that −d · E(t) = −~f(t)/2 exp (−iωLt), where f(t) denotes the real envelope
function of the exciting laser. f(t) is taken to be a pulse train consisting of Gaussian functions, where each Gaussian
has an area Θ and a pulse length measured by the full-width-at-half-maximum (FWHM). Every TPulse the maximum
of a Gaussian hits the QD. The dot is coupled to a single-mode microcavity via

HC = ~∆ωCLa
†a+ ~g

(
a†|G〉〈X|+ a|X〉〈G|

)
. (3)

The single-mode photons of the cavity are created (annihilated) by the bosonic operator a† (a) and are detuned by
∆ωCL := ωC − ωL with respect to the laser frequency. The coupling strength between the QD and the microcavity is
denoted by ~g. Furthermore, the pure dephasing-type coupling [1–3] between the QD and a continuum of longitudinal
acoustic (LA) phonons is modeled as

HPh = ~
∑

q

ωqb
†
qbq + ~

∑

q

(
γX
q b
†
q + γX∗

q bq
)
|X〉〈X| , (4)

where the bosonic operator b†q (bq) creates (destroys) phonons with frequency ωq. γX
q denotes the deformation-

potential-type coupling constant between the exciton state and the q-th bosonic mode, which is obtained as the
difference between the electron-phonon and hole-phonon constants, γX

q = γe
q − γh

q. We consider bulk-phonon modes
with linear dispersion, ωq = vs|q|, with the sound velocity vs. With these assumptions the coupling constants take
on the form

γe(h)
q = Ψe(h)(q)

|q|De(h)√
2V ρ~ωq

, (5)

where ρ is the density of the material, V the sample volume, De(h) the deformation potential constant, and Ψe(h)(q)
the form factor that is obtained as the Fourier transform of the absolute square of the confined carrier wave functions.
The coupling constant enters the phonon spectral density

J(ω) =
∑

q

∣∣γX
q

∣∣2 δ(ω − ωq) , (6)

which in turn determines the depth of the phonon-induced memory [4]. Assuming a spherical dot with harmonic
confinement yields

J(ω) =
ω3

4π2ρ~v5
s

{
De exp

(
−ω

2a2
e

4v2
s

)
−Dh exp

(
−ω

2a2
h

4v2
s

)}2

, (7)



2

where ae(h) denotes the electron (hole) confinement length.
For the calculations in the main text, we use values that are typical for GaAs self-assembled QDs [5]: De = 7.0 eV,

Dh = −3.5 eV, ρ = 5370 kg/m3, vs = 5110 m/s, ae/ah = 1.15. This leaves only the dot diameter as a free parameter
in the shape of the electron confinement length, i.e., 6 nm = 2ae, as quoted in the main text.

Finally, radiative decay of the QD exciton as well as cavity losses are included via Lindblad-type superoperators
L|G〉〈X|,γ• and La,κ•, respectively, with

LO,Γ• = Γ

(
O •O† − 1

2

{
•, O†O

}
+

)
. (8)

Here, {·, ·}+ denotes the anti-commutator, O is a system operator, and Γ the decay rate of the associated loss process.
We solve the Liouville-von Neumann equation

ρ̇ = − i
~
{H, ρ}− + Lρ (9)

with H = HDL +HC +HPh and L• = L|G〉〈X|,γ •+La,κ•, where {·, ·}− is the commutator. The density matrix ρ is
assumed to initially factorize into a subsystem part corresponding to the dot-cavity system (DL+C) and a phonon
part (Ph). The phonon part is initially taken to be a thermal distribution. We employ an iterative real-time path
integral method [6, 7] to obtain the time-dependent reduced density matrix ρ̄ = TrPh[ρ]. To the best of our knowledge
this method is so far the only one where accounting for the influence of the infinitely many LA phonon modes has been
realized in a numerically complete way, i.e., without any further approximations to the model described above, since
all phonon contributions can be integrated out analytically. Furthermore, recent developments within this formalism
allow for the consistent and natural inclusion of Lindblad-type losses [8] and the consideration of more subsystem
levels beyond the few-level limit due to an exact reformulation of the iterative scheme [9]. In fact, the reformulation
presented in the supplement of Ref. [9] reduces the numerical demand in our present application by many orders
of magnitude without which the simulations presented in the main text would have been impossible. Finally, the
two-time photonic correlation function G(2)(t, τ) = 〈a†(t)a†(t + τ)a(t + τ)a(t)〉 necessary for the calculation of the
single-photon purity is obtained following a numerically complete algorithm that has been proposed recently [10]. In
particular, this algorithm avoids the quantum regression theorem, which is valid only when all bath interactions are
Markovian [11]. Indeed, it is known that the coupling to LA phonons induces a memory of several picoseconds [4]
and thus a Markovian treatment of the QD-phonon interaction would not be adequate.
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Light trapping is a crucial mechanism for synchronization in optical communication. Especially
on the level of single photons, control of the exact emission time is desirable. In this paper, we
theoretically propose a single-photon buffering device composed of a quantum dot doped with a
single Mn atom in a cavity. We present a method to detain a single cavity photon as an excitation
of the dot. The storage scheme is based on bright to dark exciton conversion performed with an off-
resonant external optical field and mediated via a spin-flip with the magnetic ion. The induced Stark
shift brings both exciton states to resonance and results in an excitation transfer to the optically
inactive one. The stored photon can be read out on demand in the same manner by repopulating
the bright state, which has a short lifetime. Our results indicate the possibility to suspend a photon
for almost two orders of magnitude longer than the lifetime of the bright exciton.

I. INTRODUCTION

Self-assembled quantum dots (QDs) are optically ac-
tive and allow the control of electronic states with
light.1–4 In return, they can serve as photon sources,
which makes them attractive for quantum communica-
tion devices.5,6 A QD–cavity system greatly increases
light emission efficiency due to the Purcell effect7 and
has a favored direction of emission in contrast to a stan-
dalone QD, providing easier in- and outcoupling. While
QDs in cavities are a suitable platform for quantum infor-
mation processing devices,8 the realization requires the
synchronization of signals,9 for which a photon buffer is
desirable.

In all-optical systems, buffers were realized with fibers
and waveguides.9–12 Another proposed realization of an
optical memory cell is a three-level Λ system, which gives
the possibility to store information in a dark state.13 Ex-
tremely long light storage was achieved in atomic sys-
tems, where the slow light effect is commonly based on
electromagnetically induced transparency (EIT). Ade-
quate coupling in the Λ system highly reduces the group
velocity of light and results in slow propagation of a
beam through atoms or even reversible trapping of light
in atomic excitations.13–16 Recent experiments were per-
formed even on the single-photon level,17–19 raising hopes
for use in quantum communication. Atomic systems
were also used to store time-entangled solitons in a cav-
ity, representing a step towards multiplexed quantum
communication.20

In solid-state systems, photons may be absorbed and
stored as excitons. However, the typical lifetime of a
bright exciton is short (typically a few hundred ps up to
one ns). Therefore, a separated electron-hole pair, the

indirect exciton, was used in coupled nanostructures to
extend the storage time.21–29 On the other hand, in a sin-
gle QD–cavity system, the lifetime of an exciton may be
increased by the Stark shift, which decouples the exciton
from the cavity mode.30 A more attractive direction for
storing excitations in a QD is to use a dark state, which
lives for at least an order of magnitude longer than the
bright one. For a long time, dark excitons were beyond
much interest as they are not optically active and hence
not directly accessible.

Recent progress allows for indirectly accessing the dark
exciton with light31,32 or other complexes,33 but all-
optical control of the dark state using an intermedi-
ate biexciton state has also been proposed for the use
as a long-lived qubit.31,34–37 Another possibility is the
coupling of bright and dark states using micromechan-
ical resonators, making the dark state addressable by
light.38 Still, it is much easier to excite the bright state.
Hence, a method to realize the bright-to-dark conversion
for excitation storage was already proposed for colloidal
systems.39 Yet, they cannot be easily integrated on-chip.
A dark state was also used as a microsecond valley po-
larization memory in transition metal dichalcogenides.40

More recently, a controllable occupation transfer between
bright and dark excitons in a QD–cavity system was
suggested.41

Our method facilitates QDs with a single magnetic
dopant, which can be deterministically fabricated for
several years,42 with dopand atoms like Manganese
(Mn),43,44 Cromium,45 Iron,46 or Cobalt.47 Interestingly,
the spin state of the dopant can be changed via optical
control.48–52

Here, we choose a Mn doped CdTe/ZnTe QD in a
microcavity.53 The exchange coupling between the Mn
and the electron spin enables a coupling between bright
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FIG. 1. (a) Sketch of the QD–cavity system. The Mn ion
provides the magnetic field necessary to facilitate the stor-
age of a single cavity photon. An off-resonant external laser
controls both the storage and the release time and thus the
entire buffering procedure deterministically. (b) The Λ-type
three-level model of the QD. The spin configuration of the
two exciton states is symbolized by arrows.

and dark excitons in the quantum dot under the simul-
taneous flip of the Mn spin.48,54 Given a spin state, the
states can be interpreted as a Λ-type three-level system,
as specified in the next section. The main advantage
of using a magnetically doped QD is its intrinsic prop-
erty to couple bright and dark excitons, such that no
external magnetic field needs to be applied as in other
studies.41,55,56

The buffering scheme relies on storing the photon in
the dark state. After the photon is converted to the
bright exciton state, an AC-Stark pulse is utilized to fa-
cilitate the conversion of the bright into a dark exciton.
We stress that the Stark pulse is the only external pulse
which is used in the buffering scheme.

II. MN-DOPED QUANTUM DOT SYSTEM

We consider a self-assembled CdTe quantum dot (QD)
doped by a single Mn ion inside a ZnTe micropillar cav-
ity. Due to the strong spatial confinement of the carriers
in the QD, only the lowest conduction band state and
the uppermost valence band state need to be considered,
namely electrons in the s-like conduction band and holes

in the p-like heavy-hole band.
Excitons form as pairs of conduction band electrons

and valence band heavy holes. Having a spin component
of Sh

z = ± 3
2 , heavy holes can form two types of exci-

tons with the spin-1
2 electrons: the optically active bright

states with a circular polarization of ±1 and the dipole-
dark states with ±2. For typical fine-structure splittings
of a few tens of µeV57 between the two bright exciton
states of opposite circular polarization, only excitons of
one polarization need to be considered, if the external
driving has a defined circular polarization.55,58,59

Doping such a QD system with a single Mn ion, which
has a spin of 5

2 , introduces an additional state space,
namely the six possible orientations of its spin. The Mn
spin interacts with electrons and holes via the exchange
interaction43,48,62,72–74

Hex = jeM · Se + jhM · Sh , (1)

where M denotes the spin of the Mn ion. Se (Sh)
is the operator of the electron (hole) spin in the QD.

je/h = Je/h

∣∣∣Ψe/h
0 (rMn)

∣∣∣
2

are composed of the coupling

constants Je/h between the electon/hole and the Mn spin
(cf., Table I) and the carrier ground state wave func-
tion Ψ0 at the position rMn of the Mn atom. Modelling
the QD with a hard wall cubic potential74,75 with in-
plane widths of 6 nm and a height of 2 nm, the coupling
strengths je/h depends on the position of the Mn atom.

For a more intuitive understanding of the exchange
Hamiltonian, it can be rewritten as

Hex = jeMzS
e
z +

je
2

(
M+S

e
− +M−S

e
+

)

+jhMzS
h
z +

jh
2

(
M+S

h
− +M−S

h
+

)
(2)

with M± := Mx ± iMy and S
e/h
± := S

e/h
x ± iSe/h

y . The
Ising terms1 arising from the z-component of the inter-
action lead to energy shifts of the exciton states with
different spin configuration. These contributions lead to
the characteristic splitting of the exciton line into six lines
even at zero magnetic field.42–44,73 The electron flip-flop
term2 on the other hand results in a coupling between
the excitonic bright state with total spin ±1 and the ex-
citonic dark state with ±2 via simultaneous spin flip.
While usually the flip-flop term is much weaker than the
energetic splitting, for an applied magnetic field in Fara-
day configuration, this coupling is seen as anti-crossing
in the optical spectrum at a field of several Tesla. Note
that the flip-flop term regarding the hole3 can be ne-
glected since the hole spin is pinned in a pure heavy-hole
system.48

Assuming the Mn spin to be initially prepared in the
state Mz = − 5

2 , we can reduce our system to a three-
level system. This preparation can be achieved by ther-
mal occupation at low temperatures: by applying a mag-
netic field, it becomes the energetically lowest state.48

Then, the three states are: the ground state without an
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TABLE I. Parameters used for the simulations.

Electron-Mn coupling Je [meV nm3] −15 60

Hole-Mn coupling Jh [meV nm3] 60 60

Intrinsic dark-bright splitting δXD [meV] 0.95 61

Mn g-factor gMn 2.0075 62

Electron g-factor ge −1.5 43

QD–cavity coupling ~g [meV] 0.1 63

Cavity loss rate κ [ns−1] 8.5 64

Radiative decay rate of |X〉 γX [ns−1] 2.4 63

Residual decay rate of |D〉 γD [ns−1] 0.01 65

Electron deformation potential De [eV] −5 66

Hole deformation potential Dh [eV] 1 66

Density ρD [kg m−3] 5510 66

Sound velocity cs [m s−1] 4000 66

Electron-to-hole confinement ratio ae/ah 1.38 67,68

Electron confinement radius ae [nm] 3.0 69–71

electronic excitation |G〉 := |0,− 5
2 〉, the bright exciton

|X〉 := |−1,− 5
2 〉, and the dark exciton |D〉 := |−2,− 3

2 〉.
Here, the first entry denotes the total spin of the elec-
tronic excitation and the second one the Mn spin orien-
tation. Note that a circular polarization of the external
laser of −1 is assumed, from which the sign of the bright
exciton spin follows.

III. MODEL OF THE Λ-TYPE THREE-LEVEL
SYSTEM

In the basis of the three states |G〉, |X〉, and |D〉 the
Hamiltonian reads as follows:

H = HQD +Hflip +Hdriv(t) +HC +HPh , (3)

consisting of the QD partHQD and the flip-flop termHflip

as introduced in Equation (2). In addition, we account
for the driving of the system with an external laser pulse
Hdriv(t), the coupling to a single-mode cavity HC, and
the coupling to longitudinal acoustic (LA) phonons HPh.
A sketch of the system and its level structure is shown in
Figure 1.

The QD part is composed of

HQD = ~ωX|X〉〈X|+ (~ωX − δeff) |D〉〈D| , (4)

where the energy of the ground state is set to zero, the
bright exciton has the energy ~ωX, and the effective dark-
bright splitting is δeff. Three contributions enter the
latter quantity: the intrinsic splitting δXD due to the
electron-hole exchange interaction, the splitting arising
from the Ising terms in Eq. (2), and a Zeeman splitting
due to an external magnetic field in Faraday configura-
tion B = Bzez

δeff = δXD − 2je +
3

2
jh + (gMn − ge)µBBz . (5)

gMn and ge denote the Mn and the electron g-factors (cf.,
Table I), respectively, and µB is the Bohr magneton.

One arm of the Λ-type system is coupled by the flip-
flop term

Hflip = −1

2
J (|X〉〈D|+ |D〉〈X|) . (6)

The interaction strength results from calculating the cor-
responding matrix elements in the three-level basis as
J = −

√
5je. We assume the position of the Mn atom to

be 30 % away from the QD edge in both x and y direc-
tion and 13 % in z direction. This results in a coupling
strength of J = 0.25 meV. This value can be interpreted
as the Mn spin providing an effective magnetic field for
the excitons with a strength of roughly 3 T.

The other arm of the Λ-type system, i.e., the ground
to bright exciton state transition is driven by an exter-
nal laser classically described by the function f(t) =
fACS(t)e−iωACSt with the real envelope function fACS(t)
and the off-resonant AC-Stark frequency ωACS [cf., Fig-
ure 1(b)]. Although the AC-Stark pulse is off-resonant,
the parameters are chosen such that the conditions for
the usual dipole and rotating wave approximations still
hold and the corresponding coupling can be written
as:76,77

Hdriv(t) = −~
2

(f∗(t)|G〉〈X|+ f(t)|X〉〈G|) . (7)

The coupling to the single-mode cavity with strength
g [cf., Figure 1(b)] is described by a Jaynes-Cummings
model

HC = ~ωCa
†a+ ~g

(
a|X〉〈G|+ a†|G〉〈X|

)
, (8)

where a (a†) is the annihilation (creation) operator for a
photon at the cavity frequency ωC, which is assumed to
be on resonance with the bright state ωX.
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To model the decoherence in the QD, we consider that
the QD is coupled to an environment of LA phonons in
the bulk material [cf., Figure 1(a)]66,78–82

HPh = ~
∑

q

ωqb
†
qbq

+ ~
∑

q

(
γqb
†
q + γ∗qbq

)
(|X〉〈X|+ |D〉〈D|) . (9)

bq (b†q) annihilates (creates) a phonon in the mode q
with the frequency ωq. Both exciton states are assumed
to couple to the environment with the same strength
γq. The role of phonons in QD–cavity systems is typ-
ically considered to be detrimental to the preparation
of photonic quantum states, e.g., single photons83–91 or
entangled photon pairs.92–98 Nonetheless, in specific situ-
ations a phonon enhancement of the single-photon purity
is found.99,100 Also, a boost in the entanglement of two
photons has been predicted to be a result of the phonon
interaction.101

Furthermore, we account for cavity losses (La,κ) as well
as radiative decay of the bright exciton (L|G〉〈X|,γX) and
losses of the dark exciton (L|G〉〈D|,γD) using Lindblad su-
peroperators acting on the density matrix ρ as

LO,Γρ = Γ

(
OρO† − 1

2

{
ρ,O†O

}
+

)
, (10)

where {A,B}+ is the anti-commutator of operators A
and B. These superoperators describe phenomenologi-
cally loss processes with rate Γ on a dissipation channel
O.

We use an interaction picture representation of this
Hamiltonian for the numerics as well as the physical dis-
cussion, in order to eliminate fast oscillating terms in
the dynamics resulting from transition energies in the
eV range. The noninteracting Hamiltonian used for this
transform is41

H0 = − ~∆ωAX|G〉〈G|+ ~ωX (|X〉〈X|+ |D〉〈D|)
+ ~ωACSa

†a . (11)

Here, the detuning between the laser and bright exciton
frequencies ∆ωAX := ωACS − ωX has been introduced.
Then, the transformed Hamiltonian is HI = U†(H −
H0)U with U = exp [−(i/~)H0t].

We choose parameters from the experimental litera-
ture, in order to perform simulations as realistic as pos-
sible. The values are given in Table I together with cor-
responding references.

The dynamics is obtained as the solution of the
Liouville-von Neumann equation

∂

∂t
ρ = − i

~
{H, ρ}− + La,κρ+ L|G〉〈X|,γXρ+ L|G〉〈D|,γDρ

(12)

with the commutator {A,B}− of operators A and B.
We treat the phonon Hamiltonian in a numerically exact
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τ
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1

0

1

0

1

dr
iv

in
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time [ps]
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〉
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〉

|D
〉

|1
〉

FIG. 2. A single cavity photon is stored in the dark exciton
state of the QD using a first writing AC-Stark pulse (bottom
panel). The occupations of the ground state |G〉, the bright
exciton |X〉, the dark exciton |D〉, and the 1-photon Fock
state |1〉 are depicted: ideal case without phonons and losses
(dashed lines); including radiative and cavity loss effects (solid
lines). A second readout AC-Stark pulse retrieves the single
photon. The time between the pulses is the buffer time τ .

way using a path-integral formalism.69,102–105 By numer-
ically exact we denote a solution that depends only on
the time discretization and the memory length as the sole
convergence parameters. Beyond these two convergence
parameters, no approximations enter the solution for the
QD–cavity dynamics.

Physically, the phonon influence is fully captured by
the phonon spectral density J(ω) =

∑
q |γq|2δ(ω − ωq).

Assuming harmonic confinement and a linear dispersion
ωq = cs|q| with sound velocity cs, the spectral density
reads

J(ω) =
ω3

4π2ρD~c5s

(
Dee

−ω2a2e/(4c
2
s) −Dhe

−ω2a2h/(4c
2
s)
)2

,

(13)

where we have considered deformation potential coupling
which is usually the dominant coupling mechanism.79

Here, ρD is the density of the material, De (Dh) the
electron (hole) deformation potential, and ae (ah) the
electron (hole) confinement radius, listed in Table I.

IV. BUFFERING PROTOCOL

A. General idea

We propose a protocol to buffer a single cavity photon
deterministically using the Λ-type three-level system de-
scribed in Section III. Initially, we assume the QD to be
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in its ground state |G〉 and one photon to be present in
the cavity, i.e., the initial state of the QD–cavity dynam-
ics is |G, 1〉 (cf., Figure 2), where we have introduced
the notation |χ, n〉 for the QD–cavity product space with
χ ∈ {G,X,D} and the photon number n. Due to the
QD–cavity coupling, the cavity photon is absorbed into
the bright state |X〉 after half a coherent Rabi oscillation.
Then, the dark state |D〉 is prepared using a recently pro-
posed protocol relying on the optical Stark shift.41 The
transfer of the excitation from the bright to the dark
state is triggered deterministically using an off-resonant
AC-Stark pulse, which shifts the bright state energy such
that the bright and dark states are effectively in reso-
nance. The pulse duration is chosen such that exactly
half a Rabi oscillation between the two exciton states is
possible.

To present a physically clear picture of the processes in-
volved in the buffering scheme, we use rectangular pulses
with smoothed edges for the AC-Stark pulse envelopes,
following Ref. 41

fACS(t) =
f0(

1 + e−α(t−ton)
) (

1 + e−α(tACS−(t−ton))
) .

(14)

Here, α determines the rise time of the pulse, which we
set to 10 ps−1, ton is the switch-on time, and tACS the
pulse duration. The pulse amplitude f0 is determined by
the effective dark-bright splitting δeff, which needs to be
bridged, and the pulse duration tACS by the oscillation
frequency J .

During the pulse, when the amplitude is essentially f0,
the induced optical Stark shift is

∆EStark =
~
2

(√
∆ω2

AX + f2
0 −∆ωAX

)
(15)

for ∆ωAX > 0.41 By setting ∆EStark = δeff, the pulse
amplitude necessary to bridge the dark-bright splitting
is determined to be

f0 =

√(
2
δeff

~
+ ∆ωAX

)2

−∆ω2
AX . (16)

The length tACS of the pulse has to correspond to half a
Rabi oscillation between the two exciton states mediated
by the spin-flip coupling41

tACS =
2π~

2

√
J2 + (δeff −∆EStark)

2
, (17)

which simplifies to tACS = π~/J for ∆EStark = δeff.
This leaves only the detuning with respect to the bright

exciton frequency ∆ωAX as a free parameter. For a dark-
bright splitting in the order of a meV, it has been shown
that a detuning of ∆ωAX = 15 meV is favorable for the
transfer of the excitation from the bright to the dark
state.41

Since the dark state is not optically active, it is a
metastable state. This is reflected in its decay rate γD

being about two orders of magnitude smaller than the
radiative decay rate γX of the bright state (cf., Table I).
Therefore, in an ideal system free of losses and decoher-
ence, the excitation is expected to stay in the dark state
indefinitely. The release of the photon is facilitated by
the reverse process with a second AC-Stark pulse.

The time evolution of this protocol in the ideal case
(without taking phenomenological losses or phonons into
account) is presented in Figure 2 (dashed lines), which
shows the occupation of the three states together with
the occupation of the 1-photon state and the applied laser
pulses as functions of time. The dynamics behaves as pre-
dicted by the writing scheme described above. Indeed,
the occupation of the dark state after the first writing
pulse is close to unity. Small-amplitude oscillations ap-
pear due to the residual coupling to the bright state,
which depend both on the coupling J and the splitting
δeff between the bright and the dark state.

To release the photon after the buffering time τ (23.5 ps
in the example shown in Figure 2), a second readout AC-
Stark pulse is required (cf., bottom panel of Figure 2).
When the excitation is transferred back to the single-
photon state, Rabi oscillations between the cavity mode
and the bright exction are observed. These oscillations
are undamped in the ideal case, where no phonon cou-
pling and no phenomenological loss processes are con-
sidered (cf., dashed lines in Figure 2). The maximum
occupation of the 1-photon state |1〉 is 99.95 %, imply-
ing a close to perfect writing and readout of the buffered
single photon in the ideal case.

V. STORAGE PERFORMANCE

The key quantity of interest in a buffering scheme is
the retrievable percentage of the stored photon after the
buffering time τ . Therefore, we here discuss the depen-
dence of this captured 1-photon occupation on the buffer-
ing time τ and various system parameters, including the
dark-bright coupling J , the splitting δeff, and the tem-
perature T . An example of the influence of phenomeno-
logical losses on the buffering scheme is shown in Fig-
ure 2(b) (solid lines). We find that the scheme is de-
graded and here we quantify the amount of storage which
is still achievable. Since damped Rabi oscillations be-
tween the bright exciton and the cavity occur in the pro-
tocol proposed in Section IV after the readout AC-Stark
pulse when including phenomenological losses, we take
the maximum captured 1-photon occupation (C1PO) af-
ter the readout pulse as a measure of the retrievable per-
centage of the stored photon.
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FIG. 3. The maximum captured 1-photon occupation (C1PO)
after the second AC-Stark pulse as a function of the buffering
time τ , i.e., the delay time between the two pulses. The de-
pendence is shown for different coupling strengths J between
the bright and the dark state. Labels indicate the decay time
τ∗ extracted from fitting an exponential function to the cor-
responding curve (cf., main text for detailed explanation).

A. Influence of the dark-bright coupling J

Figure 3 shows the dependence of the C1PO on the
buffering time τ , i.e., the delay time between the two AC-
Stark pulses. These calculations are performed consider-
ing phenomenological losses, but without taking phonons
into account. The red line corresponds to the coupling
J = 0.25 meV. After initial oscillations, the C1PO de-
creases exponentially. The oscillations are a direct con-
sequence of the dark-bright coupling with strength J ,
which is off-resonant due to the dark-bright splitting δeff.
This off-resonance leads to low-amplitude high-frequency
oscillations of the dark state occupation in between the
writing and readout pulses (cf., Figure 2). When the
second AC-Stark pulse arrives during a minimum of this
oscillation, the corresponding value of the C1PO also be-
comes minimal.

The damping of these oscillations and the subsequent
exponential decay shown in Figure 3 is a result of the
decay of the dark state |D〉. While its decay rate γD cor-
responds to a lifetime of 100 ns, the residual off-resonant
coupling to the bright state, which decays two orders of
magnitude faster, leads to a much faster effective decay
of the dark state.

Fitting an exponential function of the form

C1POfit(τ) = c e−τ/τ
∗

(18)

using the scaling constant c and the decay time τ∗ as
free parameters, one obtains a decay time of τ∗ = 45.8 ns.
This value corresponds exactly to the effective decay time
of the dark state (not shown here), corroborating the
conclusion that the storage performance between writing
and readout only depends on the decay of the dark state
|D〉.

Increasing J while keeping all the other parameters
fixed, yields a shorter decay time τ∗ (cf., black line in
Figure 3) and thus a worse performance of the storage
protocol. The reason is the increased oscillation am-
plitude between |D〉 and |X〉 stemming from the larger
dark-bright coupling. Therefore, the interaction with
the faster-decaying bright state is more effective. The
higher oscillation amplitude is reflected in the larger ini-
tial oscillation amplitude of C1PO. The reverse argument
holds for a smaller coupling strength J and indeed for
J = 0.05 meV (cf., blue line in Figure 3) τ∗ = 95.8 ns is
already close to the lifetime of 100 ns of the dark exciton
without exchange coupling to the bright exciton.

Overall, decay times on the order of a few tens of ns
suggest a high storage performance. In comparison, a
single photon inside a high-Q cavity with a quality fac-
tor of 2.68 · 105,64 corresponding to our value of κ (cf.,
Table I), has a decay time of κ−1 = 118 ps. Therefore,
the buffering protocol presented here facilitates a storage
time roughly two orders of magnitude longer.

Note that changing the dark-bright coupling J exper-
imentally means that the location of the Mn atom rMn

needs to be changed, thus requiring different QD sam-
ples. Changing the Mn position also changes the shifts
induced by the carrier-Mn Ising terms. Therefore, an ad-
ditional magnetic field in Faraday configuration would be
necessary to keep δeff constant [cf., Eq. (5)].

B. Influence of the dark-bright splitting δeff

In the previous section, it became clear that the main
loss channel during the storage time is the effective decay
of the dark state. This in turn depends on the residual
coupling to the bright state, which is determined by J
and δeff. In this section, we analyze the influence of the
latter by repeating the calculations of C1PO(τ) by vary-
ing δeff and fitting Eq. (18) to the resulting curves, in
analogy to Figure 3. We keep the dark-bright coupling
fixed at J = 0.25 meV.

The dependence of the decay time τ∗ on the effective
dark-bright splitting δeff is shown in Figure 4(a). With-
out an external magnetic field in Faraday configuration,
the splitting is 1.85 meV and the decay time τ∗ corre-
sponds to the red line in Figure 3.

By applying a field with magnitude Bz, the effective
splitting is changed [cf., second axis in Figure 4(a)]. At
constant J , a higher splitting means that the residual
coupling of the dark to the bright state is weaker. This
closes the corresponding radiative loss channel more and
more, such that τ∗ converges to the intrinsic decay time
of the dark state γ−1

D = 100 ns. The opposite argument
holds for smaller splittings. Without any splitting, the
two exciton states would perform coherent full-amplitude
Rabi oscillations with a frequency corresponding to J ,
such that the radiative decay channel would diminish the
storage performance maximally.

Assuming g � δeff and J � δeff, which holds well for
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FIG. 4. The dependencies of the decay time τ∗ and the C1PO at τ = 0 on the effective splitting δeff between the dark and
bright state [panels (a) and (b)] without taking phonons into account and on the temperature T [panels (c) and (d)] including
phonon effects. The red solid line in panel (a) is the approximate analytical prediction from Equation (19). For the temperature
dependent study, the splitting is set to δeff = δXD = 0.95 meV.

the parameters considered in Figure 4(a), an analytical
approximation of the following form can be derived:

τ∗(δeff) =

[(
J

2δeff

)2

(γX − γD) + γD

]−1

. (19)

This function is plotted in Figure 4(a) as a red solid
line, reproducing the numerically obtained data well.

To analyze the performance of the writing and reading
process separately from the losses during storage, we take
the C1PO for τ = 0 as a measure, i.e., the writing and
readout pulses merge to a single pulse of length 2tACS.
This value indicates, what percentage of the initially
present photon can be retrieved after writing it to the
dark state and immediately reading it out again. Note
that due to the initial oscillations of C1PO(τ) (cf., data
shown in Figure 3), the fit parameter c in Eq. (18) does
not necessarily correspond to the value of C1PO(τ = 0).

The results are shown in Figure 4(b). Overall, the
losses during writing and readout are restricted to values
between 10 % and 20 %, originating from the loss rates
γX and κ.

C. Temperature dependence

Including the coupling of both the bright and the dark
exciton states to LA phonons as described by Equa-
tion (9) leads to a faster decay of the initial oscillations

of C1PO(τ) and a faster subsequent exponential decay.
We perform this analysis for a dark-bright splitting of
δeff = δXD = 0.95 meV, i.e., for the intrinsic splitting
due to the electron-hole exchange, with a coupling of
J = 0.25 meV.

The resulting decay times τ∗ and values of C1PO(τ =
0) are shown in Figure 4(c) and (d), respectively. The
phonon-free results are marked by dashed black lines.
At T = 4 K, the decay time is close to its phonon-free
counterpart. With rising temperature, though, the decay
times become drastically shorter. At T = 77 K, it is only
roughly a quarter of the phonon-free value. The reason
is the asymmetry of phonon absorption and emission at
low temperatures that vanishes at higher temperatures.
During storage, the state |D, 0〉 is mostly occupied. The
state |G, 1〉 lies δeff = 0.95 meV above it and thus cannot
be reached by phonon emission, which is predominant at
low temperatures. In contrast, at higher temperatures,
δeff can be bridged by phonon absorption. Thus, an addi-
tional decay channel of the dark state |D, 0〉 opens during
storage. Reducing the residual coupling during storage
by means of smaller J or a δeff much larger than the
maximum of the phonon spectral density should there-
fore weaken the phonon influence, too.

The losses due to writing and readout are also hardly
influenced at low temperatures, while they become
stronger with rising T . This means that the preparation
of the dark state during writing is already incomplete.
The reason lies in the fact that the phonon interaction
dampens the Rabi oscillations between the bright state



8

and the cavity to an extent that already the transfer from
the single-photon state to the bright exciton (before the
writing pulse) is incomplete.

VI. STORAGE OF A SINGLE PHOTON OUT
OF THE STATE |n〉 WITH n > 1

We have demonstrated the buffering capacity of our
protocol concerning a single-photon state. Now, the
question arises how it performs, when higher-order Fock
states are present in the cavity. To this end, we con-
sider the state |G, 2〉 as the initial value of the QD–
cavity system and buffer one of the two photons present
in the cavity using the presented protocol. The occu-
pation dynamics is shown in Figure 5(a) for a fixed
τ = 15.5 ps. The analysis is performed for J = 0.25 meV
and δeff = δXD = 0.95 meV as before. Dashed lines show
the ideal case, while solid lines depict the case including
phenomenological losses.

We consider both the C1PO and the captured 2-photon
occupation (C2PO) after the buffering time τ in Fig-
ure 5(b) (black and red lines, respectively). All loss pro-
cesses and the phonon influence at T = 4 K are taken
into account in these results. The C2PO decays expo-
nentially. The rate corresponds exactly to the cavity loss
rate κ. Since one of the two initially present photons is
stored in the dark state, the remaining single photon can
leave the cavity via the cavity loss channel. Retrieving
the other photon from the dark state and recombining it
with the remaining one to yield the initial Fock state |2〉
is only possible, when the remaining one has not left the
cavity yet.

Nonetheless, the effective buffering of the 2-photon
Fock state outperforms the case, where the state |2〉 de-
cays without using a storage scheme. The reason is the
fact that the Fock state |n〉 decays with an effective rate
of nκ. Therefore, our single-photon buffering protocol
can reduce this effective rate to (n− 1)κ, as shown here
for the case n = 2. Meanwhile, the dependence of the
C1PO on the buffering time corresponds again to the
effective lifetime of the dark state of about ∼ 20 ns. In-
terestingly, the dependence of the C1PO on τ is, even
when disregarding the high-frequency oscillations in the
beginning, nonmonotonous. The reason is the photon
that remains in the cavity: the Rabi frequency of the os-
cillations between the bright state and the cavity depends
on the number of photons present in the cavity. Since the
frequencies for the different photon numbers are incom-
mensurable, changes in the amplitude and therefore the
nonmonotonicity of the C1PO are the consequence.

VII. TOWARDS EXPERIMENTAL
REALIZATION

To present a clear and well understandable physical
picture of the buffering scheme, we used rectangular

pulses with smoothed edges as model AC-Stark pulses
[cf., Eq. (14)]. While such pulses can be generated us-
ing fast electro-optical modulators to cut the desired en-
velopes out of a continuous wave laser,41 the rise time
of 1/α = 0.1 ps assumed in Section IV A in combination
with the pulse length necessary for the protocol is out of
reach with current state-of-the-art equipment.41 Exper-
imentally, it is a far lesser challenge to use pulses with
Gaussian envelopes.

The AC-Stark pulses are needed for the excitation
transfer from the bright to the dark state for the writ-
ing and vice versa for the readout procedure. Therefore,
we compare the storage capacity of differently shaped
pulses by using the maximum occupation of the dark
state |D〉 after the first (writing) pulse (cf., Figure 2) as
a target quantity in the following. Note that any losses
experienced during writing occur again at readout, thus
influencing the C1PO two times. Nonetheless, the pulse
shape should not have any influence on the decay time
τ∗ during storage, since there are no pulses in the time
interval between writing and readout.

Using Gaussian pulses of the form

fACS(t) =
Θ√
2π σ

e−
(t−t0)2

2σ2 , (20)

three parameters have to be determined: the pulse area
Θ, the standard deviation σ, which is connected to the
full width at half maximum via FWHM = 2

√
2 ln 2σ,

and the time t0, where the maximum of the pulse occurs.
While the three parameters f0, tACS, and ton can be de-
termined from analytical considerations for rectangular
pulses from Ref. 41, predicting an optimal set of Gaussian
pulse parameters is not straightforward. Therefore, we
numerically search for the maximum occupation of |D〉
in the parameter space spanned by Θ, σ, and t0 by dis-
cretizing all three parameters. At T = 4 K for example,
this optimum is given by Θ = 33.77π, FWHM = 7.14 ps,
and t0 = 15.01 ps. We perform this optimization for
the parameters used in the last two sections, namely
J = 0.25 meV and δeff = δXD = 0.95 meV.
Figure 6 shows the results depending on the tempera-

ture T . Although the rectangular pulses consistently out-
perform the Gaussian ones, the loss in occupation due to
the experimentally easier to implement Gaussian shape is
only around 5 percentage points for all considered tem-
peratures. Therefore, the presented buffering protocol
also works with Gaussian instead of rectangular pulses.
This provides a path to an experimental realization in
the near future.

Finally, let us comment on the usage of a semimag-
netic QD for this protocol. The dark-bright coupling
provided by the Mn atom is crucial for the operation of
the protocol. The advantage of the Mn doping is that
the dark-bright interaction is provided by an intrinsic
degree of freedom of the QD. Nonetheless, this coupling
could also be provided by an additional external mag-
netic field in Voigt configuration without using the Mn
atom as a mediator.41 Therefore, our proposed storage
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protocol should in principle also work in nonmagnetic
QDs.

VIII. CONCLUSION

We proposed a protocol to deterministically write and
read a single photon in a QD–cavity system. Assuming
a CdTe QD isoelectrically doped with a single Mn ion
yields a Λ-type three-level system consisting of a ground
state and two exciton states, one optically active bright

state and one that is dipole dark. The storage protocol
relies on a coherent transfer of the photon occupation
to the bright exciton due to Rabi oscillations. Then, an
AC-Stark pulse shifts the bright state to be in resonance
with the dark exciton. A coherent excitation transfer
during the length of the pulse prepares the dark state,
which due to its optical inactivity is a metastable state
with long lifetime. The readout procedure is exactly the
reverse process.

We analyzed the influence of the dark-bright coupling
strength J and the effective dark-bright splitting δeff on
the performance of the protocol as well as its dependence
on temperature. During storage in the dark state, its
residual coupling to the bright state and thus to faster
loss channels is controlled by J and δeff. Reducing this
residual coupling by decreasing J or increasing δeff leads
to a better overall performance of the buffering scheme.
At rising temperatures, the phonon environment acts on
the coupling between the bright state and the cavity.
Thus, an additional loss channel during storage has to be
considered, which again can be influenced by adjusting
the residual coupling of the dark to the bright exciton.
Furthermore, phonons have a rather strong influence on
the writing and readout procedure. At high enough tem-
peratures, already the transfer of the photon to the bright
exciton before writing becomes incomplete.

Nonetheless, for all considered parameter sets the over-
all storage time as measured by τ∗ ranges from a few to
tens of ns. Thus, it is two orders of magnitude longer
than the lifetime of a photon in a high-Q cavity with a
quality factor of 2.68 · 105.64
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Furthermore, we have shown that the proposed scheme
can store a single photon out of a higher-order Fock state
|n〉 with n > 1. Thus, the lifetime of the state |n〉, which
is (nκ)−1 in a cavity with loss rate κ, can be extended to
[(n− 1)κ]−1 (for γD � κ).

Finally, we discussed the possibility of using Gaussian
pulses for the buffering protocol instead of rectangular
ones, which are experimentally out of reach with current
equipment for the pulse characteristics needed for the
protocol. For optimal pulse parameters, Gaussian pulses
can be used successfully. Pulses of rectangular shape are
only ∼ 5 percentage points better concerning the dark
state occupation after the writing procedure.

Thus, we expect the proposed scheme to be realizable

with state-of-the-art equipment. After QDs have long
been discussed as on-demand single-photon sources, this
work paves the way for them to also be used as storage
components. Such a QD buffering device for single pho-
tons could serve as a building block in more complex QD
quantum information processing devices.
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M. Kamp, Applied Physics B 122, 19 (2016).

65 J. McFarlane, P. A. Dalgarno, B. D. Gerardot, R. H.
Hadfield, R. J. Warburton, K. Karrai, A. Badolato, and
P. M. Petroff, Applied Physics Letters 94, 093113 (2009),
https://doi.org/10.1063/1.3086461.

66 L. Besombes, K. Kheng, L. Marsal, and H. Mariette,
Phys. Rev. B 63, 155307 (2001).

67 China Rare Metal Material Co., Ltd., “Cadmium Tel-
luride (CdTe),” (2021), accessed: 2021-07-26.
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Lanzillotti-Kimura, A. Lemáıtre, A. Auffeves, A. G.
White, L. Lanco, and P. Senellart, Nat. Photonics 10,
340 (2016).
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Different Types of Photon Entanglement from a Constantly
Driven Quantum Emitter Inside a Cavity
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and Vollrath M. Axt

Bell states are the most prominent maximally entangled photon states. In a
typical four-level emitter, like a semiconductor quantum dot, the photon
states exhibit only one type of Bell state entanglement. By adding an external
driving to the emitter system, also other types of Bell state entanglement are
reachable without changing the polarization basis. In this work, it is shown
under which conditions the different types of entanglement occur and
analytical equations are given to explain these findings. Furthermore, special
points are identified, where the concurrence, being a measure for the degree
of entanglement, drops to zero, while the coherences between the two-photon
states stay strong. Results of this work pave the way to achieve a controlled
manipulation of the entanglement type in practical devices.

1. Introduction

Entanglement of quantum states is one of the most remark-
able and interesting physical effects that separate the quan-
tum mechanical from the classical world.[1,2] Entanglement
can be used to test quantum mechanical principles on a fun-
damental level, for example, by revealing violations of Bell
inequalities.[2,3] Furthermore, many fascinating and innovative
applications, for example, in quantum cryptography,[4,5] quan-
tum communication,[6,7] or quantum information processing
and computing,[8–11] rely on entangled photon pairs.
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The defining property of an entangled bi-
partite system is that its quantummechani-
cal state cannot be factorized into parts cor-
responding to the constituent subsystems.
There are four prominent states, which are
maximally entangled and known as the Bell
states, established for two entangled pho-
tons with horizontalH polarization and ver-
tical V polarization

|Φ±⟩ = 1√
2
(|HH⟩ ± |VV⟩), (1)

|Ψ±⟩ = 1√
2
(|HV⟩ ± |VH⟩). (2)

In the following we will refer to these states asΦ Bell state (ΦBS)
and ΨBS. To create maximally entangled states, one of the best
established routes is via the cascaded relaxation in few-level sys-
tems like atoms, semiconductor quantum dots or F-centers.[12–15]

In this paper, we study under which driving conditions, a four-
level emitter (FLE) placed in a microcavity produces entangled
photons being either in a ΦBS or ΨBS. We demonstrate that
a constantly driven FLE undergoes a sharp transition between
regions of high ΦBS and ΨBS entanglement for a certain two-
photon resonance. At the transition the degree of entanglement
drops to zero at a special point, because the quantum state of
the system becomes factorizable. We will further study all two-
photon resonances revealing a rich variety of different scenarios
with or without switching the type of entanglement and with or
without special points of zero concurrence.

