
Structuring Descriptive
Data of Organisms —
Requirement Analysis

and Information Models
(Strukturierung organismischer Beschreibungsdaten

– Anforderungsanalyse und Informationsmodelle)

Dissertation zur Erlangung des Doktorgrades
der Fakultät Biologie, Chemie und Geowissenschaften

der Universität Bayreuth

vorgelegt von

Gregor Hagedorn
Institute for Plant Virology, Microbiology and Biosafety,

Federal Biological Research Center for Agriculture and Forestry,
Königin-Luise Str. 19, 14195 Berlin, Germany

Bayreuth, Juni 2007

Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissen-
schaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des
akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.).

Schlagwörter: Bioinformatik; Biodiversität; Identifikation; Taxonomie;

SDD; TDWG; DELTA; DeltaAccess; DiversityDescriptions.
Keywords: bioinformatics; biodiversity; identification; taxonomy;

SDD; TDWG; DELTA; DeltaAccess; DiversityDescriptions.
ACM Computing Classification System:

J.3 LIFE AND MEDICAL SCIENCES

Die vorliegende Arbeit wurde unter der Leitung von Herrn Prof. Dr. G. Rambold
(Lehrstuhl Pflanzensystematik, Abteilung Mykologie) angefertigt.

Einreichung der Dissertation (Date of submission): 11. Juni 2007
Tag des wissenschaftlichen Kolloquiums (Date of examination): 28. November 2007

Prüfungsausschuss (Thesis Committee):
 Prof. Dr. Gerhard Rambold (Erstgutachter, advisor and first promoter)
 Prof. Dr. Prof. Stefan Jablonski (Zweitgutachter, second promoter)
 Prof. Dr. Ingolf Steffan-Dewenter (Vorsitzender, chairperson)
 Prof. Dr. Sigrid Liede-Schumann
 Prof. Dr. John Tenhunen

This is an Open Access publication distributed under the terms of the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
(http://creativecommons.org/licenses/by-nc-sa/3.0/).

G. Hagedorn Descriptive data in biology 3

Summary
Data that describe organisms in a structured form are indispensable not only for taxonomic and
identification purposes, but also many phylogenetic, genetic, or ecological analyses. By analyz-
ing existing information models and performing selected fundamental requirement analyses, the
present work contributes to a broadening of the understanding of these forms of data. It falls into
an interdisciplinary area between biology and information science.

The term “descriptive data” is understood here in a broad sense: As descriptions of individu-
als, populations, or taxa, intended for various purposes (e. g., genetic, phylogenetic, diagnostic,
taxonomic, or ecological), and covering a wide array of observation methods and data types (e. g.,
morphological, anatomical, genetic, physiological, molecular, or behavioral data). The position of
descriptive data in the context of biodiversity framework concepts (covering, e. g., nomenclatural
data, specimen collection data, or resource management) is discussed.

A number of fundamental problems arise when modeling biological descriptive data. The
ways in which existing data exchange formats, information models, and software applications ad-
dress them are studied and future possible solutions are outlined.

One such solution, the information model for the software “DiversityDescriptions (Delta-
Access)” is one of the results of this thesis and fully documented (Ch. 7). This entity relationship
model fully supports the concepts of the traditional DELTA data exchange format (Description
Language for Taxonomy; TDWG standard since 1986). If further improves on DELTA by intro-
ducing “modifiers” as a new terminology class, by introducing a more flexible system of hand-
ling statistical measures, by improving the handling of multilingual data sets, by supporting sub-
set and filter features for concurrent collaborative editing (instead of supporting these for report-
generation purposes alone), by supporting improved character attributes to create natural lan-
guage descriptions from structured descriptions, and by adding metadata for a data set to improve
the ability of data exchange without external documentation.

In preparation of a future improved information model for descriptive data, the results of three
requirement analyses are presented: a data-centric analysis of general concepts, a process-centric
analysis of identification tools, and a high-level use case analysis.

The first analysis (Ch. 4) is a structured inventory of fundamental approaches and problems
involved in collecting and summarizing scientific descriptions of organisms. It is informed in part
by current practices in information science, comparative data analysis, statistical, descriptive or
phylogenetic software applications, and data exchange formats in biodiversity informatics. At the
end three topics are discussed in particular detail (“Federation and modularization of termino-
logy”, “Modifiers”, and “Secondary classification resulting in description scopes”).

Except for phylogenetic analyses, identification is the most common usage of descriptive data.
The second analysis (Ch. 5) therefore studies the processes, data structures, presentational and
user interface requirements for printable and computer-aided identification tools (“keys”).

Finally, a general use case analysis is performed with the goal of creating a framework of
high-level use cases into which present as well as future requirements may be integrated (Ch. 6).

All three requirement analyses are explorative and do not fulfill formal criteria of software en-
gineering. They identify many requirements not addressed by the relational DiversityDescriptions
model. Some of these could only be explored and await future solutions. For others solutions are
proposed (some of which could already be incorporated into the design of SDD, an xml-based
TDWG standard since 2005): The traditional data types are changed into an extensible character
type model. The importance of data aggregation concepts was recognized to be fundamental.
Complementary to data aggregation, the present and potentially future use of data inheritance
along the lines of the taxonomic hierarchy is briefly studied. The concept of calculated characters
could be addressed only insofar as the mapping between values can potentially be generalized.
Character decomposition models are studied, but ultimately the traditional character concept,
supplemented with a forest of ontologies for compositional and generalization concept hierar-

4 Descriptive data in biology G. Hagedorn

chies, is preferred as a more general concept. Both the traditional character subset and character
applicability models can be integrated into concept hierarchies.

Zusammenfassung (German summary)
Strukturierte Beschreibungsdaten von Organismen sind nicht nur für Taxonomie und Bestim-
mung, sondern auch viele phylogenetische, genetische oder ökologische Analysen unentbehrlich.
Durch Analysen existierender Informationsmodelle und durch fundamentale Anforderungsana-
lysen leistet die vorliegende Arbeit einen Beitrag zum Verständnis dieser Daten. Sie ist interdis-
ziplinär zwischen Biologie und Informatik angelegt.

Der Begriff „Beschreibungsdaten“ wird in einem weiten Sinn definiert, nämlich als Beschrei-
bungen von Individuen, Populationen oder Taxa, gesammelt z. B. für genetische, phylogeneti-
sche, diagnostische, taxonomische oder ökologische Zwecke, und unter Einschluss diverser Da-
tentypen (z. B., morphologische, anatomische, genetische, physiologische, molekulare oder Ver-
haltensdaten). Die Abgrenzung von Beschreibungsdaten zu anderen Biodiversitätsdaten (z. B.
Nomenklatur, Sammlungsdaten, oder Medien- und Literaturressourcen), und das Konzept über-
greifender Rahmenkonzepte für Biodiversitätsdaten wird erläutert.

In der Arbeit werden grundlegende bei der Modellierung von Beschreibungsdaten auftretende
Probleme besprochen, vorhandene Lösungsansätze in Datenaustauschformaten, Modellen und
Programmen untersucht, und zukünftige Lösungen aufgezeigt.

Eine solche Lösung, das relationale Informationsmodell für die Software „DiversityDescript-
ions (DeltaAccess)“, ist ein Ergebnis dieser Arbeit und wird im Detail dokumentiert (Kap. 7).
Dieses Modell deckt die Konzepte des traditionellen DELTA-Datenaustauschformats (Descrip-
tion Language for Taxonomy; TDWG Standard seit 1986) vollständig ab. Darüber hinaus erwei-
tert es DELTA erheblich. Es führt eine neue Form von Beschreibungsvokabular („Modifizierer“),
ein flexibleres System für statistische Maße und erweiterte Merkmalsattribute zur Erzeugung
natürlichsprachlicher Beschreibungen aus strukturierten Daten ein. Weiterhin verbessert es die
Behandlung mehrsprachiger Datensammlungen, nutzt Filter auch für gemeinschaftliches Redi-
gieren (anstatt diese nur zur Berichterzeugung zu nutzen), und unterstützt Metadaten für Projekte.

Ein weiteres wesentliches Ergebnis dieser Arbeit sind die Resultate von drei Anforderungs-
studien, die eine solide Basis für künftige Weiterentwicklungen darstellen: Eine datenorientierte
Studie allgemeiner Konzepte, eine prozessorientierte Analyse von Bestimmungsmethoden, sowie
eine allgemeine „Use-Case“-Analyse.

Die erste Studie (Kap. 4) ist eine strukturierte Aufzählung grundlegender Probleme, welche
bei der Beschreibung und Charakterisierung von Organismen auftreten. Die Informationen dazu
basieren auf Datenverwaltungs- und statistischen Analysemethoden, wie sie in allgemein-statisti-
scher, phylogenetischer und taxonomischer Software (bzw. Datenaustauschformaten) vorkom-
men. Der allgemeine Teil wird ergänzt durch drei ausgewählte vertiefende Analysen: „Verteilte
und modularisierte Terminologie“, „Modifizierer“ und „Sekundäre Klassifikationen in Beschrei-
bungen“.

Die zweite Analyse (Kap. 5) untersucht Bestimmungsmethoden, welche die – neben phylo-
genetischen Analysen – wohl wichtigste Anwendung von Beschreibungsdaten sind. Die Prozesse,
Daten, Darstellungsformen und Benutzeroberflächen von gedruckten oder Computer-gestützten
Bestimmungshilfsmitteln werden detailliert in Hinsicht auf Anforderungen an das Informations-
modell untersucht.

Schließlich wird in der „Use-Case“-Analyse (Kap. 6) der allgemeine Gebrauch von Beschrei-
bungsdaten untersucht. Dabei wird eine Gliederung erstellt in welche gegenwärtige und künftige
Anforderungen integriert werden können.

Alle drei Anforderungsanalysen sind explorativ und erfüllen keine formalen Kriterien der
Softwareentwicklung. In ihnen werden viele Punkte erfasst die nicht durch DiversityDescriptions

G. Hagedorn Descriptive data in biology 5

abgedeckt werden. Etliche Anforderungen und Probleme können nur herausgearbeitet werden
und müssen auf zukünftige Lösungen warten. Zum Teil können aber bereits mögliche Lösungen
präsentiert oder skizziert werden. Einige sind bereits in das Design von SDD, dem neuen xml-
basierten TDWG Standard für Beschreibungsdaten seit 2005, eingeflossen: Die traditionellen
Datentypen werden als erweiterbares Typsystem neu konzipiert; die Bedeutung von Datensum-
mierung und Synthese wird neu bewertet; die umgekehrte Bedeutung von Datenvererbung ent-
lang der taxonomischen Hierarchie wird kurz studiert. Berechnete Merkmale werden insoweit
abgedeckt, als sie eine einfache Abbildung zwischen zwei Merkmalen sind („mapping“). Merk-
mals-Dekompositionsmodelle werden untersucht, das traditionelle Merkmalskonzept jedoch als
das allgemeinere Konzept bevorzugt. Dieses wird durch mehrfache strukturelle und generalisie-
rende Ontologien (Konzepthierarchien) ergänzt. Sowohl traditionelle Untermengen („Subsets“)
als auch Merkmalsabhängigkeiten können hier integriert werden.

6 Descriptive data in biology G. Hagedorn

Acknowledgements
Firstly, I am very grateful to my advisor Prof. Dr. G. Rambold (Bayreuth) for his interest in the
topic, discussions and advice, as well as great encouragement, support, and patience during the
long period of working on this thesis. He as well as others, especially Prof. R. Morris (Boston,
USA), but also Prof. Dr. G. Deml, Dr. D. Triebel, Prof. Dr. W. Gams, and Dr. O. Hering never
failed to encourage me to continue and finish the work.

I am very grateful to Prof. Dr. G. Rambold, Prof. R. Morris (Boston, USA), Prof. Dr. W. Ber-
endsohn (Berlin), Dr. M. Dallwitz (Giralang, Australia), Prof. Dr. W. Gams (Baarn, NL), Dr. F.

Bungartz (Galapagos Islands, Ecuador) and Dr. R. Pankhurst (Edinburgh, UK) for many enlight-
ening discussions and constructive criticism of the entirety or parts of this work. I am further
deeply indebted to the many other colleagues and friends who also have discussed problems, read
parts of the thesis, or answered questions. I would especially like to thank: J. Asiedu (Boston,
USA), Dr. N. Bailly (Paris, France), D. Barnier (Queensland, Australia), M. Choo (Perth/Kensing-
ton, Australia), N. Cross (†, USA), A. Ekrut (Berlin), C. Gallut (France), Dr. C. Germeier (Qued-
linburg), Dr. E. Gibaja Galindo, Prof. P. B. Heidorn (Urbana-Champaign, USA), D. Hobern (Co-
penhagen, Denmark), J. Ingenhaag (München), Prof. J. Kennedy (Edinburgh, UK), E. Kolster
(New Zealand), Prof. D. Maltais (Québec, Canada), D. Neubacher (München), Dr. T. Paterson
(Edinburgh, UK), Dr. G. Rousse (France), Dr. A. Rubner (Karlsruhe), Dr. M. Scholler (Karlsruhe),
Dr. S. Shattuck (Canberra, Australia), Dr. K. Thiele (Perth / Kensington, Australia), J.-M. Vanel
(France), R. Vignes Lebbe (Paris, France), G. Whitbread (Canberra, Australia), and Zhimin Wang
(Boston, USA).

While this thesis was in preparation, an international working group created an XML-based
data exchange standard for descriptive data (TDWG SDD, compare p. 20). The discussions in
this group strongly influenced the ideas in this thesis and the author is indebted to everybody con-
tributing to this working group during personal meetings or online discussions. Over 60 people
contributed to the SDD discussions, both by participating and organizing them. It is impossible to
list them all, but I want to thank them all. Much of the travel required for the international discus-
sions was supported through the following project grants (in chronological order): BioCase (Bio-
logical Collection Access Service for Europe, EU funding), BIOLOG-GLOPP and GBIF-D-Myk
(both BMBF funding), GBIF, and the TDWG infrastructure project (funded by The Gordon and
Betty Moore Foundation). The help is greatly appreciated.

Similarly, I thank all my work colleagues at the BBA and in projects for their support that en-
abled me to undertake this work, particularly A. Hansen, Prof. Dr. G. Deml, Prof. Dr. C. Reich-
muth, V. Ristau, Dr. O. Hering, Dr. H. Nirenberg, C. Hild, Dr. D. Triebel, Dr. M. Weiss, A. Kohl-
becker, J. Ingenhaag, and Prof. Dr. M. Piepenbring.

Finally, I would like to thank my wife Almut, my son Jakob, my mother and stepmother and
all other members of my family for the love and support they gave me throughout this work.

G. Hagedorn Descriptive data in biology 7

Table of contents
1. Introduction ...12

1.1. Biodiversity informatics ...12
1.2. Descriptive data for identification and phylogeny ...12
1.3. Other uses of descriptive data ..15
1.4. Scope, motivation, and constraints of the current work ...15

2. Methods ...18
2.1. Explorative requirement analyses ..18
2.2. Survey of information models and software ..18
2.3. UML use cases ...23
2.4. UML static class diagrams and ER models..24
2.5. Abbreviations ...26

3. Selected definitions ...27
3.1. Descriptive data in the context of biodiversity data ...27

– Definition of ‘descriptive data’..27
– Biodiversity ‘framework concepts’ ...28
– Ambiguous or border-line cases of ‘descriptive data’ ...30

3.2. The term ‘character’ ...31
3.3. Terms for ‘object parts’..33
3.4. Comparison of current usage of terms ...34

4. Fundamental aspects of description models ..36
4.1. Introduction ..36
4.2. Context, recognition, and language..36
4.3. Natural language descriptions ..39
4.4. Structured descriptions and the concept of terminology ..42

– Level of abstraction of descriptive information models ..42
– Generalization and terminology ..44
– Static versus dynamic terminology models ...45
– Reaching terminological stability ..47
– Relation between terminology and software implementations..................................48

4.5. Data types...49
– Measurement scales ...49
– Continuous versus discrete variables...51
– Categorical versus quantitative (measurement) data ...52
– Singularity, extension and connectedness of categories ..53
– Data types in computer programming ...55
– Unconstrained text ...56
– Molecular sequence data..57
– Complex quantitative data types..59
– Media data ...60
– Implemented data type systems ...61
– Basic property types ..62

4.6. Mapping between data types ..66
– Mapping univariate continuous measurements to categories66
– Mappings within categorical data ..68
– Mapping complex quantitative data to categorical data ..69
– Mappings and definition of categories...70

8 Descriptive data in biology G. Hagedorn

– Mapping unconstrained text to structured data..71
– Mappings involving more than two characters..71
– Calculated characters ...72

4.7. Coding status ..74
4.8. Character dependency ..76

– Character dependency in general...76
– Character applicability rules ..76
– Convertibility of applicability rules...79
– Coexistence of character applicability rules ..81
– Cascading character applicability rules ...82
– Current support in some applications and data standards..82

4.9. Raw data and data aggregation...83
– Introduction ...83
– Standard aggregation methods...85
– Inappropriate aggregation results...87
– Aggregating aggregated data ...88
– Data recording levels (sample data)...89
– Linked observations...90
– Special aggregation cases ..92
– Aggregation within individuals ...93
– Boolean operators between states of categorical characters95
– Boolean operators between characters...98

4.10. Inheriting data ..99
– Data compilation versus data inheritance ..99
– Inductive inheritance (upwards) ..99
– Deductive inheritance (downwards) ..100
– Current models ..101
– Implicit data ...102
– Compatibility testing as a quality control measure..103

4.11. Description storage models ..104
– Introduction ...104
– Categorical data: Character matrix vs. character state matrix104
– Quantitative data and statistical measures ...110
– Value order in character data ...113
– Character decomposition models...116
– Concept hierarchies ...125

4.12. Descriptive ontologies..131
– Object composition..131
– Multiplicity of objects in compositions ...141
– Spatial arrangement of objects in compositions ..147
– Generalization of object parts (compositional concepts)...153
– Change of object concepts through temporal development.....................................162
– Properties ...164
– Methods ...169
– Relations between properties and methods..176

4.13. Federation and modularization of terminology ..180
– Introduction ...180
– Managed federations..180

G. Hagedorn Descriptive data in biology 9

– Terminology modules..181
– Extending shared terminology definitions...182
– Terminology modules and class hierarchy ..183
– Models to support multiple distributed terminologies ...185
– Conclusions ...188

4.14. Modifiers ..189
– Introduction ...189
– Definition...191
– Current usage of modifier-related concepts...192
– Modifier sets and sequences ..199
– Modifier combinations...199
– Modifiers as an alternative to character proliferation ..201
– Modifier classes ...203
– Character- versus value-modifiers ...214

4.15. Secondary classification resulting in description scopes..215
– Introduction ...215
– Mating type and sex...217
– Generations, life cycle, and developmental stages ..218
– Other classifier concepts..219
– Generalized term for sex, generation, life cycle stages, etc.....................................220
– Context of secondary classifier data ..221
– Classifier-related characters...221
– Existing models of handling secondary classifiers ..222
– Summary and conclusions ...227

5. Identification methods ...229
5.1. Introduction ..229
5.2. Classification of identification methods...230

– Kind of data used for identification ...230
– Levels of interaction ..230
– Phases of interactive identification ..231
– Structural classification of identification keys...233
– Propositional versus object matching metaphors...238
– “Promorph” and “looks like” metaphors ...238
– Radford's classification..240
– Other classification criteria for identification keys..240

5.3. Presentation styles of identification keys ...242
– Printable branching keys..242
– Computer-aided branching keys ..247
– Printable multi-access keys..249
– Computer-aided multi-access keys ..251
– Tabular keys ..256

5.4. Requirement summary ...257
5.5. Linking multiple keys...259

– Transferring progress information between multi-access keys260
– Transferring progress information between branching and multi-access keys........262

5.6. Equality criteria and error tolerance ...264
5.7. Character ranking and guidance ...267

– Authored character guidance ...267

10 Descriptive data in biology G. Hagedorn

– Algorithmic character guidance...270
– Combining algorithmic with authored character guidance......................................276
– Alternative algorithms ...276
– Presentation of character guidance in multi-access keys...277

6. Use case analysis ...277
6.1. Introduction ..277
6.2. Roles and agents (use case actors) ...278
6.3. Information acquisition ..280

– Project management...280
– Definition of terminology ..281
– Descriptions ...288

6.4. Information retrieval ..297
– Selection of language and audience representations..298
– Selection of branching keys...298
– Querying container level metadata ..300
– Querying natural language description data ..300
– Querying coded description data ...300

6.5. Information review and interpretation..301
– Analysis of data quality and completeness ..301
– Analysis of character correlation ...303
– Analysis of character applicability ..304
– Aggregating descriptions ...305
– Creation of class hierarchies ..306
– Analysis of character evolution ...306
– Creation of diagnostic subsets ...307

6.6. Identification ..308
– Identification keys ...308
– Switching between branching and multi-access keys..309
– Confirmation of identification ...309
– Failure of identification ...310
– Identification of potential taxon concepts..311
– Creation of branching keys..312
– Dynamic character recommendations for identification purposes...........................313
– Character recommendations for identification purposes based on the

phylogeny..314
6.7. Information application ..315

– Report generation...315
– Taxon pages ...319
– Data exchange and archival exports ..320

6.8. Open aspects...322
7. Information model for DiversityDescriptions 1.9 ...322

7.1. Introduction ..322
7.2. Logical model for DiversityDescriptions 1.9 ...324

– Packages and subsystems ..324
– Package: Terminology ...325
– Package: Descriptions..329
– Package: Resources ...331

7.3. Physical model for DiversityDescriptions 1.9..332

G. Hagedorn Descriptive data in biology 11

– Implementation constraints..333
– Entity relationship diagrams ..335
– Data dictionary...339
– Project Properties...352
– Statistical measures in DiversityDescriptions..356

8. Final Discussions...356
8.1. A progression of information models...357

– Background of DELTA and NEXUS ..357
– DiversityDescriptions ..358
– SDD ...360

8.2. Results of requirement analyses ...361
8.3. Description logic and unified systems..367
8.4. Future relevance: A proposal to record identification data ..369

9. References ...371
10. Appendix ...388

10.1. Brief history of SDD ..388
10.2. Code fragments for evaluating character applicability rules ..388

– Procedural pseudo-code for character applicability...389
– SQL code for character applicability in relational databases...................................390

10.3. Preferred, alternative, and rejected terms for identification keys.................................394
– “Interactive identification” ..394
– Branching keys ..396
– Couplet...397
– Multi-access keys...397
– “Synoptic key”, a confused term ...398

10.4. SQL code for DiversityDescriptions 1.9 ..400
10.5. Index of figures ..404
10.6. Index of tables ..408
10.7. Overview of collected requirements...409

12 Introduction G. Hagedorn

1. Introduction
1.1. Biodiversity informatics
In parallel with the development of computer and information science, the application of these
disciplines in biology has increased. Unfortunately, the general term bioinformatics has in prac-
tice become a synonym for the application of informatics in molecular biology – being the largest
application of computer science in biology. Although good arguments exist to reclaim the general
term and develop a comprehensive discipline of Biological Informatics (Heidorn & al. 2007), in
recent years the perception of bioinformatics as a branch of molecular biology has led to prob-
lems like inappropriate reviews and representation. This forced the introduction of new names for
other specialized subdisciplines: neuroinformatics (applications in neurobiology), phyloinforma-
tics (use of informatics to infer phylogenetic relationships, e. g., Cracraft 2002; Page 2004), eco-
informatics (applications in ecology; e. g., www.ecoinformatics.org), and biodiversity informatics
(applications in biodiversity studies; e. g., Berendsohn 2001a, Berendsohn 2001b, and http:// jbi.

nhm.ku.edu/ index.php/jbi – a recently established eponymous online journal).
All disciplines of biological informatics may be viewed either as biology or as applied infor-

mation science. A classification as information science is clearly appropriate, where the biologi-
cal subject catalyzes the development of new techniques. To a large extent, however, the disci-
plines apply existing information and computer science techniques to biological subjects. They
can therefore aptly be considered biological research – just like the application of microscopes in
biology is considered biology rather than optics.

The scientific and computing infrastructure of molecular bioinformatics is well established
(e. g., through EMBL, NCBI, etc.), but the other branches of bioinformatics have also improved
their infrastructure in recent years (for phyloinformatics see, e. g., the “Cyberinfrastructure for
Phylogenetic Research, CIPRES” at http://www.phylo.org). The most important recent develop-
ment in biodiversity informatics was probably the establishment of the Global Biodiversity Infor-
mation Facility (GBIF, Lane & Edwards 2007) established 2002 in Copenhagen on the basis of
an international “memorandum of understanding”. GBIF's mission is to facilitate digitization and
global dissemination of biodiversity data, so that people from all countries can benefit from the
use of this information. Importantly, GBIF, through its nationally funded nodes, has also spurred
many national research activities.

Recently, the implementation of a new “Encyclopedia of Life” (EOL) has been announced
(EOL.org 2007). This project, based on plans by Wilson (2003), will be a new infrastructure
project aiming specifically at species descriptions. The relations between GBIF, the US-funded
EOL, and the – phylogenetically oriented – Tree of Life web project (2007) will have to be work-
ed out in the coming months.

The current work falls into the area of biodiversity informatics. It is an interdisciplinary ap-
proach, describing current solutions, requirements, and problems encountered from the perspecti-
ve of a biologist. The subject is approached from different angles: a fundamental analysis of as-
pects of descriptive data, an inventory and generalization of the processes in which they are used
in biology (use case analysis), and a detailed documentation of a tested information model (Di-
versityDescriptions). The latter should be considered as a basis for future development rather
than as a final product. To aid in the communication across barriers of language and discipline,
the language of information science is used as far as possible, together with examples and illus-
trations.

1.2. Descriptive data for identification and phylogeny
“Descriptive data” is understood here in a wide sense as data on intrinsic properties of orga-
nisms, i. e., data by which individuals, populations, or taxa may potentially be recognized regard-

G. Hagedorn Introduction 13

less of context. This wide definition shall neither be limited to certain purposes (e. g., genetic,
phylogenetic, diagnostic, or taxonomic) nor to specific observation methods and data types (e. g.,
morphological, anatomical, genetic, physiological, molecular, or behavioral). Not included are
descriptions of ownership and events (e. g., collection, identification, conservation, or nomenclat-
ural events). The present discussion is often also applicable to descriptions of other object classes
that biologists work with (places, ecosystems, rocks, soils, climate), but these classes are not the
primary focus of this work. A more detailed discussion of this will follow (p. 27).

The driving force behind much of the interest in descriptive data is the identification of organ-
isms. A service offering identification based on descriptions is a primary information portal to
biodiversity knowledge whenever the name is not yet known. Identification tools are the “query
mechanism” for names and descriptive data of objects.

The name obtained in the identification can then be used to obtain further information. The
majority of biodiversity information is indexed by taxonomic names. Names are the key to bio-
diversity (Thompson 1996), the call numbers to the books in the library of life (Janzen 1991).
Supported by name synonymies, they summarize our knowledge on identity, similarity, and relat-
edness of organisms, simplify communication, allow the association of independently gained
knowledge fragments, and enable management and sustainable use (Janzen 1991). However, with
a newly found specimen in hand, keys to the keys and indexes to the call numbers are needed,
i. e., identification tools. And one needs to read in these books: how they look like, how they be-
have, how they interact with other organisms. These are descriptive data.

Identification and descriptive data are not only relevant for an initial identification, but are re-
quired to interpret the “concept” of a taxon name associated with a knowledge fragment. How-
ever, name identity in the current taxonomic name system is usually determined in a “fuzzy”
mode. Two organisms with the same name are assumed to share all taxon-specific properties, un-
less it is specifically known that the name is misapplied or variably applied (historically, in diffe-
rent geographic regions, taxonomic schools, etc.). The development of taxon concepts or “poten-
tial taxa” (see, e. g., Berendsohn 1995, Zhong & al. 1996, Berendsohn 1997, Pullan & al. 2000,
Ytow & al. 2001, Berendsohn & al. 2003, Geoffroy 2003, Geoffroy & Berendsohn 2003, Berend-
sohn & Geoffroy 2007) tries to operationalize the knowledge that multiple taxon concepts may
have the same name by adding usage and publication references to names.

Ultimately, however, ecological, descriptive, or socio-cultural information is not defined by a
taxon name plus literature reference, but by the identification process in which an individual or-
ganism is associated with the name. The only exception to this rule is the situation where taxono-
mists are studying type material. However, only selected descriptive characteristics will be stud-
ied on the type material itself. Together with additional information defining the variability
(width) of the taxon concept, these characteristics are then used by everybody else as the basis of
identification.

Misinterpretations that have led to separate potential taxon concepts can be traced if the cor-
relation between descriptions, specifically between characters leading to the identification, is
sufficiently well understood. In the current thesis a system of “identification accessions” is pro-
posed to create an operational system for storing and managing the descriptive information col-
lected in the identification process (see pp. 295 and 369).

Identification is not limited to the species level. The concept of a species is indeed special in
biology, at least in taxonomic groups where the biological species concept is applicable. No simi-
larly objective concepts exist for infraspecific (e. g., variety, or subspecies) and supraspecific taxa
(e. g., genus, family, or order). The hierarchical arrangement may be an artificial, operational
classification or a phylogenetic classification (i. e., a classification mirroring an inferred evolutio-
nary history). In the latter case the topology of the phylogenetic tree can be inferred by scientific
methods, but a substantial amount of arbitrariness remains in choosing between alternative trees
and in selecting which nodes are named and at which rank.

A phylogenetic classification is generally preferred. It maximizes the average predictive value
of the classification; i. e., studying the similarity of some characters (e. g., molecular) enables pre-

14 Introduction G. Hagedorn

dictions about other characters. Popular algorithms for producing a phylogenetic tree maximize
the likelihood that organisms classified together have common character states. In contrast, artifi-
cial classification systems are most useful if a single characteristic is of central importance (like
pathogenicity, toxicity) or especially obvious and well founded in vernacular classification (e. g.,
growth forms like “tree, shrub, herb”). Both phylogenetic and artificial classifications rely strong-
ly on descriptive data (the only other data source for phylogeny being the fossil record, which is
informative only in very few taxonomic groups).

Phylogenetic research is not limited to creating phylogenetic classifications. Once this has
been achieved, descriptive data or against geographical distributions may be mapped against the
classification and used to test causal hypotheses about evolutionary processes that developed the
current and historic diversity of life.

It must be stressed that neither current knowledge of taxonomic names, nor the associated de-
scriptions of life on earth are anywhere close to satisfactory. The proportion of known to estima-
ted species is very small for most groups (Fig. 1). The failure of biology to identify and name the

majority of organisms living on earth is at least partly
due to the difficulty in managing descriptive data.
This can be seen, e. g., when descriptions of new spe-
cies are compared with later revisions which recog-
nize the majority of these purported new species as
synonyms of existing species (Fig. 2). If descriptions
had been appropriately searchable, this would not
have happened.

Several paths are explored in contemporary biodi-
versity research to improve the efficiency of identifi-
cation processes. The most important ones are the use

Bacteria

Plants

"Algae"

Fungi

Nematodes

Molluscs

Arachnids

Viruses
Others

Chordates

"Protozoa"

Insects

Figure 1. Estimated species diversity of major groups and proportion of known taxa. The total
area of the segments indicates the estimated total number of species living on earth. The area of
the darker colored inner segments indicates the number of species for which names and descrip-
tions have been published. For example, only ca. 5% of fungi, 10% of algae, 11.5% of insects are
already known, but ca. 96% of chordates and 84% of (higher) plants (after Purvis & Hector 2000
and Hawksworth & Kalin-Arroyo 1995).

Truly new
species

Synonyms
for existing
species

Figure 2. “… mycologists inadvertently
redescribe already known species at the
rate of about 2.5 : 1” (Hawksworth 1991).

G. Hagedorn Introduction 15

of molecular methods to generate more accurate and partly automated identifications and the use
of informatics methods to manage descriptive (morphological, anatomical, chemical, or molecu-
lar) data.

A major difficulty with descriptive data is that they are concerned with two kinds of diversity:
the number and variety of organisms that exist on earth and the number and variety of properties
that characterizes these organisms. These are reflected in a diversity of taxonomic names and de-
scriptive terminology, respectively. The process of identification – or rejection of identification
and recognition of a new species – typically requires two persons to communicate and reach the
same conclusions: one person who created a description associated with a taxon name and an-
other person studying an unidentified object. An exact descriptive terminology is a prerequisite
for this. Current terminology, however, has arisen over several centuries, is often specific to its
taxonomic domain, and may even be specific to geographic regions or scientific schools. Al-
though every effort should be made to clarify and harmonize terminology, the development of
scientific terminology is necessarily a scientific process in itself. In contrast to other fields of bio-
diversity informatics, the terminology that is used to express descriptive data needs to be defined
as data and not as part of the information model. This requires a substantially higher abstraction
level for information models that represent terminology and object descriptions compared with
other biodiversity information models.

1.3. Other uses of descriptive data
In addition to their relevance for identification and classification, descriptive data are a funda-
mental documentation of organismic biodiversity on earth and are studied for other reasons as
well:
■ Descriptive data often contain information that directly relates to potential uses of organisms

in medicine, agriculture, or biotechnology. Examples are data about enzymatic activities of
microorganisms, data about wood density or antimicrobial secondary metabolites that corre-
late with the use of timber for specific purposes.

■ Information about organism interactions (e. g., pollinators, host-pathogen, or predator-prey;
see also p. 30) or the interaction with the environment (e. g., growth of plants in different
soils) is relevant for agriculture and to understand ecological networks.

■ Conversely, the same comparative approach can aid in the understanding of the function of
morphological, enzymatic, behavioral, or other features. Studying the phylogenetic, geogra-
phic, or ecological distribution of character states can elucidate the function of characters
(“character evolution”). Similarly, character value correlation, perhaps corrected for phylo-
genetic correlation, will often indicate related functionality.

Furthermore, the concept of descriptive data is not limited to the realm of biology and medicine.
Biological descriptive information models have, in fact, repeatedly been used for other areas such
as archeology (pottery identification, Louhivuori 1996). The present discussion, however, con-
centrates on the use and integration of descriptive data in the framework of biodiversity informat-
ion. A clear analysis of the requirements in biology will hopefully facilitate the development of
even more generalized information models for descriptive data.

1.4. Scope, motivation, and constraints
of the current work

The current work attempts to apply entity-relational and object-oriented information modeling
techniques to descriptive data management and analysis. For the development of information
systems, a sequence:

16 Introduction G. Hagedorn

■ system planning and definition
■ requirement collection and analysis
■ generation of initial information models and user views, followed by
■ creation of a global model,
■ hierarchization and detection of inheritance patterns, and
■ normalization
is recommended (Connolly & Begg 2002). For complex systems an iterative process of design,
refactoring, and redesign is often necessary (Fowler & Scott 2001, Ambler 2003b). The present
work is offered at a point of redesign. Several information models exist, two of which (Diversity-
Descriptions and SDD) are authored by the author of this thesis (without and with collaborators,
respectively):

The DiversityDescriptions model – based on entity relationship modeling – is presented in de-
tail (Ch. 7, p. 322 ff). It has been thoroughly tested and improved for about 12 years in applica-
tions written by the author (DeltaAccess / DiversityDescriptions, versions 1.0 to 1.9). At the incep-
tion of this model stood the question whether data commonly expressed in the DELTA standard
can be handled in a relational database. This was established, but some shortcomings of DELTA
became more and more obvious over time. Several of these shortcomings could not be addressed
immediately because it was desired to keep the model compatible with DELTA import and ex-
port; some further shortcomings had to be maintained because the necessary refactoring in the
code base of the application would have been too time-consuming.

As a consequence of the limitations of DELTA and the DiversityDescriptions model, a funda-
mental redesign was started. The new information model was developed in the context of the
TDWG SDD (Structured Descriptive Data) working group, led by the author, as an XML
schema. In 2005, SDD version 1.0 was approved as an international data exchange standard by
TDWG (www.tdwg.org). Development is ongoing and version 1.1 was created in spring 2006
and released after testing in March 2007 (for further information on SDD see p. 20 and 388).

Due to time and space constraints, the present thesis can only present the successful relational
DiversityDescriptions model and contribute towards a better understanding of “open problems”
and unfulfilled requirements. The vision against which the requirements are collection is a gen-
eral information model for descriptive data, suitable for a wide spectrum of applications (especi-
ally identification, generation of natural language reports for monographic works, phylogenetic
or other analyses, as well as general knowledge management). To work towards this desired gen-
erality, the analysis was deliberately approached from three different angles:
■ A data-centric, fundamental analysis trying to explore the general concepts, to recapitulate and

reformulate current practices, and to assess how differently named approaches may in fact be
related (Ch. 4, p. 36).

■ An analysis focusing on the identification processes, methods, and tools. While trying to dis-
cuss all major aspects of identification, this analysis tries to distinguish between aspects re-
quiring underlying data structures and aspects that are purely a question of algorithms and pre-
sentation (Ch. 5, p. 229).

■ A general and high-level use case analysis. This addresses potentially the same requirements
as the fundamental analysis, but is performed with the goal of creating a generalization hierar-
chy of use cases, into which the present as well as future requirements may be integrated (Ch.

6, p. 277). In contrast, the fundamental analysis provides details and examples on data in bio-
logical descriptions, but is structured by the order in which concepts refer to each other, rather
than a process or usage-centric view.

The work laid down in these chapters forms an explorative and informal requirement analysis in
preparation of the next development cycle. All three analyses are explorative and do not fulfill
formal criteria that allow direct use in software development. The numbered requirement state-
ments (starting at p. 41) are intended as references for future work, rather than being used to ana-
lyze and compare actual information models.

G. Hagedorn Introduction 17

The first requirement analysis is somewhat heterogeneous in the level of detail with which
specific problems are discussed. Parts that are studied in particular detail address specific prob-
lems raised in the SDD discussions:
■ How abstract should be model be?
■ Are different models for individual and class descriptions needed?
■ Which data types are required?
■ Use a character matrix or character state matrix model?
■ How to handle quantitative values and statistical measures?
■ How to handle original measurements and sample data?
■ How to handle deduction of information from higher taxa?
■ How to handle characters that can be calculated based on other characters?
■ How to handle the relation between broad and narrow concepts of character states?
■ How to handle character dependency (and whether two complementary mechanisms (applica-

ble-if, inapplicable-if) are necessary or desirable)?
■ Which DELTA features can be omitted or generalized?
■ Should the traditional character concept (employed, e. g., in DELTA and NEXUS) be fol-

lowed or should a “character decomposition model” be embraced?
■ How to federate and modularize terminology as well as descriptions?
■ How can the terminology be kept concise, while supporting structured extensions to the

expressibility? Can “modifiers” contribute to this?
■ How to handle secondary classifiers like sex or life cycle stages?
Some of these questions are answered in the following, others are left exposed for subsequent
work, and some aspects have not yet been dealt with at all: Details of natural language generation
need to be studied, aspects of ontology in the light of current developments in machine-reasoning
discussed, and the chapter on identification processes should be complemented by a similar study
of processes in phylogenetic analyses.

Being about system design, not observations or testable hypotheses, the explorative require-
ment analyses cannot possibly produce objective results. By necessity, they include an element of
discussion and review of available information. The separation between results and discussion
commonly expected for a publication in the biological sciences could therefore not be achieved.
The final discussion (p. 356 ff) therefore recapitulates the major achievements of existing models,
summarizes problems still open, and discusses ways ahead.

Despite being not a typical biological thesis and in spite of efforts to use the language of infor-
mation science, this work is not a work of computer science. It aims to be truly interdisciplinary.
The focus is to analyze, formulate, and transform domain knowledge about biological descriptive
data into the terminology of computer and information science. New research in artificial intelli-
gence and data management may provide solutions to some of the requirements analyzed here.
Presently, however, methods of information science that have already shown their usefulness and
are widely available are preferred over methods that are at the current front of computer science
research.

18 Methods G. Hagedorn

2. Methods
2.1. Explorative requirement analyses
Corresponding to the desire to collect requirements for broad and general models of descriptive
data, the requirement analysis aims to be as inclusive as possible. Requirements were collected in
the following contexts:
■ Fundamental discussions of the processes involved in data collection, aggregation, and

management.
■ Current practices in information science, comparative data analysis, and statistical analysis in

the biosciences.
■ Documented data exchange formats for descriptive data (especially NEXUS, DELTA).
■ Conceptual models or proposals (e. g., New DELTA, Nemisys / Genisys, or Prometheus).
■ Various software applications for identification and management of descriptive data.
■ Personal experience, analysis, and user-feedback during twelve years of developing and distri-

buting the DeltaAccess / DiversityDescriptions application (see Ch. 7, p. 322).
■ Several years of intensive discussions in the SDD (Structure of Descriptive Data) subgroup of

Biodiversity Information Standards/TDWG, the IUBS taxonomic databases working group,
www.tdwg.org. The SDD group created an eponymous successor to the DELTA format (see
p. 388 in the appendix for a brief history of SDD).

The cost of not focusing on a specific user group that works on a specific taxonomic group with
specific methods is that the resulting requirements are neither formal nor complete enough to be
used directly for software development. This was not a goal of the current study. Instead, the de-
sired outcome is a set of testing requirements and examples. Independently developed informa-
tion models that are desired to be general and broad may be checked against these.

2.2. Survey of information models and software
As mentioned above, the collection of requirements for descriptive information models is guided
and informed by existing software applications, exchange formats, and conceptual models. Using
computers for descriptive data has a long tradition (see Pankhurst 1991) and only a small selec-
tion of models could actually be analyzed and discussed. In sequence of decreasing utility for the
purpose of extracting requirements for information models, these may be broadly categorized
into:
■ documented data exchange formats,
■ undocumented data exchange formats,
■ documented internal data structures of implemented or modeled software applications, and
■ software that could be evaluated based on the user interface or published information alone.
The extent to which different models and applications have contributed to the current analysis
differs greatly. It was difficult to decide which software to exclude, especially since the require-
ments in the chapter “Identification methods” (p. 229) have been informed by a great variety of
available software. A complementary list of “Systems that could not be adequately studied”
(p. 22) may inform readers acquainted with these systems about limits of the present presentation.

To avoid repeating literature citations to software and models throughout the text, the citations
in the following sections will be referred to later.

Documented data exchange formats

NEXUS, currently in version 2 (Maddison & al. 1997), is designed for analytical purposes like
phylogenetic inference and has very limited support for free-form text. Originally intended
only for categorical data, it can now also handle continuous (quantitative) data. It is widely
used to analyze DNA or protein sequence data, e. g., using Mesquite (Maddison & Maddison

G. Hagedorn Methods 19

2006) or PAUP (Swofford 1990, 2000). It is also used occasionally by identification soft-
ware; examples are:
□ ETI Linnaeus 2/IdentifyIT (Schalk & Heijman 1996,

http://www.eti.uva.nl/Products/Linnaeus.html) is a locally running PC application based on
an authoring system, producing formatted and hyperlinked (but unstructured) text with im-
ages and other media resources, similar to web or Wiki pages. Through a “plugin” it offers
an identification key for NEXUS-coded categorical data. The results of the key link to the
taxonomic descriptions or other information. Using NEXUS is possible because descrip-
tions and key data are completely independent, i. e., the natural language descriptions are
created manually rather than being generated on the basis of structured descriptive data (as
in DELTA).

□ Visual Key (Klimov 2001, OConnor & Klimov 2004a) is a web-application running in in-
ternet browsers (e. g., Firefox or Internet Explorer). The client-side generated user interface
uses only JavaScript, allowing for considerably greater responsiveness to user actions than
the client-server logic of most other web identification interfaces. It supports categorical
characters / states, images, and interactive images informing the user about names of organ-
ism parts under the mouse cursor. It supports a subset of the NEXUS format (including in-
applicable, missing, and polymorphic characters) and extends it with an embedded syntax
to define figures and interactive image maps inside the character state labels.

DELTA, the “Description Language for Taxonomy” (DELTA) goes back to work by Mike Dall-
witz at Canberra University in 1973. DELTA was first published in Dallwitz (1980). The
Taxonomic Database Working Group (TDWG, www.tdwg.org) has endorsed the basic direc-
tives of DELTA as an international data standard (Dallwitz & Paine 1999, 2005). In contrast
to NEXUS, DELTA supports free-form text data and annotations and is suitable for generat-
ing natural language descriptions and keys from coded data. More detailed information about
the DELTA format may be found in Dallwitz & al. (2000a) and Ch. 5 of Pankhurst (1991).
DELTA is probably the most widely used general-purpose format for descriptive data and it
is used by several taxonomic software packages. The most well known are:
□ The “CSIRO DELTA package” (containing Confor, Delfor, and Intkey; Dallwitz 1993a,

Dallwitz & al. 2000a). This package has been the focus of DELTA development for many
years. Both the exchange format and this software package are often simply called “DEL-
TA”, which may lead to confusion. In this thesis, DELTA always refers to the standard;
CSIRO DELTA package or software being used otherwise. Where applicable, the individu-
al applications in the package (Confor, Delfor, and Intkey) are named directly. A new
Windows-based editor was published in 2000, called Delta.exe.

□ Pandora (Pankhurst 1993b, Pankhurst & Pullan 1996, Pankhurst & Pullan 1998, Pank-
hurst 1998). Pandora is a DOS-based general taxonomic database (including nomenclature,
distribution, etc.) that stores descriptive data in a DELTA-like format and interacts with
DELTA-based software (especially Pankey, see Pankhurst & Pullan 1996) for data analysis
and creation of keys or descriptions.

□ Pankey (Pankhurst 1998, Pankhurst 2003) is a DOS-based suite of programs for editing
(the DEdit DELTA editor), creating printed or online keys, and character analysis.

□ TAXASOFT (Gouda 1996, Gouda 2001), a DOS-based DELTA editor (originally share-
ware, now free).

□ DeltaAccess/DiversityDescriptions (Hagedorn 1997, 2001a, 2005b). A Windows-based
database editing and analysis system, in 1997 this was the first graphical Windows editor
available for DELTA data. This information model will be documented in detail in this
thesis (p. 322).

□ DELIA, “The DELTA Integrator” (Choo & Spooner 2001, Choo 2002) integrates and
manages multiple DELTA data sets (separate projects) within a relational database frame-
work. It provides management and storage operations like basic editing and report generat-
ion, backup and restore directly, but uses external DELTA programs like CSIRO DELTA

20 Methods G. Hagedorn

or CBIT Lucid for most editing and analysis tasks. DELIA itself extends the functionality
where necessary, e. g., it supports to move characters and items across DELTA projects
and allows new projects to be created from existing ones.

□ The NEXUS data editor for Windows (NDE, Page 2001a) has limited support for DELTA
data exchange.

□ Examples of interactive identification packages importing DELTA data are: Intkey (Dall-
witz & al. 2000b, local and web, part of CSIRO DELTA, Fig. 132, p. 252), Online (only
local, part of Pankey), CBIT Lucid (see below, local and web), Navikey 2-2.3 (Bartley &
Cross 1999; Java applet using DELTA text files), Navikey 4 (Neubacher & Rambold
2007a; different source fork from Navikey 3, using DELTA text files, see Fig. 135, p. 253),
WebDelta (Percudani & al. 2006, Rivetti 1999; Perl script), PollyClave (Anonymous
1996, web application in ANSI C), ActKey (Brach & Hong Song 2005, server-based Java,
Fig. 140, p. 254), Système d'identification interactive multimédia (Goujon 2007, Java
applet using DELTA text files, only French information available).

□ Some identification or editing packages support DELTA indirectly through DeltaAccess /

DiversityDescriptions. These are: Identify (only local, part of DiversityDescriptions,
Fig. 131, p. 252), Navikey 3 (McGillicuddy 2005, web identification, using DeltaAccess
databases instead of DELTA text files), DAP = DeltaAccess Perl (Cross 1997, Findling
1998a, Fig. 138, p. 254), DAWI = DeltaAccess Windows (Findling 1998b), Diversity-
Navigator (web-based data editor, Neubacher & Rambold 2007b, see Fig. 231, p. 360).

□ DELTA is further supported with various restrictions by the general biodiversity manage-
ment systems ALICE (p. 22), BG-Base (BG-BASE Inc. 2007), and BioLink (p. 22).

New DELTA is a proposed revision of DELTA, addressing criticism and shortcomings of
DELTA. The original proposal was Dallwitz & al. (1993), which led to an intensive follow-
up discussion (Pankhurst 1993c, Dallwitz 1993b, Kirkbride & Dallwitz 1993, Gouda 1993,
and Dallwitz 1993c). The proposal was later updated with minor corrections in Dallwitz & al.
(2005) and is complemented by a general requirements survey including information about
New DELTA (Dallwitz 2005c).

SDD (Structured Descriptive Data) is a TDWG standard since 2005. SDD is developed in the
form of an object-oriented w3c XML-schema (Fallside 2001, Thompson & al. 2001 and
Biron & Malhotra 2001) by the international TDWG SDD group. Two versions appeared so
far: SDD 1.0 (Hagedorn & al. 2005) and SDD 1.1 (Hagedorn & al. 2006). An older primer
and introduction to SDD (Thiele 2003) has recently been updated for version 1.1 (Thiele &
Sharp 2006). See p. 388 for a brief history of SDD. SDD is currently supported by:
□ Lucid3 (see above)
□ Electronic Field Guide (EFG, http://efg.cs.umb.edu/) tools; the EFG Key Rendering Suite

(Morris & al. 2007) imports and exports SDD.
□ XKey as described in Gibaja Galindo (2004) is based on the early version 0.5 of SDD.

MEKA (Version 3.1 for Windows, 2003, Meacham 2007) is a dedicated multi-access identifica-
tion program that is using a state-only model (without a character concept).

IDnature guides are on-line identification tools available at DiscoverLife (Pickering 2007). The
identification software is called “20q” and uses a proprietary xml format (Ballew & Pickering
2003). DiscoverLife is run by a non-profit organization. The xml format is inadequately
studied here because the existence of documentation for this format was discovered only
shortly before ending this work.

SLIKS (Guala 2006) and SAIKS (Alexander 2006a, 2006b, 2006c, Figs. 143 ff, p. 255 ff), both
JavaScript-based web identification keys form a special kind of application because their data
exchange format is JavaScript code itself. The deliberately simple format is documented and
has been studied. It is a small subset of DELTA, but interesting in its prioritization.

G. Hagedorn Methods 21

Undocumented open databases and data exchange formats

LIF, the “Lucid Interchange Format” is used by CBIT Lucid (Thiele & al. 1998, CBIT 2007a), a
software suite with authoring (“builder”) and player software for interactive multi-access
keys (see Figs. 133-134, p. 252). Lucid up to version 2 used a text-based LIF format, Lucid3
a new xml-based format (Lucid3 also supports SDD). No documentation seems to be public-
ly available; an example of LIF 1.1 may be found in Dallwitz (2005c).
□ X: ID (UBio 2004, Fig. 139, p. 139), an XML / XSLT-based identification system combin-

ing a simple character / state model with extensive use of images; uses text-based LIF
format (i. e. Lucid version 2) for data interchange (compare Leary & Hagedorn 2004).

XPER (Lebbe 1984, Lebbe & Vignes 1989, Lebbe & al. 1989, Lebbe 1991, Lebbe & Vignes
1998, 2003). The original XPER has a text-based format for the storage of the different
object names (taxa, characters, …) and uses a binary file for the taxonomic descriptions (R.

Vignes Lebbe, pers. comm.), the new XPER2 replaces the text-based format by an xml-based
exchange format. The original XPER format might have been documented to some degree,
but the lack of French language skills prevented the author from evaluating the format. The
new XPER2 xml format is – to the author's knowledge – yet undocumented.

3I interactive key (Internet-accessible Interactive Identification, Dmitriev 2006, 2007) is a pack-
age that covers on-line interactive keys and taxonomic revisions (including production of
printed monographs). It is distributed under a proprietary open source license. 3I has no
known exportable data exchange format, but uses open MS “mdb”-database structures. 3I
provides many special features for organism stages, host-parasite interaction, etc.

AditKey (Adit 2004) is a package supporting both dichotomous and multi-access keys. Data ex-
change is possible through unencrypted MS mdb-database files, which could be studied.

TAXIS 3.5 (Meyke 2004) is an all-encompassing biodiversity information management system.
To keep the complexity manageable, it searches for simplicity by providing only the minimal
required functionality for all parts. Taxis supports a very simple character + state terminology
(optionally with multiple images), a simple state-taxon association without free-form notes or
modifiers, and single values or ranges (but neither both, nor range plus extremes) for quanti-
tative values.

PHPKey for lichen identification (Lindh 2003, Lindh & Thor 2004); both the tables and the PHP
source code for web identification are reported. The user interface in Swedish is available at
http://www2.artdata.slu.se / Nycklar / knappnal / welcome.html; an English version linked from
there was not functional as of 2007-05-10.

Documented internal data structures of implemented or proposed software
applications

■ Data model for the evaluation and characterization of plant genetic resources (Germeier
& Frese 2001).

■ Nemisys and Genisys are conceptual character decomposition models developed by Diede-
rich, Fortuner and Milton (Diederich & al. 1989, Diederich & Milton 1989, 1993a, 1993b,
Fortuner 1993, Diederich 1997, Diederich & al. 1997, 1998, 1999, 2000a, 2000b, Fortuner
2002), building on earlier studies by Lebbe (1991). The model was originally developed for
nematodes and called “NEMISYS, Nematode Identification System)”; later the name “GENI-
SYS, General Identification System)” was preferred. The ideas of the authors developed over
time so that not all publications describe exactly the same concepts. A broad general concept
will here be referred to as the Nemisys / Genisys model. For details on basic properties see
p. 62, for specifics of the decomposition of characters into a “structure” (i. e. part, physical
component) and “property” dimension see p. 117, for modifiers see p. 195.

■ The Prometheus description model (= “Prometheus II project”) is described, e. g., in Cannon
& McDonald (2001), Paterson & al. (2004) and Pullan & al. (2005). The publications describe
mainly high level features of the model; no actual implementation and data structures could be

22 Methods G. Hagedorn

studied by the present author. For details on character decomposition see p. 118, for modifiers
see p. 196.

Software that could be studied based on publications or the user interface alone

BAOBAB (conceptual model) and ALICE (derived implemented system; Allkin & White 1988,
Allkin 1989a, Allkin 1989b, Allkin 1996, White & al. 1993) are relational information
models (including taxonomic and descriptive information) that could not be studied in detail.

BIKEY, a software package (Lobanov & al. 1996, Lobanov & Dianov 1999) containing especial-
ly PICKEY (e. g., Schilowa (undated)), a picture-centric multi-access key. Only the user
interface of PICKEY was studied.

FRIDA (Nimis 2007); FRIDA stands for “FRiendly IdentificAtion” (pers. comm. P. L. Nimis)
and is a software package using an Oracle™ database to produce web-based biodiversity
identification keys and eLearning modules. It is patented in 2002 by University of Trieste
(www.dryades.eu) and yet undocumented (pers. comm. S. Martellos).

Mycokey (www.mycokey.com), LichenLand (multi-access key at http://mgd.nacse.org/cgi-
bin/hyperSQL_gateway?/hyperSQL/lichenland/hsql/nu3col.soph.hsql), and many other keys
on the internet.

USDA SBML keys may be studied in action (Castlebury & Farr 2002, Fig. 127 on p. 248 and
Hernandez & al. 2004) and the design criteria are described in Farr (2006), but the software
and information model could not be studied.

WebKey-x (Kirejtshuk & al. 2005) is a new project or program, partly by the authors of BIKEY.
The web project page is entirely in Russian, but some information for non Russian speakers
is available at Lobanov & al. (2005, partially in English).

XKey (Gibaja Galindo 2004, Delgado Calvo-Flores & al. 2005) is a new Spanish system. Some
of the approaches and data structures could be inferred from the publications, but further ana-
lysis is desirable.

Several commercial digital publications (using protected, proprietary information models) of
plant (Lauber & Wagner 2001, Seybold & al. 2001 & 2004, Götz 2003) and fungal (Böhmer
& Wohanka 2002) floras for Central Europe.

Systems that could not be adequately studied

The following list of systems not studied completes the attempt to survey available software. It is
intended to document the limits of the current analysis by highlighting software that potentially
could increase the understanding of descriptive information models if it had been studied. Future
studies by those who have access to these systems are most welcome.
BioLink is a general, software-component-based system Australian biodiversity data manage-

ment system (Shattuck & Fitzsimmons 2000). BioLink is probably the only system so far that
has implemented inheritance and compilation of descriptive data up and down the taxonomic
hierarchy. Originally the system was sold, then freely available for several years. As of 2007-
04-15 most web pages at www.biolink.csiro.au have been removed, the front page informing
that “BioLink is currently unavailable”. According to S. Shattuck (pers. comm. 2007), the
system remains in use internally and for a limited number of previous users, but development
is limited to bug fixes and it is no longer actively advertised.

BioloMICS (Biological Data Manager for Identification Classification & Statistics, BioAware
2007) is especially interesting because it considers descriptive data in a very general scope,
dealing with morphological, physiological, biochemical, chemical, chromatographic, electro-
phoretic, as well as molecular sequence data. It uses similarity methods for identification, and
seems to have a very flexible system of performing combined analyses on widely different
data types. It is commercial, for MS Windows, and data can be published to CD-ROM or
Internet.

G. Hagedorn Methods 23

CABIKey (some information in White & Scott 1994 and White & Sandlant 1998; current status
unknown, all earlier web links disappeared) and TAXAKEY (e. g., Blackman & al. 1997,
current status of software unknown). According to White & Scott (1994), CABIKey is a
multi-access key based on a proprietary exchange format; the primary difference to Intkey or
Onlin7 being that images may stand on their own, replacing rather than supplementing tex-
tual statements.

MANTIS (Naskrecki 2007) is primarily a specimen collection and image / sound manager. It sup-
ports nomenclatural information, taxonomic hierarchy, literature citations, and loan manage-
ment, but also has some support for descriptive data beyond the image support. It supports
the creation of species pages based on database content (free-form text for diagnosis, de-
scription, and natural history, pest control details) and images. It is explicitly designed to al-
low the recording of organism interactions (host-parasite, predator-prey, etc.). Based on
available screenshots it also seems to support numeric measurements. The extent of descrip-
tive support could not fully be gathered from the available documentation.

Platypus (Houston & al. 2002) a broad Australian biodiversity data management system, the
degree of support for descriptive data could not be studied.

PollyClave 2 has been announced on http://www.botany.utoronto.ca/faculty/dickinson/main.html
and is described by Lindh (2003) as being functional. However, as of 2007-04 only broken
links and a dysfunctional prototype under http://www.botany.utoronto.ca/faculty/dickinson/

identify.html could be found.
SYSTAX is an all-encompassing German biodiversity data management system (see, e. g., Boos

1992, Hoppe 1998, Hoppe & al. 1999, SysTax 2004, Hoppe & al. 2004, and Hoppe & al.
2007). The support for descriptive data is relatively recent (J. Hoppe, pers. comm. 2007) and
could not yet be studied. An interactive identification component “TaxDet” is in prototype
stage.

XID (Exeter Software: undated, XID Services 2007), a commercial software system; featured in
Pennisi (1994), but without information usable for the present analysis.

2.3. UML use cases
Use case analysis is a method to capture high-level requirements for information models and im-
plemented systems. Use case modeling is used in different ways and UML does not specify the
amount of detail that has to be provided (Fowler & Scott 2001). In software development proc-
esses, use cases may be used to define the milestones of development progress. In this case it is
essential that the diagrams are accompanied by step-by-step descriptions of the scenario (or “sto-
ries”) for each use case, and variations or extensions to the scenario. In this thesis, focusing on
high-level requirements for information models, use case analysis (p. 277) is used to create a
broad conceptual overview of descriptive data systems, providing only a few detailed scenarios.
The analysis relies on a short narrative text accompanying the diagrams, intuitive use case names,
a relatively high number of specialized use cases combined by «include» and «extend» relations.

To counter the high number of specialized use cases, a use case generalization hierarchy is
developed (Fig. 3), often starting at abstract use cases. An abstract use case cannot actually be
used, but summarizes the common behavior of more specialized use cases. Its name is formatted
in italic letters (other UML dialects use “{abstract}” after the name). The goal is to formalize a
decomposition of a high level task into rigorously defined subtasks for which software may be
more easily written.

Use cases are presented in the form of UML use case diagrams (UML version 1.4, OMG
2001). Use case diagrams changed substantially after UML version 1.2 (which used «uses» and
«extends» relations). The available UML modeling tool (Microsoft Visio 10) supports only UML
1.2 and several shapes had to be reprogrammed to function as UML 1.4 shapes. As a consequen-
ce, however, it was not possible to use UML syntax checking for use cases.

24 Methods G. Hagedorn

The following references were studied for current usage recommendations of UML (especial-
ly in the context of database design): Fowler & Scott (2001), Naiburg & Maksimchuk (2001),
and Connolly & Begg (2002). In addition, most of the guidelines laid out in Ambler (2003a) were
followed (e. g., the UML “system boundary” is omitted from use case diagrams).

Two import concepts are the use case and the actor. Use cases are coherent units of function-
ality provided by a system or a part of it, and actors are human or software agents which execute
it. A simple example is: “taxonomist identifies specimen”.

«include»
Define label,

abbreviations,
 wordings, etc.

Define character

Elaborate definition
("glossary style")

«extend»

Define quantitative
 character

Define categorical
characterTaxonomist

Figure 3. Elements of UML use case diagrams. Actors (e. g., “Taxonomist”) perform use case
actions (“Define character”). Relations between use case symbols may be generalizations (solid
lines), connecting a general use case (to which the triangle points) with a specialized one, or
dependency relations (dashed lines), expressing included and extending use cases.

Besides generalizations, two further relationships are ex-
pressed in the use case diagrams: «include» and «extend». To
«include» another use case means that the entire functionality
of the other use case is always part of the including use case.
The case that the included use case is an optional elaboration
is expressed through «extend» (reversing the direction of the
arrow to indicate the dependency).

Many UML dialects (e. g., Naiburg & Maksimchuk 2001)
distinguish between system and business use cases (Fig. 4).
Use cases in the present analysis are always general (or con-
ceptual). Unfortunately, the general and system use case icons
are indistinguishable so that such a usage note is required.

2.4. UML static class diagrams and ER models
UML static class diagrams are used during many general and abstract discussions to illustrate
issues of generalization, composition, and dependency. Classes are represented by rectangles and
connected by associations and composition relationships (Fig. 5). The role of the relationship is
presented on the branch that attaches to the entity with which the role starts. Different modeling
traditions exist for the role naming pattern at the end of association and composition relationships
(UML does not define a standard here). Fowler & Scott (2001) recommend to use a noun phrase
and to omit the role name when possible. In this discussion, however, the more conventional
verb-phrases for roles (“is applicable to”, “controls”, etc.) have been used. The cardinality (or
“multiplicity”, Table 1) of association and composition relationships is given at each end next to
the role name. Generalization relationships are indicated with a white triangle (Fig. 5 left, iden-
tical to those used in the use case diagrams, Fig. 3 ff).

UML class representations may have up to three sections separated by horizontal lines: class
name, attribute list, and operations (or “methods”). In the thesis the operations section is almost
universally suppressed; the attributes sections is suppressed where irrelevant to the discussion.

Business
use case

System
use caseactor business

actor
Figure 4. Some UML use case
dialects may use different sym-
bols for system and business
actors. In the present work the
first icon always signifies a gen-
eral, undifferentiated use case.

G. Hagedorn Methods 25

SuperClass
attribute

SubClass1
attribute1

SubClass2
attribute2

CompositeClass
attribute

Part 1
attribute

Part 2
attribute

1
0..*

1
1

role 1

0..1

role 2

0..*

RequiredClass
attribute

Generalization hierarchy Aggregation hierarchy Dependency

Figure 5. Relationships in UML static class diagrams. On the left side two subclasses are derived
from a superclass. The triangle has the form of an arrow pointing from specialized to general
class. Subclasses inherit attributes and methods of the superclass. – In the middle, a class is
connected with two component classes (Part 1, Part 2). Composition associations are indicated
by black diamonds. Part 1 must occur (1 : 1 relationship), whereas Part 2 may be missing, occur-
ring once or multiple times (1 : 0..* relationship; compare Table 1). Component classes may not
belong to other classes. – A class association with multiplicities and role names is shown be-
tween SuperClass and CompositeClass in the center. Role names for association ends are used
only in the database UML models. – On the right side an additional class is connected with a
dashed arrow indicating a dependency relationship (i. e., Part 2 depends on RequiredClass).

Table 1. Common multiplicity indicators (i. e., ranges of
allowable cardinalities) used in UML class associations.

Multiplicity code Description Association is:
0..1 Zero or one Optional
1 Exactly one Required
0..* (or “*” alone) Zero or more Optional
1..* At least one Required
n (for example: 6) Specific number Required

The entity relationship model for DiversityDescriptions (p. 322) is also presented using UML
static class diagrams. In parallel to the general acceptance of UML for general software design,
this has become common practice in database modeling (compare Connolly & Begg 2002 and
Naiburg & Maksimchuk 2001). Entity types are represented by class diagrams (limited to persis-
tent classes, showing only persistent attributes, and having the “operations section” of the UML
class icon suppressed).

Both a logical model (using UML) and a physical model (using a tabular documentation) are
presented. The ER diagrams for the logical model are generated with Microsoft Visio for Enter-
prise Architects; the tabular documentation with DiversityModelDocumenter version 2.6 (Hage-
dorn 2004a). Because of the extensive discussion above, which ends in requirements beyond
those fulfilled by DiversityDescriptions, version 1.9, no conceptual model is presented.

In the logical model, no explicit assumptions on referential integrity are made. Implicitly, all
associations and compositions are assumed to be protected by referential integrity. Cascading
updates are implied where primary key values are natural keys that may change during edits (i. e.,
they are not system keys). Furthermore, composition (symbolized by a black diamond at the pa-
rent class) indicates that instances of the component classes can only exist as part of instances of
the parent class. For these relationships cascading deletes may be assumed.

In the logical model of DiversityDescriptions the data types for attributes are indicated using a
small selection of generic data types (Naiburg & Maksimchuk 2001, Table 2).

26 Methods G. Hagedorn

Table 2. Generic data types used in ER-/UML-class diagrams.

Generic data type Description
Boolean Logical values “true” and “false”; may be Null if not defined as required.
Byte Positive integer numbers in the range 0-255
Date Date, time, or data-with-time values
Double Real (floating-point) numbers with 15-16 digits of precision
Integer Integer numbers with 32 bit precision (= “Long” in older programming

languages which consider int / integer as 16 bit).
Single Real (floating-point) numbers with 7 digits of precision
String An unlimited number of Unicode characters

2.5. Abbreviations
ABCD Access to Biological Collections Data (TDWG)
AFLP Amplified Fragment Length Polymorphism

(a molecular identification technique)
ANOVA Analysis of Variance
CBIT Centre for Biological Information Technology,

Australia
Ch. Chapter
CDEFD Common Data structure for European Floristic

Databases, a concluded European concerted
action project

CSIRO Commonwealth Scientific and Industrial
Research Organisation, Australia

DBMS Database Management System
DDBJ DNA Data Bank of Japan
DELTA Descriptive Language for Taxonomy (p. 19)
DNA Deoxyribonucleic Acid
EMBL European Molecular Biology Laboratory
ER Entity-relationship (… model, … diagram, etc.)
Fig. Figure
GBIF Global Biodiversity Information Facility;

www.gbif.org
GLOPP Global Plant Pathogen Index
GUID Globally Unique Identifier
ICBN International Code of Botanical Nomenclature
ICZN International Code of Zoological Nomenclature

/ International Commission on Zoological
Nomenclature

ID Identifier, i. e. a number or code uniquely
identifying an object

IPR Intellectual Property Rights
IT Information Technology
IUBS International Union of Biological Sciences
JET Joint Engine Technology, a database

technology developed by Microsoft
LIF Lucid Interchange format, used by CBIT Lucid

programs (p. 21)
NCBI National Center for Biotechnology Information,

USA

NEXUS (not an abbreviation: phylogenetic data
exchange standard, p. 18)

NLP Natural Language Processing (machine
reasoning from human-written text)

OCR Optical character recognition
OMG Object Management Group
OOP Object-oriented programming
PAUP Phylogenetic Analysis Using Parsimony, a

NEXUS-based software package.
PDF Portable Document Format (proprietary format

by Adobe)
RAPD Random Amplified Polymorphic DNA (a

molecular identification technique)
RDF Resource Description Framework; a w3c-

standard for resource metadata suitable for
ontological reasoners.

RFLP Restriction Fragment Length Polymorphism (a
molecular identification technique)

SDD Structure of Descriptive Data (a TDWG interest
group) and the resulting standard (Structured
Descriptive Data, p. 20)

SQL Structured Query Language, a language for
defining, manipulating, and querying relational
databases

STR Short Tandem Repeat (a molecular
identification technique)

TDWG Taxonomic Databases Working Group
(www.tdwg.org)

UML Unified Modeling Language, a modeling
standard of the OMG

URI Universal Resource Identifier (including
universal resource names, URNs)

URL Uniform Resource Locator (the most common
type of URI, e. g., “http://x.net”)

W3C Worldwide Web Consortium (“www” = “w3”)
WIKI (not an abbreviation: name of a class of internet

collaboration tools, Hawaiian for “simple”)
XML Extensible Markup Language
XPS XML Paper Specification

G. Hagedorn Selected definitions 27

3. Selected definitions
A major problem with existing generalized or specific description models is that many terms are
highly overloaded with multiple meanings and various models often define terms in new ways.
This section tries to clarify how terms like descriptive data, character, or object parts/ structures
are used in this thesis. It also provides an overview of the current usage of additional terms in in-
formation science and descriptive information models (Table 3, p. 34).

Some further definitions are provided throughout the text, especially for character applicabili-
ty rules (p. 76), modifiers (p. 191), secondary classifiers (p. 220), and ontological versus opera-
tional terminology (p. 281). A review of general dictionary definitions of “feature”, “attribute”,
and “property” is provided in Table 44 (p. 164), of “identification” in Table 54 (p. 229). Funda-
mental terms of information models and UML usage have already been discussed in the sections
“UML use cases”, p. 23 and “UML static class diagrams and ER models”, p. 24.

3.1. Descriptive data in the context of
biodiversity data

Definition of ‘descriptive data’
The term “descriptive data” is used in various disciplines, including geographic information sys-
tems and medicine. In biodiversity informatics and taxonomy it has been more or less informally
used by various authors since at least 1980. No actual definition could be found and, although the
term is generally intuitively understood, it is worth attempting to define:

Descriptive data are data which inform about repeatably observable, intrinsic
properties of an entity (components, individuals, populations, or classes).

The entities described in biology are individual organisms, components or parts of them (espe-
cially in paleontology), or classes (e. g., populations, species, or other taxa). Individuals may be
organisms observed in the field, or living or dead specimens in natural history collections. These
may be identified (have been assigned a taxon name) or not. Observations on living or dead col-
lection objects can normally be repeated, observations on free-living organisms can be repeated if
they have been labeled by some means.

A class description consists of generalized statements that apply to all individuals in the class.
Although a fundamental philosophical difference exists between individuals and classes, the
difference in the case of descriptions is remarkably small. Often within an individual organism,
components (e. g., leaves) are variable and occur many times. As a result, generalizations, sam-
pling, and statistical techniques are required in single organisms as well as in classes.

Repeatability of observations should be understood as “potential repeatability”. Observations
may not be repeatable in individual objects:
■ if the object is unlikely to be encountered again (example: birds observed during flight),
■ if the observation method destroys the feature (or even the entire specimen) that is being

observed (example: measuring total carbon content),
■ if the observation depends on a point in development (example: heartbeat rate after birth),
■ if the feature depends on the preservation stage of preserved objects (examples: flower of

herbarium specimens may loose or change their color with drying; molecular features may
deteriorate with time, e. g., enzymes fast, DNA slower).

Data are intrinsic (or “inherent”) properties if they are observable directly on the object, at least
at a certain point in time and under certain conditions. Data that are attached to the object only by
the method of handling or processing it (collection data, history data, management data on prepa-
ration, transfer, etc.), or potential uses (in agriculture, medicine, etc.) are not observable on the
object itself and considered “extrinsic data” here. Such data may, e. g., be considered manage-

28 Selected definitions G. Hagedorn

ment, history, event, or metadata and belong to other components in a biodiversity framework
concept (see below).

The values of properties may occur only with a given probability, reflecting population poly-
morphism, environmental factors, or methodological problems; the frequency information reflec-
ting this is part of the description itself.

Descriptive data as defined here are neither limited to morpho-anatomical data nor to observa-
tions that can be made on preserved, dead objects. However, in many groups of organisms, these
two subsets are of special importance. The visually observable morphological or anatomical data
are important because they:
■ are often easily observable (without technical help, or using widely available instruments like

a light microscope),
■ are easily processed and memorized by human beings (dogs would certainly prefer olfactory

identification keys …),
■ were more suitable to paper-based publishing techniques (for example, although bird or insect

songs are easily recognized by most humans, and recording techniques were widely available,
the lack of cost-efficient publishing techniques drastically limited their use in biology prior to
the digital age),

■ have a long history of use in biology, reflected in a huge knowledge base.
Similarly, descriptive data that can be studied in preserved dead objects are of special relevance
to taxonomy due to the nature of the taxonomic type specimen concept (roughly, this is the prin-
ciple that any concept of a taxon name must contain a designated particular specimen).

An information model for descriptive data should not be limited by a preference for morpho-
anatomical data. Chemical, physiological, genetical, or molecular descriptive data (biosequences,
AFLP or STR patterns, etc.) as well as behavioral data (including sound, video) may be equally
important in certain groups of organisms. Techniques in biodiversity research are currently
undergoing drastic changes. For example, in the future, hand-held olfactory or DNA-based ana-
lyzers may become generally available and usable even in the field, just as simple recording and
analysis methods for digital audio and video streams already are today.

Biodiversity ‘framework concepts’
Implicit in the attempt to study descriptive data separately from other kinds of biodiversity-
related data is an understanding that biodiversity data can be structured into multiple, relatively
independent knowledge domains. Examples of these are taxonomic nomenclature and concept
synonymy, taxon collection or observation data, collection storage and management data, or ref-
erencing and indexing information. Each domain may be represented by its own information
model and by specialized software components, which remain relatively isolated and interact
only through defined interfaces. The categorization of information into knowledge domains may
be viewed as a high-level ontology. If the dependencies are analyzed further and abstract inter-
faces are formally defined, a component framework is created.

Some information models for biodiversity data do not take this approach. They view the entire
area of biodiversity research as a single knowledge domain covered by a coherent, global infor-
mation model (compare “Survey of information models and software”, p. 18 below). The choice
between a coherent information model and a component framework is based on a trade-off. A
coherent model optimizes the sharing of data and program code at the expense of increased com-
plexity (or, alternatively, oversimplification of the components of the model).

Contemporary software engineering methodology (e. g., Bruegge & Dutoit 2004) has shown
that a component framework model reduces the complexity, simplifies design and – perhaps even
more importantly – system reanalysis and rearrangement (“refactoring”). Each software compo-
nent (and the corresponding knowledge domain) may be analyzed independently, treating other

G. Hagedorn Selected definitions 29

components as a “black box” that is represented through well-defined interfaces. Software com-
ponents that observe the interface definitions are not affected by internal changes in other compo-
nents they depend upon. This isolation may come at the expense of duplicating a limited amount
of secondary data and program code, which may be mitigated by careful reuse of class libraries
containing common functionality. The problem of finding the best possible software decomposi-
tion is a current research topic in software engineering, called “Aspect Oriented Design (AOD)”
(e. g., Noda & Kishi 1999).

Berendsohn & al. (1996b) were among the first to call for a framework for biological objects.
Framework concepts are implicit to several biodiversity software developments, but one of the
most extensive attempts to develop such a framework is the “DiversityWorkbench” component
framework (Hagedorn 2002d, Hagedorn & al. 2002, Rambold & al. 2003; Figs. 6-7). The present
discussion of descriptive data will often assume a component framework like this. It does not,
however, depend on any specific one.

A major advantage of a component framework is that components may be developed indepen-
dently, simplifying international collaborations. A prerequisite for this is, however, that frame-
work and interface definitions are well architected and formally defined. No existing framework
concept has achieved this so far. As a step, TDWG has recently formed an “Architecture Group
(TAG)” that aims to develop a high-level ontology (see wiki.tdwg.org/twiki/bin/view/TAG/).

DiversityIdentify

DiversityReferences
(publicat. & citations)

DiversityIndexing
(synthesis for synonymy, geograph.
distribution, & organism interactions)

DiversityUsers
(login, permissions)

DiversityResources
(URI‘s, Images, other

information resources)

DiversityGazetteer
(geographical thesaurus)

DiversityCultures
(planned)

DiversityExsiccatae
(Exs. series thesaurus)

DiversityNamevariants
(autom. connection of tax.
names, incl. misspellings)

DiversityCollection
(specimen collections)

DiversityTaxonomy
(nomenclature, synonymy,

systematical hierarchy)

DiversityEcology
(habitat description,

plant sociology) DiversityDescription
(morphology, anatomy,

descriptive molecular data)

Figure 7. Relation of DiversityWorkbench components with DiversityDescriptions. Diversity-
Identify identifies organisms based on features, geographical distribution, and organism inter-
actions (e. g., host plants).

Figure 6. Potential DiversityWorkbench components grouped by similarity. Except for Diversity-
Cultures, work on all components has started. The models are, however, of different quality and
revision status (from Hagedorn 2002d).

30 Selected definitions G. Hagedorn

Ambiguous or border-line cases of ‘descriptive data’
In the light of the general definition of descriptive data given above, some data are problematic in
that they may be considered belonging to descriptions, to another major framework component
like taxonomy or specimen collections, or they may even be handled best by a new, specialized
component. This is an area for future research. Specific examples of such cases are:
■ Spatial data (e. g., geographical distribution)
■ Temporal data (e. g., phenological descriptions)
■ Organism interactions (pollination, host-pathogen relations, predator-prey, etc.).
If such data are collected in a descriptive data application together with truly descriptive data,
these data will often be recorded for pragmatic reasons as if they were descriptive data. They are
therefore briefly discussed here.

Spatial data are on the borderline between collection data and descriptive data. They can
theoretically be observed directly and synthetic distribution ranges based on the observation of
many individuals are useful in identification (at least to identify specimens not suspected to be
neobiota). However, in most organism groups the usual workflow involves a separation of speci-
men collection and specimen study. As a result, at the time when most descriptive data are being
studied, spatial information is available only as metadata of the collection process. It is therefore,
conventionally handled in specimen collection management systems.

On the other hand, these collection management systems lack the ability to express synthetic,
generalized statements summarizing the geographical distribution (“chorology”) of higher taxa.
Such knowledge may be handled as hierarchical categories with the features generally available
in descriptive data systems, or through a specialized component for “taxonomic checklists”.

The current lack of integration between individual information and synthetic, generalized
statements is worrisome. However, it also seems unwise to replicate in descriptive systems geo-
graphical abilities already present in collection or observation management databases (including
interoperability with gazetteers or GIS applications). To facilitate global information exchange
GBIF and TDWG currently jointly develop XML-based (Bray & al. 1998, Bray & al. 2004a,
Bray & al. 2004b) exchange formats to automatically query the geographic (and other) informa-
tion from collection and observation databases (DiGIR, DiGIR 2005, ABCD, Berendsohn 2005).
Once experience has been gained with these methods, the question of integration into descriptive
systems should be asked again.

A very similar case is that of temporal data like the point in time and duration of plant flow-
ering or insect pupation (phenological data). Any observation is a point in time, but the features
of interest are durations and cyclical temporal information (daily, yearly). A large body of point
observations is required to allow these generalizations. For some features the information can be
derived indirectly through observing the state of collected material and combining this with the
collection date. The statistics of such observations are weak, however, since the data collection is
non-random (e. g., plants with only immature early flowers are rarely collected).

The inclusion into descriptive data sets is slightly more complicated for temporal than for
spatial data. Firstly, whereas geographical distribution is based on the entire organism, many tem-
poral (phenological) data are related to specific features, parts, or life-form stages of organisms.
This creates a specific dependence on the terminology for features, parts, or stages used in the de-
scriptive database. Secondly, interest in temporal development is not as widespread among taxo-
nomists as interest in geographical distribution, and consequently, existing collection or observa-
tion systems usually have no support for temporal (phenological) data. This will often make it de-
sirable to include such data in a descriptive data system for pragmatic reasons. Finally, handling
temporal information satisfactorily requires “date / time” data types not found in any current de-
scriptive data application.

Organism interactions (parasitism, predation, mutualistic symbiosis like mycorrhizae, lichen
formation, pollination, seed dispersal, etc.) or ecological habitat or abiotic substrates preferences
are a third problematic area. In general, the data pertaining to the surroundings of a collected

G. Hagedorn Selected definitions 31

specimen may be considered descriptive behavioral information. However, some information is
routinely stored in collection or observation databases. Examples are the preference of herbivo-
rous insects for certain plants (which are not collected with the insect), the host plant identifica-
tion of a pathogenic fungus (the identification of which may no longer be possible using the frag-
ments collected together with the fungus), the soil, climate, and other habitat data. Other informa-
tion (for example, pollination interactions) is present only in specialized observation databases.
Thus, a substantial amount of interpretation is necessary to aggregate and generalize these data
and remove chance effects or scientifically false reports. In the case of homogeneous, randomly
collected data, statistical methods can automate this process. However, normally the amount of
available data is limited so that published literature data without voucher specimens or historical
collections have to be used in addition to information with known circumstances of data collec-
tion. This requires human intervention and experience.

The synthesis and interpretation of all available organism interaction data into a coherent pic-
ture for a class of organisms is a separate piece of scientific knowledge that is on another level
than the original observation. The outline of a model for plant-animal-interactions covering data
capture both on the original data and synthesis level was published in Théry & al. (1998). Model-
ing is complicated by the fact that interactions themselves have a geographical distribution (an
interaction may occur in one region, but not in another). In the GLOPP project (Global Plant
Pathogen Index, Hagedorn & al. 2000, Hagedorn 2000a, Hagedorn & al. 2001, Piepenbring & al.
2001, Hagedorn 2002a, Hagedorn & al. 2003a, 2003b, Piepenbring & al. 2003) organism interac-
tions have been modeled on two levels (original data and interpretation) in the DiversityIndexing
(Hagedorn 2001c) component of the DiversityWorkbench. DiversityIndexing supports collecting
and interpreting data for any combination of two organisms and a geographical area. Supported
data sources are printed or digital publications, physical specimens, and digital specimens or ob-
servation metadata. The concept of DiversityIndexing needs further development. Its integration
into a more general descriptive information model is probably desirable (not only organism inter-
actions, but also certain morphological or phenological data depend on geography!) and the cur-
rent thesis may provide some groundwork for this task.

Note that conversely, for practical reasons specimen collection databases will often contain
data like flower color or tree height that in the framework model unambiguously belongs to de-
scriptive data. This is a result of the workflow in most biodiversity disciplines that depends on
descriptive data being observable on dead, preserved specimens. Features that are either not ob-
servable because only part of the material has been collected (e. g., “height of trees”) or that are
perishable in preserved voucher specimens (e. g., many blue flower colors) are often recorded
together with true collection data on the label text of specimens or as fieldbook notes. Specimen
collection management systems will often provide for the capture of such collection-related de-
scriptive information (see ABCD schema, UnitDataType / UnitMeasurements and UnitDataType /

UnitFacts, Berendsohn 2005). In contrast to the spatial, temporal, or organism interaction cases
mentioned above, this is not a fundamental problem. It is possible to use a descriptive data com-
ponent within the collection system for “morphological field descriptors” and “ecological de-
scriptors” as proposed, e. g., in the European reference model for collections (Berendsohn & al.
1996a; Berendsohn & al. 1999). However, until both the specimen collection and descriptive data
components are sufficiently developed and tested to attempt such a tight integration, it will be a
pragmatic choice to duplicate selected data in several components.

3.2. The term ‘character’
Some discussion exists about the correct use of the term character. Citing Colless (1985), the
authors of the Prometheus description model (p. 21), prefer the term description element over
character (Table 3, p. 34). An earlier occurrence of this term is Lebbe & Vignes (1998). Colless
distinguishes three primary uses of “character”:

32 Selected definitions G. Hagedorn

■ Denoting a variable definition (e. g., “wing color”),
■ denoting variable data (e. g., something “has brown wings”; i. e. “attribute” in DELTA), and
■ denoting a part (“wings”).
The first two uses distinguish whether the term refers to an abstract variable concept, or also to
the case where the variable is filled (instantiated) with a value. These uses are clearly related and
it is customary to use the same term for these in other disciplines as well. In computer science a
variable or class attribute primarily denotes the abstract concept (e. g., symbolic variable, storage
location), but the same terms will be used when referring to these concepts in the context of an
instantiated object that has values. For example, in UML the “class attributes” are still called “at-
tribute” in an object (i. e., an instance of a class). The attribute values (or data) are distinguished,
but no separate terms are introduced for class and instance attributes.

The third usage noted by Colless seems to be more worrisome. However, the examples given
by Colless resolve to natural language expressions implying that the character is the presence of a
part, not the part itself. A statement like “petiole is an important character” implies the property
values present or absent; it is similar to a statement like “diameter is an important character”,
where the part (e. g., trunk) and method (e. g., measured using circumference in breast-height)
may be implied.

Another analysis of the term “character” was performed by Inglis (1991). Coming from a cla-
distic perspective, he is not concerned with the distinction between variable-concept and variable-
data, but argues that distinctions between usage in systematics and taxonomy need to be made.
Inglis restricts character to a very narrow “original” diagnostic sense, essentially as a diagnostic
character of a specific taxon. The term thus has meaning only relative to a specific taxon and spe-
cific homology assumptions. Inglis introduces replacement terms for other senses (including “ho-
mology avatar” for a broader sense of character, and “homolostratum” for a broader sense of
character state). The usefulness of these terms when studying the theory of taxonomy and syste-
matics cannot be assessed here, but it is clear that these terms have not found broader acceptance
so far (as of 2006-05-20, Google reports no occurrences for both terms mentioned).

The argument that because of such definitional problems the term character “has lost most of
its meaning and value” and needs to be replaced with “description element” (Pullan & al. 2005)
is not accepted here. The authors of all other description models studied (DELTA, p. 19; SDD,
p. 20, Nemisys / Genisys, p. 21, DiversityDescriptions, p. 322, CBIT Lucid3, p. 21, XPER &
XPER2, p. 21, and NEXUS, p. 18) use “character” in an almost identical sense, i. e., as a defined
variable, expressing an object feature that can be recorded in one of the data types supported by
the information model (e. g., text, categorical, quantitative, or perhaps complex data). Colless
(1985) himself states that the definitions of character are related and that differences cause little
difficulty in practical studies. The distinctions made by Colless are relevant and fully accepted.
However, it is disputed that terms that were ever involved in ambiguous usage have to be replac-
ed. Colless himself proposes “character variable” for the first sense, which (in addition to “char-
acter definition”, having a slightly different perspective) is accepted here. The proposal by Col-
less to reserve the term “attribute” for the character data case (a usage that DELTA enacts) ap-
pears undesirable in the light of the use of the term in software engineering (compare Table 3,
p. 34) and is not followed here. Instead the terms “character data”, “character value” or, where
referring to a single element, “character data element” is used. In most cases, it was found suffi-
cient to use the unqualified “character”, because the argument would apply both to the abstract
and the concrete concept. The present study does not pretend to study character theory, but to
clarify the pragmatic and operational perspective used here, the following definitions are offered:

Character variable or definition: a concept for which an observation or
measurement method has been defined such that repeatable results can be
obtained in a defined format. The observation or measurement method includes
issues of object constraints and conditions like stage, object parts to study,
instrumentation, operating instructions, and data conversion instructions (see
p. 123 for details). The repeatability of the results does not imply identity: the

G. Hagedorn Selected definitions 33

variation of repeated quantitative numeric values and repeated free-form text
statements by different observers require different comparison problems, but do
not differ in principle.
Character data or value: The results of applying the measurement method
defined for a character variable. A character value may be a single measure-
ment or the results of an aggregation method. Examples for the latter case are
a set of statistical measure or a set of measurement values.
Character state: A special term used for values (categories) of categorical
variable. Character states must be defined (character state definition) and are
used in character data (character state data).

Inglis (1991) argues that in English a distinction exists between feature and character, and criti-
cizes the English translation of Ax (1984) for its use of “character”, noticing that Ax used the
German term “Merkmal”. Interestingly, in German no such distinction between feature and char-
acter exists, “Merkmal” being used for both (but property = “Eigenschaft” in German exists). The
current practice of the use of “character” suggests that the distinction in actual use of current
English is perhaps weaker than assumed by Inglis. However, the term “feature” may be a good
substitute for “character” when used with operational definitions as given above. Doing so has
been proposed by K. Thiele in the SDD discussions (see Table 3, p. 34). See also Rohlf (1993)
for the preference of “feature” (and “operational homologies”) over “character” in automated
computer vision.

3.3. Terms for ‘object parts’
Physical parts of objects, which can be distinguished and named individually, are a major foun-
dation for morphological descriptive data. These parts often form a compositional or structural
hierarchy, where parts consist of further parts. The preferred terms for parts vary strongly (Table
3, p. 34).

The preferred term in character decomposition models (Nemisys / Genisys, p. 21, or Prome-
theus description model, p. 21) is “structure”. While it is undoubtedly appropriate to refer to a
“structural hierarchy”, the term “structure” in the understanding of the author is related to com-
position, not to part. According to the Collins English Dictionary (CED 1992), structure is
defined as: “1. a complex construction or entity. 2. the arrangement and interrelationship of
parts in a construction, such as a building. 3. the manner of construction or organization: the
structure of society. 4. Biology: morphology; form. 5. Chemistry: the arrangement of atoms in a
molecule of a chemical compound. 6. Geology: the way in which a mineral, rock, […] etc., is
made up of its component parts […].”

Clearly, when allowing going down to atomic particles, all relevant parts in biology are in
themselves structures again. However, this results in using the same term both for a composition
and a component. In the context of the present discussions, the perspective implied by using
“structure” seems generally to be wrong. Instead of viewing the relation of object parts with a
larger entity, the fact that the parts in themselves are structured composition is highlighted. For
this reason, the term “structure” has been avoided in this thesis.

Inglis (1991) prefers the term “component” over “structure”. In this thesis, both “object part”
and “component” are used interchangeably.

3.4. Comparison of current usage of terms

Table 3. Overview of usage of terms in descriptive information models and computer science.

 Variables to store class or
object property values

 Actual value in
property of object

 Class 1
of ob-
jects

Individual
object

Measurable
concept

Part in
composition

Single
variable

Set of
variables

Variable
type

Value domain
for categorical
variable

Univariate
statistical
measure

Categorical
value

Quantitative
value

Biology/ICBN Taxon Specimen […] […] […] […] n/a n/a n/a n/a n/a
DELTA Item Item n/a n/a Character Keyword 2,

Include/Excl.
characters

Character
type

(Character)
States

“Numeric
values”?

State value;
Attribute 3 =
Char.+ set of
state values

Numeric value;
Attribute =
Char.+ all num.
values

DeltaAccess/
Divers.Descr.

Item Item n/a n/a Character Char. group,
char. subset

Character
type

(Character)
States

Statistical
attributes

States Value

Lucid3 4 ? ? n/a n/a Character
state

? n/a? States n/a ? ?

Thiele, K. 5 Entity Entity Feature 6 Feature Feature ? ? Value ? Value Value
SDD 7 Taxon Specimen,

Taxon-
Occurrence

Property
(using Desc.-
Concept)

Part (using
Descriptive-
Concept)

Character 8 Character tree Character
type

States Univariate
statistical
Measure

Categorical
state

Quantitative
value

Diederich/
Fortuner 9

Taxon Organism Property6 Structure,
substruct.

Character ? Basic
property

States
(descriptive)

n/a? Qualitative
data? 10

Quantitative
data, Value

Lebbe/
Vignes 11

Taxon,
concept

Individual
("indivi-
dus"),
instance

Quality Subject Variable,
Descriptor
("descripteur")

Descriptive
system= vari-
able set + de-
pendencies

Type Possible value,
state ("modali-
tés", "états")

Statistical
summary

Qualitative attri-
bute (= set of all
values)

n/a

XPER2,
Vignes Lebbe
/Chalubert 12

Biol.
entity

Case Ontology:
quality 13

Ontology:
subject,
structure

Descriptor or
descriptor
element

Descriptive
system= vari-
able set + de-
pendencies

Character
type 14

Single =qual.
state or Bool.,
domain = “ref-
erential set”

Numerical
state,
Integer/float
state

Qualitative attri-
bute (= set of all
values)

n/a

Promethe-
us descript.
model 15

Taxon Specimen Defined
property
term6

Defined
structure
term

Conceptual
description
element ("DE")

Description
unit (?)

n/a? State group? Generalized
measure

Scored qualitative
description
element

Scored quanti-
tative descrip-
tion element

NEXUS Taxon n/a? n/a n/a Character Charset “Format
DataType”
(?)

(Character)
States

Item (multiple
items in each
char. × tax. cell)

“Data matrix” “Continuous”

 Variables to store class or
object property values

 Actual value in
property of object

 Class 1
of ob-
jects

Individual
object

Measurable
concept

Part in
composition

Single
variable

Set of
variables

Variable
type

Value domain
for categorical
variable

Univariate
statistical
measure

Categorical
value

Quantitative
value

UML 1.x Class Object,
Class
instance

n/a Class in
composition,
Component

Attribute6 ? Type «enumeration»
Class

[…] ? ?

Entity-
Relationship

Entity
type

Entity n/a n/a Attribute6 […] Type (incl.
user-def.)

value domain,
lookup table

Aggregate
functions

Value Value

Java Class Object n/a Class,
Object

Field; or set-
/get-methods

[…] Type Enumeration
(Enum)

[…] Enum. object
(Java 1.5)

Numeric type
value

.NET/Mono Class Object n/a Class,
Object

Property6 […] Type Enumeration […] Enum. object ?

“[…]” indicates variable, unsettled usage, “?” unknown usage, and “n/a” (not applicable) indicates that a concept appears to be not supported.
 1 “Class” also has a special meaning as a taxonomic rank in biological nomenclature. Throughout this thesis, the term class is used in the general sense, not as a specific biological rank.
 2 Intkey “Keywords” (using the “Define Characters” directive) are the only facility in DELTA where a character may be a member of multiple character sets. Other DELTA facilities (Character

headings, Item subheadings, and Link characters) partition characters uniquely into sets. Views can further be defined with Include/exclude characters.
 3 DELTA uses the term “attribute” both for categorical and quantitative data (Dallwitz & al. 2000a) and defines it as “character number” (i. e., reference to a character definition) “together with

the character values (state numbers or quantitative values) which apply to the taxon being described”. In addition to state numbers or quantitative values also special symbols ‘V’, ‘U’, ‘–’ are
supported (compare “Coding status”, p. 74). Note that Sokal & Rohlf (1981) and Zar (1984) define the term “attribute” as exclusively referring to data on the nominal scale.

 4 CBIT Lucid3: information by K. Thiele (pers. comm.)
 5 Simplification of terms proposed by K. Thiele in SDD discussions (pers. comm.)
 6 Dictionary definition of attribute, feature, and property may also be found in Table 44 (p. 164). Note that in XML the terms “attribute” and “entity” have completely different semantics than any

of those listed above.
 7 See p. 20 for references for SDD.
 8 “Character” in terminology is used as the abstract concept (“character variable”, “character definition”). In the context of a description (i. e. an instance) the term “character data” is used

where necessary to clarify the context (compare p. 31).
 9 Diederich/Fortuner: according to Diederich (1997), Diederich & al. (1997), Diederich & al. (1998).
10 Diederich & al. (1997) define qualitative data as “descriptive (textual)” data, opposed to quantitative data define as “real numbers, integers” (but without statistics).
11 Lebbe/Vignes: according to Lebbe (1991), Lebbe & Vignes (1998), and Diederich & al. (1997). The author of this thesis regrets that due to his lack of knowledge of French he could not do

justice to Lebbe (1991), probably one of the most thorough treatments of descriptive data in recent years. Readers able to read French are encouraged to read this beyond the places where
it could be cited in the current publication.

12 According to Chalubert & Vignes Lebbe (2006) and pers. comm. R. Vignes Lebbe.
13 “A ‘quality’ is what could be measured on something: a length, a color, a shape, etc. Then a descriptor is the combination of a quality on a designed part (one or several subjects): “color of

the anterior wings”, “length of antennae”, “ratio of the length petals/sepals” etc.” (R. Vignes Lebbe, pers. comm.). Thus, the term here includes both categorical (qualitative) and quantitative
measurements.

14 XPER and XPER2 currently support only discrete values (qualitative, Boolean, or interval range).
15 “Prometheus Description model” (p. 21): according to Pullan & al. (2005).

36 Fundamental aspects of description models G. Hagedorn

4. Fundamental aspects of description
models

4.1. Introduction
Describing objects seems to be a common and intuitive task. Modeling this activity in a precise
way is, however, anything but trivial. The following sections try to introduce basic concepts and
discuss the various problems and modeling approaches encountered in object descriptions.

Some of the problems involved in language usage and the recognition of parts and properties
of objects are introduced by examples in the following section. Unconstrained natural language
descriptions are an intuitive, but difficult-to-analyze form of descriptions that is briefly discussed
on p. 39 ff. The following sections of this chapter then try to lay groundwork for more structured
descriptions by discussing levels of abstraction and the use of terminology (p. 42), data types
(p. 49), mapping between data types (p. 66), coding status (including manual coding for inapplic-
ability, p. 74), rule-based character dependency and applicability (p. 76), the problem of informa-
tion aggregation associated with the description of both classes and individuals (p. 83), and in-
heriting data along the taxonomic hierarchy (p. 99). Finally, the complex topics of description
storage models (character or state matrix, character decomposition etc. (p. 104), and descriptive
ontologies (composition and generalization hierarchies for parts, properties, methods, etc., p. 131)
are discussed.

4.2. Context, recognition, and language
An essential prerequisite to enable the comparison of diverse objects is a generalized conceptual
model (or “framework”), within which differences may be compared in a meaningful way. Such
a model is essentially a language for object descriptions, defining the concepts and names of ob-
ject parts, methods, properties, and property values. Unfortunately, a language general enough to
be applicable to all objects is often not expressive enough to distinguish similar objects, at least
not in an efficient way. This is easily overlooked, since humans experience the context-specific
vocabularies (i. e. “linguistic registers”) that are required to communicate about everyday objects
as a part of the general language.

For example, many context-specific terms will be used in the description of a car model, de-
fining parts and their arrangements, functional concepts, complex properties and property values:
“steering wheel”, “automatic transmission”, “sunroof”, “metallic” paint, etc. Although most read-
ers will understand these terms, it is easily imagined how, without knowledge of the “car vocabu-
lary”, many terms could be misunderstood. Without an appropriate language, describing the com-
position of objects may become difficult, if not impossible. It is not conceivable to start in a
corner of a car and describe the properties of every part encountered in a linear sequence.

The names of object parts (also called “components” or “structural elements”) often imply
more than position in a composition. A term like “steering wheel” will imply a general functional
and structural description. Often even default (or “most common”) properties like shape and
color are implied. The description of the steering wheel of a specific car model will then use the
general concept as well as omit the most general properties being already inferred by the consum-
er of the descriptions (e. g., “the brightly red steering wheel is shaped almost in the form a rect-
angle …”, but not: “the steering wheel is circular and painted black”).

Similarly, property names and values may be context-specific. This may even apply to very
general concepts like color, which may be overloaded with context-specific terminology like the
proprietary marketing terms for color that car manufacturers use.

The problem of recognizing a part as belonging to a certain category (e. g., “rear mirror”,
“plant leaf”, “car antenna,” or “insect antenna”) is difficult to address formally. The relationship

G. Hagedorn Fundamental aspects of description models 37

between the composition of parts (presence and multiplicity) and object properties is one of reci-
procal dependencies and consequently difficult to model (Figs. 8-9). Creating part definitions
from general properties alone (color, shape, etc.) is often very difficult. Many properties will be
specific to the context of the described part (e. g., “venation”, the arrangement of vascular bun-
dles of the leaf), or conversely imply the presence for further child parts (e. g., “hairiness”). Simi-
larly, the relation to neighboring or parent parts will often be part of the definition of a part (e. g.,
“sepals” as opposed to “bracts”).

This can best be studied when considering out-of-context identifications of components. For
instance, during a criminal investigation it may be necessary to identify car parts without know-
ing their context. A classification system of car parts that is truly general and may be applied by
someone who has never previously studied the parts is severely constrained in the properties it
can use. In general a much more successful method would be to have someone study all car parts
in their context (placement within the car, function, manufacturer, and manufacturing period) and
use the human associative memory. This memory could be supported by a classification system
that is partly based on compositional context (e. g., “parts of light bulbs”) and supported by gen-
eral properties (e. g., “metallic”). Clearly, knowing that a piece of glass is a part of the light bulb
greatly simplifies the task of identifying the car model to which it may belong.

In biology, complete out-of-context identification of parts (e. g., air-borne spores or animal
parts when studying predator diet) is rare. However, this is offset with a huge diversity of form
and properties of life on earth. The missing context is often not the placement in a part composi-
tion, but the placement in a taxonomic group (virus, bacteria, annelids, fungi, nematodes, etc.).
Independent terminologies have been developed for most taxonomic groups, sometimes introduc-
ing superfluously synonymous concepts (similar to car colors), but most often introducing terms
and concepts for object parts and properties that are necessary, efficient and convenient. Again,
returning to the car example, a similar situation may be found in the criminal investigation: re-
cognition that a machine part is from a racing car, a truck, or a building machine may be vital to
solve the case.

Some other problems involved in the reciprocal dependencies of recognition and analysis are:
■ Individual variability: This problem is typically smaller for manufactured objects like cars

than for biological object that may show high within-class variation (due to genetic polymor-
phisms and phenological plasticity).

Object Part

O
bj

ec
t

C
om

po
si

tio
n

Temporal
stage

Property
Values

Orientation &
Composition

Initial ...

Recognition of
properties

Ne
ig

hb
or

in
g

pa
rts

Recognition

of object part(Heuristic
cycle)

Figure 8. Recognition of object
parts is a cyclic identification pro-
cess based on recognition of
object properties, life-cycle
stage, and composition of previ-
ously recognized object parts.

Figure 9. Interpretation of the recognition of object parts as a
heuristic cycle. Each recognition step is a hypothesis tested
through evaluation of properties and information about
neighboring parts. Ultimately, the general orientation (front /

back, top / bottom) and the object composition are resolved.
Additional steps may be required to recognize life stage or
taxonomic context.

38 Fundamental aspects of description models G. Hagedorn

■ Aging and life-cycle dependency: A new brake may be as different from a worn-out one as a
young plant from an old (“senescent”) one. Recognition of the life-cycle stage is an essential
part of the heuristic process of recognizing parts and properties of objects (Fig. 8).

■ Descriptions are strongly influenced by the methods used to observe properties. A property
value without knowledge of the method used to obtain it may be of limited value (Fig. 10).
The relation between properties, methods, and part-composition is a central problem when
modeling descriptive data and will be discussed repeatedly in the following sections.

■ The taxonomic diversity leads to increased diversity of components, properties, and methods.
The greater the taxonomic diversity, the more difficult it becomes to establish a common
framework within which comparisons remain meaningful (Fig. 10).

depends on

Taxonomic
Diversity

depends on

depends on

depends on

Which property is observed?
Examples: presence, shape, color

Which part is observed?
Examples: head, hair, pigment

How is it observed (method)?
Examples: unaided eye, hand-lens,
microscope, growth conditions

depends on

depends on depends on

Figure 10. Additional dependencies on observation methodology and taxonomic diversity, exten-
ding Figs. 8-9. The diversity of methods, properties, and components (i. e. structural diversity) is
increased with taxonomic diversity.

One solution to this problem is to choose analytical methods that are as context-independent
as possible. In the car-part-example, if small machine parts have to be identified out-of-context,
forensic practice may resort to expensive, but highly general and feature-rich properties like iso-
tope composition to enable out-of-context identification. Similarly, biological identification uses
more and more context-free identification methods based on molecular patterns or sequences
(including “DNA bar-coding”). Although still comparatively expensive, these methods typically
provide sufficient information to obtain an identification result in a single step, are usually appli-
cable to a large taxonomic domain, and are usually independent of the compositional complexity
of biological objects (the latter applying to DNA-based, but often not to RNA- or protein-based
methods).

The examples above illustrate how much associative thinking biologists normally use when
they, for example, generalize strongly different structures as a “leaf” – while recognizing other
leaf-like structures as “stipules” or “cladodes”. Language can incorporate many of these intui-
tions, and descriptions addressing humans will be able to make use of these. However, the spe-
cialized language used by taxonomists is often specific for a given taxonomic group and depends
on intensive training and experience. With an increasing diversity of objects, and with an in-
creased diversity of expertise of the users, finding an appropriate common description language
becomes more and more difficult.

No complete solution is known to the problems of descriptive data, i. e., combining the desir-
able properties of allowing associative thinking while retaining analytical properties of data sets
and adequate manageability by biologists. Although it is probably possible to build a fully axio-
matic descriptive terminology for biology, where each term is defined from first principles or
based on other terms previously described, the author knows of no such attempt. Also, at least for
the purpose of identification, the value of such an enterprise is questionable. Even many “nor-

G. Hagedorn Fundamental aspects of description models 39

mal” biological definitions that require anatomical, ultrastructural or other properties that are
very difficult or expensive to observe, may, in the practice of biological identification, be re-
placed by terms appealing to intuition and associative memory.

The following sections discuss the advantages and trade-offs of various description models.
The first section introduces the most traditional and perhaps intuitive method of describing biolo-
gical objects by free-form text.

4.3. Natural language descriptions
The most intuitive way to describe an object is to use “normal” or “natural” language in an un-
constrained free-form text element. This method relies on terms whose definitions are either spe-
cific to the subject (a “register” or “terminology” within the language) or are assumed to be com-
monly known. As usual in natural language, terms are highly context-sensitive and at least those
terms borrowed from common language are often ambiguous. Natural language descriptions in
biology normally use only a restricted code consisting mostly of enumerations. They are com-
monly used in most taxonomic monographs and may look like the following (hypothetical) ex-
ample:

Stromata small, superficial, orbicular to elongate, at first gray, later black, 1-3

× 1-2 mm and 0.5 mm high; perithecia semiglobose, 0.5-0.6 mm diam. with
papillate ostiola; asci cylindric, 80-90 × 7-11 µm; ascospores uniseriate,
ellipsoidal, with obtuse ends, dark brown, often with large oil drop in center,
15-18 × 5-8 µm; paraphyses present.

The compact, relatively readable format provided by such descriptions is an efficient way to ver-
ify an identification reached primarily by other means (e. g., browsing illustrations or identifica-
tion keys). Some identification methods may leave several taxa as potential, but doubtful, identi-
fications and require comparison with illustrations or natural language descriptions in a final
phase. However, even where the identification results in a single taxon name, an explicit confir-
mation phase (see p. 232) is highly desirable to catch errors that may have been made during the
earlier parts of the identification procedure.

For this purpose most natural language descriptions focus on characteristics considered to be
diagnostically relevant, i. e., necessary or useful to distinguish the individual taxa within the in-
tended scope of a taxon set (e. g., all species of a family in Europe). Such descriptions are called
“diagnostic descriptions” (or just “diagnosis”, which may, however, be confused with the “pro-
tologue”, i. e., the diagnostic description accompanying the first publication of a name). They
omit information that is:
■ constant within the set (and usually implied through context and the knowledge of the ob-

servers, e. g., that most plants are somewhat green),
■ too variable within instances of the classes of the set to be useful,
■ considered too difficult to observe, or
■ considered redundant.
Strictly diagnostic descriptions contain only a minimal set of characters required to diagnose all
members within a taxon scope (Pankhurst 1991).

Due to these omissions most natural language descriptions are only an incomplete documen-
tation of the morphological, anatomical, ecological, etc., properties of a taxon. Descriptions that
attempt to explicitly record any descriptive data quickly become inefficient when comparing
them with actual objects. This trade-off between completeness and usability becomes highly rele-
vant when descriptions are used out of the originally intended context (e. g., when new species
have been discovered but no up-to-date monograph exists, or when monographs must be used in
geographic region they were not intended for).

It is possible to find compromises and create natural language descriptions that are both con-
cise and provide sufficient redundancy to offer a chance of raising doubt when encountering ob-

40 Fundamental aspects of description models G. Hagedorn

jects not covered by the diagnostic set. In digital formats it is possible to add markup information
to enable hiding redundant or static parts of complete, documentary descriptions. However, the
creation of concise diagnostic descriptions or diagnostic markup is not a trivial task. It requires
excellent knowledge of a set of taxa plus experience with errors commonly made by users with
less knowledge. In practice, such high quality natural language descriptions are thus achieved
only for a tiny fraction of total biodiversity (e. g., birds, mammals, vascular plants from temperate
regions, some well-studied insect groups like butterflies).

An advantage of natural language descriptions is that they often enable readers acquainted
with the taxon group, to visualize the morphology from the description. Such visualization is
aided by reliance on a well known “standard model”, from which only the deviations are re-
corded. In the experience of many biologists, it is much more difficult, to achieve a similar visu-
alization based on an exhaustive, perhaps tabular documentation of all object properties. Due to
this, natural language descriptions may be useful even as a temporary report format to facilitate
proof-reading of data.

However, these visualizations largely depend on associative memory. Ambiguities, almost un-
avoidable when using natural language, cause direct visualizations without prior knowledge of
the taxon to be often unsuccessful. Fig. 11 illustrates subtle ways in which both explicit omissions
(rounded corners, absolute and relative orientation) and slight differences and ambiguities in ter-
minology (white versus bright, circle as filled disc or outline, color as bright or white) may mean
that a description may or may not fit strongly differing objects. Natural language descriptions are
an effective tool supporting the associative memory of trained taxonomists, but less suited for
identification or when used by less experienced users lacking these associations.

Also, it may be noted that future attempts at creating machine-aided “virtual reality” visualiza-
tions will be much more likely to succeed on the basis of exact and exhaustive descriptions, than
on the basis of natural language descriptions.

Perhaps the most relevant shortcoming of natural language descriptions is that, both for hu-
mans and machines, descriptions are often very difficult to compare with each other (see, e. g.,
Allkin & Bisby 1988). Fig. 11 illustrates that this is not a question of limited ability of machine
processing: whether the two example descriptions refer to the same object class or not remains
ambiguous to humans as well. Performing such comparisons (and perhaps calculating similarity
measures on them) is highly desirable, e. g., during a confirmation phase of an identification pro-
cess (see p. 232), to search for potential taxonomic synonyms based on the similarity of descrip-
tions, or to verify that newly described taxa are indeed new (compare “Failure of identification”,
p. 310). Unfortunately, this also severely limits the use of computers to search for descriptions

matching the object in hand. Whereas direct compa-
risons between an object with each description are
possible, this is often impractical if too many de-
scriptions are in the scope. However, using a com-
puter to search for a matching description (“leaves
lanceolate”) essentially involves the creation of an
ad-hoc description and has the same problems of
comparability.

Similarly, the lack of comparability also severely
limits the options for software-aided error checking
and analysis of hand-generated natural language de-
scriptions. In practice, even in taxonomic mono-
graphs covering only a few hundred species, proof-
reading becomes an almost impossible task. Each
description consists of dozens of individual state-
ments that are extremely time-consuming to syste-
matically verify against actual specimens. Taxono-
mists reading a description for consistency and cor-

Description 1:
Body rectangular, head
symmetrical, narrowing
evenly to a tip, with
two bright eyespots

 Description 2:
Body rectangular, head
triangular with two white
circles

Figure 11. Natural language descriptions
are useful when comparing an existing
object with a description, but often a poor
method to visualize objects or compare
descriptions with each other. The left de-
scription matches only the left object, the
right description fits both objects.

G. Hagedorn Fundamental aspects of description models 41

respondence with memorized character states will, however, easily overlook erroneous state-
ments. This is similar to the tendency to overlook spelling errors in a text as long as it remains
comprehensible.

Finally, the lack of comparability prevents tailoring data for different purposes, such as docu-
mentation of taxonomic knowledge, for phylogenetic analysis, or for identification purposes (All-
kin & Bisby 1988). For each purpose, data have to be created and maintained separately, and error
corrections or new information have to be synchronized manually.

It is important to distinguish between natural language as original data storage, and natural lan-
guage as a report format automatically generated from other storage forms. Several current appli-
cations (CSIRO Confor with “tonat” directive, Dallwitz & al. (2000a), and DiversityDescriptions,
p. 322) are capable of producing such reports (Fig. 12). Doing so requires additional information.
The approaches to do so differ substantially between DELTA (p. 19), DiversityDescriptions, and
SDD. Further information regarding natural language generation in DELTA may be found in
Pankhurst (1991) and Dallwitz (2000a, 2005c). For DiversityDescriptions see the user’s guide
(Hagedorn 1999a) and p. 327 in the documentation of the information model.

With regard to original data storage, however, the problems mentioned make it desirable to
develop more stringent models that facilitate machine processing and provide better knowledge
management and error checking options. Such models are discussed in the following sections.

Figure 12. An example of an editing form (left) and the corresponding natural language descrip-
tion (right), both generated by DiversityDescriptions. Corresponding data are highlighted in red
(from Hagedorn 2002a).

(Throughout this thesis a list of consecutively numbered statements expressing required or de-
sirable features for a descriptive information model are presented in boxes like the following:)
1. The provision of free-form text natural language descriptions (full or diagnostic) is desir-

able, for example, during the identification process.

42 Fundamental aspects of description models G. Hagedorn

2. These may either be authored (including digitized legacy descriptions) or automatically
generated from more structured descriptive data forms. A number or data items is required
for natural language generation – these are not discussed further in this thesis, but are pre-
sent in the models presented.

3. For many purposes, natural language descriptions are inadequate. Supplying more struc-
tured forms of descriptions is highly desirable.

4.4. Structured descriptions and the concept of
terminology

Level of abstraction of descriptive information models
Information models express a static view of how information about a specific knowledge domain
may be subdivided and structured. A model may limit users to a highly constrained vocabulary, it
may allow users to extend the vocabulary, or it may provide for unconstrained (e. g., free-form
text) information. After deciding that free-form natural language text alone is unsatisfactory, a
deliberation is necessary, which level of structure and which level of semantic abstraction is ap-
propriate for descriptive data.

Given the task to model plant descriptions, a naïve information designer might create data
elements like plant height (type: double), number of petals (type: integer), leaf presence (type:
Boolean), leaf shape (type: enumeration). In object-oriented terminology this describes an object
through instances of a class with several properties to which values are assigned. Each property
has a name and a type (text, categorical enumerations, or quantitative types).

Objects and classes are often shown as UML (Unified Modeling Language, see p. 24) dia-
grams. UML lists the attributes of a class in the diagrams below the name of the class or object.
Fig. 13 provides an example both for an instance object (an actual object with values) and a class
(a generalized concept for a set of objects). In both examples the methods (which may be shown
below the attributes) are suppressed. Where appropriate, in some diagrams the attribute box itself
may also be suppressed (leaving only the top part with the class name). For more information
about UML class and association icons see Fig. 5 (p. 25) in the introduction.

UML as well as most ER (Entity-Relationship) models prefer the term “attribute” over “prop-
erty” (compare Table 3, p. 34). In the present discussion, attribute and property are used inter-
changeably, with a preference for “property” in conceptual thinking, and “attribute” when expli-
citly referring to class attributes.

In biology, a property or attribute of an object is often called a “character” (compare p. 31 for

surface: smooth

height: 1.4 cm

shape: triangle

GeometricObject
shape : ShapeEnum
surface : SurfaceEnum
height : Double

«enumeration»
ShapeEnum
triangle
circle
square

Triangle object
shape = triangle
surface = smooth
height = 1.4 «enumeration»

SurfaceEnum
smooth
rough

Figure 13. Comparison of informal presentation, UML object diagram and a corresponding class
diagram. An object (the triangle) described through associated property-value pairs. On the left
side the object properties are informally symbolized graphically by tags attached to the object. In
the center, the same situation is depicted as a UML object diagram (name of object instance
underlined, attributes with assigned values) and on the right side it is shown as a UML class dia-
gram (together with the enumeration data types the shape and surface properties depend on).

G. Hagedorn Fundamental aspects of description models 43

distinction between “character variable” and “character data”). In the case of properties with a
categorical data type the property value is commonly called a “character state”. Terms like char-
acter, state, attribute, and property are also used in various models, and usually differ strongly
from the definitions used in OOP (object-oriented programming), UML, or ER notation (compare
Table 3, p. 34). The term “property” is used here in a general sense as used in OOP or by Lebbe
(1991) and Lebbe & Vignes (1998), not in the sense of the “basic properties” (Diederich 1997,
Diederich & al. 1997, Diederich & al. 1998). Similarly, the term “attribute” is used in the general
UML sense, not as used in DELTA (p. 19; compare Table 3).

A design like the one shown in Fig. 13 remains close to the terminology used in the knowl-
edge domain. For the sake of simplicity and intuitiveness, this is recommended if the primary
purpose of the model is to partition information into free-form text data elements. Example for
schemata using this direct approach are OpenKey (2003) and the one cited in Cui & Heidorn
(2007). However, as will be shown further below, substantially more structure and ontological
information is required for machine-based reasoning (e. g., by identification programs). Also, in
most cases the data are more complex than initially assumed by simple systems. Plant height is
often not recorded as a single value, but a range or a set of statistical measures (such as mean,
standard deviation, and sample size). The leaves of a single plant may vary strongly and require
leaf shape to be expressed as a set of categories rather than a single value (which requires a col-
lection class in OOP and a separate entity in ER models), and shape may be accompanied with
frequency information (e. g., “usually ovate, rarely linear”). These examples show that when try-
ing to reach a model of better quality, the “simple” models may soon become highly complex,
given that a typical biological object may be described through several hundred properties. Sub-
stantial resources are required to develop software handling descriptions of such complexity.

Biology deals with an enormous diversity of organisms: viroids, viruses, prokaryotes, phylo-
genetically diverse groups classified as protists, fungi, and algae, plants, and animals. It is obvi-
ous that with the exception of a few molecular characters, no property is applicable to all orga-
nisms. Software solutions directly reflecting the property-approach outlined in Fig. 13 result in
taxon-group-specific models. Although financial resources may be found to develop taxon-
group-specific applications for popular groups like birds, butterflies, flowering plants, or fungi
(see, e. g., Lauber & Wagner 2001, Seybold & al. 2001, Götz 2003, Böhmer & Wohanka 2002),
this has not been and is unlikely to become the case for the smaller or less popular groups of
organisms. Unsurprisingly, however, knowledge about biodiversity is particularly lacking of in
exactly these groups (see Fig. 1, p. 14).

AbstractObject
Label : String
Value : Object

DescriptiveVariable

0..1 0..*

Describes

Label : String
EnumerationValue

0..* 1

Constrains

TriangleObject

Label = shape
Value = triangle

DescriptiveVar1

Label = surface
Value = smooth

DescriptiveVar2

Label = triangle
EnumVal1

Label = size
Value = 1.4

DescriptiveVar3

Label = smooth
EnumVal2

Figure 14. An example of an abstract descriptive data information model corresponding to the
specific model shown in Fig. 13. The specific variables and enumerations have been dissolved
and replaced with a collection of label / value pairs. The upper UML class diagram shows the
general model, the lower UML object diagram an example instance.

44 Fundamental aspects of description models G. Hagedorn

Most existing models for structured descriptive data therefore attempt to avoid a close corre-
spondence between the model and the described object and use more basic “concepts” of descrip-
tions. As a consequence, the level of abstraction of most descriptive information models is consi-
derably higher than in many other information models. Instead of specific properties like “plant
height”, general quantitative data and univariate statistics are handled, instead of “leaf shape”,
categorical data on object-parts are recorded (see section “Data types”, p. 49 for further informa-
tion). Fig. 14 shows a very simple way in which the specific model from Fig. 13 might be con-
verted into an abstract model.
4. Although simple, taxon group and observation methodology-specific information models

for structured descriptive information do have a place, a more abstract and generalized in-
formation model is desirable.

Generalization and terminology
Abstract models provide only a framework to record the descriptions. Additional information (a
“specification”) is required to adapt the general model to a specific organism group. In the SDD
model this information is called “terminology”, in DELTA “character list”. In the simplest case
the terminology is not explicitly defined and consists simply of label strings (e. g., “Descriptive-
Variable.Label” in Fig. 14). However, this means that the advantage over the natural language
lies primarily in a predictable segmentation of information. Whether descriptive variables (e. g.,
labeled “shape” and “outline”) are comparable or not is not directly accessible to machine proc-
essing. Similarly, the relation between “growth rate” and “growth diameter” is difficult to assess
for humans as well unless further definitions are available. For this reason the terminology is
usually explicitly defined and some part of the full descriptive information model is responsible
for defining terms. For example, for each character the DELTA model supports a concise label, a
natural language wording, an image, and extensive definitional text providing additional seman-
tics (“character notes”).

With the introduction of explicit terminology, the information model to describe a specific
taxonomic group is split into a fundamental information model, and a domain-specific extension.
The fundamental information model is collaboratively designed by information scientists and
biologists and subsequently implemented. However, defining the terminology is not a trivial task
either, and normally has to be carried out by biological domain experts (taxonomists, plant patho-
logists, ecologists, behavioral scientists, etc.), who usually have little experience in information
modeling.

Unfortunately, conventional biological terminology (as used in natural language descriptions)
is often contradictory and poorly defined. Definitions of terms are often learned through years of
experience, rather than by reading dictionaries or glossaries. As a consequence, biological termi-
nology has a tendency to be fragmented by organism group, country, and “school of thought”.
Many such differences between definitions are relatively minor and the consequences may not be
obvious until a specific organism with an unusual combination or expression of characters is
encountered. It is therefore difficult to “prove” that a terminological definition is satisfactory.
Any terminological concept should hence be defined through text or media resources enabling
human users to compare their own concepts with a definition (Pullan & al. 2005). An important
aspect of this is whether the definitions are sufficient to enable identifications with little training
or using computer-aided self-training. This aspect often has to be addressed separately from the
formal and complete definitions of terms.

Terminology also addresses software agents. Descriptive information models differ in how
much of the definition of terminology is a formal ontology intelligible to software agents, and
how much is exclusively directed towards a human user. The older DELTA format addressed
primarily humans, projects like Prometheus (p. 21) or “plantontology.org” (e. g., Pujar & al.

G. Hagedorn Fundamental aspects of description models 45

2006, Ilic & al. 2006) concentrate on machine-readable definitions, and SDD (p. 20) attempts to
find a compromise by adding rich machine-readable semantics, that can still be easily defined by
the domain expert creating a specific terminology.
5. A descriptive terminology is required as mediator between the abstract information model

and the concrete properties and observation methods in a taxonomic group.

Static versus dynamic terminology models
As more objects are described, property concepts
often have to be extended or reformulated. Fig. 15
continues the example started in Fig. 13 (p. 42) by
adding new objects. Some objects may be de-
scribed by extending the list of previously used
shape concepts (circle, square with rounded cor-
ners, hexagon, square with sharp corners, cross,
rectangle, ellipse), whereas others call for addi-
tional differentiating properties: triangle with un-
equal or equal sides, right-angled triangle.

Such a “schema evolution” (or “character evolution”) is a major problem in the design of all
systems managing descriptive data. It is probably unavoidable if the objects that shall be de-
scribed are not fully known in advance. Biology shares this problem with all scientific endeavors
dealing with yet unexplored terrain.

Table 4. Some consequences of changing the terminology in an extended character / state model
(as used, e. g., by DiversityDescriptions).

Terminology Operation Consequences on descriptions
Character Add Neutral (frequent operation)
 (incl. states) Remove Normally only immediate effects occur: Data using this char. must be deleted,

but other data are not affected. Exceptions are controlling characters in a
character dependency / applicability relation (p. 76) and characters involved in
mapping and calculations.

 Change definition The consequences are difficult to judge. Note that even clarifying previously
ambiguous definitions implies that some existing data may be erroneous as a
result of previous misunderstandings.

 Change arrangement
(tree or sequence)

Normally neutral (although it may lead to or resolve misunderstandings)

Char. state
(discrete)

Add/Remove/Change See character. Example: “antennae segments with 3 states: 1, 2-3, 4-5”.
Adding “6-7” is a neutral operation and does not affect existing data

 Change arrangement Considerable interpretation change for categorical data on ordinal scale,
neutral if scale is nominal.

 Move to different
character

This may be neutral: Independent states that have been recorded in ill-defined
characters combining several properties may be moved to more appropriate
character, assuming the observation methods used and the parts to which the
characters apply are appropriate. If the state is a controlling state in a charac-
ter dependency / applicability relation, only the dependency relation needs to be
updated, but no character data in descriptions.

Char. state
(classifying
continuous
variation)

Add/Remove In addition to the effects described above, adding or removing states that
partition a continuously varying feature will normally influence the borders of
existing states. The data referring to these states will have to be revised. It
may be necessary to maintain the changed states (marked as deprecated),
introduce new states for all changed concepts, and migrate all existing data
until the deprecated states are no longer used and may be deleted.

Univariate
statistical
measure

Add/Remove Making a new measure (e. g., standard error) available is neutral; removal
requires deletion of data but has only immediate effects. A change of the
definition is not possible; the semantics are fully defined and refer to standard
statistical practices.

Figure 15. A collection of objects that would
require a refinement of the descriptive prop-
erties used in Fig. 13.

46 Fundamental aspects of description models G. Hagedorn

Changing the terminology affects descriptive data based on the terminology and terminologi-
cal changes must be carefully considered (Table 4). However, the problem is somewhat smaller
in practice than in theory, because in practice it is unlikely that terms are applied precisely accor-
ding to their definition. Term definitions may be misunderstood or even ignored: Normally, re-
cording scientists will assume that previously learned concepts are also applicable to the current
data set with defined terminology. Explicit definitions will be considered only when problems or
inconsistencies are noted (and most likely displaying all definitions all the time will be perceived
as “information noise” and ignored…).

Thus, the application of terminology may differ substantially from the one intended in the
definitions. These errors will usually be indistinguishable from the errors made because the deli-
mitation of a term has slightly changed. A measure whether a change of terminology may be
considered acceptable or not may be achieved by comparing:
■ an estimate of the number of errors introduced in the data set by the terminology change,
■ an estimate of the number of errors present in the data due to imprecise application of the

terminology, and
■ an estimate of the number of effective coding errors and omissions present in the data set due

to incomplete proofing.
In general, experience with systems allowing the ad-hoc definition of new characters and states
(and thus an evolutionary development of terminology) is positive. Ad-hoc definition may even
be considered an indispensable feature (pers. comm. of users of DiversityDescriptions, which
strongly supports reorganization of terminology). Similarly the Genisys model (Diederich 1997)
outlines some explicit mechanisms to support schema evolution while minimizing the impact on
existing data.

Designing a descriptive terminology is not much different from software development. In
software engineering, the attempt to first design a near-perfect information and object model is
sometimes called “Big design up front (BDUF)” (see, e. g., Ambler 2002, Ambler 2003b). This
classical model of software engineering may still be preferable in certain situations. However,
development processes that explicitly contain iterative elements (e. g., the “Rational Unified
Process” of inception, elaboration, iterative cycles of design, implementation, testing, and refac-
toring during construction, and final transition to finished product, Jacobson & al. 1999) are often
more successful. The rate of change is even greater in development processes like “extreme pro-
gramming (XP)” (see, e. g., Beck 2000).

Unlike in software development, the usefulness of explicit prototyping phases is often limited
when developing a terminology for biological descriptions. Unfortunately, a small sample of ex-
isting published descriptions is not an adequate representation of the problem domain. The con-
tradictory nature of conventional terminology often surfaces only during the development of a
structured terminology. Furthermore, the diversity of organisms is often so large that it is very
difficult to assess the validity of a terminological model until a substantial proportion of the orga-
nisms have been studied. However, studying perhaps up to 50% of taxa in a taxonomic group in a
first prototype phase and re-recording all data in a second pass is clearly inefficient.

Prototyping being limited should not be understood as it being useless. Starting with a badly
designed terminology, and then having technical personnel record a large amount of data is al-
most guaranteed to either fail or produce low-quality data. Before attempting a large project, de-
veloping the terminology in smaller prototype projects is highly advisable. However, in the
prototype projects as well as in the large project, continuous further change may have to be anti-
cipated. Similar to software engineering, the best development process for descriptive terminolo-
gy depends on the circumstances:
■ Some large projects may fare best with extensive prototyping and then settling on a fixed

terminology for a prolonged period of time. This will especially be the case if a large amount
of resources are available and a large number of personnel have to be trained.

G. Hagedorn Fundamental aspects of description models 47

■ Most large collaborative projects will, however, fare best with a development process similar
to the “Rational Unified Process”, where change is explicitly expected, but occurs in a con-
trolled way.

■ Small projects may appreciate an “extreme describing” approach (analogous to “extreme pro-
gramming”) and a software allowing rapid evolutionary changes of terminology even when
data already have been entered. The advantages of iterative or evolutionary development pro-
cesses can best be reaped if the designers of the terminology themselves record descriptive
data and use the experience to improve the terminology.

Many terminological changes are nearly neutral in their effect on other data items (Table 4).
Where adverse effects exist, the most relevant ones are likely to be detected relatively early.
Changing a bad terminology, even if reducing the accuracy of a few descriptions, is usually pre-
ferable to sticking to a bad terminology for the remaining majority of data still to be recorded.
Obviously, changes detected at a later time affect increasingly rarely used characters, where
manual revision of all affected data typically becomes feasible.
6. A dynamically evolving terminology that may be changed while recording descriptive data

is possible and desirable.

Reaching terminological stability
Although researchers need to be able to define their own “proprietary” terminology, it is evident
that standardization is very desirable. This has a technical aspect and a semantic aspect:

Technical standardization: To compare and integrate descriptive data sets, the identity of
terms from different terminologies has to be assessed. This is not possible based on labels or
names: For example, two data sets defining a character with the same name “leaf structure” may
have completely incongruent definitions (e. g., rough or smooth surface vs. anatomical features).
Ontology languages such as OWL (McGuinness & van Harmelen 2004) enable the expression of
semantic information in a machine-readable way, but the expressiveness of current ontological
techniques remains limited. Such information can greatly help finding similar terms, but it is
unlikely that a question whether the similarity is large enough to warrant data integration can be
answered based on such information alone. Terminological concepts thus should carry unambig-
uous, preferably globally unique, identifiers. Different terminologies can then make assertions
about comparability of their concept with a standard concept. See the section “Federation and
modularization of terminology” on p. 180 for an in-depth discussion of this.

Semantic standardization: Improving the consistency of terminology and reaching conver-
gence of usage is an important goal for biodiversity research, which in principle is independent of
the use of computer programs for descriptions. However, attempting to define a structured termi-
nology to be used by software programs, aids in finding problems that may otherwise be over-
looked.

Although many groups attempt to construct terminologies (or “ontologies”), these efforts still
remain isolated. Older attempts, e. g., by the Taxonomic Databases Working Group (TDWG) to
standardize on plant descriptors have remained unsuccessful (R. Pankhurst, pers. comm.), perhaps
in part because the need to standardize was not perceived widely enough yet. Nowadays com-
puter science and world-wide data exchange create technical requirements for standardization to
which science has to react. Pullan & al. (2005) believe that their model is able to reach a consen-
sus within large, “natural groups” like angiosperms. Acceptance of the terminology still has to be
proven. However, their effort is focused on a specific audience: taxonomists working on groups
where most characters are morphological and easily observable (i. e., description does not depend
critically on methods). Conversely, as discussed later on p. 159, the Plant Structure Ontology

48 Fundamental aspects of description models G. Hagedorn

(PSO, Ilic & al. 2006) has deliberately ignored the need of morphological descriptions in favor of
simplifying comparisons of molecular gene-annotations.

Different opinions exist as to whether the current phase of terminological instability is tran-
sient and will soon be replaced by a period of terminological stability – or not. It is arguable that
the assumption that a group of eminent scientists should form a standards consortium to decide
on a fixed terminology is contradictory to the fact that science:
■ is constantly discovering new features or characteristics,
■ develops new methods,
■ that the results of these new methods also modify the interpretation of features studied previ-

ously by older methods (e. g., SEM studies influence how morphology is interpreted in the
light microscope),

■ reinterprets features because of improved causal and functional understanding,
■ but also is an opinionated, often very personal enterprise, where schools of thought arise that

identify themselves through use of proprietary terminology and concepts, and which are re-
placed by an evolutionary process of survival of the fittest ideas rather than through logical
argument (Kuhn 1970, Hull 1988, Hull & Ruse 1998).

The latter point is especially relevant. Terminological instability is most likely a part of the proc-
ess of science, i. e., changes in terminology are a method to achieve progress.
7. Standardizing terminology is desirable and the information model should support this.
8. A stable and global identifier method for objects of the descriptive terminology is required.
9. Rigid standardization is no alternative to providing support for a freely evolving terminolo-

gical schema evolution.

Relation between terminology and software implementations
Several approaches exist to implement software based on a combination of a general and abstract
base model and domain-specific terminology:
■ Run-time concept: The implementation is based directly on the abstract information model.

The terminology is defined as data (expressed in an abstract model itself) and is interpreted at
run-time. The user interface is based only on the abstract model but may provide run-time
customization based on definitions from terminology.

■ Compile-time concept: The software in which the terminology is defined is an application
generator that creates terminology-specific implementations based on the modeling defini-
tions. An example of this may be the Prometheus data entry tools said to be automatically
generated specifically for data recording projects (Paterson & al. 2004). This is similar to a
model-driven architecture where software applications are generated with high-end UML
tools. The persistent storage of data will be specific to the terminology as it was defined when
the application was generated.

■ Hybrid concept: The user interface part of the application is based on a fixed terminology
(compile-time concept), but all persistent storage remains constrained by the general abstract
information model. Already the DELTA data compilation into a binary Intkey file may follow
this model. JavaScript-based web identification tools that embed data in code (e. g., SLIKS,
SAIKS, p. 20) will certainly benefit from such a model. These tools are optimized for user
experience but suffer data management problems unless the key data can in the future be auto-
matically generated from more flexible persistent storage.

The implementation concepts differ in their potential quality of user interface and the ease with
which the terminology can be revised (Table 5). Most existing DELTA and NEXUS-based
applications (e. g., CSIRO DELTA editor and Intkey, Pankey, DiversityDescriptions and CBIT
Lucid / Lucid3) use the run-time concept. The generation of model-driven software application
code is a relatively new development in computer science, and only limited experience (e. g., the

G. Hagedorn Fundamental aspects of description models 49

Castor framework is used for generating schema-driven parts of software in the EFG project,
R. Morris, pers. comm.) exists in applying it to generating software for biological descriptions. It
offers more flexibility in customizing the user interface. However, if the domain-specific termi-
nology-part of the information model has to be changed frequently, the run-time concept may
still be preferable.

The development effort required to implement the various concepts is difficult to assess.
Whether it is simpler to create a fairly good user-interaction based on a highly abstract model, or
to write a code-generator that generates specific user-interface code, depends largely on the avail-
able tools. A new generation of development tools may greatly simplify model-driven application
development. One advantage of the run-time concept is certainly that even with standard database
forms (as in DiversityDescriptions) an acceptable level of user interface quality may be achieved.

Table 5. Different implementation concepts for software based on an abstract model plus
domain-specific terminology.

 Potential for quality Revising and improving terminology:
 of user interface –– Ease –– –– Involved agent ––
Run-time-concepts + + user
Compile-time-concepts + + – – developer
Hybrid concepts + + – developer

10. Different concepts exist to implement software based on a combination of a generalized,
abstract base model plus domain-specific terminology. The choice depends on available
development tools and is not part of the model requirements.

4.5. Data types
Any attempt to generalize the handling of descriptive data creates a system of data types. Since
most of the semantics of the data have been delegated to terminological data, these data types are
primarily concerned with providing information for query and analysis purposes. The following
sections discuss the most frequently used data type categorizations.

Measurement scales
Variables in statistical data analysis are usually classified (e. g., Zar 1984) as follows:
■ Nominal scale: Data that may be classified into discrete categories but cannot be arranged

into an order of relatedness. In biology this usually corresponds to the existence of polymor-
phic alleles in a feature determined by one to few genes. Examples are male / female, eye color
states.

■ Ordinal scale: Data that may be classified into discrete categories and further the values may
be arranged in a ranked order, i. e., expressions like “A is greater than B” and “B is greater than
C” are meaningful. Transitivity applies (i. e., A > B and B > C → A > C), but it is not possible
to quantify the distance between categories and compare the intervals between categories.

■ Interval scale: Data values are ordered and the interval between values may be quantified and
compared. However, the position of zero is arbitrarily defined, so that the comparison of ratios
of these intervals is not meaningful. The examples in biology fall into two subcategories:
□ Linear interval scale: The outstanding example are the common temperature scales °Cel-

sius or °Fahrenheit. Since zero is an arbitrary point it is not meaningful to say that 20 °C is
twice as hot as 10 °C (but both temperature scales are convertible to Kelvin (K), where zero
is a logical point, and which is on the ratio scale, see below).

50 Fundamental aspects of description models G. Hagedorn

□ Cyclical interval scale: Data that are based on time of day, season within year, compass
directions, etc. are not uncommon in biology and require special statistical methods for
analysis.

■ Ratio scale: Data fulfill all properties of the interval scale, but further ratios of two values are
meaningful to compare. This includes integer counts and the majority of continuous measure-
ments used in biology.

These scales have a natural order in that each scale makes additional assumptions about the data.
As a consequence, data on a higher scale can always be analysed using methods devised for a
lower scale. Doing so will reduce the analytical power (error of not rejecting a false null-hypothe-
sis) but if a result is significant on a lower scale it should always be significant on a higher scale
as well. “Downgrading” of data is frequently used in statistical analysis. For example, even if the
data are on the ratio scale, an analysis of variance (ANOVA) requires normal distribution and ho-
mogeneity of variances. If these assumptions are violated, it is possible to analyse the data using
“non-parametric” methods, essentially reducing the measurement scale from ratio to ordinal.

It may be noted that Boolean values (i. e., categories with only two possible states, such as
“true / false” or “absent / present”) can usually be equally well treated on the nominal and ordinal
scale. Whether it makes sense to say “absent is less than present” or not may be a philosophical
question, but the properties of data on the ordinal scale (transitivity, rank) that are used in ordinal
statistics become applicable only for > 2 states.

Note that although in the interval scale the ratio of two values has no meaning, the multiplica-
tion and division operators are defined and used, e. g., to calculate averages. Thus an information
model cannot simply prevent the use of all ratio operations on interval-scaled data.

In contrast to Zar (1984), Sokal & Rohlf (1981) do not discuss the distinction between the
interval and ratio scale (presumably because the only relevant example of a linear interval scale
in biology may be solved by conversion to degree K) and prefer the term “attributes” for nominal
variables, and “ranked variables” for variables on the ordinal scale.

The use of the term “ordinal scale” may be somewhat problematic, because in statistical analysis
ordinal data are usually assumed to be linearly ordered. However, categorical data in biology
quite frequently are ordered in more complex ways (e. g., into a tree of plesiomorphous / ancestral
and apomorphous / derived states in phylogenetic analysis, Fig. 16).

Ordered
(linear)

Ordered
(unrooted tree)

black

dark brown

brown

light brown

hyaline/colorless

black red

green blue

black

dark brown

brown

ochre reddish-
brown

yellow red

Unordered
(= nominal)

Ordered
(cyclical)

yellow

red

green blue

purple

Figure 16. Illustration of categorical measurement scales. In the examples, color states are mod-
eled using different assumptions, resulting in data on different scales. The arrows indicate possi-
ble transitions: In an unordered categorical character each state may be directly transformed into
any other state, whereas this may require several steps where states are ordered.

11. The concept of measurement scales is an important concept in statistical and phylogenetic

data analysis and should be reflected in the descriptive data type system.

G. Hagedorn Fundamental aspects of description models 51

Continuous versus discrete variables
Another central distinction in statistical analysis is that between continuous and discrete (also
called “discontinuous” or “meristic”) variables (e. g., Zar 1984, Sokal & Rohlf 1981). Different
perspectives exist when using the terms continuous and discrete and these are often difficult to
separate. Here the following perspectives are proposed to clarify the discussion:
■ The statistical analysis perspective is concerned with assumptions that statistical methods

make about continuous variation. Under this perspective, it is relevant whether the actual data
values are from a finite set of discrete values or whether they are from an infinite set of values.
In principle, categorical (nominal or ordinal) and counting values are always discrete and val-
ues expressed through real numbers continuous. In practice, however, this can often not be
guessed from the data directly. The numbers “26, 28, 30” may either represent the number of
leaves, or the height of plants measured to the nearest centimeter. Even more confusingly,
values like “1.7, 5.1” may be discrete. For example, they may represent the “bacteria per li-
ter”, and are calculated based on counts of 1 or 3 colonies per agar plate, multiplied with a
scaling factor. Furthermore, since all numeric computation is based on fixed-precision floating-
point numbers from a finite set of values, it is obvious that a practical rather than a philosophi-
cal distinction between continuous and discrete is called for. The deviation of calculated and
true error values (p) depends on the robustness of the testing method in respect to violations of
its assumptions. For ANOVA, if discrete data contain sufficiently many values (20-100) and a
testing for normal distribution is successful, the ANOVA will usually result in p-values of ac-
ceptable accuracy. On the other hand, an ANOVA analyzing values that appear to be discrete
(but are not, like “1.7, 3.4, 5.1”) may falsely report a significant deviation from the null-hypo-
thesis.

■ The functional (or causal) perspective is concerned with processes in the object that is being
studied. Variables may be known to be potentially continuous, but are treated as (usually ordi-
nal) categorical variables due to a lack of efficient measurement methods. For example, ani-
mal behavior may be scored as “very aggressive”, “aggressive”, “neutral”, “submissive”, and
“very submissive” (Sokal & Rohlf 1981). In biology, discrete characters are controlled by one
or relatively few genes. An example of a discrete character is “determinate versus indetermi-
nate habit of growth” in plants. Continuous (= “quantitative”) characters (as far as they are
hereditary) are controlled by many genes. Each gene has a small effect that interacts (usually
more or less linearly) with the effects of other genes. The distinction between continuous and
discontinuous characters is therefore not absolute. In practice a character will be considered
continuous if phenotypic variability and measurement error will be in the same order of mag-
nitude as the differences between genotypes.

■ Finally, an operational categorization perspective exists, if some property values are theo-
retically continuous, but this continuum is in fact not observed. Thus, in a given taxonomic
group, certain ranges of property values may never occur, creating gaps that are highly useful
when searching for borders of categorical classes (Thiele 1993). This is further discussed in
“Singularity, extension and connectedness of categories”, p. 53.

Table 6. Interaction between continuous / discrete variation and measurement scales.

Measurement
scale

Statistical analysis
perspective

Functional/causal or
operational perspective

Nominal discrete continuous or discrete
Ordinal usually discrete continuous or discrete
Interval continuous or discrete continuous or discrete
Ratio continuous or discrete continuous or discrete

52 Fundamental aspects of description models G. Hagedorn

Table 6 shows that, depending on the perspective, measurement scales and the classification
into continuous versus discrete variables are not completely dependent. The discreteness under
different perspectives is thus a separate part of the definition of a descriptive variable.
12. The distinction between continuous and discrete is relevant, but different perspectives exist

when using it for descriptive data. Depending on the perspective, the distinction does or
does not interact with the concept of measurement scales. It is, however, never nested with-
in measurement scales.

Categorical versus quantitative (measurement) data
A frequently used simplification of the system of measurement scales plus discreteness is a fun-
damental distinction between categorical (including nominal and ordinal) and quantitative vari-
ables (including interval, ratio, both continuous as well as discrete). This dichotomy is useful
because it reflects the differences in the data recording structure of categorical and quantitative
variables. Whereas both types of data require general definition, including the measurement
methodology (which part, which property, which instruments to use, etc.), only categorical data
require definitions of the category values (“states”) that are used. Essentially, the values of a
categorical variable are “pointers” to definitions present elsewhere. In contrast, the values of
quantitative variables are standard numerical values. However, to capture measurements of m,
mm, and µm in a single data set, it may be desirable to allow measurement unit scaling factors on
individual measurements rather than define them in the general variable definition; both being
unique to quantitative data.

For many analytical purposes, the information about measurement scale or discreteness will
also be very desirable. However, this information may be given nested in each data type, either as
separate subtypes or simply as metadata of characters.

Categorical variables may also be called “qualitative data” (e. g., Thiele 1993, the Genisys
model, Diederich & al. 1998, or the Prometheus description model, cited on p. 21). For various
reasons this may be less desirable:
■ Some statistical texts restrict “qualitative” to categories on the nominal scale (e. g., Sokal &

Rohlf (1981), while avoiding “qualitative” in definitions, use the term in explanations for
unordered, unranked attributes).

■ As noted by Thiele (1993), “qualitative” is often erroneously confounded with discrete and
quantitative with continuous. In plant breeding “qualitative” seems to be used as a synonym
for discontinous characters and traits (e. g., EB 2001: “Plant breeding / Evaluation of plants”).

■ Whether the term “qualitative” is fundamentally appropriate may depend on the (philosophi-
cal) definition of what a quality is, and whether or how it can be measured. According to CED
(1992), the major senses of “quality” are “1. a distinguishing characteristic, property, or attrib-
ute. 2. the basic character or nature of something. 3. a trait or feature of personality. 4. degree
or standard of excellence, esp. a high standard. [13th century: from Old French qualité, from
Latin qualitas state, nature, from qualis of what sort]”. All senses given include quantitatively
measurable traits (e. g., height, aggressiveness of a person, durability, or consumer satisfaction
with a product).

Thus, although quantitative / qualitative form a more intuitive pair than categorical / quantitative,
the term “categorical” is preferred in this treatment.

Similarly, quantitative variables may also be called “measurement variables”. Again, this may
be slightly confusing since – depending on the measurement instrument – the result of a meas-
urement may be categorical (e. g., an instrument measuring some toxic gas concentrations may
report only “OK” or “Danger”).

It may further be noted that the term “numerical data” is no synonym for quantitative data and
should be avoided. Both nominal and categorical data may be represented through numbers.

G. Hagedorn Fundamental aspects of description models 53

13. The distinction between categorical and quantitative data is a fundamental that should be
reflected in the descriptive data type system.

Singularity, extension and connectedness of categories
The usual concept of “categorical data” informs about data representation (“statistical analysis
perspective”, see “Continuous versus discrete variables”, p. 51), but does not necessarily inform
about the world that is being represented by the data (see “functional (or causal) perspective”,
p. 51). By definition, categorical data are always discrete in their data representation, but the
underlying real-world concepts may be continuous. In this case categorical data are the result of a
categorization (or “digitization”) process.

Knowledge whether categories are naturally distinct or a categorized continuous variable is
important when analyzing the possible statements involving categorical data. For example, if
color (continuous) is represented through color names (distinct categories), the natural language
statements: “color intermediate between yellow and orange” or “color somewhere between yel-
low and orange” will normally be meaningful to humans (or machines that are informed about
the underlying categorization process). Without this information, such a statement would appear
to the computer just as absurd, as “the mother had 2.5 children” is to humans.

With respect to ranges, ordered categories provided additional need for interpretation. Many
readers will interpret both “leaf 3 to 5 something” and “leaf between 3 and 5 something” neither
as “3 or 5” nor as “exactly 4” (i. e., excluding the borders), but as “3, 4, or 5”. Clearly, this is
guided by something: e. g., leaflets (discrete) or cm (continuous). Experienced botanists, knowing
that in the genus under consideration leaflets occur only in odd number (e. g., 3, 5, 7, 9) may even
include this knowledge into their interpretation of a range statement!

Thus, if non-adjacent categories are connected with “to” or “somewhere between”, the inter-
pretation of an inclusive range may be dominant, and if adjacent categories are expressed the
same way, depending on background knowledge about the character and measurement unit, inter-
pretation of a single intermediate value may be dominant (without excluding an interpretation as
an inclusive range).

Clearly, a substantial amount of knowledge about the real world is implicitly used when inter-
preting these statements. Furthermore, the existence of the two related natural language state-
ments “a to b” and “between a and b” seems to be relevant. Although neither is unambiguously
defined in natural language, the first is probably considered simpler than the second. Use of the
second is more readily interpreted to exclude the border values of the range than the first. The in-
formation model should provide means to unambiguously express the intent that may be hidden
in natural language expressions.

The following is an attempt to reconsider some aspects of categorical descriptive data and de-
velop a new terminology for it. The concepts that are being categorized (i. e. classified) may be:
■ singular (each is unambiguously a single thing) or extended (covering a range of variation);
■ connected or disjointed;
■ adjacently connected or not (in Fig. 17 d, ‘A’ and ‘C’ are connected through ‘B’, but not ad-

jacent, in Fig. 17 e ‘D’ is adjacent and connected to all other categories);
■ ordered in a natural order, which may be linear, form a tree, or an undirected or directed graph

(cyclic or acyclic).
Each category (or class) may contain:
■ one or several singular concepts (Fig. 17 a, categories ‘A/B/C/E’ and ‘D’, respectively), or
■ a range of continuous variation (Fig. 17 b to f). Fig. 17 d represents the most frequent case, a

categorized continuous measurement variable such as size.

54 Fundamental aspects of description models G. Hagedorn

BBBB

DD
CCCCCCCC

A

E

BBBB

DD

CCCCCCCC E

A

A B

E

D

A B C D E

a) b)

d) e) f)

A BBBB CCCCCCCC EDD

D

c)

BBBB DDCCCCCCCC EA

A
BBBB

CCCCCCCC
EC

Figure 17. Two-dimensional visualization of potential relations between discrete or continuous
reality and categorizations applied to it. Each square represents an example of a value space
that is to be classified. The white area represents values that either cannot logically exist, or do
not exist in reality. a) Disjointed singular values. Most classes contain a single, ‘D’ multiple val-
ues. b) Disjointed extended (ranges of variation). c) Linearly arranged disjointed categories (top:
singular, bottom: extended). d) Connected categories where adjacency creates an exclusive
linear order. e) Two-dimensional connected categories where the adjacency may be expressed in
a complex graph (i. e., not linear, cyclical, or as a tree). f) Connected categories where adjacency
is more complex, either because the relations can no longer be expressed in the two-dimensional
space of the visualization, or because – under an operational categorization perspective – parts
of the two-dimensional value space are not occupied.

Table 7 gives Examples of the various cases. Whether extended but disjointed categories (Fig.
17 b) indeed exist, depends on the perspective. From a functional (or causal) perspective, this is
unlikely. It may occur in the case of typologies, where categories are a combination of multiple
atomic measurements, some of which may be singular, others extended. However, no good bio-
logical example could be found and the result of such a situation is more likely to resemble that
of Fig. 17 f, i. e., the categories are partly connected and partly disjointed. If the perspective is,
however, to assess continuous or discrete variation based on actual occurrence in nature (see
“Operational categorization perspective”, p. 51), it is quite common that no taxon exists in a theo-
retically possible value space. This results in practically disjointed categories.

Knowledge of this is very useful when devising identification keys, since such a “natural”
classification improves the repeatability of identification. In contrast, the categorization of a con-
tinuum (Fig. 17 d to f) is much more liable to be interpreted differently by different users of an
identification key. A major problem in assessing this is, however, that operational discreteness is
often local to taxonomic groups or even geographic scope. Thiele (1993) discusses in detail
methods to create categorization of quantitative data based on gaps in the studied data.

Indications of connectedness, ranges, and intermediate values in current standards or software:
In DELTA (p. 19) the hyphen, when used between immediately adjacent state values, indicates
intermediate values (“1-2” instead of “1, 2”, Dallwitz & Paine 2005). In the case of ordinal states,
the hyphen primarily indicates a range (i. e., “1-3” = “1, 2, 3”), but it is possible to use “1-2-3” to
express a continuum of intermediates. In SDD (p. 20) Categorical character data carries a
“statemodel” attribute, where one of the values is “Between” (compare Table 22, p. 97). Prome-
theus (p. 21) deliberately supports neither ranges (“1-3”) nor intermediate values (Pullan & al.
2005).

G. Hagedorn Fundamental aspects of description models 55

Table 7. Examples of different classes of categorical measurements (compare Fig. 17).

Ordering
Singular
(always disjointed)

Extended-
Disjointed

Extended-
Connected

none
(nominal
scale)

presence of secondary
metabolites

(no example found) In theory none: connectedness defines order. In
practice: categories ordered in a complex graph
(e. g., leaf shapes with multiple potential inter-
mediate shapes) will often be treated as nominal
to simplify analysis.

linear
(ordinal
scale)

any character based on
counts, e. g., spore septa-
tion: aseptate, uni-, bi-,
…, multiseptate

flower color within a
genus having red and
blue flowers (but not
intermediate colors)

immersed, sessile, stipitate

cyclic phenological events like
first leaf or flower in a
year

life-cycle stages like
egg, caterpillar,
butterfly

daily hours, yearly months

complex
(n-dimen-
sional, tree
or graph)

“types” based on singular
elements

“types” involving singu-
lar as well as continuous
elements, like inflores-
cence or spore types

most categorical properties!

14. In many object descriptions information about variation underlying the categorization is
implied. A better agreed terminology seems to be desirable to accurately express knowledge
about ordering, ranges, inclusiveness of border values, and presence of intermediate values
in an unambiguous way. This topic requires further study; the terminology presented in
Fig. 17, in Table 7 (both above) and 22 (p. 97) is intended only as a first attempt.

Data types in computer programming
Data types have so far been mostly discussed from a data analysis perspective. The following is
an inventory of data types that are conveniently available in current high-level programming lan-
guages. Without question, computers can handle any conceivable data type and different high-
level languages support different types. Nevertheless a broad inventory of “current practices”
may help to distinguish between type concepts that may be implemented with little or no effort,
and those that require extensive custom programming.

Most computer processors (computer hardware including the microcode embedded in the pro-
cessor) have native data types and operations for integer and fixed precision floating-point num-
bers. Usually multiple integer types are supported (e. g., signed or unsigned integers of 8, 16, 32,
or 64 bit precision). All have a limited range of supported values (integers with arbitrary precis-
ion may be emulated by higher levels of software). Enumerations of categorical values (including
Boolean with values ‘true’ and ‘false’ and text characters like ‘a’ to ‘z’) are represented as bit
strings for which comparison and bit-wise logic is defined. Computer processors do not natively
handle real (rational and irrational) numbers. In principle, rational numbers could be handled
with full precision (and in rare cases this is achieved through software rather than directly in the
processor). However, their representation through fixed precision floating-point values is suffic-
ient for most commercial, technical and scientific purposes.

High-level programming languages and DBMS add constraining facets to these two basic
types, resulting in type-safe support for, e. g., categorical enumerations, Boolean, positive or
negative integers, or floating-point numbers. Interestingly, no computer language known to the
author has built-in support for the concepts expressed in the measurement scales. Categorical data
are usually supported through enumerations, but no separate types exist for nominal or ordinal
enumerations. In many programming languages it is possible to perform a type cast to integer to
compare the order of enumerated values (e. g., casting the Unicode letters ‘A’ and ‘B’ to byte
results in ‘65’ and ‘66’). The problem with the lack of type support for linearly ordered catego-

56 Fundamental aspects of description models G. Hagedorn

ries (ordinal measurement scale) is that the evaluation is not type-safe (i. e., the cast is possible on
enumerations on the nominal scale as well). Furthermore, after casting data may also erroneously
be used to calculate distances (e. g., “distance between A and B is 1”), which is nonsense because
distances are defined only on the interval and ratio scale, but neither for nominal nor ordinal data.

Similarly, no native support for data on the interval versus ratio scale is available in computer
languages known to the author. If type-safety is desired, this has to be implemented in a statistical
analysis library. Most high-level programming languages offer some support for cyclical data,
especially in the form of time and date values. Using the modulo operator (i. e., remainder after
integer division) any finite, discrete cyclical data type may be efficiently implemented, and cycli-
cal continuous types (e. g., angular values in degree or radians) require little additional support.
Although not normally part of the programming language itself, the angular types may be readily
available in mathematical libraries.

Further data types may be represented through sequences of the same (lists, arrays, strings) or
different type (structures, records). Complex numbers, vectors, and matrices may be expressed in
this way. However, complex numbers have so far not been used in descriptive data in biology,
and vectors and matrices are usually assembled dynamically for analysis purposes from their
respective dimensions, because in descriptive data the choice of dimensions in a vector usually
strongly depends on the needs of data consumers (e. g., for identification purposes, phylogenetic
analysis, etc.).

A more relevant example is the sequence of values. It may be desirable to have sequences of
all primitive data types to express ordered multiple observations (color, respiration, compass
readings). Two kinds of sequences, unconstrained text and molecular sequences, are especially
relevant in biological descriptions and are discussed in the following sections.
15. The matching of descriptive data types with those implemented in specific processors, pro-

gramming languages or DBMS is not a requirement.
16. However, commonly used data types (current practice for other disciplines) may help to

guide priorities and are relevant when estimating the cost of implementing a concept.
17. Sequences or arrays of data types may be desirable. Based on current practices (no existing

software implements sequences other than free-form text), the requirement seems to be
weak.

Unconstrained text
A special data type may be needed to support unconstrained, free-form text created primarily for
informing human readers rather than for analytical purposes. Such text may either replace other
forms of data (e. g., as in a DELTA “text character”) or it may occur in addition to categorical or
quantitative data as an extension mechanism (e. g., as in a DELTA “attribute-comments”).

Although only in relatively few situations free-form text is ultimately the best choice, the pre-
sence of free-form text elements greatly enhances the flexibility and acceptance of applications.
Free-form text elements allow the gradual introduction of a strict terminology, rather than forcing
content authors to solve all terminological problems before starting to enter data. Free-form text
is probably the only practical way to express information, if:
■ The nature of the descriptive information is such that categorical or quantitative characters

seem fundamentally inappropriate. For example, complex arrangements may be difficult to
atomize.

■ No appropriate terminology exists and the introduction of ad-hoc terminology appears unde-
sirable because it would apply to very few taxa. An example might be the description of rela-
tive positions of the inner organs of an organism.

■ The terminology is not yet defined in the application and perhaps difficult to define. Before a
precise definition is created, a period of testing and discussions with colleagues is planned.

G. Hagedorn Fundamental aspects of description models 57

Such text characters may or may not later be converted into categorical, terminology-based
characters or character values.

■ Current limitations of the exchange format or the application used offer no better alternative.
In DELTA it is inconvenient to code host plants or geographical areas as categorical charac-
ters because either new states would have to be added continuously, or the characters might
have to have several thousand character states. As a result, such data are often treated in free-
form text characters. Other examples are molecular sequence or pattern data in the absence or
appropriate data types.

Some special properties of text strings are that they may be language-neutral or language-specific
(with or without translations / alternative representations) and that often a simple form of text
formatting is desired. The topic of free-form text data elements is discussed in more detail in an
SDD discussion document (Hagedorn 2003f).
18. A data type for unconstrained, free-form text is desirable. The text may either be an exten-

sion of more structured information (such as a character state or quantitative value) or it
may replace more structured information.

19. A free-form text extension mechanism (e. g., “comments”, “notes”) may be part of the
fundamental information model and always available.

20. Whether free-form text may replace more structured information or not should be controlla-
ble by the designers of the terminology.

21. It is desirable to provide support for multilingual free-form text.

Molecular sequence data
Nucleic acid (DNA, RNA) and protein sequences are expressed as a sequence of symbols. Each
symbol represents a molecule and the order of the symbols is defined by the chemical bonds be-
tween the molecules. The writing direction is standardized by convention and based on the che-
mical asymmetry of the molecules.

It is common to record molecular sequences as a string of letters, essentially using the data
types available for text for molecular sequences as well. Nucleotide sequences are always ex-
pressed through single-letter symbols. Protein sequences may either be expressed through one
letter or three-letter symbols.

Occasionally, either as a result of ambiguities in original data, or as a result of data aggrega-
tion (see “Special aggregation cases”, p. 92) a position in a sequence may be a set of elementary
symbols. This situation is usually expressed using “ambiguity symbols” that have the same length
as the fundamental symbols. In DNA sequences (with fundamental symbols ‘A’, ‘C’, ‘G’, and
‘T’), Examples of ambiguity symbols are ‘W’ = {A, T}, ‘S’ = {C, G}, or ‘N’ = {A, C, G, T}.

Double-stranded DNA (as found in most organisms) presents a special problem. While mole-
cular sequences are chemically asymmetrical and the reading direction is fixed by convention (5'
to 3' for nucleotide sequences), the two complementary DNA strands cannot be distinguished a-
priori, i. e., without recourse to sequence patterns itself (as when using specific PCR primers).
For example, instead of the sequence “5'-ACCGTT-3'” the alternative strand with the comple-
mentary and reverse sequence “5'-AACGGT-3”' may have been sequenced in the laboratory. This
may either require special mechanisms in the information model, or it may be handled as implicit
knowledge on the data consumer side.

Molecular sequences are a special data type insofar as the original data are in a form that can
only be compared for identity in its entirety (i. e., the entire sequence of categorical states is iden-
tical). Additional data processing is required to convert them into an “alignment” that allows
assessment of similarity between sequences from different organisms and that allows the com-
parison of individual sequence positions. An alignment is created by inserting an additional gap-
symbol into sequences where insertion or deletion events are assumed to have occurred. The goal

58 Fundamental aspects of description models G. Hagedorn

of creating the alignment is, to “homologize” sequence positions, making symbols at the same
position comparable throughout the data set.

Various alignment algorithms have been devised (e. g., Clustal, Higgins & Sharp 1989) but the
topic remains an active area of research and current algorithms produce only heuristic estimates
that often need manual corrections. Unfortunately, the only algorithm available that produces a
fully evolutionary correct alignment requires prior knowledge of the phylogeny of organisms
(Hein 1989). This is usually not helpful in phylogenetic research, where alignments of sequence
data are usually created with the goal of inferring an incompletely known phylogeny. As a result,
the alignment remains a special form of data, which is based on the original sequence data, but
which cannot simply be modeled as a form of automated data processing prior to analysis.

An additional problem in handling aligned sequence data is that aligned sequences depend on
all other sequences in the alignment. Correcting an error in one sequence or adding a new se-
quence to the set will change the alignment in all other sequences. Some projects attempt to cre-
ate alignments covering all studied taxa at least for some of the most frequently used genes in
phylogenetic analysis (e. g., the ARB project, Ludwig & al. 2004, http://www.arb-home.de).

Thus, although in principle the symbols of molecular sequences are categorical data and each
position (= column) in the alignment could be treated in a separate categorical variable, the
assignment of the position to a variable is stable only under a specific alignment algorithm and
for a specific set of aligned sequences. Other forms of categorical data (e. g., morphological data)
also require an assessment of phylogenetic comparability to avoid comparing unrelated charac-
ters. However, the character identity may be expressed as a set of rules and definitions that can be
assessed before recording the descriptive data. This is not possible in the case of molecular se-
quences. As a result, adding data for a new taxon will only extremely rarely change the inter-
pretation of morphological categorical data from previously studied taxa, whereas it may intro-
duce or move many gap symbols in the aligned sequences already in the data set, thus changing
the relation between a base position and the character column significantly.

Whereas this rearrangement is relatively trivial if the alignment is stored as a string of letters,
it becomes rather difficult to manage the necessary rearrangements if each base position is alrea-
dy assigned to a specific character. The similarity of a sequence alignment and a character state
matrix (e. g., in the NEXUS format) is therefore somewhat deceptive. In essence, NEXUS uses a
string for any kind of categorical data, thus solving the specific problem of sequences, but at the
trade-off of being incapable to express more than a simple categorical state in descriptive data
(no notes, modifiers, etc.). NEXUS is appropriate for the analysis of a defined set of sequences
under a specific alignment hypothesis, but not for integrating descriptive data from different
sources with the intent of analyzing them in various combinations and with different methods.

In conclusion, when handling molecular sequences (e. g., for identification purposes), it may
be necessary to handle both original unaligned sequence data and multiple aligned representa-
tions (a sequence may be a member of multiple alignments, each developed specifically for a
given set of taxa). The problem of multiple alignments has not been pursued further in the current
work and in the information models presented here. However it is clear that molecular sequences
involve special problems and form a data type of their own.
22. Molecular sequence data are a specialized data type that is highly relevant to current

biological research.
23. Original sequences and sets of aligned sequences are related, but different data types.
24. The length of individual symbols may be assumed to be constant throughout the sequence,

but it may be longer than one letter.
25. Sequence positions with ambiguous data may be expressed through special symbols rather

than requiring a separate syntax.
26. It is desirable to provide a mapping from ambiguity symbols to the set of fundamental sym-

bols they represent.

G. Hagedorn Fundamental aspects of description models 59

Complex quantitative data types
Many (Stevens 1991, Thiele 1993) or perhaps all (Baum 1988) categorical characters ultimately
may be measured by a quantitative method. In contrast to “typical” univariate quantitative meas-
urements of angle, size, etc., however, these measurements are expressed in a more complex way,
e. g., through coefficient vectors or matrices. Examples are the various ways to measure color or
shape.

Quantitative color measurements may be expressed through spectrographic density functions
or through color-space models. Each recording method produces a number of quantitative varia-
bles that allow more exact color comparisons than categorical color measurements (vernacular
“red”, “green”, “blue”, etc. or codes in standard color charts). Each type of color recording has
advantages and disadvantages:
■ Categorical color names already include the psychological factors of human color perception

and support simple data recording and communication.
■ Color-space models (sRGB, AdobeRGB, CIE XYZ, etc.) allow quantitative expressions that

are optimized for available color reporting methods (print, computer screen). Some colors like
gold, silver, or many shades of brown, can only be expressed inadequately in color models,
but then these colors cannot be reproduced on computer screens or with standard color print-
ing techniques either. Color models allow the expression of color variation by defining an area
(e. g., an ellipse or polygon) in color space. Computer-aided recording of variation in such
model is possible. Recordings using a digital camera (based on color-space models as well)
may be used to obtain approximate values (ignoring color perception).

■ Spectrographic color reflectivity data are more exact than color model measurements. How-
ever, they have several disadvantages as well: the need for expensive recording equipment
normally available only in laboratories, the need to deal with problems of human color per-
ception (which is related to spectrographic color reflectivity in rather complicated ways), the
limitation of being unable to create an equivalent color perception within the limits of com-
puter screen or available printing techniques. Also, expressing color variation through
spectrographical data requires highly complex data storage models, and may be very difficult
to present in an aggregated (summarized) form.

The measurement of shapes may be even more complicated than color. Two-dimensional shape
outlines may be recorded and reproduced by fitting mathematical functions to the shape (e. g.,
Bezier-equations or spline functions). Although these equations accurately reproduce a shape,
they perform poorly in comparing similar shapes: Identical shapes may be represented by differ-
ent sets of these functions. Studies exploring the use of methods of geometric morphometrics are,
for example, Jensen (1990) or Rohlf (1996). Recently a new “superformula” with six parameters
was proposed for a large number of shapes that supports a high number of symmetry axes, cap-
turing, for example, circular, elliptic, triangular, rectangular, penta- and hexagonal shapes (Gielis
2003). The wide range of shapes covered and the relatively low number of parameters may allow
better comparability. Also, the mapping of shape-ranges to shape categories may be defined in a
more meaningful way.

Another interesting development is the recording and analysis not only of outline shapes, but
of complex two- or three-dimensional topological arrangements. For example, the vein structure
of hymenopteran fore-wings (Steinhage & al. 2001) or the venation of plant leaves (Kirchgeßner
& al. 2002) have been studied. Agarwal & al. (2006), while working on two-dimensional leaf
outlines, describe a vision of automated identification based on three-dimensional plant images.
Three-dimensional complex shapes may be modeled using techniques developed for virtual re-
ality. However, similar to 2-dimensional shapes, these techniques are optimized for reproduction
of a shape, but do not necessarily facilitate the comparison of descriptions, e. g., during identifi-
cation. See also the topic “Automatic identification” (p. 231).

60 Fundamental aspects of description models G. Hagedorn

The examples so far (color, shape) concern morphological data traditionally recorded as cate-
gorical data. Other measurements are almost impossible to record without support for complex
quantitative data in the information model. Examples are raw or processed chromatographic data
(Elix & al. 1988), or molecular pattern data (AFLP, RFLP, RAPD, etc.).

Most data types necessary for complex measurements can probably be modeled through very
basic data types:
■ binary objects,
■ lists or sequences of floating-point values (compare requirement 17, p. 56), or
■ one- or multidimensional arrays of floating-point values.
Using a general data type in all cases requires some separate metadata mechanism to inform ana-
lytical procedures how to interpret the data. The ties between data and data processing methods
depend on the complexity and depth of documentation of the storage format. Often, binary data
may be more complicated to process, but arrays or lists of floating-point values may have few ad-
vantages until the arrangement and the semantic interpretation of the elements are known to the
processing software. Lists or sequences may be more general, but also more difficult to interpret.
In real sequences of simple data types, all values refer to the same kind of quantity and are either
all dimensionless or have the same measurement unit, whereas in a list of parameter-values each
element in the list may bear different semantics. Furthermore, to express variability or to record
time series data, sequences of complex data may be necessary. Again, technically it is possible to
record a color polygon in RGB space simply as “51, 129, 9, 46, 208, 2, 1, 231, 61, 7, 155, 59”
rather than as (R=51, G=129, B=9); (R=46, G=208, B=2); (R=1, G=231, B=61); (R=7, G=155,
B=59)”, but methods reporting the data or searching with the data (e. g., for identification) must
be appropriately informed about the additional structure.

Whether such reuse of generalized data types is more appropriate than defining specialized
data types for color, shape, molecular pattern, etc. depends on how many complex types will be
used in practice, what kind of link between general data type and concrete semantics needs to be
stored, how important type-safety is to guarantee interpretable values, and how difficult it is to
add new data types to existing data storage structures and data processing software.
27. Although many characteristics of an object are expressible through categorical variables,

more complex data types are often desirable for data such as color or shape. Such data are
often expressed using multiple values. Depending on the method the number and semantics
of values may be fixed or variable. The descriptive information model should either provide
a general model for all conceivable complex data types or should provide extension mecha-
nisms to support the addition of additional complex types.

28. It is desirable to support sequences or sets of complex data values, e. g., to record shape
variation or a color polygon.

Media data
Traditionally, media data (images, audio, or video data) are not considered a “data type” of de-
scriptive data. The border between complex quantitative chromatographic or molecular pattern
data on the one side, and image or sound data on the other side is, however, not easily definable.
Whether a media object is considered to complement or support other information (“illustration”
or “voucher”), or whether it is considered a “complex quantitative data type” in its own right,
largely depends on the availability of methods that enable automatic comparisons or analyses.

Furthermore, with the improved information density of digital media it becomes more and
more feasible to consider them primary objects that require descriptions and identification. Ex-
amples are studies using high resolution scans of soil, rock, or bark surfaces that contain lichens
to be identified.

G. Hagedorn Fundamental aspects of description models 61

Implemented data type systems
To help in assessing priorities among the data type requirements defined so far, this section dis-
cusses the data type system of those computer applications for descriptive data in biology, for
which information is available.

DELTA (p. 19) supports five character types (Table 8). The character types ‘UM’ and ‘OM’
support unordered (nominal) and ordered (ordinal) categorical data. Both types support lists of
multiple values (values being called “attributes” in DELTA, compare Table 3, p. 34). Such a
“multistate” list is a sequence of values, where the order of values may be significant (the ana-
lytical semantics of order are undefined, but order is to be preserved at least for generating re-
ports for human consumers). Each value within such a categorical value list is a complex data
type insofar as it may be associated with unconstrained text notes.

DELTA supports quantitative data in the character types ‘IN’ and ‘RN’ (for integer and real
numeric, respectively). These types appear to be similar to those used in programming languages,
but this is slightly deceptive. Each type may either contain a distinct value list (e. g., “2/4/8”,
compare p. 86) or using one of twelve different patterns (structured by hyphens and parentheses,
e. g., “(3-) 5-7-9 (-11)”), expressing a fixed set of statistical measures (see “Quantitative data and
statistical measures”, Table 31, p. 112 for further information). “1.5” is a valid value for an inte-
ger (‘IN’) data type, since the mean of integer values may be real numeric.

The DELTA ‘TE’ character defined for unconstrained text is closely similar to simple string
in a programming language. However, any character of the types ‘UM’, ‘OM’, ‘RN’, ‘IN’ can in
practice also be used as a text character (i. e., it is possible to add a “comment” without a state or
a value, the resulting data are indistinguishable from ‘TE’-based data). Thus, declaring a charac-
ter as ‘TE’ only prevents adding categorical or numeric data. This behavior is not explicitly de-
fined in the user guide, but implicit in existing data sets and the behavior of applications support-
ing DELTA. Implicitly, the ‘TE’-type acts as the base-type from which all other types are de-
rived.

Table 8. DELTA character types (Dallwitz & al. 2000a).

Code Name Description
UM Unordered Multistate Multistate (including 2-state) characters in which the states are not arranged in a natural

order.
OM Ordered Multistate Multistate characters in which the states are arranged in a natural order.
IN Integer Numeric Numeric characters which take only integer (whole-number) values.
RN Real Numeric Numeric characters which may take fractional or integer values.
TE Text Unconstrained text

“New DELTA” (p. 20) proposes to add two additional data types to DELTA:
■ “LI”: lists of text tokens, e. g., for geographical or host organism names.
■ “CY”: cyclically ordered categories.
In addition, a generally new structure “numbered lists” shall be introduced, which essentially
allows to give text strings (for taxon names, literature, etc.) an ID-number, by which they may be
referred elsewhere. This is not considered a “character type” in the proposal. Furthermore, New
DELTA proposes a special symbol for “indefinite values” in quantitative characters, covering the
case of “many” or “large”. The system is not extensible; categories like “few” or “tiny” that may
occur together with quantitative measurements are not expressible.

DiversityDescriptions tries to remain compatible with DELTA for import and export pur-
poses and therefore supports all five original DELTA character types. However, internally it sup-
ports only text, categorical and quantitative types, and treats the further distinctions as character
metadata. Additional metadata, allowing finer distinctions are supported. The model for quantita-
tive data is extended over DELTA, allowing the data set author to define an unlimited number of

62 Fundamental aspects of description models G. Hagedorn

statistical concepts (see “Quantitative data and statistical measures”, Table 31, p. 112 for further
information). A special design feature of DiversityDescriptions is that it enables combining cate-
gorical and quantitative data types in a single character. This feature was added to simplify cap-
turing data that use a mixed representation of quantitative and categorical values (e. g., 1, 2, …,
12, 20, “many”). The information model outlined in Diederich (1997) suggests a similar mixed
representation, although only for situations like “many” or “few” (called “fuzzy states”).

CBIT Lucid (p. 21) distinguishes between categorical and quantitative data types. Quantita-
tive data support four statistical measures (Table 31, p. 112). Lucid supports no text characters.

Nemisys/Genisys (p. 21) introduces a specialized “type system”, which is discussed in detail
in the following section “Basic property types”. It supports three statistical measures (Table 31,
p. 112).

Prometheus description model (p. 21) largely follows the Nemisys / Genisys model, distin-
guishing quantitative and qualitative “description elements” (their preferred term for character).
The support for statistical measures is not discussed in the publications and therefore unknown.

NEXUS (p. 18) supports both categorical (“Format DataType = Standard”) and quantitative
data (“DataType = Continuous”, compare p. 112 and Table 31, p. 112, for further information).
NEXUS has further special data types for molecular sequence data: DNA, RNA, Nucleotide
(i. e., DNA or RNA), and Protein.

SDD (p. 20) distinguishes primarily between text, categorical and quantitative data. Informa-
tion about measurement scale (nested within categorical and quantitative), and discrete versus
continuous is added as properties (or “metadata” in the sense of Diederich & Milton 1991, Diede-
rich & al. 1997) to each character definition. The fundamental split between categorical and
quantitative data is similar to that implemented in DiversityDescriptions or Lucid, and the one
proposed in Diederich (1997) – but the model details differ.

The data type system in SDD is designed to be extensible; specialized character types for
color measurements, molecular sequences, etc. have been discussed, but not yet finalized in the
first versions of the standard.
29. The data type systems implemented in current descriptive software or exchange formats

may dictate secondary requirements where import or export to these systems is intended.
30. Quantitative data may occur together with categorical states like “few”, “many”, “large”, or

“very small”; a general “indefinite large” and “indefinite small” may form a minimum re-
quirement. A more extensible method may be desirable.

Basic property types
In the context of the Nemisys / Genisys model, Diederich, Fortuner and Milton developed a spe-
cial classification system for quantitative and categorical data called “basic properties” (Diede-
rich & al. 1997, 1998, Table 9). The system primarily covers morpho-anatomical descriptive
data. The authors do not use the term “type” or “data type” for the “basic properties” they define.
Instead, basic properties are developed as part of a character decomposition system (see “The
Nemisys / Genisys model”, p. 117). They do point out, however, that some fundamental semantics
of basic properties must be further defined through a “default range” with the values “binary, dis-
crete, continuous” and a measurement scale with the supported values “nominal, ordinal, interval,
ratio” (Diederich & al. 1997).

G. Hagedorn Fundamental aspects of description models 63

Table 9. “Basic morpho-anatomical properties” proposed in Diederich & al. (1997, 1998; identi-
cally). A “*” indicates properties expressing a relation between two structures.

Appearance
Posture
Shape
Kind
Texture
Arrangement
Symmetry

Placement/Location
Position-relative-to *
Distance-to *
Orientation
Angle

Dimension
Length
Height
Width
Diameter
Depth
Ratio-of *
Size

Quantity
Presence
Quantity
Number

(Differences in Diederich (1997) are: “Presence” is classified in Appearance rather than Quantity; “Posture” is missing;
“Color” is accepted as a basic property within Appearance – rather than presumably being subsumed in “Kind” as shown
above).

Identifying type-like concepts on a higher level than data-analysis has several advantages in that
semantics and processing rules may be defined closer to the descriptive language (with less ab-
straction) and in a reusable way. On the other hand, the list above is incomplete, and some points
may be argued, e. g.:
■ “Ratio-of” is not a basic property acting on an object part (structure), since it must be com-

bined with a basic property like size, length, width. It is a relation between two parts plus a
property, rather than a single property acting on two parts. Diederich & al. (1997) mention this
(guideline 5), but they do not propose a solution to handle this in an information model. The
example shows that the simplicity of basic properties as a short, flat list is somewhat decep-
tive.

■ In addition to an absolute “Angle” (presumably relative to the earth surface, in normal living
conditions), a relational expression “Angle *” between two structures seems to be missing.

■ Why is “Presence” not a special case of “Quantity = 0”?
■ Why are certain quantitative measurements recognized under “Dimension” whereas others

(weight, temperature, speed, conductivity, etc.) are subsumed under “Number”?
■ Why is diameter (of circle) recognized as a special property, uniquely different from length,

height, or width, but parameters of other shapes (e. g., “eccentricity of an ellipse”) not?
■ Why is depth recognized, but not thickness?
■ Presence and Quantity should be relational properties (“Presence-at *”, defaulting to the entire

organism). They express a part-of relation (optionally with multiplicity) between two object
parts (structures). In many cases it does not matter whether a specific structure is the named or
not (e. g., “eyes present” → two insect eyes are part of the insect head, “insect wing count = 4”
→ 4 wings are part-of thorax), but in other cases this does matter (e. g., “three bars on hind-
wing”, “bristles at tip of antennae”).

Most notable, as discussed in Diederich & al. (1997), all properties not considered of primary im-
portance are subsumed under catch-all “generic properties”:
■ unassigned categorical properties under “Kind”, and
■ unassigned quantitative properties under “Quantity” or “Number”.

64 Fundamental aspects of description models G. Hagedorn

Table 10. A modified basic-property-concept extended with a generalization hierarchy (example).

Appearance
Shape
 Two-dimensional (perhaps: open / closed?)
 Three-dimensional (perhaps: open / closed?)
Symmetry
Texture
 Roughness/Smoothness
 Surface ornamentation
 Hairiness
Color
 Vernacular color name categories
 Color chart values
 color space values (sRGB, HSL, etc.)
 Pigmentation
 Color granularity

Taste/Smell
Five basic taste sensations:
 acid, salty, sweet, bitter, umami
smell (human taste impressions are a combination
 of these and smell sensations)

Cardinality/Multiplicity
Presence or existence
Count

Extension/Size
Length
Height
Width
Diameter / Radius
Thickness
Depth
Area
Volume

Placement/Location
Position-relative-to *
Distance-to *
Orientation
 Absolute orientation
 Orientation relative-to *
Angle
 against absolute orientation
 Angle-to *

Ratio (including, e. g., Density) is excluded because it has to be considered on a higher level. A mapping exists between
“count” and “presence” that may allow to calculate one property from the other: three legs → legs present, legs present →
at least one leg, one leg → legs absent, legs absent → zero legs. – No special property of Boolean type is considered:
Coding “winged / wingless” is not different from “wings present: true / false”, and any property with exactly two states (set of
two things) are equivalent to Boolean. Sets of only two states or things do have special properties in calculations, but
software can deduce this without a need to introduce a Boolean data or property type.

Which properties are considered more important, depends to a substantial degree on the orga-
nism group and the methodology used to describe organisms. It seems problematic to embed such
decisions into the general model. For example, while some basic properties already provide reus-
able sets (enumerations) of states (i. e. categorical values), no reuse is possible for properties sub-
sumed under “kind” – although reuse would be desirable. An example for a property hierarchy
that is richer than Diederich's (as in Table 9) is shown in Table 10. This is, however, only another
selection of preferred properties, informed by a specific point of view. Other views would lead to
a different selection.

Diederich & al. (1998) argue that the concept of basic properties may be extended to cover
physiological data, but doing so requires the introduction of abstract concepts (such as “resting
period”) in the place of structures. These pseudostructures then may have properties like pres-
ence, duration, etc. However, it seems that much of the clarity and reusability that is present with
morphological data is lost by doing so. Most notably, it is not possible to have these pseudo-
structures refer to specific morphological structures. The approach offers a way to occasionally
include physiological data, but it appears a fix rather than a general solution.

One consequence of these problems is that basic properties will probably be under revision for
an extended period of time. Designers of information models would be wise to provide a general-
ization mechanism rather than limiting themselves to those basic properties shown above. To the
present author’s knowledge no information model for basic properties has been published yet that
would achieve both the desired generalization and specificity of basic property types. Further
studies are necessary to decide whether “basic properties” indeed are fundamental enough to just-
ify the development of such a model.

An interesting example for the kind of problems encountered with basic properties is that even
the seemingly intuitive example of “shape” as a basic property seems to be full of pitfalls. Going
back to the example in Fig. 15 (p. 45) it is obvious that shape is a typology to classify objects.
“Shape” in Fig. 15 uses categories that combine more fundamental attributes or properties (num-
ber of corners, symmetry, number and length of linear sections, angles, etc.). Thus shape can also
be viewed as a “summary character” in the sense of Diederich (1997) and Diederich & al. (1997),

G. Hagedorn Fundamental aspects of description models 65

which stands in contrast to their view of shape as a basic and atomic property. Nevertheless, the
shape typology is indeed in most scenarios a very basic, useful element in descriptions. A combi-
nation of the constituent properties / attributes is difficult to recognize and visualize, whereas the
shape type names are easily recognized and remembered by humans. However, the same argu-
ment applies to most typologies that under the basic property concept should be treated as sum-
mary characters and split into more atomic characters.

The fundamental question is therefore often how much information to include in a complex
type, and where to split it into multiple elements. For example, one might want to define equal-
sided triangle or right-angled triangle as additional types. Conversely, the definition of a square
with rounded corners as a type will become questionable as soon as triangles, hexagons, etc. with
rounded corners are to be described. Either one might extract “rounded corners” as an additional
property from the complex “shape type”, or one may want to model an additional substructure
“corner” (present only for some shape type values!) with a property “rounded”. These are just
examples of the kind of terminological instability and inconsistency that Diederich and cowork-
ers seek to prevent.

Furthermore, shape values are a complicated mixture of singular (“distinct”, like triangle,
four-sided polygon, pentangle, etc.) and extended categories (i. e., shape instances may be inter-
mediate between categories). Fig. 17 f on p. 54 (with some categories connected but others dis-
tinct) has been drawn with the example of “shape” in mind. Thus, in addition to the question of
decomposition of shape types into properties, also the definition of the resulting categorical val-
ues will be under discussion. For example, the ellipse shown in the second row of Fig. 15 (p. 45)
is a very weak ellipse that may well be called “nearly circular”. Since in biology exact shapes al-
most never occur, it would be natural to a biologist to do so (calling it “subglobose” in biological
terminology). A very similar problem occurs when attempting to separate the aspects of rounded
corners from the shape typology, since an infinite number of intermediate shapes exists between
a square with rounded corners and a circle (Fig. 18).

Figure 18. Squares with rounded corners form a continuum of

intermediate shapes between a square and a circle.

The probable consequence of the problems discussed here is that the information model
should expect terminological change and should not (as the basic property model seems to do)
aim to reach stability by fixing a set of “basic” properties as special and unchangeable. Further,
although it is desirable that different data sets use the same terminology, it is probably more im-
portant to focus on comparability. One way to do this is to make the assumptions behind the
terminology readily available to machine-reasoning. An attractive model may be to treat values in
complex characters (type-value, such as shape) as objects that again may have descriptions in
terminologies using more completely atomized properties. However, many alternatives are con-
ceivable (e. g., multiple class inheritance: a triangle with rounded corners being both an “object
with rounded corners” and a “polygon with three sides”). A more detailed analysis of actual data
storage models follows in a later section (“Description storage models”, p. 104).

66 Fundamental aspects of description models G. Hagedorn

31. “Basic properties” according to the Nemisys / Genisys model are a derived type system opti-
mized for morpho-anatomical data. The simple system of 20 basic properties with one level
of hierarchy offers pragmatic guidance for structuring such data, but is incomplete and not
suitable as a general information model for descriptive data. The selection of quantitative
measures not subsumed under “Quantity” or “Number”, and the selection of categorical
properties not subsumed under “Kind” may be pragmatic for common morpho-anatomical
data but is not essential.

32. A property classification, preferably with more than one level of hierarchy, is desirable to
structure descriptive data. The model should be able to cope with different generalization
hierarchies of properties, rather than fixing these.

33. A generalized “property type” system is conceivable, but will be complex and may be ex-
pected to be under considerable terminological evolution for an extended period. The in-
formation model must be able to support property information in a way that does not affect
existing applications relying on the information model.

34. The information model should provide means to make description based on different termi-
nologies (using different property choices, different level of decomposition of value types,
such as shape) comparable using machine-reasoning.

4.6. Mapping between data types
As already mentioned, the same fundamental biological phenomenon can often be measured in
various ways, resulting in data on different measurement scales (p. 49). Color may be measured
quantitatively (spectrographically or as color model values, see p. 59), or categorically by com-
paring it with the fine categories of a color standard, or by referring to common “fuzzy” vernacu-
lar color names. Clearly these data are related and it is desirable that the information model pro-
vides mechanism to make relations explicit. The following sections discuss various cases.

Mapping univariate continuous measurements to categories
The most common mapping in statistical data analysis is the reduction from ratio or interval scale
to the ordinal scale. This is done by grouping (discrete or continuous) values into classes with de-
fined limits (class intervals) and usually results in a quantitative frequency distribution (e. g., Zar
1984, Sokal & Rohlf 1981). If the categorized data are continuous, the frequency distribution is
also called a histogram (Zar 1984). Another mathematical way to express the process is to call it
a “partition of a continuous value space” (R. Morris, pers. comm.).

Example: For identification purposes it is desirable to reduce a continuous size measurement
to a small number of states like “small (< 10 cm)”, “medium size (10 cm to 2 m)”, and “large (>
2 m)”. In printed dichotomous keys this is the only option, but even where the software could
query quantitative data directly, it is often desirable to request a coarse estimate instead of an
exact measurement.

The fundamental process of measuring a continuous variable and applying class intervals is
illustrated in Fig. 19. In DELTA the “Keystates” directive allows a method to express class inter-
vals (a range from upper to lower range limit). Intervals may or may not be overlapping; overlap-
ping definitions enable improved handling of border-values. The name of the DELTA directive is
somewhat misleading; the directive was originally intended for the purpose of automatically
creating dichotomous keys.

Statistical measures other than the mean may be used as the basis for a mapping process.
When the categories are used for identification purposes it may be desirable to use a range meas-
ure like a confidence interval (Fig. 20) or even the extreme values.

G. Hagedorn Fundamental aspects of description models 67

si
ze

Method
(how to

measure)

Numeric
results

(sample)

Statistical
measures

Fine
categories

Broad
categories

Mean
95% c.i.

95% c.i.

(n = 8)

Object

very small

very large

Figure 19. Mapping of quantitative length measurements to fine and coarse categorizations.
Based on definitions of object and methodology a sample of measurements is obtained. This is
aggregated (or “mapped”) to descriptive statistical measures (mean, confidence interval), which
may be interpreted (or “mapped”) as categories with defined limits.

Table 11. Example for mixed (quantitative and categorical) data recording. Bundle scars are
small dots or lines on the surface of a leaf scar marking the remains of the vascular bundles that
supported the leaf before it fell off.

Bundle scars Discussion
5 Single value, from the context it is implied that this is the only value,

rather than a mean or mode
5, 7, or 9 Discrete distribution without frequency information (set)
5, rarely 7 Discrete distribution, partially with frequency information
5-7 or 9 Containing a range, presumably ‘6’ is included, but ‘8’ not.
many Categorical value, a limit for “many” may or may not be defined exactly

(From “SDD data challenge: Collections of numerical values and mixed numeric and categorical statements”, www.
diversitycampus.net/TDWG-SDD\Docs\SDD_DC_NumericalMixedCollection.html, based on an example by Stephen
Seiberling from Flora North America).

Occasionally measurement data have a mixed data type with some data being quantitative,
others categorical (see example in Table 11). The categorical values are typically “indefinite val-
ues” like “many”, “tiny”, “huge”, etc. (compare requirement 30, p. 62). In principle, defining the
point at which data are no longer expressed quantitatively defines a mapping. In practice, how-

ever, mixed data occur because it is too time-consuming to
obtain exact values for a quantitative property outside some
range that can be conveniently measured. Thus the categorical
values are the only available data and cannot be obtained from
a mapping. The example from Table 11 could be solved by
treating the values “5, 6, 7, 9, many” as categories on the ordi-
nal scale. This solution is frequently used in DELTA data sets.
However, the quantitative variable may be floating-point or
integer but requiring statistical measures like mean and vari-
ance (e. g., plant height, recorded quantitatively up to ca. 3 m,
then estimated in broad categories like “small tree or shrub”,
“large tree”).

(Mean)
95% c.i.

95% c.i.

Figure 20. Mappings from quan-
titative to categorical data may
be based on confidence inter-
vals rather than mean (modified
detail from Fig. 19).

68 Fundamental aspects of description models G. Hagedorn

Diederich (1997) discusses a similar example under the aspect that the exact value of “many”
may not be known. He introduces the concept of “fuzzy states” and the outline of an information
model provides for storing “fuzzy states” together with quantitative values in a single character.
However, whether a mapping is known or not, is secondary. It is quite possible that the class
interval for “many” is exactly defined (e. g., “greater than 12”). The situation of mixed data re-
presentation is unchanged, but it is no longer a “fuzzy state”.
35. Mappings from univariate continuous data to categorical data should be supported.
36. A mapping for a category may be based on a single range with two limits, or a list of values

or ranges.
37. A mapping may be based on single values or several statistical measures. The preferred

source for the mapping should be definable.
38. Mixed forms of data (some data are quantitative, others are categorical with defined quanti-

tative limits, other categorical with no or ambiguous definitions) should be supported. If
fulfilled, this covers automatically requirement 30 (p. 62).

Mappings within categorical data
A logical extension of the mapping from continuous to categorical data is to map a narrow cate-
gorization to a broader one (i. e., map a fine-grained to a coarse-grained categorization). For lin-
early ordered data the process is very similar to that described above for continuous measure-
ments. In practice, continuous data are always mapped to categories of finite precision, e. g.,
length measured to the closest mm. A minor difference when mapping from data on the ordinal
scale to another categorization on the ordinal scale is that different statistical measures must be
used (e. g., mode or median).

2 3

1

10

911

8

7

6
5

4

12
13

AAAA BBBB

EEEEDD
CCCCCCCC

2 3

1

10

911

8

7

6
5

4

12
13

BBBB

DD
CCCCCCCC

A

E

Figure 21. Symbolic presentation of a “value space” that is partioned into fine-grained categories
and for which a generalization mapping (center) to coarse-grained categories (right) is provided.
Compare Fig. 17, p. 54.

2 3

1

8 7

9
10

4

5

6

B

D

C

E

A BBBB

DD
CCCCCCCC

A

E

2 3

1

8 7

9
10

4

5

6

Figure 22. Mappings may provide for ambiguity or error tolerance. Arrows in the center drawing
indicate the mapping of two selected fine-grained categories: a) Category ‘3’ is considered inter-
mediate between ‘A’ and ‘B’. b) Objects belonging to category ‘8’ are occasionally mis-scored as
belonging to ‘1’; Category ‘1’ is mapped to both A and C to improve error tolerance for identifica-
tion. Compare Fig. 21 for the simple case.

G. Hagedorn Fundamental aspects of description models 69

Mapping is, however, also highly use-
ful for categories that cannot be brought
into a linear order. One set of well-defined
categorical states may be useful and highly
expressive for an expert, but less so for
beginners. During identification, even ex-
perts may prefer another set containing
fewer states that have a broad definition.
For example, all of: “lanceolate (symmet-
rical), obliquely lanceolate, oblanceolate
(symmetrical), obliquely oblanceolate”
may be as “lanceolate” with a definition
indicating that this is sensu lato (Fig. 21).
For this purpose it does not matter whether
the categorical data are on a nominal scale
or ordered in the form of a graph. Allkin &
Bisby (1988) call such corresponding data
representations “sister characters”.

Mapping of categorizations may be
used both to represent strict generalization
relationships (1 : n mapping, Fig. 21) and
ambiguous relationships (n : m mapping,

Fig. 22). The latter is relevant when states are intermediate or to improve error tolerance during
identification when states are likely to be misinterpreted. Note: Although the illustrations in Figs.
21-22 show a connected values space, the categories may just as well be disjointed.

The mapping of categorical states may be seen as a special case of a generalization hierarchy
(kind-of relations) and could be expressed in the ontology web language (OWL, McGuinness &
van Harmelen 2004). Another way to express the first three mappings in Fig. 21 would be to say
‘1’ is a kind of ‘A’, ‘2’ is a kind of ‘A’, and ‘3’ is a kind of ‘A’. In Fig. 22 one could also say am-
biguously that ‘3’ is a kind of ‘A’ and ‘3’ is a kind of ‘B’. Ideally these statements might be more
information rich: ‘3’ is correctly interpreted as ‘A’ and ‘3’ is misinterpreted as ‘B’, or one might
say ‘3’ was poorly and ambiguously defined and without access to original data it is impossible
to assess whether it really is ‘A’ or ‘B’. This (and the relation that “is misinterpreted as” is a spe-
cial case of “is not a kind of”) may, however, be difficult to express in OWL.

Where generalization / refinement mappings are defined within states of the same character, a
user interface may use the information to display the states in a hierarchical manner, e. g., in a
tree where the narrower definitions are listed as children of the wider definitions. Note that this
includes cases of ambiguous mappings (Fig. 23).
39. Mappings from narrow to broad categories should be supported.
40. Ambiguous mappings, where one narrow category is mapped to more than one broad cate-

gory should be supported.
41. A hierarchy of categories within a single property or character is expressible with a general

mapping mechanism and no additional support needs to be added to the information model.

Mapping complex quantitative data to categorical data
Complex measurements (as discussed in “Complex quantitative data types”, p. 59) are usually
made with the help of instruments. In the future, recording devices will often be directly coupled
to computers, so that data recording becomes automated. If all data were recorded and analyzed
by machines (when building the knowledge base of descriptions and during later identifications),

Figure 23. Illustration of a potential tree-view user
interface displaying ambiguously mapped catego-
rical values (right side). The property states “Cham-
ois” and “Gray-Green” have multiple mappings (i. e.,
the concepts are considered ambiguous) and there-
fore included in multiple parents.

70 Fundamental aspects of description models G. Hagedorn

mapping to categorical expressions of these data types would be redundant. In the meantime,
mechanisms that allow mapping these data to categorical expressions help in communicating
results to humans (Table 12).

Neither complex measurement systems nor corresponding mappings are currently included in
the SDD model. In the development version a “ColorRange” type is maintained to indicate the
desire for further development in this area, and to clarify that extensions to the character type
model are to be expected. The mapping mechanism in SDD are designed to be part of a specific
description model (currently only univariate quantitative and categorical measurements are sup-
ported) so that appropriate mapping methods supporting, e. g., polygonal areas in color space,
would be defined for new methods.
42. Special mapping mechanisms are desirable where complex quantitative data are defined.
43. A complex mapping may help applications provide visualizations of the extent and variabil-

ity of categorical states to humans. It may therefore be desirable even if no complex quan-
titative data are actually recorded.

Mappings and definition of categories
All three forms of mapping definitions discussed so far implicitly define the categories to which
the mapping points. While this is generally desirable, it also demonstrates that some commonly
used categories are poorly defined and obtain their definition from implicit and context-depend-
ent knowledge. For example, a set of states such as “large”, “mid-sized”, “small” may have been
re-used in multiple characters such as “body size” or “hair size”, with widely different semantics.
Furthermore, even in one character the meaning of “large” differs between whales and microbes.

One solution to this is to define multiple, property, object-part, and taxonomic scope depend-
ent sets of “size categories”. Clearly this leads to an inflation of sets. An alternative may be to
provide special mechanisms in the information model to deal with this problem. It remains un-
clear which option is preferable.
44. The failure to define general mappings may point to categorical definitions that are proble-

matic or context-dependent. Whether it is more desirable to have multiple sets of states with
exact definitions, or a single set of “generalized” states with multiple, context-dependent
mappings remains an open question.

Table 12. Different scenarios depending on the data recording format used during identification
and the format available in the knowledge base used for comparison.

Observation
method during

–– Format in knowledge base ––

identification Categorical (by human) Complex measurement (by machine) 1
Categorical
(by human)

The classical identification by comparing
categories; a mapping to complex meas-
urements is optional. If present, the computer
may provide an improved visualization of the
variation within each category (based on the
complex values for the categorical class
borders implicit in the mapping).

A mapping is required to compare knowledge base
data to identification data. Further, similar to the
categorical/categorical case it may be used to pro-
vide a visualization of categorical ranges. During the
confirmation phase of the identification process,
exact representations based directly on measure-
ments in the knowledge base may be provided.

Complex
measurement
(by machine)

Allows accurate measurement of the object
being identified. A mapping is required to
compare categorical “legacy” data in the
knowledge base data to identification data.
The measurements obtained during identifica-
tion may be stored to form the basis of the fu-
ture complex measurement knowledge base.

Direct and optimal comparison of observations
possible. A human intelligible representation of the
measurement results is, however, desirable to avoid
recording errors. Although a mapping to categorical
data is optional, it may help in the task of human
proofreading.

1 A major problem of both cases in this column is that it will take a long time until the existing knowledge base of
categorical data will be replaced with new measurements.

G. Hagedorn Fundamental aspects of description models 71

Mapping unconstrained text to structured data
Interpreting natural language description under a defined terminology to obtain structured de-
scription is closely related to a mapping process. Two scenarios may be distinguished here:
■ The natural language description is digitized and will be preserved as such. In this case mark-

up referring to concepts, characters, states, etc. in the terminology may be added. A mecha-
nism to do this is provided in the NaturalLanguageDescription type in SDD (p. 20).

■ The natural language description is considered only as a data source. However, the mapping
process that is implicit in interpreting descriptions under a defined terminology will be docu-
mented. Doing so can help with issues of schema evolution, and improve proofreading or the
collaboration of multiple researchers. Under this scenario some part of the original text may
be preserved together with the conclusions.

A variant of the second scenario is the lexicon mapping between “Cited states” and “Display
states” proposed in Diederich (1997). “Cited states” are defined as those used in the published
descriptions in the data source, and the “Display states” are those used in the current (and revis-
able) terminology. It is unclear from Diederich (1997) whether cited states are simply text labels,
or whether they are considered structured machine-readable information. Their main described
function is to be interpreted by humans; storing natural language text may therefore be sufficient.
The advantage of making this mapping explicit is that it facilitates schema evolution. The model
is clearly very helpful when digitizing legacy information, but it should perhaps be generalized to
cover situations where different mappings for different audiences (e. g., taxonomic experts, stu-
dents, customs personnel using identification tools) are desirable, or for cases where no published
source exists and the taxonomic experts enter data directly (the most frequent scenario in which
DELTA has been used so far).

Another variant is the problem that in a multilingually defined terminology, discrepancies be-
tween translations of term definitions will occur and lead to further schema evolution issues. To
help with these issues it may be useful to record together with each coded term also the original
label (or at least version and language) of a term that was seen by the author creating the descrip-
tion (proposed as an extension to the SDD standard by T. Paterson, pers. comm.).
45. It is desirable to express the relation between free-form, unconstrained text and descriptive

terminology in a special form of mapping. This mapping differs from those discussed so far
in that it is defined in descriptive data rather than in terminology. This is more similar to a
markup process (like html) than to formalized, mathematical mappings.

46. It is desirable to be able to define a mapping between an original form of free-form text and
its translations.

Mappings involving more than two characters
In biological descriptions, a general tension exists between atomic and complex characters
(“summary characters”, Diederich 1997, Diederich & al. 1997). The human mind is more readily
adapted to names referring to complex concepts by a single name, than to processing a list of
characteristics that together expresses the same information. The naming of organisms itself is an
example of extremely complex descriptions associated with a single term. For example, in botany
the different inflorescence types are given different names. As discussed under “Basic property
types”, p. 62, however, already the common “shape” property is truly a complex character that
can be atomized.

Currently SDD is able to map categorical states to one or multiple states in one or multiple
characters. It is, however, not yet able to handle a combination of states on the “from” side (Char.
1, state 2 ‘and’ Char. 2, state 4 → Char. 3, state 1).

72 Fundamental aspects of description models G. Hagedorn

47. Mappings that express the relationship between complex characters (“typologies”) and
multiple basic or atomic characters are desirable.

Calculated characters
Many of the mappings discussed so far may be generalized as a function projecting one value
space into another. This may be a simple function (e. g., to convert °F to °C), or a categorization
of data, ratios, area, etc. (Table 13). However, even where the fundamental function is relatively
simple, rather complex dependencies on data aggregation (p. 83), properties, and measurement
methodology may exist, as the following examples show.

Petiole 25

Lamina: 75

Leaf: 100

Figure 24. Multiple measurements may have fewer degrees of freedom than variables.

Lamina: 75

Leaf: 93

Peti
ole

25
.2

Figure 25. Depending on measuring method, length measures may not be additive.

Ratios: The most common ratios in descriptive data are based on measurements of the same
dimension (or dimensionless, like counts). Examples are the ratio of the length of two parts, or
the length / width-ratio of a single part of the object. Such ratios are especially convenient where
parts are next to each other in a composition (e. g., sepals and petals in flowers, compare Fig. 53,
p. 138); such a situation allows estimates (e. g., “smaller”, “about equal”, “larger”, or “twice as
large”) with ease and precision. Calculations based on different dimensions are relatively rare.
An exception is perhaps counts per extension or area (for example, density of hairs). Under the
“basic property model” (p. 62), a ratio may thus be based on 1 or 2 parts and 1 or 2 properties.

As mentioned above (see Table 20, p. 91), ratios are an example where a calculation based on
summarized measurements gives a different result than the calculation based on repeated meas-
urements. When defining a calculation method, the scope of this method (repeated measurements
or statistical measures like mean) should thus be defined.

Sums: In many cases the total length of a composite object may be calculated based on the
lengths of individual parts (Fig. 24). If the individual lengths are additive, fewer degrees of free-
dom than variables exist. Note that, depending on how the measurement method has been de-
fined, an interaction with other properties may exist. In Fig. 25 the measurement of the petiole is
defined in a way that the length of lamina and petiole are additive only if the petiole is not angled
(not “geniculate”).

G. Hagedorn Fundamental aspects of description models 73

No current information model or implementation supports a generalized function mapping. In
general, support for calculated characters encounters the following problems:
■ A sufficiently general and powerful mathematical language is required to define complex

formulas. The language should, however, not be limited to a specific programming language
(assuming terminological definitions should remain exchangeable). An option might be a pro-
gramming-language-independent standard like MathML (Carlisle & al. 2003), but this would
create a heavy burden on implementers while still lacking many concepts (current MathML is
very weak on statistical functions and concepts). When the topic was discussed in the SDD no
satisfactorily solution could be found (see SDD minutes: Hagedorn 2003b). A possible path
could be defining a subset of MathML that covers most practical needs and at the same time
reduces implementation cost to a realistic level.

■ The categorization of a quantitative measurement variable into classes (histogram) and corre-
sponding categorical states requires knowledge of how these categories must be addressed.
This mixes issues of a general mathematical language (which would be able to express the
class intervals through ‘>’ and ‘<’ operators) and specific issues of the descriptive model. For
categorical mappings it would be necessary to support mathematical concepts from category
theory like “functors” (i. e., a generalization of functions that associate every object of one
category with an object of another category).

■ The available information is incomplete and different authors or publications may record dif-
ferent aspects of a complex of dependent / derived properties (see Table 14). As a consequence,
some “character variables” may either be a calculated result or an original value.
□ In principle, calculated properties are similar to derived class attributes in UML. However,

it seems that UML implicitly assumes an inverse function (the implementation may decide
which attributes to store and which to calculate). However, the calculations used most fre-
quently in descriptive data have no inverse function (e. g., aggregated ratios, categorization,
or statistical measures such as average or variance).

□ It might be possible to create two variables, one containing calculated, the other original
values. This would put a heavy burden on queries and consumers to understand the seman-
tics of this relation. SDD proposes to add attributes on data instead, informing about the
origin of a value.

■ In some situations it is desirable to be able to record the parts of the description that are avail-
able and remain true to the data sources. This may include:
□ Recording values as they are published, even if they may be calculated from other vari-

ables (over-determined data).
□ Recording values even if some values contradict others, based on the assumptions implicit

in the calculation method. Not only is it usually not immediately clear which values are
correct and which false, but also, as the example in Fig. 25 shows, assumptions may be
erroneous. Preserving possibly contradictory data, perhaps adding annotation to this fact, is
preferable to ad-hoc decisions of which one is the correct value that must be made because
the system only allows the entry of “correct” data.

Table 13. Examples of potentially useful mappings of measurement characters to “calculated”
characters.

Source Destination Examples and Notes
Single quantitative measurement Quantitative Conversion of units like Fahrenheit → Celsius
Single quantitative measurement Categorical Direct measurement to classification: < 10 µm, 10-20 µm, > 20 µm
Single quantitative + categorical
measurement

Quantitative Spore width measured separately for septate / aseptate or hyaline /

brown spores
Multiple quantitative measurements Quantitative Length/width ratio, area, volume, etc.
Multiple quantitative measurements Categorical Comparative statements like “Petals shorter than sepals”
Multiple quantitative + categorical
measurement

Quantitative Area or volume could be calculated separately for different shapes

74 Fundamental aspects of description models G. Hagedorn

Table 14. Example showing potential combinations of available measurements for leaf length
measurements (compare Fig. 24).

Petiole length Lamina length Leaf length Note
(can be calculated) 70 mm 80 mm = minimally complete
10 mm (can be calculated) 80 mm = minimally complete
10 mm 70 mm (can be calculated) = minimally complete
10 mm ? ? = incomplete
? ? 80 mm = incomplete
? 70 mm ? = incomplete
15 70 80 mm = over-defined & contradictory!

Note that “formulas” or methods to define calculated values discussed here are different from the
“Formula characters” directive proposed for “New DELTA” (p. 20); these “Formula characters”
are designed as natural language formatting commands.

DELIA (p. 19) uses the term “derived characters” instead of “calculated characters”.
48. Support for calculated character values (based on one or multiple values from other charac-

ters) is desirable.
49. A standardized support for calculations in a descriptive information model is, however,

highly problematic, both because of possibly complex dependencies and because notation
systems for formulas are either specific of certain programming languages, or general but
difficult to implement in a wide variety of applications. Support for calculated characters is
not a priority.

4.7. Coding status
Data may be missing from a description for a variety of reasons and it is often relevant to have
some classification of why this is so. The most basic distinction is between “data entry is incom-
plete or erroneous”, and “data cannot possibly be supplied”. Databases usually use a Null or
Nothing value to indicate missing data or incompleteness. Examples of potential semantics of the
Null value in databases are “absence of data”, “unknown data”, “undefined”, “not applicable”,
and “to be added later” (from the documentation of Microsoft SQL Server 2000). This semantic
“polymorphism” causes interoperability problems when exchanging data. A richer terminology is
therefore desirable.

Existing forms of such “coding status” or “knowledge management” metadata in descriptive
data are called “pseudo-values” (or “special symbols”) in DELTA (compare Table 15), “special
states” in DiversityDescriptions (p. 322), and coding status values in SDD (compare Table 16).
Coding status values may be interpreted in various generalization hierarchies (Fig. 26). The SDD

Table 15. Coding status values (also known as “pseudo-values”, “special symbols”, or “special
states”) in DELTA.

Coding
status

DELTA
symbol Notes

“no data
recorded”

(implied →
no symbol)

Usually interpreted as “not yet scored” or “unfinished work”

“unknown” ‘U’ The character scoring is “minimally complete”.
“not
applicable”

‘–’ Manual alternative to declarative general character applicabilities. It may be used together
with other states (e. g., in genus descriptions where a character may have a state in some
species, but may be inapplicable in other species).

“variable” ‘V’ “Variable” may express a polymorphism, variability, or saturation (i. e., all states are true) of a
character. It should not be used together with other states. Deprecated in DiversityDescrip-
tions.

G. Hagedorn Fundamental aspects of description models 75

proposal “Indicators of coding status in class or object descriptions” discusses the topic in detail
(Hagedorn 2004b). It includes detailed information on each proposed value as well as SDD XML
instance examples, discussions of current practices, exclusiveness, information aggregation issues
(in the sense discussed further below on p. 83), and the differences between coding status meta-
data of a variable and metadata (frequency and certainty modifiers, see p. 206 and 207) of values.

Table 16. Coding status values defined in SDD 1.0 and 1.1. This enumeration extends the
DELTA values ‘U’ and ‘–’, but drops the DELTA “V = variable” value. The semantics of the latter
are difficult to define and its current application is doubtful.

Coding
status value

Possible
Symbol Description

Basic
coding
status

Information
in general

Information
in source
data set:1

“To be checked” “!” Explicit indicator to revisit a character later.
This may be used when data are missing
(known to exist, but not at hand for entering)
or together with data (check data against
additional information source).

To be coded May exist Does
not exist

“Not to be
coded”

“~” A decision was made not to enter data Not to be
coded

May exist Does
not exist

“Not
applicable”

“–“ For logical reasons, it is assumed that data
cannot exist.

Cannot be
coded

Cannot exist Does
not exist

“Data
unavailable”

“?” Data could not be obtained despite that an
effort was made.

Cannot be
coded

May exist Does
not exist

“Not
interpretable”

“#” Data are known to exist, but are purposely
not coded because not even an interpretation
involving certainty modifiers was deemed
possible.

Cannot be
coded

Exists Does
not exist

“Data
withheld”

“§” Data are present, but are not disclosed (e. g.,
because private or confidential).

Coded
successfully

Exists Exists

(For the following coding status situations no explicit coding status values are defined; the status is implied:)
(“Data recorded
successfully”)

 (Evident from existence of data) Coded
successfully

Exists Exists

(“No data
recorded”)

 (Implicit in not coding the character in the
description at all; since neither a value nor a
coding status is present this is also “status
not yet evaluated”)

Not
evaluated

May exist Does
not exist

1 ‘Information in source data set’ refers to data storage (document or database) from which the current representation that
includes the coding status values was directly or indirectly derived. The distinction is relevant in the case of ‘data with-
held’, where no data exist in the current data set, but information exists in the source.

Character data

To be checked
Not to be coded

Not applicable

Data unavailable

Not interpretable

Data entered successfully

Missing data

Categorical data

Quantitative data

Reason unknown (status not evaluated)

Reason indicated (status evaluated)

...
and other
data types

To be coded

Figure 26. Generalization hierarchy of character data and coding status values. This diagram is
intended to clarify intent, not as an architecture plan for implementations. In SDD (p. 20) values
for the five classes with a thick border are explicitly present; the remaining classes are deduced
from other data or complete lack of coding.

76 Fundamental aspects of description models G. Hagedorn

50. Support for coding status information in the information model is a central requirement to
support knowledge management and collaboration scenarios for descriptive data.

51. The existence of categorical or quantitative data as well as the lack of any data in a descrip-
tion for a character that is defined in the terminology may be considered implicit forms of
coding status.

52. A predefined list of coding status values is desirable to support interoperability. The
hierarchical nature of coding status information may be implicit and does not have to be
expressed in the data.

4.8. Character dependency
Character dependency in general
For phylogenetic and statistical analysis purposes, character data should ideally be independent
and identically-distributed random variables (“i.i.d.” or “IID” criterion, see Felsenstein 1985,
Swofford 1990, 2000). In practice, this can rarely be fully achieved (compare “Analysis of char-
acter correlation” in the use case chapter, p. 303). If a correlation between two characters is com-
plete, one of these characters is redundant and may indeed be replaced by a calculated character
(see p. 72).

This is not possible, however, if the value of another character may be predicted only for cer-
tain values of a controlling character. Expressing information about character correlations in
some form of dependency rules does not add information content to perfectly correct descriptive
data sets. A simple correlation analysis would suffice to obtain the information. However, most
data sets contain factual and coding errors. Separately defined rules may then improve data entry,
analysis, and identification tasks.

A general form of such a character-value correlation may be desirable, where defined values
of a categorical or quantitative character determine the values or coding status values of another
character. It is, however, neither elaborated here nor implemented in any descriptive models
known to the author.

It could not be assessed whether or which form of character dependency the Prometheus de-
scription model (p. 21) supports. Because the composition is built newly for each data recording,
data cannot be internally inconsistent (e. g., recording leaves absent and leaf properties). How-
ever, it is unclear whether non-structural dependencies are supported.

Character applicability rules
Current character dependency models (e. g., DELTA, p. 19; DiversityDescriptions, p. 322, XPER2
and CBIT Lucid3, p. 21, see also Dallwitz 2006) focus on a special case of character-value de-
pendency: certain values (states) of a categorical character determine whether another character is
applicable or not (e. g., if “leaves absent” the leaf shape becomes inapplicable). In practice in-
applicability based on categorical states is a frequent case and highly relevant for the efficiency
of data recording and identification. However, it seems desirable to reserve the term “character
dependency” for the general forms of character correlation and dependency. In contrast to the use
in DELTA, the term “character applicability” is therefore preferred in this thesis for this special
case.

The defining character in a character applicability relation is commonly called the controlling
or parent character, the other the controlled, dependent, child or applicable / inapplicable char-
acter. The values (categorical states) of the controlling character contained in a character appli-
cability rule may be called controlling states, the remaining states defined in the character non-
controlling states.

G. Hagedorn Fundamental aspects of description models 77

In current character applicability models, quantitative characters can be controlled but cannot
be controlling. Examples where the applicability of characters depends on a specific value range
of a continuously varying quantitative character are difficult to find. One example may be that for
very small organisms or cell organelles (e. g., < 0.5 µm) light microscopic characters are no longer
applicable (compare “Dependencies on circumstances of identification”, p. 175). However, a de-
pendency on counts of object parts is frequent. Supporting only categorical controlling characters
forces the developers of a descriptive terminology to artificially split the character informing
about the multiplicity of an object composition (see “Describing object multiplicity”, p. 145) into
two characters, one categorical for presence / absence, another for the number of objects if at least
one is present. The latter is then usually controlled by the first one.

Character applicability rules may be expressed positively and negatively, called “inapplicable-if”
and “applicable-if” rules here. In the terminology used in this thesis, they may be formulated as:
■ “Inapplicable-if”: If only controlling states are present (i. e., “recorded” or “scored”) in a

description, these make the controlled character inapplicable. The character remains applica-
ble if either no state at all, or any non-controlling states are present.

■ “Applicable-if”: If any controlling state is present (i. e., “recorded” or “scored”) in a descrip-
tion, these make the controlled character applicable. It is inapplicable if only non-controlling
states are present.

Two special conditions are common to both forms:
■ If the controlling character is inapplicable (through another applicability rule, or through an

explicit ‘inapplicable’ coding status value), the controlled character is always inapplicable as
well (see “Cascading character applicability rules”, p. 82).

■ If no data for the controlling character are present in a description (data completely missing,
or only equivalent coding status; see p. 74), the controlled character always remains applica-
ble. In the case of an applicable-if-rule this definition is slightly unintuitive. However, sepa-
rating the issue of default applicability from the form of the rule is a) generally desirable and
b) required to achieve convertibility of the two forms (compare “Convertibility of applicabili-
ty rules” below).

DELTA uses two directives (“Applicable / Inapplicable Characters”). The definitions in the user
guide differ only in a single word (Dallwitz & al. 2000a): “This directive specifies the values of
‘controlling’ characters which make other ‘dependent’ characters [‘applicable’ in the definition
of the Applicable Characters directive, ‘inapplicable’ in the definition of the “Inapplicable Char-
acters” directive]. If, in a given item, a controlling character takes only values which make its
dependent characters inapplicable, or if the controlling character itself is inapplicable, then the
dependent characters must not be given any values (other than the pseudo-value ‘inapplicable’,
which is redundant […]).” Dallwitz (2006d) writes further: “If any of the recorded values of a
given controlling character do not make its dependent characters inapplicable, then the depen-
dent characters may be recorded. For example, ‘leaves present or absent’ allows other leaf char-
acters to be recorded.”

These definitions are equivalent to those given above (the “values which make its dependent
characters inapplicable” are the controlling states for inapplicable characters and the non-con-
trolling states for applicable characters), except if the controlling character contains no data in a
description. The “applicable-if” definition given above assumes that the default of the controlled
character is inapplicable, whereas in DELTA the controlled character remains applicable.

Before the convertibility of the two forms of character applicability rules can be discussed, the
evaluation of the rules may need some clarifications:

A character may control multiple dependent characters (each with one or multiple controlling
states) and a character may be controlled by multiple controlling characters (n : m relation). In the
first case, applicability rules may be evaluated completely independently. For the second case,
Dallwitz (2006d) defines the intended evaluation for DELTA as: “If a given dependent character

78 Fundamental aspects of description models G. Hagedorn

is dependent on more than one controlling character, then the dependent character can be re-
corded only if allowed by all of its controlling attributes.” Note: in Dallwitz's terminology, an
attribute is the set of all values for a single character in a single description.

Table 17. Examples of evaluating applicable / inapplicable-if rules involving multiple states and the
same combination of controlling / controlled character.

States present for
controlling character 1
in given description

Result of Inappli-
cable-If rules
1.a → 2 ,
1.b → 2

Result of
Applicable-if rules
1.a → 2 ,
1.b → 2

{1: a , b , c } 2 2
{1: a , b , c } 2 2
{1: a , b , c } 2 2
{1: a , b , c } 2 2
{1: a , b , c } 2 2
{1: a , b , c } 2 2
{1: a , b , c } 2 2
{1: a , b , c } 2 2 1

 and indicate whether a state (indicated by lower case letters) in a description is scored or not; e. g., “1.a ” indi-
cates that state ‘a’ of char. ‘1’ is present in a description. Applicable or inapplicable are represented by and .
1 Applicability in the case of no information for the controlling character: A literal interpretation of “applicable if state
scored” would be “inapplicable”; however the DELTA interpretation is that the controlling character is unknown, the result
of the rule unknown, and therefore the controlled character applicable (see p. 80).

Furthermore, more than one state in a controlling character may control the same controlled
character (Table 17). These states are to be evaluated together, splitting the states defined for a
controlling character into a set of controlling states and a set of non-controlling states. Although
the definitions given above are sufficient, a few points may be highlighted to avoid misinterpre-
tations:
■ The set of controlling states is defined for each controlled character independently. Adding a

rule “1.c → 3 ” to the examples in Table 17 would not change the set of controlling states
for character 2.

■ If multiple controlling states are present, any of these invokes the inapplicability (“1.a or 1.b”
in Table 17). It is not possible to establish a rule that is invoked only if multiple states (e. g.,
“1.a and 1.b” in Table 17) are present in a description.

■ The evaluation behavior within and between controlling characters is the opposite.
□ If within a single controlling character (and description) multiple states are present, any

state that makes the controlled character applicable will result in the controlled character
being applicable. In the case of an applicable-if-rule such a state is any controlling state, in
the case of an inapplicable-if-rule such a state is any non-controlling state.

□ If within a single description multiple controlling characters are defined, any character that
makes the controlled character inapplicable will result in the controlled character being in-
applicable.

(For the difference within and between characters, compare also “Boolean operators between
states of categorical characters”, p. 95, and “Boolean operators between characters”, p. 98.)

Note that one may count all controlling states in a controlling character as a single rule, or one
may count each controlling state as a rule of its own. In some scenarios of character evolution
and federated (distributed) development of terminology the latter is desirable. However, this is a
secondary matter of terminology and does not change the evaluation rules.

G. Hagedorn Fundamental aspects of description models 79

Convertibility of applicability rules

General considerations
The presence of two complementary forms of character applicability rules (applicable-if and in-
applicable-if) is an unwelcome complication of any information model. The rules as shown
above are convertible by applying the complementary rule to the complement of states (Figs. 27
and 29; analyzed in detail in the following section). The convertibility depends on knowledge of
the coding status of characters. When modeling characters as variables and states as values a
presence / absence of a part is expressed in two-state values (not in a single value being scored or
not). Under this model, a character has always at least one value scored or entered as soon as the
observation or measurement has taken place. In contrast under a state scoring model, the coding
status of the character may be unknown (or needs to be managed separately, compare “Categori-
cal data: Character matrix vs. character state matrix”, p. 104 ff).

The convertibility of the two DELTA directives is expressed in examples in the DELTA
User's Guide (Dallwitz & al. 2000a) and has been used in the design of the DiversityDescriptions
model (see p. 322) which only supports inapplicable-if rules. During import of DELTA data, the
“Applicable Characters” directive is converted by adding an “Inapplicable Characters” directive
to the complement of states (Hagedorn 1999a).

However, experience with DiversityDescriptions, has shown that it is undesirable to support
only one form of applicability rules. The original solution in DELTA of providing separate direc-
tives is preferable. Two major issues could be identified:
■ In many cases, applicable-if rules are easier to formulate and proofread. For example, a con-

trolling character may record plant hairs as simple, stellate, glandular, etc. and controlled cha-
racters may contain special information for the various kinds of plant hairs, (if stellate: num-
ber of tip branches, ratio-branched / unbranched; if glandular: length / width of glandular head,
etc.). Expressing this through applicability rules is logical and straightforward, expressing it as
inapplicability if only other states are scored requires substantial logical effort when creating
or proofreading the rules.

■ Converted character applicability rules may deteriorate over time if new states are added to a
character after the rule has been created (Fig. 28). As discussed in “Static versus dynamic ter-
minology models” (p. 45), evolution of the descriptive terminology over time should be ex-
pected and appropriate provisions made.

As a consequence, it is considered desirable to preserve the original form of the rule (as it was in-
tuitive to the creator of the rule). For the purpose of evaluating character applicability rules, how-
ever, convertibility is highly useful and simplifies the design of a system.

b 2

c 2

d 2

e 2

d

a

b

c

e

a 2 May also be
expressed as:

d

a

b

c

e

Original (before adding e)
Complement (before adding e)

Reversion (after adding e)

Figure 27. A character applicability rule defin-
ing “char. 2” as inapplicable if a given state is
scored may be converted into the complemen-
tary rule applied to the complementary set of
character states.

Figure 28. Original applicable-if-semantics are
difficult to preserve when new states are added
to a character after the original rule has been
converted to the complementary inapplicable-if
rule.

80 Fundamental aspects of description models G. Hagedorn

2

Complementary rules on complementary controlling states:

1

d

c

a

b
3

4

1.c 2
1.d 2

2

Controlled
Character

Controlling
Character

Inapplicable-if Rule
 applicable?

1

d

c

a

b
3

4

Applicable-if Rule
 applicable?

1.a 3
1.d 3

1.a 4
1.b 4

1.c 2
1.d 2

1.a 3
1.d 3

1.a 4
1.b 4

1.a 2
1.b 2

1.b 3
1.c 3

1.a 2
1.b 2

1.b 3
1.c 3

1.c 4
1.d 4

1.c 4
1.d 4

Figure 29. The results of an inapplicable-if rule, and the results of the complementary applicable-
if rule applied to complementary states are identical. Small boxed plus and minus represent ap-
plicable-if and inapplicable-if rules, large circled plus / minus the final result given scored states
shown are present in a description.

Analysis of convertibility
The convertibility of applicability and inapplicability rules depends strongly on some border con-
ditions. The question whether or under which conditions applicability rules are indeed converti-
ble was repeatedly raised in the SDD discussions, so that a slightly more detailed analysis of this
seems to be justified.

Definitions: S is the set of states defined in the controlling character, I is the set of states
making the controlled character inapplicable and A is the set of states under which the controlled
character remains applicable. I and A are complements with respect to S, i. e., the states defined
for a character are the union of I and A (AIS ∪=) and the intersection of the sets of controlling
and non-controlling states is empty (∅=∩ AI). D is the set of values (i. e. states) of the control-
ling character present (“scored”) in a given description (SD ⊆), v and w are state values of this
character (Dv∈).
1. Controlling character in description is absent (∅=D), coding status may be explicitly
“unknown”: A literal interpretation of “applicable-if” might suggest that the controlled character
is inapplicable if no applicable-if rule is in effect. However, if no state of the controlling charac-
ter is present in a description, the value of this character is unknown; thus the result of the rule
(i. e., the applicability of the controlled character) is unknown. This case is therefore not affected
by a conversion between applicable-if to inapplicable-if rules (compare last line in Table 17
above).

A potential requirement, desiring a method to decide whether to present potentially inapplica-
ble characters shall be presented to the user or not must be treated separately, not through inap-
plicable-if and applicable-if rules. It may, for example, be handled through a preference setting of
the editing or identification application for the case ∅=D .
2. Controlling character inapplicable (()'': leInapplicabvv =∀): Similarly, the issue of applica-
bility if the controlling character itself is inapplicable is handled identically for both forms of
rules and does not affect the convertibility analysis. An inapplicable controlling character makes
the controlled character inapplicable, see “Cascading character applicability rules”, p. 82. A spe-
cial case is that the explicit coding status “inapplicable” may occur together with other character
data or other coding status values, in which case it shall be ignored.
3. Applicability rules based on data present in a description (∅≠D): The “verbal” character
applicability rules formulated above (p. 77) may be formally written as:

G. Hagedorn Fundamental aspects of description models 81

a) For “Inapplicable-if” rules: I is the set of
controlling states mentioned in the rules and A
is the set of other, non-controlling states.

 b) For “Applicable-if” rules: A is the set of
controlling states mentioned in the rules and I
is the set of other, non-controlling states.

() ()
() ()AwwIvv

AwwIvvableIsInapplic
∉∀∧∈∃=
∈¬∃∧∈∃=

::
:: ()

()Ivv
AvvleIsApplicab
∈∀¬=

∈∃=
:

:

Because of the relations between I, A, and D
this may be simplified to:

()
()
()Avv

Ivv
AvIvvableIsInapplic

∉∀=
∈∀=

∉∧∈∀=

:
:
:

Consequently the applicability is:

()
()Avv

Ivv
ableIsInapplicleIsApplicab

∈∃=
∉∃=

¬=

:
:

 Consequently the applicability is:

()
()Avv

Ivv
leIsApplicabableIsInapplic

∉∀=
∈∀=

¬=

:
:

Or, alternatively:
()
()
()
()∅≠∩=

≠∩=
∅=∩=

=∩=

AD
DIDleIsApplicab

AD
DIDableIsInapplic

 Or, alternatively:
()
()
()
()∅=∩=

=∩=
∅≠∩=

≠∩=

AD
DIDableIsInapplic

AD
DIDleIsApplicab

The rules thus mirror each other, only exchanging the association between controlling / non-con-
trolling set of states and the sets I and A. Thus by applying the complementary rule to the com-
plement of states, the rules may be converted.

The complete evaluation logic, including the case that a character is controlled by several con-
trolling characters may be found in the appendix (p. 388) as pseudo-code and in SQL.

Coexistence of character applicability rules
The DELTA directives “Applicable Characters” and “Inapplicable Characters” (= “Dependent
Characters”) may not occur together in the same data set (Dallwitz & al. 2000a). Considering the
advantages of the two forms of rules discussed above, this seems to be an undesirable constraint.
Problems may arise only if applicable-if and inapplicable-if rules address the same combination
of controlling and controlled character. In this case the two forms may either be identical (and
thus one is redundant) or contradictory (Fig. 30). An explicit contradiction arises if a controlling
state is listed in both rules, an implicit contradiction arises if a state is mentioned in neither rules
(and consequently the complementary forms of both rules are in explicit contradiction).

Although it would be possible to define precedence rules, the results could easily lead to con-
fusion. Essentially, using the two forms of the rule is not different from defining two, differing

sets of controlling
states under the same
form. It seems there-
fore desirable to re-
quire that for any
combination of con-
trolling and controlled
character only a single
form of applicability
rule may be defined.
This would allow a
single character to be
controlled by different

b 2

c 2

d 2

e 2

1
d

a

b

c

e

a 2

No contradiction
(redundant)

b 2

c 2

d 2

e 2

a 2

c 2

b 2

d 2

e 2

a 2

Explicit
contradiction

Implicit
contradiction

(c ?)

Figure 30. Character applicability rules using both applicable-if (plus
symbols) and inapplicable-if (minus-symbols) rules for the same com-
bination of controlling and controlled character may be explicitly or im-
plicitly contradictory.

82 Fundamental aspects of description models G. Hagedorn

controlling characters, each using inapplicable-if or applicable-if rules, and a controlling charac-
ter to use both forms of the rules for different controlled characters.
Two secondary requirements for applicability rules may be:
■ the controlling states truly form a set, i. e., in the database or exchange format no state may be

listed twice
■ the set of controlling states I (or A, respectively) must be smaller than the set of states defined

for the controlling character (S), i. e., I is a proper subset of S: SI ⊂ (or AI ⊂ , respectively).

Cascading character applicability rules
The controlling character in an applicability rule may itself be controlled by another character
value (Fig. 31). This may lead to deeply cascading applicability relations.

In DELTA, cascading definitions are supported and appropriately evaluated. Note that accor-
ding to Dallwitz & al. (2000a), a character whose controlling character is inapplicable should
always be considered inapplicable, regardless of whether it is covered by an applicable-if or an
inapplicable-if rule.

The DiversityDescriptions model supports cascading definitions in the data, but the Diversity-
Descriptions application currently does not evaluate cascaded definitions (Hagedorn 1999a). It is
not possible to use standard SQL queries for such recursive evaluations where the depth of recur-
sion is unknown. In practice, this can be overcome by making “Petioles (hairiness)”, etc. directly
dependent on “Leaves (presence)”. Naturally, this is less convenient and more error-prone.

 Petiole
 (presence)

absent
present

 Petiole
 (hairiness)

hairy
glabrous

 Leaf
 (presence)

absent
present Leaf

 (partitio-
 ning)

simple
compound

Leaflet
Petiole
(hairin.)

hairy
glabrous

Leaflet
Petiole

(presence)

absent
present

Figure 31. Character applicability rules may cascade several levels deep.

Character dependency and applicability is also shown in the use case diagrams on definition
of descriptive terminology (Fig. 165, p. 285) and character correlation analysis (Fig. 188, p. 305).
The use of character applicability to improve character guidance algorithms for identification
purposes is discussed on p. 274.

Current support in some applications and data standards
■ Support in DELTA and New DELTA is identical and has already been discussed above.
■ NEXUS (p. 18) does not support character dependency. As mentioned above (p. 76), methods

of phylogenetic inference like maximum parsimony or maximum likelihood assume that char-
acters are independently, identically distributed. In practice it is known that this requirement is
almost never fulfilled and that statistical inferences (e. g., bootstrapping, Felsenstein 1985)
will yield only approximately correct results. However, the kind of absolute character depend-
ency discussed here as character applicability seems to be not foreseen in NEXUS.

G. Hagedorn Fundamental aspects of description models 83

■ DiversityDescriptions supports the DELTA “Applicable” and “Inapplicable Characters” direc-
tives in import, but internally converts them to inapplicable-if rules (p. 329). As discussed
above, this causes problems in the context of character evolution, if states are added to a char-
acter where the rule would be most logically expressed as an applicable-if rule.

■ CBIT Lucid (p. 21) supports a similar model to DELTA.
■ SDD (p. 20) supports both applicable-if and inapplicable-if rules. A major innovation in SDD

is that the dependencies may be defined as part of normal concept hierarchies (i. e. character
trees). They are inherited down the concept hierarchy tree, affecting all characters below a
given node (i. e., direct or indirect through other nodes). The advantage of this design is that
whereas in other models the rules are anonymous and often difficult to maintain during the
evolution of the terminology, in SDD they are attached to labeled nodes, which in themselves
have a logical hierarchy. In addition, these nodes often already exist. For example, in a com-
positional concept hierarchy the leaf-node will be a natural place for leaf-dependency rules.
SDD up to 1.1. does not support quantitative controlling characters yet.

In all formats and applications controlling characters must be categorical (i. e., quantitative counts
cannot be controlling).
53. Character dependency definitions are important information items for data entry, character

management, and analysis purposes.
54. A general form of value-dependency may predict values in another character for some (but

not all) values of a controlling character. It may be desirable to implement this, but it has
not been pursued in current models.

55. A special form of value-dependency is that some values predict the applicability of another
character (character applicability rules). This is highly desirable and implemented in several
descriptive models.

56. It is desirable that the controlling character may be of categorical or quantitative type. Cur-
rent models only implement categorical controlling characters.

57. Because of character evolution issues (adding states to existing characters) and to improve
the clarity of expression, both positive and negative character applicability rules (“Applica-
ble-if”, “Inapplicable-if”) are desirable.

58. Combinations of applicable-if and inapplicable-if rules within a data set are desirable. How-
ever, any combination of controlling and controlled character may be covered only by one
form of the rule.

59. Support for the evaluation of cascading character applicability rules is desirable. This may
be expressed in specialized graph structures in the information model, but may also be sup-
ported only during evaluation of rules.

(Note: a related topic of method dependency will be discussed later on p. 175.)

4.9. Raw data and data aggregation
Introduction
Before discussing various models to record structured descriptions, a final fundamental problem
that is independent of the specific model is addressed: The level of data aggregation and the
structure of the set of objects that is the subject of the description.

Data aggregation is used here in the sense that it is the process of representing multiple indi-
vidual data points in a transformed, more compact form. Typical aggregation methods are statisti-
cal measures (mean, variance) for quantitative data and frequency histograms for categories.
Depending on perspective, these processes may also be viewed as “summarizing” (Macfarlane

84 Fundamental aspects of description models G. Hagedorn

1993a, White 1994, Hagedorn 1999a), “agglomerating” (Maxted & al. 1993), “collating”, “con-
solidating”, “aggregating” (three terms used frequently during SDD discussions, the last also in
Diederich & al. 1997), or “abstracting”, “generalizing”, or “amalgamating” (all three by Pullan &
al. 2005) data. The term “aggregation” was selected in SDD discussions as preferable. Pullan &
al. (2005) combine the concept of data aggregation methods (where the number of data points
changes) with the concept of transformations from quantitative to categorical data (where the
number of data points remains constant, see “mappings” p. 66) as “levels of abstraction in the
description-building process”.

A major reason for data aggregation is the transformation from specimen to taxon descrip-
tions. Lebbe & Vignes (1998) speak of a “double nature of a taxon as a concept and a set of in-
stances”, that makes it possible to have contradictory statements (e. g., “present or absent”) in a
taxon description. However, the step from the individual to the taxon is only one of many aggre-
gation steps that may occur in descriptions. For example, even though a simple measurement
such as the length or shape of a leaf can only be obtained by measuring a single leaf, values for
leaf length or shape may be reported on the following data aggregation levels:
 1. repeated measurements of a single leaf (i. e. concrete measurements);
 2. multiple basal leaves of a single individual;
 3. all basal and stem leaves of a single individual combined;
 4. multiple individuals in a single population according to some scope (male individuals, juve-

nile individuals, etc.);
 6. all individuals from a single population (or infraspecific taxon);
 7. all sampled populations of a species (or infraspecific taxon);
 8. all taxa classified in a higher taxon (creating, e. g., a genus description).
Clearly many more combinations of these aggregation criteria are possible (all male juveniles of
a species in Germany…); a fixed sequence of aggregation level seems therefore not desirable.
The problem of multiple instances of a part in individuals and aggregation at populations is also
noted by Diederich & al. (1997) and Pullan & al. (2005). Ideally an information model for de-
scriptive data should be flexible enough to allow entering both repeated sample data and aggre-
gated data at multiple such levels.

Another distinction that is often made is that between “raw”, unprocessed data and “synthetic” or
“aggregated” data. Storing raw data is desirable:
■ in general, to archive them as a reference for data generated within a study;
■ in cases where the processing can be automated, e. g., in generating descriptive statistics of

repeated measurements.
The example of leaf measurements shows, however, that this distinction has a very complex rela-
tionship with the conventional taxonomic set structure of individual, lowest-ranking taxon, and
hierarchical taxa. A slight simplification may be made by ignoring the relatively rare case of mul-
tiple measurements on a single object as part of the methodology (e. g., to reduce measurement
error). Some instruments may even do this internally, but report only a single measurement. Nev-
ertheless, even if both level 1 and 2 above are considered “raw data”, whether a relation between
“raw data” and the individual organism exists or not depends on the multiplicity of the object
part. In some cases this may be deduced from the fundamental organization of organisms in a
larger taxon group, but in many cases this is species-specific (for example, some plant species
have a single stem, others multiple stems).

Similarly, the aggregation levels 3 to 4 indicate that descriptions often have a scope that does
not directly match the taxonomic hierarchical classification. A geographical scope is not necessa-
rily congruent with an actual or potential infraspecific taxon. Differences between geographically
scoped descriptions may be due to genetic mechanisms or may be based on, e. g., a systematic
influence of climate on the phenotype.

G. Hagedorn Fundamental aspects of description models 85

Several requirements can already be formulated:

60. Structured descriptive information models must provide methods to describe properties of
sets of objects.

61. Both repeated sample data, and the results of statistical and non-statistical data aggregation
methods should be supported.

62. Aggregation methods are required for descriptions of classes. In biology, sets of individuals
form taxa, sets of taxa form higher taxa. No difference could be detected between aggrega-
ting from individual to lowest level class and lower level class to higher level class.

63. Aggregation methods are also required for descriptions of individuals, containing either
multiple parts or changing over time (discussed in detail further down, p. 93).

64. The difference between a descriptive information model for individuals (e. g., in a specimen
database) and taxonomic classes (e. g., in a taxonomic database) with respect to aggregation
methods is negligible.

65. Classes or sets of objects may be defined by non-taxonomic means, e. g., through a geo-
graphic scope (see also “Secondary classification resulting in description scopes”, p. 215).

66. A fixed sequence of aggregation levels (such as “object part, individual, taxon”) is covering
only a subset of aggregation cases and should not be part of the information model.

The topic of raw data and aggregation is also presented in a use case diagram (Fig. 178, p. 297).

To simplify the following discussion, most examples will be discussed assuming a taxon-
specific object / property model (Fig. 13, p. 42), but they are equally applicable to a generalized
model (e. g., Fig. 14, p. 43).

Standard aggregation methods
Descriptive data for sets of objects can simply be stored as a big collection of repeated values.
However, such collections are not very digestible or intelligible for humans. Other methods that
reduce the amount of information that has to be processed are preferable.

The most frequently used data aggregation methods are based on univariate descriptive sum-
mary statistics. Depending on the measurement scale (p. 49), the set of univariate statistical meas-
ures may be highly limited or very large. For all categorical data (nominal or ordinal) sample
size, a mode, and a frequency distribution can be calculated. Furthermore, in the case of ordinal
data the total range (minimum to maximum) and median are frequently used. A much wider
range of summary statistics is applicable to continuously varying quantitative numeric data (e. g.,
mean, variance, range measures, or confidence intervals).

For some statistical measures such as confidence intervals, the number of measures is poten-
tially infinite, because a confidence measure may be defined for any desired confidence probabi-
lity value. A similar problem occurs with percentiles. In practice, the list of commonly used
measures is limited (e. g., 90%, 95%, 99% confidence intervals, 60%, 80%, 90%, 95% percen-
tiles). One solution is therefore to consider each of these frequently used confidence measures a
separate category. A more general solution is to define a basic vocabulary of confidence-measure
classes that is supplemented by a quantitative parameter (taking values like 0.9, 0.95, 0.99, etc.).
The latter solution is used in SDD.

Integer data may be summarized either using the methods intended for continuous data or
using a frequency distribution. The latter method is especially appropriate if the distribution is
unusual (e. g., spores that have only 3, 5, or 7 septa, or a leaf with either 15 or 17 leaflets).

In biological descriptive data one of the most customary aggregation methods for categorical
or integer data is a special form of “frequency distribution” where the frequency information it-
self is ignored or not available and simply the set of values with frequency > 0 is reported. This
method is used when saying “has linear, lanceolate, or ovate leaves”. In statistical data analysis
this aggregation method is sometimes called “value list”, but this term may also be used for a

86 Fundamental aspects of description models G. Hagedorn

total list of original value (i. e., values occurring repeatedly). It is therefore proposed to call the
aggregation method “distinct value list”. It is applicable to categorical and discrete quantitative
data (as in the example “3, 5, or 7 septa” above).

Where frequency information is given, it is often simplified and represented only by verbal
estimates (e. g., “rarely”). It is possible to define or estimate frequency ranges corresponding to
these verbal frequency statements, see “Frequency modifiers”, p. 206.

In addition to using defined statistical measures, another customary aggregation method is to
record human estimates of “typical ranges”. This is not truly an aggregation method for data that
have already been measured, but a replacement for it. An estimate of “typical range” may be
achieved by visually comparing objects and measuring samples that appear relatively small and
large while ignoring unusual or extreme cases. Only the “aggregated data” will then be recorded.
The reduced precision and potential problems when analyzing estimated data are often accepted
because of the increase in work efficiency.

Some statistical measures are related and may even be substitutable for certain purposes.
Mean, mode, and median are all a kind of central value; standard deviation, variance (both with
df = n–1 and df = n), and standard error are a variance measure, the first four referring to values,
the last to a mean (Fig. 32). Such relations may be expressed in a class hierarchy or through
ontological kind-of relations. This is desirable during data analysis, but may also be desirable
when entering data. Thus in addition to mean, median, mode, and human mean estimate, it may
be desirable to label a value directly as “central measure”.

Statistical Measures
Variance of data

Variance of mean

Median

Mode

Standard Error

PopulationStdDeviation

PopulationVariance

SampleStdDeviation

SampleVariance

Central measure

Variance measure

Mean

Sample size
Figure 32. UML class diagram showing a selection from a generalization hierarchy of statistical
measures.

The approximate substitutability of statistical measures is especially relevant for identification
and report-generation purposes. To compare a measure of an object to be identified with descrip-
tive data in a database, most kinds of range measures (confidence interval, appropriate percen-
tiles, mean ± std. dev., and even estimated ranges) are useful. The different measures have to be
distinguished only for more exact analyses. However, as a design requirement for descriptive
data systems, knowledge about the similarity of statistical measures does not necessarily have to
be a part of the terminology; it may equally well be incorporated into analysis software.

DiversityDescriptions was probably the first information model for descriptive data to intro-
duce a fine-grained and extensible model for statistical measures (p. 356). This included a con-
cept for “undefined ranges”, but not for generalized central measures, or human mean and range
estimates. SDD (p. 20) strongly improves on this, containing an enumeration of 38 statistical
methods (“UnivarStatMeasureEnum” and “UnivarStatMeasureWithParamEnum”), informing for
each of these methods whether values are dimensionless or not, and categorizing them into repor-
ting and method classes (Table 18).

G. Hagedorn Fundamental aspects of description models 87

The question how data referring to statistical measures may be integrated into the data storage
model is discussed later on p. 110.

Table 18. Classifications of univariate statistical methods used in SDD. These provide semantic
information about statistical methods intended to enable the creation of generalized software.

Enumeration Category Description
Reporting
classes

Central Measure Any kind of central measure, like mean, mode, median, etc.

 Lower Range The lower value of any kind of range measure, like ‘mean minus standard dev.’,
confidence interval, percentiles, etc.

 Upper Range The upper value of any kind of range measure, like ‘mean + standard dev.’,
confidence interval, percentiles, etc.

 Lower Extreme The absolute minimum value (a category of its own).
 Upper Extreme The absolute maximum value (a category of its own).
 Variance Measure Any kind of variance measure, like standard deviation, variance, etc.
 Sample size Sample size is a category of its own.
 Other Any other kind of statistical measure.
Method
classes

Statistical
estimate

Measures estimated by statistical methods. Examples: Sample mean, minimum,
confidence interval, standard deviation (n-1 degrees of freedom).

 Statistical
parameter

Values calculated by statistical methods that are exact in relation to the population
under study (statistical estimates are exact in relation to the sample, but estimates
in relation to the population under study). Examples: Sample size, standard devia-
tion (n degrees of freedom).

 Observer estimate Values estimated by humans without using mathematical / statistical methods.
 Unknown method Values obtained by an unknown method. This may be a statistical method or a

human observer estimate. Many legacy data sets and data published in print fall
into this category.

Reporting classes are similar to the five basic measurement classes supported by DELTA. Most applications that report
information for human use can rely on these reporting classes in their decision how to present the data, increasing com-
patibility with future SDD / UBIF versions. Implementers may, however, choose different methods of handling the statistical
measures.
Method classes inform about very general quality properties of measures.

67. Support for range of univariate statistical measures is required. The set of applicable meas-

ures depends on data type and measurement scale.
68. Most univariate statistical measures report only a single value.
69. Some univariate statistical measures such as percentiles or confidence interval limits are

best represented as a combination of a result value and a method parameter.
70. In addition to exact measures, support for human estimates such as “typical range” is

required.
71. To support legacy data such as DELTA, support for undefined measures is desirable (e. g.,

in DELTA a value is known to be a central value, but not whether it is a single measure-
ment, a mean, median, or mode).

72. Some standard descriptive statistics report a collection of data items rather than a single
value for a statistical measure. Frequency distributions and distinct value lists must be
supported. A distinct value list is a frequency distribution with unknown frequency.

73. It is desirable to support two forms of frequency distributions: with frequency values and
with frequency categories (i. e. frequency modifiers).

Inappropriate aggregation results
Recording a temperate tree in winter as “leaves absent” and in summer as “leaves present” may
well be considered appropriate. However, aggregating such data would lead to a taxon descrip-
tions like “leaves present or absent” which might be considered “silly” for a temperate tree. A

88 Fundamental aspects of description models G. Hagedorn

very similar situation in animals may be considered less silly: The Arctic hare (Lepus timidus)
having “white or brown fur” seems considerably more appropriate. And is a description of a but-
terfly as “with or without wings” (i. e., as caterpillar) appropriate or not?

Again, considerable information about the expected background knowledge of the data con-
sumer seems to be required. Repeating general knowledge leads to descriptions that appear
“silly”.

The problem also has some serious implications for rules for data recording, analysis, and
identification. When recording data for individuals, care must be taken about the expected scop-
ing of a description. A character like “leaves (presence)” may be expected to be validly coded on
the taxon level, i. e., it is negative only if the organism never produces leaves. This may be de-
sirable for analytical purposes studying phylogenetic or genetic processes. However, when recor-
ding data on the individual level, data are both constrained by individual variability and develop-
ment over time. If the individual winter tree is identified by someone not knowing that it has
leaves in summer, the answer “leaves absent” would lead to a failure of identification (p. 310), if
the taxon description of the tree is limited to “leaves present”.

Further studies are needed to clarify how these problems can be resolved. The current stan-
dard solution seems to be that in most characters a-priori knowledge of temporal variability or
the entire life-cycle of an organism is expected (e. g., presence of leaves, flowers, or fruits) and
therefore the taxon-level knowledge is applied to guide the user both during data recording and
identification. Where the knowledge is lacking, one may chose to live with “silly” descriptions.
This solution is clearly not satisfactory, especially since the expertise of data recorders and users
of identification tools will typically be quite different. Several other solutions may be envisaged:
■ Use separate characters for winter and summer.
■ Use temporal modifiers (p. 204) for winter and summer. The aggregated description could

then read as “leaves present (in summer) or absent (in winter)” and “brown in the summer,
white in the winter; ears tipped with black all year round”.

■ Create scoped descriptions for different life-cycle or seasonal stages (see “Secondary classifi-
cation resulting in description scopes”, p. 215).

■ Attach metadata to characters, guiding the aggregation process as to whether temporal occur-
rence of a character does occur (this is related to “Dependencies on circumstances of identifi-
cation”, p. 175).

The examples show, that data synthesis to obtain taxon descriptions may be more complex than
using aggregation methods
74. Character metadata informing about the expected scope or recording level of a character

may be required. For genetic traits the scope is summarized over the entire life-cycle, for
diagnostic purposes individual points in time may be more appropriate.

75. In addition, or perhaps alternatively, character metadata informing about dependency of
observation on circumstances or temporal development (and therefore the likeliness that
data recorded on individuals represent the entire developmental cycle) may be required.

Aggregating aggregated data
Data aggregation frequently occurs on sets where the members already contain aggregated data.
This occurs, e. g., when generating a genus description from species descriptions, or when gene-
rating a species description from specimen descriptions for a property that occurs multiple times
in each individual.

Frequency distributions, distinct value lists, and some statistical measures (such as minimum,
maximum, or sample size) can easily be further aggregated. For other statistical measures such as
mean this may be possible if sample size is recorded, but most statistical measures do not easily

G. Hagedorn Fundamental aspects of description models 89

support further aggregation. The calculation of exact statistical measure in the latter case requires
access to the original sample data.

In certain cases, further options may exist. For example, although defined range measures like
confidence intervals or percentiles cannot be aggregated as such, it may be desirable to degene-
rate them to a lower quality measure (e. g., “unknown range method”, or (human) “range esti-
mate”), which in turn can be aggregated (Table 19).

A general alternative is to report the list of individual member measures, for example: “stan-
dard deviation 3.2, 4.6, or 1.9”. In many cases it may be more desirable to express the aggrega-
tion of multiple ranges as a set of ranges rather than combining them to a new range. This occurs
when the union of member ranges of the set is non-continuous. For example, when aggregating
the individual ranges “3-5”, “4-7”, “20-25” the set expression “3-7” or “20-25” is more informa-
tive than the combined range “3-25”. It seems desirable, however, to use some heuristic method
to decide whether it is more appropriate to use a combined range or not. For example, when ag-
gregating the individual ranges “3-5”, “5.5-10”, “11-25” the combined range “3-25” is probably
preferable.

Table 19. Aggregating statistical measures.

Entity Minimum Lower range Central value (Mean / Median) Upper range Maximum
Entity 1 2 3 (conf. interval) 5.5 (mean) 7 (conf. interval)
Entity 2 1.5 2 (human estim.) 4.5 (median) 7 (human estim.) 9
Entity 3 5 6 (unknown) 8 (unknown)
Summary: 1.5 (min.) 2 (undefined) 5 (undefined central value) 8 (undefined) 9 (max.)

and with an additional entity 4 added to entity 1 to 3, this would look like
Entity 4 1 8 12
Summary: (1) 1 (undefined) 6 (undefined central value) 12 (undefined) (1)

(1) In the summary of entity 1-4, the minimum and maximum measures are omitted, because they are already included in
the normal range of at least one entity.

76. Methods to aggregate aggregated data are highly desirable and can be devised in certain

cases. Supporting all necessary data for this in the information model is highly desirable.
77. Where statistical measures cannot be aggregated further, either access to sample data is re-

quired, or the member values may be listed, or in certain cases measures may be degenerat-
ed to lower-quality measures that in turn can be aggregated.

78. In the case of ranges, if the union of ranges has considerable gaps, an aggregation as a set of
ranges is more desirable than combining the ranges into a single range.

Data recording levels (sample data)
Ideally, a descriptive information model should support both collections of original, repeated data
and descriptive summary statistics. The original data are often very valuable for later reanalysis
and support for preserving them is a design requirement for SDD. Furthermore, supporting them
improves the workflow, because the original data recording and the automatic calculation of de-
scriptive statistics can be performed by a single tool. The current workflow is often inefficient.
Data may be recorded on paper, statistics are calculated using a pocket calculator or spreadsheet,
and the results are transferred to a database.

Although descriptive statistics may be calculated on the fly for report-generation purposes, not
supporting them in the descriptive information model means that any knowledge where original
data are no longer available (such as most scientific publications), would be excluded. Thus,
descriptive statistics (mean, ranges) should be supported both as results of calculation referring
back to original sample data, and as primary data itself. Some kind of “status flag” may be desir-

90 Fundamental aspects of description models G. Hagedorn

able to distinguish between calculated statistics and statistics that are primary information in the
database.

In the information model for descriptive data, one might be tempted to limit the applicability
of original repeated sample data to object descriptions (specimens), since direct observation of
values for class descriptions (taxa) is in principle not possible. However, this would create major
problems when attempting to record data from class descriptions. Neither repeated values for a
single property (e. g., “5, 7 or 9 bundle scars”), nor values for different properties are necessarily
actually or even potentially obtained from a single specimen. Rather than representing a class
description by a single “abstract specimen”, this would strictly require to introduce one artificial
“dummy” specimen for each value in a class description for which no specimen information is
available. Similarly, in certain cases it may not be known whether the value reported in a class
description is an average from multiple specimens, or the only measurement for the only studied
specimen of the taxon. For these reasons, the SDD models repeated sample data both for class
and object descriptions.

Another aspect of recording aggregated data is that in many cases the statistical methods are
not properly reported in the publication. In taxonomic publications the method is often not “sta-
tistical” at all: a value range may simply reflect the author's estimate of what is considered usual
and what is considered rare. One solution for this problem is to introduce non-statistical “human-
observer estimates” in parallel to the statistical measures (chosen by SDD, p. 20).

Finally, multiple separate samples may have been taken within a class of objects. For many
purposes (checking outlier values detected during analysis, analyzing possible reasons why re-
sults in an entire sample differ from other samples) it is desirable to preserve the original sample
structure together with same metadata about the sampling circumstances.

One advantage of preserving original sample data together with sample structure is that ap-
propriate summary statistics can be calculated for any level of aggregation desired (e. g., subspe-
cies, species, genus description). Recording only the summary statistics limits further aggrega-
tion. Only minimum, maximum, sample size, and (provided sample size is known) mean can be
aggregated, but no variance measures, confidence intervals, or percentiles. In these cases the only
available reporting method is to report the individual summary statistics multiple times for each
sample.
79. Structures for original sample data (sets of values observed under the same conditions) are

required on individual object descriptions as well as on class descriptions.
80. Sample data may be associated with metadata (conditions, time, place, etc.).
81. The structure of multiple samples (each containing multiple observations) should be

preserved.

Linked observations
In many cases multiple properties of an object are recorded together. When recording the length,
width, shape, and number of septa of the spores in a fungal specimen it is possible to sample a set
of spores for width, another for length, another for shape or septation. In many cases, however, it
is desirable to record all four properties for each individual spore in the sample. Such linked (or
“correlated”) observations increase the options for analysis. For example, it is common to ana-
lyze the size and shape of aseptate, uniseptate, and multiseptate spores separately. Furthermore,
length-width-ratio calculated as the average of individual length / width ratio values is the most
correct information, and is different from the ratio of average length divided by average width.
Similarly, other correlations can only be calculated if both the original data are present and the
linking status is documented.

G. Hagedorn Fundamental aspects of description models 91

Table 20. Examples of repeated quantitative and categorical measurements for independently
measured data for a single object (or specimen). The leaf observations are linked, the siliqua
observations not.

Sample –––––––––– basal leaves –––––––––––– –––––––––– siliquae ––––––––––––
 Object ––––––leaf blade –––––– – petiole – – young – ––––––mature ––––––
 /Unit length width shape length Length length width seed #

1 1 8.0 cm 4.0 cm ovate 5 mm
 2 8.0 cm 4.5 cm ovate 5 mm
 3 9.0 cm 3.5 cm lanceolate 6 mm
 … … … … …
 10 7.5 cm 4.0 cm ovate 4 mm

2 11 5 mm
 12 7 mm
 13 5 mm
 … …
 20 4 mm

3 21 20 mm 2.5 mm 14
 22 25 mm 3.0 mm 16
 23 21 mm 3.0 mm 15
 … … … …
 30 22 mm 3.0 mm 16

Summary:
 Mean 8.0 cm 4.0 cm (n/a) 5 mm 5 mm 22 mm 3.0 mm 15.6
 Min 7.5 cm 3.5 cm (n/a) 4 mm 2 mm 19 mm 2.5 mm 14
 Max 9.0 cm 5.0 cm (n/a) 6 mm 7 mm 26 mm 3.5 mm 16
 … … … … … … … … …
 Frequ.-distrib./
 Distinct value
 list

(n/a) (n/a) usually
ovate, rarely
lanceolate

(n/a) (n/a) (n/a) (n/a) 14, 15,
16

Note: Characters measured from the same object (a single leaf, siliqua) are recorded together in a row. All measure-
ments are synthesized into a summary description using statistical parameters for quantitative measurements and fre-
quency distribution / distinct value list method for categorical or integer data. The data are simulated.

A descriptive information model should be able to express both linked and non-linked repeat-
ed measurements. This requires the introduction of one container concept for the sample, and an-
other concept for the linked observations. The latter may be called “sampling unit” (shown as
rows in Table 20).

Such an extension is necessary both for character models and object composition models ex-
plicitly modeling object parts (discussed later in detail under “Character decomposition models”,
p. 116). Although a “container” for repeated parts already exists in the latter type of the models,
the part that is repeated (e. g., “basal leaves”) may be on a higher level than the parts for which
linked property observations are recorded (blade, petiole).

The problem of linked observations is not limited to repeated measurements on object or
parts. If a genus contains two species, one with green ellipsoid spores, the other with brown
round spores, the genus description may be aggregated to “spores green or brown, round or ellip-
soid”. However, this description ignores the linking of values and as a result a species with green
round spores would fit the description. The problem is discussed further below under “Boolean
operators between states of categorical characters” (p. 95).
82. Repeated sample data should preserve the sampling context and linking of observations

(multiple properties observed on the same part or individual).
83. Aggregation of data should be able to preserve information on linked observations.
84. Aggregation of data should be able to express the lack of information on linked

observations.

92 Fundamental aspects of description models G. Hagedorn

Special aggregation cases
Many data types do not fit into the data aggregation and analysis framework for categorical or
quantitative data. Examples are certain molecular data such as protein / nucleic sequences or pat-
terns (RFLP, AFLP, RAPD, etc.), raw spectrographic or chromatographic data, or repeatedly
recorded media data like images, bird songs, etc.

Similar to the case of categorical or quantitative data discussed in the chapter introduction
(p. 84), a – perhaps intuitive – classification as “raw data” is not appropriate. Although process-
ing, standardization, and aggregation methods will often be performed on these data types before
they can be used to compare or identify organisms, this process may have several steps, each of
which is based on data that are “raw”. For example, for DNA sequence data based on a four-color
sequencer (e. g., ABI™) at least the following steps will be distinguished:
■ Two-dimensional density data images for each of the four fluorescent colors based on the

different dyes with which the ddATP (didesoxyATP), ddCTP, ddGTP, and ddTTP had been
marked

■ A single four-color density data image, combining the single-colors after correcting them for
their respective differences in retention time

■ The four-color image with vector information (detection of lanes, detection of bands within
these lanes, annotation which lane is A, C, G, or T) added

■ A four-color one-dimensional density chromatogram for each sequence fragment (unverified,
single-strand-reading DNA sequence between two primers, e. g., “SCF” or “ABI”-files)

■ Multiple sequence fragments aggregated into a “contig”-sequence, where each part is present
in both reading directions and differences are corrected / resolved, together with the respective
chromatograms (e. g., Sequencher™ SPF-files)

■ The extracted corrected consensus sequence as a string of AGCT letters.

Perhaps a more relevant distinction is, whether a data type is intended for machine-based aggre-
gation and analytical processing at all. Especially where data are stored in both a more raw and
more processed format, it is likely that the first is primarily intended for human consumption,
possibly as a voucher for the processed information. An example may be a case where in addition
to data on presence of concentration of a chemical compound, also a digitized mass-spectrogra-
phic printout is stored.

The distinction cannot be made based on the data type itself. Whether a picture is intended as
an information voucher, or whether it is intended for algorithmic image comparison methods is
not self-evident, and may, in fact, change over time. Therefore, whether metadata on “original
intent” shall be recorded or not, cannot easily be decided. It may be desirable to do so as hints for
consumers of a data set, but is not an absolute necessity.

In general for each complex data type (p. 59) processors must be informed about available
aggregation and analysis methods and the conditions under which they are appropriate to use. It
is desirable to model this as generally as possible, since it is likely that new aggregation and ana-
lysis methods (like algorithmic image comparison) will become available over time. Examples of
specialized aggregation methods are:
■ Multiple nucleotide sequences may be aligned and analyzed using phylogenetic or distance

methods, or aggregated using “consensus sequences”, where differences are expressed using
ambiguity symbols (compare p. 57). Consensus sequences are a general method, which may
be used for various purposes like phylogenetic, functional, or structural analysis. However, the
usefulness of “consensus sequences” is limited to sequences that are aligned and relatively
similar. Information content is quickly lost when aggregating distantly related sequences using
consensus sequences (many base positions becoming the ambiguity symbol ‘N’, indicating
that any of ACGT may occur).

G. Hagedorn Fundamental aspects of description models 93

■ It may be possible to process chromatographic data in similar ways (after normalizing for
variation in retention time, and probably after peak identification and peak area integration,
since isolated peaks are easier to integrate than overlapping peaks).

For media recordings no true aggregation method is currently known to the author. A common
method to deal with a large sample of media recordings (images, video, or audio) is to select one
or few “typical” items that are considered “representative”. Care must be taken to express the
variance as well as the median (e. g., in birds with markedly different song dialects).
85. “Raw data” is no absolute category that has special properties. Data processing often occurs

in multiple steps, each of which may be called to be based on data that are “raw” relative to
the results.

86. Some data may not be intended for machine-processing at all, but rather provided as “infor-
mation vouchers”. It may be desirable to support this distinction through metadata, but it
may also be possible to let a processor assume any data for which it cannot find aggregation
or analysis methods, to belong to this category.

87. Special data aggregation methods may be available for certain types of descriptive data,
either truly aggregating data into a new form, or by selecting “representative” data items
from the full set. The information model should provide both for linking base data and
derived aggregated data, and for selecting some from repeated data as being representative
(especially for media data).

88. The support for data aggregation methods should be extensible, providing for future meth-
ods. It is currently unclear how data structures that might be necessary for specialized
aggregation methods can be anticipated in the information model.

Aggregation within individuals
Often several values exist for a single property variable in a single individual, leading to data
aggregation within individuals. The three major scenarios are:
■ biological objects change over time (ontogenetic development),
■ patterns, gradients, or intermediate values result in the coexistence of values in a single object

instance (Fig. 33 a), and
■ the object occurs multiple times in the individual (Fig. 33 b-d).
All three reasons of variation are a source of problems in structured descriptions (see also the
sections “Change of object concepts through temporal development”, p. 162, “Pattern versus
composition”, p. 165, and “Spatial gradients”, p. 150).

Importantly, multiple occurrences of object parts in an individual may be structured into as-
semblage levels. For example, an individual plant may have multiple shoots, each with a single
inflorescence, each with multiple flowers, and each with multiple petals. These levels are difficult
to generalize and many levels are specific to a species or higher taxon. Examples: Species having
always only a single shoot; species in the plant family Apiaceae having always one or two levels
of umbels (simple or compound umbel).

In structured descriptions one seeks a basic structure that enables comparability across such
differences. One approach is to create a potentially complete model, enabling an unlimited num-
ber of levels on which objects may be assembled and then to provide methods to make these
levels comparable. The standard aggregation methods do support hierarchical aggregation of
multiple levels (at least when original data are available, aggregating descriptive statistics is more
limited). The problem is, however, that it is difficult to establish a system that provides compara-
bility of the various levels, their hierarchy, and taxonomic dependency. Solving this problem re-
quires considerable investment both in modeling and implementing the generalized model, and
devising a terminology that either in advance knows about all of compositional (= structural) di-
versity, or can evolve during data recording. Few models have attempted to model the complexity

94 Fundamental aspects of description models G. Hagedorn

of part compositions (see “Object composition”, p. 131, and “Character decomposition models”,
p. 116 for detailed information).

Most existing information models for descriptive data attempt to reduce the complexity by ig-
noring some levels and focusing on those that are most general, most frequently the cause of
polymorphism, and are sufficiently comparable.

The level of the individual is probably most easily general in biology. An individual may be
defined as the coherent part of tissues of the same genotype. For example, each monozygotic (ge-
netically identical) twin is an individual, but all shoots of a plant growing from the same root be-
long to one individual. Whereas in most animal groups the recognition of individuals is not con-
tentious, in some groups of fungi, algae, non-vascular and vascular plants, recognition of true in-
dividuals may require expensive and time-consuming genetic methods (compare Fig. 33 d, plant
shoots growing from a rhizome). However, it is rare that a polymorphism occurs between shoots
of a single genetic individual. In practice these variations are most likely attributable to pheno-
typic plasticity or systematic variation in response to the environment, which occur between indi-
viduals on the population level. For practical purposes, a shoot or a fruiting body of a fungus is
therefore usually considered to be equivalent to an individual.

Another problem is that occasionally important descriptive information depends on levels
above the individual. Examples are colonial corals (Anthozoa, Cnidaria), or lichens (where the
fungus depends on a mutualistic symbiosis with algae from one or several species).
89. Aggregation methods are required within individual specimens where observations are

repeated over time or due to object parts occurring multiple times. Generalizing from
specimen data to taxon data is only a special case of these general aggregation methods.

b)Assemblage 1
(e. g., flower)

Single state
Level

"Multistate / polymorphic"

c) Assemblage 2
(e. g., inflorescence)

d) Individual
(e. g., growing
from rhizome)

a)Single part
(e. g., color of petal)

Figure 33. Examples of multistate (= polymorphic) situations in a single individual at a single
point in time. A range of property values may exist already in a single object part, e. g., due to a
pattern, a gradient, or intermediate values. More frequently, polymorphic data are due to objects
existing multiple times; this may occur at multiple assemblage levels within an individual. Only a
subset of all possible combinations is shown in the diagram.

G. Hagedorn Fundamental aspects of description models 95

Boolean operators between states of categorical characters
In principle, descriptive statements may involve Boolean operators such as ‘and’, ‘or’, ‘xor’, and
‘not’ (where ‘A or B’ is true for ‘A’, ‘B’, or ‘A and B’, and ‘A xor B’ is true for ‘A’ and ‘B’, but
not ‘A and B’). Using a syntax modeled after a combination of SDD and MathML (Carlisle & al.
2003), one may write, e. g.,
for “petal color: red or orange or yellow”:
<char id="petal color">
 <apply>
 <or/>
 <state id="red"/>
 <state id="orange"/>
 <state id="yellow"/>
 </apply>
</char>

and for “petal color: red and (orange or yellow)”:
<char id="petal color">
 <apply>
 <and/>
 <state id="red"/>
 <apply>
 <or/>
 <state id="orange"/>
 <state id="yellow"/>
 </apply>
 </apply>
</char>

Table 21. Example data to test ‘and’ and ‘or’ statements on different aggregation levels (compare
text).

Aggregation level: Values:
Species Individual Flower Single petal Color Shape
S1 I1 F1 P01 red round
S1 I1 F1 P01 orange round
S1 I1 F1 P02 red round
S1 I1 F1 P03 orange elliptical
S1 I1 F2 P04 red round
S1 I1 F2 P05 red round
S1 I1 F2 P06 red round
S1 I2 F3 P07 yellow elliptical
S1 I2 F3 P08 orange round
S1 I2 F3 P09 orange round
S1 I2 F3 P10 orange round
S1 I2 F4 P11 orange round
S1 I2 F4 P12 orange round

A major problem, however, is that the semantics of the Boolean operators ‘and’ and ‘or’ between
prepositions is ill-defined if multiple aggregation levels are present and the level to which a
statement should apply is not defined. Since the set of states for species S1 from Table 21 con-
tains all states, descriptions may be:
■ “Species S1 has red, or orange, or yellow petals”, or
■ “Species S1 has red, and orange, and yellow petals”.
In practice, however, the second expression is misleading. Since a species is a class of individuals
that cannot be directly observed in nature, most biologists would assume that the implied mean-
ing is:
■ “Individuals of species S1 have red, and orange, and yellow petals”,
– which is not true. A true statement would be:
■ “Individuals of species S1 have red, and orange, or orange and yellow petals”.
The closely related statement:
■ “Petals of individuals of species S1 are red, and orange, or orange and yellow”
could be interpreted that rather than that the individual has at least some petals that satisfy this
condition, each petal must satisfy this condition. The corresponding true statement would be:

96 Fundamental aspects of description models G. Hagedorn

■ “Some petals in species S1 are red and orange, others only red, or only orange, or only
yellow”.

Similar care is necessary when using:
■ “Flowers of species S1 have red and orange, or red, or orange, or yellow petals”.
This statement is true, but it remains ambiguous whether the variation is within flowers or
between flowers. A more exact statement might be:
■ “Each flower of species S1 has either (red and orange) petals and red petals and orange petals,

or only red petals, or yellow petals and orange petals or only orange petals.”

Such statements are normally not made in natural language descriptions and their meaning is very
difficult to decode. As a consequence, much available data is ambiguous. Designers of informa-
tion models that attempt to model the exact situation would either need to decide that they can
only be used for new data, or they would need to implement methods to deal with the ambiguity
that is present in current data. The Prometheus model follows the latter path, and, requiring to
explicitly build and clone object parts, describes them individually. This allows a much greater
expressivity with regard to Boolean operators.

Existing DELTA-based software attempts to avoid the complexity of this problem. It allows a
combination of states within a single character (i. e., a property of the entire object or a part of it)
with either ‘or’ or ‘and’, and always assumes an ‘and’-relation between characters. However, for
comparison and data-retrieval purposes during identification, the ‘and’ operator is treated as iden-
tical to ‘or’. The distinction is used, however, when natural language wordings for human users
are to be generated. By this method, DELTA avoids the need to specify the intended aggregation
level exactly, and allows both statements that are intended for individuals and statements inten-
ded for the species level. The implied level is usually supplied by the background knowledge of
the human reading the natural language description. The statement:
■ “Petals yellow or orange”
may mean that individual petals are both yellow and orange, but also that each flower has yellow
or orange petals, or some flowers in each individual, or that some populations have yellow, others
orange flowers. In contrast, when reading:
■ “Petals yellow and orange”
probably a level of individual organism, individual inflorescence, or individual flower is implied.
However, based on the use of the ‘and’ not even the individual level can always be assumed.
Whether reading:
■ “Occurring in Germany or France”, versus
■ “Occurring in Germany and France”
humans implicitly provide the knowledge that this statement indeed is meant to be expressed on
the species level, since it is unlikely that the species only contains individuals growing on the
exact border of the two countries. Most humans would consider the two statements to express the
same semantics. Some people would consider the or-ed statement more natural, visualizing a spe-
cies description containing several statements. Most biologists, however, would consider it more
natural to use the ‘and’-wording, visualizing multiple individuals (or perhaps dots on a map). The
importance of implied semantics becomes even clearer when contrasting the distribution example
above with (a) a property that can possibly occur only a single time in an individual, such as size:
■ “size 10 cm or 11 cm”, versus
■ “size 10 cm and 11 cm”,
and (b) a property where it is ambiguous whether it refers to multiple parts of the individual or to
multiple individuals in a species:
■ “roots branched or not”, versus
■ “roots branched and not branched”,
and finally (c) a property where it is intuitive that it refers to different parts of the individual:
■ “leaves opposite or alternate”, versus
■ “leaves opposite and alternate”.

G. Hagedorn Fundamental aspects of description models 97

Clearly the preferred Boolean operator in the case of distributions (“occurring in Germany and
France”) is rejected as nonsense in the size example (“size 10 cm and 11 cm”). The choice of
operator changes the perspective in the root example (“roots branched and not branched” proba-
bly implies that the plant has several root systems and that the term “root” refers to the major
branches rather than to the entire root system). Finally, in the leaf example it may be accepted
and considered to imply that in each individual plant both opposite and alternate leaves occur.

One result of this is that the semantics of Boolean operators in legacy data (e. g., printed natu-
ral language descriptions or printed keys) is often ambiguous and requires interpretation. The
information model should therefore ideally support lack of semantics as well as interpreted or
original semantics.

In SDD (p. 20) the model descriptor for states in a single categorical character data element
may be changed from the default (“OrSet”) to other values, compare Table 22.

Table 22. Values of the StateCollectionModelEnum in SDD (used in SummaryData/Categorical/

@statemodel)

Value Label Description or Examples
OrSet Unordered set

of states,
combined
with 'or'

Multiple states scored for a character in a description form a set. The order of states has
no special meaning and may be changed. In natural language output the states should be
combined with 'or' to express that in individual objects (that belong to the class that is
being described), the states may occur together or alone.

OrSeq Ordered
sequence
of states,
combined
with 'or'

Multiple states scored for a character in a description form a sequence, i. e., the state
order carries some semantics and should be preserved in output. The precise semantics
of the sequence is not explicitly defined, but assumed to be intelligible to human consu-
mers; presumably relating to concepts of relevance or importance. In natural language
output the states should be combined with 'or' to express that in individual objects (that
belong to the class that is being described), the states may occur together or alone.

AndSet Unordered set
of states,
combined
with 'and'

Multiple states scored for a character in a description form a set. The order of states has
no special meaning and may be changed. In natural language output the states should be
combined with 'and' to express that (in any individual object that belong to the class that is
being described) the states will always occur together. Example: two colors that occur
together in a pattern.

AndSeq Ordered
sequence
of states,
combined
with 'and'

Multiple states scored for a character in a description form a sequence, i. e., the state
order carries some semantics and should be preserved in output. The sequence seman-
tics is not explicitly defined, but intelligible to human consumers and presumably relates to
some concept of relevance or importance. In natural language output the states should be
combined with 'and' to express that (in any individual object that belong to the class that is
being described) the states will always occur together. Example: a black part with small
red markings is more appropriately described as 'black and red' than 'red and black'.

WithSeq Primary
together with
secondary
states

This is a special case of AndSeq, and in many circumstances (except natural language
generation) may be treated as AndSeq. Example: "Green with brown" (often this may be
two characters, e. g., base color and dot color). All states except for the first are consid-
ered secondary.

Between Intermediate
value between
states

True value lying intermediate between (usually two) states. Example: "Between oval and
elliptic" = "Oval to elliptic".

90. Boolean operators connecting descriptive statements that refer to the same property are pro-

blematic because they interact with implied semantics (knowledge whether an object part is
repeated or not), and the customary data representation of a property.

91. The semantics of ‘and’ or ’or’ in natural language descriptions or in DELTA data sets is
often ambiguous. It may be desirable to be able to distinguish in the information model be-
tween an “ambiguous or” in the sense of one of ‘and’, ‘or’, and ‘xor’, and an ‘or’ defined in
the sense of Boolean logic.

98 Fundamental aspects of description models G. Hagedorn

Boolean operators between characters
Closely related to Boolean operators between prepositions referring to the same character is the
case of combinations of different characters. In DELTA by default the states within a character
are combined with ‘or’ and different characters are implicitly combined with ‘and’ (example:
“flowers sympetalous and red or orange”, not “flowers sympetalous or red or orange”. This leads
to two questions:
■ Firstly, should the DELTA model be extended, combining states with ‘and’ by recording the

same character twice? The SDD model supports repeating character data elements in a de-
scription-container and attaches this semantic. The primary reason for repeated characters is,
however, not recording flowers “black and white” (because striped), but supporting modifiers.
Modifiers may be used to express length measured at different places, or flower color recor-
ded at different development stages. The intended semantics are an ‘and’ over the entire de-
velopment of an organism, not that both characters must be observable in a given individual at
a given point in time. This is in line with the interpretation of ‘and’ between different charac-
ters. Again, some characters may relate to flowering, others to fruiting characters, and no ob-
servation of both is guaranteed. If both can be observed, the intended Boolean operator is,
however, an ‘and’.

■ Secondly, under which conditions does the information model need to support ‘or’ between
characters? As long as characters are independent, this is unlikely. However, a need may exist
to express more complex statements. An example given in Pullan & al. (2005) is that a plant
may have “green hairy leaves” and “yellow glabrous leaves”, requiring an expression of the
form “(green and hairy) Or (yellow and glabrous)”.

Expressing information as in the last examples requires either an arbitrarily complex Boolean ex-
pression language, or at least one level of containers for which Boolean rules have been defined.
DELTA, like most descriptive information models, does not offer an explicit aggregation con-
tainer for individual object parts. Thus the variation between object parts must be aggregated up
to the level of at least individuals and the two kind of leaves summarized as “(green or yellow)
and (hairy or glabrous)”. An individual plant having green and glabrous leaves would match this
description, even if no such plant was ever recorded. In the context of species identification this
may often be acceptable: it is better to return too many results – which can then be further re-
duced by additional criteria – than too few results. However, in the case of descriptions of higher
taxa (e. g., plant families) the lack of support for additional levels is often problematic because
identifications lack resolution power. Lebbe & Vignes (1998) call this the “problem of over-
generalization” resulting from a “conjunctive bias”.

SDD provides two kinds of containers that may be used to express such knowledge: On the
lowest level it may be expressed on the data recording level through the use of the SampleData
container intended for original measurements. Sample data may contain linked observations like
“color + hairiness” (see “Linked observations”, p. 90). On higher taxonomic levels the preferred
solution in SDD is to create as many description-containers as necessary, even for a single indivi-
dual object. Each leaf could be recorded in its own description, optionally scoped to describing
only single leaves. This option allows recording any mixture of direct measurements and aggre-
gated data in a linked form. Because any two descriptions (e. g., two individuals in a taxon) are
combined with ‘or’, no further support for this case was considered necessary in SDD.