2. Generation of Entangled States

The generation procedure of entangled photons in a typical (non-
driven) four-level system is as follows [see also Figure 1 (left)]:
In a first step the uppermost state is prepared, for example, by
using two-photon resonant or near-resonant excitation with short
coherent pulses[16–24] or adiabatic rapid passage protocols.[25–28]

The excited emitter then decays into a superposition of the two
intermediate states which can be reached from the uppermost
state by emission of either a horizontally or vertically polarized
photon. In the subsequent decay to the ground state a second
photon is emitted. Since a component in the superposition that
was created by emitting a photon with a given polarization gives
rise to a second photon having the same polarization aΦBS two-
photon state is generated. Experiments and theoretical studies
in semiconductor quantum dots demonstrated the possibility to
generate ΦBS entanglement.[3,16,29–50]
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The situation changes profoundly when the few-level system
is continuously driven by an external laser. Then additionally, it
becomes possible to createΨBS entanglement. A possible mech-
anism could be that the uppermost state emits a horizontally po-
larized photon via one path way, is then re-excited by the laser
and then emits a vertically polarized photon via the other path.
Since the sequence of emission of a pair ofH,V orV,H polarized
photons is identical, this process results in an entangled ΨBS.
Note that the states |HV⟩ and |VH⟩ are distinguished by the tem-
poral order of the H or V polarized photon emissions. Indeed,
Sánchez Muñoz et al. found that under specific conditions the
resulting two-photon state is close to the ΨBS.[51] Here we will
show that ΨBS entanglement occurs under various conditions,
but alsoΦBS entanglement is supported by a driven FLE system.
The key is adjusting the cavity modes to two-photon transitions
between the emerging laser-dressed states of the FLE. The sit-
uation of constant driving was also studied experimentally,[52,53]

where the emission spectra clearly demonstrated the transition
from the bare states toward the laser-dressed states.
To create entangled photon states in an optimal way, the FLE

is embedded inside a microcavity. By this, the coupling to the
cavity enhances the light-collection efficiency and the photon
emission rate due to the Purcell effect.[42,54] Additionally, the
energetic placement of the cavity modes can have a profound
impact on the resulting degree of entanglement. By placing
the cavity modes in resonance with a two-photon transition of
the emitter[29,32,33,47,51,55] direct two-photon emission processes
dominate over sequential single-photon ones. Since the direct
two-photon emission is much less affected by a possible which-
path information this configuration results in a high degree of
entanglement of the emitted photon pairs,[32,33] at least at low
temperature.[29]

3. Driven Four-Level Emitter

3.1. Bare State Picture

We consider an externally driven FLE embedded inside a micro-
cavity, adopting the model from ref. [51]. The FLE comprises the
energetic ground state |G⟩ at energy 0, two degenerate interme-
diate states |XH/V⟩ with energy ℏ𝜔X, and the upper state |XX⟩
at energy 2ℏ𝜔X − EB. Note that it is quite common to find the
state |XX⟩ not exactly at twice the energy of the single excited
states, which in quantum dots is known as the biexciton bind-
ing energy.[2,55,56] Optical transitions which involve the state |XH⟩
(|XV⟩) are evoked by horizontally (vertically) polarized light. Fol-
lowing ref. [51], we assume the fine-structure splitting between
these two intermediate states to be zero. A sketch of the FLE is
shown in Figure 1 (left). The Hamiltonian of the FLE reads

ĤFLE = ℏ𝜔X

(|XH⟩⟨XH| + |XV⟩⟨XV|
)
+
(
2ℏ𝜔X − EB

)|XX⟩⟨XX|.
(3)

The FLE is continuously driven by an external laser with fre-
quency 𝜔L and driving strength Ω. The laser driving is assumed
to be linearly polarized, such that the H and V polarized tran-
sitions are driven with equal strength ensuring that there is
no preferred polarization and, consequently, no which-path

Figure 1. Left: Sketch of the FLE including optical selection rules for tran-
sitions with either horizontally (H) or vertically (V) polarized light. In
addition, an external laser field excites the system. Right: Sketch of the
laser-dressed states.

information is introduced by the external laser. In the frame
co-rotating with the laser frequency 𝜔L the corresponding
Hamiltonian reads

ĤL = Ω
(
�̂�D + �̂�†

D

)
; �̂�D =

(
�̂�H + �̂�V

)
∕
√
2 (4)

with the transition operators

�̂�H = |G⟩⟨XH| + |XH⟩⟨XX|, (5a)

�̂�V = |G⟩⟨XV| + |XV⟩⟨XX|. (5b)

We fix the laser frequency to ℏ𝜔L = (2ℏ𝜔X − EB)∕2, such that
the energetic detuning between emitter transitions and laser is
set to

Δ0 := ℏ
(
𝜔X − 𝜔L

)
=

EB
2
. (6)

By this, we resonantly drive the two-photon transition between
ground state |G⟩ and upper state |XX⟩.
The FLE is embedded inside a microcavity and coupled to two

orthogonal linearly polarized cavity modes with energies ℏ𝜔c
H

and ℏ𝜔c
V, which we assume to be energetically degenerate, that

is, 𝜔c := 𝜔c
H = 𝜔c

V. The cavity mode is best defined with respect
to the driving laser frequency (or the two-photon resonance to
|XX⟩) via the cavity laser detuning
Δ := ℏ

(
𝜔c − 𝜔L

)
= ℏ𝜔c −

(
ℏ𝜔X − Δ0

)
. (7)

The Hamiltonian describing the cavity modes and their interac-
tion with the FLE reads

Ĥc =
∑

𝓁=H,V

Δâ†𝓁 â𝓁 + ĤFLE-c. (8)

In matrix form, using the basis |XX⟩, |XH⟩, |XV⟩, and |G⟩, the
interaction Hamiltonian is given as

ĤFLE-c =

⎛⎜⎜⎜⎜⎝

0 gâH gâV 0

gâ†H 0 0 gâH
gâ†V 0 0 gâV
0 gâ†H gâ†V 0

⎞⎟⎟⎟⎟⎠
, (9)

where the emitter-cavity coupling constant g is assumed equal for
all transitions. The bosonic operators â†H/V (âH/V) create (annihi-
late) one cavity photon with frequency 𝜔c andH∕V polarization.

Adv. Quantum Technol. 2021, 4, 2000108 2000108 (2 of 14) © 2020 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH



www.advancedsciencenews.com www.advquantumtech.com

Note that Ĥc is again written in the rotating frame. From the in-
teraction Hamiltonian we can already see that in the un-driven
situation the cascade from the state |XX⟩ into the state |G⟩ can
only go via the emission of twoH or twoV polarized photons and
therefore can result exclusively in the generation of ΦBS entan-
glement.

3.2. Laser-Dressed States

The creation of entangled two-photon states is facilitated by res-
onant transitions between quantum states of the FLE with the
emission of two photons. Further analysis of the system dynam-
ics reveals that such transitions take place not between the orig-
inal FLE basis states but between the dressed states of the laser
driven FLE, obtained by diagonalizing ĤFLE + ĤL. For the diag-
onalization we go into a frame rotating with the laser frequency
𝜔L. The eigenenergies of the dressed states read

EU = 1
2

(
Δ0 +

√
Δ2
0 + 8Ω2

)
(10a)

EM = Δ0 (10b)

EN = 0 (10c)

EL = 1
2

(
Δ0 −

√
Δ2
0 + 8Ω2

)
(10d)

and the corresponding laser-dressed states are

|U⟩ = c(|G⟩ + |XX⟩) + c̃
(|XH⟩ + |XV⟩

)
(11a)

|M⟩ = 1√
2

(|XH⟩ − |XV⟩
)

(11b)

|N⟩ = 1√
2
(|G⟩ − |XX⟩) (11c)

|L⟩ = c̃(|G⟩ + |XX⟩) − c
(|XH⟩ + |XV⟩

)
(11d)

with the coefficients

c = 2Ω√
8Ω2 +

(
Δ0 +

√
Δ2
0 + 8Ω2

)2 , c̃ =
√

1
2
− c2. (12)

A sketch of the four laser-dressed states is given in Figure 1 (right
panel). The dependence of the dressed state energies on the driv-
ing strength Ω is illustrated in Figure 2. The uppermost |U⟩ and
the lowest |L⟩ states have contributions of all four original (bare)
FLE states. In the limiting case of strong driving the contribu-
tion coefficients c and c̃ approach 1∕2. On the other hand, the
composition and energies of the intermediate dressed states |M⟩
(“middle”) and |N⟩ (“null”) are independent of Ω. In general, the
laser-dressed states and the transition energies between them are
functions of Ω. Therefore, also the cavity frequency associated
with a two-photon resonance between two given dressed states
depends on the driving strength, the only exception being the
resonance between the states |M⟩ and |N⟩.

Figure 2. Energies of the laser dressed states (in the units of the emitter-
laser detuning Δ0) as a function of the driving strength Ω (in the units of
the emitter-cavity coupling strength g).

The Hamiltonian describing the coupling to the cavity also
changes profoundly by using the dressed state basis and now
reads in the basis |U⟩, |M⟩, |N⟩, |L⟩

ĤDS-c = g

⎛
⎜⎜⎜⎜⎜⎜⎝

2
√
2cc̃ â†D c â†A −c̃ â†D

√
2(c̃2 − c2)â†D

c â†A 0 −1√
2
â†A c̃ â†A

c̃ â†D
1√
2
â†A 0 −c â†D√

2(c̃2 − c2)â†D c̃ â†A c â†D −2
√
2c c̃ â†D

⎞
⎟⎟⎟⎟⎟⎟⎠

+ c.c.

(13)

with â†D = (â†H + â†V)∕
√
2 and â†A = (â†H − â†V)∕

√
2 being the cre-

ation operators in the diagonal and anti-diagonal polarization,
respectively.
One notes that the two-photon transitions between the dressed

states can follow different pathways that connect those states.
Considering as an example the transition from |U⟩ to |L⟩, one
path is to emit two photons with anti-diagonal polarization A via
the intermediate state |M⟩, while another path is a self interaction
within |U⟩ and then a direct transition to |L⟩ via emission of two
diagonallyD-polarized photons. This already indicates that due to
the constant optical driving it is not clear a priori, which entan-
glement type occurs. We will show below that new types of entan-
glement become possible and analyze their respective strength.

3.3. Cavity Losses and Radiative Decay

To account for cavity losses and radiative decay, present in every
FLE-cavity system, we introduce Lindblad-type operators

Ô,Γ �̂� =
Γ
2

(
2Ô�̂�Ô† − �̂�Ô†Ô − Ô†Ô�̂�

)
, (14)

where Ô is the systemoperator associatedwith a loss process with
corresponding loss rate Γ in the bare state system. The dynamics
of the statistical operator of the system �̂� is then determined by
the Liouville-von Neumann equation

d
dt
�̂� = �̂� := − i

ℏ
[
Ĥ, �̂�
]
+
∑

𝓁=H,V

{â𝓁 ,𝜅 + |G⟩⟨X𝓁 |,𝛾 + |X𝓁⟩⟨XX|,𝛾
}
�̂�,

(15)
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Table 1. Fixed system parameters used in the calculations.

Parameter Value

Emitter-cavity coupling strength g 0.051 meV

Detuning Δ0 20 × g = 1.02 meV

Cavity loss rate 𝜅 0.1 × g∕ℏ ≈ 7.8 ns−1

Radiative decay rate 𝛾 0.01 × g∕ℏ ≈ 0.78 ns−1

where [⋅, ⋅] denotes the commutator, 𝜅 is the cavity loss rate, and
𝛾 the radiative decay rate. The complete system Hamiltonian Ĥ
includes all contributions discussed in Section 3.1. The system
is assumed initially in the ground state |G⟩ without any cavity
photons. Note that we performed all numerical calculations in
the rotating frame with the laser frequency 𝜔L and use the bare
state system, while for the interpretation the dressed state picture
is advantageous.
The parameter values used in our simulations are listed in

Table 1, where we followed ref. [51]. The frequency of the cavity
mode is taken to ℏ𝜔c = 1.5 eV. The adopted parameter values
correspond to a high quality cavity resonator with Q = 1.5 × 105.

4. Photon Entanglement

4.1. Two-Photon Density Matrix

The basis for quantifying the degree of entanglement is the de-
termination of the two-photon density matrix 𝜌2p. Experimen-
tally, 𝜌2p can be reconstructed using methods of quantum state
tomography,[57] a technique based on polarization-resolved two-
time coincidence measurements. The detected signals are pro-
portional to the two-time correlation functions

G(2)
jk,lm(t, 𝜏) =

⟨
â†j (t)â

†
k(t + 𝜏)âm(t + 𝜏)âl(t)

⟩
, (16)

where {j, k, l, m} ∈ {H,V}, t is the real time when the first pho-
ton is detected, and 𝜏 the delay time between the detection of
the first and the second photon. Note that in experiments one
typically measures photons that have already left the cavity. How-
ever, considering the out-coupling of light out of the cavity to be
a Markovian process, Equation (16) can also describe G(2)

jk,lm(t, 𝜏)
measured outside the cavity.[10,30]

In experiments data is typically averaged over finite real time
and delay time windows. Thus, the experimentally reconstructed
two-photon density matrix is calculated as [30,51]

𝜌2pjk,lm(𝜏) =
G
(2)

jk,lm(𝜏)

Tr
{
G
(2)
(𝜏)
} , (17)

where G
(2)
is the time-averaged correlation with

G
(2)

jk,lm(𝜏) =
1

Δt 𝜏

t0+Δt

∫
t0

dt

𝜏

∫
0

d𝜏 ′G(2)
jk,lm(t, 𝜏

′). (18)

Here, 𝜏 (Δt) is the delay time (real time) window used in the co-
incidencemeasurement and t0 is its starting time. The trace Tr{⋅}
is introduced for normalization. For simplicity we refer to 𝜌2p as
the two-photon density matrix in the following.
Throughout this work we calculate the two-photon density ma-

trix for the system that reached its steady state so that the t-
average is independent of t0 andΔt. The steady state of the system
�̂�s is defined by

d
dt
�̂�s = �̂�s = 0. This state is obtained numerically

by letting the system evolve in time until its density matrix be-
comes stationary. We will further set 𝜏 = 50 ps, which is a realis-
tic value for the delay time window used in experiment.[58] More
details on the calculation of the two-time correlation functions
for systems including Markovian loss processes can be found in
ref. [60].

4.2. Concurrence

Using the two-photon density matrix we determine the corre-
sponding concurrence C,[59] which is a widely accepted measure
for the degree of entanglement of a bipartite system. The concur-
rence is calculated from a given two-photon density matrix 𝜌2p
according to [47,57,59]

C = max
{
0,
√
𝜆1 −
√
𝜆2 −
√
𝜆3 −
√
𝜆4
}

(19)

where 𝜆j are the (real and positive) eigenvalues in decreasing or-
der, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 𝜆4, of the matrix

M = 𝜌2p T (𝜌2p)∗ T, (20)

where T is an anti-diagonal matrix of rank 4 with elements
{−1, 1, 1,−1} and (𝜌2p)∗ is the complex conjugated two-photon
density matrix. In the standard situation without driving, where
only aΦBS |Φ±⟩ can be generated, the full expression for the con-
currence reduces to C = 2|𝜌2pHH,VV |. Thus, the degree of entangle-
ment is closely related to the corresponding coherences in the
two-photon density matrix. Note that like the two-photon density
matrix 𝜌2p(𝜏) also the concurrence C(𝜏) depends on the measure-
ment window 𝜏. A finite delay time window 𝜏 is necessary for the
detection of ΨBS entanglement since the two contributions that
build up |Ψ+⟩ in Equation (2) can only be distinguished if the two
photons are detected at different times.[51]

For the numerical calculation of the concurrence we use the
following procedure: First, following ref. [60], the averaged two-

time photon correlation G
(2)
is calculated. This quantity is then

used to obtain the time-averaged two-photon density matrix in
Equation (17). Finally from the two-photon density matrix the
concurrence is determined according to Equation (19). Note that
we do not use any further approximations in the calculation of

G
(2)
.

5. Two-Photon Transition Between Upper and
Lower Dressed State

The emission of entangled two-photon states is associated with
two photon transitions between the dressed FLE states. The
dressed FLE states feature two-photon emissions, which are
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Figure 3. a) Concurrence as function of the laser driving strength Ω for the full model (solid line), the analytic approximation C(r) presented in Equa-
tion (29) (dotted line), and with a finite fine-structure splitting 𝛿 = 0.1Δ0 (dashed line). Inset: Dressed state energies as a function of the driving strength
and the two-photon resonant cavity modes (green arrows) for three selected Ω values. b–d) Absolute value of the two-photon density matrix |𝜌2p(𝜏)| for
driving strength (b) Ω1 = 8 × g, (c) Ω2 = 12.25 × g, and (d) Ω3 = 30 × g (indicated by vertical lines in (a)).

largest every time the cavity frequency is tuned in resonance with
a possible two-photon transition, that is, when twice the photon
energy (here Δ) is equal to the transition energy between the
dressed state pairs. Therefore, the analysis is focused on these
resonant situations.
We start our analysis with the case where the cavity photons

are in resonance with the transition between the states |U⟩ and
|L⟩, that is, the cavity frequency is always tuned such that

Δ =
EU − EL

2
= 1
2

√
Δ2
0 + 8Ω2. (21)

Notice, that keeping this condition requires the cavity frequency
𝜔c to change with the driving strength Ω. This resonance for a
driven FLE was considered in earlier works,[51] where a possibil-
ity to achieve a high degree of ΨBS entanglement was demon-
strated. Here we demonstrate that ΨBS entanglement is not the
only type of two-photon entanglement that can be obtained. It
will be shown that by varying the driving strength (while keeping
the system at the considered resonance) the FLE can reach the
domain of ΦBS entanglement, separated from that of the ΨBS
by a special critical point of zero concurrence.

5.1. Transition Between𝚽BS and 𝚿BS Entanglement

The concurrence as a function of the driving strengthΩ is shown
in Figure 3a, where the inset illustrates the resonance in ques-
tion. In full agreement with earlier calculations[51] one observes
ΨBS entanglement when the driving is strong. However, when

the driving strength is lowered the entanglement changes its type
to ΦBS entanglement. A sharp transition between the two types
occurs at a special critical point Ω ≈ 12.25 × g where the concur-
rence is exactly zero. The ΦBS entanglement obtained for weak
driving reflects the fact that for small Ω the system approaches
the undriven case. Recalling that ΨBS entanglement has been
found in ref. [51] for higher Ω, it is clear that a transition has to
take place in between.
More insight into the entanglement change is obtained by

calculating the corresponding two-photon density matrices as
presented in Figure 3b for the driving strength Ω1 = 8 × g and
Figure 3d Ω3 = 30 × g. At Ω1 the occupations of the states |HH⟩
and |VV⟩ and their coherence clearly dominate over the remain-
ing elements representing ΦBS entanglement. A very different
behavior is found at Ω3 = 30 × g, where the occupations of the
states |HV⟩ and |VH⟩ and the corresponding coherences exhibit
the highest values and, consequently, are associated with ΨBS
entanglement.
Let us now focus on the special point at Ω2 = 12.25 × g. The

two-photon density matrix at the special point, shown in Fig-
ure 3c, reveals that the concurrence does not vanish because of
the absence of coherences. On the contrary, all coherences are
close to their maximal possible value of about 0.25. Further anal-
ysis reveals that the corresponding two-photon state is

|𝜓sp⟩ = 1
2
(|HH⟩ − |HV⟩ − |VH⟩ + |VV⟩)

= 1√
2

(|H1⟩ − |V1⟩
) 1√

2

(|H2⟩ − |V2⟩
)
.

(22)
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Figure 4. Schematic depiction of the possible transitions connecting
|U, 0, 0⟩ to the two-photon states |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩. All but the
direct two-photon emission process (bold orange arrow) are eliminated in
the Schrieffer–Wolff transformation.

Remarkably, this is a pure state and |𝜓sp⟩ can be factorized
into a product of two one-photon states describing the first and
second detected photon, respectively (indicated by 1 and 2).
Since |𝜓sp⟩ can be factorized, it is not entangled and, thus, the
concurrence vanishes at this point. Therefore, instead of a direct
transition from highΦBS to high ΨBS entanglement the system
passes through this special point with vanishing degree of
entanglement.
We note that the special point occurs at a distinct resonance

condition. Beside the two-photon transition between the two out-
ermost dressed states, also the one-photon process between the
intermediate states |M⟩ and |N⟩ becomes resonant.

5.2. Effective Hamiltonian of the System at the Resonance

In order to understand the underlying physics of the crossover
between the entanglement types we derive an effective Hamilto-
nian that describes the most relevant transition processes involv-
ing the |U⟩ and |L⟩ states. To be more specific, we account only
for the uppermost state without photons |U, 0, 0⟩ and the low-
est states with two photons |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩. Here,
|𝜒 , nH, nV⟩ is the product state of |𝜒⟩ ∈ {|U⟩, |M⟩, |N⟩, |L⟩} and
the photon number state forH and V polarization.
Besides the direct two-photon transitions, there are several

other possibilities to go from the initial to the final states. One
example are subsequent one photon transitions, either going
via one of the intermediate states or by a self-interaction and
then a one-photon process. Also, from the final states, a sequen-
tial photon emission and absorption (or the other way around)
can take place. These processes are depicted in Figure 4. There-
fore, the states mentioned above are coupled to a bunch of other
states, namely the one-photon states |𝜒 , 1, 0⟩, |𝜒 , 0, 1⟩ and the
three-photon states |𝜒 , 3, 0⟩, |𝜒 , 2, 1⟩, |𝜒 , 1, 2⟩, and |𝜒 , 0, 3⟩ (with
𝜒 ∈ {U,M,N, L}), while the latter can be reached in sequential
emission/absorption processes.
Using a Schrieffer–Wolff transformation, it is now possible to

encode these transitions into a single matrix, acting only within
the basis spanned by the direct two-photon transitions, that is,
|U, 0, 0⟩, |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩.[61,62] A Schrieffer–Wolff
transformation thereby performs a block-diagonalization, which
decouples the desired states from the rest. This is reasonable,
because the removed states are strongly off-resonant in this situ-

ation and, thus, represent a small perturbation. More details on
the Schrieffer–Wolff transformation can be found in Appendix A.
After the Schrieffer–Wolff transformation, which is treated

within the photon number states, we afterward perform addition-
ally a basis transformation to rotate the system partially into the
Bell basis with {|U, 0, 0⟩, |L, 1, 1⟩, |L,Φ+⟩, |L,Φ−⟩}. In this repre-
sentation |L, 1, 1⟩ corresponds to the possibility of ΨBS entan-
glement, where two photons are generated such that one is H-
and the other V -polarized. However, without further analysis, we
cannot distinguish between Ψ±BS entanglement. The effective
Schrieffer–Wolff Hamiltonian is then given by

̂̃H(2)
UL = g2

⎛
⎜⎜⎜⎜⎜⎝

𝛿UL 𝛾UL1 −𝛾UL2 0

𝛾UL1 −𝛿UL 𝛼UL 0

−𝛾UL2 𝛼UL −𝛿UL 0

0 0 0 −𝛿UL

⎞
⎟⎟⎟⎟⎟⎠

(23)

with

𝛿UL =
(
c̃2 − c2

)( 2
Δ0

+ 4
ΔUL

)

𝛾UL1 = 4cc̃ 1
Δ0

− 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛾UL2 = 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛼UL = 1
Δ0

−
(
1 − 16c2c̃2

) 1
ΔUL

, (24)

where ΔUL = EU − EL. The given expressions contain only the
most important contributions. The full expressions can be found
in Appendix A.1. It is interesting to note that the coefficients 𝛾UL1∕2
stem from the subsequent emission of two single photons (faded
orange arrows in Figure 4) and simultaneous two-photon emis-
sion, while 𝛼UL accounts for the fact that from the two photon
states, coupling to higher (lower) photon states can take place
and therefore couple different types of two-photon states (faded
red arrows in Figure 4). An example for the latter case is the cou-
pling of |L, 2, 0⟩→ |L, 2, 1⟩, followed by a photon number reduc-
tion via |L, 2, 1⟩ → |L, 1, 1⟩ illustrating why different two-photon
states are coupled.
From this Hamiltonian, we can now deduce which type of en-

tanglement is created: First of all we find that the state |L,Φ−⟩
is decoupled, such that we see that photons with this type of en-
tanglement are not created. In contrast, the initial state |U, 0, 0⟩
is coupled to the |L,Φ+⟩ state via 𝛾UL2 and to the state |L, 1, 1⟩ via
𝛾UL1 . Therefore in principle bothΦBS andΨBS entanglement can
be created. The different types of entangled states are coupled via
the coefficient 𝛼UL, however, we will for now neglect this coupling
(see discussion at the end of the next section). Which type of en-
tanglement dominates depends on the ratio

r =
𝛾UL1

𝛾UL2

= 4
(

Ω
Δ0

)2
− 1
2
. (25)

This means, we obtain preferably ΦBS entanglement, when
𝛾UL2 > 𝛾UL1 (or |r| < 1), and preferably ΨBS entanglement if
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Figure 5. Effective coupling constants 𝛾UL1 and 𝛾UL2 and the ratio
r = 𝛾UL1 ∕𝛾UL2 as function of the driving strength Ω.

𝛾UL2 < 𝛾UL1 (or |r| > 1). Figure 5 displays the ratio r as well as the
couplings 𝛾UL1 and 𝛾UL2 as a function of the driving strengthΩ. In-
deed, r = 1 corresponds toΩsp =

√
3∕8Δ0 and we obtain our spe-

cial point, when both types of entanglement are occurring with
equal weight and we have zero concurrence since their superpo-
sition results in a factorizable state.

5.3. Approximate Two-Photon Density Matrix

Further insight is obtained by calculating the two-photon den-
sity matrix assuming the delay window 𝜏 is small and can be ne-
glected so that

𝜌2pjk,lm(𝜏) ≈ Tr
{
âm âl �̂�s â

†
j â

†
k

}
(26)

where is a normalization constant and �̂�s describes the steady
state of the system. Note that only states with at least two photons
inside the cavity contribute to the two-photon density matrix. Ne-
glecting the coupling 𝛼UL in the effective Hamiltonian (23) and
performing another basis transformation, one finds that the only
two-photon state coupled to |U, 0, 0⟩ is

|𝜓s⟩ = 1√(
𝛾UL1

)2 + (𝛾UL2

)2
(
𝛾UL1 |L, 1, 1⟩ − 𝛾UL2 |L,Φ+⟩

)
. (27)

Therefore, in this approximation, also the contribution to the
steady state which contains two photons inside the cavity should
be proportional to |𝜓s⟩. Consequently, the approximate normal-
ized two-photon density matrix can be calculated by inserting
𝜌s = |𝜓s⟩⟨𝜓s| into Equation (26) which results in

𝜌2papprox =
1

2(1 + r2)

⎛
⎜⎜⎜⎝

1 −r −r 1
−r r2 r2 −r
−r r2 r2 −r
1 −r −r 1

⎞
⎟⎟⎟⎠
, (28)

For this simplified density matrix, we can analytically calculate
the concurrence C [Equation (19)] to

C(r) = |1 − r2|
1 + r2

. (29)

In Figure 3a the approximate result C(r) is included as a dotted
line. The approximate solution agrees quite well with the nu-
merical results. This underlines the idea that the concurrence
depends essentially on the ratio r. Also for the approximate so-
lution we have the special point at r = 1 and the regions of high
entanglement and the corresponding type of entanglement can
be directly extracted from the analytical result. Below the special
point we have |r| < 1, therefore, r2 < |r|, resulting in a density
matrix of ΦBS entanglement. The maximum concurrence value
appears around Ω = 1

2
√
2
Δ0 ≈ 7.1 × g where the ratio r passes

through zero. Above Ωsp, we have r ≥ 1 and r2 > r. Thus, in this
regime one obtainsΨBS entanglement in the two-photon density
matrix.
We now discuss the deviations between the numerical and the

approximate result for the concurrence. One obvious reason for
the difference is the obmission of the coupling between the two-
photon states (via one- or three-photon states), as indicated by
𝛼UL in Equation (23). This coupling mixes ΦBS and ΨBS, such
that in the full model, the total obtained concurrence is reduced.
Nonetheless, neglecting 𝛼UL for the analysis is reasonable, when
taking the cavity losses into account. By analyzing the values of
𝛼UL and 𝛾UL, we find that these are always smaller than the cavity
loss rate 𝜅. This means that the losses relax the system before the
coupling between the different photon states becomes efficient.
Another reason for the deviations is that for low driving strength
values, other transitions between the laser-dressed states besides
the discussed direct two-photon one become important as they
get closer to resonance.

5.4. Influence of a Finite Fine-Structure Splitting

So far only the situation of degenerate intermediate bare states
|XH⟩ and |XV⟩ has been analyzed. However, an often discussed
asymmetry in the system is a possible finite fine-structure split-
ting 𝛿 between these two intermediate states.[29,32,41,45,46] A fi-
nite fine-structure splitting introduces which-path information
into the system and can, therefore, result in a reduced degree of
entanglement.[3,29,32]

In Figure 3a the influence of a finite splitting 𝛿 on the con-
currence is shown, where 𝛿 = ℏ𝜔XH

− ℏ𝜔XV
is the difference

between the energies of the horizontally and vertically polar-
ized intermediate state ℏ𝜔XH∕V

= ℏ𝜔X ± 𝛿∕2. Even in the case
of a rather large splitting 𝛿 = 0.1Δ0, the resulting degree of
entanglement as measured by the concurrence is only weakly
influenced by the fine-structure splitting. Furthermore, all main
features discussed before remain unchanged: A sharp transition
between regions of high ΦBS and ΨBS entanglement takes
place at a special point of vanishing concurrence. Note that the
chosen parameters reflect the often realized situation where
the fine-structure splitting is one order of magnitude smaller
than the binding energy.[3,16,41,45] Thus, the energies of the laser-
dressed states and their character do not change significantly.
Therefore, also the resonance conditions and optical selection
rules stay roughly the same leading to very similar results.
Consequently, the resulting two-photon state and its degree
of entanglement are robust against a possible fine-structure
splitting.
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Figure 6. Concurrence as function of the cavity laser detuningΔ for fixed values of the external laser driving a)Ω = 8 × g, b)Ω = 12.25 × g, c)Ω = 30 × g,
and d) Ω = 40 × g. The color code indicates the type of entanglement: blue curves symbolize ΦBS and red curves are ΨBS entanglement. The vertical
lines mark the position of photon resonances labeled by np 𝜒1|𝜒2. e) Energy of the laser-dressed states as a function of the driving strength Ωmarking
the four selected two-photon resonance conditions which correspond to the two-photon resonances of the same color in panels (a)–(d). f) Concurrence
and mean photon number ⟨n⟩ for Ω = 12.25 × g in the vicinity of Δ = ΔMN∕2.

6. Entanglement at the Other Two-Photon
Transitions

Having discussed the transition between |U⟩ and |L⟩, we now
want to examine the behavior of the other two-photon res-
onances. In particular, there are three other two-photon res-
onances matching the transitions between the corresponding
dressed states (given by Δ𝜒1𝜒2 = E𝜒1 − E𝜒2 ) in the system at

ΔUM

2
=

ΔNL

2
= 1
4

(√
Δ2
0 + 8Ω2 − Δ0

)

ΔUN

2
=

ΔML

2
= 1
4

(√
Δ2
0 + 8Ω2 + Δ0

)

ΔMN

2
=

Δ0

2
. (30)

Therefore, to sweep through the respective resonances, we now
fix the driving strength and vary the cavity laser detuning Δ.
The corresponding concurrence is calculated and the results are
shown in Figure 6 for four different driving strength values Ω =
8 × g, 12.25 × g, 30 × g, and 40 × g.
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The type of entanglement is encoded in the color: Blue lines
are for ΦBS and red lines for ΨBS entanglement. On first sight,
we find that both types of entanglement occur when we vary
Δ. In addition to a strong concurrence at the four two-photon
resonances, we find several other cavity detuning values with
non-vanishing concurrence. We can attribute these to the one-
photon resonances U|M and N|L and several three-photon
resonances, which occur between the respective states. Accord-
ingly, we have labeled all resonances by np 𝜒1|𝜒2, which denotes
the n-photon resonances between the laser-dressed states |𝜒1⟩
and |𝜒2⟩.
Figure 6e shows the dressed states as a function of the driv-

ing strength and we used colored arrows to mark the different
two-photon resonances. The same colors are used to indicate the
position of the two-photon resonances in Figure 6a–d. Before we
will go through the two-photon resonances one-by-one (note that
we already discussed the 2pU|L resonance), let us briefly remark
some general findings:
While some n-photon transitions are always associated with

the same type of entanglement, others can change from one
to the other. This change may happen as a result of changing
the cavity laser detuning or the driving strength. Furthermore,
in between some of the resonance conditions the concurrence
value stays at a finite level, whereas it passes through zero in
other situations. A striking feature is the appearance of a sec-
ond special point with vanishing concurrence between regions
of high entanglement when the cavity laser detuning is approx-
imately Δ ≈ ΔUM∕2 = ΔNL∕2, which we will discuss in detail in
Section 6.2.
Next, we will go through the two-photon resonances one-by-

one. For each two-photon resonance we perform a Schrieffer–
Wolff transformation, followed by a rotation of the states, such
that each Hamiltonian in the following is given in the basis

{|𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2,Φ+⟩, |𝜒2,Φ−⟩} (31)

with 𝜒1 being the higher energy state and 𝜒2 being the lower
energy state of the 2p 𝜒1|𝜒2 resonance. More details on the
Schrieffer–Wolff transformation are given in Appendix A.

6.1. Two-PhotonM|N Resonance

We start by looking at 2pM|N, which is the only two-photon tran-
sition for which the resonance condition does not depend on the
driving strength. The corresponding transitions are marked by a
light green line in Figure 6. At this resonance the concurrence
always displays ΦBS entanglement. While the concurrence is
mostly maximal at the resonance, we find a decrease in strength
at the maximum at Ω = 12.25 × g.
We use the Schrieffer–Wolff transformation to obtain the ef-

fective Hamiltonian

̂̃H(2)
MN = g2

⎛⎜⎜⎜⎜⎝

𝛿MN 0 0 𝛾MN
2

0 −𝛿MN −𝛿MN 0

0 −𝛿MN −𝛿MN 0

𝛾MN
2 0 0 −𝛿MN

⎞⎟⎟⎟⎟⎠
(32)

with

𝛿MN = 2
(
c̃2 − c2

) 1
ΔUL

𝛾MN
2 = −4 c c̃ 1

ΔUL
. (33)

Note that these are shortened expressions and the full expres-
sions can be found in Appendix A.2. From the Hamiltonian, it
is obvious that the initial state is only coupled to the final state
|N,Φ−⟩, while the other two-photon states become uncoupled.
This is in agreement with Figure 6, where we only find ΦBS en-
tanglement at the 2pM|N resonance.
The smaller height in concurrence at Ω = 12.25 × g (see also

Figure 6f), can be traced back to the occurrence of several reso-
nance conditions at the same driving strength, in particular the
one-photon transitions 1p U|M and 1p N|L. This is confirmed
by looking at the mean photon number ⟨n⟩ = ⟨â†HâH + â†VâV⟩ as
displayed in Figure 6f. The alignment of several resonance con-
ditions causes the peak to split into two separate resonances, as
indicated by the mean photon number. Due to the additional
one-photon resonances three-photon states with all four possi-
ble combinations of polarized photons gain a noticeable popu-
lation and the extracted (two-photon) coherence 𝜌2pHH,VV reaches
only about half the value of the occupations 𝜌2pHH,HH and 𝜌2pVV,VV.
As a result, the degree of entanglement is strongly reduced.

6.2. Two-Photon U|M and Two-Photon N|L Resonance

Next we consider the two-photon resonances between the laser-
dressed states |U⟩ and |M⟩, and between |N⟩ and |L⟩, which have
the same energy. In Figure 6, these resonances are indicated by
a dark green line. From Figure 6, we see that here always a sharp
transition betweenΦBS andΨBS entanglement takes place. This
is highlighted in Figure 7a, which presents a closer look at this
resonance condition for Ω = 30 × g. Figure 7b–d display the cor-
responding two-photon densitymatrices for three selected detun-
ing values. With rising cavity laser detuning the entangled state
created inside the cavity changes from ΦBS to ΨBS entangle-
ment, passing through a special point at Δ ≈ 0.836Δ0 where the
concurrence drops to zero.
Here, we have two transitions, for which the corresponding

Schrieffer–Wolff analysis yields the Hamiltonians

̂̃H(2)
UM = g2

⎛
⎜⎜⎜⎜⎝

𝛿UM1 − 𝛿UM2 0 0 𝛾UM2

0 𝛿UM3 𝛼UM 0

0 𝛼UM 𝛿UM3 0

𝛾UM2 0 0 𝛿UM3

⎞
⎟⎟⎟⎟⎠

(34)

and

̂̃H(2)
NL = g2

⎛
⎜⎜⎜⎜⎜⎝

𝛿UM1 − 𝛿UM2 𝛾NL1 𝛾NL2 0

𝛾NL1 𝛿NL3 𝛼NL 0

𝛾NL2 𝛼NL 𝛿NL3 0

0 0 0 𝛿NL3

⎞
⎟⎟⎟⎟⎟⎠

(35)
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Figure 7. a) Concurrence and mean photon number ⟨n⟩ for Ω = 30 × g.
Vertical lines indicate the position of Δ̃UM (Equation (37)) and Δ̃NL
(Equation (38)). b–d) Absolute values of the two-photon density matrices
|𝜌2p(𝜏)| for Δ as indicated.

with the coefficients given in Appendix A.3. While the Hamilto-
nian ̂̃H(2)

UM has the same form as ̂̃H(2)
MN in Equation (32), theHamil-

tonian ̂̃H(2)
NL has a form similar to ̂̃H(2)

UL in Equation (23).
From the effective Hamiltonian, it is evident that the isolated

2p U|M resonance supports only ΦBS entanglement, while the
isolated 2pN|L resonance has competing channels for bothΦBS
andΨBS entanglement. From the coefficients, we can deduce the
strengths of the competing channels, finding that

|𝛾NL1 | = |𝛾NL2 | +
2
√
2c̃

2Δ0 + ΔUM
. (36)

Therefore the ratio 𝛾NL1 ∕𝛾NL2 is always larger than 1 and the pre-
ferred type of entanglement for the 2p N|L resonance is always
ΨBS entanglement.
A zoom in around the two-photon transition at Δ = ΔUM∕2,

presented in Figure 7a for Ω = 30 × g, shows clearly that two
peaks appear, a ΦBS one and a ΨBS one. The approximate posi-
tion of these peaks can be determined by the diagonal elements
of the Schrieffer–Wolff Hamiltonians in Equation (34) and Equa-
tion (35). Due to the transformation, diagonal elements appear
encoded by 𝛿𝜒1𝜒2j , which slightly shift the resulting resonance,
such that now we have the resonances for the 2p U|M transition
with ΦBS entanglement at

Δ̃UM = 1
2

(
ΔUM + (𝛿UM1 − 𝛿UM2 ) − 𝛿UM3

)
(37)

and the 2p N|L transition with ΨBS entanglement at

Δ̃NL =
1
2

(
ΔUM + (𝛿UM1 − 𝛿UM2 ) − 𝛿NL3

)
. (38)

The values of the different 𝛿𝜒1𝜒2j are given in Appendix A.3. In-
deed, the position of the peak maxima visible in Figure 7 agree
well with these shifted resonances (indicated by vertical lines).

This interpretation is confirmed by themean photon number ⟨n⟩
(dotted line in Figure 7) which also displays two separatemaxima,
indicating two close-by resonances (confer Figure 7a).
Also, the 𝛿𝜒1𝜒2j depend sensibly on the driving strength Ω. For

a driving strength being smaller than Ωm =
√
3Δ0 ≈ 34.6 × g we

find that Δ̃UM < Δ̃NL, while for Ω > Ωm this order is reversed.
Therefore, in Figure 6d for a driving strength Ω = 40 × g the ar-
rangement of ΨBS and ΦBS entanglement is swapped.
In between the regions ofΦBS andΨBS entanglementwe have

the special point at (Δ̃UM + Δ̃NL)∕2. From the density matrix at
this special point (confer Figure 7c), we see that the concurrence
does not vanish due to the lack of coherences. We find that at the
special point the generated two-photon state is essentially the su-
perposition of the two density matrices created by each transition
individually with

𝜌2psp2 =
1
2

⎡
⎢⎢⎢⎣
1
2

⎛
⎜⎜⎜⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎟⎠
+ 1
2

⎛
⎜⎜⎜⎝

1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

(39)

This can be rewritten into

𝜌2psp2 =
1
2
|𝜓 (+)

sp2⟩⟨𝜓 (+)
sp2| + 1

2
|𝜓 (−)

sp2⟩⟨𝜓 (−)
sp2|, (40)

with

|𝜓 (±)
sp2⟩ = 1√

2

(|H1⟩ ± i|V1⟩
) 1√

2

(|H2⟩ ± i|V2⟩
)
. (41)

Thus, the density matrix can be written as a mixed state, where
both contributing states are products of two one-photon states,
that is, the states are factorizable states, and, accordingly, the cor-
responding concurrence vanishes.
We emphasize that this is a different type of special point than

the one discussed in Section 5.1 where the system approaches a
pure factorizable state. Another difference in comparison to the
2p U|L resonance can be found in the limit Ω → ∞. While the
concurrence obtained at the 2pU|L resonance approaches a high
finite value and becomes independent of the driving strength, the
concurrence for the 2p U|M and 2p N|L resonances approach
zero. In the limiting case the difference Δ̃UM − Δ̃NL vanishes and,
therefore, the two resonances merge together and the different
types of entanglement cancel each other.

6.3. Two-Photon U|N and Two-PhotonM|L Resonance

Finally, we analyze the remaining two resonances 2p U|N and
2p M|L. In Figure 6 we see that always ΦBS occurs at this
transition.
The analysis with the Schrieffer–Wolff transformation results

in a similar situation as discussed in the previous subsection 6.2:
The Hamiltonian of the 2pM|L transition has the same form as
the 2p U|M transition [Equation (34) or also Equation (32)] and
therefore promotes exclusively ΦBS entanglement. On the other
hand, the Hamiltonian of the 2p U|N transition has the same
form as the 2pN|L transition [Equation (35) or also Equation (23)]
and therefore promotes both ΦBS and ΨBS entanglement. The
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Table 2. Various scenarios: Similarities and differences at the different two-photon resonances.

Resonance Small driving Ω Large driving Ω Special point Limit Ω → ∞

2p U|L Ω < 12.25 × g: ΦBS Ω > 12.25 × g: ΨBS for Ω ≈ 12.25 × g high ΨBS ent.

2pM|N always ΦBS none high ΦBS ent.