The Prometheus description model (p. 21) offers greatly improved options to describe objects
at different spatial aggregation levels, by first “creating” a part hierarchy and then associating
property values with these. By “cloning” a leaf multiple times in a description, it is possible to
express separate color + hairiness for each instance of the leaf. The use of ‘and’ and ‘or’ is fully
defined in Prometheus. The model uses the opposite default assumptions to DELTA: Multiple
states within a character (“description element” in Prometheus) are always combined with ‘and’
and multiple instance of the same character with ‘or’ (Paterson & al. 2004, Fig. 2). Thus, the
Boolean operator between character data elements depends on whether the same (→ ‘or’) or dif-

G. Hagedorn Fundamental aspects of description models 99

ferent (→ ‘and’) properties are referred to. Nevertheless, where variability or polymorphism is
the result of repeated parts with different properties, this model is perhaps quite intuitive. How-
ever, despite considerable complexity of the Prometheus model, it covers only the third of the
three causes of infra-individual variation discussed on p. 93.

Whether descriptive information models support aggregation and Boolean statements within
individuals (such as object parts, phases in life cycle) or not, the ambiguity regarding the individ-
ual versus class level is very similar to the cases discussed in the previous section.
92. Boolean operators connecting descriptive statements that refer to different properties have

similar problems to those mentioned under requirement 90, p. 97.
93. Addressing all potential Boolean combinations in a structured way easily leads to highly

complicated models. A simpler requirement may be the support of multiple container levels
with a defined operator behavior between them. This remains an open problem in current
models.

4.10. Inheriting data
Data compilation versus data inheritance
Shattuck & Fitzsimmons (2000) make a distinction between data compilation and data inheri-
tance, defining data compilation as an active process. In data compilation, the results of aggrega-
ting methods are accepted as new a verified form of “analytical data”. Compiled data may be
based on a selection of available source data (e. g., after removal of outliers) and later changes in
the base data will not automatically update the compiled data. Compiled data have the same trust
mechanism that manually entered data have. If the compilation occurs within the system, the only
specialty is that it may be desirable to maintain some information linking back to the source data
that have been used during compilation. Doing so simplifies collaboration, peer review, and ana-
lysis of errors suspected long after the compilation occurred. The situation where some data in a
compilation reside inside a descriptive information model and some outside should be considered
and handled through appropriate citation mechanisms, including options for handling cases where
some of the sources are unknown.

In contrast, data inheritance (i. e., up or down the taxonomic hierarchy) may be defined as an
automatic process, where inherited data change immediately with the source data. This process
has different properties, and may result in more or less reliable data. It is probably commonly
agreed, that a data inheritance model is to be designed so that entering data at a given point will
stop inheritance and replace the inherited data with the new data.
94. For “data aggregation”/“data compilation” it may be desirable to add a feature enabling the

documentation of aggregation / compilation source. The model should be flexible enough to
provide machine-readable citations for data in the same information system, human-reada-
ble citations for external but citable sources, and explicit options to inform on ignorance,
perhaps mixed with source references.

95. Support for data inheritance is desirable. Inherited (automatically updated) data may have a
different level of reliability, and their nature must be communicated to the data consumer.

Inductive inheritance (upwards)
The previous section 4.9 (“Raw data and data aggregation”, p. 83) discussed the various aspects
of aggregating information upwards from one level of abstraction to the next higher level. This
may be from parts to individual, individuals to population, populations to lowest taxonomic rank

100 Fundamental aspects of description models G. Hagedorn

(lowest class), and from lower classes to higher classes, but also along lines dictated by a specific
analysis interest (within an ecosystem, within a season, etc.).

The term “inheritance” is here considered to be limited to the less general case of operations
along the lines of the taxonomic hierarchy. Aggregating along this line is a frequently desired
feature, e. g., to automatically create a genus description from all species in the genus for which
data have been recorded.

Inheritance upwards the taxonomic hierarchy is not much different from manual forms of data
aggregation (data compilation). In both methods documentation of the source data on which ag-
gregation was based is desirable, and both methods may result in the same data. The meta-infor-
mation desirable to support is whether a compilation has been reviewed and should not again be
changed by the system, or whether inherited data may be updated at any time by a system.
96. A distinction between manually compiled (aggregated and reviewed) aggregation data, and

inherited (i. e., automatically compiled) aggregation data is desirable. This may be a meta-
data item on the data.

Deductive inheritance (downwards)
Inheritance may also occur from higher to lower levels of abstraction. Terms used for this process
are data propagation (Maxted & al. 1993), downward inheritance (Shattuck & Fitzsimmons
2000), or deducing data (SDD discussions: Hagedorn 2003c). “Data propagation” seems to be
insufficiently intuitive about the direction of propagation; the latter terms are perhaps equally
appropriate.

Data deduction is possible because members of a class will normally match the class descrip-
tion. This is guaranteed in monothetically defined and likely in polythetically defined classes
(Radford & al. 1974). In phylogenetic work, the question whether it is possible to deduce data
requires a distinction between descriptions of higher taxa (class description) and inferred descrip-
tions of ancestral taxa (phylogenetic reconstructions like a ground plan/ground pattern = “Grund-
muster” sensu Ax 1984). The latter may contain features involved in later autoapomorphies or
reversals, being not deducible to all children. The description of all higher taxa would be mono-
thetic if they are limited to exactly the shared symplesiomorphous characters of all included taxa.
In this case, information can be fully deduced. (No similar phylogenetic reasoning is necessarily
available for upwards inheritance of data aggregation; aggregating data of a property like color
may be meaningful diagnostic purposes, whether or not this is due to homology or not).

Although the arguments above are relevant, they make the assumption that all data are known.
If this would be the case, deducing data from higher taxon descriptions would simply be a
method to save storage space. In practice, the value of deductions lies in the case of missing in-
formation. A considerably more relevant case is that a feature has been studied in a more or less
representative sample of class members and is believed to be monothetic for the entire group. The
class description thus contains a hypothesis with respect to this feature that is accepted until falsi-
fied. Such hypotheses will commonly be made if the taxonomic hierarchy is phylogenetic and
well established, and if the feature in question is known to be conservative. Information models
providing for deductive data inheritance allow modeling this precisely, rather than forcing data
managers to copy deduced information down to member taxa.

Deduced information should not normally be included in a data compilation process. Scientific
data should always be reliable, and even if all other species in a family share a given characteris-
tic that has not yet been observed in a given species, it may well be different in the current one. In
practice, deduced data may influence compilation decisions, especially when dealing with data
that can be proven to be error-prone (“noisy”). No explicit mechanism in the information model

G. Hagedorn Fundamental aspects of description models 101

is needed for this and in applications it may be desirable to deliberately make deductive or
downward compilations difficult rather than easy.

A major reason why contrary to the above in existing systems data are often copied down-
wards is that matrix-based multi-access keys become more efficient, if the matrix is highly filled.
Thus descriptive statements may be copied downwards from family or genus descriptions, even
though they have never been verified. For infraspecific taxa or races, even conventional charac-
ters may not be explicitly known. Often only those characters distinguishing infraspecific taxa
from each other are available directly. If characters have been copied without reflecting their ori-
gin, the trust in the entire data set may quickly deteriorate if new studies show contradictions to
the recorded. Offering a data inheritance method for deduced information is therefore highly
desirable and may improve the reliability of descriptive data sets.
97. Support for deductive data inheritance from descriptions of higher classes to lower classes

(or individuals) is highly desirable.
98. Support for deductive data compilation is not desirable.

Current models
Building a descriptive data system with full support for compilation, inheritance, aggregation,
and deduction is a difficult task. BioLink (p. 22) is the only implementation known to the present
author supporting this in its native storage model. The inheritance feature has been little tested (S.

Shattuck, pers. comm.). BioLink is currently no longer publicly supported and the model could
not yet be studied.

In principle, whether inherited data are included in native data storage (flagged as such) or
not, is an implementation-specific question. However, to decide whether data contain coding arti-
facts (especially inherited data copied down) it may be relevant to know whether and to which
extent an information model supports inheritance.

The question may be different for data exchange standards. Adding the results of inheritance
of calculations to data being transferred enables consumers to analyze data (including using it for
identification) without requiring them to perform all kinds of calculations that the originator ap-
plication was able to perform. It is desirable to flag data that are the result of calculations (e. g.,
ratio calculations, manual or automatic aggregations, deductive inheritance).

DELTA does not support flagging of inherited data, although it supports a limited one-level
mechanism called “variant items” or “multi-item taxa”. This mechanism allows deductive inheri-
tance from the description item immediately above for either subspecies or specimens. However,
the underlying problem is a general one, which may occur repeatedly on different levels of the
taxonomic hierarchy.

New DELTA (p. 20) proposes to add support for two “coded comments” (see p. 193 in “Modi-
fiers”) with the following definitions: “@up = Attribute generated from information passed up
the taxonomic hierarchy” and “@down = Attribute generated from information passed down the
taxonomic hierarchy”. These proposed flags are not able to distinguish between data compilation
and inheritance (in the sense of Shattuck & Fitzsimmons 2000).

SDD (p. 20) provides a tentative solution in the DataOriginEnum for this purpose (Table 23).
The value “Inherited” is intended to mark the case of “deductive inheritance (downwards)” as
used here. A similar value for inductive inheritance upwards (i. e., aggregation which may be
overwritten at any time) is missing.

Further metadata may be desirable, allowing data set authors to influence whether a data item
will be inherited by other taxa. This may be implemented both as “do not let my information be
inherited” or “do not inherit information from elsewhere”. This topic needs further analysis. No
examples demanding this feature could be found, but in the absence of applications implementing
data inheritance little experience exists so far.

102 Fundamental aspects of description models G. Hagedorn

Table 23. Enumerated values in the “DataOriginEnum” in SDD 1.1, documenting the origin of a
descriptive data value. The description of ‘Inherited’ is in contradiction to definitions used in this
thesis and may have to be clarified.

Value Description
OriginalData The data are directly entered by a machine or human agent. These are the original data all other cached

data (Origin unequal ‘OriginalData’) are based upon.
Calculated The data are calculated from other data using a calculation rule. Examples: a ratio calculated from other

characters, a mean calculated from a sample that is available under SampleData / Sample (if a mean is
calculated from data no longer available, it would be recorded as ‘OriginalData’).

Mapped A special case of “Calculated”, where the data are calculated using a mapping definition (either from
numeric to categorical, or from fine-grained categorical to coarse-grained categorical.

Aggregated The data are derived from data in classes placed below the current class in the class hierarchy. This
applies both to aggregating data from objects to classes, as generalizing lower classes to higher classes.
Note: BioLink (p. 22) calls this ‘Compile from below’.

Inherited The data are derived from data in classes placed above the current class in the class hierarchy.

99. Information whether an information model does or does not support data inheritance
mechanisms may be important to assess data quality, especially whether data might have
been copied downwards to improve the operation of identification tools.

100. Whether inheritance needs to be broken at the source (e. g., “do not allow this to be inheri-
ted”) or the destination (e. g., “do not inherit from above, even if missing”) by means other
than adding data needs further study. It may be desirable, but complicates the system and
no good example cases could be found.

Implicit data
Certain information occurs so frequently in descriptions that it is usually omitted, only deviant
states being reported. Most plant descriptions do not contain “plant upright, leaves green, root
present”, even though many plants do deviate from this. The decision to consider certain charac-
ter states “implicit” for a taxonomic group may have originally been in the interest of saving prin-
ting space. However, saving the “attention span” of data consumers remains an equally important
goal. In traditional descriptions the decision was often not conscious and documented, but rooted
in experience and tradition. In a system for coded descriptive data, this decision must usually be
made consciously and should be based on sound algorithms.

The problem of implicit data is a large obstacle to extracting coded data from natural language
descriptions. In descriptions authored by humans, often data that would not be implicit are over-
looked and forgotten nevertheless. Algorithms that try to recover implicit data usually fail to
distinguish these erroneous situations from truly implicit data. Again, the availability of algo-
rithms deciding which data can be considered implicit may help to distinguish these cases.

Implicit data are not equivalent to “default values” in databases. “Default values” are inserted
into a new database record in the absence of other information, and from then on become indis-
tinguishable from normal values. Such a mechanism may be used to fulfill part of the desired
functionality, but subsequently these values need to be recognized and suppressed during certain
types of data output (e. g., natural language descriptions).

DELTA supports an “implicit” state mechanism, enabling – on the level of terminology – to
define character states as “implicit states”. These must be defined for the entire project, which
occasionally causes problems where a project combines heterogeneous taxon groups. Implicit
states apply if in a given description no information has been recorded for a given character.
DELTA is not explicit whether this includes coding status values or not, i. e., if the character
value is set to ‘U’ for unknown, whether the implicit state ‘1’ should be treated as present or not.

G. Hagedorn Fundamental aspects of description models 103

Rules for inserting implicit states, i. e., converting them to normal data, are not part of the
DELTA exchange standard.

The problem may be reconsidered when data inheritance and deduction are implemented in a
system. DELTA essentially supports deduced data inheritance at the very top (for an entire pro-
ject, through “implicit states”) and the very bottom (for specimens or subspecies through “variant
items”). With a general mechanism available at all levels of the taxonomic hierarchy, neither of
these specialized mechanisms is needed.

DiversityDescriptions supports the DELTA model (Boolean CS.Implicit), but makes little use
of it (other than supporting inserting as normal data). It is planned to use this information in a
future implementation of a general data inheritance model to provide data for the top node in the
taxon/entity hierarchy, to be deduced downwards. In the absence of a top node, a system-generat-
ed “default description for project” may be created. The DELTA variant item option is not sup-
ported at all by DiversityDescriptions.
101. Support for data inheritance and deduction removes the need to support defining “implicit

states” in the terminology. Data using the “implicit states” model are convertible into a
hierarchical data inheritance model.

Compatibility testing as a quality control measure
If information from several sources is available, an alternative to directly combining the informa-
tion through data aggregation (p. 85) or deduction (p. 100) is to compare them for “compatibili-
ty”. To some extent, this method may be used as a plausibility and quality control measure.

One approach is to consider descriptions compatible if the state combination found in the
synthesis also occur either positively or as unknown / uncertain in at least one description on
which they are based (Fig. 34). This handles certainty modifiers and coding status satisfactorily
(Fig. 34, character 2 and 3).

Similar analyses are possible for quantitative characters, e. g., they may be considered compa-
tible if any of their range parameters overlap (perhaps including calculated ranges where mean
and variance measure are available). The sensitivity of the analysis can then be influenced by
using normal ranges or always the absolute range (where known). Alternatively, the condition for
compatibility may be that the mean should be in the combined range of all descriptions for which
a range is available.

Char. 1

Char. 3

Taxon: "Aus bus"

state 2

state 1
state 2

Source reference 2
Source reference 1

state 1
Compatible

Compatible

Char. 2
state 1
state 2 ?

Compatible

Char. 4
state 1
state 2

Incompatible?

D
es

cr
ip

tio
n

1

D
es

cr
ip

tio
n

2

S
yn

th
es

is

Figure 34. Compatibility of descriptions. Description 1 and 2 are considered to be compatible for
character 1 to 3 (the “?” in char. 2, state 2 representing a certainty modifier like “doubtful”), but
not for character 4 – even though the situation in character 4 may validly occur.

104 Fundamental aspects of description models G. Hagedorn

The result of a compatibility test can highlight potential conflicts, but cannot establish that a
conflict exists. For example, for a given character, a species may be polymorphic, but individuals
or populations may be monomorphic. Similarly, species within a genus will quite often have
incompatible descriptions. In a well developed data set, however, it is less likely that a specimen
description is incompatible with its species description. Here a form of compatibility testing may
be used as a plausibility check in a data editor.

The practical usefulness of compatibility testing needs further analysis. It may be useful only
if a sufficient number of descriptions are available (e. g., to search for “outliers”). Its greatest use
may occur when testing data that are deduced from higher taxa. For example, one may want to
search infrageneric descriptions that are incompatible with a compiled genus description.

4.11. Description storage models
Introduction
Until now a discussion of the exact mechanism of storing structured descriptive data and corres-
ponding descriptive terminologies (compare p. 42) has been avoided. The intention was to lay as
much groundwork as possible without entering this contentious topic.

All description models discussed here share a very basic common pattern: objects or classes
(also called “individuals”, “items”, “taxa”; compare Table 3, p. 34) are described by a number of
character variables (also called “attributes”, “properties”, “characters”; see “The term ‘charac-
ter’”, p. 31 and Table 3, p. 34). Some questions differentiating between descriptive models are:
■ Is the primary level of variables a complex type, containing sets or lists of values, or are all

variables of a simple type and arranged in a flat list or matrix? The first model is often called
“character matrix”, the second model (at least for categorical data) a “character state matrix”.

■ Should variables be fully defined in the terminology, or should terminological elements be
made combinable at the time when the descriptions are recorded? Specifically:
□ Is the whole of the object described directly in a flat list of variables, or does this occur

through independent object composition (i. e., concepts having part-of relations) and vari-
able types (“property”) hierarchies, which are freely combinable in descriptions?

□ Are other parts of the terminology (such as modifiers, see p. 189) freely combinable in de-
scriptions?

The term “entity” will be used when referring to the thing being described, without saying
whether it is a class (taxon) or an individual object (specimen, etc.).

Categorical data: Character matrix vs. character state matrix
Descriptive data are commonly visualized as a matrix of vari-
ables × entities (or entities × variables). As Diederich (1997)
points out, biologists may prefer a matrix view even when the
matrix is extremely sparsely filled. A major point of discussion
is whether this matrix should be based on characters (Table 24),
or rather on states (Table 25). Each model has some visualizat-
ion and data processing advantages, especially concerning char-
acters where the data are a set of state scores. However, as will
be shown, the two models are essentially convertible.

A character × entity matrix is the preferred visualization in
the new CSIRO DELTA Windows editor (although storage in
the DELTA format does not use a matrix). However, such a
matrix is directly used as the data storage format by NEXUS (p. 18), Pandora (p. 19), and some
databases supporting the EFG project (p. 20). For applications using a relational DBMS for data

Table 24. Character × entity
matrix. In char. 1 states are
exclusive, in char. 2 and 3
multiple states are scored
(polymorphism, shown in
parentheses).

Entity Char 1 Char 2 Char 3
1 1 1 (1/2/3)

2 1 [?] 3

3 2 2 2

4 2 (1/2)

G. Hagedorn Fundamental aspects of description models 105

storage, the approach may lead to scalability problems. Most DBMS have a system limit on the
number of columns per table so that it may not be possible to scale from small data sets with few
characters to large integrated data sets (which easily exceed thousand characters). The design
further requires a solution for multiple values (multi-state data or multiple statistical measures)
per character. The NEXUS Matrix subcommand uses parentheses to indicate multiple categorical
values as shown in Table 24. Since this is inconvenient when editing NEXUS files in a text edi-
tor, a special “Equate” subcommand allows defining a single symbol for common polymorph-
isms. In Pandora a database table directly represents a character × entity matrix and multiple state
values are stored as DELTA-formatted text with delimiters (R. Pankhurst, pers. comm.). In a stan-
dard relational database this would be problematic because any querying and processing would
require parsing of the data content. The Advanced RevelationTM system used for Pandora has
special support for multiple-value fields, separately indexing delimited subfields, and the per-
formance of queries acting on states remains good. The EFG project is in fact experiencing pro-
blems with handling multistate character values, treating each combination as a separate value
(R. Morris, pers. comm.).

The alternative representation is a character state × entity matrix (Table 25). Each cell in this
matrix has a simple data type and if desired, the matrix could be directly implemented as a table
in a relational database. Since each character state has its own column, the scoring is now binary
(state present / absent). The disadvantage of this model is that it is often more difficult for humans
to understand because the binary information is distributed over a large number of columns. If
characters are well-defined concepts, each column in a character × entity matrix will answer a
question of interest to humans like “what is the leaf shape?”, whereas each column in a state × en-
tity matrix answers questions like “is the leaf shape lanceolate?”, “is the leaf shape ovate?”, etc.

For this reason, most programs provide for character-like concepts in the terminology, even if
they use a state matrix for descriptive data. Exceptions are MEKA (Meacham 2007) and AditKey
(Adit 2004), which do not have a character concept. Character states may be arranged into vari-
ous index categories, but within an index category a flat list of states is displayed.

Table 25. Character state × entity matrix. In character 1 the states are exclusive; in character 2
and 3 multiple states may be scored.

Entity
Char 1
State 1 State 2

Char 2
State 1 State 2 “?”-state

Char 3
State 1 State 2 State 3

1
2
3
4

A modified version of the character state × entity matrix is, for example, used by CBIT Lucid3
(p. 21) for data storage. In the user interface, however, characters are recognized and the states
are organized into characters. Lucid modifies the binary state presence / absence matrix insofar, as
it stores 8-bit integers and uses the 7 remaining bits to store selected modifier information (fre-
quency, coding certainty, and coding status information) with each state.

It is possible to slightly reduce the size of the matrix, by treating characters defined as exclu-
sive (char. 1 in the example) in a single column (Table 26). In practice, however, characters with
exclusive values are extremely rare. Even in object (specimen) descriptions often a part occurs
multiple times or changes over time, so that the description is already a data aggregation rather
than original observations (compare “Aggregation within individuals”, p. 93). The mixed model
is therefore not discussed any further.

106 Fundamental aspects of description models G. Hagedorn

Table 26. Mixed model, using the character × entity matrix for “character 1” with exclusive states.

Entity
Char 1
(Exclusive)

Char 2
State 1 State 2 “?”-state

Char 3
State 1 State 2 State 3

1 1
2 1
3 2
4 2

In practice the number of columns in character state × entity matrices will be much higher than in
the examples shown. For example, as of May 2007, the LIAS data set (Rambold 1997, Rambold
& Triebel 2007) used 844 categorical characters with an average of 9.8 states per character, total-
ing 8 271 states (G. Rambold, pers. comm.). Including columns for coding status (as in Table 25),
the number of columns needed is even 10 732. Clearly it is not advisable to attempt a direct im-
plementation of the matrix metaphor in a relational DBMS. The Pandora system is able to do this
(a character × entity matrix is implemented as columns and rows in a table), but most DBMS limit
the number of columns (attributes) that can be defined per table.

The approach used both in the DiversityDescriptions (p. 322) relat-
ional database model for DELTA data and in the storage outline for
the Genisys model (Diederich 1997) is therefore based on a list model
(Table 27). This model is also rather close to the lists of states that are
recorded in the DELTA text format. Each occurrence of a state is now
recorded in its own row. States that are absent (in Tables 25-26)
are not recorded.

Both the character matrix and the state matrix model can be gen-
erated by two different cross-tabulation transformations (also called
“pivot analysis”) from the list, if information about the terminology
used during coding is separately available. When converting a list mo-
del to a character matrix, the terminology provides information about
absent characters; when converting it to a character state matrix, the
terminology provides also the information about “absent” states. Al-
though this conversion assumption holds for the primary requirements
of a descriptive information model (after all, functional applications
exist for all models!), some differences under specific perspectives do
exist. These are discussed in the following:

1. Coding status: One situation where the character state matrix
model differs from the character matrix or list models is expression
of coding status (e. g., “unknown”, “not applicable”; compare p. 74).
Coding status here is assumed to apply to a character as a whole. The
fundamental assumption is that for well-defined characters (characters
independent, states within each character dependent), it is impossible to observe only a subset of
states in an object. In the examples given so far, the “[?]” represents an example for an explicit
coding status value. This is visualized as a separate column in the character state × entity matrix
(Table 25). Initially one may assume that this is problematic because the concept of a coding sta-
tus value includes an assumption that no other information will be coded for the present character
in the present entity. Although this is correct for original recordings, it is not true for aggregated
data. For example, a genus description with “leaf hairs simple, not applicable, or unknown” is
meaningful, if the aggregated information originates in three different species of the genus. Thus
a general rule that in the character state matrix model “coding status values cannot occur together
with states data” cannot be stated. Although the separate “matrix columns” for coding status
values do have some special properties, they are not artifacts.

Table 27. Presentation
of the matrix models
(Table 24-26) as a list.

Entity Char State
1 Char 1 1
2 Char 1 1
3 Char 1 2
4 Char 1 2
1 Char 2 1
2 Char 2 [?]
3 Char 2 2
4 Char 2 1
4 Char 2 2
1 Char 3 1
1 Char 3 2
1 Char 3 3
2 Char 3 3
3 Char 3 2

Notes: Rows involving multi-
states scoring are highlighted.
The condition that states of
character 1 are exclusive is
no longer enforced by the
model itself. Also note that
no record exists for entity 4,
char. 3.

G. Hagedorn Fundamental aspects of description models 107

The case of implicit status “not coded” (i. e., no coding occurred at all; shown as empty cell in
Table 24, entity 4, char. 3) is not easily translated into the presence / absence values of the charac-
ter state matrix model. It is possible to extend the model to a triple-state of ‘present’, ‘absent’,
‘uncoded / never considered’. The coding status would apply if all states of a character have the
“uncoded” value, and the system would be responsible for appropriate initialization.

2. “State-absent statements” (i. e., an explicit statement that a state is not present) may be desir-
able for a variety of reasons. Some arguments for “state-absent statements” are weak:
■ The most frequent desire is perhaps to express certainty (see p. 207). However, “state 1 proba-

bly absent” and “state 1 perhaps present” express the same information. Normalization is de-
sirable in any case; here negative statements with certainty modifiers may impede rather than
improve comparability.

■ Many situations where it seems to be desirable to qualify the absence of a state (or to express
coding status on a state-by-state basis) are due to poorly defined summary characters, combin-
ing independent variables. An example for this would be a character “secondary metabolites”
with different metabolites defined as states. Since the metabolites are independent, they
should be placed in separate characters (if necessary using states like: ‘present’, ‘absent’, ‘un-
known: all literature studied’, ‘unknown: literature not yet checked’). The desire to combine
multiple characters into a single one is probably related to the lack of mechanisms to organize
characters hierarchically in current applications.

However, other arguments cannot be easily refuted:
■ In practice it is almost unavoidable that the descriptive terminology evolves over time, includ-

ing the addition of new state values to previously defined characters. The influence of new
state values on existing descriptions must then be analyzed. No influence should be present if
states are truly distinct and well-defined – the assumption being that a new state is being intro-
duced as soon as it is needed. However, in practice states often somewhat arbitrarily partition
a continuous value space (i. e., the real world values are extended and adjacent, Fig. 17 e-f,
p. 54). If new states are intermediate between existing states existing descriptions using neigh-
boring states may have to be revised. If either all existing states that had already been consid-
ered are marked with some kind of “state-absent statement”, alternatively, if for new states an
“uncoded state” or “not yet considered” marker is inserted into the data matrix, the manage-
ment of such revisions would be simplified.

■ Occasionally negative statements like “not so”/“not green” etc. need to be captured from pub-
lished descriptions. In the simplest case, where the description in the source aims at being
complete and the set of potential states in the source and in the terminology used for digitiza-
tion are identical, such an “absent coding” can simply be converted into a complement of
positive “state-present” scores. However, (a) the source information may not claim to be a
complete representation of state values (especially in dichotomous / polytomous keys or brief
diagnostic descriptions (p. 39) information considered irrelevant for identification will simply
be missing), (b) differences between the states used in the terminology of the source and the
data set may make such a complement very difficult, (c) a negative statement may express that
the character is highly variable, but one or several states are specifically known not to occur.
One – rather unsatisfactory – coding method would be to record the complement (all states
except those mentioned) as “perhaps present” (compare “Certainty modifiers”, p. 207).

■ Similarly, if data are edited collaboratively, it may be desirable to explicitly contradict a state-
ment somebody else has made, rather than simply deleting that statement. This is less impor-
tant for the correction of simple errors (if a full history of all changes is available, state dele-
tions may be reported using data comparison tools), but for controversial changes and where a
discussion is actually desired, a “rejected-state statement” may highlight a need for discussion
and provide a place to attach free-form text containing additional discussion material. Analy-
sis of the best methods to organize collaborative revisions and discussions is an important
topic for the future. It is not yet implemented in any current descriptive software. For exam-

108 Fundamental aspects of description models G. Hagedorn

ple, it remains an open question whether support for contradictions should be on the character
or state level.

3. States “depending” on the taxonomic tree: Another form of metadata associated with absent
states is an expression that a state is “not occurring” for an entire higher taxon (e. g., an order or a
family) and all included lower taxa. This situation must be distinguished from character applica-
bility (i. e., some character like “leaf hairiness” cannot logically be recorded because of the state
of another character like “leaves absent”; see “Character applicability rules”, p. 76). In a well-de-
fined terminology, where all states are indeed categorical values of the same character variable, a
logical dependency of states that is independent of a character dependency is believed to be im-
possible (examples claiming this are usually combinations of multiple characters thrown together
for the convenience of coding, such as “secondary metabolites”, where each metabolite, because
independent, should be a character of its own). However, an analyzable correlation may exist be-
tween states and the taxonomic tree. Here, in a given branch of the taxonomic tree certain charac-
ter states do not occur in the data set as recorded so far. As soon as this correlation is sufficiently
stable for the purpose of coding new object descriptions, this information may help to remove
irrelevant coding options in the interest of short editing and data review forms. Normally, how-
ever, “not occurring” information may be considered to be analyzable from the data set itself.
Although it may be desirable to preprocess and cache this information, these are implementation
details with which the information model should not be concerned. Under rare circumstances it
may be desirable to also demand complete freedom of form design, excluding character states
from editing forms even where they do exist, but in general this will severely impede the data
recording process, whenever a new taxon does have such an excluded state, so that this option is
not recommended (assuming well-defined characters). In contrast, the equivalent option to ex-
clude characters in some branches of the taxonomic tree (because considered irrelevant or too
expensive to code) is much more relevant. This case may be handled by adding a “Not to be
coded” coding status (p. 74), which may then be inherited up and down the taxonomic tree.

The data items called for in the discussion points above can be provided in all three models dis-
cussed. Coding status is perhaps more natural to the list or character matrix model. On the other
hand, the character state × entity matrix (Table 25) probably offers a more natural place for infor-
mation why a state is absent. The character matrix and list models need separate extensions for
this (e. g., separate data structures to express metadata about the scoring process, including nega-
tive statements and “states-considered”, or perhaps a ‘not’-modifier that has to be observed dur-
ing identification or data analysis).

Current software applications and data exchange formats offer no insight into this problem: no
implementation seems to have been attempted so far. This includes the state matrix-based CBIT
Lucid3 (p. 21), where modifier information is only available on positive-state scores.

One consideration that may be helpful for the decision how “State-absent statements” shall be
handled, may be the expected behavior during data compilation or inheritance up the taxonomic
hierarchy (aggregation, p. 83) and inheritance of data down the taxonomic hierarchy (deduction,
p. 100). The scoring of states as present and absent is traditionally considered an asymmetrical
process. Because a state may occur with a low frequency, a negative statement is usually inter-
preted as possibly meaning “not (yet) observed”. As a result, during aggregation, positive state-
ments win over negative scores (Table 28). Explicit “state-absent statements” do not change this
behavior.

Conversely, where information is deduced from higher taxa, traditionally inheritance occurs
only where no state for a character has been scored (Table 29: species 1 inherits all state values,
because not scored for leaf shape, species 2 inherits nothing because “leaf shape: lanceolate” has
been scored). This model can easily be extended to prevent inheritance also if a species has at
least one explicit “state-absent statement” for a character (Table 29: species 3). However,
whether it is meaningful that “state-absent statements” from higher taxa are inherited by lower

G. Hagedorn Fundamental aspects of description models 109

taxa (Species 1, “linear”) is difficult to decide and needs further consideration. The result would
not necessarily be incorrect, but inherited “state-absent statements” would be considerably less
intuitive to interpret than “state-present statements”.
The most important decision in this discussion is, whether characters are considered logical enti-
ties that – in contrast to states – may be independently observed. If this is affirmed, observing a
categorical character implies that all its states have been considered and are either “present” or
“absent”. All existing descriptive software, whether using a character matrix or a character state
matrix, makes this assumption. One consequence of this “character-model” is that certain rules
(character dependency, character hierarchy, coding status, inheritance) can be formulated in a
simpler way. However, another consequence is that some of the advantages of the character state

× entity matrix model are countered by the additional provisions necessary to handle situations
applying to entire characters. Indeed, in Lucid3 such special code is present, handling coding
status logic which in the user interface is scored together with state-modifiers on a state level, but
still maintains character-wide logic and consistency rules.

If, however, it is desired to accept “ill-defined” characters (i. e., characters combining inde-
pendent data, like the “secondary metabolite” example), the entire character model would have to
be dissolved. Coding status values on a character would make little sense, and instead of charac-
ter dependency, a state dependency, and instead of character-scope-out a state-scope-out would
have to be defined. These could then be inherited like character data or coding status values. For
example, a state-data item could then have values like: ‘state-present’, ‘state-absent’, ‘state-not-
considered’, ‘state-scoped-out’, ‘state-inapplicable’, ‘state-hidden’, etc.
102. For most purposes the “character matrix”, “character state matrix”, or “character state list”

models are equivalent. For actual data exchange (especially when considering federated
relational databases or XML formats) a list model may be the most flexible choice.

103. One area requiring different considerations in the three models is coding status and charac-
ter dependency.

104. Whether information that states are considered “absent” or “false” should be preserved as
data (and aggregated or inherited along the taxonomic hierarchy) is contentious. For the
primary purposes of representing the descriptive data this is not necessary. However, a
number of important secondary purposes exist, under which preserving this information
may be valuable (negative statements, collaboration and discussion, evolution of terminol-
ogy). In principle such information may be stored in all three models, but the state matrix
model may be the most intuitive for this purpose.

105. If negative statements are supported, it may be desirable to not support certainty modifiers
on these.

106. Dependency rules or “do-not-code” (also called “out-of-scope”) rules controlling single
states instead of entire characters are probably not desirable.

Table 28. Asymmetry of positive and negative
state scores during aggregation (induction of knowl-
edge “up the tree”). Explicit state-absent statements
(“ ”) behave identical to not-scored (“ ”). Paren-
theses (“()”, “()”) indicate aggregated (or “inher-
ited”) values.

Table 29. Asymmetry in the intuitiveness
of positive and negative scores inherited
from higher to lower taxa (deducing
knowledge “down the tree”). Parentheses
(“()”, “()”) indicate inheritance; “ ”
indicates a “state-absent statement”.

 Leaf shape
Entity ovate lanceolate linear
Species 1, specimen 1
Species 1, specimen 2
Species 1, specimen 3
Species 1 aggregation () () ()

 Leaf shape
Entity ovate lanceolate linear
Family
Species 1 () () ()
Species 2
Species 3

110 Fundamental aspects of description models G. Hagedorn

Quantitative data and statistical measures
As discussed under “Standard aggregation methods” (p. 85), quantitative data values measured on
samples may be summarized as frequency distributions (i. e. histograms), as distinct value lists
(compare p. 86), or using univariate statistical measures (or human estimates of these). The total
number of measures used in statistics is large; in some areas of classical morphological taxon-
omy, however, only a few measures are commonly used. The statistical detail necessary to ad-
equately record quantitative characters strongly depends on the difficulty of the measurement
process. Measuring plant leaf size is simpler than measuring spore sizes that are close to the opti-
cal resolution of light microscopes. Unfortunately, difficult measurements are indispensable in
many groups (viruses, bacteria, microscopic fungi, microscopic plants, or microscopic animals),
because the number of simple characters is too low. Thus, part of the differences in the number
and kind of statistical measures supported in various description models depends on the taxono-
mic group they have been optimized for.

In the character state × entity matrix model each statistical measure requires a new column.
Implementations preferring this model may therefore prefer a relatively small number of imple-
mentation-defined measures, e. g., CBIT Lucid3 (p. 21) uses a fixed set of four values to express
the extremes and “normal range” of quantitative variables. They are slightly confusingly labeled
as “absolute minimum” (i. e. minimum), “minimum” (i. e., lower limit of some range measure),
“maximum”, and “absolute maximum”. The Flora of North America-model uses a similar set of
four extreme and range values (P. B. Heidorn, pers. comm.).

When categorical data are visualized as a character × entity matrix, each matrix “cell” is al-
ready complex. Using a complex content for quantitative as well as categorical data probably
appears more natural. When following a list-model for data storage, a flexible model supporting
many statistical measures looks very similar to the categorical model (Table 30). However, the
original DELTA format supports only fixed set of five measures: a minimum, an undefined lower
range limit, an undefined central value (like mean, mode, or median), an undefined upper range
limit, and a maximum. In DELTA these are expressed in an elaborate formula syntax of twelve
alternative patterns (structured by hyphens and parentheses, e. g., “(3-) 5-7-9 (-11)”). Only the
two extremes have a full semantic definition. The range and central measure / value are only
weakly defined; their exact semantics are expected to be expressed in free-form text documenta-
tion associated with a data set. The limitation that is perhaps most practically relevant is that

DELTA cannot distinguish between a single value and
a mean of sample. As a consequence, it is often diffi-
cult to decide which quantitative error tolerance to use
during identification (see “Equality criteria and error
tolerance”, p. 264), and the difference between ‘IN’
and ‘RN’ only informs collaborators and data consu-
mers about the intentions of the data set author, but
cannot be used even for plausibility checking during
data entry. Only minimum and maximum in an ‘IN’
data type will always be integer.

As an alternative to measures, DELTA supports an
unlimited number of values in a distinct value list.

The CSIRO DELTA windows editor (p. 19) re-
quires knowledge of the DELTA-rules for forming
these patterns in the DELTA language (Fig. 35). The
example shown in the figure further illustrates that the
statistical interpretation of DELTA data may be diffi-
cult. It is the responsibility of the author to provide
semantics for the positions in the pattern, and the use
of a frequency (e. g., “mostly”) on a statistical meas-

Table 30. Examples of statistical
measures in the list model.

Entity Char Measure Value
1 Char 1 minimum 2
1 Char 1 mode 6
1 Char 1 maximum 8
1 Char 1 N (sample size) 30
2 Char 1 min 3
1 Char 2 minimum 11.2
1 Char 2 5% conf. interval

lower (2.5%)
11.8

1 Char 2 mean 15.3
1 Char 2 5% conf. interval

upper (97.5%)
18.8

1 Char 2 maximum 20.4
1 Char 2 stand. dev. (n–1) 10.9
1 Char 2 standard error 1.7
1 Char 2 N (sample size) 50
2 Char 2 mean 14

Notes: Note that it is possible to use any subset
of the measures defined for a character (entity 2).

G. Hagedorn Fundamental aspects of description models 111

ure indicates that the example uses some non-statistical semantics.
The data storage outline for the Genisys model (Diederich 1997) is limited to a different set of

statistical measures: “Value, Low Range, High Range, Std. Deviation”. The authors themselves
note that a more elaborate representation of measurements may be necessary.

Figure 36. Illustration of the DiversityDescriptions database editor. A terminology-defined number
of statistical measures (upper right area) can be entered in a form, plus coding status (DELTA
pseudo-values) and the DELTA text-override (‘TE’) can be entered (middle and lower right area).

DiversityDescriptions (p. 322, Fig. 36) improves on the DELTA standard by supporting a lar-
ger number of semantically defined statistical measures. The actual data storage looks very simi-
lar to the example shown in Table 30, except that the column “Measure” is used for both catego-
rical character states and statistical measure identifiers (field DD_DESCR.CS in Fig. 227,
p. 335). Similar to categorical states, the measures are defined – separately for each character –
by the designer of the terminology. These character-specific definitions enable the designer to
limit the choices for a character, e. g., allowing only minimum and maximum in some characters.
DiversityDescriptions supports a relatively large number of statistical measures (Table 60,
p. 356), including variance measures and sample size which are notably missing in DELTA. The
list of measures can in principle be extended by user-defined ones. Extended measures can be

Figure 35. Illustration of the CSIRO DELTA Windows editor in grid view. Character 1 is categori-
cal, character 2 quantitative (real numeric). Data can be edited only in the lower left area; for
quantitative data this requires knowledge of the DELTA language and the positional patterns
supported.

112 Fundamental aspects of description models G. Hagedorn

edited and reported as simple label-value pairs, but are not further recognized by the built-in
algorithms. Only recognized measures will be treated in equivalence classes (e. g., all range
measures are treated as comparable in identification) and will be reported in special ways (e. g.,
as a min-range-central-range-max (sample-size) formula in natural language generation. The
DELTA concepts of “undefined statistical measures” are treated as a special case (and the infor-
mation about the uncertain definition can thus be preserved).

The NEXUS data exchange standard (p. 18) also provides a larger and flexible number of se-
mantically defined statistical measures. With “Format DataType = Continuous”, the choice of
measures and the order in which they appear in the matrix may be defined in the “Items” sub-
command. The possible statistical measures (NEXUS: “items”) are: Min, Max, Average (de-
fault), Variance, StdError, Median, SampleSize. Alternatively, NEXUS supports an unlimited
number of measurements in a distinct value list (invoked by “Items=(Average States)”). The val-
ues of the defined measures are arranged in a matrix where, similarly to the states of polymorphic
categorical characters, parentheses enclose multiple statistical measures per character. Because of
this structure, the format may be viewed as a character × entity matrix.

Germeier & Frese (2001), in a model for characterization and evaluation data for plant genetic
resources, support another fixed set of statistical measures (modeled as attributes in the Acces-
sionObservation and GenotypeObservation tables).

SDD supports a large set of 38 statistical measures. Whereas DiversityDescriptions in many
cases made an arbitrary choice which confidence intervals or percentiles are supported (compare
Table 60, p. 356), SDD uses parameterized statistical measures in these cases. For example, all
percentiles are represented by two categorical values (“PercLower” and “PercUpper”), and elabo-
rated with a quantitative parameter (e. g., “95%”).

It is interesting to note that those software applications and data exchange formats that severely
constrain the number of statistical measures (i. e., except DiversityDescriptions and SDD), seem
to be informed by different requirements and do not agree on a common set (Table 31). It seems
obvious that a more general approach to statistical measures is desirable, supporting a large set of
statistical measures, or a medium-sized set with an option for extensibility.
Table 31. Comparison of statistical measures supported in descriptive software applications and
exchange formats.

Statistical Measure DELTA Lucid3
1

Genisys NEXUS Diversity-
Descript. 2

Germeier
& Frese (2001)

SDD

Minimum/Maximum
Range (undefined)
Range (defined) 3
Defined percentiles/
confidence intervals

Mean
Median
Central measure or value 4
Variance
Standard deviation
Standard error
Sample size
Coefficient of variation ()
Skewedness ()
Kurtosis ()

1 Lucid (in version 1 to 3) is the only explicitly character state matrix model
2 DiversityDescriptions has 23 built-in measures and is user-extensible for further measures (indicated by “()”).
3 Six lower and six upper defined interval measures (percentiles and confidence intervals)
4 In NEXUS value lists may be achieved using “Average States”

G. Hagedorn Fundamental aspects of description models 113

In principle, a large number of statistical measures could be directly available for data entry in
any quantitative character. However, this introduces some issues in the user interface – and per-
haps in the storage model as well (if storage is based on a character state × entity matrix model
and requires one column for each statistical measure). Furthermore, when in practice only few
statistical measures are used, a large number of available measures may be confusing to data
entry personnel and lead to data entry errors. These problems can be avoided, if the information
model provides some means to define preferred statistical measures. One solution for this may be
the DiversityDescriptions model, where only those statistical measures defined in the terminol-
ogy are available for data recording. This model is especially attractive where a high number of
statistical measures may create data storage problems (character state × entity matrix model).
However, if this is not the case, an alternative model may enable all available statistical measures
for data storage and provide a character-specific “secondary filter” defining the preferred meas-
ures for data entry form. These could then be immediately visible, perhaps while providing a
more complex method to (e. g., a separate form) to enable the occasional data entry of rarely used
measures.

Explicitly negative statements: A parallel to state-absent statements discussed for categorical
data is difficult to find for quantitative data. In principle a negative quantitative statement like
“not 3 to 5 cm” may be converted into “< 3 cm or > 5 cm” (i. e., “not 3 to 5” = “not (≥ 3 and
≤ 5)” = “not (≥ 3) or not (≤ 5)” = “< 3 or > 5”). As a single statement it cannot be expressed in
any set of statistical measures discussed so far. It can, however, be expressed as two separate
conditions, combined with ‘or’: “maximum = 3” or “minimum = 5”.
107. The number of statistical measures is large and no general agreement exists on a small

subset to fit all purposes for which descriptive information models are intended. The vari-
ous existing denormalized models all use different measures. A flexible model able to
store a larger number of different statistical measures is desirable.

108. The statistical measure model should extensible and offer generalizations that allow appli-
cations to support classes of statistical measures, rather than only individual measures.

109. The fundamental applicability of statistical measures depends only on the data type (meas-
urement scale and continuous / discrete), but not on individual characters. As a conse-
quence, no schema evolution issues exist when new statistical measures are added to the
terminology.

110. The designer of the terminology should be able to limit the statistical methods available to
data entry personnel. This leads to more concise data entry forms and can reduce errors.

111. Statistical measures are fundamentally applicable to all characters. If no data storage prob-
lems prevent this, it may be desirable to view the limitation of measures as a “recommen-
dation” or “secondary filter”, affecting only the primary data entry form rather than data
storage.

112. No equivalent to explicit state-absent statements (which may be desirable in categorical
data, see requirement 104) occurs with quantitative data.

Value order in character data
Whenever data are recorded based on a terminology, the sequence of recorded data elements may
follow either the sequence defined in the terminology or the sequence of user data entry. For ex-
ample, when entering fields into a database table, the sequence of data entry is not preserved, and
reordering of fields will automatically reorder all data. On the other hand, if experimental data
are entered into a spreadsheet-like editor, the user would expect that data entry sequence is hon-
ored. The following cases may be distinguished:
1. Order of characters in a description. A general agreement seems to exist that – for the sake

of comparability – characters should be in the same order in all descriptions to be compared.

114 Fundamental aspects of description models G. Hagedorn

Different sequences for different purposes are often desirable, but all of these then apply to
all descriptions. In DELTA only a single character order may be defined; in SDD order is ex-
pressed through Character Trees, of which an unlimited number may exist.

2. Order of repeated measurements (original sample data). Although the order of repeated
measurements should never be semantically relevant, preserving this order is highly relevant
for the sake of workflow, e. g., proofreading or other comparisons with external notes. See
also “Data recording levels (sample data)” (p. 89) and Table 20 (p. 91).

3. Order of values within a quantitative character. Similar to characters, the order of statisti-
cal measures is important for comparison purposes and normally defined exclusively in the
terminology or report-generation methods. However, an important exception is that some
models, including DELTA, support repeated “central measure or values” (Table 31, p. 112),
for which the same arguments as for original sample data apply. Thus, for repeated occurren-
ces of the same measure – where the information model supports such – the original sequen-
ce may have to be preserved.

4. Order of values within a categorical character. This is perhaps the most contentious issue.
Firstly, in some models it may not be recognizable, whether a sequence of states is intended
as repeated measurements or as summary data. Distinguishing this should be a goal of the
model (which may be in part achieved by preventing repeated state values, unless modifiers
or notes differ). For the remaining states, in many cases the data set authors will desire them
to be reordered if the sequence of states in the terminology is updated. In some cases, how-
ever, it is vital that a sequence in a given description shall be preserved. The remainder of
this section will discuss this in detail.

In general, the order of categorical character states in the terminology may express an innate
order of the concepts. This is simplest in the case for ordinal data, where the order expresses that
the distance from first to third state is greater than any other distance among these states (even
though it is unknown whether first-to-second, or second-to-third have a greater distance). How-
ever, nominal data may also be at least partially ordered, often in complex ways so that a deliber-
ate choice has been made to simplify the analysis by reducing these data to the nominal scale.
This and other reasons, including traditions, may lead to an ordering expectation by human con-
sumers. Defining this order once in the character terminology (or in report definitions) for all de-
scriptions together fulfills a minimal requirement.

In many cases, however, terminology-defined order and the desired order in a description dif-
fer. For example, in a character with the ordered states:
 – 1. very short bristles
 – 2. short bristles
 – 3. long bristles
 – 4. very long bristles
frequency or certainty modifiers (p. 206 and 207, respectively) may appear in a specific object
description as “3 or rarely 1” or “4 or perhaps 3”. Clearly, although the “scoring sequence” may
not matter in identification or character analysis, it greatly facilitates communication with human
users, especially when generating natural language descriptions. A statement “bristles very short
(rarely) or long” is considerably more difficult to understand; and “bristles rarely very short or
long” is even likely to be misunderstood. Similar examples may be found for spatial or temporal
modifiers (p. 203 and 204), e. g, “flower blue, or violet (at the base)” or “flower violet changing
to red when mature”.

If the order of modifiers has been explicitly defined to be semantic (compare “Modifier sets
and sequences”, p. 199), the modifier order may thus have to take precedence over the state order.
Unfortunately, some expressiveness may still be beyond analysis, e. g., where special situations
are annotated in free-form text. Again, further analysis of existing data sets is required to deter-
mine whether it is sufficient to place states with annotations last. The default order of states in
summary data of descriptions could thus be:

G. Hagedorn Fundamental aspects of description models 115

■ by ascending temporal modifier rank,
■ by ascending spatial modifier rank,
■ by descending certainty rank or values (certain before uncertain states),
■ by descending frequency rank or values (frequent before infrequent states),
■ states without notes before states with notes,
■ by ascending order in which the states are defined in the character definition

(for all modifier cases, character data without modifiers would be ordered first).

The minimum requirement for order of categorical states in descriptions is that the resulting re-
ports and natural language descriptions should not hinder communication. Whether the rules
above suffice for this and whether they can be extended to include all modifiers for which order
may be defined as semantic, requires further analysis. In preliminary experiments of thought no
counter-example of ranked modifiers could be found, which – if used to reorder state sequences –
would not also improve the readability of the resulting description.

Despite this, many biologists may desire support for manual value ordering that goes beyond
the algorithmic support outlined above. Biologists normally write descriptions as unconstrained
text. Many biologists will assume that "round or obovate" and "obovate or round" are different,
assuming an unequal (but unspecified) frequency to be implied in the order of states. This may be
viewed as a "bad habit" in biology, but it may be unwise to try to force content providers to
abandon relatively harmless bad habits. Furthermore, constraints on value ordering can only be
enforced for future data; at least for legacy data (digitized descriptions, DELTA-coded data),
ignoring value sequence is likely to cause some problems.

Individual applications may desire to support additional manual ordering methods or not. For
data exchange standards and general information models designed to support multiple applica-
tions, some agreement on manual ordering must be sought. Unfortunately, to always preserve the
value order has some drawbacks, if:
■ the terminology is revised and the order of states in the terminology redefined,
■ data are aggregated (e. g., descriptions of multiple specimens combined into a new species

description) that have different scoring sequences.

Current support for value order in some applications and data standards:
■ The DELTA and New DELTA standards defines that the order of states in data files is always

significant.
■ The CSIRO DELTA programs (p. 19) will always store the scoring sequence and ignore the se-

quence of states in the terminology. Separate methods for “reordering character states” based
on the terminology exist.

■ NEXUS (p. 18) applications probably preserve the sequence in which polymorphic state scores
(in “{}”) are written, but definite information about this is not known. Mesquite (p. 18) still
needs to be tested in this respect.

■ The first versions of DiversityDescriptions used only the state sequence defined in the termi-
nology and considered the sequence of states in descriptions irrelevant. This turned out to be a
major source of discontent for users so that later versions added an optional manual state se-
quence. By default all states in a description are ordered in the sequence defined in the termi-
nology, but if the user chooses to rearrange this sequence in a description, this new sequence
will be permanently stored and is no longer influenced by changes in the terminology. If this
decision is later considered undesirable in some characters, a method is provided to reset state
order to terminology order for all descriptions in a single step. See the documentation of the
logical model (p. 331) for further information.

■ CBIT Lucid (p. 21) never outputs any descriptions where the state sequence may be relevant.
It is optimized for interactive identification, in which case the state sequence is irrelevant.

■ SDD (p. 20) the “statemodel” xml-attribute within the character data element may be changed
from the default (“OrSet”) to other values like “OrSeq” (compare Table 22, p. 97). SDD thus

116 Fundamental aspects of description models G. Hagedorn

prefers no manual ordering (therewith simplifying evolution of terminology, like adding or re-
ordering states), but allows this to be changed where explicitly desired.

The solution chosen by DiversityDescriptions and SDD has the advantage that normally changes
in the terminology are dynamically and automatically reflected in reports (even in federated data-
bases where the terminology may be changed independently of the descriptions). However, it
makes data entry slightly less intuitive, since it requires an explicit understanding and choice be-
tween default and manual state order. This is especially problematic if during the part of the re-
cording phase the desired scoring sequence in a given description is identical to the sequence in
the terminology, but the latter is later rearranged.

The topic has previously been discussed in an SDD proposal (Hagedorn 2003g).
113. A general order of characters and a general order of character states within a character are

meaningful for communication with humans, even where it is not meaningful for machine
interpretation or analysis (e. g., states on the nominal scale).

114. For characters, multiple alternative ordering definitions are desirable.
115. Negative requirement: It is not necessary to preserve, in a given description, the order in

which data relating to different characters have been entered.
116. In a given description and character, the order in which multiple values or states have been

entered may have to be preserved. This is unequivocal for repeated measurements in sam-
ple data, but restricted to special situations in summary data.

117. In a given description and quantitative character, multiple occurrences of a statistical mea-
sure may have to be preserved in sequence (some models use this as a replacement for
sample data).

118. In a given description and categorical character, it may be desirable to provide a method to
let data set authors decide whether the sequence of multiple states may be rearranged ac-
cording to the sequence in the terminology, or whether it is to be preserved.

119. When reordering the states in a given description and character, modifiers for which order
has been defined as semantic (ranked modifiers) may have precedence over the state order.

120. It is desirable that the information model encourages distinguishing sample data and sum-
mary data in an unambiguous way, e. g., by preventing unqualified repeated occurrences of
the same value or state in summary data. States with different modifiers or annotations,
however, have to be accepted.

Character decomposition models
The majority of descriptive data applications in biology are interested in individual objects or
classes of these. In the matrix- or list-based description models discussed so far these specimens,
units, taxa, items, etc. are considered a fundamental entity that is described through a list of vari-
ables, called characters. These models have a number of advantages. They are close to:
■ the entity-type/attribute/value model in ER modeling,
■ the table/field/value model in the physical view of a database,
■ the class/property/value model in many object-oriented programming languages,
■ the class/attribute/value model in UML (compare also Table 3, p. 34).
Object-oriented information models generally support complex object properties composed of the
same (array, vector, matrix, collections) or different (structure, record) types, making it relatively
straightforward to consider the character variables as object properties. This is slightly less intui-
tive in traditional relational databases, where the entity attributes are often limited to simple data
types (including strings). However, as the DiversityDescriptions model (p. 322) shows, an entity

× character model can easily be implemented in a simple relational DBMS, without requiring an
object-relational DBMS. An unstructured list of variables is the prevalent data format in phyloge-

G. Hagedorn Fundamental aspects of description models 117

netic or multivariate statistical analysis, and is used in the dominant DELTA or NEXUS ex-
change standards for descriptive data.

These advantages of the simple character model are offset by a number of problems that are
experienced when defining and applying characters. Fundamentally, the definition of character
variables is a complex and difficult task. Characters should be independent (or as independent as
possible). Many characters depend on specific circumstances (taxonomic or other scope, object
part, instrumentation, measurement methods, etc.). Defining characters in a manner that data pro-
viders and consumers communicate successfully with each other is a serious problem. It is not
uncommon that even the creators of a terminology start introducing duplicate (or near duplicate)
characters when a large terminology contains over 1000 characters.

In an attempt to solve these problems, a number of proposals have been made to “decompose”
the characters into more fundamental data items and base the information model on these items.
To the author’s knowledge, the first explicit application that not only conceptually analyzed char-
acters as part-plus-property, but also explicitly stored them as such, is Taylor (1995). However,
Taylor is primarily interested in automatically parsing large bodies of natural language descrip-
tions, and only briefly describes this approach (and the need for relational characters, see below).
Two other projects have subsequently analyzed and tested the character decomposition approach
in greater detail; these will be discussed in the following.

The Nemisys / Genisys model
Despite problems with the identification of object parts (Fig. 10, p. 38), object parts are a central
concept in morphological or anatomical data. The majority of morpho-anatomical characters may
be interpreted as a limited number of abstract observation methods applied to either the entire
organism or a large number of object-parts (including regions and functionally defined “organs”).
Building on earlier studies by Lebbe (1991), Diederich, Fortuner and Milton in a series of articles
(see Nemisys / Genisys model, p. 21) proposed a descriptive information model which decom-
posed characters into “structures” (i. e., “parts” or “physical components”) and “properties”.

In this model characters are the intersection of two more or less hierarchically organized di-
mensions: object parts and basic properties (a concept they introduce, combining instrumentation,
selected properties and methods, with data types, see “Basic property types”, p. 62). The authors
explicitly recognize that the model is optimized for morpho-anatomical data, but maintain that it
is also useful for all other forms of descriptive data (e. g., physiological data).

Some publications on the Nemisys / Genisys model may be interpreted as a set of rules to re-
structure and reorganize an existing character list. Diederich & al. (1998) mention their recogni-
tion of 272 parts and over 1000 characters, and that the potential number of characters of 272
parts × 20 basic properties could grow into more than 5000 characters. This suggests that the en-
tity “character” remained a useful concept under their model. Some of their proposals may best
be interpreted as an analytical tool to organize characters in a pattern that increases the manage-
ability of the terminology and that does not affect data storage management.

On the other hand, Diederich (1997) outlines a new data storage model where the combination
of object part and basic property is no longer under terminological control and where part and
property concepts may be combined freely at data recording time (Table 32). In addition, they
introduce a concept called “name extension” that allows ad-hoc modifications of both part and
property concepts. This model might perhaps look like Table 33. No field is mentioned in Diede-
rich (1997) to store the object parts of relational basic properties; a column has been added for
this in Table 33. Further, the model contains extension mechanisms: a) “Name extension” for the
basic property (although often object parts are involved in the extensions) and b) “Qualifier” for
states. Both mechanisms are closely related to the mechanisms discussed in “Modifiers” (p. 189).
Note that to directly support any kind of ratios in a fully decomposed model, further columns
may have to be added. For example, in an insect a ratio value may be calculated as the distance
(= “property 1”) between the attachment point of front legs (= “part 1”) at the body (= “part 2”)

118 Fundamental aspects of description models G. Hagedorn

and the attachment point of the middle legs (=
“part 3”) at the body (= “part 2”), divided by the
length (= “property 2”) of the segment of the
front leg nearest to the body (i. e., front femur, =
“part 4”). Clearly, this is a constructed example,
but similar characters are not totally unrealistic
because ratio estimates of immediately neighbor-
ing part lengths are relatively conveniently done

without precise measurements or calculations. An actual example is whether length of the hind-
leg of a frog is longer than the distance from hind-leg attachment to the nose of the frog.

Regardless of the details of the model, an important aspect of a property / object-part decompo-
sition is that it is relational (i. e. two-dimensional) rather than hierarchically nested. For example,
if during identification a compositional part of a biological object (e. g., a flower) can already be
recognized, it will often be best to study multiple properties grouped by object part. If, on the
other hand, the parts are difficult to distinguish, but an intuitively recognizable property concept
is found, it may be more useful to list characters grouped by property. For example, in a fungal
colony in a Petri dish it may be impossible to distinguish which hyphal structures are responsible
for the color effect, but the color itself is readily observed.

In the above example, if the compositional hierarchy is a kind-of hierarchy (i. e., a generaliza-
tion), properties could be generalized. However, the examples in Diederich & al. (1997) rather
suggest a part-of hierarchy of “structures and substructure”. This topic is further discussed in
“Composition versus generalization” (p. 153).

The Nemisys / Genisys model introduces valuable new approaches to descriptive data. How-
ever, it seems to be optimized for a particular form of morphological data (compare also require-
ment points 31 ff, p. 66). It is unclear to which extent it has actually been implemented; no formal
documentation of an information model could be found.

Table 33. An example based on the detailed Nemisys / Genisys model (including the “name
extension” and “qualifier” proposals).

Entity
(Taxon)

Object-part
(Structure) Basic property

Related part
(Structure)

“Name
extension” State Qualifier

1 Hemizonid position relative to excretory pore - anterior slightly
1 Body “kind” (color) - at excretory pore brown -
1 Eye Distance to Antenna - touching -

Notes: After Diederich (1997), where the model is outlined and discussed, but not shown in exactly this form. Here two
columns are added: an ID-reference column for the entity, and a column to express the second object-part (structure)
discussed for relational basic properties. The discussed version column is not shown here. The first example is from
Diederich, the other added.

The Prometheus description model
As mentioned, the Nemisys / Genisys model is a conceptual model that is only partly documented
and the concepts of which are evolving from publication to publication. The Prometheus descrip-
tion model (p. 21) is the second character decomposition model described so far and develops a
fully functional model. As discussed on p. 31, Prometheus replaces the term “character” with
“description element”, partly perhaps to stress the character decomposition-model. In line with
the remainder of this thesis and to facilitate the comparability with the Nemisys / Genisys model,
this is not accepted and the term “character” is maintained here.

The Prometheus model differs from Nemisys / Genisys in several respects, for example:

Table 32. Fundamental part/property model.

Entity
(Taxon)

Object-part
(Structure)

Basic
property State

1 Body “kind” (color) brown
1 Body shape ellipsoid
1 Head “kind” (color) dark red
1 Head shape round

G. Hagedorn Fundamental aspects of description models 119

■ Generally much more focus is placed on defining the terminology. Where in the Nemisys /

Genisys model it is occasionally unclear whether ad-hoc natural language definitions are sup-
ported or even intended, Prometheus is unambiguously clear to support only defined terms.

■ A strict distinction is made between quantitative and qualitative (i. e. categorical) properties.
□ “Quantitative properties” are a subclass of “Defined Terms”, may not be hierarchically ar-

ranged, and may not be constrained to the context of specific object components (“struc-
tures”).

□ “Qualitative properties” (term used in Fig. 1 and 4 of Pullan & al. 2005) or “State groups”
(term used in text of Pullan & al. 2005) are no “Defined Terms”, may be hierarchically ar-
ranged, and may be constrained to specific object components (“structures”).

□ The data recording process follows this distinction. Whereas quantitative properties are ex-
plicitly recorded together with the value, for categorical data only the character states are
recorded; the qualitative properties are implied.

■ Structural models (using part-of relations) are used both in the terminology (potential
composition, general constraints), and in description instances (actual composition). This
mechanism is used for several purposes:
□ It supports and constrains data recording;
□ it replaces specialized plant structure terminology, but building specializations (leaves on

stem, in inflorescence) in an ad-hoc mode, constructing “structural paths”;
□ it provides the containers for part-specific measurement or aggregation data (compare

“Boolean operators between characters”, p. 98).
■ The problem of spatial areas or regions like tip, bottom, or center is addressed by introducing

a subclass of structure (“Region”) which is freely combinable with structure. A similar sub-
class “Generic Structure” is created for parts that occur inconveniently frequently on multiple
other parts (e. g. hairs). Again, instances of Generic Structure may be used on any part, with-
out relations being present in the terminology.

■ The explosion of codable points that is a result of freely combinable part and property termi-
nology is reduced, first by placing constraints on state terms to which object components they
are applicable, and secondly by allowing project managers to create so-called “pro-forma”
definitions (i. e., something not essential, but only for form's sake). The “pro-forma” mecha-
nism seems to be related to database views, creating restricted subsets of the entire terminol-
ogy, but may entail other, more complex setup information as well.

■ The concept of modifiers is significantly enhanced. This is discussed separately, see p. 196.
The hierarchical arrangement of properties addresses many of the issues criticized for the “Basic
property types” (p. 62) of the Nemisys / Genisys model. Also, the qualitative property/state group
model is freely extensible, avoiding the need for artificial catch-all properties like “kind”. How-
ever, it remains unclear why quantitative and qualitative properties may not both be hierarchical
and both be defined terms (or “concepts”). It would be desirable to create a hierarchy for size
measurements (e. g., length, width, length including bristle, excluding bristle, etc.) and probably
other properties as well. Furthermore, in the light that quantitative measurements may be expres-
sed both as continuous and categorical measurements, and that mappings (p. 66) between these
may be defined, it seems unfortunate not to be able to browse data using a property hierarchy ir-
respective of the data type used (including the use of complex data types, p. 59, e. g., for color).

The direct recording of character states without going through a hierarchical level of proper-
ties is certainly a very interesting feature. However, it seems to be truly a question of the user
interface, not requiring changes to the information model (see p. 129). Indeed it may be noted
that the assumption that the property is implied by the states holds only for data recorded using
unique identifiers. In natural language categorical states may be ambiguous (“hot” in an animal is
likely to be temperature, in a fungus likely to be taste). Conversely, for qualitative data the prop-
erty is often implied in the measurement unit (e. g., ‘g’ or ‘°C’ have implicit properties “weight”
and “temperature”).

120 Fundamental aspects of description models G. Hagedorn

The introduction of “structural paths” seems to be a generalization of the two-level (structure
and substructure) storage model described in some versions of the Nemisys / Genisys model.
Structural paths simplify the structural terminology by avoiding the need for terms like “ground
leaves”, “stem leaves”, etc. At the same time, they remove the possibility to give these parts a
name. This seems to be unfortunate, since the question whether a part has a separate name is
language- and culture-dependent as the example of German and English shows. In German, it
would be logical to construct both petiole (leaf stalk) and pedicel (flower stalk) as a structural
path, because German botanical language has no special terms for these. It is questionable
whether this is desirable to an English botanist. Moreover, not only bracts (i. e., “leaves with
single flower growing in axil”), but also sepals, petals, etc. are in fact modified leaves that could
be expressed using structural paths rather than specialized terms.

Structural paths come at the expense of a complication of the storage model, requiring some
means to store a path of unlimited length, and be able to both search for the exact path (e. g., only
“upper-stem-leaves”) as well as for generalized concepts (e. g., “any kind of leaf”). It is unclear,
whether Prometheus stores the entire path in each in the description, or whether an anonymous
specialized concept is created for each path, which is then referenced by a system identifier.

In general, Prometheus seems to deduce some of its requirements from particular features of
the English language, e. g., when requiring that “state terms” may not be used as part of structure
terms, and that any term may at most be “coded using one or two words” (Pullan & al. 2005).
Such rules need some generalization to make them compatible with languages that prefer derived
nouns over adjective-noun clauses or require more than two words to express a single concept.
Even in English it is doubtful whether these rules indeed guarantee that “data can only be coded
one way, even when entered by different authors” (Pullan & al. 2005).

If for each description an actual “structural path” is created that is based on first class object
parts (i. e., structural terms for which compositional constraints exist in the terminology), then
this is easily extended by adding elements for which no such constraints are defined in a similar
fashion. These are the “Generalized Structure” and “Region” terms introduced by Prometheus. Of
these, the regions are truly general (compare “Absolute object orientation” and “Relative object
orientation in compositions”, p. 147). The concept of regions seems to be closely related to spa-
tial modifiers (which also exist in Prometheus, see p. 196) and it remains open why two separate
mechanisms are required. The mechanism of “Generalized structures” is less a logical require-
ment than a convenience mechanism. Clearly, part like “hairs” are not truly applicable to all part
of an organism, especially not if the compositional hierarchy includes anatomical parts. However,
it remains at the discretion of the builder of an ontology, whether the mechanism is used or not.

The pro-forma mechanism is further discussed on p. 127 (compare also Figs. 39-40).
An essential feature of the Prometheus model is that it tries to reform the way taxonomy and

descriptions are performed. Although other models allow recording of individuals (including
DELTA, and with increasing support DiversityDescriptions and SDD), Prometheus goes to the
extent of considering abstract taxon descriptions as a set of “virtual specimens”, thus encouraging
to record actual specimen data instead. Similarly, biological terminology may only be used if it
fits the assumptions of the structure + property/state group model. In some cases a decomposition
of characters into parts and properties requires reformulating biological terminology and organiz-
ing knowledge differently, especially where functional concepts are used as organizing princip-
les. This may be less convenient during identification because it corresponds less well with ex-
pectations of the identifying person, but it may lead to more consistent use of terminology (Table
34).

Clearly, such an approach has advantages, but it is yet unclear whether it provides the flexibi-
lity that biologists desire for their work. The Prometheus authors themselves refer to extensive
testing that is required. Results of this have not yet been published.

G. Hagedorn Fundamental aspects of description models 121

Table 34. Examples of conventional characters that are difficult to decompose into property and
object part (Lucid, left) and proposals how they might be handled in Prometheus.

Lucid: Prometheus description model: (Notes by T.

Character States
Object part
(“Structure”)

Property/
StateGroup States

Paterson; edited
G. Hagedorn)

Salt
tolerance

• plants tolerating high salt
levels (halophytes)

• plants not salt tolerant

Entire Plant Ecological
adaptations

halophytic (list of alternatives,
or “not”)

Entire Plant Habit tree, shrub, herb, etc. General
habit

• tree
• shrub
• climber (woody or
herbaceous)

• herb
• grass- or sedge-like

Entire Plant Architecture climbing, bushy,
creeper, twining etc.

(more specific data
may be collected by
scoring more states
for additional proper-
ties)

Epiphytic
or litho-
phytic
habit

• plants growing in soil (not
epiphytic or lithophytic)

• plants growing on other
plants or on bare rock
surfaces (epiphytic or
lithophytic)

Entire Plant Preferred
substrate

epiphytic, aquatic,
lithophytic, terrestrial

Root Root attach-
ment

free-floating, sub-
strate-attached

Habit
(aquatic
herbs only)

• free-floating
• rooted in substrate with
leaves mostly submerged

• rooted in substrate with
leaves mostly floating on
the water surface

• rooted in substrate with
leaves mostly emergent
above the water surface

Leaf Aquatic
position

floating, submerged,
emergent

(appropriate terms
for these states not
yet present in the
Prometheus ontology
– but could be
added)

Seasonal
longevity

• annual, biennial, or
ephemeral

• perennial

Entire Plant Lifespan annual, biennial,
ephemeral, perennial

Leaves
(woody
plants)

• evergreen
• deciduous or semi-
deciduous

Leaf Lifespan deciduous,
semi-deciduous,
evergreen

Entire Plant Reproduction vegetative (list of alternatives,
Bulb Presence present, absent or “not”)
Corm Presence present, absent
Tuber Presence present, absent
Rhizome Presence present, absent
Stolon Presence present, absent
Root-sucker Presence present, absent
Detached
aerial stem
parts

Presence present, absent

Structures
for spread-
ing vegeta-
tively

• none (plants not
spreading vegetatively)

• underground bulbs,
corms or tubers etc

• rhizomes, stolons or root-
suckers

• detached aerial stem
parts, or proliferous
flower heads

Inflorescence Type proliferous (‘types’ of structures
 = associated sets of states; aerial stem parts might be a type of stem)

Leaf-
chlorophyll

Presence present, absent

Stem-
chlorophyll

Presence present, absent

(uses structural
hierarchy to identify
which chlorophyll)

Chlorophyll
in stems or
leaves

• present (plants green or
grey-green)

• absent (plants colorless,
white or yellowish)

Entire Plant Color (list of colors)
Nutritional
strategy

• neither carnivorous nor
parasitic (normal plants)

• partially or totally parasitic
on other plants

• carnivorous•

Entire Plant Habit-
Lifestyle

carnivorous,
parasite,
partial parasite,
etc

(any combination of
states including
“not”)

Trap
structures
(carnivorous
plants only)

• submerged or under-
ground bladders

• pitcher-traps
• sticky glands or glandular
hairs on leaves / stems

• trap like irritable leaf
blade segments

 (appropriate terms
for these states not
yet present in the
Prometheus ontology
– but could be
added)

122 Fundamental aspects of description models G. Hagedorn

Notes on Table on previous page: Examples based on public postings to tdwg-sdd@listserv.nhm.ku.edu on 2004-03-
17; available in TDWG-SDD list archive. Left-hand columns based on the Lucid key “The Families of Flowering Plants of
Australia”, provided by Kevin Thiele; right-hand columns based on reply by Trevor Paterson.

121. Summary statement: The Prometheus description model has very special requirements on

the information model. It elaborates and modifies the concepts of the Nemisys / Genisys
model. It is implemented and tested. The extent to which this model is specific to certain
kinds of data needs to be assessed as experience with the model grows.

122. Summary statement: The Prometheus description model provides for the definition of a
subset of all possible object-part / property combinations for data entry. For different pro-
jects, different sets of “enabled” object-part / property combinations may be defined. The
union of all enabled selections is roughly equivalent to characters in character or character
state matrix models.

Relational characters revisited
As mentioned in the discussion of the character decomposition models, a number of characters
typically used in biological descriptions have a different structure than part + property + value.
Taylor (1995) was the first to introduce special data structures for “relational characters”, and
both Nemisys / Genisys and Prometheus are addressing the problem. The following cases may be
distinguished (Table 35):

Table 35. Cases that may be termed a “relational character”.

 Situation Examples depending on two parts Examples depending on two properties
1 A single measurement is by

necessity dependent on two
object parts/properties

Distances or angles-between two
parts

(no example found)

2 A measurement primarily
depends on one part/property
but is modified by an additional
specification

Body width at excretory pore;
spore width at septum

Separate measurement of the width of
septate / aseptate (or hyaline / brown)
spores (compare Table 13, p. 73)

3 Multiple measurement may be
made independently and then
used to create another char-
acter

Relative size of sepals and petals,
comparative weight or lightness /

darkness of object parts (“frontal
area lighter than surrounding”)

length / width ratio, relative concentration
of two chemicals in a part (chlorophyll a /

b)

The first row in Table 35 represents the most typical “relational characters”. The second case
may either be treated as relational characters, or handled through modifiers (p. 189). The third
case is in principle a calculated character (see p. 72). It is perceived as a relational character, if
the direct recording of the “calculable” result is more typical than the recording of both original
and calculated data. For example, length / width ratio are more readily perceived as a calculated
character (length and width being typically also measured separately) than “sepals to petal
length” expressed categorically as “sepals shorter”, “same size”, “sepals longer”.

Not shown in the table is perhaps the most critical case of what might be considered a “rela-
tional character” (but which the cited decomposition models do not consider so): characters indi-
cating the presence or multiplicity of object parts that may be present on multiple other parts
(hairs, leaves, etc.). In the case of “number of basal leaves”, “number of stem leaves”, “number
of leaves in inflorescence (bracts)” one may tend to prefer to express this by creating specific
subtypes of leaves (basal leaves, stem leaves, bracts). However in a case like “number of hairs on
coxa”, “number of hairs on femur”, or “… on profemur”, “… on mesofemur” it seems quite natu-
ral to consider the character being dependent on the two object parts, the relation of which it de-
scribes.

G. Hagedorn Fundamental aspects of description models 123

Integrating these cases into character decomposition models requires additional structures
(compare Table 10, p. 64 and Table 33, p. 118 for Nemisys / Genisys).

The Prometheus description model (p. 21) uses a data structure for relational characters called
“relative modifiers”. On p. 196, this mechanism is described. It is criticized here for being consi-
dered a modifier, but otherwise it does support characters depending on exactly two parts (simi-
larly to those in Nemisys / Genisys), with the added advantage of supporting operators (equal,
smaller, greater, etc.).

The topic of relational characters urgently needs further study. It is clear that it is a potential
source of much complication in models, and a simple, flexible solution that allows to express
various forms of relations is preferable. Whether the model of concept hierarchies discussed fur-
ther down (p. 125) provides sufficient support is currently unknown.
123. A character may depend on more than one object part or on more than one property. A

possibility to express this, either in descriptive terminology or in descriptive data, is de-
sirable.

124. Some “relational characters” may be viewed as calculated characters. The multiple parts
involved may then simply be discovered by analyzing the characters involved in calcula-
tions. However, often only values for the calculated, but not the base characters are avail-
able. The model should thus support analysis of multiple part-relations even if only the
calculated character values are present.

Multidimensional character decomposition
The models discussed so far propose to decompose all characters (i. e., “defined variables for de-
scriptive data”) into an object part and a property. This decomposition is only a subset of all po-
tential decompositions. It is helpful to consider the steps that are involved in the process of re-
cording a character value for a physical object (Table 36). The dominant dimensions influencing
the definition of a character are:
■ Object constraints. A character may be specific to a taxonomic group, a temporal period, a

sex or life cycle stage (see p. 218 and 217 in the section “Secondary classification resulting in
description scopes”), conditions of observation (see also “Dependencies on circumstances of
identification”, p. 175), experimental conditions, preparation status, etc. Examples: “winter”,
“larval characters”, “fresh material”.

■ Object part (also called “structure” in other models). A character applies either to the entire
object or to a part of it. The part(s) to which a character refers may be part of the character
label (e. g., “flower color”) or may be implied (e. g., “stamen number”, referring to “stamens
per flower” and thus a property of flower). If no specific part is mentioned (or implied through
the property), one will assume that a character refers to the entire object (the entire organism).
Examples: inflorescence, flower, anthers, pollen-sac, pollen, cell wall.

■ Measurable concept (= “property” + fundamental measurement method). All characters refer
to a property (such as color or shape) and a method to measure it. Measurable concepts are
thought here as being defined without regard to specific circumstances depending on taxono-
mic group, object part, or instrumentation. Examples: color, shape, length, aggressivity, speed,
presence of object parts.

■ Measurement method (operating instructions). Where measurements are difficult, or a high
degree of scientific accuracy is called for, measurements may be governed by specific meas-
urement operating instructions. Instructions may be required even in relatively simple cases,
compare the example of Figs. 24-25, p. 72). In many analytical situations, detailed and docu-
mented operating instructions are even required to make results admissible as evidence at a
legal court (e. g., if the ownership of a plant breeding variety is disputed). An example for a
model decomposing methods is Germeier & Frese (2001).

124 Fundamental aspects of description models G. Hagedorn

■ Instrumentation. This designates tools and associated procedures that are required to obtain
values for measurable concepts. It is convenient to include human senses (i. e, the absence of
technical instrumentation) in this concept. Examples: “span of hand” / “cm ruler”; “unaided
human vision” / “hand-lens” / “light microscope” / “scanning electron microscope”; or “human
sense of smell” / “chemical gas chromatographic analysis”. In current descriptive terminologies
instrumentation is often implied, especially where instrumentation is simply the unaided
human senses. However, instrumentation does not necessarily default to these, e. g., “fungal
spore size” will default to “light microscope with micrometer scale”. Occasionally consider-
able experience with a taxonomic group or property is required to understand an implied in-
strumentation correctly, and it is highly desirable to be able to make this information explicit
in descriptive terminology.

■ Information representation (data type). After measuring (which may include several layers
of primary data transformations), secondary transformations may be applied to the character
value to conform with the format required by the data storage method. This includes conver-
sions from complex data types or quantitative values into categorical data.

Decomposing a character definition into these dimensions will often allow a reuse of relatively
few fundamental definitions. At the same time, the dimensions provide a classification (and po-
tentially a hierarchy) that helps in achieving manageable and well structured character sets.

Table 36. Character decomposition based on the steps required to observe and record a value
for a character.

Step Comment
Choose the object Seemingly trivial, but the object may not belong to a class that can be described by the

methods defined in the terminology at all. In identifications this must always be considered
as a fundamental error source. Also, often temporal, geographic, or other constraints (such
as life cycle stage or sex) must be observed to correctly observe a character value.

Optionally choose a part
of the object

This is highly problematic insofar as no straightforward method to do this exists. The proc-
ess is heuristic in that “sub-identifications” using general part-characteristics are required to
name and choose the correct part

Apply the abstract
observation method

To do this, one may need to follow both very general measurement instructions (especially
use of instrumentation like hand-lens or microscope), as well as taxon- or part-specific
instructions (Examples: Is “length” defined along an anatomical axis or is it always the larger
of two perpendicular measurements? Are appendages to be included or not?)

Convert values into the
form required by the
information model

Measurement may be in different units (cm, mm), color may be measured spectrographically
but requested as color-space values (e. g., sRGB)

Apply the data entry
methods of an application
implementing the model

Trivial when humans use an existing user interface, but especially in the case of automated
data recording this needs consideration.

In many small objects, issues of observation and experimental conditions, operating instruc-
tions, and instrumentation are much more relevant than might be assumed from discussions based
on examples from vascular plants or insects, where clearly the issue of object part hierarchy is
dominant and where “field characteristic” observable by the unaided eye are often in abundance.

Similarly, a temporal (seasonal, developmental) decomposition is usually very relevant in
biological objects (discussed later in detail on p. 162). Nobody so far seems to have proposed to
extend the property / structure decomposition model by Diederich & al. (1997) by adding instru-
mentation / method and time / development as further dimensions to a character decomposition. In
many taxonomic groups this seems to be a welcome addition.

Like object-parts and properties, methods are often hierarchically structured. Occasionally the
structure may even be best viewed as independent parameters: Table 37 shows an example where
the method itself is broken down into parameters. Doing so in a general descriptive information

G. Hagedorn Fundamental aspects of description models 125

model would probably overcomplicate the model; a method hierarchy instead of dimensions
would probably fulfill most requirements.

Table 37. Examples of related characters that are distinguished by three parameters of a single
method used.

 Basic “Basic” –– “Method Parameters” ––
Character Object Property Method medium temp. duration
1. Growth rate (OA, 20 °C, 7 d) Culture Size Growth/Petri dish Oat Agar 20 °C 7 days
2. Growth rate (OA, 30 °C, 7 d) Culture Size Growth/Petri dish Oat Agar 30 °C 7 days
3. Growth rate (OA, 20 °C, 14 d) Culture Size Growth/Petri dish Oat Agar 20 °C 14 days
4. Growth rate (OA, 30 °C, 14 d) Culture Size Growth/Petri dish Oat Agar 30 °C 14 days
5. Growth rate (MA, 20 °C, 7 d) Culture Size Growth/Petri dish Malt Agar 20 °C 7 days
6. Growth rate (MA, 30 °C, 7 d) Culture Size Growth/Petri dish Malt Agar 30 °C 7 days
7. Growth rate (MA, 20 °C, 14 d) Culture Size Growth/Petri dish Malt Agar 20 °C 14 days
8. Growth rate (MA, 30 °C, 14 d) Culture Size Growth/Petri dish Malt Agar 30 °C 14 days
9. Color (OA, 20 °C, 7 d) Culture Color Growth/Petri dish Oat Agar 20 °C 7 days
10. Color (OA, 30 °C, 7 d) Culture Color Growth/Petri dish Oat Agar 30 °C 7 days
… etc.

Method “Growth/Petri dish” = “Growth rate measurement in mm, cultivated in 90 mm Petri dish under conditions given in
parameters”.

125. For many taxonomic groups the character decompositions beyond object part and property

are desirable. Examples are experimental conditions, measurements methods and instru-
mentation, and information representation (e. g., quantitative versus categorical represen-
tations).

Concept hierarchies
The desire to decompose characters not only into an object-part and a property hierarchy, but also
into multiple other dimensions (conditions, measurements methods and instrumentation, informa-
tion representation), obviously greatly complicates a character decomposition. Alternative meth-
ods of expressing this information in secondary hierarchies may be considered. However, one
may also consider whether the character decompositions proposed in Nemisys / Genisys (p. 21)
and Prometheus description model (p. 21) may not be represented differently as well.

The model proposed here (and currently tested in SDD, p. 20) is to maintain the concept of a
character as an independent basic entity that is defined in the terminology, but provide for multi-
ple concept hierarchies superimposed upon the character list (Fig. 37). One concept hierarchy
would be the part-of hierarchy proposed in decomposition models, another hierarchy would re-
present the properties (Nemisys / Genisys properties are proposed as a flat list, but (a) is this only a
special case of a hierarchy, and (b) deeper property hierarchies may be desirable, compare Table
10, p. 64). Relations between concepts define the concept hierarchy, and relations between char-
acters and concepts define the object part, property, method, etc. pertaining to the definition of a
character (Fig. 38). In this model, extensions to further concept hierarchies can be made without
redesign or a special effort, using established structures in the information model.

Concept hierarchies are related to general character hierarchizations (as in DELTA or Diversi-
tyDescriptions) or specialized ones. For example, Dmitriev (2007) associates characters with a
specialized part ontology (“Characters.Morph” referring to extensible definitions in table Morph)
and a fixed organism stage hierarchy (“Characters.Type” with system-defined values “n =
nymphs, m = males, f = females”; allowing combinations such as “mf”).

126 Fundamental aspects of description models G. Hagedorn

Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx

Part PropertySubset (Filter) Method
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx
Character xx

NodesConcept Trees (root) Leaves Pointers

User-defined

Parts

Properties

Methods

Subset

Figure 37. A flat character list may be organ-
ized under different aspects through multiple
concept hierarchies.

Figure 38. Multiple concept hierarchies (trees)
may be defined for a character list. In SDD, each
tree (here “Properties”) contains inner concept
nodes and terminal character nodes (also called
“leaves” in informatics, each pointing to a single
character).

One advantage of this approach is that in principle more than one part-hierarchy may exist. Al-
though standard concept hierarchies will be desirable in most cases, this may occasionally be de-
sirable:
■ In large, heterogeneous taxonomic groups, homologous structures may be named or arranged

differently in different subgroups (compare section “Problems with specialized, context-de-
pendent names for object parts”, p. 157).

■ A descriptive data set may have been developed under one concept hierarchy, but shall now
be migrated to a larger data set with slightly different concepts.

The concept trees mentioned so far express truly semantic knowledge about characters and may
be the basis for ontological reasoning. Concept trees may, however, also simply be used to ex-
press semantically opaque concepts in the form of user-defined trees or subset / filter definitions.
Examples are the equivalent of headings and subheadings in descriptions (supported, e. g., by
DELTA, DiversityDescriptions, or CBIT Lucid3). Such an arrangement may be any mixture of
part, property, method concepts, or even yet completely different concepts like “importance for
identification”. Similarly, concept hierarchies may be used to express the character subset defini-
tions (present in DELTA or DiversityDescriptions). Subsets (compare Fig. 226, p. 334) act like
views in a database, selecting a subset of characters for a particular audience, applicable under
particular conditions (e. g., seasonal or geographical restrictions), or those characters applicable
to a given taxonomic group (for large data sets, encompassing diverse groups).

The relation between characters and concepts may be differently constrained. In character de-
composition models like Nemisys / Genisys or Prometheus exactly one property and object part
must be defined for each recordable data value (but property or part-terms without recorded data
may exist). One consequence of this is that existing data sets available in DELTA, NEXUS, or
CBIT “LIF” formats cannot be supported. The SDD model therefore considers concepts on char-
acters an optional feature, i. e., characters may exist without a defined property / part decomposi-
tion. Furthermore, SDD concept trees allow that a character is placed multiple times in a single
concept tree. This feature enables appropriate handling of characters that are related to multiple
object parts, e. g., where a measure expresses a distance between two parts. Treating such charac-
ters in a strict object decomposition system requires arbitrary decisions.

Interestingly, it is quite possible to handle data based on a character decomposition model in
the character-plus-concept model. The concept hierarchies can be directly imported and charac-
ters could be created automatically wherever data are encountered (data types must be defined

G. Hagedorn Fundamental aspects of description models 127

under both kinds of models). The most problematic item is a label (or “name”) for these new
characters. However, combining the labels for object part, position, and property will always
create an intelligible (even if not always conventional and intuitive) character label.

To better understand the relation between character decomposition models and the concept
hierarchy model presented here, one may visualize the two dimensions of the character decompo-
sition models as spanning a matrix that is sparsely filled (Fig. 39). This illustration could equally
well be used for SDD and the Prometheus character decomposition model. In SDD the black circ-
les represent the actual characters, in Prometheus they represent so called “pro-forma” definitions
(Pullan & al. 2005) of those potential data entry points, for which actual data entry is requested.
The central difference is that in SDD data storage is based on the black dots (characters), which
may even exist independently from the matrix, whereas in Prometheus data is potentially possible
for any cell of the matrix (i. e., for any combination of a property and part definition). The black
dots are then the result of a secondary selection process to create a view. Views can be defined in
both models: in SDD it is another concept tree, in Prometheus it is the result of a separate selec-
tion mechanism (multiple “pro-forma”, compare Fig. 40).

Object Parts (Structures)

Pr
op

er
ty

/M
et

ho
d/

D
at

a
ty

pe

Figure 39. A sparsely filled matrix based on 40 object-parts (top) × 25 observed properties (left).
200 out of the 1000 potential combinations selected for data entry are shown as a black circle.

Figure 40. In the SDD model (left), views (for data entry, report generation, sorting, etc.) may be
added as another concept tree (right side of left diagram). In the Prometheus model (right), a se-
parate selection mechanism (called “pro-forma”) is used multiple times (represented here through
differently shaded dots, and combined into a single diagram). To simplify the illustration, only
non-overlapping views that are congruent with part and property hierarchies are shown. How-
ever, this is not a constraint of the model.

128 Fundamental aspects of description models G. Hagedorn

Table 38. Comparison of the character decomposition and concept hierarchy models.

Issue
Decomposition model
(e. g., Prometheus description model)

Concept hierarchy + character model
(e. g., similar to SDD)

Multiple
compositional
(i. e., object-
part hierar-
chies

One hierarchy is central to the model and the
basis for data storage or retrieval. This hierarchy
must be centrally managed and accepted by all
participants in a federation. Additional secondary
hierarchies based on different data structures
may be added; only these can be federated.

All hierarchies are symmetric using the same
structures. None is relevant for data storage. In a
federated model, different participants may
choose different hierarchies.

Multiple property
hierarchies

Similar to part-hierarchy (but in current Prome-
theus probably flat rather than hierarchical)

As above; all concept hierarchies function in the
same manner.

Multiple method
hierarchies

Not supported in Prometheus, but extending the
decomposition model with a further dimension is
possible.

As above; all concept hierarchies function in the
same manner.

Multiple views Based on a selection process defining a subset
of matrix cells. May be federated.

Based on a concept tree, defining a subset of
characters. May be federated.

Creating a new
terminology

Well-defined part and property hierarchies need
to be set up before starting data entry. For well
understood groups this may be done centrally in
funded projects; for small groups this may be-
come a problem.

An “ad-hoc mode” is explicitly supported: char-
acters may be introduced by defining a type and
labels, without including them into any organizing
concept hierarchies.

Adding new
“characters”

Not required. Any matrix cell may be used for
data storage. Federation only depends on the
defining part, property, and property value hier-
archies.

This is a separate process. Creating a character
creates an ID used when storing of retrieving
data and requires some metadata (type, a simple
label). IDs must be managed globally, but when
using GUIDs federations may independently add
new characters.

Adding new
concepts

In the defining part and property hierarchies this
may require central management. Similar to
characters, GUIDs might allow federations to add
new parts and properties independently.

Uncritical, for coded data only local to a single
hierarchy. However, concepts may be used for
natural language markup as well, which creates
a similar situation to Prometheus and is man-
aged through GUIDs.

Revising
semantics of
concepts

Very problematic. In a federated situation any
matrix cell may contain data. Changing the con-
cept for a part would require identifying and re-
viewing all existing data (for all properties / meth-
ods) in all databases.

Uncritical, data do not depend on the concepts.
The analog in SDD is the revision of a character,
which would, however, involve only a single char-
acter at a time. On the other hand, in combina-
tion with the support of the ad-hoc definition of
characters, poorly defined characters that have
to be revised are much more likely.

Extracting
ontological
information

Presumably relatively easy since the model is
based on explicit ontological concepts

Possible, but less reliable. SDD introduces some
mechanisms that let authors express that a hier-
archy may be read as ontological information.
Full ontological information is expected to be
associated with the concept definitions, rather
than with concept usage in the concept trees.

Supporting rela-
tional characters
(p. 122)

Special support exists for two-part, but not two-
property relations. Properties depending on two
parts must be defined asymmetrically.

Characters may be associated with multiple
property- as well part-concepts. Relations are
always symmetrical.

Both the “character decomposition” and the “character + concept hierarchy” models have ad-
vantages and disadvantages, some of which are compared in Table 38. A major disadvantage of
the “character + concept hierarchy” model is the lack of methods to express more than a general
association between concept and character. For example, a (constructed and hypothetical!) char-
acter: “ratio of profemur length to distance from front to middle leg insertion at the body” could
be associated with:

Part hierarchy:
body, front legs,
middle legs,
profemur

Property hierarchy:
distance between parts,
length of part

Method hierarchy:
field methods,
hand lens,
stereo microscope

The complexity of this example cannot be adequately solved in decomposition models either
(compare Table 38, last row), but for simpler examples with exactly one property and two parts
the decomposition model may be less ambiguous.

G. Hagedorn Fundamental aspects of description models 129

In general, a number of reasons exist why the association between a character and parts (or-
gans, morphological structures) may be ambiguous:
■ If an object part is dominant, its properties tend to be viewed as properties of the entire organ-

ism. Examples: the color of fern leaves or the fruiting body of a fungus is generally considered
the color of the entire fern or fungus, even though the fern roots or the fungal mycelium are
usually differently colored.

■ If the border between object parts is not easily perceived (though perhaps well-defined in
theory). Example: the hypocotyl of a plant may be considered part of the “root” as well as part
of “shoot”.

■ If object parts are distinguished morphologically, but evolutionary forces generated conver-
gent appearance. Examples: cladodes (or “cladophylls”, flattened stems resembling and func-
tioning as a leaf) or rhizomes (stems resembling and functioning as roots). Even trained botan-
ists, lacking the time to do adequate developmental or anatomical studies, may misinterpret
such concepts. Authors of the data set may decide to include characters in a place where users
expect them, rather than where they properly belong. Although this problem can be solved by
distinguishing between part-of and kind-of relations, the data offer no validation that the con-
tent author understood or cared about these problems.

■ If the compositional hierarchy allows multiple logical arrangements. Example: A “pedicel”
(i. e., stalk bearing a single flower) may with equally good reasons be treated as “child of
flower” or as “sibling of flower” and “child of inflorescence”.

■ Finally, and highly relevant to the problem of identification, the relation of an observable
character and a body structure may only be observable with great difficulty in the field. Parts
of legs of small insects may be colorful and form a good field characteristic, but detecting
which part of the leg exactly has which color may require a stereomicroscope. Similarly, in
many sitting or swimming birds the exact relation between coloration and tail versus wing
feathers hardly matters and is difficult to ascertain.

In principle these problems are all solvable, but in practice one data set may be optimized for
phylogenetic analysis and another for routine identifications, leading to a certain ambiguity when
attempting to retrieve ontological information from concept trees that are superimposed on a
character list.

Whether the character decomposition is more or less amenable to handle these cases is not
immediately clear. The simple model (Table 32 or Fig. 39) has similar problems (e. g., providing
exact information about the part / property relations in the ratio example requires substantially
more complex data structures in the character decomposition model as well, see p. 117).

Character-plus-concept hierarchy models often fulfill the same requirements as character decom-
position models. As an example, the feature of Prometheus to directly score character states for
an object part (compare p. 119) shall be discussed. In Prometheus, after selecting an object
component, a state may be scored from the full list of all applicable states. Provided that the list
of states is not overly long, this kind of scoring come close to natural language descriptions,
where the character or property is often implied in the term (compare the example on p. 39). In
Prometheus, the property is not stored, but implied through the relationship defined between
states and categorical properties (“state groups”) in the terminology.

If a non-decomposition model is supported by a compositional concept hierarchy (e. g., as in
SDD), the same user interface may be generated by browsing through the compositional concept
hierarchy, and at a given node request a list of all applicable characters and states. It is now a
question of the implementation, whether all characters applicable to this node and all subnodes,
or only for the current node are displayed (the latter is possible desirable). Similarly, the imple-
mentation may display the categorical states organized by character, organized by another con-
cept (e. g. property), or directly in a sorted list. Selecting a state from the sorted list works identi-
cal in the user interface to the Prometheus model. Only the data are stored by retrieving the char-

130 Fundamental aspects of description models G. Hagedorn

acter-variable associated with the state (implied information), and storing the state as character
data for the current description.

An interesting aspect of multiple concept hierarchies is that combined hierarchies may be created
algorithmically, thus often removing the need to also create “operational” hierarchies for practi-
cal purposes (see Figs. 41-42).

Plant parts
(composition)

Inflorescence Petal length [C33]
Sepal length [C32]

Petal color [C81]
Flower diameter [C34]

Warts [C55, C56]
Diameter [C47]

Hairiness [C40, C41]Stem

Above ground

Total height [C13]

Root system

Type [C71]
Rhizome [C73]

Max. depth [C78]
Color [C74]

Observation
Methods

[C13]
[C92]

[C78]

[C47]

[C99]
[C40]

[C55]
[C98]

[C56]
[C41]

[C93]

[C33]
[C34]

[C32]

[C87]
[C90]

Observations of
structures

estimate (± 1 m)

± 1 cm
accuracy

without lens

 with hand lens

Size
measurement

± 0.5 mm
 accuracy

Figure 41. Two concept hierarchies (compositional and a methodological) associated with a flat
character list (represented by character IDs in square brackets). Compare Fig. 42 for further
information.

Plant parts

Inflorescence Petal length [C33]
Sepal length [C32]

Petal color [C81]
Flower diameter [C34]

Diameter [C47]

Stem

Above ground

Height [C13]

Root system

Type [C71]
Rhizome [C73]

Max. depth [C78]
Color [C74]

Warts

Hairiness

without lens [C55]
with hand lens [C56]
without lens [C40]
with hand lens [C41]

Figure 42. Multiple concept hierarchies (from Fig. 41) may be combined, providing additional
information wherever the primary hierarchy contains multiple characters at a concept.

126. Concept hierarchies that are superimposed on a flat list of character may be a desirable

alternative to strict character decomposition models.

G. Hagedorn Fundamental aspects of description models 131

127. The combination of concept hierarchies with a flat character list is desirable when the sup-
port of existing (“legacy”) data is a requirement. Concept hierarchies may be modeled as
an optional part of the information model, whereas strict character decomposition models
require decomposition information to be available to handle descriptive information. Con-
cept hierarchies provide a large amount of the organizational and semantic advantages of
character decomposition models without breaking compatibility with existing data.

128. Multiple concept hierarchies are desirable to express – in addition to object-part and prop-
erty classification – also aspects of methodology, instrumentation, or simply arbitrary
character subsets / filters.

4.12. Descriptive ontologies
The choice between “character decomposition” and “character plus concept hierarchy” discussed
above is highly relevant to data exchange models like SDD. Although both models are equivalent
with respect to many requirements, they introduce strongly divergent data representation models.
This makes future migration of data difficult and applications may require a redesign rather than
evolutionary development. A sound basis for the decision is therefore necessary (compare Table
38, p. 128). To a large extent, the answer depends on whether well-defined and stable concept
hierarchies (semantic ontologies) for object parts (structures), properties, and methods or instru-
mentation, and development points, applicable to all organism groups from mammals to viruses,
can be developed in the coming years. The following sections therefore discuss the problems the
author sees in this respect. Many of the problems presented can be solved in principle, but often
no immediate solution is known or has been tried. Work on the problems presented would be
highly valuable. The goal of enlisting difficult cases without necessarily proposing solutions is to
prepare a foundation for future decisions, helping information model designers in achieving a
balance between abstraction (which at some level may hinder communication about a problem),
complexity and functionality of a model being evaluated.

The concepts discussed here largely have analogs in explicit ontology languages such as OWL
(McGuinness & van Harmelen 2004). However, because of the desire to continue to use UML to
illustrate the examples, the following discussion will largely use the terms and diagrams used in
software development. The UML diagrams are to be read as illustrations of a problem, not as pro-
posals for a descriptive information model. Most diagrams are drawn under a naïve perspective
which would result in a non-generalized software model applicable only to one taxonomic group
(compare section “Level of abstraction of descriptive information models”, p. 42).

Object composition
Compositions (part-of relations) of concepts occur in modeling primarily if some object can be
subdivided along the physical dimensions of space, mass, or time. The composition of a biologi-
cal organism may contain parts like “head, body, legs”, but also “cell wall” may be composed of
“proteins, chitin, β-1,3-1,6-glucan”. Space and mass-based abstract composition concepts are
independent. In the body composition they fall together, in the chemical composition they are
largely independent (the composition of a fluid is exclusively mass-based), and for a composition
of distance segments the concept of mass is irrelevant. Space-based concepts include a notion of
order and adjacency, mass-based only a summation of parts. Similarly, time-based compositions
may or may not have an ordering and duration aspects. A process (e. g., an observation method in
science) often includes a clear notion of order and duration of component processes (e. g., a fun-
gus is cultivated for a given period, the cell wall destroyed, DNA extracted, DNA purified, PCR
performed). However, the sequence of component processes may also be so variable and repetiti-
ve as to become irrelevant (e. g., “compare object with color chart”). Similar to spatial composi-

132 Fundamental aspects of description models G. Hagedorn

tions, temporal component processes may be nested (e. g., using a microscope while performing
some operations).

Part-of relations inform that concepts belong together. A useful property of Part-of relations is
that they are transitive (a part-of b, b part-of c → a part-of c). However, it is difficult to do reaso-
ning about the properties of the objects having part-of relations. For compositions involving mass
it is known that the total mass is the sum of the mass of the parts. For most properties, however,
such deductions depend on secondary information. If a is part of b, neither color (a) = red →
color (b) = red, nor color (b) = red → color (a) = red is generally true. If the surface color is black
for the insect body and red for the head, it is intuitive that the entire object is a mixture of red and
black. However, if it is known that the fat body is yellow, the additional knowledge is necessary
that this is an internal structure not visible in undissected insects.

The following sections will only discuss the physical arrangement and part-of structures.
These are of primary importance in biological descriptions and are used as the basis for current
character decomposition models (p. 116). However, observation or experimental methods also
have a composition (part-of) structure.

Morphological object composition
Many objects are a composition of other objects. Fig. 43 shows an object
that consists of one rounded square, two right-angled triangles, six circles,
and one equilateral triangle. Aspects of object composition are:
■ Containment: The entire object contains all objects listed. The

rounded square further contains the two right-angled triangles.
■ Multiplicity: The right-angled triangles occur twice, the circles six

times.
■ Adjacency: All objects are adjacent to the rounded square. The circles

are adjacent to the right-angled triangles. No other objects are adja-
cent.

■ Ordered sequences: The darker circles are between the lighter circles.
■ Relative position: The circles are at opposite sides of the rounded

square.
Fig. 44 gives an example for a morphological composition hierarchy for selected parts of the
human body. Note that some composition details may have to be resolved by consensus, e. g.,
whether the foot starts below the ankle or whether the ankle is part of the foot; this is further dis-
cussed in section “Competing classifications of object parts” further down.

Entire body Rump

Neck

Head

Leg

Arm

Ankle

Calf

Knee

Thigh

Foot
Heel

Toe Toenail
Figure 44. An excerpt from a morphological composition hierarchy of human body parts as a
UML class diagram.

(Note: The terms “morphology” and “anatomy” are often used interchangeably. In this treatment,
however, the term “morphology” refers to the outside organization or composition of an entire

Figure 43. Abstract
example of an ob-
ject composed of
other objects (com-
ponents).

G. Hagedorn Fundamental aspects of description models 133

object and the term “anatomy” to the inner organization that may require dissecting or disassem-
bling the object.)
129. Morphological object composition includes aspects (multiplicity, adjacency, order) that

are not immediately included in a part-of hierarchy. Support for these aspects is desirable.

Anatomical object composition
Morphological objects (composite or atomic) usually have a
separate inner, anatomical composition. The outer and inner
compositions often cannot be organized into a single hierar-
chy, i. e., the inner composition cannot be presented nested
inside the atomic outer-composition objects. For the object
from Fig. 43, a hypothetical “vessel” anatomy with a main
vessel and branching side vessel is shown (Fig. 45). Similar
situations occur for nerves or blood vessels in animals or the
vascular system in plants. Fig. 46 gives another example for an
anatomical composition hierarchy for selected parts of the
human body.

Entire body
Left lung

Right lung

Bronchial tree Air sacs (alveoli)

Left superior lobe

Cardiac notch

Left inferior lobe

Right inferior lobe

Right middle lobe

Right superior lobe
Lungs

Larynx

Trachea

Figure 46. An excerpt from an anatomical composition hierarchy of humans showing a detailed
hierarchy for lungs. Parts of the bronchial tree (and the attached alveoli) occur in all lobes of the
lung (shown as shared aggregation, open diamond).

Morphological and anatomical compositions are separate hierarchies, but not independent. It
may be desirable to be able to express which anatomical parts are contained inside a morphologi-
cal object, even if an anatomical part stretches through multiple morphological parts. In the ex-
ample of the human body (Figs. 44 and 46) the two hierarchies are so far related only by using
“Entire body” as their base class, which does not allow one to determine which anatomical ob-
jects may be found in the neck. In Fig. 47, additional relations between morphological and anato-
mical objects are drawn in the form of dependency relationships. Both larynx and lungs may be
associated uniquely with a morphological object, whereas the trachea (windpipe) runs through
both the neck and the thorax. Relations like that between “Neck” and “Trachea” could perhaps be
modeled by creating a new relationship type, a “partial-part-of” relation.

Figure 45. A “dissection” of the
object from Fig. 43, showing an
inner, anatomical composition
hierarchy that is aligned with
the outer composition hierar-
chy.

134 Fundamental aspects of description models G. Hagedorn

Entire body

Head

Neck

Thorax

Arm

Leg

Lungs

Trachea

Larynx

Left lung

Right lung

Figure 47. Interference between morphology and anatomy at the example of the human respira-
tory system shown as dependencies (dashed arrows).

130. Anatomical (inward) composition hierarchies and are not necessarily nested inside a mor-

phological (outward) composition hierarchy. They can therefore not be displayed in a
single tree and support for multiple composition hierarchies is a requirement.

131. Mechanisms to express dependency relations between multiple composition hierarchies
may be desirable.

Object decomposition
Decomposing objects, i. e., recognizing that an object is a composition and identifying the parts
of this composition, is not always trivial. In many cases the decision whether to treat something
as a separate object part (participating in an object composition), or whether to treat it as a pro-
perty of the main object, depends on tradition rather than explicit rules. For example, most bota-
nists will consider hairs on stem, leaves, etc. an attached structure (that would be modeled as a
part in a composition). However, a dentate leaf margin will usually be considered a shape proper-
ty rather than a larger number of separate teeth objects added to the margin (Fig. 48). Similarly,
structures responsible for a color effect may either be considered a composition or implicit in a
property (Fig. 49).

Pullan & al. (2005) analyze “striated area on petal apex: present”, concluding that it is a com-
plex combination of “structure (petal apex), property (presence) and state information (striated)”.
Other authors may express the same information as: “area on petal apex: striated”. Again, the
fundamental problem is whether a part (which may then have a name) is recognized, or whether

A)

B)

C)

Figure 48. Teeth of a dentate margin (top) are usually
not considered components (but implied in the proper-
ty), whereas hairs on a margin or surface are often con-
sidered component objects. However, such teeth may
have a substructure, e. g., a differently colored mucro-
nate tip (circular insert).

 Figure 49. Object color may be due
to surface structures creating physi-
cal colors effects (A), pigments (B),
or soluble molecules (C). All may be
viewed as a composition or not.

G. Hagedorn Fundamental aspects of description models 135

simply the anonymous region at the apex of the leaf is described through its properties. Rules
how to systematically design a terminology are desirable for such cases.

Unfortunately, whereas in the previous example the second solution (using region instead of
part) seems to be preferable, in many other cases no general “region” description is available as
an alternative. In the case of complex butterfly or moth wing patterns it is often not possible to
describe a component of the wing pattern without reference to its properties. The color of the
third wavy band cannot be described as “structure X: wavy and red”.

Part of the rules governing object decomposition may be to consider something a part in a
composition rather than a property if it has further object parts and properties. However this rule
does not reflect the current customs in biological terminology. For example, teeth not only have
properties that are directly shape-related (length, width, or angle), but may also have independent
properties: different hairs may be found on the teeth, leaf veins may protrude at the tip, or the tip
may be differently colored and mucronate (abruptly ending in a sharp point, insert in Fig. 48).

When designing a descriptive system that intends to make consistent use of object composi-
tions, the fact that logical object decomposition rules and biological practice often disagree has to
be taken into account. It is important to provide a mechanism to map property expressions (leaf
hairy, margin dentate, fruiting body unilocular or multilocular) to object compositions (and their
multiplicity) to allow comparisons and to provide readable and intuitive descriptions.

In some cases, independent properties may cause interactions that influence decisions about
object decomposition. In Fig. 50 the left object is clearly recognized as a simple hexagonal shape.
However, if the striping pattern has additional darker lines added to it at appropriate positions,
partitioning the object into two triangular and one rectangular object is tempting. Such problems
of human perception are often embedded in biological descriptive terminology. For example, it
will be difficult to define an unambiguous decomposition of contours contained in butterfly wing
patterns that does not depend on a small taxonomic group.

?

Figure 50. Ambiguous object decomposition.

Whereas in the previous example the preferred de-
cision would probably be not to decompose into parts,
in the next example decomposition is expected. Fig. 51
shows three “pseudocreatures” with increasing reduc-
tion of head and neck shapes. Ultimately, the recogni-
tion of a head is based only on the presence of eyes.
Pre-existing knowledge about possible head and neck
reductions is essential to allow such an object compo-
sition. This knowledge is often missing when people
try to identify organisms whose fundamental arrange-
ment is new to them. When developing a key covering
both insects (tagmatized into head and thorax) and
spiders (single cephalothorax) the treatment of parts in
a character decomposition model involving a mandato-
ry part-information would be a serious problem. In in-
sects the eyes are part of the head, in spiders they be-
long to a region of the cephalothorax.

Figure 51. If head and neck shapes
are increasingly reduced, the recog-
nition of “head” and “body” is ultimately
based on other features (and knowl-
edge that a reduction exists).

136 Fundamental aspects of description models G. Hagedorn

132. Whether physical objects should be considered atomic or a composition depends on per-
spective and conventions, and may depend in complex ways on interaction with other
compositions and properties. It is desirable to add mechanisms that help in communicating
the perspective and conventions between designer and consumer or a descriptive terminol-
ogy.

133. An object composition may often be considered a property of the parent object. The infor-
mation system needs mechanisms to relate (or “map”) property and object composition
expressions.

Competing classifications of object parts
In general, the decompositions (or “partitionings”) of biological organisms into parts are bound to
a guiding principle considered optimal for a given purpose. The system may be based on morpho-
anatomical aspects (as already discussed), but also on functional, biochemical, ontogenetic, life
history stages (including multiple generations), phylogenetic, or similarity aspects. Different
schools (and most notably terminology in different languages) frequently use different classifica-
tions.

Different decomposition systems may result in partially congruent concepts, i. e., a given part
may occur in different systems. The names for such object parts under different classifications
may or may not be identical. Where they are, they can no longer be used to infer the classification
system. For example, a rhizome (an underground stem) may be classified as part of the root-sys-
tem (functional concept) or stem (morpho-anatomical concept). While a petiole (leaf stalk) is
commonly considered part of the leaf, the peduncle (flower stalk) is truly part of the stem system,
but its length will commonly be noted together with other characteristics of the flower (or per-
haps with the branching of the inflorescence, Table 39). Similarly, spines, thorns, and prickles
have exact botanical definitions, but are in practice used interchangeably under a similarity or
functional concept rather than a morpho-anatomically one. Note that in this case “spine or thorn”
is a generalization (kind-of) concept, which generalizes multiple object components (part-of con-
cepts; see also “Generalization of object parts (compositional concepts)”, p. 153).

Table 39. Examples of ambiguous or competing classifications of plant parts.

True morpho-
anatomical
classification

Common
alternative
classification Notes

Petiole
(leaf stalk)

part of leaf
kind of ?

part of leaf

Peduncle
(flower stalk)

part of stem
kind of stem

part of flower Other classification: “inflorescence”
(combining flower and stem characters)

Spine
(from entire leaf)

kind of leaf “spine/thorn” e. g., Cactaceae

Spine
(from stipules)

part of leaf
kind of stipules

“spine/thorn” e. g., Robinia or other Fabaceae,
many Euphorbiaceae

Spine
(from petiole)

part of leaf
kind of petiole

“spine/thorn” e. g., in Fouquieria splendens

Thorns
(from stem/shoot)

part of stem
kind of stem

“spine/thorn” in Bougainvillea the thorns are
modified inflorescences!

Prickle derived
from stem

part of stem
kind of epidermis

“spine/thorn” e. g., Rosa (rose, the “thorns” are prickles),
Smilax (catbrier)

A classification may be useful in the majority of cases, but inappropriate in certain organisms.
Fig. 52 presents examples where a common leaf classification is difficult to apply in certain taxo-
nomic groups where leaf morphology varies continuously.

G. Hagedorn Fundamental aspects of description models 137

Figure 52. Examples of species with gradually changing leaf shapes, defying a strict classifica-
tion into ground leaves / rosette, stem leaves, and inflorescence leaves (bracts). From left to right:
Alliaria petiolata, Sisymbrium austriacum, S. volgense, and S. orientale (simplified after
Rothmaler & al. 1985).

The questions whether something is considered a composition or a property (see previous sec-
tion), which classification system to use, and whether a classification system for object parts is
appropriate are a major source for instability in descriptive terminology. They generally cannot
be resolved by logic, but require consensus and conventions. This consensus often depends on a
given taxonomic group, but may also depend on a school of thought.

The major problem with this is that while the context can be described for descriptive termi-
nology and descriptions using this, it is usually unavailable during identification (when the class
name is not yet known). If identification depends on correct decomposition, or correct application
of a composition hierarchy it may fail. Although this problem is in principle shared by both char-
acter matrix (p. 104) and character decomposition models (p. 116), the character decomposition
models may suffer more if opinions about object decomposition evolve, and (at least current) de-
composition models are unable to deal with multiple decomposition concepts.
134. Multiple morphological concepts and corresponding object composition hierarchies may

exist. It is desirable to support alternative concepts of object parts and composition hierar-
chy.

135. The conventions whether something is considered a property or a composition, or which
composition hierarchy should be preferred often depends on context, especially taxonomic
scope.

Describing object-part composition
How can object or class-specific compositions be recorded as part of a description? How can
descriptions of composition be compared with one another? The traditional solution is illustrated
in Fig. 53. The terminology contains a list of potential part concepts and for each of these a “part-
is-present / absent character” is defined. This solution is used both by character / character state
models (DELTA, CBIT Lucid, SDD, etc.) and character decomposition models (Nemisys / Geni-
sys, Prometheus description model).

138 Fundamental aspects of description models G. Hagedorn

Rosette petiole
Rosette lamina
Rosette leaf
Stem petiole
Stem lamina
Stem leaf
Stem
Peduncle
Sepal
Petal
Stamen
Style
Gynoecium
Flower

Figure 53. An abstract, generalized list of plant parts (left) is filtered (or mapped) through a list of
present / absent characters to describe an actual plant species (right).

In DELTA or CBIT Lucid information about a composition hierarchy is available to humans
(through prior knowledge, character labels or headings), but not to machine-reasoning. In SDD it
is expressible through a machine-interpretable terminological concept hierarchy (p. 125), and in
decomposition models (p. 116; Nemisys / Genisys, and Prometheus description model) it is an ex-
plicit part of the data storage model. In these models, the flat list of object parts from Fig. 53 is
replaced by a general object composition hierarchy (Fig. 54, left side). By applying the informa-
tion from “part-is-present / absent-characters” (provided these character are recognizable through
metadata), a realized tree can be created (Fig. 54, right side). This process is perhaps more similar
to the flat character model than may be expected; Pullan & al. (2005) describe it as “parts of the
ontology that correspond to the form of the particular specimen/taxon being described are flagged
as being present”. This may be due to the need to record not only presence, but also multiplicity
(discussed in the next section, see especially p. 145).

Stem

Flower

Stamen

Petal

Rosette leaf

Rosette lamina

Gynoecium

Sepal

Style

Rosette petiole

Stem leaf

Stem lamina

Stem petiole

Peduncle

Stem

Flower

Stamen

Petal

Rosette leaf

Gynoecium

Style

Rosette lamina

Generalized Plant Composition Realized Plant Composition

Figure 54. In description models providing an explicit compositional hierarchy (SDD, Nemisys /

Genisys, Prometheus), hierarchy information may be inherited by the actual composition for a
specific taxon (compare Fig. 53).

G. Hagedorn Fundamental aspects of description models 139

DELTA, CBIT Lucid, or SDD do not provide metadata whether a character is a “presence / ab-
sence character” that informs about realized composition. In contrast, in explicit character de-
composition models the combination of a part with the “presence / absence” property may be used
to deduce this (depending, however, on the “correct” use of the model – an iridescent layer may
be present / absent, but not iridescence itself).

Rather than relying on implied deductions from a composition hierarchy, DELTA, the Nemi-
sys / Genisys outline, and SDD provide character applicability definitions (compare “Character ap-
plicability rules”, p. 76), which often are due to presence or absence of object parts. The character
dependency mechanism is able to infer from “petal is scored as present”, and “petal presence de-
pends on flower present”, that “flower must be present”. Although parts of the desirable inference
from composition knowledge are thus covered, it is not possible to deduce the composition with
safety. Reasons for character dependency other than optional composition exist and only humans
can make appropriate deductions.

A part-hierarchy like the one shown in Fig. 54 is intuitive and very useful for flowering plants.
However, the more structurally diverse a taxonomic group is, the less intuitive will such a hierar-
chy be. Defining a generalized part-hierarchy for diverse taxonomic groups like Chlorobionta
(ranging from microscopic green algae, over mosses and ferns to flowering plants) or Chordata
(including primitive tunicates, cephalochordates, and vertebrates from fishes to mammals) is a
challenging task. The results may be too abstract to be usable without additional annotations.

It seems a valid question whether the object composition hierarchy should be in the terminolo-

gical domain at all, or perhaps rather in the description domain. The composition hierarchies
(“part-of”) could be stored as a special form of descriptive data, similar to the absence / presence /

multiplicity information. The relations shown in the right-hand side of Fig. 54 would then be part
of descriptions, rather than inherited from the generalized composition hierarchy in the terminol-
ogy domain, and may look like “petal is part of flower (5 times), stamen is part of flower (2
times)”. The information in such description-compositions could easily be compared, and, if
appropriate generalization techniques are developed, the object composition expressed in descrip-
tive data for a genus could simply be a generalization of the object composition of the species
within the genus, the family composition a generalization of the generic compositions, etc. Some
problems with this may be foreseen, however:
■ Many relations would a-priori be known to be impossible (e. g., roots have neither leaves nor

flowers). Burdening data entry with choosing the correct ones makes data entry slower and
much more error-prone.

■ Many relations are constant. The relation may only be missing, if a part is missing.
■ It would be cumbersome to decide for every plant species whether the flowers are attached to

the stem of to the roots.
Both problems may be alleviated using a combination of an inheritance mechanism working
down the tree (i. e., composition information for lower taxa might be deduced from higher taxa,
compare “Deductive inheritance”, p. 100) and carefully designed editing software, which arranges
the information already in the hierarchy inferred from the higher taxa (which in turn may inherit
from sister taxa), but enables methods to contradict this inherited information where it is not
applicable in the special case. Another problem is that
■ the concepts inherent in the definition of parts often already implicitly contain a hierarchy. In

the example in Fig. 54, no choice for a different composition exists at all. The rosette (leaf)
lamina must be part of the rosette leaf, the rosette leaf attached to the stem, etc. The actual part
concepts as used in the figure are always a combination of a general part concept (leaf) with a
position in the composition hierarchy.

An attempt to differentiate between a general part concept and its position in the composition
context is shown in Table 40. It is clear, that much of the intuitiveness and clarity of terminology
would be lost. For certain kinds of leaves (rosette, stem leaf, bracts) the solution may actually be
preferable, avoiding definition problems with intermediate cases (compare Fig. 52 on p. 137).

140 Fundamental aspects of description models G. Hagedorn

However, distinguishing the various kinds of parts of a flower (gynoecium, anthers, petals, or
sepals), all of which consist of one or several leaves (Fig. 55), by position is not only highly in-
convenient, but in fact impossible if the flower is incomplete (sepals reduced rather than being
converted to tepals, stamens or gynoecium missing in unisexual flowers). Tubular and ligular
flowers may or may not be distinguished by position within the flower, they are morphological
types and the distinction by place is only secondary.

When considering the practical use of descriptive data in identification tools, it seems danger-
ous to resort to definitions that require knowledge of the phylogenetic and ontogenetic origins of
a part and which are difficult to verify on unknown objects. Most of the leaves in Table 40 and
Fig. 55 would not normally be considered a leaf in the context of identification. It may be promis-
ing to add classifiers to the terminology of object parts marking all object parts which (1.) can be
identified out of their composition context or which (2.) require a composition context, but this is
always the same (as in stamen / carpel). For instance, petals can usually be recognized by their
color, shape, and lack of sclerotization as well as by position. Current terminology probably still
has to be changed (sepals and petals that are very similar but greenish-leaf-like are not normally
considered tepals, petals are not considered tepals if sepals are known to be reduced, etc.), but
this may be more acceptable than a more radical approach.

Table 40. Examples of related object parts distinguished by placement or otherwise.

“Normal” part name “Generalized” part name “Position”
 1. Rosette leaf Leaf Rosette
 2. Lower stem leaf Leaf Lower stem
 3. Upper stem leaf Leaf Upper stem
 4. Bract Leaf Inflorescence
 5. Petal-like bract 1 Leaf Flower
 6. Sepal Leaf Flower, outer ring
 7. Petal Leaf Flower, 2nd ring
 8. Tepal Leaf Flower, outer ring
 9. Stamen (part of androecium) Leaf → microsporophyll Flower, outside Gynoecium
10. Carpel (part of gynoecium) Leaf → macrosporophyll Flower, innermost
11. Tubular flower (disc floret) Flower (undifferentiated)
12. Tubular flower (disc floret) Flower Central if ligular flowers present
13. Ligular flower (ray floret) Flower Marginal if tubular flowers present

1 As in Cornus florida

Stem

Flower

leaf

Middle region

lamina

Realized Plant Composition

leaf (microsporophyll)

leaf

leaf (macrosporophyll)

At base

Figure 55. Hierarchy attempting to use only generalized terms.

The problems outlined are not intended as a proof that an alternative system of recording
plants structure and composition cannot be found or would not be profitable. In contrast, it is
probably highly desirable to study the problems involved in depth and try to develop practically

G. Hagedorn Fundamental aspects of description models 141

usable solutions. However, no existing model seems to have achieved to overcome the heuristic
nature of part definition and recognition.

One path that may be worth attempting is to create a model where organism parts are handled
similar to taxa, i. e., with descriptions that allow one to recognize them. Many part concepts are
compositions in themselves and rely for their identification on recognition of the constituent
components. The entire organism would simply be a special level, which normally would not
allow further aggregation. In special cases (sessile colonial organisms like corals) even this
would not be prohibited, i. e., the system could without modification go to a descriptive level
above the individual organism.

Identification would then start to recognize, based on properties, some starting point for the
part-identification. From there on, the system could support the recognition of further parts, if it
has a concept of part composition and perhaps even knows about adjacent parts (the composition
hierarchy itself informs only about sibling parts, compare “Adjacency”, p. 151). Identification
may even start with paired information, such as: “I have a part – which has this color, shape, and
size and occurs five times, connected to some other part – which has this color, shape, and size
and occurs two times. What may this be?”. Such a combined part-identification might limit the
possibilities substantially and may already allow the unambiguous identification of the parts, plus
presentation of a list of species that fit the given descriptions for the identified parts.
136. The object-part-composition of individuals and classes may be expressed as part of the

description (using characters or properties, depending on the description model).
137. The classical requirement is to record in descriptions whether a part is present. The

hierarchical relations of the part composition are left to the terminology domain.
138. Whether a generalized object-part-composition hierarchy indeed belongs into the termino-

logical domain or may be better placed in the description domain remains an open problem
and needs further research.

Multiplicity of objects in compositions

Cardinality and multiplicity
Knowledge that an object has object parts (a flower has sepals, petals, anthers, and gynoecium)
does not necessarily include information about the number of parts participating in a given com-
position. This may be an actual number in an instance (i. e., something has exactly n child ob-
jects) or it may be a constraint in a class definition (i. e., at least n and at most m instances of the
child objects may be present, where n ≤ m). In the first case it is always fixed (or unknown, see
below), in the latter it may be fixed (e. g., “6 circles” in Fig. 43, p. 132), variable (e. g., “1-20
circles”), or unknown.

UML distinguishes between “cardinality, the number of elements in a set” and “multiplicity,
the range of allowable cardinalities that a set may assume”. In the terms used so far, the cardinal-
ity refers to the number in an instance object, multiplicity to the potential range of numbers for a
class of objects. It seems plausible to assume that these terms should in biology be used for object
(individual, specimen, etc.) and class (population, species, genus, etc.) descriptions. As demon-
strated in “Aggregation within individuals” (p. 93), however, aggregation (and therefore the con-
cept of multiplicity) occurs in individuals as well. For example, a single specimen may have be-
tween 6 and 8 petals per flower. The term cardinality would only refer to the description of each
individual flower. To avoid introducing differentiated terms in this discussion, the following text
will always use the term multiplicity when dealing with descriptive knowledge that a composition
exists with a fixed or variable number of parts.

142 Fundamental aspects of description models G. Hagedorn

Also note that questions of cardinality or multiplicity of classes are discussed with respect to
the descriptive information to be expressed, not with respect to elements of the generalized de-
scriptive information model such as DiversityDescriptions or SDD, expressing this information.

One may assume that composition and multiplicity are questions both of actual descriptions
and descriptive terminology. However, similar to the discussion about object composition itself
(see “Describing object-part composition”, p. 137), biology is so variable that it is rarely useful to
express such knowledge as part of the terminology. In contrast, it is highly informative to express
that all insects (except for a few highly reduced members) have six legs. This, however, is simply
a class description. Rather than obtaining constraints or plausibility checks from definitions in
descriptive terminology, editing applications may desire to check newly entered data against
available descriptions of higher classes and warn if discrepancies are found.
139. In addition to object composition, the multiplicity of a composition must be supported in

the information model.
140. It is not required to support composition and multiplicity information as part of the defini-

tions of object parts in terminology.

Expressing multiplicity through instance cardinality
One may be tempted to express information about object composition and multiplicity 1:1 in an
object-oriented programming (OOP) model, where each physical object and object part is repre-
sented by an instance of a programming object, and where multiplicity is represented by the
number of instance objects in a collection.

Firstly, with such an attempt it would be difficult to represent classes where the number of
parts in an object composition is expected to be variable. Object-oriented design is based on the
(correct) assumption that a single object composition will have a defined state (i. e. a cardinality)
and a corresponding exact number of parts at any given point in time. It can correctly model
changes over time (e. g., a caterpillar becoming a butterfly imago and the number of wings
changing from 0 to 4).

However, in descriptions commonly variation of individuals is summarized, both over time
and between individuals belonging to the same class. Such class descriptions are not limited to
higher taxa: genetic polymorphisms exist even at the lowest population level and environmental
differences create different phenotypes for the same genotype.

Whereas in object-oriented programming, composition mechanisms (arrays, collections, lists,
etc.) may be static or dynamic in class objects, the cardinality is always fixed at a given moment
in time in object instances. That is, a “count()” function will always return a defined count of the
members of the composition, not a range that might be interpreted as the range of variability.

One possible solution is to represent the variability through a set of instance objects derived
from a common class. To express a range of “1-6”, six different object instances with 1, 2, 3, 4, 5,
and 6 parts would have to be created to represent each possible object within the range. Unfortu-
nately, all permutations would have to be created if a composite object contains several ranges.
The number of objects to be instantiated quickly becomes impractically large (three ranges “a =
1-6”, “b = 11-20”, “c = “500-1000” would require 6 × 10 × 500 = 30 000 parent objects with 512
to 1026 child objects, i. e., a total of 1 223 096 250 parent and child objects!).

On the other hand, using the composition mechanisms provided by OOP languages does have
tempting advantages. In insects with six legs creating the legs as instances in memory is unprob-
lematic in terms of computing efficiency and has the advantage that it appropriately informs
where properties are different in the legs (Fig. 56).

G. Hagedorn Fundamental aspects of description models 143

Fly thorax : Insect::Thorax

Left front leg : Insect::Leg

Left middle leg : Insect::Leg

Left hind leg : Insect::Leg

Right front leg : Insect::Leg

Right middle leg : Insect::Leg

Right hind leg : Insect::Leg
Figure 56. Six instances of the leg class are associated with a thorax instance of a particular
insect. The UML object diagram corresponds to the class diagram shown in Fig. 57 where the
multiplicity of the thorax-body composition is exactly ‘6’.

141. Object-oriented practices to represent multiplicity / cardinality in a composition cannot

easily represent variability of cardinality in a description (e. g., “3-7 leaflets per leaf”).
142. Representing variability of multiplicity / cardinality in a composition through a collection

of instances may require a huge number of instances, making this probably impractical.

Categorical multiplicity
In many object compositions, the number of parts may be so high that in practice they will not be
counted and instead expressed as “much” or “many”. Examples from biology are the number of
hairs on an animal or a plant or the number of cells in an organ. Therefore, only the lower range
of multiplicities is fixed (to ≥ 0, i. e., negative multiplicities are not possible), whereas the upper
side is open (UML “0..*”). Again, although the multiplicities in a class definition support this in
object-oriented languages, it is not directly expressible in object instances, requiring the use of
special methods when attempting to express object descriptions through instances.

Furthermore, the data recording method may include a rule that above a certain number coun-
ting is considered impractical or inefficient. Instead of simply expressing this as “much” / “many”,
estimates may be made into which of multiple categories the count is most likely to fall. For ex-
ample, multiplicity may be recorded as an ordinal categorical expression of amount (e. g., “few” /

“some” / “many”). Data for a given object (e. g., stamens in a flower) may be mixed, descriptions
of objects or classes with a low count expressed quantitatively, descriptions with high counts
through one or several categories.

In biology, the accepted recording method and the point where categories are used rather than
exact counts may depend on the taxon group as well as on the specific character. For example, in
most genera of flies the number of hairs on the forehead may be recorded only in broad catego-
ries, whereas in some genera the difference between 20 and 22 hairs may be diagnostically im-
portant.

The case of multiple categorical ranges presents not only difficulties when expressing counts
of parts through instance composition, but also when expressing them through numerical data
types. Whereas a single “positive infinity / overflow” value may be part of the definition of such a
data type, multiple categories require more complex solutions.

In Fig. 57 an attempt is shown to mix composition multiplicity with a categorical expression,
deriving a new class “HairUncountable” with an additional property “CategoricallyCounted”
from the general class “Hair”. Instances of either class may be used to describe the presence of
hair objects attached to the various parts of the insect body. However, the example shows, that
this solution introduces a new problem: Now multiplicity is significant between some instances
(e. g., “Forehead” and “Hair”), but insignificant in others (e. g., “Forehead” and “HairUncount-
able”, the information being here contained in the attribute “Categorically counted”). Doubt-
lessly, a reasoning algorithm may be developed that correctly interprets these situations, but the
complexity involved gives rise to doubt whether this is the best solution.

144 Fundamental aspects of description models G. Hagedorn

Insect body

ThoraxHead

HairUncountable
Diameter
CategoricallyCounted

Leg

Abdomen

Forehead

Hair
Diameter

1
1

1
1

1
1

1

0..*

1

1

1
6

1
1

1

1

1

1

1

1

1

1

Figure 57. UML static class diagram with an attempt to model an insect as a simple composition.
All parts may have an uncounted quantity of hair (expressed in the categories “none”; “few”,
“many”). Furthermore, the quantity of hairs on the forehead may be expressed either categorical
or may be counted, perhaps in taxa where this is diagnostically significant.

Further differences may be seen when additional properties of these classes are considered. In
Fig. 57, the class HairUncountable inherits the attribute “diameter” from Hair. However, in
“Hair” the “diameter” values directly represent the entire hair population (i. e., the diameter of
each observed hair is recorded separately), whereas in the case of “HairUncountable” diameter
can represent an aggregated statistical measure (e. g., average, compare “Standard aggregation
methods”, p. 85) of the sample of “many” hairs. To obtain this aggregated measure, a sample of
hairs for “HairUncountable” has implicitly been measured, which may be recorded in a separate
collection of sample Hair objects to HairUncountable. These “sample objects” would be identical
with the “Hair” class, except that the multiplicity of the relation indicates sample size instead of
quantity in a composition relation (Fig. 58). Again, the different semantics of the multiplicity of
an object relation cannot be expressed in a general object-oriented modeling mechanism and
would have to be documented and implemented separately.

Hair
Diameter

HairUncountable
Diameter
CategoricallyCounted

Hair
Diameter

1

*
Cardinality
expresses

sample size!

Figure 58. UML static class diagram extending the model from Fig. 57 to include sample objects
for measuring diameter of hairs in the case that the quantity is measured categorically.

143. In addition to quantitative expression of multiplicity in object compositions, also categori-

cal expressions such as “many” or “≥ 20” must be supported.
144. This issue is not a question of class versus object descriptions; the need for categorical

multiplicity ranges arises even in individual objects where the composition is in principle
countable.

145. Often more than one category is used (e. g., “few” / “some” / “many”).
146. Object composition multiplicity may be a mix of quantitative (1, 2, 3, …) and categorical

expressions.

G. Hagedorn Fundamental aspects of description models 145

147. Whereas a single category “beyond countability” may relatively easily be supported by
quantitative data types, multiple categories with more or less well-defined ranges require
more complex data structures.

148. Expressing multiplicity of object composition through a mixture of instance composition
and values of categorical properties requires complex reasoning algorithms, interpreting
values of instance properties as well as the instance multiplicity itself differently, depend-
ing on whether categorical multiplicity properties are present or not.

Uncertain or unknown multiplicity
Multiplicity ranges for compositions may either express knowledge of variability or lack of
knowledge. The exact number of parts in a composition may be insufficiently known due to ob-
servation problems or poor recording of data. This may have been recorded without further quali-
fication as a range (e. g., “10-20”), or the uncertainty may have been made explicit using modifier
terms (e. g., “probably 6, perhaps 7”).

Uncertain multiplicity is not in principle different from uncertain attribute values (compare
“Certainty modifiers”, p. 207). However, although normally presence is implicit in multiplicity
(compare critique in “Basic property types”, p. 62), uncertainty of presence and multiplicity may
need a separate mechanism. Presence may be certainly known, but multiplicity may be uncertain.
Uncertainty of presence (e. g., “probably present”) can also be interpreted as a range of “0 to 1”.
However, the statement “probably 1..20” does not tell whether 20 is uncertain and presence is
certain or whether this may also include “0..20”. This may be expressible if upper and lower lim-
its of the range can be qualified separately with certainty modifiers. The statement “certainly 1 to
probably 20” would clarify this. However, the expression of “probably 6” is difficult to express
in this way.

Related to “uncertainty” is the issue of coding status values, which allow one to express that
an attribute has not yet been coded, that it is irrelevant to code it, etc. (see section “Coding
status”, p. 74). Similar to the mechanism of certainty modifiers, it would be problematic to intro-
duce separate mechanisms for properties and multiplicity.
149. Methods to qualify multiplicity in object compositions as being uncertain or express that

multiplicity is unknown are required.

Describing object multiplicity
The problems with using OOP composition mechanisms to express the number of parts in biolo-
gical object compositions strongly suggest that the number of parts should be expressed in a class
attribute instead. Such a solution (Fig. 59) is analogous to the one already presented for object
composition hierarchies (Fig. 53, p. 138). Fig. 59 illustrates that the definition of multiplicity is
usually relative to the parent object (1-3 leaves per stem, 1 lamina and petiole per leaf). This
reference to a parent is not always unambiguously clear in biological terminology (e. g., are
“bristles above eyes” in a fly to be counted per head or per eye?) must be explicitly defined.

In principle, expressing object multiplicity this way implies presence / absence and removes the
need for a separate filter working on structural composition (compare “Describing object-part
composition”, p. 137). One minor problem with this in current DELTA-like information models
is that character applicability rules (compare p. 76) typically do not support quantitative charac-
ters as controlling characters, and thus expressing dependency requires secondary categorical
characters. This may be a primary reason why current descriptive terminology often defines has
separate presence / absence and multiplicity characters.

146 Fundamental aspects of description models G. Hagedorn

Rosette petiole
Rosette lamina
Rosette leaf
Stem petiole
Stem lamina
Stem leaf
Stem
Peduncle
Sepal
Petal
Stamen
Style
Gynoecium
Flower

0
1

3-9
1
1

1-3
1
0
0

10
2
1
1
1

Figure 59. Multiplicity may be expressed through quantitative properties (extending the presence

/ absence filter shown in Fig. 53, p. 138). Some properties could remain Boolean (Gynoecium,
lamina, petioles) because the compositional ontology may restrict their allowable values to 0 and
1 for all taxa.

Fig. 60 shows a conceptual OOP model to express multiplicity (ignoring the issue of multipli-
city ranges) through a separate “Quantity” attribute on each class. This approach ignores the
multiplicity of the class composition relations itself (compare Fig. 57). One advantage of using a
class attribute is that this may be left undefined and that mechanisms to express coding status
(p. 74) or certainty (p. 207) may be applied to it just like to other attributes.

In certain cases it may be desirable to support a mix of the attribute and the relation cardinali-
ty solutions (Figs. 60 and 57, respectively). For example, if multiple legs of an insect have differ-
ent properties, multiple leg instances may be appropriate. The total multiplicity of parts could be
calculated by summing the quantity attribute of all objects of the same class. Special methods
would have to be defined if some leg objects have coding status unknown for the “quantity” attri-
bute or uncertainty is indicated in a subset of objects. The “quantity” attribute would require a
metadata item so that it can be recognized as an attribute associated with a specific composition
relation. One way to do this would be to put the attribute on the relation itself, i. e., using associa-
tion classes for composition relations.

An interesting aspect of such a model is that the ag-
gregation operation may also be meaningful along a
generalization axis. Example: fore-wing and hind-wing
are both a kind of insect wing. If the fore-wing has 3
wing spots and quantity 2, the hind-wing 5 wing spots
and quantity 2, the total number of wing spots on the
fore-wings is 6, and 16 spots occur on all wings of the
insect (using the generalization).

To extend this model to also cover categorical and
range multiplicities, additional attributes are needed. In
fact, quantity may have to be a collection (or set) of
quantity ranges to express variability such as expressed
in the categories: {“none”, “1”, “3”, “5”, “7 to 10”, “11
to 20”, “more than 20”} or through range predicates:
{1 < x < 3, 5 < x < 10, 11 < x < 100, 9 < x < 12}.

Note that this model has not yet been further pur-
sued in any information model discussed in this thesis.
Currently presence or quantity information in SDD is
expressed as characters that are undistinguishable from
other characters. However, an extension to make soft-
ware aware of special properties may be added in a

Insect body

Hair
Length
Quantity = 0..*

Thorax
Quantity = 1

Head
Quantity = 1

Leg
Quantity = 6

Forehead
Quantity = 1

Figure 60. UML static class diagram
similar to Fig. 57, but expressing multi-
plicity always through a “Quantity”
attribute. Each quantity attribute may
be further annotated using certainty
modifiers.

G. Hagedorn Fundamental aspects of description models 147

future release. Many questions are open. For example, the handling of repeated objects where de-
scriptions refer to different regions of an object, e. g., instances describing the base as hairy, the
center as glabrous, the tip as hairy again. Depending on the model this may or may not be three
instances of an object, but the total quantity may be one.
150. Multiplicity in object compositions may be expressed in attributes of child objects. These

have special semantics and metadata to recognize them are desirable.
151. A combination of multiple child objects (if child objects differ) and multiplicity attributes

may be desirable.

Spatial arrangement of objects in compositions

Absolute object orientation
Entire objects are usually viewed under an agreed orientation convention (front / back, top / bot-
tom) that distinguishes between otherwise identical states. In Fig. 61 the rectangular shapes are
oriented by the presence of additional features that define a front and a back. The recognition of
absolute object orientation is often essential to successfully name the parts of composite objects.

In biology, absolute object orientation is achieved by convention and taught in introductory
biology courses for organisms where it is not intuitive. The most important clues are geotropic
orientation, the position of eyes and mouth-like organs, and levels of symmetry (see further be-
low).

The terms top / bottom usually refer exclusively to geotropic ori-
entation and are problematic if organisms with different geotropic
orientation are compared (e. g., humans and dogs). Some organ-
isms may have no clear geotropic orientation, and the orientation
may be inferred from other members of their taxonomic group
(e. g., soil insects, snakes living in shrubs and trees). In technical
language, the preferred terms are therefore anterior / posterior =
front / rear and (in most animals) dorsal / ventral = back-side / belly
side. Since in animals anterior / posterior is usually defined by the
position of mouth and anus, oral / aboral may be used instead of
anterior / posterior. Right and left is the result of recognizing two
planes of absolute orientation (anterior / posterior, dorsal / ventral).

Note that some commonly used terms referring to regions of an object are independent of
either absolute orientation or even composition. Examples are “surface”, “edge”, “inside”, or
“outside”, each of which may refer to a single, not oriented geometric object.

The identification of organisms from unusually organized taxonomic groups (e. g., horseshoe
worms, Phoronida, or highly reduced plants like Lemna, Tillandsia usneoides, etc.) may fail be-
cause the overall orientation rules fail and specific acquaintance with the organization of these
taxa is necessary. Since the fundamental orientation is recognized in the majority of organisms, it
seems not necessary to devise a completely new identification and description terminology that is
fundamentally independent of absolute object orientation. Instead, the possibility that no orienta-
tion is achieved during identification may be captured through special questions in keys. These
could lead to a set of richly illustrated “fall-back” keys that deal specifically with problematic
organisms.
152. Concepts to fix the absolute orientation of physical objects in space are an important

means to facilitate object recognition.

Figure 61. Objects obtain
an absolute orientation
(e. g., top / bottom) through
convention.

148 Fundamental aspects of description models G. Hagedorn

Relative object orientation in compositions
Two objects acquire a relative orientation if they are placed adjacent to each other in a composi-
tion. In Fig. 62 the two composite objects on top are identical, whereas the addition of squares
makes them distinct. Relative to the square, the circles are placed near or distant from the rect-
angle. In biology, the following terms often indicate relation orientation:
■ Close to attachment: proximal, basal, at the base, origin, or center.
■ Distant from attachment: distal, apex, apical, at the tip, or margin.

Figure 62. Parts of composite objects may have relative orientation. The two objects on top are
identical, whereas the addition of a square adds orientation to the rectangle, differentiating be-
tween a distal (left object) and proximal (right object) placement of the circles.

Both absolute and relative orientation may result in problems in state typologies. In the case of
oriented shapes, it must be decided whether the shapes distinguished by orientation should be
given different names, or whether the shape and its orientation (or the point of attachment) is cap-
tured in a separate character. In biology, many pairs of shape terms (ovate / obovate, pyriform / ob-
pyriform, claviform / obclaviform…) are distinguished only by 180° inverted orientation (Fig. 63).

Figure 63. Orientation of shapes may result in different shape categories (e. g., ovate / obovate).

153. In object compositions the relative orientation of physical objects is an important concept

to facilitate object recognition and should be supported in the information model.

Symmetry
Many objects have symmetries that add an additional level of orientation (Fig. 64). Most animals
have a bilateral symmetry, for example, insects have pairs of eyes, antennae, wings, front, middle
and rear legs. Other forms of symmetry found in organisms are radial (e. g., echinoderms), biradi-
al (e. g., comb jellies), and spherical (e. g., single-celled algae, Radiolaria, or Heliozoa) symmet-
ry. The concept of symmetry may be applied to the entire organism or to parts, e. g., to flowers of
plants (where radial and bilateral symmetry are called “actinomorphic” and “zygomorphic” to
confuse the zoologists…). Symmetry does not define a “right” and “left” side; these are part of
absolute orientation (p. 147, above).

G. Hagedorn Fundamental aspects of description models 149

The geometric object displayed in Fig. 64 was described above as
a composition with six circles attached to the rounded square. Reco-
gnizing symmetry, it may also be described as a composition with
two symmetrical sides, with three circles attached to each side. Fur-
thermore, since the circles have paired properties (shading), the ob-
ject description may stress this and decompose the object into three
pairs of circles, each pair with unique properties, and each pair split
into two sides.

Note that the line of symmetry cuts right through the main roun-
ded square and equal-sided triangle objects. Symmetry adds orienta-
tion, but is not well represented by an object composition hierarchy.
It adds to the problems of the decomposition of objects into parts,
since the side of symmetry (and of other forms of orientation) may
be considered to be parts in the composition. However, whereas the
symmetric equality of the patterns on the outer circles is informative,
the equality of the pattern of the triangle on top is not very informa-
tive, because the symmetry cuts across a single object.

Because of phenological and ontological variation, most biological organisms are not truly sym-
metric in a mathematical sense. Pictures of human faces where the right or left halves are mirror-
ed often look like different persons. Biology therefore uses an abstract concept of “approximate
symmetry” (Fig. 65, left). Singular deviations from symmetry may be recorded (the heart of hu-
mans being on the left side, the right pincer of lobsters being much larger) but do not destroy the
recognition of a fundamentally symmetric organization (Fig. 65, right).

Biological terms usually applied to orientation involving symmetry are lateral for bilateral (or
“zygomorphic”) symmetry, central / peripheral for radial or spherical symmetry. In botany the
orientation terms adaxial / abaxial are often used relative to axial symmetry.

Front

Rear
Figure 65. Minor variations (e. g. in the size of circles and lateral triangles, left object) may break
“strictly” or “mathematically” defined symmetry. However, an abstract concept of “approximate
symmetry” remains. Furthermore, a singular exception from symmetry (large circle in right object)
still allows the recognition of a line of symmetry, although the whole would no longer be called
“symmetrical”.

154. In object compositions, symmetry is an important concept to facilitate object recognition

and should be supported in the information model.

Figure 64. The geometric
composite object from
Fig. 43 has a bilateral
symmetry.

150 Fundamental aspects of description models G. Hagedorn

Spatial gradients
A spatial gradient may be described as an oriented function on a surface or within a volume. The
simplest case is a one-dimensional linear function oriented in some way on the object (absolute
or relative). More complex cases involve two- or three-dimensional functions (e. g., chloroplast
density in algae). However, although butterfly wings or spotted animal furs could be described by
such functions, such “patterns” (compare “Pattern versus composition”, p. 165) would not nor-
mally be considered a gradient. Most likely, a form of oriented variation on an organism is con-
sidered a gradient only if the function is continuous and has no inner extremes.

The kind of change described by the gradient function may be the value of a property of the
main object (e. g., lightness of color, increasingly dense pattern along an object, Fig. 66), it may
be the cardinality of a child object in a composition (e. g., density of hairs along the stem of a
plant), or it may be a property of such child objects (e. g., size of hairs on a stem; compare Fig. 67).
The presence of a gradient itself can be expressed through a Boolean presence / absence property.
However, where child objects in a composition are affected, special methods must be devised
when using object-oriented composition models. Again, where machine-reasoning is intended,
specialized reasoners will be required.

In the practice of biological descriptions gradients are not perceived as a major problem. Gra-
dients are rarely considered diagnostic and are often documented in free-form text annotations or
modifiers applied to the fundamental property (e. g., “hairiness: strongly hairy” with free-form
text note “(stronger towards the base)”). A case where the available data recording in biology
actually allows recording a gradient through its gradient function is not known to the author.

Figure 66. Density gradient (not considered object composition here).

Figure 67. Rectangular parent object with multiple attached child objects (circles) of variable
size. In the upper example circles of various sizes are randomly distributed, and descriptive sta-
tistics are well suited to describe the extremes, mean, and variability. In the lower example, the
circle size varies on a gradient along the parent object. Standard descriptive statistical measures
describe the size variation in a gradient inadequately.

155. Spatial gradients may interact with object composition, depending on properties or

multiplicity of child objects (parts of main object).
156. Spatial gradients usually interact with absolute or relative object orientation; the data or

terminology model must allow for this.

G. Hagedorn Fundamental aspects of description models 151

Adjacency
Humans often interpret object compositions as also expressing aspects of order and adjacency.
Whereas the adjacency of parent and child objects in a structural composition may indeed be in-
ferred, the adjacency of child objects among each other is less clear. Compositions like “plant =
root + vegetative stem with leaves + inflorescences (= stem and leaves)”, or “insect thorax = tho-
rax without legs + front legs + middle legs + rear legs” will intuitively be interpreted as expressing
adjacency and order. However, if the pronotum (a part on top of the thorax, adjacent to the head)
is added to the insect example, the assumption of order and adjacency breaks down. Adjacency
was never expressed, but implied based on external knowledge about plants and insects.

Some information about relative location of objects can be expressed if a collection of parts is
explicitly defined as a sequence (i. e. an ordered list, where the order is considered semantic and
cannot be changed at convenience). This concept is supported in OOP languages or RDF, but not
in standard UML or W3C xml-schema. If insects have three pairs of legs, the first pair is adjacent
to the second, and the second to the third. However, sequences often are insufficient to express
which object borders on another object. In the geometric example from Fig. 43, the triangles in
the rounded square are adjacent to the circles, but not to the triangle on top. This is not evident
from any hierarchical object decomposition or from a sequence. Another example from insects is:
Antennae and eyes are parts of the insect head, but they may be adjacent or not (and this may be
diagnostic).

A separate mechanism is required to express adjacency of objects. In UML this may be mod-
eled by introducing a new stereotype “adjacent” for binary class relationships (Fig. 68, left). It
may further be desirable to also record the orientation in which two parts are adjacent, causing
the introduction of an association class (Fig. 68, center) to record attributes on the association
(e. g., relative orientation: “basal”, “distal”, or “proximal”). This model supports the standard
mathematical property expected for adjacency, i. e., it is reflexive (A adj B → B adj A), but not
necessarily transitive (A adj B and B adj C → A adj C or not A adj C).

Part
Shape
Size

1..*

1

«adjacent» Part
Shape
Size

1

1

«adjacent» Part
Shape
Size

AssociationClass 2
Adjacency
RelativePosition

1

1

AssociationClass 1
RelativePosition

Figure 68. Three UML class diagrams attempting to model object adjacency. The left side shows
a simple binary association introducing an “adjacent” stereotype (which is not available in stan-
dard UML profiles); the center adds an association class to record attributes of associations like
“basal”, “distal”, or “proximal”; the right side records degree of adjacency in an additional attribute
of the association class.

Modeling adjacency through an association implicitly assumes that two objects are either ad-
jacent or not. In reality, however, a continuum between fully adjacent, slightly apart, neighbor-
ing, and completely apart exists. It will usually be impractical to measure exact distances of “ad-
jacency”, but a categorical property with more than two values of adjacency may be more practi-
cal than a Boolean decision (Fig. 68, right).

Adjacency may be defined on classes with a multiplicity relation > 1 (for example, front, mid-
dle, and rear legs in Fig. 69), but often can be fully expressed only if the classes are specialized so
that only relations with a multiplicity of 1 can be found (e. g., wing spots on an insect wing). A
consequence of this is that adjacency is not a very practical mechanism to fully replace ordered
sequences. Expressing any form of adjacency through adjacency relationships or association clas-
ses would require for the up to 200 equal legs of a millipede to create “leg 1”, “leg 2”, … “leg
200” classes. It may make more sense to allow for a separate adjacency inference mechanism for
ordered sequences.

152 Fundamental aspects of description models G. Hagedorn

Insect body

Head

1

1

Thorax

1

1

Abdomen

1

1

Leg

Front leg Middle leg Rear leg

«adjacent» «adjacent»

1

6

1

2

1

2

1

2

Figure 69. UML class diagram of the insect example introducing a tentative association of “adja-
cent” stereotype (not available in standard UML profiles). Legs can be included in compositions
alternatively in their general (“Leg”) or derived (“Front Leg”, etc.) form.

157. Adjacency of object parts in a composition is an important concept that is desirable to be

supported by the information model.

Location
In general, the location of parts in relation to the entire object or to each other is primarily ex-
pressed in a system based on absolute and relative orientation, symmetry, and the definition of
adjacency or ordered sequences (see Table 41 for biological examples).

Table 41. Examples of location statements taken from biology.

Localization method Example
Absolute orientation top-most branches of tree
Relative orientation root base (= adjacent to stem)
Relative orientation center/margin of fungal culture
Relative orientation wing tips
Relative + absolute orientation upper surface at leaf tip
Relative + relative orientation adaxial surface at leaf tip
Symmetry lateral stripes
Absolute orientation right pincer of lobster
Adjacency + absolute orientation black patch above the eyes
Ordered sequence + absolute orientation first 10 legs of a centipede

(The terms upper/lower and adaxial/abaxial surface are not true synonyms: rarely the adaxial may be the lower (geo-
tropic) surface.)

Beyond this, location may be more precisely defined by relative (e. g., “at 2/3 of length of parent
object”), absolute (e. g., “1 cm from the margin”) distances, or angular (e. g., “at right angle”)
measurements.
158. The concept of “object location” is a synthesis of absolute and relative orientation,

symmetry, adjacency, and sequences.

G. Hagedorn Fundamental aspects of description models 153

Generalization of object parts (compositional concepts)

Composition versus generalization
In parallel to the object compositions discussed so far, a generalization hierarchy exists for the
concepts referring to the physical parts of objects. Whereas composition hierarchies are express-
ed through “has-a / is-part-of” (or “contains / contained”) relationships, generalization hierarchies
define “is-kind-of” or “is-type-of” relationships. In information modeling, this is generally called
a classification or generalization / specialization relationship. Another term is “typological hierar-
chy”.

Generalization and composition hierarchies are often confused. For example, the taxonomic
hierarchy of non-extinct (recent) organisms on earth is a generalization hierarchy (whether it is
phylogenetic or based on arbitrarily selected generalizations). A species concept is a refinement
of the more general genus concept, or the genus is a generalization of all species it contains.
However, when illustrating the taxonomy, a tree will be drawn where genus and species are ar-
ranged in space (as a tree, as headings in a text, or as nested boxes). These visualizations may
lead to the erroneous intuition that the species is a “part-of” the genus “container”.

An abstract geometrical example and associated UML class model for object generalization
and composition is shown in Fig. 70. The composition and the generalization hierarchy are in-
dependent. Biological Examples of objects that occur multiple times on various parts of indivi-
duals are hairs, finger and toe nails, or various kinds of spores or leaves (e. g., Fig. 52, p. 137).
Often more relevant are, however, the cases where related parts have different names and some-
what different definitions in different taxonomic classes. These parts remain comparable (e. g.,
for phylogenetic analysis or identification) only through generalizations.

ComplexObject

Cross

SymmetricCross BroadCross

HatchedCircle

Circle2 2

1

2 21

11 1
11

1 1 1

Rectangle SymmetricCrossWithCircles BroadCrossWithCircles

Figure 70. UML class diagram showing an object generalization (white triangles, top to bottom)
and composition (black diamonds, bottom to top) model for the geometric object shown in the
note shape.

Whether a hierarchy is a composition or a generalization may be ambiguous. An example is
the anatomical composition hierarchy of the major organ systems of the human body (Fig. 71).
The parts are distributed through various parts of the body, but because they are generally con-
nected to each other it is plausible to assume that they form a composition (part-of relations). On
closer examination, however, not all bones or muscles of the musculoskeletal system are directly
connected, making it dependent on other parts not in the system. In the case of the endocrine sys-
tem, the parts are not only often disconnected, but also belong to other organ systems: testicles
(reproductive system) produce testosterone, kidneys (excretory system) produce renin, and the
hypothalamus (nervous system) produces corticotropin-releasing hormone (CRH) and many

154 Fundamental aspects of description models G. Hagedorn

other hormones. Clearly the endocrine system is not appropriately described as a composition,
where each part may be member of only a single composite object. It may perhaps be modeled as
a UML aggregation (this would be depicted with a white diamond instead of the black composi-
tion diamond). Alternatively, a generalization hierarchy may be more appropriate: skin is a kind
of integumentary system, liver is a kind of endocrine system (Fig. 71 right). However, the con-
cept of “system” strongly suggests composition; “shoulder bone is a kind of musculoskeletal sys-
tem” seems the wrong perspective. It may be desirable to create a mixture of the interpretations
shown in the left and right side of Fig. 71, using composition for all unambiguously assigned
elements, aggregation for parts belonging to multiple objects, and generalization for the endo-
crine system.

Entire body

Skin

Heart

Brain

Circulatory system

Digestive system

Endocrine system

Excretory system

Integumentary system

Musculoskeletal system

Nervous system

Reproductive system

Respiratory system

Stomach

Testicle

Thyroid gland

Kidneys

Lungs

Larynx

Trachea

Bones

Muscles

Larynx

Trachea

Lungs

Integumentary system

Musculoskeletal system

Respiratory system

Circulatory system

Digestive system

Excretory system

Nervous system

Endocrine system

Reproductive system

Entire body

Bones

Heart

Stomach

Kidneys

Brain

Muscles

Skin

Testicle

Thyroid gland

Figure 71. UML class diagrams showing the nine major organ systems of the human body with
examples of organs for each system. The left diagram interprets the organ systems as an anato-
mical composition hierarchy. The right diagram shows primarily a generalization with a more
general composition added. Note: multiplicities are omitted from this and some of the following
diagrams.

In some cases it seems that composition relations (part-of) may also have a generalization
(kind-of) quality. For example, in the case of a surface hierarchy (upper / lower surface, margin,
Fig. 72), both “margin is part of the surface” and “margin is a kind of surface” make sense.
Fig. 73 adds a specific leaf context to the surface terms (as subclasses of the general terms). It is
now no longer entirely clear, whether the specific leaf concepts inherit their compositional quali-
ties from the more general classes, or whether the general classes have two implicit concepts for
which the same names are used.

Surface

UpperSurface

Margin

LowerSurface

FlatOrientedObject

Figure 72. UML class diagram modeling the surface (e. g., of a plant leaf). Surfaces of flat ori-
ented objects can be decomposed into a lower, upper, and marginal surface (composition, black
diamond). Independently, each part is also a kind of surface (generalization, white triangle).

G. Hagedorn Fundamental aspects of description models 155

Surface

Leaf LeafSurface

LeafLowerSurface

LeafMargin

LeafUpperSurface

FlatOrientedObject LowerSurface

Margin

UpperSurface

Figure 73. UML class diagram adding a leaf context to the surface abstraction shown in Fig. 72.

159. Generalization and composition are distinct forms of relations that have different proper-

ties and lead to different conclusions. For physical objects (parts of the described objects)
the information model must support both a composition and generalization hierarchy.

Generalization concepts for object parts
Similar to the multiple composition hierarchies discussed above, multiple generalization concepts
exist. Examples are morphological (e. g., “arm and leg to extremities”) and histological tissue
types (e. g., epithelial tissues, muscle tissues, nerve tissues, and connective tissues). The follow-
ing generalization concepts are of special interest in descriptive information models for biology:
■ phylogenetic homology,
■ functional similarity,
■ appearance or morphological similarity (things look similar),
■ compositional similarity (things consist of similar parts down to chemical compounds).
Generalizations may combine several of these aspects (Table 42); it is unclear how this can be
expressed.

Table 42. Examples from biology for generalizations of object parts under three different general-
ization concepts.

Object Phylogenetic origin:
part 1: Function: Identical (homologous) Not identical (analogous or heterologous)

Similar pairing chromosomes; basal leaf and stem
leaf → leaf, conidia of hyphomycetes and
urediniospores of rusts → mitospores;
different pheromones of sister species
(with minor chemical modification)

conidia (“mitospores”) and meiospores →
diaspores; leaf and phylloclade → leaf-like
structure; mimicry systems like warning
coloration (Müllerian or Batesian mimicry)

|

|

Similar

|

|

Dissimilar mandibles of normal beetles versus stag
beetles (Lucanus cervus) → eating versus
sexual attraction; tail feathers of pheasant
versus male peacock → flying versus
sexual attraction (function often changes
morphology beyond immediate similarity,
so these cases are rare)

plant twigs and walking sticks (Phasmida,
using camouflage)

Similar human and elephant toenails; leaves of
woodruff (Galium verum, needle-like) and
of horse chestnut (large palmate)

eyes of mammals or snails; wings of birds,
bat and insects; beak of woodpeckers and
elongated third finger of aye-aye
(Daubentonia madagascariensis, a squirrel-
like primate), both gathering wood-boring
insects; spines (derived from leaves) and
prickles / thorns (derived from stem tissue)

|

|

Dissimilar

|

|

Dissimilar Photosynthetic leaves and scales on a rhi-
zome; flipper of seals and human arm.
Middle ear of mammals: malleus (ham-
mer), incus (anvil), and stapes (stirrup)

(pairs without generalization: perhaps
animal eye and plant root)

1 Compositional or structural similarity = morphological, anatomical, or chemical composition.

156 Fundamental aspects of description models G. Hagedorn

The phylogenetic homology of object parts is a central aspect of many evolutionary or phylo-
genetic studies. Identifying this homology is necessary both to infer a phylogeny based on de-
scriptive data specific to parts (mostly morpho-anatomical data, but also organ-specific protein
expression or gene regulation patterns), and to reconstruct individual characteristics based on a
known phylogeny (based on other, e. g., molecular characters). In many cases phylogenetic ho-
mology is already embedded in common composition (and property) concepts in biology. How-
ever, the information model for descriptive data should not be restricted to data fulfilling homol-
ogy assumptions. For example, although data expressed in NEXUS (which was developed for
phylogenetic purposes) will usually contain homologous characters, NEXUS is also used in the
context of Linnaeus II identifications, where this assumption does not hold.

Functional similarity generalizations without respect to homology are of interest, for example,
when studying the geographical or ecological distribution of functional characteristics, when
studying correlations of functions in organism communities, or when studying the evolution of
functional characteristics by mapping them to a known phylogeny. Examples of functional gen-
eralizations used in the study of DNA sequences are: (a) transcribed or non-transcribed; (b) pro-
tein-coding, rRNA-coding, or non coding; (c) intron / insert, or exon; (d) conserved, variable, or
hypervariable; (e) structural or regulatory; or (f) monomorphic or polymorphic (i. e., single or
multiple alleles in population). Most of these classifications overlap considerably, and preference
for a certain classification depends strongly on the purpose of the user of the data.

In some cases, the question whether a generalization is a homology or not, may even be debat-
able and depend on the perspective. For example, the genes within gene families (e. g., myoglo-
bin, α- and β-hemoglobins belong to the globin gene family) are homologous insofar as they are
assumed to be derived from a common ancestor gene within the genome, and the homology as-
sumption is meaningful for the purpose of gene-phylogenies. However, for the purpose of phylo-
genetic inference of the organism, the different members of a gene family are not homologous.

Appearance and compositional similarity are the most important aspects for identification.
This is only partly about achieving error tolerance by generalizing object parts likely to be con-
fused during identification.

The difference between appearance and compositional similarity, as proposed here, is fre-
quently blurred because the aspects often occur together. However, for example, color may be a
result of dissimilar structures (object compositions) such as pigments or structures causing the
creation of “physical colors” by means of interference (the colors in the wings of certain dragon-
flies or butterflies like Morpho are the result of the same effect that colors thin oil films swim-
ming on water). Conversely, compositional similarity may be difficult to judge under the aspect
of morpho-anatomical appearance. In molecular biology compositional similarity is the basis of
the design of PCR primers or oligonucleotide probes for DNA microarrays. Both methods depend
on the similarity of nucleotide sequences, not on their homology.

In contrast to composition hierarchies, generalization hierarchies can, in principle, always be
joined into a single directed acyclic graph. However, when forcing the hierarchy to be a tree
rather than a directed acyclic graph, information may be lost. Generalization trees can usually
only be joined at the top, whereas in reality more direct generalizations would be possible.
160. Multiple generalization perspectives exist (e. g., phylogenetic, functional, morphological

similarity, or compositional similarity) and must be supported in the model.
161. If generalization hierarchies support directed acyclic graphs, a single graph may incorpo-

rate the generalization hierarchies for multiple perspectives. However, for the clarity of
expressions clearly labeled separate graphs may be preferable.

G. Hagedorn Fundamental aspects of description models 157

Problems with specialized, context-dependent names for object parts
Specialization is the opposite of generalization and after discussing the latter it may appear re-
dundant to discuss problems of specialized part names. However, as already introduced earlier,
one of the most fundamental problems of managing descriptive data is the reciprocal dependency
between recognition of object properties and parts (compare Figs. 8-9, p. 37). In the context of
object identification therefore an important difference exists between
■ parts that can be recognized (arms and legs) and for which also one or several generalization

perspectives exist, and
■ parts that are initially recognized on a generalized level, but specific names or concepts are

normally used in descriptions.
Descriptive terminology often uses terms for object parts that encapsulate knowledge that is dif-
ficult or impossible to obtain during routine identifications of biological organisms. In most cases
the knowledge is not customarily obtained in a prescribed analytical process, but supplied in
retrospective, after the organism itself has been recognized (“post recognition problem”). Until
then, the specific terms for organism parts are used in the mind of the identifying person as “po-
tential terms” that are used operationally only on a generalized level, i. e., only the properties of
the generalized terms are used when testing concept hypotheses. The following situations may be
distinguished:
■ The correct term for an object part (or “structure”) depends on studying properties that are

difficult to observe, either in the part itself (e. g., anatomical properties), or in other parts of
the organism. Examples:
□ Spines, prickles, thorns (see Table 39, p. 136), or cladodes (i. e., phylloclades) and leaves

are morphological concepts that may require anatomical or developmental studies for dif-
ferentiation.

□ The difference between a leaf and a leaflet is recognized after the compound nature of the
leaf is recognized first. In plants without stipules and axillary buds, this distinction often
poses a substantial problem for the general public when identifying a plant.

□ A name is occasionally modified if multiple similar structures occur on the same organism.
For example, asexual spores in fungi are normally called “conidia”, but are called “micro-
conidia”, “mesoconidia”, and “macroconidia” if two or three kinds of conidia of strongly
different size are produced. This can only be recognized if both conidial types are produced
concurrently (which is not necessarily the case) or, more commonly, if the species is al-
ready tentatively pre-identified to genus level and the existence of multiple spore types in
that genus is known.

■ Highly similar object parts may have different names in different generations of a life cycle or
sexual stage. Examples:
□ In most fungal groups sexual and asexual spores (conidia) are named differently. Ascomy-

cetes often have multiple spore types. The spores resulting from the sexual process are
called “ascospores”, the asexual (“vegetative”) propagules are variously called “conidia”,
“conidiospores”, or “mitospores”. Sometimes a third class of spores, the “spermatia”, can
be observed that are assumed to transfer the haploid genome to another individual for the
purpose of mating. Occasionally, a single species may even have “synanamorphs”: multi-
ple, differently shape asexual propagules, often generated in different conidiomata. These
object parts can be classified under different aspects (Table 43).

□ Probably, the “world record” in stage-specific naming is held by the rust fungi (Uredinales,
a group of obligate plant pathogens). According to their developmental stages, spermatia,
aeciospores, urediniospores, teliospores, and basidiospores are distinguished. A secondary
problem is that synonymous names are in current use (e. g., spermatia /pycno-/pycniospores

/ spore state 0, aeciospores / spore state I, uredinio-/uredospores / spore state II, telio-/teleu-
tospores / spore state III, and basidiospores / spore state IV). As long as they use comparable
concepts, they can be easily synonymized and standardized (e. g., following Kirk & al.

158 Fundamental aspects of description models G. Hagedorn

2001 as above); the concepts may, however, differ in complex ways (M. Scholler, pers.

comm.). The principle problem of different spore states, however, expresses biological
knowledge. Only some of these spores types are relatively easily distinguished morpholo-
gically (spermatia, basidiospores); others may be difficult to distinguish prior to identifica-
tion (especially aeciospores vs. urediniospores). Interestingly, this problem can in practice
often be avoided by using another character first: Many rust fungi form the different life
cycle stages on different host plants. While this knowledge can be included into an author-
ed branching key, it is difficult to express this in a general information model, allowing
machines to recognize and handle these and similar situations of context-dependency.

□ In some groups of heterobasidiomycetes producing repetitive ballistospores, sexual and
asexual spores are fully identical and can be distinguished only by observing their origin.

■ The name of object parts may be specific to a higher taxonomic group. Examples:
□ The sexual spores are called ascospores, basidiospores, and zygospores in Ascomycetes,

Basidiomycetes, and Zygomycetes, respectively. Mycologists will readily recognize an
ascospore if it is still embedded in an ascus (a typical feature only found in ascomycetes)
and a basidiospore if it is connected to a typical holo- or phragmobasidium.

□ Insect larvae are called caterpillars in butterflies, larvae in other groups.
□ The term haltera is specific for the reduced hind-wings of Diptera. (Note: The problem of

taxon-dependent part names is a general one. The relevant question in the context of the
present discussion is whether objects with different names can be recognized in an identifi-
cation context or not. For example, the difference between a silique of Brassicaceae and a
pod of Fabaceae has compositional foundations that can be studied even in the field.)

These three situations may be summarized as a character, life cycle, and taxonomy dependency
of the correct name for the object part. They require studying the entire organism to increasing
depths: neighboring parts, recognizing life cycle stage, and recognizing the taxonomic group. (A
related problem that often leads to similar problems in identification is that the correct name for
an object part may depend on perspective and customs; compare “Competing classifications of
object parts”, p. 136).

It would in principle be possible to replace all the terms given in the above examples with gener-
alized terms. However:
■ In most cases, specific terms that include morpho-anatomical, developmental, and phylogene-

tic knowledge are the accepted consensus in biology. They incorporate a high amount of
knowledge (are most expressive) when used in descriptions and work in most cases when used
in conventional, printed identification keys (p. 242) or diagnostic descriptions (p. 39).

■ As discussed above, different potential generalization perspectives exist. For example, in the
case of asco- and basidiospores the generalized term “meiospores” was proposed. This term is
based on a combination of phylogenetic and ontogenetic perspectives. In an identification
context, however, this term is operationally meaningless, since it is not practical to decide on
the meiotic or mitotic status of a cell division. Indeed, the term “meiospore” was accepted
only in the 8th edition of the “Dictionary of Fungi” and has been removed again in the follow-
ing version (Kirk & al. 2001). Other functional generalizations like “ballistospore” (which
may refer to sexual basidiospores or asexual conidia) are more suitable, because they are cor-
related with structural features that make them operationally useful in identification.

■ A conflict of interest exists between data storage and specimen identification. The different
spore generations of rust fungi are different objects and have properties that need to be recor-
ded separately. Abandoning the specific terms would only lead to descriptive replacement
phrases or data structures (e. g., “spores of monokaryotic aecial generation of spermatial func-
tion”, etc.), which do not solve the problem. Ultimately, generalization always addresses the
tension between uniqueness (individual recognition) and comparison.

The importance of the perspective by which a generalization is informed can clearly be seen in
the Plant Structure Ontology (PSO, Ilic & al. 2006). This ontology tries to integrate the different

G. Hagedorn Fundamental aspects of description models 159

taxon-specific vocabularies created for model organisms in molecular studies (like Arabidopsis,
Zea, Oryza). PSO recognizes that silique and caryopsis are types (i. e. specializations) of fruit, but
nevertheless treats all of “silique”, “caryopsis”, “grain”, and “kernel” as synonyms of “fruit”.
This approach is a deliberate simplification guided by the gene-annotation use case of the PSO.
Unfortunately, it implies that PSO is not usable for descriptive data, and a separate version has to
be created for these purposes. When creating such an ontology, it may be desirable to annotate
whether a specialization is easily recognizable in identification scenarios or not.

Some important differences exist between conventional printed keys and computer-aided
identification tools using multi-access keys with respect to the names of object parts:
■ Printed keys (branching keys, e. g., dichotomous) occasionally use appearance generalizations

(e. g., “spiny structures present”), but often they do not. However, care for the problem is usu-
ally implied. It is highly unlikely that a question in an identification key is “do you have
prickles, spines, or thorns?”, or that, when asking “spines present / spines absent” the user is
expected to first study whether it indeed is a spine, and having found a thorn, follow the lead
under “spines absent”. Instead, the question: “spiny or not” would normally be interpreted to
imply that only spines may occur at this place in the key. Ultimately, humans performing the
identification rely on this convention and provide generalization knowledge themselves, i. e.,
when asked for a spine they compare the object primarily against the generalized and not the
specific description of a spine.

■ In a multi-access key, identification can start with any character and no sequential context can
be designed into the key. The need to explicitly use terms generalizing for appearance simila-
rity is much more urgent here, e. g., supporting “I do not know which type of spore I have, but
it has the following size, shape and color …” Generalization hierarchies on top of the concept
terms used for data storage may be a solution to this problem (compare “Concept hierarchies”,
p. 125). If the concepts of object parts like the different spore concepts can be generalized into
“spore”, it might be possible to also search for properties common to multiple members of the
generalization (shape, color, size) and use them to support generalized questions based on data
that are recorded in a more specific system. Other properties (e. g., type of conidiogenesis)
may be specific to the precise kind of spore and not generalizable.

Table 43. Examples of competing classifications of spores and sporogenous cells in asco-
mycetes.

 –––––––––––––––––––––––––––– Classification according to ––––––––––––––––––––––––––––
 Composition (depends on

taxonomy and life history)
Sexual function (depends
on meiosis/mitotic state)

Similarity = observable
morphological features

Ascospore Ascus Postzygotic sexual propagule Spore
Conidium Hypha or – if present – conidioma Asexual propagule Spore
Spermatium Hypha or – if present – conidioma Prezygotic sexual propagule (gamete) Spore
Ascus Ascoma (sexual fruiting body) Sexual structure Sporogenous cell
Conidio-
genous cell

Hypha or – if present – conidioma Asexual structure Sporogenous cell

Spermatio-
genous cell

Hypha or – if present – conidioma Sexual structure Sporogenous cell

Note: Classification according to the morphological composition hierarchy implies recognition of the surrounding tissue,
sexual state (life cycle stage) and taxonomic group, whereas the direct morphological classification assumes no additional
knowledge.

162. The recognition of object parts and the preferred name for these in biology depends in

complex ways on character properties, developmental stages, and the taxonomic classifi-
cation of the organism. In an identification context this information is often available only
after identification success (“post-recognition problem”). Support for generalization con-
cepts to overcome this problem is required.

160 Fundamental aspects of description models G. Hagedorn

Misinterpretation of object parts
One result of the problem to correctly identify object parts is that many parts of biological orga-
nisms are notoriously prone to misinterpretation by non-experts. Good examples are plants where
flat and green stems function as leaves (cladodes, = cladophylls, = phylloclades) and true leaves
are missing or not apparent (e. g., Asparagus, Tillandsia usneoides, many Cactaceae, and Ascle-
piadaceae), where the petiole has replaced the leaf blade and looks astonishingly leaf-like (e. g.,
as in many pacific Acacia), or entire inflorescences that look like flowers (e. g., as in Asteraceae,
also known as Compositae). Other cases are more confusing and more difficult to recognize. For
example, the flowers of Euphorbia are strongly reduced and unisexual, but the entire inflorescen-
ce (the cyathium) looks remarkably like a flower. As a result, characters will often be misinter-
preted because the object part is misinterpreted (i. e., not the state). This applies to categorical
data (example: flowers unisexual = true / bisexual = by misinterpretation) as well as quantitative
data (example: length of flower stalks = peduncle; often the length of the stalk bearing the
cyathium will be measured here).

The case of misinterpreted categorical characters can be more or less satisfactorily handled by
the addition of a status modifier “By misinterpretation” to the state data. Such a modifier is
implemented in the information model used by the CBIT Lucid programs (p. 21). It is also sup-
ported in the SDD modifier system (see “Misinterpretation hints through modifiers”, p. 209). The
drawback of this solution is that while the cause of misinterpretation is based on a confusion of
object parts, the solution works on the value (categorical state) level, i. e., all properties for the
object part in all taxon descriptions must be appropriately re-coded. Furthermore, the reason for
the suspected misinterpretation is not explained. The modifier does not distinguish between mis-
interpretations due to state misinterpretation (this may e. g., occur in the case of color states) and
compositional misinterpretation as in the case of the Euphorbia example.

No equivalent solution is proposed for quantitative measurement data that may be similarly
misplaced.
163. Object recognition may fail in predictable patterns; support for knowledge about common

misinterpretations of object parts is desirable.

A botanical concept challenge
Similar to some of the data challenges developed in SDD, the following is a concept challenge. It
is not solved here, but shown as an example that the creation of ontologies is not trivial:

Hairs on the lower side of a leaf will normally be considered to belong to “Plant → Leaf →
Surface → Lower surface → Hairs”. If the hairs occur only on the veins of the leaf, this may or
may not be observed, i. e., it may be observed as a separate fact, or the hairiness of the leaf will
inherit from vein hairiness and may be recorded as such. If only one of two different hair types
(e. g., “short velvety” and “long glandular”) occurs on veins, it seems advisable to differentiate
two object parts: “… → Intercostal hairs” and “… → “Costal hairs” (intercostal = between the
veins). Further, some may consider the veins to belong to the lower surface, because in species
studied they are prominently visible only there. The classification may thus have an (optional)
added step: “Plant → Leaf → Surface → Lower surface → Veins → Hairs”. Note that veins are
internal anatomical object parts of leaves (they contain the vascular bundles) but also cause ex-
ternal morphological surface structures. In many plant species these are more prominent on the
upper surface than on the lower surface. Where this is not the case a different classification may
be preferred, e. g., “Plant → Leaf → Veins → Surface → Hairs”.

This problem is partly a problem of alternative object compositions (part-of relations). How-
ever, it seems that it may be solvable by introducing a combination of composition and generali-
zation relations. Based on the simpler diagram Fig. 73 (p. 155), some additional composition and
generalization concepts mentioned above have been added in Fig. 74. Only the general terms are

G. Hagedorn Fundamental aspects of description models 161

added, not yet the terms in the leaf context. Hairs have not yet been added at all. It is conceivable
to model hairs through a property “hairiness”, although it is a composition, but this could create
problem if the shape, structure, or color of hairs shall be recorded later on. The Prometheus de-
scription model introduces generalized parts, which may appear without composition in an ad-
hoc-manner anywhere to deal with problems like hair. It may be noted that the diagram is yet
incomplete: for the intercostal surfaces a composition with IntercostalAreas in addition to the
generalization should also be added. One point of this exercise is to illustrate that it is not trivial
to define both composition and generalization relations (an “ontology”) for a realistic set of com-
ponent terms. These can probably be overcome by following modeling guidelines and testing the
statements with logic processors for contradictions. Note that the Prometheus description model
(p. 21) partly tries to circumvent the specific problems shown here by introducing a separate
mechanism for region-terms that is outside the compositional hierarchy (and probably also out-
side the generalization hierarchy). This is further discussed under “Modifiers”, p. 189; compare
also the related Fig. 102, p. 201.

Leaf

Vein (anatomical)

LeafSurface

Surface LeafLowerSurface
LowerSurfaceAtVein

LowerSurfaceIntercostally

LeafMargin
MarginAtVein

MarginIntercostally

LeafUpperSurface UpperSurface
UpperSurfaceAtVein

UpperSurfaceIntercostally

FlatOrientedObject

Margin

LowerSurface

IntercostalAreas
Figure 74. Further detail added to the ontology already shown in Fig. 73.

Taxonomic hierarchy
The “class hierarchy” most familiar to biologists, the hierarchy of biological taxa, has not yet
been discussed. In principle, the various generalization aspects (phylogenetic, functional, appear-
ance and compositional similarity) can all be applied to entire organisms as well as to parts of it.
The difference between modeling the kinds of leaves occurring on a plant, and the kind of plants
occurring on the planet is astonishingly small. Both recognitions are based on a combination of
object properties and object composition. At first glance the major difference seems to be that
entire organisms are autonomous entities and do not take part in further compositions of higher
classes. However, many organisms are indeed part of larger entities and recognizing these may be
essential for identification. Examples are colonial organisms like corals or ants. Occasionally, the
distinction between individual and colony may be blurred; e. g., in certain colonial jellyfish or in
Dictyostelium (where up to 100 000 individual amoebae aggregate to create a multicellular orga-
nism that is surrounded by an extracellular matrix and forms a sporocarp). Similarly, composi-
tions based on symbiotic relations (mutualism, commensalism, or parasitism) or loose commu-
nities (“syntaxonomy”) of different species often play an important role in identification. Exam-
ples are lichens (algae plus fungi) or the use of host name in host-specific parasitic fungi.

Sexually or asexually reproducing individuals are the basis for evolutionary mechanisms.
Insofar a homology of parts always depends on the phylogenetic taxonomic hierarchy. One con-
sequence of this is that the taxonomic hierarchy often influences the concepts and names of ob-
ject parts (compare “Problems with specialized, context-dependent names for object parts”,
p. 157).

162 Fundamental aspects of description models G. Hagedorn

Exploring how far an information model can handle object parts and entire objects homoge-
neously in a single model may be a fruitful future study. However, in practice modeling the taxo-
nomic hierarchy in a separate model will generally be justified. Taxa are historically been proven
to be a central element in the understanding of biodiversity and biology in general, and are there-
fore governed by a specialized set of rules (nomenclatural rules such as ICBN or ICZN) and have
special properties (e. g., taxonomic ranks in the conventional Linnean naming system).
164. The taxonomic hierarchy itself is a generalization hierarchy placing entire organisms in

classes. Generalizations of object parts and entire objects are related. Even composition
hierarchies of organisms exist. However, despite the similarities, a special data structure
for the taxonomic hierarchy is desirable because of the special role taxa play in evolution
itself and in the management of biodiversity knowledge.

Change of object concepts through temporal development
Another aspect that is particularly relevant to the description of biological objects is change over
time (develops-from and stage-of relations). This may cause change to the properties of object
parts (and consequently the concept of what a part is), but it may also affect the composition of
objects. Temporal development in biology has four aspects:
■ Behaviorally related changes (e. g., a turtle retracts head and legs under threat),
■ continuous ontogenetic change during the development of individuals,
■ discontinuous, named life cycle stages, especially if different generations of individuals are

involved in a life cycle,
■ phylogenetic change over evolutionary time.
In this discussion “changes over time” like deformation, discoloration, or decoloration as a result
of specific preservation methods are excluded. These are treated under observation or measure-
ment methodology, see p. 171.

It is interesting to note that UML prior to version 2.0 had no mechanisms to model such in-
formation. Mechanisms to model the dynamic behavior of programming objects over time (UML
state, sequence, and activity diagrams) exist, but not a built-in modeling pattern to represent a
static view of knowledge about potential change of objects.

Continuous ontogenetic change
Almost all object parts change over time during the development, maturation, or senescence of
biological organisms. In many cases the changes (growth, slight deterioration when aging, etc.)
are so regular and generic that they are not separately mentioned in descriptions. In cases, where
unexpected or rare changes occur, the knowledge about temporal development processes is ex-
pressed in descriptions in two major ways:
■ It may be embedded in the terminology. For example, bud, shoot, cotyledons, and leaves in a

plant, larvae, pupae, imago in insects denote certain developmental stages. Some terms like
“annual”, “biennial”, or “perennial” embed knowledge about the life cycle of a plant, which
can be gathered with certainty only by long-term observation – but which can in many cases
be inferred based on other characters (woodiness, development of root system, etc.).

■ The changes of object parts or properties are explicitly described: “leaf shape rhomboid in
young leaves, later elliptical”, “flowers blue when opening, later red”, or the wandering of
eyes that occurs when larval flatfishes (flounder, sole, halibut, etc.) change from symmetrical
shape to the asymmetric flattened shape they obtain when settling on the sea bottom. These
explicit descriptions of temporal development can either be expressed as modifiers of catego-
rical terminology, or as free-form comment text.

G. Hagedorn Fundamental aspects of description models 163

Named life cycle stages and generations
Many organisms have more or less distinct phases in their temporal development called develop-
mental or life cycle stages. These may be an artificial classification of a continuum (e. g., embryo /

new-born / infant / youth / adult, or seed / seedling / sapling / adult plant) or associated with distinct
events like molting, pupation, change of habitat (free-swimming to sessile, different host orga-
nisms), or the changes in nuclear phase (e. g., haploid vs. diploid). The first of these cases is
called “growth stages” by Pujar & al. (2006) and defined as “distinct morphological landmarks in
a continuous developmental process”.

In many organisms different life cycle stages form no special problem for descriptions be-
cause – even though property values like measures of size, proportions, patterns, coloration, etc.
may change – the fundamental property and object composition model applies to all stages. Ex-
amples are infants and young individuals of most mammalian and avian species, larval stages of
ametabolous insects, or the shoot stages of most plants. Describing all in a single description may
work in some cases (e. g., adult and senescent animals) but not in all cases. For example, cater-
pillar instars of a single species or seasonal generations of butterflies like Araschnia levana may
display substantially different colors and patterns. To avoid overgeneralization, such generations
and life cycle stages have to be treated in separate descriptions (requiring a life cycle annotation
of the description scope, see “Secondary classification resulting in description scopes”, p. 215).

In other organisms, however, the life cycle stages differ so profoundly that the applicability of
property and object composition models depends on the development stage. This is quite similar
to dependency of such model on taxonomic groups (and occasionally different sexes). Examples
are hemi- and holometabolic insects (e. g., changing from larva over pupa to butterfly), marine
hydroids (Cnidaria: Hydroida; changing from swimming planula larvae over sessile polyps for-
ming colonies to swimming, jellyfish-like medusae), anamorphic and teliomorphic stages of
many fungi, or ferns (alternating between an inconspicuous prothallus in the haplophase and the
diploid fern).

In the context of identification, determining the life cycle stage is usually a post-recognition
feature, i. e., it requires identification at least to the level of a higher taxon from which some gen-
eralization can be deduced. In many examples, even a specific identification is required. Where
different character sets are required to describe life cycle stages, a generalization method may be
required for successful identification (compare “Problems with specialized, context-dependent
names for object parts”, p. 157).

Phylogenetic change
As mentioned above (p. 153), the taxonomic hierarchy of non-extinct organisms is a generaliza-
tion hierarchy. However, the development of lineages of evolutionary time (anagenetic evolution)
is a part-of hierarchy. A paleontological species may therefore be a part of the evolutionary clade
leading to a current species. Since this is difficult to ascertain (the paleontological specimen
could belong to a side-line now extinct), these part-of hierarchies are irrelevant in practice.

For all three changes over time, the periods on the time axis (e. g., embryo–adult, larva–pupa–
butterfly, Triassic–Jurassic–Cretaceous–Tertiary–Quaternary) form a sequence that can be ar-
ranged in a part-of hierarchy. The changes of parts that are correlated with this time axis (e. g.,
wing sacs to wings) are, however, best viewed as kind-of generalizations.
165. In addition to the common composition (part-of) and generalization (kind-of) relations,

relations expressing change over time (ontogenetic, life cycle, evolutionary history) are
desirable in descriptive information models designed for biological objects.

164 Fundamental aspects of description models G. Hagedorn

Properties

Definitions
The composition and generalization concepts of object parts discussed so far are one half of the
character decomposition models (see p. 116). The other half are called properties in the Nemisys /

Genisys models (compare Table 9, p. 63; basic property under data type aspect) and the Prome-
theus description model. In the following an attempt to discuss properties, methods, their interac-
tions and generalizations is made.

The concept of properties (or attributes, the preferred term in UML and ER-modeling) in in-
formation science is relatively easy to understand. Variables and constants associated with any
given class are considered properties of this class. The type of these variables may be simple, in-
cluding value types like integer or Boolean, or it may be complex, including any other class. Ulti-
mately, the composition of object instances is defined through class properties. In UML models,
relational attributes are usually not shown in the list of class attributes, but only as end names of
associations. However, as soon as programming code is created from these models, the associat-
ions are converted to properties or association classes containing the necessary properties.

Table 44. Examples of dictionary and UML definitions for attribute, feature, and property.

Term
Collins English Dictionary
(CED 1992)

Merriam-Webster’s Collegiate /
New Oxford Dictionary (EB 2001)

UML 1.5 definitions
(OMG 2003)

Attribute
(noun)

[…] 2. a property, quality, or feature
belonging to or representative of a
person or thing. – 3. an object ac-
cepted as belonging to a particular
office or position. – 4. Grammar. a.
an adjective or adjectival phrase. b.
an attributive adjective. – 5. Logic.
the property, quality, or feature that
is affirmed or denied concerning the
subject of a proposition. – [From
Latin attribuere to associate with,
from tribuere to give]

1. a quality or feature regarded as a
characteristic or inherent part of
someone or something: flexibility and
mobility are the key attributes of Brit-
ain’s army. – 2. a material object
recognized as symbolic of a person,
especially a conventional object used
in art to identify a saint or mythical
figure. – 3. Grammar: an attributive
adjective or noun. – 4. Statistics: a real
property which a statistical analysis is
attempting to describe.

A feature within a classifier
that describes a range of
values that instances of the
classifier may hold.

(Def. of Classifier is: A
mechanism that describes
behavioral and structural
features. Classifiers include
interfaces, classes, data
types, and components.)

Feature
(noun)

1. any one of the parts of the face,
such as the nose, chin, or mouth. –
2. a prominent or distinctive part or
aspect, as of a landscape, building,
book, etc. […] – 9. Linguistics. a
quality of a linguistic unit at some
level of description: grammatical
feature; semantic feature. – [From
Anglo-French feture, from Latin
facere to make]

1. a distinctive attribute or aspect of
something: impressed with the safety
features of the plant. – 2. (usually fea-
tures) a part of the face, such as the
mouth or eyes, making a significant
contribution to its overall appearance.
– 3. Linguistics: a distinctive character-
istic of a linguistic unit, especially a
speech sound or vocabulary item, that
serves to distinguish it from others of
the same type. […]

A property, like operation or
attribute, which is encap-
sulated within a classifier,
such as an interface, a
class, or a data type.

Property
(noun)

1. something of value, either tan-
gible, such as land, or intangible,
such as patents, copyrights, etc.
[…] – 6. a quality, attribute, or
distinctive feature of anything, esp.
a characteristic attribute such as
the density or strength of a material.
[…] – [From Old French propriété,
from Latin proprius one’s own]

[…] an attribute, quality, or character-
istic of something: the property of heat
to expand metal at uniform rates.

A named value denoting a
characteristic of an ele-
ment. A property has se-
mantic impact. Certain
properties are predefined in
the UML; others may be
user defined.

Unfortunately, when studying the relation between the physical (e. g., biological) world and
their description in information models, the definition of the term “property” (Table 44) in rela-
tion to the physical world becomes considerably more difficult. Intuitively, it makes sense to say
“diameter and shape are properties of the head”. This intuition is certainly valuable. However,
such a “property” (or “attribute”, “quality”, “distinctive feature”, “characteristic attribute” accor-

G. Hagedorn Fundamental aspects of description models 165

ding to the dictionary definitions) may be obtained by various methods, some of which result in
comparable, others in non-comparable data. Both the measurement method and the storage me-
thod (data type and measurement units) seem to be tightly coupled with the abstract concept of
“properties” themselves.

The discussion will first discuss some aspects of properties under an intuitive concept of “ob-
ject property”, then study the dependency of descriptive data on measurement methods, and final-
ly attempt to review the relation between property and measurement methods.

Property decomposition
In many cases a property may be complex in the sense that it is possible to express the same in-
formation in a combination of other, more atomic properties. It is not possible to generalize that
for a given purpose always complex or always atomic properties are preferred. The complex
property “inflorescence types” is generally preferred. On the other hand, for object shapes it is
customary to decompose the complex shape into a generalized shape plus secondary shape prop-
erties. In the case of a square with rounded corners (Fig. 18, p. 65) most humans attempt to ab-
stract the shape as a square for as long as possible, and add the information about the rounded
corners separately.

An example from biology is the collection of leaf shapes shown in Fig. 75. Technically, all
five shapes are different. However, they would all be described as the abstract shape “elliptical”
plus information about the leaf apex (acute, rounded, obtuse to truncate), leaf base (rounded,
cordate) and margin (smooth, dentate) described separately.

As discussed already under “Calculated characters” (p. 72), it is desirable to provide mapping
or calculations to convert complex to atomic properties and vice versa.

Figure 75. Five different leaf shapes, all of which might be described as the abstract shape
“elliptical”, plus separate extension / variant information about tip, base, or margin.

166. What is considered a property is subject to conventions. Complex properties exist that may
also be expressed as a set of more atomic properties. A conversion / mapping functionality
is desirable.

Pattern versus composition
Any pattern is, by definition, a composition of other elements. In the strict sense, a pattern con-
sists of an arrangement or design that is repeated in itself. In biology it is, however, customary to
also speak of a pattern when referring to a unique arrangement occurring only once (e. g., a wing
pattern), but being repeated on each individual of a species.

When modeling object descriptions, patterns create problems because it is customary (and ef-
ficient for human recognition) to give complex patterns “type names” like “striped”, “checkered”,

166 Fundamental aspects of description models G. Hagedorn

“hatched”, “dotted”. In biology, even typical wing patterns, e. g., of the moth families “Geometri-
dae” or “Noctuidae” may be recognized.

Already in Fig. 43 the triangular pattern on the central object was considered an object compo-
sition, whereas the striping was considered a pattern. Fig. 76 shows several patterns that can
either be described as object compositions or as named pattern categories. The left object is easily
described as a composition of a white square with a central gray circle. The second object is more
readily described as a square with a regular pattern of gray circles on white background. The use
of the pattern approach can still be maintained in the third object (e. g., “alternating rows of gray
and black circles on white background”). These named pattern descriptions are more intuitive to
humans than an exact enumeration of circles, their color, and which circles are adjacent to each
other at which angle (besides that the objects in pattern may easily be too numerous to enumerate
them exactly, compare “Categorical multiplicity”, above). However, complex patterns that are a
mixture of regular and irregular arrangements (like in the second but last object in Fig. 76) are not
easily described.

Furthermore, it is difficult to give guidelines about when to use an explicit object composition
and when to use a named pattern category. In the last object in Fig. 76 the circle object can be
described as an ordered composition of black and white horizontal lines of specific length. From
this description the fact that these lines appear as a circle with a horizontal striping pattern may
still be deducible to computer algorithms, but completely opaque to human recognition.

Figure 76. Patterns that can either be described as object compositions or as named pattern
categories. The fourth pattern is not repeated in itself (see text for further information).

Figure 77. The concept of a pattern abstracts from concrete color to the ability to distinguish
parts. Distinction may even occur through surface texture of parts of identical color (here illus-
trated with a fine line pattern that is intended to symbolize a texture).

A potential solution seems to be to define a library of named pattern types, each of which is
defined as an object composition. These object compositions could then be used in the back-
ground to allow an algorithm to either give a pattern name for an object composition, or reversely
evaluate similarities of patterns. However, a major problem with this approach is that two-dimen-
sional patterns are created by objects of different colors, and that it would be impractical to de-
fine a type for each color combination. Similarly to the examples discussed in the section “Pro-
perty decomposition” above, the concept of “pattern” abstracts a complex reality. The actual
reason why components of the pattern are distinguishable (such as color, texture, see Fig. 77) and
the absolute size and to lesser extent the shape of the pattern components is considered irrelevant,
and only the relative arrangement of pattern components isolated. As a consequence, a “pattern

G. Hagedorn Fundamental aspects of description models 167

type library” could be a parameterized object composition where the properties of components
(color, texture, etc.) are expressed through parameters that are defined in addition to the type.
Although such a solution is conceivable, it seems difficult to implement in OOP languages and
requires considerable custom code for analyzing, editing, and reporting descriptions using this
concept. Further analysis into this problem is required.

The current approach method of categorizing patterns (used, e. g., in DELTA or NEXUS data
sets) has the advantage of not introducing any new concepts or data structures that complicate the
information model. It is, however, often unsatisfactory because it creates a dependency between
character states of “object pattern” and “object color”. In the presence of a pattern it is customary
to list all patterns present in the components of the pattern as object colors, a process in which
information is lost (Fig. 78).

(A)

(B)

Figure 78. Two populations (clouds) with four patterned objects each. Recording pattern and
color as independent properties prevents distinguishing between multiple colors as a result of
population variability (A) and co-occurring in a single pattern (B). The class descriptions for
populations would be: pattern “dotted”, colors “white, gray, or black”.

167. Patterns are especially problematic situations that may be modeled through properties or
compositions. Patterns are highly relevant to the description of biological objects and ad-
equate support for them is required.

Property interactions
The previous section already discussed the problems of property interactions in the case of pat-
tern and color. Other cases exist:

1. When measuring the spore size (diameter or length / width), some spores may be halonate
(they have a low-density gelatinous outer layer) or they may have appendages. The measurement
instructions must define whether the halo or the appendages are to be included in the size meas-
urement or not.

2. When recording length and width of two-dimensional shapes, two values may be redundant
where length and width are by definition identical as in circular or square shapes (Fig. 79). The
case of globose versus ellipsoidal shapes often occurs in the case of diaspores (seeds, fungal
spores, etc.).

168 Fundamental aspects of description models G. Hagedorn

Diameter 25 25

25

40

25

40

25

=

Radius 12.5

Figure 79. Example for a dependency of shape and size properties. For most two-dimensional
shapes a length and width is recorded, but this is redundant where length and width are by defi-
nition identical.

Three models of property definitions are commonly found:
a) 1. Length b) 1. Length or diameter c) 1. Length
 2. Width 2. Width 2. Width
 3. Diameter

In the case a) a dependency from the shape property to the size property can be created such that
diameter is applicable only when shape circular etc. In the case c) the length and width are al-
ways entered, regardless whether they are identical or not. No model is fully satisfactory. Pro-
vided that a system could rely on a rule that data are always either not coded at all, or coded com-
pletely, it is relatively simple to represent either of the above cases using the rule: If the width is
missing, replace it with a reference to the length (which would return missing if the length is also
missing). This assumption is implicitly made in the case of b). However, whereas in the case of
fungal spores it is customary to always record both length and width, this is not necessarily true
for all objects. For example, for very small petals only the length might be measured, whereas in
larger petals both length and width should be measured, In this case the representation b) and the
implementation rule given above would assume that small petals are always round with length =
width. Furthermore, length and width may occasionally have an absolute orientation in which
case width may become larger than length (see p. 169 and Fig. 81).

Informing about the conditions for compara-
bility of the multiple properties in this case is
not trivial. An interesting option is perhaps to
introduce “label-dependencies” rather than pro-
perty or character dependencies. For example, if
shape is circular, property ‘1’ might be labeled
“diameter”, otherwise “length”. Unfortunately,
while improving the handling of case b), this
does not cover the case of absolute orientation,
where it may be desirable to compare a diameter
with width as well as length.

3. A related problem occurs where properties
or the object composition of sides (e. g., upper
versus lower side) of an object may be homo-
geneous or heterogeneous. In Fig. 80 A) and B)

C)

A)

B)

Figure 80. Orientation (upper / lower side) may
be significant (A, B) or insignificant (C) when
recording object properties (presence and
density of circles).

G. Hagedorn Fundamental aspects of description models 169

upper and lower side differs and would be separately described. However, in C) both sides are
identical and a separate description appears to be redundant. If the Fig. 80 is interpreted as a plant
stem with leaves and the circles represent hairs, the case of C would simply be described as
“leaves strongly hairy”, rather than “upper side of leaves strongly hairy, lower side of leaves
strongly hairy”.
168. Depending on property values, other properties may or may not be applicable. Support for

character dependency rules is desirable. This may be in the form of character applicability
rules (compare “Character applicability rules”, p. 76) or more general property depend-
ency rules (which would be applicable to multiple objects).

169. Values in different properties may be comparable or not, depending on other property
values.

170. In addition to dependency definitions, analogous renaming rules (making labeling depend-
ent on taxonomic scope) may be desirable; this requires further study.

Methods

Introduction
To assume that an object “leaf” has a single property “length” is simplistic. All measurements,
whether recorded quantitatively or categorically, require the definition of a measurement proce-
dure or method. For example, when measuring length and width, a definition of orientation is
necessary and the start and end points of measurements must be defined (Fig. 81). In leaves,
length may be defined as oriented along the axis of the midrib vein, whereas in spores the length
is normally defined as the maximum diameter (with width and height oriented perpendicular to it,
width being the next-largest extension). However, some spore forms have a clear orientation
where the origin (point of conidiogenesis) and a tip can be recognized, and length may be orient-
ed differently here to increase comparability of data.

In the case of quantitative measurements the measurement method usually defines a measure-
ment unit (e. g., mm, cm, or inch) and may inform about precision and accuracy issues (e. g., the
number of significant digits).

Lamina length: 44

Lamina length: 75

Lamina length: 73

Lamina length: 81

Lam
ina w

idth: 56

Figure 81. Measurements may result in different results depending on measurement procedures.
A procedure to measure the length of the leaf blade may be defined as measuring the distance
from end of petiole to tip of lamina or as measuring the longest extension of the leaf blade orient-
ed along the midrib vein. Depending on leaf shape, these result in comparable (top) or incompa-
rable (bottom) values. The example on the right side shows the importance of defining the orien-
tation.

170 Fundamental aspects of description models G. Hagedorn

Clearly, to record a value for a property in a description a method or measuring procedure is
required. In many cases this method is so well known that it does not seem to deserve a separate
mentioning. However, the example just given shows that seemingly simple methods may require
explicit method descriptions (compare also the earlier example of measuring total leaf length,
Fig. 25, p. 72). Together the methods to record property values and the procedures and rules for
object decomposition (see section “Object decomposition”, p. 134) form the description metho-
dology. This may include the following aspects:
1. Specify the conditions under which an observation or measurement may be made. These are

often generic and trivial: The fresh weight of a plant cannot be obtained from a dried speci-
men, colors cannot be recorded in fluorescent light. Non-trivial conditions are, e. g., whether
an observation can be made on alcohol-preserved material or not, or conditions of cultivation.

2. Specify the tools to be used (“instrumentation”). For example, surface structures may be ob-
served using the unaided eye, a hand lens, a light microscope, a scanning or transmission
electron microscope, or a scanning probe microscopy – switching between completely differ-
ent modes of observation, from light to focusable electron beams to magnetic force, electron
tunneling, temperature or other forces at close distance.

3. Specify the operating procedures. For example, when measuring spores size, the required
minimum optical resolution, correct handling of the microscope (e. g., use of Köhler illumi-
nation), the number of spores to sample, etc. have to be specified (in addition to “age of fun-
gal culture”, “preparation in water or mounting fluids”, which may perhaps better be handled
as conditions).

4. Specify the conversion and recording procedures. This includes questions of rounding (to the
next mm?), handling of outliers, supported measurement units (international or local units?),
statistical aggregation, conversion of measurements to categorical values where requested,
etc.

The importance of measurement methods on interpreting descriptive data varies greatly. In many
cases, procedures are sufficiently well known or standardized, so that the method can safely be
guessed. The modeling of descriptive data has a strong tradition of using well-studied taxonomic
groups like vascular plants or larger insects that do not need experimental data for identification
and where the majority of characters is observed using the unaided eye or a “standard” 10 × hand-
lens. As a result, methods have so far not been systematically included in the discussion of de-
scriptive information models. However,
■ the more a taxonomic group requires methodically demanding observation techniques (as,

e. g., in viruses, bacteria, fungi, or protozoa),
■ the newer the observation methods – being most likely under development – are,
■ the greater the time span is from which data are integrated into a single data set,
■ the greater the set of collaborators is,
■ the greater the taxonomic diversity of organism groups is,
the greater the diversity of methods will be and the more desirable it becomes to be able to define
or record method data. Many of these points apply to large scale descriptive data repositories for
identification purposes. In such repositories the traditional close correspondence between secon-
dary data in a descriptive data set and primary scientific publication is quickly becoming fragmen-
ted to a degree that makes it impractical to read all pertinent scientific background publication
which may shed light on methodologies.

In the followings sections the four aspects outlined above will be discussed in more detail.
171. Even seemingly trivial observations require a definition of an observation method. Support

for defining this method – either as a complex method description, or broken down into
components such as conditions, instrumentation, operating procedures, and conversion and
recording procedures – is highly desirable.

G. Hagedorn Fundamental aspects of description models 171

Measurement conditions
Measurement conditions are defined here as the state in which the object has to be at the time
when a measurement is taken. This concept summarizes a number of (perhaps disparate) concepts
like preservation method, experimental conditions, and measurement preparations. A distinction
may be made between direct observations (under specified, but naturally occurring conditions)
and observations under conditions set by experiments. An example for experiments performed to
obtain descriptive data in biology is the growth of microorganisms under specified carbohydrate,
temperature, and light conditions, measuring growth rate, color, etc. (Fig. 82, compare also Table
37, p. 125).

Method

Cultures

Growth diameter in Petri dish after 7 d at
21 °C on MEA culture medium

Experiment Observation

Measure diameter in mm

Figure 82. UML class diagram showing methods as a generalization of experiment and observa-
tion. The experimental method “growth diameter …” can be interpreted as depending on the
“measure diameter” observation method (dashed arrow). Instead of a dependency this could also
be viewed as a composition, i. e., the experimental method includes the observation method,
since every experiment contains one or several observations.

Unfortunately, the distinction between experiment and observation is often not clear. Are the
different media used to observe cultural characteristics in fungi an experiment, or simple an ob-
servation under defined growth conditions? Is the preparation of a microscopic slide – perhaps
including some form of squashing – an experiment? What if the preparation is first boiled in lac-
tic acid or KOH (strongly modifying the results, but often still considered an observation rather
than an experiment)? What if iodine solution is added, causing a blue amyloid reaction?
Procedures such as these may either be considered observation methods (like the use of a micro-
scope itself), or the experimental creation of “morphological” artifacts that are then observed.

A more stable distinction in biology may be between living conditions of the organisms and
preparation for measurement after its death. The growth conditions may be experimentally con-
trolled or environmental conditions may be specified. For example, when measuring typical plant
size the method implicitly contains the knowledge to avoid the stunted plants from wind-swept
mountain tops.

Conditions after death are very important due to the importance of long-term preservation of
dead organisms for biodiversity research. Here one may want to distinguish between preparations
methods that are closely related to a specific set of measurements and usually under the control of
the observer, and preservation methods which are often under the control of the museum preser-
ving the specimens and which may be incompletely recorded. The various conservation methods
(like desiccation, freezing, alcohol, or formalin) may lead to various changes that influence sub-
sequent measurements substantially (like discolorations, deformations, or destruction of surface
structures).

Some methods may profit from “parameterized” definitions. An entire “family” of methods
may differ only in a few parametric values, allowing the definition of more generic methods. For
example, the method to measure growth diameter of a fungus could have the parameters “culture
duration”, “cultivation temperature”, and “cultivation medium” (Table 37, p. 125).

172 Fundamental aspects of description models G. Hagedorn

172. The separation between experimental conditions, conditions under which material is sam-
pled from the natural environment, and conservation or special sample processing condi-
tions is not always sharp. It may therefore be desirable to support information in a gener-
alized “measurement conditions” category.

Instrumentation
Instrumentation may be separated from the measuring methodology because the same instrument
is often used for a large variety of measurements. An instrument normally comes with a set of
default operating procedures and a domain of measurement possibilities. By modeling instru-
mentation as a separate dimension of methodology this information can be centralized.

Instrumentation is perhaps even more relevant for complex data types (representing color,
shape, molecular patterns, etc.; compare p. 59), recorded or produced using specialized instru-
ments, than for classical data types (categorical or quantitative measurements). In principle, in-
strumentation also applies to digital recordings of media data (images, audio, or video). However,
here instrumentation is often fairly standardized and many relevant metadata may be embedded
in media data (e. g., resolution, white balance method, camera model). Perhaps the most impor-
tant aspect of instrumentation for images and videos that is not commonly supported is the com-
bined scale resulting, e. g., from a combination of a microscope and a digital camera.

An important practical aspect of instrumentation is that instrumentation often is the decisive
hierarchy during identification to determine which potentially useful characters are actually avail-
able, e. g., when in the field (Fig. 83). Presenting characters organized by the instrumentation re-
quired for observation (e. g., unaided eye, hand lens, light microscope, scanning electron micro-
scope, transmission electron microscope, molecular studies, biochemical studies, cultural studies,
etc.) will often be as useful as presenting them organized by the property that is observed (any
color, any shape, etc.).

It will often be desirable to include higher categories (such as molecular laboratory for PCR or
DNA sequencing, sterile equipment to culture fungi) on top of specific instrumentation concepts.
In practice these categories may perhaps be viewed as generalized instrumentation concepts. In a
careful representation of reality, however, they are probably a composition hierarchy. For exam-
ple, both light and electron microscope are a kind of microscope, but only the light microscope
will be part of the equipment in a “field laboratory” concept.

Method

Observation

Visible-light-based observations Electron microscopy (EM)

Hand lens Light microscopeUnaided eye SEM (scanning EM) TEM (transmission EM)
Figure 83. UML class diagram showing a selection from a generalization hierarchy of observa-
tion methods.

A complex relationship exists between properties and instrumentation. Properties can be ob-
served by multiple instrumentation methods, and instruments can be used to observe multiple
properties (Fig. 84).

G. Hagedorn Fundamental aspects of description models 173

Method

Observation

Visible-light-based observations Electron microscopy (EM)

Color charts comparison

Light microscope

Unaided eye

Hand lens

SEM (scanning EM) TEM (transmission EM)

Spectrometer

Color name estimation

«property»
Color

«property»
Surface structures

«property»
Chromosome count

Figure 84. UML class diagram showing that properties can be observed only by specific methods
(shown as dashed dependency arrows). The «property» stereotype is not part of a UML profile,
but introduced for the purpose of this discussion.

173. Support for “instrumentation” concepts, a highly reusable part of methodology, is desir-

able.
174. The concept of instrumentation may include basic default operating procedures.
175. Generalization and composition hierarchies of instrumentation (such as “forestry field

instrumentation”) are desirable.
176. Complex relations exist between instrumentation; it may be desirable to model these

dependency relationships unless this leads to an overly complicated information model.

Measurement procedures
Often specific measurement procedures are necessary for each:
■ property (e. g., size or color),
■ class of objects or object parts (see leaf length example, Fig. 81),
■ class of measurement conditions and instrumentation.
For example, color can be recorded as an approximate color name based on a memorized color
(fuzzy color concepts), it can be observed by comparing a color with one of several standard
color charts, or it can be measured with a spectrometer. In all cases, the recorded color may de-
pend on the kind of illumination present (color temperature and spectral lines present). In the first
cases, being based on human perception, the perceived color will be based on the surrounding
color as well as on the color of the object itself.

Measurement procedures for a given property may include different instruments (Fig. 85). The
combination of “color estimation” with “unaided eye” and “microscopic observation” results in
two different specific methods (multiple inheritance). However, no form of color observation can
be combined with an electron microscopical method.

The measurement of color depends both on preparation and instrument use. For example, six
different fungal spore colors may be recorded for:
■ an observation with unaided eye in situ (thin layer with hymenial hyphae as background),
■ a spore print on white paper,
■ a heap of dry spores observed with the stereomicroscope,
■ a heap of wet spores observed with the stereomicroscope,
■ spores observed in the light microscope at 400 × magnification,
■ spores observed in the light microscope at 945 × oil-immersion with Differential Interference

Contrast.

174 Fundamental aspects of description models G. Hagedorn

Another example for the interaction between instrumentation and property is that a “surface
roughness” may be expressed in the same categorical enumerated values (e. g., “smooth”,
“rough”) but the results of observations by different instruments may be incomparable.

In many cases, the distinction between instrument use and specific measurement procedures
may be blurred. An instrument may come with subclasses of operating procedures; for example,
in a light microscope for using phase contrast, using oil-immersion, and using a combination of
these.

Visible-light-based observations

Light microscope

Unaided eye

Hand lensColor charts comparison

Color name estimation

Spectrometer

«property»
Color

Figure 85. UML class diagram elaborating part of Fig. 84, showing that some methods may be
combined to observe a property (shown as thick dashed lines; not a standard UML vocabulary).
The first two color observation methods can be combined with all three optical methods, whereas
the spectrometer can only be combined with the light microscope (and used on its own). Combi-
nations produce new methods that inherit from multiple parent methods (not shown).

177. In addition to generic concepts of measurement conditions and instrumentation, support

for measurement procedures specific to object parts, properties, and interactions with con-
ditions and instrumentation is required.

Conversion and recording procedures
The initial measurement result will often not yet be in a form that can be recorded directly. This
includes the normally trivial case of converting it into an appropriate digital format – but even
this may require special consideration when automatic measuring instruments are coupled direct-
ly with a storage method.

A simple example where measurement and the desired recording format may differ are length
measurements. In DELTA the measurement unit is part of the character definition, so that it is not
possible to record length, width, and diameter (all considered different “basic properties” in Ta-
ble 9, p. 63) using different measurement units such as µm, mm, or inch. A conversion is possible
before recording them. Other information models (e. g., SDD) support different measurement
units in multiple descriptions using the same character. This facilitates data integration from dif-
ferent sources (recording a value of “2 ft” as “60.96 cm” is rather confusing and suggests an en-
tirely wrong precision), but adds complexity and requires consuming applications to be able to
dynamically convert units to compare values.

A slightly more complex situation occurs when continuing the color example. Different meas-
urement methods result in different kinds of data, such as a wavelength-intensity curve generated
by a spectrometer, categorical color values according to “common sense”, or a category from a
given color standard. A multitude of such color standards exist, some using codes (e. g., “5R 6/8”
or “5.3R 6.1 / 14.4” in a Munsell color chart, Munsell 1977, Munsell 1992; “8C6” in “Methuen”,
i. e. Kornerup & Wanscher 1967), others names (e. g., “Artemisia green” in Ridgway 1912), or a

G. Hagedorn Fundamental aspects of description models 175

combination of numbers and names (e. g., “89. Olivaceous Buff” in Rayner 1970). All five color
standards listed above are in current use in mycological studies.

The color chart standard used during recording may be considered a form of instrumentation
and it is possible to define specialized properties (all derived from abstract color) for each meas-
urement method. This may be desirable if the recorded data should be as faithful to original data
as possible. However, given the complexity that is involved in managing and comparing a multi-
tude of color standards, it may be desirable to standardize recorded data to a single standard. In
some cases, manual mappings are available (e. g., Methuen “8C6” and “25C4” are equivalent to
Ridgway “Terra cotta” and “Artemisia green”). However, to improve comparability, it may be
desirable to map them all to a common quantitative color space model (e. g., the CIE XYZ color
model, see http://en.wikipedia.org / wiki / International_Commission_on_Illumination).

Conversion and recording procedures can be viewed as analogous to operations that constrain the
modification of class attributes. This is a common development pattern in many OOP languages,
and is supported through property methods in .NET or setter/getter functions in Java (especially
in the JavaBean pattern). However, since OOP does not deal with the multiple layers of methods
required to go from the physical world to reading and writing in a given information model, this
analogy is incomplete. On an abstract level, the entire methodology including conditions, instru-
mentation, operating procedures and conversion and recording procedures may also be viewed as
analogous to these OOP property methods.
178. The form of data returned by a measurement method may differ from the form expected in

data recording. Support to define and document conversion and recording procedures is
desirable.

Dependencies on circumstances of identification
Whether a given property of an object can be observed depends both on the object itself and on
the circumstances or conditions under which the observation occurs. Knowledge about this is
often embedded in the identification process and data structures supporting this. Examples:
■ Identification keys to higher plants may ask “flowers presence?”; a negative answer may lead

to a subkey using only non-flowering, vegetative characters (rather than excluding all plants
that do flower at some point during their life cycle).

■ A key may ask for the season or the presence of leaves if it provides both a summer key based
on leaves and a summer key based on buds.

■ If identification depends on the availability of certain methods (hand-lens, stereo microscope,
light microscope, or availability of chemical reagents for color spot tests used for fungi or
lichens), separate keys may be provided (commonly a “field key” and a “full key”, but more
flexibility in defining such method dependencies would be desirable).

■ Different keys are provided to work with dead, preserved material and fresh or cultivated
material.

Because computer-aided multi-access keys (see p. 251) enable their users to ignore characters
that are inapplicable to the observation conditions, the importance of some method-dependency
mechanism is most urgent for computer-aided branching keys (see p. 247). However, the user
experience of multi-access keys will also improve, if fewer inapplicable characters have to be
ignored.

The dependency of the applicability of a property on other information is similar to character
(or property) dependencies discussed in “Character applicability rules” (p. 76) and “Property
interactions” (p. 167). One may model the conditions as controlling “states” of an “observation-
condition” controlling character (Fig. 86). This could allow a reuse of the character dependency
model for method-dependency.

176 Fundamental aspects of description models G. Hagedorn

Observer

leaves: hairy

seeds: warty

flower color: red

available methods:
hand-lens

object flowering:
no / (season: winter)

object flowering:
no / (season: winter)

available methods:
stereo microscope

depends on

depends on

depends on

flowers: present
depends on

Figure 86. Dependencies of object properties on “states” of the observation situation are structur-
ally very similar to dependencies among different properties (flower color depends on flower
presence). Seed wartiness and flowering color are inapplicable in the current situation.

Initially it seems that such observation-condition characters would only be used as controlling
characters during identification, but never actually for recording descriptive data. However, they
may turn out useful under two aspects:
1. To some extent they may simplify the management of data sets (e. g., informing whether an

attempt to study autumn or winter characters of a plant was made). However, scoring a “con-
dition-character” gives no measure about the degree to which condition-specific information
has been collected. The same information, plus the distribution of recorded condition-specific
characters should also be available by analyzing the data set.

2. In a scenario where the relevant data behind identification events are recorded (e. g., “Identi-
ficationBank / ID-Base”, see use case “Recording identification data”, p. 295 and “Future
relevance: A proposal to record identification data”, p. 369), the information in such observa-
tion-condition-characters may be worth preserving.

Whether it is advisable to follow such a character-dependency approach, or whether to deal with
method dependencies through method concept hierarchies could not be clarified in the current
work.
179. Dependencies between the observation circumstances, conditions, instrumentation, etc.

and characters available for comparison and identification is an important aspect of the use
of descriptive data. It is essential for branching (e. g., dichotomous) keys, and beneficial
for multi-access keys.

180. It may be desirable to record “observation circumstances / conditions” as part of archiving
identification data. This may point to modeling the method dependency as a character de-
pendency based on special “observation condition” characters. (Alternatively, method de-
pendency may be modeled through the method concept hierarchy / ontology.)

Relations between properties and methods
A precise definition of “properties” was initially purposely avoided (p. 164). It is possible to de-
fine properties as abstract, high level concepts of real world objects. To manage the comparabil-
ity of values in a digital format, however, knowledge of measuring and storing methods is re-
quired. Some of these methods (object conditions, instrumentation, recording methods) are re-
usable. They are therefore not necessarily nested inside the property and may best be represented
by composition (Fig. 87). On the other side, a number of method components are directly con-
nected to an abstract property concept (such as “color”).

G. Hagedorn Fundamental aspects of description models 177

«property»
Color Instrumentation

Light microscope

Unaided eye

Electron microscopy (EM)

Hand lens

Spectrometer

PreparationMethods

CultivationMethods

Leaf

Lamina (blade)

Plant

ObjectConditions

ColorSpectrometrically
To_sRGB()
To_ColorChart1()
To_ColorChart2()

ColorChart1
To_sRGB()

ColorNameEstimate
ToEnglishVernacular()
ToGermanVernacular()

ColorChart2
To_sRGB()

Record_sRGB

RecordColorChart1Value
«character»

Leaf lamina color (sRGB)

Fresh (turgescent)

Dried herbarium material

(recording
methods
nested in
property
or not?)

Object composition:

Figure 87. UML class diagram attempting to outline a possible property / method / object-part / char-
acter model for the color example. Most classes show neither attributes nor operations; an ex-
ception are the specific color measurement classes in the center of the diagram showing exam-
ples of conversion operations. The «property» and «character» stereotypes are introduced for the
purpose of this discussion.

Comparability does not depend on measurement procedures alone. For example, recording
object color as RGB-polygons based on color-calibrated digital images is in principle a fairly
direct and reliable measurement method yielding easily comparable data. However, depending on
the instrumentation involved, the comparability may suffer: Whereas the color of spores is highly
comparable between measurements using the naked eye and a stereo microscope, measurement
through a light microscope are not easily comparable with these two. Measurement conditions
(e. g., cultivation media, growth time until measurements, preparation or preservation procedures)
further influence the comparability of the color measurements. Thus, even measurement methods
returning directly comparable raw data may need exact or approximate conversions to obtain
comparable data.

The delimitation of abstract property concepts seems to be rather difficult. Perhaps an abstract
property should generalize all measurement methods that result in potentially comparable value
domains. Different abstract properties should be incomparable. Thus, color may be expressed in
different formats (categorically, quantitatively in various color spaces) for which conversion
functions (mappings) could potentially exists. Similarly, distance seems a good property concept,
regardless of the measurement unit (µm, cm, inch) used. However, treating size, length, width,
and diameter as independent properties (as in Table 9, p. 63) violates this intuition.

In physics a technique called dimensional analysis attempts to reduce physical properties to
their fundamental dimensions (length, mass, time, etc.), to verify the comparability of data. The
desire to define high-level properties seem to be related to this, although treating only those prop-
erties with a separate dimensional footprint as separate seems to result in impractically abstract
properties, at least for all properties that are dimensionless.

Using the framework of Fig. 87, the “basic property” proposal (Diederich 1997, Diederich &
al. 1997, Diederich & al. 1998, Table 9, p. 63) can be interpreted as implicitly combining a very
abstract form of property concepts with all measurement concepts except the definition of a part
from the part hierarchy (Fig. 88). (Figs. 87-88 are intended as examples to discuss the conceptual
problems – they should not be interpreted as proposals for descriptive information models).

178 Fundamental aspects of description models G. Hagedorn

Leaf

Plant

Lamina (blade)

«property»
Color InstrumentationObjectConditions

CultivationMethods

PreparationMethods

Dried herbarium material

Fresh (turgescent)

Unaided eye

Hand lens

Light microscope

Electron microscopy (EM)

RecordColorChart1Value

Record_sRGB«character»
Leaf lamina color (sRGB)

«basic property»
Fresh plant material color (sRGB)

Object composition:

Spectrometer

(recording
methods
nested in
property
or not?)

ColorNameEstimate
+ToEnglishVernacular()
+ToGermanVernacular()

ColorChart1
+To_sRGB()

ColorChart2
+To_sRGB()

ColorSpectrometrically
+To_sRGB()
+To_ColorChart1()
+To_ColorChart2()

Figure 88. Modified version of Fig. 87 (identical parts are grayed out), adding an interpretation of
the “basic property” concept as combining all concept parts of character concepts except the
object composition part.

Returning to the overall topic (“Description storage models”, p. 104), a comparison between
the distribution of information between terminology and descriptive data storage of the character
plus concept hierarchy model (p. 125, SDD) and character decomposition (Nemisys / Genisys,
p. 117) model may help to clarify the options how ontological information about object parts,
properties, and methods may be realized in actual description models (Fig. 89). Whether a “Part-
Property-Method decomposition model” as proposed in Fig. 89 is a successful pattern for descrip-
tive information models requires further analysis and testing with complex data. In this thesis the
more conservative first model (characters with superimposed concept hierarchies) is generally
preferred.

G. Hagedorn Fundamental aspects of description models 179

...

...

Descriptive Terminology Object Descriptions

... ...

Character reference Char. state reference

DELTA model

SDD concept
hierarchy

(optional extension)

Character type

(Optionally as: Condi-
tions, Instrumentation,
Procedures, Conversion
and Storage methods)

Descriptive Terminology Object Descriptions

Part ref.

Nemisys/Genisys
(Diederich & al.
storage model,

simplified)
Character type

Method

Property ref.

Methods are not discussed by
Diederich & al., but may be assumed
to be implicit in "basic properties"

Char. state reference

Descriptive Terminology Object Descriptions

Part ref.

Alternative
potential "Part-

Property-Method"
decomposition

Character type

Method

Prop. ref.

Categorical state def.

Categorical state def.

Object Part

Object Part

Categorical state def.

Categorical state def.

Object Part

Object Part

Measurement Concept

Property Concept

Object Part Concept

Categorical state def.

Categorical state def.

Property

Character definition

Property

Meth. ref. Char. state ref.

Figure 89. Simplified comparison of a character plus concept hierarchy model (DELTA, SDD), a
character decomposition model (Nemisys / Genisys, p. 21), and a potential part-property-method
decomposition model.

181. Abstract properties and methods interact in complex ways that should be addressed in the

information model. Whether a “Part-Property-Method decomposition model” or multiple
concept hierarchies superimposed on fixed character concepts are preferable needs further
analysis and testing.

180 Fundamental aspects of description models G. Hagedorn

4.13. Federation and modularization of terminology
(This and the following two sections are studied in particular detail and therefore presented as
separate sections at the end of the fundamental requirement analysis.)

Introduction
As discussed above in the section “Structured descriptions and the concept of terminology”
(p. 42), it is unrealistic to assume that a single terminology could be developed that would satis-
factorily cover descriptions of large and diverse groups like plants, fungi, or insects. Similarly,
the terminology for different methods (e. g., morpho-anatomical, physiological, behavioral, mole-
cular) is typically independently developed, and new terminology for newly developed methods
is constantly being introduced. Consequently, existing software for the management of descrip-
tive data enables individual researchers to define the terminology required for their studies.

However, having a large number of independently developed terminologies impedes data in-
tegration (as planned, e. g., for the IdentifyLife project, IdentifyLife 2005). A terminology for
descriptive data is a kind of schema and it is in principle possible to integrate and correlate any
number of terminologies by developing schema mappings and ontologies. Unfortunately, a diver-
sity of opinions exists which term and concept is scientifically the correct one and truly congru-
ent descriptive concepts are rare. As a result, the schema integration will be a laborious task that
ultimately leads only to fuzzy relations.

Furthermore, the development of a correct, practical, and stable terminology for feature-rich
groups requires substantial effort and time. Examples of attempts to develop a “standard termi-
nology” for vascular plants are the TDWG Descriptors subgroup convened by R. Pankhurst up to
ca. 2000, the www.plantontology.org effort (e. g., Pujar & al. 2006 for stages, Ilic & al. 2006 for
structure), or the Prometheus description model (p. 21).

It is therefore desirable that the information model for descriptive data itself provide mecha-
nisms to collaborate and share common terminologies. Requirements and models for this are
being explored in the following.
182. The information model should support management and curation of the descriptive termi-

nology independently of the descriptive data itself.
183. It is desirable to enable curation of different parts of the terminology by different organiza-

tions, in different systems.

Managed federations
The simplest case of federating descriptive data systems is that several projects voluntarily agree
to share common resources. One server might supply the terminology, another server images, and
several other servers descriptions. This model is especially attractive where institutions form a
close collaboration that has a supra-institutional project management. The parts of such a man-
aged federation could either be considered a single project, in which only the physical location of
data is federated, or as separate projects in which different people are responsible for the federat-
ed project parts.

An information model that supports managed federations is believed to require little extra ef-
fort. All parts may simply be structured composition, e. g., in terms of XML documents, the vari-
ous federated parts are simply included fragments combined to a document. Each description
from one of the description servers would be accompanied by the terminology obtained from a
central terminology server and by resource objects from the image resource server. The overall
management would have to provide mechanisms guaranteeing that each part of the federation
fulfills its responsibilities. For example, when improvements in the terminology are required, all
description services may have to be informed and take appropriate actions in updating their data,

G. Hagedorn Fundamental aspects of description models 181

and the image resource service must provide services for depositing resources required in new
descriptions.

The applicability of managed federation models is, however, limited. While optional centrali-
zation is desirable, compulsory centralization is not. As Berners-Lee points out: “Traditional
knowledge-representation systems typically have been centralized, requiring everyone to share
exactly the same definition of common concepts such as ‘parent’ or ‘vehicle’. But central control
is stifling, and increasing the size and scope of such a system rapidly becomes unmanageable.”
(Berners-Lee & al. 2001). To increase the overall interoperability and the productivity in creating
digital descriptive data, it is desirable that description providers may unilaterally decide to use
public terminologies without having to enter into a management agreement with the providers of
these terminologies. This situation differs from managed federations in that the provider of ter-
minology does not know about the consumers of the data, but must still adhere to rigid design
and versioning principles in providing a terminology that can be used as a “standard”. Much of
the following discussion addresses this situation. Managed federation projects will, however, also
benefit from mechanisms intended to support unmanaged federations of terminology.
184. Supporting managed federations is desirable. This may require some data items supporting

management procedures. These are, however, difficult to specify because they strongly
depend on local management practices.

Terminology modules
One desirable model for sharing descriptive terminologies seems to be to support a combination
of local and external terminology definitions. The local terminology provides flexibility in the
case of dissent or new developments, the shared external terminology standardizes descriptive
data and simplifies data integration.

To encourage the widespread adoption of standard terminologies it seems further desirable to
provide for the concurrent inclusion of multiple external terminology “modules”. Limiting the
design of the information model to a single external terminology (Fig. 90 a), would impose an all-
or-nothing constraint. The competition between different terminological definitions will be much
improved if it is possible to link a description project to multiple terminologies, picking the best
part of each (Fig. 90 b). Standardization of terminology would then be the result of voluntary
choices and agreement on convergence due to evolutionary processes.

c) External
Standard

Local
Exten-
sions

a)

Local

External
Standard b)

Local

Standard

3

Standard
2

Standard

1

Figure 90. Options for federating, modularizing, and extending descriptive terminologies. a) The
project uses a single external standard terminology plus locally defined extensions. b) A modular
design integrating multiple standard terminologies and local extensions providing additional terms
(characters, etc.). c) The project uses an external standard terminology, each term of which has
been locally extended, e. g., to support other languages.

182 Fundamental aspects of description models G. Hagedorn

If multiple terminology modules are introduced to the model, the locally defined terminology
could either automatically become another module usable by other projects (symmetric design),
or it could remain distinct from a terminology module intended for shared use. Only terminology
modules explicitly designed as a reusable standard would then be available federation. The ad-
vantage might be that such projects presumably are more careful regarding publishing, version-
ing, and evolving or refactoring their terminologies.

Some potential use cases involving federated terminologies are shown in Fig. 91 (see p. 23 for
information on use case notation). An important point is that besides accepting external terminol-
ogy modules, it may also be desirable to define the relations between one terminology (perhaps a
local one) and another. Many terminological definitions in independently developed terminol-
ogies may be sufficiently identical for the purpose of data integration and comparison.

Define relation between
elements of current and

external terminology

Use external
terminology

Create external terminology
with the aim of becoming a

well-defined standard

Combine or compare
descriptions from
separate projects

Use external
terminology for a new project

Use external
terminology in its entirety

Use modules of
external terminology

Extend external
terminology

Add locally defined
elements supplementing

external elements

Add new audience/language
representations to externally

defined elements

«depends on»«depends on»

Figure 91. UML use case diagram for some use cases involving external (federated) terminolo-
gies. The «depends on» stereotype is not available in standard UML use case diagrams but has
been introduced here.

185. It is desirable to support a combination of locally defined and multiple externally defined

(standardized) terminology modules.
186. It is desirable to distinguish between locally developed terminology modules proposed for

external use, and terminology modules that are considered to be too instable or poorly de-
veloped for such use.

Extending shared terminology definitions
Extending external shared terminology modules with local definitions may occur through the
definition of additional terms (Fig. 90 a, b), or through extending terms imported from the exter-
nal standard terminology (Fig. 90 c). The latter case occurs, e. g., when additional language or
audience representations are added. Obviously, extending the terminology objects bears the dan-
ger of changing the semantics in a way incompatible with the concept of the original term. A
discussion about which components of a terminology object may or may not be changed is thus
advisable.

The components of terminological objects may be classified into definitional (or ‘essential’),
presentational, and assumptional. Only a small part of a terminology is strictly definitional. Ex-
amples are the measurement scale of a character or a frequency value range for a frequency

G. Hagedorn Fundamental aspects of description models 183

modifier term. Strictly presentational components are the sequence of characters or the wording
definitions for natural language reports. An example for an assumption is whether states within a
character are assumed to have an inner order (ordinal scale) or not (nominal scale). The assump-
tion is not definitional insofar as the character and its states may be reliably recognized without
it. However, it has substantial influence on the outcome of statistical or phylogenetic analyses,
and different researchers may want to base their analyses on different assumptions.

The major part of terminological definitions, such as labels and definitional text for concepts,
characters, states, etc. are, unfortunately, a mixture of definitional and presentational compo-
nents. This is most obvious in a multilingual situation. The English representation may be seen as
an “international” definition and the other languages as presentations for non-English speakers.
However, to those speakers, the other language representations are the only means of being in-
formed about the definition and their coding of data will depend on the local representations, not
on the “international” definition.

Whereas few problems arise when centralizing strictly definitional parts of the terminology, it
is desirable to be able to locally change (extend or even override) presentational and assump-
tional parts. The major problem is that no method exists to express semantic definitions of terms
independent of language. Even though ontology languages like OWL (McGuinness & van
Harmelen 2004) map concepts to language-independent URIs, they still express the ontological
concepts only of a specific language. Very few terms in two languages have exactly the same
circumscription and can be used interchangeably. For example, the term “bright” may be trans-
lated to German: “hell, glänzend, blank, leuchtend, strahlend, klar, durchsichtig, heiter, klug,
munter, fröhlich”, all of which have circumscription matching only partly with the English term –
“strahlend” may also mean radioactive.

As a consequence, the most central part of the definition will always also include presenta-
tional aspects. It would be highly undesirable to centralize all labels and definition text and con-
sider them unchangeable. However, whereas purely presentational or assumptional parts may
require changes that contradict the original definitions, the mixed definitional / presentational parts
may only require extensions by providing additional languages. If the standard terminology pro-
vides English labels and definitions, local copies may add German, Chinese, French, Japanese,
Spanish, etc. representations, but may not be permitted to change the centralized English repre-
sentation locally.
187. It is desirable to support extending external standard terminology modules with local

information. The essential definition should not be changed, but it may be extended
through labels or definition text in the local language. Furthermore other information
affecting presentation or assumptions for analysis purposes may be desirable to extend or
change locally.

Terminology modules and class hierarchy
It is conceivable to create a hierarchy of terminology modules (i. e., sets of terminology elements)
that follows a taxonomic hierarchy (Fig. 92). Although the model is attractive, it has several
limitations:
■ Phylogenetic classification is an area of active research, and the taxonomic hierarchy in many

biological groups is not stable. Changes in a taxonomic hierarchy that defines usable termi-
nologies would be difficult to implement once thousands of researchers would use such a
central terminology system on the internet.

■ The characters that are desirable at a higher level for the purpose of identification are not
necessarily phylogenetically informative. A purely phylogenetic design of the taxonomy-de-
pendent hierarchy is therefore not possible. For example, the vegetative stage of a fern like
Marsilea quadrifolia L. may easily be confused with a flowering plant. Thus, even if leaf size

184 Fundamental aspects of description models G. Hagedorn

and shape are too variable to be used for phylogenetic purposes, it is desirable to have them at
a very high taxonomic rank, to support vegetative identification without prior knowledge of
taxonomy.

■ The scientific process of revising taxa is a bottom-up process. The most urgent need for termi-
nology and digital descriptions is present at the level of genus or family. It would be unpro-
ductive to postpone using advanced computer-supported description software until the taxo-
nomic tree is stable and the terminology modules for the higher taxonomic levels have been
agreed upon.

Despite these limitations, a hierarchy of terminology modules designed for taxonomic groups is
desirable and should be supported in the information model. At the moment, however, the taxo-
nomic hierarchy should not be a required element in the organization of the terminology. Instead,
it may be used to label and organize terminology modules that are then manually selected and
combined in a project. Judicious use can limit the danger that may result from changes in parts of
the phylogenetic classification that are poorly understood. For example, it may be desirable to
skip a poorly defined order rank and duplicate a few characters in multiple family terminologies.

Similar to taxonomy-specific standard terminology modules, terminology modules specific to
methods or instrumentation could be defined and standardized. The complete terminology for a
descriptive project could then be a combination of terminology modules (Fig. 93) plus local
terminology extensions.

Class X:

Order 2

Family 3

Genus 6

Morphology

Morphology

Morphology

Morphology

Anatomy

Anatomy

Anatomy

Anatomy

Ultrastructure

Ultrastructure

Ultrastructure

Ultrastructure

Physiology

Physiology

Physiology

Physiology
Figure 93. Combining multiple terminologies (“character definitions”) can also be useful to com-
bine characters defined for different methods and add them to the current project as needed.

Order 2Order 1

Family 2 Family 3Family 1

Class X

For example, the full
terminology available for

a species in "Genus 6"
 would be:

Class-X-specific set

Order-2-specific set

Family-3-specific set

Genus-6-specific set

Genus 5 Genus 6Genus 3Genus 2Genus 1 Genus 4

(each circle symbolizes a set
of terms, e. g., characters)

Figure 92. Example for a hierarchy of terminology modules that follows a taxonomic hierarchy.
Additional taxonomic ranks may be present above, below, and in between those depicted here.
Note that even species-specific terminology would be conceivable, e. g., to distinguish infraspeci-
fic taxa.

G. Hagedorn Fundamental aspects of description models 185

188. It is desirable to express the scope of terminology modules relative to the taxonomic
hierarchy. Application may use this information to manage availability of terminology
items for different taxa.

Models to support multiple distributed terminologies
Three basic approaches to connect local descriptive data with standardized terminologies can be
distinguished:
■ The namespace model, in which the standard terminology resides entirely on the internet and

is only referenced in the local terminology. A local cache may be present, but no local
changes or extensions are possible (Fig. 94, right side).

■ The template model, in which a standard terminology is copied to a local terminology and
can then be changed. Provided some kind of identifier remains unchanged in the copy, the
identity of origin may then be used for data integration. However, without human control the
local changes may substantially change the semantics of the terminology up to the point where
data integration is no longer sensible (Fig. 94, left side).

■ The declarative model, in which the terminology is defined locally, but the developer de-
clares that the definition of a given term (character, state, etc.) follows a published standard.
This may be achieved by citing a standard identifier or reference, version, plus a specific code
for each term from the standard.

Use external
terminology for a new project

Copy external
terminology

Link to external
terminology

Locally store an
updatable cache«extend»

«extend»«extend»

Figure 94. External terminology may be copied or linked, the latter optionally with a local cache.
Compare also the general use case diagram (Fig. 91).

Namespace model: Standard terminologies could reside on multiple servers on the internet and
could be used directly from there (Fig. 95). This is similar to the use of multiple XML name-
spaces (with a schemaLocation as a resolution method) in a single XML document. Given that
online internet connections may be expensive, unreliable, or even unavailable (e. g., on a note-
book in the field), a mechanism to locally cache external terminologies is desirable.

Using a namespace model, a standard terminology module would always be included in its
entirety. This may be acceptable if each standard is split into small modules (e. g., separate mod-
ules for methods / instrumentation) so that the amount of unnecessary terminology that may con-
fuse users is minimal. Alternatively, the information model could provide a local mechanism that
allows defining subset views on the standard terminology.

186 Fundamental aspects of description models G. Hagedorn

Service X Service Y

User Project

Internet connection

Local terminology

Figure 95. Network namespace model for federated terminologies. Multiple standardized
terminologies are stored on the internet and used directly from there. Only terms not defined in a
standard are stored in a local terminology.

The disadvantages of the namespace model are:
■ The standard terminology modules would have to be available before the work on a project

begins. It is difficult to combine this model with locally defined terminologies. If local termi-
nologies overlap with only recently developed standard terminologies, the descriptions have to
be ported to make use of the new standard terminology. The model itself provides no mecha-
nism to do this gradually.

■ A similar problem may arise, if a new version of a standard is published. A new version that is
not fully backwards compatible would not replace an existing standard, but would be added as
a new namespace. Changing the referenced standard itself is feasible only in very limited cir-
cumstances, since any substantial changes would invalidate the descriptions that use the older
definitions.

■ Standards could be published only digitally. This may be acceptable if all programs use a
common exchange standard format. As long as multiple formats are used, and given the on-
going importance of printed publications as long as digital publications are too unstable to
guarantee retrieval at a future date, this is, however, undesirable.

Template model: If one or several standard terminologies are used in a new project, they can be
copied from templates that are available from a library of standard terminologies (Fig. 96). To
trace the definition of a character back to the standard template it originates from, an explicit
mechanism such as a Globally Unique Identifier (GUID) is required to remain unchanged in each
term.

Once a template is copied into a local terminology, it can (and usually needs to be) changed.
In these cases great care must be taken that the changes do not lead to situations where the hu-
man-readable definition in character or states contradicts the semantics of the original definition
in the standard used as a template. The developers of terminology are ultimately responsible that
the terminological concepts perceived by users using the terminology for coding and identifica-
tion remain sufficiently similar to the concepts defined in the standard terminology template.

G. Hagedorn Fundamental aspects of description models 187

local
extensions

selected from
standard 3

selected from
standard 2

selected from
standard 1

Service X Service Y

(copy standard templates from
internet, perhaps selecting a subset)

Standard
1

Standard
3

Standard
2

User Project

Figure 96. Template model for federated terminologies. Several terminology modules are copied
from templates and can then be changed similar to local definitions.

Declarative model: In this model any terminology is primarily developed locally. Wherever
possible, the developer adds an explicit declaration that the concept of a local character or state
conforms to the concept of a character or state in a standard terminology (Fig. 97). The declara-
tion should consist of an identifier or a reference for the standard, the version of the standard, and
a reference to the individual term. These elements may be combined, so that a single Globally
Unique Identifier (GUID) may include the information on the term, the standard it is contained
in, and the exact version of the standard. The standard could be identified through a URL, or
through text citing a printed publication. The advantages of this approach are:
■ Unlike in the namespace model, external standard terminologies are not required to have a

specific format (e. g., SDD).
■ The external standard may even be a conventional, printed publication. Printed and digital

standards could exist side by side.
■ A smooth transition of existing data sets towards increasingly standard-conforming data is

possible, since the declarations can be made individually for single terms (character, states)
rather than being restricted to entire terminologies.

■ The process explicitly supports the process of migrating from existing terminologies to newly
developed standard terminologies, or from older to newer standard versions.

Disadvantages are:
■ No automatic discovery mechanism for possible relations to standards is anticipated. The ma-

chine-readable data-integration mechanism depends entirely on human comparison of local
and standard concepts.

■ Developing a local terminology for a given group involves substantial work and often many
revisions to correct for initial errors in the terminology.

These points can be addressed by combining the declarative model with a template model, copy-
ing a ready-to-use terminology module, but maintaining the publicly visible declarative refer-
ence. If the designers of the terminology detect that they are changing a term in a way that the
local and the standard concepts differ, they may remove the declarative reference to indicate this.

188 Fundamental aspects of description models G. Hagedorn

Standard
1

Standard

3

Standard

2

Local
Terminology

User Project

Figure 97. In the declarative model each term of the local terminology contains, among other
data elements, an optional reference to a standard terminology. This reference is set by the de-
signers of the terminology to declare that the local concept is identical with the concept in the
standard. The standard may be available directly in digital format, or may be published in a
printed publication. If the declarative model is combined with a template model, the reference will
already be set for those parts copied from a standard template.

189. Terms in the terminology modules should be identified by GUIDs.
190. It is desirable that the relation between locally defined terms and external standard

terminology modules can be expressed through GUIDs. The relation may be of several
kinds: e. g., “copied from template”, believed to be “similar” or “essentially identical”.

Conclusions
A desirable solution that is both flexible and efficient seems to be a combination of the declara-
tive and the template model. This may allow the evolutionary term-by-term mapping of existing,
locally defined terminologies towards standardized and shared terminologies, while at the same
time profit for new terms from the work invested into standard terminologies. New terms could
be used as templates and would – in addition to including many presentational or assumptional
elements – already contain the declarative information required to map to a standard, making the
laborious and error-prone ontology-mapping process no longer necessary.

By referring to published and standardized core terminologies it will be possible to create fed-
erated descriptive data collections, where multiple independent sites store descriptions that can be
compared or integrated. The use of Globally Unique Identifiers (GUIDs) even allows one to di-
rectly join terminologies based on ID identity, requiring no online access to the standard termi-
nologies to which they ultimately refer (Fig. 98).

In the future it is to be hoped that a large library of reusable and tested terminology modules
for a wide variety of biological groups and methods will become available. Not all such modules
need to be declared a “standard”; becoming a standard could be an evolutionary process of de-
mand and acceptance. Researchers starting to develop descriptive data sets for groups of organ-
isms where no “standards” exist could yet use previous work as a template and revise existing
definitions rather than start from scratch.

To the author's knowledge no library of terminology definitions exists so far. Even for the
DELTA standard only a handful of reusable character definitions can be found on the web, since
most “DELTA” data are actually the binary, encoded Intkey data usable only for identification
but not as a template for further character development.

G. Hagedorn Fundamental aspects of description models 189

Service Y

Local
Termi-
nology

Local
Termi-
nology

Descrip-
tions
using

project
termi-
nology

Joint
Termi-
nology

Descrip-
tions
using

project
termi-
nology

Con-
sensus
descrip-

tions

Service X

Figure 98. Consensus terminology created by a join of multiple terminologies from multiple sites
on the internet. The descriptions can then be used and queried across database borders. The
join shown is an outer join, so that no descriptors are dropped. Only the matching descriptors can
be used together. Alternatively, the terminology could be reduced to matching descriptors (inner
join).

4.14. Modifiers
Introduction
Composition (part-of) and generalization (kind-of) ontologies for object parts (structures), prop-
erties, and measurement methods have been discussed in the previous sections (p. 131 ff). When
studying an actual example, however, it appears that several aspects of descriptive data are in-
adequately covered by these ontologies:

“Subgenus Myrmeurynota FOREL. Pronotum very broad, with a lateral, lamelli-
form margin, often vaulted. Thorax rapidly narrowing behind. Epinotum very
narrow at its sloping face, which often has a peculiar appendage. Gaster broad,
short, and small, sometimes more or less spherical. Probably arboreal.” (Ant de-
scriptions by Wheeler, example provided by R. Morris, potential modifiers em-
phasized.)

These terms may be called modifiers of frequency, certainty, degree, and location. As discussed
above (see, e. g., Fig. 89, p. 179), descriptive information often may variously be placed in termi-
nology or descriptions. The options available for handling modifiers are:
■ Modifiers are embedded in the character or state terminology.
■ Modifiers are freely added to the descriptions as unconstrained text annotations (“com-

ments”).
■ Modifiers are added to descriptions in a structured form, constrained by and referring to a

separate mechanism in the terminology.
In classical DELTA (p. 19), only the first two options are available (Fig. 99 top). The second
option is impractical for frequency or certainty modifiers, if the data are intended for identifica-
tion or analytical purposes (is the stem of a specimen “frequently hairy”, “rarely hairy”, “proba-
bly hairy”, or “perhaps hairy”?). In contrast, modifiers of degree may be embedded in states (for
a character: “Stem (hairiness)” the states could be: “not hairy”, “hairy”, “slightly hairy”, “strong-
ly hairy”, and “hairy at the tip”. However, this is often unsatisfactory, causing an inflation of

190 Fundamental aspects of description models G. Hagedorn

character states that have complex relationships among each other. Consequently, in DELTA data
sets the preferred method of expressing modifier information is the use of free-form text com-
ments. The problems with doing so are:
■ Important information is not accessible to machine reasoning (except perhaps by sophisticated

natural language processing). For example, for identification processes, frequency, certainty,
and misinterpretation information is relevant but difficult to obtain from unconstrained text.

■ Interpreting the use of similar, perhaps synonymous modifier phrases is difficult. For example,
“often” and “usually” may express the same or different frequency concepts.

■ When creating multilingual data sets, allowing people from different cultures to collaborate,
comments must be translated in each description rather than a single time in the terminology.
Treating modifier information as free-form text comments drastically increases the number of
comments, causing a heavy translation burden (60-90% of free-form comments are typically
modifier-related, unpubl. analyses of DELTA data sets).

...

Char. ref.

DELTA
model

Categorical state def.

Categorical state def.

Character definition

...

Object Descriptions

Char. ref.

... ...

Char. state ref. Free-form text annotation

DeltaAccess/
SDD model

Categorical state def.

Categorical state def.

Character definition

Modifier definition

Object Descriptions

...

Modifier ref.

...

Char. state ref.

...

Free-form text

Modifier

Modifier

Modifier set

Modifier

Modifier

Modifier set

Descriptive Terminology

Descriptive Terminology

Figure 99. Simplified comparison of DELTA-like and DiversityDescriptions / SDD models in regard
to modifiers and free-form text annotations.

The option to add structured modifier information (constrained by a separate modifier terminol-
ogy) is not available in classical DELTA but has since been proposed in various descriptive in-
formation models (see below). Such an additional, independent dimension of terminology can
strongly simplify a scoring scheme (Fig. 100). Structured modifiers (as provided in Diversity-
Descriptions and SDD, Fig. 99 bottom) have many advantages:
■ Modifiers provide flexibility in the level of detail that is recorded. They decouple the level of

detail imposed by the character definition from levels of detail provided in data or chosen for
various analysis purposes.
□ By initially ignoring modifier information, a coarse view of descriptive data is often desir-

able during identification to concentrate on major issues.
□ In data analysis one may choose between a coarse analytical treatment (ignoring frequency,

uncertainty, and minor modifications of degree or location), and a detailed analysis where

G. Hagedorn Fundamental aspects of description models 191

values with different modifiers are considered to be different. In conventional DELTA this
decision must be made when the character definition is elaborated.

■ Machine-readable frequency and certainty information can be evaluated by identification
algorithms.

■ When aggregating information (e. g., from specimens to species, or species to genus descrip-
tions), modifiers can generally be handled better than free-form text comments. Without NLP
methods, comments can only be concatenated, whereas modifier identity or differences can be
analyzed and appropriately aggregated.

■ By reducing the number of free-form text comments, they simplify the translations of a data
set. Similarly to characters and states, modifiers must be translated only once for all descrip-
tions, and not per-description like comments in the description.

■ If the designer of the character and modifier terminology has options to impose (constraining
the validity of data) or recommend (accepting or ignoring recommendations has no impact on
the validity of data) associations between characters and modifiers, additional benefits arise.
For example, it is possible to provide concise modifier pick lists in the data entry user inter-
face, containing only modifiers applicable to the current character.

[No separate modifiers available]
(e. g., as in DELTA)

[Partly delegated to modifiers]
(e. g., as in DiversityDescriptions)

Spore appendages
 Appendage presence/frequency
 1. without appendages
 2. rarely with appendages
 3. usually with appendages
 4. always with appendages
 Diameter [] (µm)
 Diameter at base [1.4] (µm)
 Diameter at middle [] (µm)
 Appendage tip
 1. blunt or rounded
 2. pointed
 3. strongly pointed

 Spore appendages
 Appendage presence
 [usually] 1. present
 [] 2. absent
 Diameter [at base] [1.4] (µm)
 Appendage tip
 [] 1. blunt or rounded
 [strongly] 2. pointed

Figure 100. Excerpt from a scoring scheme for fungal spores. The left side illustrates several
cases that can be simplified with the introduction of modifiers (right side).

Definition
The term “modifier” is used in natural language and has a specific meaning in grammar (Table
45). Both senses are in agreement with the usage proposed here in descriptive data. “Qualifier” is
approximately synonymous with modifier and could be used instead of “modifier”. The different
use of qualifier in UML is clearly very specific and would cause no confusion (Table 45). How-
ever, no advantage of “qualifier” over “modifier” can be seen either. According to CED (1992),
“modifier” is the preferred term for the grammatical concept, and it has been used in descriptive
information models for some time now (Hagedorn 1997).
As shown in the definitions, a modifier may either be a noun in a composite noun or an adjectival
or adverbial word or phrase. In natural language, many character states are expressed as adjecti-
ves of the objects being described (exceptions are “kind-of” states, such as: fruit = capsule,
berry, nutlet, etc.). As a consequence, in English many modifiers take the form of adverbial
modifications of these adjectives. Many types of adverbs commonly distinguished in English
grammar correspond to potential modifier categories:
■ Adverbs of place and time: “stem hairy at the tip”, “leaves glossy towards the tip”, “stem

hairy in upper half”, “stem diameter at the base 8-15 mm”, “flower violet (when mature)”,
“stems glaucous (in spring)”;

■ Adverbs of frequency: “usually”, “rarely”;

192 Fundamental aspects of description models G. Hagedorn

■ Adverbs of probability: “probably”, “perhaps”;
■ Adverbs of manner: “twigs breaking easily”, “leaves rotting slowly”;
■ Adverbs of degree: “slightly rough leaves”, “strongly pointed tip” (other examples: “almost”,

“completely”, “extremely”, “hardly”, “nearly”, or “particularly”).

Table 45. Examples of dictionary and UML definitions for “modifier” and “qualifier”.

Term
Collins English Dictionary
(CED 1992)

Merriam-Webster’s Collegiate /
New Oxford Dictionary (EB 2001)

UML 1.5 definitions
(OMG 2003)

Modifier
(noun)

1. Also called: qualifier. Grammar:
a word or phrase that qualifies the
sense of another word; for ex-
ample, the noun alarm is a modifier
of clock in alarm clock and the
phrase every day is an adverbial
modifier of walks in he walks every
day. 2. a person or thing that
modifies.

1. a person or thing that makes partial or
minor changes to something. – Grammar:
a word, especially an adjective or noun
used attributively, that restricts or adds to
the sense of a head noun (e. g., good and
family in a good family house). – Genetics:
a gene which modifies the phenotypic
expression of a gene at another locus.

(not used in UML)

Qualifier
(noun)

1. a person or thing that qualifies,
esp. a contestant in a competition
who wins a preliminary heat or
contest and so earns the right to
take part in the next round. 2. a
preliminary heat or contest. 3.
Grammar: another word for modi-
fier (sense 1).

1. a person or team that qualifies for a
competition or its final rounds. – A match
or contest to decide which individuals or
teams qualify for a competition or its final
rounds. 2. Grammar: a word or phrase,
especially an adjective, used to attribute a
quality to another word, especially a noun.
– (In systemic grammar) a word or phrase
added after a noun to qualify its meaning.

An association attribute
or tuple of attributes
whose values partition
the set of objects related
to an object across an
association.

Modifiers in natural language may occur before the character wording (e. g., “upper stem leaf
hairy”), between character and state wording (e. g., “leaf strongly hairy”, “leaf margin hairy”) or
after the state wording (e. g., “leaf hairy on veins”). In “basal leaves in spring”, “basal” and “in
spring” may be called a pre-modifier and a post-modifier, respectively. In the case of coded de-
scriptions this becomes merely language-specific metadata for natural language output.

An exact definition of the concept of modifiers in the context of descriptive information models
is not easy. Both an intuitive and a more formal attempt are given:

Informal: A modifier is a unit of information that adds detail (or constraints) to the
statement to which it is applied. When the modifier information is ignored, the original
statement must retain a substantial, albeit more general meaning. A modifier may be
applied to statements already modified. Modifiers themselves are constrained by a
terminology.

More formal: A modifier is a unary function applied to a proposition, resulting in a
modified proposition. Modifiers may be applied to modified and unmodified propositions.

Especially modifiers of probability / certainty, but perhaps modifiers in general may be considered
as an application of modal logic in the broad sense (i. e., including temporal logic, conditional
logic, etc.; see Stanford Encyclopedia of Philosophy 2003). Modifiers may be thought of as
bringing simple predicate-subject descriptions into a modal form.

This topic needs further study.

Current usage of modifier-related concepts
DELTA and New DELTA: Although the need for modifications of character state × entity in-
stances was recognized (Dallwitz 1980), the provision of free-text comments (Fig. 99 top) was
considered sufficient at the time. Proposals for a revised “New DELTA” (p. 20) did include sev-
eral additional mechanisms, called “coded comments”. Some of these are related to modifiers:

G. Hagedorn Fundamental aspects of description models 193

■ Two forms to express probability or frequency values (“<@probability x>”, “<@x%>”).
These can be combined with a free-form text like “frequently” or “usually”, but do not replace
them. An exception is “rarely” which is available as a system-defined coded comment
(“<@rarely>”). No other frequency categories are defined in “New DELTA”, nor can they be
defined by the content authors. It is not possible to distinguish between probability based on
frequency, and probability based of uncertainty estimates.

■ The coded comment “<@about>” for quantitative numeric data as a system-defined
approximation modifier.

■ The coded comment “<@?>” to mark guessed values, essentially a system-defined “proba-
bly”. No other certainty modifiers (such as “perhaps”) are available.

■ The coded comment “<@reliability x>” to modify the reliability defined for the character in
the terminology in a specific description.

Further coded comment mechanisms in “New DELTA” support information about values that are
inherited or calculated along the taxonomic hierarchy (“<@up>”, “<@down>”), supply hidden
notes not visible in natural language output (“<@note: text>”, replacing the DELTA ‘inner com-
ment’ mechanism), and specify alternative character values for particular applications (“<@use
n: s>”). These are all unrelated to the concept of modifiers.

The coded comment system of New DELTA is not extensible, only modifiers defined in the
standard may be used.

NEXUS (p. 18): For categorical data, NEXUS supports counts or frequencies if the subcom-
mands “StateFormat=Frequency” or “StateFormat=Count” are given). All entries in the “Data,
Matrix” block then must be enclosed in parentheses. For example, in “taxon_1 (0:0.25 1:0.75)
(0:1.0 1:0.0 2:0.0)” the first character is polymorphic with states ‘0’ and ‘1’, the second
monomorphic with state ‘0’ and alternative states ‘1’ and ‘2’. No other forms of modifiers (or
free-form text comments) are available in NEXUS.

DiversityDescriptions (Fig. 99 top): At about the same time when the New DELTA was ini-
tially proposed, a generalized modifier concept was developed in DiversityDescriptions. Already
the first version (Hagedorn 1997) included a flexible concept of user-definable, reusable modifi-
ers. Modifiers were defined in a single list for an entire project (Table 46), with a separate list
defining the applicability of modifiers to characters. In descriptions, only applicable modifiers are
selectable for a given character. For categorical characters, the list of states and the list of appli-
cable modifiers can be freely combined in descriptions.

Modifiers were categorized into usage categories (which could be used when defining the ap-
plicability of modifiers to characters) and a number of properties could be defined for each modi-
fier (influence on character value reliability, output in natural language before or after the value,
and with or without a blank). A template definition of modifiers was provided as a convenience
to content authors, but modifiers could be freely added or deleted.

The “usage categories” of DiversityDescriptions are unordered sets; it is not generally possi-
ble to define a ranking within such a set. In newer versions of DiversityDescriptions, a ranking
can be indirectly defined for frequency modifiers through a quantitative frequency interval (attri-
butes “LowerFreq”, “UpperFreq”, not shown in Table 46). As a result of the discussions in the
SDD group, later versions of DiversityDescriptions further added the concept of misinterpretation
modifiers (see below, p. 209) pioneered by CBIT Lucid / Lucid3.

Both the list of modifiers (Table 46) and the usage categories are fully extensible in Diversity-
Descriptions, separately for each project.

194 Fundamental aspects of description models G. Hagedorn

Table 46. Excerpt from template modifier definitions in DeltaAccess / DiversityDescriptions 1.0
(Hagedorn 1997; later versions added additional concepts).

Usage
class* Modifier

Relia-
bility*

Post-
fix*

Use*-
Blank

Usage
class Modifier

Relia-
bility

Post-
fix

Use-
Blank

Frequ- almost never 1 no yes Location at the base 5 no yes
 ency rarely 1 no yes at the apex 5 no yes
 sometimes 2 no yes near the base 5 no yes
 often 4 no yes near the apex 5 no yes
 mostly 4 no yes toward the base 5 no yes
 frequently 4 no yes toward the apex 5 no yes
 usually 4 no yes in lower part 5 no yes
 almost always 4 no yes in upper part 5 no yes
 … in lower half 5 no yes
General just 5 no yes in upper half 5 no yes
 ca. 2 no yes anterior ones 5 no yes
 much 5 no yes posterior ones 5 no yes
 nearly 3 no yes …
 almost 4 no yes Morpho- finely 5 no yes
 about 4 no yes logy distinctly 5 no yes
 normally 4 no yes narrowly 5 no yes
 ? 1 yes no broadly 5 no yes
 probably 1 no yes broad 5 no yes
 slightly 5 no yes bluntly 5 no yes
 somewhat 1 no yes faintly 5 no yes
 scarcely 3 no yes sub 5 no yes
 very 10 no yes sub- 5 no no
 … minutely 5 no yes
Time early ones 5 no yes …
 soon 5 no yes Color dark 4 no yes
 later 5 no yes light 4 no yes
 late ones 5 no yes dull 4 no yes
 earlier 5 no yes pale 4 no yes
 … …

* Usage class = broad categorization of modifiers. Reliability = expression allowing a modifier to influence the reliability
score of the base statement or character. Postfix = in natural language, the modifier is rendered after the modified
statement (else before). UseBlank = the modifier is connected with the statement using a blank. Compare p. 347.

CBIT Lucid (p. 21, Fig. 101 top): The absence of structured mechanisms to express fre-
quency and misinterpretation information was a major reason for the developers of Lucid to de-
velop a proprietary exchange format instead of using DELTA (K. Thiele, pers. comm.). Lucid
contains a small set of value modifications, namely “rare”, “misapplied”, and “uncertain”. This
list is not extensible because it is part of the character scoring mechanism inside the data matrix
(i. e., modifications are not added to a score, but implied in the alternative score options: “absent,
present, unknown, rare, commonly misinterpreted, and rarely misinterpreted”). Note that no “of-
ficial” documentation of the LIF format was found; the information given here is inferred from
data sets analyzed (Leary & Hagedorn 2004) and confirmed by K. Thiele (pers. comm.), one of
the main designers of Lucid. In his comparison, Dallwitz (2006d) records Lucid as having “value
is unknown”, but no “value probability” (i. e. “uncertain”) modifier. Lucid indeed calls the modi-
fier in question “unknown”. If all states of a character are scored such, the result will indeed be
equivalent to a coding status value “unknown” for the entire character (no data have or could be
observed, see p. 74). However, if some states are scored normally and others as “unknown”, the
result will be best interpreted as these states being “uncertain”. The developers of Lucid support
this interpretation of “unknown” when they state that “Lucid can encode uncertainty for a state,
while in DELTA uncertainty can only be encoded for a character” (http:// www.lucidcentral.org/

lucid3/lucid_translator.htm). Lucid supports no unconstrained text, so that all expressiveness is
limited to the three modifiers supported, and to modifiers embedded in the character or state defi-

G. Hagedorn Fundamental aspects of description models 195

nitions. This design decision makes Lucid simple to use for identification purposes, but limiting
when aiming for comprehensive natural language descriptions.

XPER and XPER2: These programs (tested March 2007, latest version XPER2: 1.70) do not
support modifier concepts. XPER2 supports unconstrained text on character data (“descriptors”),
but not on individual state scores. This makes it difficult to express state-specific modifier infor-
mation the way the original DELTA does.

Nemisys / Genisys: The mechanism of modifiers is related to the “name-extension” mechanism
(Fig. 101 bottom) proposed in Diederich (1997) and Diederich & al. (1997). A name-extension
modifies the semantics of either the part (i. e. “structure”) or the property name of a character. It
is proposed as a mechanism to curb the explosions of the number of characters that may occur
otherwise; e. g., Fig. 9 in Diederich (1997) lists eleven different ways of measuring body diameter
of nematodes.

Although both constituents of the decomposed character potentially need modification in a
single character, according to Diederich (1997) only a single data element exists for the “name-
extension”. Thus either structure or property, but not both may be modified. The examples given
in the tables in Diederich & al. (1997) seem to support this interpretation, making “name-exten-
sions” and modifiers rather similar (compare examples given in Table 47). Some guidelines are
given in Diederich & al. (1997) indicating that modifiers referencing structural terms (at mid-
body, at anus) are to be constrained to existing, defined structures, and extensive guidelines are
given on the use of spatial modifiers (anterior / posterior etc.). No similar guidelines are given for
non-structural modifiers.

Table 47. Examples of use of name-extensions from Diederich & al. (1997).

Structure Structure extension Substructure Property Property extension State
Excretory pore – – position relative to {median bulb, nerve ring} anterior
Stylet – – length {along the axis} (value)
Body – – diameter {at mid-body, at stylet,

at Vulva, at Anus}
(value)

Body {anterior part,
posterior part}

Lateral fields orientation – symmetrical

As defined above, “name-extensions” are meant to modify only structure or property terms,
not quantitative values or categorical states. Consequently, no equivalents for frequency of prob-
ability modification (“rarely”, “perhaps”, etc.) are discussed in the Nemisys / Genisys model.

It remains unclear whether a separately defined, reusable modifier terminology is intended or
not. Diederich (1997) states that “Instances of basic properties maintain a list of name exten-
sions”, and “when a character is created, an instance of a basic property is created”. However,
Diederich (1997) does not distinguish between character variable (terminology) and character
data (description); the term character may refer either to “(biological structure, property, state /

value)” or to “(structure name, property) tuples, ignoring the states”. Thus, the statement may
refer either to constraining name-extensions in descriptions by a list of defined extensions in the
terminology, or to a model where within each description, a list of multiple name extensions is
allowed.

“Name extensions” are further used to represent the additional information necessary for
Diederich and Fortuner's “relational properties” (e. g., “presence-at …”, requiring a second struc-
ture, see Table 9, p. 63 and compare “Relational characters revisited”, p. 122). One may view “re-
lational properties” as properties that are constrained to require a structural modifier. It is unclear,
whether in this case the “name extension” is limited to defined structure terms, or whether it is in
fact considered free-form text, allowing a combination of modifier and related-structure informa-
tion. In the first case, it may be difficult to express a relation to a part of a structure that would
otherwise require a modification. Furthermore, the main structures in the Nemisys / Genisys model

196 Fundamental aspects of description models G. Hagedorn

are divided into structure and substructure, whereas name extension is a single data element,
again pointing to the interpretation that the name extension is originally designed as a free-form
text element.
Prometheus description model (p. 21): This character decomposition model elaborates and re-
fines the Nemisys / Genisys proposals. The name “modifier” is explicitly used for the Nemisys /

Genisys “name extensions” and the missing concept of frequency modifiers (certainty seems to
be not mentioned, but would be a simple extension of the model) is added. Similar to the Nemi-
sys / Genisys name extensions, Prometheus modifiers have a dual nature:
■ A basic type of modifier modifies an otherwise complete statement: How frequently was

something observed, when was it observed in time, or where exactly was something observed
within a structure. Pullan & al. (2005) further distinguish:
□ Simple categorical modifiers (they only name frequency as an example); these may be

stored directly as an attribute of a description element.
□ Modifiers which modify a statement by reference to a spatial or temporal “landmark” (ex-

amples: modifier = “at” + spatial landmark = “breast height” or modifier = “during” + tem-
poral landmark = “summer”). In this structure, the modifier part will only take very few
values (e. g., “at, below, above” or “after, before, during, or while”). It seems implied that
this information cannot be stored as part of description elements but requires a separate
data structure.

■ An entirely distinct type, the relative modifier combines two existing description elements
(rather than referring to one), and either expresses knowledge about relative order or rank
(supporting the fixed operators “>, ≥, <, ≤, =, ≠, ratio-of”), which may be combined with a
value. Using this method information such as “leaf width > length”, or “petal length > 2 ×
sepal length” may be expressed.

The second concept is related to the use of name extensions together with the “relative proper-
ties” in Nemisys / Genisys. The solution is, however, different and more general. Whereas in Ne-
misys / Genisys the name-extension would be used to complete an otherwise incomplete single
statement in a single record, Prometheus seems to introduce a concept of non-scored or non-val-
ued “description elements” (i. e., a part-property-value tupel without a categorical or quantitative
value). Two such description elements (valued or unvalued) are then combined with a relative
modifier, to form a new statement. Table 48 is an attempt to illustrate the proposed solution.

It is debatable whether this is appropriately called a “modifier”. The Prometheus “relative
modifiers” are structurally completely different from the basic modifiers, and it remains unclear
which information they modify – they rather create an entirely different form of statement. It
does not meet the definition of modifiers proposed here, and neither does any of the dictionary
definitions of “modifiers” cited above support calling comparison operators “modifiers”. Pullan
& al. (2005) themselves explicitly state the requirement that “when querying descriptions, it is
possible to ignore these modifiers without detrimental effects to the results.” This requirement is
clearly violated by “relative modifiers”.

Further problems with the concept of relative modifiers are:
■ It is unclear how a statement combining a ratio and a relative operator “length-width-ratio >

2.0” (a frequent form in mycology) is handled. This problem seems to indicate that handling
comparison operators and functions in a single data element is inappropriate.

■ Pullan & al. (2005) in their Figure 2 explicitly mention a requirement for a “Defined Unit”
(i. e., measurement unit, like cm) for relative modifiers. This requirement needs further study:
ratio- or comparison statements should normally always be dimensionless and no example for
a relative modifier requiring a measurement unit was given.

Returning to the basic modifiers, it is debatable whether the distinction between simple and
landmark-modifiers is justified. The separation of spatial modifiers into two parts (modifier plus
landmark) is clearly often advantageous since defined structural terms can be reused (“stem
hairy” + “at” + “tip”, “base”, “middle”, “inflorescence”). However, the quoted example of “at” +

G. Hagedorn Fundamental aspects of description models 197

“breast height” already indicates spatial modifier landmarks will not always be a natural part of
the part-of vocabulary used in character decomposition (other example: “width” + “at” + “widest
point”). In the case of temporal modifiers the landmark vocabulary will even be less reusable
(e. g., “nightfall”, “fruiting”, “first flowering”, or “spring after cutback”). However, if a separa-
tion into two data elements is already introduced for spatial modifiers, reusing it for temporal
modifiers is logical. It remains unclear in the model, in which part of the terminology landmark
terms (special spatial as well as temporal ones) will be defined, and whether separate data struc-
tures are envisioned for this.

None of frequency, spatial or temporal modifiers (e. g., frequency, distance along stem, or
time of day) may carry a quantitative expression in Prometheus; quantitative values are reserved
for relative modifiers.

Table 48. Interpretation of the structure of relative modifiers, based on information in Pullan & al.
(2005). Note that description elements may or may not have values. Note the interpretation of
“value” in the modifier entity differs strongly whether expressing is length / width = 2.1, or length ≥
2 × width.

Description elements:
ID Structure Property Value Meas. Unit
1 Leaf Length 5.1 cm
2 Leaf Width
3 Sepal Length
4 Petal Length 7 mm

Relative modifier-statements:

Example Source
(ref. to ID)

Destination
(ref. to ID)

Operator Value Meas. Unit

1 1 2 Ratio 2.1
2 1 2 ≥
3 1 2 ≥ 2
4 3 4 > 2

Lucid
model

Nemisys/
Genisys

(Diederich & al.
storage model,

simplified)

Categorical state def.

Categorical state def.

Object Part

Object Part

Categorical state def.

Categorical state def.

Property

Character definition

Object Descriptions

Object Descriptions

...

Part ref.

...

Property ref.

...

Char. state ref.

...

"Name extension"

"Name extension" seems to be related to
modifiers; it remains unclear, however, whether
it is to be constrained by a terminology or not.

?

...

Character state reference

...

"Kind of score"

Descriptive Terminology

Descriptive Terminology

Figure 101. Simplified comparison of CBIT Lucid3 and Nemisys / Genisys models in regard to
modifiers and free-form text annotations. Compare Fig. 89 (p. 179) for additional information
about the Nemisys / Genisys model.

198 Fundamental aspects of description models G. Hagedorn

SDD (p. 20) defines modifiers as part of the descriptive terminology. These modifiers are
grouped into sets of modifier concepts. In descriptions, character data may be modified by refer-
ring to these defined modifier concepts. SDD also supports the unconstrained free-form text for
individual character state scores, replicating the functionality present in DELTA.

Modifiers were intensively discussed in the SDD group and repeatedly changed. In SDD ver-
sion 1.1, the main concept ontology, which is also used to create character hierarchies, is also
used to define modifiers. Thus a hierarchy of modifier concepts may be created, e. g., with seve-
ral different sets for frequency modifiers. Modifier concepts may contain a special specification,
whether the sequence of modifiers defined within a concept is considered to be significant (“or-
dered=true”, as in ‘weakly’–‘moderately’–‘strongly’) or not. With “ordered=false”, the sequence
of modifiers is intended for display purposes only and carries no additional semantics.

Both the concepts (modifier sets) and individual modifiers are fully user-definable and not
constrained by SDD. However, to support application interoperability and identification proc-
esses, this is complemented by two modifier specification attributes: A modifier Class, with an
enumerated list of values (see Table 49), and a quantitative range, that, depending on the modifier
class, is interpreted as a quantitative frequency, certainty, etc. estimate. Modifier classes have
been defined where a quantitative range was considered desirable, or where modifiers are expec-
ted to influence data analysis and identification processes (especially, frequency, probability, and
misinterpretation). The modifier class “Other” is left undefined, to support any future uses of
modifiers.

Table 49. Enumerated modifier classes in SDD 1.1 (based on annotations in the SDD schema).

Class Description Interpretation of Proportion
Frequency Frequency modifier.

Examples: “rarely, occasionally, usually”.
Values specify a frequency range

Certainty Certainty modifier. Examples: “perhaps, probably”. Values specify a certainty range
Seasonal Seasonal modifier. Example: “in spring”. Values specify a season of the year. The

value 0 is to be interpreted as day 1, the
value 1 as day 365 of the year

Diurnal Diurnal modifier, referring to parts of the day
(24 h clock, i. e., including ‘nocturnal’ events).
Examples: “in the morning, at night”.

Values specify a time of the day. The
values 0 and 1 are both to be interpreted
as midnight. Example: A modifier “at
night” may be specified as ‘0.8-0.2’.

TreatAs-
Misinter-
pretation

States to which modifiers of this class are added are known to
be intentionally wrongly scored to anticipate known misunder-
standings of the character under study. Example: if bracts
look like petals, petals may be scored as ‘white (by misinter-
pretation)’.

None

Other All other modifiers for which specifications are not yet defined.
Examples are developmental, absolute, and relative spatial
modifiers, or modifiers of degree.

None

A separate mechanism allows recommending modifiers for certain characters. This “enabling”
of modifiers for characters has been deliberately not formulated as an identity constraint; it is per-
fectly legal to have a modifier in a description that is not currently recommended for this charac-
ter (it must only be present in the terminology of the data set). A major reason for this design is
that large institutional data sets may contain descriptions from various sources (e. g., NLP-proces-
sed natural language descriptions, imported DELTA, or CBIT “LIF” data). These older descrip-
tions may use a richer set of modifiers than what has been agreed in a project to use in the future.
SDD conforming applications may choose whether to use the information about recommended
modifier / character association for data entry or not. They are encouraged to do so.

G. Hagedorn Fundamental aspects of description models 199

Modifier sets and sequences
For several reasons it is desirable to organize modifier definition nested inside higher concepts,
called here “modifier sets”:
■ For some modifiers (frequency, certainty) it is desirable to define a ranking (linear ordering).

The order of modifiers within a set defines an order from lowest to highest frequency / certain-
ty. New data gathered under a single or shared terminology will normally use modifiers from
a single frequency and certainty set. However, data obtained from a variety of sources will
profit from an ability to define multiple frequency or certainty sets, each with a separate
ranking. Under the provision that estimates for quantitative probability ranges may be given
for individual modifiers (as in SDD, see above), data involving modifiers from multiple sets
may still remain comparable.

■ It is desirable to be able to define the applicability of modifiers to characters (or other forms of
variables in character decomposition models). This enables the designer of the terminology to
restrict the modifier vocabulary and to achieve better consistency in data entry (e. g., using a
modifier pick list, see p. 191) and analysis. Defining modifier applicability individually for
each character and modifier would be very cumbersome, and changes in the terminology
would be difficult to manage. Organizing modifiers into sets that can be enabled as a whole
greatly simplifies this task.

Modifier sets need a label so that they are selectable when defining the applicability of a modifier
set to a character. They further need a Boolean attribute defining whether the order in which the
modifiers are defined is semantic (i. e., the modifiers are ranked) or irrelevant.

Although it is strictly required only for ordered (ranked) modifier sets, it seems reasonable to
require that all modifier sets may only contain modifiers from a single modifier type. For exam-
ple, it is not possible, to mix spatial and temporal modifiers in a single set. This can easily be
achieved by making the modifier type an attribute of the modifier set, rather than individual
modifiers.

Modifier combinations
If the information model enables multiple modifiers on a single character value in descriptions, a
clarification about the semantics of the relationship between modifiers and character value is
necessary. In principle, it may be desirable to express the following combinations of two modifi-
ers and a value:
1. Modifier hierarchies:

□ “modifier1 on (modifier2 on value)”,
□ “(modifier1 on modifier2) on value”.

2. Boolean operators:
□ “(modifier1 or modifier2) on value”,
□ “(modifier1 and modifier2) on value”.

3. Intermediate modifiers:
□ “(modifier1 to modifier2) on value”.

1. Modifier hierarchies: The first two examples interpret a sequence of modifiers as a hierarchy,
distinguishing, e. g., between “usually (reddish green)” and “(usually reddish) green”. In the first
case, a modified value is further modified, in the second case a modifier is modified before
applying it to a value. The desire to distinguish between these cases creates several problems: a)
in many languages the difference is difficult or impossible to express in natural language (i. e.,
without using some form of mathematical notation), b) as a result of this, when coding from exis-
ting legacy descriptions, it will often be time-consuming to infer the implied hierarchy, and per-
haps a third option “hierarchy undecided” may be desirable, and c) the hierarchy (which may
involve more than two modifiers) severely limits the options for the design of the user interface.

200 Fundamental aspects of description models G. Hagedorn

For many purposes, the distinction between the two cases is negligible. The first (nested) case
is more general than the second (modified modifier) and, to keep the information model simple,
is proposed as the preferred interpretation of modifier sequences for the purpose of machine-rea-
soning. Thus, where a sequence of multiple modifiers is applied to a character value, the modifi-
ers are to be interpreted as nested modifier statements, with the last modifier being the innermost,
e. g., “probably” + “frequently” + “at the base” + “stem = hairy” should be interpreted as “probably
(frequently (at the base (stem = hairy)))”.

In the case of combinations involving frequency or certainty modifiers, the second case
(modified modifier) can often be reformulated by making the implicit alternative explicit. For
example, “(usually reddish) green” could also be expressed as “usually (reddish green), rarely
(plain green)”. Where this is not possible and it is considered essential to express a “modified
modifier”, it is possible to define a combined modifier, or even to simply use free-form text an-
notations.

2. Boolean operators: The latter two cases (“[modifier1 and / or modifier2] on value”) are short
cut notations for “(modifier1 on value) and / or (modifier2 on value)”. For example, “stem hairy at
the base and at the tip” may also be stated as “stem hairy at the base and stem hairy at the tip”.
Since the problem of ‘and’ / ‘or’ Boolean operators already occurs between different states (com-
pare p. 95), it seems desirable to simplify the information model by reusing existing mechanisms.
Although Boolean operators between modifiers would not be supported in the information model,
a statement like “stem hairy at the base and at the tip” can easily be generated during natural lan-
guage report generation if different modifiers are detected on the same value.

3. Intermediate modifiers: Ordered or ranked modifiers may categorize an underlying continu-
ously varying variable (similar to character states, compare p. 53). Users may desire to express
that a modifier is intermediate between or spanning across modifiers by combining these. An
example would be “rarely to occasionally hairy”. In the SDD model a decision was made not to
support such usage in the interest of keeping the information model simple. Instead, additional
intermediate modifiers may be defined for which the wording would be “rarely to occasionally”.
However, it is possible to develop a natural language reporting rule that if multiple modifiers are
present on a single character in a description,, consecutive modifiers from the same ordered / rank-
ed modifier set are rendered as “strongly to weakly”, rather than “strongly or weakly”.