2p U|M always ΦBS in between the two close-by resonances resonances coincide and ent. vanishes

2p N|L always ΨBS in between the two close-by resonances resonances coincide and ent. vanishes

2p U|N Ω < 20 × g: ΦBS Ω > 20 × g: ΨBS not observed for Ω ≤ 40 × g resonances coincide and ent. vanishes

2pM|L ΦBS (irrelevant) ΦBS (dominant) not observed for Ω ≤ 40 × g resonances coincide and ent. vanishes

dominating type of entanglement depends on the ratio of 𝛾UN1 to
𝛾UN2 , but also on the splitting from the other resonances given
by the diagonal elements 𝛿𝜒1𝜒2j . For small driving strength values
Ω < 20 × g the 2p U|N transition dominates the dynamics and
the resulting entanglement is ΦBS entanglement. For larger Ω
both two-photon resonances become of equal importance and a
transition betweenΦBS andΨBS entanglement is expected, sim-
ilar to the results presented in Section 6.2. But, in contrast to the
previous section, here, the splitting of the two peaks is too small
for the given driving strength values, therefore, we only observe
ΦBS entanglement in Figure 6. The corresponding Hamiltoni-
ans and constants are given in Appendix A.4.
By investigating the various two-photon resonances we are

able to understand the origins of all regions of high entanglement
observable in Figure 3 and 6. We stress that, we find a rich variety
of different scenarios depending on the considered resonance
condition, which are all equally fascinating. For example, at the
2pM|N resonance one always obtains a highΦBS entanglement.
In contrast to this, in case of the 2p U|L transition, the type of
entanglement undergoes a sharp transition at a special point
of vanishing concurrence when the driving strength is varied.
Additionally, a second type of special point can occur between
two close-by resonances, as demonstrated by the 2p U|M and
2p N|L resonances. Table 2 provides a short overview over the
similarities and differences between the various scenarios at the
different two-photon resonances. Using the same analytic for-
malism based on a Schrieffer–Wolff transformation, we are able
to successfully predict the resulting type of entanglement at all
two-photon resonances, and even more important, we can also
explain these various features.

7. Conclusion

In conclusion, we have investigated the possible types of entan-
glement generated by a driven four-level emitter-cavity system.
We found that two different types of entanglement can occur,
which we classified as ΦBS and ΨBS entanglement.
By adjusting the driving strength as well as the cavity detuning,

we found a rich picture showing a finite concurrence at various
transitions. Using a Schrieffer–Wolff transformation, we were
able to give analytical insight into the occurrence of the differ-
ent types of entanglement showing that either ΦBS or a mix-
ture of ΦBS and ΨBS is promoted at the two-photon transitions.
Most excitingly, we found special points, where the concurrence,
a measure for the entanglement, drops to zero, though the cor-
responding coherences in the two-photon density matrix are not

absent. Instead, factorizable (and therefore not entangled states)
are reached.
In principle, the resulting type of Bell state could also be

changed afterward, for example, by the use of waveplates or
polarization filters. But these additional components often lead
to a significant loss of photon yield. These kinds of losses can
be avoided when the target photonic state is generated directly.
Furthermore, although ΦBS and ΨBS entanglement can be
converted into each other by postprocessing, they are clearly
distinguishable in a fixed basis and reflect the systems ability to
get entangled in more than one fashion. Seeing that entangle-
ment, being one of the most remarkable and interesting physical
effects that separates the quantummechanical from the classical
world, can change its character by just adding an external driving
to a few-level emitter is exciting from a fundamental point of
view and can also lead to new possibilities for using few-level
emitters in quantum information technology.

Appendix A: Schrieffer–Wolff Transformation

For the Schrieffer–Wolff transformation we consider the FLE-
cavity system without losses and use the states |𝜒 , nH, nV⟩ where
|𝜒⟩ ∈ {|U⟩, |M⟩, |N⟩, |L⟩} is one of the four laser-dressed states
defined in Section 3.2 and nH (nV) denotes the number of pho-
tons present in the horizontally (vertically) polarized cavitymode.
The direct two-photon transition from |𝜒1⟩ to |𝜒2⟩ involves only
the states

A : |𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2, 2, 0⟩, |𝜒2, 0, 2⟩. (A.1)

As discussed in Section 5.2, there are also several other paths
to create the two-photon states, thereby coupling the aforemen-
tioned states. These processes are depicted in Figure 4 and in-
clude the states

B : |𝜒 , 1, 0⟩, |𝜒 , 0, 1⟩,
|𝜒 , 3, 0⟩, |𝜒 , 2, 1⟩, |𝜒 , 1, 2⟩, |𝜒 , 0, 3⟩, (A.2)

where the one- and three-photon states include all four bare
states, that is, |𝜒⟩ = |U⟩, |M⟩, |N⟩, |L⟩. This results in a 28 × 28
matrix. To reduce this to a 4 × 4 matrix for the relevant states
in subset A [see Equation (A.1)], we use a Schrieffer–Wolff
transformation.[61,62] In the transformation, we perform a
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block-diagonalization of the system Hamiltonian via the unitary
transformation

e−ŜĤeŜ, (A.3)

where Ŝ is an anti-Hermitian operator.[61] After the decoupling
procedure, the states in set B [see Equation (A.2)] can be disre-
garded as they are insignificant for the system dynamics. This
formalism can be applied here since, for a given two-photon
resonance, where the cavity laser detuning matches half the
transition energy between the states |𝜒1⟩ and |𝜒2⟩, one-photon
transition processes between the laser-dressed states are typically
strongly off-resonant.
In second order the effective Hamiltonian for the states

in set A is then given by Ĥ(2)
𝜒1𝜒2 = {H(2)

a,a′}𝜒1𝜒2 with the matrix
elements[61]

H(2)
a,a′ = Ha,a′ +

1
2

{∑
b

Ha,bHb,a′

[
1

Ea − Eb
+ 1
Ea′ − Eb

]}
, (A.4)

where a runs over the states in subset A, the index b runs over
the states in B, and

Ej = ⟨j|Ĥ|j⟩ = E𝜒 +
(
nH + nV

)
Δ (A.5)

is the energy of the state |j⟩ = |𝜒 , nH, nV⟩ ∈ A, B. The matrix ele-
ments are calculated from the system Hamiltonian with

Ha,a′ = Ea𝛿a,a′ , (A.6)

This term can be dropped since it represents a constant energy
shift as the four states in set A are energetically degenerate.
The remaining matrix elements for a ≠ b are given by the
coupling Hamiltonian in the dressed state basis [Equation (13)]
with

Ha,b = ⟨a|ĤDS-c|b⟩ (A.7)

After the Schrieffer–Wolff transformation we perform a rotation
to the basis

|𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2,Φ+⟩, |𝜒2,Φ−⟩ (A.8)

using

̂̃H(2)
𝜒1𝜒2

= T†Ĥ(2)
𝜒1𝜒2

T with T =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

⎞⎟⎟⎟⎟⎟⎠

(A.9)

We performed this procedure for all two-photon resonances.

A.1. Effective Hamiltonian for the 2p U|L Resonance

The effective Hamiltonian is

̂̃H(2)
UL = g2 ×

⎛⎜⎜⎜⎜⎝

𝛿UL 𝛾UL1 −𝛾UL2 0

𝛾UL1 −𝛿UL − 𝛿UL3 𝛼UL 0

−𝛾UL2 𝛼UL −𝛿UL − 𝛿UL3 0

0 0 0 −𝛿UL − 𝛿UL3

⎞⎟⎟⎟⎟⎠
(A.10)

in the basis |U, 0, 0⟩, |L, 1, 1⟩, |L,Φ+⟩ and |L,Φ−⟩ with

𝛿UL =
(
c̃2 − c2

)( 2
Δ0

+ 4
ΔUL

)

𝛿UL3 =
8
(
c̃2 − c2

)2
3ΔUL

+ 2c̃2

ΔUL + Δ0∕2
+ 2c2

ΔUL − Δ0∕2

𝛾UL1 = 4cc̃ 1
Δ0

− 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛾UL2 = 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛼UL = 1
Δ0

−
(
1 − 16c2c̃2

) 1
ΔUL

− 1
2
𝛿UL3 + 2c̃2

ΔUL + Δ0∕2
. (A.11)

A.2. Effective Hamiltonian for the 2p M|N Resonance

The effective Hamiltonian is

̂̃H(2)
MN = g2 ×

⎛
⎜⎜⎜⎜⎝

𝛿MN 0 0 𝛾MN
2

0 −𝛿MN + 𝛿MN
3 𝛼MN 0

0 𝛼MN −𝛿MN + 𝛿MN
3 0

𝛾MN
2 0 0 −𝛿MN + 𝛿MN

3

⎞
⎟⎟⎟⎟⎠

(A.12)

in the basis |M, 0, 0⟩, |N, 1, 1⟩, |N,Φ+⟩ and |N,Φ−⟩ with

𝛿MN = 2
(
c̃2 − c2

) 1
ΔUL

𝛿MN
3 = − 4c̃2

2Δ0 + ΔUL
− 2
3Δ0

− 4c2

2Δ0 − ΔUL

𝛾MN
2 = −4 c c̃ 1

ΔUL

𝛼MN = −𝛿MN + 1
2
𝛿MN
3 + 1

3Δ0
. (A.13)
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A.3. Effective Hamiltonians for the 2p U|M and 2p N|L Resonance

The effective Hamiltonian for the 2p U|M resonance is

̂̃H(2)
UM = g2 ×

⎛
⎜⎜⎜⎜⎝

𝛿UM1 − 𝛿UM2 0 0 𝛾UM2

0 𝛿UM3 𝛼UM 0

0 𝛼UM 𝛿UM3 0

𝛾UM2 0 0 𝛿UM3

⎞
⎟⎟⎟⎟⎠
for

|U, 0, 0⟩
|M, 1, 1⟩
|M,Φ+⟩
|M,Φ−⟩

(A.14)

where

𝛿UM1 = −16c
2c̃2

ΔUM
+ 2c̃2

2Δ0 + ΔUM
+

4(c̃2 − c2)2

2Δ0 + 3ΔUM

𝛿UM2 = − 2c2

ΔUM
+ 1
2Δ0 + ΔUM

+ 2c̃2

2Δ0 + 3ΔUM

𝛿UM3 = − 4c2

3ΔUM
+ 2
2Δ0 − ΔUM

+ 4c̃2

2Δ0 + ΔUM

𝛾UM2 = −
4
√
2c2c̃

ΔUM
−

√
2c̃

2Δ0 + ΔUM
+
2
√
2
(
c̃2 − c2

)
c̃

2Δ0 + 3ΔUM

𝛼UM = −𝛿UM2 − 1
2
𝛿UM3 (A.15)

The effective Hamiltonian for the two-photon transition between
the states |N⟩ and |L⟩ is given by

̂̃H(2)
NL = g2 ×

⎛⎜⎜⎜⎜⎝

𝛿UM1 − 𝛿UM2 𝛾NL1 𝛾NL2 0

𝛾NL1 𝛿NL3 𝛼NL 0

𝛾NL2 𝛼NL 𝛿NL3 0

0 0 0 𝛿NL3

⎞⎟⎟⎟⎟⎠
for

|N, 0, 0⟩
|L, 1, 1⟩
|L,Φ+⟩
|L,Φ−⟩

(A.16)

with

𝛿NL3 = −32c
2c̃2

ΔUM
− 4c2

3ΔUM
−

8(c̃2 − c2)
2Δ0 + 5ΔUM

− 4c̃2

2Δ0 + 3ΔUM

𝛾NL1 = 𝛾UM2

𝛾NL2 = 𝛾UM2 +
2
√
2c̃

2Δ0 + ΔUM

𝛼NL = −𝛿UM1 + 1
2
𝛿NL3 + 4c̃2

2Δ0 + ΔUM
+ 4c̃2

2Δ0 + 3ΔUM
(A.17)

A.4. Effective Hamiltonians for the 2p U|N and 2p M|L Resonance

For the 2p U|N transition we obtain

̂̃H(2)
UN = g2 ×

⎛⎜⎜⎜⎜⎝

𝛿UN1 − 𝛿UN2 𝛾UN1 𝛾UN2 0

𝛾UN1 𝛿UN3 𝛼UN 0

𝛾UN2 𝛼UN 𝛿UN3 0

0 0 0 𝛿UN3

⎞⎟⎟⎟⎟⎠
for

|U, 0, 0⟩
|N, 1, 1⟩
|N,Φ+⟩
|N,Φ−⟩

. (A.18)

The energies and coupling strengths are

𝛿UN1 = −16c
2c̃2

ΔUN
+ 2c2

ΔUN − 2Δ0
+

4
(
c̃2 − c2

)2
3ΔUN − 2Δ0

𝛿UN2 = − 2c̃2

ΔUN
+ 1

ΔUN − 2Δ0
+ 2c2

3ΔUN − 2Δ0

𝛿UN3 = − 4c̃2

3ΔUN
− 2
2Δ0 + ΔUN

− 4c2

2Δ0 − ΔUN

𝛾UN1 = −
4
√
2cc̃2

ΔUN
−

√
2c

ΔUN − 2Δ0
−
2
√
2
(
c̃2 − c2

)
c

3ΔUN − 2Δ0

𝛾UN2 = 𝛾UN1 +
2
√
2c

ΔUN − Δ0

𝛼UN = 𝛿UN2 + 1
2
𝛿UN3 − 2

ΔUN − 2Δ0
+ 2
2Δ0 + ΔUN

. (A.19)

For the 2pM|L transition we have

̂̃H(2)
ML = g2 ×

⎛⎜⎜⎜⎜⎝

𝛿UN1 − 𝛿UN2 0 0 𝛾UN1

0 𝛿ML
3 𝛼ML 0

0 𝛼ML 𝛿ML
3 0

𝛾UN1 0 0 𝛿ML
3

⎞⎟⎟⎟⎟⎠
for

|M, 0, 0⟩
|L, 1, 1⟩
|L,Φ+⟩
|L,Φ−⟩

(A.20)

with

𝛿ML
3 =

8
(
c̃2 − c2

)2
2Δ0 − 5ΔUN

− 4c̃2

3ΔUN
+ 4c2

2Δ0 − 3ΔUN
− 32c2c̃2

ΔUN

𝛼ML = −𝛿UN1 + 1
2
𝛿ML
3 + 4c̃2

3ΔUN
. (A.21)

Acknowledgements
M.Cy. thanks the Alexander-von-Humboldt foundation for support
through a Feodor Lynen fellowship. A.V. acknowledges the support from
the Russian Science Foundation under the Project 18-12-00429 which was
used to study dynamical processes leading to two-photon entanglement.
D.E.R. acknowledges support by the Deutsche Forschungsgemeinschaft
(DFG) via the project 428026575. The authors are further greatful for sup-
port by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) via the project 419036043.

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
entangled quantum states, optical cavities, quantum emitters, quantum
entanglement, quantum optics

Received: September 28, 2020
Revised: November 3, 2020

Published online: December 14, 2020

Adv. Quantum Technol. 2021, 4, 2000108 2000108 (13 of 14) © 2020 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH



www.advancedsciencenews.com www.advquantumtech.com

[1] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod.
Phys. 2009, 81, 865.

[2] A. Orieux, M. A. M. Versteegh, K. D. Jöns, S. Ducci, Rep. Prog. Phys.
2017, 80, 076001.

[3] N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Ger-
shoni, B. D. Gerardot, P. M. Petroff, Phys. Rev. Lett. 2006, 96, 130501.

[4] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 2002, 74,
145.

[5] H.-K. Lo, M. Curty, K. Tamaki, Nat. Photonics 2014, 8, 595.
[6] L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, Nature 2001, 414, 413.
[7] D. Huber, M. Reindl, J. Aberl, A. Rastelli, R. Trotta, J. Opt. 2018, 20,

073002.
[8] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M.
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ABSTRACT

The cascaded decay in a four-level quantum emitter is a well-established mechanism to generate polarization-entangled photon pairs, the
building blocks of many applications in quantum technologies. The four most prominent maximally entangled photon pair states are the Bell
states. In a typical experiment based on an undriven emitter, only one type of Bell state entanglement can be observed in a given polarization
basis. Other types of Bell state entanglement in the same basis can be created by continuously driving the system by an external laser. In this
work, we propose a protocol for time-dependent entanglement switching in a four-level quantum emitter–cavity system that can be operated
by changing the external driving strength. By selecting different two-photon resonances between the laser-dressed states, we can actively
switch back and forth between the different types of Bell state entanglement in the same basis as well as between entangled and nonentangled
photon pairs. This remarkable feature demonstrates the possibility to achieve a controlled, time-dependent manipulation of the entanglement
type that could be used in many innovative applications.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045377

Entangled qubits are the building blocks for fascinating applica-
tions in many innovative research fields, like quantum cryptogra-
phy,1,2 quantum communication,3,4 or quantum information
processing and computing.5–8 Besides possible applications, the phe-
nomenon of entanglement is also important from a fundamental point
of view, being a genuine quantum effect. Especially, attractive realiza-
tions of two entangled qubits are polarization-entangled photon pairs,
because they travel at the speed of light and are hardly influenced by
the environment.9

The most prominent maximally entangled states, established for
polarization-entangled photons pairs, are the four Bell states (BS)

jU6i ¼
1ffiffiffi
2
p jHHi6jVVið Þ; (1a)

jW6i ¼
1ffiffiffi
2
p jHVi6jVHið Þ; (1b)

where H and V denote horizontally and vertically polarized photons,
respectively. The order corresponds to the order of photon detection:
in a U Bell state (UBS), the first and second detected photon exhibit
the same polarization, whereas in a W Bell state (WBS), the two
detected photons have exactly the opposite polarization.

A well-established mechanism for the creation of these maxi-
mally entangled Bell states is the cascaded decay that takes place in a
four-level quantum emitter (FLE) after an initial excitation. Such an
FLE can be realized by a variety of systems, including F-centers, semi-
conductor quantum dots, or atoms.10–13 Employing a FLE,UBS entan-
glement in the chosen basis of linearly polarized photons was
demonstrated for various conditions in both theoretical and experi-
mental studies.14–37 In contrast, WBS entanglement in the same line-
arly polarized basis has only been predicted in the case of continuous
laser driving.38,39 For the driven FLE, laser-dressed states emerge,
which have been observed experimentally.40,41 By embedding the FLE
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inside a microcavity with cavity modes tuned in resonance with the
desired emission process, certain two-photon emission processes
between the laser-dressed states can be favored.38,39 The emerging
type and degree of entanglement depend strongly on the dominant
two-photon emission path between the laser-dressed states, which, in
turn, can be tuned by the external driving strength.39

Based on these findings, we propose a protocol for time-
dependent entanglement switching using a driven FLE-cavity system.
Simply changing the external driving strength in a step-like manner
enables one to actively switch between the generation of UBS and
WBS entanglement as well as between entangled and nonentangled
photon pairs. Therefore, different entangled states can be generated
from the same source without further processing the photons to
change the entanglement, e.g., by wave plates.

We consider an externally driven FLE-cavity system, which has
been presented in detail in Refs. 38 and 39. Figure 1 depicts a sketch of
this system. A generic FLE comprises the ground state jGi, two degen-
erate intermediate single-excited states jXH=Vi, and the upper state
jXXi. Typically, jXXi is not found at twice the energy of the single-
excited states but is shifted by the value EB, e.g., in quantum dots, EB is
referred to as the biexciton binding energy.9,42 Transitions between the
FLE states that involve the state jXH=Vi are coupled to horizontally/
vertically polarized light. If the jXXi state has been prepared,29,43–45

cascaded photon emission takes place when the FLE relaxes to its
ground state resulting in the typical UBS.

An external laser with driving strength X is used to excite the
FLE. The laser frequency is adjusted such that the two-photon transi-
tion between the ground state jGi and jXXi is driven resonantly,
resulting in a fixed energetic detuning D0 ¼ EB=2 between the single-
excitation transitions and the laser (cf. Fig. 1). The laser polarization is
chosen to be linear with equal components of the H and V polariza-
tion. The FLE is placed inside a microcavity and coupled to its two
energetically degenerate linearly polarized modes, H and V. The ener-
getic placement of the cavity modes is described by the cavity laser
detuning D, i.e., the difference between the cavity mode and laser
energy. In typical setups, the fabrication process determines D, and it
cannot be changed afterward. Accordingly, we fix the cavity laser

detuning to D ¼ 0:8D0. The coupling strength g between cavity and
FLE is assumed to be equal for all FLE transitions.

Furthermore, important loss processes, i.e., radiative decay with
rate c and cavity losses with rate j, are included using Lindblad-type
operators.39,46 The time evolution of the statistical operator of the sys-
tem and two-time correlation functions are calculated by numerically
solving the resulting Liouville–von Neumann equation.47 The system
parameters for the calculations are displayed in Table I.38,39 Initially, the
system is in the FLE ground state jGi without any cavity photons. For
the Hamiltonian and details on the calculations, we refer to Ref. 39.

The entanglement characterization relies on the standard two-
time correlation functions

Gð2Þjk;lmðt; s
0Þ ¼ hâ†j ðtÞâ†kðt þ s0Þâmðt þ s0ÞâlðtÞi; (2)

with fj; k; l;mg 2 fH;Vg.15 Here, t is the real time of the first photon
detection and s0 is the delay time between this detection event and the
detection of the second photon. The operator â†H=V creates one hori-
zontally/vertically polarized cavity photon.48 In realistic two-time coin-
cidence experiments, the data are always obtained by averaging the
signal over finite real time and delay time intervals. Consequently, we
use averaged correlation functions that depend on the starting time of
the coincidence measurement t0, the used real time measurement
interval Dt, and the delay time window s (see also Ref. 39).

A measure to classify the entanglement is the two-photon density
matrix q2p, from which the resulting type of entanglement can be
extracted directly from its form. In standard experiments, q2p is recon-
structed employing quantum state tomography,49 and, consequently,
it is obtained from the averaged correlation functions as detailed in
Ref. 39.

To quantify the degree of entanglement, we use the concurrence
C, which can be calculated directly from the two-photon density
matrix.34,39,49–51 Note that both, the two-photon density matrix and
the concurrence, depend on the parameters of the coincidence mea-
surements: t0, Dt, and s. Throughout this article, a delay time window
s¼ 50 ps is assumed.52

Before presenting the switching protocol, we study the behavior
of the constantly driven FLE-cavity system as a function of the driving
strength for a fixed selected cavity laser detuning. The resulting type of
entanglement and its degree depend on the cavity laser detuning D
and the driving strength X, as demonstrated in Ref. 39. In particular, a
high degree of UBS or WBS entanglement is only possible, when the
cavity modes are close to or in resonance with a direct two-photon
transition between the laser-dressed states of the FLE. In the present
setup, we have fixed all frequencies and detunings, such that the only
free tuning parameter is the driving strength X.

FIG. 1. Sketch of the driven FLE-cavity system. The FLE consists of the states
jGi; jXH=Vi, and jXXi, which are coupled via optical transitions by horizontally/ver-
tically polarized light (green/purple straight arrows). The FLE is driven by an exter-
nal laser at the two-photon resonance, which results in a detuning of D0 to the
intermediate states (orange arrows). The FLE is embedded into a cavity with two
energetically degenerate but orthogonal horizontally/vertically polarized cavity
modes (green/purple wavy arrows) detuned by D to the laser energy.

TABLE I. Fixed system parameters used in the calculations.

Parameter Value

Coupling strength g 0.051meV
Detuning D0 20g ¼ 1:02meV
Cavity laser detuning D 0:8D0 ¼ 0:816meV
Cavity loss rate j 0:1g=�h � 7:8 ns�1

Radiative decay rate c 0:01g=�h � 0:78 ns�1
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The constant driving of the FLE results in a mixing of the bare
states jGi; jXH=Vi, and jXXi, such that the new eigenstates are the
laser-dressed states, which we label by jUi; jMi; jNi, and jLi. Their
respective energies are given by39

EU ¼
1
2

D0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
0 þ 8X2

q� �
; (3a)

EM ¼ D0; (3b)

EN ¼ 0; (3c)

EL ¼
1
2

D0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
0 þ 8X2

q� �
: (3d)

Both the state mixing and the energies depend on the driving strength
X, which we will now use to tune certain two-photon transitions in
resonance with the cavity modes.

Figure 2 depicts the dressed state energies [panel (a)], the mean
photon number hni ¼ hâ†HâH þ â†VâVi [panel (b)], and the concur-
rence [panel (c)] as functions of the driving strength X. All quantities
are calculated at times where the system has reached its steady state,
i.e., it is assumed that the coincidence measurements necessary to
determine q2p and C are performed after the steady state in the system

dynamics has been achieved.53 A color code is used to distinguish
among UBS (blue) entanglement, WBS (red) entanglement, and non-
entangled photon pairs (purple).

The mean photon number exhibits a series of differently shaped
peaks related to n-photon transitions between the four laser-dressed
states. An n-photon transition between a pair of dressed states jv1i
and jv2i, labeled as np v1jv2 in Fig. 2(b), is in resonance with the cav-
ity modes when n-times the cavity laser detuning D matches the tran-
sition energy Ev1 � Ev2 . Based on this condition, all peaks of enhanced
photon production can be linked to one-, two-, or three-photon reso-
nances between the dressed states. In particular, two-photon resonan-
ces manifest themselves as high and narrow peaks, e.g., for X � 9g,
14g, or 29g.

Turning to the concurrence, presented in Fig. 2(c), one obtains
again a peak-like structure and both types of Bell state entanglement
occur. By comparing the concurrence and hni, one notes that the
regions of high entanglement are associated with two-photon resonan-
ces. A more detailed analysis reveals that the features observable for
X � 14g (29g) are actually caused by two closely spaced resonances,
2p UjN and 2p MjL (2p UjM and 2p NjL), which result in a double
peak in the concurrence. A particularly high degree of UBS entangle-
ment is obtained for XU ¼ 8:85g when the cavity mode is almost at
resonance with the two-photon transition between the dressed states
jUi and jLi, while at XW ¼ 28:75g, a high WBS entanglement occurs
at the two-photon transition between jNi and jLi. This behavior can
be well understood using an analysis based on a Schrieffer–Wolff
transformation.39 Additionally, three-photon resonances lead to small
peaks in the concurrence and in the mean photon number.

Besides the regions of high UBS and WBS entanglement, also a
wide regime of vanishing concurrence is found, between
X ¼ 16g; :::; 25g, where the cavity modes do not match any multi-
photon transition process, cf. Fig. 2. Note that the vanishing degree of
entanglement in this parameter regime is not due to a lack of emitted
photons. On the contrary, the photon generation can be comparatively
high due to the proximity to one-photon resonances, cf. Fig. 2(b).
Therefore, in this parameter regime, the measurement detects two sub-
sequent photons that are not entangled.

According to our findings, we choose three driving strengths Xj

with similar photon number, but different types of entanglement for
the switching protocol: at XU ¼ 8:85g, we have a strong UBS entan-
glement, at X0 ¼ 18:00g, we have no entanglement, and at
XW ¼ 28:75g, we have a strongWBS entanglement.

We propose a step-like excitation protocol to demonstrate time-
dependent entanglement switching. The results are presented in Fig. 3.
A schematic sketch of the protocol is depicted in Fig. 3(a). The basic
idea is to change between three different driving strengths Xj that, in
the stationary case, are associated with different types of entangled
photon pairs. During the protocol, the FLE is continuously driven
with a constant driving strength Xj for a fixed time period T, and then
X changes step-like to one of the other two values. Accordingly, the
resulting time-dependent laser driving has a step-like structure with
step length T. In order to allow for a time resolved detection of the
entanglement type, measurements with measurement interval
Dt ¼ T=4, delay time window s¼ 50 ps, and varying starting times t0
are performed.

Figure 3(b) displays the calculated concurrence for each measure-
ment as a function of its respective starting time t0, where a step length

FIG. 2. (a) Energies of the four laser-dressed states as function of X (in units of g).
Green double-headed arrows symbolize the cavity mode energy. (b) Mean photon
number hni and (c) concurrence as functions of the driving strength X for a cavity
laser detuning D ¼ 0:8D0. n-photon resonances between the dressed states jv1i
and jv2i are labeled by np v1jv2. The type of entanglement is color-coded:
blue¼UBS entanglement, red¼WBS entanglement, purple¼ no entanglement.
Straight lines mark the driving strengths used for switching in Fig. 3.
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of T¼ 1ns is assumed. As before, the entanglement type is color
coded: blue (red) indicates UBS (WBS) entanglement and purple sym-
bolizes nonentangled photon pairs. The corresponding two-photon
density matrices for the measurements performed at t0 ¼ T=2; 3T=2,
and 5T=2 are depicted in Figs. 3(c)–3(e).

The protocol starts with the driving strength XU, and indeed,
UBS entanglement with a high concurrence is obtained. The corre-
sponding two-photon density matrix shown in Fig. 3(c) represents a
two-photon state close to a maximally entangled UBS. We find that
the occupations of the states with two equally polarized photons,
jHHi and jVVi, and the coherence between them dominate q2p such
that their absolute values are close to 1/2. In the second step, we switch
to XW and obtain a high concurrence related to WBS entanglement. In
the two-photon density matrix, presented in Fig. 3(d), the states jHVi
and jVHi display the highest occupations and coherence values. In the
third step with X0, the entanglement is switched off with zero concur-
rence. The corresponding, reconstructed density matrix is similar to a
statistical mixture, where the coherences needed for an entangled Bell
state are practically absent, resulting in a vanishing degree of
entanglement.

Having demonstrated that all types of entanglement can be created,
we continue the protocol demonstrating that the order of switching does
not play a role. Accordingly, in step 4, we switch into WBS entangle-
ment; in step 5, we switch into UBS entanglement; and in step 6, back to
no entanglement. The obtained concurrence is similar to that in steps
1–3. We also checked that density matrices q2p obtained in the middle
of steps 4, 5, and 6 are almost identical to those presented in Figs.
3(c)–3(e) for the respective driving strength (not shown).

It is also interesting to look at the case when the measurements
start in the vicinity of switching times jT, where j 2 f1; 2;…; 5g.

Here, one observes a continuous transition between the different
entanglement types. This transition begins when the measurement
starting at t0 extends into the next step, i.e., when t0 � jT � Dt.
During this transition process, the degree of entanglement, as mea-
sured by the concurrence, passes through zero when one switches
between UBS and WBS entanglement, or vice versa. After a short tran-
sition interval, the measured concurrence enters either a plateau of
high entanglement associated with the used driving strength or
remains zero, when the driving strength is X0.

An important question is how sensitive the proposed protocol is to
parameter variations. The main requirement is that different types of
entanglement can be obtained at different driving strength values. While
regions of high UBS entanglement can be found rather easily, WBS
entanglement occurs not so often. Only the two-photon transition 2p
NjL always features WBS entanglement, while for high driving strengths,
it can be found also at the 2p UjL resonance.39 Furthermore, the neces-
sary precondition to obtain WBS entanglement at these resonances is a
finite detuning D0. In principle, in these situations, one can then switch
between the different entanglement types using any finite cavity laser
detuning D. Hence, we expect that the protocol also works for different
values of D0 and D. However, a more elaborate analysis suggests that
high concurrence values for both entanglement types are only obtained
if D and D0 are of the same order.

Another possible perturbation is an energy difference between
the single-excited states jXH=Vi, which, in quantum dots, is known as
the fine-structure splitting (FSS). A finite FSS, defined as
d ¼ �hxXH � �hxXV , between the energies of the intermediate bare
states jXH=Vi, is regarded as a main obstacle for entanglement genera-
tion,14,17,26,32,33 because it introduces which-path information and,
thus, reduces the degree of entanglement.14,17,31

FIG. 3. (a) The proposed protocol that ena-
bles time-dependent entanglement switching.
The driving strength is changed instanta-
neously between the three values XU; XW,
and X0 after a time interval T, resulting in a
step-like time-dependent laser driving with
step length T. During each step j, coincidence
measurements with starting time t0, measure-
ment interval Dt ¼ T=4, and delay time win-
dow s¼ 50 ps can be performed. (b)
Concurrence calculated for the respective
measurements as a function of the starting
time t0 for a step length T¼ 1 ns. Results are
calculated for degenerate intermediate states
jXH=Vi (solid line), for the finite fine-structure
splitting d ¼ 0:1D0 between them (dashed
line), and including pure dephasing with
�hcPD ¼ 3 leV (dotted line). The cavity laser
detuning is set to D ¼ 0:8D0, and the driv-
ing strength values XU ¼ 8:85 g; XW

¼ 28:75 g, and X0 ¼ 18 g are used. A
color code indicates UBS (blue) and WBS
(red) entanglement as well as nonentangled
photon pairs (purple). (c)–(e) Corresponding
two-photon density matrices q2p obtained for
the measurements performed at
t0 ¼ T=2; 3T=2, and 5T=2 for the case of
degenerate intermediate states.
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To consider the effect of a FSS on the switching protocol and
entangled photon pair generation, we included an FSS of d ¼ 0:1D0 in
our calculations [dashed line in Fig. 3(b)], which is a typical value
being one order of magnitude smaller than the binding
energy.26,29,31,32 We find that this rather large FSS only marginally
reduces the concurrence compared with the previous results. The rea-
son is that the transitions in the driven system take place between the
laser-dressed states. The FSS affects the energies of the laser-dressed
states and their composition only weakly such that the resonance con-
ditions and optical selection rules hold. This implies that the generated
photonic states are practically the same, and the proposed protocol is
robust with respect to a nonzero FSS.

By adding a phenomenological rate model17,35

LPDq̂ ¼ � 1
2

X
v; v0

v 6¼ v0

cPDjvihvjq̂jv0ihv0j; (4)

with rate cPD and v; v0 2 fG;XH;XV;XXg acting on the statistical
operator q̂, we, furthermore, consider the influence of pure dephasing.
Using a realistic value for quantum dots at low temperatures,17

�hcPD ¼ 3 leV, we find that, although the concurrence is reduced, all
essential features are unaffected. In particular, one can still switch
between different entanglement types with corresponding concurrence
C � 0:5 [dotted line in Fig. 3(b)].

In conclusion, this work presents a protocol for time-dependent
entanglement switching based on a driven four-level emitter–cavity
system. The protocol is operated by simply switching between differ-
ent driving strengths in a step-like manner. Depending on the driving
strength, one obtains either UBS entanglement, WBS entanglement, or
nonentangled photon pairs in the respective measurements. Thus, this
work demonstrates a possibility to actively switch between different
types of entanglement using a time-dependent external laser excita-
tion. The protocol is also robust against a possible FSS. It is stressed
that the protocol enables one to achieve different types of entangle-
ment within the same basis and without further post-processing of the
generated photons.

The proposed protocol is, therefore, a suitable candidate for the
realization of time-dependent entanglement switching, which is an
important step toward future applications.

D. E. Reiter acknowledges support from the Deutsche
Forschungsgemeinschaft (DFG) via the Project No. 428026575.
We are further grateful for support from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) via
the Project No. 419036043.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145
(2002).

2H.-K. Lo, M. Curty, and K. Tamaki, Nat. Photonics 8, 595 (2014).
3L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
4D. Huber, M. Reindl, J. Aberl, A. Rastelli, and R. Trotta, J. Opt. 20, 073002
(2018).

5J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M.
_Zukowski, Rev. Mod. Phys. 84, 777 (2012).

6C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).
7S. C. Kuhn, A. Knorr, S. Reitzenstein, and M. Richter, Opt. Express 24, 25446
(2016).

8A. Zeilinger, Phys. Scr. 92, 072501 (2017).
9A. Orieux, M. A. M. Versteegh, K. D. J€ons, and S. Ducci, Rep. Prog. Phys. 80,
076001 (2017).

10K. Edamatsu, Jpn. J. Appl. Phys., Part 1 46, 7175 (2007).
11S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).
12J. Wen, S. Du, Y. Zhang, M. Xiao, and M. H. Rubin, Phys. Rev. A 77, 033816
(2008).

13J. Park, T. Jeong, H. Kim, and H. S. Moon, Phys. Rev. Lett. 121, 263601 (2018).
14T. Seidelmann, F. Ungar, M. Cygorek, A. Vagov, A. M. Barth, T. Kuhn, and V.
M. Axt, Phys. Rev. B 99, 245301 (2019).

15M. Cygorek, F. Ungar, T. Seidelmann, A. M. Barth, A. Vagov, V. M. Axt, and
T. Kuhn, Phys. Rev. B 98, 045303 (2018).

16T. Seidelmann, F. Ungar, A. M. Barth, A. Vagov, V. M. Axt, M. Cygorek, and
T. Kuhn, Phys. Rev. Lett. 123, 137401 (2019).

17S. Schumacher, J. F€orstner, A. Zrenner, M. Florian, C. Gies, P. Gartner, and F.
Jahnke, Opt. Express 20, 5335 (2012).

18D. Heinze, A. Zrenner, and S. Schumacher, Phys. Rev. B 95, 245306 (2017).
19A. Carmele and A. Knorr, Phys. Rev. B 84, 075328 (2011).
20R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J.
Shields, Nature 439, 179 (2006).

21R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J.
Shields, New J. Phys. 8, 29 (2006).

22A. Muller, W. Fang, J. Lawall, and G. S. Solomon, Phys. Rev. Lett. 103, 217402
(2009).

23D. Huber, M. Reindl, S. F. Covre da Silva, C. Schimpf, J. Mart�ın-S�anchez, H.
Huang, G. Piredda, J. Edlinger, A. Rastelli, and R. Trotta, Phys. Rev. Lett. 121,
033902 (2018).

24H. Wang, H. Hu, T.-H. Chung, J. Qin, X. Yang, J.-P. Li, R.-Z. Liu, H.-S. Zhong,
Y.-M. He, X. Ding, Y.-H. Deng, Q. Dai, Y.-H. Huo, S. H€ofling, C.-Y. Lu, and J.-
W. Pan, Phys. Rev. Lett. 122, 113602 (2019).

25J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. d Silva, Y. Yu, J. Iles-Smith, K. Srinivasan,
A. Rastelli, J. Li, and X. Wang, Nat. Nanotechnol. 14, 586 (2019).

26S. Bounouar, C. de la Haye, M. Strauß, P. Schnauber, A. Thoma, M. Gschrey,
J.-H. Schulze, A. Strittmatter, S. Rodt, and S. Reitzenstein, Appl. Phys. Lett.
112, 153107 (2018).

27A. Dousse, J. Suffczy�nski, A. Beveratos, O. Krebs, A. Lemâıtre, I. Sagnes, J.
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The on-demand preparation of higher-order Fock states is of fundamental importance in quantum information
sciences. We propose and compare different protocols to generate higher-order Fock states in solid state
quantum-dot–cavity systems. The protocols make use of a series of laser pulses to excite the quantum dot
exciton and off-resonant pulses to control the detuning between dot and cavity. Our theoretical studies include
dot and cavity loss processes as well as the pure-dephasing type coupling to longitudinal acoustic phonons in
a numerically complete fashion. By going beyond the two-level approximation for quantum dots, we study the
impact of a finite exchange splitting, the impact of a higher energetic exciton state, and an excitation with linearly
polarized laser pulses leading to detrimental occupations of the biexciton state. We predict that under realistic
conditions, a protocol which keeps the cavity at resonance with the quantum dot until the desired target state is
reached is able to deliver fidelities to the Fock state |5〉 well above 40%.

DOI: 10.1103/PhysRevResearch.2.033489

I. INTRODUCTION

Semiconductor quantum-dot–cavity (QDC) systems are
widely discussed as candidates for highly integrable on-
demand emitters of nonclassical states of light. They have
been successfully proven to be reliable sources of high
quality single photons [1–10] as well as entangled photon
pairs [11–18]. Nonetheless, the preparation of higher-order
Fock states remains a challenge. These states find vast appli-
cations in quantum metrology [19–21], as building blocks for
more complex quantum states of light such as Schrödinger cat
states [22], and in quantum computing [23].

While schemes to prepare higher-order Fock states have
been known in atomic cavity systems for decades [24–26],
these protocols rely on properties specific to atoms, such as
the finite time of flight through a resonator, which cannot
be translated straightforwardly to a locally fixed solid state
qubit as encountered in quantum dots (QDs). Nonetheless, this
protocol has been applied to a superconducting qubit coupled
to a microwave cavity [27]. In this setup, coupling the qubit
and the cavity only temporarily is achieved by changing the
structure of the potential with an external flux bias and thus
directly tuning the resonance frequency of the qubit. This is
not possible in QDCs after the growth process is completed
and thus the confinement potential set. Furthermore, protocols

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

involving parametric down-conversion have achieved remark-
able fidelities to the targeted higher-order Fock states [28]. A
huge challenge in such setups to be solved is the on-demand
character of these sources.

In this work, we propose protocols for the preparation of
higher-order Fock states in QDCs and explore their feasibility
up to n = 5. The protocols rely on the application of a series
of ultrashort laser pulses combined with off-resonant laser
pulses to induce an AC-Stark effect. In contrast to atoms,
QDs are solid state systems and are therefore affected by the
electron-phonon interaction. The pure-dephasing type cou-
pling of the excitonic states to longitudinal acoustic phonons
is known as the main source of decoherence in QDs even at
cryogenic temperatures of a few Kelvin [29–33]. Accordingly,
we study the influence of phonons as well as of cavity and
radiative losses on the proposed protocols. Because we use
ultrashort pulses, we further calculate the influence of higher
energetic excitons on the preparation schemes. In neutral QDs,
the approximation of the QD as a two-level system is often
reasonable. In particular, this is the case when transitions to
the biexciton are forbidden by selection rules. Note that this
sets constraints on the polarization of the driving laser as well
as on the resonantly coupled cavity modes. Furthermore, the
two-level approximation holds well, when the fine-structure
splitting (FSS) happens to be absent or is suppressed, e.g.,
by external fields, strain, or by fabricating highly symmetri-
cal QDs [12,34–37]. We study the respective influences by
extending our system to a three- or four-level system.

We show that even under these realistic conditions, our
preparation schemes can reach fidelities to the Fock state |5〉
well above 40%. To put this value into perspective, let us
compare it to other works. Hofheinz et al. [27] prepared Fock
states with up to six photons in their superconducting qubit

2643-1564/2020/2(3)/033489(11) 033489-1 Published by the American Physical Society
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setup but do not report a value for the fidelity. To be able to
compare our results with theirs, we simulated the experiment
described in Ref. [27] to reproduce the figures therein, while
giving an estimate for the preparation fidelity of their setup.
For the fidelity to the state |5〉 our estimate yields ≈20%.
Tiedau et al. [28] use heralded parametric down-conversion to
generate higher-order Fock states. Their best fidelities to Fock
states with n � 5 do not exceed 50%. Therefore our QDC
protocol is competitive with other means to prepare higher-
order Fock states. Compared with superconducting qubits,
QDCs have the advantage of being in an energetic regime
corresponding to the ps- rather than the nanosecond timescale,
thus making the total preparation time for the Fock state |5〉
about three orders of magnitude faster.

In the following, we start our analysis with a simple two-
level QD-model and subsequently shift our focus to more
complex situations by taking into account levels present in a
QD that might have adverse effects on the preparation fidelity
of higher-order Fock states.

II. PROTOCOLS FOR A TWO-LEVEL SYSTEM

In atomic cavities, protocols for the preparation of higher-
order Fock states have been successfully employed in the
1980s. A well known example is the so called micromaser
setup, where a highly excited Rydberg atom is brought to
resonance with a single-mode cavity only during its time of
flight through the resonator [24–26]. Sending excited atoms
subsequently through the cavity fills the latter with one more
photon at a time, thus preparing a higher-order Fock state.
While earlier experiments [25] succeeded in the preparation
of up to n = 2, recent results yield states with up to seven
photons [26]. This technique was translated to a solid state
platform by Hofheinz et al. [27]. In that work, a superconduct-
ing qubit is coupled to a single mode of a microwave cavity.
The transition frequency of the former can be tuned to bring it
to resonance with the resonator frequency only during a finite
time window, in which half a Rabi oscillation transfers the
excitation from the qubit to a cavity photon. This procedure
simulates the finite dwell time of an atom in a cavity with a
locally fixed superconducting qubit.