The advice against interpreting a sequence of modifiers as “modified modifiers”, implied Boo-
lean operators, or intermediate modifiers may not always be understood by users coding data.
Also, in some languages, “and / or” between modifiers may be implied and “stem hairy (at the
base, at the tip)” may sound more natural than it does in English. It would therefore be desirable
to have some kind of validation for spotting cases where a modifier combination may be used
with one of the semantics considered undesirable here.

Since modifiers are defined by users of the information model, this is not trivial. One option is
to require that a combination of modifiers on a character in a description is limited to at most one
modifier from each modifier set. The assumption would be that modifier sets are defined in a way
that combinable modifiers are in different sets. For example, to express “basal, between the veins,
towards the margin hairy” the three different spatial modifiers, each of which is based on a differ-
ent kind of orientation or direction, would have to be defined in different sets. Enforcing this
requirement would make combinations like “strongly or weakly” mentioned above not possible.

More experience with modifiers and modifier sets is required to decide whether such a valida-
tion should be enforced by the information model, or only used as an optional tool to find poten-
tial errors.

G. Hagedorn Fundamental aspects of description models 201

Modifiers as an alternative to character proliferation
Modifiers may be a method to avoid the creation of a large number of characters differing only in
minor aspects. An interesting test case is observations that differ in respect to where a property is
observed in space and time on a single object-part such as a leaf. In many cases, the various ori-
entation / location mechanisms behave almost like independent dimensions, i. e., all or most com-
binations may occur. For example, when describing fungal infection symptoms in plants, leaf
spot properties like density or color may be specific to each of the following:
1. Upper side or lower side of the leaf, or: “both sides are equal and the side is irrelevant”,
2. Tip, base, margin, center, or entire leaf (many further locations such as “on veins” or “be-

tween veins” occur, but are ignored in this example),
3. When young, when old, or throughout leaf development,
leading to a total of 3 × 5 × 3 = 45 different spatio-temporal locations where leaf spots may be
recorded.

Table 50. Examples illustrating the diversity of spatio-temporal leaf spot locations. The letters
correspond with those given in Fig. 102.

 Example description
A leaf spots yellow
B leaf spots yellow on the upper side, cream colored on the lower side of leaf
C central leaf spots yellow, marginal spots brown, almost black at the leaf base
D leaf spots initially yellow, on the upper side becoming reddish
E leaf spots present only at the tip, yellow on the upper side, olive on the lower side
F brown spots appear on old leaves (in autumn) at the margin of the leaves
G brown spots appear on old leaves (in autumn) in the center of the lower side of the leaves

LowerSurfaceBase

LowerSurfaceCenter

LowerSurfaceMargin

LowerSurfaceTip

UpperSurfaceBase

UpperSurfaceCenter

UpperSurfaceMargin

UpperSurfaceTip

Leaf

LowerSurface OldLeaf

YoungLeafUpperSurface

OldLeafBase

OldLeafCenter

OldLeafMargin

OldLeafTip

YL_US_Base

YL_US_Center

YL_US_Margin

YL_US_Tip

YL_LS_Base

YL_LS_Center

YL_LS_Margin

YL_LS_Tip

OL_US_Base

OL_US_Center

OL_US_Margin

OL_US_Tip

OL_LS_Base

OL_LS_Center

OL_LS_Margin

OL_LS_Tip

Base

Center

Margin

Tip

YoungLeafBase

YoungLeafCenter

YoungLeafMargin

YoungLeafLowerSurface

YoungLeafUpperSurface

OldLeafLowerSurface

OldLeafUpperSurface

E BB DD

E

YoungLeafTip

CCC

F

A

G

Figure 102. Three dimensions of spatial and temporal change resulting in 3 × 5 × 3 = 45 different
specialized classes. The class hierarchy may be composition or generalization hierarchy (not
shown here). Letters in oval tags with dashed lines indicate where data from the leaf spot exam-
ples given in Table 50 would be recorded.

Even if only a subset of all combinations is used (Table 50), it is no surprise that expressing
the combinations of object part, location, orientation, and temporal change in the character defi-

202 Fundamental aspects of description models G. Hagedorn

nition leads to very complicated models (Fig. 102). Furthermore, one may want to consider that
some categories are artificial classifications of a continuum. As a result even more complex inter-
mediate situations are possible (e. g., “late summer, 2 mm distant from the margin”).

The number of combinations actually occurring is a function of the number of taxa described.
Single (temporal or spatial) object specifications (other than entire leaf, entire growth period) in
this example occur with moderate frequency (upper and lower side being most frequent) and
combinations of several spatio-temporal locations are used only in very few organisms. Intro-
ducing a complex model to handle rare cases, at the cost of drastically complicating general use
seems to be not advisable. Notably, the example can be presented with considerably less compli-
cation in a table that provides one dimension for each of the three spatio-temporal orientations
used in the example (Table 51). Here the model is easily extensible to additional combinations
occurring as the number of taxa studied increases.

Table 51. Three dimensions with 3 × 3 × 5 = 45 combinations expressed in a table (compare
Fig. 102). These dimensions may either be part of character definitions or could be expressed
through modifiers. The categories “either” and “any” may be further split into “all” and “unknown”
(side, time, location), increasing data recording complexity to 4 × 4 × 6 = 96 combinations.

 ––––––––––– Location –––––––––––
Time Side Any Base Margin Center Tip
 either A C C C ◦
Either upper B ◦ ◦ ◦ E
 lower B ◦ ◦ ◦ E
 either D ◦ ◦ ◦ ◦
Young upper ◦ ◦ ◦ ◦ ◦
 lower ◦ ◦ ◦ ◦ ◦
 either ◦ ◦ ◦ ◦ F
Old upper D ◦ ◦ ◦ ◦
 lower ◦ ◦ ◦ ◦ ◦

Note: Letters indicate where data from the examples given in Table 50 would be recorded.

In the example the multiplicity of characters depends only on object-parts and character de-
composition models (p. 116) offer no advantage over DELTA-like character / state models
(p. 104).

No current information model for descriptive data explicitly proposes such a complex object
hierarchy as shown in Fig. 102. However, any object-oriented system that does not provide for
alternative multidimensional methods to provide character specifications will encounter it. For
this reason, the information models in DiversityDescriptions, Genisys / Nemisys, and Prometheus
all propose some form of modifier-like solution.

A special problem in the practice of DELTA data sets is, however, that the content authors
tend to avoid creating additional characters and prefer to add new character states. Over time,
when these states become too numerous and cause confusion for users, some authors remove the
specialized states and transfer the information to unstructured textual notes where they are mostly
inaccessible for analysis and identification tools.

An interesting aspect of the example is the desire to either specify a location, or not (e. g.,
“leaf spots in general”). This is partly a question of a generalization hierarchy (compare Fig. 80,
leaf upper / lower side, p. 168), but may also be a question of data quality. If expressed precisely,
one may want to distinguish between “both sides of leaf” – i. e., studied and distribution is con-
sistent – and “entire leaf” – i. e., the observer did not care or record the location. If truly both up-
per and lower sides have been studied, this is worth recording. Furthermore, in legacy descrip-
tions a statement “leaf spots grayish” may imply knowledge that the fungal group defined in the
scope of the entire treatment only occurs on the lower side of leaves, and only at certain times of
the year.

G. Hagedorn Fundamental aspects of description models 203

Modifier classes
Several classes of modifiers are rather distinct and should be distinguished. Some modifier
classes have special properties; others are useful to simplify terminology management and evolu-
tion. The following modifier classes will be discussed:
■ Spatial modifiers (also called “location” or “topological” modifiers);
■ Temporal modifiers (p. 204);
■ Method modifiers (p. 205);
■ Frequency modifiers (probability of observing a true statement, p. 206);
■ Certainty modifiers (probability of a statement being true, p. 207);
■ Approximation modifiers (p. 209);
■ Misinterpretation hints through modifiers (p. 209);
■ Negation through modifiers (p. 211);
■ State modifiers (p. 212, modification of quality, degree, manner, etc.);
■ Reliability modifiers (p. 213);
■ Other modifiers (p. 214).

Spatial modifiers
Biological objects are often inhomogeneous: e. g., a plant may be hairy at the base of the stem,
but glabrous towards the tip. It would be possible to create separate characters for the base and
the tip of the stem. However, this a) requires to score two characters in the majority of plants
where the stem is homogeneously hairy or glabrous, b) makes it difficult if the data source leaves
it open whether the base has been studied at all, and c) if another plant is glabrous only in the
lower middle of the stem, further characters have to be created. Such an inflation of characters
makes it difficult to analyze the data, and causes confusion when the data are used for identifica-
tion purposes. An actual example (Seethalakshmi & Muktesh Kumar 1998) may illustrate the
relevance of location references in descriptions:

“Thamnocalamus falconeri […] Leaves 10 cm long and 1.2 cm broad, oblong-
lanceolate, thin, base alternate into a short petiole, apex acuminate, scabrous on
the edges, smooth on both surfaces, leaf sheath long glabrous, striate, callus
minute, ligule elongate, hairy. […] Prickles costal and intercostal, frequent,
more towards the margins of the leaf, base round with short pointed apex, on
the costal zone arranged in rows. Microhairs intercostal, common, bi-celled,
small, basal and distal cell equal in length, base filled with vitreous silica.
Macrohairs infrequent to rare, costal, present towards the leaf margin, short to
medium in length, base slightly raised.”

Clearly, some of the location references in the example will be part of character definitions or the
object composition ontology. In other cases this would seem awkward causing an inflation of
characters or object parts.

Unfortunately, the choice between these options is not clear cut and subject to personal prefe-
rences. It will often depend on the planned or expected usage of data sets, which may cause insta-
bility if these purposes change over time. However, a mixed use of character ontologies and spa-
tial modifiers may be a necessity, as shown above (“Modifiers as an alternative to character proli-
feration” p. 201).

Applicability: Spatial modifiers (as well as temporal modifiers discussed below) modify the
concept of what a character variable is expected to contain. These modifiers may be viewed as
instantiating a modified character variable derived from a base character variable. As a result,
spatial modifiers are applicable to all character types (categorical, quantitative, free-form text)
and to sample data as well as aggregated summary data (including statistical measures, see
“Standard aggregation methods”, p. 85).

204 Fundamental aspects of description models G. Hagedorn

Since spatial modifiers create “derived characters”, multiple information items are grouped by
(or nested within) these modifiers. For example, if stem diameter and color is measured at vari-
ous locations, each modifier would group the categorical states or statistical measures (like mean,
minimum, maximum, standard deviation), respectively. In contrast to modified categorical data
(where “stem brown at bottom, yellow in the middle” may be generalized to “stem brown or yel-
low”), similar generalizations of statistical measures are undesirable. For example, “stem diame-
ter mean at bottom 3 cm, maximum at middle 2 cm” may not be generalized to “stem diameter
mean 3 cm, maximum 2 cm” by ignoring modifier information.

In contrast to many other modifier types, the use of spatial modifiers (as well as temporal and
method modifiers discussed below) on free-form text characters or states is desirable, because the
concept of the character is modified. As a consequence, when mapping multiple character termi-
nologies on each other, it may be necessary to include modifier usage in the mapping.

Status: Spatial modifiers are available in DiversityDescriptions, Nemisys / Genisys and Pro-
metheus (region modifiers).

Aggregation issues: If class descriptions are aggregated to a higher level (e. g., multiple spe-
cies to genus) modifiers may be handled in special ways. Aggregating “hairy in center” and
“hairy at margin” may result simply in “hairy in center or margin”. Ordered modifiers that after
aggregation have more than two consecutive modifier categories present may be reported as
modifier ranges rather than lists of individual modifiers.

If many different spatial modifiers occur in such an aggregation, it may be desirable to gener-
alize the statement. This can be achieved either by ignoring the spatial modifiers or by rendering
it as “hairy, at least in parts”. The generalization may simply be motivated by the desire to create,
concise, readable statements (which “hairy on the margin, or in the center, or on the veins, or
between veins” is not…).

However, it may also be possible that the list of modifiers applied to a descriptive statement is
“saturated”, i. e., it contains all possible modifications after aggregation (e. g., “flowers rarely,
frequently, or always blue”). A saturated statement is uninformative. This can be detected only if
the modifier set defined in the terminology informs whether such a saturation situation requires
special handling. If in the example, the set of modifiers in the terminology contained only “some-
times” or “rarely”, the “saturated” statement would still be informative. Furthermore, aggregated
modifiers may inform on variability of expression (e. g., “weakly or strongly rough”), which also
may remain informative. A modifier set metadata option “suppress-if-saturated” may be desir-
able in the future. It is not included in the first versions of SDD.

In practice, aggregation issues are rare since in most cases at least one of the aggregated de-
scriptions does not use any modifiers. Any unmodified statement has precedence over modified
statements (e. g., “leaves hairy” and “leaves hairy at the margin” becomes “leaves hairy”).

Temporal modifiers (diurnal, seasonal, etc.)
As discussed above (p. 162), biological objects frequently change over time. Often knowledge of
the correct time is considered implicit. For example, fruit characteristics are expected to be obser-
ved in mature fruits, not on immature or overwintered fruits. However, when creating an identifi-
cation key to plants in winter it is desirable to differentiate observations on overwintering fruits
from the “standard” values. Similarly, the fact that emerging leaves are pubescent only the first
days will usually be entirely ignored (due to inappropriate time of observation). However, if
young leaves are pubescent for extended periods, a differentiation between young and old leaves
is desirable. An extreme example is presented in the case of dimorphic species, with markedly
different generations in the year (e. g., Araschnia levana, Lepidoptera).

One possible method to express such knowledge is the use of temporal modifiers such as
“when young”, “when old”, “in spring”, “in autumn”, “immediately after emergence”, “during
high tide”.

G. Hagedorn Fundamental aspects of description models 205

During identification, absolute temporal modifiers (e. g., “summer”, “during high tide”) could
provide interesting query options (e. g., “show only stages in winter”). However, this requires
special data set where the majority of descriptions in at least some characters explicitly use these
modifiers. Most temporal modifiers are considered implicit, and added by humans based on sec-
ondary knowledge. Query algorithms will generally lack this implicit knowledge and have to
assume that unmodified “flower blue” is observable in summer and in winter. Extending the cur-
rent information model with option to inform about implicit modifier value might be an inter-
esting area of future research.

Relative temporal modifiers (oriented relative to the development phases of the organism) will
currently be mostly informing humans and not used for machine reasoning. However, given that
the problem of implicit modifiers is adequately solved, the identification process may prefer com-
binations of predicates that occur at the same time in the development process. For example, if
leave size is recorded separately for seedlings and adult plants, without a constraint based on tem-
poral modifier equality, an adult plant with small leaves could be misidentified as a plant where
only the seedlings have such leaves.

The future possibilities of temporal modifiers are not yet adequately explored. Several sys-
tems of temporal logic exist that explicitly deal with reasoning involving time. A prerequisite for
studying the usefulness of adding temporal reasoning to identification or other analysis processes
is, however, the existence of data sets using temporal modifiers at all.

Applicability: Almost everything that has been said about spatial (location) modifiers applies
to temporal modifiers as well. Both spatial and temporal modifiers are defined on dimensions in a
coordinate system, which may be absolute or relative. Absolute temporal modifiers bound to day,
lunar month, or year correspond to absolute spatial modifiers (e. g., geotropical modifiers), and
temporal modifiers relative to developmental stages of the organism itself correspond to relative
spatial modifiers (proximal, abaxial, etc.). In all aspects studied, the applicability of temporal
modifiers is identical to that of spatial modifiers; and it may even be desirable to propose only a
single category of spatio-temporal modifiers.

Status: Temporal modifiers are available in DiversityDescriptions and Prometheus.

Method modifiers
Similar to location and time, it may occasionally be desirable to shift minor methodological de-
tails from the character definition (or the decomposed character ontologies) into the description
by providing “method modifiers”. Methods are particularly important in organism groups that
require laboratory procedures for their description. However, methods are relevant to classical
morphological data as well. For example, the result of observing surface structures may differ
depending on whether the unaided eye, a hand lens, or a stereo-microscope is used.

A special class of modifiers is referring to natural growth conditions (e. g., “in the shade”, “in
shallow water”). In analogy to controlled growth conditions in microbiology (culture medium,
temperature, etc.), these may be considered a kind of method modifier, but different solutions are
possible. The modifier discussion is a special case of the method / instrumentation / property dis-
cussion above (e. g., Fig. 87, p. 177). Currently, it remains an open question whether a more de-
tailed classification of “method modifiers” (e. g., “instrumentation modifiers”) is desirable.

Applicability: The applicability of such method modifiers is identical to those discussed for
spatial and temporal modifiers.

Status: Although no method modifiers are contained in the template list (Table 46, p. 194), it
is possible to create them in DiversityDescriptions. Because of the unresolved questions around
method classification, no explicit category for method modifiers is proposed for the first version
of SDD; instead method modifiers may be handled by the general / other modifier category in
SDD 1.0.

206 Fundamental aspects of description models G. Hagedorn

Frequency modifiers
If a property of an object has multiple states (i. e., polymorphic), the frequency of these states is
often recorded (Fig. 103). Polymorphisms may occur on the class level (population, species, ge-
nus, etc.), but also within individuals (see “Aggregation within individuals”, p. 93). Frequency
information is either expressed directly through values or ranges (e. g., “20-50%”), or through
categorical statements (e. g., “usually”, “occasionally”, “rarely”, etc.). Although frequency values
or ranges are more informative for data analysis and identification, they are often more time-con-
suming to acquire and only categorical frequency information is recorded in most cases.

When categorical frequency modifiers like “often” or “usually” are not accompanied by se-
mantic definitions, the only advantage gained over free-form comment text is improved consis-
tency and multilingual translation. To also make them analytically accessible, a ranking of fre-
quency terms (e. g., “usually” > “often”) or a frequency range (e. g., “usually” = 25 to 75%; “of-
ten” = 10 to 40%) may be defined. Providing only a ranking of frequency terms is often simpler,
but only frequency ranges allow a joint analysis of descriptions with direct frequency values or
ranges and categorical frequency statements.

Semantic information may be provided either be the original author (as annotation of intent)
or estimated by a later reviewer (as an interpretation). Information about the difference between
intent and interpretation may be relevant for analysis.

Occasionally, frequency statements do not refer to a simple polymorphism, but hide more
complex information. For example, a characteristic may vary at different times of observation
(e. g., spring, autumn) or between parts of the organism (e. g., hairiness on different parts). Thus
“glabrous, rarely hairy” may really mean “glabrous, hairy when emerging in spring”, or “gla-
brous, hairy at the tip”.

Figure 103. Objects that belong to the same class may have variability. The population of objects
shown may be described as “square, sometimes with rounded corners (15%), rarely appearing
almost circular (5%)”.

Applicability: Frequencies can only be determined for categorical and other forms of discrete
data (especially counts). Continuously varying quantitative data are, however, often mapped to
discrete categorical states, resulting in a special form of frequency distribution (histogram, p. 66).
Both property values (e. g., “elliptic”, “round”) and object composition information (e. g., “pres-
ence”, or “count”) may be polymorphic. In the case of descriptive information models following
the character model (p. 104), these are treated identically so that frequency is applicable to all
categorical characters. Frequency modifiers are not applicable to statistical measures, including
those that may be defined on categorical data (e. g., mode or median).

The designer of a terminology may desire to further limit the applicability of frequency modi-
fiers to individual states (e. g., allowing a full set of “very rarely”, “rarely”, “occasionally”, etc. in
some characters, but only “rarely”, “usually” in others). This is, however, not a question of data
integrity, but rather of recording consistency.

In principle, the use of frequency modifiers implies the existence of more than one state for a
character in an object or class description. The statement “usually hairy” alone is incomplete.
Humans are able to provide the implied “… or rarely glabrous” from background knowledge, but
this is usually not available to algorithmic analysis. For a data recording application it may be

G. Hagedorn Fundamental aspects of description models 207

desirable to issue a warning in this case. However, the information model should not require the
scoring of multiple states, since incomplete and ambiguous information may be present in legacy
data. Modern ontology languages such as OWL permit one to externally represent enough infor-
mation to deduce implications such as “usually hairy” implies “rarely glabrous”, as long as only
categorical expressions are involved (R. Morris, pers. comm.).

In contrast, it may be desirable to constrain descriptions to at most one frequency modifier per
state. Statements like “usually or rarely present” make little sense both to humans and algorithms.
They do exist occasionally in legacy data, usually as a result of careless data aggregation proce-
dures (e. g., as a result of abbreviating “usually present in the North, rarely in the South”). How-
ever, to simplify the information model and to avoid case logic in all data consuming applications
(analysis, identification), it may be desirable to require resolving this problem at the time of data
entry.

It is probably not desirable to provide for both a quantitative frequency statement (value or
range) and a categorical frequency modifier on a single state in a description. In principle this
information may be congruent (the quantitative information being more exact than the categori-
cal). The case is therefore different from the application of multiple categorical frequency modi-
fiers on a single state. However, if a frequency value is known and if the categorical frequency
modifiers in the terminology are defined with a frequency range, an algorithm would be able to
choose an appropriate modifier term where such output is desired instead of quantitative values.

Status: The SDD workgroup discussed frequency modifiers at the SDD meetings in Australia,
(March 2002), Brazil (2002), and Paris (2003). SDD provides in descriptions for categorical as
well as quantitative frequencies statements (Value, or LowerEstimate and UpperEstimate, intro-
duced at the SDD meeting in Brazil, see minutes: Hagedorn 2003a). In SDD terminology, a
modifier definition includes mandatory labels and optional natural language wordings (both op-
tionally in multiple languages). Further, it is possible to rank frequency modifiers and provide a
frequency range definition. The problem of ranking was raised by R. Vignes Lebbe at the Paris
meeting of SDD in 2003, and included in the SDD proposal presented in Christchurch 2004.

Aggregation issues: Two descriptions “a or very rarely c” and “b or rarely c” can easily be
aggregated into “a, b, or rarely c”. However, it may be desirable to suppress states present only
with very low frequencies in the generalization / aggregation process, e. g., when aggregating spe-
cies descriptions into family descriptions.

Whether and when such suppression becomes desirable depends on the abstraction level. In-
clusion of a rare state may be desirable in a genus description, but ignored in the description for
the order. “PropagateFrequencyOnAggregation” is thus a property of the process, rather than a
metadata attribute on frequency modifiers in descriptions.

Relation to formal logic: Normally the structure of modifiers is: “modifier applied to propo-
sition” (“usually [flower is blue]”), which in predicate logic would correspond to second-order
predicate logic/ higher predicate calculus. For the special case of the principal distinction be-
tween “always” (frequency = 100%) and “sometimes” (frequency < 100%), frequency informa-
tion is related to the concept of universal (“for-all”, ∀) and existential (“exists”, ∃) quantifiers in
Boolean predicate calculus. Reducing frequency modifiers to “always”, “sometimes”, and “ne-
ver” reduces the problem to first-order predicate logic (i. e., lower predicate calculus) as in
(∃ flower: flower is blue) versus (∀ flower: flower is blue).

If reasoning based on fuzzy logic is being employed, frequency information may be used as a
“degree of truth”.

Certainty modifiers
The categorical or quantitative value of a character in an object description may be known, un-
known, or uncertainly known. The case that character values are entirely unknown has already
been discussed under “Coding status” (p. 74). This is different from an uncertainty that a specific
statement is true (e. g., “probably elliptic”). Examples of certainty modifiers are: “probably not”,

208 Fundamental aspects of description models G. Hagedorn

“perhaps”, “probably”, “likely”, “very likely”, and “almost certainly”. Uncertainty in descriptions
may express that the scientist creating the description:
■ (when recording from original material:)

□ is confused about the interpretation of (perhaps poorly worded) terminological definitions,
□ has methodical observation problems (for example, values are out of the range of normal

observation method),
□ suspects or knows about preparation or conservation artifacts in the observed material (for

example, color bleaching or shape of deep sea fishes).
■ (when recording from a published data source:)

□ doubts the factual correctness of information in the data source,
□ is uncertain about the relationship between the descriptive terminology used for data re-

cording and the terminology used in the data source.
Certainty modifiers may provide an extensible way to define a terminology of both generic and
specific certainty modifiers. An example for a specific certainty modifier is “probably (material
poorly conserved)”. Applying these modifiers to descriptive statements provides a method to
express doubt in an analytically traceable way. The certainty of knowledge is especially valuable
to preserve doubt when scoring specimen data. Indications of doubt may later be removed after
an adequate sample of specimens has been studied, but provide a means to avoid the propagation
of error during data aggregation and generalization.

Certainty and frequency modifiers both express a probability that a given object will express a
given value. Certainty is the probability that the value is expressed at all, frequency is the proba-
bility that a statement applies to a given object where the class is polymorphic. In statistics, cer-
tainty modifiers may be used in Bayesian statistics (“Bayesianism” supports – among other kinds
of a-priori probabilities – degrees of belief as a basis for statistical calculation), frequency modi-
fiers to the “standard” statistical hypothesis testing (parametric tests such as analysis of variance
or regression analysis as well as non-parametric tests such as Kruskal-Wallis).

Similarly to frequency modifiers, it is desirable to add semantic information (ranking by in-
creasing probability, or providing quantitative probability ranges) to the definitions of certainty
modifiers.

Whereas for frequency modifiers the desire to directly record frequency values or ranges
rather than only the modifier categories in descriptions is very strong, this is less so for certainty
modifiers. Exact certainty values for statements in the description occur extremely rarely in prac-
tice (some “identification” processes, like automatic chromatographical detection of substances
do provide probabilities of correctness). However, if the information model is simplified by
treating frequency and certainty modifiers analogously, supporting certainty values and ranges
would not be problematic.

Applicability: Certainty modifiers are applicable to categorical and quantitative values. Sta-
tistical measures (such as mean or confidence intervals) already provide a form of measuring
(rather than guessing) uncertainty. The applicability of certainty modifiers to these is doubtful.
However, doubt may arise either as to the quality of the underlying data or the applicability of the
statistical method itself. Thus, while the expression of such doubt with a certainty modifier may
have no formal mathematical relation to the rigorous calculation of a statistical measure like a
mean, it is occasionally useful to signal such a lack of confidence. In contrast to frequency modi-
fiers, certainty modifiers may therefore be judiciously applied to statistical measures.

Certainty modifiers may also be applicable to free-form text characters or states. Because of
the unstructured nature of free-form text, however, there is only a marginal benefit of doing so. If
it is desirable to simplify the information model by not supporting modifiers on these data types,
little is lost.

Note that saying an entire character is “uncertain” without giving any character value infor-
mation (as in “leaf shape uncertain”) is indistinguishable from saying that it is “unknown”. It is a
coding status (p. 74), clearly distinct from certainty modifiers expressing metadata about a value
statement. Certainty modifiers are therefore not applicable to entire characters.

G. Hagedorn Fundamental aspects of description models 209

Relation to formal logic: Certainty information is the standard test case where modal logic
(which may be applicable beyond these) is discussed.

Status: Uncertain knowledge is called “guessed values” in Dallwitz (2006d).

Related to certainty modifiers are the issues of approximation (e. g., “ca. 3 mm”, “about ellipti-
cal”), negative statements (e. g., “certainly not”), and perhaps even misinterpretation hints (e. g.,
“certainly not, but commonly misinterpreted as such”). These are discussed in the following.

Approximation modifiers
Approximation modifiers, such as “ca.”, “approximately”, “about”, “roughly”, “nearly”, “more or
less”, or “almost”, express doubt in the accuracy (nearness to the true value) or precision (repro-
ducibility) of a statement. Approximation could be interpreted as a kind of certainty expression:
“perhaps exactly so, but certainly close to it”. More appropriately perhaps, approximation modi-
fiers are interpreted as a short cut notation for fuzzy value ranges or confidence intervals. They
are used if the range exceeds the default conventions for scientific data that are expressed in the
number of decimals given (based on scientific rounding rules, “2.0” indicates “1.95-2.05”).

Different modifiers are categories that may express different degrees of inaccuracy of a re-
ported value. Potentially, quantitative information about this degree of inaccuracy could be de-
fined or estimated together with the modifier definition, improving machine reasoning and analy-
sis routines. Both absolute (e. g., “± 2 units”) and relative (e. g., “± 5%”) accuracy values could
occur. In principle, accuracy may be expressed as a range for which a formal confidence interval
is given (e. g., “accurate to ± 5% of value, with a 95% probability”). The occurrence of such a
probability value could be interpreted as indicating a relationship between accuracy and certainty
modifiers. However, most accuracy modifiers are broad categories and no practical examples
could be found for such use.

In fact, even rough accuracy values are probably extremely rarely defined for approximation
modifiers. No publication known to the author defines the semantics of “ca.”, “about”, etc. Also,
no general implied definition is known to the author. Implied knowledge may exist, however, for
a given methodology. For example, the measurement of small objects in a light microscope using
oil-immersion optics has an implied accuracy between “± 0.3 µm” and “± 0.5 µm”. Mean spore
size may then be reported as “2.2 µm”, “ca. 2.2 µm”, the latter emphasizing the fact that accuracy
is less than the expectation based on rounding rules would suggest. Where accuracy depends on
methodology, it may be more appropriately expressed in the terminology rather than in individual
descriptions. For this reason, in the present version of SDD, approximation modifiers are not yet
accepted as a separate modifier type with explicit semantics and methods to express accuracy
quantitatively, but subsumed under the “general modifier” category. This topic should be dis-
cussed further.

Applicability: The issue of approximation exists both for categorical (e. g., “about elliptical”)
and quantitative (e. g., “ca. 2 mm”) data types. It is not applicable to statistical measures and free-
form text characters or states.

Aggregation issues: “ca. 2 cm” and “2 cm” should be aggregated to “ca. 2 cm”. “ca. 2 cm”
and “5 cm” could be aggregated to “ca. 2-5 cm”. However, as long as no quantitative measure of
approximation is known, aggregating an approximation with a range is not easy. Would “ca.
2 cm” and “1-5 cm” become “1-5 cm” or “ca. 1-5 cm”? Would “ca. 2 cm” and “1.9-5 cm” be-
come “1.9-5 cm” or “ca. 1.9-5 cm”? It may be possible to develop some heuristics based on the
implied precision of a statement like “ca. 2 cm”, but an exact method is not possible.

Misinterpretation hints through modifiers
In an ideal world, the application of well-defined descriptive terminology to the objects to be de-
scribed or identified would be unambiguous. In reality, however, it is very difficult to produce

210 Fundamental aspects of description models G. Hagedorn

exact and concise definitions. Not only will long definitions often be ignored (and are impossible
to memorize), also most users will not even attempt to consult a definition if they believe they
already understand a term (and the introduction of ever new terms to avoid this is not very desir-
able, either). Furthermore, even when the definition is fully understood, the exact process of
determining whether an object part or property fits the definition may often be impractically
complicated (involving, e. g., developmental studies), necessitating the use of “shortcut” defini-
tions that result in the correct application in most, but not all cases.

In the practice of biological descriptions and authored identification keys, the problem is han-
dled by addressing a certain level of expertise (usually that of general university training) and
adding explicit misinterpretation hints for common or all known cases of misinterpretations.
These hints take the form of annotations in natural language descriptions, but often take the form
of “false” leads in authored branching identification keys (i. e., a taxon is keyed out in a branch of
the key that does not fit its true description).

In the case of a descriptive data matrix intended both for the generation of natural language
descriptions and identification keys, these issues are difficult to separate, and a special mecha-
nism is required. If the designer of a data set adds false statements to preempt misinterpretations
of users without distinguishing them from true statements, the data set degenerates and becomes
difficult to manage and revise. Furthermore, from then on it can be used only for identification
purposes and not, for example, for phylogenetic analysis.
Several types of misinterpretation can be distinguished:
1. The organism part (or “structure”) is generally likely to be misinterpreted

Examples: a phylloclade (cladode) is interpreted as a leaf, or a rhizome as a root.
2 The organism part is likely to be misinterpreted within a given taxonomic group

Example: the inflorescence is often interpreted as a flower in Euphorbia; the bracts of
Cornus florida (dogwood) are interpreted as petals.

3. The property state is generally likely to be misinterpreted.
Example: a spore surface that is visibly rough in a good microscope may be interpreted as
smooth because of insufficient optics or inappropriate handling of the microscope.

4. The property state is likely to be misinterpreted within a given taxonomic group.
Example: Leaves of Lotus corniculatus are palmate with 3 leaflets plus 2 leaflet-like stipules,
but often misinterpreted as pinnate with 5 leaflets.

The cases differ in how they ideally would be handled:
1. In the first case, a generic misinterpretation tolerance mechanism (e. g., a mapping) of the

organism part would be desirable. For example, if a root character is specified during identi-
fication, the identification application could search both under “root” and “rhizome” charac-
ters. This general error / misinterpretation tolerance mechanism would then automatically ap-
ply to any character in the descriptions.

2 In the second case, a taxon-specific mapping of organism parts would be desirable.
3. The third case could be solved by a state mapping that adds error tolerance to the identifica-

tion for all taxa.
4. In the last case, a special attribute could be added to the state for each object or class descrip-

tion giving rise to a misinterpretation.
In principle, all cases can be managed with description × state-specific misinterpretation attributes
(case 4). This would, however, often require extensive work by the content authors to add numer-
ous misinterpretation statements to all characters based on a misinterpreted object part in all taxa
affected. A special mechanism to “map” concepts for parts may be desirable here. This mecha-
nism is probably already implicit in the generalization hierarchy for object parts discussed above
(p. 153). Both the root and the rhizome could, for example, be generalized to a “root-like under-
ground structure”.

G. Hagedorn Fundamental aspects of description models 211

Regardless of other mechanisms, description × state-specific misinterpretation attributes (case 4)
are desirable. Using a kind of modifier for this is not a necessary conclusion, but if modifiers can
also handle misinterpretation hints, the general information model could be kept simpler. Further-
more, some structural similarities exist between such misinterpretation modifiers and certainty
modifiers:
■ The certainty / probability range discussed for certainty modifiers makes sense insofar as a

probability of ‘0’ correctly expresses the likelihood that the state is indeed present. Scoring
“leaf shape elliptic (by misinterpretation)” in a species having phylloclades instead of leaves
can be interpreted as being scored for the purpose of identification, but for other purposes
(e. g., phylogenetic analyses) the probability that this is indeed so is ‘0’.

■ Certainty modifiers cannot logically occur together with a misinterpretation modifier: “flow-
ers probably white (by misinterpretation)” does not make sense, because here the author of the
information is certain that this is not so, but the author suspects that consumers of the informa-
tion believe otherwise (perhaps because they misinterpret a structure as a flower).

■ Only probability and misinterpretation modifiers (but not frequency or general modifiers) are
applicable to statistical measures.

On the other hand:
■ In the statement “probably white (by misinterpretation)” as rejected above, certainty modifiers

express the likelihood that a statement is factually correct. It would, however, also be possible
to also express a “misinterpretation probability”, where a value “0.9” would mean: “a random
scorer will score this so with 90% probability by misinterpretation”. A need to express such
information would suggest handling misinterpretation modifiers separately from certainty
modifiers.

Status: In DELTA applications like Pankey or CSIRO DELTA, misinterpretation information
can only be stored as a comment. CBIT Lucid pioneered the use of misinterpretation scoring and
fully supports it in a structured way. DiversityDescriptions supports misinterpretation markers
through structured modifiers. Although this has a consistency advantage over DELTA comments,
the initial versions shared with DELTA the problem that algorithms could not automatically rec-
ognize misinterpretation modifiers. Starting with DiversityDescriptions 1.8, a new Boolean attri-
bute was added to modifier definitions, allowing the recognition of misinterpretation modifiers.

SDD (since version 0.9) attempts to handle state-specific misinterpretation hints with a special
form of certainty modifiers: “certainly not (but true by misinterpretation)”. A special Boolean
attribute “IsTrueByMisinterpretation” in the modifier definition of all certainty modifiers is set to
true for misinterpretation modifiers. In addition, the ProbabilityRange of these modifiers should
be set to “0..0”. The advantage of this is that software designed to handle the certainty probability
ranges will automatically produce correct analysis results, whereas simple identification software
will most likely ignore the modifier altogether, which results in the desired error tolerance.

Negation through modifiers
Natural language descriptions and especially branching identification keys (i. e., dichotomous or
polytomous keys) often contain a mixture of positive and negative statements like the following:
■ “flowers orange, but usually not red or yellow”
■ “flowers red or yellow, but never orange”
■ “flowers dark orange, but never red, brown, or yellow”
Such statements usually attempt to clarify the interpretation of a character state by adding a nega-
tive expression that can be expressed with greater certainty. In principle, if orange is appropri-
ately defined in the terminology, the addition of “but usually not red or yellow” is redundant. In
contrast, “flowers red or yellow” may well be misinterpreted as a range from red to yellow, in-
cluding orange. The purpose of adding “never orange” is to preempt a possible expectation that

212 Fundamental aspects of description models G. Hagedorn

the author may not have distinguished between “red or yellow (but no intermediates)” and “be-
tween red and yellow”.

A related situation is the case of single negative statements, like:
■ “flowers not green”,
which usually result from abbreviating a long list of alternative states. This situation occurs espe-
cially on a higher taxonomic level. It is unusual in descriptions, but does occur in identification
keys. Such a “negative state” may already be defined in the list of character states. This is obvi-
ous in a case like “symmetrical / not symmetrical (or asymmetrical)”, but is implicitly present also
in a state list like “round, elliptic, lanceolate, …, irregular”.

Whether negative expressions should be handled through a modifier mechanism or not is an
open issue. On the one hand the modification is extreme and requires substantially different han-
dling in analysis or identification than other modifiers. “Negating modifiers” must be recognized,
i. e., the modified state treated as non-scored. In addition, the complement of non-negated states
could be treated as “scored”, modified by “perhaps”.
On the other hand, if certainty modifiers are defined with probability ranges like:
■ “probably”: > 50 and ≤ 99% probability,
■ “perhaps”: > 5 and ≤ 50% probability,
■ “probably not”: ≤ 5% probability,
then a negative expression may be viewed as:
■ “certainly not”: 0% probability.
Wordings for such “negating modifier” could be: “, but not”, “, but never”, or “, and never”. This
would require an additional mechanism to suppress the normal delimiter (‘and’, ‘or’, or comma
rules) for enumerated states in the natural language output.

Furthermore, additional difficulties arise if several states are explicitly negated as in “A, but
not (B, C, or D)”. The central problem is that the brackets shown are not used in natural language
representations, and difficult to represent in the user interface. When humans read: “flowers
orange, but not red, brown, or yellow” they will normally interpret implied brackets, parsing the
semantics as “flowers orange, but not red, and not brown, and not yellow” (ultimately using Mor-
gan's rule, changing or to and!). Making this transparent to the user in a user interface requires a
substantial effort by the application designer.

For the first case (negative statements in addition to positive statements), an alternative hand-
ling is to use free-form text notes, for example: “flowers red or yellow (‘but never orange’)”. This
does not work in the second usage case, where negative statements are used as an abbreviation. It
is possible to express the latter by scoring the complement of states with the certainty modifier
“perhaps” added, but this results in unwieldy statements that are difficult to consume for humans,
and are further not stable when the terminology evolves and new states are being added.

Applicability: Negative statements as discussed are largely applicable to categorical data. A
related situation exists where quantitative range statements (e. g., “2-10 cm”) require contradic-
tion (e. g., “but not 2-4 cm”). In a single data set, single-user environment, the statement would
simply be revised (e. g., “4-10 cm”). However, in a collaboration scenario it may not be possible
to “overwrite” the erroneous statement and contradiction may be necessary to prevent aggrega-
tion (without contradiction, aggregating “2-10 cm” and “4-10 cm” would result in “2-10 cm”).

Status: No application or information model for descriptive data in biology that handles nega-
tive descriptive statements (statements intended to contradict other statements) is known to the
author. Whether a modifier mechanism is appropriate to solve this situation is an area for future
research. Consequently, negative modifiers are not included in the current versions of SDD.

State modifiers
The modifiers discussed so far either affect the character definition (location, time, method, con-
dition) or add an entirely independent dimension to the statement (frequency, certainty, approxi-
mation). In contrast the following “state modifiers” create derived states from a fundamental base

G. Hagedorn Fundamental aspects of description models 213

state. In natural language these modifiers would be called modifiers of quality, degree, emphasis,
or manner. Examples are “very”, “weakly”, “slightly”.

The state modifier mechanism is a convenience rather than a necessity. Instead of creating
narrowly defined states by combining a modifier with a state, the state list itself could already
contain all narrowly defined states. In classical DELTA-based applications, long state lists may
be confusing during data entry or identification. However, if the relations between wide and nar-
row state concepts are defined (compare “Mappings within categorical data”, especially Fig. 23,
p. 69) and presented as a hierarchical tree, this may be a stable and practical solution.

On the other side, the combination of basic states with state modifiers offers a practical
solution in cases where most states in a set may be modified in a regular manner (e. g.,
emphasized with “strongly” or “weakly”). An example where a full state list may be exceedingly
large and complex is color. Using modifiers to combine major color categories with shade and
intensity modifications (e. g., “greenish”, “bright”, “dull”) may sometimes be desirable during
data entry and identification. Although the concept of such a color-modifier is much more
difficult to illustrate than individual colors, the sheer amount of colors that may have to be
illustrated if each color variant is given its own state (perhaps several hundred color states to
choose from) may make the “illustrated color” less desirable than the “conceptualized”.

The availability of modifiers leaves the decision when to use a modifier approach and when to
use widely plus narrowly defined states together with a mapping to the designers of the
descriptive terminology.

State modifiers may be abused to give a character state an entirely different meaning (e. g.,
creating a modifier “not recognizably”; the combination “not recognizably sharp” would proba-
bly mean “blunt”). Such modifiers may work in natural language descriptions, but will lead to
undesirable results during data analysis and identification. The possibility of abuse is, however,
not specific to state modifiers: any form of modifier or free-form text notes can be abused. Occa-
sionally, it may depend on the intended use whether something is considered abuse or not: ignor-
ing a modifier “when infected by fungi” may be desirable in identification, but undesirable in
phylogenetic analysis. Controlling this is the responsibility of designers of terminology and of
users performing analyses, not of the information model itself.

Applicability: By definition, state modifiers are applicable only to categorical states. In gene-
ral, no examples of quality, degree, or emphasis applicable to other character types have been
found so far.

Status: State modifiers are implemented in DiversityDescriptions.

Reliability modifiers
The proposals for “New DELTA” (p. 20) contain the concept of “coded comments” to modify the
general reliability of a character in a specific description. In general, reliability as well as other
character-ranking metadata used for identification purposes (convenience, availability, etc.) are
important ranking schemes to influence recommendations which characters are most suitable for
identification purposes (compare “Identification methods: Authored character guidance”, p. 267).

A generic character rating (i. e. a rating defined in the terminology, as in DELTA) is not
necessarily appropriate throughout the entire data set. A character may be convenient and reliable
in one taxonomic group, but not so in another (Diederich & al. 1989, Diederich & Milton 1991)
and reliability metadata must be organized appropriately. However, having to define character-
ranking metadata separately in each description seems undesirable.

The proposal of a reliability modification in the “New DELTA” model may be interpreted as
follows: global reliability is preserved as terminological metadata (as in the original DELTA
model) and may be interpreted as “average” or perhaps “default” reliability. It may then be
modified in individual descriptions to correct for taxon-specific character reliability variation.
Attribute reliability values in New DELTA are intended to “modify” the attribute reliability of

214 Fundamental aspects of description models G. Hagedorn

the character (not the character data, as other modifiers would). This model is certainly pragmatic
and is likely to work well for relatively small, taxonomically focused revisions or monographs.

However, this model inherits only a single character reliability value to all descriptions using
this character, which then has to be modified in each individual description. In large projects
spanning substantial taxonomic diversity, a better inheritance model is desirable, inheriting char-
acter reliability metadata automatically down the taxonomic hierarchy, until a new rating occurs.
Such inheritance would not easily be achieved by a reliability modifier, i. e., a structure that is
modifying a value and inheritable only in combination with a value. A separate inheritance of
ratings is desirable. Although this may be considered similar to a modifier structure, it is not truly
the same.

Character-ranking metadata may also have an interaction with character values rather than
with the taxonomic tree. For example, a character representing length measurements may be con-
venient and reliable for large taxa, and inconvenient for small ones. Although this will often be
broadly correlated with taxonomic groups, this is not necessarily so. Whether such a character ×

value interaction is common enough to warrant the introduction of reliability modifiers (in
addition to inheritable character reliability ratings) requires further study.

Other modifiers
During the development of the modifier concept, it was initially expected to discover a finite set
of modifier classes that are relevant to descriptive data. However, as more and more potential
uses have been discovered, it is believed that the information model should be extensible, sup-
porting new user defined modifier classes.

In principle, any secondary information that may be placed in notes or comments attached to
character data may also be handled in a more structured form through modifiers. This is generally
appropriate if certain kinds of comments are reoccurring, and if some analysis desires to distin-
guish between them. The two major usage categories are:
■ Constraints or conditions under which the data are valid, for example:

□ environmental conditions like “on wind-exposed slopes”,
□ life cycle stages or generations (e. g., “seedling”, “caterpillar”, “summer generation”), or
□ character correlation issues like sex (see “Secondary classification resulting in

description scopes”, pp. 217 and 218).
■ Information that identifies or qualifies the source of information. In DiversityDescriptions

data sets, modifiers have been used to:
□ identify the source publication from which recorded data are derived, or
□ identify data that are based on type material itself.

Handling cases like these through modifiers is certainly not ideal – e. g., SDD provides explicit
mechanisms to record the source of information – but should nevertheless be expected and toler-
ated where such flexibility is needed for users. Given the limitations of specific descriptive data
applications and the time resources available, the use of modifiers may offer new options for
managing descriptive data projects.

Character- versus value-modifiers
The modifier classes discussed so far (location, time, method, frequency, certainty, and manner /

degree) can potentially be classified into two super-classes:
■ “Character modifiers” address the problem that the number of characters (i. e., the combina-

tion of object part + region or location within that part + temporal definition + property + ob-
servation method in character decomposition models) often become undesirably large due to
minor variations (compare “Modifiers as an alternative to character proliferation”, p. 201).

G. Hagedorn Fundamental aspects of description models 215

■ “Value modifiers address” the problem that minor variations of categorical values and the
aspects of frequency and certainty may result in an undesirable increase of the number of
categorical states.

In the SDD 1.0 beta 2 proposal (for overview of available documentation see Hagedorn 2004c),
character and state modifiers were distinguished. The structural complications for the SDD ex-
change format were, however, considered too large and the proposal to separate two kinds of
modifiers was rejected at the TDWG meeting in Christchurch 2004 (see minutes of SDD session,
Hagedorn 2004d). The fundamental difference between a modification of the definition of the
variable, and a modification of the value was not disputed. However, the SDD proposal at that
time attempted to define character modifiers as any modification that was in principle applicable
to all kinds of character types. This leads to a different division, e. g., in the case of certainty
modifiers (e. g., “probably”). These are applicable to all kinds of character types (categorical,
quantitative, but potentially also molecular sequences), but modify the value (or result) rather
than the variable concept.

The choice of a single extension concept for both variable and value modification is based
partly on the reasoning that modifiers can be understood as a modification of the statement. Thus
“petals usually red” can be regarded as: “the assertion ‘petals are red’ is usually true”, “probably
blue eyes” as: “the assertion ‘eyes are blue’ is probably true”, “stem hairy at the tip” as: “the
assertion ‘stem hairy’ is true at the tip of the stem”. In logic this method is called a reification of
a statement (reify = make a thing of something), which is, e. g., supported in OWL (McGuinness
& van Harmelen 2004). Following reification, new statements can be made about the reified
statement.

It must be noted, however, that when using the modifier concept to create subclasses of char-
acter states, the reification perspective becomes less convincing. Treating “slightly rough leaves”
as: “the assertion ‘leaves are rough’ is only slightly true” is a logical error which only superficial-
ly looks correct. This can be seen in the case of “pale blue eyes” which may be interpreted as:
“the assertion ‘eyes are blue’ is only true in the wider sense of blue, the exact narrower sense is
pale blue”. It is uncertain whether this can be interpreted as reification at all.

Despite these problems, combining variable and value extensions into a single extension con-
cept seems to be a good compromise. In fact, no validation mechanism could be found in the
SDD discussions to constrain a modifier mechanism to purposes that clearly are a reification
while preventing its use for character state modifications. Similarly, the attempt to introduce a
fully logical reification mechanism at various levels seemed to overload the design with undue
complexity and make implementations of the information model expensive. A single level of
modifier types seems a good compromise between expressiveness and complexity of the model.

4.15. Secondary classification resulting in
description scopes

Introduction
Many differences between objects are not captured by the primary taxonomic class hierarchy,
even if low-level ranks such as subspecies or variety are being used. Some differences are due to
random effects in the history of individual objects and do not lead to additional classification
systems. Other differences are, however, systematically repeatable and – in biology – often ge-
netically coded (sex, life cycle stages). These may give rise to additional classification systems
(Table 52).

216 Fundamental aspects of description models G. Hagedorn

Table 52. Examples of alternative classification systems and sources of intra-class variation in
biology and the study of musical instruments.

Taxonomic classification Biological organisms Musical instruments
Phylogenetic / Inherited
(→ multiple characteristics
are linked)

Evolutionary history
/taxonomic classification
(e. g., order/family/genus)

Craftsmanship, technological,
or industrial traditions of
instrument creation

Operational (arbitrarily based
on a single characteristic)

Tree/shrub/herb,
water vs. land plants

Sachs-Hornbostel system (idiophones,
membranophones, chordophones,
aerophones, electrophones)

Source of further variation
Individual history
a) chance effects Scarring of skin, mutilations Scratching, discoloration
b) systematic responses

to the environment
Phenotypic responses like flowering
time, leafing in deciduous plants,
variable shape to maximize
resource utilization,

Response to humidity or
submerging in water

c) essential and
repeatable history

Developmental stages:
 e. g., egg/embryo, larva, adult;
Life cycle stages:
 e. g., gametophyte, sporophyte

Phases in the construction of
an instrument; tuning of instruments

Genetic polymorphism Sexes or blood types (multiple alleles
for a gene present within populations)

Decorative styles spanning multiple
instrument types and traditions

A characteristic that is polymorphic within a class (i. e., taxon in biology) is often still informa-
tive for diagnostic purposes. If a plant species has red or white flowers (e. g., Ranunculus asiati-
cus L.) and other species have yellow, blue, red, or white colors, specifying flower color removes
some classes from the set of potential identification results. A description “flowers red or white”
is a meaningful part of a diagnostic class description.

Certain kinds of polymorphisms change highly systematically. A description “sex male” is
meaningful for an individual object, but “sex female or male” is meaningless in a class descrip-
tion. By definition, the two sexes occur together. Similarly, recording the presence of life stages
may or may not be meaningful, depending on the taxonomic scope and whether all classes have a
larval and an adult stage. This problem of character “saturation” (i. e., all potential character
states present) can be automatically detected if a character has been recorded either for all classes
or for a sufficient sample of objects. It normally does not require the recording of additional in-
formation. Some of these characteristics, however, form an operational classification system. In
biology these “secondary classification systems” are independent of the primary system of taxo-
nomic names. The most frequently encountered examples are designations of sex (male / female),
generation (e. g., spring / summer), and life cycle or development stage (e. g., larva, adult).

Importantly, the values of these classifiers are not directly observable characters, but typify
sets of correlated character expressions. Objects with different classifier values will have moder-
ately or strongly different descriptions. If for a secondary classifier like “sex” the object descrip-
tions differ only in expected characteristics (the sex organs), the values of the classifiers would
normally be suppressed in the class descriptions (e. g., a species description). Other weakly cor-
related characteristics (e. g., males being slightly smaller than females) will be presented as a
generalized description (e. g., as a size range including both sexes). However, separate descrip-
tions will be prepared if several diagnostically relevant characteristics (e. g., wing pattern of but-
terflies or bird plumage), or unexpected characteristics differ between sexes. This is then called a
“sexual dimorphism”. The sex values will not become part of the description, but will be used to
group or structure the descriptions. Depending on the amount of differences, the grouping may
precede the primary class name (e. g., taxon name), be a subheading within descriptions, or only
an annotation at individual descriptive statements (Table 53). Furthermore, if different sexes or

G. Hagedorn Fundamental aspects of description models 217

life cycle stages are keyed out separately in identification keys, the classifier values are usually
added to the name that is keyed out.

Table 53. Examples of different presentations of sex and life cycle stage classifiers.

Stage grouping preceding
class name

Stage as subheading
within description

Sex as note to individual
statement within description

Larval descriptions
 Colias alfacariensis Ribbe 1905
 Colias crocea (Geoffroy 1785)
Adult butterfly
 Colias alfacariensis Ribbe 1905
 Colias crocea (Geoffroy 1785)

Colias alfacariensis Ribbe 1905
 Distribution: …
 Common characteristics: …
 Larval characteristics: …
 Adult (imago) characteristics: …

Colias alfacariensis Ribbe 1905
 …
 Larva: Size … body green, …
 Adult (imago): …
 Size …, wings white
 (females) or clouded
 yellow (males)

Storing the information about classifiers as character data is satisfactory for object descrip-
tions, but not for class descriptions. Although sets of correlated characters can be detected algo-
rithmically, it is difficult or impossible to detect which of the correlated “characters” are truly
observable characters, and which “characters” summarize and generalize sets of character corre-
lations.

Before proposing an information model for secondary classifiers like sex, generation, or
stages, it must first be decided whether it is appropriate to generalize these to a single concept. As
a first step, the most important classifier concepts in biology will be discussed.

Note: an early version of this discussion, with comments from R. Morris and B. Heidorn can
be found on the SDD Wiki under the topics of “SecondaryClassifiersWithinClasses” and “Secon-
daryClassifiersProposal”.

Mating type and sex
Many organisms have a breeding system involving multiple mating types to increase the evolu-
tionary advantageous outcrossing. Mating types may be classified as sex and morphological or
physiological self-incompatibility systems. Note that instead of using “mating type” as a gen-
eralized term (i. e., including sex), many authors use it when referring to reproductive compatibil-
ity types (studied using internet search mechanisms). This may be due to these authors working
on taxonomic groups that do not show morphological differentiation into sexes (e. g., yeasts).

In biological usage, sex is defined as the sum of morphological and behavioral features that
distinguish organisms on the basis of their reproductive function (EB 2001, CED 1992). The
concept of sex is fundamentally limited to two different sexes (“male”, “female”). The combina-
tion “hermaphrodite” (a single organism being both male and female), the absence of sex, combi-
nations of sexes in parts of development stages of a single organism (e. g., in plants: monoecious,
dioecious, trioecious) may lead to additional states, but overall the number of states is general
and limited. In contrast, the number of compatibility types differs strongly among organism
groups, as do the names used for individual types (e. g., “+” / “–”, “A” / “a” / “alpha”, “b1” / “b2” /

“b3”). Mating types are usually genetically determined (an exception is, e. g., the marine worm
Bonellia with environmental sex-determination, EB 2001).

In many animals, either sex is the only mating type, or sex and self-incompatibility system
are always correlated. The difference between the two concepts can be seen in plants like Nicoti-
ana that are sexual hermaphrodites in having both anthers and gynoecium in each individual, but
have a physiological self-incompatibility system to prevent inbreeding. Similarly, fungi may
produce differentiated male and female organs on the same thallus but remain self-incompatible
(heterothallic) due to a separate physiological self-incompatibility system. Many fungi or algae

218 Fundamental aspects of description models G. Hagedorn

have no morphologically identifiable sex system and are classified only according to their self-
incompatibility system (which is often only called “mating type”).

An example of a morphological self-incompatibility system (i. e. heteromorphy) is the hete-
rostyly in plants (e. g., in Primula species: distyly or in Lythrum salicaria and Eichhornia: tri-
styly). This mechanism is independent of the sex system, but closely linked with a physiological
incompatibility system where present (Richards 1986).

Generations, life cycle, and developmental stages
The term generation in biology denotes the steps in the cycle of reproduction. Consecutive gene-
rations may be morphologically similar or dissimilar and they may be genetically different (espe-
cially after sexual reproduction) or not. The latter case may be due to vegetative reproduction
(e. g., parts of a plant break off, are dispersed, and root again forming the next generation) or to
apomixis (using an embryonic reproduction system without genetic exchange, e. g., producing
seeds asexually). In single-celled organisms generation and cell division are synonymous (but
regular or irregular morphological change occurs). Loosely the term “generation” is often applied
to designate morphologically distinct “generation types”, but a more precise term is desirable.

Life cycle may be defined as “the series of changes in the life of an organism, including repro-
duction” (EB 2001, dictionary). Two kinds of life cycles exist (EB 2001, encyclopedia: “life
cycle”):
■ All stages occur within the life of an individual organism (single-generational life cycle). The

life cycle may be:
□ truly having only a single generation, as in bacteria (haplontic life cycle), or
□ an alternation of haploid and diploid generations, one of which is so highly reduced that it

is no longer considered a separate generation (haplontic or diplontic life cycle).
■ The stages include several generations to complete a full life cycle (multigenerational life

cycle).

The life cycle stages within a single generation are also called ontogenetic stages, developmen-
tal stages (or phases), or growth stages (for the latter see Pujar & al. 2006). These may either
partition a continuous variation (e. g., embryo, infant, youth, and adult) or may relate to distinct
structural changes (e. g., in holometabolic insects: egg, larval instars, pupa, and imago).

The term “life cycle stage” is often used as a general synonym of developmental stage (which
conforms to the dictionary definition cited above). This causes no problem in organisms that
complete their life cycle in a single generation, but appears unfortunate in organisms having both
distinct generational stages and developmental stages within a generation.

In the case of multigenerational life cycles, both “generation” and “life cycle stage” may refer
to distinct generations. The use seems to be not consistent. For example, in the red algae Polysi-
phonia the haploid generation (gametophyte) is followed by two distinct diploid generations (car-
posporophyte, tetrasporophyte). In a small informal survey (Google, 2007-05-01) the following
terms were used: life cycle stages, life-history phases, generations, somatic phases, somatic sta-
ges, life stages, with a preference for the first term. In another example, the seasonal dimorphism
(“polyphenism”) of “Araschnia levana gen. vern.” versus “A. levana gen. aest.” was mostly ter-
med spring and summer generations, and only rarely “life cycle stages”. Thus, while development

/ growth stage / phase unambiguously refer to development within a single generation, no general-
ly accepted term for morphologically or genetically distinct generations in a life cycle exists.

A special problem is the dikaryotization of many basidiomycetes. After the sexual partners
have fused, the new nucleus divides and propagates itself through an existing cellular structure
(the previously monokaryotic hyphae). It is unclear whether this should be considered a genera-
tion because of the genetic change, a life cycle stage because of the change in ploidy, or a devel-
opmental stage.

G. Hagedorn Fundamental aspects of description models 219

Temporal changes in descriptive data may occur cyclically within the life of individuals.
These changes may be influenced by seasons (summer, winter) or synchronized biological clocks
(circadian = changes over the day, circalunar = changes over the lunar month period, the latter is
especially relevant to aquatic organisms depending on the tidal cycle). These changes are not nor-
mally considered developmental stages, but no term summarizing correlated descriptive changes
seems to exist. Examples are seasonal habits of plants during the year or different bird songs in
spring and winter (like in the Eurasian robin, Erithacus rubecula).

The topic of temporal change has also been discussed under “Change of object concepts
through temporal development” (p. 162).

Other classifier concepts
Other concepts that exhibit similar classification or grouping properties in descriptive data are:
■ Social insects such as ants, bees, termites, and wasps have morphologically differentiated indi-

viduals belonging to different castes (queen, workers, soldiers, etc.). The castes are a polymor-
phism between generations which cannot be treated as life cycle stages, because most indivi-
duals are sterile and die without progeny. Instead, they may be viewed as polymorphic gen-
erations. Caste differences may be caused by genetic (e. g., drones) or by non-genetic factors
such as responses to nutrition during early development (e. g., worker versus queen). In con-
trast to seasonal dimorphism, however, these factors themselves are controlled by the behavior
of the population.

■ The result of an identification key may be a morphological variant (albinism, gigantism, etc.).
In botany some variants that occur regularly and with considerable frequency may be recog-
nized as infraspecific taxonomic ranks; but in zoology “variant” or “forma” ranks are no
longer in use.

■ A special case of variants are “photosymbiodemes” or “morphotypes” in lichens. Here a fun-
gus forms a lichen with different algal partners (photobionts), resulting in lichen forms that are
anatomically identical (isomorphic) or different (heteromorphic).

■ Descriptions may be specific to geographic regions or different environmental strata (e. g.,
highland versus lowland). The underlying mechanisms are usually a combination of system-
atic responses to the environment and changes in allele frequencies of polymorphic genes.

■ Descriptions may be based on living or dead material. Many characteristics can only be ob-
served when living (e. g., in Orbilia, see Baral 1992).

■ Descriptions may vary when based on material preserved by different methods (e. g., drying or
ethanol conservation).

■ A custom concept may be needed to summarize a complex mixture of other potential classifi-
ers. A marked example for this is the complex life cycle of rust fungi (Uredinales, see also
p. 157 in “Problems with specialized, context-dependent names for object parts”). Many
different life cycle variants exist in rust fungi. For example, wheat rust (Puccinia graminis)
has five different spore types (spermatia, aeciospores, urediniospores, teliospores, basidiospo-
res), each of which must be measured and described separately. The relation between spore
types and generations of the organism is complex: generations may produce multiple spore
types, functioning as gametes (spermatia) or leading to the same (“repeating” or “epidemic”
cycle of urediniospores) or an alternative kind of generation. Furthermore, the nuclear cycle is
not directly coupled to spore types or mycelial generations. Instead of creating a new generat-
ion after “mating” (spermatia fusing with receptive hyphae), the existing mycelium will be
dikaryotized (i. e., only the new nucleus divides and propagates itself through existing cells),
creating a new genetic generation in the same somatic generation. As in most basidiomycetes,
the creation of a single nucleus (karyogamy) occurs only much later (in the teliospores). Thus,
the traditional classifier concept of “spore states” summarizes aspects of generations, nuclear
cycle, function (e. g., overwintering of teliospore), and morphology. It forms a pragmatic con-

220 Fundamental aspects of description models G. Hagedorn

cept that cannot easily be reduced to its basic constituents without becoming impractical.
Modeling rust fungus descriptions may be a useful “data challenge” to test information
models.

Generalized term for sex, generation, life cycle stages, etc.
The various classifier concepts discussed above all describe why multiple classes of descriptions
may exist within the most specific class defined in the primary (i. e. taxonomic) classification
system. It seems advisable for a descriptive data information model to provide a generalized
mechanism rather than selecting specific classification systems (sex, life cycle, etc.) because:
■ The number of secondary classification systems discussed so far is relatively large and there is

no reason to assume that the list is finite,
■ the model would become specific to biological descriptions,
■ the individual classification systems may be interrelated in complex ways as has been shown

in the example of the castes of social insects or the spore stages of rust fungi.
No existing generalized term for such classifier concepts could be found. An internet search for a
generalized name for at least sex, generation, and life cycle stages was unsuccessful. The follow-
ing definition is therefore proposed:

Secondary classifiers = variables used for classification systems that are
independent of the primary classification system (which in biology are taxon
names or non-taxonomic names like disease names). Secondary classifiers
provide a naming system summarizing information about systematically
repeatable descriptive variation that is independent of the primary classi-
fication. Multiple secondary classifier concepts (each with multiple state-
values) may exist. Together with the primary classifier they define the scope of
a description.

Neither the proposed term “secondary classifiers” nor the definition given above are fully satis-
factory. One problematic point is that the description scope (the “operational description unit”) is
usually defined by practical considerations. It may involve sets of classifier values (e. g., descrip-
tion 1: first instar; description 2: second, third, etc, instars; description 3: penultimate instar; de-
scription 4: imago) and it may depend in very complex ways on fundamental secondary classifi-
ers (compare the rust fungus example on p. 219). The current discussion should be seen as a first
step in tackling the problem systematically. Therefore, the following list documents the candida-
te terms that were considered before choosing “secondary classifiers”:
■ “Classifiers” seems to be too general without further qualification.
■ “Non-taxonomic classifiers” is inappropriate; the primary class names may already be non-

taxonomic, as in disease names. Also, the problem of secondary classification exists in de-
scription models outside of biology as well, and it would be advantageous to find a general
term not restricted to biology. “Taxonomy” could be understood in a general way, but then the
secondary classifiers would themselves form a kind of taxonomy.

■ “Context” or “class context”. Usage examples: “This character in the context of a male indivi-
dual…” (pers. comm. D. Hobern).

■ “Variant” or “class variant”. Usage examples: “This class description is for variant of type
male…” (pers. comm. T. Paterson).

■ “Description classifiers” – this might perhaps be more intuitive than “secondary”, but it would
include the primary taxonomic classification as well.

■ “Determinants / classification determinants” – very similar to “description classifiers”.
■ “Orthogonal classification system” stresses the independence of the primary and secondary

classifications, but provides little other intuition.

G. Hagedorn Fundamental aspects of description models 221

■ “Phenotypical classifiers” would be confusing, since phenotypic is usually considered an anto-
nym to genotypic. Classifier concepts may be phenotypic (environmental sex determination),
genotypic (genotypic sex determination), or ontogenetic (development stages).

■ “Scope”: If the description has been split into separate parts, each part has a geographic, sex,
life cycle stage, etc. scope. However, the term scope is only applicable to viewing generalized
class descriptions. It is not applicable to recording object descriptions or to refer to the deter-
minants of scoping (geography, sex status, etc.) itself. Definition of scope (CED 1992): “2.
range of view, perception, or grasp; outlook.” Usage examples: “The scope of this class de-
scription is male objects”, or “… is objects from Morocco”. “This character is a scoping char-
acter”.

■ “Applicability”: Usage examples: “The applicability of this class description is male objects”.
■ “Sub-concepts” (Chalubert & Vignes Lebbe 2006).

Context of secondary classifier data
In descriptive information models, secondary classifier information may occur in several places:
■ Defining the scope of coded or natural language descriptions;
■ defining the scope of descriptive data sets (including digitized natural language descriptions or

identification keys; e. g., a key may cover only larval stages of an insect group);
■ specifying the scope of a result (e. g., “keyed out taxon”) in authored identification keys (e. g.,

a digitized identification key);
■ in observation or collection databases as part of the specimen identification information (e. g.,

“male lobster”).
In the case of entire data sets a human-readable free-form text element (title, label) will often be
sufficient. Similar to individual descriptions, however, machine-readable scope definitions will
become more and more important with the increasing number of data sets to manage.

The occurrence of secondary classifiers in the identification results in identification keys and
the desire to record similarly constrained information in specimen or observation databases seems
interesting. Specimen or observation information models (DarwinCore:
http://wiki.tdwg.org/twiki/bin/view/DarwinCore; CDEFD: Berendsohn & al. 1996a; Berendsohn
& al. 1999; ABCD: Berendsohn 2005) often have special fields for sex, or life stage. Given the
diversity of other classifier concepts listed above, a generalization seems to be desirable in these
information models as well.

Another interesting point is that in specimen collections, multiple individuals having different
classifier values (stage, sex, etc.) may be in or on a single collection unit (e. g., herbarium sheet).
In models like CDEFD (Berendsohn & al. 1996a; Berendsohn & al. 1999) or ABCD (Berendsohn
2005) the data are, however, not necessarily bound to a management unit like the herbarium
sheet. Individuals or even parts of them may be referred to as well. It is thus possible to have no
classifier values, specific classifier values (e. g., “male”), or a set of values (e. g., “male, female”,
indicating that it is explicitly known that the data apply to both scopes). This is very similar to the
situation in class descriptions, where the scope may be unknown, restricted, or explicitly known
to be general.

Classifier-related characters
A confusing aspect of classifiers is that – although the values do not contribute to the class de-
scriptions – the existence of values or their frequency is part of the descriptive knowledge expres-
sed in descriptive databases. For example, the frequency of males and females is a property of
classes (e. g., species in social hymenoptera), and different classes may have different develop-
ment or life cycle stages (e. g., reduced forms of the full heteroecious rust life cycle, or neoteny in
animals). Such information may be considered separate characters distinct from the “secondary

222 Fundamental aspects of description models G. Hagedorn

classifier” values itself, but this seems artificial and contrary to the handling of frequency in other
characters. In theory, the frequency of sexes could be calculated from descriptions that have a
male / female sex classification. In practice this will not be possible, since the sampling of descrip-
tions in a database (and of specimens in a collection) is highly non-random. Although presence /

absence suffers less from sampling bias, complete and systematic bias (e. g., the database con-
tains only adults) is not infrequent. Thus, classifier-related characters will normally have to be
recorded independently from the data recorded in some kind of classifier mechanism.

Some classifier-related characters are often omitted from descriptions optimized for identifi-
cation, because they are inconvenient to study (e. g., requiring observation over prolonged peri-
ods or population sampling). This is, however, no unique property of classifier-related characters.
The convenience of a character for identification purposes may be separately recorded (“ratings”,
compare “Authored character guidance”, p. 267, and “Reliability modifiers”, p. 213). Further-
more, some classifier-related characters are convenient, e. g., “sex status” with the states “mono-
clinous (having male and female organs in the same flower)” and “diclinous (in different flow-
ers)”.

On the other hand, classifier-related characters have an influence on classifiers. If a “life cycle
type” character of plants has the states “annual, biennial, perennial”, a possible life cycle stage
“plant in the second year” is inapplicable for “annual”. Similarly, if “heterostyly” has the states
“monostylous, bistylous, tristylous”, and a related heterostyly classifier the values “short, me-
dium, long style”, the entire classifier would not be applicable for heterostyly = monostylous, and
only the values “short” and “long style” would be applicable for heterostyly = bistylous.

Existing models of handling secondary classifiers
The special properties of sex, generation, life cycle stages are not explicitly discussed in current
descriptive software or information models (e. g., DELTA, DiversityDescriptions, Lucid,
NEXUS, Prometheus, Nemisys / Genisys). The special properties of secondary classifiers are,
however, responsible for certain design features (especially the loose “item name” concept in
DELTA) and problems in using existing models and software. The following sections discuss
various ways in which secondary classifiers are handled currently.

Secondary classifiers nested within class names
Secondary classifiers like sex and life cycle stages may be considered part of the class name, i. e.,
nested within the taxonomic hierarchy. In applications based on the DELTA information model,
the “item names” for larvae and adults of the monarch butterfly may be “Danaus plexippus (lar-
vae)” and “Danaus plexippus (imago)”. Since “item names” are unstructured text, DELTA appli-
cations will not be able to distinguish the added classifier information from an infraspecific
taxon. Chalubert & Vignes Lebbe (2006) propose to formalize this, nesting secondary classifiers
like sex and stage as “sub-concepts” inside the taxonomic hierarchy. One may even desire to treat
them as “pseudo-ranks” (discussed in Morris & al. 2004).

Nesting classifiers in class names allows using data inheritance mechanisms. For example, in
DELTA the “variant item” mechanism may be used for sex or other classifiers. A “variant item”
is a specially marked description immediately following a primary description, inheriting the in-
formation of the primary one (see p. 101 in “Inheriting data”). Normally used for infraspecific
taxa or specimens, this may also help managing the information differing according to classifier
values. A severe limitation of this is that the variant item mechanism is limited to a single hierar-
chical level, i. e., only one of specimens, infraspecific taxa, or classifier descriptions can be
treated this way.

G. Hagedorn Fundamental aspects of description models 223

Descriptions

Species 1 (male)

(description data ...)

Species 1 (female)

(description data ...)

Species 1

(description data ...)

Classes

Species 1
Species 1 (male)

Species 1 (female)
...
...
...
...
...

Class hierachy

Species 1

...

Sp. 1 (male)

Sp. 1 (female)

...

...

(Legend: = "reference to")
Figure 104. Treating sex similar to infraspecific taxon ranks works well on the side of descrip-
tions, but requires to add two new “pseudo-taxa” to each taxon, both in the list of class names
(which is referenced by descriptions) and in the class hierarchy.

In systems implementing description names as an unconstrained string (like DELTA), adding
sex or stage information to the name is a feasible solution. However, if the class names of de-
scriptions are handled through references to a formal list of class names (internal or external no-
menclatural standard databases), this approach soon becomes highly undesirable (Fig. 104). The
following major problems can be identified:
■ Specifically dependent classes for sex, life cycle stages, etc. must be introduced for each iden-

tifiable class. Since objects identified to a supraspecific taxon may still be classified (e. g., for
stage, like “butterfly”), this applies to supraspecific taxa, species, and infraspecific taxa.

■ These additional “pseudo-classes” would also have to be added to the class hierarchy defini-
tion. Most biologists will automatically assume that “Danaus plexippus (larvae)” can be gene-
ralized to “Danaus plexippus”, but this involves a parsing of the string and semantic knowl-
edge, allowing us to distinguish between a classifier “(larvae)” and a taxonomic author name
which may be in the same position. Relationships thus have to be formally expressed.

■ The taxonomic hierarchy is naturally nested. Classifiers act as separate dimensions independ-
ent of this hierarchy (Figs. 105-106). Although in general any single dimension that is inde-
pendent of a hierarchy may also be viewed as nested within the hierarchy, in the presence of
more than one classifier, arbitrary nesting decisions will have to be made (Fig. 107).

■ In biology, the classifier extension needs multilingual support, whereas the primary scientific
taxon name system is language-independent (based on Latin). However, if the primary classi-
fier system is intended for non-scientific names (e. g., disease names), the multilingual support
would already be present.

Family

Species 3Species 1 Species 2

Genus 1 Genus 2

ssp. bssp. a

Family

Species 3Species 1 Species 2

Genus 1 Genus 2

ssp. bssp. a

Larva

Egg

Imago

Figure 105. Visualization of the nested na-
ture of the taxonomic hierarchy, with 2 sub-
species, 3 species, and 2 genera in a family.

Figure 106. Developmental life cycle stages run
across the taxonomic hierarchy; the stage concept
does not depend on taxa (although the presence
of a stage may depend on the taxon).

224 Fundamental aspects of description models G. Hagedorn

Furthermore, the classifier dimensions may or may not be dependent (Fig. 108):
■ In humans or butterflies, sex and development stage are entirely independent.
■ In the red algae Polysiphonia (see above), only one of the three life cycle stages (generations)

is sexually differentiated. The classifier related character “Sex presence” and the dependent
sex classifier are nested within stage.

Another problem is that – for report-generation purposes – classifiers may have a higher grouping
priority than the primary class hierarchy. For example, caterpillar and butterfly stages may be
presented in separate descriptions and identification keys (compare Table 53, p. 217). Although it
is possible that software may support this, it is an operation unnatural for hierarchical arrange-
ments and is not required for the naturally nested taxonomic hierarchy.

One possible solution would be to handle classifiers in an unconstrained string introduced in
addition to the formal class name reference. This would avoid many problems noted above, but
would not allow classifier-specific processing, for example, producing generalized descriptions
for sex, but separate ones for stages.

Family

Species 3Species 1 Species 2

Genus 1 Genus 2

Egg

Larvae

Imago

Egg

Larvae

Imago

ssp. bssp. a
Egg

Larvae

Imago

Egg

Larvae

Imago

Carposporophyte

Gametophyte

Tetrasporophyte

Female Male

Larva

Egg

Imago (adult)

Female Male

(only genetic) (only genetic)

(only genetic) (only genetic)

(morphological) (morphological)
Figure 107. Sex and stage arbitrarily nested
inside the taxonomic hierarchy. Males and
females of different taxa or stages are assumed
to have no relation or similarity.

Figure 108. The conceptual dimensions of sex
and life cycle stages may be dependent and
nested (top; e. g., red algae) or more or less
recognizable throughout all states (bottom;
e. g., butterflies).

Secondary classifiers as normal characters
Secondary classifiers may be considered normal characters (like “shape” or “color”; compare the
section “Classifier-related characters”, above). This approach is relatively rarely found in
DELTA data sets. Prometheus (Paterson 2004) explicitly considers sex and life cycle as “qualita-
tive description elements”, i. e., as properties of structures, equivalent to DELTA characters of
type ‘UM’ or ‘OM’.

Using normal characters to express classifier information has the advantage that applications
have no additional implementation requirements because existing mechanisms are used. How-
ever, the approach is problematic in that:
■ Secondary classifiers are important factors when aggregating specimen data, or generalizing

multiple taxon descriptions to higher taxon descriptions. If the aggregation / generalization al-
gorithm can test which observations belong to secondary classifiers like sex or life cycle stage,
it could make rule-based decisions whether to ignore sex or stage differences, or whether to
create separate descriptions for them.

■ The solution does not work for authored identification keys (e. g., larvae and adults of the
monarch butterfly are keyed out in separate places in a single key, or in separate keys).

The first problem could be solved by defining an additional Boolean attribute on certain charac-
ters / state sets, indicating which ones are defining secondary classifiers. To solve the problem

G. Hagedorn Fundamental aspects of description models 225

with identification keys, one could provide a “micro-description” facility at each point where a
key ends with a class reference.

Secondary classifiers modeled through character sets
Probably the most customary model in the case of life cycle stages is to provide a separate set of
characters for each stage (Fig. 109). In general, this solution is preferred if the descriptions de-
pend strongly on the classifier value, at least some characters are specific to a classifier value,
and perhaps even structural differences in the object composition occur (as in caterpillar and
butterfly). Usually only a limited amount of characters (overall size, DNA) are truly duplicated.
However, for these duplicated characters the information to perform a generalized analysis (ig-
noring the classifier dependency) is lacking in currently implemented information models.

xx xxxx xxx x xx

x x x xxxx
xx xxxx xxx x x xxx xxxx

(Characters for insect larva)

x
x

x

x
x

x

x
x

Object descr. 2
Object descr. 3
Object descr. 4
Class descr. 1
...

Object descr. 1
xxx x x x x xxxx x x
xxx x xx xx

xxx x xxx x xxxx x xx

(Characters for adult insect)

x
x

x

x

x

x

x

x
x

x

x

x

x

x

Figure 109. Character × description matrix where development stages are expressed through
separate sets of characters.

xx xx xxx

xx xx xxx

pycnospore

Object descr. 4
Class descr. 1
...

Object descr. 1 x xx xxxxx

xx xxxxx x

xxxxxxxxxxx

aeciospore

xxxxxxxx x
x xx xx xxx

xxxxxxxxxxx

uredospore

x xxxxxxxx

x xxxxxxxx

teliospore

xxx xxxx xx
xxx xxxx xx

basidiospore

xx xx xxxxx
xxxxxxxxxx
xx xxxxx x

xxx xxxx xx
xx xx xxxxx

"generalized
spore"

Object descr. 2
Object descr. 3
Object descr. 4
Class descr. 1
...

Object descr. 1

Object descr. 2
Object descr. 3

Figure 110. Character × description matrix where spore stages of rust fungi are expressed
through separate sets of characters. Each set is assumed to contain the similar characters
(length, width, shape, septation, wall thickness, surface ornamentation, etc.) that are specialized
only through the spore stage they describe. One generalization dimension abstracts from objects
to a class description. However, another desirable generalization dimension shown below the
main matrix would generalize to a “generalized spore”. The arrows show the generalization only
for the first character in each set. The class description in the lower matrix combines both gener-
alizations.

In descriptions of rust fungi, almost all characters may be duplicated for the spore stages of
the life cycle (Fig. 110; see also p. 219 and p. 157 for life cycle of rust fungi). A generalization as
shown in Fig. 110 is highly desirable for identification purposes. Without knowledge of ontogeny
and nuclear cycle, spore stages may be difficult to distinguish based on morphology alone.

226 Fundamental aspects of description models G. Hagedorn

Instead of using a general character set mechanism, some information models may use a spe-
cialized mechanism to group characters into classifier-dependent sets. For example, Dmitriev
(2007) classifies characters with regard to stage using a special field (“Characters.Type”), with
system-defined values: “n for nymphs”, “m for males”, “f for females”. The field is multi-valued,
allowing combinations such as “mf”.

Explicit secondary classifier mechanism
The introduction of a separate “secondary classifier” mechanism which is proposed for SDD is
very similar to using normal characters to express secondary classifiers. The classifier characters
are analogous to normal characters, but used in a separate context to define the scope of a de-
scription. This allows them to be treated differently when generalizing descriptive information
(objects to class, classes to higher classes). Furthermore, the same mechanism could be added to
authored branching (e. g., dichotomous) keys as well, allowing the result of a key to be specific to
a classifier (e. g “female Colias alfacariensis”).

The introduction of explicit secondary classifiers does not prevent the existence of classifier-
specific character groups. However, they will only be necessary where structures or properties
apply only to a certain sex or stage. In contrast to the character set model described in the previ-
ous section (Figs. 109-110), the existence of classifiers does not force the duplication of charac-
ters (Fig. 111).

xxx xxxxxx xxx
xxx xx xxx xx

xxxx xxxxxxxxxxx

(Larval chars.)

xx xxxx xxxx xx
xxx xxx xxxxx

xxxxxxxx xxxxxxx

(Adult insect chars.)
x x x x xxx

xxxx x xxxx
xx xxxx x
xx x xxxxx

xxxx x xxxxx
xx xxxxxxxx

(Common chars.)

x

x

x
x

x
x
x

x
x

x
x
x

x
x

x
x
x

Larva
Adult/imago
Adult/imago

Larva
Adult/imago

Larva
Object descr. 2
Object descr. 3
Object descr. 4
Class descr. 1
Class descr. 2

Object descr. 1
Sec. Classifier

Figure 111. Character × description matrix where development stages are designated using a
secondary classifier mechanism. Some characters are applicable only to certain stages, but other
characters are common to different stages. The generalization algorithm providing the class de-
scriptions from object descriptions has detected that the common characters for different stages
are strongly different. Thus, separate, stage-specific class descriptions have been prepared.

If class references are extended with an explicit secondary classifier mechanism in descriptions
and identification keys, they may also be desirable in the context of object (i. e. specimen)
identifications (Fig. 112). However, not all class references would provide secondary classifiers.
The non-extended base type (without classifiers) would still be used in the definition of the class
hierarchy (i. e. taxonomic hierarchy) and when defining synonyms (Fig. 113).

G. Hagedorn Fundamental aspects of description models 227

Objects

Classes
Species 1
Species 2
Species 3

...

Obj. 1, identified as:
Class ref. Classifiers

Obj. 2, identified as:
Class ref. Classifiers

Obj. 3 (unidentified)
Class ref. Classifiers

Descriptions
Descr. 1, describing:

(description data...)

Class ref. Classifiers

Descr. 2, describing:

(description data...)

Object reference

Diagnostic Key
Lead statement 1a

Lead statement 2a
keying out class:
Class ref. Classifiers

Lead statement 2b
keying out class:
Class ref. Classifiers

Lead statement 1a

Lead statement 3b
...

Lead statement 3a
keying out class:
Class ref. Classifiers

(Legend: = "reference to")
Figure 112. Visualization of objects with class (i. e. taxon) references that require an additional
secondary classifier mechanism (sex, life cycle, or developmental stage).

Class hierachy

Class ref.

...

Class ref.

Class ref.

...

...

(Legend: = "reference to")

Classes
Genus 1

Species 1
Species 2
Species 3

...

Synonym ref.

Figure 113. The class references from class hierarchy (in biology = taxonomic hierarchy) to class
definitions, and from synonyms to class names do not require a secondary classifier mechanism
(compare Fig. 112).

Summary and conclusions
This section is a first attempt to analyze the problems involved in sex, life cycle and other addi-
tional secondary classifiers used to define the scope of organism descriptions. It primarily tries to
explore the problems encountered when trying to replace the free-form-text description heading
or label traditionally used in descriptive information models (“item name” in DELTA) with more
structured data. The term “secondary classifiers” is chosen here primarily because no better gen-
eralization has emerged. The topic would clearly benefit from work on it.

So far, the following conclusions and requirements for an information model can be summa-
rized:
191. For biological objects, the primary classification of organisms by taxonomic name needs

to be supplemented by additional concepts to describe the scope of a descriptive data set.
Lacking a better concept, these may be called “secondary classifiers”. Secondary classifi-
ers summarize a special form of correlated variation that is independent of the taxonomic
classification.

228 Fundamental aspects of description models G. Hagedorn

192. Handling secondary classifiers as an extension of the primary taxonomic hierarchy (i. e.,
below infraspecific ranks) is theoretically possible, but leads to severe artifacts and is not
recommended.

193. Secondary classifier concepts are not limited to sex and life cycle, seasonal, or
developmental stages. Many further general concepts (castes of social insects) or highly
desirable “custom” classifiers (like spore states of rusts) exists. A generalized concept is
required.

194. Secondary classifiers are required in the following contexts of an information model:
■ When defining the scope of a coded or natural language description.
■ When defining the scope of an identification key.
■ When defining the scope of an identification key result (“keyed-out taxon”).
■ As part of a specimen identification information in observation or collection databases.

195. Secondary classifiers are distinct from characters. Classifier-related characters exist, but:
■ classifier-related characters can usually not be calculated based on classifier values;
■ classifier-related characters require no special handling in identification.

196. Dependency relations between secondary classifiers and characters exist:
■ Classifier-related characters may control the valid values for classifiers (see heterostyly
example);
■ Classifiers may control characters (e. g., only part of the life cycle stages may have sex-
ual differentiation).

197. The presence of some secondary classifier concepts (especially developmental stages) de-
pends on the taxonomic group (i. e., the “primary classifier”).

198. Secondary classifier values of a given description may be unknown. A description may
either be general (e. g., apply to both sexes) or the scope may be unknown (e. g., it is un-
known whether the description applies to one or both sexes). Support for coding status
values or a similar concept is desirable.

199. Secondary classifiers require representations for multiple audiences / languages.
200. Although the analysis was limited to biological objects, some secondary classifiers (e. g.,

geographical scope) may occur outside of biology as well. Thus, although the priority may
be lower for non-biological applications, secondary classifiers are required for all descrip-
tive information models.

These requirements express much structural similarity between secondary classifiers and normal
characters. A future information model may attempt to develop a classifier mechanism based on
the normal character system in the form of “micro-descriptions” that define the scope of a de-
scription, a key, or an identification key result. Further studies in this area are needed.

G. Hagedorn Identification methods 229

5. Identification methods
5.1. Introduction
The terms “to identify” and “identification” are used in various senses (Table 54). With respect to
classes and individuals, they may be used when establishing:
1. the equivalence or identity of two class concepts,
2. a relation between an individual object and an individual name (or other identifier), and
3. a relation between an individual object and a class concept (and its class name).
Although all senses of “identification” may have a definitional rather than analytical perspective
(i. e., “from now on this should be understood such…”), the term “identification” is not normally
used in a definitional sense. In biology, the perspective used is always one of detecting or deter-
mining a concept that has been defined earlier (“determination” is therefore considered a syno-
nym of “identification”). Assigning selected individuals to a class for the purpose of defining or
establishing a concept is called “typification” or “vouchering”; the common term for establishing
class equivalency is “synonymization”. Here, biology focuses on (re-)defining names for classes,
rather than on detecting (or identifying) the equivalence of taxonomic classes. Thus the first
sense of “identification” (establishing equivalence or identity of concepts) is never used in biol-
ogy.

The second sense of identifying named individuals does occur in certain biological studies.
However, only rarely does the individual variation of descriptive features (in the broad sense
defined on p. 27) itself enable identification. Individual identification of animals is more often
based on color or incision marks, coded tags, rings, or radiofrequency-ID devices (RFID) pur-
posely added by humans. Human identification may similarly be based on descriptive data (face
recognition, fingerprints, DNA profile) or purposely added identification vouchers.

Whereas in common language the second sense is dominant, in biology the third sense is the
most common. The object to be identified is usually an entire organism or a representative sam-

Table 54. Examples of dictionary definitions for “identification” and “identify”.

Term
Collins English Dictionary
(CED 1992)

Merriam-Webster’s Collegiate /
New Oxford Dictionary (EB 2001)

Identification 1. the act of identifying or the state of
being identified.
2. a) something that identifies a person
or thing. b) (as modifier): an identifica-
tion card.
3. Psychol. a) the process of recognizing
specific objects as the result of remem-
bering. b) the process by which one in-
corporates aspects of another person’s
personality. c) the transferring of a res-
ponse from one situation to another
because the two bear similar features.

1. the action or process of identifying someone or something or
the fact of being identified: each child was tagged with a number
for identification, it may be impossible for relatives to make posi-
tive identifications.
2. a means of proving a person’s identity, especially in the form
of official papers: I asked to see his identification.
3. a person’s sense of identity with someone or something: chil-
dren’s identification with story characters.
4. the association or linking of one thing with another: the grow-
ing identification of anti-slavery with political liberalism.

Identify 1. to prove or recognize as being a
certain person or thing; determine the
identity of.
2. to consider as the same or equivalent.
3. (often followed by with) to consider
(oneself) as similar to another.
4. to determine the taxonomic classifi-
cation of (a plant or animal).
5. (usually followed by with) Psychol. to
engage in identification.

I. (with object): 1. a) establish or indicate who or what (someone
or something) is: the judge ordered that the girl should not be
identified; the contact would identify himself simply as Cobra.
b) recognize or distinguish (especially something considered
worthy of attention): […] that the pupil’s real needs are identified.
2. a) (identify someone/thing with) associate someone or
something closely with; regard as having strong links with: […]
being identified too closely with the peace movement.
b) equate (someone or something) with: because of my country
accent, people identified me with a homely farmer’s wife.
II. (no object): 1. (identify with) regard oneself as sharing the
same characteristics or thinking as someone else: I liked Fromm
and identified with him. ––– Origin mid 17th cent. (in the sense
“treat as being identical with”): from medieval Latin identificare,
from late Latin identitas + Latin -ficare (from facere ‘make’).

230 Identification methods G. Hagedorn

ple of it (e. g., a plant without the root system). Certain specialized identification processes may
require only fragments of organisms (especially DNA-based techniques, but also morphological
identification techniques for airborne spores or pollen, tea drugs, animal gut contents, etc.).

“Identification” may refer either to the identification process (as in “the identification has failed”)
or to the resulting state of being identified (as in “the specimen has three identifications”). This
duality is usually unproblematic in practice; in the following, the term identification is used pri-
marily in the sense of “identification process”.

A special problem in the clarification of the term is the case whether testing for a simple pres-
ence / absence situation may be considered an identification or not. For example, a shipment of
wheat may be tested for the quarantine pathogen Tilletia indica or pork may be tested for trichina
cysts (Trichinella spiralis). Although these cases are often much easier to solve, it seems artificial
to exclude them from the domain of “identifications”. Other cases with only two or a few poten-
tially occurring species often offer similarly simplified options for identification. Furthermore,
most identification use cases in ecology use keys restricted to species known from a given geo-
graphical area – which may occasionally be a single lizard, snake, etc. species occurring on an
island.

5.2. Classification of identification methods
A large number of terms have been introduced to classify identification methods, sometimes with
variable definitions. The lack of agreed terms and the occasionally counter-intuitive terms often
impede communication. Helpful general discussions of aspects and terminology of identification
methods are Pankhurst (1991) and Stevenson & al. (2003). The following section is an attempt to
clarify the terminology to initiate a discussion and perhaps to agree on common terms.

Kind of data used for identification
One relatively unproblematic classification of identification methods is based on the kind of de-
scriptive data used, leading to terms like “molecular identification”, “field identification”, etc.
Probably any kind of descriptive data has been used in identification processes. Morpho-ana-
tomical data are often most convenient, but other common examples are: Nucleic acid length
polymorphism patterns (RFLP, AFLP, RAPD, etc.), nucleic acid sequences (DNA, RNA), cell
wall antigen patterns using ELISA or similar immunological tests, presence and kind of enzymes
(e. g., “spot tests”) in fungi, presence of secondary metabolites in fungi and lichens (Elix & al.
1988), carbohydrate cell wall composition in fungi (Prillinger & al. 1993, Schweigkofler & al.
2002), total fatty acid composition in bacteria (MIS Microbial Identification System, MIDI
2007), sound (e. g., Orthoptera identified by sound, Ingrisch & al. 2001, Palm & Dietrich 2001).

On an abstract level, this classification is relevant only insofar as different data require differ-
ent data types (see p. 49) with corresponding similarity metrics and identity functions.

Levels of interaction
Another classification is based on the different degrees of interaction between human users and
identification methods. Humans may be involved in the identification process as:
■ initiator, requesting an identification,
■ operator, performing standardized routine operations,
■ expert, adding expert knowledge or reasoning not embedded in the key itself,
■ teacher, explaining identification concepts.
In principle, any form of involvement may be considered an “interaction”, but it seems desirable
to restrict this term to the cases where the interaction involves human knowledge and reasoning.
In this sense one can define:

G. Hagedorn Identification methods 231

■ Automatic identification as a process that can be performed by a machine (with humans only
initiating processes and performing standardized operations). Examples are DNA sequencing,
bar-coding (e. g., Cowan & al. 2006) or DNA microarray methods (e. g., Loy & al. 2002,
Leinberger & al. 2005), many image processing methods like human iris or face recognition,
leaf outlines (Agarwal & al. 2006), recognition of spores (e. g., Chesmore & al. 2003), shell
fish larvae (Tiwari & Gallager 2003), hymenopteral wings (ABIS method, Steinhage & al.
2001), and spiders (Do & al. 1999), or the fatty-acid-based MIS Microbial Identification Sys-
tem (MIDI 2007). Further examples and a discussion of the opportunities and obstacles to
automated identification may be found in Gaston & O'Neill (2004). Dreams for the future in-
clude handheld devices usable by the general public, performing automated molecular identi-
fications (Janzen 2004).

■ Interactive identification as a process where human knowledge and reasoning is supported
by a knowledge base, whether or not a computer is involved in processes like sorting, lookup,
and elimination of options or not. Note that, in contrast to this definition (which includes the
majority of humans using a printed key), the term has been widely used to exclusively refer to
computer-aided identification using multi-access keys; details of this are discussed in the ap-
pendix (p. 394).
This distinction between automatic and interactive identification is not always unambiguous.

Automatic identification methods often require manual preparation and processing of objects
which, although in principle standardized, may involve some complex choices to be made. Con-
versely, computer-aided interactive identification may occasionally require only fairly standard-
ized operations by humans, e. g., comparing an object with colors or shapes displayed on a com-
puter screen. One may say that a truly interactive identification occurs only if it exploits a sub-
stantial amount of human knowledge and experience (e. g., of terminology, classification, or fre-
quency of object occurrence). A typical case of such interactive identification is the informed
choice of characters in a multi-access key.

Identification may be semi-automatic in the sense that a computer-aided system may present a
choice of potential results based on fully automated methods (e. g., image processing), optionally
together with an estimate for the likelihood of correct identification, but then requires a human
confirmation of the result.

Phases of interactive identification
Most biological interactive identification processes, whether supported by a computer or not, may
be divided into the following phases:
■ Orientation phase. Initially, the appropriate resources (e. g., identification keys, descriptions,

images) and observation methods (hand-lens, microscope, chemical reagents, etc.) for the ob-
ject at hand are selected. The choice of the right key may depend on many factors beyond the
recognition of a broad taxonomic group: e. g., expertise of identifier, geographic location, sea-
son (summer, winter). In publications addressing experts, the orientation phase may be con-
sidered implicit, but publications for the general public or students will often explicitly discuss
the choice of methods and often provide entry keys (e. g., to families or orders). A fundamen-
tal part of the identification process will almost always be based on common knowledge.
However, the extent of what is considered “fundamental” (recognition of something as an in-
sect versus as a member of the moth family Geometridae) is audience-dependent.

■ Identification phase, consisting of one or both of:
□ Key phase. Using some form of identification key (e. g., a dichotomous or multi-access

key), the object is identified until only one, or a few taxa remain. Typically, only a subset
of the potential descriptive characters will be used during this phase. Well-designed keys
may come close to a binary search algorithm, which is very effective for a large number of
species. In authored keys, e. g., dichotomous keys, the experience of generations of scien-

232 Identification methods G. Hagedorn

tists is provided, leading to a selection of effective, convenient, and reliable characters. The
phase may be skipped if previous experience already results in a sufficiently small set of
taxa to warrant starting with a browsing phase.

□ Browsing phase (“scanning” in Stevenson & al. 2003). Short descriptions or illustrations
of organisms are compared with the object to find the correct class name. The phase is
skipped if the key phase ends with a single identification. The number of taxa after which a
browsing phase is considered more profitable than continuing the key phase will depend on
the difficulty of the key, and may differ between professionals and amateurs.

■ Confirmation (or verification) phase. The object is thoroughly compared with the informa-
tion available for the identified class (a free-form natural language description, a tabular char-
acter synopsis, or images, audio tracks, videos, etc.). The use of a wide range of characters (in
contrast to selected ones during the key phase) helps to avoid errors due to oversight, bad ma-
terial, misunderstanding of a character, or bad key design. Although probably most biologists
have learned to distrust their own initial identification results, this phase is often overlooked in
formal treatments of identification.

Although much of the discussion about identification centers on the key phase, keeping all phases
in perspective is important when developing use case scenarios.

The relevance of the phases depends on the experience of the person performing the identifi-
cation. Experienced identifiers for a given taxonomic group may not recognize an orientation
phase at all. The key phase may be skipped if a sufficiently small taxonomic group is suspected,
warranting to start with a browsing phase. The suspected group may be as small as a single spe-
cies (the object is “recognized” or “known”, Pankhurst 1993a). Finally, depending on the esti-
mated probability of recognition, even the confirmation phase may be skipped.

This classification of the entire identification process offers important insight into how well-
designed identification tools (be it printed or computer-aided) should be constructed. Material
relating to the individual phases should be clearly and visibly marked, supporting the user to tai-
lor the identification process to her or his needs. The material should be arranged such that sub-
sequent phases are arranged close to each other for fast access.

The assumption that identification in popular plant or bird identification books (“field guides”)
immediately starts with a browsing phase is somewhat erroneous. On closer inspection the user is
usually guided by grouping the material into intuitive categories, often two or three levels deep
(Stevenson & al. 2003). The result is equivalent to a short key phase. Even where no explicit
“group keys” exists, some form of coarse classification (taxonomic or artificial, e. g., “flower
color”) is usually embedded in the design of the book and occasionally a “key” is incorporated
into the table of contents. Identifying a “bird” truly by browsing is not very practical, identifying
a bird of prey, a dabbling duck, or a garden song bird by browsing is.

A combination of key and browsing phase occurs if the key phase ended with multiple poten-
tial results. Reasons for the latter are a) the key itself may be unable to distinguish taxa (perhaps a
genus key is present, but no key was created for a genus with three species), b) the variability of
the objects may be higher than expected in the key, leading to contradictions and uncertainty, c)
some key questions may be not answerable because features are missing in the object at hand, or
d) the user may have problems in interpreting terminology used in the key (but not defined).

If a browsing phase is present and printed descriptions and illustrations are used, the distinct-
ion between browsing and confirmation becomes very weak, the confirmation phase and the end
of the browsing phase are usually identical. However, when computer-aided identification tools
are used, the confirmation phase after a browsing phase may use sophisticated methods, such as:
■ determining similar taxa algorithmically based on available coded descriptions,
■ presenting a list of similar taxa based either on manually authored lists of “easily confused

taxa” (used, e. g., by AditKey, p. 21, and EFG, R. Morris, pers. comm.), followed by a
■ secondary identification phase, which in turn may be

□ a simple browsing phase,

G. Hagedorn Identification methods 233

□ a key phase using a branching (dichotomous / polytomous) or multi-access key that is being
generated dynamically based on diagnostic characters that have not yet been answered
(“check key”, Payne & Preece 1977).

Further aspects of the confirmation phase are discussed in the form of use cases; see “Confirma-
tion of identification”, p. 309.

Structural classification of identification keys
In general, an identification key is a device to accelerate the process of comparing a given object
with all available object or class descriptions. Keys are closely related to indices in databases.
This section tries to highlight essential differences of keys, especially where the difference is
relevant to information models.

The most common form of keys in biology uses a process in which the user of the key com-
pares the material to be identified with a group of logical propositions that evaluate to either true
or false. The true proposition is accepted and leads to the next step in the identification process.
Essentially, all propositions in a group must be mutually exclusive and exhaustive (i. e., no situa-
tion that is not covered by one of the propositions should occur at this point in the key).

Propositions may involve categorical as well as quantitative data. In printed keys, but also in
many computer-aided keys, users compare their measured values against fixed limits (e. g.,
“≥ 12”) defined in a proposition instead of entering values (leg number, leaf length) directly.
Computer-aided keys may also support alternative methods, where quantitative values are direc-
tly entered and then algorithmically compared with values in databases. The matching process
used to do so may involve fixed error margins or multivariate statistical methods.
Propositions are found in two styles:
■ In the question / answer style each proposition is the combination of a question and one of

multiple answers. Although this is the most common style in general questionnaires, it is rela-
tively rare in printed or computer-aided identification keys in biology. Example:
How many pairs of legs are present?
□ 9-10
□ ≥ 12

■ In the lead style, paired propositions are presented, one of which should evaluate to true. The
lead style implicitly starts each step with the question “which of the following statements is
true?”. This style is the most common in conventional, printed identification keys. Example:
□ 9-10 leg pairs, antennae short
□ ≥ 12 leg pairs, antennae long

In the question / answer style the elements of an identification step are kept together by the ques-
tion. In the lead style, commonly other means (formatting, numbering, etc.) are used. The set of
propositions that must be evaluated in a single step is commonly called a “couplet”. Although
primarily used for lead style keys, in the following the term is used for both question / answer style
and lead style.

Question / answer style and lead style differ in their support of combinations of multiple char-
acters in a single step (which is often desirable to create a set of mutually exclusive and exhaus-
tive propositions). The question / answer style is usually limited to a single character (possibly
with multiple states in a single proposition), whereas lead style often include multiple characters
combined with Boolean operators such as ‘and’, ‘or’, or ‘not’ (‘and’ often being implied and
represented by a comma). In principle, question / answer style may also include combinations of
characters, but – as can be seen in the following example – the result is more difficult to interpret:
How many leaflets are on each leaf, and what is the shape of the leaflets?

□ 1-5 and round
□ 5-15 and not round

234 Identification methods G. Hagedorn

In addition, combinations which involve
‘or’ operators between characters or which
leave information unspecified in some of
the propositions (compare Fig. 114, cou-
plet 5: the length of the tail is not mention-
ed in the first lead, implying that it is vari-
able or irrelevant) are often either impos-
sible to create or will be highly confusing
in question / answer style.

Identification keys like the one describ-
ed may be understood as a special form of
structured diagnostic description (p. 39),
omitting information that is redundant be-
cause of an earlier couplet. As a result, it is
in principle possible to extract diagnostic
descriptions from a key – but the result
may not be very useful if many Boolean
combinations of characters are present in
the lead statements.

The classical key in biology is a dicho-
tomous key (e. g., Figs. 114, 115), where
the sequence of couplets is fixed and each
couplet contains exactly two propositions
(“leads”). A relatively frequent variant of
the dichotomous key supports more than two leads per couplet. The recommended term for such
a key is polytomous key. The term “polychotomous” is also found, albeit erroneously formed
(dichotomy based on “dicho-”, Greek “dikho-” “in two”, “apart”, and “-tomy”, Greek tomos, a
“slice”, “cutting”, “section”).

Whether a key is dichotomous or polytomous is often irrelevant. In many treatments both
types are simply called “key” or “diagnostic key”, which, however, also include keys where the
sequence of questions is freely selectable by the user (multi-access keys, discussed further be-
low). A specific and generally agreed term for the generalization of dichotomous and polytomous
keys is lacking; the term “branching key” is chosen here (discussed in detail in the appendix on
p. 396).

It is often useful to provide alternative paths to a taxon in a branching key. Some characters in
the identification path may be only seasonally applicable, others may be very useful when dia-
gnosing some species, but difficult to assess or highly variable in other species. Furthermore, the
tolerance of a key against common errors may be improved by such a design. Alternative paths
may either be realized by inserting result leads (typically taxon names) multiple times, or by pro-
viding a redirection to an earlier couplet, essentially cross-linking the nodes in the couplet-tree
(Fig. 116). The resulting graph still maintains a direction and no circularity and is called by ma-
thematicians a directed acyclic graph (DAG, Stevenson & al. 2003). Knowledge whether bran-
ching keys are trees or DAGs is especially important when analyzing branching keys and when
designing an information model to store such keys. Osborne (1963) calls this a “reticulating” key,
because is creates a “net” instead of a tree. Osborne develops a mathematical framework to ana-
lyze the influence of reticulation on dichotomous keys for equal probability of answering coup-
lets correctly, admitting that the analysis is misleading insofar as reticulation will in practice be
focused on cases where a high probability of wrong answers is experienced. A continuation of
this work, i. e., a framework for studying key optimality (with and without reticulation) based on
given probability estimates for answering individual couplets correctly is not known to the
present author.

Figure 114. An example for a printable,
hyperlinked dichotomous key
(http://www.ex.ac.uk/bugclub/bugid.html).

G. Hagedorn Identification methods 235

A special feature in many branching keys is the desire to label an inner node of the key as a
result, but then continue with the key structure. This situation is termed a “result-and-continue
pattern” here. It occurs whenever a taxonomic rank has been clearly identified, but the author of
the key desires not to create a separate subkey (which would be common when reaching family
or genus level), but to continue with the same key (common when reaching a subfamily, a tribe,
or species with infraspecific taxa). Adding the taxon result as free-form text at the end of the lead
text (perhaps formatted in bold) minimally fulfills this requirement. However, it will often be
desirable to format the taxon name identical with other results (especially for species), which
creates a requirement for a special data element. An alternative way to support this pattern would
be to consider each such point creating a new subkey, and provide metadata at the subkey result
pointer to request an “embedding” of the subkey. However, it is not always desirable to create
separate subkeys for each species with infraspecific taxa.

The main alternatives to branching keys are keys where the user may freely choose the quest-
ions to be answered (Fig. 117), essentially telling his own story rather than being examined. Simi-
larly to branching keys, no generally accepted and established term for these keys exists. Many
terms have been proposed and at least one is confused and should be avoided (synoptic key, see
p. 398). For the purpose of this thesis, following the review by Edwards & Morse (1995), the
term “multi-access key” is preferred. Again, the alternative terms are discussed in the appendix
(p. 397). A multi-access key has several advantages:
■ It allows the user to ignore any question considered undesirable. In a branching key the failure

to answer the next question (e. g., because of interpretation problems, because the object part
is missing, or because the feature is not expressed at the time when the object was collected)
compels the user to follow all leads of the couplet. Determining which leads are dead ends and
which lead to a successful identification is, in practice, very time-consuming and error-prone.

■ It allows the user to select the characters that are most conveniently observed in a given ob-
ject. Although a branching key usually prefers convenient characters as well, while appropri-
ate for the majority of taxa in the key, the selection may not be convenient for the current
taxon. In a multi-access key the user is able to react to this.

■ In a computer-aided multi-access key, quantitative characters can be employed directly (enter-
ed as measurements), rather than requiring a previous fixed categorization (e. g., into “≥ 2 cm,
“> 2 cm and < 5 cm”, “≥ 5 cm”).

■ Experienced users can apply previous knowledge to accelerate the identification progress.
Even if they do not know the taxon name, they may often know that a particular character

(Start)

red

white

yellow

Species 1

Species 2

Species 3

Species 4

Species 5

Species 6

> 2 cm

< 2 cm

present

absent

10

5

Sepals

Flower size

Anthers

Flowers

Species 7blue

(Start)

red

white

yellow

Species 1

Species 2

Species 3

Species 5

Species 6

> 2 cm

< 2 cm

present

absent

10

5

Sepals

Flower size

Anthers

Flowers

Species 7blue

Redirection

Figure 115. Principle of a branching key. The
sequence in which questions must be an-
swered is fixed. In the example, the first
question is polytomous (having more than
two alternatives), the following questions are
dichotomous.

Figure 116. A variant class of branching keys
includes redirections (or “reticulations”), resulting
in a directed acyclic graph. Species 5 is assumed
to have light yellow flowers that occasionally are
almost white.

236 Identification methods G. Hagedorn

state is rare or even unique in a group. By starting with this, an identification that would re-
quire dozens of steps in a branching key may be finished after two or three steps.

The choice between multiple questions at each step is the defining feature of multi-access keys.
Without this being essential, most multi-access keys limit each question (i. e. couplet) to a single
character, avoiding characters combined with ‘and’, ‘or’, or ‘not’. Most multi-access keys further
make liberal use of more than two alternative answers; mostly one lead for every state of a char-
acter. Where too many states would result in a confusingly high number of leads, a lead may
combine multiple states with ‘and’, ‘or’, or ‘not’ (either during key construction, or already em-
bedded in the terminology).

The preference for multi-character couplets and dichotomy in branching keys and the prefer-
ence for single character couplets and multiple leads in multi-access keys are interrelated. In
branching keys both the desire to create mutually exclusive and exhaustive alternatives, and the
need to make the key practical by offering alternatives to characters that are not always observ-
able, often leads to multi-character couplets. However, evaluating three or more complex, multi-
character statements quickly becomes a challenge in Boolean logic, leading to a preference for
dichotomous keys. In contrast, in multi-access keys, the tolerance of these keys to non-exclusive
leads and to missing information on specific characters removes the need for combining charac-
ters. On the contrary, combining characters usually makes it more difficult for users to select the
next couplet. In the context of single-character couplets, limiting the choices to two leads be-
comes artificial.

The use of single or multiple characters in a key couplet is occasionally called a monothetic or
polythetic key. In the Aristotelian sense monothetic or polythetic expresses whether class mem-
bership can be identified through an unambiguous combination of characteristics, i. e., whether a
single set of necessary and sufficient conditions exists (monothetic) or not (polythetic). In a poly-
thetic classification, members of a class have variable characteristics, and no single set of differ-
ential characteristics exists (Radford & al. 1974). A classification based on multiple characters
may be either monothetic or polythetic. Polythetic taxon delimitations are indeed one reason why
a key may have to use multiple characters, but – as discussed above – multiple other reasons ex-
ist. And conversely, polythetic taxa may alternatively be identified using single-character cou-
plets, where taxa are keyed out in multiple places. Monothetic or polythetic should therefore not
be applied when describing the structure of keys.

Question 2
Question 3 ...

Question 1

Question 4

Question 5
Question 6

Question 7

...

...

...

.

Question 5

Question 1

Question 2

Question 3

Question 4

Question 5

Question 1

Question 2

Question 3

Question 4

Question 5

...

Question 4

Question 3

Question 2

Question 1

Figure 117. Visualization of possible user interaction steps in a branching key (top, the steps
follow the data structure) and a multi-access key (bottom, the sequence is determined by the
user). In multi-access keys, the interaction is essentially recursive (the user interface may or may
not prevent directly revising previously answered questions).

G. Hagedorn Identification methods 237

The most frequent style of a multi-access key is that each couplet is labeled by a noun-clause ex-
pressing the organism parts and property (e. g., “leaf shape”, “fore-wing spot number”). A more
verbose style involving question syntax (e. g., “what is the leaf shape?”, “how many spots occur
on each fore-wing?”) is occasionally found and may be termed “question-answer style”. This
requires additional character metadata.

Identification keys may contain propositions that relate to circumstances or conditions of the
observation process rather than to descriptive data of the organism that is to be identified. For ex-
ample, a question in a printed key might be “material with / without flowers”. Where it is unambi-
guous this may even be abbreviated (somewhat confusingly) to “flowers present / flowers absent”,
referring not to the fact that a species never has flowers, but that it is not in a flowering state. Si-
milarly, the identification of microorganisms often depends on whether they are collected under
natural conditions, or whether they have been cultivated under laboratory conditions. Such condi-
tions often greatly influence the description.

Interestingly, whereas (authored) branching keys often include propositions depending on the
circumstances of identification, multi-access keys, especially computer-aided ones, currently usu-
ally do not. The reason for this is that no current information model for descriptive data includes
the necessary information; see “Dependencies on circumstances of identification” (p. 175).

Identification tools aiming at identification by browsing (especially field guides) may be con-
sidered another structural form of a key. However, as argued above (p. 231), these keys are usu-
ally organized into a sequence of categories, followed by descriptions or illustrations intended for
browsing (and arranged taxonomically or alphabetically). The structure is thus identical to a bran-
ching key, where the number of leads in the browsing phase is usually much higher than in a
“normal” polytomous key.

To summarize, the most relevant criteria for a structural classification of keys are:
■ whether the couplets must be answered in a fixed sequence defined by the key authors, or

whether the sequence is freely selectable by the user (branching versus multi-access key);
□ in the case of a branching key: whether each taxon is keyed out only once, whether a taxon

may be keyed out in multiple places, or whether it supports redirections back into different
branches of the key (“reticulated key”);

■ whether the propositions (i. e. leads) in a couplet are limited to two alternatives or not
(dichotomous versus polytomous key);

■ whether each couplet is limited to a single character, or whether it may be a combination of
multiple characters
□ in the case of multi-character propositions: whether Boolean operators such as ‘and’, ‘or’,

or ‘not’ may be used; and
■ whether couplets are a list of complete statements, or split into a question and answer parts

(this may occur both in branching and multi-access keys);
■ whether the key, in addition to descriptive data, supports the selection of available observation

conditions, instrumentation or methods.

Both branching and multi-access keys can be presented in various formats or styles, that depend
to a large degree on the presentation medium (printed or computer). These “Presentation styles of
identification keys” are discussed in a later section (p. 242).

In a small comparative study, Morse & al. (1996) found a small advantage of multi-access
keys over (printed and hyperlinked) branching keys with respect to the accuracy of identifications
(not statistically confirmed). At the same time, the use of multi-access keys required substantially
more time. The latter result may have been due to the fact that in the study the branching keys
included illustrations, whereas these had to be looked up separately in print when using the com-
puter-aided multi-access key. This topic requires further studies in the future. It is likely that the
relative strength of branching and multi-access keys strongly depends on the number of taxa in a
key, the difficulty in finding a consistent set of reliable and easily observable characters, the vari-

238 Identification methods G. Hagedorn

ability with which necessary characters can be observed, and the experience of the user. Due to
the interactive properties of multi-access keys, these have a higher potential to become faster
with increased experience of the user than branching keys. Given that both branching and multi-
access keys seem to have advantages, the information model should support both types.

Propositional versus object matching metaphors
Two dominant metaphors exist for interactive identification processes:
■ Propositional or predicate logic: The process is based on testing propositions (or “asser-

tions”) that an object (or object part) has a property value or composition (e. g., “plant flower
color is blue”). Multiple propositions may be combined with ‘and’, ‘or’, or ‘not’, resulting in
a set of conditions that the object must fulfill. Although predicate and propositional logic are
complex philosophical and mathematical topics, in their simple form they are widely under-
stood and intuitively employed. They are used in high school mathematics and many inter-
actions with computers (most programming and database query languages are based on predi-
cate logic). Propositional logic is widely used in biology in branching keys. Many interactive
multi-access keys also explicitly use propositional logic, e. g., the Identify function in Diversi-
tyDescriptions uses it to record the history of identification steps.

■ Object matching: The object to be identified is described and the resulting description is
compared with descriptions in a knowledge base. The knowledge base may simply be printed
text or illustrations, or it may be queried using a software application. For example, the
CSIRO Intkey program (Dallwitz & al. 2000b) explains identification as a matching process.
In the Pankey package (p. 19) the program “Match” is based on this view.

These metaphors primarily influence the communication with the human user, but not the actual
algorithms for identification. This can be seen, e. g., in current commercial database management
systems (DBMS). Commonly, propositional query languages like SQL are used, in which condi-
tions in the “where” and “from”-clauses must be true and are explicitly combined using Boolean
operators. However, in the human user interface, questionnaire-like query-by-example interfaces
(“qbe”, a form is filled out and matching objects are returned) may be used that correspond to an
object matching metaphor. Most current database systems supporting qbe simply convert the data
in the qbe form into the native, propositional query language of the DBMS. One may note that in
some aspects the language used to explain the process to the user differs. For example, the use of
‘and’ and ‘or’ is reversed: “leaves (have to be) ovate or lanceolate” in predicate logic may be-
come “some leaves (are currently) ovate and some leaves (are currently) lanceolate” in qbe logic.

Intuitively, one may assume that matching methods are more error-tolerant than identification
methods using propositional language. The convertibility shows, however, that both methods
may be designed to be more or less error-tolerant (see section “Equality criteria and error toler-
ance”, p. 264).

“Promorph” and “looks like” metaphors
Instead of relying on analytical characters, a special form of “assisted object matching” relies on
the human intuition for “similar” patterns or forms. This approach has been termed the “pro-
morph method” by Fortuner (1989, 1993) and the “looks like method” in the Electronic Field
Guide project (EFG, p. 20). Fortuner defines a promorph as “a form that can be recognized before
detailed study of its morphology” (Fortuner 1989). Promorphs, although typically supported by
images, may be given names to be able to refer to the concept in written text (see “Tiger”, “Clear-
wing” in Fig. 118).

In these methods images (photographs or generalized drawings) are used already at a high
level in the key, representing a group of similar species rather than individual species. The user of
a key is confronted with a set of images (e. g., of butterfly wing patterns, Fig. 118) and chooses

G. Hagedorn Identification methods 239

the one considered to be most similar to the object. By creating several such “test panels” and by
studying human similarity estimates in known test cases, it is possible to restrict the scope of ob-
jects returned by a query. This identification model utilizes the unconscious human pattern simi-
larity recognition and is thus a completely different kind of “matching method”. It can be fast,
intuitive, and requires minimal or no knowledge of terminology. On the other hand, it is not
strictly analytical. The typical users may classify a species under multiple promorphs, and some
species may not fit into any larger group of promorph similarity (requiring either to add a special-
ized, ineffective promorph, or some method to communicate that “other” species exist as well.

Promorph or “looks like” images typically guide the user to a set of species, narrowing the
choices, so that the following steps in the identification (using diagnostic characters or images,
including images highlighting diagnostically significant features, compare Fig. 119, p. 241) be-
come more efficient.

The reliance on subconscious similarity estimates requires extensive testing of human similar-
ity estimates for the objects to be identified. Similarity estimates may be culture-dependent and
strongly depend on the expertise of the observer. An expert will include the known diagnostic
features subconsciously into the similarity estimate, essentially weighting the general similarity
estimates by recognizing parts that an inexperienced observer would probably ignore. This can be
compensated by an appropriate choice of features displayed in the promorph image, but it makes
the promorph images somewhat dependent on the set of promorphs that is displayed to the user.

Looks-like and promorph-guided identification is probably a highly efficient way of identifi-
cation by humans. However, the required extensive testing of all potential user groups of a key is
time consuming and expensive, especially if the number of potential identification results (spe-
cies richness in the scope) is large. For taxonomic groups with low commercial impact, these
costs will often be prohibitive.

Figure 118. An example of a computer-aided polytomous key, split into one question per page
(http://efg.cs.umb.edu/monteverde). Key statements and image captions are independent; the
latter are used to provide mnemonics to the images.

240 Identification methods G. Hagedorn

Radford's classification
Radford & al. (1974) classify identification methods into:
■ expert determination,
■ recognition,
■ comparison, and
■ use of keys.
Expert determination seems to be on a different level, focusing on the quality of the identification
result rather on the process. An expert identification may be based on recognition (i. e., compari-
son with memory, often subconsciously), detailed comparison with known objects (directly, or
using illustrations or descriptions), and use of keys (i. e., comparison with optimized diagnostic
descriptions).

Other classification criteria for identification keys
In addition to the criteria of content, structural classification, and interactivity discussed so far,
some secondary classifications criteria are commonly used.

A major distinction occurs often between field guides and expert keys. Stevenson & al. (2003)
show that the perception of what a “field guide” is, is strongly determined by market and pub-
lishing constraints, leading to browsing guides showing mostly the entire organism, tailored for a
specific area, focusing on large and often colorful organisms that are abundant and easy to study.
In practice, the balance between the market interest and the number of organisms in a taxonomic
or ecological group and the geographic area corresponding to the market will determine, whether
a field guide is reasonably complete (common for birds, mammals, amphibians, dragonflies,
butterflies, trees, etc.) or whether the identification quality is compromised by ignoring a large
proportion of the less frequently occurring or less showy taxa (common, e. g., for most plant,
fungi, or insect groups).

With increased availability of digital software and hardware, the publishing constraints can be
lessened, allowing for unlimited support of color photographs even for taxa with a smaller market
impact. Computer-aided identification tools allow for better integration of elimination approaches
(e. g., key-based) with browsing approaches, and for improving the relation between the browsing
and the confirmation phase (by reusing the same material, but tailoring the amount of detail
shown to the specific phase). Thus the term “field guide” should best be used in its original sense,
as a guide optimized for quick identification of organisms immediately during observation or col-
lection. It is always desirable to reduce the amount of technical language used to minimum, but
whether the lowest level of expertise currently achievable for a taxonomic group makes a field
guide easily usable by general public or not, should not determine its status. Similarly, the rela-
tive amount of analytical keys (allowing a process of elimination) and browsable illustrations
should not be an a-priori condition of “field guides”, but determined by the number of taxa re-
quired to be distinguished. Picture browsing works best with perhaps up to 50 taxa in a group
determined by means of elimination.

Other classification questions that may be relevant for both printed and computer-aided keys are:
■ Is the key the result of a design process (authored key, containing information possibly not

available elsewhere) or is it algorithmically created based on available data? Both branching
and multi-access keys may be authored or algorithmically created (see also the use case dia-
gram Fig. 202, p. 312). The sequence and selection of characters in a branching key may con-
tain distilled experience of generations of researchers.

■ Which combination of text and media resources (especially photos and drawings, called “mul-
timedia taxonomic keys” in Morris & al. 2007) is used in the key? A key may consist entirely
of images, entirely of text, of images with caption text, or of text with illustrations.

G. Hagedorn Identification methods 241

□ If text and media resources are combined, the latter may be directly integrated into the key
structure (in-place), or linked through reference numbers or hyperlinks. In the latter case,
the resources may be available on the same page or screen (in-view) or elsewhere (look-up,
in computer-aided keys especially in the form of pop-up windows).

□ Do media resources represent the entire organism or are they analytical and specific to
identification details relevant to decisions in the key? The latter criterion may be applied to
photos and drawings (which may be appropriately cropped, or display area-of-interest
boxes or arrows, e. g., Fig. 119), but also to sound, video, or 3-dimensional voxel pictures.

Figure 119. Example of analytical illustrations, detailing diagnostically relevant parts of the
organism (left Trifolium spadiceum, right T. badium); regions of interest are highlighted by arrows
(after Rothmaler & al. 1985).

Some further criteria are only relevant for computer-aided keys:
■ Handling of quantitative data:

□ Is it possible to directly enter quantitative values and compare these algorithmically with
values in databases?

□ Are error-tolerant comparison methods supported or simple value comparisons?
□ Are multivariate statistical methods supported?

■ Error tolerance (compare p. 264):
□ Is the identification error-tolerant, i. e.: is the key able to suggest taxa that are close but in-

exact matches?
□ Are contradictions silently accepted or is the user informed which data are in contradiction

with the result?
■ Guidance in character selection (multi-access keys only; see p. 267 for further information):

□ Is character guidance authored or algorithmically calculated based on coded descriptive
data?

□ Can the list of characters be sorted such that recommended characters appear first?
□ Does the character recommendation algorithm work for quantitative and categorical, or

only for categorical characters?
□ Are redundant characters (those that no longer contribute to the identification progress)

marked in some way? Are they removed from the list of available characters and thus no
longer available to confirm or contradict other data in the identification process?

□ Does the guidance adapt to identification progress, i. e., is it based on the remaining taxa,
or is it always based on the set of all taxa in the key?

□ Are character applicability rules (“character dependency”, see p. 76) observed? Are
inapplicable characters marked or completely removed? Are controlling characters implic-
itly scored if a dependent character is scored?

■ History:
□ Is a history of “identification steps” or “information entered so far” available?

242 Identification methods G. Hagedorn

□ How is this arranged (sequence of scoring, alphabetical, by concept, by part, etc.)? Can the
user choose between different arrangements?

□ Is it possible to revert (delete) or update (change) a previous identification step?
■ Is the key adaptive, i. e., does it change its structure based on previous information? Digitized

branching keys might be simply hyperlinked, or they might hide / fold parts of the key as they
become irrelevant. However, a branching key that is split into one web page per couplet would
be indistinguishable from a system that is adaptive by other means.

■ “Granularity of interaction”:
□ Is it possible to receive intermediate results (list of taxa remaining, number of taxa remain-

ing)? Is this feed-back occurring automatically after each user action, or does it have to be
explicitly requested?

□ Is it possible to enter multiple observations or answer multiple questions before the next
time-consuming interaction occurs? In a local application, such a time-consuming step may
be the evaluation of best recommended characters, or the calculation of the list of remain-
ing taxa. In a web-based application it may be relevant whether it is possible to perform
several such steps (e. g., answer multiple couplets, or enter several quantitative values) be-
fore sending answers back to the server.

■ Are methods for a final “browse-identification” provided (i. e., if the identification is incom-
plete and terminates with a set of taxa rather than a single taxon)? What kind of information is
provided during this phase?

■ Is it possible to switch between different identification methods? Are identification progress
data transferred – at least in part – from one method to another?

■ Are higher-order identification tools integrated? Examples might be a color picker to input the
color of an object part, an algorithmic shape picker, image or sound analysis of imported
media files, or interfaces to automatic data collection routines (e. g., chromatographic data).

Many more criteria to differentiate computer-aided keys may be defined. A rich source for addi-
tional criteria is the comparison of computer-aided multi-access keys by Dallwitz (2005a).

5.3. Presentation styles of identification keys
Printable branching keys
The dominant presentation styles of branching keys are two styles which may be called “linked,
parallel, or bracketed” and “nested, yoked, or indented” (Fig. 120).
■ In the linked, parallel, juxtaposition, or bracketed style each couplet is numbered and all leads

of a couplet immediately follow each other. A pointer linking to the resulting couplet, taxon,
or subkey is given at the end of each lead.

■ In the nested, yoked, or indented style, the leads within a couplet are split and all couplets that
logically follow a given lead also follow immediately in display sequence. These couplets are
usually indented. Taxon or subkey results follow at the end of leads like in the previous style,
but pointers to the next couplet are redundant except for redirections (occasionally redundant
pointers may be provided nevertheless, e. g., in Schuster 1958).

■ Metcalf (1954) further mentions a grouped style, which in the present author’s estimate is very
rare and, judging from the example in Metcalf, rather difficult to use. It is not further discuss-
ed here.

The terms bracketed and indented key seem to be the most established ones, but are somewhat
questionable:
■ The term “bracketed” continues to escape the intuition of the author. It probably relates to a

historical typographical layout where brackets or braces were spanning multiple lines as a
means of visually keeping couplets together (see, e. g., Fig. 6.2 in Pankhurst 1991). Among the
alternatives, the term “parallel key” is preferred in Lawrence (1951) and Pankhurst (1991)).

G. Hagedorn Identification methods 243

Unfortunately, all senses found for parallel in the Collins English Dictionary (CED 1992)
would be equally applicable to the nested/yoked/indented style. Only a single current usage
online reference for parallel key could be traced (Little 2002). Similarly, the usage of juxta-
position (“key with couplets in juxtaposition”) was only found in Metcalf (1954). As a more
intuitive term, “linked key” is proposed here, referring to the explicit linking of couplets re-
quired only in this style.

■ The term “indented” refers to an accidental (albeit frequent) rather than essential quality of
these keys (Pankhurst 1991). The indentation is occasionally omitted in “indented” keys to
preserve space, relying solely on the correspondence of the lead symbols (Fig. 122 right; used,
e. g., in Oberdorfer 1983). Conversely, in linked keys alternating couplets may be indented to
enhance the visualization of couplets (Fig. 122 left and Fig. 125 below). “Indented key(s)” is
currently much more frequently used than the more neutral term “yoked key” (340 versus 3
Google results, 2005-04-13), preferred by Lawrence (1951) and Pankhurst (1991)). As a more
intuitive term, “nested key” is proposed here.

Various numbering or coding systems to designate couplets and leads are in use. The majority
of linked keys denotes couplets by simple consecutive numbers (e. g., “1, 2, 3”). In linked style,
the leads may be denoted by a bullet symbol (e. g., “–“, “*”, “○”, Fig. 120) instead of the couplet
number. Alternatively, in both styles, symbols, primes, or letters may be added to the second lead
(1/1*, 1/1', 1/1b), or letters may be added to each lead in a couplet (1a./1b., Fig. 121, left). Occa-
sionally numerals are added at each lead, resulting in a hierarchical numbering system of leads
rather than couplets (e. g., “1.1/1.2, 1.1.1/1.1.2, 1.1.1.1/1.1.1.2”). Today this is rarely used be-
cause the lead codes quickly become lengthy and difficult to compare.

As an alternative to couplet numbers, letters may be used (e. g., A/A*, α/α'). This style is rela-
tively common in nested keys. Greek letters may be used once the Latin alphabet is exhausted. A
combination of upper and lower case Latin and Greek letters provides for 100 couplets; this range
may be further extended by using symbols (such as †‡◊○) or letters with accent, diaeresis, tilde,
cedilla, etc.

A special form primarily used in nested keys is the repetition of the couplet letter for the sec-
ond lead (A/AA, B/BB, etc.). A disadvantage of this style is that for humans the corresponding
second lead (which in nested keys may easily be on a different page) is more difficult to find,
because it has a different graphical appearance than the first lead. Obviously, this style cannot be
combined with numerals.

Numbering may occasionally be omitted in the nested style. If indentation is the only remain-
ing clue to which leads belong to a couplet, this style is suitable only for very short keys. How-
ever, an attractive style for nested keys is to formulate the start of the leads to be identical within
a couplet, and unique among the following (nested) couplets. Bold-printing these start phrases re-
sults in good orientation within a nested key (Fig. 121, right).

In the case of polytomous keys, more than two leads may be denoted as 1a / 1b / 1c / 1d, 1 / 1' / 1''

/ 1''' or A / AA / AAA. In the linked style, it is also possible to simply use the same bullet symbol for
the second and all further leads.

As a result of the numbering or coding systems listed above, the linked style adapts more easi-
ly to polytomous keys (i. e., more than two leads). Even in moderately sized, single-page nested
keys it is considerably cumbersome and error-prone to find all corresponding leads of a polyto-
mous couplet. Whereas the second lead must be present in all keys, further leads may or may not
be present in polytomous keys, requiring the user to always scan the key to the end. The problem
can be greatly reduced by various methods. One solution is to provide an indication of the num-
ber of leads, e. g., using a count-down numbering system. For example, for a couplet with three
leads, one may use 1'' (or 1c or 1 (3) for the first lead, 1' (or 1b or 1 (2)) for the second, and 1 (or
1a or 1 (1)) for the last (Fig. 123, left). However, the author has not encountered such a key yet.
Other methods are not explicit about the number of leads, and only generally alert the user to the
existence of further leads. Pankhurst (1991) suggests that nested keys could carry indications in
the print margin, where the next lead could be found. A special indication could be used for the

244 Identification methods G. Hagedorn

last lead. The example with three leads, might then look like 1 (p. 3) for the first lead, 1 (bottom)
for the second, and 1 (end)) for the last. Finally, one could use arrows, e. g., a downward arrow
(“↓”) after the first, an upward arrow (“↑”) after the last, and a bidirectional arrow (“↕”) for all
further leads (Fig. 123, right). The advantage of the arrows is that they require very little space
and do not depend on formatting features available only in print (page margin, pagination).

Backtracking: A variant of the linked presentation style uses back pointers to simplify back-
tracking (to the previous question that led to the current one, also called back-tracing) in a key.
Backtracking is important if users detect a situation where all leads of a couplet are not applicable
to the object and conclude that they must have made an error in an earlier couplet. In the most
frequently used backtracking style the number of the lead from which a particular couplet is de-
rived is given in brackets after the couplet number. For example, a couplet starting with “25 (6)”
indicates that one of the leads of couplet 6 pointed to couplet 25. In the case of a redirection, the
couplet may be derived from two couplet numbers and the notation may look like “25 (6 or 102)”.
Except for the case of redirection, separate back pointers are not necessary in the nested style of
branching keys.

Linked Key Style (= parallel / bracketed style): Nested Key Style (= yoked / indented style):
1. Ovule solitary, basal ... 2
– Ovules numerous, axile or free-central 3
2. Perianth green, membranous or absent; stamens with

free filaments Chenopodiaceae
– Perianth translucent and papery; stamens with the

filaments often united below Amaranthaceae
3. Placentation axile; leaves alternate Saxifragaceae
– Placentation basal or free-central; leaves usually

opposite ... 4
4. Sepals free; stamens on the same radii as or more

numerous than perianth-segments .. Caryophyllaceae
– Sepals united; stamens as many as and on radii

alternating with the perianth-segments ... Primulaceae

 1. Ovule solitary, basal
2. Perianth green, membranous or absent; stamens

with free filaments Chenopodiaceae
2. Perianth translucent and papery; stamens with the

filaments often united below Amaranthaceae
1. Ovules numerous, axile or free-central

3. Placentation axile; leaves alternate . Saxifragaceae
3. Placentation basal or free-central; leaves usually

opposite
4. Sepals free; stamens on the same radii as or more

numerous than perianth-segments
... Caryophyllaceae

4. Sepals united; stamens as many as and on radii
alternating with the perianth-segments
... Primulaceae

Figure 120. Examples of the linked and nested styles of branching keys in lead style (content
after Davis & Cullen 1989).

Linked Key Style (= parallel / bracketed style): Nested Key Style (= yoked / indented style):
1.a Ovule solitary, basal ... 2
 b Ovules numerous, axile or free-central 3
2.a (1) Perianth green, membranous or absent; stamens

with free filaments Chenopodiaceae
 b Perianth translucent and papery; stamens with the

filaments often united below Amaranthaceae
3.a (1) Placentation axile; leaves alternate Saxifragaceae
 b Placentation basal or free-central; leaves usually

opposite ... 4
4.a (3) Sepals free; stamens on the same radii as or more

numerous than perianth-segments .. Caryophyllaceae
 b Sepals united; stamens as many as and on radii

alternating with the perianth-segments ... Primulaceae

 Ovule solitary, basal
Perianth green, membranous or absent; stamens with
free filaments Chenopodiaceae
Perianth translucent and papery; stamens with the
filaments often united below Amaranthaceae

Ovules numerous, axile or free-central
Placentation axile; leaves alternate Saxifragaceae
Placentation basal or free-central; leaves usually
opposite

Sepals free; stamens on the same radii as or more
numerous than perianth-segments
... Caryophyllaceae
Sepals united; stamens as many as and on radii
alternating with the perianth-segments
... Primulaceae

Figure 121. Variant styles of branching keys. On the left a linked key is shown denoting leads by
adding a/b to the couplet number and adding backtracking information in brackets. On the right a
nested key is shown, displaying the start of the lead text in bold as couplet marker (compare
Fig. 120).

G. Hagedorn Identification methods 245

Linked Key Style (= parallel / bracketed style): Nested Key Style (= yoked / indented style):
1. Ovule solitary, basal ... 2
1. Ovules numerous, axile or free-central 3

2. Perianth green, membranous or absent; stamens
with free filaments Chenopodiaceae

2. Perianth translucent and papery; stamens with the
filaments often united below Amaranthaceae

3. Placentation axile; leaves alternate Saxifragaceae
3. Placentation basal or free-central; leaves usually

opposite ... 4
4. Sepals free; stamens on the same radii as or more

numerous than perianth-segments Caryophyllaceae
4. Sepals united; stamens as many as and on radii

alternating with the perianth-segments Primulaceae

 1↓ Ovule solitary, basal
2↓ Perianth green, membranous or absent; stamens with

free filaments Chenopodiaceae
2↑ Perianth translucent and papery; stamens with the

filaments often united below Amaranthaceae
1↕ Ovules numerous, axile or free-central
3↓ Placentation axile; leaves alternate Saxifragaceae
3↑ Placentation basal or free-central; leaves usually

opposite
4↓ Sepals free; stamens on the same radii as or more

numerous than perianth-segments . Caryophyllaceae
4↑ Sepals united; stamens as many as and on radii

alternating with the perianth-segments ... Primulaceae

Figure 122. Further variants of branching keys, illustrating that (alternating) indentation may be
present in the “non-indented” linked style and omitted in the “indented” nested style (compare
Fig. 120).

1''' Ovule solitary, basal
2'' Perianth green, membranous or absent

... Chenopodiaceae
2' Perianth translucent and papery.... Amaranthaceae

1'' Ovules numerous, placentation axile;
leaves alternate Saxifragaceae

1' Ovules numerous, placentation basal or free-central;
leaves usually opposite
3'' Sepals free Caryophyllaceae
3' Sepals united....................................... Primulaceae

 1↓ Ovule solitary, basal
2↓ Perianth green, membranous or absent

.. Chenopodiaceae
2↑ Perianth translucent and papery ... Amaranthaceae

1↕ Ovules numerous, placentation axile;
leaves alternate Saxifragaceae

1↑ Ovules numerous, placentation basal or free-central;
leaves usually opposite
3↓ Sepals free Caryophyllaceae
3↑ Sepals united....................................... Primulaceae

Figure 123. Branching keys in nested style adapted for use with polytomous couplets, using a
count-down method (left) or arrows (right).

A variant the presentation styles (usually nested, but potentially linked keys as well) are “solid
keys”, where the line-structure of linked or nested keys is replaced by bold formatting or graphi-
cal elements within lines in an attempt to save printing space (Leenhouts 1966, Pankhurst 1991).
Naturally, such keys are considerably more difficult to use, which may lead to an increased error
rate.

Linked and nested styles have different advantages and disadvantages. The linked style is
more suitable for long keys and polytomous keys, because finding and comparing the correspon-
ding leads in a couplet is more convenient and reliable. Compared with nested keys using inden-
tation, it makes better use of available space. The major advantages of the nested style is that the
resulting groups can clearly be seen and that it is much easier for experts to make use of addition-
al knowledge about the species being keyed out. This style is often preferred by taxonomists who
wish to express taxonomic structure directly in the key. Furthermore, even where a linked key
supports backtracking through additional backpointers, this is more error-prone than the intuitive
backtracking in a nested key. In general, nested style is recommendable mostly for short keys of
less than a page in print.

In the light of these differences, Metcalf (1954) proposes to use combination keys, combining
the advantages of both styles. This can occur both ways: by first using a linked style, separating
the major parts of the key into small subkeys each of which is small and uses the nested style, or
by first using nested style, with linked keys in between to save indentation space. Using indenta-
tion and different lead codes (e. g., letters for nested style and numbers for linked style), the resul-
ting keys can be quite intuitive to use.

Finally, a rare but very appealing presentation form of branching keys might be called “gra-
phical style”. Here the graphical elements and illustrations dominate layout and key structure
(Fig. 124).

246 Identification methods G. Hagedorn

Figure 124. An example of a branching key in graphical style (polytomous question / answer style,
after Müller 1985). The combination of text and illustrations is such that either may be missing.
Regions of interested are highlighted with arrows (bottom right) and graphical symbols are used
for subkeys (upper-right).

Important material on the history and principles of manually constructing branching keys may
be found in Voss (1952), Metcalf (1954), and Pankhurst (1991).