In the QDC case, there are several differences to the atomic
situation. Firstly, the interaction between the QD and the
cavity cannot be turned off by removing the QD from the
cavity. Secondly, the transition frequency of the QD is set once
the nanostructure is grown. Nonetheless, preparation schemes
similar to those used in atomic cavities can be realized also
in QDCs using the mechanisms sketched in Fig. 1. An inter-
change between exciting the QD with a sequence of π -pulses
and controlling the effective cavity-QD coupling by inducing
AC-Stark shifts lies at the heart of the two schemes we present
here. The difference between them is the way the AC-Stark
pulses are used: in the first scheme, they lead to a cavity-QD
coupling, while in the second one, they decouple the two
subsystems at the end of the protocol. Note that inducing
ultrafast Stark shifts is also possible by electrical, rather than
optical manipulation of the system [38].

We start by assuming that the QD can be modelled as a
two-level system, while we will discuss more realistic QD
models in Sec. III. This approximation holds very well for

Stark pulse

Exciton decays into
a cavity photon

Microcavity

Quantum dot

π-pulses

Laser pulses from side

X

Optical
transition

FIG. 1. Sketch of the QDC system, where photons are created
by recombination of the QD exciton. A Stark pulse from the side
controls the photon emission such that Fock states can be generated
on demand.

strongly confined charged QDs where the ground state is
coupled to a trion state and higher excited states are energet-
ically well separated. But it can also be realized in neutral
QDs where, however, it entails constraints on the FSS, the
polarizations of the driving laser, and the cavity modes.

The Hamiltonian for the two-level QD coupled to a single
cavity mode and driven by external laser pulses reads

H2LS = h̄ωX |X 〉〈X | + h̄ωCa†a + h̄g(aσ
†
X + a†σX )

− h̄

2
( f ∗

X (t )σX + fX (t )σ †
X ),

fX (t ) = f pulses(t ) + f AC-Stark(t ), (1)

where |X 〉 is the exciton state at energy h̄ωX and σX :=
|G〉〈X | is the operator for the transition between |X 〉 and
the ground state |G〉. The energy of the latter is set to zero.
a denotes the photonic annihilation operator. The QDC is
described by the Jaynes-Cummings model and the exciting
and Stark laser pulses are represented by the function fX (t ),
which is specified in Appendix A 1, in particular its two parts
f pulses(t ) and f AC-Stark(t ). The cavity frequency is denoted by
ωC and its coupling to the QD by g. We further account for
the pure-dephasing type interaction with longitudinal acoustic
(LA) phonons [29–33], the radiative decay of the QD exci-
tons, and cavity losses. In this work, whenever we consider
phononic effects, the phonons are assumed to be initially in
thermal equilibrium at a temperature of T = 4 K. We solve the
corresponding Liouville equation in a numerically complete
manner by employing a path-integral formalism (for details
see Refs. [39–41] and Appendix A 1). The parameters for the
calculation are given in Appendix A 2.

A. Protocol with interrupted coupling (PIC)

In a first step, we would like to translate the protocol known
from atomic cavities as closely as possible to our solid state
platform. Therefore we assume that the QD transition and
the cavity mode are off-resonant. In particular, we assume
that �ωCX := ωC − ωX > 0, i.e., the QD line lies below the
cavity. In order to enable the efficient generation of a single
photon in the cavity we apply an AC-Stark pulse tuned below
the exciton line to bring the QD in resonance with the cavity.
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FIG. 2. Dynamics of a QDC for the PIC. Panels from bottom to
top: series of ultrafast π -pulses and off-resonant AC-Stark pulses
(green); the occupation of the exciton |X 〉 (blue), occupation of
the photon states |n〉 = |1〉, |2〉, . . . , |5〉 (red/orange). Dashed lines:
without phonons and without losses. Solid lines with phonons as well
as cavity losses and radiative decay.

Each Stark pulse is a rectangular pulse with softened edges
[cf., Eq. (A3)]. Whilst in resonance, the QD exciton can emit
a photon. Before a re-absorption of this photon occurs, we
switch off the AC-Stark pulse, thus effectively interrupting the
coupling of QD and cavity. Now these steps can be repeated
to reach any desired photon state. In the following, we refer to
this scheme as protocol with interrupted coupling (PIC).

The corresponding dynamics of the PIC is displayed
in Fig. 2. The panels from bottom to top show the laser
pulses (green), the occupation of the exciton |X 〉 (blue), and
the occupation of the photon states |n〉 = |1〉, |2〉, . . . , |5〉
(red/orange). We use our procedure of alternating π - and AC-
Stark pulses five times until the Fock state |5〉 is prepared. The
dashed lines show the protocol in the ideal case of a two-level
system without phonons and losses. Here, every Fock state
is reached with a near-unity fidelity of 96.3% (cf., Sec. II C
for a formal definition of this quantity). Because the Rabi
frequency depends on the number of photons already present
in the cavity, the length of the AC-Stark pulses for each step
is reduced by 1/

√
n compared to the first Stark pulse.

When taking both the phonon Hamiltonian and Markovian
loss processes into account, both the exciton occupation and
the occupation of the photon states are reduced (solid lines in
Fig. 2) and the fidelity of the protocol diminishes consider-
ably. Nonetheless, we are still able to address each Fock state
with our protocol. We note that cavity losses are responsible
for the refilling of the Fock state with n − 1 photons during
the preparation of the state with n leading to an additional loss
of fidelity. Moreover, this effect yields second local maxima
in the fidelity after the first ones intended by the preparation.

Even when considering all loss channels, we find a fi-
delity of 38.5%, which is in good comparison with other
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FIG. 3. Dynamics of the QDC for the PUC. Panels and line types
as in Fig. 2

protocols [27,28]. A further advantage of the PIC is that
the preparation is on-demand, which is a challenge in setups
relying on parametric down-conversion.

B. Protocol with uninterrupted coupling (PUC)

In contrast to the previous situation, now we consider the
case that the QD and the cavity shall be grown such that
they are on-resonance (�ωCX = 0). Such systems are nowa-
days common in QDCs [42,43]. If now a series of resonant
π -pulses hits the QD, such that the exciton performs half a
Rabi oscillation in the time between the pulses, a number of
photons according to the number of π -pulses is created. Since
in this scheme the coupling between QD and cavity is kept
at resonance until the final state is reached, we refer to it as
protocol with uninterrupted coupling (PUC). Note that like
for the PIC the delay between the pulses has to be scaled
by 1/

√
n. Only when the target state has been reached, an

AC-Stark pulse decouples the QD and the cavity to store the
desired number state.

Figure 3 shows the dynamics of the participating quanti-
ties for the PUC. In the phonon- and loss-free case (dashed
lines in Fig. 3), the fidelity to the five-photon state is 99.4%
which is even slightly higher than in the PIC, where we only
reached 96.3%. Including the influence of phonons and losses,
qualitatively the same effects as in the PIC can be observed, in
particular the refilling of lower number states due to the cavity
losses (solid lines in Fig. 3). We achieve a fidelity including
phonons and Markovian losses of 45.1%.

C. Comparison of the two protocols

The striking difference between the two protocols is their
total duration. The PUC is roughly 15% faster than its PIC
counterpart. This minimizes the time when losses can influ-
ence the dynamics.
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We summarize our findings by looking at the maximum
fidelity over time for each Fock state in Fig. 4 for the different
levels of approximation. The fidelity is a generalization of the
overlap projection between two pure states to mixed states first
introduced by Jozsa [44]. For two arbitrary density matrices
ρ1 and ρ2, it is defined as

F (ρ1, ρ2) =
[
Tr

(√√
ρ1ρ2

√
ρ1

)]2

. (2)

It is bounded between zero and unity and symmetric in its
two arguments. In our case, we consider the photonic reduced
density matrix ρ1 = TrQD[TrPh(ρ)], which is the full density
matrix ρ obtained as a solution of Eq. (A8) traced over the
phononic (Ph) and the electronic (QD) subspaces. We com-
pare this state to the target Fock states |n〉, i.e., ρ2 = |n〉〈n|.
In this special case, the fidelity simplifies to the occupation
of |n〉.

The red bars in Fig. 4 correspond to the PIC, while the blue
bars are for the PUC. The lightly colored bars show the ideal
case without phonons and without losses, the medium colored
bars are without phonons, but with losses, and the dark colored
bars are with phonons and with losses.

Looking at the fidelity of the Fock states, we can see several
trends: The effect of cavity losses and radiative decay is more
detrimental than the phonon influence. As an example, for
the n = 5-Fock state prepared by the PIC, the losses reduce
the fidelity from 96.3% to 48.5%, while the phonons further
lower this value only to 38.5%. Note that this is a quantitative
result for the considered GaAs/In(Ga)As QD at T = 4 K. In
particular, this behavior might change in other materials or at
higher temperatures. The PUC is better than the PIC for all
cases. Overall, the 15% saving of time in the PUC yields a
clear benefit. The maximum fidelity to the n = 5-Fock state
including phonon and loss effects is now 45.1% (compared
with 38.5% in the previous paragraph), a significant improve-
ment by 17%. Furthermore, the PUC poses less demand on

the experimental realization, since only one AC-Stark pulse is
necessary to decouple the system at the end of the protocol.
Even the field strength of this final pulse need not be precise,
as required in the PIC, as long as it is large enough to effec-
tively detune the dot from the cavity.

Therefore we conclude that our protocols both perform
well in comparison with existing protocols to prepare higher-
order Fock states [27,28]. The PUC outperforms the PIC with
respect to the total duration as well as the fidelity as long as
the conditions for using a two-level model are fulfilled.

III. PROTOCOLS FOR A MULTILEVEL QUANTUM
DOT SYSTEM

For charged QDs, the transition between the residing elec-
tron and the trion state (i.e., the charged exciton) can be well
modelled by a two-level system [45]. However, for a neutral
QD, the assumption of a two-level system imposes further
constraints. In particular, the single exciton manifold in a
neutral QD comprises two states, which can be selectively
addressed by circularly polarized laser pulses. A finite ex-
change interaction couples these states resulting in a finite
FSS and corresponding new eigenstates that couple to linearly
polarized light [32,46–49]. Also, there exists the biexciton,
which can be addressed using linearly polarized pulses. Addi-
tionally, using ultrashort π -pulses, might lead to the excitation
of higher energetic exciton states. Note that these states are
also present in charged QDs, thus affecting the two-level
approximation even in this favorable system. In the following,
we study how these deviations from a two-level system affect
the Fock state preparation fidelity.

A. Systems

(1) Four-level system (4LS). For modeling a neutral QD,
we consider a four-level system accounting for the ground
state |G〉, the left and right circularly polarized exciton |XL〉
and |XR〉 as well as the biexciton |B〉

H4LS = h̄ωX (|XL〉〈XL| + |XR〉〈XR|)

+ h̄
Vex

2
(|XL〉〈XR| + |XR〉〈XL|)

+ (2h̄ωX − EB)|B〉〈B|
+

∑
j=L,R

[h̄ωCa†
j a j + h̄g(a jσ

†
j + a†

jσ j )]

− h̄

2
( f ∗

L (t )σL + fL(t )σ †
L ) , (3)

h̄Vex is the exchange splitting between the linearly polarized
exciton states, and EB the biexciton binding energy. The al-
lowed dipole selection rules lead to the following transition
operator matrices:

σL := |G〉〈XL| + |XR〉〈B|,
σR := |G〉〈XR| + |XL〉〈B| . (4)

The exchange interaction couples the two oppositely polarized
exciton states |XL〉 and |XR〉, thus opening up a path to occupy
the biexciton state |B〉 even when the QD is driven by pulses
fL(t ) that all have the same circular polarization. The cavity
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FIG. 5. Level schemes for: (a) the four-level system represent-
ing a neutral QD, (b) the system with a higher energetic exciton
and (c) the three-level system for a neutral QD driven by linearly
polarized light. Arrows denote the optically allowed transitions with
the corresponding polarization.

modes are described by the photon annihilation operators aL

and aR. Note that here two cavity modes are coupled which are
assumed to be degenerate. The coupling strength is denoted by
g and assumed to be equal for all modes. A sketch of the 4LS
is shown in Fig. 5(a).

(2) Higher energetic exciton system (HEES). To account
for a higher energetic exciton, we assume a three-level system
consisting of the ground state |G〉, the lowest energetic exciton
|X 〉, and an additional higher energetic exciton state |X1〉.

HHEES = h̄ωX |X 〉〈X | + (h̄ωX + �E1)|X1〉〈X1|
+ h̄ωCa†a + h̄g(aσ

†
X + a†σX )

− h̄

2
( f ∗

X (t )σX + fX (t )σ †
X )

− h̄

2
( f ∗

X (t )σ1 + fX (t )σ †
1 ) , (5)

where the higher energetic exciton lies few tens of meV above
the exciton energy as denoted by �E1. The corresponding
transition operators in this system are

σX := |G〉〈X |,
σ1 := |G〉〈X1|. (6)

Because it is strongly off-resonant, we do not consider the
coupling of σ1 into the cavity mode. A sketch of the HEES
is shown in Fig. 5(b).

(3) Three level system (3LS). The degeneracy of the two
cavity modes in the 4LS implies that when driving with pulses
all having the same linear polarization, one exciton becomes
dark and the 4LS with two cavity modes reduces to a 3LS
coupled only to a single linearly polarized mode as follows:

H3LS = h̄ωX̃ |XH 〉〈XH | + (2h̄ωX̃ − EB)|B〉〈B|
+ h̄ωCa†

H aH + h̄g(aHσ
†
H + a†

HσH )

− h̄

2
( f ∗

H (t )σH + fH (t )σ †
H ) , (7)

with the exciton energy lying at h̄ωX̃ and the transition opera-
tors

σH := |G〉〈XH | + |XH 〉〈B| . (8)

The cavity photon is annihilated by the operator aH and the
laser driving is described by the function fH (t ). A sketch of
the 3LS is shown in Fig. 5(c).

For all systems, we again take into account the electron-
phonon coupling and losses as described in Appendix A 1.

B. Results

Now we analyze the different influences on our preparation
protocols. Figure 6 shows the maximal fidelity over time for
the Fock states in the different systems. The values obtained
for different n are compared with the corresponding results
of the PUC for an ideal two-level system accounting both for
phonons and losses. This benchmark is displayed by a blue
box around the bars.

1. Influence of a finite exchange splitting - 4LS

The leftmost (pink) bars in Fig. 6 show the maximal fi-
delities for the four-level system with an exchange splitting
of h̄Vex = 20 μeV and a biexciton binding energy of EB =
2 meV, which represents values typically encountered in QDs.
We find that for all Fock states the deterioration of the fi-
delity due to the finite exchange coupling is nonessential. As
example consider the fidelity to the five-photon Fock state,
which reduces only to a value of 44.4%, i.e., only by 0.7%.
For lower values of Vex the fidelity becomes even higher. We
conclude that, typical exchange splittings of up to 20 μeV
encountered in QDs do not influence the performance of the
protocol significantly when it is excited with a well defined
circular polarization.

2. Influence of a higher energetic exciton state - HEES

The purple bars in Fig. 6 show the resulting fidelities for
exciting the three-level system with �E1 = 60 meV, which
is a typical value for strongly confined QDs [50]. Again, we
find that the decrease of the fidelity is negligible. For �E1 =
60 meV, we obtain a five-photon fidelity of 43.8%, while for
�E1 = 40 meV (not shown) the fidelity drops to 40.8%. This
value is only 1.3% (or 4.3%) below the result of the two-level
model. Therefore we conclude that the influence of the higher
lying exciton state is not important as well as long as �E1 is
sufficiently large which is the case for strongly confined QDs.

It is interesting to note that an increase of the pulse length
does not necessarily improve the performance of the proto-
col in this case, even though this would result in a sharper
spectral width of the pulse. To understand this effect, imagine
lengthening the excitation pulses in the two-level case. When
the pulses are long enough so that the dynamics induced by
the cavity coupling g sets in during the pulse, the exciton
cannot reach its highest possible occupation anymore. Thus
the photon occupation and therefore the fidelity both decrease.
Therefore there is a competition between the detrimental
influence of the simultaneous QD and cavity dynamics for
longer pulses and the larger spectral width for shorter pulses
which might lead to a spectral overlap with the higher lying
exciton state for a given value of �E1.

3. Linearly polarized excitation and pulse shaping—3LS

Finally, we study the 3LS representing a neutral QD driven
by linearly polarized pulses. Here, |B〉 is the parasitic state
with the difference that the energy spacing to be bridged is the
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FIG. 6. The maximum fidelity over time to the Fock states |n〉, n ∈ {1, 2, . . . , 5} for different systems. The blue rectangles mark the values
obtained for an ideal two-level system. From left to right: (pink) four-level system with circular polarization with finite exchange splitting of
h̄Vex = 20 μeV and a biexciton binding energy of EB = 2 meV. (Purple) Three-level system including an additional higher lying exciton state
|X1〉 excited at an energetic difference of �E1 = 60 meV. (green) Linearly excited biexcitonic three-level system using shaped or unshaped
pulses (left) and shaped pulses for different biexciton binding energies EB = ±2 and −6 meV (right). In all calculations, the PUC has been
used.

biexciton binding energy EB, which is an order of magnitude
smaller than �E1.

This case is often studied in the literature as a limiting
factor in the operation of QDs, both with respect to pho-
tonic properties [51] and to the preparation of specific QD
states [52]. Therefore we investigate this rather unusual case
of linearly polarized excitation in more detail. Furthermore,
this model is a prototype for a system with a parasitic state that
is energetically close. Discussing a solution in such a situation
is a key point of this paragraph.

The green bars in Fig. 6 display the results for a finite
binding energy. For EB = 2 meV already in the phonon- and
loss-free case (lower left green bars), the PUC acting on this
biexcitonic 3LS breaks down drastically and the fidelity to
the state |5〉 drops below one percent. It is clear that the
dynamics induced by significantly occupying the state |B〉 has
a catastrophic effect on the success of the PUC.

To remedy this insufficiency, we employ shaped pulses
that provide spectral holes at precisely the energies, where
the parasitic states are found. A simple pulse shaping scheme
for such purposes, proposed in Ref. [53], is based on a su-
perposition of two Gaussian pulses with central frequencies
separated by EB with different widths s1 and s2 in the time do-
main. The corresponding envelope function, which is put into
Eq. (A1), is

f p
H (t ) = fH,0

(
e
−( t√

2s1
)2 − e

−( t√
2s2

)2+i EB
h̄ t)

(9)

with fH,0 = [
√

π[
√

2s1 − √
2s2 exp {−( EB

2h̄

√
2s2)

2}]]−1
. The

two free parameters s1 and s2 can now be used to tune
the spectral maximum to the transition to be addressed and
the spectral hole to the parasitic state, in our case |B〉. For a
binding energy of EB = 2 meV, this is achieved by setting

s1 = 0.42 ps and s2 = 0.18 ps. The spectrum of this shaped
pulse as well as the respective spectra of its two constituent
Gaussians are depicted in Fig. 7.

The upper left green bars in Fig. 6 show the results for
the pulse shaping protocol without phonons and losses. Re-
markably, this simple pulse shaping technique boosts the
five-photon fidelity from essentially zero back to 33.4%.

Next we study how phonons and losses affect the PUC with
shaped pulses (right green bars in Fig. 6). We find a strong
detrimental effect on the fidelity for EB = +2 meV (lower
right green bars), which reduces the fidelity to the five-photon
state from 33.4% to 14.4%.

We have also considered negative binding energies of EB =
−2 meV (middle right green bars) and EB = −6 meV (upper
right green bars). QDs can be grown to have negative biex-
citon binding energies [54]. Alternatively, EB can be tuned by
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FIG. 7. The spectrum of the shaped laser pulse as in Eq. (9)
(black solid line) as well as the respective spectra of its two con-
stituent Gaussians (red dashed and blue dotted lines).
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applying electrostatic fields [55,56] or biaxial strain [57], even
to become negative. Clearly, the fidelities to the Fock states
become higher for negative EB. We notice that even larger
negative binding energies give rise to higher fidelities.

A negative biexciton binding energy has the advantage
that phonon emission processes that lead to an occupation of
the biexciton state are suppressed since in a frame rotating
with the laser frequency the biexciton state is not the ener-
getically lowest one anymore [58]. Accordingly, we find for
EB = −2 meV that the fidelity is higher (20.9%) for n = 5
than what is obtained for the corresponding positive binding
energy EB = 2 meV. For the higher negative value of EB =
−6 meV (upper right green bars in Fig. 6) with the pulse
shaping proposal (now with s1 = 0.21 ps and s2 = 0.04 ps)
we obtain a five-photon fidelity of 31.8%.

Even though phonons always degrade the performance of
the here proposed protocols, they suppress an unfavorable
process when the sign of the binding energy is chosen accord-
ingly. It is worthwhile to note that there are situations where
phonons are even more beneficial [33]. Examples include
phonon-assisted preparation schemes for excitons and biex-
citons [59–64], the introduction of off-resonant QD-cavity
couplings [65–73], the phonon-induced enhancement of pho-
ton purities [10] or the photon-pair entanglement [18] as
well as enabling correlated emission from spatially remote
QDs [64].

In summary, even in the worst case of linearly polarized
excitation pulses, the fidelity to the five-photon Fock state can
be enhanced from essentially zero to above 30% even when
the phonon-induced and other loss mechanisms are present.
This is made possible by a combination of shaping the spectral
characteristics of the laser pulses and tuning the biexciton
binding energy to negative values, taking advantage of the
otherwise interfering LA phonon coupling.

IV. CONCLUSION

We have presented and investigated two protocols for the
preparation of higher-order Fock states in QDCs. To this end,
we adapted a standard protocol, developed for the atomic
physics platform, to QDC-based devices. The basic ingredi-
ents of this scheme are a series of π -pulse excitations and
effective energy shifts induced by AC-Stark pulses that effec-
tively interrupt the coupling between the QD and the cavity.
It turns out, however, that a protocol where the coupling is
uninterrupted until the final target state is reached outperforms
this standard scheme both in terms of duration and in terms
of fidelity as long as it is justified to treat the system as a
two-level system. In our analysis, we include radiative decay,
cavity losses, and phonon effects, which are specific to solid
state QDCs. We predicted in the two-level system a fidelity
to the Fock state |5〉 of over 40% when the protocol with
uninterrupted coupling is used. This value is comparable to
results achieved in superconducting qubit setups as well as
by parametric down-conversion. We have tested our protocol
against the influence of the fine structure splitting and higher
excited exciton states and have demonstrated that in all of
these cases fidelities above 40% can be achieved. The ad-
vantage of using this protocol for a QDC platform is its total

duration on a timescale of a few tens of picoseconds and its
on-demand character.

We further discussed the excitation with linearly polarized
pulses, which entails detrimental excitations of the biexciton
in the QD. The coupling to the biexciton leads to a complete
breakdown of our protocols already in the loss- and phonon-
free case. Nonetheless, a combination of a pulse shaping
technique, tuning the biexciton binding energy to negative
values, and the influence of phonons is able to push the fidelity
to |5〉 back to 31.8%.

With these easy to implement protocols, we are confident
that also in solid state cavity systems the on-demand prepara-
tion of higher-order Fock states on the picosecond timescale
becomes possible.

ACKNOWLEDGMENTS

M.Cy. thanks the Alexander-von-Humboldt foundation for
support through a Feodor Lynen fellowship. This work was
also funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Project No. 419036043.

APPENDIX: THEORETICAL MODEL

1. Coupling Hamiltonian

The external laser pulses are described by

f j (t ) =
∑

m

f p
j (t − tm)e−iωp(t−tm )

︸ ︷︷ ︸
:= f pulses (t )

+
∑

n

f ACS
j (t − tn)e−iωACS(t−tn )

︸ ︷︷ ︸
:= f AC-Stark (t )

. (A1)

f p
j (t ) and f ACS

j (t ) are the envelope functions of pump fields
and AC-Stark pulses, respectively, with j ∈ {X, L, H}. ωp and
ωACS are the corresponding laser frequencies. The pump fields
are Gaussian π -pulses

f p
j (t ) = π√

2πσ
e− t2

2σ2 , (A2)

where σ denotes the standard deviation, which is connected
to the full width at half maximum (fwhm) by fwhm =
2
√

2 ln 2σ . We assume ωp = ωX for the 2LS, the HEES, and
the 4LS and set ωp = ωX̃ for the 3LS, i.e., the laser is in
resonance with an exciton resonance in the 2LS, the HEES,
and the 3LS cases while it is in the middle between the fine-
structure split exciton resonances for the 4LS. The AC-Stark
pulses are of rectangular shape with the edges smoothened by
half Gaussians

f ACS
j (t ) =

⎧⎪⎪⎨
⎪⎪⎩

f j,se−(t+ τlength
2 )2/(2σ 2

on ) t < − τlength

2

f j,s − τlength

2 � t � τlength

2

f j,se−(t− τlength
2 )2/(2σ 2

off ) t >
τlength

2

,

(A3)

where f j,s denotes the field strength, i.e., the plateau height
of the rectangular pulse, τlength its length, and σon (σoff) the
width of the rise (fall) of the smoothened edges. Note that
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by letting σon (σoff) → 0, high-frequency components disrupt
the dynamics and thus the fidelity of the effective coupling of
cavity and QD. We checked this by observing a decreasing
fidelity to the Fock state |1〉 with lower values of σon (σoff).
We would like to stress that any smooth rise and fall of the
rectangular pulse is sufficient, which we tested by using cosine
edges instead. The key point is the modeling of a realistic
rectangular pulse, which has never mathematically precise
Heaviside-shaped edges.

Also, the precise shape of the pump pulses is of minor im-
portance as a test with hyperbolic secant pulses showed. The
main requirement is the shortness of the pulses compared with
the timescale of the QDC dynamics. Furthermore, the pulses
need not be phase-locked, as we checked by introducing ran-
dom mutual phases between the pulses. This finding vastly
reduces the experimental demand of realizing the proposed
protocols.

In Sec. III B 3, the pump pulses f p
H (t ) are shaped according

to Eq. (9). The respective spectrum is depicted in Fig. 7 as
a black solid line. The spectral hole at the biexciton binding
energy EB is clearly visible. The spectra of the constituent
Gaussian pulses are plotted as red dashed and blue dotted
lines.

The AC-Stark pulses are tuned below the exciton line by
ωACS,X := ωACS − ωX that is within the range of validity of
the RWA. The resulting shift of the exciton line can be calcu-
lated from the energies of the laser dressed states. Matching
the shift to �ωCX, an AC-Stark pulse brings the exciton tran-
sition in resonance with the cavity provided that

�ωCX = �ωACS,X +
√

�ω2
ACS,X + f 2

s . (A4)

Note that tuning the coupling with an AC-Stark pulse is much
more accurate than controlling the time of flight of an atom
through a cavity. Any resonator has stray fields at its edges that
depend on its geometry. Therefore the time dependent cou-
pling of the atom to the resonator is not rectangular, but has
smoothened edges that are fixed by the geometry. In contrast,

a laser pulse can be shaped to vary the edge characteristics,
which introduces additional dials for optimizing the protocol.

The QD is coupled to LA phonons in a pure dephasing-type
manner [29–33]:

HPh =
∑

q

h̄ωqb†
qbq +

∑
q,χ

nχ (γqb†
q + γ ∗

q bq)|χ〉〈χ | , (A5)

where b†
q and bq are the phonon operators with wave vector

q and energy h̄ωq. Bulk phonons with linear dispersion are
considered that are coupled to the electronic states that are
present in our respective systems |χ〉 ∈ {|XL〉, |XR〉, |X1〉, |B〉}
by the deformation potential-type coupling constant γq. nχ is
the number of electron-hole pairs present in the state |χ〉.

Finally, we take radiative recombination of the excitons
and cavity loss processes into account by introducing Marko-
vian Lindblad-type operators

LO,
• = 

(
O • O† − 1

2

{•, O†O
}

+
)
, (A6)

where {·, ·}+ denotes the anti-commutator. O is a system op-
erator and 
 the decay rate of the associated loss process.
We assume the radiative decay rate γ is the same for all
electronic transitions and take the same cavity loss rate κ for
both polarizations of the modes in the cavity.

The full Hamiltonian then reads as

H = Hj + HPh (A7)

with the different system Hamiltonians Hj with j ∈
{2LS, 4LS, HEES, 3LS} as defined in Sec. III A. The dynam-
ics of these systems is then described by the Liouville-von
Neumann equation

∂

∂t
ρ = − i

h̄
{H, ρ}− + Lρ , (A8)

where {·, ·}− denotes the commutator. The superoperator L•
comprises all Lindblad-type contributions to the dynamics for
each considered system as follows:

L• =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

La,κ • +L|G〉〈X |,γ • for the 2LS∑
j=L,R

[
La j ,κ • +L|G〉〈Xj |,γ • +L|Xj 〉〈B|,γ • ]

for the 4LS

La,κ • +L|G〉〈X |,γ • +L|G〉〈X1|,γ • for the HEES

LaH ,κ • +L|G〉〈XH |,γ • +L|XH 〉〈B|,γ • for the 3LS

.

We solve Eq. (A8) in a numerically complete manner by
employing a path-integral formalism [39,40,74,75] that allows
for the analytical integration of the infinitely many phonon
modes. Tracing the phonon degrees of freedom out yields a
phonon induced memory kernel for the subsystem of interest.
By the term “numerically complete,” we denote a solution that
does not change noticeably by making the time discretization
finer and the memory taken into account longer. Recent ad-
vances within this method allows one to obtain solutions for
systems with many quantum levels [41], which is paramount
for the problem posed in this paper, since the relevant basis
states to be considered are product states of the QD states and
the number states of the two cavity modes.

2. Parameters

For the numerical calculations we use typical param-
eters for self-assembled strongly confined GaAs/In(Ga)As
QDs [41,76]. The QD diameter is set to 6 nm. The cavity
coupling is assumed to be h̄g = 0.1 meV and the cavity losses
are set to κ = 0.0085 ps−1. Assuming a mode frequency of
h̄ωC = 1.5 eV, this value of the loss rate corresponds to a
cavity quality factor Q ≈ 268, 000, which was reported in
Ref. [77] as an extremely high but experimentally achievable
value in QDCs. The radiative decay rate of the QD exciton is
set to γ = 0.001 ps−1. This corresponds to a typical lifetime
of 1 ns. Whenever phonon effects are considered in this work,
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the phonons are assumed to be initially in thermal equilibrium
at a temperature of T = 4 K.

The detuning between the cavity and the QD is assumed to
be h̄�ωCX = 5 meV in the case of the PIC and the difference
between the AC-Stark pulse and the QD is set to h̄�ωACS,X =
−40 meV. Following from the condition Eq. (A4), the AC-
Stark amplitude has to be h̄ fs = 21 meV. Furthermore, the
width of the smoothened edges is chosen to be σon = σoff =
0.28 ps. The pump pulses are on-resonance with the QD
exciton and have a width of fwhm = 0.1 ps.

3. Time discretization of the path-integral calculations

The phonon induced memory kernel for GaAs/In(Ga)As
QDs of 6 nm diameter at T = 4 K decays on a timescale
of ≈3 ps to zero [39–41]. Therefore numerically complete
converged results are typically obtained for a discretization of
�tPh = 0.55 ps and nm = 6 memory steps. With these values,
the memory kernel is well sampled. In this work, we use
�tPh = 0.5 ps and nm = 7.

To be able to resolve 0.1 ps-pulses, we first note that the
dynamics induced by these ultrashort pulses is separated by
one order of magnitude from the phonon timescale defined by
the memory kernel. Thus, on this fast timescale, the phonon
coupling has no influence on the system. Therefore a finer
time discretization grid of �t = 0.01 ps is put on top of
the phonon discretization �tPh. On this finer grid �t , the
dynamics is calculated using the phonon-free propagator. This
two-grid strategy is necessary since the discretization of the
phonon memory with a time step of �t = 0.01 ps would make
the numerics intractable.

4. Implicit model for the PIC

In the PIC presented in Sec. II A for the two-level case,
a sequence of AC-Stark pulses that are highly off-resonant
(h̄�ωACS,X = −40 meV) is the key ingredient. To study the
phonon effect on this protocol, the double grid scheme ex-
plained in Appendix A 3 is not sufficient, since the fast
oscillations induced by the AC-Stark pulses have to be sam-
pled on the phonon discretization grid �tPh to fully capture the
energy shifts induced by the off-resonant nature of the pulses
and their interplay with the phonon environment.

To this end, an implicit model is introduced that does not
include the AC-Stark pulse explicitly, i.e., f ACS(t ) = 0 in the
driving term f (t ). Instead, in a frame co-rotating with the
exciton frequency ωX the detuning �ωCX becomes effectively
time-dependent when a sequence of AC-Stark pulses is ap-
plied. It is calculated according to Eq. (A4) by replacing

0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

1× × × × ×106 1 105 5 104 4 104 3 104

m
a
x t

F
(t

)
to

|5
〉

κ (ps−1)

Cavity Quality FactorQ

FIG. 8. Dependence of the maximum fidelity over time to the
five-photon Fock state on the cavity loss rate. The cavity quality
factor Q is calculated assuming a mode frequency of 1.5 eV. The
radiative decay has been kept fixed at γ = 0.001 ps−1 (cf., Ap-
pendix A 2), while phonon effects are not considered in this plot.

fs with f ACS(t ). Thus the largest detuning in the system
is |h̄�ωCX| = 5 meV in the implicit model compared with
|h̄�ωACS,X| = 40 meV in the explicit incorporation of the
AC-Stark pulses.

Comparing the implicit and the explicit model in the
phonon-free case by studying the occupational dynamics of
the system reveals that the amplitude of the oscillations is
nearly identical, while their frequencies differ slightly for
h̄�ωACS,X � 10 meV. For values greater than that and, in par-
ticular, in the limit �ωACS,X → ∞, the implicit and explicit
models yield identical occupational dynamics.

5. Influence of the cavity losses

The analysis in the main text, in particular, Sec. II C and
Fig. 4, shows that the most influential parameter concerning
the preparation fidelity of the Fock states is the cavity loss
rate, i.e., the cavity quality factor Q. Therefore it is clear that
lower Q values worsen and higher Q improve the results.
Nonetheless, it is of interest to quantify this effect due to
its relevance for practical implementations of our scheme.
Figure 8 displays the fidelity reached for the five-photon Fock
state by the PUC as a function of the quality factor, which is
varied by changing the cavity loss rate.

Indeed, the expectation that the fidelity to the five-photon
Fock state monotonically increases with higher Q is fulfilled.
The calculations shown are performed without considering
phonon effects and keeping all the other parameters the same
as in the main text. In particular we have kept the radiative
decay at the finite value of γ = 0.001 ps−1. This is the main
reason why the fidelity stays noticeably below one in the limit
of high Q values.
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N-photon bundles constitute a class of
highly nonclassical quantum states of light.
They are a specific type of photon emis-
sion, where light quanta are released from
a cavity only in groups of N particles with
a characteristic photon number statistics
that may be taken as their fingerprint.
We consider two solid-state cavity quan-
tum electrodynamics (cQED) systems in
terms of their suitability as emitters of
N-photon bundles. As one example, we
consider a semiconductor quantum-dot–
microcavity system coupled to longitudi-
nal acoustic phonons. There, we find the
environmental influence to be detrimental
to the emission of N-photon bundles. The
other example is a superconducting qubit
inside a microwave resonator. In these
systems, pure dephasing is not important
and an experimentally feasible parameter
regime is found, where bundle emission
can be observed.

1 Introduction
Many innovative applications of the quantum
realm rely on the on-demand preparation of spe-
cific, highly nonclassical target states. Cavity
quantum electrodynamics (cQED) is a machinery
well suited for this purpose. On numerous differ-
ent platforms, e.g., atoms in resonators [1, 2, 3],
superconducting qubits in microwave resonators
[4, 5], or semiconductor quantum dots in micro-
cavities [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26], preparation of sin-
gle photons, entangled photon pairs, Fock states,
and Schrödinger or Voodoo cat states has been

Figure 1: Sketch of a two-level system (2LS) embedded
in a cavity resulting in the coupling to one cavity mode.
The 2LS is driven by a continuous external excitation. It
can decay radiatively, while the cavity is lossy. For par-
ticular sets of parameters, N -photon bundles leave the
cavity. They are characterized by the specific temporal
spacing between the constituent photons and their spe-
cific photon number statistics. Exemplary, four 5-photon
bundles are depicted.

proposed or achieved. Recently, a new class of
emitters of N -photon bundles has been proposed
[27], where the photon emission takes place only
in groups of the integer bundle number N . They
are characterized by a specific temporal spacing
between their constituent photons, see sketch in
Fig. 1. In contrast to the ordinary Fock state |N〉,
a bundle is emitted as a cascade over successive
Fock states |n〉, where 0 ≤ n ≤ N , which is a di-
rect result of the outcoupling via resonator losses.
In a resonator with loss rate κ, the Fock state |n〉
effectively decays with the rate nκ, explaining
the temporal spacing between the photons con-
stituting the bundle. This is also reflected in the
photon statistics of the resonator photons, which
is

PN (n) =





1− 〈n〉N
N∑
j=1

1
j n = 0

〈n〉
N

1
n 1 ≤ n ≤ N

0 n > N

(1)
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in the ideal case of an N -photon bundle emission
[27] with 〈n〉 being the average photon number
in the resonator. Considering this from a detec-
tion point of view means the following: When
a Poissonian source emits photons, their arrival
times at the detector are distributed randomly;
in the case of an N -photon bundle emission, the
bundles arrive randomly, but the photons con-
tained in each bundle obey the temporal order
as sketched in Fig. 1. Therefore, there is a Pois-
sonian distribution over bundles. In this sense,
N -photon bundles can be considered as an alter-
native to Fock states as building blocks for more
complex quantum states of light. Furthermore,
N -photon bundles have the property to herald
a Fock state. Finally, on timescales longer than
the size of the bundle, Planck’s constant is effec-
tively renormalized in the relationship between
frequency and energy, E = N~ω. Therefore, N -
photon bundles are even discussed for medical
applications due to a greater penetration depth
and increased resolution [27].

In this work, we study the suitability of solid-
state platforms as sources of such N -photon bun-
dles. We consider two platforms: (i) semiconduc-
tor quantum dots (QDs) in microcavities and (ii)
superconducting qubits in microwave resonators.

In QDs, where the coupling to longitudinal
acoustic phonons is known as the main source
of decoherence, the pure dephasing interaction
is the most important loss channel. We ana-
lyze a QD–cavity system coupled to a phonon
environment modeled by a microscopic phonon
Hamiltonian. This full many-body problem is
solved in a numerically exact way by employ-
ing a path-integral formalism. We compare these
results with those found in a model accounting
for phonons only via a phenomenological pure
dephasing rate. For realistic parameters that
are currently achievable, we find that the bun-
dle emission is completely destroyed by phonons.

In superconducting qubit–microwave resonator
systems, pure dephasing is negligible. For these
systems, we propose a set of parameters exper-
imentally well within reach, where bundle emis-
sion with N = 2 can be observed. We show that
for a bundle emission a resonator with a mediocre
Q-factor is optimal.

2 Model and methods

2.1 cQED model

Both example systems can be described by a
strongly driven Jaynes–Cummings model with
the Hamiltonian in a frame co-rotating with the
frequency of the external excitation ωL in the
usual dipole and rotating-wave approximations

H = − ~∆ωLX|X〉〈X|+ ~∆ωCLa
†a

+ ~g
(
|X〉〈G|a+ |G〉〈X|a†

)

+ ~f (|X〉〈G|+ |G〉〈X|) . (2)

The two-level system (2LS) has an excited state
|X〉 at energy ~ωX and a ground state |G〉 at
energy zero. a (a†) is the annihilation (cre-
ation) operator of a photon in the single res-
onator mode at energy ~ωC coupled to the 2LS
by g. The detuning between the external exci-
tation with strength f and the upper state |X〉
is denoted by ∆ωLX = ωL − ωX and the de-
tuning between resonator and external excitation
∆ωCL = ωC − ωL is defined analogously. The
detuning between resonator and the upper state
|X〉, ∆ωCX = ωC−ωX, is fixed by the growth pro-
cess of the structure. Hence, we keep it constant
in our analysis.

When the 2LS is strongly driven (f � g) and it
is in the dispersive regime (∆ωCX � g), a sharp
N -photon resonance emerges with N being an in-
teger. It corresponds to a polariton of the type
(|G, 0〉 ± |X,N〉)/

√
2, where |χ, n〉 denotes the

product state of the 2LS state |χ〉 and the pho-
ton number state |n〉. When dissipative channels
are included by introducing the excited state’s
radiative decay with rate γ and resonator losses
with rate κ, this resonance becomes a source of
N -photon bundles, when the stationary state is
reached [27].

We include these dissipative effects by account-
ing for the Lindblad superoperators L|G〉〈X|,γ and
La,κ acting on the density matrix ρ as

LO,Γρ = Γ
(
OρO† − 1

2
{
ρ,O†O

}
+

)
, (3)

describing loss processes with rate Γ on a dis-
sipation channel O, where {A,B}+ is the anti-
commutator of operators A and B.
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2.1.1 QD model

At first, we consider a self-assembled GaAs QD
system in a single-mode microcavity. In these
systems, additionally the pure-dephasing cou-
pling of the electronic states to an environment
of longitudinal acoustic phonons is important
[28, 29]. It is described by the Hamiltonian
[30, 31, 32, 33]

HPh = ~
∑

q

ωqb
†
qbq

+ ~
∑

q

(
γX
q b
†
q + γX∗

q bq
)
|X〉〈X| , (4)

where bq (b†q) annihilates (creates) a phonon of
energy ~ωq in mode q with the coupling strength
γX
q . The phonons are assumed to be initially in

thermal equilibrium at temperature T .

This coupling to phonons is the source of many
well-known effects in QDs, like the phonon side-
band in the QD emission spectrum [30, 34], the
renormalization of the Rabi frequency [35, 36],
and the damping of Rabi oscillations [37, 38, 39].
To discuss resonances, the most important ef-
fect is the polaron shift of the excited state |X〉.
Whenever we refer to the excited state energy
when phonons are taken into account, we mean
the polaron-shifted excited state energy.

To treat this full many-body Hamiltonian in
a numerically exact way, we employ an iterative
real-time path-integral formalism [40, 41] to solve
the Liouville–von Neumann equation (details are
explained in Refs. [42, 43, 44]). Within this ap-
proach, all effects mentioned above are thus taken
into account.

Unless noted otherwise, we take ~g = 0.02 meV
[45], γ = 1 ns−1, and κ = 8.5 ns−1 [46]. These
values, in particular, the cavity loss rate κ are
realistically achievable [46]. The record in cav-
ity quality so far is around κ ≈ 4 ns−1 to 6 ns−1

[45], which means that it should be possible to
achieve the value of κ chosen here with current
state-of-the-art equipment with reasonable effort.
Further, following Ref. [27], we set ~∆ωCX =
−60~g = −1.2 meV and ~f = 32~g = 0.64 meV.
For the phonon coupling, standard GaAs param-
eters [47, 44] are chosen for a QD with a radius
of 3 nm.

2.1.2 Superconducting qubit model

As a second example, we consider a supercon-
ducting qubit in a microwave resonator. Here,
pure dephasing is negligible. Therefore, no addi-
tion to the model in Sec. 2.1 is necessary.