Many computer applications support the creation of printable keys. The first such programs
appeared over 35 years ago (e. g., Pankhurst 1970a, Pankhurst 1970b) and both the current
CSIRO DELTA suite (KEY, KEYQW) and Pankey (KEY3M3, KPRINT, p. 19) provide fully
automated tools that generate branching keys based on DELTA data. These tools have various
options to influence the style of the key that is being generated. The Pankey suite also provides a
program to create keys interactively in a combination of user choices, and DELTA-data based
recommendations (KCONI, Pankhurst 1988). Both the CSIRO and Pankey tools are DOS-based
programs that can be run under Windows.

The optimality criteria for algorithmic creation of branching keys are discussed further below
under “Character ranking and guidance” (p. 267). They are usually a combination of algorithmic
and authored guidance (p. 276). The fundamental principle is that minimizing the average length
of the key not only minimizes average identification time, but also maximizes the average chance
of correct identification (for a fixed and equal probability of answering key questions wrongly,
Osborne 1963). Since in practice the probability of error is different for individual questions (and
may be estimated based on authored character guidance information), Pankhurst (1991) further
points out that the probability of obtaining the correct identification is further maximized by
ordering couplets so that couplets with a lower error probability come first.

G. Hagedorn Identification methods 247

A new attempt to create and render branching keys is being developed in the Electronic Field
Guide project (Stevenson & al. 2003) as a “Key Rendering Suite” (Morris & al. 2003, Morris &
al. 2007). By using an XML-based data structure, this may then be transformed using XSLT
(Clark 1999) and XSL-FO (Berglund 2006) transformations into multiple display formats such as
PDF or XPS for printing, HTML for general internet use, or Wireless Markup Language (WML)
for web-enabled mobile phones. Thus this application renders both printable and computer-aided
branching keys.

Computer-aided branching keys

Figure 125. An example for a printable,
hyperlinked dichotomous key. Glossary
terms and illustrations are presented in a
frame window at the bottom (http:// www.uni-
tuebingen.de / uni / bbm / mycology / hydokey.

htm).

Figure 126. An abbreviated example of an online
dichotomous key, split into one question per page
(http://www.extension.iastate.edu/pages/tree/ key.

html).

Both the linked and nested styles of branching keys are amenable to presentation as hyperlinked
text. Wright & al. (1995) and Morse & al. (1996) found that using hyperlinked branching keys
may be slower and less accurate than using printed keys. They mention several potential reasons,
including lack of experience with the technology and poor quality of on-screen images that can
be easily overcome.

For linked web-based branching keys presenting multiple key statements on a single page
(Fig. 114, p. 234; Fig. 125), one further disadvantage not discussed by Wright & al. (1995) and
Morse & al. (1996) may be that following the internal hyperlinks may cause some irritation be-
cause the targeted couplet is usually not clearly visible as the next focus. Web browsers display
no “cursor”. While jumping to internal section headings usually works well because the heading
is clearly visible and in most cases the heading requires scrolling so that the hyperlink will posi-
tion it at the top of the screen, internal links perform poorly when jumping to lines visible on the
same page. This could be addressed in the future by enhancing the internal links with JavaScript-
based highlighting of the target (and perhaps of the origin, i. e., the previous couplet).

Without such enhancements, the nested style (requiring no internal hyperlinks) may be prefer-
ential for small branching keys. However, for large keys the linked style will usually be prefer-
able. It makes the leads of a couplet easily comparable with scrolling, and hyperlinking removes
most of the disadvantages of paper-based linked keys (Brach & Hong Song 2006). The definition
of a “large key” clearly depends on the average targeted screen technology and individual prefer-

248 Identification methods G. Hagedorn

ences as to scrolling or not. A rule of thumb may be that keys exceeding the length of two or
three web pages in targeted screen technology should be considered large.

In addition to using hyperlinks for following the leads in linked keys, and jumping to subkeys
or taxon information, hyperlinks may also be used to provide supplementary information such as
glossary definitions or illustrations (Fig. 125).

An alternative presentation of branching keys available only on computers is to reduce the key
to one question per web-page (Figs. 126-127, also Fig. 118, p. 239). This increases the concentra-
tion on a single question and may provide space for rich illustrations or explanations. On the
other hand, the resulting interaction with the key will be slower and may lead to more difficulties
in memorizing the path up to the present place.

Similar to multi-access keys, it is therefore highly desirable to provide a history of the accep-
ted statements or questions answered (Farr 2006, Fig. 127). This history may either be in the form
of a natural language statement or may be a “decision map” (Edwards & Morse 1995), supporting
both orientation and backtracking using hyperlinks. From the perspective of expert systems, the
history may be considered a “justifying module” (Fajardo Contreras & al. 2003).

Figure 127. An example of a picture-based branching key with one question per page, support-
ing the user by tracking the history of previous statements (Castlebury & Farr 2002).

Probably the most sophisticated application for handling branching keys is CBIT Lucid Phoenix
(Fig. 128, CBIT 2007b). The Lucid Phoenix builder supports writing new branching keys or digi-
tizing existing printed keys and enriching them with new information (especially illustrations).
The player can be run locally or as a Java-applet in an internet browser.

A special feature of Lucid Phoenix is the ability to skip a question (see lower left panel in
Fig. 128). In a dichotomous keys both leads must then be continued; this is automatically reflec-
ted in the history and the list of “entities remaining”.

Naturally, computer-aided keys may be created algorithmically just like printed keys; the
same comments made in the previous section apply here.

G. Hagedorn Identification methods 249

Figure 128. An example of CBIT Lucid Phoenix (version 1, running as Java applet in an internet
browser, http://www.lucidcentral.org/phoenix/keys/eels.html). It supports skipping of questions,
resulting in multiple pending questions.

Printable multi-access keys
The dominant two styles might be called “character-list style” and “taxon-list style” (or “charac-
ter-formula style”; all terms introduced here). In both styles the key is composed of a list of char-
acters that are arranged such that the user can easily choose the desired characters. In the charac-
ter-list style (Fig. 129) the list of taxa is coded (usually numbered but occasionally abbreviated
taxon names are used) and within a list of character states (equivalent to a lead in a branching
key) each state has a corresponding list of taxon codes. Conversely, in the taxon-list style
(Fig. 130), the character states are coded and each taxon is associated with the corresponding
states (the “character formula”).

The character-list style can successfully be applied to a long list of characters and a moder-
ately long list of taxa. Korf (1972) suggests a usability limit 30 taxa, but in the present author’s
experience around 60 taxa remain practical as long as enough convenient characters exists that
allow to start with considerably less than half that amount. The choice of the initial character is
completely free, although guidance to reliable and convenient characters may be given by means
of formatting or arrangement. An alternative guidance method is to provide “lead questions” in
front of the key, suggesting suitable starting points under certain conditions (Korf 1972). Perhaps
the best guidance is, however, an inherent feature of this key style: It is highly visible which
character states are present only in relatively few taxa. By selecting a character that promises fast
progress, only a short list of taxon codes must be copied to a piece of paper. The taxon list of
states of subsequently selected characters is then compared with this list and taxon codes not
found are crossed out on the paper. Thus, subsequent characters may have a much longer list of
taxon codes without adversely affecting the speed and convenience of identification. It is obvious
that as soon as the number of taxon codes is higher than is practical to memorize, the advanta-
geous mnemonic properties of abbreviated alphabetical taxon codes are probably outweighed by

250 Identification methods G. Hagedorn

the inconvenience of copying and comparing them, thus leading to a preference of taxon numbers
for taxa for larger character-list style keys.

Building on earlier attempts of other authors like Ogden (1943), printable multi-access keys
have been most clearly described and advocated by Leenhouts (1966). Leenhouts uses the name
synoptic key, which should be avoided (see p. 398). Leenhouts further proposes to improve and
elaborate the character-list style by underlining taxon codes mentioned in more than one lead of a
character (compare versicolored pigmentation in Fig. 129), and placing taxon codes that are un-
known or uncertain in brackets.

Conidiomatal characters: Genera of Thallostromatinae
Stromatal type 1. Neozythia
a. acervular 8 2. Dothioropsis
b. cupulate 3 4 5 6 7 3. Phacidiella
c. multilocular 2 9 4. Sirozythiella
d. unilocular 1 5. Acarosporium
Position relative to substrate 6. Trullula
a. superficial 9 7. Phragmotrichum
b. immersed 1 2 3 7 8 8. Staninwardia
c. initially immersed,
 finally superficial

4 5 6 9. Barnetella

Conidial characters
Pigmentation
a. hyaline 1 2 3 4 5
b. brown 6 7 8 9
c. versicolored 7

Figure 129. An example of a printable multi-access key in “character-list style” (from Sutton
1980). For each character state the matching results are listed, abbreviated by a genus number.
In this example, a multilocular fungus with brown conidia must be Barnetella, whereas Sirozythi-
ella and Acarosporium are indistinguishable with the three characters given.

 Genera: Conidiomatal characters: Conidial characters
A F I Staninwardia Stromatal type Pigmentation

B F H Phacidiella A. acervular H. hyaline
B F I K Phragmotrichum B. cupulate I. brown
B G H Sirozythiella C. multilocular K. versicolored
B G H Acarosporium D. unilocular
B G I Trullula Position relative to substrate
C E I Barnetella E. superficial

C F H Dothioropsis F. immersed
D F H Neozythia G. initially immersed, finally superficial

Figure 130. An example of a printable multi-access key in “taxon-list style” (or “character formula
style”). Each character state has a unique code and each taxon carries an abbreviated formula-
like description composed from a sequence of these codes.

Whereas the taxon-list style has similar properties to a computer-aided multi-access key, the
taxon-list style is usually limited to a few characters, all of which should be conveniently and
reliably observable. The style essentially creates a shorthand formula or code for diagnostic de-
scriptions (p. 39), which then can be compared more easily than full-text descriptions. If the list
of taxa is sorted by the formula and if the first characters in the formula can be expected to be al-
ways assessable, the list of taxa may be longer. The key then becomes a mixture of a branching
key for the initial characters, and a multi-access key for the remaining characters in the formula.
The limitation to only very few characters can be somewhat reduced by combining a small set of

G. Hagedorn Identification methods 251

generally applicable formula-characters with another column containing further diagnostic char-
acters as natural language text (compare Fig. 11 in Leenhouts 1966). The characters used in this
additional text are not expected to be consistently used throughout the key. This “character-for-
mula style” is closely related to the tabular keys – see p. 256 – where non-abbreviated text is
arranged in a tabular format, to increase the comparability. Some further presentation forms of
printable multi-access keys surveyed in Leenhouts (1966) use a similar tabular arrangement to
achieve their goal.

Computer-aided multi-access keys
Computer-aided keys may be running locally (on a PC, PDA, etc.) or may require a network con-
nection. Typical examples of the first category are ETI Linnaeus 2/IdentifyIT (p. 19), Diversity-
Descriptions Identify (Fig. 131), or Pankey ONLIN7 (DOS-based, p. 19). An intermediate type of
applications is able to run both locally and over the internet. Typical examples are CSIRO Intkey
(Fig. 132), the Java-based CBIT Lucid 3 (Fig. 133 local, Fig. 134 in browsers) and Navikey 4
(Fig. 135, 136) which can be run entirely by opening a web page (provided a sufficiently new
version of the Java virtual machine has already been installed locally). In contrast, Intkey can ac-
quire data sets over the internet, but must first be downloaded and locally installed (since ca.
1995 Intkey is available free of charge).

Other internet-based tools are less feature-rich, but use only standard internet browser functio-
nality. An example of a design that is limited to a small set of characters, but where all characters
can be evaluated without sending and receiving intermediate web pages is shown in Fig. 137. A
simple design that supports very long character lists is the server-based “DeltaAccess-Perl”
(DAP, Fig. 138). This key works in standard internet browsers even if Java and JavaScript are
disabled. Quite sophisticated keys can be realized using a combination of server-based program-
ming and client-side JavaScript, as exemplified by X:ID (Fig. 139) or ActKey (Brach & Hong
Song 2005, Fig. 140).

It may be desirable to define multilingual branching keys, where each statement has represen-
tations in multiple languages. Managing language versions as separate keys is difficult when keys
are improved and corrected over time. Especially if a key is only partially translated, it may be
desirable to designate default and fallback languages; untranslated parts could then be rendered in
a “default language”. Among the available key software, the PICKEY (p. 22) and 3I (p. 21, Figs.
141-142) multi-access keys are the only ones known to the author with multilingual support
(compare Lobanov & al. 2005).

Some relatively simple (e. g., SLIKS, Guala 2006) or sophisticated (SAIKS, Alexander 2006a,
2006b, 2006c; Visual Key, Klimov 2001) keys even run entirely in the web browser, using exclu-
sively ECMA or JavaScript to create the user interface. Using client-side code allows for consid-
erably greater responsiveness to user actions than the server-based logic of most other web identi-
fication interfaces. This is highly visible in SAIKS (Figs. 143-145) which – by changing the
background color of text – gives immediate feedback about remaining and excluded taxa as well
as contradictory character states (states that, if selected, would lead to zero remaining taxa). In
contrast to SLIKS, SAIKS supports multi-state characters, enabling it to support a “show char-
acter” mode, in which the description of a single taxon becomes highlighted (Fig. 144). Clicking
on a result taxon calls up a species page or the next subkey (Fig. 145).

The techniques mentioned above are currently limited to small to medium size data sets, but
using client-side code with asynchronous server-based data updates (e. g., using AJAX, Asyn-
chronous JavaScript and XML) they could in the future be scaled up to truly large data sets.

An important feature of multi-access keys is whether they assist users by providing recom-
mendations which characters would be most effective to use next. This aspect is discussed in
detail “Character ranking and guidance” (p. 267) and “Presentation of character guidance in
multi-access keys” (p. 277).

252 Identification methods G. Hagedorn

The most extensive comparative list of computer-aided multi-access keys is provided by Dall-
witz (2007), with additional details to be found in Dallwitz (2005a), Lobanov & al. (2005), and
OConnor & Klimov (2004b). Further important references when comparing multi-access keys are
Pankhurst (1991; especially for principles and a detailed account of the history of key develop-
ment), Edwards & Morse (1995; including other kinds of keys like expert systems and early
applications of neural networks), Lindh (2003, in Swedish), Gibaja Galindo (2004, in Spanish),
Rambold (2002; especially lichen keys), Farr (2006), Dallwitz & al. (2007), and the link lists
http://www.zin.ru/projects/pickey/pic_link.htm and http:// www. geocities .com/ rainforest/ vines/

8695/ software.html.

Figure 131. An example of an Identify key running in DiversityDescriptions. Multiple states
selected (center) indicate polymorphism or uncertainty. The lower center space is intended for
resources such as images (not implemented yet).

Figure 132. An example of a CSIRO Intkey key
running under Windows (after Dallwitz & al. 2007).

Figure 133. An example of a Lucid 3 key
running under Windows (screenshot from
http://lucidcentral.org/lucid3/).

G. Hagedorn Identification methods 253

Figure 134. CBIT Lucid 3 may also be used over
the internet if Java applets are permitted (from
http://www.ncsu.edu/project/cucurbitkeys/Diag-
nosing Postharvest Diseases of Cantaloupe.

html).

 Figure 135. An example of a Navikey 4.09
Java applet running in an internet browser
(http://www.lias.net/Identification/GenusLe-
vel.html).

Figure 136. Navikey 4.09 using a quantitative character. Compare Fig. 135 for context and
Fig. 155 (p. 266) for DiversityDescriptions.

254 Identification methods G. Hagedorn

Figure 137. An example of a multi-access key
that is limited to a few pre-selected characters.
These may be answered in a single step without
sending the form multiple times to the web ser-
ver (http://pyrenomycetes.free.fr/xylariaceous/

keydir/synoptickey.htm). Compare p. 398 for
use of “synoptic”.

Figure 138. A simple multi-access key using
DeltaAccess-Perl (DAP), suitable for a long list
of characters. For each character selected in
the center left panel the corresponding states
appear in the center right panel. Selecting a
state adds it to the Criteria list (example acces-
sible from http://www.glopp.net).

Figure 139. An example of an X:ID key (p. 21),
running in the web browser (accessible from
http://uio.mbl.edu/services/key.html).

 Figure 140. A sophisticated multi-access key
using ActKey (p. 20, http://flora.huh.harvard.
edu:8080/actkey/actkey.jsp?setId=2081).

G. Hagedorn Identification methods 255

Figure 141. An example of a 3I web key (p. 21).
After each evaluation, characters are reordered
into categories (used, useful, no longer rele-
vant) and the used characters are ranked by a
character guidance algorithm.

Figure 142. 3i is multilingual, here the key from
Fig. 141 is displayed in Russian. Accessible
from http://ctap.inhs.uiuc.edu/dmitriev/3i.asp.

Figure 143. An example of a SAIKS key (Alexander 2006c) in identification mode. Clicking on a
character state scores / resets the state, indicated by a change of background color (green / darker
background = scored). Immediately, the background color of the taxon list (right) is updated
(lighter / green = remaining, darker gray = excluded), and the background of states inapplicable for
all remaining taxa is set to dark gray (colors slightly changed to improve gray-scale printing).

256 Identification methods G. Hagedorn

Figure 144. An example of a SAIKS key
(Alexander 2006c) in “show-character” mode –
all character states recorded for a selected
taxon are shown.

 Figure 145. An example of a SAIKS key
(Alexander 2006c) showing a subkey with
back-reference to the previous key.

Tabular keys
A tabular key (Figs. 146-147) is a special key style combining properties of branching and multi-
access keys. Like a branching key, it is most conveniently used in a predefined sequence (col-
umns from left to right, or rows from top to bottom, depending on the pivotal arrangement of the
key). However, because of the tabular arrangement of information, and because information that
is relevant in some parts of the key is also supplied in parts where it might be considered redun-
dant (e. g., columns 2-4 in Fig. 146 for the upper species, having large pits in rays), it is also pos-
sible to use it as a multi-access key. The arrangement of tabular keys corresponds closely to the
taxon-list style of printable multi-access keys (Fig. 130, p. 250). In both types of keys, choosing a
different sequence of characters results in losing the advantage of sorting, but at least for relative-
ly small keys it remains a viable option.

The tabular arrangement is very space-consuming so that only a few characters can be arrang-
ed in this manner. Usually the entire key is therefore split into many small subkeys, and charac-
ters specific to the differentiation of certain taxa may be presented in the form of natural language
descriptions rather than in separate columns (Fig. 146, right column).

Normally, the tabular arrangement involves some form of projecting the three-dimensional
character × state × entity information into two dimensions. A new and interesting variation can be
seen in the SAIKS program (p. 251, and Figs. 143-145). Although not a classical tabular arrange-
ment (taxa are in a separate list, thus states can simply be nested in characters), it represents the
third dimension through colors. This is practical only when representing a single species at a
time, but SAIKS achieves a highly synoptic user experience in “show character” mode, in which
all character states of a single taxon become highlighted (Fig. 144). Although the approach is not
a tabular key, it has many of the same advantages and allows substantially more characters and
taxa to be used in a single key.

Tabular keys are found both in print and as hyperlinked text on the web. The KEY program of
the CSIRO DELTA suite is able to create a simple tabular key, where the cells contain codes for
each character and state combination (Dallwitz & al. 2000a).

Tabular keys may include illustrations, either through reference, or sometimes directly within
the table cells (Fig. 147).

G. Hagedorn Identification methods 257

Figure 146. An example of tabular key (left columns), combined with short diagnostic descrip-
tions (right column). The preferred usage is from left to right, but by supplying redundant infor-
mation some degree of “multi-access usage” is supported (excerpt from
http://www.woodanatomy.ch/ident_key.html).

Figure 147. An example of tabular key including illustrations (Haller & Probst 1989).

5.4. Requirement summary
Requirements that may be deduced from the previous sections for an information model to store
authored identification keys have been compiled here:

258 Identification methods G. Hagedorn

201. The information model needs special data structures for branching keys. These are re-
quired for authored (or “designed”) keys. They may also be desirable to store (cache) al-
gorithmically generated branching keys for fast retrieval.

202. Metadata supporting such a distinction between authored and algorithmically generated
keys may be desirable, including information about last update for algorithmically gener-
ated keys.

203. Authored branching keys need certain metadata like name, title, description, expected
experience level of user (untrained, generally trained, specialist), and information on
available languages. The metadata for a branching and multi-access key are generally
identical with those of a set of coded descriptive data. For key operation, however, addi-
tional metadata may be required (compare requirement 229, p. 276).

204. Dichotomous keys are a special case of polytomous keys and may be stored in a model for
the latter. The author of a key may desire to indicate that a key should remain strictly di-
chotomous; this may be stored as metadata item specific to branching keys. Key builder
applications (“editors”) may recognize and either warn or prevent the user from adding
more than two leads. The distinction is, however, not considered central enough to warrant
enforcement by the information model itself.

205. Combinations of broad branching keys and groups of browsable descriptions / illustrations
– commonly found in field guides – can be modeled as a special case of polytomous keys,
with a high number of lead choices at the end. However, the information model must sup-
port empty lead text and perhaps a metadata item requesting “embedding” of descriptions
or illustrations instead of the usual linking.

206. Leads in branching keys may lead to other couplets, entire keys (“subkeys”), or taxon
names / descriptions. The choice is a strict alternative in most cases (but see requirements
207 below and 220, p. 262).

207. The “result-and-continue pattern” (compare p. 235) implies requirements that may lead to
either supporting both a taxon group and a following couplet at the end of a lead, or pres-
entation metadata indicating that a subkey shall be embedded in a higher-level key. Ex-
actly how to support this situation needs further study.

208. Branching keys may provide for redirection (“cross-linking”, “reticulation”). As a conse-
quence, the information model cannot be limited to a tree, but must support directed
acyclic graphs (DAGs).

209. It is desirable that branching keys may support the question / answer and the lead style. The
question / answer style requires an additional “question label” at each couplet.

210. The question / answer style may also occur in multi-access keys, requiring an additional
“question label” for each character. This item is separate from the question in branching
keys, because a couplet in branching keys may involve multiple characters.

211. The text in branching keys (question / answer or lead style) should be free-form text and
provide for minimal inline text formatting such as italics, bold, sub- and superscript.

212. Multiple keys for a single set of taxa should be supported (for a plant family, for example,
separate keys based on flowers, fruits, and vegetative organs might be desirable).

213. Multilingual support for branching keys is desirable, especially for complex keys intended
for ongoing revisions. Additional metadata on default language, fall-back language etc.
may be desirable.

214. Media resources (images, etc.) are required at all nodes in an identification key, not only
on terminal nodes. At higher nodes they may either illustrate diagnostic features, or sup-
port the concepts of “looks like” / “promorphs”.

215. Media resources require context-dependent captions. The same resource may be used at
different points in the key, illustrating different character concepts or the entire resulting
taxon.

G. Hagedorn Identification methods 259

216. Presentation styles of branching keys may be supported as stored preferences in the meta-
data, but are not an issue of the required data structures.

217. Tabular keys may have additional requirements (e. g., a fixed set of few characters and
sequence of characters determining the sort sequence) that cannot be represented with the
polytomous branching key model. Whether this warrants an independent model, or
whether it can be included in a model for character guidance needs further study.

218. The confirmation phase (computer-aided choice of similar taxa) may be based on algorith-
mically determined similarity, or it may be based on manually entered lists of “easily con-
fused taxa”. In the latter case, data structures for this must be presented in the information
model.

5.5. Linking multiple keys
A hierarchy of keys (i. e., entry key with one or multiple levels of subkeys; Fig. 149) is standard
practice in biology and found both with branching and multi-access keys. Although publishing
constraints and difficulty in handling very large printed keys contribute to this pattern, authoring
and management factors similarly lead to a preference for well-defined building blocks instead of
unwieldy monolithic “superkeys”. Small to moderately sized keys can be authored and reviewed
by specific experts, resulting in keys of known quality and known taxonomic concept. In con-
trast, “superkeys” have a tendency to be of widely different quality in ways that is difficult to
document or perceive.

In the simplest pattern supporting this, a key is considered an “identification resource”, re-
gardless of its format (paper, static digital formats like PDF or XPS, computer-aided, etc.). A lead
pointing to a subkey thus consists of a display title in appropriate languages and a resolvable URI
to obtain the resource.

Occasionally, it may be desirable to offer multiple alternative subkeys to the user. Keys are
typically not only defined by their taxonomic coverage, but may also be scoped geographically
(e. g., “Orchids of Bavaria”), ecologically (e. g., “high-altitude shrubs”), seasonal (e. g., “winter
key”), sexual state (e. g., “vegetative key”) or by lead-characters (e. g., “broad-leafed trees”), etc.
Not all subkeys may be available in all desirable scopes. For example, the entry key may be
available for the preferred geographic scope, but certain family or genus keys may be available
only on a different scope. If, for example, the only available keys are global (being large, un-
wieldy, perhaps outdated) and a key scoped to a neighboring country, it will be desirable to leave
the choice of subkey to the user. Similarly, within a general moth key, the identification certainty
of some moth genera may profit from using an anatomical key (requiring a microscope), but a
less reliable “field key” may be provided as an alternative.

Multiple keys at a result-lead may either be implemented through the “result-and-continue
pattern” (Fig. 148 left; compare p. 235) or by allowing more than one subkey pointer at each
result (Fig. 148 right).

“Vegetative key to monocotyledonous families” “Vegetative key to monocotyledonous families”
[…]
8. [lead text …] Sedges (Cyperaceae)

9. Flowers or seeds present Cyperaceae
– Only vegetative material present

............................... Vegetative key to Cyperaceae

 […]
8. [lead text …]..

– Cyperaceae (flowers or seeds required)
– Vegetative key to Cyperaceae

Figure 148. Multiple subkeys may follow after a single lead. Left: using a “result-and-continue
pattern”; right: using a list of available keys.

260 Identification methods G. Hagedorn

Entry Key
Genera of family 1

Genera of family 2

Genera of family 3

Genera of family 4

Species of genus 1

Species of genus 2

(All keys may be
multi-access or
sequential keys)

Figure 149. Hierarchically linked keys (visualized as a character state × entity matrix representing
multi-access keys).

Transferring progress information between multi-access keys
To improve the experience of linking keys, it is desirable to transfer information from one key to
the next. When dealing with well-designed branching keys arranged in a key hierarchy following
the taxonomic hierarchy (family, genus key, etc.), the identification progress used in the higher
key will be transferred to a large extent simply by the design of the higher-level key. Although
even for branching keys occasionally some information may be lost (especially where the lower
taxon is variable with respect to a character), in general this is negligible.

The situation is markedly different for multi-access keys. Here it is quite common that the
user records data on convenient characters that remain polymorphic in the following subkey. If in
a computer-aided multi-access process these characters are already scored, it is desirable to trans-
fer the information to the next key (Fig. 150).

Entry Key
Secondary key

Figure 150. Scores recorded during identification may be transferred from one key to the other
where linked keys share common characters.

The simplest form of integrating multiple multi-access keys is to base them on a single data ma-
trix, where for certain taxon groups only a subset of characters (general plus group-specific) is
scored (Fig. 151). To structure this process and improve documentation and communication
among collaborators, SDD has a special coding status “not to be coded” (Table 16, p. 75), which
in the presence of data inheritance (p. 99) may be deduced down the taxonomic tree. The concept
of “Progressive revelation” (see p. 270) may then be supported by such explicitly marked or
detectably incompletely filled matrices.

The single-matrix approach is used, e. g., in the LIAS project where family keys are handled
through taxon and character subset views on a common base matrix. In DiversityDescriptions
such sub-projects are implemented as database views and can be used identically to projects
based on their own tables (Fig. 152). The characters and items in a subset are adjacent in Fig. 152
for illustration purposes alone, compare Fig. 226 (p. 334) for an illustration of non-adjacent sub-
sets.

G. Hagedorn Identification methods 261

Multi-access key

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

Figure 151. Multi-access key (visualized as a character state × entity matrix). The sub matrices
designated for coding are marked with a thick border; characters outside may have been marked
with “Not to be coded” coding status value (symbolized here by an ‘x’).

Main, unified data matrix; forming entry key and 3 subset keys

 Subset project / Key 3 Subset project / Key 2 Subset project / Key 1

Figure 152. Multi-access key (visualized as a character state × entity matrix). The areas that are
relevant to subgroups can be described as item and character subsets. Database views may be
used such that from the user’s standpoint subset projects are indistinguishable from a full set.

In practice, the single matrix approach has serious limitations. The requirement to manage all
data in a single coherent matrix makes projects inflexible both technically and socially. Further-
more, very large character sets become quickly difficult to manage.

It is therefore desirable to also offer linking mechanisms between independently developed
keys and coded descriptive data (i. e. data matrices). A simple linking is trivial and may simply be
a resolvable URI. However, carrying information from one key to another is a serious problem. It
either requires both projects to use a common standard for taxa and descriptive terminology (per-
haps through some form of taxon, character or state globally unique IDs) or to provide external
knowledge about which characters and states are strictly or approximately comparable. These

262 Identification methods G. Hagedorn

problems are discussed in more detail in “Federation and modularization of terminology”
(p. 180).

Current software examples: CSIRO Intkey offers two generic mechanisms (Taxon links di-
rective and File Display command) to link to other resources, including between multiple inde-
pendent keys.

DiversityDescriptions currently supports a subset approach with virtual “view projects”, but
no specific linking mechanisms between independent projects. Similar to the Intkey approach,
external keys are considered resources and use the same mechanism as images, audio / video files
or formatted documents. Resources may be available locally (e. g., for CD-based keys) or on the
internet. If multiple identification key resources are present, the display priority of these may be
defined. The data structures to link between resources are provided (see p. 322 ff), but the current
version of the application supports resources only in a minimalistic way. An improved version of
the Identify component that actually exploits the possibilities of the information model is planned
for the future.

CBIT Lucid (p. 21) can link multiple matrixes for particular taxa, resulting in a hierarchy of
data sets and corresponding keys (pers. comm. K. Thiele). It is thus possible to create a system of
primary and subkeys similar to those found in conventional faunas and floras. Identification pro-
gress is not carried to subsequent keys.
219. Both branching and multi-access keys may point to another key (subkey) rather than to a

taxon. Subkeys often are associated with taxonomic ranks (order family, genus keys) but
may be dominated by other scopes (e. g., “shrubs in winter”, “broad-leafed trees”).

220. More than one subkey may be desirable at a single result-lead.
221. Descriptive data for multiple algorithmically created keys (branching or multi-access) may

be kept in a unified matrix; in addition support for pointers from one key to independently
developed related keys is required.

Transferring progress information between branching and multi-
access keys

Considering the relative advantages of branching keys versus multi-access keys, it seems desir-
able to offer the user a choice of identification interfaces wherever suitable coded descriptive data
and key-generation algorithms are available. Under these circumstances, it seems highly desir-
able to be able to switch between interfaces, preserving as much information as possible while
switching.

Such a system would allow starting in a branching key, switching to another branching key
(e. g., from flower based key to vegetative key), and finally finishing identification in a multi-
access key. Branching keys are often desirable starting points because of the carefully balanced
guidance they offer. However, at some point, a branching key may become inconvenient or inef-
ficient (e. g., microscopical information requiring thin-sections) or impossible to follow (e. g.,
fruit characters when no fruits are present in the material).

Conversely, if users are starting with a multi-access key, but have the impression that little
progress is made, they may decide to switch to a branching key. Although a branching key is less
flexible than a multi-access key, still transferred information could be utilized by skipping cou-
plets and leads in a branching key that are known to be inapplicable. In the example shown in
Fig. 153, the branching key could start directly at question 3 (character 3, state 1 or 2) if a user
had scored the characters shown.

Because of the different structure of branching and multi-access keys, transferring information
is more difficult than transfer among multi-access keys. To some extent, reasoning may be based
on excluded taxon sets. When switching from a branching key to a multi-access key, the set of
taxa excluded in the branching key may be treated as a separate kind of criterion and displayed as

G. Hagedorn Identification methods 263

such in the history of identification steps. Conversely, when switching to a branching key, a lead
where all resulting taxa are excluded based on information from the multi-access key may be ex-
cluded, and if only a single lead remains the couplet may be skipped entirely. An example of this
“pruning method” can be seen at National Herbarium of New South Wales (2007).

A more flexible method of information transfer requires annotating the branching key in a for-
mat that is equivalent to the character states or values used in the coded descriptive data on which
the multi-access key is based. Because branching key leads commonly contain complex proposi-
tions, such a “markup” requires support for the full range of Boolean operators and nesting (bra-
ckets). Upon transfer to a multi-access key, for each selected lead in the branching key multiple
states of multiple characters may be scored (Fig. 153). For example, the leads in a couplet may be
“Flowers yellow and stamens 5” ↔ “Flowers white or stamens 20” (i. e., “Flowers white (and
stamens 5) or (flowers yellow) and stamens 20”). The support of the ‘not’-operator may be desir-
able, although this can also be translated into a complement-statement using all other states con-
nected with ‘or’. The advantage of supporting ‘not’ would be that the annotation-statement in the
branching key is more likely to remain correct if an additional state is introduced in the character
terminology.

The markup of authored branching keys with coded descriptive information is a relatively ex-
pensive process. It may be desirable, however, since this process automatically creates a sparsely
filled data matrix which may then be used as a template for a more completely filled and revised
data matrix. Furthermore, the addition of coded information could occur automatically in pro-
grams that support semi-automatic creation of branching keys.

Linking branching, authored keys with a descriptive data matrix may further improve the han-
dling of incompletely translated branching keys. Instead of reverting to default and then available
languages, the application may offer the option to switch into a multi-access mode at this point.
Translating only the “head” or “start” of an authored branching key into multiple languages is
often more practical and brings the greatest benefit in guiding users to be relatively close to suc-
cessful identification.

To the author's knowledge, no current software program implements a tight integration of
branching keys with multi-access keys. Several programs, however, offer character guidance
mechanisms, which in the case of CBIT Lucid “expert routes” (p. 269) comes close to an inte-
gration of a branching key into a multi-access key.

Multi-access key

...

1/1 ...

...
...
...
...
...
...
...
...
...

1/2
1/3

1/4
2/1

2/2
3/1

3/2
3/3

4/1
4/2

1/1

1/2

1/3

1/4

2/1

2/2

3/1
3/2

3/3

4/1

4/2

2/2

4/1
4/2
3/1

.../...

.../...

.../...

.../...

.../...

.../...

.../...

.../...

.../...

.../...

4/2

Figure 153. A branching key (left) connected with a multi-access key (visualized as a character
state × entity matrix, right). Questions and matrix columns are labeled as character number / state
number. At some point in the branching key the user cannot answer the next question (character
3, state 1 or 2) and switches to the multi-access key, transferring the information entered so far.
Alternative characters (not shown) may then help to finish the identification. The illustration is a
simplification insofar as character and states in the branching key may be connected by ‘or’,
‘and’, and ‘not’.

264 Identification methods G. Hagedorn

222. Support for transferring information between branching and multi-access keys is desirable.
223. Optional support for coded data reflecting the proposition made in the lead of a branching

key is desirable. This may have the form of markup of the natural language lead text or of
a coded description associated with a lead.

224. Support for Boolean operators and nesting is required for both alternatives (markup of
natural language lead text or associated coded descriptions).

5.6. Equality criteria and error tolerance
A major question in regard to identification processes is how they respond to
■ errors made in data input during identification (by a human user in interactive keys, or as a

result of automated processes),
■ errors in the knowledge base of descriptions,
■ indications of uncertainty added during the identification process,
■ indications of uncertainty added in the knowledge base, and
■ missing data (completely missing, or annotated using coding status values, see p. 74) in the

knowledge base of descriptions.

Such error tolerance (often also called “graceful degradation”, Pankhurst 1993a) may be achieved
by using fundamentally error-tolerant methods. Examples are:
■ Similarity methods using multivariate statistics (e. g., the MIS system, MIDI (undated), uses

Principal Component Analysis);
■ probabilistic (maximum likelihood, Bayesian statistics, etc.; see, e. g., Pankhurst 1991 and

Fortuner 1993);
■ fuzzy logic; the only examples in biological identification known to the author are Kennedy &

Spooner (1994) and Winder & al. (1997), but see, e. g., Anagnostopoulos & al. (2003) for
human face identification;

■ machine learning such as artificial neural networks (e. g., Clark & Warwick 1998, Clark 2003)
and other pattern recognition techniques (e. g., Agarwal & al. 2006).

Most current identification keys, however, follow a model of Boolean predicate logic, the logic
used in standard database queries and most programming languages. These methods are ideal for
exact, non-error-tolerant behavior, but additional methods or precautions for error tolerance may
be built in. One may distinguish between:

1) Error tolerance embedded in descriptive data
In natural language and coded data, it may be helpful to include indications of uncertainty or
doubt in the descriptive data; this is discussed in detail in “Certainty modifiers” (p. 207).

An extreme form of supporting error tolerance through data is to include statements that are
factually false, but often erroneously assumed to be true. Without further precautions, it becomes
quickly impossible to distinguish between purposely and accidentally erroneous data. A special
form of misinterpretation markers is therefore desirable; compare “Misinterpretation hints
through modifiers” (p. 209).

A special method applicable to authored branching keys is that a key may include redirections
(reticulations Fig. 116, p. 235) or taxa are keyed out multiple times. This may compensate for
either natural variability or frequent misinterpretations of structures or properties.

2) Algorithmic error tolerance in interactive identification
To achieve algorithmic error tolerance, the criteria for equality between query criteria and search
results must be modified relative to a standard database query. When comparing values for a
given set of variables, the following equality criteria are almost universally accepted:

G. Hagedorn Identification methods 265

■ Two value sets match if all variable values match (Fig. 154 a).
■ Two value sets match if all values defined in the search criteria match the values in the corres-

ponding variables in the knowledge base (Fig. 154 c).
■ Two value sets do not match if at least one variable defined in the search criteria does not

match the corresponding variables in the knowledge base (Fig. 154 b).
One method of improving error tolerance is to modify the third criterion. Instead of returning
only perfectly fulfilled conditions, the algorithm may return a list of results ranked by the number
of character variables matching may be returned. An identification program may trigger this
automatically if no perfect match could be found, or it may offer an option to explicitly request
“similar results”. In Morse (1974) a “variability limit” defines the number of characters which
may be in contradiction (not matching).

Whether variables defined in the search criteria are considered to match with missing data in
the knowledge base is more contentious (Fig. 154 d). Standard database queries will consider a
search clause “Where X = 1” to not match a database record with “X = Null”. During identification
this behavior is highly desirable – it would allow identification only if all data are known for all
taxa – and probably all identification programs will consider criteria for a character to match all
taxa with missing data in this character.

A second analysis of equality criteria may focus on the equality of variables where the values are
sets (i. e., the value of a character is a set of atomic values or states). This is the case in most cate-
gorical characters in biology. Whether perfect identity (Fig. 154 e), a subset of values (Fig. 154
f), or a non-empty intersection (“overlap”, Fig. 154 g) is required in a search condition varies.
Most standard database queries will consider the subset to be the appropriate matching conditions
(e. g., searching for Author1, Autor2 will return all titles containing both these authors plus addi-
tional authors). For identification processes, the intersection condition is, however, more appro-
priate. With regard to the information model, it is likely that the difference is best handled either
outside of the information model, or in context-specific metadata.

Characters

– –
+ +=a.

– –
+ +b.

– –
+ +

–
+

– –
+ +c.

– +
+ +

=

d. = –
+

– –
+ +

State values

e.

f.

g.

?

=/

= 4
1 2

4
1 2

= 4
1 2?

3
1

4
1 2=?

1 2

Figure 154. Illustration of equality criteria that are either generally accepted or special to some
identification use cases (shown with ‘?’ above equal sign). The left side (a-d) illustrates criteria on
the character (variable) level, the right side (e-f) criteria on the character state (value) level. On
each side, search criteria are shown to the left, values in the database to the right of the compari-
son operator. Missing data for a character is shown as an empty box. For example, f. illustrates
that in an identification use case it is usually desirable to return descriptions that have three out of
four states, even if only two of these can be found in the individual being identified. See text for
further explanations.

The criteria discussed so far address only categorical data. For quantitative data similar argu-
ments concerning included or overlapping ranges can be made. In standard statistical techniques,
any overlap between two confidence intervals is considered a match. If the knowledge base con-

266 Identification methods G. Hagedorn

tains only single values, a comparison is especially problematic. A common option is to add an
artificial margin of error to both values. Examples are the Absolute and Percent Error DELTA
directives used in the Confor / Intkey programs (see Macfarlane 1993b) and the user-settable error
tolerance in DiversityDescriptions (see Fig. 155). Although typically used for quantitative data,
the “margin of error” method may also be applied to ordinal categorical data, where adjacent
ordinal values may be considered matching (especially if the initial identification failed and simi-
lar descriptions are sought).

It is often desirable to offer different query modes for
identification purposes and exact retrieval of existing data
for editorial or data analysis purposes. In the CSIRO Intkey
program, several of the contentious equality parameters are
parameterized. For characters the behavior in regard to indi-
vidual coding status value may be set (Match ‘U’ and ‘I’ in
Table 55), and for character values all three equality options
shown in Fig. 154 can be selected (‘E’, ‘S’, ‘O’ in Table 55).

The Identify component of DiversityDescriptions / Di-
versityDescriptions is less flexible than Intkey; it only dis-
tinguishes between data retrieval (exact) and identification
mode (error-tolerant).

Options for error tolerance may be activated by degree.
For example, to accelerate the identification process an ex-
pert may choose the standard matching conditions and ex-
clude data containing misinterpretation modifiers.

If error tolerance is activated, it is desirable that a program is able to report which identifica-
tion results (remaining taxa) are resulting from applying error tolerance (e. g., misinterpretation
hints, or one or few characters in contradiction). Furthermore, the character affected for each such
taxon may be of interest. This may occur by highlighting result taxa or characters (e. g., through
color or icons), or by presenting results based on misinterpretations in a separate list.

Table 55. Character equality parameters (“Set Match”) in CSIRO Intkey.

SET
MATCH Description in Dallwitz & al. (2000b) Example in predicate logic (3)
O (1) “specifies that two sets of values match

if they overlap, that is, if they have any
values in common (e. g., 1/2 matches
2/3; 2–5 matches 4–10)” (2)

Character=“FlowerColor” AND (State=“blue” OR State=“violet”)

S (1) “specifies that two sets of values match
if one set (usually the values of the
specimen) is a subset of the other (e. g.,
1/2 matches 1/2/4 but not 2/3; 2–5
matches 1–6 but not 4–10).”

Character=“FlowerColor” AND (State=“blue” AND State=“violet”)

E (1) “specifies that two sets of values match
only if they are identical”

Character=“FlowerColor” AND (State=“blue” AND State=“violet”)
AND Count(*)=2

U “specifies that ‘unknown’ matches any
value”

Character=“FlowerColor” AND (Status=“Unknown”)

I “specifies that ‘inapplicable’ matches
any value”

Character=“FlowerColor” AND (Status=“Inapplicable”)

I O U “default setting for identifications” (for
data retrieval O is recommended)

Character=“FlowerColor” AND (State=“blue” OR State=“violet”
OR Status=“Unknown” OR Status=“Inapplicable”)

 (1) S, O, and E are alternatives and may be combined with U or I.
 (2) The cited text from Dallwitz & al. (2000b) uses DELTA notation, “1/2 matches 2/3” may be read as “state 1 or 2”

matches “state 2 or 3”.
(3) The predicate logic examples are written similar to SQL. However the AND clause in Match S would refer to two

Character and two Value fields in an inner join (assuming states are saved as records, similar to
DiversityDescriptions), and the Count clause in Match E may require a sub-query or another join.

Figure 155. Available options in
Identify (DiversityDescriptions) for
quantitative measurements ob-
tained from the object to be identi-
fied. The options support the
identification algorithm in selec-
ting appropriate margins of error.
Compare also Fig. 136, p. 253.

G. Hagedorn Identification methods 267

3) Algorithmic error tolerance in automated identification
Wherever complex quantitative data are used in automated identification (p. 231), specialized
equality criteria and error tolerance algorithms need to be employed. In many cases the equality
criteria will be based on probabilistic or similarity measures, returning result sets with an increas-
ing probability that the true result is among the set. This can be measured using test data sets and
test objects to study the effectiveness and quality of the identification algorithms. One measure
for this is the “Receiver Operating Characteristics (ROC)” used in Agarwal & al. (2006).

5.7. Character ranking and guidance
In many identification processes, a choice of the next characters is required. In interactive identi-
fication scenarios, a human user may request a suggestion about the next character to study, or a
sorting of all characters by some measure expressing decreasing utility. Various optimality crite-
ria exist, prefer, e. g.,
■ characters that are simple and quick to measure or score (especially in the field),
■ characters that are highly available in all kind of material and at most times (e. g., seasons), or
■ characters that are expected to provide fastest progress (e. g., those which on average result in

the smallest number of remaining taxa).
Interactive scenarios in which a human may request such guidance are:
■ in a multi-access key the user may request a suggestion which characters to use next,
■ the creator of a branching key requests a recommendation which characters to consider in the

next step in the new key, or
■ in the confirmation phase of an identification (see p. 232), “check characters” or diagnostic

descriptions may be requested for taxa that are similar to the initially identified one(s).
Some closely related use cases exist, in which character selection becomes automatic by simply
accepting all characters recommended based on the optimality criterion:
■ during automated creation of a branching key, the recommended characters are automatically

accepted,
■ in the creation of diagnostic descriptions (p. 39) the optimal character set is sought.
Importantly, the criterion of “fastest progress” depends on a current taxon set, which may contin-
uously change during identification progress. For example, in the construction of a branching key
after the first couplet, the optimality of the next character is best based on the remaining taxa in
either lead.

Character ranking and guidance may be authored or it may be calculated on the basis of algo-
rithmic optimality criteria.

Authored character guidance
Authored character guidance information may be stored as character-ranking metadata, best
path, or coding status information.

Character-ranking metadata (“character ratings”) may be used to order characters in a single
sequence of characters based on how much they are recommended in general for identification.
Examples are the weight and reliability directives in DELTA (p. 19). A problem when exchang-
ing DELTA data containing such information is that neither weight nor reliability have a strict
semantic definition. “Weight” is intended for general purposes, including especially phylogenetic
analyses, and reliability for identification purposes (M. Dallwitz, pers. comm.). Two different
convertible value scales exist in DELTA, and these have no interoperable definition. The broad
definitions that DELTA offers for weight and reliability provide flexibility for a variety of pur-
poses, but require external free-form text documentation of the implied semantics. Common
usage when using weight or reliability for character guidance is to adjust the values until the

268 Identification methods G. Hagedorn

desired effect is achieved in a specific target application (such as CSIRO Intkey, CSIRO DELTA
Key, Pankey, or PAUP).

At the SDD meeting in Brazil (see minutes, Hagedorn 2003a), a general consensus existed
that interoperable and semantically defined weighting or rating parameters with an interoperable
scale should be introduced. This should make it possible to obtain the values in a “questionnaire”
style from biologists unacquainted with actual processing software, and to exchange data indepe-
ndently of a specific application or purpose. The SDD discussions are summarized in Hagedorn
(2005a). Earlier proposals for a richer character rating vocabulary are: Diederich & al. (1989) and
Diederich & Milton (1991), proposing conspicuity, ambiguity, and variability, and Hagedorn
(1999a), proposing availability and reliability. The current SDD schema 1.1 contains the follow-
ing enumerated values:
■ ObservationConvenience: How conveniently can a character be observed? This may include a

measure of cost of equipment and expendables (such as chemical reagents). Convenience
should be rated relative to other methods required for identifications within a taxonomic
group. Thus, for example, if microscopic methods are always necessary in a taxonomic group,
microscopic characters may be considered convenient within this group. Also, a character may
be convenient in one group, but inconvenient in another.

■ Availability: How available is the character or concept for identification? For example, ratings
would be low if a character is available only during a short time in the life of an object, or
only expressed with low frequency in populations.

■ Repeatability: How reliable and consistent are repeated measurements or scorings of the
character by different observers and on different objects? This may include both variability of
values (frequency of polymorphisms) and variability in how the observations are interpreted.
It depends both on precision (quality of being reproducible) and accuracy (closeness to the
true value).

■ PhylogeneticWeighting: A weighting factor expressing the relative weight of a character for
the purpose of phylogenetic analysis.

■ RequiredExpertise: The user is expected to have this expertise level at least.
An unsolved problem with such ratings is that for some it may be desirable to define different
ratings for field or laboratory identification. A flexible mechanism is desirable, guaranteeing
interoperability for some rating semantics but providing for user-defined extension or subclas-
sing. This mechanism has not been fully developed.

In addition to such interoperable character-ranking metadata, application-specific extensions
may also be desirable. For example, one may want to fine-tune the ranking of characters when
producing printable branching keys, without unnecessarily “twisting” the general metadata. Ap-
plication-specific ranking metadata may be used instead of, or in combination with, interoperable
metadata. In SDD the general application-specific extensions (“CustomExtensions”) are available
in all objects. These extensions document the target application in a required name attribute and
allow any application-defined schema inside.

Irrespective of the exact structure of character-ranking metadata, a fundamental problem is that
the rating value often depends on a taxonomic group (Hall 1970). Counting the number of anthers
in flowers may be convenient in large-flowered groups, but highly inconvenient in wind-pollina-
ted groups with tiny and reduced flowers. To achieve character-ranking metadata scoped within
the taxonomic hierarchy, these may be considered a special form of data in a character × taxon
matrix (instead of considering them part of character definitions). Combined with a concept of
data inheritance down the taxonomic tree, general metadata may be defined in the root taxon,
inherited by all other taxa until (e. g., in a specific family) rating values are adjusted. This process
may occur for individual characters, i. e., only the necessary characters need to be adjusted.

Dallwitz & al. (2006) and Dallwitz (2005b) propose for “New DELTA” (p. 20) to introduce
attribute reliabilities (defined within character data) in addition to DELTA’s character reliabili-
ties (which are part of the character definitions). An attribute in the sense used in DELTA (com-

G. Hagedorn Identification methods 269

pare Table 3, p. 34) is the set of all states or values for a specific character in a description, i. e., a
character value in the terminology used here. If the proposal is understood as a modifier of char-
acter data (see below), inheritance along the taxonomic hierarchy would be bound to value inhe-
ritance, which may be undesirable. Indeed, the attribute reliability proposal is intended to be
independent of character data (M. Dallwitz, pers. comm.).

Convenience, availability, and required expertise of a character normally do not depend on the
result of a measurement or observation. Exceptions do occur, e. g., size measurement may require
different instruments for very small (microscope), medium (ruler), or very large objects (e. g., a
tree measured using a hypsometer, clinometer, relascope). Similarly, certain colors or shapes may
be easier to record than others. Furthermore, repeatability of a measurement may depend on re-
sults. Therefore, a modifier-like approach that modifies existing values may indeed be desirable
in addition to a general mechanism (compare “Reliability modifiers”, p. 213).

The concept of character-ranking metadata (“character ratings”) is further discussed in an
SDD proposal (Hagedorn 2005a).

An alternative to character-ranking metadata is the “best path” (or “best route”, “expert route”)
approach. Here, a tree-like data structure stores a sequence of characters that depends on the state
selected in the previous character. The necessary data structure is very similar to a polytomous
branching key, where each couplet uses only a single character. In contrast to branching keys all
or most terminal leads carry a special “continue in multi-access mode” message rather than lead-
ing to taxa or further keys.

In principle any branching key contains guidance about the sequence in which characters are
recommended to be used for identification. Extracting “best path” information from a branching
key to make it reusable (e. g., in a multi-access key), is trivial if the branching key uses only one
character per couplet, slightly more difficult where multiple characters combined with ‘and’ are
used, and may be quite complicated if the full range of Boolean operators is used.

The closeness to a single-character polytomous key is attractive because in many cases char-
acter guidance information can be obtained directly from published literature. On the other hand,
the approach can become inflexible if a data set undergoes continuous editing and revision. Spe-
cial problems may arise if a data set integrates data from a wide spectrum of taxonomic groups,
obtained from different sources.

The advantage of a best path over a branching key is that an application may allow users to
score other characters before entering the best path and after leaving it. Based on the sets of re-
maining taxa, identification software may be able to skip recommended characters that are re-
dundant based on information entered before entering the “path”. Even if the user decides to skip
a character, the software may continue with recommendations, now resulting in multiple charac-
ters rather than a single one (compare CBIT Lucid Phoenix, Fig. 128, p. 249).

A “best path” approach is implemented as expert routes in CBIT Lucid version 2 (CBIT
2004). Expert routes are labeled, and character states may be scored because information is im-
plied in the route label. Lucid expert routes differ from branching keys in that they contain a
provision to include quantitative characters (which then have no effect on the subsequent route).
At the moment, the feature is limited to the older Lucid 2 version; the reimplementation in
Lucid3 is currently not yet accomplished (K. Thiele, pers. comm.).

Finally, coding status information (see p. 74 for further information) stored in the descriptive
data matrix may be used to some extent to provide character guidance. Taxa where a given char-
acter in the data matrix has certain coding status values (especially the implicit value “no data re-
corded” and the explicit values “Data unavailable”, “Not interpretable”, “Data withheld”, and
“Not to be coded”, but not “Not applicable”) should match any actual character value observed in
the object to be identified. This feature is called the “retaining unknowns” feature in Dallwitz
(2005b) and Dallwitz & al. (2006). If the object to be identified has three wing spots and no num-

270 Identification methods G. Hagedorn

ber of wing spots is recorded for certain taxa, it cannot be excluded that the object belongs to
these taxa.

As a result of this, the higher the proportion of these coding status values among the remain-
ing taxa for a given character is, the less separating power does this character have and the less
recommended it is. Note that this information is not a sufficient character recommendation in
itself. It is valuable to recognize characters that should be avoided, but of little value to rank
those characters where the matrix is reasonably complete.

Related to character guidance using coding status is the concept of “Progressive revelation”,
proposed by K. Thiele (pers. communications and emails to TDWG-SDD discussion list on
2000-02-28). The general “matrix paradigm” assumes that, because of the huge benefits of multi-
access identification, it is valuable to record character data beyond the minimum diagnostic set.
However, this cannot be justified for specialized (i. e., “apomorphous”) characters that are re-
quired within small taxon groups, but not elsewhere. If no data exists in the literature beyond a
small taxonomic group, it may be considered a waste of resources to collect data for the majority
of taxa in which nobody so far has found these character data necessary. The scenario of a key
with progressive revelation is that such characters are initially hidden from users of multi-access
keys and appear only once identification has progressed to a group (e. g., a genus) in which they
are desirable. The “progressive revelation” concept is closely related to a general user interface
design concept called “progressive disclosure” (Mandel 1997).

Several models can be designed to handle the data required for this mechanism. However, any
such model will essentially be based on a character × taxon matrix. Hagedorn (2004b) therefore
proposes to use the mechanism of coding status values that is already available. Although pro-
gressive revelation would already work with a generic coding status (such as the DELTA “un-
known”), a special coding status “not to be coded” (Table 16, p. 75) is proposed for SDD to im-
prove documentation and communication among collaborators. The use of coding status values is
especially effective if the data matrix supports data inheritance down the taxonomic hierarchy. It
is then sufficient to code a character a single time “not to be coded” in the root taxon description,
and override this status as soon as the group in which it becomes relevant is reached.
225. Character-ranking metadata, expressing various optimality criteria for identification or

analysis, are important data elements.
226. Character-ranking metadata should be flexible to support various ranking categories (or

“topics”).
227. Both interoperable and application-specific ranking metadata may be required.
228. Support for missing data in general, and specifically coding status “not to be coded”, is

desirable to support guidance in character selection. This supports requirement 50, p. 76.

Algorithmic character guidance

Ranking categorical characters according to separating power
Analysis of separating power is based on character usage in a set of taxon or object descriptions.
Most current algorithms are in principle based on average information content of a character (i. e.,
entropy of a message set). Examples are the “Best” algorithm in CSIRO Intkey (Dallwitz & al.
2000b), “Best” in Pankey Onlin7 (p. 19) and “dynamic optimization” in Visual Key (Klimov
2001).

For a categorical character with s states, where each state occurs with a frequency pi in the de-
scriptions, the average information content is:

G. Hagedorn Identification methods 271

()i

s

i
i

s

i i
i

pp

p
pH

2
1

1
2

log

1log

⋅−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

∑

∑

=

= (1)

The values of pi are calculated as the number ni of descriptions remaining after selecting the ith
state, divided by the number n of descriptions that are current before selecting this state. The
“current set of descriptions” may be the result of previous identification steps involving character
data, or of scoping conditions such as selection of a taxonomic group or geographic region.

The value of H decreases with the number of states and with decreasing evenness of their dis-
tribution (Fig. 156). The highest value is achieved with uniformly even distribution, i. e., all states
occur with the same frequency. The information content of characters with many states is higher
than the content of characters with two states, but evenness is even more important (see examples
in Table 56).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

St
at

e
fr

eq
ue

nc
y

(p
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

In
fo

rm
at

io
n

co
nt

en
t (

H
)

Figure 156. Effect of unevenness on H values. On the x-axis increasing proportions for the top-
most state are plotted. The diagram combines possible frequency distributions for three and two
states. Starting with an evenly distributed three-state-character, two states increase their fre-
quency at the expense of the third until becoming an evenly distributed two-state-character (inner
dotted grid lines). The frequency of the topmost state is further increased until it is the only re-
maining state. The cumulative frequency of states (shaded areas) is plotted against the left axis,
information content (H-values) against the right axis (dashed line).

The importance of evenness is best illustrated in an example. If a large data set contains
n = 1 million taxon descriptions and all characters evenly halve the number of taxa remaining,
each identification would require about 20 identification steps (i. e. ceiling(log2(n))). If, however,
each character would split the results in a 0.2 : 0.8 proportion, identification would minimally be
completed in 9 steps, but maximally require 62 steps (i. e. ceiling(logbase(n)), with base = (0.2)

-1
and (0.8)

-1, respectively). The exact average length of all identification paths is difficult to cal-
culate (partly because of the ceiling function, i. e., rounding to next higher integer). However, it is
much higher than 40 = (9 + 62) / 2, because the larger proportion of taxa always remains in the
longer identification path.

Sorting the characters using Equation 1 thus ranks the characters based on how fast identifica-
tion would advance.

272 Identification methods G. Hagedorn

Table 56. Examples of values of information content H (Equation 1) for binary and multistate
characters, without and with overlap among state frequencies.

States (s) 2 2 3 3 4 2 2 3 4
Frequencies (pi) 0.5

0.5
0.9
0.1

1/3
1/3
1/3

0.9
0.05
0.05

4 ×
0.25

 0.6
0.6

0.9
0.9

3 ×
0.5

4 ×
0.5

Overlap No No No No No Yes Yes Yes Yes
Information (H) 1.00 0.47 1.58 0.57 2.00 0.88 0.27 1.50 2.00

In practice, the frequency of a state will often be 0 and the term pi·log2(1/pi) becomes
“0·log2(1/0)”, in which 1/0 is undefined. It is convenient to handle this by defining a precedence
for the multiplication with 0, resulting in the expected value of H = 0 (a state with no taxa cannot
contribute to identification progress). However, depending on the software used, Equation 1 may
have to be calculated using case logic (Equation 2). This problem will no longer be shown in the
following equations.

 ()∑
= ⎭

⎬
⎫

⎩
⎨
⎧

⋅
=

−=
s

i ii

i

otherwisepp
pif

H
1 2log

00
 (2)

Overlap and missing data
Equation 1 was originally developed in an information messaging context where different signals
are always strict alternatives. In the practice of biological descriptions, a single taxon may ex-
press multiple states, either because of variability between individuals of a taxon, or because of
variability and other situations that may occur within individuals (compare Fig. 33, p. 94). As a
result, the sum of state frequencies calculated as (descriptions containing state) / (total number of
descriptions) may be > 1.

Furthermore, missing data effectively also create an overlap. As discussed in “Equality criteria
and error tolerance” (p. 264), the true value of unscored characters may be any state. Thus, the set
of descriptions with missing data for a character (containing no information at all, coded only
with explicit coding status values, or coded with a coding status value plus character state data)
must be added to each state-specific result set (Table 57, last column).

Table 57. Example calculation for overlap between result sets involving missing data. The result
frequencies of states (p1, p2) already overlap with each other or with the set of descriptions con-
taining a coding status value (pc). The sum of frequencies is further increased by adding the set
with missing data to each state set.

Description Variable Measured p Calculation Final p
Neither character data nor
 coding status recorded

pu = 0.1

Coding status: “Data unavailable”, “Data
 withheld”, “Not to be coded”, etc.

pc = 0.2 pm = pu + pc = 0.3

State 1 p1 = 0.3 p1' = p1 + pm = 0.6
State 2 p2 = 0.5 p2' = p2 + pm = 0.8

Sum-of-frequencies: 1.1 1.7

If overlapping p-values are allowed (Fig. 157), Equation 1 only partly behaves in a desirable way
(Table 56, right). For characters with two states, characters with no overlap between states are
always ranked higher than those with overlap. However, characters with more states are ranked,
even with overlap, better than characters providing the same partitioning with fewer states, but

G. Hagedorn Identification methods 273

overlap. Clearly, the two-state character partitioning the set in half is preferable to those with
three or four states at p = 0.5, but the latter are preferred in the ranking. Furthermore, for charac-
ters with many states, increasing overlap initially increases the value for H. The effect is minimal
for characters with three states, but highly relevant for characters with four or more states
(Fig. 158).

St
at

e
fr

eq
ue

nc
y

(p
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H (s = 5)

H (s = 4)

H (s = 3)

H (s = 2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p (for each state)

H

Figure 157. Area diagram illustrating three
states with 0 to 100% overlap. Frequencies
remains evenly distributed throughout.

Figure 158. Effect of overlapping p-values on H for
2 to 5 states (s) with equal frequencies (p). Each
line starts at zero overlap with overlap increasing
to the right (compare Fig. 157 for s = 3).

One conceivable approach to reduce the effect of overlap is to separately calculate a frequency pm
(m for missing, i. e., descriptions where the character is not coded or where it has an equivalent
coding status). All other state frequencies are then calculated as if the descriptions with overlap
or missing data would not exist, i. e., they are based on 1 - pm and do not change with increasing
overlap. To discourage the presence of missing data, H may then be multiplied with (1 - pm). A
similar proposal (albeit not for an entropy function) was made by Pankhurst (1991). The result is
a collection “entropy” functions linearly decreasing from an initial H in direct proportion to the
increasing frequency of descriptions lacking data for a character (Fig. 159).

H (s = 5)

H (s = 4)

H (s = 3)

H (s = 2)

0.0

0.5

1.0

1.5

2.0

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p (for each state)

H

H (s = 5)

H (s = 4)

H (s = 3)

H (s = 2)

0.0

0.5

1.0

1.5

2.0

2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p (for each state)

H c

Figure 159. Linear correction for missing data by
calculating H for coded data and multiplying with
proportion of data coded (1 – pm). This is compa-
rable to Fig. 158, assuming all overlap is a result
of missing data.

Figure 160. Entropy function Hc, correcting
overlap by dividing through sum-of-frequencies
for even state-distribution. Compare Fig. 158 for
uncorrected values.

274 Identification methods G. Hagedorn

The pm-method described above addresses only the problem of missing data. In a deduction from
first principles, considering the average length of a key, Dallwitz (1974) arrived at a new equa-
tion. For the case of neither character nor item abundance weighting, this “BEST” function can
be rewritten in the terms used in this thesis as Equation 3, where H is divided by the sum of all
frequencies (Σpi). Without overlap (as in classical entropy-based scenarios) Σpi = 1, and thus
H = Hc. Increasing overlap reduces the value of H (Fig. 160).

()

∑∑

∑

==

= =
⋅

−= s

i
i

s

i
i

s

i
ii

c

p

H

p

pp
H

11

1
2log

 (3)

Uniform values and improper subgroups
As discussed above, the situation that all character values in the remaining taxa are uniform (a
single state, or always the same state combination) makes a character worthless for identification
and should correspond to an information content measure of zero. Both H and Hc fulfill this con-
dition and reach zero asymptotically as the frequencies approach this situation.

An additional special situation is that the frequency for some but not all states is 100%.
Dallwitz (1974) and the DELTA standard call this an “improper subgroup”. In a branching key
this situation is highly undesirable, because at least one decision will not further the identification
at all. On the other hand, if a character with four states has, e. g., pi = 0.33, 0.33, 0.33, 1.0, it may
be more desirable than other characters with highly uneven state frequencies.

Profiting from applicability rules (character dependency)
Most coding status values are equivalent to completely missing information. The status value
“not applicable” may, however, be treated specially in those cases, where it is also covered by a
character applicability rule (“character dependency”). Doing so substantially improves the per-
formance of a character guidance algorithm.

Character applicability rules express a relation between a controlling and a controlled charac-
ter. In a given description, the controlled character is either: Inapplicable unless a specific state in
the controlling character has been scored (“Applicable-if”) or applicable by default, unless a spe-
cific state in the controlling character has been scored (“Inapplicable-if”, compare “Character ap-
plicability rules”, p. 76).

During identification, character applicability rules are evaluated based on the data already en-
tered for the object that is being identified. For the purpose of identification, a dependent charac-
ter may be in three conditions:
a) it is inapplicable if data for the controlling character exist and an applicability rule evaluates

such,
b) it is applicable if data for the controlling character exist and an applicability rule evaluates

such,
c) it has unknown applicability if the state of the controlling character is unknown (empty or

coding status entered).
During data entry, unknown applicability would be interpreted as inapplicable for the applicable-
if rule and applicable for the inapplicable-if-rule. For the purpose of identification it is, however,
desirable to distinguish this condition.

Characters known as inapplicable may be excluded from the list of available characters, or
may be ranked lowest (e. g., by applying the highest possible cost). The latter method has two ad-
vantages: Firstly, it allows the user a chance to still score them and by doing so highlight a scor-
ing error either in the controlling or in the controlled character. Excluding the inapplicable char-
acters incorrectly assumes that scoring controlling characters is always correct. Secondly, it

G. Hagedorn Identification methods 275

avoids special treatment of these characters in the ranking algorithm, which does not have to
implement additional methods for character exclusion.

Characters known as applicable require no special handling and may be ranked normally.
Characters with unknown applicability are in principle informative because they may allow in-

ferences about the controlling character, reversing the direction of evaluation. For an applicable-
if-rule, this inference can always be made; for an inapplicable-if-rule, it can be made if only two
states exist. How this information may be used, depends on the purpose of character guidance:
■ When constructing branching keys, characters with unknown applicability should be treated

like characters known to be inapplicable, i. e., excluded or ranked worst. When using a char-
acter with unknown applicability, one of the lead propositions would otherwise be required to
explicitly include the option of inapplicability. For most users this would be difficult to decide
and is therefore undesirable.

■ When ranking characters for multi-access keys, the frequency of taxa for which a character is
coded or inferred as inapplicable may be treated equivalent to a state frequency. In theory the
frequency pm may consist of explicit inapplicable coding status values, implicit inapplicability
(no coding status, but known through applicability rule), and truly missing data (if the control-
ling character is unknown). However, differentiating these situations requires very time-con-
suming evaluation of many descriptions. The author recommends two possible shortcuts:
□ Simply treat 50% of pm as truly inapplicable. That is, the corrected proportion of missing

data is calculated as p'm = 0.5 pm.
□ If more precision is desired, the pm of the controlling character may be used. To simplify

this process, the sequence of ranking characters may be organized such that controlling
characters are calculated first, and the pm values of these are cached. Then
p'm, controlled = pm, controlling · pm, controlled .

In both cases, the informative proportion of inapplicable characters may be calculated as
ps+1 = pm – p'm. Character-ranking equations may then be calculated by summing from s to s + 1.

Ranking quantitative characters according to separating power
Quantitative characters are often very efficient in minimizing the set of remaining descriptions,
especially in multi-access keys that support a direct input of values. However the reasoning de-
veloped above is applicable only in two situations:
■ For quantitative integer characters recorded as individual values rather than statistical meas-

ures each value may be treated like a categorical state.
■ If a mapping to categorical character states (“Mapping univariate continuous measurements to

categories”, p. 66) exists, a quantitative character may be ranked on the basis of this.
Developing a ranking for quantitative characters with data expressed as statistical measures (cen-
tral values, ranges, variance measures, etc.) is difficult.

The strategy employed by Intkey is reported by M. Dallwitz (email to DELTA-L discussion
list, 18 May 2005): “In Intkey (unlike the key-generating program Key), key states are not explic-
itly defined by the author. Numeric values are used directly in the identification process. Integer-
numeric characters are actually treated as multistate characters, with each integer value corre-
sponding to a state, up to an arbitrary maximum, which is currently 100. Values above that
maximum are lumped together in a single state. This method allows non-contiguous sets of inte-
gers to be treated correctly. E. g. if a taxon is recorded ‘5 or 10’, then it would not match a value
‘6’ entered in an identification. If the lumping of large values causes unacceptable information
loss, the author has the option of treating individual integer-numeric characters as real-numeric
in Intkey. – For calculating the separating power of real-numeric characters, ‘key states’ are
automatically generated from the endpoints of the recorded ranges. For example, if there were 4
taxa recorded 2-3.3, 2.4, 3.1-4.2, and 3.1-4.5, the key states would be: up to 2 / 2-2.4 / 2.4-3.1 /
3.1-3.3 / 3.3-4.2 / 4.2-4.5 / 4.5 or greater. – For efficiency, the definitions of the key states are

276 Identification methods G. Hagedorn

generated only once, and stored for later use. The assignment of taxa to the key states is done
when a ‘best’ calculation is required.”

Pankhurst (1991) advocates a search for gaps between value ranges (minimum / maximum or
any available statistical range measure), and ranks these gaps based on the ratio of gap width to
combined width of adjacent ranges (Equation 4). This method is promising if only few taxa re-
main. The chance to find gaps decreases with increasing numbers of taxa. Furthermore, the me-
thod does not support a co-ranking of categorical and quantitative characters.

minmax

maxmin:where,
lowerupperrange
loweruppergap

range
gap

−=
−=

 (4)

The problem of automatically finding appropriate divisions in quantitative values is also ad-
dressed by Thiele (1993), who describes a new method to categorize quantitative data. This
method has been implemented, e. g., in the “Morphocode” program (Smets & Laboratory of Plant
Systematics 2003) running under Mac OS X 10.2 or higher.

Combining algorithmic with authored character guidance
A major problem with algorithms based on the information content of existing data is that some
characters may be very informative, but difficult or expensive to observe. The assumption made
by the algorithms discussed so far that data are readily available is often not valid. It is therefore
desirable to modify the character-ranking algorithms discussed above to include authored infor-
mation on observation convenience, availability, required expertise, etc. (compare “Authored
character guidance”, p. 267).

Balancing the relative weight of authored and algorithmic rankings is not trivial. Dallwitz
(1974) proposes an algorithm (“BEST”) in which balancing and other factors are parameterized
(RBase, VARYWT, Reuse, etc.). This algorithm is used in the CSIRO DELTA programs such as
Intkey and Key.

A special form of guidance by the “BEST” algorithm is support for preferential treatment of
certain taxa. This has not yet been discussed. The BEST parameter is “Abase”, and the taxon-
specific DELTA directive is called “Item abundance”. It is slightly misleading to interpret the
name literally: The actual abundance of an item in a geographic region is only one possible factor
influencing the decisions about prioritizing taxa in a key. Whereas beginners may profit from
frequent species coming first, practitioner often know the most frequent species from memory
and may perhaps desire them to come last, preferring medium abundant ones. Thus, “Item abun-
dance” represents the intent that, for a given audience, a taxon should be keyed out earlier than
others.
229. It is desirable to store parameters of character guidance algorithms (like DELTA VaryWt,

Rbase, Reuse) as key-metadata. These data are not descriptive data, but specific to a given
algorithm and key (authored branching key or multi-access key data set).

230. It remains inconclusive whether the information model must support metadata on taxa
resulting in a preferential treatment in a key. Such data could express the intent that some
taxa are keyed out faster than others. If supported, the model should allow different values
for different audiences and key algorithms.

Alternative algorithms
Alternative algorithms have been used such as “separation coefficient” or “dichotomizing value”
(Radford & al. 1974). They are not presented in detail here, since the advantages of methods
based on information content seem to be generally accepted. Dallwitz (1974) and Pankhurst

G. Hagedorn Use case analysis 277

(1991) are useful references to study earlier, alternative algorithms. A very recent study of alter-
native guidance algorithms, including a controlled performance study, may be found in Gibaja
Galindo (2004).

Presentation of character guidance in multi-access keys
A distinction should be made between the mechanisms of guidance in character selection and
how the guidance is communicated to the user. Some dependency exists insofar as some methods
provide a global order of characters whereas others (such as “best path”) only provide a small set
of “best characters”, without ranking the remaining ones.

Character guidance is usually prompted by some user request, i. e., the user explicitly asks for
suggestions. It may be displayed in a separate window (as in X:ID) or it may modify the standard
identification interface (most programs). Once character guidance is invoked, it may be automati-
cally updated with each identification step if it adapts to identification progress.

Following the example of Intkey, character guidance often occurs by rearranging the character
list in the sequence in which they are recommended to be used. This display has the advantage
that a user may easily override the sequence by choosing a character further down the list. It is
also possible to limit the number of recommended characters that are being displayed. For exam-
ple, although Intkey by default shows all characters, it allows the user to limit the number dis-
played. This is unproblematic as long as the removal of “lowly recommended” characters is
reversible (e. g., by returning to a character display arranged by some concept hierarchy (p. 125).
Otherwise, limiting the available characters impedes the ability to employ previous knowledge
about rare character states to accelerate and simplify identification.

A different form of presentation may be selected for those characters that no longer have any
separation power within the group of remaining taxa. Such characters may be removed from visi-
bility (called variously “eliminated”, “hidden”, or “pruned”). The process may be either automa-
tic as identification progresses, or upon an explicit request.

CBIT Lucid (p. 21) and Visual Key (p. 19), in addition to removing redundant characters, also
perform a similar analysis of states and remove redundant character states. Although this may ac-
celerate the identification progress, it may aggravate previous identification errors and lead to
further mis-scoring (Dallwitz & al. 2006). Beginners are very likely to choose among the avail-
able states, even if none of the remaining states truly fits the object, and even experienced users
may be misled about the semantics of a character state if the neighboring states are missing. The
Pankey (p. 19) multi-access key “Onlin7” performs a similar analysis, but only “flags” states that
become redundant with identification progress. In many identification use cases such “flagging”
(perhaps using a different or dimmed color) of redundant states will be preferable to complete re-
moval.

6. Use case analysis
6.1. Introduction
To achieve further insight into the requirements for a descriptive data system, “use cases” are
collected and discussed in the following.

A use case may be viewed as a task that an actor (i. e., human, institution, or software agent)
can perform. Use case modeling can be used for different purposes and with different level of
detail. Here it is employed to obtain a broad to moderately detailed inventory of system functio-
nality. The following use cases are not intended to formally describe system behavior or to col-

278 Use case analysis G. Hagedorn

lect implementation milestones. Future work may try to develop the present use cases to the level
of detail required for this.

The use cases are presented using UML. Similar to other UML diagrams, generalization rela-
tions between use cases are indicated by a large triangle pointing to the more general use case.
The derivation of specialized use cases from general ones is used in the following to provide the
desired level of detail without loosing the general overview.

If several use cases include a number of common steps in their scenarios, these steps are
modeled as a separate use case that is included in the other use cases (relationship labeled with
«include»). Similarly, if a number of steps form an optional extension in a use case, the optional
part is presented as a separate “extension use case” (relationship labeled with «extend»). Some
use cases are abstract generalizations that are not expected to be used directly (i. e., only the spe-
cialized cases will be implemented). Such use cases are called “abstract”; their name is written in
italics. See the section “UML use cases” in Methods (p. 23) for further information on the model-
ing techniques and notations used.

In the following sections first potential roles and agents for use cases are discussed, and then
the use cases. The large number of use cases has been grouped by knowledge management cate-
gories: information acquisition, review and interpretation, retrieval, and application (Watson
2002). Which arrangement of use cases is considered “natural” depends to some extent on
whether the user is a data provider or consumer. The arrangement chosen here is perhaps most
natural to a scientist who collects descriptive data for later use in identification and analysis. A
consumer may perhaps prefer a different sequence, starting with information retrieval (including
identification) and followed by information application and analysis.

The primary goal of this section is to reconsider the analyses and requirements presented so
far from a different perspective and to create a high-level framework into which these and future
requirement analyses may be integrated. The present form was achieved after much rearrange-
ment and it may be reconsidered as new use cases are being added. Already at the present time it
is known that additional work

Because the use case analysis largely reconsiders what has been discussed in the previous
chapters, the collection of numbered requirement statements is mostly stopped here.

6.2. Roles and agents (use case actors)
A potential list of roles and agents interested in descriptive data could look like:
■ Data entry/revision roles:

□ Responsible experts:
o Professional scientist
o Amateur scientist
o Student (including pupils in school)

□ Typist role (working for and under supervision of data entry roles)
■ Data retrieval roles:

□ Professional scientist
□ Amateur scientist
□ Student (specializes into primary school to university)
□ Policy maker
□ Government agent
□ Agricultural agent
□ General public

G. Hagedorn Use case analysis 279

Project manager

Taxonomic
web service

Everybody

Other scientist

Taxonomist

General public

Scientist

Professional
(employed)
taxonomistAmateur

taxonomist

Student of taxonomy

(These actors are
only examples

for "General Public")

Agricultural agent

Policy maker

School children

Author of publication

Literature
abstracter/indexer

Figure 161. Potential UML use case actors and their hierarchy. Note that most of the following
diagrams use only Taxonomist and General Public (see text).

These and other actors and their hierarchy are depicted in Fig. 161. However, in most of the fol-
lowing UML use case diagrams only two agents have been used:
■ Taxonomist, and
■ General Public, for the following reasons:
1. In a specimen collection management system the professional (i. e. employed) scientist (cura-

tor of the collection) has a special position, because the validity of part of the information de-
pends directly on the institution. No such distinction between the professional and the ama-
teur or student scientist exists for descriptive data. The relevant distinction is that of exper-
tise, which does not depend on employment status. Expertise is difficult to assess and in the
case of biological descriptive data is extremely specific to taxonomic groups. Academic
grades or years of experience with a group can be useful indicators, but no clear-cut distinc-
tions proved to be viable in modeling. Therefore all “expertise roles” have been combined in
a single agent type Taxonomist in the UML use case diagrams.

2. For similar reasons the data retrieval roles have been combined to General Public. Expertise
is difficult to measure and highly dependent on the area of specialization. Furthermore,
agents may be interested in aspects like biotechnology, medicine, etc. Cases where expertise
is relevant exist, especially in relation to different linguistic registers that may be defined in
terminology for different audiences. However, this is a general feature applicable to any use
case that involves communication with or reporting to a use case agent. It was therefore not
considered helpful to introduce expertise in the use case diagrams.

3. The distinction between a typist and a responsible expert is relevant, but was omitted to sim-
plify the diagrams. No separate use-case for typist-only action has been identified. Many data
entry or data revision use cases may consist of a typist phase and a quality control phase (al-
though in practice often the scientists perform both roles themselves). This would be well
worth modeling in a more detailed use case model, but the current model does not distinguish
these phases.

280 Use case analysis G. Hagedorn

In addition to Taxonomist and General Public, the following agents have been occasionally used
to highlight certain special roles or user communities:
■ Author of publication
■ Literature abstracter/indexer
■ Other Scientist
■ Project manager
■ Web service

6.3. Information acquisition
Acquiring the descriptive data content itself and information about the terminology used to ex-
press these descriptions is perhaps the most critical step in managing descriptive data. The dis-
parity between the information already acquired and the amount that would be desirable to ac-
quire is huge (see Fig. 1, p. 14). Most biologists will agree that it is much larger than the differ-
ence between, e. g., current information retrieval and application procedures and those that could
be imagined as desirable.

The following section will discuss information acquisition in a chronological order that would
be required when starting a new project: Defining project metadata, defining the terminology,
and accumulating descriptions.

Project management
The term “project” is used here for a container that ties descriptive data and terminology used
together and provides metadata concerning intellectual property rights (IPR), licenses (e. g., Crea-
tive Commons or Science Commons), scope (taxonomic group, geographical range, perhaps
seasonal applicability), version numbers, dates of initiation and updating, etc. of a descriptive
data set.

Some project management use cases (Fig. 162) like project creation, deletion, backup, and re-
store are trivial. If an application works document-oriented (one document per project), or if pro-
jects are identical with named databases in a DBMS, deletion, backup, and restore may already
be covered by standard file manager or database manager tasks. However, in other cases the gra-
nularity of stored information will encompass several projects (e. g., a single set of database ta-
bles holding multiple projects). File or database backup and restore will still protect against hard-
ware failure or global operator errors, but project delete, backup, and restore use cases need also
be implemented on a project-level granularity.

The export and import use cases are closely related to this. The exchange format may be a
fairly complete representation of descriptive data like the SDD format, or more selective formats
like DELTA or NEXUS. If the exchange format is capable of preserving all information (the
SDD format offers this ability with the provision of application-specific extensions), the backup /

restore use cases may be derived from “export / import to exchange format”.
The most complex use case in project management is the provision of project metadata. The two
aspects of project metadata:
■ informing about the project itself, and
■ summarizing information about the terminological and descriptive content
are often difficult to separate and are therefore not modeled as separate use cases. For example,
on the one hand editors of a project must not necessarily be identical to editors of individual de-
scriptions, on the other hand project contributors will often be simply the sum of all content
creator roles (e. g., author, editor, contributor, or translator). Similarly, a last-update date of the
project would be the most recent last-update of any content item. It may be desirable to be able to
mark some information as being or to be automatically generated. Several issues of project “en-
velope” information have been discussed at the SDD meeting in Paris (see Hagedorn 2003b).

G. Hagedorn Use case analysis 281

The importance of project and data set metadata is often overlooked (e. g., the original
DELTA relied entirely on external documentation for this). Farr (2006) argues for the importance
of communicating coverage and scope of identification keys.

Manage project

Project manager

Delete project

Export project
metadata to xml

interchange format

Export entire project
to xml interchange

format

Create project Edit project
metadata

Import entire project
from xml interchange

format

Backup projectRestore project
from backup

«include»

Figure 162. UML use case diagram for project management.

231. Support for metadata on the level of data sets (or “projects”) is desirable. This may include

intellectual property rights (IPR; including authorship, ownership, copyright, and licen-
ses), coverage and scope (taxonomic group, geographical range, perhaps seasonal applica-
bility), version numbers, initiation and modification dates, etc.

232. Some data-set-level metadata may be calculable from individual objects (contributors, last
modification, coverage) others not (editors, scope, etc.). Flagging data as having been, or
to be automatically updated may be desirable.

Definition of terminology
Defining the terminology provides a major part of the overall information model in which the de-
scriptive data are expressed. It is a peculiar feature of descriptive information models that a major
part of the information model (or “schema design”) is thus left to the content developer (see also
section “Structured descriptions and the concept of terminology” on p. 42). The base model itself
defines only general structures and data analysis types from which specialized data types are
derived by the domain expert (taxonomist). The reason for this is that much of terminology is
specific to taxonomic groups. At least the compositional terminology must be defined separately.
Unfortunately, even definitions of potentially generally applicable properties and methods terms
are often specific to taxonomic groups, or to geographical or scientific “schools”.
The definition of terminology has two aspects:
1. Ontological terminology: Scientific knowledge and generally usable definitions of terms may

be expressed as ontological statements. These statements may be arbitrarily complex. For ex-
ample, an unlimited number of morphological or anatomical part hierarchies may be defined,

282 Use case analysis G. Hagedorn

and the complexity of terminology does not have to be limited by practical considerations of
applicability of audiences.

2. Operational terminology: A restricted and constrained version of the terminology may be
defined for data entry and identification purposes.

Ideally, these two aspects should be handled by a single model, but it has proven difficult to find
a model that handles both aspects equally well. The use case discussion therefore treats the two
aspects as separate specializations of “Define terminology” (Fig. 163).

Define terminology

Taxonomist

Define operational
terminology

Define ontological
terminology

Figure 163. UML use case diagram showing that terminology may be defined separately as
fundamentally true ontological statements, and as operational terminology to be used under ex-
isting limitations. All three use cases are abstract (shown here in the following with italic use case
names).

Multiple languages or audiences
In principle, a terminology can also attempt to define the terms used in “prose-like” natural lan-
guage descriptions. The advantages and disadvantages of such descriptions have already been
discussed above (p. 39). One of the problems of natural language descriptions is communicating
in multiple languages or with multiple audiences (school children, scientists, etc.). This will be
discussed first, before addressing ontological and operational definitions of terminology.

One strategy to express descriptions in several languages is the development of automated
translation systems based on natural language. Despite some problems (e. g., terms are frequently
ambiguous and context-sensitive, and information may be implied in one language and has to be
expressed in another language), the relative simple nature of scientific descriptions would appear
a promising target for automated translations. Major problems are, however, that natural lan-
guage descriptions often contain errors or inconsistent usage and that – embedded in the simple,
structured descriptions – notes may use the full expressiveness of a language. Translation systems
constrained to structured terminology will then only allow partial translations. Semi-automatic
translation systems are of little interest to the taxonomic community. Firstly, the resources to
check thousands of descriptions are lacking and secondly, most biological descriptions generated
in digital format are seen not as a final product, but as a first version that the author team hopes to
improve gradually through revision and criticism from outside. No implementation of an auto-
mated translation system for descriptions is known to the author.

Instead, a long tradition exists in the DELTA and NEXUS communities to express descriptive
data through symbolic codes. Each term defined in the terminology has such a unique code asso-
ciated with it and this code is used in the object or class descriptions. If appropriate labels and
wordings for each supported language or audience (such as school children, university students,
etc.) are provided, natural language descriptions can be generated from the coded descriptions.
Similar to automated translations, the specialized notes that are not covered by the general termi-
nology cause a problem and require manual translation. However, they are clearly identified in a
structured data format rather than being embedded in unstructured text. If only relatively few
such notes exist, the dynamic nature of descriptions is lost only for these parts.

Although the original DELTA format supports automatic translations for characters and states,
much had to be expressed as free-form text in notes. Proposals to introduce additional elements to

G. Hagedorn Use case analysis 283

increase the expressiveness of coded terminology (“coded comments” in “New DELTA”, p. 20;
modifiers in DiversityDescriptions and SDD, see “Modifiers”, p. 189) substantially reduce the
amount of free-form notes requiring manual translations.

An important question is, whether the codes should be semantically meaningful (e. g., “blue”
representing the color blue) or not (e. g., “27.66xx”). Semantic codes have advantages during the
debugging of applications, but should otherwise be avoided. When the terminology evolves, e. g.,
when many different shades of blue are added, it is often not possible to keep the intuitive seman-
tics of the code and the true semantics of the definition synchronous. The confusion caused by
such an “impedance mismatch” between assumed semantics and true semantics of a code may
cause considerable errors and delays during application development, outweighing the original
advantage during debugging.

The extreme case of a system with semantically loaded codes would use natural language
phrases in one selected language directly to store the descriptions. If the system controls the syn-
tax and provides uncontrolled containers for free-form text notes, the system would appear like a
natural language description, but without the translation problems noted before. In this case the
advantages may be considered to outweigh the disadvantages noted above. Especially, such data
could be directly reported at least in one language, and would still be useful if knowledge of the
terminology has been lost (e. g., in a partially conserved archive). However, before deciding to
design such a system, two other aspects must be considered:
■ Since such a system can never work with single words, it must be guaranteed that phrases are

always unique. Two phrases may start identically, and one code may be a part of another
phrase, but the longer phrase may never be identical to a combination of phrases allowed by
syntax of the system. This behavior is very difficult if generality (usability in different lan-
guages, e. g., Chinese) is sought.

■ Because codes and representation are coupled, changes to the terminology (schema evolution,
refactoring) require modifications to all descriptions expressed in the terminology. This is of-
ten not possible if data are federated.

■ The system would have a non-symmetric behavior regarding report generation and translation.
In a coded system, improving and refactoring the terminology can be achieved with a single
set of methods. If one language is also used for coding, this preferred language would need
other methods than the translations.

Ontological terminology
The definition of use cases for ontological statements (Fig. 164) is relatively preliminary, since
no existing applications could be studied in detail and relatively little experience exists. Some
sources of information are:
■ The “Plant OntologyTM Consortium” (http://www.plantontology.org/) plans to cover two vo-

cabulary domains: plant structure and plant growth and development for selected, genetically
and agriculturally important plant species. It uses three relations: “is-a = type-of”, “part-of”,
and “develops from” (e. g., “seed coat develops from integuments”), creating directed acyclic
graphs (DAG, p. 234). Early vocabularies were narrowly focused on molecular model species,
but recently more general vocabularies begin to emerge (e. g., Pujar & al. 2006 for stages, Ilic
& al. 2006 for structure). However, these remain to be optimized for use in a molecular con-
text, compare the synonymy problem discussed on p. 159.

■ The Prometheus description model (p. 21) concentrated on guaranteeing that all used descrip-
tive terminology must be properly defined. The published information is yet insufficient to
elaborate the use cases further and it is difficult to assess in how far the intended definitions
are accessible to automated reasoners.

■ Many other projects address the problem with a dictionary or glossary approach without for-
mal machine-readable ontologies, e. g., the online version of Radford & al. (1974):

284 Use case analysis G. Hagedorn

http://www.ibiblio.org/botnet/glossary/, the LIAS glossary (Ryan & al. 2005), or the U-PLanT
and OpenKey projects (Greenberg & al. 2005, 2006).

Ontological descriptive terminology may in the near future be primarily used to improve the in-
ternal consistency of the operational terminology, and as a backdrop to operational terminologi-
cal descriptions (e. g., by generating dynamic dictionary or glossaries that can be referred to by
the operational definitions). The intended future use of an ontological vocabulary is its consump-
tion by semantic software agents (Berners-Lee & al. 2001). Much may change in this area, since
the definition of web languages for semantic and ontological statements is under very active de-
velopment. Only recently the first versions of RDF and OWL have been elevated to w3c recom-
mendation status (RDF: W3C 2007, Klyne & Carroll 2004, Manola & Miller 2004, Brickley &
Guha 2004; OWL: McGuinness & van Harmelen 2004).

The topic has already previously been discussed in “Fundamental aspects of description
models: Descriptive ontologies”, p. 131.

Define ontological
terminology

Taxonomist

Define object parts

Define relations:
has-a / part-of

Define relations:
is-a / kind-of

«include»

«include»

«include»

«include»

Define methods

Define properties Define property
states

Define relations:
derived from (temporal/

developmental)

«include»

Figure 164. UML use case diagram for the definition of ontological terminology. A composition
hierarchy for object parts (using has-a = part-of relations) and generalization hierarchies for
properties, property states and methods (using is-a = kind-of relations) are defined separately.

Operational terminology
In contrast to ontological definitions, all existing applications and approaches to descriptive data
have methods for the definition of operational terminology (“character definition”). The use cases
presented in Fig. 165 are based on a character model (see “Description storage models”, p. 104)
extended with concept hierarchies (p. 125) and modifiers (p. 189) as currently proposed for SDD
(p. 20). Other models (e. g., “Character decomposition models”, p. 116) would result in a different
collection of derived use cases for “Define operational terminology”.

The central operational entity is called “character”. A character can be understood as a, vari-
able, property or “data container” containing free-form text, categorical data, or quantitative
value. The enumeration of categorical values is defined as categorical states, the various kinds of
univariate statistics for quantitative values as statistical measures. Characters may be arranged
into one or several conceptual hierarchies (compositional, methodological, by property, etc.).
Character dependency rules (general dependency or specific applicability rules; compare “Analy-
sis of character applicability”, p. 304) can be considered a special form of such character hierar-

G. Hagedorn Use case analysis 285

chies. Note that the «include» relation denotes that creating a hierarchy is only possible after
characters have been created).

Modifiers are a separate terminological entity for frequency (e. g., “rarely”, “usually”; p. 206),
certainty (e. g., “probably”, “perhaps”; p. 207), or other modifications of states or measures (e. g.,
“strongly”, “when young”). They can be defined independently from other elements. A separate
use case defines which modifiers are applicable to which character.

Define operational
terminology

(= acts on all
derived use cases!)

Taxonomist

Recommend defined
statistical measures

Define categorical
state

Define character Define modifiersDefine character
hierarchy

Define modifier
applicability

Record strict
(= necessary) char.
dependency rules

«include»

«include»

«include»«include»

«include» «include»

Define categorical
character

Define quantitative
 character

Define free-form
text character

Define color
character

Define molecular
pattern character

Figure 165. UML use case diagram for the definition of operational terminology. The definition of
specialized color and molecular pattern characters are Examples of further specialized character
types.

Short text labels are often insufficient to communicate terminological concepts to untrained
information consumers. Attached images and other media can help, but often considerably more
effort is needed to achieve exact definitions. Each specialized use case of the operational termi-
nology (character with derived kinds of character, character hierarchy, modifiers, states, meas-
ures) has a number of common included use cases (Fig. 166, 168, and 169), covering both simple
and elaborate definitions:
1. Each use case includes the definition of a label. Optionally, label abbreviations, and natural

language wordings may be defined.
2. Beyond the definition already expressed in the label text or media associated therewith,

elaborate definitions may be associated.
3. An association of media resources may be included in each use case.

In Fig. 166 the association of media resources is drawn as an independently included use case.
Often it will be modeled as an indirect inclusion, through including the association use case in
both the label and the elaborate definition use case (Fig. 167).

286 Use case analysis G. Hagedorn

Define operational
terminology

«include»

Associate with
media resource

Define label,
abbreviations,
 wordings, etc.

Elaborate definition
("glossary style")

«extend» «extend»

Figure 166. UML use case diagram showing the inclusion and extension of use cases to define
“label, abbreviations, wordings”, “elaborate definitions”, and to “associate terminology with media
resources”. The relations shown here affect all use cases derived from “Define operation termi-
nology”, such as characters, states, modifiers, etc.

Define operational
terminology

Define label,
abbreviations,
 wordings, etc.

Elaborate definition
("glossary style")

Associate with
media resource

«include»

«extend»
«extend»

«extend»

Figure 167. UML use case diagram showing a modification of Fig. 166. The association of media
resources is now considered an extension of the label and the elaborate definition use cases.
This solution is proposed in the SDD model.

Taxonomist

Define operational
terminology

Define character
hierarchy Define modifiers

Define character

Define categorical
state

Recommend defined
statistical measures

Define label,
abbreviations,
 wordings, etc.

«extend»
«extend»«extend»

«include»
«include» «include»

«extend»«include»
«include»«extend»

Elaborate definition
("glossary style")

Figure 168. UML use case diagram for the inclusion of label and glossary use cases in some
operational terminology use cases. This diagram explicitly shows the left two use case relations
already implicitly present in Fig. 166. The generalization hierarchy is only hinted at the top; com-
pare Fig. 165 for details.

G. Hagedorn Use case analysis 287

Associate with
media resource

Define label,
abbreviations,
 wordings, etc.

Elaborate definition
("glossary style")

Associate with
selector resource

Associate with
iconic image

Associate with
definitional/illustrative

resource

«extend» «extend»

Figure 169. UML use case diagram showing the specific use cases of the abstract “Associate
with media resource” (compare Fig. 167).

The explicit versions of the diagrams are shown to clarify the use of an include dependency
relation to a generalized use case from which specialized use cases are derived. Note that most
modifiers and all statistical measures may well be associated with iconic or definitional image
resources, but the use of selector images is unlikely for these objects. However, no reason exists
to prevent this from occurring (Fig. 169).

Coding status and statistical measures
The definition of coding status values expressing reasons why data are missing (compare p. 74)
and statistical measures (compare Fig. 32 and section “Standard aggregation methods”, p. 85)
may be considered special use cases. Methods analyzing, manipulating, and querying descriptive
data must be aware of much of the semantics of the different coding status values and statistical
concepts. This is different from categorical states, where the same methods must only be aware
of general comparability and information embedded in the data type.

For a fully extensible solution the system designer might define a symbolic algebra and a suf-
ficient number of semantic concepts to enable the taxonomist creating an operational descriptive
terminology to base new statistical measures and coding status values on these agreed concepts
(Fig. 170, left). Alternatively, one might limit the terminology to a fixed vocabulary with system-
defined semantics may be created (Fig. 170, right) which cannot be extended by the taxonomist.

Define operational
terminology

System designer

Taxonomist

?

System designer

«include»«include»

Define coding
status value

Define statistical
measure

Define symbolic
algebra

Define generalized
missing data

semantics

? Define coding
status value

Define statistical
measure

Figure 170. UML use case diagram showing options for defining coding status values and
statistical measures. On the left an extensible vocabulary is defined by a taxonomist as part of
the operational terminology, on the right a fixed vocabulary is defined by the system designer.

288 Use case analysis G. Hagedorn

Originally, the extensible approach (Fig. 170, left) was attempted in SDD. Over time, how-
ever, it was realized that the complexities of pursuing this were so great, and the disadvantages of
a rich but fixed vocabulary so relatively minor, that the system-defined vocabulary was preferred.

Federated and shared terminology
Use cases regarding distributed and shared terminology (Fig. 91, p. 182; Fig. 94, p. 185) have al-
ready been shown and discussed in “Federation and modularization of terminology” (p. 180).

Descriptions
Descriptive data can be obtained by:
1. Direct entry of descriptive data based on a newly devised exact terminology. This is the

mode with the longest tradition in the application of computer methods to descriptive data.
All DELTA- or NEXUS-based programs currently employ this mode (using local application
form or online-forms over the internet, see, e. g., Hagedorn & Rambold 2000). It is discussed
in the following section “Data entry of coded descriptions”.

2. The digitization of existing (printed legacy) data like flora, mycota, or fauna volumes, result-
ing in natural language digital text. This text may then optionally be marked up to provide
additional structure, or it can be converted into structured data formats. Only relatively few
natural language descriptions have so far been digitized and marked up and the author is not
aware of projects studying the conversion of natural language with markup into coded de-
scription data. This is discussed in “Digitization and markup of descriptions”, p. 293.

3. Recording the process of identifying objects (Fig. 177). This is an entirely new process pro-
posed in this publication; it is discussed in “Recording identification data”, p. 295.

A special aspect of descriptive data is that raw data and repeated observations may already be
recorded, rather than synthetic, processed information. This will be discussed at the end under
“Recording repeated original observations”, p. 296.

Data entry of coded descriptions
Data that are fully defined through a structured terminology that is available inside a descriptive
data management system are called “coded descriptions”. This refers to the fact that the terms
defined in the terminology are not taken at their natural language “face value”, but are codes
referring to exactly defined entities.

Definition of blocks of coded description

Descriptive data may be viewed as atomic statements (e. g., “petals blue”) that can be organized
by various principles into blocks of data. The most important organizing principle for such blocks
is the definition of the real-world entity that is being described. In the model proposed here this
may be either an individual (observed or collected) object represented through an object identifier
(such as a specimen number or code) or a class of objects represented through a class name (ta-
xon name). Probably any model for descriptive data will have some block structure and use case
dichotomy that is based on these two elements (Fig. 171). Note that although object and class
descriptions in theory are fundamentally different, in practice they are distinguished only by their
definition (compare section “Are different models for individual and class descriptions needed?”,
p. 361 for a discussion of this).

G. Hagedorn Use case analysis 289

In addition, further organizing principles are citations (or “references”) of publications that
previously published descriptive data, and the team of authors and editors that is responsible for
the creation of a block of descriptive data. These elements may either be nested within the prima-
ry block structure or used as additional defining elements for the primary block structure. The
SDD model (p. 20) chooses the latter option and allows an unlimited number of data blocks
(called descriptions).

The citation of a publication is occasionally uncritically considered a “data source” for a de-
scription. This may indeed be appropriate in the future when referring to digital coded descrip-
tions based on a standardized terminology and exchanged through data exchange formats like
SDD. However, currently publication citations usually refer to printed or digital natural language
descriptions. Viewing these as “data sources” is misleading, since the person creating the coded
descriptions must translate from published natural language terminology to the coded terminol-
ogy that has been defined in the project. This process involves a sequence of analyzing the usage
of terminology in the published descriptions, comparing it to known reference descriptions (i. e.,
organisms that are described in the publication as well as in coded terminology – usually only
implicitly because the translating person knows the organisms well), and then creating a strategy
to translate the published descriptions to coded descriptions. Often errors or inconsistencies are
detected in the published descriptions during this process, and appropriately coding of the result-
ing uncertainties is part of the coding strategy. The sequence of analysis and synthesis always
creates original descriptive data, and similar to original scientific publications, the citations are
supporting evidence and not “data sources”.

The problematic relation between publication citations and the changes necessary during data
entry may be one reason why most descriptive data application are currently designed primarily
to handle the third case (no references) and can handle the other cases only by adding unstructur-
ed information in free-form annotations. DiversityDescriptions attempts to improve this and links
explicitly to collection or reference databases; however, the lack of interoperability with referen-
ce or collection applications makes this a difficult process that currently still requires custom pro-
gramming.

To analyze the specialized procedures based on the definitional elements of descriptions (object
ID, class name, publication citation, and author team), UML use case diagrams are not ideal.

Record descriptive
data

Record descriptive
 data of collected or

observed object

Record descriptive
data of class

(generalized description)

Cite object/
specimen ID (The modeling term

'class name' is equivalent
to the biological term

'taxon name')
Record descriptive data
of identified collected or

observed object

Record descriptive data
of unidentified collected or

observed object

Add/change class
name (of description)

«include» «include»

«include»

Figure 171. UML use cases derived from “Record descriptive data” for individual objects and
class descriptions. The former may be unidentified or identified to a class name.

290 Use case analysis G. Hagedorn

Each combination has to be modeled as generalizations with multiple inheritance, leading to a
multitude of specialized use cases. In addition to the cases resulting from the definition of class
name (i. e. taxon name) or object identifier (already shown in Fig. 171 above), at least those de-
rived from recording and citing published data are also shown (Fig. 172). Deriving specialized
use case for presence or absence of the author team of a description is considered less interesting.
Any description has an author team, only it may or may not be recorded in the data.

Record descriptive
data

Record published
descriptive data

Taxonomist

Literature
abstracter/indexer

Cite publication«include»

«include»

Record descriptive
 data of collected or

observed object

Record descriptive
data of class

(generalized description)

Record published descr.
data of unidentified coll.

or observed object

«include»

Record published descr.
data of identified collected

or observed object

Record published
descriptive data of class
(generalized description)

Record descriptive data
of unidentified collected or

observed object

Record descriptive data
of identified collected or

observed object

Record descriptive data
without citing a source

('pers. experience')

«include»

Cite object/
specimen ID

Add/change class
name (of description)

Figure 172. UML use case diagram extending the interactions already shown in Fig. 171 by
those derived from the “Record published descriptive data” use case. Four basic abstract use
cases, three included use cases, and six concrete use cases (corresponding to the check marks
in Table 58) are shown.

Only six out of eight possible combinations of the three definitional elements are considered
relevant (Table 58 and Fig. 172). An unpublished description without object ID or class name is
considered data garbage, i. e., at least one of “class name” or “object identifier” must be present.
The citation of a publication is always considered optional.

Table 58. Tabular presentation of the possible combinations between object ID, naming/ identifi-
cation, and publication status.

 – Object ID present – – Object ID absent, –
 Identified Not Identified Class named Class unnamed
Published: yes
Published: no

(Object identifications and naming of classes may be expressed in the same data item “class name”.)

G. Hagedorn Use case analysis 291

It may be surprising that descriptions of unidentified objects are being published. This situa-
tion occurs, e. g., when molecular sequences records are deposited in GenBank, EMBL, or DDBJ,
that could not yet be identified. DNA may even have been obtained from environmental samples
so that no object identifier of a voucher specimen or strain is present. Similar cases occur in phy-
topathology, where a description may refer to an unidentified organism causing a disease, or in
publications requesting identification help.

The examples above include cases in which descriptions report neither a scientific taxon name
nor an object ID, which seems to contradict the requirement that at least one of “class name” or
“object identifier” must be present. However, these cases are relatively rare and a non-scientific
name will always be present. It is common practice in biology to give these classes temporary
names (often called “laboratory names”) to be able to refer to them. Thus, class names may in-
clude valid taxonomic names, but are not limited to them. Descriptions for non-taxonomic (non-
phylogenetic) class concepts like “algae”, diseases names (one organism may cause different
diseases on different hosts or under different conditions), or preliminary laboratory names may
also be created. Supporting the explicit absence of class name and object identifier is considered
an unnecessary complication of system design, since it would require the implementation of ad-
ditional query mechanisms (based on, e. g., system-internal identifiers of descriptions) to allow
users to retrieve and edit blocks of descriptions.

Character data entry

So far only the definition of the unit of description has been discussed, but not the entry of char-
acter data. The term “Character data” is used here to summarize all available combinations of the
operational terminology (i. e., including categorical or quantitative data with or without modi-
fiers, unconstrained text information and notes, or coding status values). Consequently, character
data entry is a very complex use case. It is not discussed in detail here, since little insight can be
gained from use case diagrams beyond what has already been discussed in the section on “Opera-
tional terminology” (p. 284).

Record descriptive
data «include» Record character

data

Record multiple
characters in

single description

Record single
character in multiple

descriptions

Record multiple
char. and multiple descr.

(spreadsheet view)

Figure 173. UML use case diagram showing various modes of recording character data.

Recording character data can be modeled (Fig. 173) as an included use case of the basic abstract
use case “Record descriptive data” (i. e., recording characters is part of all six specializations
shown above in Fig. 172). The specializations focus on the fact that different sequences of actions
are possible. Each results in a specific editor design and each one has advantages and disadvan-
tages. The three use cases presented in the diagram are discussed in use case scenarios with anno-
tations:

Use case scenario: “Record multiple characters in a single description”
(1. Instead of working on all characters one may select a character subset)
 2. Select a description or start a new description
 3. Select a character (first, next in sequence, or free choice from set of characters)
 4. Enter data for the selected character

292 Use case analysis G. Hagedorn

 5. Loop to 2 until all available descriptive data are entered for one description
Notes: This is the most common method. It has the advantage of focusing the actions on a single
description. It is the only meaningful method when an object (i. e. specimen) is directly studied. It
usually works well for class (i. e. taxon) descriptions, since most information is organized by
taxon (like natural language descriptions).

Use case scenario: “Record multiple characters and multiple descriptions (spreadsheet
view)”
 1. Select a description
 2. Select a character
 3. Enter all character data
 4. Move to the next character or to the next description, repeat 3
Notes: The free navigability allows more user choices, as well as errors. At least the description
dimension of the spreadsheet matrix should be freely selectable or should be sortable by different
criteria (taxonomic name or hierarchy) so that related descriptions can be seen next to each other.
A spreadsheet view is implemented, e. g., in the new CSIRO DELTA editor for Windows. A
major disadvantage of this method is that it is difficult to adequately present the internal character
structure (multiple modifiers, states, or statistical measures) in a cell in a character × descriptions
matrix. The solution chosen by the CSIRO DELTA editor is to display a DELTA-coded text
summing all states (e. g., “1/4<comment>/5”) inside the matrix cells, requiring detailed knowl-
edge of the DELTA format.

Use case scenario: “Record a single character in multiple descriptions” (compare Fig. 174)
 1. Select one or several descriptions based on class name or object (specimen) ID
 2. Select a character
(For categorical characters:)
 3.a Select one or several states
 4.a Select whether to add or delete these states from all selected descriptions
(For quantitative characters:)
 3.b Select a statistical measure and enter a value
 4.b Add this to all selected descriptions
(For free-form text characters:)
 3.c Enter text for a free-form text element (data or annotation)
 4.c Add this to all selected descriptions

This method is especially useful when a data set is restructured or refactored (e. g., after amen-
ding the terminology). Furthermore, some information sources are organized by character rather
than by taxon. Frequent examples are geographical distribution, host lists (for each country or
host a list of taxa is given), or chemical substance data (for each substance a list of taxa or even
specimens studied is given). A typical problem of this use case is that it does not easily support
the creation of new descriptions (i. e., at least the description definition must already exist). Im-
plementations may offer a mode in which after selecting a class or object name (taxon or speci-
men), descriptions are automatically created.

G. Hagedorn Use case analysis 293

Figure 174. Example for a multi-description editor (from DiversityDescriptions).

Digitization and markup of descriptions
An operational terminology that is defined to enter data directly as coded descriptions (depending
on the codes defined in the terminology) may also be used to markup natural language descrip-
tions (Fig. 175). Since the initial digitization (typing or OCR) of natural language descriptions or
keys is assumed to occur outside of the descriptive data system, the existence of these data is
modeled as a precondition constraint in the use case diagram. Digitized texts may then be marked
up using various methods. In SDD it is planned that all elements of terminology are available for
markup use, including the structure, property, and method concepts not normally used in coded
descriptions. The lead statements (or question / answer-combinations) of branching keys can in
principle also be marked up like fragments of natural language descriptions. In the SDD concept
an alternative method of separately recording coded statements that correspond to the branching
key statements is proposed. A problem with this is that implied brackets and Boolean operators
(not, and, or) are frequently found in keys, but rarely in natural language descriptions. Support
for Boolean logic considerably complicates the information model and all analysis based on it.
The question whether Boolean logic should be supported in any form of natural language mark-
up, only in the special version of coded statements associated with key statements, or not at all
therefore needs careful consideration.

Markup will often remain incomplete. In some projects only the major structures will be iden-
tified, not characters, states, modifiers, or values. Manual markup through human editing is one
option, but the goal is often to achieve at least partial markup through automatic text classifica-
tion procedures. Examples are:
■ The “Terminator” software (Diederich & Milton 1993b, Diederich & al. 1999, Fortuner 2002)

for the Nemisys project.
■ Taylor (1995): Flora of New South Wales and Flora of Australia, Vol. 19; achieving extrac-

tion of 60-80% of character / state pairs.
■ Markup of Flora of East Africa descriptions (TDWG 1999b, Kirkup & al. 2005).
■ Catapano & al. (2006): TaxonX schema applied to digitized AMNH documents.
■ GoldenGATE (http://idaho.ipd.uka.de/GoldenGATE/): Supporting both automatic NLP-based

markup and manual intervention to improve markup (Sautter & al. 2007).
■ Vanel (2004) developed a natural language parser called FloraParse and tested it on data from

the Flora of China project.

294 Use case analysis G. Hagedorn

■ Cui & al. 2002, 2006, Cui & Heidorn 2007: automated conversion of natural language de-
scriptions into a structured format using “MARTT (markuper of taxonomic treatments)” sys-
tem, tested using the online versions of Flora of China and Flora of North America (both
available on the eFlora platform, Brach & Hong Song 2006).

Related to the markup of descriptions is the markup and restructuring of branching keys found in
digital or digitized documents. Approaches to this topic include Brach & Hong Song (2006) and
the CBIT Lucid Phoenix program (CBIT 2007b).

If markup is sufficiently complete, it may be valuable to convert it to coded descriptions
(Fig. 176).

Markup structures
and properties

(complete or partial)

Convert digitized
branching key to data

structure

Taxonomist Taxonomist
Annotate the

branching key with coded
statements

Markup characters
and states

(complete or partial)

«precondition»
{Digitize existing descriptions,

creating searchable text
(through typing or OCR)}

«precondition»
{Digitize existing keys

creating searchable text
(through typing or OCR)}

«extend»

«extend»

Create branching
(i. e. dichotomous or

polytomous) key

Figure 175. UML use case showing markup of legacy descriptions and keys. The use cases for
natural language descriptions and for branching (i. e. dichotomous / polytomous) keys have a par-
allel structure. The task of converting printed descriptions or keys to digitized text format is very
general and not expected to be part of a system. It is therefore modeled as a constraint (i. e., a
note shape containing the constraint text in “{}”).

Conversion of digitized data to coded descriptions

Natural language descriptions and branching identification keys

Taxonomist Taxonomist

Markup characters
and states

(complete or partial)

Annotate the
branching key with coded

statements

«include»«include»

Convert legacy data
 to coded description

 (for analysis & revision)

Figure 176. UML use case diagram showing an extension to the cases described in Fig. 175.
Once the legacy data have been fully marked up, they can be used to create independent coded
descriptions.

G. Hagedorn Use case analysis 295

Coded descriptions can be generated both from natural language descriptions to which sufficient
markup has been added (Fig. 176, left) and from identification keys containing markup or addi-
tional statements in coded terminology (Fig. 176, right). In the case of branching keys the result-
ing character × class matrices will be only sparsely filled. However, many matrices resulting from
natural language descriptions will also be relatively sparse, because the original descriptions have
been abbreviated a) for all information considered “implicit” in the taxonomic scope and b) the
remaining descriptive information is only reported insofar as it is diagnostic within the scope.
Information not diagnostic in the scope may nevertheless be relevant when using data in a wider
scope (e. g., for vegetative identification of plants).

Storing converted markup data (natural language or identification key) as a new block of
coded data results in a duplication of data, which is generally undesirable. A static conversion is
not a requirement for analytical processing of data (the coded form can easily be generated dy-
namically). However, if data are to be revised (data added, data not considered trustworthy de-
leted, or changed due to reinterpretation), a conversion to coded data is often beneficial. Whereas
marked-up data (key or natural language descriptions) are usually expected to remain true to their
source, the converted data can provide the basis for repeated revision and analysis cycles.

As mentioned above, the conversion of markup of digitized natural language description to
coded descriptions is yet uncommon because very little data with such markup exist.

Data tables

A special case of source data are printed or digital data tables containing descriptive information.
Digital descriptive table data may originate from self-designed simple description databases or,
e. g., from user-defined description columns in the collection management software BIOTA.

If the data are well-organized, providing a structure approximately on the level of character or
below, tabular data may be converted to coded descriptive data (or entered using one of the editor
use cases described above). However, data tables may provide only a coarse structure (e. g., plant
data organized into: “flowers, fruits, leaves, other”). The table cells then essentially contain frag-
ments of natural language description. A similar situation occurs if data are organized approxi-
mately on a character level, but the description fragments in the table cells are highly variable or
contain rich annotation text. In these cases a conversion to a coded description may not be the
best strategy. Instead, the tabular data can often be converted to natural language descriptions,
with markup preserving the structural information provided by the original table. The markup
editor of the descriptive data application may then be used to selectively add further structure to
the new descriptions.

Recording identification data
It is possible to store the information that is collected in the course of identification processes as
descriptive data. Such data result in strongly incomplete, but usually diagnostic descriptions
(p. 39). The process would require no additional effort when using identification tools. CSIRO
Intkey already provides the functionality of converting identification criteria to descriptive data.

So far this data collection method has no practical relevance, but it may have great potential
for the future. The major problem is one of data integration. A set of identification criteria and
together with an accepted name has little relevance. It does not have the authority of a carefully
revised “monographic” data set created by an expert and many identifications will be erroneous.
However, if in the case of specimens in natural history collections, the data remain tied to speci-
men accession codes, these data would become a valuable data source.

The use case for recording descriptive data during the identification of collected objects is
shown in the left-hand side of Fig. 177. Note that “Record identification data” is derived both
from “Record descriptive data of collected or observed object” and from “Identify an object”
(multiple inheritance).

296 Use case analysis G. Hagedorn

Furthermore, the recording process may be coupled with a process issuing accession codes for
identification data. If it would become good scientific practice that published identifications need
to be accompanied by accession codes of permanently available identification data, this may be a
solution to the problems with varying taxon concepts. Scientific journals or molecular databases
(GenBank, EMBL, or DDBJ) could require the submission and publication of identification ac-
cession codes. Clearly, this may not be appropriate in cases where most identifications are “im-
mediate recognitions” (i. e., the researcher would consult neither printed not computer-aided
keys), but once computer-aided identification tools have become standard practice, in all other
cases it would be a negligible extra effort with a huge benefit. See also “Future relevance:
A proposal to record identification data” (p. 369) for an in-depth discussion.

Taxonomist

Other scientist

General public

Record descriptive
data

Author of publication

Record descriptive
 data of collected or

observed object

Record
identification data

Record published
descriptive data

Identify an object

Record identification of
object that will be referred

to in a publication

«extend»

Issue identification
 accession code

«extend»

Figure 177. UML use case diagram showing the recording of descriptive data in the context of
identifications. Note that the author on the right and the scientists on the left may be the same
person in different roles.

233. To improve communication about identification processes, the detailed descriptive data

created during identification processes may be permanently stored in “Identification-
Banks” and made citable by issuing globally unique “identification accession numbers”.

Recording repeated original observations
The scientific process of obtaining descriptive data may be subdivided into the collection of ori-
ginal observation data and the subsequent processing and interpretation that creates synthetic in-
formation. Only the latter type of descriptive information is normally published in print, and most
current descriptive data applications focus on this synthetic information. To improve the efficien-
cy of biodiversity research and the collection of descriptive data, it is, however, highly desirable
to model the entire scientific process. Thus the recording of descriptive data discussed so far may
be specialized into the recording of:

G. Hagedorn Use case analysis 297

■ The original descriptive observation together with information how it was obtained and which
fragments were obtained together (paired observations).

■ Information that influences the process of obtaining a generalization. This includes interpreta-
tions, arguments causing removal of data like artifacts, recognized errors, removal of outliers
(based on value alone), etc.

■ The synthetic data that are the result of the aggregation / generalization process.

The most notable difference between original and synthetic information is that original informa-
tion may occur repeatedly (multiple leaves, spores, fruiting bodies, algal cells of a single species
and specimen). For a genetically homogeneous unit on a specimen (a specimen in a natural his-
tory collection may contain several units, e. g., several lichens growing on stone, or a parasitic
fungus on a host plant) these can then be aggregated and summarized using descriptive statistical
measures, like sample size and mode (the only measures for data on the nominal scale), median
and extremes (data at least on the ordinal scale), mean, variance, etc. (data on interval and ratio
scales).

Importantly, the recording of descriptive data may be a mixture of recording original observa-
tions for some characters (from which synthetic information is automatically generated), and re-
cording only the synthetic information for other characters. For example, if spore measurements
are obtained with the help of digital image processing (and no exchange format exists between
the image processing software and the recording of descriptive data), usually only the summary
statistics will be manually transferred.

A simple model of recording repeated observations and optionally storing aggregating data
calculated from these (without recording additional interpretations, outlier removal etc.) is shown
in Fig. 178. After recording repeated observations, the taxonomist communicates with the use
case “Aggregate repeated observations”, creating the aggregated data. These may either be dy-
namic and used for analysis or report-generation purposes, or may actually be stored as data. In
the latter case, the aggregation use case uses “Record generalized or aggregated data” as an ex-
tension. Alternatively, the taxonomist may communicate directly with “Record generalized or
aggregated data” if the aggregation occurs outside of the system. See also “Raw data and data
aggregation” (p. 83) for an in-depth discussion.

Record descriptive
data

Record repeated
observations

TaxonomistTaxonomist

Record generalized
 or aggregated

(summarized) data

Aggregate
repeated observations

(single object)
«extend»

Report descriptions

«extend»

Figure 178. UML use case diagram showing recording of repeated original observation data. The
use case “Aggregate repeated observations” interacts as actor with the recording of the aggre-
gated data.

6.4. Information retrieval
The various forms of descriptive data discussed so far (natural language description without / with
partial / with complete markup, coded descriptions, branching keys) are structured to various de-
grees and require different query mechanisms for information retrieval. A common topic of all
information retrieval is the:

298 Use case analysis G. Hagedorn

Selection of language and audience representations
Information retrieval is the area where the diversity of actors is most relevant. Even though sum-
marized in most of the previous and following diagrams as “General public”, policy makers, agri-
cultural agents, students, etc. (Fig. 161, p. 279) have different needs. In the SDD model (p. 20),
differences between these actors are addressed largely through the audience mechanism (see
“Multiple languages or audiences”, p. 282). Therefore, any use case that involves text labels or
wordings includes the selection of audiences (Fig. 179). To simplify use cases where human
interaction is, at least initially, not desirable (e. g., presenting an initial web page) it is desirable
that the information model allows the project editors to define a default language and audience.

The algorithm for choosing the appropriate language and audience is not entirely trivial. It re-
quires matching a preference sequence of requested languages (explicitly selected, internet brow-
ser language preference where an internet browser is involved, project defaults) with the set of
available language / audience combinations. If the result set is empty, the first available language /

audience for a given label / wording may be chosen. Audiences may be considered nested within
languages (i. e., language choices are given priority. However, culture may be expressed as part
of language (en-US, en-UK, de-DE, de-AT), and it may be desirable to give audience priority
over culture. For example, American school children will probably be better served with British
English definitions written with a school children audience in mind, than with the American Eng-
lish definition written for university-level expertise. In SDD it is possible to define an expertise
level for audiences, improving the options for machine reasoning about the appropriate audience.

Select language
and audience

Report terminology
Create multi-access

key (free choice
of next question)

Report descriptions Select branching
key

«include» «include» «include» «include»

Select language
and audience: browser
 language preference

Select language
 and audience:
project default

Select language
 and audience:

user choice

Figure 179. UML use case diagram showing a sample of use cases that include language and
audience selection. Although the selection is required, it needs not be a manual selection if a
project has defined a default selection.

Selection of branching keys
Many systems will store multiple branching keys so that a human actor first has to select the ap-
propriate key (Fig. 180). The simplest selection will be a human choice based on the label of the
entire key. Some care may have to be taken to be able to recognize entry and subkeys. However,
users will often already recognize a taxonomic subgroup (e. g., a family in a plant key). In these
cases, communicating the arrangement of keys to the actors is more important than denoting a
single “entry key”. In most cases, the arrangement will be closely linked to the taxonomic hier-
archy and an integration of the key selection use case into this hierarchy may be desirable. As
discussed in “Linking multiple keys” (p. 259), keys usually have additional, non-taxonomic

G. Hagedorn Use case analysis 299

scopes (geographical, ecological, methodological, etc.) so that multiple keys for a taxon must be
expected.

The process of finding branching keys based on classes (taxa) that are keyed out may be based
either on explicit key-metadata documenting the coverage of the key, or it may be automatically
discovered, by analyzing the taxa keyed out in the key (Fig. 180, “Find branching key (based on
classes keyed out)”). The major drawback of the latter method is that it requires recursive analy-
sis of all subkeys, which may be impossible if some subkeys refer to external resources.

Taxon-based selection of keys (branching as well as multi-access) is especially relevant, be-
cause existing knowledge about major taxonomic groups (e. g., “duck”, “heron”, “bat”) is often
difficult to express in terms of equivalent descriptive statements. Activating this knowledge thus
not only helps during key selection, but also accelerates the identification progress. For example,
a sophisticated identification software might be able to determine both an appropriate branching
key, and the closest node in that key that still covers all taxa requested to be covered (right-most
use case in Fig. 180). If the class (taxonomic) hierarchy is sufficiently complete and detailed, a
hierarchical node and a list of taxa can be converted into each other (which may involve some
widening of the taxon-selection, perhaps decreasing identification speed, but not quality).

A search for keys based on a list of classes (taxa) may also occur as part of another scenario,
i. e., if an application supports switching between branching and multi-access keys (compare
“Transferring progress information between branching and multi-access keys”, p. 262). In this
scenario an identifying actor may have reached a certain point in a multi-access key, but then
desires to switch to a branching key because selection of further characters seems to make little
progress (use case not shown for this).

With regard to the additional scopes possible for identification keys, an interesting use case is
the selection of a “virtual” key, which in reality is dynamically created from a larger data set to
exactly suit the requirements specified by an identifying actor (“roll-your-own”). The selection of
key characters may be based on character concepts (e. g., “reliable field characters”) or on sepa-
rate databases containing checklists or distributional data, to select only characters and taxa ap-
propriate for a given purpose. This approach can even be used for very small geographic areas
like wildlife parks or other protected areas (e. g., as in the FRIDA-based keys, Nimis & al. 2005a,
2005b, Nimis 2007).

The resulting keys may either be used as computer-aided keys, or downloaded, printed and
laminated by users (e. g., as in Haber 2006 or the “Rapid color guides” produced by the Chicago
Field Museum, Illinois, USA; http://fm2.fieldmuseum.org/plantguides/ or
http://www.fieldmuseum.org/animalguides/.

Select branching
key

Taxonomist General public

Select branching key
(based on label)

Select dynamically
created branching key

('Roll-your-own')

Find node in
branching key (based on

classes keyed out)

Find branching key
(based on classes

keyed out)

Figure 180. UML use cases specializing the abstract selection of a branching key.

300 Use case analysis G. Hagedorn

Querying container level metadata
Both natural language and coded descriptions may carry metadata information on the container
level. Examples are name or accession code of the described class or object, agents involved in
creating the description, IPR data, dates, etc. In addition, some descriptions bear information
about coverage and scope (geographic, seasonal, ecological, etc.) of descriptions. Although the
class name is of primary importance, the other container-level data items are relevant for infor-
mation retrieval as well (Fig. 181).

Identify = "find description
by partial description"

Find (= query)
descriptions

Find
description(s)

 by name

Find description(s)
by specimen ID

Identify an object

Find description(s)
by publication

Taxonomist General public

Find
description(s)

 by scope

Figure 181. UML use case diagram showing identification as a specialized use case of queries to
find descriptions.

Querying natural language description data
Natural language descriptions may be queried with methods designed for free-form text or with
specialized processors making use of semantic knowledge derived from markup and the corre-
sponding terminology definitions (the natural language syntax of biological descriptions is highly
reduced so that query engines will gather little information from the syntax). In natural language
descriptions with partial markup this connection to the terminology has already been made partly
explicit, so that many ambiguous situations can be avoided. The use case is trivial so that no dia-
gram is presented.

Querying coded description data
The most common form of information retrieval are queries against descriptive data stored in a
structured format. Such “coded descriptions” are highly structured and can be conveniently re-
trieved using standard database querying techniques. The most frequent application of this is
organism identification. Since identification use cases are a mixture of data retrieval and analysis,
they are discussed in detail (p. 308) after the following major section, which includes the analysis
use cases involved in identification.

G. Hagedorn Use case analysis 301

6.5. Information review and interpretation
All data review, interpretation, and analysis use cases are modeled to implicitly start with a query
(Fig. 182). This query may either be separate process, selecting a set of descriptions further proc-
essed in a following review or analysis, or it may be an essential part of the analysis.

Find (= query)
descriptions

Analyze
descriptive data «include»

Figure 182. UML use case diagram showing that all analysis use cases include the selecting of
descriptive data in a query (see Fig. 181 for non-abstract query use cases). The result of the
query may, however, be the entire data set.

Analysis of data quality and completeness
A central use case of information review is that descriptive and terminological data are reviewed,
errors are corrected, and missing data added. The use case “Add / change existing descriptions”
reflecting this is trivial in itself; its implementation will usually not be different from the original
data recording (Fig. 173, p. 291).

The relevance of this use case is that these actions often go hand in hand with data analysis
and review. Many data analysis use cases may branch into editing use cases. Data analysis, data
entry, and revision often occur in cycles (Fig. 183). Importantly, analysis of descriptive data often
reflects upon the quality of the terminology and leads to revising the latter. The terminological
editing use case is analogous to “Add / change existing descriptions”; Fig. 187 further down gives
an example.

Analyze descriptions
for completeness

and errors

«followed by»

«followed by»

Record descriptive
data

Add/change
existing descriptions«followed by»

Figure 183. Diagram showing a common cyclic sequence of analysis and editing use cases. The
“followed by” relation is not standard UML.

Examples of use cases to check data quality and completeness (Fig. 184) are:
■ Test the presence of characters that have been declared mandatory or inapplicable.
■ Analyze the usage of characters and states in descriptions.

□ Which terms defined in the terminology have never been used?
□ Which terms are rarely used? Are these terms specific to nodes in the taxon hierarchy?

Does the terminology already contain generalized concepts that would also cover these?
□ Where is the usage of characters correlated (Fig. 185)?
□ Where is the distribution of ordinal categorical data unexpectedly discontinuous (Table

59)?
□ Where is the distribution of quantitative values unexpected (outliers, Fig. 186)?

302 Use case analysis G. Hagedorn

Such tests may be restricted to constrained character sets or to branches of the taxonomic tree or
to taxon sets defined by ecological criteria (if these are present as characters, this would be a
character correlation analysis).

Analyze descriptions
for completeness

and errors

Taxonomist

Analyze
descriptive data

Analyze character
correlations /
dependency

«extend»
«extend»

Check mandatory
characters

Analyze character
usage

Figure 184. UML use case diagram showing examples of data quality analysis.

Figure 185. Visualizations of character relationships may also be used for quality control, espe-
cially to find outliers or seemingly impossible character state combinations. The figure shows 2
character state usage cross-tabulations graphs as generated by DiversityDescriptions. A bubble
graph chart (right side) can display the same information as the more conventional 3D-bar graph.
It can be easier to read, especially if many states are involved or if correlations of ordinal char-
acters are expected. The area of the bubbles is proportional to the number of items which pos-
sess both states of two characters. See the DeltaAccess (DiversityDescriptions) user guide
(Hagedorn 1999a) for further examples.

G. Hagedorn Use case analysis 303

Table 59. Example of a quality control report for linearly ordered categorical characters (> two
states). The items are arranged in order of their states and by Genus. The report highlights out-
liers (“Genus1 E”) or discontinuities (“Genus2 M”). Further, many experts for a group have a vis-
ual concept of similarity of the species they know. A review of this report may allow an expert to
compare and visualize his concept of the species with the data recorded in the information sys-
tem.

Character 1 State 1 State2 State3 State4
By Genus
Genus1 A

B

A

C

E
Genus2 N

M
O

O

M

Genus3
Y

X X

Z

Figure 186. Example of a possible quality control report for quantitative characters (generated by
DiversityDescriptions, except for the annotations). The graph displays mean (bar), normal range
(box), and extreme values (lines). The items are sorted by the mean (or the middle of a range
parameter, if missing). Outliers can be directly detected, and experts can identify unexpected
similarity of taxa.

Analysis of character correlation
The analysis of character usage, correlation, and dependency is not limited to quality control
measures. It is one of the central analysis techniques when attempting to use descriptive character
data for other purposes. Most statistical analysis models (including phylogenetic analysis) assume
that the character data (i. e., dimensions of descriptor space) are independent and identically dis-
tributed (“IID”-criterion). In reality, the expression of many characters is correlated, because of:
■ Physical constraints. Examples: size and weight of any object; size of a container and number

and size of contained objects (e. g., fruiting body containing spores).

304 Use case analysis G. Hagedorn

■ Different observation methods measuring the same property. Examples: object color, color of
pigments embedded in object, chemical name of pigment, gene coding for the pigment.

■ Properties are genetically correlated (“pleiotropy”). Examples: many enzymes are involved in
multiple biochemical pathways; changes may influence multiple characters.

■ Natural selection acts in parallel on multiple properties. Examples: different properties of eye-
structures will be correlated.

■ Character expression is correlated because of a common phylogenetic ancestry of organisms.
Examples: Oaks (Quercus) are a largely tropical family that does not shed leaves. The Euro-
pean temperate oaks also have no active shedding of leaves although living in an environment
where such behavior is a selective advantage for other species of deciduous trees.

On the one hand, knowledge of character correlations may assist data analyses that rely on an
i.i.d. assumption by either refining the character terminology or by reducing the data set to in-
clude only a subset of (low-correlated) characters (Fig. 187).

On the other hand, character correlations point to interesting evolutionary or functional proc-
esses that may not yet be understood. Given a large data set, even simple statistical correlation
methods may substantially improve the understanding of character space (see, e. g., Rambold &
Hagedorn 1998). A major problem is, however, to distinguish character correlations purely based
on common ancestry (as in the Quercus example above) from natural selection causes based on
function and co-evolution. This can be achieved by methods that correct character correlation for
a known phylogenetic history (see, e. g., Huelsenbeck & Rannala 2003 for a new Bayesian meth-
od and a review of other methods).

One problem of character correlation studies is that methods are usually suited either for quan-
titative or categorical data, and that joint analyses are difficult.

«followed by»
Analyze character

correlations /
dependency

«followed by»

Define character
hierarchy

Create character
subset

Add/change existing
operational terminoloy

Figure 187. Diagram of potentially sequential process steps, showing that analysis of character
correlations may either result in the definition of character subsets, including only one of a set of
highly correlated characters, or in a refinement of the terminology itself. The “followed by” relation
is not standard UML.

Analysis of character applicability
A special form of correlation between characters is character dependency, where some values of
a controlling character fully define the values or applicability of another character. The most
frequently implemented case is character applicability where values in a controlling character, if
present in a description, define the controlled characters as inapplicable (i. e., they cannot have a
value for logical reasons, see “Character applicability rules”, p. 76) for this description. Example:
leaf shape cannot be observed in the absence of leaves.

Most character dependency situations can be deduced from logical reasoning, but character
usage analysis can help to detect them (Fig. 188). This knowledge can be recorded as character
dependency or applicability rules once it has logically been verified. Dependency rules do not
add information content to perfectly correct descriptive data sets. However, most data sets con-
tain factual and coding errors so that the addition of verified character dependency information
provides an opportunity to check for a violation of these dependency rules (in separate analysis
tasks, or as assistance during data entry).

G. Hagedorn Use case analysis 305

Taxonomist

Analyze character
correlations /
dependency

Record strict
(= necessary) char.
dependency rules

Analyze character
usage

Define terminology

Figure 188. UML use case diagram showing the analysis of character correlations. Character
dependency is a correlation recognized as strict or logically necessary that is permanently re-
corded as part of the terminology.

Aggregating descriptions

Aggregate object
(specimen) descriptions

to class descriptions

Generalize or
aggregate descriptions

Aggregate
repeated observations

(single object)

Generalize class
descriptions to higher

classes

Taxonomist

Figure 189. UML use case diagram showing the specific use cases of “Generalize or aggregate
descriptions”.

A central feature of many descriptive data management systems is that they are able to automati-
cally create new, “synthetic” or “dynamic” descriptions on the basis of existing descriptions
(Fig. 189).
■ Repeated observation on parts of an individual object (e. g., the measurement of 100 spores

obtained from a single specimen; see “Recording repeated original observations”, p. 296) can
be summarized using univariate descriptive statistics (mean, variance, standard error, etc.)

■ From all object (i. e. specimen) descriptions that are identified to belong to one class (e. g.,
species or subspecies), a class description is generated. If later an object is re-identified, dyna-
mically generated species descriptions will automatically change. This may involve calling a
service (possible a web service of an external collection data base) to “Retrieve the current
identification of object / specimen” (Fig. 190, left-hand side).

■ From class descriptions, the generalized descriptions of classes further up in the class hierar-
chy may be generated. Like class descriptions based on object data, the use case to dynami-
cally aggregate lower class descriptions to higher class descriptions, may have to invoke an
update mechanism for the input data (Fig. 190, right-hand side).

Repeated measurements of the same property on the same object may be required by the method-
ology to compensate for instrument noise (example: fluorescent DNA quantification). This is ig-
nored in use cases and the information models since it is rare and usually such measurements will
be reduced to a single value.

Aggregate object
(specimen) descriptions

to class descriptions
«extend»«extend»

Generalize class
descriptions to higher

classes

Retrieve the current
identification of

object/specimen

Figure 190. UML use case diagram showing a possible cascade of use cases invoking other use
cases to update information before aggregating it.

306 Use case analysis G. Hagedorn

Creation of class hierarchies

Taxonomist

Create operational
class hierarchy

Create phylogenetic
class hierarchy

(= "clades")

Create class
hierarchy/categorization

Generate similarity
coefficients / distance

matrix

«extend»

Figure 191. UML use case diagram showing the categorization of objects through data analysis.

Descriptive data (morpho-anatomical as well as molecular) are also extensively used in the defi-
nition of taxonomic classes (e. g., species and higher ranks) and class hierarchies (e. g., genera in
families in orders). A classification or categorization of biological organisms may be operational
or phylogenetic (Fig. 191). Operational classifications always depend on a somewhat arbitrarily
chosen guiding principle. This may be overall similarity, or some guiding principle like ecologi-
cal adaptations (succulents, climbers, etc.) or symbiotic status (pathogen, parasite, hemiparasite,
pollinator, predator, prey, etc.). Some classifications formerly considered taxonomic are now
maintained as operational classifications (bacteria, algae, protists) because of their history and
continued usefulness in structuring the diversity of life.

An operation classification based on overall similarity may be supported by an analysis pro-
cedure generating similarity coefficients or a distance matrix.

Very few operational classifications are not based on descriptive data; examples are classifica-
tions reflecting the mythological significance of organisms and medicinal classifications.

Phylogenetic classification is unambiguous in that it attempts to reflect the evolutionary histo-
ry of life on earth. In contrast to operational categories, phylogenetic categories have a predictive
value. Provided appropriate inference methods have been used (see, e. g., Felsenstein 2004), data
not yet included in the process of categorization are more likely to conform to the phylogenetic
hierarchy than with any operational hierarchy. Since inheriting a character from ancestors is more
likely than independent and convergent recreation, new data are likely to follow the same pattern
as previously analyzed data.

Phylogenetic classification is almost exclusively based on descriptive data. The only informa-
tion about evolutionary history is the fossil record, which in most organism groups is poor and
fragmentary.

Analysis of character evolution
A special form of character analysis is the phylogenetic reconstruction of character evolution.
Here the evolution of a single character is compared with the general phylogenetic hierarchy of
the studied taxa. A simple form of doing this is to display (usually graphically) a phylogenetic
tree and overlay selected character information by means of color, symbols, or different line for-
mats in the tree (Fig. 192).

G. Hagedorn Use case analysis 307

More exact statistical methods are available
as well. One form of studying correlation be-
tween characters and the phylogeny might be to
perform a Mantel matrix correlation test on two
distance matrices, one based on distances in the
phylogenetic tree, another based on a single
character. Other methods are implemented in
the “Component” program (Page 1993, Page
2001b). “Component” compares two trees, so
the selected character would be used to create a
single-character operational categorization
(Fig. 193). It was originally designed to study
co-evolution by comparing host-parasite phylo-
genies. If organism interactions are considered descriptive data (compare p. 30), the study of co-
evolution is yet another analysis use case (not shown).

Analyze tree or
matrix correlation

Based on
a single

character

«include»«include»

Create phylogenetic
class hierarchy

(= "clades")

Create operational
class hierarchy

Figure 193. UML use case diagram showing the analysis of character distribution by tree
correlation.

Creation of diagnostic subsets
For a given group of descriptions (e. g., a taxon, results after a given identification step, or an
entire data set), all characters can be removed that are no longer able to differentiate between
members of this group. A description that is thus constrained is often usually called “diagnostic”
(p. 39) and contrasted with a “taxonomic description” containing all available information. How-
ever, a description is always diagnostic to some set of taxa or objects; the qualification “diagnos-
tic” is a function of the set, not of individual descriptions.

It is possible to reduce the number of characters further, to achieve a minimal diagnostic char-
acter subset using a find-best-next algorithm (see above), or by performing and evaluating an ex-
haustive search (Pankhurst 1983). The abstract use case “Select diagnostic description subset”
refers to the selection of either the total or the minimal diagnostic subset (Fig. 194).

Associated report-generation use cases are shown further down (Fig. 207, p. 316).

Select diagnostic
description subset

Select minimal
diagnostic description

subset

«include»

Select total
diagnostic description

subset

«include»

Find best next char.
(most informative,
available, reliable)

Compare
descriptions

Figure 194. UML use case diagram showing creation of diagnostic subsets.

Create phylogenetic
class hierarchy

(= "clades")

Render character
distribution on
class hierarchy

Render class
hierarchy «extend»

«include»

Figure 192. UML use case diagram showing
the review of character distribution super-
imposed on a phylogenetic hierarchy.

308 Use case analysis G. Hagedorn

6.6. Identification
Class (i. e. taxon) identification may be described as a query for the class name of an object based
on partial information about the description of the object. Identification using descriptive data is a
peculiar type of information retrieval in that the amount of data used (perhaps dozens of charac-
ters) during the retrieval process by far outweighs the amount of data actually retrieved (the class
name = taxon name). Furthermore, identification typically includes analytical processes, such as
calculating class similarities, or character guidance measures. Because of this mixture of informa-
tion retrieval (p. 297) and analysis (p. 301) identification is discussed under its own heading. See
the previous chapter “Identification methods” (p. 229) for further background information on
identification.