We use the parameter set ~g = 0.079µeV, γ =
1.54µs−1, κ = 0.29µs−1, i.e. κ � γ, taken from
Ref. [5]. Again, following Ref. [27], we choose
~∆ωCX = −60~g = −4.71µeV and ~f = 32~g =
2.51µeV.

3 Results: QD–cavity system
3.1 Resonance landscape and N=2
The resonance corresponding to an N -photon
bundle are found at [48, 27]

∆ωLX =

√
4 (N2 − 1) f2 +N2∆ω2

CX + ∆ωCX

N2 − 1
+ ∆ωCX . (5)

In this work, we focus mostly on the case
N = 2. For the QD–cavity system, this re-
sults in a detuning value of ~∆ωLX = −0.51 meV.
Higher-order bundles with N > 2 can be reached
by tuning the excitation to the corresponding res-
onance according to Eq. (5), however for the re-
alistic set of parameters assumed here they are
negligible.

To illustrate the appearing resonances, we scan
the stationary photon number occupation with
the laser frequency ωL. Figure 2 shows the corre-
sponding results for the photon numbers n = 1,
2, and 3 in the QD–cavity system. Three reso-
nance peaks emerge in the vicinity of the bundle
resonance [presented in Fig. 2(a)], which itself is
shown on a magnified scale in the inset.

The most prominent peaks are found for the
limiting cases N → ∞ and N = 1. For
N → ∞ a double-peaked structure emerges at
~∆ωLX = ~∆ωCX = −1.2 meV (cf., Fig 7 for a
zoom-in). At its center the photon statistics is
Poissonian and is hardly influenced by phonons
[cf., Figs. 2(a) and (b)]. In contrast, the peak
at ~∆ωLX ≈ 0.08 meV corresponds to the reso-
nance for N = 1. Here, Fock states with n > 1
are not occupied due to a photon blockade effect
[cf., Fig. 2(a)], which is spoiled once phonons are
considered: then, the system can climb up the
Jaynes-Cummings ladder [cf., Fig. 2(b)]. The dif-
ferent physical mechanisms giving rise to these
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Figure 2: Stationary photon number occupation in the
QD–cavity system as a function of the laser–exciton de-
tuning ∆ωLX (a) without taking phonon effects into ac-
count, (b) including phonons initially at T = 4 K (the
insets show the region marked by yellow boxes on a
larger scale), (c) the corresponding energies of the laser-
dressed states |+〉 and |−〉. The energy of a photon
in the rotating frame is given by the cavity–laser de-
tuning ~∆ωCL, which is plotted as a shaded area to
illustrate its modulus. Arrows indicate the number of
photons involved in the processes leading to the various
resonance peaks, while their length corresponds to their
energy ~∆ωCL. The circular arrow indicates a 1-photon
process with a photon energy (in the rotating frame) of
~∆ωCL = 0. The blue lines above panel (a) mark the
energetic positions of the bundle resonances, starting for
N = 1 and quickly converging to ~∆ωCX for larger N .
Since the bundle resonance is derived from the condition
that N cavity photons energetically fit between the two
dressed states, an equation analogous to Eq. (5) can be
found for the trivial case N = 1.

two limiting cases and the phonon influence on
them is discussed in detail in Appendix A.

We now consider the range of bundle physics
for 1 < N <∞ and focus on N = 2. The charac-
teristic feature of N -photon bundles reflected in
their statistics as denoted in Eq. (1) is well visi-
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Figure 3: The stationary photon number occupation nor-
malized to its value at n = 1 for the QD–cavity system.
While the data labeled ’realistic losses’ is obtained us-
ing the parameters listed in Sec. 2.1.1, weaker losses of
γ = 0.01g and κ = 0.1g were chosen following Ref. [27]
for the calculation shown in gray. Note that in the
phonon-free case, the absolute values of the Fock state
with n = 1 are 0.016 for the weaker losses and 0.003 for
the realistic parameter set.

ble for the 2-photon bundle shown in the inset of
Fig. 2(a), in particular, the 3-photon occupation
is zero.

To understand all the resonances, we diago-
nalize the Hamiltonian of the laser-driven 2LS
neglecting the cavity (since f � g). As a result,
we obtain the dressed states |+〉 and |−〉. Their
energies in the laser-rotating frame are plotted in
Fig. 2(c) along with the energy of a cavity photon
given by ~∆ωCL in this frame.

The analysis in terms of laser-dressed states
reveals the fact that the 2-photon bundle reso-
nance at ~∆ωLX = −0.51 meV originates from
a 2-photon process [27], in this case a transition
from |−, 0〉 to |+, 2〉. The study of the influence
of the phonons on this resonance shows that al-
ready at 4 K [inset of Fig. 2(b)], it is strongly
suppressed. The occupation of n = 1 strongly
rises around the resonance peak. Apparently,
phonon-assisted 1-photon transitions are favored
against the 2-photon process creating the bundle.
In particular, the characteristic 1/n feature [cf.,
Eq. (1)] of the number distribution is destroyed.

To illustrate this point in more detail, the sta-
tionary photon number distribution normalized
to its value at n = 1 is shown in Fig. 3. First of
all, it is interesting to note that the ideal bundle
statistics ∝ 1/n is only observed for loss param-
eters weaker than the realistic, state-of-the-art
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Cummings model at T = 4 K. (b) γφ corresponding to a
Jaynes–Cummings dynamics with n = 1. (c) γφ corre-
sponding to a Jaynes–Cummings dynamics with n = 2.

values (cf. gray data in Fig. 3). This param-
eter set consists of γ = 0.01g = 0.3 ns−1 and
κ = 0.1g = 3 ns−1, following the values chosen
in Ref. [27]. Already the slightly higher values
chosen in our work (cf. Sec. 2.1.1) lead to a ratio
of the stationary 2- to the 1-photon occupation

r := lim
t→∞

〈|2〉〈2|〉(t)
〈|1〉〈1|〉(t) (6)

equal to 0.45. Thus, the ratio deviates from the
target of 0.50, which is a necessary indicator for
an N = 2 bundle state. The phonon coupling
pushes this value down to r = 0.20 already at
T = 1 K. For higher temperatures up to 10 K,
r swiftly approaches zero and the 2-photon bun-
dle is completely destroyed. QD–cavity systems
are therefore not a suitable platform to design an
emitter of N -photon bundles (1 < N <∞).

3.2 Comparison with a phenomenological de-
phasing model
The phonon environment has a drastic influence
on the emission of an N -photon bundle as shown
in the previous section for the case N = 2. Al-
ready at a low temperature of T = 1 K the
1/n-distribution characteristic for the bundle [cf.,
Eq. (1)] is not recognizable anymore (cf., Fig. 3).
This result was obtained within a microscopic
model of the phonon influence. In contrast, in

Ref. [27], the dephasing has been analyzed using
a phenomenological Lindblad operator L|X〉〈X|,γφ

.

It is therefore instructive to compare the mi-
croscopic model with the phenomenological one
to check whether the latter is valid. On first
sight, we find a quite different behavior: for the
phenomenological model taking values for the
corresponding Lindblad rate γφ from the liter-
ature on semiconductor QD–cavity systems, the
impact of pure dephasing is almost negligible [27].

To analyze this in more detail, we have plotted
results of the phenomenological model in Fig. 4,
which shows the stationary ratio r as a function
of the phenomenological pure-dephasing rate γφ
which is incorporated into the model by the ad-
dition of the Lindblad operator L|X〉〈X|,γφ

instead
of the microscopic Hamiltonian model HPh. In-
deed, in that approximation a large plateau range
is found where the ratio stays essentially at its
phonon-free value of r = 0.45 (cf., also Fig. 3).

To assess, what γφ should be chosen in the re-
duced model to best approximate the full phonon
effect, we apply the following procedure: We
compare the exciton dynamics resulting from the
full calculation (where phonons are included by
HPh) with the phenomenological model (where
HPh is replaced by L|X〉〈X|,γφ

) and vary γφ until
the envelopes of the two dynamical results es-
sentially match. Note that we set κ = γ = 0
for this procedure to extract the pure phonon in-
fluence on the dynamics. Furthermore, this com-
parison is conducted for the all-resonant case, i.e.,
∆ωLX = ∆ωCX = 0. We perform this procedure
at T = 4 K for three different cases and mark
the resulting rate γφ by red squares in Fig. 4: (a)
Driven Jaynes–Cummings system with the initial
state |G, 0〉, resembling the closest approximation
to the full calculation, (b) Jaynes–Cummings sys-
tem without driving (f = 0) for the initial state
|G, 1〉, and (c) same as (b) but with |G, 2〉 as
the initial state. The three extracted rates (cf.,
Fig. 4) indicate that a very large pure-dephasing
rate of the order of 10−1 meV is necessary to
reproduce the dynamics of the full microscopic
model [cf., red square labeled with (a)]. With
such a large rate, the ratio r is close to zero,
meaning that no 2-photon bundle emission takes
place in accordance with the results of the full
model at T = 4 K (cf., Fig. 3).

The reason for such a significant increase in γφ
lies in the impact of pure dephasing mechanism,
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which gains in strength for larger Rabi frequen-
cies related to the effective couplings present in
the system. While in (b) and (c) the cavity Rabi
frequency amounts to 2g

√
n+ 1 with n the num-

ber of photons present in the cavity, the driv-
ing f � g introduces the highest transition fre-
quency in (a). In Fig. 4, it becomes clear that
the pure-dephasing rate increases with larger ef-
fective coupling, in accordance with earlier obser-
vations in the case of a microscopic description
of phonons [38, 49, 50]. The values of γφ in (b)
and (c) are of the order of experimentally found
pure-dephasing rates for strong QD–cavity cou-
pling like the one studied here (cf., Sec. 2.1.1),
but without external driving. Choosing such val-
ues for the rate indeed results in a marginal in-
fluence of pure dephasing, since both points lie
well inside the plateau region.

Thus, the conclusion in Ref. [27] that dephas-
ing does not significantly affect the N -photon
bundle generation can be traced back to the fact
that values for dephasing rates have been consid-
ered that are no longer applicable in the regime of
very strong driving as required for this protocol.
The physical reason lies in the fact that an opti-
cally driven system is influenced by the phonon
Hamiltonian in a profoundly different way than
its non-driven counterpart: while phonons can-
not induce transitions between the two electronic
states in the undriven case, they can lead to tran-
sitions between the laser-dressed states, which
are the eigenstates of the driven two-level sys-
tem. In essence, the dephasing rate depends on
the driving strength. A quadratic dependence
γφ ∝ f2 can be derived in a weak-coupling limit
[51].

In conclusion, a phenomenological pure de-
phasing model is also able to qualitatively pre-
dict the destruction of theN -photon bundle. The
challenge is the choice of a proper rate, which has
to be calibrated to the full phonon system.

4 Results: Superconducting qubit–
microwave resonator systems
Superconducting qubit–microwave resonator sys-
tems have been successfully used to demonstrate
the on-demand preparation of various highly non-
classical photon states, such as Fock states [4], su-
perpositions thereof, and Voodoo cat states, i.e.,
coherent superpositions of three coherent states

[5]. In none of these experiments, a significant
impact of pure dephasing was reported.

For state-of-the-art superconducting systems
[5], the resonator losses are much smaller than
the decay of the qubit (κ � γ as in Sec. 2.1.2).
Again, the 2-photon bundle resonance is achieved
by an external excitation tuned according to
Eq. (5). The resulting photon number distribu-
tion is shown in Fig. 5, normalized to its value
at n = 1 (light blue bars). Surprisingly, no bun-
dle is emitted, as the photons are able to climb
up the Jaynes–Cummings ladder instead. In par-
ticular, the characteristic cutoff for n > N = 2
is not observed. The reason lies in the fact that
the radiative decay γ can induce transitions from
|+, n〉 to |−, n〉. From the latter, additional pho-
tons can be emitted to break the cutoff and reach
higher n.

The failure of the superconducting qubit to
emit a bundle can be traced back to the lack of
resonator losses κ in comparison to radiative de-
cay γ. Indeed, if we consider a resonator loss
rate much larger (following Ref. [27], κ = 0.1g
has been chosen, cf., also Fig. 3 for this specific
choice), we can obtain a near-perfect 2-photon
bundle. The resulting photon number distribu-
tion (cf., dark blue bars in Fig. 5) indeed shows a
near-perfect 2-photon bundle, with r = 0.49 and
no occupation for n > 2. This means that though
much effort is usually invested into resonators of
better quality, here the use of a bad resonator is
mandatory when bundle generation is the target.

To analyze the impact of the losses in more de-
tail, we study the quality of the emitted 2-photon
bundle as a function of the resonator losses. To
this end, the 2- to 1-photon ratio r is shown as
a function of κ in Fig. 6 as well as the 3- to 1-
photon ratio, which should vanish for an ideal
2-photon bundle emission due to the cutoff for
n > N = 2. Indeed, these two quantities con-
firm that the chosen value of κ = 0.1g = 7.76γ
lies well within a plateau region of r ≈ 0.5 and
a vanishing occupation for n > 2. While res-
onator losses too low compared to the decay of
the qubit results in the occupation of states with
n > 2, using very low-quality resonators with
κ & 20γ (cf., Fig. 6) leads to a drastic reduction
of r and thus an emission, which has no bun-
dle structure anymore. While constructing res-
onators of better quality is always an experimen-
tal challenge, creating a bad resonator should be
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a lesser problem. Thus, superconducting qubit–
microwave resonator systems are indeed suitable
candidates for sources of N -photon bundles.

5 Conclusion

We have studied two solid-state platforms as pos-
sible sources of N -photon bundles [27]: semicon-
ductor quantum-dot–cavity systems and super-
conducting qubit–microwave resonator systems.

In quantum-dot–cavity systems, pure dephas-
ing is induced by longitudinal acoustic phonons.
We have found that even at low operating tem-
peratures of a few kelvin, a 2-photon bundle is de-
stroyed, thereby crushing the hopes for the emis-
sion of bundles with N > 2. The reason is the
considered driving regime that is required to ad-
dress the bundle resonance, which also favors the
phonon activity in the electronic subsystem of
the quantum dot.

In contrast, superconducting qubit–microwave
resonator systems are suitable to generate N -
photon bundles. Here, the pure dephasing does
not play a notable role. However, the quality of
the resonator should not be too high to facilitate
the emission of photon bundles.
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A Resonance peaks for N → ∞ and
N = 1

Since the peaks at ~∆ωLX = −1.2 meV and
0.08 meV are the most striking features in Fig. 2,
we shall discuss them in some detail in this ap-
pendix. This will give additional insights into the
physics taking place in this parameter regime in
general, although the analysis reveals that these
peaks are not related to the bundles which are the
main target of our paper. The most prominent
peak in Fig. 2 at ~∆ωLX = ~∆ωCX = −1.2 meV
is obtained in the limit N →∞ and corresponds
to a process where the photon energy in a frame
rotating with the laser frequency is ~∆ωCL = 0
and the system can climb up the photon ladder
from |−, n〉 to |−, n+ 1〉, such that a Poissonian
distribution with respect to n emerges. Note that
one observes a double-peaked structure at this
resonance in Fig. 2. At its center, the order of
the photon occupations is reversed, i.e., the oc-
cupation of n = 2 is higher than that of n = 1,
consistent with a Poissonian with an average pho-
ton number of 〈n〉 = 6.6 and a maximum occu-
pation of 0.15 at n = 6. A magnification of this
peak, where the reversal of the photon order is
visible, is replotted in Fig. 7. An analysis of the
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corresponding Wigner function [5, 26] (not shown
here) confirms that the corresponding state is a
(Glauber) coherent state.

The peak at ~∆ωLX ≈ 0.08 meV corresponds
to a 1-photon bundle, i.e., a 1-photon Fock state,
and also results from a one-photon process. But
in contrast to the previously discussed case, the
photon is emitted by the transition from |−, 0〉 to
|+, 1〉. Due to an energy mismatch between the
photon energy and the transition between |+, 1〉
and |±, 2〉, no further photons are put into the
cavity, as can be seen in the stationary occupa-
tions of this peak in Fig. 2(a). This effect is com-
monly known as the photon blockade [52].

The phonon influence on the occupations at
T = 4 K as shown in Fig. 2(b) could not be more
different for these two resonances. The first one
for N → ∞ at ~∆ωLX = −1.2 meV is hardly
influenced by phonons at all. Indeed, the photon
number distribution remains Poissonian with a
slightly lower average photon number of 〈n〉 =
5.6 and a similar maximum occupation of 0.16
at n = 5. The reason lies in the fact that the
photons are emitted from transitions, where the
electronic (laser-dressed) state remains |−〉 and
does not change. Since this is the energetically
lower dressed state and at temperatures below a
few tens of kelvins phonon absorption is highly
unlikely, phonons have only a slight influence on
the stationary photon distribution.

On the other hand, the second peak at
~∆ωLX ≈ 0.08 meV for N = 1 experiences strong
phonon-enhancement, since the photon blockade
is spoiled. The energy mismatch between |+, n〉
and |−, n〉 is now bridged by phonon emission,
which is possible for all temperatures down to
absolute zero, and a subsequent resonant transi-
tion to |+, n + 1〉 can take place. Therefore, the
phonon coupling drives the occupation of higher-
order Fock states beyond n = 1 [44, 53].
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We have simulated the time evolution of the photon number distribution in a semiconductor quantum-
dot–microcavity system driven by chirped laser pulses and compare with unchirped results. When phonon
interactions with the dot are disregarded—thus corresponding to the limit of atomic cavity systems—chirped
pulses generate photon number distributions that change their shape drastically in the course of time. Phonons
have a strong and qualitative impact on the photon statistics. The asymmetry between phonon absorption and
emission destroys the symmetry of the photon distributions obtained for positive and negative chirps. While
for negative chirps transient distributions resembling thermal ones are observed, for positive chirps the photon
number distribution still resembles its phonon-free counterpart but with overall smoother shapes. In sharp
contrast, using unchirped pulses of the same pulse area and duration wave packets are found that move up
and down the Jaynes-Cummings ladder with a bell shape that changes little in time. For shorter pulses and lower
driving strength Rabi-like oscillations occur between low photon number states. For all considered excitation
conditions transitions between sub- and super-Poissonian statistics are found at certain times. For resonant
driving with low intensity the Mandel parameter oscillates and is mostly negative, which indicates a nonclassical
state in the cavity field. Finally, we show that it is possible that the Mandel parameter dynamically approaches
zero and still the photon distribution exhibits two maxima and thus is far from being a Poissonian.

DOI: 10.1103/PhysRevB.101.205304

I. INTRODUCTION

Semiconductor quantum-dot–cavity (QDC) systems con-
tinue to raise attention as highly integrable on-demand emit-
ters of nonclassical states of light. In particular, QDCs have
proven to be rather successful providing, e.g., reliable on-
demand high quality single photon sources [1–10] as well as
sources for entangled photon pairs [11–18]. Clearly, QDCs
support a much larger class of excitations when higher mean
photon numbers are reached. The additional degrees of free-
dom provided by higher number photon states obviously allow
for a rich variety of dynamical scenarios and may open the
way to new kinds of applications such as, e.g., the encoding of
quantum information in the photon number state distribution.
These possibilities are, however, far from being explored.

Often, the first step to characterize systems with photon
distributions ranging up to higher photon numbers is to record
a few characteristic numbers such as the mean photon number
[19] and/or the Mandel parameter [20]. In simple cases, the
mean photon number is indeed enough to capture the whole
information about the photon distribution even when the latter
is time dependent. This applies in particular when photons
are generated by classically driving an empty cavity without
a quantum dot (QD) where the photonic system is at all times
in a coherent state and thus the distribution is a Poissonian
[21,22], i.e., in this case the photonic excitation is always as
close as possible to a classical light field and thus nonclassical

states cannot be reached. Moreover, although the mean photon
number varies in time, the photon distribution keeps its shape
at all times.

The situation is different when a system with few discrete
levels near resonance to a cavity mode such as an atom
or a quantum dot is placed inside the cavity. When driving
transitions between these discrete levels deviations from the
coherent state may occur as is evident, e.g., by monitoring the
Mandel parameter,

Q(t ) = (〈�n2〉 − 〈n〉)/〈n〉. (1)

Q(t ) measures the deviation of the mean-square fluctuation
from the mean photon number normalized to the latter.
Therefore, Q vanishes for a Poisson distribution. A posi-
tive Q indicates a super-Poissonian distribution with larger
fluctuations than in a coherent state with the same mean
photon number while negative Q values correspond to the
sub-Poissonian regime which is known to have no classical
analog [23]. Indeed, deviations from the coherent state have
been reported for the stationary distribution obtained in an
atomic cavity with constant driving where different signs of
Q have been found for different ratios between cavity loss and
radiative decay rates [24]. In Ref. [25] it has been shown that
the statistics of photons emitted from the exciton-biexciton
system of a QD can be steered from sub- to the super-
Poissonian by varying the biexciton binding energy, the pump
strength or the temperature [26]. Although the experiments in
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Ref. [25] have been performed on QDs without cavity, the
number of modes in the theoretical modeling was restricted
to two which corresponds to the situation in a QDC. There-
fore, the results should also apply to QDCs. Simulations for
a pulsed excitation of a QDC indicate that Q can exhibit
oscillations and change its sign repeatedly in time [27].

It is clear, however, that in general the photon number
distribution contains much more detailed information than
captured by the mean photon number or the Mandel param-
eter. Recently, calculations of the stationary photon number
distribution in a constantly driven QDC revealed a strong
qualitative influence of phonons on the shape of the dis-
tribution [28,29]. While without phonons distributions with
many different shapes were found for different detunings, the
stationary distribution with phonons turned out to be close to
a thermal state with a high effective temperature. Note that the
case without phonons describes, e.g., a cavity with a trapped
atom.

Advances in measuring techniques have demonstrated pos-
sibilities for observing directly the photon number resolved
distributions in various systems without the necessity to per-
form quantum tomography to reconstruct the entire state [30],
ranging from bimodal microlasers [31] over QDs [32,33] to
exciton-polariton condensates [34]. Furthermore, a novel al-
gorithm for data evaluation free of systematic errors to obtain
number distributions has been successfully employed [35].
These achievements could pave the way to novel applications
where easy access to information encoded in the photon
number distribution is needed.

The focus of the present paper is on the transient behavior
of the photon number distribution in a QDC system driven
by chirped pulses in comparison to the unchirped case. Our
most striking result is the finding that the shape of the num-
ber distribution changes dynamically when driving the QDC
with chirped pulses. In sharp contrast, for sufficiently strong
unchriped excitations a wave packet which keeps a bell shape
for all times moves up and down the Jaynes-Cummings ladder.
Phonons have noticeable effects on the photon statistics for all
excitation conditions that we compare. Notably, for chirped
excitation the phonon impact induces qualitative changes of
the shape of the distribution in particular for negative chirps.

II. THEORY

A. Model and methods

We study a self-assembled QD, e.g., GaAs/In(Ga)As, with
strong electronic confinement, such that only the lowest con-
duction and the highest valence band states need to be taken
into account. Furthermore, we consider only situations where
the system is well represented by a two-level model. The latter
applies, e.g., for resonant driving of the exciton by circularly
polarized light when the fine-structure splitting is negligible
or when all other states such as the biexciton are sufficiently
far from resonance. Then the Hamiltonian for the laser driven
dot reads

HDL = −h̄�ωLX|X 〉〈X | − h̄

2
f (t )

× (
e−iϕ(t )|X 〉〈G| + eiϕ(t )|G〉〈X |), (2)

where the detuning between the exciton and central laser
frequency �ωLX := ωL − ωX is introduced. Here, the ground
state |G〉 is chosen as the zero of the energy scale. Note that the
usual dipole and rotating wave approximations are employed
and the Hamiltonian is written down in a frame co-rotating
with the laser frequency ωL. The real amplitude f (t ) and the
phase ϕ(t ) are related to the instantaneous Rabi frequency
�(t ) by

�(t ) := 2M0 · E(t ) = f (t ) e−i(ωLt+ϕ(t )), (3)

where M0 is the dipole matrix element of the transition
between the QD ground |G〉 and exciton state |X 〉 and E is
the positive frequency part of the laser field.

To enhance the coupling between the QD and the electro-
magnetic field, the dot can be placed into a microcavity. We
account for a single cavity mode with frequency ωC far from
the electromagnetic continuum and a QD coupled to that mode
close to resonance via

HC = h̄�ωCLa†a + h̄g
(
a†|G〉〈X | + a|X 〉〈G|), (4)

where the cavity photons are created (annihilated) by the
bosonic operator a† (a) and are detuned by �ωCL := ωC − ωL

from the laser frequency. The QD is coupled to the cavity with
a strength of h̄g.

The subsystem of interest comprising the dot laser and the
cavity Hamiltonian HDL and HC, respectively, is not an ideal
few-level system, since it is embedded into the surrounding
solid-state matrix. Even at cryogenic temperatures of a few
Kelvin, the QD exciton is prone to the coupling to phonons.
In strongly confined excitonic systems, the most important
phononic contribution usually results from the deformation
potential coupling to longitudinal acoustic (LA) phonons and
is of the elastic pure dephasing type [36–39],

HPh = h̄
∑

q

ωqb†
qbq + h̄

∑
q

(
γ X

q b†
q + γ X∗

q bq
)|X 〉〈X |, (5)

where the bosonic operator b†
q (bq) creates (destroys) phonons

with frequency ωq. γ X
q denotes the coupling constant between

the exciton state and the bosonic mode labeled by its wave
vector q which is adequate for bulk phonons. Here, we use
the fact that in GaAs/In(Ga)As the lattice properties of the
dot and its surroundings are similar, such that phonon confine-
ment is negligible. Other QD-phonon interaction mechanisms
like, e.g., the piezoelectric coupling to LA and transverse
acoustic (TA) phonons can become important in strongly polar
crystals such as, e.g., GaN-based QDs [40,41], but are of
minor importance for GaAs-type structures.

Finally, we account for Markovian loss processes by phe-
nomenological decay rates for the radiative decay and cavity
losses, respectively, that are incorporated into the model as
Lindblad-type superoperators L|G〉〈X |,γ • +La,κ• with

LO,�• = �

(
O • O† − 1

2
{•, O†O}+

)
, (6)

where {·, ·}+ denotes the anticommutator. O is a system
operator and � the decay rate of the associated loss process,
i.e., in our case γ stands for the radiative decay rate while κ is
the cavity loss rate.
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The dynamical equation to be solved is the Liouville-von
Neumann equation for the density matrix,

∂

∂t
ρ = − i

h̄
{H, ρ}− + L|G〉〈X |,γ ρ + La,κρ, (7)

with the total Hamiltonian H = HDL + HC + HPh and {·, ·}−
denotes the commutator.

We employ a path-integral formalism for simulating the
dynamics in the above-defined model in a numerically com-
plete fashion. By tracing out the phonon degrees of freedom
analytically, a non-Markovian memory kernel decaying on a
time scale of a few picoseconds is obtained that manifests
in experiments as, e.g., non-Lorentzian line shapes in linear
and nonlinear spectra [37,38,42,43] or in characteristic de-
pendencies of the phonon-induced damping of Rabi rotations
[44–47]. Therefore, this memory cannot be neglected in cal-
culating the QD dynamics which takes place on a similar
time scale. We call a numerical solution complete if a finer
time discretization or a longer cutoff of the phonon-induced
memory kernel does not change the results noticeably.

Most current implementations of the real-time path-
integral approach are based on the pioneering work of Makri
and Makarov [48,49], who introduced an iterative scheme for
the augmented density matrix of the subsystem of interest. We
are using an extension of this scheme that allows the inclusion
of non-Hamiltonian Lindblad-type contributions into the path-
integral algorithm without the loss of precision with respect
to the phonon-induced part of the dynamics by formulating
the iterative scheme not in a Hilbert, but a Liouville space
[50]. In the present study, the system that couples to the
phonons is represented by a large number of basis states of
the form |G, n〉 and |X, n〉 where n denotes the photon number
and G or X indicates whether the dot is in its ground or
excited state. A numerically complete study of such systems
is currently impossible with the Makri-Makarov algorithm
due to the extreme growth of the numerical demand with
rising number of system states. Nevertheless, we are able to
present numerically complete results because we are using a
recently developed reformulation of the algorithm that iterates
a partially summed augmented density matrix [28]. Note that
this reformulation of the path-integral algorithm does not
introduce any additional approximations. For details on the
methods, consider the supplement of Ref. [28]. The photon
number distribution is obtained by taking the corresponding
matrix element of the subsystem’s reduced density operator
ρ̄ = TrPh[ρ], with TrPh denoting the trace over the phonon
degrees of freedom,

Pn(t ) =
∑

ν=G,X

〈ν, n|ρ̄(t )|ν, n〉. (8)

B. Chirped pulses and laser-dressed states

In order to generate a chirped pulse one usually starts with
a Gaussian pulse with an envelope and phase:

f0(t ) = �√
2πσ

e− (t−t0 )2

2σ2 , (9)

ϕ(t ) = const., (10)

where � denotes the pulse area and σ determines the duration
corresponding to a full width at half maximum (FWHM) of
FWHM = 2

√
2 ln(2)σ and t0 marks the time of the pulse

maximum. We shall assume in the following a resonant ex-
citation where ϕ(t ) = 0 in Eq. (3) for an unchirped pulse.
We note in passing that also other pulse shapes are possible
as a starting point for the generation of chirped pulses. In
particular, secant hyperbolic pulses may have advantages in
certain circumstances [51].

Passing the initial pulse in Eq. (9) through a Gaussian chirp
filter [52] yields a chirped pulse with envelope and phase:

fchirp(t ) = �chirp√
2πσchirp

e
− (t−t0 )2

2σ2
chirp , (11)

ϕ(t ) = a (t − t0)2/2, (12)

pulse area �chirp = �
√

σchirp/σ and duration σchirp =√
(α2/σ 2) + σ 2. The phase in Eq. (3) has acquired a quadratic

time dependence, which corresponds to an instantaneous laser
frequency ωL + ϕ̇ = ωL + a (t − t0) that changes linearly in
time and for ωL = ωX crosses the exciton resonance at the
pulse maximum t = t0. The strength of the chirp is commonly
expressed in terms of the chirp parameter α which is related
to the coefficient a in Eq. (12) by a = α/(α2 + σ 4). Note
that the pulse area and in particular the pulse length increases
drastically when chirps are introduced (cf. the definition of
σchirp).

III. NUMERICAL RESULTS ON TRANSIENT PHOTON
STATISTICS

For the numerical calculations, we assume a QD with 6-nm
diameter and standard GaAs parameters [28,41]. The cavity is
coupled to the QD exciton with a strength of h̄g = 0.1 meV
while it is on resonance, i.e., �ωCX := ωC − ωX = 0. The
cavity losses are taken to be h̄κ = 6.6 μeV, which corre-
sponds to a quality factor ≈105 assuming a mode frequency
of h̄ωC = 1.5 eV. The radiative decay rate of the QD exciton
is set to h̄γ = 2 μeV.

A. The chirp-free situation

Let us first concentrate on the chirp-free case. Figures 1(a)
and 1(c) display photon number distributions at different times
for a QDC driven by an unchirped Gaussian pulse with a pulse
area of 5π and a duration of 2.4 ps FWHM. Figure 1(a) shows
results without phonons while in Fig. 1(c) the corresponding
simulations with phonons are depicted assuming the phonons
before the pulse to be in thermal equilibrium at a temperature
of T = 4 K. The initial state for the cavity photons is taken
to be the vacuum, i.e., the n = 0 Fock state and the QD is
initially in the ground state.

As expected the photons stay in the vacuum state until the
arrival of the pulse. At the end of the 5π pulse (cf. black
markers in Fig. 1) the QD is in the exciton state and the
resonant coupling to the cavity initiates vacuum Rabi oscilla-
tions [53–57], i.e., oscillations between the |X, n = 0〉 and the
|G, n = 1〉 states. This is reflected in the photon distribution
as oscillations between the n = 0 and n = 1 Fock states and
results in damped oscillations of the mean photon number
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FIG. 1. Transient photon number distributions for laser excitations with unchirped pulses with (a) and (c) pulse area � = 5π and duration
FWHM=2.4 ps, (b) and (d) pulse area � = 31.63π and duration FWHM = 94.22 ps. Panels (c) and (d) display results accounting for phonons
that are initially at equilibrium at a temperature of T = 4 K while the corresponding phonon-free results are shown in (a) and (b). The pulse
has its maximum at t = t0. Black markers indicate the FWHM of the pulse.

between zero and and a maximal amplitude that due to losses
and phonon effects is below one [cf. orange curve in Fig. 3(a)].
Quantitatively, a small occupation of the two-photon state |2〉
is observed, seen, e.g., for t − t0 = 10 ps in Figs. 1(a) and 1(c).
The reason lies in the re-excitation of the QD during the same
pulse, whereby effectively two photons can be put into the
single cavity mode.

The phonon impact on Rabi-type oscillations in a two-level
system has been extensively studied [29,44–47,58–64] and
shall therefore not be analyzed here in detail. We just note
that the main effects are a phonon-induced damping, which
depends on the driving strength, and a renormalization of
the Rabi frequency. The renormalization of g is reflected in
Figs. 1(a) and 1(c) by slightly different oscillation frequen-
cies. The damping seen in the orange curve in Fig. 3(a) is the
result of the combined effects of phonons, cavity losses, and
radiative decay.

For a fair comparison between unchirped and chirped
pulses, recall that the application of a Gaussian chirp filter in-
volves besides the time-dependent variation of the phase ϕ(t )
in Eq. (12) also a considerable increase of the pulse duration
and of the pulse area. Therefore, we show in Figs. 1(b) and
1(d) the photon distribution with and without the influence of
phonons for a pulse with pulse area � = 31.63π and duration

FWHM = 94.22 ps, which corresponds to the application of a
filter with an effective value of |α| = 40 ps2 in Eq. (11) but
keeping the phase ϕ(t ) = 0 constant. Most strikingly, with
this driving there are no traces of vacuum Rabi oscillations
visible. Instead, a wave-packet-type dynamics sets in, where
a bell-shaped distribution is found for all times. The mean
photon number rises monotonically in time to values n ≈ 12
[note that the blue curve in Fig. 3(a) is scaled down by a factor
of 5 for better visibility] and subsequently falls back to zero
after the pulse has vanished.

B. Finite chirps

Figure 2 displays transient photon number distributions
obtained for chirped pulses that are generated by passing
the Gaussian pulse used in Figs. 1(a) and 1(c) through a
chirp filter with α = ±40 ps2 [(a) and (c) α = −40 ps2,
(b) and (d) α = +40 ps2]. The upper panels correspond to
simulations without phonons while for the lower panels the
interaction with phonons has been included. Note that the
pulses used in Fig. 2 have the same pulse area and duration as
the unchirped pulses used in Figs. 1(b) and 1(d) which allows
us to compare excitation conditions where the only difference
is the frequency modulation.
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FIG. 2. Transient photon number distributions for laser excitations with chirped pulses with pulse area and FWHM before the chirp filter
of � = 5π and FWHM=2.4 ps, i.e., �chirp = 31.63π and duration FWHMchirp = 94.22 ps for |α| = 40 ps2. (a) and (c) Calculated with chirp
parameter α = −40 ps2, (b) and (d) α = +40 ps2. (c) and (d) Displayed are results accounting for phonons that are initially at equilibrium at
a temperature of T = 4 K while the corresponding phonon-free results are shown in (a) and (b). The pulse has its maximum at t = t0. Black
markers indicate the FWHM of the pulse after the chirp filter.

FIG. 3. The time-dependent (a) mean photon number and (b) Mandel parameter Q(t ) = (〈�n2〉 − 〈n〉)/〈n〉 for the cases indicated by the
labels. All curves are calculated with phonons initially at T = 4 K, except for the gray curves which correspond to the phonon-free case. The
blue curve is scaled down by a factor of 5 for better visibility. The inset in (b) corresponds to a zoomed-in scale.
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In the phonon-free case identical distributions are obtained
for positive and negative chirp [cf. Figs. 2(a) and 2(b)]. This
symmetry is removed when phonons are taken into account
[cf. Figs. 2(c) and 2(d)]. In contrast to the unchirped case with
the same pulse area and duration in Figs. 1(b) and 1(d), the
photon number is close to zero until the pulse maximum is
reached, which can be explained by noting that for chirped
pulses the instantaneous laser frequency is strongly detuned
from the QD resonance for times away from the pulse maxi-
mum. The most striking difference compared with Figs. 1(b)
and 1(d) is, however, that the photon distributions in Fig. 2
significantly change their shape in time. The distributions
found in the phonon free case have at early times after the
pulse maximum a bell shape with a single maximum and
transform into a bimodal distribution with two well-separated
bell-shaped contributions at later times [cf. t − t0 = 20 ps
in Fig. 2(a)]. Subsequently, at times t − t0 ≈ 30−50 ps the
distribution still has two peaks but looks rather jagged having
little resemblance with bell-shaped distributions. Eventually,
at later times only a single maximum is found which appears
at a finite photon number or at zero, depending on time.

Phonons change the situation qualitatively for negative
chirp [cf. Fig. 2(c)], where now the photon number distri-
bution has a single maximum at n = 0 for all times. The
shape of the transient distribution resembles thermal photon
occupations, which due to mean photon numbers around n =
2 [cf. Fig. 3(a)] corresponds to an effective temperature above
Teff ≈ 40 000 K for photon energies h̄ωC ≈ 1.5 eV. A similar
impact of phonons on the photon number distribution has been
reported previously for the stationary distribution found at
long times for permanent driving [28]. The phonon impact
for positive chirp is less dramatic [cf. Fig. 2(d)]. As in the
phonon-free case, there are still times where the distribution is
bi-modal while at other times only a single maximum is found.
Overall, the irregular looking shape appearing at certain times
in Figs. 2(a) and 2(b) is smoothened. Moreover, there is a
tendency to build up a maximum near n = 0.

Further differences between the number distributions in
Figs. 1 and 2 are revealed by looking at the time evolution of
the corresponding Mandel parameters Q(t ) in Fig. 3(b). For
a Fock state the number fluctuation disappears, leading to a
negative Mandel parameter, except for the n = 0 Fock state,
where the Mandel parameter approaches an expression of the
form zero divided by zero. We see from the orange curves in
Fig. 3 that for weakly driven unchirped pulses the damped
oscillation of the mean photon number between 0 and at
most 1 is accompanied by damped oscillations of the Mandel
parameter ranging down to almost −1 and up to essentially 0.
The negative values of the minima correspond to times where
the system is close to the n = 1 Fock state. If the dynamics
would exclusively involve states with photon numbers 0 or 1
such that only P0 and P1 are different from zero, it is easy to
show that for all times, where P1 �= 0, the Mandel parameter
is Q(t ) = −〈n〉. Therefore, Q should approach 0 when the
n = 0 Fock state is approached. We see, however, from the
orange curve in Fig. 3(b) that the first maxima of the Mandel
parameter Q are a bit above 0, indicating small admixtures of
higher number states.

For higher pulse areas Q is positive for most of the time for
chirped as well as for unchirped pulses. Interestingly, although

the bell-shaped distributions in Figs. 1(b) and 1(d) at first
glance resemble much more Poissonian distributions than the
somehow irregular ones found for chirped pulses in Figs. 2(b)
and 2(d) their deviation from a Poissonian as measured by the
Mandel parameter is much larger than for chirped pulses [note
that the blue curve in Fig. 3(b) is scaled down by a factor of
5]. But most remarkably, in the calculation with finite chirp
without phonons [cf. the gray line in Fig. 3(b)] the Mandel
parameter decays extremely fast after its initial rise to positive
values compared with the other situations considered. Most
notably, already at around ∼40 ps after the pulse maximum it
has dropped close to zero. In sharp contrast to the common
interpretation that a Mandel parameter near zero implies a
distribution with a shape close to a Poissonian, Fig. 2(b) shows
a jagged distribution with two maxima at ∼40 ps after the
pulse maximum. Therefore, using the Mandel parameter as
a measure for the deviation from a Poisonian is not valid in all
physically relevant situations.

We further note that the Mandel parameter calculated for
all excitation conditions studied in this paper changes its sign
during the course of time. Without chirp and low intensities
(orange curve) this happens near the first maxima of the Q
oscillations, as discussed above, but also for higher driving
strength (blue curve) a sign change occurs indicating that
before the pulse maximum is reached the photon distribution
is sub-Poissonian and switches at the pulse maximum to
super-Poissonian. Also for the chirped excitations Q exhibits
sign changes as revealed by the inset in Fig. 3(b). Actually,
the Mandel parameter calculated for high pulse areas falls
below zero before approaching its asymptotic value of zero
from below for chirped as well as for unchirped excitations.
Indeed, also the blue curve in Fig. 3(b) falls below zero at
t − t0 = 1090 ps (not seen in the plotted range). This sign
change of Q shortly before cavity losses have relaxed the
photon distribution to the empty cavity, can be understood
as follows. The maximal photon numbers that are transiently
reached for high pulse areas are well above one. The cavity
losses remove photons from the cavity such that eventually
the limit of n = 0 with zero fluctuations is reached. However,
since the cavity losses for a state with n photons scale like
∼n, the relaxation from states with n > 1 to lower states is
faster than the final relaxation from the n = 1 to the n = 0
states. Therefore, before the final relaxation is completed the
photons preferably occupy the n = 1 state which results in
a negative Mandel parameter before the asymptotic value of
zero is reached. Note that this effect presumes only κ �= 0
and thus should be robust with respect to variations of this
parameter.

Finally, we note that Q exhibits small amplitude oscilla-
tions for chirped pulses which are absent in the unchirped
case. A similar but less pronounced tendency is seen in the
mean photon number.

C. Interpretation in terms of laser-dressed states

A popular application of driving QDs with chirped laser
pulses is the robust preparation of exciton or biexciton
states by invoking an adiabatic rapid passage (ARP) process
[65–75]. ARP exploits the adiabatic theorem of quantum me-
chanics which predicts a time evolution through instantaneous
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FIG. 4. Time evolution of the upper and lower laser-dressed state energies with respect to the excitation pulse maximum at t = t0. While
for negative chirps (a) phonon emission is probable (represented by black arrows), for positive chirps (b) phonon absorption is suppressed at
low temperatures, which is indicated by the dashed arrows. Green curly arrows indicate transitions between laser-dressed states due to the QD
cavity feeding.

eigenstates (dressed states) of the system provided the external
driving fulfills the restrictions of the adiabatic regime [76].
In order to comply with these restrictions for a two-level
system driven by Gaussian chirped pulses with a frequency
modulation given by Eq. (12), it is advisable to transform the
QD-laser Hamiltonian HDL in Eq. (13) to a frame co-rotating
with the phase ϕ to get rid of a possibly rapidly changing
coupling. The transformed Hamiltonian reads

H̃DL = − h̄(�ωLX + a (t − t0))|X 〉〈X |

− h̄

2
f (t )(|X 〉〈G| + |G〉〈X |). (13)

The laser-dressed states can now be defined as the instanta-
neous eigenstates of H̃DL. The corresponding eigenenergies
are plotted in Fig. 4, where the left panel corresponds to a
negative chirp while the result for positive chirp is shown in
the right panel. The distinctive feature of ARP is that when the
system is in the ground state |G〉 long before the pulse (i.e.,
for t → −∞) it will evolve adiabatically towards the exciton
state |X 〉 after the pulse (i.e., for t → +∞) independent of
the sign of the chirp. However, it is important to note that
the evolution proceeds along the lower (upper) branch for
positive (negative) chirp. This affects in particular the impact
of phonons. In general phonons can efficiently induce transi-
tions between the two branches. However, at low temperatures
phonon absorption is strongly suppressed and phonon emis-
sion can invoke only transitions from the upper to the lower
branch (cf. the black arrows in Fig. 4). That is why phonons
have little effects on the ARP dynamics for positive chirp
while for negative chirp the ARP-based exciton preparation
is strongly disturbed [68,70,73,74]. In order to preserve an
efficient exciton preparation also at negative chirps, it has been
recently demonstrated that high pulse areas can be used since
this effectively decouples the phonons from the electronic
system [29,75].