The process of identification is analyzed here from the perspective of typical computer-aided
identification tools (Intkey, Lucid, etc.). A re-analysis of use cases from the perspective of expert
systems may be useful (see especially Fajardo Contreras & al. 2003).

Identification keys
Identification primarily uses special query methods based on descriptive information commonly
called “identification keys”. The major types of keys are the branching key and the multi-access
key (Fig. 195). In branching keys the identification path is fixed and the user is guided along this
path. In contrast, multi-access keys allow free choice which identification criteria (characters) are
to be used in which sequence. More information about these and other forms and variations of
identification keys is found in “Structural classification of identification keys” (p. 233).

The identification process may be facilitated by restricting the result sets based on information
available at the description-container level (Fig. 181, p. 300), especially information about taxo-
nomic and geographical scope. If a geographical scope is given, identifications would preferable
use a matching scope, but a description from a different area may also be useful and an applicat-
ion may offer the user such data in addition to data strictly matching the scope.

Identify an object

Use branching
(i. e. dichotomous or

polytomous) key

Use dynamic
multi-access key

Create multi-access
key (free choice
of next question)

«include»

General public

Taxonomist Taxonomist

General public

Create branching
(i. e. dichotomous or

polytomous) key

«include»

Figure 195. UML use case diagram showing the identification of an object through branching or
multi-access keys.

At any point during the use of keys, terms may be looked up in the glossary part of the termi-
nology (Fig. 196). This may be enabled both for natural language phrases present in the state-
ments in branching keys, and for coded terminology entities. In the first case the lookup is based
on a string comparison with glossary terms, in the latter case it is preferably based on explicit
links pointing to glossary entries that the designers of the operational terminology have defined.

G. Hagedorn Use case analysis 309

Report terminology:
natural language

(dictionary/glossary style)
Find glossary entryIdentify an object «include»«extend»

Query terminology
objects

Figure 196. UML use case diagram showing the extension of identification with lookup and report
generation of terminological definitions.

Switching between branching and multi-access keys
An application may not only allow an initial
choice between branching and multi-access keys,
it may also allow starting with a branching key
and switch to a multi-access key when the user
cannot make a decision in the branching key
(Fig. 197). Under certain circumstances it is possi-
ble to transfer at least part of the identification
progress from one key into the other. Switching
options may be provided through menu or other
commands, or simply dynamically integrated into
the rendering of the key itself (e. g., adding “can-
not decide this question” to each key couplet in a
branching key). The topic is discussed in more
detail in “Transferring progress information be-
tween branching and multi-access keys” (p. 262).

Confirmation of identification
It is very desirable for an identification system to offer a confirmation or confirmation phase
(compare p. 232) after the class (i. e. taxon) name has been identified. Initial identification results,
especially when the user is inexperienced, are often erroneous. Questions in branching or multi-
access keys may have been misinterpreted, and occasionally even coding errors exist in the de-
scriptions. Two dominant confirmation approaches exist:
■ Represent the class (i. e. taxon) as detailed as possible (Fig. 198 left). This can be achieved by

generating a natural language description, offering images or other media resources (preferen-
tially those that have not been used during the identification process), or by rendering a com-
plete species page (see p. 319).

■ Broaden the identification result set (Fig. 199) by increasing the error tolerance of the identifi-
cation process (e. g., using wider margins of error), find taxa partially matching the identifica-
tion criteria (i. e. allowing some character statements to be incorrect), or by including similar
descriptions using statistical similarity methods. To improve the results, a similarity search
should be dynamically generated and constrained to those characters answered during the
identification process. The broadened result set may then either simply be presented to the
user for browsing, or a method may analyze which questions have not yet been answered and
are diagnostically most appropriate within the broadened result set. Essentially, this creates a
dynamic identification key (“check key”, Payne & Preece 1977) and it may be presented as a
branching or multi-access key to the user (Fig. 198).

Use branching
(i. e. dichotomous or

polytomous) key

Use dynamic
multi-access key

Identify an object

Switch between methods
(preserving progress)

«extend»«extend»

Figure 197. UML use case diagram show-
ing switching between different identifica-
tion methods (user interfaces).

310 Use case analysis G. Hagedorn

Identify an object Confirm
identification

«extend»

Confirm identification:
 Document results

Broaden
identification

result set

Create branching
(i. e. dichotomous or

polytomous) key

Create multi-access
key (free choice
of next question)

«extend»

«extend» «extend»«extend»

Report descriptions:
natural language Create taxon page

«include»«include»

Confirm identification:
Differential questions

("check key")

Confirm identification:
 Browse similar taxa

Figure 198. UML use case diagram showing the confirmation phase after an initially successful
identification.

Broaden
identification

result set

Find similar taxaIncrease error
tolerance

Create operational
class hierarchy

Generate similarity
coefficients / distance

matrix
«extend»

«extend»

«extend» «extend»

Find taxa partially
matching current

identification criteria

«extend»

Figure 199. UML use case diagram showing potential methods to broaden the result set of an
identification.

Failure of identification
If the identification process fails to result in a class name, or if the initial result is rejected after a
verification phase, the following possibilities exist:
■ The person making the identification made errors, for example:

□ the object may have been observed not carefully enough,
□ a question in the key has been misunderstood / misinterpreted,
□ an error was made in handling the identification system (scoring wrong check box, follow-

ing wrong lead number in branching key).
■ The data set on which identification is based is erroneous; although it contains the correct

results some data are wrongly entered.
■ The class that would be the correct result is not covered by the identification system. In this

case:
□ the class concept may have already been described and is covered by other (not necessarily

digitized) descriptive data, or
□ the specimen belongs to those species that have never been described or named.

As pointed out in the introduction (Fig. 1, p. 14), the majority of organisms on earth belong to the
last category. However, the taxonomic and geographic distribution of biodiversity knowledge is
extremely uneven. In many cases (e. g., mammals or European insects) the other possibilities are
much more likely. To avoid the problem of describing the same taxon multiple times (compare
Fig. 2, p. 14), the identification system should provide a way to check or review negative identifi-
cation results (Fig. 200).

G. Hagedorn Use case analysis 311

When checking potential reasons for a negative identification result an obvious start is a re-
view of the identification criteria used. Often the user will even be aware that certain criteria have
a higher likelihood of misinterpretations than others and may delete these criteria.

Interestingly, the next use case “Find taxa partially matching current identification criteria”
often helps both with errors made by the person making the identification and with errors in the
data set itself. It could take the form of reducing the set of criteria by creating multiple subsets
that contain not all criteria. The number of criteria removed from the identification process could
be increased until the identification result set is no longer empty. Many other algorithms are
possible. On the user interface the positive identification results could be listed together with the
criteria that originally excluded them from the result set.

Unfortunately the use case “Find related identification resources” will in practice be rather
vague. Currently this will probably take the form of browsing through printed or digital resour-
ces, using bibliographies, or unspecific search mechanisms in the hope of finding a useful identi-
fication resource. It is hoped that, perhaps in the context of GBIF, more appropriate methods will
be developed. The simple knowledge of sets of taxon names that can be differentiated with a
given identification resource would allow an efficient search in many cases (if higher or closely
related taxa can be identified). Even more desirable (but also more difficult) would be to define a
set of essential criteria that can be searched across all identification systems known to an index-
ing service.

Check negative
identification resultIdentify an object Describe a new class

concept (taxon)«extend»

«extend»

«extend»

Find taxa partially
matching current

identification criteria

Find related
identification resources

elsewhere

Review current
identification criteria

Change or delete
identification criteria

Increase error
tolerance

Figure 200. UML use case diagram showing the verification step after identification.

Identification of potential taxon concepts
A special identification use case is that both a class name
and its description are already published, and the identifi-
cation attempts to find the closest taxon concept published
elsewhere. This requires that previously for each identifi-
able taxon concept an individual description has been re-
corded. The class name for the taxon concept that is to be
identified is simply ignored and its description entered as
identification data into a normal identification process.
This will normally return only a class name. The use case
“Identify a taxon concept” (Fig. 201) would then continue
with a less error-tolerant query algorithm and use the indi-
vidual concept descriptions (rather than the generalized
class descriptions normally used). No implementation of
this use case is known so far.

Taxonomist

Identify an object

Identify taxon
concept

Figure 201. UML use case dia-
gram showing the identification of
potential taxon concepts as a spe-
cialization of general name-based
identification.

312 Use case analysis G. Hagedorn

Creation of branching keys
Branching keys (i. e. dichotomous / polytomous keys; compare p. 233) are a special form of hierar-
chically organized descriptions. Similar to diagnostic subsets, they attempt to capture the mini-
mum of information necessary to differentiate the classes of interest (usually taxa, rarely races or
populations). However, the diagnostic set is interpreted strictly locally (i. e., limited to the current
branch of the key) so that branching keys usually contain even less information than diagnostic
descriptions. This brevity is both the advantage and disadvantage of branching keys. Identifica-
tion often fails if a characteristic cannot be observed (because, e. g., it is not present in the speci-
men, not expressed at the time of observation) or is interpreted incorrectly. Nevertheless, bran-
ching keys implicitly capture a huge amount of information about the availability, reliability, and
selective power (information content) of the characters used. They are a valuable resource. Fur-
thermore, taxonomists may intuitively create excellent branching keys expressing this knowl-
edge, but may not be willing to collaborate on a more structured expression. The use of branching
keys in descriptive information systems is therefore not restricted to legacy data.

Create branching
(i. e. dichotomous or

polytomous) key

"best next" = given all
characters already scored Find best next char.

(most informative,
available, reliable)

Store branching
key data

«include»«include»

Annotate the
branching key with coded

statements

«extend»

«include»«include» «include»

Create branching key
through digitizing and
markup of legacy data

Create branching key
unassisted interactive

(= authored key)

Create branching key
automatically

(non-interactive)

Create branching key
assisted interactive

(= authored key)

Figure 202. UML use case diagram showing that branching keys may be created automatically,
assisted, fully manually, or through markup of legacy data.

The specific use cases of creating branching keys (Fig. 202) are automatic, non-interactive crea-
tion, assisted interactive mode, unassisted interactive mode, and the case that legacy data are
digitized and marked up. The first two cases depend on some form of dynamic object categoriza-
tion such as the find-best-next algorithm (see next section) that is either automatically accepted in
the automatic creation, or used as suggestions to the author, who may decide otherwise. The as-
sisted creation is essentially identical with the unassisted key editor, differing only by offering re-
commendations.

Automatically created branching keys will usually be generated on the fly and are not stored
(they may be exported to exchange formats, however). All specific use cases may include an ex-
tension to add structured coded statements to the natural language lead statements in the key. In
the case of automatic or assisted creation, this can even be accomplished with no or little user
intervention.

Branching keys normally contain free-form text either as statements (lead propositions) or as
question / answer pairs. Media resources may be used in addition or occasionally even instead of
text.

To support the use case of switching between branching and multi-access keys while preserv-
ing identification progress (Fig. 197), the text in a branching key may be restated in coded termi-

G. Hagedorn Use case analysis 313

nology (either as markup around the natural language text or as separate coded description data).
One use case scenario would be a branching key editor where primarily free-form text is entered
and coded statements may optionally be added. Another scenario might be a branching key editor
where the free-form text is automatically generated on the basis of selected character statements
and Boolean operators to guarantee that all information is available in coded form. The second
scenario probably ideal for newly created keys, but usually not practical to reproduce existing
legacy keys (such keys often contain statements that are difficult to interpret under a different ter-
minology).

Dynamic character recommendations for identification purposes
To achieve fast and good identification results, characters may be ranked according to their suit-
ability for identification. Such a character ranking may be used to automatically create branching
keys, to recommend characters during interactive creation of branching keys, or to recommend
characters to users of multi-access keys. In the latter, the ranking usually defines a display se-
quence and does not prevent the user from selecting a character with a poor rank.

A simple form of character ranking is based on authored information about character ratings
(or “weights”) expressing their Convenience, Availability, and Reliability. More complex ratings
also involve an analysis of character usage in descriptions. Given a set of descriptions, these al-
gorithms (labeled “Find next best character” in Fig. 203) rank the characters based on how fast
identification would advance. The set of descriptions may initially be all classes or reflect a sub-
set based on the taxonomic class hierarchy (e. g., actors may have selected to identify only within
the order Erysiphales because they recognized the characteristics of this taxon). Later, the subset
reflects the identification progress, i. e., contains only those classes fulfilling the identification
conditions. The topic of authored and algorithmic character guidance is discussed in detail on
p. 267.

"best next" = given all
characters already scored

Create class
hierarchy/categorization

Create phylogenetic
class hierarchy

(= "clades")

Create operational
class hierarchy

Find best next char.
(most informative,
available, reliable)

«include»
Create multi-access

key (free choice
of next question)

Create branching
(i. e. dichotomous or

polytomous) key

«extend»

«extend»

Figure 203. UML use case diagram showing the creation of interactive or branching keys as a
special case of object categorization.

314 Use case analysis G. Hagedorn

Character recommendations for identification purposes based
on the phylogeny

In addition to character guidance based on an operational categorization (such as the “Find best
next” algorithm), phylogenetic categorizations may be desirable in the assisted creation of bran-
ching keys. This is related to the concept of “phylogenetic keys” (= “natural keys” or “synoptic
keys” in the traditional sense; compare p. 400). However, whereas such keys try to fully reflect
the classification of phylogeny of organisms, the important aspect of phylogenetic categories in
this context is that they correspond to concepts already known to experienced users. Using such
concepts may therefore be desirable even if this does not occur throughout the key.

In most cases a major part of the identification path is memorized by human users. Very few
identifications start without such knowledge and include the entire spectrum of organisms (viro-
ids, viruses, bacteria… to animals). Instead, memorized concepts are used in the selection of an
appropriate key to start with (see “Selection of branching keys”, p. 298). Exploiting this knowl-
edge further inside a key makes usage of the key faster and safer.

Basing the primary motivation for characters that correspond with classification on the experi-
ence of users introduces the problem that some users will prefer traditional concepts, others the
newest phylogenetic understanding. However, the history of biology has shown that even though
non-phylogenetic taxonomic traditions may persist within one generation of biologists, the next
generation will accept the new phylogenetic concepts and memorize them. Exceptions occur only
where a phylogenetic classification can in practice not be recognized on the basis of descriptive
features of organisms, or where a concept is already deeply embedded in non-scientific language
(e. g., in the case of “algae”, or “fungi” including oomycetes and myxomycetes, etc.).

The use case for assisted creation of branching key (Fig. 202) may thus be more appropriately
modeled to also include phylogenetic methods (Fig. 204). The designer of the branching key
would then be able to select whether the next split should reflect a phylogenetic or an operational
categorization. A useful feature in this context would be some metric that visualizes how much
better an operational categorization is over a phylogenetic one. If the difference is relatively
small, a phylogenetic split may be the better choice even if the resulting lead statements are more
complex and require the use of ‘and’ or ‘or’. To achieve the desired effect, the correspondence
with phylogenetic categories must be explicit, i. e., in addition to the descriptive statements the
class names are cited.

Create class
hierarchy/categorization

Find best next char.
(most informative,
available, reliable)

Find best next
phylogenetic split

Create branching key
assisted interactive

(= authored key)

«include» «extend»

Create phylogenetic
class hierarchy

(= "clades")

Create operational
class hierarchy

Figure 204. UML use case diagram showing that phylogenetic categorization may be relevant in
the creation of branching keys.

G. Hagedorn Use case analysis 315

6.7. Information application
Report generation
Similar to the analysis use cases, all report-generation use cases are modeled to implicitly start
with a query (Fig. 205) that returns a set of objects (characters, descriptions, etc.). Although the
plural form is used in use case names (“Report descriptions”), the use cases should always be
considered applicable to sets containing only a single object. The special case that an entire pro-
ject or data set is reported (or exported) may similarly be considered a query, containing the pro-
ject as its only restriction.

As discussed above (p. 298), the selection of language and audience for the report is consid-
ered to be part of the query.

Report descriptions

Find (= query)
descriptions

«include»

Report terminology

Query terminology
objects

«include»

Figure 205. UML use case diagram showing that report generation includes finding (or selecting)
the descriptions to be reported. See Fig. 181 for the specialized cases of “Find descriptions”.

General public General public

Taxonomist Taxonomist

Report terminology Report descriptions

Report descriptions:
tabular or matrix layout

Report terminology:
tabular or matrix layout

Report terminology:
form layout with headings

Report descriptions:
form layout with headings

Report descriptions:
natural language

Report terminology:
natural language

(dictionary/glossary style)

Figure 206. UML use case diagram showing the report generation of descriptive data and the
associated terminology. Tabular or matrix layout is assumed to be of interest primarily to the
taxonomist. However, no real reason exists not to offer it to the general public as well.

Fig. 206 displays a selection of possible reports both for terminology and the descriptions. The
terminology reports can be produced based on either operational or ontological terminology; the
latter is especially well suited for the dictionary / glossary-style terminology report. The descrip-
tion reports all require data supplied from terminology. The generation of natural language de-

316 Use case analysis G. Hagedorn

scriptions based on coded description furthermore requires that appropriate wordings for charac-
ter groups (i. e., nodes in the character hierarchy), characters, states, modifiers, etc. have been de-
fined. Furthermore, different report-generation scenarios exist, depending on the kind of descrip-
tions available:

Descriptive data available as …
1) coded descriptions
2) natural language description
 a) with complete markup
 b) without or only with incomplete markup

If only 1) is available, all report variants shown can be delivered (assuming that a natural lan-
guage generation process or service is available). If 1) and 2) are available, a choice between an
original natural language description and a generated natural language description may have to be
made. The two descriptions are based on independent data and will usually differ in content.

Most applications will be able to treat case 2 a) as identical with case 1). A natural language
description with complete markup is relatively similar to a coded description. However, a number
of data quality constraints present in coded descriptions cannot be applied to markup data, be-
cause the latter may contain coding errors or inaccuracies. It is therefore possible that the report-
generation method will raise an exception if the structured reports are requested.

In the case of 2 b) usually only outputting the original natural language description as a report
is meaningful. Although the other reports may be applicable, they would substantially distort the
description content.

Report descriptions

Select diagnostic
description subset

«include»

General public

Taxonomist

Report only
diagnostic description

data

Report descriptions
 with diagnostic data

highlighted

«include»

Figure 207. UML use case diagram showing the case of diagnostic descriptions that are abbre-
viated to contain only characters differentiating between members of a limited item/taxon group.
See Fig. 194 (p. 307) for elaboration of “Select diagnostic description subset”.

Two special report use cases (Fig. 207) are associated with diagnostic descriptions (i. e., descrip-
tions containing only information differentiating the taxa or objects in a set; compare “Creation
of diagnostic subsets”, p. 307). Diagnostic descriptions may be rendered in any description for-
mat shown in Fig. 206. Tabular layout is especially attractive for small sets of diagnostic descrip-
tions because it simplifies comparisons. A continuum exists between diagnostic tabular descrip-
tion reports and printable multi-access keys (see below). An occasionally used variant for very
small taxon sets is a tabular arrangement of natural language fragments (broken down by some
heading level), resulting in “synchronized” natural language descriptions rendered side by side.

A variant of descriptions containing only diagnostic data are full descriptions, where the diag-
nostic parts are highlighted (Fig. 207), e. g., by italicizing them (e. g., Watson & Dallwitz 1991).

G. Hagedorn Use case analysis 317

Rendering printable multi-access keys
Computer-aided multi-access keys are considered under section 6.6 above. However, printable
multi-access keys (p. 249) have a very distinct format and are closely tied to reporting of descrip-
tions (Fig. 208).

Multi-access keys in taxon-list style (Fig. 130, p. 250; some or all characters are coded and
listed for each taxon) closely corresponds to description reporting, except that some characters
are expressed through “character formulas” instead of natural language text. This style often uses
completely or partly tabular arrangements, so that the border to reporting descriptions in tabular
or matrix layout (Fig. 206, p. 315) is fluent.

Multi-access keys in character-list style (Fig. 129, p. 250) organize the descriptions by charac-
ter, with taxa or taxon codes listed under each character state. Morse (1974) implements a use
case “preparation of inverted descriptions”, which is essentially identical to a multi-access key in
character list style.

A printable multi-access key may be prepared to be used both computer-aided and in print, by
providing hyperlinks in addition to links that can be followed in print. However, in contrast to
branching keys (see below), printable hyperlinked multi-access keys are not as useful (identifica-
tion is the result of “intersecting” multiple links, which is not available in standard hyperlinking).

Paginate
multi-access key

(prepare for printing)

Render printable
multi-access key

Report descriptions

«include»Create printable
multi-access key

Create printable
multi-access key:
character-list-style

Create printable
multi-access key:

taxon-list-style

«include»

Everybody
Figure 208. UML use case diagram showing the rendering (and optionally pagination to prepare
for printing) of printable multi-access keys (in two strongly distinguished styles, each of which
may have subvariants).

Rendering printable branching keys
Reporting branching keys (dichotomous or polytomous identification keys) is a highly specializ-
ed form of report generation not yet included in Fig. 206. Branching keys are essentially directed
acyclic graphs and can be presented in various formats (nested, linked, or tabular; see “Printable
branching keys”, p. 242, and especially Fig. 120 ff, p. 244).

Most description reports generated for on-screen use are also easily printable. In the case of
branching keys, however, this has been modeled as a separate use case, since certain special re-
quirements exist. Keys intended for printing would contain printable codes or numbers to link to
couplets, resulting taxa, or subkeys, statements, rather than the hyperlinks intended for interactive
use in local applications or internet browsers. The complex formatting required also influences
how to deal with available space; for most branching keys page width may be more relevant than
page length.

Fig. 209 shows the use cases of formatting branching keys to report them. The special printing
use case includes the general creation of branching keys (which is also the basis for computer-

318 Use case analysis G. Hagedorn

aided keys), which in turn encompasses various creation procedure (automatic, assisted, manual
or markup; see Fig. 202, p. 312).

Morris & al. (2003) and (2007) present an application that formats taxonomic keys based on
XML data and prepares output in any format supported by the Cocoon publishing framework
(XML, html, PDF, etc.).

Paginate branching
key (prepare
for printing)

«include»
Create branching

(i. e. dichotomous or
polytomous) key

«include»
Render printable

branching key (nested,
linked, or tabular)

Report descriptions

Everybody

Figure 209. UML use case diagram showing the rendering (and optionally pagination to prepare
for printing) of printable branching keys. See also Fig. 202 for the specialized use cases inheriting
from the abstract “Create branching key”.

Class hierarchy reports
The class hierarchy, whether the result of analysis use cases (Fig. 191, p. 306) or obtained as data
from another biodiversity framework component (compare p. 28), needs special provisions for re-
port generation. Species descriptions are frequently reported using selected taxon ranks (e. g., or-
der, family, subfamily, or genus) as formatted headings. In the case of phylogenetic analyses,
more detailed graphical reports (with or without distance information, phylograms or cladograms,
respectively) are desired. The tree-rendering use case was already included in Fig. 192, p. 307.

Creating index pages
Finally, reporting multiple terms from terminology or multiple natural language descriptions or
keys may also require the generation of indices or tables of content (Fig. 210). The pointers of the
index may be hyperlinks or page references for printed documents (dynamic page references are
unfortunately not supported in html / xhtml!). Indexing may refer to multiple objects in a single
document or to multiple documents, and it may be inside the object document or may form a sep-
arate document.

Indexes may be flat or contain structures, e. g., family, genus, species, infraspecific on differ-
ent outline levels. In the case of indices to taxonomic names, a reverse index sorted by the epithet
of lowest ranks (i. e., instead of “Genus species var. variety” the index entry would be “variety,
Genus species var.”) is often very useful.

Report descriptionsReport terminology

Report terminology:
 create index/toc

Report descriptions:
 create index/toc

«extend» «extend»

Figure 210. UML use case diagram showing that report generation for both terminology and
descriptions may involve the creation of indices or tables of content (“toc”).

G. Hagedorn Use case analysis 319

Taxon pages
An urgent need exists to document the properties of biodiversity on earth. One way to achieve
this is to write a static html page as a “home page” for each taxon, combining all available infor-
mation on:
■ nomenclature,
■ taxonomy,
■ morphology and anatomy,
■ chemical or molecular properties,
■ geographical distribution,
■ interactions with other organisms (e. g., pollinators, host-pathogen, predator-prey),
■ interaction with the environment (e. g., growth parameters of plants in different soils, deple-

tion or enrichment of nutrients),
■ its known uses (e. g., in biotechnology, medicine including folk-medicine),
■ economic importance (pest, biological control agent, pollinator, indicator, etc.),
■ symbolic and mythological importance in culture and language, etc.
Taxon pages are often called “species pages” because species information is the most frequent
and relevant form of taxon information. Such species pages have been advocated by H. Saaren-
maa (Saarenmaa 1999 and 2002) and many others. A good example for species pages (called
“fact sheets” there) is Schell & al. (not dated) (grasshoppers species). The “Tree of Life” (TOL,
Tree of Life web project 2007) currently – and probably the upcoming “Encyclopedia of Life”
(EOL.org 2007) in the future – provides truly taxon pages, i. e., for taxa at different ranks. Fur-
thermore, it uses hyperlinks to navigate within these as a phylogenetic tree.

Manually generated static pages are like small essays on a taxon. They have serious disadvan-
tages and many of the same problems that conventional printed taxonomic treatments have. It is
difficult to keep them up-to-date, and it is unavoidable that individual pages contain only a selec-
tion of the total worldwide knowledge about a taxon. Furthermore, most information in these
pages will be difficult to access other than by species name (the organizing principle of species
pages); for example, host plant lists present in fungal species pages cannot be used as pathogen
lists in the corresponding plant species pages. However, the fundamental problem of biodiversity
informatics is the lack of information, not having too much information that is poorly organized.
Therefore, the creation of static pages is without doubt a valuable resource. Also, some problems
can be overcome, e. g., by improving collaboration through the use of a Wiki as a content
management system. At the same time the foreseeable problems should caution against investing
substantial resources into creating such poorly structured resources.

Another view on taxon pages is that they could be generated dynamically based on data that
may be federated in multiple ways (Fig. 211). In Fig. 212 the use case “Report descriptions: natu-
ral language” is part of the descriptions component within a framework of biodiversity informat-
ics components. The use cases “Report nomenclatural information” could point to a nomenclator,
the reporting of the taxonomic hierarchy could be provided by the host application (which selects
a particular taxonomic view for the arrangement of the species pages), etc. Within a framework
component (p. 28), data could be federated as well. The natural language description could be
based on information from many individual descriptions on multiple servers, and the use case
“Report geographical distribution” would necessarily have to query a very large number of bio-
diversity collections (which may be indirect through the use of a portal like GBIF).

320 Use case analysis G. Hagedorn

Figure 211. Relation between descriptive data and other biodiversity data areas shown as a
package diagram; circles indicate component interfaces. “Species pages” are ideally a dynamic
combination of descriptive data with data derived from other sources (Hagedorn 2002c).

etc. ...

Create taxon page

Report position in
taxonomic hierarchy

Report
nomenclatural

information

«extend»

Render printable
branching key (nested,

linked, or tabular)

Report descriptions:
natural language

Report
geographical
distribution

Report
agricultural data

Report
ecological data

«extend»

«extend»«extend»

Figure 212. UML use case diagram showing how taxon pages are created by combining descrip-
tive information with other information sources.

Digital monographic treatments like Flora or Fauna publications are closely related to the topic of
species pages, but not analyzed in this work. This is a topic of active research (e. g., TaxonX:
Catapano & al. 2006 or TaxMLit: Weitzman & Lyal 1999).

Data exchange and archival exports
A special case of report generation (and thus an extension to Fig. 206) is the export to data ex-
change formats. Such a format could be the XML-based SDD format, or the older DELTA or
NEXUS formats. The NEXUS format currently has a special relevance since it is the preferred
format for current phylogenetic (or cladistic) analysis applications.

A highly desirable feature of exchange formats is to inform about the completeness and qual-
ity of exported data relative to the original data. Data exchange formats differ strongly in their
ability to express concepts used in an application, or to include even application-specific data
(which is provided by SDD). Even if a format exports all descriptions, a loss of information may
occur. For example, the format may support a coded description only by selecting a single audi-
ence and by combining character, state, and modifier information into a single unstructured text
element. Also, assuming the original data are no longer available (e. g., when the export was used
to archive information) it is relevant how many terminology or description objects out of the total

G. Hagedorn Use case analysis 321

available are included in the export. A special case is that when exporting descriptions, the asso-
ciated terminology may be exported only insofar as it is used in the descriptions, or in its entirety.

Fig. 213 displays the major component use cases for exporting descriptive data. The various
use cases displayed have been defined separately because each has potential to be used singly
rather than as part of a total export. For each export use case, also a corresponding import use
case exists (Fig. 214).

Export terminology
(e. g. as SDD xml

interchange format)

Export entire project
to xml interchange

format

Export project
metadata to xml

interchange format

Report descriptionsReport terminology

Taxonomic
web service

Taxonomist

Export branching key
data (e. g. as SDD xml)

«include»

Export descriptions
(e. g. as SDD xml

interchange format)

«include»«include» «include»

Figure 213. UML use case diagram showing export of descriptive data.

Import entire project
from xml interchange

format

Import project
metadata from xml
interchange format

Taxonomist

Import descriptions
(e. g. from SDD xml
interchange format)

Import branching keys
 (e. g. from SDD xml
interchange format)

Import terminology
(e. g. from SDD xml
interchange format)

«include» «include»«include»

«include»

Figure 214. UML use case diagram showing partial or complete import of descriptive data,
associated terminology, and project metadata.

The present analysis of data exchange is document-oriented. It fits identification packages,
eLearning packages, taxonomic revisions, or monographs. However, not all information discov-
ery and indexing use cases necessarily act on such documents, special discovery and searching
protocols (e. g., to make data searchable through GBIF) providing data or metadata may be used.

322 Information model for DiversityDescriptions 1.9 G. Hagedorn

It may be difficult to decide whether this needs to be modeled through low-level use cases, or
whether this is more adequately modeled through software interfaces like those required for ob-
ject exchange in a federated system.

6.8. Open aspects
Some aspects are already known to be incomplete. In the case of identification this is deliberate;
the information presented in the use case analysis highlights the major use cases and is intended
to be complemented by chapter 5, “Identification methods” (p. 229). No similar detailed analysis
of phylogenetic analysis and of the creation of monographic treatments or revisions could be per-
formed in this thesis. The use cases presented for these areas are fairly broad and require further
studies.

Another area deliberately not analyzed is data security, access control, and perhaps encryp-
tion. These aspects potentially affect many use cases and would complicate the analysis. It is be-
lieved that the general patterns of making a system secure apply to descriptive data without any
special cases. Prior to implementing a secure system, however, a detailed analysis of interactions
would be required.

The author is highly interested if readers consider further use cases inadequately covered or
missing.

7. Information model for Diversity-
Descriptions 1.9

7.1. Introduction
DiversityDescriptions (originally named DeltaAccess, Hagedorn 1997, 2001a, 2005b) is the only
information model documented in detail in this thesis (compare p. 16). As discussed in the
introduction (p. 15), the model does not fulfill the requirements established in Ch. 4 to 6. Its
presentation could have preceded those chapters, except that many concepts would have had to
be introduced here.

It is believed that the model still has certain merits and is worth presenting. It is firmly based
on the experience gathered with DELTA and has its own history of twelve years ongoing devel-
opment and testing (see “history” further down). Furthermore, it allows a reassessment of the
concepts of DELTA in the light of standard relational database techniques. Because it does not
need advanced software support (like object-oriented or object-relational DBMS) it can be used
as storage backend for a wide variety of software applications.

DELTA support and beyond: DiversityDescriptions is designed to support a large number
of DELTA directives. To the author’s knowledge it is – next to the CSIRO DELTA programs
themselves – the most complete implementation of the DELTA language. DELTA-coded text
files are converted to relational database structures and may be exported back to DELTA.

In many ways, DiversityDescriptions goes beyond the CSIRO DELTA programs, trying to
overcome some limitations of DELTA without giving up the compatibility with DELTA data
files and programs supporting DELTA. Initially, DiversityDescriptions started to extend the
DELTA language, but it soon became obvious that the DELTA format had some serious limita-
tions (including the lack of an “end-of-block” marker). The DELTA extensions defined by Di-
versityDescriptions would prevent other DELTA-compatible programs from importing such data,
seriously limiting the usefulness of this approach. By moving all extensions into a separate file
(“Extras”) that is unknown to other applications, this could be circumvented, and a few such di-

G. Hagedorn Information model for DiversityDescriptions 1.9 323

rectives are still used. However, extending DELTA was not pursued as a priority, and priority
given to developing the XML-based SDD standard (p. 20).

DeltaAccess can be a general data repository, in which the raw data can be entered during
work in progress. It should be a working tool of the biologist, rather than an additional task after
the completion of data collection. The data are edited or analyzed in the database, not in DELTA-
coded text files.

History of DiversityDescriptions: DiversityDescriptions (here including the older name
DeltaAccess) has been under development since 1995 with several beta versions distributed to
colleagues and a public 0.99 beta release. Version 1.0 appeared 1997-07-31 (Hagedorn 1997),
quickly followed by versions 1.1 (1997-10-24, adding subset management) and 1.2 (1997-11-16,
adding multi-item edit, Fig. 174, p. 293) in the same year. These original versions already con-
tained most of the DELTA support of the current version, and already added the new concepts of
terminology-based modifiers and defined statistical measures.

With versions 1.3 (1998-03-26) the information model was considerably revised: the initial
attempts to manage images and other resources had to be pruned back and the support for char-
acter headings and groups was added or greatly improved. In 1998, the program was presented on
several congresses: TDWG (TDWG 1998), International Mycological Congress (Hagedorn
1998b), and OPTIMA (Organisation pour l’Etude Phyto-Taxonomique de la Région
Méditerranéenne, Hagedorn 1998a) and a study using it for character analysis was published
(Rambold & Hagedorn 1998).

The following versions (1.4 on 1998-11-11, 1.5 on 1998-12-01, and 1.51 on 1998-12-18)
made only minor changes to the information model, primarily consolidating the basic functions
of DeltaAccess, but also adding the first versions of HTML forms (Fig. 12, p. 41, left side). Ver-
sion 1.6 (1999-07-31) finished adding and expanding the core functionality of DeltaAccess, in-
cluding backup / restore, reorganization of projects, HTML form creation and HTML form re-
import (Hagedorn & Rambold 2000).

Development continued at a slower pace in the following years: 1.7 (2000-06-30) introduced
native generation of natural language descriptions, requiring some additions and changes to the
information model, followed by maintenance / bug fix versions 1.71 (2001-11-28), 1.72 (2002-02-
13, bug fixes). 1.8 (2002-12-20), 1.81 (2003-05-23), and 1.9 (2005-03-30, Hagedorn 2005b)
introduced secondary, unchanging object identifiers (in addition to the sequence-dependent
DELTA IDs), and updated the information model by providing multilingual support through
translation tables, completely redesigning the resource table (images, etc.), and extending the
character headings structure to become a fully hierarchical tree. As of 2007-06 a version 2.0 is in
beta testing. The major change is adding a DescrScope class to improve linking descriptions with
taxon name or concept databases, as well as specimen, publication, or geography databases using
GUIDs like URIs (compare “Secondary classification resulting in description scopes”, p. 215).
Furthermore, the DELTA import/export was revised to bring it better in line with existing data-
base features (improved support for inline formatting, long character state definitions, and exten-
ding the DELTA format for Unicode).

Presentation of the information model: The information model of DiversityDescriptions is
presented both as an abstract logical model, highlighting the strategies for creating a relational
model for descriptive data, and as a physical model (p. 332 ff), documenting in detail the tables,
relations, and fields as implemented in DiversityDescriptions, version 1.9. Logical and physical
model are used in the sense used in ER-modeling. In UML terminology, the present logical mo-
del may be understood to be approximately intermediate between UML conceptual and specifica-
tion model, physical model is roughly equivalent to a UML implementation model.

324 Information model for DiversityDescriptions 1.9 G. Hagedorn

7.2. Logical model for DiversityDescriptions 1.9
The logical model introduces the conceptual ideas and strategies that guided the design of
DiversityDescriptions 1.9. The model uses supertype and subtype entities (i. e., generalized and
specialized classes in UML), but otherwise the design principles of relational databases are ob-
served. To simplify and focus the presentation, secondary entities are omitted and the list of
attributes is often shortened (indicated by “[…]” in the attribute list).

The UML static class diagrams are shown with attributes but without operations. To simplify
the comparison with the physical (implemented) model (see p. 335), key and foreign attributes
are shown in addition to the relationship arrows. Also, n : m relationships have been modeled
using association classes even where no attributes in addition to the foreign key attributes exist.
Navigability for associations and association classes is not shown in the UML class diagrams. It
is assumed to be bidirectional (following the relational model rather than directional pointers in
hierarchical or network models). See “UML static class diagrams and ER models” (p. 24) for
further information on the UML methodology and notations used.

Note that some attribute names differ between the logical and the physical model where this
was considered advantageous for conceptual understanding. The complete list of attributes in the
physical model may be found in the “Data dictionary”, p. 339 ff.

Packages and subsystems
The fundamental model used for descriptions is that all terms and concepts must first be defined
to create a terminology that is subsequently applied to descriptions of objects or classes (taxa).
Terminology, Descriptions, and Resources (mediating access to images, etc.) are the basic packa-
ges of the Descriptive Data subsystem (Fig. 215). The Descriptions package strongly depends on
Terminology (it cannot exist without it). Both Terminology and Descriptions depend weakly on
Resources (but some data sets may be completely without resource usage).

«subsystem»
Descriptive Data

Resources

Descriptions

Terminology«subsystem»
Literature References

«subsystem»
Nomenclature & Taxonomy

«subsystem»
Specimen Collection

«subsystem»
Resource management

Figure 215. UML subsystem and package diagram for the descriptions model in Diversity-
Descriptions 1.9. The dashed arrows are to be read as “depends on”. The central subsystem,
consisting of three packages is discussed here; “Resource management”, “Literature Referen-
ces”, “Nomenclature & Taxonomy”, and “Specimen Collection” subsystems are derived from a
biodiversity information framework (e. g., DiversityWorkbench).

The DiversityDescriptions model is designed to collaborate with external components or sub-
systems in a biodiversity information framework (e. g., DiversityWorkbench, see Fig. 6, p. 29).
However, the information model is designed in a way that permits to operate DiversityDescrip-
tions in a “stand-alone” mode, using text labels to describe external objects rather than using

G. Hagedorn Information model for DiversityDescriptions 1.9 325

technical, ID-based linking mechanisms. Although much effort has been spent in recent years on
developing matching applications as separate, interacting software component (e. g., Diversity-
Collection, Hagedorn & Weiss 2002, DiversityResources, Hagedorn & Kohlbecker 2006), so far
DiversityDescriptions is still normally used without online interactions with other components.
This is largely due to the difficulty in integrating software components produced with different
tools (.NET / Mono, Java, COM-Object model).

Package: Terminology
The main concepts defined in the Terminology package (Fig. 216, left side) are:
■ Character headings: hierarchical classifications of character variables. These are roughly

equivalent to, but less general than, “Concept hierarchies” (p. 125).
■ Character variables, i. e., “character definitions” or “measurement concepts” (compare “The

term ‘character’”, p. 31).
■ Character states, i. e., value concepts for categorical data, coding status, and statistical meas-

ures (see below).
■ Modifiers (meta-information on values; see “Modifiers”, p. 189).
Character states are strictly nested within characters (represented by an aggregation relation). The
n : m relation between characters and modifiers or headings is defined using association entities
(CHAR_Heading_Link and MOD_Link).

CHAR_Heading

HeadingID : Integer
ParentHeadingID : Integer
Notes : String

CHAR (= Character)

CharID : Integer
Type : String
Mandatory : Boolean
MultiStateType : Byte
Reliability : Byte
Availability : Byte
CharHeading : Integer
 [...]

CHAR_Translation

CharID : Integer
Language : String
CharName : String
CharWording : String
Unit : String
CharWording2 : String
[...]

CHAR_Heading_Translation

HeadingID : Integer
Language : String
HeadingName : String
HeadingWording : String

labels

1..*

is labeled in

1

CS (= States)

StateID : Integer
CS (char. state code) : String
Notes : String
[...]

has

1

is categ. / stat. measure for1..*
CS_Translation

StateID : Integer
Language : String
StateName : String
StateWording : String
StateFormatString : String

labels

1..*is labeled in

1

MOD (= Modifier)

Modifier : String
Reliability : Byte
MisinterpretationMarker : Boolean
UsageClass : String
[...]

MOD_Translation

Modifier : String
Language : String
ModifierTranslation : String

labels

1..*

is labeled in

1

labels

1..*

is labeled in

1

CHAR_Heading_Link

HeadingID : Long
CharID : Long

0..*classifies

0..*classified by

MOD_Link

CharID : Long
Modifier : String

0..*applicable to

0..*may use

Translations
(representations for multiple
languages and audiences):

Terminology
(major classes,

"character definition")

Figure 216. UML class diagram for major classes of the Terminology package (logical model Di-
versityDescriptions 1.9).

326 Information model for DiversityDescriptions 1.9 G. Hagedorn

Translations
For each of these primary terminology concepts (characters, states, modifiers, and headings) the
language-dependent attributes such as names (i. e. labels), wordings (for natural language gen-
eration), and value formatting patterns (“StateFormatString”) may be supplied in multiple lan-
guages (Fig. 216, right). The advantages of automatically translating many coded description by
translating the centralized descriptive terminology has been discussed in “Multiple languages or
audiences” (p. 282). Significant differences exist between the conceptual and the physical model
with regard to translations, compare p. 338.

States and other terms used in descriptions
Character variables define the places where information can be stored in the descriptions (char-
acter data, see “Package: Descriptions”, p. 329). Characters have different character types (com-
pare “Implemented data type systems”, p. 61, and Table 8, p. 61) and for each data type different
categories of information are supported in the descriptions. These are:
■ character states (i. e. categorical values),
■ measurement values or statistical measures (compare “Quantitative data and statistical meas-

ures”, p. 110 for the concept and “Statistical measures in DiversityDescriptions”, p. 356, for a
list of supported values),

■ coding status values (p. 74), and
■ free-form text (compare “Unconstrained text”, p. 56).
All character data in the description refer to instances of the class “CS” (originally the abbreviat-
ion of Character State). Conceptually this class is abstract and has separate non-abstract subclas-
ses for each of the information categories mentioned above (Fig. 217). In the physical model,
these subclasses are all merged into the single entity type CS and distinguished by different value
ranges used for the CS.CS attribute.

CS (= States)

StateID : Integer
CS (char. state code) : String
Notes : String
[...]

CS.StatisticalMeasureCS.Category CS.CodingStatus

{CS.Value in
('U', 'V', '-')
(= DELTA

"pseudovalues")}

{CS.Value
is numeric
code for a
category}

{CS.Value in a set of system
defined codes for statistical
measures (min, max, mean,
s.d., n for samplesize, etc.)}

CS.TextCode

{CS.Value
= 'TE',

free-form
text}

Figure 217. UML class diagram showing the conceptual subclasses for different kinds of charac-
ter data. (This is purely conceptual, not part of any package in the logical model.)

To make a character value like a character state or coding status value usable in a description, it
must be defined in the terminology. Some categorical values (e. g., shape or color values), but
especially the coding status values and statistical measures, are typically used by many charac-
ters. However, to simplify the model, the relation has been modeled as a composition, i. e., each
state belongs exactly to one character. This requires a certain amount of duplication of the label-
ing information, but has the advantage that the association of coding status or statistical measure

G. Hagedorn Information model for DiversityDescriptions 1.9 327

with a character (i. e., which coding status or measure is enabled for a given character) is defined
in a simple, consistent way.

Semantics of categorical values are freely definable by the designer of the terminology. Seve-
ral methods exist to support communication with humans, but no support for machine-reasoning
other than what is defined through the character type (e. g., nominal versus ordinal) exists. In con-
trast, the remaining subclasses (statistical measures, coding status, and free-form text) each
recognize a set of fixed values, for which system-defined semantics exist.

Character headings
Characters are organized into concept hierarchies (for parts, properties, field/laboratory charac-
ters, etc.) created through the class CHAR_Heading (Fig. 218). This class has a reflexive relation-
ship on itself; the attribute ParentHeadingID is used to create a forest of trees (i. e., multiple un-
connected heading hierarchies may be present). Cyclical relations are prevented through a sepa-
rate constraint (“{acyclic}”). Each character may be a member of multiple character heading
concepts.

The most general association between characters and the heading hierarchy occurs through the
CHAR_Heading_Link association class. In addition two additional relations exist that are con-
strained to a 1 : n multiplicity (based on relations between “CHAR_Heading.HeadingID” and
“Char.CharHeading” and “CharWithNatLangDefinition.HeadingLink”, respectively; labeled
“legacy heading def.” and “legacy subheading def.” in Fig. 218). The topic is discussed in more
detail on p. 336 in the physical model.

Descriptive concepts in DiversityDescriptions are not directly referred to by descriptions.
They can therefore be improved and changed at any time, without affecting descriptions stored
elsewhere.

CharWithNatLangDefinition

HeadingLink : Integer
ParagraphLink : Integer
SentenceLink : Integer
CommaLink : Integer
OmitFinalComma : Boolean
OmitValues : String
OmitPeriod : Boolean
Emphasize : Boolean
 [...]

CHAR_Heading

HeadingID : Integer
ParentHeadingID : Integer
Notes : String

is nat. language heading for

0..1

reported under

1..*

is parent of0..1is child of 0..*

CHAR (= Character)

CharID : Integer
Type : String
Mandatory : Boolean
MultiStateType : Byte
Reliability : Byte
Availability : Byte
CharHeading : Integer
 [...]

CHAR_Heading_Link

HeadingID : Long
CharID : Long

0..*classifies

0..*classified by

is char. def. heading for

0..1

in char. def. reported under
1..*

heading
hierarchy

(= reflexive)
{acyclic}

"legacy
heading

def."

"legacy sub-
heading def."

Figure 218. UML class diagram showing details of three different heading variants and attributes
for the generation of natural language descriptions (logical model DiversityDescriptions 1.9).

Natural language generation
A special group of character attributes is used only for the conversion of coded descriptions into
natural language descriptions (see p. 39). In Fig. 218 these are modeled as a subclass of the char-

328 Information model for DiversityDescriptions 1.9 G. Hagedorn

acter definitions. Natural language generation is a complex process not discussed elsewhere in
this thesis; it therefore needs a slightly more detailed discussion in the following.

Natural language descriptions typically arrange characters into multiple hierarchical levels:
subheadings (with a heading text), paragraphs, sentences, semicolon- and comma-separated char-
acters, and finally states connected by ‘or’, ‘and’, ‘to’, ‘with’, etc. In DiversityDescriptions the
subheading level is represented using the special subheading relation mentioned above. The latter
levels are created using an independent mechanism called “link groups”. These are attributes
storing integer numbers, for which special semantics are defined such that consecutive identical
numbers define a group. For example, if two consecutive characters have the same number in the
attribute SentenceLink, they will be placed in the same sentence. A new sentence starts if the link
group value changes (Fig. 219). The exact value of the numbers is irrelevant, and if always all
characters were present, two different values would suffice (which is the method used in the sim-
plified Figs. 219- 221). However, since any intermediate character may be missing in a given de-
scription, using a new value for each link group is the most reliable method.

Char. ID

.,; .. . ; ; , , ,, ; ; ;

1521 93 4 5 6 7 8 1410 11 12 13

Output:

Sentence
Comma

Figure 219. Diagram illustrating the results of value-based link group attributes (SentenceLink
and CommaLink) on characters (top) in a natural language description. Alternating colors express
different values, empty cells no value.

Link groups have a natural hierarchy: If two characters have the same sentence-link value, but
different paragraph link value, the nature of the formatting implies that the characters will be
placed in different paragraphs and different sentences (Fig. 220).

Char. ID 1521 93 4 5 6 7 8 1410 11 12 13

Heading
Paragraph

Heading
Paragraph

Heading
Paragraph

Heading
ParagraphA)

C)

D)

B)

Figure 220. Diagram illustrating the hierarchical nature of link groups. Links groups on a higher
level (here heading) effectively break lower level link groups (here paragraph). All four examples
result in four sentences, albeit with a different number of headings.

It may be noted that a – perhaps more conventional – model of “new paragraph / sentence / etc.
here” would not work. In an actual description any character may be missing and the mechanism
must be totally independent of the presence of other characters.

The present model is not optimal. A better mechanism would be either to use actual character
headings (used in SDD, which supports unlabeled nodes and delimiters before, after, and between
members of a node in a character tree, see Fig. 221), or a modified link group mechanism with
just a single link number attribute, and a second attribute expressing the kind of link group (para-
graph, sentence, etc.).

G. Hagedorn Information model for DiversityDescriptions 1.9 329

1521 93 4 5 6 7 8 1410 11 12 13

Report element
 attributes:

Pa
ra

gr
. b

ef
or

e
Te

xt
 b

ef
or

e
Te

xt
 b

et
w

ee
n

Te
xt

 a
fte

r
Pa

ra
gr

.
af

te
r

; .
,
×

Comma
Special

Char. ID
Paragraph
Sentence

Figure 221. Diagram illustrating how link groups may be translated into “report elements” defin-
ing delimiters, compare Fig. 219 for diagram conventions. The Special link shown at the bottom is
extensible, used here to define a multiplication sign (e. g., between length and width; see physi-
cal model for further details.)

Character applicability
Following DELTA, character dependencies
are limited to character applicability rules
where the controlling character is of a catego-
rical type (compare “Character applicability
rules”, p. 76). Counts of object parts are not
supported as controlling characters, although
this is in principle desirable (see p. 77). This
limitation closely follows the DELTA model.

Applicability rules are expressed in an as-
sociation table (“DEP”) between a controlling
state and the controlled character (Fig. 222).
The rules are defined as part of descriptive
terminology, but evaluated by applying them
within individual descriptions. If in a description the set of controlling states for a controlling
character results in others characters becoming inapplicable, only the characters in the same de-
scription are affected.

The model supports only inapplicable-if rules. It is similar to the BAOBAB model (White &
al. 1993), except that DiversityDescriptions defines inapplicable dependent characters, while the
BAOBAB model defines characters explicitly as applicable. The potential problems that arise
from the incomplete reversibility of the two forms of dependency rules have been discussed on
p. 79.

Package: Descriptions
The Descriptions package (Fig. 223) is structured into two classes: a definition of the item (i. e.,
the specimen, taxon, disease, behavior, etc.) that is being described (class “ITEM”) and the indi-
vidual description records (class “DESCR”). The model follows the “list model” described in
“Categorical data: Character matrix vs. character state matrix” (p. 104).

The item definition primarily defines an immutable ID for reference and an informal label
(“ItemName”) which may contain the taxon or disease name, specimen accession number, geo-
graphic or other secondary classification the scope definition. (“ITEM” as shown in Fig. 223 also
contains several specific scope attributes (specimen from collection, literature publication
citation). This will change in the upcoming version 2.0 of DiversityDescriptions, where a
separate and more general DescrScope class along the lines discussed in “Secondary classifica-
tion resulting in description scopes” (p. 215) will be added. In the interest of a consistent
documentation this is not further shown or discussed in this thesis.)

CHAR (= Character)

CharID : Integer
Type : String
Mandatory : Boolean
MultiStateType : Byte
Reliability : Byte
Availability : Byte
CharHeading : Integer
 [...]

CS (= States)

StateID : Integer
CS (char. state code) : String
Notes : String
[...]

has1

is categ. / stat. measure for
1..*

DEP (= Dependency)

ControllingStateID : Long
ControlledCharID : Long

*

controlled by

* controls

Figure 222. UML class diagram illustrating
character applicability (logical model Diversity-
Descriptions 1.9).

330 Information model for DiversityDescriptions 1.9 G. Hagedorn

DESCR

ItemID : Integer
StateID : Integer
Modifier : String
X : Double
TXT : String
Notes : String
SEQ : Integer

CS (= States)

MOD (= Modifier)

state defined by

0..* used by

1modifier defined by0..*

modifier used by

0..1

ITEM
ItemID : Integer
ItemName : String
CollUnit : String
LitRef : String
LitKey : Integer
[...]

has

1

describes

0..*
Terminology:

Figure 223. UML class diagram showing the Descriptions package (left) and its relations to
terminology (logical model DiversityDescriptions 1.9).

Description records (class DESCR in Fig. 223) belong to items by composition. The description
records aggregated under an item form “the description” of an item. The “list model” storage so-
lution scales very well from small to very large data sets. The number of items, characters, and
states is unlimited and no undue performance penalties arise if any of these is unusually large.

Each DESCR record must refer to exactly one instance of the state terms (CS) defined in the
terminology, covering categorical states, coding status values, statistical measures or a free-form
text status value (‘TE’). The character is not stored explicitly in DESCR, but can be inferred by
following the link from CS to CHAR.

Conceptually, for each of the superclass/subclasses for different character types and coding
status values discussed in Fig. 217 for Terminology, corresponding classes exist in the Descrip-
tions package. Thus, the simplified relation between DESCR and CS shown in Fig. 223 (which is
close to the physical model) can conceptually also be presented as shown in Fig. 224 below.

This diagram illustrates that the applicability of some attributes in DESCR depends on the
subclass of CS referenced. Whereas the Notes and SEQ attributes are applicable to all subtypes,
modifier values may only be added if the record refers to a categorical state or a statistical mea-
sure. If a modifier value is added, it must come from the set of modifiers defined in the class
“MOD”. The attribute X may only be used when statistical measures are referred to, and TXT
when free-form text is selected.

Again, both in the logical (Fig. 223) and the physical model, this concept is simplified by mer-
ging all subclasses of CD (CharacterData) into a single class “DESCR” that relates to a single
class CS. The value space of CS.CS is partitioned such that the different subclasses of CD can be
identified.

CD (CharacterData)

ItemID : Integer
Notes : String
SEQ : Integer

CD.Categorical

Modifier : String
StateID : Integer

CD.CodingStatus

StateID : Integer

CD.FreeFormText

TXT : String
StateID : Integer

CD.Quantitative

Modifier : String
X : Double
StateID : Integer

CS.Category CS.CodingStatusCS.StatisticalMeasure CS.TextCode

0..*

1
0..*

1

0..*

1

0..*

1

Superclass
(DESCR)

Subclasses
(DESCR)

(Terminology)

CS (= States)
Figure 224. UML class diagram showing the conceptual superclass/subclass design of the
DESCR (Descriptions package) and CS (Terminology package). Compare Fig. 217 (p. 326) for
the Terminology part. (This is purely conceptual, not part of any package in the logical model.)

G. Hagedorn Information model for DiversityDescriptions 1.9 331

The attribute DESCR.SEQ fulfills the special requirement that the sequence of categorical states
in character data may or may not be semantically significant. In many cases the author of a de-
scription will expect the states to be ordered in the sequence defined in the terminology. Occa-
sionally, however, a special meaning is given to a sequence of states that deviates from the one
defined in the terminology (e. g., “red, orange, yellow” versus “flower orange, rarely red”, see
“Value order in character data” on p. 113). In support of this, the SEQ attribute is by default set
to ‘0’, but may be used to manually order individual state sequences. When generating character
data reports, a join of DESCR, CS, and CHAR will be ordered by character order (CID), manual
order (DESCR.SEQ) and default state order (CS.CS).

Package: Resources
“Resources” as used here is an abstraction for still images, video or audio files, documents with
complex formatted text and embedded media (such has taxon pages, PDF, or XPS files), and exe-
cutable tools. The latter is especially relevant for identification keys (which, however, may also
be simply formatted text). As used here, resources should be available in digital format and pre-
sentable by a computer process to a human user. Resources may be referred to by URLs (univer-
sal resource locators) or web service parameter sets, but also by URNs (universal resource
names), provided the Descriptive Data subsystem can detect a resolution service for them (i. e., a
method how, knowing a resource identifier, to obtain the resource such as a digital image itself;
an example of a URN-based resolution service is the Life Science Identifier (LSID) system
planned by GBIF).

Ideally, a resource record would refer to an abstract entity (e. g., a literature reference, a speci-
men, or an image from an image bank available in multiple resolutions). This abstract resource
could then be subject to content negotiations, so that a client could obtain it in a format, quality,
and compression level that is appropriate for the display device used. Similar negotiations may
allow returning the most appropriate caption for a given language and expertise level of the user.
The differentiation between abstract resources and concrete instances is potentially appropriate
for all resource types mentioned above. In the case of computer-aided identification keys, diffe-
rent versions may exist for different target machines (e. g., for web-browser-based JavaScript,
Java, or .NET / Mono).

Content negotiation may simply be based on http mechanisms, or may be implemented
through custom web services. To stress this design, the Resources package in Fig. 225 (right) is
drawn as referring to a separate resource management subsystem, which could handle these ser-
vices as well as other management services for resources (versioning, persistence of URLs, IPR
and access right management, discovery services, etc.). In practice, however, the Resource-
Link.ResourceString will often be a simple URL, which may be a simple path or parameter-
based, and not offer any persistence, content negotiation, etc.

Despite the fact that “resource” is a strongly generalized concept and is outside the Descrip-
tive Data subsystem, several specialized and context-dependent metadata are necessary. These
are handled by the Resource package inside Descriptive Data (Fig. 225). The full conceptual
model is that each character, state, or item may be associated with a list of resources (Fig. 225).
For each association a preferred display order, a role, and a usage class may be defined. The role
informs whether the resource is intended to be used as an icon (i. e., supporting a text label in lists
or trees of characters, states, or items), as a selector (information-rich so that it can fully represent
the associated object, with or without text), definitional (informing about the object), or associ-
ational (other relation considered of interest or use to the user). The usage class supports the cate-
gories “Always”, “Desirable”, or “Secondary” (compare also detailed value descriptions in the
physical model; see RSC.Role and RSC.ItemUsage, p. 351). Based on these metadata, a client
application is enabled to decide whether a resource, if possible for the program, is to be embed-

332 Information model for DiversityDescriptions 1.9 G. Hagedorn

ded or linked to. Links may be directly available, or only after an intermediate step (a list of links
is displayed after the user selects an option like “further information…”).

The association classes point to a further association class, which is a kind of local proxy for
the external resource and provides the option to add captions and notes in multiple languages
(and perhaps even default Roles and Usages, not shown). Note that the same resource may have
multiple, context-dependent captions. For example, the butterfly images in Fig. 118 (p. 239) la-
beled “Tiger” or “Clearwing” would be differently labeled if they were used in the context of a
species page. In the logical model presented here, this requires creating multiple instances of Re-
sourceLink containing the same ResourceLink.Resource URI or web service access definition.

A problem not discussed here is that, although following a link to a resolvable resource in the
web by opening a new browser window is highly general and can be expected to work for most
resources, embedding a resource (images, audio files, Java applets) inside a page is much less
general and requires additional metadata on the resource. Currently it is assumed that this infor-
mation can be obtained by resolving the resource string to obtain the MIME-type information. In
a physical model it will probably be beneficial to cache this information.

CharResourceLink

ResourceID : Integer
CharID : Integer
Role : ResourceRole
Usage : ResourceUsage
DisplayOrder : Integer
Notes : String

ItemResourceLink

ResourceID : Integer
ItemID : Integer
Role : ResourceRole
Usage : ResourceUsage
DisplayOrder : Integer
Notes : String

ResourceLink

ResourceID : Integer
Resource : String

StateResourceLink

ResourceID : Integer
StateID : Integer
Role : ResourceRole
Usage : ResourceUsage
DisplayOrder : Integer
Notes : String

ITEM

CHAR (= Character)

CS (= States)

1

1..*

0..* 1
«subsystem»

Resource management0..1 1

1

0..*

1

0..*

1

0..*

RscCaption_Translation

ResourceID : Integer
Caption : String
Notes : String
Language : String

1

0..*

0..*

1

0..*

1

Figure 225. UML class diagram illustrating the Resource entity and its relations to entities from
other packages (logical model DiversityDescriptions 1.9).

Note that the complexity of this model has been strongly reduced in the physical model (compare
Fig. 230, p. 338).

7.3. Physical model for DiversityDescriptions 1.9
The physical model differs from the logical model in a few selected simplifications plus several
cases where refactoring limitations have prevented updating the physical model with the im-
proved model used in later versions of DiversityDescriptions. A major reason for such legacy
problems is the original design goal to stay as close as possible to DELTA, supporting lossless
import and export operations with the DELTA format. These differences are discussed in the first
section, “Implementation constraints”.

In the next section actual relationships are documented (p. 335 ff), followed by a “Data dictio-
nary” (p. 339 ff) containing a complete list of attributes in the physical model, including informa-
tion about implemented data types, optionality, field and table constraints, associated pick lists,
and the various index types defined. The extensible property-value model for project metadata

G. Hagedorn Information model for DiversityDescriptions 1.9 333

and the support for statistical measures (p. 356) are documented. In addition to documentation
through a data dictionary, the SQL-source code is given in the appendix (p. 400 ff).

Earlier versions of DiversityDescriptions (up to version 1.6) were documented in the Delta-
Access / DiversityDescriptions user guide (Hagedorn 1999a).

Implementation constraints
The database engine (Microsoft JET = Joint Engine Technology) used for the implementation of
the various versions of DeltaAccess / DiversityDescriptions provides a fairly complete implemen-
tation of a relational DBMS, including declarative referential integrity and cascading updates and
deletes. Constraints can be placed on tables and individual attributes. The major limitations of the
JET DBMS are the lack of triggers (other than those implicit in declarative referential integrity)
and the lack of constraints that span several tables. See also Connolly & Begg (2002) for a gen-
eral comparison of the architecture of JET with other DBMS.

The JET DBMS is optimized for small networks of about 40 concurrent users (maximal 255).
Although this is a serious limitation for many types of applications, DeltaAccess / Diversity-
Descriptions was designed from the start as a project-oriented data management system. Each
project was intended to be used only by a limited number of collaborators. The DELTA language
supports no IPR, attribution, or change history, and the original implementations were all restric-
ted to single-user operations. DiversityDescriptions inherited this DELTA legacy, and while de-
signed for small concurrent editing, lacks advanced features for large-scale collaboration support.

In general, the physical model remains largely similar to the logical model discussed above.
No denormalizations were introduced, but the following design decisions and deviations from the
logical model may be noted:
■ Superclass / subclass relations are not directly supported in the JET DBMS. As a consequence,

implementations must choose whether to model them using 1 : 1 relations or by combining all
attributes in a single entity, and leaving it to database constraints and applications code to sort
out the subclass situations. Testing showed that models with a high number of 1 : 1 relations
(and the ensuing multiple outer joins) perform extremely poorly in large data sets. The chosen
solution is to merge the attributes of the superclass and all subclasses into a single table. The
consequence of this is that subclass attributes will often be Null where not used. Testing
showed that this has no detectable performance penalty; this can probably be generalized for
any DBMS providing variable length data storage (i. e., the storage space required for empty
fields is minimal).

■ The information model is designed only for a single project, but the application supports an
unlimited number of projects. To achieve this, the full model is dynamically created for each
project, using a template model. From each project name a token is generated and used to pre-
fix the table names. In the following model, all tables are prefixed with DD (“DiversityDe-
scriptions”). If a database contains two projects, one called “BUS”, the other “CUS”, the ta-
bles BUS_CHAR and CUS_CHAR would be present (but no “DD_CHAR” table!). The use of
name prefixes is necessary because objects in JET have no namespace or schema component.
For example, in SQL Server the design might have been implemented as bus.CHAR and
cus.CHAR. The advantage of separating projects into separate tables is:
□ Simplicity: In the DELTA model projects are totally independent entities. Managing multi-

ple projects in a database seemed desirable, but otherwise little interaction between pro-
jects was planned for.

□ Performance of the database. The alternative design of a single set of tables for all projects
would require almost all queries to be restricted to a project. Such queries would be more
difficult to optimize for the internal query optimizer, more constraints and indices being
involved. Furthermore, the likelihood that data pages are placed physically close (and in-
cluded in consecutive hard-disk reads) is decreased. Finally, the size of indices becomes
proportional to the sum of records in all projects, not just a single one, and performance

334 Information model for DiversityDescriptions 1.9 G. Hagedorn

critically depends on index size. This was particularly obvious since the first versions of
DeltaAccess / DiversityDescriptions were designed for computers with 16 MB total RAM,
and performance testing showed the importance of index size in large projects.

□ A simple design of character and item subset restrictions. DiversityDescriptions was plan-
ned from the start to provide for subsets functioning as user-definable “windows” on the
underlying project. The JET database treats views (which may include joins) and tables
identical. This allows creating an unlimited number of subset projects consisting of SQL-
views which contain the necessary subset restrictions, but otherwise behave identically to
base project tables (Fig. 226). For a subset project “Family1”, all based tables would be
mirrored in views named as “Family1_CHAR”, etc. To all data-processing programming
code, these view-based projects act identically to table-based projects. Compare also
Fig. 152 (p. 261) for a different subset illustration.

■ The first versions of DeltaAccess / DiversityDescriptions followed the example of the DELTA
format and combined the functions of providing a unique ID and defining a display order se-
quence in a single attribute. For example, the attribute “CID” defines both a character ID and
the sequence in which the characters are to be displayed to the user. The character display se-
quence is frequently changed, but due to the cascading updates provided by referential integ-
rity, this proved to be both simple and sufficient for a considerable time. However, over time
an increasing need for external references to character or items appeared and the initial design
proved to be problematic. Due to the central position of the key attributes for existing pro-
gramming code, it was impractical to fully refactor the design. Instead, in addition to the origi-
nal keys CID, HID, IID, and CID/CS, new system-generated candidate keys: CharID, Head-
ingID, ItemID, StateID were introduced (not for resources, where a complete redesign was
still possible). Some newer relations (esp. with translation tables) already use the new keys,
whereas most relations are still based on the older keys. Note that the logical model in the pre-
vious section only mentioned the new keys and thus differs from the physical model.

It has to be emphasized that the information model of DiversityDescriptions 1.9 does not fulfill
all the requirements elaborated in the previous sections. It is presented here because it represents
a substantial advancement over previous models and because it has been fully implemented and
tested in a number of software applications. The experience with these applications is the basis
for the evolutionary redesign of the next information model and for the currently developed SDD
XML data exchange format. This is also the reason why no fully conceptual model is presented:
Either the conceptual model would have to be reduced in a way that it no longer reflects the im-
proved understanding of descriptive data, or it would be too difficult to bridge the gap between
the conceptual and the logical model.

Subset:

Char.: 21 93 4 5 6 7 8
Descr. 1
Descr. 2
Descr. 3
Descr. 4
Descr. 5
Descr. 6
Descr. 7
Descr. 8

Char.: 21 93 4 5 6 7 8
Descr. 1

Descr. 2

Descr. 3

Descr. 4

Descr. 5
Descr. 6

Descr. 7

Descr. 8

Figure 226. Illustration of a full project (left) from which only those characters and descriptions
colored black shall also be accessible in a subset project (right; in DiversityDescriptions subsets
are based on views, allowing both analysis and editing).

G. Hagedorn Information model for DiversityDescriptions 1.9 335

Entity relationship diagrams
The ER diagrams for the physical model are presented as Microsoft-Access diagrams, showing
table and field names and relations. Field names in bold belong to the primary key of a table (i. e.,
the combination of values in these fields must be unique). The multiplicity is expressed through
‘1’ (primary key, representing the UML equivalents ‘1’ or ‘0..1’), and the infinity sign (‘∞’, for-
eign key, representing the UML equivalents ‘0..*’, ‘1..*’, or ‘*’). Consequently, optionality of
relations is not shown (in the case of primary key attributes, printed in boldface, it can be infer-
red). An advantage of these diagrams over most ER or UML diagrams is that the relation lines
are always drawn next to the field to which they refer, indicating the primary and foreign key
fields involved in a relation.

All relations are protected by relational integrity rules with cascaded updates. In cascaded up-
dates, if the attribute on the 1-side of a relation (primary key) is changed, the DBMS automati-
cally updates the attribute on the n-side (foreign key) as well. Furthermore, several relationships
are defined with cascading updates. If CHAR records are deleted, all related CS, DEP, RSC,
MOD_Link, and CHAR_Heading_Link records are deleted as well. Similarly, if CS or ITEM
records are deleted, DESCR and RSC records are automatically deleted; CS further cascades to
DEP. All …Translation records are automatically deleted if the corresponding entity is deleted.

The first ER diagram (Fig. 227) presents an overview of the principal entities. The field list of
some tables is abbreviated, indicated by “[…]”. By convention, all fields of numeric identifiers
end in “ID”.

On the left side the tables related to descriptive terminology are listed. The primary concepts
used in descriptions are Character definitions (CHAR), one or several character state definitions
(CS) for each character, and modifier definitions (MOD). These provide the semantics of the
variables, enumerated values, and modifications of values such as frequency or certainty with
which a value is correct.

Dependencies between characters are expressed through the table DEP. The physical model of
character dependency fully follows the logical model discussed above (p. 329), except that the
ControlledCharID is named “InapplicableCID”, and ControllingStateID is represented by the
combination of the CID and CS fields, the primary keys of the CS table.

Further, in MOD_Link the relation between modifiers and characters can be controlled such
that only specific modifiers apply to a character. Note that in contrast to states, which are always
local to a given character, a modifier may be defined for the entire terminology.

Figure 227. Reduced entity relationship diagram of DiversityDescriptions 1.9 (physical model),
containing only the principal tables.

On the right side of the ER diagram (Fig. 227), the two tables containing the descriptive data
are shown. ITEM contains the definition of the items being described and DESCR the pieces of
the description.

336 Information model for DiversityDescriptions 1.9 G. Hagedorn

An ITEM may be an object / specimen or a class / taxon). It is largely defined through an uncon-
strained text label “ItemName” which in the case of a specimen may contain taxon name plus
accession location or number.

In the DESCR table one record is created for each character state or statistical measure used in
a character × item combination. The information model is essentially based on the “list model”
(compare Table 27, p. 106) as discussed in “Categorical data: Character matrix vs. character state
matrix”, p. 104. Most fields of DESCR are applicable to all types of descriptive data, but TXT
(text of unlimited length) is applicable only to free-form text and the real numeric field X to
quantitative values or measures. In the first case CS must contain the special state ‘TE’ indicating
a text value, in the latter case CS must contain a code for each statistical measure (mean, min,
max, s. d., etc.). Which measures are applicable to which character is defined by the author of the
terminology, by adding a definition for a measure in the table CS; see the section “Statistical
measures in DiversityDescriptions” (p. 356) for further information.

Coding status values (also called “pseudo-values” or “special symbols” in DELTA; compare
p. 74) are also handled using the CS field in DESCR. Only the DELTA-defined values ‘U’, ‘V’,
and ‘-’ are supported natively in DiversityDescriptions, but any number of special codes may be
defined in principle. DiversityDescriptions thus follows a fixed vocabulary approach both for
coding status and statistical measures (compare p. 287 in use cases). When using Diversity-
Descriptions, all three values are added for newly created characters. The author of the terminol-
ogy may, however, decide which coding status values are available by removing undesired codes
from the CS table.

By default, the order in which categorical data (records in DESCR) are displayed is the order
in which states and measures are defined in CS. This may, however, be overruled by the data
editor using the SEQ field in DESCR. This may optionally contain a number defining a sequence
(order) of character data in the item description.

If the relation between a modifier and a character is removed,
existing character data in DESCR using modifier are not removed.
They indeed remain valid because the modifier semantics (in MOD)
are still available. Thus the MOD_Link may be interpreted as a us-
age recommendation, rather than as a strictly enforced constraint.

As mentioned above, many tables have two ID fields (e. g.,
“CID” and “CharID”). The short form CID, HID, IID, and CID/CS)
is for legacy reasons still the primary key. These follow the example
of DELTA and express both identifier and ordering semantics. Be-
cause of the latter they are liable to change over time. Within Di-
versityDescriptions this is unproblematic due to the actions of ref-
erential integrity with cascading updates. However, to simplify the
interaction with external programs, additional ID fields have been
added over time (CharID, HeadingID, ItemID, and StateID) which
are now candidate keys, i. e., they could be used as primary keys.

The complete ER diagram is shown below (Fig. 229). The main
concepts not yet discussed are:
1. Character Headings: These allow defining hierarchical group-
ings of characters. In DiversityDescriptions, headings are defined in
the table Char_Heading, primarily providing a display label “Head-
ingName” and a wording for natural language reporting (“Heading-
Wording”). The AutoGroup field is an internal mechanism to pro-
vide for headings based on search rules rather than on relations with
the character table. ParentHeadingID creates a reflexive relation
from Char_Heading to itself, providing the option to build nested
hierarchies (trees) of headings.

Character
heading

Character
heading

Char. 1

Char. 2

Char. 3

Char. 5

Char. 4

Char. 6

Item subheading
(nat. language

phrase)

Item subheading
(nat. language

phrase)

Char. 1

Char. 2

Char. 3

Char. 5

Char. 4

Char. 6

Define
Character
(Keyword)

Define
Character
(Keyword)

Char. 1

Char. 2

Char. 3

Char. 5

Char. 4

Char. 6
Figure 228. The different
character-grouping me-
chanisms in DELTA.

G. Hagedorn Information model for DiversityDescriptions 1.9 337

Figure 229. Complete entity relationship diagram of DiversityDescriptions 1.9 (physical model).
Tables already presented in the previous overview diagram are lightly colored.

DELTA, as implemented in the CSIRO Confor and Intkey programs, uses three separate head-
ing directives with special properties (Fig. 228). All three define only a single level of headings
on top of the characters. Earlier versions of DiversityDescriptions accepted this limitation as
well, but recent versions support hierarchical character headings. Despite this addition to
DELTA, DiversityDescriptions aims at maintaining backwards compatibility with DELTA.
Therefore, three different relations with the CHAR table exist, corresponding with the three
DELTA directives. These are:

□ DELTA “Character Headings”: This provides headings in front of characters and is in-
tended for a list of character definitions. They are usually generally useful, e. g., to struc-
ture the character list in an editor or during identification. Each character may be member
only of a single character heading and is represented by the 1 : n relation from CharHead-
ing.HID to CHAR.CharHeading.

□ DELTA “Item Subheadings”: The name is slightly deceptive; these are not headings to
item names (which are not provided in DELTA), but character headings to be used when
item descriptions are generated (especially natural language descriptions). Similar to char-
acter headings, each character may be member only of a single character heading; this is
reflected in the 1 : n relation from CharHeading.HID to CHAR.HeadingLink. During natu-
ral language generation, the HeadingWording will be preferred over HeadingName. If no
HeadingWording is defined, HeadingName is used here as well.

□ DELTA “Define Characters (Keyword)”: This is an Intkey directive in the Intkey.ini file.
Character Definitions are called “named character groups” in the DeltaAccess / Diversity-
Descriptions documentation (Hagedorn 1999a). In contrast to the previous two heading
directives, a single character may be a member of multiple such character groups. Thus
headings may group characters under different aspects such as by organ of the organism,

338 Information model for DiversityDescriptions 1.9 G. Hagedorn

by observation or analysis method, or by developmental stage. The n : m relation is imple-
mented in the CHAR_Heading_Link table between CHAR and CHAR_Heading.

2. Resources: In the physical model the relatively complex logical model (Fig. 225, p. 332) of the
Resources package has been denormalized and simplified to a single entity, “RSC”, by merging
the various association classes into a single class (Fig. 230). RSC may contain one or several of
item, character, or state references. If captions in multiple languages are desired, they may use
multiple RSC records each using otherwise the identical information.

If multiple ID-references are present, the Role field applies to all, and Usage may be separate-
ly defined for characters and items (but not yet for states). Perhaps a better solution for usage
may have been to use only a single field, and require multiple RSC records if usage differs for
item, character and state reference.

Since any of ItemID, CharID, and StateID may be Null, the combination of these fields does
not provide a composite primary key in RSC (like it did in DESCR for the combination of IID,
CID, and CS).

Although the table is currently not referenced from other tables in the information model, a
system-generated identifier ResourceID (“autonumber” or “autoincrement”) is defined for inter-
nal database uses.

RSC

ResourceID : Integer
ItemID : Integer
CharID : Integer
StateID : Integer
Role : ResourceRole
ItemUsage : ResourceUsage
CharUsage : ResourceUsage
DisplayOrder : Integer
Resource : String
Caption : String
Language : String
Notes : String

ITEM

CHAR (= Character)

CS (= States)

1

1..*

0..*

1

0..*1

0..*

1

«subsystem»
Resource management0..1 1

Figure 230. UML class diagram illustrating the simplified Resource table and its relations with
other packages (physical model DiversityDescriptions 1.9).

3. Translations. For each character, heading, character state, and modifier an additional
“…Translation” table is present. This table supports translations of language-dependent informa-
tion into multiple languages. Note that the model currently still lacks a translation table for the
free-form DESCR.Notes field. No project currently operating DiversityDescriptions had the re-
sources to also translate these description-specific notes.

When updating the information model to support multiple languages in parallel it turned out to
be impractical to remove the language-dependent fields from the original tables (e. g., CharName
and StateName in CHAR and CS, respectively). Doing so would have made it impossible to
maintain existing code inside DiversityDescriptions and other tools using the same information
model. As an alternative solution, a “current language” was defined in the CurrentLanguage ta-
ble. By means of a table constraint this table can contain only a single record and stores the cur-
rently preferred language. This language in CurrentLanguage is the language for which the text
and labels are stored in the primary tables (such as CHAR, CS, MOD, and CHAR_Heading). In-
formation for all other languages is stored in the “…Translation” tables.

It is possible to change the CurrentLanguage, provided methods are developed that first copy
the current language information for CHAR, CS, etc. to the translation tables (with the old lan-
guage value from CurrentLanguage), then copy the translation attributes to the current language
attributes, and finally delete the copied information from the translations tables. Unquestionably
this solution is not optimal, but it provides a migration path to continue using the original Di-
versityDescriptions code until a new solution based on the (still unfinished) SDD model can be
provided.

G. Hagedorn Information model for DiversityDescriptions 1.9 339

Note that in the ITEM table some additional fields (CollUnit, LitRef) are shown, supporting
precise relations with other components. As mentioned in the logic model, in the next version of
DiversityDescriptions these will be replaced by a separate SCOPE table, enabling a greater range
of links and more flexibility in the way links are expressed.

Two tables have no relations with other tables. The CurrentLanguage table (single value in
single record) was already mentioned above. The PROPERTY table stores metadata, settings,
and properties for an entire project. The field PropertyName contains values from an agreed vo-
cabulary (which, however, is not controlled by the physical model) and the remaining fields pro-
vide a storage mechanism for text, date / time, or a number. Further information can be found in
the section “Project Properties” (p. 352).

The diagrams above and the following data dictionary for the physical model for DiversityDe-
scriptions are also available in a hyperlinked form (Hagedorn 2005b). ANSI SQL 92 code to
create the model is provided in the appendix (p. 400); the online documentation further provides
MS SQL Server T-SQL, PostgreSQL, and a simple w3c XML-schema for the model.

Data dictionary
The following tables provide the details about attributes and their properties. The column Type
denotes data type of field content. 'Text (255)' indicates a text of varying length for which no
specific design restrictions have been formulated. 255 characters should be read as a proposed
technical maximum limit; this may be changed if required by the database management system.
In contrast, 'Memo' is explicitly defined as text of unlimited length. All text is Unicode text.
Numeric types: Long = 4 byte integer, Integer = 2 byte integer, Byte+ = 1 byte positive integer
(0 to 255).

The checkbox (or) in the column Rqrd. indicates that the attribute is required. The last
column indicates presence and type of indices. I = The field is indexed to enable faster searching.
Different types of indices are denoted by additional letters in parentheses: I (P) = attribute is part
of the primary key (values in the index must be unique), I (U) = values in the index must be
unique, I (N) = Null values are ignored in the index, I (M) = the index contains more than one
attribute. + denotes that the attribute is involved in more than one multiple-field index.

Attributes and indices of the entity 'CHAR'
Character table = the central entity to define operational terminology.
Name Type Description / Default value & validation Rqrd./Index
CID Integer Character ID number. Also currently defines the order of

characters. This ID may change over time, please
compare the separate CharID.

 I (P)

CharName Text Short name of character. Validation rule: Not (Like ' %'
Or Like '% ' Or Like '% %'). Validation message: Do not
start or end with a blank. Do not include multiple blanks.

 I (U)

Unit Text For numeric characters: an optional measurement unit
like 'mm'. Only true units here, text like 'wide' belongs to
CharWording2! Validation rule: Is Null Or Not (Like ' %'
Or Like '% ' Or Like '% %'). Validation message: Do not
start or end with a blank. Do not include multiple blanks.

 –

Example
values (any
other values
may be added):

m; dm; cm; mm; µm; kg; g; mg; µg; L; ml; µl; nl; °C; M; mM; µM; nM;
pM; Mol; mMol; µMol; g/ml; Pa; hPa; bar; mbar; mm Hg; mS; µS; °; ';
"; in; ft; µm2; mm2; cm2; m2; km2; µm3; mm3; cm3; m3

Notes Memo Character notes. Validation rule: Is Null Or Not (Like ' %'
Or Like '% ' Or Like '% %'). Validation message: Do not

 –

340 Information model for DiversityDescriptions 1.9 G. Hagedorn

Attributes and indices of the entity 'CHAR'
Character table = the central entity to define operational terminology.
Name Type Description / Default value & validation Rqrd./Index

start or end with a blank. Do not include multiple blanks.
Type Text Type of character: Text, Ordered/unordered multistate,

Integer/Real numeric. Default value: “UM”; Validation
rule: “UM” Or “OM” Or “IN” Or “RN” Or “TE”

 I

Values restricted to: Code Description
UM Unordered multistate (categorical data/nominal scale)
OM Ordered multistate (categorical data/ordinal scale)
TE Textual data
IN Integer numeric (cardinal scale)
RN Real numeric (floating-point, interval scale)

Mandatory Boolean Is the scoring of this character mandatory (required) in
each item? Default value: 0

 –

MultiStateType Byte+ Are multiple states allowed and how are they inter-
preted? Default value: 1

 I

Values restricted to: Label Code Description
Excl. 0 states are exclusive = only a single state may be present in each

item
Or 1 combine states with OR operator (DELTA: '/')
And 2 combine states with AND operator (DELTA: '&')
To 3 states intergrade, e. g., '1 to 2 or 5 to 6' (DELTA: '1-2/5-6')
To/And 4 states intergrade, e. g., '1 to 2 and 5 to 6' (DELTA: '1-2&5-6')
With 5 states are a combination, e. g., 'green with some yellow'

Reliability Single Reliability (or weight) of character for identification, 1-10.
Default value: 5. Validation rule: (≥ 0 And ≤ 32) Or Is
Null.

 –

Values restricted to: Code Description
0 ignore
1 very low
2 low
3 below average
4 slightly below average
5 standard (default value)
6 slightly above average
7 above average
8 high
9 very high

Availability Single Availability (or accessibility) of character for identifi-
cation, 1-10. This is an extension to the DELTA
standard. Default value: 5. Validation rule: (≥ 0 And ≤ 32)
Or Is Null.

 –

Values restricted to: (Identical with Reliability values above)
Fuzziness Single For identification: Unless a range is explicitly present,

used to form a range around the mean (RN/IN) or state
(OM). Default value: 0

 –

FuzzinessIsPercent Boolean Interpret 'Fuzziness' as 'percent' rather than 'absolute
value' (e. g., Fuzziness=10 → range=mean ± 10%,
instead of ± 10 absolute). Default value: 0

 –

KeyStates Text For use in a key: combine multistate char, into new
combinations or define ranges for numeric char.

 I

CharHeading Integer A heading defined in the headings definition, inserted in
char. def. output in front of the current character.

 I (N)

HeadingLink Integer A heading defined in the headings definition, inserted in
natural language descriptions in front of descriptions
using this character.

 I (N)

CharWording Text Natural language descript.: Wording to be used instead –

G. Hagedorn Information model for DiversityDescriptions 1.9 341

Attributes and indices of the entity 'CHAR'
Character table = the central entity to define operational terminology.
Name Type Description / Default value & validation Rqrd./Index

of CharName. Validation rule: Is Null Or Not (Like ' %' Or
Like '% ' Or Like '% %'). Validation message: Do not start
or end with a blank. Do not include multiple blanks.

CharWording2 Text Natural language descript.: Wording to be used AFTER
states or values + unit, e. g., 'wide' for 'leaves 3-5 mm
wide'. Validation rule: Is Null Or Not (Like ' %' Or Like '%
' Or Like '% %'). Validation message: Do not start or end
with a blank. Do not include multiple blanks.

 –

UnitIsPrefix Boolean True if unit is to be placed in front of value, e. g., to
render “pH 7.2”.

 –

FormatString Text Default formatting for all states (compare
StateFormatString). Esp. for numeric values (number of
decimal places etc.). Standard Basic formatting string
like “#.0”.

 –

Example values
(any other values
may be added):

Code Description
##0 numerical, no decimal places, 1000 separator = blank
##0.0 numerical, 1 decimal place
##0.00 numerical, 2 decimal places

ParagraphLink Long Natural language descript.: Define char. linked into a
single paragraph. A new paragraph starts if group ID
changes. Default value: 1. Validation rule: > 0 Or Is Null.

 –

SentenceLink Long Natural language descript.: Define char. linked into a
single sentence. A new sentence starts if group ID
changes or whenever Null. Validation rule: > 0 Or Is Null.

 –

CommaLink Long Natural language descript.: Define characters linked into
a comma-enumeration ('sub-sentence'). A new group
starts if group ID changes or whenever Null. Validation
rule: > 0 Or Is Null.

 –

UseComma2 Boolean Natural language descript.: Use alternative comma
separator between states of this character (e. g., for
Chinese).

 –

OmitFinalComma Boolean Natural language descript.: The final comma between
character states is omitted ('1, 2, and 3' instead of '1, 2,
and 3'). Default value: 0

 –

OmitValues Text Natural language descript.: Omit lower ('-') or upper ('+')
part of numeric character ranges. Validation rule: Is Null
Or '+' Or '-'

 –

Values restricted to: Code Description
 output full range in natural language description
- omit lower range and min in natural language description
+ omit upper range and max in natural language description

Emphasize Boolean Natural language descript.: Emphasize (italic or bold
print) this character in all items. Default value: 0

 –

OmitPeriod Boolean Natural language descript.: Omit the end delimiter
(usually the period for a sentence, DELTA: 'OMIT
PERIOD FOR CHAR'). Default value: 0

 –

NumStates Integer Calculated field: Number of states other than special
states U,V,- present in this character. Calculated
automatically, do not edit! Default value: 2

 I

CharID Autonum Immutable unique number identifying a character
(candidate key). Not exported to DELTA! Semantics are
similar to CID, which, however, is exported to DELTA

 I (U)

342 Information model for DiversityDescriptions 1.9 G. Hagedorn

Attributes and indices of the entity 'CHAR'
Character table = the central entity to define operational terminology.
Name Type Description / Default value & validation Rqrd./Index

and requires renumbering after character deletions.
Index name: Attributes & index properties
CharHeading: CharHeading (Duplicates OK; Ignore Nulls)
CharID: CharID (Unique values)
CharName: CharName (Unique values)
CID: CID (Primary key; Unique values)
HeadingLink: HeadingLink (Duplicates OK; Ignore Nulls)
KeyStates: KeyStates (Duplicates OK)
MultiStateType: MultiStateType (Duplicates OK)
NumStates: NumStates (Duplicates OK)
Type: Type (Duplicates OK)
Relation type: Attributes involved
Cascading updates CHAR_Heading.HID ↔ CHAR.CharHeading
Cascading updates CHAR_Heading.HID ↔ CHAR.HeadingLink
Cascading updates & delet. CHAR.CID ↔ CHAR_Heading_Link.CID
Cascading updates & delet. CHAR.CharID ↔ CHAR_Translation.CharID
Cascading updates & delet. CHAR.CID ↔ CS.CID
Cascading updates & delet. CHAR.CID ↔ DEP.InapplicableCID
Simple relation (no integrity) CHAR.CID ↔ DESCR.CID
Cascading updates & delet. CHAR.CID ↔ MOD_Link.CID
Cascading updates & delet. CHAR.CharID ↔ RSC.CharID

Attributes and indices of the entity 'CHAR_Translation'
Character table, translations into multiple languages.
Name Type Description / Default value & validation Rqrd./Index
CharID Long Character ID (unchanging version). I (PM)
Language Text Language of the translation. I (PM)
CharName Text Short label for character; in the current Language. I
CharWording Text Natural language descript.: Wording to be used instead of

CharName; in the current Language.
 –

CharWording2 Text Natural language descript.: Wording to be used AFTER
states or values + unit, e. g., 'wide' for 'leaves 3-5 mm wide';
in the current Language.

 –

Unit Text For numeric characters: an optional measurement unit like
'mm'. Only true units here, text like 'wide' belongs to
CharWording2!

 –

UnitIsPrefix Boolean True if unit is to be placed in front of value, e. g., to output
“pH 7.2”.

 –

Notes Memo Character notes. –
FormatString Text Default formatting for all states, but esp. for numeric values

(number of decimal places etc.). Compare
Char.FormatString for example values.

 –

G. Hagedorn Information model for DiversityDescriptions 1.9 343

Attributes and indices of the entity 'CHAR_Translation'
Character table, translations into multiple languages.
Name Type Description / Default value & validation Rqrd./Index
Index name: Attributes & index properties
CharNameTranslation: CharName (Duplicates OK)
CID: CharID; Language (Primary key; Unique values)
Relation type: Attributes involved
Cascading updates & delet. CHAR.CharID ↔ CHAR_Translation.CharID

Attributes and indices of the entity 'CHAR_Heading'
Character heading/Identification/HeadingLink table.
Name Type Description / Default value & validation Rqrd./Index
HID Integer Character heading ID; determines sequence of headings

when used in identification; change number to change that
sequence!

 I (P)

HeadingName Text Heading name, used for CharHeadings and Named
character groups (identification). Validation rule: Not (Like '
%' Or Like '% ' Or Like '% %'). Validation message: Do not
start or end with a blank. Do not include multiple blanks.

 I (U)

HeadingWording Text Optional wording; preferred over HeadingName if headings
for natural language descriptions are defined through the
HeadingLink mechanism. Validation rule: Is Null Or Not
(Like ' %' Or Like '% ' Or Like '% %'). Validation message:
Do not start or end with a blank. Do not include multiple
blanks.

 –

Notes Memo Internal notes (not exported to DELTA format). Validation
rule: Is Null Or Not (Like ' %' Or Like '% ' Or Like '% %').
Validation message: Do not start or end with a blank. Do
not include multiple blanks.

 –

AutoGroup Text Empty for user defined headings; else special code which is
recognized during identification or a SQL query returning a
set of character IDs. (HeadingName of predefined
AutoGroups may be changed!).

 –

ParentHeadingID Long A hierarchy of headings can be defined in Diversity-
Descriptions by adding the higher hierarchy here. However,
this is not supported by DELTA and cannot be exported.

 I

HeadingID Autonum Immutable unique number identifying a heading (candidate
key).

 I (U)

Index name: Attributes & index properties
HeadingID: HeadingID (Unique values)
HeadingName: HeadingName (Unique values)
HID: HID (Primary key; Unique values)
ParentHID: ParentHeadingID (Duplicates OK)
Relation type: Attributes involved
Cascading updates & delet. CHAR_Heading.HID ↔ CHAR_Heading_Link.HID
Cascading updates & delet. CHAR_Heading.HeadingID ↔ CHAR_Heading_Translation.HeadingID
Cascading updates CHAR_Heading.HeadingID ↔ CHAR_Heading.ParentHeadingID
Cascading updates CHAR_Heading.HID ↔ CHAR.CharHeading

344 Information model for DiversityDescriptions 1.9 G. Hagedorn

Attributes and indices of the entity 'CHAR_Heading'
Character heading/Identification/HeadingLink table.
Name Type Description / Default value & validation Rqrd./Index
Cascading updates CHAR_Heading.HID ↔ CHAR.HeadingLink

Attributes and indices of 'CHAR_Heading_Translation'
Character headings, translations into multiple languages.
Name Type Description / Default value & validation Rqrd./Index
HeadingID Long Character heading ID. I (PM)
Language Text Language of the translation. I (PM)
HeadingName Text Heading name, used for CharHeadings and Named

character groups (identification). Validation rule: Not (Like '
%' Or Like '% ' Or Like '% %'). Validation message: Do not
start or end with a blank. Do not include multiple blanks.

 I (U)

HeadingWording Text Optional wording; preferred over HeadingName if headings
for natural language descriptions are defined through the
HeadingLink mechanism. Validation rule: Is Null Or Not
(Like ' %' Or Like '% ' Or Like '% %'). Validation message:
Do not start or end with a blank. Do not include multiple
blanks.

 –

Notes Memo Note on Translation. Validation rule: Not (Like ' %' Or Like
'% ' Or Like '% %'). Validation message: Do not start or end
with a blank. Do not include multiple blanks.

 –

Index name: Attributes & index properties
CID: HeadingID; Language (Primary key; Unique values)
HeadingName: HeadingName (Unique values)
Relation type: Attributes involved
Cascading updates & delet. CHAR_Heading.HeadingID ↔ CHAR_Heading_Translation.HeadingID

Attributes and indices of the entity 'CHAR_Heading_Link'
Character groups for identification and linking.
Name Type Description / Default value & validation Rqrd./Index
HID Integer Character heading ID to be linked. I (PM)
CID Integer Character ID to which the identification heading is

applicable.
 I/I (PM)

Index name: Attributes & index properties
CID: CID (Duplicates OK)
HID: HID; CID (Primary key; Unique values)
Relation type: Attributes involved
Cascading updates & delet. CHAR_Heading.HID ↔ CHAR_Heading_Link.HID
Cascading updates & delet. CHAR.CID ↔ CHAR_Heading_Link.CID

G. Hagedorn Information model for DiversityDescriptions 1.9 345

Attributes and indices of the entity 'CS'
Character states for each character.
Name Type Description / Default value & validation Rqrd./Index
CID Integer Character ID. I (UM)+
CS Text Character state code. Usually pos. integer number or

special codes for variable/unknown and for statistics
(mean etc.). Validation rule: Not (Like ' %' Or Like '% ' Or
Like '% %'). Validation message: Do not start or end with
a blank. Do not include multiple blanks.

 I/I (PM)

CharStateName Text Name or description of character state. Validation rule:
Not (Like ' %' Or Like '% ' Or Like '% %'). Validation
message: Do not start or end with a blank. Do not include
multiple blanks.

 I (UM)

Notes Memo Character state notes. Validation rule: Is Null Or Not (Like
' %' Or Like '% ' Or Like '% %'). Validation message: Do
not start or end with a blank. Do not include multiple
blanks.

 –

StateWording Text Wording to be used instead of CharStateName for natural
language descriptions output. Validation rule: Is Null Or
Not (Like ' %' Or Like '% ' Or Like '% %'). Validation
message: Do not start or end with a blank. Do not include
multiple blanks.

 –

StateFormatString Text State-specific formatting, overriding FormatString defined
in the character definition. Compare Char.FormatString for
example values.

 –

Implicit Boolean Mark this state as a default which is automatically set.
Default value: 0

 –

(Important note on the following five Use… attributes: These are not yet used in
the DiversityDescriptions application and it remains questionable, whether using
such attributes to identify state-subsets is a desirable solution!)

UseEdit Boolean Use this state during entering or updating of item
descriptions. Default value: True

 –

UseIdentify Boolean Use this state during identification. Default value: True –
UseDescr Boolean Use this state for natural language item descriptions.

Default value: True
 –

UsePhylo Boolean Use this state for phylogenetic analysis. Default value:
True

 –

UseOther Boolean Use this to define a character state set for user-defined
purposes. Default value: True

 –

MinValue Double Numeric characters only: The lowest value of X in item
description to be mapped to this state (inclusive). Default
value: -1E+308

 –

MaxValue Double Numeric characters only: The highest value of X in item
description to be mapped to this state (inclusive). Default
value: 1E+308

 –

StateID Autonum Immutable unique number identifying a character state
independently of the character. Not exported to DELTA!
Preferred key for any external references to states not
protected by cascaded referential updates. (Candidate
key).

 I (U)

Index name: Attributes & index properties
CID: CID; CS (Primary key; Unique values)
CS: CS (Duplicates OK)

346 Information model for DiversityDescriptions 1.9 G. Hagedorn

Attributes and indices of the entity 'CS'
Character states for each character.
Name Type Description / Default value & validation Rqrd./Index
CSNameUniqueInCID: CharStateName; CID (Unique values)
StateID: StateID (Unique values)
Relation type: Attributes involved
Cascading updates & delet. CHAR.CID ↔ CS.CID
Cascading updates & delet. CS.StateID ↔ CS_Translation.StateID
Cascading updates & delet. CS.CID ↔ DEP.CID; CS.CS ↔ DEP.CS
Cascading updates & delet. CS.CID ↔ DESCR.CID; CS.CS ↔ DESCR.CS
Cascading updates & delet. CS.StateID ↔ RSC.StateID

Attributes and indices of the entity 'CS_Translation'
Character states, translations into multiple languages.
Name Type Description / Default value & validation Rqrd./Index
StateID Long State ID (foreign key). Default value: 0 I/I (PM)
Language Text Language of the translation. I (PM)
CharStateName Text Name or description of character state. Validation rule: Not

(Like ' %' Or Like '% ' Or Like '% %'). Validation message:
Do not start or end with a blank. Do not include multiple
blanks.

 –

Notes Memo Notes on translation. Validation rule: Is Null Or Not (Like '
%' Or Like '% ' Or Like '% %'). Validation message: Do not
start or end with a blank. Do not include multiple blanks.

 –

StateWording Text Wording to be used instead of CharStateName for natural
language descriptions output. Validation rule: Is Null Or Not
(Like ' %' Or Like '% ' Or Like '% %'). Validation message:
Do not start or end with a blank. Do not include multiple
blanks.

 –

Dynamically filled list: SELECT StateWording FROM X_CS ORDER BY StateWording
StateFormatString Text State-specific formatting, overriding FormatString defined in

the character definition. Compare Char.FormatString for
example values.

 –

Index name: Attributes & index properties
PrimaryKey: StateID; Language (Primary key; Unique values)
StateID: StateID (Duplicates OK)
Relation type: Attributes involved
Cascading updates & delet. CS.StateID ↔ CS_Translation.StateID

G. Hagedorn Information model for DiversityDescriptions 1.9 347

Attributes and indices of the entity 'MOD'
Modifier wordings for categorical or quantitative data.
Name Type Description / Default value & validation Rqrd./Index
Usage Text Type of characters for which the modifier is

applicable, e. g., General colors, Frequency of
occurrence.

 I

Dynamically filled list: SELECT Usage FROM MOD GROUP BY Usage ORDER BY
Usage

Modifier Text Modifier wording for categorical or quantitative data,
e. g., “mostly”, “usually”, “rarely”.

 I (P)

Reliability Byte+ Influence of modifier on data coded through
categorical/quantitative char. states. More (>5) or
less reliable (<5). Default value: 5.

 –

Values restricted to: (see list shown for CHAR.Reliability)
MisinterpretationMarker Boolean If set to true, the state to which this modifier is added

is marked as being present only by misinterpretation
of structure (phylloclade as leaf) or state (rough
spore surface as smooth). Default value: 0

 –

Postfix Boolean Checked = output after the character state wording,
unchecked = in front of it.

 –

UseBlank Boolean Checked = blank is added between the modifier
wording and the item data text, else modifier added
compress. Default value: True

 –

Operator Byte+ >0 = Override operator, the normal operator between
states is omitted when this modifier is encountered,
e. g., to insert AND where normal operator would be
OR. Default value: 0. Validation rule: (>-1 And <4) Or
5

 –

Values restricted to: 0 NONE
1 OR
2 AND
3 TO
5 WITH

Notes Text Internal notes. –
LowerFreq Single The lower border of the frequency range, for freq.

modifiers only. Validation rule: (≥ 0 And ≤ 1) Or Is
Null.

 –

UpperFreq Single The upper border of the frequency range, for freq.
modifiers only. Validation rule: (≥ 0 And ≤ 1) Or Is
Null.

 –

Index name: Attributes & index properties
Modifier: Modifier (Primary key; Unique values)
Usage: Usage (Duplicates OK)
Relation type: Attributes involved
Cascading updates & delet. MOD.Modifier ↔ DESCR.Modifier
Cascading updates & delet. MOD.Modifier ↔ MOD_Link.Modifier
Cascading updates & delet. MOD.Modifier ↔ MOD_Translation.Modifier

348 Information model for DiversityDescriptions 1.9 G. Hagedorn

Attributes and indices of the entity 'MOD_Translation'
Modifier wordings, translations into multiple languages.
Name Type Description / Default value & validation Rqrd./Index
Modifier Text Modifier wording. Foreign key linking to _MOD. In current

language!
 I (PM)

Language Text Language of the translation. I (PM)
ModifierTranslation Text Translation of modifier wording. –
Index name: Attributes & index properties
Modifier: Modifier; Language (Primary key; Unique values)
Relation type: Attributes involved
Cascading updates & delet. MOD.Modifier ↔ MOD_Translation.Modifier

Attributes and indices of the entity 'MOD_Link'
Links between characters and modifiers (n : m table).
Name Type Description / Default value & validation Rqrd./Index
CID Integer Character ID to which the modifier is applicable. I/I (PM)
Modifier Text Modifier wording for categorical or quantitative data, e. g.,

“mostly”, “usually”, “rarely”.
 I (PM)

Index name: Attributes & index properties
CID: CID (Duplicates OK)
Modifier: Modifier; CID (Primary key; Unique values)
Relation type: Attributes involved
Cascading updates & delet. CHAR.CID ↔ MOD_Link.CID
Cascading updates & delet. MOD.Modifier ↔ MOD_Link.Modifier

Attributes and indices of the entity 'DEP'
Dependent (= inapplicable) characters for each character state.
Name Type Description / Default value & validation Rqrd./Index
CID Integer Controlling character ID. I (PM)
CS Text Controlling character state. I (PM)
InapplicableCID Integer CID of dependent character, i. e. inapplicable for any item

where current CID/CS combination is used.
 I/I (PM)

Index name: Attributes & index properties
CID: CID; CS; InapplicableCID (Primary key; Unique values)
InapplicableCID: InapplicableCID (Duplicates OK)
Relation type: Attributes involved
Cascading updates & delet. CHAR.CID ↔ DEP.InapplicableCID
Cascading updates & delet. CS.CID ↔ DEP.CID; CS.CS ↔ DEP.CS

G. Hagedorn Information model for DiversityDescriptions 1.9 349

Attributes and indices of the entity 'ITEM'
Defines header to individual descriptions, i. e. item, object, specimen, class, taxon, etc.
Name Type Description / Default value & validation Rqrd./Index
IID Long Item ID. I (P)
ItemName Text Name or description of item (incl. taxon authors if

necessary), link to taxonomic subsystem.
Validation rule: Not (Like ' %' Or Like '% ' Or Like '% %').
Validation message: Do not start or end with a blank. Do
not include multiple blanks.

 I

ItemWording Text Natural language descript.: Wording to be used instead of
ItemName. Validation rule: Is Null Or Not (Like ' %' Or Like
'% ' Or Like '% %'). Validation message: Do not start or end
with a blank. Do not include multiple blanks.

 –

Notes Memo Item notes. Validation rule: Is Null Or Not (Like ' %' Or Like
'% ' Or Like '% %'). Validation message: Do not start or end
with a blank. Do not include multiple blanks.

 –

Abundance Single Abundance, relative importance (or weight) of item, 1-10.
Default value: 5. Validation rule: (≥ 0 And ≤ 10) Or Is Null.

 I

Values restricted to: Code Description
0 ignore
1 very low
2 low
3 below average
4 slightly below average
5 standard (default value)
6 slightly above average
7 above average
8 high
9 very high

CollUnit Text Unit code in specimen collection, link into collection
subsystem. (Not Defined In DELTA!)

 I (N)

LitRef Text Literature reference (user-readable text form). (Not Defined
In DELTA!)

 I (N)

LitKey Long Literature reference (numeric link into literature reference
subsystem). (Not Defined In DELTA!)

 I (N)

LitRefDetail Text Reference detail, like page(s) of interest, specific figures,
etc.

 –

ItemID Autonum Immutable unique number identifying an item (candidate
key). Not exported to DELTA! Semantics are similar to IID,
which, however, is exported to DELTA and requires
renumbering after deletions.

 I (U)

Index name: Attributes & index properties
Abundance: Abundance (Duplicates OK)
CollUnit: CollUnit (Duplicates OK; Ignore Nulls)
IID: IID (Primary key; Unique values)
ItemID: ItemID (Unique values)
ItemName: ItemName (Duplicates OK)
LitKey: LitKey (Duplicates OK; Ignore Nulls)
LitRef: LitRef (Duplicates OK; Ignore Nulls)
Relation type: Attributes involved
Cascading updates & delet. ITEM.IID ↔ DESCR.IID
Cascading updates & delet. ITEM.ItemID ↔ RSC.ItemID

350 Information model for DiversityDescriptions 1.9 G. Hagedorn

Attributes and indices of the entity 'DESCR'
Description data for each item.
Name Type Description / Default value & validation Rqrd./Index
IID Long Item ID. I/I (PM)
CID Integer Character ID. I (PM)
Modifier Text Modifier wording for categorical or quantitative data, e. g.,

“mostly”, “usually”, “rarely”. Validation rule: Is Null Or Not
(Like ' %' Or Like '% ' Or Like '% %'). Validation message:
Do not start or end with a blank. Do not include multiple
blanks.

 –

CS Text Character state code. Usually pos. integer number or
special codes for variable/unknown and for statistics (mean
etc.).

 I/I (PM)

X Double Numeric value, defined by CS. I (N)
TXT Memo Text data. Validation rule: Is Null Or Not (Like ' %' Or Like

'% ' Or Like '% %'). Validation message: Do not start or end
with a blank. Do not include multiple blanks.

 –

Notes Memo Notes and additional information, included in natural
language item descriptions. Validation rule: Is Null Or Not
(Like ' %' Or Like '% ' Or Like '% %'). Validation message:
Do not start or end with a blank. Do not include multiple
blanks.

 –

SEQ Long Sequence of character states for the item. I
Table validation rule: (Not IsNull(TXT) And IsNull(X) And CS='TE') Or (IsNull(TXT) And

(IsNull(X) Or Not IsNull(X) And Not IsNumeric(CS)))
Table validation text: You may not enter data in both TXT and X, use only one of them! To

enter TXT data, use CS='TE', to enter numeric data use the appropriate
CS attributes.

Index name: Attributes & index properties
CID: CID; CS; IID (Primary key; Unique values)
CS: CS (Duplicates OK)
IID: IID (Duplicates OK)
SEQ: SEQ (Duplicates OK)
X: X (Duplicates OK; Ignore Nulls)
Relation type: Attributes involved
Simple relation (no integrity) CHAR.CID ↔ DESCR.CID
Cascading updates & delet. CS.CID ↔ DESCR.CID; CS.CS ↔ DESCR.CS
Cascading updates & delet. ITEM.IID ↔ DESCR.IID
Cascading updates & delet. MOD.Modifier ↔ DESCR.Modifier

Attributes and indices of the entity 'RSC'
External resources stored as files or URL, e. g., illustrations for characters/items.
Name Type Description / Default value & validation Rqrd./Index
ItemID Long ID of associated item (optional). This refers to ItemID, not

IID!
 I (N)

CharID Long ID of associated character (optional). This refers to CharID,
not CID!

 I (N)

StateID Long ID of associated character state (optional). This refers to I (N)

G. Hagedorn Information model for DiversityDescriptions 1.9 351

Attributes and indices of the entity 'RSC'
External resources stored as files or URL, e. g., illustrations for characters/items.
Name Type Description / Default value & validation Rqrd./Index

StateID, not CS!
Role Text Roles the resource is intended for: I = Icon, S = Selector

(displayed directly, e. g., to select a state), D = Definition
(usually displayed only as thumbnail image or link for
further information). Default value: “S”. Validation rule: In
(“I”, “S”, “D”)

 –

Values restricted to: Code Label Description
I Icon Small image; usually not informative enough to make a choice

without a text label. Only a single resource per item/char./state
should be defined as icon.

S Selector Medium-sized and sufficient to make a selection without text.
Multiple resources per item/char./state may have this role.

D Definition Detailed supplementary information used to define an item, char., or
state.

A Association Associated information that is considered useful to relate.
ItemUsage Text Usage of resource in the context of items (including natural

language descriptions). Usage is especially relevant if both
Item and CharIDs are defined, but resource is relevant for
entire item (e. g., habit). Validation rule: Is Null Or In
(“1”,”2”,”3”)

 –

Values restricted to: Code Label Description
1 Always Always include resource (especially for character in char. definition,

for item in natural language report)
2 Desirable It is desirable to include resource if space permits (e. g., in web

forms, in addition to usage “always”)
3 Secondary Resource of secondary relevance (e. g., in web forms on request; in

case of characters: e. g., state resources not illustrating character as
a whole)

CharUsage Text Usage of resource in the context of items (especially
character definition in print or web form). Usage is
especially relevant if also Item or StateIDs are defined, but
resource is relevant for entire character as well. Validation
rule: Is Null Or In (“1”,”2”,”3”)

 –

Values restricted to: (see values for ItemUsage above)
Caption Memo Caption for the resource, e. g., a text to display while

showing an illustration or a video.
 –

Language Text Language of the translation. –
Notes Memo Internal notes (perhaps also formatting commands for

INTKEY).
 –

Resource Text Filename of illustration (photo/drawing/graph) or other
media resources (see ResourceDefaultPath / DefaultURL in
table _PROPERTY for global paths).

 I

ResourceID Autonum Media resource ID (any of item, char, or state IDs may be
missing)

 I (P)

DisplayOrder Long A positive number that can be used to define the sequence
in which multiple resources are displayed. Default value: 0

 –

Index name: Attributes & index properties
CID: CharID (Duplicates OK; Ignore Nulls)
CS: StateID (Duplicates OK; Ignore Nulls)
IID: ItemID (Duplicates OK; Ignore Nulls)
Resource: Resource (Duplicates OK)
RID: ResourceID (Primary key; Unique values)

352 Information model for DiversityDescriptions 1.9 G. Hagedorn

Attributes and indices of the entity 'RSC'
External resources stored as files or URL, e. g., illustrations for characters/items.
Name Type Description / Default value & validation Rqrd./Index
Relation type: Attributes involved
Cascading updates & delet. CHAR.CharID ↔ RSC.CharID
Cascading updates & delet. CS.StateID ↔ RSC.StateID
Cascading updates & delet. ITEM.ItemID ↔ RSC.ItemID

Attributes and indices of the entity 'PROPERTY'
General header information about the project.
Name Type Description / Default value & validation Rqrd./Index
PropertyName Text The name of the project property (do not change!). I (P)
TextValue Memo Text information. –
DateTimeValue Date/Time Date or time information, e. g., of last update. –
NumericValue Double Numerical information, stored as real number. I (N)
Language Text Language of a property translation, e. g., for project title.

Default value: 'en'
 –

Index name: Attributes & index properties
NumericValue: NumericValue (Duplicates OK; Ignore Nulls)
PropertyName: PropertyName (Primary key; Unique values)

Attributes and indices of the entity 'CurrentLanguage'
Definition of a single language as the current working language, determines which language is
displayed in editing forms, reports, etc. The table supports only a single record!
Name Type Description / Default value & validation Rqrd./Index
ID Long ID (restricted to a single record, ID must always be 1!). Default

value: 1
 I (P)

Language Text 2 character ISO language code. –
Index name: Attributes & index properties
PropertyName: ID (Primary key; Unique values)

Project Properties
The project properties (project metadata) are stored as name-value pairs in the table PROPERTY.
Although they are therefore not listed in the information model above, they form an important
part of the overall model of DiversityDescriptions. Implementing them as name-value pairs was
chosen to improve the extensibility of the model. Except for a rarely used title/heading directive,
the DELTA data exchange standard itself provided no meta-information about a project, not even
a version number. As a consequence, all project properties initially were application-specific and
evolved strongly with successive versions of DeltaAccess/DiversityDescriptions. The name-value
model supported this evolution with minimal refactoring.

The following tables list the project properties supported by DiversityDescriptions 1.9. The
first column informs about the intended status of the property:

G. Hagedorn Information model for DiversityDescriptions 1.9 353

R = required property considered generally useful (should be included in future data exchange
formats)

O = optional property considered generally useful (should be included in future formats)
A = optional application-specific properties (may be present in exchange formats through appli-

cation-specific extensions)
I = internal use in a database only, not used in file-based exchange format.

Two important properties that do not apply to all projects (ProjectEditors and ProjectVersion)
are considered required, but can be left empty. If no editor or version exists, these properties
must be present without a value, to identify the situation that positively no editor or version num-
ber exists.

Project objective and scope
A potential user needs means to learn more about a project and answer the questions: What is this
project about? Is it relevant for me? Possible properties are: Project title, subtitle, description,
abstract, cross reference to a project homepage on the internet, perhaps keywords and project
version (i. e. version of the descriptive data, relevant here to determine which the most recent
version available is). The following have so far been used in DiversityDescriptions:

 PropertyName Description
R ProjectName Short title < 20 characters, without blanks, period, colon, etc.
R ProjectTitle Title/long name of project (imported from & exported to DELTA Heading directive)
O ProjectDescription Description or short introduction to project
O ProjectComments Comments concerning the project (imported from and exported to DELTA Comment directive)
R ProjectVersion Version number or code for the project data set. DiversityDescriptions does not support

separate versions for character definition and item description yet.
O ProjectHomePageURL Main descriptive document about the project, project home page.
O ProjectIcon Path to a bitmap containing an icon or symbol for the project. The size should be between 16

x 16 and 64 x 64. Use the GIF-format, if the icon shall be used in a web interface.

Documentation of intellectual property rights
These properties provide a simple means to document intellectual property rights. In the case of
large projects additional, item-specific documentation is necessary to document which part of the
data set was prepared or edited by whom. In DiversityDescriptions this is supported only as free-
form notes.

 PropertyName Description
R ProjectAuthors Authors of the project character definition and item description data
R ProjectCopyright Copyright notice for the project character definition and item description data
R ProjectEditors Can be used together with ProjectAuthors or as an alternative. Appropriate if the data are collec-

ted by a larger group of scientists, some of which function as editors. Compare quality control
below.

O Acknowledgments Acknowledgement of significant contributions to the work by persons or organizations who are
neither authors nor editors.

Documentation of technical standards followed in data exchange format
The exchange format that is being used (name and version), possible with extra information if not
already defined by format, e. g., character set used, or text format coding (None / RTF / HTML)
used. In addition to the documentation of the exchange format, it is desirable to identify the appli-
cation name and version of the exporting application. This can be especially helpful, if different
applications interpret a standard differently or erroneously (which is likely to occur in the case of
a complex exchange format).

354 Information model for DiversityDescriptions 1.9 G. Hagedorn

 PropertyName Description
R FormatName The name of the information model used internally. Several applications may have agreed on a

common information model to simplify data exchange.
R FormatVersion The version number of DiversityDescriptions, e. g., “1.4”. DateTimeValue contains the date and

time at which the project was created.
R ApplicationName In a database: The name of the application which created the project and which has the right to

modify the definition (other, independent applications can have direct access to the data base
and may have the right to modify item descriptions, but not the character definition).
In a file based exchange format: The name of the application from which the data were exported.

R ApplicationVersion Version of application identified by ApplicationName
R CharSet The character set used to store/export the data, e. g., Unicode, ANSI (= Windows 3.1/95/98/NT),

IBM-OEM (= DOS-'ASCII'), ISO-Latin 1, HTML character entities ('Ä' = 'Ä' etc.). This prop-
erty is only necessary, if the exchange format is not specific about the character set to be used.

O CharFormatCoding The coding scheme used to encode character formatting (bold, italic, etc.) in various wording
fields. Possible values are: NONE, BASIC, HTML, XML, CSIRO, RTF. BASIC supports a limited
number of basic HTML/XHTML tags. HTML refers to full HTML, i. e. no conversions are applied
any more. The old proprietary typesetting coding scheme of the CSIRO CONFOR program is
being phased out and replaced by an RTF variant (termed “CSIRO” here). DiversityDescriptions
currently uses a 6-part code separately for ItemWording, HeadingWording, CharWording (incl.
StateWording), CharNotes, ItemDescription Text and ItemDescription Notes. Example: “BASIC;
BASIC; HTML; BASIC; BASIC; NONE;”.

Internal application settings (exported)
These properties are written into export files, but can be ignored if the data exchange occurs be-
tween different applications. However, if the same application (of the same or a later version)
imports a data set, many specialized settings are desirably to be maintained. Examples are
preferences for analysis, natural language reporting, or HTML form creation, or the date of
export and internal information about the source project that was exported.

 PropertyName Description
 Saved preferences:
A ExportExchangeFormatFile File name of the most recent export to an exchange format.
A ExportExchangeFormatName The preferred or most recently used export format. Examples: see Import-

ExchangeFormatName below
A ExportExchangeFormatVersion The version associated with ExportExchangeFormatName
A ExportExchangeFormatDate The date of the most recent export to an exchange format
A Options_ToForm_Default Saved options/parameters of the HTML form generation process.
A Options_ToNat_Default Saved options/parameters of the natural language item description process.
 Information about origin of project:
A ImportExchangeFormatFile Name of the file from which the data were originally imported. For many appli-

cations the file name will be significant (NEXUS, DELTA as used by Pankey/
Pandora, etc.). In the case of DELTA/CONFOR compatible files, the file
names are always the same (chars, items, specs, etc.). Storing the full path,
may convey the necessary information in these cases.

A ImportExchangeFormatName The format used when the data were originally imported using an exchange
format. Examples: Nexus or DELTA. Not used when created directly inside
the application.

A ImportExchangeFormatVersion Examples: 2 for Nexus 2, 1 for Nexus versions before Nexus 2 (even though
no number was defined at that time)

A ImportExchangeFormatDate Date/time on which the import occurred. (Compare also the internal properties
ExportExchangeFormatName / Version / Date)

A ImportExchangeSkippedDirectives Text of all unrecognized information in the import file (e. g., DELTA directives
that could not be processed.

A ImportExchangeWarnings The text of the warnings displayed by the import procedure after import
A CopyOfCharProject Source of character definition if project was created by copying (with or with-

out subset restriction) from another project
A CopyOfItemProject Source of item definition/data if project was created by copying (with or with-

out subset restriction) from another project

G. Hagedorn Information model for DiversityDescriptions 1.9 355

 PropertyName Description
 If project is a subset of/link to another project:
A SubsetCharBaseProject Applicable to character subsets: The name of the base project of which the

current project is a subset.
A SubsetItemBaseProject Applicable to item subsets: The name of the base project of which the current

project is a subset.
A SubsetCharRestriction Applicable to character subsets: The definition of the subset, either a dynamic

where-clause or a list of ID numbers to be included. (Only used in the ex-
change format, not as a project property in the database.)

A SubsetItemRestriction Applicable to item subsets: The definition of the subset, either a dynamic
where-clause or a list of ID numbers to be included. (Only used in the ex-
change format, not as a project property in the database.) [NOTE: The dis-
tinction between dynamic and static subsets could either be evident from the
form of the subset restrictions above, or could alternatively be explicitly stated
in a separate project property.]

A SubsetIncludeNewChars Applicable to character subsets: characters added to the base project are
automatically included in the subset (values: Yes, No = default).

A SubsetIncludeNewItems Applicable to item subsets: characters added to the base project are auto-
matically included in the subset (values: Yes, No = default).

Internal application settings (not exported)
The property mechanism is also used to store internal information that is not exported, like infor-
mation about recent exports, the status of compilation for identification, local settings about the
path of the preferred browser, the default publishing or image resources path/URLs.

 PropertyName Description
I IdentifyLastCompilation Date, perhaps state of project when the project was last compiled to be used for identification

purposes.
I LastBackup Date and file name of last backup to a backup file
I LastExport Date and file name of last export, e. g., to a DELTA or NEXUS file
I LastRestore Date and file name of last restore from a backup file
 External resources and paths:
I ResourceDefaultPath Default path if no specific pathname is given; refers to Resource attribute of _RSC
I ResourceDefaultURL As above; alternative path used for internet access; should point to identical resources
I ExternalBrowser Path and application name of external browser to display URLs. Example:

“C:\programs\Netscape\netscape.exe”
I DefaultPublishingPath Default folder to write reports and exports into. If missing, the current directory in which the

project database resides is assumed.
I DefaultPublishingURL Default folder to write reports and exports into. If missing, the current directory in which the

project database resides is assumed.

Note: Several additional aspects were planned for DiversityDescriptions, but have not been im-
plemented in the versions published so far. These are:
● Documentation of quality control methods and standards. The existence of an editor under

intellectual property rights (see above) is only a secondary indication that a quality control
process has taken place. Ideally, this process should be documented in further detail. As long
as no standards are generally accepted in the systematic biology community (where GLP =
good laboratory practice standards are rarely used), a free text documentation probably serves
this purpose best.

● Documentation of standards followed in the character definition. In the future it will be
increasingly important to define standard character definitions. A standard character definition
can be used (a) in its entirety, (b) only in part but unchanged, or (c) with some characters
modified. It is planned to provide mechanisms to document the adherence to standards on a
character-by-character basis as part of the character definition. However, some information
will be global and it may thus be desirable to document it here.

356 Final Discussions G. Hagedorn

Statistical measures in DiversityDescriptions
The DiversityDescriptions model differs substantially from DELTA in respect to the handling of
quantitative measurements and their aggregation methods (statistical measures). The DELTA
standard defines the following attributes for numerical characters: Central value, a lower limit of
a range, an upper limit of a range, a minimum, and a maximum value. These are expressed as a
single string in the following format: “(” Minimum “-)” Lower range limit “-” Central value “-”
Upper range limit “(-” Maximum “)”, where Minimum, Maximum, and either Central value or
both range limits may be missing. The semantics of the central value (e. g., single measurement,
mean, mode, or median) and the two range limits (e. g., mean ± standard deviation, a 95% confi-
dence interval, a human estimate of what is “typical”, etc.) cannot be defined in DELTA.

DiversityDescriptions defines statistical measures (originally called “numerical or statistical
attributes” in the DeltaAccess / DiversityDescriptions documentation, Hagedorn 1999a) similar to
character states of categorical characters. The set of measures used in DELTA is called the
“Standard or Minimal set” in DiversityDescriptions. In principle, however, any desired statistical
measure can be used in DiversityDescriptions. For certain analytical or report-generation purpos-
es a longer list of statistical measures receives special treatment. These are predefined as an “Ex-
tended set of numerical attributes” (Table 60, selectable during import of a DELTA file or from a
pick list in the character state subform).

Upon export from DiversityDescriptions to DELTA, all ranges, percentiles, or confidence in-
tervals must be converted to unspecified ranges, and the distinction between mean, median, etc.,
will be lost. The sample size N and other extra attributes can only be exported as comments.

Table 60. Statistical measures recognized by algorithms in DiversityDescriptions.

Symbol Description Symbol Description
Min Minimum value +SD Range: mean plus 1 standard deviation
-Low Lower value of unspecified range -SD Range: mean minus 1 standard deviation
Mean Mean (average) -CI 95 Range: Lower limit of 95% confidence interval for mean
+High Upper value of unspecified range +CI 95 Range: Upper limit of 95% confidence interval for mean
Max Maximum value -CI 90 Range: Lower limit of 90% confidence interval for mean
Median Median (2nd quartile) +CI 90 Range: Upper limit of 90% confidence interval for mean
Mode Mode +Q90 Range: Upper limit of 90% interval (= 95% percentile)
SD Standard deviation of sample (df = n-1) -Q90 Range: Lower limit of 90% interval (= 5% percentile)
SE Standard error of mean +Q80 Range: Upper limit of 80% interval (= 90% percentile)
Val Single value (i. e. sample size N=1) -Q80 Range: Lower limit of 80% interval (= 10% percentile)
N Sample size +Q50 Range: Upper limit of interquartile range (= 3rd quartile)
 -Q50 Range: Lower limit of interquartile range (= 1st quartile)

8. Final Discussions
The present thesis aims to reassess the position of descriptive data in the context of biodiversity
information frameworks and to reanalyze the requirements for a general information model for
descriptive data. The goal is a model that is not focused on a specific organismic group or pur-
pose, but truly suitable for the biodiversity of organisms and the corresponding diversity of
methods to study them. Towards this goal several contributions are presented, which approach
the topic from different angles. Much of the discussion is presented throughout the work, and
some notes on the “Scope, motivation, and constraints of the current work” have already been
given on p. 15, but an additional discussion is in this section.

G. Hagedorn Final Discussions 357

8.1. A progression of information models
It was found unavoidable to approach the subject both from a fundamental angle and from a
practical angle of implemented or proposed models. The diversity of implemented and proposed
models, and often the insufficient information on existing models made it difficult to achieve a
fully consistent treatment of individual topics, but restricting the view to the study of systems,
one may distinguish the following layers in the thesis:
■ A background of DELTA and NEXUS, the classical exchange formats for descriptive data.
■ Implemented and proposed systems trying to improve on these (e. g., New DELTA, Lucid, Di-

versityDescriptions). Of these, DiversityDescriptions, an original contribution of the author, is
documented in detail in this thesis.

■ Alternative proposals investigating a strongly different approach than DELTA, especially
Nemisys / Genisys (p. 21) and the Prometheus description model (p. 21).

■ The development of a new XML-based data exchange format for descriptive data (SDD).
Although SDD is not documented in detail in this thesis, the goals and perspective of the SDD
development may help to understand the choice of requirement analysis topics presented in
this thesis. SDD attempts to reconcile various purposes of descriptive data (e. g., diagnosis and
identification, phylogenetic and other analyses), and serve various existing applications.

The goal of broadening the perspective and analyzing the requirements for a general information
model is a dominant topic in this thesis; it is discussed further below in the section “Results of
requirement analyses” (p. 361).

Background of DELTA and NEXUS
DELTA has been the prevalent format for descriptive data for natural language descriptions and
identification purposes for several decades. None of what DELTA successfully and often prag-
matically achieves was to be repeated here. However, several issues with DELTA lead to a need
to redefine future concepts and exchange formats:
■ The format of DELTA has some technical limitations making it difficult to parse and extend,

which could be easily addressed by creating a close analogue of DELTA in xml as proposed
in the first XDELTA drafts (Dodds 1999). XDELTA never was widely used, because most
members in the community desired a more substantial revision of DELTA.

■ DELTA is designed more as a programming language, providing processing commands, than
as a data exchange format. The DELTA standard in the narrow sense (Dallwitz & Paine 1999,
2005) is limited to five data directives (Character list, Character types, Item descriptions, De-
pendent characters, Implicit values) plus four data set metadata directives (Number of charac-
ters/states, Maximum number of items/states). However, The CSIRO DELTA program suite,
includes over 170 Confor directives (Dallwitz & al. 2000a) and over 70 Intkey directives
(Dallwitz & al. 2000b) supporting the actual functionality. Some of these are clearly program-
specific processing instructions, while others contain general data or metadata that could be
used by a wide variety of processors. The exact border is often difficult to establish, in the
author’s estimate 65 Confor and three Intkey directives should be considered part of a data ex-
change standard.

■ Despite this wide array of functionality, several deficits had been analyzed over time, requir-
ing some fundamental changes in DELTA which were proposed as “New DELTA” (p. 20).

Thus, a simple and successful core system existed, but it had somewhat outgrown its original
design goals. A redesign and reconsideration of the assumptions was considered necessary.

The NEXUS format (p. 18) is at least as widespread as DELTA, although largely limited to
phylogenetic analysis purposes. It has a slightly better syntax than DELTA, enabling extensibil-
ity. The fundamental features of NEXUS for storing coded data are largely a subset of what

358 Final Discussions G. Hagedorn

DELTA supports. However, many advanced features for special phylogenetic analysis methods
are provided; these have not been studied in the present analysis.

DiversityDescriptions
The relational entity-relationship model for DiversityDescriptions is an evolutionary step based
on DELTA. This model is documented here, forming a major result of this thesis (“Information
model for DiversityDescriptions 1.9”, p. 322).

DiversityDescriptions attests that it is possible to translate the “processing-instruction-model”
of DELTA into a relational information model. The relational model is tested and successfully
solves the problems that the CSIRO DELTA programs address. In the context of a requirement
analysis it serves as a baseline, translating the information items identified in over 25 years of
DELTA development into a form that can be – perhaps – easier studied.

Among all the models considered in this thesis, the DiversityDescriptions information model is
unique with respect to depth of supporting the DELTA language in the broad sense (i. e., includ-
ing directives used by the CSIRO suite of DELTA programs). Clearly this is difficult to prove,
since many important databases are yet undocumented (e. g., Biolink, p. 22; ActKey, p. 20 and
Fig. 140, p. 254) or – due to commercial or patent issues – even unlikely to become documented
(ALICE, p. 22, FRIDA, p. 22). One major DELTA-related database model (DELIA, p. 19) may
support even more DELTA directives than DiversityDescriptions. The precise extent of DELTA
support is difficult to assess, because no documentation of the DELIA data structures has been
published (M. Choo, pers. comm.) and the software uses a proprietary or encrypted database for-
mat. However, it is clear from available documentation that DELIA has a different approach than
that of DiversityDescriptions. DELIA manages DELTA data only on the level of projects, relying
on external DELTA programs like CSIRO DELTA or CBIT Lucid for all detailed editing or ana-
lytical tasks. Unlike DiversityDescriptions, DELIA does not expose descriptive data as relational
tables, e. g., to perform external statistical analysis.

Only few relational databases including support for descriptions could be studied in detail. Of
these only Pandora (p. 19) provides DELTA import and export. Unlike DiversityDescriptions,
Pandora is a complete integrated database program, addressing issues of nomenclature, literature,
and synonymy, as well as descriptions. With regard to the latter, however, the difference between
the handling of DELTA by DiversityDescriptions and Pandora is that DiversityDescriptions has a
detailed information model corresponding and exceeding DELTA features, whereas Pandora
saves character data in a character × item table as a custom data type using DELTA formatted
“text fragments” (thus avoiding the handling of multiple states, statistical measures, free-form
text annotations, etc.). As a result, Pandora data can be easily processed by DELTA software, but
many questions like statistical analysis require custom-created code for the DELTA data type.
Among the non-DELTA enabled systems, TAXIS (p. 21) and AditKey (p. 21) supports compara-
tively simple character + state model with illustrations (AditKey supports in addition to multi-
access keys also authored branching keys, which are not available in DiversityDescriptions).

The development of DeltaAccess / DiversityDescriptions was an ongoing process while this
dissertation was prepared and helped to gain a new understanding of the problems involved in
structuring descriptive data. Several solutions that improve on DELTA are present in the Diversi-
tyDescriptions model:
■ Modifiers are introduced as a new terminology class. The need for some form of modification

was already recognized in the original DELTA publication (Dallwitz 1980), but free-form text
comments were considered sufficient. More structured forms have since been proposed (com-
pare p. 192;especially in “New DELTA” as “coded comments” and in CBIT Lucid as flags for
rare and misinterpretation). All these approaches are limited to very few, system-defined mo-
difiers. The new approach introduced in Hagedorn (1997) and elaborated in this thesis in the

G. Hagedorn Final Discussions 359

chapter “Modifiers” (p. 189), is to treat modifiers as a general form of descriptive vocabulary.
Similar to categorical states Modifiers form a flexible, user-extensible concept.

■ A more flexible system of handling statistical measures is introduced. Using a similar ap-
proach to modifiers, the small system-defined set of supported measures, widely varying from
application to application (see Table 31, p. 112), was replaced by a vocabulary-based, flexible,
and extensible system (see p. 356). DiversityDescriptions was the first descriptive tool to pro-
vide semantic definition for aggregated statistical value, including expressiveness about the
lack of semantic knowledge in legacy data. This fills one of the requirements for a semantic
framework for descriptions (Lebbe & Vignes 1998).

■ The handling of multilingual data sets is supported. In DELTA “shadow copies” of the entire
terminology-files had to be maintained (requiring manual synchronization if order was
changed or new characters or states were created). As presented in Fig. 216 (p. 112), transla-
tions are now restricted to language-sensitive attributes and an unlimited number is supported.
Changes in terminology no longer pose a problem.

■ DELTA supported character and item subsets for report-generation purposes alone. By bas-
ing subset and filter features on views that may be used instead of the base tables, these can be
used for interactive and collaborative editing (see p. 334).

■ Character attributes to create natural language descriptions from structured descriptions are
improved (see p. 327).

■ Metadata for a data set (i. e., “project”) are provided, improving the ability of data exchange
without external documentation (see p. 352).

However, many shortcomings of the DiversityDescriptions 1.9 model may also be noted:
■ The physical model is already burdened with a number of legacy / backward compatibility arti-

facts (like duplicate key structures or an overly complex heading hierarchy; compare “Physi-
cal model for DiversityDescriptions 1.9”, p. 332)

■ No support for sample data (compare “Data recording levels (sample data)”, p. 89).
■ Very limited support for ontological concept hierarchies (through “character headings”).
■ The support for multiple languages is asymmetric, with a “current language” treated different

than the translations.
■ The modifier model is limited to a single modifier per statement, frequency and certainty

modifiers have no quantitative equivalents, and the linking occurs through natural language
strings rather than IDs.

■ No true support for interactions between multiple, independent projects (e. g., using a mixture
of terminology from project A and B in the descriptions in project C and D).

■ The metadata for projects are still relatively poorly structured.
■ In version 1.9 the support for machine-readable specimen or publication scope (p. 329) and

secondary classifiers (p. 215) is still poor. However, this problem will be addressed in the next
release (version 2.0, not documented here).

At some point, a redesigned information model will be required. As long as no substantial fund-
ing for this can be achieved, the DiversityDescriptions will be changed evolutionary. The current
tie to the Windows operating system has recently been reduced with the release of descriptive
data support in DiversityNavigator (Fig. 231).

360 Final Discussions G. Hagedorn

Figure 231. Java-based DiversityNavigator grid view editor for descriptive data (Neubacher &
Rambold 2007b). The underlying information model is DiversityDescriptions 1.9.

SDD
SDD could not be documented in detail here because of limitations of available time and space.
Despite that the present thesis evolved in parallel with the development of SDD and both have
profited from each other, SDD is not necessarily the solution to the requirements developed here.
The design process of SDD was complex, involving many practical considerations and issues of
compatibility with existing software and data sets. As a result, while many of the considerations
given in the current thesis are informed by SDD discussions and may help to understand deci-
sions taken in the SDD design, many of the more difficult, specialized or little understood issues
have not yet been addressed in SDD, or have been addressed in a form that cannot yet be consid-
ered satisfactory. For example, a major task in a future redesign will be the seamless integration
of further complex data types: molecular sequence and pattern data or quantitative color or shape
measurements (especially where it may aid automated identifications, compare p. 231). The pre-
sent work tries to show that no fundamental distinction exists between conventional and molecu-
lar data: both molecular and new morphological methods may have specific data type or manage-
ment requirements. In SDD, the traditional morphometrically oriented framework of the charac-
ter was transformed into an extensible character type (being extensible also in the sense of an
XML-schema). However, a completely integrated information model is still a task for the future.

SDD is the first model that allows descriptions to be associated with more than one defining
classification. It is applicable to both descriptions of taxa or specimen, supports secondary classi-
fier systems (like stage and sex), geographically specialized descriptions, and system-internal
(data editor) and external (publication, data source) attribution. It achieves this by rejecting the
traditional approach that a description must be nested in a single defining entity. Instead, it treats
descriptions as a first-class object that can be associated with all kinds of other objects, defining
identity or scope. By the same mechanism, SDD supports part-specific descriptions, i. e., the
scope of a description may be only a part of an organism, supporting the specific expressivity of
the Prometheus description model in this regard.

The flexibility of this approach can be seen when considering the relation between descrip-
tions and media objects like images, videos, or audio. Traditionally media objects have a voucher

G. Hagedorn Final Discussions 361

role, supporting descriptive information presented in separate observation or specimen data. With
the increasing information density of digital media, media objects are now more frequently the
object that is described or identified (see Media data, p. 60). SDD can handle this ambiguity with-
out problems.

SDD provides support for applications that inherit information along the taxonomic hierarchy
(p. 99), including character × taxon specific character guidance information. The latter informa-
tion is not structured as a modifier (“Reliability modifiers”, p. 213), but directly relates to charac-
ter variables rather than character data. This solves a long-standing problem that character gui-
dance information can be defined as character metadata (as in DELTA) only for small projects
with limited taxonomic diversity (see, e. g., Diederich & Milton 1993a).

Among the requirements for SDD was lossless, fully interoperable data exchange. An exam-
ple scenario for this is that data editing starts in one application specialized for handling natural
language descriptions. All data are then transferred to another application, testing their suitability
for interactive identification, and editing erroneous or missing data. When returning to the first
application, no information shall have been lost. Some support for this has been built into SDD;
the extent to which this can be exploited by applications remains to be answered in the future.

8.2. Results of requirement analyses
The requirement analyses performed in the present work aim to be a structured inventory of fun-
damental problems encountered when collecting and summarizing scientific descriptions of orga-
nisms. Although these analyses try to cover the conceptual space of descriptive data, a moderat-
ely even coverage could only be achieved in the use case analysis. This analysis tries to prepare a
framework for future specialized and software-engineering-oriented use case analysis that inclu-
des detailed analysis. The remaining analyses are strongly influenced by current discussion in the
literature and specifically discussions brought up during the development of SDD.

The highly specialized analysis of identification methods was performed because identifica-
tion is one of the central applications of descriptive data. As a consequence many publications
and deal with identification methods, and it was not trivial to distinguish between presentational
or algorithmic aspects and aspects that need to be reflected in information models. A correspon-
ding analysis for the similarly relevant as well as complex topic of phylogenetic analyses is a task
for the future.

The majority of questions have been addressed in the fundamentals chapter. This analysis is
guided by a number of “lead questions” resulting from the development of SDD (see p. 17). Some
final thoughts or summaries are provided in the following to reflect the major results.

How abstract should be model be?

The required abstraction level is a function of the complexity of the problem domain. In section
4.4 (p. 42) the arguments for developing abstract systems based on data types and high-level se-
mantics are discussed. Given the diversity of biological organisms and methods to study them,
and given that software development resources are scarce, a fairly abstract model is generally
preferred (as in, e. g., DELTA, NEXUS, or SDD).

Are different models for individual and class descriptions needed?

In principle, descriptive data on individual objects differ from data on a set of individuals (i. e.
class). Each individual object must have an unambiguous state or attribute value (which may be
unknown, but not variable). No individual can have a component that is “present or absent”,
whereas a class can. Unfortunately, this philosophical distinction cannot be directly transferred to
individual organisms, because:

362 Final Discussions G. Hagedorn

■ Large parts of the description of an individual are truly descriptions of parts of the object,
which in turn can be repeated (leaves, flowers, spores, etc.). Thus a tree may have “elliptic or
lanceolate leaves” (see “Aggregation within individuals”, p. 93).

■ Even a single part can have a property pattern (see section “Pattern versus composition”,
p. 165) or gradient (see section “Spatial gradients”, p. 150).

■ Temporal (ontogenetic) developments may change the value of properties (e. g., “flowers red,
later blue”, see section “Change of object concepts through temporal development”, p. 162).

Thus only measurements of individuals at a single point in time, referring to parts that are neither
repeated nor involved in patterns or gradient structures, have the unambiguous property values
expected.