When also a cavity is coupled to the QD, then the cou-
pling leads to Rabi-type rotations between states |X, n〉 and

|G, n + 1〉 with different numbers n of cavity photons. In
particular for times when the laser is far off-resonant and
the laser-dressed states are close to the undressed states, the
effect of coupling the QD to a cavity can be understood as
inducing a transition between the dressed states similar to
the coupling to phonons. To be a bit more specific, when the
system is in the exciton state the QD-cavity coupling leads to a
feeding of the cavity by an additional photon accompanied by
a transition from the |X 〉-like branch to the |G〉-like branch (cf.
the green curly arrows in Fig. 4). At early times, the reverse
process, where one photon disappears from the cavity while
transferring the system from the ground to the exciton state is
suppressed since there are initially no photons in the cavity.

We shall now try to interpret the pertinent features of the
photon dynamics in some more detail using the simplified
picture where the system evolves adiabatically through the
laser-dressed states in Fig. 4 while phonons and cavity feeding
induce transitions between these states.

In the case of a negative chirp [cf. Fig. 4(a)] transitions
form the upper branch to the lower branch of the laser-dressed
states accompanied by phonon emission are possible before
and after the pulse maximum at t = t0. Thus, phonons should
have a profound impact on the resulting photon statistics dur-
ing the entire pulse. In fact, this explains why the distribution
is close to a thermal one at all times [cf. Fig. 2(c)]. For times
before the pulse reaches its maximum, cavity feeding can
occur form the excitonlike lower branch to the upper branch,
which has a large ground-state contribution. Subsequently, the
system can again decay to the lower branch by phonon emis-
sion followed by another cavity feeding process back into the
upper branch and so on. Because of this constructive interplay
between phonon and cavity feeding processes, higher photon
states can be reached compared with the phonon-free situation
for t � t0 [cf. Figs. 2(a) and 2(c)]. In the time interval shortly
after the pulse maximum the upper branch becomes the state
with the excitonlike characteristics and cavity feeding now
takes place from the upper branch into the ground-state-like
lower branch of the laser-dressed states. Thus, after the pulse
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FIG. 5. (a) Linear absorption spectrum of the QDC system. (b) Time-dependent instantaneous frequency, blue (red) for positive (negative)
chirp. �t marks the time elapsed between the crossing of the two resonances. (c) and (d) Time evolution of the occupations of the lowest
excited eigenstates of the QDC system [(c) for positive and (d) for negative chirp]. (e) and (f) Photon number distribution at t − t0 = 20 ps
(gray); red, accounting only for |n,+〉 (e) or |n, −〉 (f) states. Here, only phonon-free results are shown.

maximum has appeared phonon and cavity feeding processes
are now in direct competition with each other. Therefore,
compared with the phonon-free situation, the mean photon
number should be reduced. Altogether, for negative chirp, the
phonon impact on the photon distributions is visible at all
times leading to nearly thermal distributions. At times before
the pulse maximum the interaction with phonons increases
the mean photon number because of a constructive interplay
between phonon and cavity feeding processes. This effect
is reversed after the pulse maximum and the mean photon
number is reduced compared with the phonon-free situation
due to the phonon interaction, as can be seen comparing the
red with the gray curve in Fig. 3(a).

The situation is different when the chirp is positive as
seen in Figs. 2(b) and 2(d). Here, a phonon influence on
the photon statistics can be hardly seen before the pulse
maximum. This can again be explained by inspection of the
branches of the laser-dressed states. Starting in the ground
state the system evolves adiabatically alongside the lower
branch. Since phonon absorption processes are suppressed at
low temperatures, transitions to the excitonlike upper state
are unlikely to occur. Also cavity feeding is hardly possible
[cf. Fig. 4(b)] and, like in the phonon-free situation, the
system remains essentially in the ground state without photons
and phonons have almost no visible effect. This observation
changes after the pulse maximum. Now, cavity feeding pro-

cesses accompanied by transitions from the excitonlike lower
branch to the upper branch appear. Subsequently, phonon
emission processes take place, resulting in a transition back to
the lower branch. Thus, now, a constructive interplay between
phonon emission and cavity feeding is possible, leading to
a thermalization of the photon distribution. Therefore, after
a transition time of a few 10 ps the distribution resembles
a thermal distribution. Because of the constructive interplay
the mean photon number is increased compared with the
phonon-free situation, as can be seen comparing the cyan with
the gray curve in Fig. 3(a). Consequently, only for a finite
time interval after the pulse maximum photon distributions
can be detected which are similar to the distributions in the
phonon-free situation and display irregular behavior or several
maxima.

D. Interpretation in terms of cavity-dressed states

Finally, we would like to explain why chirped pulse exci-
tation leads to photon number distributions where the number
of maxima changes dynamically from one to two and back
to one. To this end we have to go beyond the laser-dressed
state picture and recall that the linear absorption of a QDC
comprises two lines split by �ω = 2g [cf. Fig. 5(a)]. Thus,
the instantaneous frequency of a pulse with positive chirp first
crosses the energetically lower resonance and then, delayed
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by a time �t = 2g/a, the higher one [cf. Fig. 5(b)]. Each
crossing of these resonances initiates a wave packet climbing
up the Jaynes-Cummings ladder. This behavior is efficiently
described in the picture of the cavity-dressed states, i.e., the
eigenstates of the dot-cavity Hamiltonian, which relate to the
bare QD states by

|n,+〉 = 1√
2

(+|X, n〉 + |G, n + 1〉),

|n,−〉 = 1√
2

(−|X, n〉 + |G, n + 1〉), (14)

in the case of a resonant cavity mode ωX − ωC = 0.
Starting from the state |G, 0〉 only the two states |0,±〉

can be reached directly by the laser coupling and thus climb-
ing up the Jaynes cummings ladder one has to pass these
states. Since the corresponding eigenenergies are separated
by 2g, the transitions to these states are in resonance with
the instantaneous frequency of a chirped pulse at different
times. Indeed, Fig. 5(c) reveals that the occupation of the
lowest excited eigenstate of the QDC system |0,−〉 rises
before the upper state |0,+〉 acquires a noticeable occupation.
The maximum occupation of |0,−〉 is reached ≈ 5 ps after
the instantaneous frequency has crossed the lower resonance,
revealing the reaction time of the system. |0,+〉 is maximally
occupied delayed exactly by �t from the maximal occupation
of |0,−〉. The time ordering of the excitation of the |0,±〉
states is reversed when reversing the sign of the chirp [cf.
Fig. 5(d)] since now the upper resonance is crossed first.

The laser driving couples |n,+〉 to |n,−〉 states. However,
when the instantaneous frequency is in resonance with transi-
tions between |n,+〉 states with adjacent n then the transitions
to |n,−〉 states are off-resonant and vice versa. Thus, it can be
expected that the packets running up the Jaynes-Cummings
ladder are essentially composed either of |n,+〉 or |n,−〉
states. Indeed, this is confirmed by Figs. 5(e) and 5(f) which
displays in gray the photon number distribution at time t −
t0 = 20 ps, i.e., the time where according to Fig. 2(b) the two
maxima are most pronounced. Also shown in red are photon
number distributions calculated according to

P(±)
n =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (〈n,±|ρ|n,±〉 + 〈n − 1,±|ρ|n − 1,±〉)

for n > 0,

1
2 (〈0,±|ρ|0,±〉 + 〈G, 0|ρ|G, 0〉)

for n = 0

.

(15)

Recalling that for a cavity in resonance with the QD transition
the |n,±〉 states have a probability of 1/2 for finding n or
n + 1 photons, Eq. (15) yields, for n > 0, the probability for
having n photons when accounting only for either the |n,+〉
or the |n,−〉 states. For n = 0 the contribution from |G, 0〉 is
counted by 1/2 for the plus and minus branch, since this state
can be counted as lower or upper state. We note in passing
that P(−)

n [red bars in Fig. 5(e)] does not add up with P(+)
n

[red bars in Fig. 5(f)] to the total photon number Pn (gray
bars in Fig. 5), because Pn comprises coherences between the
|n,+〉 and the |n,−〉 states in addition to their occupations.
Nevertheless, Fig. 5 reveals that the two peaks in the photon
number distribution can be attributed unambiguously either to
the upper or lower branch of the QDC states.

Altogether this explains the time evolution of the peaks
in the photon number distribution. After crossing the first
resonance the distribution has a single peak since at first only
a single packet is climbing up the Jaynes-Cumming ladder.
When the second resonance is crossed a second packet is
initiated such that at t − t0 ≈ 20 ps two well-resolved packets
are observed. Both packets move up and down the Jaynes-
Cummings ladder similar to the single wave packet observed
for the unchirped excitation in Figs. 1(b) and 1(d). Since the
decline of the first packet starts while the second is still rising,
at some time both packets overlap. Although the packets are
no longer well resolved, two maxima are still found over an
extended time period [30 ps � t − t0 � 50 ps in Fig. 2(b)]. At
later times the relaxation drives both packets to low photon
numbers such that the maxima merge and a single-peaked
distribution is recovered.

Finally, we note that for a cavity in resonance with the
QD transition the energies of the QDC eigenstates |n,±〉
are found in the rotating frame at h̄ωn,± = ±g

√
n + 1 such

that the transition energies between states with adjacent n
are all different and decrease with rising n. Therefore, the
instantaneous frequency of a chirped pulse crosses all of these
resonances at different times which is likely to contribute to
the somewhat irregular looking time evolution of the photon
number distribution found in particular in the intermediate
time interval 30 ps � t − t0 � 50 ps in Fig. 2(b).

IV. CONCLUSION

We have studied transient photon number distributions
generated in a microcavity by a pulsed excitation of an em-
bedded quantum dot. We find qualitatively different photon
distributions for chirped and unchirped pulses. Phonons have
a noticeable influence on the photon distributions in particular
for negative chirps, where the phonon coupling introduces
qualitative changes of the shape of the distribution already
at a temperature of T = 4 K. To be more specific, phonons
lead in this case to almost thermalized photon distributions at
high effective temperatures for all times. For positive chirp,
the transient distributions are far away from a thermal one for
times after the pulse maximum until about 80 ps afterwards.

For all investigated cases, we find that the Mandel param-
eter changes its sign during the time evolution of the system,
indicating the ability to enter and leave a regime of genuine
nonclassical photon statistics in the course of time. Moreover,
cases were encountered where the Mandel parameter is zero,
but the photon number distribution has two peaks and is defi-
nitely not a Poissonian. Therefore, one has to be careful when
using the Mandel parameter as a measure for the deviation
from a Poissonian distribution, as it is often done [24,77–80].
This finding underlines the necessity to carefully consider the
definition of the Mandel parameter, which indeed yields zero
for a Poissonian distribution. But the reverse implication is
obviously not true for all cases.

Our most striking result is, however, that the shape of
the photon number distribution changes significantly during
the time evolution when the system is excited by chirped
pulses. In fact, when the excitation starts to populate states
with higher photon numbers, one observes at first bell-shaped
distributions with a single maximum that increases in time.
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Subsequently, two well-separated bell-shaped contributions
develop which at later times first evolve into a single broad
feature with two peaks and eventually merge into a distri-
bution with a single peak. This is in sharp contrast to the
unchirped case, where for the same high driving strengths the
photon number distributions keep a bell shape with a single
maximum for all times. Our analysis reveals that the transient
changes of the shape of the photon distribution in the chirped
case can be attributed to subsequent crossings of resonances
of the quantum-dot–cavity system by the instantaneous fre-
quency.

We believe that our findings deepen the understanding
of the transient behavior of photon distributions in a driven
quantum-dot–cavity system and its dependence on the driving

conditions. This might pave the way to targeted manipulations
of photon distributions which could result in new types of
photonic applications in the future.
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A Schrödinger-cat state is a coherent superposition of macroscopically distinguishable quantum states, in
quantum optics usually realized as superposition of coherent states. Protocols to prepare photonic cats have been
presented for atomic systems. Here we investigate in what manner and how well the preparation protocols can
be transferred to a solid-state platform, namely, a semiconductor quantum-dot–cavity system. In quantum-dot–
cavity systems there are many disruptive influences like cavity losses, the radiative decay of the quantum dot,
and the coupling to longitudinal acoustic phonons. We show that for one of the protocols these influences kill
the quantum coherence between the states forming the cat, while for a second protocol a parameter regime can
be identified where the essential characteristics of Schrödinger-cat states survive the environmental influences
under conditions that can be realized with current equipment.

DOI: 10.1103/PhysRevResearch.3.023088

I. INTRODUCTION

Schrödinger cats are probably the most popular example of
highly nonclassical, purely quantum mechanical states. Real-
izing a coherent superposition of two macroscopically distinct
states, where in analogy to Schrödinger’s Gedankenexperi-
ment [1] the cat is simultaneously dead and alive, remains a
challenge due to the inevitable decoherence induced by the
environmental coupling. A general Schrödinger-cat state with
two macroscopically distinguishable states |alive〉 and |dead〉
can be written as

|cat〉 = N (|alive〉 + eiϕ|dead〉) (1)

with normalization N and phase ϕ. These states find nu-
merous applications in advanced quantum metrology [2,3],
quantum teleportation [4], quantum computation [5–7], and
quantum error correction algorithms [8]. Cat states being a su-
perposition of more than two states [9–11] as well as phononic
cat states [12] have been investigated. Schrödinger-cat states
are a suitable platform to study the decoherence between two
superposed quantum objects, in other words, to observe the
quantum-to-classical transition [13]. Therefore, Schrödinger-
cat states are of fundamental interest in understanding the very
foundations of quantum mechanics.

Schrödinger-cat states have to be sharply distinguished
from incoherently superposed macroscopically distinct states,

*Corresponding author: michael.cosacchi@uni-bayreuth.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

which are described by the density matrix

ρmixture = 1
2 (|alive〉〈alive| + |dead〉〈dead|), (2)

where the interference terms are missing. This discrimina-
tion is best visible in the Wigner function. While in the cat
state there are negative parts, which imply nonclassicality, the
Wigner function of the classical incoherent mixture ρmixture is
strictly positive.

Because of the fundamental and technological importance
of Schrödinger-cat states, their preparation has long been a
research target. Earlier efforts in this direction focused mostly
on atom-based systems, where atoms are placed in an optical

losses

phonons

radiative
decay quantum

dot

FIG. 1. A Schrödinger-cat state appearing in a QDC system.
Photons are created by recombination of the QD exciton. The pho-
toemission is controlled such that cats are created on demand.

2643-1564/2021/3(2)/023088(11) 023088-1 Published by the American Physical Society
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cavity [14–16]. Recently, many concepts of atom quantum op-
tics have been transferred to solid state systems, in particular
to semiconductor quantum-dot–cavity systems (QDCs) giving
rise to the field of semiconductor quantum electrodynamics.
QDCs already have been shown to be highly integrable on-
demand emitters of photons in nonclassical states including
high-quality single photons [17–26] and entangled photon
pairs [27–37]. QDC-based protocols for generating higher-
order Fock states have also been developed [38]. An easy to
use solid-state-based source of Schrödinger cats would be a
highly attractive extension of these achievements.

As atomic systems, QDCs have loss channels, namely,
the energetic loss channels provided by the radiative decay
of a quantum dot (QD) and the finite cavity quality factor.
The main difference between QDC and atomic systems is the
presence of longitudinal acoustic phonons, which is a well-
known source of decoherence even at cryogenic temperatures
of T = 4 K [39,40]. Hence, it is an open question whether in
the QDC platform as well the generation of Schrödinger-cat
states is possible.

In this paper, we consider two protocols to prepare
Schrödinger-cat states in a QDC. For both protocols we adapt
existing preparation schemes and apply them to the QDC
system. The first protocol is based on the proposal by Law
and Eberly [15]. To use this protocol in the QDC we rely
solely on driving the QD by external laser pulses. To create
a Schrödinger-cat state we need a precise timing of the arrival
time of the pulses steering the QD-cavity coupling. We call
the protocol DOD, short for dot-driven protocol. The second
protocol is adapted from Gea-Banacloche [16] and can be
transferred to the QDC system by producing a coherent initial
state. This can be achieved by driving the cavity, hence we call
this protocol CAD, short for cavity-driven protocol.

For both protocols, we analyze the impact of losses and
phonon coupling in detail using realistic parameters that have
been realized in current experiments. For the DOD protocol
we show that the losses are a detrimental influence on the
sensitive coherence in a Schrödinger cat and the protocol
can produce only mixed states [cf. Eq. (2)] under realistic
conditions. In contrast, for the CAD protocol we find that even
under realistic conditions it is possible to create a cat state,
and we identify experimentally accessible parameter regimes
favorable for generating photonic Schrödinger cats.

Our work demonstrates that also in QDCs the preparation
of Schrödinger-cat states is possible, and we propose a proto-
col and specify a suitable parameter regime to prepare them.

II. THEORETICAL MODEL

The QDC system can be well modeled by a driven two-
level QD coupled to a single photon mode [38,40]. The
corresponding Hamiltonian then reads

H = HQDC + Hdriving + Hac-Stark. (3)

The QDC is described by the Jaynes-Cummings model

HQDC = h̄ωX |X 〉〈X | + h̄ωCa†a + h̄g(aσ
†
X + a†σX ), (4)

where |X 〉 is the exciton state at energy h̄ωX . σX := |G〉〈X |
is the transition operator between the excited state |X 〉 and
the ground state |G〉. The energy of |G〉 is set to zero. a

(a†) denotes the photonic annihilation (creation) operator. The
cavity frequency is denoted by ωC and its coupling to the QD
by g. We consider two different forms of driving Hamiltonians
for the two protocols:

Hdriving =
{

− h̄
2

[
f ∗
p (t )σX + fp(t )σ †

X

]
DOD

− h̄
2

[
f ∗
p (t )a + fp(t )a†

]
CAD

. (5)

Effectively decoupling the QD from the cavity can be
achieved with an ac-Stark pulse driving the QD [38,41], de-
scribed by

Hac-Stark = − h̄

2

[
f ∗
ac-Stark(t )σX + fac-Stark(t )σ †

X

]
. (6)

The exciting and Stark laser pulses are represented by the
functions fp(t ) and fac-Stark(t ), which are specified in Ap-
pendix A.

We also account for the coupling to longitudinal acoustic
(LA) phonons [40,42–45] (as detailed in Appendix A) as
well as the radiative decay of the QD exciton and cavity
losses. Whenever we consider phonon effects, the phonons
are assumed to be initially in thermal equilibrium at a tem-
perature of T = 4 K. A sketch of the QDC system is shown
in Fig. 1. The corresponding Liouville equation is solved in a
numerically complete manner by employing a path-integral
formalism (for details see Refs. [46–48]). The parameters
used in the calculations are given in Appendix C.

III. DOT-DRIVEN (DOD) PROTOCOL

In the optical realm, coherent states |α〉 are the most clas-
sical states. A general coherent superposition of two coherent
states of the form

N (|α〉 + eiϕ | − α〉) (7)

with normalization N and phase ϕ is one of the most common
realizations of Schrödinger-cat states in quantum optics [14].
Hence, we choose this realization as the target state for the
DOD protocol and set α = π/2 and ϕ = 0. This choice en-
sures that the corresponding coherent states are distinct, while
their average photon number is low enough that we expect the
influence of cavity losses to be limited.

To prepare this target state we adapt the protocol from
Ref. [15], which is proposed to create arbitrary photonic states
in a single-mode microcavity. However, the originally pro-
posed protocol does not account for any loss channels. The
requirements are a driven Jaynes-Cummings model with con-
trollable driving f (t ) and coupling g(t ) between the two-level
system and the cavity. To transfer the proposal to QDCs, a few
obstacles have to be overcome. While time-dependent driving
of a QDC is possible by applying appropriate laser pulses,
controlling the QD-cavity coupling time dependently remains
a challenge. In particular, the protocol in Ref. [15] relies on a
stepwise switching between f (t ) and g(t ); i.e., one has to be
off, whenever the other one is on.

Accordingly, the challenge of implementing this protocol
in a QDC protocol is twofold: (1) the magnitude of the QD-
cavity coupling has to be varied and (2) the QD and cavity are
supposed to be decoupled during the time the driving is on.
In Ref. [15] the time intervals τ , when either f (t ) or g(t ) is
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FIG. 2. Dynamics of the QDC in the DOD protocol. Panels from
bottom to top: External pulses as well as the Stark pulse, exciton oc-
cupation nX , average photon number 〈n〉, and time-dependent fidelity
F (t ) to the target Schrödinger-cat state in Eq. (7). Dashed lines:
ideal case without phonons and losses. Dashed-dotted lines: without
phonons but with losses. Solid lines: with phonons and losses.

on, are kept constant. Only the products fiτ and giτ in the ith
interval are relevant for the success of the protocol. Therefore,
problem (1) can be solved by varying the time interval while
keeping the coupling constant, i.e., we use gτi. Concerning
problem (2), the decoupling suggested in Ref. [15] can in
principle be realized by inducing suitable Stark shifts, which
is, however, highly demanding experimentally. As demon-
strated for protocols to prepare higher-order Fock states [38],
it can be advantageous to avoid the decoupling provided the
desired goal can be achieved by short enough pulses. Indeed,
when the switching induced by the laser driving f (t ) takes
place on timescales shorter than the dynamics induced by
the cavity, the action of the latter cannot interfere noticeably
with the switching, even though the QD and the cavity are
coupled. Furthermore, on such fast timescales, the precise
shape of the pulse becomes irrelevant (see, e.g., Appendix
A 1 of Ref. [38]). Therefore, a Gaussian pulse with the same
area as the rectangular fiτ can be used, which vastly reduces
the experimental demand. Its full width at half maximum
(FWHM) is chosen to be 100 fs. Note that the corresponding
spectral width of the pulse is quite large. Nonetheless, for
typical energetic spacings to higher lying exciton states [49]
the two-level approximation to the QD still holds well [38].

A. The ideal case

Figure 2 shows the dynamics of the QDC in the DOD pro-
tocol. The lowest panel displays the sequence of laser pulses
proposed to prepare the Schrödinger-cat state in Eq. (7). The
pulse sequence is derived by solving the set of equations de-
termining the protocol to prepare arbitrary states in Ref. [15].
After adapting the solution to pulses as explained above, one

TABLE I. Pulse sequence for the DOD protocol in Sec. III. The
times tc of their maxima and their pulse areas 	 are given.

Number of the pulse tc (ps) 	 (π )

1 0.1 −1
2 14.2 −1
3 24.1 −1
4 34.6 1
5 40.0 −1
6 46.5 −1
7 53.7 −1
8 60.7 −1
9 67.2 −1
10 72.1 −1

obtains the pulse areas and central peak times necessary to
prepare the target state. In total, a series of ten π pulses
is applied. Note that relative phases of π of the pulses are
absorbed into the definition of the pulse areas and that the
time difference between two subsequent pulses is the time
τi where the cavity coupling g takes effect. The arrival times
and pulse areas are listed in Table I. After reaching the target
state, the cavity needs to be decoupled from the QD in order
to preserve the preparation, which is achieved by an ac-Stark
pulse as shown in the lower panel of Fig. 2 .

The resulting time evolution of the exciton occupation nX

is shown in blue in Fig. 2, where the dashed lines correspond
to the ideal case without phonons and losses. Each laser pulse
partially excites the exciton, which then decays by photon cre-
ation. Accordingly, the average photon number 〈n〉, as shown
in the second panel from top in Fig. 2, increases after each
pulse.

To see whether we have created a Schrödinger-cat state, we
consider the fidelity defined as

F (ρ1, ρ2) =
[
Tr

(√√
ρ1ρ2

√
ρ1

)]2

(8)

for two arbitrary density matrices ρ1 and ρ2 [50]. Setting one
density matrix to the target Schrödinger-cat state in Eq. (7), we
get a measure how close we are to this specific cat state. The
results are shown in the topmost panel of Fig. 2. We see that
after the pulse sequence the fidelity reaches unity, implying
that in the purely Hamiltonian ideal case without losses and
phonons, this protocol is able to perfectly prepare the target
state.

This is confirmed by looking at the Wigner function (defi-
nition in Appendix B) in Fig. 3(a). We see all relevant features
of a Schrödinger cat where the two Gaussians indicate the
two macroscopically distinct states, here, coherent states, and
the oscillations between them point to a coherent character of
their superposition.

An important property of a cat state is its nonclassicality.
In general, the nonclassicality δ of a state can be measured
by considering the negative part of its Wigner function W (α),
since all Wigner functions corresponding to classical states are
positive. The doubled volume of the integrated negative part
of the Wigner function was introduced in Ref. [51] as such a
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FIG. 3. Wigner functions of the photonic states prepared by the DOD protocol (a) for the ideal case, (b) including losses, and (c) taking
both phonons and losses into account. The Wigner functions are calculated at the start time of the decoupling Stark pulse, t = 75.5 ps.

nonclassicality measure:

δ =
∫

[|W (α)| − W (α)] dα∫
W (α) dα

, (9)

where δ = 0 implies a classical state. For the DOD protocol
we obtain δ = 0.51 for this Schrödinger cat, thus, indeed
implying quantum features of the state.

The results in Figs. 2 and 3 as well as the value of δ indicate
that the adaption of the protocol in Ref. [15] to ideal QDCs
with constant cavity coupling g is accomplished successfully.

B. Loss and phonon effects

Next, we account for the loss channels. When taking the ra-
diative decay of the QD and the cavity losses into account, the
preparation fidelity drops to F = 48.7 % (cf. dashed-dotted
lines in Fig. 2). Interestingly, the nonclassicality measure δ

drops to 0.03. Looking at the corresponding Wigner function
in Fig. 3(b) reveals that the domains of negative values of the
Wigner function have practically disappeared.

Phonons destroy even the remaining nonclassicality. While
the fidelity in the case including all loss and phonon effects
still yields F = 25.0 % (see solid lines in Fig. 2), δ is identi-
cally zero, thus indicating a classical state. Indeed, the Wigner
function in Fig. 3(c) shows two blurred macroscopically dis-
tinct states, here again coherent states, but no oscillations
between them. Thus, they are superimposed incoherently and,
therefore, closely resemble the statistical mixture in Eq. (2).

The reason for this behavior lies in the nature of a
Schrödinger-cat state, which involves the formation of a
quantum mechanical superposition of distinct states with a
well-defined relative phase. All processes diminishing this
phase relation lead to a degradation of the cat state. For typical
QDCs, the cavity loss rate is much larger than the radiative
decay rate, thus having greater impact on the preparation
scheme. Furthermore, the effective cavity loss rate is pro-
portional to the photon occupation, thus degrading especially
states with large multiphoton contribution, such as cat states.
The phonons then destroy any nonclassicality left after taking
the other two processes into account.

From the analysis in this section it becomes clear that the
fidelity alone is not sufficient to characterize a Schrödinger-cat
state, since it may miss the essential feature of oscillations of

the Wigner function to negative values. Therefore, it is nec-
essary to simultaneously consider a nonclassicality measure
like δ.

In summary, the DOD protocol is not suitable to prepare
the Schrödinger-cat state in a QDC under realistic conditions,
because the interference terms of a cat state do not survive
the environmental coupling. Even at T = 4 K, phonon effects
destroy the coherent superposition of the two macroscopically
distinct states. Note that it is interesting from a fundamental
point of view that the phonons provide sufficiently strong
environmental coupling necessary to facilitate the quantum-
to-classical transition, which in this case is a transition from
a Schrödinger cat as in Eq. (7) to an incoherent mixture as in
Eq. (2).

IV. CAVITY-DRIVEN (CAD) PROTOCOL

The CAD protocol is based on the ideas of Refs. [16,52],
which showed that the textbook collapse-and-revival exam-
ple in the Jaynes-Cummings model has two additional very
striking features: (1) at half the revival time the QD and
photonic subspaces factorize and (2) at precisely this time a
Schrödinger-cat state appears in the cavity mode.

The main requirement for this cat state preparation scheme
is a coherent state in the cavity mode as the initial state
of the Jaynes-Cummings dynamics [16]. The photonic state
prepared at half the revival time is [52]

N (|�+〉 + |�−〉), (10)

which is another realization of a Schrödinger-cat state as de-
fined in Eq. (1). Here N is a normalization constant and

|�±〉 = e− 1
2 〈n〉

∞∑
n=0

〈n〉n/2

√
n!

e−inφe∓iπ
√〈n〉n|n〉 (11)

with 〈n〉 = |α|2 the average photon number of the initial co-
herent state and φ the phase of α. When using a real envelope
Gaussian pulse as in our case, this phase is determined to be
3π/2 as a short analytical calculation shows (cf. Appendix
D). These two states are macroscopically distinguishable, but
they are not coherent states as in Eq. (7) because of the 〈n〉-
and n-dependent phase in Eq. (11). However, it should be
noted that |�±〉 approaches in the limit 〈n〉 → ∞ the coherent
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state |�±〉 → e∓i〈n〉π/2| ∓ iα〉 (cf. Ref. [52]), and therefore the
state in Eq. (10) becomes N (|iα〉 + e−i〈n〉π | − iα〉), which has
the form given in Eq. (7). The fidelity with which the state
in Eq. (10) is reached in the Jaynes-Cummings dynamics at
half the revival time is unity only in the limit 〈n〉 → ∞ [52].
Thus, in the ideal phonon and loss-free case higher average
photon numbers are favorable in this scheme. However, since
the revival time is longer for higher mean photon numbers, the
preparation time rises with increasing mean photon numbers.
The system is thus exposed a longer time to losses before the
end of the protocol. As a result of this trade-off situation, there
is an optimal photon number when losses are accounted for.

Using this idea for a preparation protocol of Schrödinger-
cat states in the microcavity mode, we have to face two
tasks: (1) preparing a suitable initial state in the cavity and
(2) finding a suitable 〈n〉 to achieve maximum fidelity to the
cat state in Eq. (10). Task (1) is solved easily, since it is
textbook knowledge [14] that driving an empty cavity with
a classical laser yields a coherent state in the cavity. Now, the
cavity in a QDC is not empty, but as long as the laser pulse
driving the cavity mode is short enough compared with the
dynamics induced by the coupling g, it may be approximated
as such. We use a 1 ps Gaussian pulse (cf. bottom panel of
Fig. 4) to drive the cavity mode and vary its pulse area 	

to analyze the success of the protocol depending on 〈n〉 to
tackle task (2). Note that the average photon number of the
prepared coherent state is connected to the laser pulse area via
〈n〉 = |α|2 = (	/2)2.

A. The ideal case

Figure 4 shows the dynamics of the QDC in the CAD
protocol when driving the cavity with a pulse of area 1.2π .
As we show later this is the optimal pulse area when losses
are taken into account. The dashed lines in Fig. 4 correspond
to the ideal case.

For the chosen pulse area the average photon number, as
shown in the middle panel in Fig. 4, is about 3. While this
is not high enough to lead to a clear-cut collapse-and-revival
signature, the exciton dynamics (blue curves) shows hints of
this feature with a revival at about 80 ps. The fidelity F shows
oscillations within a bell-like envelope to reach its maximum
of F = 88.1 % at 39.5 ps after the pulse. At the same time,
the photonic subsystem is close to a pure state as indicated
by the near-unity value of the trace of the squared photonic
density matrix. Thus, the QD and photon subspaces factorize.
To preserve the Schrödinger-cat state as it appears at this
point in time, an additional QD-driving pulse is needed to
effectively decouple the QD from the cavity. This is in analogy
to the ac-Stark pulse shown for the DOD protocol in Sec. III.

Figure 5(a) shows the corresponding Wigner function eval-
uated at the time of maximum fidelity when the decoupling is
evoked by a Stark pulse for the ideal case. Two macroscopi-
cally distinct states are clearly visible as elongated Gaussians
corresponding to the states |�±〉 in Eq. (11). Oscillations
to negative values between these two structures indicate
a coherent superposition. Therefore, this state is clearly a
Schrödinger-cat state.

As the CAD protocol depends sensitively on the pulse
areas, we plot in Fig. 6(b) the maximum fidelity to the

FIG. 4. Dynamics of the QDC in the CAD protocol. Panels from
bottom to top: the exciting laser pulse, the occupation of the exciton
nX , the average photon number 〈n〉, Tr(ρ2

photon) which indicates how
close the photonic system is to a pure state, and the fidelity to the
Schrödinger-cat state in Eq. (10). Dashed lines: ideal case without
phonons and losses. Dashed-dotted lines: without phonons but with
losses. Solid lines: with phonons and losses. The temporal range
where the fidelity reaches its maximum value in all three considered
cases is shaded in gray.

Schrödinger-cat state in Eq. (10) during the time evolution
after the cavity preparation pulse as a function of the pulse
area, i.e., the average photon number of the initial state.
Having seen that the fidelity is not sufficient as a measure
for obtaining a nonclassical photon state as the cat state, we
additionally show in Fig. 6(a) the nonclassicality measure δ at
the time of maximum fidelity.

For the ideal case (black lines in Fig. 6) the nonmonotonic
behavior of the fidelity is prominent. In contrast to the naive
expectation that it rises monotonically with 	, i.e., 〈n〉, it
increases for 〈n〉 → 0 and shows an oscillatory behavior for
higher 〈n〉. For decreasing 〈n〉, the prepared state contains a
larger contribution of the vacuum, while the target state in
Eq. (10) itself shows more vacuum characteristics. Therefore,
the fidelity approaches unity, while the nonclassicality mea-
sure δ decreases [cf. Fig. 6(a)]. Thus, the state for low 〈n〉
cannot be considered to be a genuine Schrödinger cat, since
the target state in Eq. (10) ceases to be a superposition of two
macroscopically distinct states.
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FIG. 5. Wigner functions of the photonic states prepared by the CAD protocol (a) for the ideal case, (b) including losses, and (c) taking
both phonons and losses into account. The Wigner functions are calculated at the respective times of maximum fidelity (cf. Fig. 4): t = 39.5 ps
(ideal case), t = 38.5 ps (including losses), and t = 41.0 ps (including losses and phonons).

The nonmonotonic behavior of the maximum fidelity in
Fig. 6(b) starting at 	 = π has its origin in the dynamics
of the fidelity as shown exemplary in Fig. 4. The oscilla-
tion frequency within the bell-like envelope increases with
rising 	 (not shown in the figure), while the maximum of
the oscillation need not coincide with the maximum of the
envelope. Therefore, maxtF (t ) does not rise monotonically
with 	, contrary to the naive expectation.

The proposal in Ref. [16] is based on the assumption of
a coherent state in the cavity mode as an initial state of the
dynamics. The orange line in Fig. 6(b) shows the fidelity
corresponding to the solution of the initial value problem

FIG. 6. (a) Nonclassicality measure δ at the time of maximum
fidelity and (b) maximum fidelity during the time evolution as a
function of the pulse area, i.e., the average photon number of the
initial state. Black: ideal case, blue: including losses but without
phonons, red: with losses and phonons, orange: solution of the initial
value problem.

posed in Ref. [16], i.e., without first preparing the initial state
with a laser pulse. If such a coherent state is to be prepared
in a cavity mode, an external laser pulse is necessary [cf. task
(1) in Sec. IV]. For pulse areas greater than π , the maximum
fidelity obtained after solving the initial value problem per-
fectly coincides with the result obtained in the ideal case of
the preparation. This implies that indeed a coherent state is
prepared in the cavity mode by the external driving. The
deviations seen at smaller pulse areas have their origin in the
finite length of the preparation pulse.

The overall rise of the nonclassicality measure δ with
〈n〉, on the other hand, and its oscillations [cf. black line
in Fig. 6(a)] are a known feature [51]. In particular, the os-
cillation is a signature of a nonzero phase due to a finite
momentum of the cat state in (q, p) representation that dis-
tinguishes “standing” and “moving” cats [51]. Note that the
Wigner function in (q, p) and (Re(α), Im(α)) representation
are connected by a factor of 2π h̄ [53–55]. Since the nonclassi-
cality measure δ is a ratio of volumes of the Wigner function,
it is independent of the representation.

B. Loss and phonon effects

The influence of cavity losses and radiative decay on the
preparation using the CAD protocol is very strong. The dy-
namics of all photonic variables shown in Fig. 4 are damped
(orange dashed-dotted line). The effect is even more pro-
nounced when looking at the protocol as a function of 〈n〉
in Fig. 6 (blue lines). In particular, at high 〈n〉, where the
highest fidelity in the ideal case is achieved, the losses have
the greatest impact and the fidelity drops to almost zero. This
is due to the fact that the effective loss rate for a Fock state |n〉
is proportional to the photon number n, i.e., nκ . Likewise, the
nonclassicality measure δ becomes identically zero when the
pulse area exceeds 1.5π . Thus, in stark contrast to the ideal
case, the limit 〈n〉 → ∞ yields no Schrödinger cat at all.

Considering phonon effects on top of the loss influence
further smooths out the dynamics (cf. solid lines in Fig. 4) and
lowers both the fidelity and the nonclassicality of the target
state (cf. red lines in Fig. 6), while showing qualitatively the
same behavior as in the case with losses but without phonons.
These findings depend on the considered temperature, the
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FIG. 7. The maximum fidelity to the Schrödinger-cat states in
Eqs. (7) and (10) in the case of the DOD protocol (black solid
line) and the CAD protocol (red dashed line), respectively, and the
nonclassicality measure δ (open rectangles and circles) as a function
of the cavity loss rate κ . The cavity quality factor assuming a mode
frequency of h̄ωC = 1.5 meV is displayed as a second axis.

GaAs material parameters, and the QD geometry and might
differ for other parameter sets. In the case considered in this
work, however, the loss effects have the most detrimental in-
fluence on the preparation of the target Schrödinger-cat state.

This is further underscored by considering the dependence
of the protocols’ success on the cavity loss rate, as shown in
Fig. 7 for the case without phonons. For both the DOD and the
CAD protocols, the preparation fidelity rises monotonically
with the quality factor, as does the nonclassicality measure δ.
The latter rises faster for the case of controlling the cavity,
implying a comparatively higher robustness of this scheme
with respect to cavity losses. This is due to the fact that the
total length of the DOD protocol of about 80 ps is roughly
twice the length of the CAD protocol of about 40 ps. There-
fore, loss processes have less time to take effect in the CAD
protocol. Furthermore, the DOD protocol presumes 10 opera-
tions, i.e., pulses which need to be timed exactly, whereas the
CAD protocol relies only on one pulse. This also makes the
CAD protocol more stable against environmental influences
and more attractive for experiments.

Note that it has been shown experimentally that a system
with a Purcell factor roughly three orders of magnitude larger
than in our case is well suited for the preparation of exotic
photonic states. Hofheinz et al. showed [56] that a so-called
voodoo-cat state, a superposition of three coherent states, can
be prepared in a system consisting of a superconducting qubit
in a microwave resonator with a fidelity of 83 %. While such
a setup has drawbacks, such as the wavelength of the emitted
photonic state and the temperature in the mK-regime needed
for the qubit to operate, this amazing result underscores the
necessity of a high-quality resonator, both concerning the
quality factor and the Purcell enhancement for the prepara-
tion of Schrödinger-cat or even more complicated voodoo-cat
states.

Strikingly, in our QD-cavity system there is still a win-
dow of pulse areas, where the fidelity and the nonclassicality
measure are rather high. The optimum pulse area yielding
the maximum preparation fidelity under loss and phonon in-
fluence for our parameters is at 	 = 1.2π , where both the
fidelity and the nonclassicality measure have a maximum.

This is due to a competition between the rising fidelity for
〈n〉 → ∞ as predicted in Ref. [52] and the inclusion of losses,
which also become stronger for increasing 〈n〉. As a check,
whether we indeed have created a cat state at 	 = 1.2π , we
have a look at the Wigner function in Fig. 5(c). The Wigner
function clearly shows two macroscopically distinct states and
oscillations between them, thus indicating a Schrödinger-cat
state even when losses and phonons are accounted for under
realistic conditions.

V. CONCLUSION

We have investigated two protocols for the preparation of
photonic Schrödinger-cat states in the light field mode of a
quantum-dot–cavity system (QDC). While in atomic systems
Schrödinger cats have been already prepared, we here adapted
the protocols used in the atomic case to a solid state system. In
the calculations, we considered realistic values for the cavity
losses as have been reported in QDCs, which showed that the
radiative decay and cavity losses can be quite detrimental to
the preparation scheme. In contrast to atoms, in QDC devices
phonons also play a role, which have a great impact on the
Schrödinger-cat preparation. Therefore, a theoretical guidance
on the feasibility to prepare cat states is of high importance.

The first scheme relies on controlling the quantum dot with
external laser pulses (DOD protocol) by adapting Ref. [15].
We developed a multipulse protocol for the QDC, where
both the precise timing of the pulses and their mutual phases
are of utmost importance. Most detrimental to the fidelity
to the Schrödinger-cat state are cavity and radiative losses.
The environmental coupling to longitudinal acoustic phonons
further reduces drastically the fidelity and completely destroys
the coherence between the two states. Only an incoherent
mixture of the two macroscopically distinct states with zero
nonclassicality remains, such that this scheme is not suitable
to prepare Schrödinger cats in realistic QDCs. We mention
that this is different for superconducting qubits in microwave
cavities, where similar protocols have been successfully em-
ployed [56], because the quality factor of microwave cavities
relative to the coupling strength is higher than in QDCs. A
similar boost of the quality factor would be needed to enable
a Schrödinger-cat preparation with this protocol also in QDCs.

The second protocol exploits the internal dynamics of the
Jaynes-Cummings model, where a Schrödinger-cat state can
be found naturally in the time evolution of the system [16,52].
Only one pulse driving the cavity is necessary to prepare a
single coherent state in the field mode (CAD protocol), which
serves as an initial state for the subsequent Jaynes-Cummings
dynamics. While this protocol in the ideal case works best
for high-pulse areas, the losses also increase in this case such
that no preparation is possible. Again, the losses are the main
cause of destroying the cat, while the phonon effects are less
dramatic than in the first protocol. Remarkably, for intermedi-
ate pulse areas between π and 1.5π , the coherences as well as
the nonclassicality of the Schrödinger cats survive even under
the influence of both losses and phonons. Also in the CAD
protocol, a boost of the cavity quality factor would improve
the characteristics of the prepared cat state.

Our results show that Schrödinger cats in QDCs can be pre-
pared under realistic conditions with an easy to use protocol.
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APPENDIX A: COUPLING HAMILTONIAN

The external laser pulses are described by

fp(t ) =
∑

m

f p
m(t − tm)e−iωp(t−tm ). (A1)

f p
m(t ) are the envelope functions of the pump fields and ωp the

corresponding laser frequencies. The product ωPtm is chosen
as an integer multiple of 2π . The pump fields are Gaussian
pulses with area 	 j ,

f p
j (t ) = 	 j√

2πσ
e− t2

2σ2 , (A2)

where σ denotes the standard deviation. It is connected to
the full width at half maximum (FWHM) by FWHM =
2
√

2 ln 2σ . Throughout this work, ωp = ωX is assumed. The
ac-Stark pulses are assumed to be of rectangular shape:

fac-Stark(t ) = e−iωACSt

⎧⎨
⎩

0 t < − τlength

2

fs − τlength

2 � t � τlength

2

0 t >
τlength

2

, (A3)

where fs denotes the field strength, i.e., the plateau height of
the rectangular pulse, and τlength its duration.

The ac-Stark pulses are tuned below the exciton line by
ωACS,X := ωACS − ωX, which is chosen within the range of
validity of the RWA. The resulting shift of the exciton line
can be calculated from the energies of the laser-dressed states.

The QD is coupled to LA phonons [40,42–45,57].

HPh =
∑

q

h̄ωqb†
qbq +

∑
q

(γqb†
q + γ ∗

q bq)|X 〉〈X |, (A4)

where b†
q and bq are the (bulk) phonon operators with wave

vector q and energy h̄ωq. The deformation potential-type cou-
pling to the electronic state is denoted by γq. This Hamiltonian
is of the so-called pure dephasing type [44,58]. Many well-
known phenomena emerge from the interaction described by
this Hamiltonian, e.g., the phonon sideband in the QD emis-
sion spectrum [42,59], the damping of the Rabi oscillations
[39,60], as well as the renormalization of their frequency
[61,62]. Since our treatment of this Hamiltonian is numeri-
cally complete, all of these phenomena are included in our
results.

Finally, we take radiative recombination of the excitons
with rate γ and cavity loss processes with rate κ into account
by introducing Markovian Lindblad-type operators

LO,�• = �

(
O • O† − 1

2

{•, O†O
}

+

)
, (A5)

where {·, ·}+ denotes the anticommutator. O is a system oper-
ator and � the decay rate of the associated loss process.

The full Hamiltonian then reads as

Hfull = H + HPh (A6)

TABLE II. Relevant system parameters.

QD-cavity coupling (meV) h̄g 0.1
Cavity loss rate (ps−1) κ 0.0085
QD radiative decay rate (ps−1) γ 0.001

with the system Hamiltonian H as defined in Sec. II.
The dynamics of these systems are then described by the
Liouville–von Neumann equation

∂

∂t
ρ = − i

h̄
{Hfull, ρ}− + La,κρ + LσX ,γ ρ, (A7)

where {·, ·}− denotes the commutator.
A path-integral formalism [46,47,63,64] is used to solve

Eq. (A7) in a numerically complete manner. Tracing out the
phonon degrees of freedom analytically yields a phonon-
induced memory kernel for the subsystem of interest H in
Eq. (A6). We call a solution “numerically complete” if a finer
time discretization and considering a longer memory do not
change the result noticeably. Since the states considered in
this paper are product states of the QD and number states
of the cavity mode and therefore quite numerous, no solution
within the path-integral framework could be obtained without
the advances presented in Ref. [48].

APPENDIX B: DEFINITION OF THE OPTICAL
WIGNER FUNCTION

The optical Wigner function, which is a function of the
complex coherent amplitude α, can be obtained as [53–55]

W (α) = 2Tr[ρphotonD(α)(−1)a†aD(−α)], (B1)

where ρphoton is the photonic density matrix of the system
and D(α) the coherent displacement operator. The photonic
density matrix is obtained by tracing out the phonon and QD
degrees of freedom:

ρphoton = TrQD[TrPh(ρ)]. (B2)

Using the Fock basis and introducing ρ ′
photon(α) :=

D(−α)ρphotonD(α), this expression simplifies to

W (α) = 2
∑

n

[ρ ′
photon(α)]nn(−1)n. (B3)

APPENDIX C: PARAMETERS

For the numerical calculations we use typical parameters
for self-assembled strongly confined GaAs/In(Ga)As QDs
[48,65]. Other relevant parameters are summarized in Table II.
Assuming a mode frequency of h̄ωC = 1.5 eV, the cavity
loss rate κ corresponds to a quality factor Q ≈ 268 000,
which has been reported in the experiments in Ref. [66]. The
phonons are assumed to be initially in thermal equilibrium
at a temperature of T = 4 K, whenever phonon effects are
considered in this work.

On a timescale of ≈3 ps, the phonon-induced memory
kernel for GaAs/In(Ga)As QDs of 6 nm diameter at T =
4 K decays to zero [46–48]. To obtain numerically complete
converged results, a two-grid strategy is employed for the
time discretization. Details can be found in Appendix A 3 of
Ref. [38].
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APPENDIX D: CALCULATION OF THE PHASE IN THE
CAD PROTOCOL

The phase φ in Eq. (11) is the phase of the coherent state
which is prepared in the cavity mode by the initial laser pulse
driving the cavity. Since the pulse used to prepare the coherent
state is short compared with the scale of the dynamics induced
by the coupling to the QD, we can neglect the latter in the
analysis of the preparation. In a frame corotating with the laser
frequency, the Hamiltonian thus reduces to

Hdriving(t ) = − h̄

2

[
f ∗
p (t )a + fp(t )a†]. (D1)

Up to second order in the time increment �t , the time evolu-
tion operator reads

U (t + �t, t ) = e− i
h̄ Hdriving(t )�t

=D[u(t )�t] (D2)

with u(t ) := i
2 fp(t ) and the coherent displacement operator D.

Using the relation D(α)D(β ) = exp [Im(αβ∗)]D(α + β ) and
noting that the phase vanishes since u(t ) is purely imaginary
for real pulse envelopes, one obtains for a pulse with center tc
that is chosen such that at 0 and τmax the envelope is essentially
zero (again up to second order in �t)

U (τmax, 0) = D[α(τmax)], (D3)

with

α(τmax) =
∫ τmax

0
u(t ) dt

= i

2

∫ τmax

0

	√
2πσ

e− (t−tc )2

2σ2 dt ≈ i

2
	 = 	

2
e−iφ (D4)

with φ = 3π/2.
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The central challenge for describing the dynamics in open quantum systems is that the Hilbert space
of typical environments is too large to be treated exactly. In some cases, such as when the environment
has a short memory time or only interacts weakly with the system, approximate descriptions of the system
are possible. Beyond these, numerically exact methods exist, but these are typically restricted to baths
with Gaussian correlations, such as non-interacting bosons. Here we present a numerically exact method for
simulating open quantum systems with arbitrary environments which consist of a set of independent degrees
of freedom. Our approach automatically reduces the large number of environmental degrees of freedom to
those which are most relevant. Specifically, we show how the process tensor—which describes the effect
of the environment—can be iteratively constructed and compressed using matrix product state techniques.
We demonstrate the power of this method by applying it to problems with bosonic, fermionic, and spin
environments: electron transport, phonon effects and radiative decay in quantum dots, central spin dynamics,
anharmonic environments, dispersive coupling to time-dependent lossy cavity modes, and superradiance. The
versatility and efficiency of our automated compression of environments (ACE) method provides a practical
general-purpose tool for open quantum systems.

An inevitable property of quantum technologies is that
quantum devices interact with their environment [1].
This interaction gives rise to dephasing and dissipation
but, if understood, it can be exploited for example in
environment-assisted quantum transport [2–4], or even
quantum information processing [5, 6]. Because of the
exponential growth of Hilbert space dimension, and the
large number of environmental degrees of freedom, the
direct solution of Schrödinger’s equation for system and
environment is usually infeasible. As such, one requires
practical methods that allow simulation of the dynamics
of the system, while accounting for effects of the environ-
ment [1, 7–9].

Among such approaches, those most frequently used
rely on the Born and Markov approximations, which en-
able one to derive time-local equations of motion for the
reduced system density matrix [1, 10]. The Born approxi-
mation implies that the environment does not change sig-
nificantly with time—i.e. that system-environment corre-
lations are weak and transient. While valid for weakly
coupled open quantum systems, other environments lead
to strong system-environment correlations [11]. The
Markov approximation depends on the memory time of
the environment being short compared to the time evo-
lution of the system. This fails if the spectral density is
highly structured, or if there is a long memory time [12].
Given these widespread limitations, approaches beyond
the Born–Markov approximation are clearly necessary.

Numerically exact methods—where tuning conver-
gence parameters allows one to trade off precision against
computation time—do exist for some non-Markovian
problems: those where the environments have Gaus-
sian correlations, such as non-interacting bosonic modes.
Such methods include hierarchical equations of motion

(HEOM) [13, 14], chain mapping through orthogonal
polynomials [15–17], or the Feynman-Vernon real-time
path integral formalism [18]. In particular, the itera-
tive form of the path integral [19–21] and its reformula-
tion with matrix product operators [22] have been used
successfully, e.g., to simulate phonon effects on spec-
tra [23, 24], to devise robust and high-fidelity proto-
cols for the emission of nonclassical light [25–27], and
to model concrete experiments on optically driven quan-
tum dots [28–30]. Such approaches have been extended
to systems with multiple environments [31], to multi-level
systems [21], and to special types of non-Gaussian baths
such as quadratic coupling to bosons or fermions [32].
Some methods for general environments do exist, such
as correlation expansion [33], but it is complicated to
derive these equations at higher expansion order. As
such, a challenge remains: to provide general and effi-
cient numerically exact methods which can also model
non-Gaussian non-Markovian environments.

Here we provide such a method, which can be used
to simulate open quantum systems coupled to arbitrary
environments (see Fig. 1a). We demonstrate its practi-
cal application with a variety of forms of environment—
bosonic, fermionic, and spins. Because the derivation is
general the same code can be used to simulate the dy-
namics of a large variety of different physical systems. At
the core of our automated compression of environments
(ACE) method is the explicit microscopic construction
of the process tensor (PT) [34, 35]—an object originally
conceived as a way to conceptualize correlations for a
general non-Markovian environment—and a route to ef-
ficiently compress this object using matrix product oper-
ator (MPO) techniques [36, 37]. Specifically, we provide
a general and efficient algorithm to directly construct an
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FIG. 1. Depiction of the automated compression of environments approach. a, The identification of an efficient
representation is fully automatic and does not rely on any a priori approximations or assumptions. b, The time evolution of
system plus its compressed environment proceeds in discrete time steps. Information flow is indicated by the coloured arrows.
c, Formally, the general propagation of a quantum system can be expressed with a process tensor I. d, Propagation with a
process tensor in MPO form: this corresponds to the schematic situation depicted in panel b. e, Combination of the influence
of environment mode K with the process tensor containing the influences of modes 1, 2, . . . ,K − 1. Red semicircles indicate
the effects of the MPO compression (as depicted schematically in panels a and b).

MPO representation of the PT, corresponding to an au-
tomated projection of the environment onto its most rel-
evant degrees of freedom.

Results
Automated compression of environments. The
working principle of ACE is to represent the environ-
ment efficiently by concentrating on its most relevant de-
grees of freedom (cf. Fig. 1a). These are selected auto-
matically using MPO compression techniques and may
differ from one time step to another. This procedure
guarantees fully capturing the non-Markovian informa-
tion flow from past time steps to later time steps via
the environment (cf. Fig. 1b). We now summarise the
ACE method introduced in this paper; further details
are provided in the Methods section. Our goal is to ob-
tain the reduced system density matrix ρνµ(t) at a time
t, accounting for coupling to a given environment. We
discretise the time axis on a grid tl = l∆t with equal
time steps ∆t (Fig. 1b-d); then, for a single time step,

the time evolution operator U(∆t) = e−
i
~H∆t of the to-

tal system can be factorised using the Trotter expansion

U(∆t) = e−
i
~HE∆te−

i
~HS∆t + O(∆t2), where the total

Hamiltonian H = HS +HE is decomposed into the sys-
tem Hamiltonian HS and the environment Hamiltonian
HE including the system-environment coupling. Insert-
ing a complete set of basis states for the system and the
environment and tracing out the environment, the re-

duced system density matrix at time tn can be written

ραn
=

∑

αn−1...α0

α̃n...α̃1

I(αnα̃n)...(α1α̃1)

( n∏

l=1

Mα̃lαl−1

)
ρα0

, (1)

where we have defined α = (ν, µ) to combine two Hilbert
space indices into a single Liouville space index. A visual
representation of Eq. (1) is depicted in Fig. 1c. Here,
M describes the free propagation of the system. This
can be time-dependent, and can additionally include ef-
fects of Markovian baths. The effects of the general
non-Markovian non-Gaussian environment are captured
in the quantity I, which we refer to as the process ten-
sor (PT). This object differs slightly from the original
definition of the PT [35], in that we have separated out
the initial state and the free system evolution. When
I is non-zero only for diagonal couplings αl = α̃l this
object becomes equivalent to the Feynman-Vernon influ-
ence functional [18]. The PT can thus be considered as
a generalisation of this influence functional to the case of
non-diagonal couplings. From the explicit expression for
the PT we find that it automatically has the form of an
MPO:

I(αn,α̃n)(αn−1,α̃n−1)...(α1,α̃1) =
∑

dn−1...d1

Q(αn,α̃n)
1dn−1

Q(αn−1,α̃n−1)
dn−1dn−2

. . .Q(α1,α̃1)
d11 . (2)

Here the dimension of the inner indices dl is very large,
corresponding to a complete basis of environment states
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in Liouville space. This large dimension precludes the
direct application of Eqs. (1) and (2) for typical envi-
ronments. However, the MPO form of the PT means it
is in principle amenable to standard MPO compression,
based on singular value decomposition as described in the
Methods [36, 37]. Such compression corresponds physi-
cally to reducing the environment to its most relevant
degrees of freedom, which, as theoretical consideration
of PTs suggest [38], may be few in number.

The key challenge is thus to find an efficient way to
calculate the compressed form of the PT MPO, with-
out first constructing the uncompressed PT. This can be
achieved through the ACE approach, for any problem
with an environment that can be decomposed into NE
different noninteracting degrees of freedom:

H = HS +

NE∑

k=1

Hk
E . (3)

The label k can describe both the different degrees of free-
dom within a bath (e.g. different spins, or photon modes
defined by their wave vector q), but can also enumerate
multiple environments coupled to the same system. In all
of these cases, the PT can be constructed iteratively, by
adding successively the contribution of each bath degree
of freedom. The process of combining the influence of the
K-th degree of freedom, B[K], with an existing PT MPO
Q[K − 1] is shown in Fig. 1e. If the resulting MPOs are
compressed after each step (red semicircles), the inner di-
mension remains manageable and exact diagonalisation
can be used for the singular value decomposition. This
is described in more detail in the Methods section.

Once one has the compressed PT in MPO representa-
tion, this can be substituted into Eq. (1). The calcula-
tion of the reduced system density matrix then amounts
to the contraction of a network of the form shown in
Fig. 1d. If the PT MPO has a sufficiently small inner
dimension, this contraction is straightforward. Because
this algorithm can be applied in principle to arbitrary
environments simply by specifying the respective envi-
ronment Hamiltonians Hk

E , ACE allows investigations of
a huge variety of different open quantum systems. We
next show how this method works in practice for a few
paradigmatic example problems.

Resonant-level model. As a first test of ACE,
we consider the archetypal problem of electron trans-
port between a single localised electron state and other
nearby environment states, described by the resonant-
level model. The k-th environment state is described by

Hk
E =~ωkc†kck + ~gk(c†kcS + c†Sck), (4)

where c†S(cS) and c†k(ck) create (destroy) a fermion in the
localised system state and the k-th environment state,
respectively, ~ωk is the energy of the k-th environment
state with respect to the system state, and gk is the cou-
pling constant, which we assume to be independent of

k, gk = g. The free system Hamiltonian is HS = 0.
The Hamiltonian in Eq. (4) shows distinct behaviour de-
pending on the number of environment modes: coherent
oscillations for few modes, and irreversible decay for a
broad continuum of modes. In the following we show
that ACE can automatically capture both these limits,
and interpolate between them.

For a few environment modes, the dynamics is de-
scribed by coherent oscillations at the eigenfrequencies
of the coupled system and environment. Here, we con-
sider the situation depicted in the inset of Fig. 2a where
a single initially empty site is connected to two sites at
the same energy ωk = 0, which are initially occupied. In
this scenario the time-dependent many-body state of the
total system is

|Ψ(t)〉 =

[
cos(
√

2gt)
c†1 + c†2√

2
− i sin(

√
2gt)c†S

]
c†1 − c†2√

2
|0〉.
(5)

In Figure 2a, we compare the occupation nS =
sin2(

√
2gt) to the results of ACE simulations for conver-

gence parameters ∆t = 0.01g and ε = 10−7 (see Meth-
ods). We see the results match perfectly. Since the oscil-
lations are undamped, the memory time of the environ-
ment is infinite. Furthermore, whenever nS = 1

2 , Eq. (5)
describes a state with maximal entanglement between
system and environment. This demonstrates that ACE
can account for infinite memory times as well as strong
system-environment correlations.

Different behaviour occurs for a quasi-continuum of en-
vironment states, e.g., metallic leads coupled to a quan-
tum dot [39], as depicted in the top left inset of Fig. 2b.
The oscillatory contributions of the different modes in-
terfere destructively, suppressing oscillations. When the
continuum is broad enough, there is a short memory time
and weak system-bath correlations, so the situation is
well described by Markovian master equations. These
predict charge transfer to the localised state at a rate
γ = 2π~g2D, where D = (NE − 1)/(~ωBW ) is the den-
sity of states and ~ωBW is the bandwidth. Figure 2b
shows the corresponding dynamics for different numbers
of environment modes NE with a fixed density of states
D = 1/(~γ). As the number of environment modes (and
therefore the bandwidth) increases, the simulations ap-
proach the Markovian analytic result 1− exp(−γt). For
intermediate NE = 10, the finite bandwidth introduces
a finite memory time ∼ 1/ωBW . To check the validity
of the ACE results in this more complicated crossover
regime, we also plot the analytic short-time Taylor ex-
pansion, nS ≈ γωBW t2/(2π) for the case NE = 10.

The inset in Fig. 2b shows the maximal inner dimen-
sion dmax of the PT MPO as a function of the number of
modes NE . We see this scales linearly with the number
of modes, indicating a very efficient reduction, compared
to the exponential scaling of the dimension of the full en-
vironment Liouville space of up to 4100 ≈ 1.6 × 1060 for
NE = 100. A more detailed analysis of numerical con-
vergence is given in the Supplemental Material S.2. This
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FIG. 2. Resonant-level model application of ACE, spanning small to infinite bath memory time. a, Dynamics of
the occupations of a single localised quantum state (S) coupled to two resonant environment modes. b, Dynamics of a quantum
state coupled to a quasi-continuum of modes. ACE simulations (points) are shown together with analytic solutions (lines). In
b, the analytic result in the Markov limit corresponds to an exponential transfer with the rate obtained from Fermi’s golden
rule. The result of a quadratic Taylor expansion around t = 0 is depicted for the case NE = 10. The top left insets depict
the respective physical situations. The bottom right inset in b shows the maximal inner dimension dmax of the PT MPO as a
function of the number of environment states NE for constant density of states.

simple example demonstrates that ACE is able to repro-
duce analytic results in all regimes from infinite memo-
ries to Markovian environments and from strong to weak
system-environment correlations.

Simultaneous coupling of quantum dots to
phonons and electromagnetic field modes. Our sec-
ond example involves a system coupled simultaneously
to two structured baths, as exemplified by a semiconduc-
tor quantum dot, coupled both to acoustic phonons and
an electromagnetic environment. The acoustic phonon
modes couple via a pure-dephasing interaction:

Hq
ph =~ωqb

†
qbq + ~γq

(
b†q + bq

)
|X〉〈X|, (6)

where b†q (bq) creates (annihilates) a phonon with wave
vector q and |X〉 denotes the exciton state of the quan-
tum dot. If this were the only interaction, its lin-
ear and diagonal structure would mean it could be
treated within the iterative quasi-adiabatic path integral
(iQUAPI) method [19, 21, 23]. We will use this below to
compare the results of ACE to that of iQUAPI.

In addition to the bath of phonons, QDs also couple
to the continuum of electromagnetic modes, which are
responsible for radiative decay. Here the interaction with
photon mode k takes the Jaynes-Cummings form:

Hk
JC =~ωka†kak + ~gk

(
a†k|G〉〈X|+ ak|X〉〈G|

)
, (7)

where a†k (ak) is the bosonic creation (annihilation) op-
erator for a photon in mode k.

There are several ways of including both baths in sim-
ulations: First, for unstructured (i.e. Markovian) photon
environments, the Born–Markov approximation holds, so
we can account for the radiative decay as a Lindblad

term, κL
[
|G〉〈X|, ρ

]
where

L
[
|G〉〈X|, ρ

]

≡ |G〉〈X|ρ|X〉〈G| − 1
2

(
|X〉〈X|ρ+ ρ|X〉〈X|

)
. (8)

In both ACE and iQUAPI [40], such Markovian dissipa-
tion can be included into the free system Liouville prop-
agator M. Due to the flexibility of ACE, we can also
describe the radiative decay microscopically by includ-
ing both the phonon and electromagnetic environments
in the PT. This has the advantage that it automatically
captures possible non-additive effects of the simultaneous
coupling to multiple baths [41–43], and also allows one
to extend to structured electromagnetic environments.

In Fig. 3a, we show how the occupation of a QD re-
sponds to off-resonant excitation by a Gaussian laser
pulse. This drive corresponds to the following time-
dependent Hamiltonian in the rotating frame of the laser:

HS = −~δ|X〉〈X|+ ~
2 Ω(t)

(
|X〉〈G|+ |G〉〈X|

)
, (9)

where δ is the laser detuning and Ω(t) is a Gaussian en-
velope centred at t0 = 7 ps with pulse duration τFWHM =
5 ps. The QD simultaneously interacts with the phonon
and photon baths, which are treated within different the-
oretical approaches. In this figure we assume a flat elec-
tromagnetic environment, so all approaches should work
equally well. The simulation parameters are summarised
in the Methods section.

In the absence of QD-phonon interactions, the exci-
ton is only occupied transiently during the pulse, as
absorption is suppressed by the detuning of the laser
from the exciton energy. Including phonons within ACE
but disregarding radiative decay entirely results in a
nonzero stationary exciton occupation, as the detuning
may be bridged by phonon emission. Including both
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FIG. 3. Dynamics of quantum dots embedded in (non-additive) photon and phonon environments. a, Dynamics
of the exciton occupation for phonon-assisted off-resonant excitation of a QD driven by a Gaussian laser pulse and subject to
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in ACE via its Hamiltonian, or replaced by a Lindblad term for radiative decay. b, Radiative decay of an initially occupied
exciton state with and without interactions with phonons for model photon densities of states with different bandwidths ~ωBZ .

phonons and photons, one sees absorption followed by
radiative decay. Identical results are found for this case
for both ACE—treating the electromagnetic environment
microscopically—and for iQUAPI with photon decay
κL
[
|G〉〈X|, ρ

]
. As such, we both further confirm the ca-

pabilities of ACE, and see that—as may be anticipated—
for an unstructured photon environment, no cross-action
between the coupling to photon and phonon baths can
be identified.

As already noted, ACE is also able to treat situations
with non-additive environments, as is relevant for struc-
tured photonic environments like waveguides or micro-
cavities [44, 45]. Figure 3b shows the decay of an ini-
tially occupied exciton state (with HS = 0) where, in
addition to the non-Markovian phonon bath, we use a
photon bath with a finite bandwidth ~ωBW . For large
bandwidths, no cross-interaction between the couplings
to the two baths is found (and so the results again match
iQUAPI with Lindbladian photon loss). For small band-
widths ωBW = 0.4 ps−1, the photon environment obtains
a memory time τ ∼ 1/ωBW of the same order of mag-
nitude as the phonon environment. As a result the two
baths couple non-additively, as can be seen by the fact
that the coupling to phonons significantly influences the
decay of excitations into the electromagnetic modes.

Spin dynamics. Our third example concerns the spin
dynamics in the presence of a spin environment [46, 47].
Besides demonstrating the applicability of ACE to non-
Gaussian spin environments, this example also identifies
the limits on efficient environment compression. We con-

sider a central spin coupled to a bath of environment
spins by a Heisenberg interaction

Hk
E =

Jk
~2

Ŝ · ŝk, (10)

where Ŝ and ŝk are the spin- 1
2 operators of the central

spin and the k-th environment spin, respectively—see in-
set of Fig. 4. In the following we choose the coupling con-
stants Jk = J/N , where N is the number of environment
spins and J defines the energy scale of the coupling. We
set HS = 0 and initially prepare the system spin in the
state with maximal 〈Sx〉. We then explore how the ini-
tial degree of polarisation of the environment affects the
system dynamics, and the ability to efficiently compress
the environment.

First, we focus on the situation where the environment
spins are completely polarised along the z-axis. The re-
spective dynamics of 〈Sx〉 is depicted in Fig. 4a for differ-
ent numbers of environment spins N = 10, N = 100, and
N = 1000 and for convergence parameters ∆t = 0.01~/J
and ε = 10−10. The Heisenberg coupling leads to a co-
herent precession of the system and environment spins
about each other. In the limit N → ∞, there is no
back-action on the environment so the environment re-
mains in its initial state. The dynamics is then equiva-
lent to a precession about a constant effective magnetic
field, for which 〈Sx〉 = (~/2) cos

[
(tJ)/(2~)

]
. We see the

ACE simulations for N = 1000 approach this limit. It
is noteworthy that for all N the inner dimension of the
PT MPO remains 4, corresponding to the Liouville space
dimension of a single spin 1

2 . This is because all environ-
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different values of the MPO compression threshold ε.

ment spins behave identically, so the environment can be
replaced by a single effective spin.

We next explore the limitations of compression of the
environment, by considering randomised initial condi-
tions for the environment spins. In Fig. 4b and c we
present ACE simulations with N = 10 and N = 100 envi-
ronment spins for different values of the MPO truncation
threshold ε. In Fig. 4b the bath is partially polarised:
we randomly select pure spin states from an isotropic
distribution and filter these with a rejection probability
1 − exp

[
b
(
szk/~ − 1

2

)]
. Here, b = (gµBB)/(kBT ) is a

Boltzmann factor, taken as b = 20 for Fig. 4b. In Fig. 4c
we instead use a uniform distribution (i.e. b = 0). In both
cases a dephasing of the central spin is visible. However,
for the unpolarised case, the spin dynamics for different
ε start to diverge at long times. The slow convergence
with ε in this situation is a consequence of the intrinsic
incompressibility of the environment degrees of freedom.
That is, because each environment spin reacts differently
to the system spin, the joint PT cannot be compressed
efficiently. Furthermore, environment spins can become
correlated via an effective interaction mediated by the
system, and without an external magnetic field the en-
vironment states are highly degenerate. Consequently,
there is no clear physical constraint on the accessible en-
vironment Hilbert space. In the partially polarised case,

−25
−20
−15
−10
−5

0
5

−1 0 1 2 3 4 5 6 7

a

0

0.05

0.1

0.15

0 1 2 3 4 5 6 7

b

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

c

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

d

v
(x

)

x

g k
/
Ω

ωk/Ω

O
cc
u
p
a
ti
o
n
n
e

Ωt

SBM

HO

Λ = 100

Λ = 10

Λ = 5

Λ = 4

Λ = 3

Λ = 2

O
cc
u
p
a
ti
o
n
n
e

Ωt

FIG. 5. Two-level system coupled to a bath of anhar-
monic modes. a: Morse potential, Eq. (11), with param-
eter Λ = 5 and its bound eigenstates obtained numerically.
Crosses mark the average position 〈i|x̂|i〉 for each eigenstate.
b: Coupling coefficients gk corresponding to a Lorentzian
spectral density of environment modes. c: ACE simulations
with M = min{5,Λ} environment levels for: the spin-boson
model (SBM), harmonic oscillator (HO) modes obtained by
the finite differences method, and finite differences solutions
of the Morse potential for different Λ. d: Analogous calcula-
tions to c but where energy shifts due to non-zero 〈i|x̂|i〉 have
been subtracted.

the environment can be compressed more efficiently, so
that the ACE simulations show a better convergence.

Anharmonic environments. While a bath of har-
monic oscillators forms a Gaussian environment, which
can be addressed by a multitude of existing numerically
exact methods, anharmonic environment modes have so
far been out of reach. Anharmonicities are found in prac-
tice, e.g., in vibrational modes of molecules with a finite
number of bound vibrational states, commonly modelled
by a Morse potential [48]

v(x) =Λ2
(
e−2x − 2e−x

)
, (11)

where Λ controls the depth of the potential and number
of bound states. Here, we use the Morse potential as
a demonstration of simulating environment modes with
arbitrary potentials v(x).

As described in more detail in the Supplementary Ma-
terial S.4, we first use a finite differences method to nu-
merically find the eigenstates of a single uncoupled en-
vironment mode, before introducing coupling to the sys-
tem. For example, the bound eigenstates of the Morse
potential for Λ = 5 are depicted in Fig. 5a. Keeping only
the M lowest energy eigenstates and choosing a system-
environment coupling proportional to the environment
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position operator, we find that for environment mode k

Hk
E =

M−1∑

j=0

~ωkẼjσkjj + ~gk
M−1∑

i,j=0

√
2〈i|x̃|j〉σkij |e〉〈e|, (12)

where Ẽj and 〈i|x̃|j〉 are scaled so that the spin-boson
model Hamiltonian is recovered when v(x) is the har-
monic oscillator potential.

ACE simulations are performed for HS = ~
2 Ω
(
|e〉〈g|+

|g〉〈e|
)
, describing a continuously driven system perform-

ing Rabi oscillations damped by the anharmonic environ-
ment. We choose a set of ωk and gk that correspond to a
Lorentzian spectral density as shown in Fig. 5b; for other
parameters see Supplementary Material S.4. The result-
ing excited state occupations ne are shown in Fig. 5c.

As a validity check, we first apply the above method to
a harmonic potential, and recover exactly the dynamics
of the spin-boson model. On moving to Morse potential
environments, we find significant differences, especially
for small Λ. Much of the difference is due to the asymme-
try of the Morse potential, leading to an average position
〈i|x̃|i〉 that increases for higher excited states, indicated
as crosses in Fig. 5a. This enters in HE via the system-
environment coupling and results in an energy shift of
the |e〉 system state. To better identify intrinsic effects
of anharmonicity, Fig. 5d shows ACE results where this
shift has been subtracted. For small Λ, one sees effects of
the anharmonicity of the Morse potential, while for large
Λ the anharmonicity becomes negligible and the result of
the Gaussian simulations is recovered.

Discussion
We have presented a novel, numerically exact, efficient,
and versatile method: automated compression of environ-
ments (ACE), which makes it possible to simulate the
dynamics of N -level quantum systems coupled to arbi-
trary environments directly from the microscopic system-
environment coupling Hamiltonian. We have illustrated
the power of this method with examples of electron
transport, the simultaneous interaction of a QD with
phonon and photon modes, spin dynamics, and anhar-
monic environments. In the Supplementary Material S.5,
we provide an example exploring superradiant decay, il-

lustrating that ACE can handle higher-dimensional sys-
tem Hilbert spaces. Supplementary Material S.6 further
contains an example of simulations of dispersive system-
environment couplings as well as time-dependent driving
and non-Hamiltonian loss terms acting directly on the
environment. We have shown that ACE reproduces ex-
act results in limiting cases, and can interpolate between
infinite and short memory scenarios within the same al-
gorithm. In particular, non-Markovian effects, system-
environment correlations, and non-Gaussian baths are
fully accounted for.

A fundamental restriction of ACE is that the environ-
ment must decompose into a set of separate modes with-
out interactions between these modes. However, most
typical models of open system environments satisfy this
requirement. Moreover, recent work by [49] shows that,
adapting a method of [50], one can extend tensor net-
work methods to models where bath modes have nearest-
neighbour interactions. Some environments have partic-
ular features that enable more specialised methods to
be used, and these can be more efficient than the gen-
eral method ACE. For example, Gaussian baths with a
broad continuum of modes have short memory times at
high temperature, and then iQUAPI [19] extremely ef-
ficient. In contrast, for environments consisting of only
a few discrete modes, ACE outperforms methods based
on Gaussian path integrals (see Supplementary Material
S.3). For spectral densities with several peaks on top of
a broad background, the construction of a PT for Gaus-
sian environments in Ref. 34 can be readily combined
with ACE to enable a hybrid approach within the com-
mon process tensor framework.

However, the unique feature of ACE is its generality.
It can be used in situations where no specialised methods
are available, and no new derivations or modifications of
the algorithm are required when a new system or envi-
ronment are considered. Due to its numerical exactness,
ACE can serve as a benchmark for approximate meth-
ods which may provide a more tangible interpretation of
physical processes, or serve a “turnkey solution” to sim-
ulate concrete experiments. These features make ACE a
valuable general-purpose tool for open quantum systems.
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Barth, V. M. Axt, A. J. Ramsay, M. S. Skolnick, and
A. M. Fox, Phonon-assisted population inversion of a
single InGaAs/GaAs quantum dot by pulsed laser ex-
citation, Phys. Rev. Lett. 114, 137401 (2015).

[30] Z. X. Koong, E. Scerri, M. Rambach, M. Cygorek,
M. Brotons-Gisbert, R. Picard, Y. Ma, S. I. Park, J. D.
Song, E. M. Gauger, and B. D. Gerardot, Coherent dy-
namics in quantum emitters under dichromatic excita-
tion, 2009.02121 (2020), preprint.

[31] T. Palm and P. Nalbach, Quasi-adiabatic path inte-
gral approach for quantum systems under the influence
of multiple non-commuting fluctuations, The Journal of
Chemical Physics 149, 214103 (2018).

[32] L. Simine and D. Segal, Path-integral simulations with
fermionic and bosonic reservoirs: Transport and dissi-
pation in molecular electronic junctions, The Journal of
Chemical Physics 138, 214111 (2013).

[33] F. Rossi and T. Kuhn, Theory of ultrafast phenomena in
photoexcited semiconductors, Rev. Mod. Phys. 74, 895
(2002).

[34] M. R. Jørgensen and F. A. Pollock, Exploiting the causal
tensor network structure of quantum processes to ef-
ficiently simulate non-markovian path integrals, Phys.
Rev. Lett. 123, 240602 (2019).

[35] F. A. Pollock, C. Rodŕıguez-Rosario, T. Frauenheim,
M. Paternostro, and K. Modi, Non-markovian quantum
processes: Complete framework and efficient characteri-
zation, Phys. Rev. A 97, 012127 (2018).
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M. Drescher, H. Benner, and K. Busch, Direct obser-
vation of non-markovian radiation dynamics in 3d bulk
photonic crystals, Phys. Rev. Lett. 108, 043603 (2012).
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Methods
Derivation of the process tensor. We consider an ar-
bitrary open quantum system specified by the Hamilto-
nian H = HS+HE , where HS is the free system Hamilto-
nian without coupling to the environment. For simplicity
of notation we assume a time-independent Hamiltonian
in the following, but generalisation to the time-dependent
case is straightforward. The time evolution of the system
density operator ρ̂S can be obtained from the time evo-
lution operator U(t) of the total system, including the
environment, by tracing out the environment to give:

ρ̂S(t) =TrE

[
U(t)

(
ρ̂S(0)⊗ ρ̂E(0)

)
U†(t)

]
. (13)

We discretise the time evolution operator U(t) =∏n
l=1 U(∆t) on a time grid tl = l∆t, l = 1 . . . n and apply

a Trotter decomposition U(∆t) = e−
i
~HE∆t e−

i
~HS∆t +

O(∆t2). Next, we introduce a complete basis for the sys-
tem (ν or µ) as well as for the full environment (ξ or η).
We then introduce the matrix elements

Aνlν̃lξlξl−1
=〈νl, ξl|e−

i
~HE∆t|ν̃l, ξl−1〉, (14)

M ν̃lνl−1 =〈ν̃l|e−
i
~HS∆t|νl−1〉, (15)

and, using calligraphic symbols, their counterparts in Li-
ouville space:

A(νl,µl),(ν̃l,µ̃l)
(ξl,ηl),(ξl−1,ηl−1) :=Aνlν̃lξlξl−1

Aµlµ̃l∗
ηlηl−1

(16)

Mν̃lνl−1

µ̃lµl−1
:=M ν̃lνl−1M µ̃lµl−1∗. (17)

The reduced system density matrix at time step tn = n∆t
can then be expressed as

ρνnµn
=

∑

νn−1...ν0

ν̃n...ν̃1
µn−1...µ0

µ̃n...µ̃1

I
(νnν̃n)...(ν1ν̃1)
(µnµ̃n)...(µ1µ̃1)

( n∏

l=1

Mν̃lνl−1

µ̃lµl−1

)
ρν0µ0

,

(18)

where

I
(νnν̃n)...(ν1ν̃1)
(µnµ̃n)...(µ1µ̃1) =

∑

ξn...ξ0
ηn...η0

δξnηn

( n∏

l=1

A(νl,µl),(ν̃l,µ̃l)
(ξl,ηl),(ξl−1,ηl−1)

)
ρEξ0η0

.

(19)

Here, ρν0µ0
and ρEξ0η0

are the initial system and envi-
ronment states, respectively. The implicit assumption of
a factorisation of the initial state into system and envi-
ronment parts, i.e., uncorrelated initial states, does not
restrict the generality, because initial states with finite
system-environment correlations can always be rewritten
as sums of product states using Schmidt decomposition.

By combining pairs of Hilbert space indices into Liou-
ville space indices αl = (νl, µl), α̃l = (ν̃l, µ̃l) and dl =
(ξl, ηl), Eq. (18) becomes Eq. (1) and Eq. (19) takes the
form of Eq. (2). The matrices Q can be obtained by
comparison with Eq. (19) as

Q(αl,α̃l)
dldl−1

=





δd0,1

∑
d′0

Aα1,α̃l

d1,d′0
ρEd′0

l = 1,

Aαl,α̃l

dl,dl−1
1 < l < n,

δdn,1
∑
d′n

Id′nA
αn,α̃n

d′n,dn−1
l = n.

(20)

where Id′n=(ξ,η) = δξ,η.

Network summation. The network structure deter-
mining the reduced system density matrix, visualised in
Fig. 1d, can be most easily evaluated by propagating the
quantity Rαldl defined recursively via

Rα01 =ρα0 = ρν0µ0 , (21a)

Rαldl =
∑

α̃lαl−1

∑

dl−1

Q(αl,α̃l)
dldl−1

Mα̃lαl−1Rαl−1dl−1
. (21b)

Comparing with Eqs. (1) and (2), it can be seen that the
density matrix at the last time step is given by ραn

=
Rαn1.
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When the environment time evolution operator is uni-
tary, the reduced density matrix ραl

at intermediate time
steps tl can be easily obtained from Rαldl as

ραl
=
∑

dl

qdlRαldl (22)

using the closures qdl defined by the recursion (cf. Sup-
plementary Material S.1 for a detailed derivation)

qdn=1 =1 (23)

qdl−1
=
∑

dl

qdl
∑

αl

Iαl
Q(αl0)
dldl−1

. (24)

Thus, in practice one needs to calculate only a single PT
MPO with n time steps, where n∆t = tfinal is the final
time one is interested in, and obtains the density matrix
at all intermediate time steps l∆t at marginal numerical
extra cost.

PT combination rule. In order to combine the in-
fluences of multiple environments or of independent en-
vironments into a single PT, consider a system coupled
to multiple environmental degrees of freedom (which we
henceforth call modes) via

HE =

NE∑

k=1

Hk
E . (25)

We define the partial sum of the Hamiltonians from
modes 1, 2, . . .K as

HE [K] =

K∑

k=1

Hk
E (26)

and denote byQ(αl,α̃l)
dldl−1

[K] the l-th MPO matrix of the PT

including the influences of the modes 1, 2, . . .K. Then,
by means of the symmetric Trotter decomposition

e−
i
~HE [K]∆t = e−

i
~

(
HE [K−1]+HK

E

)
∆t

= e−
i
~H

K
E

∆t
2 e−

i
~HE [K−1]∆te−

i
~H

K
E

∆t
2 +O(∆t3) (27)

the influence of mode K can be combined with the PT
containing already the influences of the first K−1 modes
by

Q(αl,α̃l)
(d′l,dl)(d

′
l−1,dl−1)

[
K
]

≈
∑

γl,γ̃l,d̃l

B(αl,γl)

dld̃l
(K) Q(γl,γ̃l)

d′ld
′
l−1

[
K − 1] B(γ̃l,α̃l)

d̃ldl−1
(K), (28)

where

B((νl,µl),(ν̃l,µ̃l))
(ξl,ηl),(ξl−1,ηl−1)(K)

= 〈νl, ξl|e−
i
~H

K
E

∆t
2 |ν̃l, ξl−1〉〈µ̃l, ηl−1|e

i
~H

K
E

∆t
2 |µl, ηl〉.

(29)

This step is visualised in Fig. 1e.
In practice, we start with the trivial PT MPO with

matrices Q(αl,α̃l)
dldl−1

[0] = δdl,1δdl−1,1δαl,α̃l
and add the in-

fluence of all environment modes by recursively applying
Eq. (28) until K = NE . After each combination step,
the PT MPO is compressed using the SVD-based com-
pression as described in the next section.

MPO Compression. In order to reduce the inner di-
mension of the MPO representing the PT, we perform
sweeps of singular value decompositions (SVDs) across
the MPO chain. Any matrix A ∈ Cn×m can be factorised
into a product

A =UΣV †, (30)

where U ∈ Cn×k and V ∈ Cm×k are matrices with or-
thogonal column vectors and Σ is a diagonal matrix con-
taining the k = min(n,m) real and non-negative singular
values σi in descending order. Here, we start with the
first MPO matrix, we define

Ad1,(α1,α̃1) = Q(α1,α̃1)
d11 , (31)

and we calculate a SVD of the matrix A. In order to re-
duce the inner dimension, we truncate the matrices U,Σ,
and V , keeping only the keff ≤ k singular values with
σi > εσ1, where σ1 is the largest singular value of A and

ε is a predefined threshold. Then, we replace Q(α1,α̃1)
d11

by
(
V †
)
keff(α1,α̃1)

and multiply the next matrix Q(α2,α̃2)
d2d1

from the right by Ud1keff
σkeff

and perform a SVD of

Ad2,(α2,α̃2,keff) =
∑

d1

Q(α2,α̃2)
d2d1

Ud1keff
σkeff

. (32)

The reduction is continued until the end of the MPO is
reached. Then, another line sweep is performed in the
opposite direction. Note that sweeps along the whole
chain are required between each PT combination step,
because information necessary to effectively compress the
MPO, such as the initial environment state, needs to be
propagated from the ends throughout the whole MPO.

In the overall process, the inner dimensions di are re-
duced to the respective effective ranks keff, where the
latter are controlled by the threshold ε.

Parameters for QD, QD-phonon, and QD-photon
Hamiltonians. The effects of the dot-phonon coupling
are completely defined by the phonon spectral density

J(ω) =
∑

q

γ2
qδ(ω − ωq). (33)

Using established parameters [51] for a GaAs quantum
dot with electron radius ae = 3.0 nm and hole radius
ah = ae/1.15

J(ω) =
ω3

4π2ρ~c5s

(
Dee

−ω2a2
e/(4c

2
s) −Dhe

−ω2a2
h/(4c

2
s)

)2

(34)
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with mass density ρ = 5370 kg/m3, speed of sound
cs = 5110 m/s and electron and hole deformation poten-
tial constants De = 7.0 eV and Dh = −3.5 eV. We dis-
cretise the phonon continuum using steps of equal width,
so that ωq = qdω with dω = ωmax/NE , NE = 100 and
ωmax = 5 meV/~ and we obtain the coupings γq from

the phonon density of states using γq =
√
J(ωq)dω. The

phonon modes are initially assumed to be in thermal
equilibrium with temperature T = 4 K. We have checked
that for these parameters it is enough to consider up to
two excitations per mode.

We use a radiative decay rate of κ = 0.1 ps−1.
When the electromagnetic environment is treated micro-
scopically we assume a constant density of states with
bandwidth ωBW = 10 ps−1, discretised using NE = 100
equally spaced modes. The coupling constants gk are
taken to be constant and the value is chosen such that
Fermi’s golden rule reproduces the radiative decay rate
κ. The PTs for the phonon and photon environments
are calculated separately and combined using Eq. (28)
without performing a final SVD sweep. For both baths,
we use time steps ∆t = 0.1 ps and an MPO compression
threshold ε = 5× 10−8.

The Gaussian excitation pulse is detuned ~δ =
1.5 meV above the quantum dot resonance and the en-
velope is described by

Ω(t) =
A√
2πσ

exp

(
− (t− t0)2

2σ2

)
, (35)

where we use the pulse area A = 3π, pulse centre t0 =
7 ps, and σ = τFWHM/

(
2
√

2 ln 2
)

with τFWHM = 5 ps.

Numerical implementation. We have implemented
ACE in a C++ code using the Eigen library to calculate
matrix exponentials and singular value decompositions.

All calculations have been performed on a conventional
laptop computer with Intel Core i5-8265U processor and
16 GB of RAM. The computation times for the presented
examples are listed in the Supplementary Material S.3.

Data availability
The data presented in the figures as well as the com-
puter code including documentation is available online
at https://doi.org/10.5281/zenodo.5214128
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Supplementary material: Numerically exact open quantum systems simulations for
arbitrary environments using automated compression of environments

S.1. CALCULATION OF INTERMEDIATE-TIME CLOSURES

In Eq. (18) we gave an expression for the reduced system density matrix at time tn using the process tensor (PT)
for n time steps. In practical applications, it is desirable to also be able to calculate the reduced system density matrix
at intermediate times tl to extract the full dynamics of the system. Here we show how this can be extracted. As a
reminder, in the following we use the symbols ν or µ to enumerate system states, and ξ or η for environment states.

The calculation of ραl
for l < n requires the knowledge of a PT for l time steps. From Eq. (19) it is clear that,

before any matrix product operator (MPO) compression, the PT for l time steps can be obtained from the PT for
n > l time steps by tracing over the environment at that step,

∑
ξl,ηl

δξl,ηl . After compression, it is less clear how this
trace is to be executed on the inner indices dl. In principle, it is possible to track how the trace operation transforms
under the individual MPO compression steps. A more practical alternative is to make use of the unitarity of the
environment evolution and recursively obtain the PT for n− 1 time steps from the PT for n time steps.

Consider the terms corresponding to the last time step in Eq. (19):

∑

ξnηn

δξnηnA
νnν̃n
ξnξn−1

Aµnµ̃n∗
ηnηn−1

=
∑

ξ

〈µ̃n, ηn−1|e
i
~HE∆t|µn, ξ〉〈νn, ξ|e−

i
~HE∆t|ν̃n, ξn−1〉. (S.1.1)

Performing the trace over the system states
∑
νn,µn

δνnµn
in addition to the trace over the environment states yields

∑

νnµn

δνnµn

∑

ξnηn

δξnηnA
νnν̃n
ξnξn−1

Aµnµ̃n∗
ηnηn−1

=〈µ̃n, ηn−1|e
i
~HE∆t

[∑

ν,ξ

|ν, ξ〉〈ν, ξ|
]
e−

i
~HE∆t|ν̃n, ξn−1〉

=〈µ̃n, ηn−1|e
i
~HE(∆t−∆t)|ν̃n, ξn−1〉 = 〈µ̃n, ηn−1|ν̃n, ξn−1〉 = δµ̃nν̃nδηn−1ξn−1

.
(S.1.2)

Together with the sum over the ηn−1 and ξn−1 in the (n−1)-th time step in the PT, the term δηn−1ξn−1 again becomes
equivalent to calculating the trace over the environment modes, but at time step n− 1. Therefore, the PT for n− 1
time steps can be related to the PT for n time steps by

I
(νn−1ν̃n−1)...(ν1ν̃1)
(µn−1µ̃n−1)...(µ1µ̃1) =

∑

νnµn

δνnµn
I

(νnν̃)(νn−1ν̃n−1)...(ν1ν̃1)
(µnν̃)(µn−1µ̃n−1)...(µ1µ̃1), (S.1.3)

where ν̃ is an arbitrary system state, which we choose as ν̃ = 0. As this expression only involves outer indices and is
independent of the inner indices, it applies equally to the PT after MPO compression. Thus, given the PT for n time
steps in MPO form in Liouville space

I(αn,α̃n)(αn−1,α̃n−1)...(α1,α̃1) =
∑

dn−1...d1

Q(αn,α̃n)
1dn−1

Q(αn−1,α̃n−1)
dn−1dn−2

. . .Q(α1,α̃1)
d11 , (S.1.4)

we can obtain the PT for l time steps as

I(αl,α̃l)(αl−1,α̃l−1)...(α1,α̃1) =
∑

dl...d1

qdlQ
(αl,α̃l)
dldl−1

Q(αl−1,α̃l−1)
dl−1dl−2

. . .Q(α1,α̃1)
d11 , (S.1.5)

where the closures qdl are calculated recursively via

qdn=1 =1 (S.1.6)

qdl−1
=
∑

dl

qdl
∑

αlνl

δαl,(νl,νl)Q
(αl0)
dldl−1

. (S.1.7)

With the closures qdl the reduced system density matrix ραl
at time step tl can be extracted from the propagated

quantities Rαldl defined in Eq. (19) as

ραl
=
∑

dl

qdlRαldl . (S.1.8)
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S.2. NUMERICAL CONVERGENCE OF THE ACE ALGORITHM

The ACE algorithm, as described in the main text, is numerically exact in the following sense: Every step in the
derivation that involves an approximation is controlled by convergence parameters, such that in principle the error can
be made arbitrarily small as the corresponding convergence parameters are taken to zero or infinity as appropriate.
Thus, in principle, exact results can be approximated to arbitrary precision given enough computational resources.
In this section we first review the sources of numerical error that exist—time discretisation, MPO compression, and
discretisation of a continuum of environment modes. We then present a study of the tradeoff between accuracy and
the computational cost of a calculation.

A. Sources of numerical error

1. Time discretization

The starting point of the derivation of ACE is the introduction of an equidistant time grid tn = n∆t, defined by a
time step width ∆t. The maximal number of time steps nmax then determines the simulation end time te = nmax∆t.
Decomposing the total time evolution operator into system and environment parts for a time step ∆t introduces
numerical Trotter errors. For the system–environment decomposition we use a first-order expansion

e−
i
~ (HS+HE)∆t = e−

i
~HE∆te−

i
~HS∆t + ESETrotter (S.2.1)

while between different environment modes we use a second-order expansion

e−
i
~

(
HE [K−1]+HK

E

)
∆t = e−

i
~HE [K−1] ∆t

2 e−
i
~H

K
E ∆te−

i
~HE [K−1] ∆t

2 + EKTrotter. (S.2.2)

While there has been considerable work on finding rigorous bounds for Trotter errors (see e.g. Childs et al. [1] and
references therein), here we limit our discussion to a simple analysis in terms of a Taylor expansion orders. This
yields single-step error terms of the order ESETrotter = O(∆t2) and EKTrotter = O(∆t3), respectively. Regarding the
system–environment decoupling we may note however, that when the full time evolution up to the final time te is
considered, the product

P1 :=
(
e−

i
~HE∆te−

i
~HS∆t

)(
e−

i
~HE∆te−

i
~HS∆t

)
. . .
(
e−

i
~HE∆te−

i
~HS∆t

)
(S.2.3)

is related to the product obtained by symmetric Trotter decomposition

P2 :=
(
e−

i
~HS

∆t
2 e−

i
~HE∆te−

i
~HS

∆t
2

)(
e−

i
~HS

∆t
2 e−

i
~HE∆te−

i
~HS

∆t
2

)
. . .
(
e−

i
~HS

∆t
2 e−

i
~HE∆te−

i
~HS

∆t
2

)
, (S.2.4)

by the relation P2 = e−
i
~HS

∆t
2 P1e

+ i
~HS

∆t
2 . Thus, the results obtained by first-order Trotter decomposition converge

identically to those obtained by a second-order Trotter decomposition, up to evolving the initial and final states by a
half time step.

By keeping the final time te fixed and expressing the time step width ∆t = te/nmax, the total error accumulated
can be written in terms of the total number of time steps nmax. For the second-order Trotter decomposition the total

error is
∣∣e− i

~ (HS+HE)t − P2

∣∣ = nmaxO(1/n3
max) = O(1/n2

max). As the environment propagator e−
i
~HE∆t itself is also

approximated up to an error O(1/n3
max)— arising from decomposing it into different modes— the overall Trotter error

accumulated during the simulation scales as O(1/n2
max). This error can thus be made arbitrarily small by choosing a

fine enough time discretisation.

2. MPO compression

A second source of numerical error occurs when the MPO representing the process tensor is compressed. This
compression is done using a singular value decomposition (SVD), and truncation by neglecting singular values below
a given threshold. A sequential sweep of SVDs is performed across the MPO.

For a single SVD step the Eckart–Young–Mirsky theorem [2] provides concrete error bounds: Given the SVD of a
matrix A, we define

A =UΣV † =

n∑

i=1

σiuiv
†
i =

k∑

i=1

σiuiv
†
i

︸ ︷︷ ︸
=:Ã

+

n∑

i=k+1

σiuiv
†
i

︸ ︷︷ ︸
=:δA

, (S.2.5)
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where σi are the singular values in descending order, ui, vi the corresponding singular vectors, and k is the smallest
number such that σi < εσ1 for all i > k. Ã represents the relevant part of the matrix A, whereas δA is considered
irrelevant and is therefore neglected. The Eckart–Young–Mirsky theorem states that the matrix Ã provides the best
approximation to A of all matrices with rank k. In particular, the error in the spectral norm is ‖A − Ã‖2 = σk+1

while for the Frobenius norm ‖A − Ã‖F =
√
σ2
k+1 + σ2

k+2 + · · ·+ σ2
n. In any case, for ε → 0 one finds ‖A − Ã‖ → 0

and the low-rank approximation Ã→ A becomes exact.
Exact bounds for the accumulated error of a full line sweep are more difficult to assess. This is because, e.g., in a

sweep from right to left, the next matrix is multiplied with vectors σiui (i = 1, 2, . . . , k) from the SVD of the previous
matrix, so the result depends on the overlap between ui and the row vectors of the next matrix. Furthermore, it is a
priori not clear how strongly a given matrix element of the PT MPO contributes to the reduced system density matrix
at a given point in time, in particular because this also depends on the concrete system Hamiltonian HS . It also
remains an open question how numerical errors propagate, e.g., if small deviations from Hermitianity and positivity
of the density matrices grow exponentially or behave more advantageously.

A rigorous mathematical analysis of the error bounds for tensor network methods is beyond the scope of the present
article. Yet, it is clear that the MPO compressed object turns into an exact reformulation of the original uncompressed
PT in the limit ε→ 0. As such, in this work, we restrict further analysis to numerical convergence tests.

3. Continuum discretisation

While some open quantum systems, such as the example of spin baths in the main text, contain a finite number
of environment modes, others involve a continuum of modes that require discretisation in order to apply the ACE
algorithm. For this discretisation to converge numerically, one has to additionally demand piecewise continuity of the
environment initial state as well as the environment Hamiltonian with respect to the index k describing the continuum.

B. Numerical convergence and computational cost

To numerically test the convergence of ACE with respect to different convergence parameters, we consider again
the example of the resonant level model (first example in the main text). In particular, we focus on the case of band
width ωBW = 10γ, where visible deviations from the Markovian result can be seen.

First, using NE = 10 modes to discretise the continuum and fixed final time γte = 2.5, we investigate the numerical
error for different time step widths ∆t and MPO compression thresholds ε. Here, we define the error as

Error = max
i

∣∣nS
(
ti, {∆t, ε}

)
− nS

(
ti, {∆t, εmin}

)∣∣, (S.2.6)

where nS
(
ti, {∆t, ε}

)
is the system site occupation at time ti = i∆t calculated using the set of convergence parameters

{∆t, ε}. Because the computation time and the convergence with respect to the threshold ε differ vastly for different
time discretisations ∆t, we use reference calculations with different εmin for each ∆t. Specifically we use εmin(γ∆t =
0.1) = 3 × 10−9, εmin(γ∆t = 0.05) = 3 × 10−10, and εmin(γ∆t = 0.01) = εmin(γ∆t = 0.005) = εmin(γ∆t = 0.001) =
10−11.

These numerical errors vs compression threshold ε are depicted in Fig. S.2.1a on a double logarithmic scale. As
expected, the numerical error generally decreases as the threshold is reduced. The threshold needed to obtain a given
numerical accuracy is found to depend strongly on the time step width ∆t. Furthermore, a common feature in all
curves is that there exists a plateau where for a broad range of thresholds no significant gain in accuracy is observed.

These facts can be explained by the distribution of singular values: The uncompressed PT MPO matrices are

directly related to the environment propagator, which for very small time steps can be approximated as e−
i
~HE∆t ≈

1− i
~HE∆t and therefore possesses matrix elements (diagonals) of order 1 as well as contributions (off-diagonals) of

order ‖HE‖∆t/~, but hardly any elements in the intermediate range. Matrix elements of vastly different orders of
magnitude translate into singular values of different orders of magnitude, leading to a corresponding gap in the SVD
spectrum. This analysis also demonstrates that smaller time steps require smaller convergence thresholds to produce
the same level of accuracy, to avoid terms of the order ‖HE‖∆t/~ . ε being disregarded.

Figure S.2.1b depicts the results of the same calculations plotted against the maximal inner dimension dmax of the
PT. Displayed in this way, the curves calculated for different time step widths ∆t all nearly overlap, suggesting that
the maximal inner dimension is a more reliable measure of the numerical accuracy than the compression threshold ε
itself. Note, however, that in our fixed-precision algorithm, dmax is not known a priori.
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FIG. S.2.1. Convergence of ACE simulations with respect to SVD truncation threshold ε (panel a). Note the horizontal axis
goes from largest ε to smallest. The same results are also plotted as a function of the maximal inner dimension dmax (panel
b) and the total CPU time (panel c) needed for the calculations on a conventional laptop computer with Intel Core i5-8265U.
The error associated with the time discretisation (Trotter error) is depicted in panel d.

For practical applications it is important to relate these parameters controlling precision to the computation time
needed to perform ACE simulations. We therefore also present the numerical error of the above calculations as a
function of the CPU time in Fig. S.2.1c. These were obtained on a conventional laptop computer with Intel Core
i5-8265U processor. For a given accuracy, the fastest computation is achieved for the largest time steps because the
PT MPO has fewer sites and, thus, fewer SVDs to perform. In particular, for this problem, we find that very accurate
results are achievable within minutes of computation time.

Figure S.2.1d, shows the Trotter error maxi
∣∣nS
(
ti, {∆t, εmin}

)
− nS

(
ti, {∆tmin, εmin}

)∣∣ defined as the difference
with respect to reference calculations with time step width γ∆tmin = 0.005, where for given ∆t the corresponding
best converged results with smallest threshold εmin is used. The theoretical expectation that the accumulated Trotter
error is proportional to ∆t2 (or 1/n2

max) is corroborated by a fit of the data points to this trend.
Finally, we numerically investigate the convergence of the PT with respect to the mode discretisation of a continuum

of environment modes. Figure S.2.2a shows the time evolution of the system occupation for the same Fermionic open
quantum system as discussed above. Results are shown up to final time γte = 5 using a fixed compression threshold
ε = 10−6 and a fixed time step width γ∆t = 0.05, comparing the results for different numbers of environment modes
NE spanning the total band with ωBW = 10γ. For a large number of modes NE = 100 the results shown in the main
text are reproduced, i.e. system occupation grows roughly as predicted by the Markovian limit 1− e−γt, albeit with
visible deviations. However, if the continuum discretisation is too coarse as in the case NE = 2, the description is
only accurate for a short time, after which strong deviations occur. For small NE this is inevitable, because there
is a limited set of degrees of freedom, corresponding to a limited set of frequencies controlling the dynamics of the
system. With increasing number of modes NE , the time at which these strong deviations appear becomes later. Here,
for NE = 8 this point is almost beyond the final time te, so a good description of environment effects is retained for
the full simulation.

The mode discretisation has a significant impact on the structure of the process tensor. In Fig. S.2.2b, the inner
dimension di at every time step ti is depicted. The typical shape of the di distribution is roughly trapezoidal; this
reflects the constraint in the bond dimension near the ends of the MPO, so that the maximum inner dimension dmax

occurs near the centre of the MPO. Notably, we find that increasing the number of modes leads first to an increase
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FIG. S.2.2. Convergence of ACE simulations with respect to the number of modes NE used to discretise a continuum. Panel (a)
compares the time dependence of occupation for different values of NE . Panel (b) shows how NE affects the inner dimensions
of the MPO, while panel (c) shows how this affects the computation time required.

in dmax up to a certain NE after which dmax begins to decrease. The initial increase can be explained by the PT
including more and more degrees of freedom. The eventual decrease is due to dephasing between modes with similar
frequencies. This result is consistent with recent results by Ye and Chan [3]. The largest values of dmax are found at
similar values of NE to the conditions where convergence of the result with NE is first reached, as seen in Fig. S.2.2a.

The dependence of the inner dimensions of the PT on the mode discretisation has a significant impact on the
computational resources required for the ACE method. Figure S.2.2c shows the CPU time needed for carrying out
the ACE simulation for two different final times γte = 5 and γte = 2.5. The computation time is found to increase
rapidly with NE when NE is small, but then reach an approximate plateau at large NE . (The required computation
time can even have a minimum, as seen around NE = 20 in the case γte = 5.) These trends can be explained by
a simple scaling argument: Exact SVD routines scale as d3 where d is the matrix dimension. The number of SVDs
performed in total is proportional to the number of time steps nmax times the number of environment modes NE .
Using the maximal inner dimension dmax as a proxy for the typical dimension, one expects the computation time to
scale as testimate = αnmaxNEd

3
max. With dmax extracted from the simulations, testimate is fit against the CPU times of

the curve for γte = 5. This is depicted in Fig. S.2.2c. We find that this formula, with a constant α, indeed captures
the trends in the computation time well.
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S.3. RUN TIMES AND COMPARISON TO GAUSSIAN METHODS

A. Run time for examples provided

Example Run time

Resonant level model:

NE = 2 < 1 s
NE = 4 4 s
NE = 10 56 s
NE = 100 13 h 3 min

Phonons & photons:

Construct PT phonons 1 h 14 min
Construct PT photons, ωBW = 10 ps−1 10 h 47 min
Construct PT photons, ωBW = 0.4 ps−1 17 s
Contraction of PT (combined) 40 s
[iQUAPI: phonons] [1 min 0 s]

Spins, fully polarised:

N = 10, ε = 10−10 1 min 10 s
N = 100, ε = 10−10 4 min 09 s
N = 1000, ε = 10−10 13 min 50 s

Spins, partially polarised:

N = 10, ε = 10−10 3 min 32 s
N = 10, ε = 10−13 19 min 59 s
N = 10, ε = 10−16 1 h 45 min
N = 100, ε = 10−10 5 min 30 s
N = 100, ε = 10−13 33 min 12 s
N = 100, ε = 10−16 2 h 28 min

Spins, unpolarised:

N = 10, ε = 10−10 5 min 21 s
N = 10, ε = 10−13 34 min 2 s
N = 10, ε = 10−16 4 h 40 min
N = 100, ε = 10−10 8 min 27 s
N = 100, ε = 10−13 40 min 52 s
N = 100, ε = 10−16 3 h 8 min

Example Run time

Morse potential:

SBM, M = 5 20 min 17 s
HO, M = 5 23 min 30 s
Λ = 2, M = 2 3 min 39 s
Λ = 2, M = 2, renorm. 3 min 48 s
Λ = 3, M = 3 22 min 39 s
Λ = 3, M = 3, renorm. 21 min 58 s
Λ = 4, M = 4 1 h 37 min
Λ = 4, M = 4, renorm. 1 h 36 min
Λ = 5, M = 5 4 h 4 min
Λ = 5, M = 5, renorm. 3 h 48 min
Λ = 10, M = 5 1 h 6 min
Λ = 10, M = 5, renorm. 1 h 7 min
Λ = 100, M = 5 33 min 15 s
Λ = 100, M = 5, renorm. 32 min 15 s

Superradiance:

Construct PT 31 min 39 s
Contraction of PT 2 s

Dispersive coupling:

single mode 7 s
instant. Fock 2 s
pulsed, no losses 23 min 36 s
pulsed, with losses 13 min 2 s

TABLE S.3.1. Run times for the examples discussed in the main text and the Supplementary Material. In some examples
(“phonons & photons” and “superradiance”), we use the fact that the construction of the process tensor (“Construct PT”)
using ACE and the subsequent contraction to determine time evolution can be separated. This separation is useful when one
environment is used multiple times with different system Hamiltonians.

The simulations for this article are performed on a conventional laptop computer with Intel i5-8265U processor
and 16 GB of RAM. The ACE code is available at Ref. [4]. The numerically most demanding part, the MPO
compression using SVDs, is done using the JacobiSVD routine provided by the Eigen library (version 3.4-rc1), which
calls the corresponding LAPACK routines when compiled and linked appropriately. Here, we use the LAPACK
implementation provided by the Intel MKL (version 2021.3.0). The C++ code is compiled and linked using the GCC
compiler (version 9.3.0).

The run times of the simulations for the examples discussed in the main text as well as in other sections of the
Supplemental Material are listed in Tab. S.3.1. As can be seen, typical calculation times for these examples range
between minutes to several hours, demonstrating the efficiency and practicability of ACE over a broad range of
different physical systems. The challenging simulations of spin baths with tiny thresholds ε = 10−16 require more
than the physical 16 GB of RAM, and so the times observed here are affected by swapping to disk. Note that swapping
is efficient for ACE simulations because a single MPO compression step only modifies a single MPO matrix at a time.
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FIG. S.3.1. Comparison of different numerically exact methods for Gaussian environments: ACE, Gaussian PT calculation,
and TEMPO for the example of an off-resonantly driven quantum dot coupled to a bath of phonons. To control the non-
Markovianity of the bath, the spectral density is manually restricted to a finite spectral range ∆E centred around the energy
~δ = 1.5 meV corresponding to the detuning of the excitation, as depicted in panel a. The corresponding computation times
are shown in panel b.

B. Comparison with numerically exact methods for Gaussian baths

In the special case of Gaussian environments, other numerically exact methods have been established such as the
calculation of PTs for Gaussian baths devised by Jørgensen and Pollock [5] building on the TEMPO algorithm [6],
which itself is a reformulation of the iterative path integral approach iQUAPI [7]. In such methods, the augmented
density matrix is presented, compressed, and propagated in MPO representation. An implementation of these two
methods is incorporated into our ACE computer code [4].

These methods rely on the fact that for Gaussian baths, the path integral over the environment can be solved
analytically, giving explicit expressions for the Feynman-Vernon influence functional. As all these methods are nu-
merically exact, it is an interesting question which method performs best (requires least computation time) in which
situation—restricting to Gaussian cases where all methods are available. To this end, we consider again the example
of the quantum dot coupled to phonons and subject to radiative losses discussed in the main text, focusing on the
numerically exact modelling of phonon effects while losses are accounted for by Lindblad terms. Anticipating that
the performance of the different methods strongly depends on the memory time of the environment, we perform
calculations for various widths of the spectral density. As depicted in Fig. S.3.1a, we use the envelope of the spectral
density as in the main text, but restrict it to a finite support of ∆E centred around ~δ = 1.5 meV, corresponding to
the detuning of the excitation from the quantum dot transition. For large values of ∆E ≈ 3 meV, the memory time
of the environment is shortest, while in the limiting case for small widths ∆E → 0 only a single environment mode
energy exists and the memory time becomes infinite.

In all methods, we use a time step width of ∆t = 0.1 ps, compression threshold ε = 10−7 and initial bath temperature
T = 0 K. For ACE, we discretise the continuum ∆E on NE intervals with a density of states NE/∆E = 20 meV−1

and we truncate the environment Hilbert space per Boson mode to dimension M = 2 or M = 3. For this set of
parameters, the typical relative difference between exciton populations in the different methods is ≈ 2× 10−3.

In Fig. S.3.1b, the computation times needed for the different methods are depicted as a function of the spectral
density width ∆E. For large widths ∆E & 1.4 meV, we find the Gaussian PT calculation to be faster than both
ACE and TEMPO without memory truncation. Note, however, that TEMPO can benefit significantly from memory
truncation, as this reduces the length of the MPO chain to be compressed and propagated. Fixing the memory time
to τmem = 2.5 ps in TEMPO leads to the fastest results of all considered methods in the regime of large ∆E. Yet, for
smaller widths ∆E . 1.5 meV, the bath memory time starts to exceed 2.5 ps, which leads to visible deviations in the
occupations (not shown). The smaller (disconnected) pink dots in Fig. S.3.1b indicate data points where the relative
error with respect to Gaussian PT calculations exceeds 1%. For narrow spectral densities, we observe a cross-over
rendering ACE faster than all other methods. As shown, the required dimension M per boson mode has a large
influence on the run time for ACE.



8

To summarize, in the special case of Gaussian baths, alternative methods can benefit from the existence of analytical
expressions for the influence functional describing the environment, and therefore perform faster than ACE in cases
where broad spectral densities lead to short memory times. On the other hand, for narrowly peaked spectral densities
that can be well described in terms of a few environment modes, the general method ACE can even outperform
specialised methods for Gaussian baths. Finally, it is noteworthy that our computer code produces Gaussian PTs
that are completely compatible with the PTs utilised by ACE, paving the way for prospective hybrid approaches for
spectral densities with sharp peaks on top of broad continua.
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S.4. ENVIRONMENT MODES WITH ANHARMONIC POTENTIALS

In the main text, we present ACE simulations for an open quantum system coupled to a bath of anharmonic
environment modes whose free evolution is governed by the Morse potential. Here, we lay out the full numerical
treatment starting from the Schrödinger equation of a single environment mode for an arbitrary potential V (r)
directly from a numerical representation of the potential on a real space grid.

A. Finite differences to find environment states

We start from the one-dimensional Schrödinger equation for a given potential V (r):

H =− ~2

2m

∂2

∂r2
+ V (r). (S.4.1)

We first map this onto a dimensionless ordinary differential equation by introducing a characteristic length scale a0 and
energy scale ε = ~2/(2ma2

0), and defining the dimensionless coordinate x = r/a0. We then define the dimensionless
Hamiltonian

h :=
1

ε
H = − ∂2

∂x2
+ v(x), (S.4.2)

v(x) :=
1

ε
V (a0x), (S.4.3)

where v(x) is the dimensionless potential. The dimensionless problem is solved by a finite differences method, where
a real space grid xj = x0 + j∆x with width ∆x and Nx sample points is introduced and the second derivative is
approximated by

∂2

∂x2
f(xi) =

f(xi−1)− 2f(xi) + f(xi+1)

∆x2
. (S.4.4)

The ODE in Eq. (S.4.2) then takes the form of a symmetric tridiagonal matrix, which is diagonalized numerically.
For simulations in ACE, we work in the truncated energy eigenbasis accounting for only the M lowest energy

eigenstates of a given mode. The energy eigenvalues Ei of the original problem are obtained by multiplying the
eigenvalues of h with ε. The operators describing the system-environment coupling are evaluated in the truncated
basis depending on the concrete details of the model. For example, if the system couples to the environment modes via
the position operator r̂, one has to numerically evaluate matrix elements 〈i|r̂|j〉 = a0〈i|x̂|j〉 with i, j ∈ 0, 1, . . . ,M −1.

B. Example: Harmonic oscillator

As a reference, we first consider the example of the harmonic oscillator potential V (r) = mω2

2 r2. Defining length

and energy scales a0 =
√

~
mω and ε = ~ω

2 , the corresponding dimensionless Schrödinger equation is

h :=− ∂2

∂x2
+ x2. (S.4.5)

Back-transforming the numerically obtained eigenvalues of h : 1, 3, 5, . . . , by multiplying with ε, one recovers the
series En = ~ω

(
n + 1

2

)
with n = 0, 1, 2, . . . . From the conventional definition of the harmonic oscillator climbing

operators it follows that a0x̂ = r̂ =
√

~
2mω

(
a†+a

)
= a0√

2

(
a†+a

)
. Consequently, to enable a comparison with the spin

Boson model, we consider an environment Hamiltonian for ACE simulations of the form

HE =
∑

k

~ωk
(
a†kak +

1

2

)
+
∑

k

~gk(a†k + ak)|e〉〈e|

=
∑

k

M−1∑

j=0

~ωk
Ej
2ε
σkjj +

∑

k

~gk
M−1∑

i,j=0

(√
2〈i|x̂|j〉

)
σkij |e〉〈e|, (S.4.6)

where σkij describes the effect of the single-particle operator |i〉〈j| for the k-th environment mode. As shown in Fig. 5
of the main text, this procedure perfectly reproduces the results of the spin Boson model.
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C. Example: Morse potential

The Morse potential [8] is an asymmetric anharmonic potential with a finite number of bound states below a
continuum of unconfined states. It is often used to describe molecular vibrations with a finite dissociation energy [9].
It takes the form

V (r) =De

(
e−2(r−re)/a0 − 2e−(r−re)/a0

)
, (S.4.7)

where De is the well depth, re is the position of the minimum of the potential, and a0 defines its spatial extent.
Here, we use a0 as the length scale and shift the coordinate system such that re = 0. The Morse potential is made
dimensionless

v(x) =Λ2
(
e−2x − 2e−x

)
(S.4.8)

by introducing the parameter Λ =
√
De/ε =

√
2ma2

0De/~2. The Morse potential is known to have M bound states [8],
where M is the largest integer smaller than Λ + 1

2 , with energies

En = −ε
(

Λ− n− 1

2

)2

= ε

[
− Λ2 + 2Λ

(
n+

1

2

)
−
(
n+

1

2

)2
]
. (S.4.9)

For deep potentials Λ→∞, the spectrum of the lowest states becomes equivalent to that of a harmonic oscillator with

~ω = 2εΛ, which is consistent with the second-order Taylor expansion around r = re being V (r) ≈ −De+mω2

2 (r−re)2.
For general Λ, the level spacings between confined states are

∆En = En+1 − En = ~ω
(

1− n+ 1

Λ

)
. (S.4.10)

The energy difference between first excited state and ground state is ∆Eg = ~ω
(
1− Λ−1

)
=
√

2~2De

ma2
0
− ~2

ma2
0
.

In Fig. 5a in the main article, the five bound eigenstates of the Morse potential with Λ = 5 obtained from numerical
finite-differences calculations are depicted. In contrast to harmonic oscillator wave functions, the anharmonicity of
the Morse potential manifests itself in the decreasing level spacings for higher states. Furthermore, the wavefunctions
are strongly asymmetric leading to nonzero values of the average position operator 〈i|x̂|i〉 for the i-th state. This
non-zero expectation has a significant impact on the system-environment coupling.

Note that the matrix element of the dimensionless position operator x̂ between subsequent eigenstates of the Morse
potential behaves as 〈i+1|x̂|i〉 →

√
i+ 1/

√
2Λ for Λ→∞, so that a situation comparable with the independent-boson

model in this limit requires an environment Hamiltonian of the form

HE =
∑

k

∑

j

~ωkẼjσkjj +
∑

k

~gk
M−1∑

i,j=0

(√
2〈i|x̃|j〉

)
σkij |e〉〈e|, (S.4.11)

with Ẽj = Ej/∆Eg and 〈i|x̃|j〉 =
√

Λ〈i|x̂|j〉.
With nonzero diagonals 〈i|x̂|i〉 for finite Λ, the asymmetry of the potential leads to the additional effect of a

renormalisation of the system excited state energy by a value of ∆E =
∑
k ~gk

√
2Λ 〈x̂〉kE =

∑
k ~gk

√
2Λ Tr

(
x̂ρkE

)
,

which depends on the state of the environment.

D. Details of the calculation and parameters

For the ACE simulation depicted in Fig. 5 in the main article, we consider a continuously driven two-level sys-
tem with system Hamiltonian HS = ~

2 Ω
(
|e〉〈g| + |g〉〈e|

)
. The environment is described by the Hamiltonian HE in

Eq. (S.4.11) with parameters ωk and gk sampling a Lorentzian spectral density

J(ω) = C
1

π

γ

(ω − ωc)2 + γ2
. (S.4.12)

We do this by discretising ωk/Ω equidistantly in the range [0, 7.5] with NE = 100 modes, and setting gk =
√
J(ωk)∆ω,

where ∆ω is the distance between subsequent ωk sample points. Here, we set ~ = 1, and fix the parameters of the
spectral density to C = 0.1Ω2, γ = 0.1Ω, and ωc = Ω. The corresponding values gk/Ω are plotted in Fig. 5b in the
main article. The environment modes are initialised with thermal states at temperature kBT = 0.5Ω.
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S.5. SUPERRADIANCE OF TWO QUANTUM EMITTERS

In this section we present an additional illustration of the potential of ACE. We consider the radiative decay of two
quantum emitters coherently coupled to the same radiation field as depicted in Fig. S.5.1a. If the distance d between
the emitters is much smaller than the wavelength λ associated with the fundamental transitions of the emitters, both
emitters couple with the same phase to the radiation field. This gives the Hamiltonian of photon mode k as

Hk
E =~ωka†kak + ~gk

[
a†k
(
|g1〉〈e1|+ |g2〉〈e2|

)
+ h.c.

]
, (S.5.1)

where |gi〉 and |ei〉 denote the ground and excited state of emitter i = 1, 2 and a†k creates a photon in mode k. In
analogy to the first example in the main article, our environment is a discretised quasi-continuum of electromagnetic
modes with a density of states which would correspond to keeping the Fermi’s golden rule rate for the decay of a
single emitter, κ, fixed. We admit in general a detuning δ between the transitions of the two emitters, which enters
the system Hamiltonian HS = ~δ

2

(
|e1〉〈e1| − |e2〉〈e2|

)
. The initial conditions are chosen such that both emitters are

excited at time t = 0.

a b c
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FIG. S.5.1. Transition between independent and superradiant emission of two proximal optical dipoles. a, Two
quantum emitters detuned by an energy ~δ and separated by a distance d much smaller than the wavelength λ corresponding to
the emitter transitions. b, Radiative decay of two independent emitters. c, Superradiance of two coherently coupled emitters.
The transition through the symmetric state |+〉 has twice the rate compared to that of independent emitters whereas the
transition through the antisymmetric state |−〉 is forbidden. d, ACE simulations for different detunings δ and analytic results
for independent emission and for coherent emission in the superradiant regime of two emitters.

This situation is interesting as it constitutes a minimal setup for superradiance: If the emitters are distinguishable,
e.g., if the detuning δ is large, both emitters radiatively decay with a rate κ, as depicted in Fig. S.5.1b, so that the
sum of the occupations decays as 2 exp(−κt). If, however, the emitters are indistinguishable δ = 0, the coherent
coupling makes it necessary to derive the respective decay rates in the symmetrised basis including the states |±〉 =(
|e1, g2〉 ± |g1, e2〉

)
/
√

2. The dipole for transitions involving the symmetrised state |+〉 is larger than that of a
single emitter, whereas it is zero of the antisymmetrised state |−〉. Consequently, |−〉 is dark and the decay takes
place from |e1, e2〉 to |+〉 and from |+〉 to |g1, g2〉 with the rate 2κ, as depicted in Fig. S.5.1c. Taking into account
the dynamics of the intermediate state occupations, the total occupation of the two indistinguishable emitters is
ntot = 2(1 + κt) exp(−2κt) [10].

Figure S.5.1d shows the total occupation of the two emitters for δ = 0, δ = κ, and δ = 10κ obtained using the ACE
method as well as the analytic results corresponding to the case of distinguishable and indistinguishable emitters.
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For δ = 10κ, the ACE simulation agrees with the exact result for independent emitters, while for δ = 0 the result
for coherently coupled indistinguishable emitters is reproduced. In the intermediate regime δ = κ, the dynamics can
be understood qualitatively by interpreting δ as a perturbation facilitating a rotation from the symmetric |+〉 to the
antisymmetric |−〉 state. As the latter is dark, the total occupation at long times is found to be even slower than the
decay of independent emitters.

This example demonstrates that in a situation where rate equations crucially depend on the basis in which they
are derived, the ACE reproduces correct results independent of the basis. Thus, even in Markovian scenarios, ACE
simulations can have an advantage over conventional techniques in that it can be applied straightforwardly in an
arbitrary basis.

On the technical side, we have solved the dynamics of a four-level system, showing that the method is not restricted

two-level systems. To achieve this, we have made use of the fact that the matrices Q(αl,α̃l)
dldl−1

are identical for some

combinations of (αl, α̃l). This can be done by analogy with the method devised for iQUAPI [11], using a decomposition
into groups with identical couplings. With this, we only compute non-redundant values, which reduces the 256 possible
combinations of (αl, α̃l) to 18. These groups can be identified numerically from the specified environment Hamiltonians
Hk
E , so that this step is also automated.
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S.6. DISPERSIVE COUPLING

Here, we consider a toy model of a TLS dispersively coupled to a multi-mode microcavity, in order to demonstrate
several remaining aspects of the generality of ACE that were not covered in previous examples. Specifically: non-
Gaussian interactions due to non-linear system-environment coupling, time-dependent driving of the environment,
and non-unitary evolution of the environment modes.

A common situation in which non-Gaussian environments emerge is when the coupling to the environment
is non-linear in environment mode creation and annihilation operators. The simplest case is that of quadratic
system-environment coupling, as in the case of dispersive coupling described by an interaction Hamiltonian HI =∑
k ~gka

†
kakσz. Such a coupling arises, e.g., in an effective description of a two-level system (TLS) coupled to a

microcavity in the limit where the detuning between TLS and cavity is much larger than the coupling strength [12].
The main effect of dispersive coupling is that the TLS transition energy experiences a shift depending on the cavity
photon number and, vice versa, the cavity mode energy is modified by the excited state population ne of the TLS.
The former paves the way for quantum non-demolition measurement of the cavity photons by probing the TLS [12].

We consider the setting depicted in Fig. S.6.1a: A TLS is coupled to a microcavity that supports multiple discrete
photon modes which can be individually addressed by external driving. The cavity modes are assumed to be detuned
far enough from the fundamental TLS transition that the TLS-cavity coupling is well described by a dispersive
interaction. The initially empty cavity modes are then driven one-by-one by short external pulses centred around
times τk, k = 1, 2, 3, 4. As a result of the dispersive coupling, this leads to a shift of the TLS transition energy, which
is probed by driving the TLS directly and continuously with a driving field (driving strength Ω) that is resonant with
the bare TLS transition frequency.

To this end, we apply ACE to the Hamiltonian H = HS +
∑
kH

k
E with

HS =
~
2

Ω
(
|e〉〈g|+ |g〉〈e|

)
, (S.6.1)

Hk
E =~ga†kakσz + ~ωka†kak +

~
2
Gk(t)

(
a†ke
−iωkt + ake

iωkt
)
, (S.6.2)

using model parameters Ω/g = 8.5π/10, and ωk/g = 10 + k, as well as convergence parameters g∆t = 0.01 and
ε = 10−9 accounting for up to four bosons per cavity mode.

In a first step, to aid understanding of the general case, instead of modelling the cavity mode excitation explicitly
by pulses with envelope Gk(t), we consider the instantaneous preparation of one-photon Fock states. This corresponds

to applying creation operators a†k to the forward propagating part of the environment mode Liouville propagator, and
the annihilation operators ak to the backward propagating part at time gτk = 10k for the k-th mode. The results
are depicted in Fig. S.6.1b and indeed show that whenever a photon is added to a cavity mode, the observed Rabi
oscillations of the TLS become more and more off-resonant as indicated by their decreasing amplitude and increasing
frequency.

Next, we consider explicit time-dependent driving of the cavity modes by Gaussian pulses with

Gk(t) =
Ak√
2πσ

exp

[
− (t− τk)2

2σ2

]
, (S.6.3)

with σ = τFWHM/(2
√

2 ln 2), gτFWHM = 0.2, and Ak = 2. These parameters are chosen such that after the k-th pulse

the cavity photon number 〈a†kak〉 ≈ 1. As can be seen in Fig. S.6.1c, the TLS dynamics is now more complicated.
As seen for instantaneous Fock state preparation, the oscillation amplitudes are reduced when another cavity mode
is excited, however the signal now involves more than a single frequency. This is due to the fact that the external
driving as described by Hk

E induces coherent states as opposed to one-photon Fock states, so that now contributions
corresponding to Fock states with n = 0, n = 2, n = 3, and n = 4 are also excited with a finite probability. The joint
state of TLS and cavity is therefore best discussed in terms of sectors with fixed photon and excitation numbers n and
ne, respectively. This can be illustrated by considering a single cavity mode, where the total system plus environment
is tractable without compression, so that the total system can be propagated as a single, closed quantum system.
This provides access to the full state including photon-number-resolved TLS populations |e, n〉, where |e〉 refers to the
excited state of the TLS and n is the cavity photon number. These are shown in Fig. S.6.1d. This calculation agrees
with the ACE simulations in Fig. S.6.1c up to time τ2, when a second mode becomes involved. This demonstrates
that the complicated evolution of the TLS occupation is just a sum of contributions from individual n-photon sectors,
each evolving with a single, well-defined frequency.

Finally, because the starting point of ACE are the propagators of the environment modes in Liouville space, it
is straightforward to include non-unitary evolution of the environment, such as loss terms that directly affect the



14

a

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Single mode:

0

0.2

0.4

0.6

0.8

1

τ1 τ2 τ3 τ4

n
e

Instantaneous Fock state preparation

n
e

Pulsed excitation

n
e

all n
n = 0

n = 1
n = 2

n
e

gt

Pulsed excitation with cavity losses

b

c

d

e

FIG. S.6.1. a: Sketch of a TLS dispersively coupled to a multi-mode microcavity, resulting in changes of the effective transition
frequency of the TLS when the cavity modes are driven externally by pulses arriving at times τk. The TLS itself is continuously
driven with bare Rabi frequency Ω, allowing one to detect signatures brought about by changes of the transition frequency.
Photons are lost from the cavity modes with rate κ (but κ = 0 for panels b-d) b: Evolution of the excited state population ne

when the pulses exciting the cavity modes are replaced by an instantaneous change of the state of the i-th cavity mode from the
vacuum to the one-photon Fock state at time τi indicated by blue vertical lines. c: Excited state population when the cavity
modes are excited by Gaussian pulses. d: Numerical simulation accounting for a single cavity mode as part of the system. The
total TLS excitation is presented as well as the photon-number-resolved TLS excitations. e: Like c but additionally accounting
for non-zero photon loss rate κ = 0.1g.

dynamics of the environment modes. Including Lindblad terms

κ

[
akρa

†
k −

1

2

(
a†kakρ+ ρa†kak

)]
(S.6.4)

describing the loss of photons with rate κ = 0.1g to the environment propagator, one obtains the results depicted in
Fig. S.6.1e. While generally very similar to the behaviour in the case without losses shown in Fig. S.6.1c, losses with
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a finite rate κ are found to lead to more efficient dephasing as they intermix sectors with different photon numbers.
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