The Prometheus description model (p. 21) models the first part (multiple object parts) in de-
tail, expressing knowledge on composition as well as forming the basis for all data storage. This
could be a model to be extended to include the other sources of variation and polymorphism
within individuals. However, the resulting physical model is not fully documented in the publica-
tions so far, so that its complexity is difficult to assess. The complexity of a model including all
other possible causes for data aggregations within individuals as well need further studies. Fur-
thermore, the Prometheus description model does not support ambiguities and lack of informa-
tion on data quality, i. e., where only a range of confidence interval is given, but where the basis
for this aggregation is not known. Expressing such data is not in the scope of the model, Prome-
theus being explicitly designed as a model only for new data.

The analysis presented in this thesis shows that the level of the individual organism is not
identical with the concept of an individual observation. Although models like Prometheus have
some unique advantages in data analysis (for example they may constrain that certain parts can
only occur a single time), the majority of requirements seem to point towards a model supporting
a distinction between various levels of data sampling and data aggregation, rather than requiring
it as an a-priori condition before data can be stored. From the stand point of data management
and analysis, supporting individual observations (including “Linked observations”, p. 90) is more
relevant than a special data structure for individual organisms. The data aggregation methods
used within individual organisms and taxa are the same.

From this perspective, the distinction between a description of a class and an individual be-
comes metadata on the description. For example, the SDD model supports – through description
scopes – to inform that a given description is the exact description of one individual specimen.
However, the same scope mechanism may also be used to specify that the scope is a particular
part (e. g., a single leaf) of that specimen, or that the scope is the set of all “specimens studied”,
listing each specimen.

Which data types are required?

The analyses suggest that the categorical and quantitative data types are more fundamental than
the distinction between data on the nominal or ordinal, and interval or ratio, respectively. Further-
more, except for data relating to counts, all so-called “qualitative data” seem to be not “essential-
ly different”, but are categorizations of phenomena that may also be measured quantitatively. For
this reason, the frequently used term “qualitative data” is rejected, and “categorical data” – im-
plying a perspective of categorization – is preferred. With this perspective, the analysis of the un-
derlying “value space” that results in a categorization is studied, and an attempt for new concepts
to express the “Singularity, extension and connectedness of categories” (p. 53) is made.

The importance of free-form text (p. 56) is discussed. Unconstrained narrative text, if the only
form of expression (as opposed to an annotation or extension of other data types), is modeled as a
separate data type.

In the future, additional “Complex quantitative data types” (p. 59) need to be introduced for
digital recorded data. In the light of the growing importance of molecular data in recent years,
perhaps the most urgent question of extending data types is the question how to fully integrate

G. Hagedorn Final Discussions 363

descriptive molecular data with biochemical, anatomical, morphological data. Although some
thoughts for a subset of these data (sequence data) are collected (“Molecular sequence data”,
p. 57 and “Special aggregation cases”, p. 92), a deeper analysis of this problem was deliberately
postponed and is a major task for future studies.

The present work primarily establishes that no principal distinctions between conventional
and molecular data exist, and that similar differences between data types, aggregation methods,
and analysis and comparison methods exist for new forms of morphological data, such as digital-
ly recorded color or shape measurements.

It may be interesting to compare the kind of data types discussed here with those available in
standard object-oriented programming languages (C++, Java, .NET languages, Eiffel, etc.). These
are based on two primary concepts:
■ A generalization hierarchy (kind-of relations) provided through class inheritance (associated

with concepts like polymorphism). In principle, this hierarchy may be a tree (single inheritan-
ce languages like Java or .NET languages) or a directed acyclic graph (multiple inheritance
languages like C++ or Eiffel). The picture is slightly complicated by the fact that most single-
inheritance languages support interface classes. Although these do not enable inheritance of
methods or private data, they do support the polymorphic use of classes. One may say that in-
terface classes provide a secondary generalization hierarchy.

■ An object composition model (part-of relations) provided in the model through variables
typed to another class. No limitations are imposed on these relations (they may be cyclic).

In modern languages, the type system itself is part of the generalization hierarchy and may make
use of compositions (in collections, structures, etc.). The distinction between “data types” (p. 49)
and “properties” (as in character decomposition models) that was made in the discussion so far
has an analog in programming languages in the distinction between built-in data types (often with
special properties) and user-defined types (any classes). Although recently modern OOP lan-
guages try to reduce the visibility of these difference (by using similar language constructs to
address either built-in or user-defined data types and classes), the reason for this distinction
remains valid and is the same for descriptive information models: More fundamental data type
allow applications to rely on their behavior, thus opening opportunities to optimize the handling
of these. The basic types defined for descriptive data embed the essential information a processor
needs during statistical or phylogenetic analyses or identification. The semantic interpretation of
the domain-specific terminology can be built on top of this.

Interestingly, there is no equivalent in programming languages for the “develops-from” rela-
tion (ontogenetic or phylogenetic) commonly found in biology (see “Change of object concepts
through temporal development”, p. 162).

Use a character matrix or character state matrix model?

In “Categorical data: Character matrix vs. character state matrix” (p. 104) the fundamental con-
vertibility of the character matrix, character state matrix, and the list model is shown. The true
difference is what kind of information is recorded at which level. The existing character state
matrix model in Lucid needs some special rules to deal with unknown character information, and
as a result a general coding status model (p. 74) is more difficult to introduce in this model. Con-
versely, negative information of the form “the state has been considered, but did not occur in the
entity” is recorded currently only in the character state matrix, but not in existing character matrix
and character list models. With a static terminology, this is indeed redundant, but with evolving
terminologies, and perhaps initially imperfectly defined characters, this redundant information
can be valuable.

364 Final Discussions G. Hagedorn

How to handle quantitative values and statistical measures?

The examples given in Table 31 (p. 112) clearly show that the selection of a small set of statisti-
cal measures is somewhat arbitrary or at best strongly depends on the specific purpose of the
model. Using a rich vocabulary for univariate statistical measures (see “Quantitative data and sta-
tistical measures”, p. 110, and “Standard aggregation methods”, p. 85), introduced by Diversity-
Descriptions and elaborated in SDD, seems to be a powerful and flexible method that can easily
be implemented in existing database software.

How to handle original measurements and sample data?

A major result of the requirement analysis is that although the distinction between intra-individu-
al and inter-individual aggregation methods is weak, the handling of sample data (p. 89) does re-
quire special attention. In the case of quantitative data a specific form of the character data type is
required (storing only single measurements without support for statistical measures). Further-
more, sampling events (combined multiple measurements) have metadata and it is desirable to
preserve original recording order. Within a sampling event, linked observations on multiple char-
acters (p. 90) may occur, requiring another structural level of relating descriptive data.

How to handle the relation between broad and narrow concepts of character
states?

The relation between broad and narrow concepts may be interpreted as a tree-like hierarchy or as
a directed acyclic graph. The latter enables narrow categorical values to be generalizable to more
than one broader concept. In the chapter “Mappings within categorical data” (p. 68) it is argued
that the latter is desirable. It supports varying analysis perspectives, error tolerance during identi-
fication, and does not cause an undue burden to the user interface (in current descriptive data ap-
plications it suffices to display the DAG as a simple tree with duplicated branches). Furthermore,
it can be shown that the concept of relations between categorical states can be viewed as a special
application of the more general “mapping” between data representations of the same or different
data types.

How to handle character dependency (and whether two complementary
mechanisms (applicable-if, inapplicable-if) are necessary or desirable)?

The analysis of character dependency and current character applicability models (p. 76) could
resolve the seeming discrepancy between the desire to provide two alternative forms of applicabi-
lity (applicable-if and inapplicable-if) and the fact that these are indeed convertible (as re-analy-
zed in “Analysis of convertibility”, p. 80). The central points are the question of communication
with human users for revisions and error checking, and the aspect of evolving terminologies to
which new character states may be added after the original character applicability rules were
created.

Although highly general character dependency models may be elaborated, capturing quantita-
tive character-value correlations as well as total inapplicability, such deviations from the assump-
tions of character independence are usually analyzable from description and can only rarely be
used to improve data integrity. The most immediate need for a future improvement would be,
within the framework of character applicability rules, to extend the current models to provide for
quantitative characters as controlling characters. This would often allow using a single character
for the multiplicity of a structure (“number of part”) to also control presence of part. Current data
sets often require redundancy if they intend to use inapplicability rules. SDD does not support
this yet.

G. Hagedorn Final Discussions 365

Which DELTA features can be omitted or generalized?

A number of DELTA and New DELTA features can be generalized if data inheritance along the
lines of the taxonomic hierarchy is generally supported. The present analysis revealed that DEL-
TA supports two mechanisms (default or “implicit states”, p. 102 and “variant item”, p. 101) that
can be interpreted as a top-level and bottom-level inheritance mechanism and become redundant
with the introduction of general data inheritance.

A related example is the replacement of the top-level-only character-ranking metadata (DEL-
TA “reliability” and “weight” directives) with a mechanism supporting inheritance (independent-
ly of character values, see above).

Completely independently, a specific SDD decision was made to initially support no “item
abundance”, i. e., information how abundant an item is in a given region. Such information can
easily be stored in a normal character. The reason why item abundance (p. 276) is specially mo-
deled in DELTA is that it used as a weighting parameter for creating identification keys similar to
character-ranking metadata (see Authored character guidance”, p. 267). However, this weighting
is not necessarily related to abundance and further studies are necessary whether it is desirable at
all.

Should the traditional character concept (employed, e. g., in DELTA and NEXUS)
be followed or should a “character decomposition model” be embraced?

One of the most difficult analyses is perhaps the study of “character decomposition” (e. g., the
Nemisys / Genisys, p. 21, or Prometheus description model, p. 21, requiring separate object com-
position and property / property states generalization hierarchies). These models promise to embed
ontological knowledge into the data storage itself. However, as analyzed in the section “Descrip-
tive ontologies” (p. 131), a number of problems exist with applying ontologies to descriptive
data. The problems with distributing information on part multiplicity between ontological and
actual knowledge can probably be solved. In the Prometheus model the problem was studied ex-
tensively, but the solution is difficult to fully understand from the information published so far.

A major problem with the earlier Nemisys / Genisys was the limitation to the concept of “basic
properties” which were understood as fundamental and not extensible data types. Even for mor-
phological data these types show some degree of inconsistency (p. 62) and adopting this strategy
would have led to information models incapable of handling taxonomic groups where non-
morphological data are essential. The Prometheus model has already generalized this concept and
is more flexible in this regard. The original “basic properties” can still be seen as useful and prag-
matic categorizations, helping to organize or structure morpho-anatomical descriptive characters.
They should not be used for system building, however.

One of the major problems with all decomposition models is perhaps the “oscillation” of ter-
minology between property and object composition concepts. Many observable features can al-
ternatively be interpreted as belonging to the structural or property domain (patterns, surface
roughness, and pigment colors). Another problem that seems to be insufficiently understood are
the taxon-specific specializations of ontological concepts and how to deal with them.

Furthermore, the problems of recognizing parts in composition through properties and then
describing them through properties lead to difficulties. The philosophical problem behind this can
perhaps be studied in (a) “scales”: “color: green or white”, “thickness: 1 mm” versus (b) “white
scales”: “thickness: 1 mm”.

Despite the complexity of models such as Prometheus, these models capture only a portion of
the full dimensionality of descriptive data in biology. Prometheus records the spatial composition
of an individual at a single point in time with great detail, but can neither deal with the temporal
composition of individuals over their life span, nor with the variety of observation and measure-
ment methods required for many taxonomic groups. Interestingly, Germeier & Frese (2001),
coming from plant genetic resources have a completely different view on character decomposi-
tion than Nemisys / Genisys or Prometheus. Whereas the latter combine property and methodolo-

366 Final Discussions G. Hagedorn

gy into a single entity, “decomposing” only the part information, Germeier & Frese (2001) keep
property and part information combined, but desire to separate out the dimension of methodolo-
gy.

Even within a single ontology, many aspects of it are strongly guided by its design purpose.
As mentioned in the main text, the recently released plantontology.org-ontologies (Pujar & al.
2006, Ilic & al. 2006) are optimized for genetic studies and, as the authors acknowledge them-
selves, difficult to use or even unusable for descriptive data. Similarly, conflicting ontologies
may arise for the purpose of phylogenetic analysis (where all concepts shall fully satisfy homolo-
gy assumptions) and identification (where “operational homology” definitions that are recogniz-
able during the identification process are required).

Character models which combining object part, property, and observation methods (including
conditions and instrumentation) may be more adaptable to different interpretation as to whether a
measurable concept shall be considered a structural part or a property, and under which purpose-
guided ontology the data are to be interpreted. The section “Concept hierarchies” (p. 125) intro-
duces the alternative “concept hierarchy” proposal and compares it with character decomposition
models. The models primarily differ with respect to whether ontologies directly form the basis of
data storage, or whether an intermediate, operational concept called “character” (or perhaps “fea-
ture”) should be present, to decouple knowledge representation and storage from analysis, inter-
pretation, and evolving concept hierarchies (semantic ontologies).

Using concept hierarchies in combination with characters, multiple competing hierarchical
classifications of atomic characters are possible. This avoids arbitrary decisions of placing char-
acters in a required hierarchy. In the “feature path” in Prometheus a feature can only be found if
the path defined by the classification system used is known. It may be desirable to use a classifi-
cation system directly during identification, e. g., to ask for the size and shape of any spore if the
user cannot be expected to be able to differentiate spore generations.

The currently best solution proposed in this analysis is the character model, combined with
mechanisms to optionally analyze (and thus annotate) it as compositional and property hierar-
chies. This model has been pursued in the SDD process. It allows alternative hierarchical views
on the list of characters defined, but does not force decisions in cases where alternative concepts
apply equally well.

If the ongoing development of ontological techniques in information science allows for gen-
eralized rather than purpose-built ontologies, and if agreed and stable terminologies for at least
spatial and temporal compositions, properties, and methodology can be created in the coming
years, a more general form of “character decomposition model” based on object part, property,
method, and point in time may be desirable.

How to federate and modularize terminology as well as descriptions?

The discussion of federation and modularization aspects of descriptive terminology and data
(p. 180) can only be considered a first start. With increasing of use GUIDs and semantic web
technologies, new approaches are likely to emerge. When evaluating such technologies, however,
care should be taken to support the flexibility of local knowledge production of single research
scientists. By making complex and time consuming management procedures obligatory, a danger
exists that knowledge can only be adequately expressed through large and powerful institutions.
This may be detrimental to science in general, and the typically underfunded biodiversity re-
search in particular.

How can the terminology be kept concise, while supporting structured extensions
to the expressibility? Can “modifiers” contribute to this?

Describing bio-diversity in a structured way requires a correspondingly diverse vocabulary of
recordable concepts, observation, instrumentation, experimentation, and measurement methods.
Managing this descriptive diversity is not trivial. A major point is the need to keep the tool-speci-

G. Hagedorn Final Discussions 367

fic learning curve relatively shallow for the users of the system. Existing systems are a major
source for previous user experiences. DELTA and DELTA-like systems show that for moderately
complex groups a large number of characters are required and that it is difficult to work with
systems with several hundred characters.

Both “character decomposition models” (Nemisys / Genisys, Prometheus) and the “concept
hierarchies” (proposed here and in SDD) are an attempt to improve the manageability of charac-
ters, by supporting knowledge on generalization and composition to be usable to edit and query
descriptive information.

On the other hand, many existing systems already recognize the need to extend the expressiv-
ity offered by a fundamental variable + value structure with unconstrained (free-form, natural
language) text. Some formats designed for special analytical purposes (NEXUS for phylogenetic
analysis, Lucid for identification data) omit this extensibility, but these do not aim to be general
and primary knowledge repositories.

As shown in the chapter “Modifiers” (p. 189), much information presented in these free-form
text extensions actually comes from a constrained vocabulary and is analytically useful. A gen-
eral modifier mechanism providing a flexible and user-extensible vocabulary was first introduced
in DiversityDescriptions in 1997. It followed earlier proposals of related mechanisms in Lucid
and New Delta, which were limited to small sets of system-defined values. The topic of modifiers
is studied in detail here.

Modifiers can be seen as metadata on values and are related to the concept of modal logic in
philosophy.

How to handle secondary classifiers like sex or life cycle stages?

The analysis of “Secondary classification resulting in description scopes” (p. 215) remains some-
what inconclusive. It establishes that the problem is not adequately solved by the creation of
“pseudo-taxa” and that the number of potential secondary classifiers is more diverse than may
initially be expected. As a result, it is clear that a general solution is desirable rather than creating
special concepts for sex or stage. However, the exact form requires further analysis. The SDD
data exchange standard does make the decision to consider primary classifiers, indication of in-
formation source, geographical scope, and secondary classifiers on a single level, all being gen-
eralized to be the scope of a description. Whether this is ultimately satisfactory will be shown as
experience with the application of SDD grows.

Topics that require further analysis

In the fundamental analysis some topics are not addressed with the necessary detail. In addition
to phylogenetic analyses already mentioned above, this involves in particular
■ the creation of descriptive data in the context of “online monographs”,
■ the creation of natural language descriptions from structured coded descriptions,
■ the markup of legacy natural language descriptions to improve comparability and searchabil-

ity, and
■ aspects of multilingual data sets.
Some information on these topics are discussed on a more general level in the use case analysis,
see “Taxon pages” (p. 319), “Conversion of digitized data to coded descriptions” (p. 294; plus
“Natural language generation” on p. 327 in the “Logical model for DiversityDescriptions 1.9”),
“Digitization and markup of descriptions” (p. 293), and “Multiple languages or audiences”
(p. 282). See also the “Open aspects” (p. 322) of the use case analysis.

8.3. Description logic and unified systems
The present work discusses approaches to description rooted in biological tradition, computer and
information science, statistical analysis, and phylogenetic data analysis. Although some aspects

368 Final Discussions G. Hagedorn

of philosophy, logic, and mathematics are indirectly used insofar as they are embedded in current
software modeling and implementation approaches, a more fundamentally philosophical ap-
proach (based in logic, analytical philosophy, linguistic philosophy, etc.) is not presented. The
focus of this work is on solutions that can be implemented and managed using current software
and available resources.

However, a more rigorous philosophical framework (e. g., description logic) may offer addi-
tional insight into some of the problems discussed. Fundamental statements like:
■ The window of the house is green,
■ The round window of the house is green,
■ The dog is barking,
■ The black dog is barking,
■ The dog is probably frequently loudly barking,
correspond closely to some of the problems discussed (descriptions as properties of object parts,
which themselves are defined through properties and parts, Figs. 8-9, p. 37, problem of secondary
classifiers defining description scope, “Secondary classification resulting in description scopes”,
p. 215, “Modifiers”, p. 189). In this view a close relationship exists between properties, decompo-
sition into parts, description scope, and taxonomic hierarchy. From a biological viewpoint the
taxonomic hierarchy, because of evolution and phylogenetic history, is an essential and indepen-
dent concept in descriptions. For the methodology of description and identification, however, it
may lead to more consistent models to view it as accidental. In such a model, identifiable objects
may be parts of organisms, entire organisms, symbiotic associations, or even loose communities.
Descriptive knowledge of the world would be build incrementally by defining identifiable parts
that are then reused as properties and parts of compositions.

Two major problems are immediately recognizable. One is that rather than building analyti-
cally from parts, the human brain usually recognizes patterns on a high level. For example, one
may define a “table” as “three or more legs, flat surface”. A table with a single central leg, moun-
ted to a wall lacking legs, or a compact cube would be accepted as well. Perhaps a table is a sta-
ble, level flat surface raised above ground level. The example shows that normal recognition does
not proceed analytically, but rather as an instant recognition of a “table” pattern, from which
special cases are derived. A pattern-based approach has been formulated by Fortuner (1989b) for
the purpose of biological identification in the “promorph” proposal (see p. 238). Promorphs can
be understood as “corner stones” in the identification process, perhaps as patterns that are recom-
mendable to learn by heart. Without calling them such, they are often embedded in conventional
keys as the points where an initial key refers to separate subkeys. Often these points will coincide
with major taxonomic ranks, which conventionally are placed at such intuitively recognizable
entities. It is, however, unclear how to either combine or replace the approaches (DELTA-like
character / state models, p. 104, character decomposition models, p. 116) discussed in this these
with a “promorph”-system; this may be a fruitful area for future studies.

The second major problem is lack and uncertainty of knowledge in biological descriptive data.
This makes a consistently incremental knowledge system difficult. The fact that the concepts
used as building blocks in conventional descriptions are often only loosely defined, and inter-
preted in the knowledge of uncertainty has its roots in the incomplete knowledge of biological
species and character diversity. This makes it difficult to agree on an “axiomatic” system of buil-
ding blocks, that could be considered fixed and the “atomic” basis for comparison. However,
changing these building blocks may then invalidate the system. This problem is comparable to
the problems of schema evolution (e. g., “Static versus dynamic terminology models”, p. 45;
translation issues, p. 71. If a model no longer makes a distinction between terminological conven-
tions and descriptive data based on these conventions, controlling these issues may become con-
siderably more difficult. An essential requirement of a new system would be its ability to deal
with change, error, and insufficient knowledge. The inability of managing these problems is pro-
bably the major reason that attempts to create rule-based “expert systems” after initially promis-
ing results failed to serve through continuous improvements and corrections.

G. Hagedorn Final Discussions 369

8.4. Future relevance:
A proposal to record identification data

As a final outlook to the relevance of descriptive data a proposal may be made to document orga-
nism identifications in biodiversity research. A first step might be that where specimens in natu-
ral history collections are identified using computer-aided methods, the identification steps (using
any combination of multi-access keys and branching keys) could be converted to basic descrip-
tions and permanently stored as descriptive data. Not only would this automatically build a wealth
of descriptive data for general use without requiring additional investments from the taxonomists
doing the revisions. When the specimen is next used in a taxon revision (and perhaps re-identi-
fied), these data could be used to confirm the identification or they could help to understand what
taxonomic concept was used in the original naming process. This process is not used so far. With
the progress made in recent years in designing collection and description information models that
are intended specifically to interact with each other, the scenario may, however, soon become
reality.

The same principle could furthermore be applied to all data recording or publishing activities
that involve identifications of organisms, in taxonomy as well as applied fields like ecology,
pathology, medicine, biotechnology, etc. The deposition of voucher specimens for the organism
identified should clearly be called for (Agerer & al. 2000) wherever possible, but due to lack of
time and resources not doing so is the dominant practice in most areas of applied science dealing
with biodiversity. As a result, published property data (molecular, enzymatic, morphological,
etc.), geographical distribution data, or organism interactions (predator-prey, host-pathogen,
pollinator, etc.) are often not comparable because different taxonomic concepts have been used.

Assessing these concepts is extremely difficult. The Prometheus taxonomic model (“Prome-
theus I”, Pullan & al. 2000, Raguenaud & al. 2002) defines a taxon concept (i. e. taxon circum-
scription) as an enumeration of preserved specimens. This makes it applicable to taxonomic re-
visions, but not to applied biodiversity research, which contributes a large amount of biodiversity
information.

Another approach would be to cite the primary identification literature used to reach an identi-
fication result (e. g., a flora, fauna, or a specialized monograph) together with each taxon name.
The currently dominant practice of citing the taxonomic authority (i. e., the team of authors res-
ponsible for the nomenclatural priority of a name) essentially is an indirect citation of the type
specimen. However, usually only taxonomic revisions directly study type specimens. Most infor-
mation on organisms has to rely on published descriptions to compare and identify organisms
with taxon concepts. In these cases citing a concept reference would be far more relevant, espe-
cially since the taxonomic authority can usually be retrieved from the concept reference. Thus,
for an ecological or geobotanical study in Germany, it is considerably more informative to cite
“Thymus serpyllum sec. Rothmaler & al. 1985”, “Thymus serpyllum sec. Schmeil & Fitschen
1988”, or “Thymus serpyllum sec. Schmeil & al. 2006” – highlighting the strongly different cir-
cumscriptions – rather than citing “Thymus serpyllum L.”

Furthermore, although homonyms are a principal problem in taxonomic research, in the prac-
tice of applied biodiversity research they occur much more rarely. For example, in Germany three
major identification works for higher plants are commonly used (i. e., various editions of Ober-
dorfer 1983, Rothmaler & al. 1985, Schmeil & Fitschen 1988). Albeit occasionally differing in
their choice of accepted (or “correct”) name and frequently in their circumscription of taxa (taxon
concepts), the present author is not aware of a single case where they accept different homonyms.
In taxonomic groups where homonymy is more frequent, this is usually a result of a lack of taxo-
nomic revisions and, consequently, it is rare that competing current identification literature exists
at all. Consequently, citing a concept reference instead of a taxonomic reference requires the con-
sumer of the information only very rarely to remember taxonomic differences between names
with different authors.

370 Final Discussions G. Hagedorn

A few software applications at least support recording the identification literature used. Exam-
ples are Recorder 2000, a commercial software used in British nature surveys (http://

www.jncc.gov.uk/ species/ Recorder2000/ default.htm), or DiversityCollection (Hagedorn & Weiss
2002). However, no real tradition of citing identification concept references could so far be estab-
lished in biology. As a consequence, most taxon names in the literature have a taxon concept
which can be recorded (using the reference of the publication in which it appears), but cannot be
operationalized since the taxon circumscription and relations to other taxon concepts are com-
pletely unknown. The assumption that the citation of a taxonomic name together with the concept
reference is sufficient to manage taxon concepts (see, e. g., Yoon & Rose 2001 and Ytow & al.
2001) is erroneous, if no comparison operations can be established. Comparison operations have
been analyzed, e. g., in the MoreTax project (Berendsohn & al. 2003, Geoffroy 2003, Geoffroy &
Berendsohn 2003), but the practical problem of retrospective interpretation of taxon concepts
(Kennedy 2003) and mapping these concepts to each other is unsolved and most likely unsolv-
able.

However, even if a practice of citing identification references as concept references could be
established, this would provide only the necessary precondition to establish concept comparisons.
The problem of finding the resources to actually define the comparisons would remain. It is un-
likely that the diagnostic taxon descriptions of more than the most important and frequently used
diagnostic publications will ever be analyzed. This process first requires to interpret the natural
language descriptions (which are usually incomplete because mainly diagnostic characters are
mentioned) in terms of a coded terminology. Since it is unlikely that two descriptions match
totally (they may consider different characters diagnostic), the process then requires an assess-
ment how close a match between taxon concepts must be, to consider them still identical for the
purpose of analysis.

This process of identification, publication, and later “reverse engineering” the taxon concept
and circumstances of identification could be greatly simplified. If identification would already be
performed using a computerized process, the identification data could be stored in some form of
“IdentificationBank” (or “ID-Base”) and a citable accession code provided (see also the use case
diagram Fig. 177, p. 296).

IdentifyLife (IdentifyLife 2005) could, in addition to being a repository of identification key
data, become such an IdentificationBank.

Good scientific practice (and journal editors) might then require the publication of an identifi-
cation concept IDs, similar to the current requirement for accession codes for the (descriptive!)
nucleotide sequences submitted to GenBank, EMBL, or DDBJ. The identification concept ID
would then allow the retrieval of a documentation of the identification process, including both the
coded terminology IDs and the label representations in the language that was used. The latter
(and free-form text and note information viewed during identification) would be frozen to the
state at the time of identification. Furthermore, a documentation of the images or other media
resources used during documentation may also be valuable. In contrast to citing a published ref-
erence, an identification concept would provide not the full description, but only the parts that
were actually verified during identification.

In any case, such a documentation of identification concepts will allow a substantially im-
proved understanding of the relations between the taxon concepts in independent identifications.
Whether the analysis and comparison of concepts requires machines or humans depends on the
amount of coded terminology used (as opposed to free-form text) and whether a shared terminol-
ogy was used.

For taxa where the majority of characteristics can be studied in a voucher specimen (e. g., in
plants) this may still be inferior to a voucher specimen. However, the new procedure would not
necessarily replace voucher specimens. It would fill the gap where currently no information is
available at all. Furthermore, in taxa that are difficult to preserve or where essential characteris-
tics can only be studied in culture, this may be more valuable than preserving a dead voucher
specimen.

G. Hagedorn References 371

Although such use may currently be unrealistic in field studies, digital technology is progres-
sing fast, and in laboratory studies the use of digital identification and documentation tools would
already save valuable time for the researcher. An important feature in this context is the storage
of original descriptive observation data like individual measurements. These data should be
stored directly and the synthesized statistical summary information should be automatically cre-
ated from them.

9. References
Adit 2004. AditKey. A species identification and

key construction system. http:// www.adit.co.uk/

html/ aditkey.html. [Last modified 2004-09-26,
last retrieved 2007-04-16]

Agarwal, Gaurav; Ling, Haibin; Jacobs, David;
Shirdhonkar, Sameer; Kress, W. John; Russell,
Rusty; Belhumeur, Peter; Dixit, Nandan;
Feiner, Steve; Mahajan, Dhruv; Sunkavalli,
Kalyan; Ramamoorthi, Ravi & White, Sean
2006. First steps toward an electronic field
guide for plants. Taxon 55 (3): 597-610. [Pre-
print at: http:// herbarium.cs.columbia.edu/ pubs/

First_Steps_Toward_an_Electronic_Field_Guid
e_for_Plants.pdf, last retrieved 2007-04-20]

Agerer, Reinhard; Ammirati, Joe; Blanz, Paul;
Courtecuisse, Régis; Desjardin, Dennis E.;
Gams, Walter; Hallenberg, Nils; Halling, Roy;
Hawksworth, David L.; Horak, Egon; Korf,
Richard P.; Mueller, Greg M.; Oberwinkler,
Franz; Rambold, Gerhard; Summerbell, Rich-
ard C.; Triebel, Dagmar & Watling, Roy 2000.
Always deposit vouchers. Mycological Re-
search 104: 641-644; Nova Hedwigia 71 (3-4):
539-543; Mycorrhiza 10 (2): 95-97.

Alexander, Greg 2006a. SLIKS-Alike Interactive
Key Software (SAIKS). http:// galexander.org/

saiks. [Software version 2.1; page last modified
2006-11-16; last retrieved 2007-04-10]

Alexander, P. J. 2006b. Key to the Boechera of New
Mexico. http:// boechera.com/ keys/ nm/

boechera.html. [Last retrieved 2007-04-10]
Alexander, P. 2006c. Organ Mountains Flora. http://

organmountainsflora.com. [Last retrieved 2007-
04-10]

Allkin, R. 1989a. Introduction to ALICE. DELTA
Newsletter 3: 1-4.

Allkin, R. 1989b. ALICE and DELTA: where’s the
link? DELTA Newsletter 4: 1-3.

Allkin, R. 1996. The ALICE database system:
recent news. DELTA Newsletter 12: 21-23.

Allkin, R. & Bisby, Frank A. 1988. The structure of
monographic databases. Taxon 37 (3): 756-763.

Allkin, R. & White, R. J. 1988. Data management
models for biological classification. In: Bock,

H. H. (ed.), Classification and related methods
of data analysis. Elsevier: Amsterdam (NL),
653-660.

Ambler, Scott W. 2002. Agile modeling: Effective
practices for extreme programming and the uni-
fied process. John Wiley: New York (USA).

Ambler, Scott W. 2003a. The elements of UML
style. Cambridge University Press: Cambridge
(UK).

Ambler, Scott W. 2003b. Evolutionary database
development. http://www.agiledata.org/ essays/

evolutionaryDevelopment.html. [Last retrieved
2007-02-06]

Anagnostopoulos, I.; Anagnostopoulos, C.; Verga-
dos, D.; Loumos, V. & Kayafas, E. 2003. A
probabilistic neural network for human face
identification based on fuzzy logic chromatic
rules. MED’03 — The 11th Mediterranean
Conference on Control and Automation.
http://www.medialab.ece.ntua.gr/medialab/Pape
rs2003/2003-8/8.pdf. [Last retrieved 2005-05-
25; no longer available as of 2007-04-14]

Anonymous 1996. Welcome to PollyClave – a
multiple-entry identification key. http://

prod.library.utoronto.ca: 8090/polyclave. [Page
last modified 1996-10-10, last retrieved 2007-
04-14; linked identification interfaces show
software version 1.05, dated 1997-05-22.]

Ax, P. 1984. Das phylogenetische System. Gustav
Fischer, Stuttgart.

Ballew, Sharon & Pickering, John 2003. 20q XML
tags & file structure. http:// www.discoverlife.

org/ ed/tg/ Building_Web_Pages/ 20q_xml_tags.

html. [Last retrieved 2007-05-10]
Baral, H.-O. 1992. Vital versus herbarium taxono-

my: morphological differences between living
and dead cells of Ascomycetes, and their taxo-
nomic implications. Mycotaxon 44 (2): 333-
390.

Bartley, Michael & Cross, Noel 1999. NaviKey 2.0.
http://www.huh.harvard.edu/databases/legacy/n
avikey. [Page last retrieved 2004-02-10, no lon-
ger accessible as of 2007-04-28; Google reports
http:// blodeuwedd.huh.harvard.edu/ databases/

372 References G. Hagedorn

legacy/ navikey, last visited by Google 2005-11-
13, again no longer accessible as of 2007-04-
28]

Baum, B. R. 1988. A simple procedure for estab-
lishing discrete characters from measurement
data, applicable to cladistics. Taxon 37: 63-70.

Beck, Kent 2000. Extreme programming explained:
embrace change. Addison-Wesley: Boston
(USA).

Berendsohn, W. G. & Geoffroy, M. 2007. Network-
ing taxonomic concepts – uniting without
“unitary-ism”. In: Curry, G. & Humphries, C.
(eds.), Biodiversity databases: from cottage
industry to industrial networks. Taylor &
Francis: Boca Raton, Florida (USA).

Berendsohn, W. G. 1995. The concept of “potential
taxa” in databases. Taxon 44: 207-212.

Berendsohn, W. G. 1997. A taxonomic information
model for botanical databases: The IOPI model.
Taxon 46: 283-309.

Berendsohn, W. G. 2001a. “Biodiversity informa-
tics”, the term. http://www.bgbm.org/

BioDivInf/ TheTerm.htm. [Page last modified
07-04-2001, last retrieved 2005-02-25]

Berendsohn, W. G. 2001b. Biodiversity Informatics.
Preprint of an article to be published in the Pro-
ceedings of the Second National Colloquium on
Global Change Research, Bad Honnef, Jan. 26.-
27., 2001. http://www.bgbm.org/BioDivInf/def-
e.htm. [Page last modified 2001-08-14, last
retrieved 2007-04-14]

Berendsohn, W. G. 2005 (ed.). Task Group on
Access to Biological Collection Data (ABCD) –
a joint CODATA and TDWG initiative suppor-
ted by GBIF and BioCASE. http:// www.

bgbm.org/ TDWG/CODATA/default.htm. [Last
edited 2005-03-06, last retrieved 2007-04-28]

Berendsohn, W. G.; Anagnostopoulos; A.; Hage-
dorn, Gregor; Jakupovic, J.; Nimis, P. L. &
Valdés, B. 1996a. The CDEFD information
model for biological collections. (HTML and
WinWord 6 format). http://www.bgbm.fu-
berlin.de/CDEFD/CollectionModel/cdefd.htm.
[Last retrieved 2007-04-28]

Berendsohn, W. G.; Anagnostopoulos, A.; Jaku-
povic, J.; Nimis, P. L. & Valdés, B. 1996b. A
framework for biological information models.
In: Valdés, B. & Silvestre, S. (eds.), Proceed-
ings of the VIII OPTIMA meeting. Lagascalia
19: 667-672. Online: http:// www.bgbm.fu-
berlin.de/cdefd/objects. [Last retrieved 2007-
04-28]

Berendsohn, W. G.; Anagnostopoulos, A.; Hage-
dorn, Gregor; Jakupovic, J.; Nimis, P. L.;
Valdés, B.; Güntsch, A.; Pankhurst, R. J. &
White, R. J. 1999. A comprehensive reference
model for biological collections and surveys.

Taxon 48: 511-562. Online: http:// www. bgbm.

fu-berlin.de/ biodivinf/ docs/ CollectionModel/

ReprintTNR.pdf. [Last retrieved 2007-04-28]
Berendsohn, W. G.; Döring, M.; Geoffroy, M.;

Glück, K.; Güntsch, A.; Hahn, A.; Kusber, W.-
H.; Li, J.; Röpert, D. & Specht, F. 2003. The
Berlin model: a concept-based taxonomic infor-
mation model. Schriftenreihe Vegetationskunde
39: 15-42.

Berglund, Anders (ed.) 2006. Extensible Stylesheet
Language (XSL) Version 1.1. W3C Recom-
mendation 05 December 2006. http://

www.w3.org/ TR/ 2006/ REC-xsl11-20061205.
[Last retrieved 2007-04-01]

Berners-Lee, Tim; Hendler, James & Lassila, Ora
2001. The Semantic Web. Scientific American
May 2001: 29-37. Also: http:// www.sciam.com/

article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21. [Last retrieved 2007-05-
09]

BG-BASE Inc. 2007. BG-BASE™ collection man-
agement software. http:// rbg-web2.rbge. org.uk/

bg-base. [Last modified 2007-03-04, last
retrieved 2007-05-10]

BioAware 2007. BioloMICS: biological data
manager for identification classification &
statistics. http:// www.bio-aware.com/

BioloMICS.aspx. [Last retrieved 2007-05-10]
Biron, Paul V. & Malhotra, Ashok (eds.) 2001.

W3C XML Schema Part 2: Datatypes. W3C
Recommendation, 2 May 2001. http://

www.w3.org/ TR/2001/REC-xmlschema-2-
20010502. [Last retrieved 2007-04-16]

Blackman, R. L.; Eastop, V. F. & Kibby, G. G.
1997. Taxakey: Aphids on the world’s crops.
CD-ROM. CAB International & Natural
History Museum. ISBN 0 85199 172 6.

Böhmer, Bernd & Wohanka, Walter 2002. Die
Pflanzenschutz-CD. Etwa 600 Farbfotos. Eugen
Ulmer Verlag: Stuttgart (Germany).

Boos, Evelyn 1992. Botanische Klassifikation und
Taxonomie – Konzeption und Realisierung
eines Informationssystems. Diss. Univ. Ulm,
Fakultät für Mathematik und Wirtschaftswis-
senschaften.

Brach, Anthony R. & Hong Song 2005. ActKey: a
Web-based interactive identification key pro-
gram. Taxon 54: 1041-1046. http:// flora.huh.

harvard.edu/ china/ PDF/ misc/ ActKey_Taxon

_54_1041-1046_2005.pdf. [Last retrieved
2007-04-28]

Brach, Anthony R. & Hong Song 2006. eFloras:
New directions for online floras exemplified by
the Flora of China project. Taxon 55: 188-192.
http:// flora.huh.harvard.edu/ china/ PDF/ misc/

eFloras_Taxon_55_188-192_2006.pdf. [Last
retrieved 2007-04-28]

G. Hagedorn References 373

Bray, Tim; Paoli, Jean & Sperberg-McQueen, C. M.
(eds.) 1998. W3C Extensible Markup Language
(XML) 1.0. W3C Recommendation 10-Febru-
ary-1998. http:// www.w3.org/ TR/1998/ REC-
xml-19980210. [Last retrieved 2007-04-01]

Bray, Tim; Paoli, Jean; Sperberg-McQueen, C. M.;
Maler, Eve & Yergeau, François (eds.) 2004a.
W3C Extensible Markup Language (XML) 1.0
(Third Edition). W3C Recommendation 04
February 2004. http://www.w3.org/ TR/2004/

REC-xml-20040204. [Last retrieved 2007-04-
01]

Bray, Tim; Paoli, Jean; Sperberg-McQueen, C. M.;
Maler, Eve; Yergeau, François & Cowan, John
(eds.) 2004b. W3C Extensible Markup Lan-
guage (XML) 1.1. W3C Recommendation 04
February 2004. http:// www.w3.org/ TR/ 2004/

REC-xml11-20040204. [Last retrieved 2007-
04-01]

Brickley, Dan & Guha, R. V. (eds.) 2004. W3C
RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation 10
February 2004. http://www.w3.org/ TR/ 2004/

REC-rdf-schema-20040210. [Last retrieved
2007-04-01]

Bruegge, Bernd & Dutoit, Allen H. 2004. Object-
oriented software engineering: Using UML,
patterns and Java. 2nd edition. Prentice-Hall:
New Jersey (USA).

Cannon, A. & McDonald, Sarah M. 2001. Prome-
theus II – Qualitative Research Case Study.
Capturing and relating character concepts in
plant taxonomy. http://www.dcs.napier.ac.uk/

~prometheus/prometheus_2/Resources/Qualitat
ive%20Research%20Report.pdf. [Last retrieved
2007-04-28]

Carlisle, David; Ion, Patrick; Miner, Robert & Pop-
pelier, Nico (eds.) 2003. Mathematical Markup
Language (MathML) Version 2.0 (Second Edi-
tion). W3C Recommendation 21 October 2003.
http:// www.w3.org/ TR/ 2003/ REC-MathML2-
20031021. [Last retrieved 2007-04-01]

Castlebury, Lisa A. & Farr, David F. 2002. The
genus Tilletia in the United States. Systematic
Botany & Mycology Laboratory, ARS, USDA.
http:// nt.ars-grin.gov/ taxadescriptions/ tilletia.
[Page last modified 2002-03-21, last retrieved
2007-04-22]

Catapano, Terry; Agosti, Donat; Sautter, Guido;
Koning, Drew; Boehm, Klemens; Johnson,
Norman F.; Heidorn, P. Bryan; Moritz, Thomas
D.; Sarkar, Indra Neil & Stephenson, Christie
2006. TaxonX: A lightweight and flexible xml
schema for mark-up of taxonomic treatments.
In: Belbin, Lee; Rissoné, Adrian & Weitzman,
Anna (eds.) Proceedings of TDWG, Abstracts
of the 2006 Annual Conference of Biodiversity

Information Standards (TDWG), St. Louis,
USA, October 2006: 57-58. http://

www.tdwg.org/ proceedings/ article/ view/ 34.
[Last retrieved 2007-05-01]

CBIT 2004. Creating an Expert Route. http://

www.lucidcentral.com/ lucid2/ builder/ webhelp/

expertroute.htm. [Page last modified 2004-06-
15, last retrieved 2007-04-14]

CBIT 2007a. Lucidcentral.com – identification and
diagnostic tools. http:// www.lucidcentral.org/

lucid3. [Last retrieved 2007-04-10; referring to
Lucid3 version 3.4]

CBIT 2007b. Lucid Phoenix Version 1. http://

www.lucidcentral.com/phoenix. [Last retrieved
2007-04-10]

CED 1992. Collins English Dictionary and
Thesaurus. Version 1.5, based on 3rd ed. of
printed version. HarperCollins (CD-ROM).

Chalubert, Antoine & Vignes Lebbe, Régine 2006.
A new model for descriptive knowledge.
Abstract: http:// www.tdwg.org/ proceedings/

article/ view/ 32 and slide: http:// tdwg2006.

tdwg.org/ fileadmin/ 2006meeting/ slides/

Chalubert_ModelForDescrKnowledge .pdf.
[Last retrieved 2007-04-20]

Chesmore, D.; Bernard, T.; Inman, A. J. & Bowyer,
R. J. 2003. Image analysis for the identification
of the quarantine pest Tilletia indica. EPPO
Bulletin 33 (3): 495-499.

Choo, M. H. C. 2002. DELIA – The DELTA inte-
grator. An integrated DELTA database
management software for Windows 95/ 98/ NT.
Department of Conservation and Land Man-
agement. http:// www.naturebase.net/ content/

view/ 2401/ 482. [Last retrieved 2007-04-20,
software version available for testing: 1.0 beta]

Choo, M. H. C. & Spooner, A. 2001. Integration of
taxonomic descriptive data across multiple
database platforms and softwares (Weed Infor-
mation Network – a case study). http:// delta-
intkey.com/ www/ delia.htm. [Last retrieved
2007-05-09. Originally at http:// www.tdwg.org/

2001meet/ choo.htm, no longer available.]
Clark, J. (ed.) 1999. XSL Transformations (XSLT)

Version 1.0. W3C Recommendation 16
November 1999. http:// www.w3.org/ TR/ 1999/

REC-xslt-19991116. [Last retrieved 2007-04-
01]

Clark, J. Y. 2003. Artificial neural networks for
species identification by taxonomists.
BioSystems 72 (1-2; special issue “Computa-
tional intelligence in bioinformatics”): 131-147.

Clark, J. Y. & Warwick, K. 1998. Artificial keys for
botanical identification using a multilayer per-
ceptron neural network (MLP). Artificial Intel-
ligence Review, Special Issue on Applications
in Biology and Agriculture 12 (1-3): 95-115.

374 References G. Hagedorn

Colless, D. H. 1985. On “character” and related
terms. Systematic Zoology 34: 229-233.

Connolly, Thomas & Begg, Carolyn 2002. Database
systems. A practical approach to design, imple-
mentation and management. 3rd edition.
Addison Wesley: Harlow (UK). 1236 pp.

Cowan, R. S.; Chase, M. W.; Kress, W. J. & Savo-
lainen, V. 2006. 300 000 species to identify:
problems, progress, and prospects in DNA bar-
coding of land plants. Taxon 55: 611-616.

Cracraft, J. 2002. The seven great questions of
systematic biology: an essential foundation for
conservation and the sustainable use of bio-
diversity. Annals of the Missouri Botanical
Garden 89: 127-144.

Cross, N. 1997. Delta Access Perl FAQ. [Used to be
available at http:// www.herbaria.harvard.edu/

computerlab/ web_keys/ delta_access_perl.html,
but as of 2004 it was no longer found]

Cui, Hong & Heidorn, P. B. 2007. The reusability of
induced knowledge for the automatic semantic
markup of taxonomic descriptions. Journal of
the American Society for Information Science
and Technology 58 (1): 133-149. [as of 2007-
04-15 preprint retrieved at http:// hong.fims.

uwo.ca/ Research/ jasist06.pdf]
Cui, Hong; Heidorn, P. Bryan & Zhang, Hong

2002. An approach to automatic classification
of text for information retrieval. Proceedings of
the 2nd ACM/ IEEE-CS joint conference on
digital libraries, Portland, Oregon, USA: 96-97.

Cui, Hong; McCourt, Richard M. & Feist, Monique
2006. Unsupervised structure discovery for
biodiversity information. Proceedings of the 6th
ACM/ IEEE-CS joint conference on digital
libraries, Chapel Hill, NC, USA: 382-382.

Dallwitz, Mike J. 1974. A flexible computer pro-
gram for generating identification keys. Sys-
tematic Zoology 23: 50-57.

Dallwitz, Mike J. 1980. A general system for co-
ding taxonomic descriptions. Taxon 29: 41-46.

Dallwitz, Mike J. 1993a. DELTA and Intkey. In:
Fortuner, R. (ed.) Advances in computer me-
thods for systematic biology. John Hopkins
Univ. Press: Baltimore, USA chapter 18: 287-
296.

Dallwitz, Mike J. 1993b. Reply to Richard Pank-
hurst’s comments on ‘Preliminary suggestions
for new features’. DELTA Newsletter 9: 16-17.

Dallwitz, Mike J. 1993c. Reply to Eric Gouda’s
comments on ‘Preliminary suggestions for new
features for the DELTA system’. DELTA
Newsletter 9: 23.

Dallwitz, Mike J. 2005a. A comparison of interac-
tive identification programs. http:// delta-intkey.

com/ www/ comparison.pdf. [Dated 13 Septem-

ber 2005, last retrieved 2007-03-31. First ver-
sion 2000, originally at http:// biodiversity.

uno.edu/ delta/ www/ comparison.htm, no longer
available.]

Dallwitz, Mike J. 2005b. Desirable attributes for
interactive identification programs. http:// delta-
intkey.com/ www/ idcriteria.pdf. [Dated 21
October 2006, last retrieved 2007-03-01. First
version 2000, originally at http:// biodiversity.

uno.edu/ delta/ www/ idcriteria.htm, no longer
available.]

Dallwitz, Mike J. 2005c. Data requirements for na-
tural-language descriptions and identification.
http://delta-intkey.com/www/ descdata.htm.
[Dated 2005-09-13, last retrieved 2007-05-07]

Dallwitz, Mike J. 2006. A comparison of formats
for descriptive data. http:// delta-intkey.com/

www/ compdata.pdf. [Dated 12 Sept. 2005, last
retrieved 2007-03-01. First version 1999, origi-
nally at http:// biodiversity.uno.edu/ delta/ www/

compdata.htm, no longer available.]
Dallwitz, Mike J. 2007. Programs for interactive

identification and information retrieval. http://

delta-intkey.com/www/idprogs.pdf. [Dated 14
Feb. 2007, last retrieved 2007-03-31. First
version 1999.]

Dallwitz, Mike J. & Paine, T. A. 1999. Definition of
the DELTA format. Distributed as a MS Word
document with the CSIRO DELTA editor for
Windows, version 1.3.0.8. Dated 31. May 1999
[Last retrieved 2004-01-07. Previously at http://

biodiversity.uno.edu/ delta/ standard/

standard.exe, PC-excecutable self-extracting
archive containing Word for Windows 95
document, no longer available.]

Dallwitz, Mike J. & Paine, T. A. 2005. Definition of
the DELTA format. http:// delta-intkey.com/

www/ standard.htm or http:// delta-intkey.com/

www/ standard.pdf [Last retrieved 2007-05-07]
Dallwitz, Mike J.; Paine, T. A. & Zurcher, E. J.

1993. Preliminary suggestions for new features
for the DELTA system. DELTA Newsletter 9:
2-13.

Dallwitz, Mike J.; Paine, T. A. & Zurcher, E. J.
2000a. User’s guide to the DELTA system. A
general system for processing taxonomic de-
scriptions. Edition 4.12. 156 pp. CSIRO Divi-
sion of Entomology: Canberra (Australia). [In-
cluded in the CSIRO DELTA program pack-
age]

Dallwitz, Mike J.; Paine, T. A. & Zurcher, E. J.
2000b. User’s Guide to Intkey. A Program for
Interactive Identification and Information Re-
trieval. Edition 1.09. v + 23 pp. CSIRO
Division of Entomology: Canberra (Australia).
[Included in the CSIRO DELTA program pack-
age]

G. Hagedorn References 375

Dallwitz, Mike J.; Paine, T. A. & Zurcher, E. J.
2005. Proposed New Features for the DELTA
System. http://delta-intkey.com/ www/

proposal.htm [Last retrieved 2007-04-16. This
is a revised version of the printed publication
Dallwitz & al. 1993. Other dated revisions have
been published but are no longer available. The
versions dated 1995-05-08 (http:// biodiversity.

uno. edu/ delta/ standard/ newdelta.txt, available
until 1998), 1999-01-18 (http:// biodiversity.

uno. edu/ delta/ www/ proposal.htm), and 2003-
03-24 (under current URL) have been com-
pared with the version dated 2004-07-30; the
differences are relatively minor and largely cor-
rections, clarifications and improvements in
formatting. They can therefore be considered as
a single publication as proposed by the
authors.]

Dallwitz, Mike J.; Paine, T. A. & Zurcher, E. J.
2006. Principles of interactive keys. http://

delta-intkey.com/ www/ interactivekeys.htm and
http:// delta-intkey.com/ www/ interactivekeys.

pdf. [Page last modified 2006-03-14, last
retrieved 2007-05-07. First version 2000.]

Dallwitz, Mike J.; Paine, T. A. & Zurcher, E. J.
2007. Interactive identification using the Inter-
net. http:// delta-intkey.com/ www/ netid.htm or
http:// delta-intkey.com/ www/ netid.pdf. [Page
last modified 2007-04-07, last retrieved 2007-
05-07. First version 2002.]

Davis, P. H. & Cullen, J. 1989. The identification of
flowering plant families. 3rd ed. Cambridge
University Press: Cambridge (UK).

Delgado Calvo-Flores, Miguel; Fajardo Contreras,
W.; Gibaja Galindo, E. L. & Pérez-Pérez, R.
2005 (2005 online, 2006 print). XKey: A tool
for the generation of identification keys. Expert
Systems with Applications 30 (2): 337-351.
http:// dx.doi.org/ 10.1016/ j.eswa.2005.07.034.

Diederich, Jim 1997. Basic properties of biological
databases: character development and support.
Mathematical Computer Modelling 25 (10):
109-127.

Diederich, Jim & Milton, Jack 1989. NEMISYS,
An expert system for nematode identification.
In: Fortuner, R. (ed.). Nematode identification
and expert-system technology. Plenum Publish-
ing Corp.: New York, 45-63.

Diederich, Jim & Milton, Jack 1991. Creating do-
main specific metadata for scientific data and
knowledge bases. IEEE Transactions on
Knowledge and Data Engineering 3 (4): 421-
434.

Diederich, Jim & Milton, Jack 1993a. Expert work-
stations: a tool-based approach. Chapter 7 In:
Fortuner, R. (ed.) Advances in computer

methods for systematic biology. John Hopkins
Univ. Press: Baltimore, USA, 103-123.

Diederich, Jim & Milton, Jack 1993b. NEMISYS: a
computer perspective. Chapter 10 In: Fortuner,
R. (ed.) Advances in computer methods for
systematic biology. John Hopkins Univ. Press:
Baltimore, USA, 165-179.

Diederich, Jim; Fortuner, Renaud & Milton, Jack
1989. Building a knowledge base for plant-pa-
rasitic nematodes: description and specification
of metadata. In: Fortuner, R. (ed.). Nematode
identification and expert-system technology.
Plenum Publishing Corp.: New York, 65-76.

Diederich, Jim; Fortuner, Renaud & Milton, Jack
1997. Construction and integration of large
character sets for nematode morpho-anatomical
data. Fundamental and Applied Nematology 20

(5): 409-424.
Diederich, Jim; Fortuner, Renaud & Milton, Jack

1998. A general structure for biological data-
bases. In: Bridge, P.; Jeffries, P.; Morse, D. R.
& Scott, P. R. (eds.). Information technology,
plant pathology and biodiversity. CAB Inter-
national: Wallingford, UK: 47-58.

Diederich, Jim; Fortuner, Renaud & Milton, Jack
1999. Computer-assisted data extraction from
the taxonomical literature. http://math.ucdavis

.edu/ ~milton/genisys.html. [Last retrieved
2007-05-10]

Diederich, Jim; Fortuner, Renaud & Milton, Jack
2000a. Genisys and computer-assisted identifi-
cation of nematodes. Nematology 2 (1) 17-30.

Diederich, Jim, Fortuner, Renaud & Milton, Jack
2000b. A uniform representation for the plan of
organization of nematodes of the order Tylen-
chida. Nematology 2 (8): 805-822.

DiGIR 2005. Distributed Generic Information Re-
trieval (DiGIR). http://digir.sourceforge.net.
[Dated “9 Dec Jun 2005”, last retrieved 2007-
04-28]

Dmitriev, Dmitry A. 2006. 3I: On-line virtual taxo-
nomic revisions. Proceedings of TDWG: Ab-
stracts of the 2006 Annual Conference of Bio-
diversity Information Standards (TDWG), 15-
22. October 2006, Missouri Botanical Garden,
St. Louis, Missouri, U.S.A.: 26-27. http://

www.tdwg.org/ proceedings/ article/ view/ 10.
[Last retrieved 2007-05-01]

Dmitriev, Dmitry A. 2007. 3I interactive keys and
taxonomic databases. http:// ctap.inhs.uiuc.edu/

dmitriev. [First published July 9, 2003-07-09,
last updated “2007-04-20”, last retrieved 2007-
04-20]

Do, M. T.; Harp, J. M. & Norris, K. C. 1999. A test
of a pattern recognition system for identifica-
tion of spiders. Bulletin of Entomological Re-
search 89: 217-224.

376 References G. Hagedorn

Dodds, L. 1999. XDELTA – Deriving an XML
based format for taxonomic information. http://

www.ldodds.com/ delta. [Last modified 1999-
10-22, last retrieved 2007-05-13]

Duke, J. A. 1969. On tropical tree seedlings I.
Seeds, seedlings, systems and systematics.
Annals of the Missouri Botanical Garden 56

(2): 125-161.
EB 2001. Encyclopædia Britannica Deluxe Edition

CD-ROM.
Edwards, M. & Morse, David R. 1995. The poten-

tial for computer-aided identification in bio-
diversity research. Trends in Ecology and
Evolution 10 (4): 153-158.

Elix, J. A.; Johnston, J. & Parker, J. L. 1988. A com-
puter program for the rapid identification of
lichen substances. Mycotaxon 31 (1): 89-99.

EOL.org 2007. Press release, May 9, 2007. http://

www.eol.org/ press_release.html. [Last re-
trieved 2007-04-16]

Exeter Software (undated). XID Authoring System,
Version 3, for Windows. http:// www.

exetersoftware. com/cat/xid.html and http://

www.exetersoftware.com/cat/xidinfo.html.
[Last retrieved 2007-05-01]

Fajardo Contreras, W.; Gibaja Galindo, E. L.;
Bailón Morillas, A. & Moral Lorenzo, P. 2003.
An application of expert systems to botanical
taxonomy. Expert Systems with Applications
25: 425-430.

Fallside, David C. (ed.) 2001. W3C XML Schema
Part 0: Primer. W3C Recommendation, 2 May
2001. http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502. [Last retrieved 2007-
04-01. See also Thompson & al. 2001 and
Biron & Malhotra 2001]

Farr, David F. 2006. On-line keys: more than just
paper on the web. Taxon 55 (3): 589-596.

Felsenstein, Joseph 1985. Confidence limits on
phylogenies: An approach using the bootstrap.
Evolution 39: 783-791.

Felsenstein, Joseph 2004. Inferring phylogenies.
Sinauer: Sunderland (USA). 664 pp.

Findling, Axel 1998a. DAP – Ein Web-Interface zu
DeltaAccess. http://www.axel-findling.de/

programs/dap. [Last retrieved 2007-05-01]
Findling, Axel 1998b. DAWI – Ein Web-Interface

zu DeltaAccess. http://www.axel-findling.de/

programs/dawi. [Last retrieved 2007-05-01]
Fortuner, Renaud 1989. A new description of the

process of identification of plant-parasitic ne-
matode genera. In: Fortuner, R. (ed.). Nema-
tode identification and expert-system technol-
ogy. Plenum Publishing Corp.: New York, 35-
44.

Fortuner, Renaud 1993. The NEMISYS solution to
problems in nematode identification. Chapter 9
In: Fortuner, R. (ed.) Advances in computer
methods for systematic biology. John Hopkins
Univ. Press: Baltimore, USA: 137-164.

Fortuner, Renaud 2002. Uniformity and representa-
tion of taxonomic and other characters and
semi-automatic extraction using computer
tools. Nematology 4 (5): 583-591.

Fowler, Martin & Scott, Kendall 2001. UML distil-
led – second edition. A brief guide to the stan-
dard object modeling language. 7th printing
(printings differ in content). Addison-Wesley:
Boston (USA). 186 pp.

Gaston, Kevin J. & O’Neill, Mark A. 2004. Auto-
mated species identification: why not? (One
contribution of 19 to a theme issue ‘taxonomy
for the twenty-first century’). Philosophical
Transactions of the Royal Society B: Biological
Sciences 359: 655-667.

Geoffroy, M. 2003. Toward the implementation of
the “transmission engine”. Schriftenreihe Vege-
tationskunde 39: 87-112.

Geoffroy, M. & Berendsohn, W. G. 2003. The con-
cept problem in taxonomy: importance, compo-
nents, approaches. Schriftenreihe Vegetations-
kunde 39: 5-14.

Germeier, C. U. & Frese, L. 2001. A data model for
the evaluation and characterisation of plant gen-
etic resources. In: Swiecicki, W.; Naganowska,
B.; Wolkon, B. (eds.): Broad variation and pre-
cise characterisation – limitation for the future.
Proceedings of the XVIth Eucarpia, Section
Genetic Resources Workshop, May 16-20,
2001, Poznan, Polen: 174-177.

Gibaja Galindo, E. L. 2004. Modelos de representa-
ción del conocimiento para la identificación
taxonómica y aplicaciones. Tesis doctoral, Uni-
versidad de Granada. hera.ugr.es/ tesisugr/

15759969.pdf
Gielis, Johan 2003. A generic geometric transfor-

mation that unifies a wide range of natural and
abstract shapes. American Journal of Botany
90: 333-338.

Götz, Erich 2003. Pflanzen bestimmen mit dem PC.
Farn- und Blütenpflanzen Deutschlands, 3300
farbige Pflanzenfotos. 2. Aufl. Eugen Ulmer
Verlag: Stuttgart (Germany).

Gouda, E. J. 1993. Some questions and notes on the
new features document. DELTA Newsletter 9:
22.

Gouda, E. J. 1996. TAXASOFT DELTA Editor.
DELTA Newsletter 12: 12-14.

Gouda, E. J. 2001. TAXASOFT DELTA Programs.
http:// www.delta-intkey.com/ taxasoft. [Last
retrieved 2007-04-21. Previously at http://

G. Hagedorn References 377

biodiversity.uno.edu/ delta/ taxasoft, last
retrieved 2004-02-10, no longer available.]

Goujon, Pierre 2007. Identification assistée par or-
dinateur (IAO). Système d’identification inter-
active multimedia. http:// abiris.snv. jussieu. fr/

identification/ introduction.html. [Page last mo-
dified 2007-03-14, last retrieved 2007-05-10]

Gray, Asa 1878. Synoptical flora of North America.
Vol. 2, part 1. Ivison, Blakeman, Taylor and
Co.: New York (USA).

Greenberg, Jane; Heidorn, Bryan; Seiberling,
Stephen & Weakley, Alan S. 2005. Growing
vocabularies for plant identification and scien-
tific learning. International conference on Dub-
lin Core and metadata applications (DC-2005,
Sept 15, 2005), Madrid, Spain. http://

www.slais.ubc.ca/ PEOPLE/ faculty/ tennis-p/

dcpapers/ paper14.pdf. [Last retrieved 2007-05-
01]

Greenberg, Jane; Heidorn, Bryan; Seiberling,
Stephen & Weakley, Alan S. 2006. Growing
vocabularies for plant identification and scien-
tific learning. Bulletin of the American Society
of Information Science & Technology. June
2006. http:// www.asis.org/ Bulletin/ Jun-06/

greenberg_heidorn_sieberling_weakley. html.
[Last retrieved 2007-05-01]

Guala, Gerald F. 2006. SLIKS, Stinger’s Light-
weight Interactive Key Software. http:// www.

stingersplace.com/ SLIKS. [Software version
2.1; page last modified: 2006-11-05; last re-
trieved 2007-04-10. First version 2004-06.]

Haber, William A. 2006. Monteverde biodiversity:
natural history field sheets for printing and
lamination. http:// efg.cs.umb.edu/ monteverde/

Lam.html. [Last modified: 2006-11-23, last
retrieved 2007-04-21]

Hagedorn, Gregor 1997. DeltaAccess – an SQL
interface to DELTA (Description Language for
Taxonomy), implemented in Microsoft Access.
Version 1.0. http://www. DiversityWorkbench.

net/Workbench/Descriptions/Download/10/DA
97_10.exe. [Last retrieved 2007-04-21. Origi-
nally at http:// www.bgbm.fu-berlin.de/ Projects/

DeltaAccess/ DeltaAccess.html, no longer avail-
able.]

Hagedorn, Gregor 1998a. Making Delta Accessible:
Databasing descriptive information. IX OPTI-
MA congress, Paris 11-17 Mai. Organisation
pour l’Etude Phyto-Taxonomique de la Région
Méditerranéenne, Muséum National d’Histoire
Naturelle, Paris. p. 31.

Hagedorn, Gregor 1998b. Databases as working
tools for the mycologist. Sixth International
Mycological Congress IMC6. Jerusalem, Israel,
August 23-28 1998, Abstracts. p. 55.

Hagedorn, Gregor 1999a. DeltaAccess: ‘Describe’
& ‘Identify’. User Guide and Documentation,
version 1.6. (160 printed pages). http:// www.

diversityworkbench.net/OldModels/Description
s/Docu160/DeltaAccess.hlp as Windows help
file, or http://www.diversityworkbench.net/

OldModels/Descriptions/Docu160/DeltaAccess
.html as start page to a set of html pages. [Last
retrieved 2007-04-21]

Hagedorn, Gregor 1999b. TDWG working group:
Structure of Descriptive Data. Minutes of the
workgroup session at the TDWG 1999 meeting
at Harvard University, 31. October 1999. http://

www.diversitycampus.net/ Projects/ TDWG-
SDD/ Minutes/ 1999TDWG-SDD-Minutes_11.

html. [Last retrieved 2007-05-01]
Hagedorn, Gregor 2000a. Globales Informations-

system zur Biodiversität pflanzenpathogener
Pilze (GLOPP). Nachrichtenblatt des Deut-
schen Pflanzenschutzdienstes 52 (6): 149.

Hagedorn, Gregor 2000b. TDWG working group:
Structure of Descriptive Data. Minutes of SDD
session at the TDWG meeting in Frankfurt, 12.
Nov. 2000. http:// www.diversitycampus.net/

Projects/ TDWG-SDD/ Minutes/ 2000TDWG-
SDD-Minutes_11.html. [Last retrieved 2007-
05-01]

Hagedorn, Gregor 2001a. Making DELTA acces-
sible: Databasing descriptive information.
Bocconea 13: 261-280.

Hagedorn, Gregor 2001b. TDWG working group:
Structure of Descriptive Data. Minutes of ses-
sion at the TDWG meeting in Sydney, 10. No-
vember 2001. http:// www.diversitycampus. net/

Projects/ TDWG-SDD/ Minutes/ 2001TDWG-
SDD-Minutes_10.html. [Last retrieved 2007-
05-01]

Hagedorn, Gregor 2001c. Documentation of the in-
formation model for DiversityReferences (Spe-
cial Indexing, 0.9). http:// www.diversity work

bench.net/ OldModels/ References/ Model/ 2001-
05-08/ DiversityReferencesData_ Index ing_

Model. html. [Last retrieved 2007-05-01.
Originally at http:// www.diversitycampus. net/

Workbench/ References/ Model/ 2001-05-08/

Diversity ReferencesData_Indexing_Model.

html]
Hagedorn, Gregor 2002a. Information systems can

improve the efficiency of biodiversity research
and promote collaboration and sharing of infor-
mation (Symposium contribution 240). In:
IMC7 Book of abstracts. The 7th International
Mycological Congress, Oslo, 11-17. Aug. 2002.
p. 77.

Hagedorn, Gregor 2002b. TDWG working group:
Structure of Descriptive Data. Minutes of
working sessions in Australia, 11-14. March

378 References G. Hagedorn

2002. http:// www.diversitycampus.net/ Projects/

TDWG-SDD/ Minutes/ 2002Australia-SDD-
Minutes_11.html. [Last retrieved 2007-05-01]

Hagedorn, Gregor 2002c. TDWG SDD: Structure of
Descriptive Data. Convener’s report. http://

www.cria.org.br/ eventos/ tdbi/ tdwg/

presentations/ tdwgsdd.ppt. [Last retrieved
2007-05-01]

Hagedorn, Gregor 2002d. Diversity Workbench: A
biodiversity component framework. Draft Ver-
sion 0.3. http:// www.diversity workbench. net/

OldModels/ Framework/ DW_Framework03.

pdf. 19 printed pages. [Last retrieved 2007-05-
01. Originally at http:// www.DiversityCampus .

net/ Workbench/ Framework/ DW_Frame

work03.pdf]
Hagedorn, Gregor 2003a. TDWG working group:

Structure of Descriptive Data (SDD) – Minutes
of working sessions in Indaiatuba, Brazil, 14-
17. October 2002. (24 printed pages).
http://www.DiversityCampus.net/Projects/TD
WG-SDD/Minutes/2002TDWG-SDD-
Minutes_10.html. [Last retrieved 2007-05-01]

Hagedorn, Gregor 2003b. TDWG working group:
Structure of Descriptive Data (SDD) – Minutes
of the SDD meeting in Paris, France, 13-16.
February 2003. (24 printed pages).
http://www.DiversityCampus.net/Projects/TD
WG-SDD/Minutes/2003Paris-SDD-
Minutes_10.html. [Last retrieved 2007-05-01]

Hagedorn, Gregor 2003c. TDWG working group:
Structure of Descriptive Data (SDD) – Minutes
of the SDD meeting in Lisbon, Portugal, 20-26.
October 2003. (24 printed pages).
http://www.DiversityCampus.net/Projects/TD
WG-SDD/Minutes/2003Lisbon-SDD-
Minutes_10.html. [Last retrieved 2007-05-01]

Hagedorn, Gregor 2003d. TDWG working group:
Structure of Descriptive Data (SDD) – XML
schema (version SDD 0.9). (89 printed pages).
http://www.DiversityCampus.net/Projects/TD
WG-
SDD/Minutes/2003Lisbon_schema/SDD_09.xs
d. [Last retrieved 2007-05-01]

Hagedorn, Gregor 2003e. TDWG working group:
Structure of Descriptive Data (SDD) – Over-
view of available schema documentation (ver-
sion SDD 0.9). (3 printed pages). http://www.

DiversityCampus.net/Projects/TDWG-SDD/

Minutes/ 2003Lisbon_schema/ SDD_ 09_Docu

Overview.html. [Last retrieved 2007-05-05]
Hagedorn, Gregor 2003f. SDD proposal: Free-form

text data elements. Version 2. http:// www.

DiversityCampus.net/ Projects/ TDWG-SDD/

Docs/ SDD_P_DataTypes_Text.html. [Last
retrieved 2007-05-06]

Hagedorn, Gregor 2003g. SDD proposal: Scoring
sequence of states in descriptions. Version 2.
http:// www.DiversityCampus.net/ Projects/

TDWG-SDD/ Docs/ SDD_P_DescrScoring

Sequence.html. [Last updated 2003-10-31, last
retrieved 2007-05-06]

Hagedorn, Gregor 2004a. DiversityModelDocu-
menter (release 2.6). http:// www.diversity work

bench.net/ OldModels/ ModelDocumenter/ Docu/

Diversity ModelDocumenter.html. [Last retriev-
ed 2007-05-05. Originally at http:// www. Di

versity Campus. net/ Workbench/ ModelDocu m

enter/ Docu/ DiversityModelDocumenter.html.]
Hagedorn, Gregor 2004b. SDD proposal: Indicators

of coding status in class or object descriptions.
Version 3. http://www.Diversity Campus.net/

Projects/TDWG-SDD/Docs/ SDD_P_Data_ Cod

ing Status03.html. [Last retrieved 2007-05-05]
Hagedorn, Gregor 2004c. TDWG working group:

Structure of Descriptive Data (SDD) – Over-
view of available schema versions and docu-
mentation (UBIF and SDD 1.0). (4 printed
pages). http://www.DiversityCampus. net/

Projects/ TDWG-SDD/Minutes/ 2004NZ_

schema/ DocuOverview.html. [Last retrieved
2007-05-05]

Hagedorn, Gregor 2004d. TDWG working group:
Structure of Descriptive Data (SDD) – Minutes
of the SDD meeting in Christchurch, New
Zealand, 11-17. October 2004. (23 printed
pages). http://www.DiversityCampus.net/

Projects/ TDWG-SDD/Minutes/ 2004Christ

church-SDD-Minutes_09.html. [Last retrieved
2007-05-05]

Hagedorn, Gregor 2005a. SDD document: Rating
parameters for character guidance in identifica-
tion. Version 1. http://www. Diversity Campus.

net/Projects/TDWG-SDD/Docs/ SDD_ P_ID_

Ratings.html. [Last retrieved 2007-05-05]
Hagedorn, Gregor 2005b. DiversityDescriptions

(DeltaAccess) (version 1.9). Documentation of
the information model. http:// www.diversity

workbench.net/ OldModels/ Descriptions/ Model/

2005-03-30/ DModelDD19.html. [Last retrieved
2007-05-05. Originally at http:// www. diversity

campus.net/ Workbench/ Descriptions/ Model/

2005-03-30/ DModelDD19.html.]
Hagedorn, Gregor 2006. Minutes of the SDD Berlin

2006 Meeting (April). http:// wiki.tdwg.org/

twiki/ bin/ view/ SDD/ SDD2006BerlinMinutes.
[Last retrieved 2007-05-05]

Hagedorn, Gregor & Kohlbecker, Andreas 2006.
DiversityResources information model (version
1.3). http:// www.diversityworkbench.net/

Portal/ wiki/ ResourcesModel_v1.3. [Last
retrieved 2007-05-05]

G. Hagedorn References 379

Hagedorn, Gregor & Rambold, Gerhard 2000. A
method to establish and revise descriptive data
sets over the Internet. Taxon 49: 517-528.

Hagedorn, Gregor & Weiss, Markus 2002. Diversi-
tyCollection information model. http:// www.

diversityworkbench.net/ OldModels/ Collection/

Model/ 2002-11-15/ Diversity CollectionModel.

html. [Last retrieved 2007-05-05. Originally at
http:// www.DiversityCampus.net/ Workbench/

Collection/ Model/ 2002-11-15/ Diversity

Collection Model.html.]
Hagedorn, Gregor; Deml, Günther; Burhenne, Matt-

hias; Guerrero Cartin, O. M.; Gräfenhan, T. &
Weiss, Markus 2000. Synoptische, computerge-
stützte Identifizierung von Pflanzenpathogenen.
52. Deutsche Pflanzenschutztagung in Weihen-
stephan (Technische Universität München) vom
9. bis 12. Oktober 2000. p. 541.

Hagedorn, Gregor; Deml, Günther; Triebel, Dag-
mar; Piepenbring, Meike & Oberwinkler, Franz
2001. GLOPP – Global information system for
the biodiversity of plant pathogenic fungi. BIO-
LOG German Programme on Biodiversity and
Global Change (Phase I, 2000-2004) Funded by
BMBF, Status Report 2001, 208-209.

Hagedorn, Gregor; Gliech, Matthias.; Weiss, Mar-
kus & Gräfenhan, Tom 2002. DiversityWork-
bench – A framework to manage biodiversity
information. (Oral contribution in the sympo-
sium “Storage and Retrieval of Morphological
Data for Phylogenetic Analysis (S22)”, Satur-
day 14th September 2002.) In: ICSEB VI Sixth
International Congress of Systematic and Evo-
lutionary Biology “Biodiversity in the Informa-
tion Age”. Abstracts. Sept. 9-16, 2002, Patras,
Greece, p. 198.

Hagedorn, Gregor; Oberwinkler, F.; Berndt, R.;
Braun, U.; Burhenne, Matthias; Deml, Günther;
Gliech, M.; Göker, M.; Gräfenhan, T.; Hou, C.;
Kainz, C.; Piepenbring, M.; Riethmüller, A.;
Ritschel, A.; Scholler, M.; Triebel, Dagmar &
Weiss, Markus 2003a. The Global Plant Patho-
gen Index (GLOPP). [Poster G13 in BIOLOG
Biodiversity Informatics] In: International
Symposium “Sustainable use and conservation
of biological diversity – A challenge for soci-
ety.” Symposium Report Part A. 1-4 December
2003, Berlin, p. 441

Hagedorn, Gregor; Deml, Günther & Triebel, Dag-
mar 2003b. Expansion of the GLOPP informa-
tion system through integration of the data col-
lection of H. & H. Doppelbaur. [Poster in GBIF-
D: Fungi & lichens]. In: International Sympo-
sium “Sustainable use and conservation of bio-
logical diversity – A challenge for society.”
Symposium Report Part A. 1-4 December 2003,
Berlin, p. 248.

Hagedorn, Gregor; Thiele, Kevin; Morris, Robert &
Heidorn, P. Bryan 2005. The “Structured De-
scriptive Data (SDD)” w3c-xml-schema, ver-
sion 1.0. http:// rs.tdwg.org/ UBIF/ 2005/

rddl.html. [Last retrieved 2007-05-05]
Hagedorn, Gregor; Thiele, Kevin; Morris, Robert &

Heidorn, P. Bryan 2006. The “Structured De-
scriptive Data (SDD)” w3c-xml-schema, ver-
sion 1.1. http:// rs.tdwg.org/ UBIF/ 2006/

rddl.html. [Last retrieved 2007-05-05]
Hall, A. V. 1970. A computer-based system for for-

ming identification keys. Taxon 19: 12-18.
Haller, B. & Probst, W. 1989. Exkursionen im Som-

merhalbjahr. 2. Auflage, Gustav Fischer, Stutt-
gart.

Hawksworth, D. L. 1991. The fungal dimension of
biodiversity: magnitude, significance, and con-
servation. Mycological Research 95: 641-655.

Hawksworth, D. L. & Kalin-Arroyo, M. T. 1995.
Magnitude and distribution of biodiversity. In:
Heywood, V. H. (ed.) Global Biodiversity
Assessment, Cambridge Univ. Press, Cam-
bridge: 107-191.

Heidorn, P. Bryan, Palmer, Carole & Wright, Dan
2007. From bioinformatics to biological infor-
matics specialists. Journal of Biomedical Disco-
very and Collaboration (2) 1. http:// www.j-
biomed-discovery.com/ content/ 2/1/1. [Last
retrieved 2007-04-13]

Hein, Jotus 1989. A new method that simultaneous-
ly aligns and reconstructs ancestral sequences
for any number of homologous sequences,
when the phylogeny is given. Molecular Biolo-
gy and Evolution 6 (6): 649-668.

Hernandez, J. R.; Hennen, J. F.; Farr, David F. &
McCray, E. 2004. A model for presenting sys-
tematic data on the internet. Mycological Re-
search 108: 3-4.

Higgins, D. G.; Sharp, Paul M. 1989. Fast and sensi-
tive multiple sequence alignments on a micro-
computer. Computer Applications in the Biolo-
gical Sciences (CABIOS) 5: 151-153.

Hoppe, Jürgen R. 1998. Practical suggestions for
database implementations. In: Thiéry, M.; Ste-
vens, A.-D.; Hoppe, J. R.; Charles-Dominique,
P. & Schuchmann, K.-L. Angiosperm pollina-
tion and seed dispersal, a review. Ecotropica 4:
69-91.

Hoppe, Jürgen R.; Boos, Evelin & Stützel, Thomas
1999. SysTax – ein Datenbanksystem für Sys-
tematik und Taxonomie. In: Begemann, F.;
Harrer, S. & Jiménes Krause, J. D. (eds.) Doku-
mentationen und Informationssysteme im Be-
reich pflanzengenetischer Ressourcen in
Deutschland. Schriftenreihe zu Genetischen
Ressourcen (Zentralstelle für Agrardokumen-
tation und -information – ZADI, Informations-

380 References G. Hagedorn

zentrum für Genetische Resourcen – IGR): 64-
79.

Hoppe, Jürgen R.; Boos, Evelin; Ludwig, Thorsten
& Wiedemann, Michael 2004. SysTax – a data-
base system for systematics and taxonomy. ER-
diagram. http://www.biologie.uni-ulm.de/

systax/ documentation/er/er_poster.pdf. [Last
retrieved 2007-05-10]

Hoppe, Jürgen R.; Boos, Evelin; Ludwig, Thorsten;
Wiedemann, Michael & Stützel, Thomas 2007.
SysTax – a database system for systematics and
taxonomy. http:// www.biologie.uni-ulm.de/

systax. [Last retrieved 2007-05-10]
Houston, W. W. K; Payne, S. & Fitzsimmons, N. J.

2002. Platypus: A database package for taxon-
omists. CD-ROM. ISBN: 0643066284. CSIRO
Publishing/ Australian Biological Resources
Study (ABRS).

Huelsenbeck, J. P. & Rannala, B. 2003. Detecting
correlation between characters in a comparative
analysis with uncertain phylogeny. Evolution
57 (6): 1237-1247.

Hull, David L. 1988. Science as a process: An evo-
lutionary account of the social and conceptual
development of science. University of Chicago
Press.

Hull, David L. & Ruse, Michael 1998. The philo-
sophy of biology. Oxford University Press.

IdentifyLife 2005. IdentifyLife. http:// www.

identifylife. org. [Last modified 2005-08, last
retrieved 2007-04-17]

Ilic, Katica; Kellogg, Elizabeth A.; Jaiswal, Pankaj;
Zapata, Felipe; Stevens, Peter F.; Vincent,
Leszek P.; Avraham, Shulamit; Reiser, Leon-
ore; Pujar, Anuradha; Sachs, Martin M.; Whit-
man, Noah T.; McCouch, Susan R.; Schaeffer,
Mary L.; Ware, Doreen H.; Stein, Lincoln D. &
Rhee, Seung Y. 2006. Plant structure ontology.
Unified vocabulary of anatomy and morphol-
ogy of a flowering plant. Plant Physiology Pre-
view: http:// www.plant physiol.org/ cgi/

rapidpdf/ pp.106.092825v1.
Inglis, W. G. 1991. Characters: the central mystery

of taxonomy and systematics. Biological Jour-
nal of the Linnean Society 44: 121-139.

Ingrisch, S.; Lampe, K.-H.; Riede, K. & Dietrich, C.
2001. DORSA – German Orthopteran collec-
tions. BIOLOG German Programme on Biodi-
versity and Global Change (Phase I, 2000-
2004) Funded by BMBF, Status Report 2001,
200-201.

Jacobson, Ivar; Booch, Grady & Rumbaugh, James
1999. The unified software development proc-
ess. Addison-Wesley: Boston (USA).

Janzen, D. H. 1991. How to save tropical biodiversi-
ty. American Entomologist 37: 159-171.

Janzen, D. H. 2004. Now is the time. Philosophical
Transactions of the Royal Society B: Biological
Sciences 359: 731-732.

Jensen, R. J. 1990. Detecting shape variation in oak
leaf morphology: a comparison of rotational-fit
methods. American Journal of Botany 77:
1279-1293.

Kennedy, Jessie 2003. Supporting taxonomic names
in cell and molecular biology databases. Omics,
a Journal of Integrative Biology 7 (1): 13-16.

Kennedy, M. J. & Spooner, N. R. 1994. The use of
fuzzy-logic to aid in microorganism identifica-
tion. A case study of Haemophilus species iden-
tification. Binary-Computing in Microbiology
6: 132-135.

Kirchgeßner, Norbert; Scharr, Hanno & Schurr, Uli
2002. Robust vein extraction on plant leaf
images. http:// www.fz-juelich.de/ icg/ icg-iii/

datapool/ DataScharr/ KirchgessnerVIIP2002

.pdf. [Last retrieved 2007-04-26]
Kirejtshuk, Alexander G., Lobanov, A. L. & Grani-

chin, O. N. 2005. Проект WebKey-X. http://

www.zin.ru/ projects/ WebKey-X. [Published
2005-12, last retrieved 2007-04-20]

Kirk, P. M.; Cannon, P. F. David, J. C. Stalpers, J. A.
(eds.) 2001. Ainsworth and Bisby's dictionary
of fungi. 9th Edition. CAB International: Wal-
lingford, UK.

Kirkbride, J. H. & Dallwitz, Mike J. 1993. Edited
correspondence on DELTA enhancement pro-
posals. DELTA Newsletter 9: 18-21.

Kirkup, D.; Malcolm, P.; Christian, G. & Paton, A.
2005. Towards a digital African Flora. Taxon
54 (2): 457-466.

Klimov, P. 2001. Visual Key. http://insects.ummz.

lsa.umich.edu/ACARI/pklimov/VK. [Last re-
trieved 2007-04-16]

Klyne, Graham & Carroll, Jeremy J. (eds.) 2004.
W3C Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recom-
mendation 10 February 2004. http://www.

w3.org/TR/2004/REC-rdf-concepts-20040210.
[Last retrieved 2007-04-01]

Korf, R. P. 1972. Synoptic key to the genera of the
Pezizales. Mycologia 64: 937-994.

Kornerup, A. & Wanscher, J. H. 1967. Methuen
Handbook of Colour. 2nd edition. Methuen
Co.: London (UK), 243 pp + 30 two-page color
plates.

Kuhn, T. S. 1970. The structure of scientific revolu-
tions. 2nd edition. University of Chicago Press.

Lane, M. A. & Edwards, J. L. 2007. The Global
Biodiversity Information Facility. Chapter 1 in:
Curry, G. & C. Humphries (eds.), Biodiversity
databases: from cottage industry to industrial

G. Hagedorn References 381

networks. Taylor & Francis, Boca Raton,
Florida, USA.

Lauber, Konrad & Wagner, Gerhart 2001. Flora
Helvetica 2.0. CD-ROM. Ein interaktiver
Führer durch die Pflanzenwelt der Schweiz.
Haupt digital.

Lawrence, George H. M. 1951. Taxonomy of vascu-
lar plants. Macmillan, New York.

Leary, P. & Hagedorn, Gregor 2004. Converting
LIF to SDD. http:// wiki.tdwg.org/ twiki/ bin/

view/ SDD/ ConvertingLIF2SDD. [Last
retrieved 2007-04-28]

Lebbe, J. 1984. Manuel d’utilisation du logiciel
XPER. Micro Application, Paris. [An online
version of this manual, file date 2003-09-19, is
available at http://lis.snv.jussieu.fr/ apps/ xper/

doc/XPER.html, last retrieved 2007-05-01]
Lebbe, J. 1991. Représentation des concepts en bio-

logie et en médicine. Introduction à l’analyse
des connaissances et à l’identification assistée
par ordinateur. Thèse de doctorat; Université
Pierre et Marie Curie: Paris. xii + 282 + xxiv pp.

Lebbe, J. & Vignes, R. 1989. Introduction to XPER.
DELTA Newsletter 4: 3-4.

Lebbe, J. & Vignes, R. 1998. Modelling taxonomy
description for identification. In: Bridge, P.;
Jeffries, P.; Morse, D. R. & Scott, P. R. (eds.).
Information technology, plant pathology and
biodiversity. CAB International: Wallingford,
UK: 37-46.

Lebbe, J. & Vignes, R. 2003. Utilitaires XPER.
http://lis.snv.jussieu.fr/apps/xper/doc/utilxper.
[Last retrieved 2007-05-01]

Lebbe, J.; Vignes, R. & Dedet, J. P. 1989. Computer
aided identification of insect vectors. Parasitol-
ogy Today 5: 301-304.

Leenhouts, P. W. 1966. Keys in biology. I. A survey
and a proposal of a new kind. Proc. Koninklijke
Nederlandse Akademie van Wetenschapen
(Ser. C) 69: 571-596.

Leinberger, Dirk M.; Schumacher, Ulrike; Auten-
rieth, Ingo B. & Bachmann, Till T. 2005. De-
velopment of a DNA microarray for detection
and identification of fungal pathogens involved
in invasive mycoses. Journal of Clinical Micro-
biology 43 (10): 4943-4953.

Lindh, Magnus 2003. Interaktiva nycklar – en enkel
och effektiv metod för artbestämning! Utvär-
dering av interaktiva nycklar samt karaktärs-
databas och interaktiv nyckel över knappnål-
slavar i Norden. [= Interactive keys – an easy
and efficient method for species identification!
Evaluation of interactive identification pro-
grams and a character database and key of cali-
cioid lichens of the Nordic countries.] Master
thesis by Magnus Lindh 2003, Department of

Conservation biology, Swedish University of
Agricultural Sciences. Master thesis Uppsala.
http:// www.borealis.nu/ exjobb/ Interaktiva_

nycklar.pdf. [Last retrieved 2007-04-28,
Swedish]

Lindh, Magnus & Thor, G. 2004. An interactive
identification key to the calicioid lichens and
fungi of the Nordic countries. Graphis Scripta
(Stockholm) 16: 28-30. Online: http://

www.nordic lichensociety.org/

Graphis%20Scripta/ Graphis index/ Articles/

16(1)/ interactkey28-30.pdf. [Last retrieved
2007-04-29]

Little, Elbert L., Jr. 2002. Notes on tropical dendro-
logy. Chapter 9. In: Vozzo, J. A. (ed.) 2002.
Tropical tree seed manual. Agriculture Hand-
book 721. USDA Forest Service: Washington
DC (USA). Free of charge. 899 pp.

Lobanov, Andrei & Dianov, Mikhail 1999.
PICKEY – Pictured interactive computerized
biological key. http://www.zin.ru/ projects/

pickey. [Last modified 1999-03-23, last re-
trieved 2007-04-16]

Lobanov, A. L.; Stepanjants, S. D. & Dianov, M. B.
1996. Dialogue computer system BIKEY as
applied to diagnostics of Cnidaria (illustrated
by an example of hydroids of the genus Sym-
plectoscyphus). Scientia Marina (Special vol-
ume: S. Piraino, F. Boero, J. Bouillon, P. F. S.
Cornelius & J. M. Gili (eds.) Advances in
hydrozoan biology) 60 (1): 211-220.

Lobanov, A. L., Dianov, Mikhail B., Kirejtshuk,
Alexander G. & Vakhitov, A. T. 2005.
Сравнение характеристик интерактивных
диагностических программ. http:// www.

zin.ru/ projects/ webkey-x/ keyscomp.htm.
[Published 2005-12, last retrieved 2007-04-20]

Louhivuori, Mikko 1996. DELTA data format and
pottery classification. DELTA Newsletter 12:
5-6.

Loy, Alexander; Lehner, Angelika; Lee, Natuschka;
Adamczyk, Justyna; Meier, Harald; Ernst, Jens;
Schleifer, Karl-Heinz & Wagner, Michael
2002. Oligonucleotide microarray for 16S
rRNA gene-based detection of all recognized
lineages of sulfate-reducing prokaryotes in the
Environment. Applied and Environmental
Microbiology 68 (10): 5064-5081.

Ludwig, Wolfgang; Strunk, Oliver; Westram, Ralf;
Richter, Lothar; Meier, Harald; Yadhukumar,
Buchner, Arno; Lai, Tina; Steppi, Susanne;
Jobb, Gangolf; Förster, Wolfram; Brettske,
Igor; Gerber, Stefan; Ginhart, Anton W.; Gross,
Oliver; Grumann, Silke; Hermann, Stefan; Jost,
Ralf; König, Andreas; Liss, Thomas; Lüßmann,
Ralph; May, Michael; Nonhoff, Björn; Reichel,
Boris; Strehlow, Robert; Stamatakis, Alexan-

382 References G. Hagedorn

dros; Stuckmann, Norbert; Vilbig, Alexander;
Lenke, Michael; Ludwig, Thomas; Bode, Arndt
& Schleifer, Karl-Heinz. 2004. ARB: a soft-
ware environment for sequence data. Nucleic
Acids Research 32 (4):1363-1371.

Lyon, Marcus Ward, Jr. 1936. Mammals of Indiana.
American Midland Naturalist 17 (1): 1-373.

Macfarlane, T. D. 1993a. Utilities for DELTA data
entry and taxon summary generation. DELTA
Newsletter 8: 11-12.

Macfarlane, T. D. 1993b. Spotlight on DELTA
features: The Confor directives Absolute Error
and Percent Error. DELTA Newsletter 8: 13.

Maddison, Wayne P. & Maddison, David R. 2006.
Mesquite: a modular system for evolutionary
analysis. Version 1.12. http:// mesquiteproject.

org. [Last retrieved 2007-05-02]
Maddison, David R.; Swofford, David L. & Maddi-

son, Wayne P. 1997. NEXUS: An extensible
file format for systematic information. Syste-
matic Biology 46 (4): 590-621.

Mandel, Theo 1997. The elements of user interface
design. John Wiley: New York (USA).

Manola, Frank & Miller, Eric (eds.) 2004. W3C
RDF Primer. W3C Recommendation 10 Febru-
ary 2004. http://www.w3.org/TR/2004/REC-
rdf-primer-20040210. [Last retrieved 2007-04-
01]

Maxted, Nigel; White, R. J. & Allkin, R. 1993. The
automatic synthesis of descriptive data using
the taxonomic hierarchy. Taxon 42: 51-62.

McGillicuddy, Dan 2005. Key to dietary supple-
ments and related botanicals, Navikey 3.0.
http:// www.virtualherbarium.org/ dietary supple

ments/ NavikeyInfo.html. [Last modified 2005-
01-01, last retrieved 2007-04-16]

McGuinness, Deborah L. & van Harmelen, Frank
(eds.) 2004. W3C OWL Web Ontology Lan-
guage. Overview. W3C Recommendation 10
February 2004. http://www.w3.org/ TR/2004/

REC-owl-features-20040210. [Last retrieved
2007-04-01]

Meacham, C. 2007. The MEKA home page.
http://ucjeps.berkeley.edu/meacham/meka.
[Last retrieved 2007-05-02]

Metcalf, Z. P. 1954. The construction of keys.
Systematic Zoology 3: 38-45.

Meyke, Evgeniy 2004. Bio-Tools.Net TAXIS 3.5.
http://www.bio-tools.net. [Last retrieved 2007-
04-16 (update to version 3.5.3.35, dated 2005,
was not retested)]

MIDI 2007. Sherlock Microbial Identification
Systems. http:// www.midi-inc.com/ index.html.
[Last retrieved 2007-05-10]

Morris, Robert A.; Asiedu, Jacob K.; Stevenson,
Robert D. & Tang, Hua 2003. Semi-automatic

polyclave key generation (Abstract). Taxono-
mic Databases Working Group Annual Meet-
ing, 25-26 October 2003 Instituto Gulbenkian
de Ciência, Oeiras, Lisboa, Portugal. http://

www. tdwg.org/ 2003meet/ paperabstracts/

TDWG_2003_Papers_Robert_Morris_1.htm.
[Last retrieved 2007-04-17]

Morris, R.; Thiele, Kevin; Paterson, Trevor &
Hagedorn, Gregor 2004. The problem of sex.
http:// wiki.tdwg.org/ twiki/ bin/ view/ SDD/

TheProblemOfSex. [Last retrieved 2007-04-17]
Morris, Robert A.; Asiedu, Jacob K.; Haber, Wil-

liam; SaintOurs, Fred; Stevenson, Robert D. &
Tang, Hua 2007. Database-backed decision
trees with application to biological informatics.
Journal of Intelligent Information Systems (on-
line version appeared, doi:10.1007/s10844-006-
0029-5, print version to appear).

Morse, L. E. 1974. Computer programs for speci-
men identification key construction, and de-
scription printing using taxonomic data matri-
ces. Publications of the Museum of the Michi-
gan State University (Biological Series) 5: 1-
128. East Lansing, Michigan.

Morse, David R.; Tardivel, G. M. & Spicer, J. 1996.
A comparison of the effectiveness of a dichoto-
mous key and a multi-access key to woodlice.
Technical Report 14-96, Computing Laborato-
ry, University of Kent, Canterbury, UK, August
1996. http:// www.cs.kent.ac.uk/ pubs/ 1996/ 44/

index.html [Available as postscript format, last
retrieved 2007-04-21]

Müller, H. J. (ed.) 1985. Bestimmung wirbelloser
Tiere im Gelände. Bildtafeln für zoologische
Bestimmungsübungen. Gustav Fischer Verlag
Stuttgart.

Munsell color charts for plant tissues 1977. Munsell
color, 2nd ed. Macbeth Division of Kollmorgan
Corporation: Baltimore, Maryland (USA).

Munsell Soil Color Charts 1992. Macbeth Division
of Kollmorgen Instruments Corporation, re-
vised ed. Newburgh, New York, USA.

Naiburg, Eric J. & Maksimchuk, Robert A. 2001.
UML for database design. Addison-Wesley:
Boston (USA). 300 pp.

Naskrecki, Piotr 2007. MANTIS – a manager of
taxonomic information and specimens. http://

140.247.119.138/ mantis. [Last updated 2007-
01-07, last retrieved 2007-04-17. First version
1996.]

National Herbarium of New South Wales 2007.
PlantNET. Interactive dichotomous keys. http://

plantnet.rbgsyd.nsw.gov.au/ interactive_

keys.htm. [Last retrieved 2007-05-10]
Neubacher, Dieter & Rambold, Gerhard 2007a.

NaviKey 4 – a Java applet for accessing de-
scriptive data coded in DELTA format. http://

G. Hagedorn References 383

www.navikey.net. [Last updated 2007-03-15,
last retrieved 2007-04-17]

Neubacher, Dieter & Rambold, Gerhard 2007b.
DiversityNavigator® – a Java rich client for
accessing biodiversity databases. http:// www.

diversitynavigator.net. [Sofware version
0.97.21 dated 2007-02-06, last retrieved 2007-
05-07; authorship cited according to http://

141.84.65.132/ BSM-Mycology/ Dali/ DALIdata

base_DALI_Details.cfm?ListNumber=7449]
Nimis, P. L. 2007. Strumenti per l’identificazione /

Identification tools. http:// dbiodbs.univ. trieste.

it/ dryades/ prova/ id/ h3.html. [13 freely accessi-
ble keys, 8 further keys with restricted access;
last retrieved 2007-04-10]

Nimis, P. L.; Martellos, S. & Poldini, L. 2005a.
Interactive guide to the plants of M. Valerio
(Trieste). Illustrations by A. Moro. http://

dbiodbs.univ.trieste.it/ mval/ mval_en.html.
[FRIDA-based key; last retrieved 2007-04-10]

Nimis, P. L.; Martellos, S. & Prosser, F. 2005b. The
plants of Villa Welsperg (Paneveggio – Pale di
S.Martino Natural Park, Province of Trento).
Illustrations by A. Moro. http:// dbiodbs.units.it/

paneveggio/ welsperg_en.html. [FRIDA-based
key; last retrieved 2007-04-10]

Noda, Natsuko & Kishi, Tomoji 1999. On aspect-
oriented design – applying “multi-dimensional
separation of concerns” on designing quality
attributes. http://www.cs.ubc.ca/ ~murphy/

multid-workshop-oopsla99/position-papers/

ws09-noda.pdf. [Last retrieved 2007-04-17]
Oberdorfer, Erich 1983. Pflanzensoziologische

Exkursionsflora. 5. Aufl. Eugen Ulmer Verlag:
Stuttgart (Germany). 1051 pp.

OConnor, Barry & Klimov, Pavel B. 2004a. Visual
Key. http:// insects.ummz.lsa.umich.edu/

beemites/ vk_bees/ Visual_key.htm. [Created
2004-03-18, last modified 2004-04-27, last
retrieved 2007-04-16]

OConnor, Barry & Klimov, Pavel B. 2004b. Com-
parison between Visual Key and others inter-
active identification programs. http:// insects.

ummz.lsa.umich.edu/ beemites/ vk_bees/

Comparison.htm. [Last modified 2004-04-28,
last retrieved 2007-04-16]

Ogden, E. C. 1943. The broad-leaved species of
Potamogeton of North America, north of Mex-
ico. Rhodora 45: 57-105, 119-163, 171-124.

OMG 2001. Unified Modeling Language Specifica-
tion Version 1.4, September 2001. http://

www.omg.org/cgi-bin/apps/doc?formal/01-09-
67.pdf. [Last retrieved 2007-04-15]

OMG 2003. Unified Modeling Language Specifica-
tion March 2003 Version 1.5, formal/ 03-03-01.
http://www.omg.org/cgi-bin/apps/doc?formal/

03-03-01.pdf. [Last retrieved 2007-04-15]

OpenKey 2003. OpenKey project plant description
XML schema, ver. 2.20. http:// www.ibiblio.

org/ openkey/ schema/ plant_description_ 2_

20.xsd. [Page last modified 2003-04-30, last
retrieved 2007-04-15; also in conceptual form
at: http:// www.ibiblio.org/ openkey/ schema/

Plant_Description_Table2.20.html, last updated
2003-04-17]

Osborne, D. V. 1963. Some aspects of the theory of
dichotomous keys. New Phytologist 62: 144-
160.

Page, Roderic D. M. 1993. COMPONENT: Tree
comparison software for Microsoft Windows,
version 2.0. The Natural History Museum:
London (UK).

Page, Roderic D. M. 2001a. NDE. NEXUS Data
Editor for Windows. http:// taxonomy.zoology.

gla.ac.uk/ rod/ NDE/ nde.html. [Last modified
2001-09-13, last retrieved 2007-04-15]

Page, Roderic D. M. 2001b. COMPONENT. http://

taxonomy.zoology.gla.ac.uk/ rod/ cpw.html.
[Last retrieved 2007-04-17; Free download of
Component version 2.0.]

Page, Roderic D. M. 2004. Phyloinformatics: To-
wards a phylogenetic database. In: Wang,
Jason, et al. (eds) Data mining in bioinforma-
tics. pp. 219-241.

Palm, G. & Dietrich, C. 2001. Automated Identifi-
cation of Bioacoustic Signals. BIOLOG Status-
seminar, Bonn, http:// www.bgbm.fu-berlin.de/

BioDivInf/ biolog/ Statusseminar1/ 20011206-
B1-Palm-DORSA.pdf. [Last retrieved 2007-04-
17; slides of talk held at the meeting; there is no
corresponding abstract.]

Pankhurst, R. J. 1970a. A computer program for
generating diagnostic keys. Computer Journal
13: 145-151.

Pankhurst, R. J. 1970b. Key generation by com-
puter. Nature 227: 1269-1270.

Pankhurst, R. J. 1983. An improved algorithm for
finding diagnostic taxonomic descriptions.
Mathematical Biosciences 65: 209-218.

Pankhurst, R. J. 1988. An interactive program for
the construction of identification keys. Taxon
37: 747-755.

Pankhurst, R. J. 1991. Practical taxonomic compu-
ting. Cambridge University Press: Cambridge
(UK). 202 pp.

Pankhurst, R. J. 1993a. Principles and problems of
identification. In: Fortuner, R. (ed.) Advances
in computer methods for systematic biology.
John Hopkins Univ. Press: Baltimore, USA:
125-136.

Pankhurst, R. J. 1993b. Taxonomic databases: the
Pandora system. In: Fortuner, R. (ed.) Advan-
ces in computer methods for systematic biolo-

384 References G. Hagedorn

gy. John Hopkins Univ. Press: Baltimore, USA:
229-240.

Pankhurst, R. J. 1993c. Comments on new features
for the DELTA system. DELTA Newsletter 9:
14-15.

Pankhurst, R. J. 1998. A historical review of identi-
fication by computer. In: Bridge, P.; Jeffries,
P.; Morse, D. R. & Scott, P. R. (eds.). Informa-
tion technology, plant pathology and biodiversi-
ty. CAB International: Wallingford, UK: 289-
303.

Pankhurst, R. J. 2003. PANKEY – Programs for the
identification and description of plants of ani-
mals. Exeter Software (47 Route 25A, Suite 2,
Setauket, New York 11733-2870). http://

www.exetersoftware.com/cat/pankey/Pansheet.
pdf. (The content of the file is undated, but as
of 2007-04-16 the pdf file was dated 2003-01-
31. See also http://www.exeter software. com/

cat/pankey/pankey.html; the usually cited link
http:// www.rbge.org.uk/ research/ Pankey.htm is
no longer available since at least Jan. 2004).

Pankhurst, R. J. & Pullan, Martin R. 1996. DELTA
in PANDORA. DELTA Newsletter 12: 16-20.

Pankhurst, R. J. & Pullan, Martin 1998. The
PANDORA taxonomic database system.
http://www.ibiblio.org/pub/academic/biology/e
cology+evolution/software/pandora. [Last re-
trieved 2007-05-01. Page is formally authored
by Una Smith, 1999-2002, but considered here
a formal error as citation for Pandora. The
widely quoted link: http:// www.rbge.org.uk/

research/ Pandora.htm is as of Jan. 2004 no
longer active.]

Paterson, T. 2004. The Prometheus Database Pro-
ject: Capturing botanical descriptions for tax-
onomy. (Powerpoint presentation, DILS 2004).
http://www.dcs.napier.ac.uk/ ~prome theus/ pro

metheus_2/talk/DILStalk v2.ppt. [Last retrieved
2007-05-01]

Paterson, Trevor; Kennedy, Jessie B.; Pullan, Mar-
tin R.; Cannon, Alan; Armstrong, Kate; Wat-
son, Mark F.; Raguenaud, Cédric; McDonald,
Sarah & Russell, Gordon 2004. A universal
character model and ontology of defined terms
for taxonomic description. In: Rahm, Erhard
(ed.); Data integration in the life sciences DILS,
Leipzig, Germany, March 25-26 2004, Procee-
dings; Springer Lecture Notes in Bioinforma-
tics (Springer, Berlin) Vol. 2994: 63-78. Ab-
stract: http:// springerlink.metapress.com/

openurl.asp?genre=article&issn=0302-9743

&volume=2994&spage=63; preprint: http://

www.dcs.napier.ac.uk/ ~prometheus/

prometheus _2/ publications/ Paterson_etal_

DILS.pdf. [Last retrieved 2007-05-01]

Payne, R. W. & Preece, D. A. 1977. Incorporating
checks against observer error into identification
keys. New Phytologist 79: 201-207

Pennisi, Elizabeth 1994. Name that fly: Computers
help make species identification child’s play.
Science News 145 (7): 108-111.

Percudani, Riccardo; Rivetti, Claudio & Zambonel-
li, Alessandra 2006. Tuberkey. http://www.

truffle. org/tuberkey/tuberkey-english.html.
[File date 2006-05-09; last retrieved 2007-05-
01]

Pickering, John 2007. Discover life. http:// www.

discoverlife.org. [Last retrieved 2007-05-10]
Piepenbring, Meike; Hou, C.-L.; Hagedorn, Gregor;

Deml, Günther & Oberwinkler, F. 2001.
GLOPP – Smut fungi. BIOLOG German Pro-
gramme on Biodiversity and Global Change
(Phase I, 2000-2004) Funded by BMBF, Status
Report 2001, 218-219.

Piepenbring, Meike; Hagedorn, Gregor; Deml,

Günther; Hou, C.-L. & Oberwinkler, F. 2003.
Global Information System for the Biodiversity
of Smut fungi (Ustilaginales s. l. & Microbotry-
ales, Basidiomycota). http:// www.Diversity

Campus. net/ Glopp/ Smut/ . [Last retrieved 2007-
05-01]

Prillinger, H.; Oberwinkler, F.; Umile, C.; Tlachac,
K.; Bauer, R.; Dörfler, C. & Taufratzhofer, E.
1993. Analysis of cell wall carbohydrates
(neutral sugars) from ascomycetous and basi-
diomycetous yeasts with and without derivati-
zation. Journal of General and Applied Micro-
biology 39: 1-34.

Pujar, Anuradha; Jaiswal, Pankaj; Kellogg, Eliza-
beth A.; Ilic, Katica; Vincent, Leszek; Avra-
ham, Shulamit; Stevens, Peter; Zapata, Felipe;
Reiser, Leonore; Rhee, Seung Y.; Sachs, Martin
M.; Schaeffer, Mary; Stein, Lincoln; Ware,
Doreen & McCouch, Susan 2006. Whole plant
growth stage ontology for Angiosperms and its
application in plant biology. Plant Physiology
142: 414-428. http:// www.pubmedcentral. nih.

gov/ picrender.fcgi?artid=1586063&blob

type=pdf.
Pullan, Martin R.; Watson, Mark F.; Kennedy,

Jessie B.; Raguenaud, Cédric & Hyam, Roger
2000. The Prometheus taxonomic model: a
practical approach to representing multiple
classifications. Taxon 49: 55-75.

Pullan, Martin R.; Armstrong, Kate E.; Paterson,
Trevor; Cannon, Alan; Kennedy, Jessie B.;
Watson, Mark F.; McDonald, Sarah & Raguen-
aud, Cédric 2005. The Prometheus Description
Model: an examination of the taxonomic de-
scription-building process and its representa-
tion. Taxon 54 (3): 751-765.

G. Hagedorn References 385

Purvis, Andy & Hector, Andy 2000. Getting the
measure of biodiversity. Nature 405 (6783):
212-219.

Radford, A. E.; Dickison, W. C.; Massey, J. R. &
Bell, C. R. 1974. Vascular Plant Systematics.
Harper & Row: New York (USA).

Raguenaud, Cédric; Pullan, Martin; Watson, M.;
Kennedy, Jessie; Newman, M. & Barclay, P.
2002. Implementation of the Prometheus Taxo-
nomic Model: a comparison of database sys-
tems. Taxon 51 (1): 131-142.

Rambold, Gerhard 1997. LIAS – the concept of an
identification system for lichenised and lichen-
icolous ascomycetes. – In: Türk, R. & Zorer, R.
(eds.), Progress and problems in lichenology in
the Nineties – IAL 3. – Bibliotheca Lichenolo-
gica 68: 67-72.

Rambold, Gerhard 2002. Computer-aided identifi-
cation systems for biology, with particular ref-
erence to lichens (chapter 31). In: Kranner, I.;
Beckett, R. P. & Varma, A. K. (eds.) Protocols
in lichenology: culturing, biochemistry, eco-
physiology and use in biomonitoring. Springer:
Berlin, Heidelberg (Germany). pp. 536-553.

Rambold, Gerhard & Hagedorn, Gregor 1998. The
distribution of selected diagnostic characters in
the Lecanorales. Lichenologist 30 (4-5): 473-
487.

Rambold, Gerhard; Triebel, Dagmar 2007. Genera
of lichenized and lichenicolous Ascomycetes.
LIAS. A global information system for lichen-
ized and non-lichenized Ascomycetes. www.

lias. net/ Taxa/ DataForms/ genera/ index.html.
[First version 1996, last retrieved 2007-04-15]

Rambold, Gerhard; Hagedorn, Gregor; Begerow, D.
& Weiss, Markus 2003. The Diversity Work-
bench Modules within the framework of the
German GBIF Node for Mycology [Poster in
GBIF-D: Fungi & lichens]. In: International
Symposium “Sustainable use and conservation
of biological diversity – A challenge for soci-
ety.” Symposium Report Part A. 1-4 December
2003, Berlin, p. 438.

Rayner, R. W. 1970. A mycological colour chart.
Commonwealth Mycological Institute and
British Mycological Society, Kew, England.

Richards, A. J. 1986. Plant breeding systems. Allen
& Unwin, London.

Ridgway, Robert 1912. Color Standards and Color
Nomenclature. Washington, D.C.; published
privately by the author. 43 pp + 53 color plates.

Rivetti, Claudio 1999. WebDelta – Web-based
DELTA interface. http://www.truffle.org/

webdelta/ webdelta.html; http:// alice.bio.unipr.

it/ download/ WebDelta1.2.tar. [Last retrieved
2007-05-01]

Rohlf, F. J. 1993. Feature extraction in systematic
biology. In: Fortuner, R. (ed.) Advances in
computer methods for systematic biology. John
Hopkins Univ. Press: Baltimore, USA: 375-
392.

Rohlf, F. J. 1996. Morphometric spaces, shape com-
ponents and the effects of linear transforma-
tions. In: L. F. Marcus et al. (eds.), Advances in
morphometrics 284: 117-129. Plenum Publish-
ing: New York (USA).

Rothmaler, W.; Schubert, R, Jäger, E. & Werner, K.
1985. Exkursionsflora für die Gebiete der DDR
und BRD. Band 3. Atlas der Gefäßpflanzen.
6. Aufl. Verl. Volk und Wissen: Berlin
(Germany).

Ryan, B. D.; Bungartz, F.; Hagedorn, Gregor &
Rambold, Gerhard 2005. LIAS glossary – a
Wiki-based online dictionary for ascomycete
terminology. http:// glossary.lias.net. [Last
retrieved 2007-05-01]

Saarenmaa, H. 1999. The Global Biodiversity Infor-
mation Facility: Architectural and implementa-
tion issues. European Environment Agency,
Technical Reports 34. 34 pp. Copenhagen. On-
line: version 15. http:// reports. eea.eu.int/

Technical_report_No_34. [Last retrieved 2007-
05-01. Originally at http:// www.eionet.eu.int/

gbif/ gbif-implementation-latest.html, no longer
available.]

Saarenmaa, H. 2002. Technological opportunities
and challenges in building a global biological
information infrastructure. In: Saarenmaa, H. &
Nielsen, E. S. (eds.) Towards a global biologi-
cal information infrastructure: Challenges, op-
portunities, synergies, and the role of entomol-
ogy. XXI International Congress of Entomol-
ogy in Iguassu Falls, Brazil, on 24 Aug. 2000.
Technical report No 70, European Environment
Agency: Copenhagen (Denmark). 72 pp.
http://reports.eea.eu.int/technical_report_2001_
70. [Last retrieved 2007-05-01]

Sautter, G.; Agosti, D. & Böhm, K. 2007. Semi-
automated XML markup of biosystematics
legacy literature with the GoldenGATE editor.
In: Proceedings of Pacific Symposium on Bio-
computing, Wailea, HI, USA 12: 391-402.
http:// psb.stanford.edu/ psb-online/ proceedings/

psb07/ sautter.pdf. [Last retrieved 2007-04-13]
Schalk, Peter H. & Heijman, Rob P. 1996. ETI’s

Taxonomic Linnaeus II Software: A new tool
for interactive education. UniServe Science
News, University of Sydney 1996 (3): 7-8.

Schell, Spencer; Lockwood, Jeff; Schell, Scott &
Zimmerman, Kiana (not dated, seen 2004).
Grasshoppers of Wyoming and the West. Field
Guide to Common Western Grasshoppers. List
of Species Fact Sheets. http://www.sdvc.

386 References G. Hagedorn

uwyo.edu/ grasshopper/facttoc.htm. [Last
retrieved 2007-05-10]

Schilowa, Barbara (undated). 614 Bäume sicher
erkennen. Interaktive Bestimmungsschlüssel.
dialobis edition Berlin. ISBN: 978-3-9805520-
4-2. DVD Box.

Schmeil, O. & Fitschen, J. 1988. Flora von
Deutschland und seinen angrenzenden Gebie-
ten. 88. Aufl. Quelle & Meyer: Heidelberg
(Germany).

Schmeil, O.; Fitschen, J. & Seibold, S. 2006. Flora
von Deutschland und angrenzender Länder. 93.
Aufl. Quelle & Meyer: Heidelberg (Germany).

Schuster, Rudolf M. 1958. Keys to the orders,
families and genera of Hepaticae of America
north of Mexico. The Bryologist 61 (1): 1-66.

Schweigkofler W.; Lopandic K.; Molnár O.; Prill-
inger H. 2002. Analysis of phylogenetic rela-
tionships among Ascomycota with yeast phases
using ribosomal DNA sequences and cell wall
sugars. Organisms Diversity & Evolution 2 (1):
1-17.

Seethalakshmi, K. K. & Muktesh Kumar, M. S.
1998. Bamboos of India. A compendium.
INBAR Technical Report 17. 342 pp. [Online:
http://www.inbar.int/publication/txt/tr17, last
retrieved 2007-04-28]

Seybold, S.; Koltzenburg, M. & Zauner, G. (eds.)
2001. Schmeil-Fitschen interaktiv. Die umfas-
sende Bestimmungs- und Informationsdaten-
bank der Pflanzenwelt Deutschlands und an-
grenzender Länder. CD ROM. Quelle & Meyer.
Wiebelsheim.

Seybold, S.; Koltzenburg, M. & Zauner, G. (eds.)
2004. Schmeil-Fitschen interaktiv. Die Flora
von Deutschland und angrenzender Länder. CD
ROM, 2. Aufl. Quelle & Meyer. Wiebelsheim.

Shattuck, S. & Fitzsimmons, N. 2000. BioLink: The
Biodiversity Information Management System
(software and documentation). CSIRO Publish-
ing, Collingwood, Victoria, Australia.

Smets, E. & Laboratory of Plant Systematics. 2003.
Morphocode. http://www.kuleuven.be/ bio/ sys/

mc. [File last modified 2003-09-23, last
retrieved 2007-04-28]

Smith, Marion R. 1943. A generic and subgeneric
synopsis of the male ants of the United States.
American Midland Naturalist 30 (2): 273-321.

Sokal, R. R. & Rohlf, F. J. 1981. Biometry. 2nd ed.
W. H. Freeman: New York (USA). 859 pp.

Stanford Encyclopedia of Philosophy. 2003. Modal
Logic. http:// plato.stanford.edu/ entries/ logic-
modal. [Last retrieved 2007-04-20]

Steinhage, V.; Arbuckle, T.; Schröder, S.; Cremers,
A. B. & Wittmann, D. 2001. ABIS: Automated
Identification of Bee Species, BIOLOG Work-

shop, Dec. 5-7, 2001, Bonn. German Program-
me on Biodiversity and Global Change, Status
Report 2001. German Ministry of Education
and Research (BMBF), Bonn: 194-195.

Stevens, P. F. 1991. Character states, morphological
variation, and phylogenetic analysis: a review.
Systematic Botany 16: 553-583.

Stevenson, R. D.; Haber, W. A. & Morris, R. A.
2003. Electronic field guides and user commu-
nities in the eco-informatics revolution. Conser-
vation Ecology 7 (1): 3. [Online: http:// www.

consecol.org/ vol7/ iss1/ art3, last retrieved 2007-
05-09]

Sutton, B. C. 1980. The Coelomycetes. CAB: Kew,
Surrey (UK). 696 pp.

Swofford, D. L. 1990. PAUP – Phylogenetic analy-
sis using parsimony. Natural History Survey:
Champaign, Illinois (USA).

Swofford, D. L. 2000. PAUP*. Phylogenetic analy-
sis using parsimony (*and other methods). Ver-
sion 4. Sinauer Associates, Sunderland,
Massachusetts (USA).

SysTax 2004. SysTax – a database system for sys-
tematics and taxonomy. ER-diagram documen-
tation, interfaces. http://www.biologie.uni-
ulm.de/systax/documentation.[Multiple pages,
last modified 2004-01 to 2004-06; last retrieved
2007-04-28]

Taylor, Andrew J. 1995. Extracting knowledge
from biological descriptions. 2nd international
conference on building and sharing very large-
scale knowledge bases, Amsterdam, April
1995, IOS Press, Enschede (The Netherlands):
114-119. [Online: http://www.cse.unsw.edu.au/

~andrewt/ papers/ nlp_vlkb95/ nlp_vlkb95.html,
last retrieved 2007-05-09]

TDWG 1998. International Working Group on Tax-
onomic Databases (TDWG). A workshop on
metadata and interoperability in biodiversity
data systems. Report of the 1998 Annual meet-
ing at the Centre for Plant Diversity & Syste-
matics, University of Reading, UK, September
12-15, 1998. http:// www.nhm.ac.uk/ hosted_

sites/tdwg/ nwsltr_p3.html. [Last retrieved
2007-05-09. Originally at http:// www.tdwg.org/

nwsltr_p3.html, now forwarded.]
TDWG 1999a. TDWG Newsletter – IUBS Taxono-

mic Databases Working Group Number 9,
March 1999. http:// www.nhm.ac.uk/ hosted_

sites/ tdwg/ newsletter.html [Last retrieved 2007-
05-09. Originally at http:// www.tdwg.org/

newsletter.html, now forwarded.]
TDWG 1999b. International Working Group on

Taxonomic Databases: 1999 TDWG Meeting,
Harvard Herbarium, Cambridge, USA, 29th-
31st October, 1999. http:// www.nhm.ac.uk/

hosted_sites/ tdwg/ rep1999.html. [Last retrieved

G. Hagedorn References 387

2007-05-09. Originally at http:// www.tdwg.org/

rep1999.html, now forwarded.]
Théry, Marc; Stevens, Albert-D.; Hoppe, Jürgen R.;

Charles-Dominique, Pierre & Schuchmann,
Karl-L. 1998. Angiosperm pollination and seed
dispersal, a review. Ecotropica 4 (1-2): 69-91.

Thiele, Kevin 1993. The holy grail of the perfect
character: the cladistic treatment of morpho-
metric data. Cladistics 9: 275-304.

Thiele, Kevin 2003. SDD part 0: Introduction and
primer to the SDD standard. Version “3. Dec.
2003”. http://www. DiversityCampus.net/

Projects/TDWG-SDD/Primer/index.htm. [Last
retrieved 2007-03-31]

Thiele, Kevin & Sharp, Donovan 2006. SDD part 0:
Introduction and primer to the SDD standard.
http:// wiki.tdwg.org/ twiki/ bin/ view/ SDD/

Primer/ WebHome. [Last retrieved 2007-03-31]
Thiele, Kevin T.; Rutter, G. & Yeates, D. K. 1998.

LucID Professional interactive key software
system version 1. The Cooperative Research
Centre for Tropical Pest Management, Bris-
bane.

Thompson, F. C. 1996. Names: The keys to Bio-
diversity. In: Reaka-Kudla, M. L.; Wilson, D. E.
& Wilson, E. O. (eds.), Biodiversity II. J. Henry
Press, Washington (USA), 199-211.

Thompson, Henry S.; Beech, David; Maloney,
Murray & Mendelsohn, Noah (eds.) 2001. W3C
XML Schema Part 1: Structures. W3C
Recommendation, 2 May 2001. http://

www.w3.org/ TR/2001/REC-xmlschema-1-
20010502. [Last retrieved 2007-04-01]

Tiwari, S. & Gallager, S. 2003. Identification of
bivalve larvae using multiscale texture and
color invariants. Technical report, Woods Hole
Oceanographic Institution. http://4dgeo.whoi.

edu/ lihdat/waveletpaper.pdf. [Last retrieved
2007-03-31]

Trappe, J. M. 1982. Synoptic keys to the genera and
species of zygomycetous mycorrhizal fungi.
Phytopathology 72: 1102-1108.

Tree of Life web project 2007. About the Tree of
Life web project. http:// tolweb.org/ tree/ home.

pages/ abouttol.html. [Last retrieved 2007-05-
02]

UBio 2004. Tools – X:ID. http:// www.ubio.org/

index.php?pagename=XID/ key. [Last retrieved
2007-04-16]

Vanel, J. M. 2004. Data preparation. Worldwide
botanical knowledge base project. http://

wwbota. free.fr/ project/ data/ data-processing.

html. [Last update 2004-08-16, last retrieved
2007-04-13]

Voss, E. G. 1952. The history of keys and phylogen-
etic trees in systematic biology. Journal of the

Scientific Laboratories of Denison University
43: 1-25.

W3C 2007. RDF: Resource Description Frame-
work. http:// www.w3.org/ RDF. [Last retrieved
2007-04-01]

Watson, Ian (ed.) 2002. Applying Knowledge Man-
agement: Techniques for Building Corporate
Memories. Elsevier: Amsterdam (NL). 250 pp.

Watson, L. & Dallwitz, Mike J. 1991. The families
of angiosperms: Automated descriptions, with
interactive identification and information re-
trieval. Australian Systematic Botany 4 (4):
681-695.

Weitzman, Anna L. & Lyal, Christopher H. C.
2005. An XML schema for taxonomic literature
– taXMLit. http:// www.sil.si.edu/ digitalcollec

tions/ bca/ documentation/ taXMLitv1-3Intro.pdf.
23 pp. [File date 2005-10-28, last retrieved
2007-05-13]

White, Helen 1994. Data or concepts – what should
we be coding? DELTA Newsletter 10: 13-14.

White, I. M. & Sandlant, G. R. 1998. Computerised
insect identification: a comparison of differing
approaches and problems. In: Bridge, P.;
Jeffries, P.; Morse, D. R. & Scott, P. R. (eds.).
Information technology, plant pathology and
biodiversity. CAB International: Wallingford,
UK: 261-271.

White, I. M. & Scott, P. R. 1994. Computerized
information resources for pest identification: A
review. In: Hawksworth, D. L. (ed.) Identifica-
tion and characterisation of pest organisms,
CAB International (UK): 129-137.

White, R. J.; Allkin, R. & Winfield, P. J. 1993.
Systematic databases: The BAOBAB design
and the ALICE system. In: Fortuner, R. (ed.)
Advances in computer methods for systematic
biology. John Hopkins Univ. Press: Baltimore,
USA: 297-311.

Wilson, Nathan 1994. Identifying organisms with
computers: an implementation of a computer-
ized synoptic identification system with fungi
as a test case. Master Thesis, University of
California: Santa Cruz (USA). Online: http://

collectivesource.com/taxy/thesis.html. [Last
retrieved 2007-05-10]

Wilson, E. O. 2003. Biodiversity in the information
age. Issues in Science and Technology Online,
Summer 2003. http://www.issues.org/ 19.4/

wilson.html. [Last retrieved 2007-05-10]
Winder, L.; Lefley, M. & Smith, B. 1997. A key for

freshwater invertebrates using fuzzy logic.
Bioinformatics 13: 169-174.

Wright, J. F.; Morse, David R. & Tardivel, G. M.
1995. An investigation into the use of hypertext

388 Appendix G. Hagedorn

as a user-interface to taxonomic keys. Compu-
ter Applications in the Biosciences 11: 19-27.

XID Services 2007. XIDServices, Inc. Expert iden-
tification system. http://www. xidservices. com.
[Last retrieved 2007-04-13]

Yoon, N. & Rose, J. 2001. An information model
for the representation of multiple biological
classifications. In: Alexandrov, V. N.; Donga-
rra, J. J.; Juliano, B. A.; Renner, R. S.; Tan,
C. J. K. (eds.) Computational Science. ICCS
2001: International Conference, San Francisco,
CA, USA, May 2001 Proceedings, Part 1.
Springer: New York (USA), 937-946.

Ytow, N.; Morse, David R. & Roberts, D. 2001.
Nomencurator: a nomenclatural history model
to handle multiple taxonomic views. Biological
Journal of the Linnean Society 73 (1): 81-98.

Zar, J. H. 1984. Biostatistical Analysis. 2nd ed.
Prentice-Hall: New Jersey (USA). 718 pp.

Zhong, Y; Jung, S.; Pramanik, S. & Beaman, J. H.
1996. Data model and comparison query meth-
ods for interacting classifications in taxonomic
databases. Taxon 45: 223-241.

10. Appendix

10.1. Brief history of SDD
At the TDWG meeting 1998 the author of this thesis presented an analysis showing that the pro-
posed “New DELTA” (see above) would break compatibility with previous DELTA versions. It
was proposed that TDWG would initiate a new standard process rather than automatically accep-
ting fundamental changes in the existing DELTA standard (TDWG 1998, TDWG 1999a). At the
next TDWG meeting in Harvard many of the major developers of descriptive databases (TDWG
1999b) convened and intensive discussions ensued in person and on an email discussion group
started after the meeting. Since then, the SDD group consists of a small number of core members
and a large number of occasional participants and informants. Substantial progress has been made
in recent years during face-to-face meetings. The activities of the SDD group are documented in
a publicly accessible Wiki (http://wiki.tdwg.org/twiki/bin/view/SDD/), an archived email list, and
in the following reports and minutes of the working sessions: Harvard, USA (TDWG 1999b,
Hagedorn 1999b); Frankfurt, Germany (TDWG meeting, Hagedorn 2000b); Sydney, Australia
(TDWG meeting, Hagedorn 2001b); Canberra and Sydney, Australia (SDD meetings, Hagedorn
2002b); Indaiatuba, Brazil (convener's report: Hagedorn 2002c; minutes: Hagedorn 2003a); Paris,
France (SDD meetings, Hagedorn 2003b); Oeiras/Lisbon, Portugal (TDWG meeting, minutes:
Hagedorn 2003c, schema v. 0.9: Hagedorn 2003d, and documentation: Hagedorn 2003e); Christ-
church, New Zealand (TDWG meeting, Hagedorn 2004c, 2004d).

The latest developments were the release of the SDD w3c XML schema in version 1.0 and its
approval as an international data exchange standard at the TDWG meeting in St. Petersburg,
Russia). In response to experience with the schema and new requirements by GBIF on a further
meeting (Berlin, Germany, Hagedorn 2006), a new version was developed and as of March 2007
– after two release candidates – released as version 1.1.

10.2. Code fragments for evaluating character
applicability rules

This appendix first provides a procedural programming fragment and then code in SQL to evalu-
ate character applicability rules as discussed in the chapter “Character applicability rules” (p. 76).

G. Hagedorn Appendix 389

Procedural pseudo-code for character applicability
Because of the multitude of incompatible programming languages, it is considered more general-
ly useful to express the algorithm in a verbose pseudo-code language, intended for communica-
tion with human programmers. It is similar to easily readable programming languages such as
SQL, Pascal, Delphi, Modula or many Basic dialects, but it is hoped that the code below can be
understood by programmers preferring other languages (C, Perl, Java, etc.) as well. Variable
names are italicized, comments enclosed in “/* */”.

The following code fragment deals with the evaluation of multiple controlling characters, of a
controlling character being unknown, inapplicable, or having data, and in the latter case with the
evaluation of applicable-if and inapplicable-if rules. Not included is code to test whether the con-
trolling character is made inapplicable through an “inapplicable” coding status value that is not
combined with other character data. This has been purposely omitted because additional data
structures for the coding status would have to be introduced.

Function IsApplicable(ControlledChar as CharacterDefinition,
 Description as Collection of CharacterData) as Boolean
Define b as Boolean = True;
For Each ControllingCharData In Description
 /* Multiple controlling chars are combined with AND;
 any one may make the controlled character inapplicable */
 b = b And IsApplicableFor1(ControlledChar, ControllingCharData);
End For Each;
Return b;
End Function;

Function IsApplicableFor1(ControlledChar as CharacterDefinition,
 ControllingCharData as CharacterData) as Boolean
Define b as Boolean;
If Not IsApplicable(ControllingCharData.Character,
 ControllingCharData.Description) Then
 /* Note: a) this assumes some back-pointers being passed with
 character data; ControllingCharacter and Description could also
 be passed as parameters
 b) this is a highly inefficient recursion, see comment after code... */
 Return False;
Else If ControllingCharData.Count=0 Then
 b = True; /* no scored states present in controlling character data is
 considered as applicable; alternatively one might consider unknown
 controlling character as unknown applicability) */
Else
 b = False; /* char. is inapplicable if no state makes it applicable */
 For Each ScoredState in ControllingCharData
 /* i. e. for all states for a character in a description */
 b = b Or StateMakesApplicable(ControlledChar, ScoredState);
 End For Each; /* Scored states within controlling char. combined with OR */
 Return b;
End If;
End Function;

Function StateMakesApplicable(ControlledChar as CharacterDefinition,
 ScoredState as StateData) as Boolean
/* ScoredState is a data set wide unique object, not a local identifier
 within a character as the state numbers are in DELTA */
Define b as Boolean = True; /* Default if no rule exists at all */
For Each Rule in ApplicabilityRules
 /* ApplicabilityRules here is assumed to be globally accessible.
 Assumes each controlling state/controlled character-combination
 is considered one rule object. Looping is inefficient, real code
 would use index or hash table or might organize Rules in a tree. */
 If Rule.ControllingState = ScoredState
 And Rule.ControlledChar = ControlledChar Then /* evaluate type of rule */

390 Appendix G. Hagedorn

 If Rule.ApplicabilityRule Then /* type of rule = applicable-if */
 b = True; /* return true if scored state found in rules */
 Else /* type of rule = inapplicable-if */
 b = False; /* return false if scored state found in rules */
 End If;
 Exit For; /* Exit loop directly: only a single rule may exist! */
 End If;
End For Each;
Return b;
End Function;

Clearly, the procedural pseudo-code shown above is rather inefficient. For each character that
might be controlled it loops repeatedly through all states of controlling characters in a descrip-
tion, and further tests for cascading dependencies in a highly inefficient repeated recursion. A
better strategy might be to first build a tree of controlling characters organized by an analysis of
cascading dependencies (see p. 82), to avoid the additional recursion, organize the Applicabili-
tyRules by controlling characters, and then for each description store the results of the controlled
characters in that tree. This would reduce the number of characters studied, would allow the reuse
of the character data from the description if multiple characters are controlled, and would prevent
recursion. As soon as a controlled character becomes inapplicable in this tree, all other controlled
characters would automatically become inapplicable.

SQL code for character applicability in relational databases
One may define two entities, Description and CharApplicabilityRule (Table 61):

Table 61. Example data to illustrate SQL code for character applicability rules.

Description

CharApplicabilityRule
(for Inapplicable-if)

DescrID CharID ScoredState
1 1 1.a
1 1 1.b
2 1 1.a
3 1 1.b
4 1 1.a
4 1 1.b
4 1 1.c
5 1 1.b
5 1 1.c
6 1 1.a
6 1 1.c
7 1 1.c

Controlling
CharID

Controlling
State

Controlled
CharID

IsAppli-
cable

1 1.a 2 False
1 1.b 2 False
1 1.a 9 True
1 1.b 9 True

IsApplicable = False and True for inapplicable-if, and
applicable-if rules, respectively.

As discussed in “Analysis of convertibility” (p. 80), for each combination of a controlling and
controlled character, the states defined in the character definition may be split into two non-
overlapping subsets: those states making the controlled character applicable (A) and those making
it inapplicable (I). The association of these with the controlling or non-controlling states depends
on the kind of applicability rule (applicable-if or inapplicable-if).

Terminology approach. This approach may be useful if the status of all states (controlling and
non-controlling) in the controlling character shall be analyzed or evaluated. It only deals with
terminology information and does not evaluate the rules in combination with a given description
yet. The terminology approach is useful when character applicability calculations shall be per-
formed in programming code external to the DBMS and the necessary data for doing so shall be

G. Hagedorn Appendix 391

obtained from the database in a compact, pre-processed form. For example, identification data
may be stored not as “ad-hoc” descriptions in the database and the evaluation of character appli-
cability based on these data would most likely occur outside the database.

Step T1: The query “CharApplicability_T1ControlledControllingWithAllStates” reduces
CharApplicabilityRule to unique ControlledCharID/ControllingCharID combinations and joins
with all character states defined for these character (obtained from a table CharState not shown
above):
SELECT ControlledCharID, IsApplicable, ControllingCharID, CharState.StateID
FROM CharState INNER JOIN CharApplicabilityRule
 ON CharState.CharID = CharApplicabilityRule.ControllingCharID
GROUP BY ControlledCharID, IsApplicable, ControllingCharID, StateID;

Note that rather than defining a table with one record per controlling state as outlined above (and
similar to the DiversityDescriptions model), an alternative ER-model might provide one table for
unique controlling/controlled character combinations, and a related table for the controlling
states. Advantages of that model would be that the constraint of a single kind of rule (applicable-
if or inapplicable-if, expressed in the Boolean IsApplicable field) would be enforced by the
model and that the group-by clause above could be omitted.
Step T2: In a second query (which may be called “CharApplicability_T2ControlledControlling-
AllStateStatus”) the query from step 1 (which is given the short alias name “CCAllStates”) is
joined with a left outer join again with the applicability rules (using the primary key, i. e., the
controlling states plus controlled character). All records for which a rule can be joined belong to
the controlling and all records for which the outer table contains Null values belong to non-con-
trolling states. The association between controlling/non-controlling and the A and I subsets is
obtained by referring back to the IsApplicable value from the first query. The calculation requires
an if/else function, the name and syntax of which usually differs between SQL dialects. Here it is
called IIf and has the syntax “IIf(Boolean-condition; result-if-true, result-if-false)”:
SELECT CCAllStates.*, IIf(ControllingState Is Null,
 Not CCAllStates.IsApplicable,
 CCAllStates.IsApplicable) AS MakesApplicable
FROM CharApplicability_T1ControlledControllingWithAllStates AS CCAllStates
 LEFT JOIN CharApplicabilityRule
 ON (CCAllStates.ControlledCharID = CharApplicabilityRule.ControlledCharID)
 AND (CCAllStates.StateID = CharApplicabilityRule.ControllingState);

For those accustomed to a graphical query designer, the following screenshots representing the
SQL in the MS Access qbe editor may be helpful (Figs. 232-233):

Figure 232. CharApplicability_T1ControlledControllingWithAllStates (step 1) in MS Access qbe-
view. See text for equivalent SQL.

Figure 233. CharApplicability_T2ControlledControllingAllStateStatus (step 2) in MS Access qbe-
view. See text for equivalent SQL.

392 Appendix G. Hagedorn

B: Optimized approach to evaluate descriptions. In principle, the result of the previous query
could be joined with the Description table and the character applicability rules evaluated. How-
ever, doing so might be inefficient. For each description only a subset of states need to be ana-
lyzed and the combination of an aggregation, an outer join, and a calculated value is likely to be
in-transparent to the query optimizer of most DBMS. Therefore, a slightly more direct approach
is presented in the following.

Step D1: The view “CharApplicability_D1JoinDescription” joins the applicability rules with
descriptions. The join occurs on the controlling character rather than on the states; the result thus
include both controlling states (those present in the applicability rule) and non-controlling states.
The latter are essential since character applicability rules are evaluated based on both kinds of
states. The description data must then be grouped by description, by controlling characters, and
by controlled characters (multiple characters may be controlled by the same controlling states).
The result is equivalent to step T1 above, except that the results are obtained for each description,
and only include those states present (scored) in that description:
SELECT AppRule.ControlledCharID, AppRule.IsApplicable,
 AppRule.ControllingCharID, Description.DescrID, Description.ScoredState
FROM Description INNER JOIN CharApplicabilityRule AS AppRule
 ON Description.CharID = AppRule.ControllingCharID;

Step D2: The view “CharApplicability_D2HavingStatesMakingApplicable” evaluates the appli-
cability rules in part. It already abstracts applicable/inapplicable-if rules and groups by control-
ling/controlled character within description, thus abstracting from which of the states have con-
tributed a result making a description/controlling/controlled character combination applicable:
SELECT D1.ControlledCharID, D1.ControllingCharID, D1.DescrID
FROM CharApplicability_D1JoinDescription AS D1
 LEFT JOIN CharApplicabilityRule AS AppRule
 ON (D1.ScoredState = AppRule.ControllingState)
 AND (D1.ControlledCharID = AppRule.ControlledCharID)
WHERE (D1.IsApplicable=True AND AppRule.ControllingState Is Not Null)
 OR (D1.IsApplicable=False AND AppRule.ControllingState Is Null)
GROUP BY D1.ControlledCharID, D1.ControllingCharID, D1.DescrID;

The strategy may be explained as follows: By joining the results from D1 again with CharAppli-
cabilityRule in a left outer join specific to controlling state and controlled character one obtains
D1 (identical) plus additional columns that are null if no rule (applicable-if or inapplicable-if)
matches a character state in the description. From the possible conditions for applicable charac-
ters (compare p. 81), the condition ∅≠∩ AD is selected as most appropriate for testing in SQL
(testing for DID ≠∩ or DID =∩ would involve a comparison of counts which is usually less
efficient). The where condition performs the conversion of controlling/non-controlling states into
A, i. e., the set of states making a character applicable. This conversion is the opposite for appli-
cable-if and inapplicable-if rules. Finally, by grouping on a combination of description/control-
ling/controlled character multiple records containing states that make a controlled character ap-
plicable are reduced to a single record.
Step D3: The query “CharApplicability_D3InapplicableChar” performs two major tasks: it re-
verses the set of characters known to be applicable into those which must consequently be inap-
plicable. This reversal is specific to a combination of description and controlled and controlling
character. Therefore, rather than basing the reversal on Description, it is again based on the view
from step 1. It again constrains the result to those with empty intersection (ControllingCharacters
∩ ControllingCharactersEvaluatingToApplicable ∅≠) using a left outer join and requiring the
right-hand side to be Null. Next, the evaluation of multiple characters controlling the same con-
trolled character is performed by grouping only to Description and controlled character:

G. Hagedorn Appendix 393

SELECT D1.DescrID, D1.ControlledCharID
FROM CharApplicability_D1JoinDescription AS D1
 LEFT JOIN CharApplicability_D2HavingStatesMakingApplicable AS D2
 ON (D1.ControlledCharID = D2.ControlledCharID)
 AND (D1.ControllingCharID = D2.ControllingCharID)
 AND (D1.DescrID = D2.DescrID)
WHERE D2.DescrID Is Null
GROUP BY D1.DescrID, D1.ControlledCharID;

Reviewing the sequence of queries, the strategy of first grouping for applicability of controlled
characters within a description/controlling/controlled combination, and then grouping for inappli-
cability of controlled characters within a description/controlled combination is the central part of
the strategy. As discussed in the main discussion of character applicability (p. 76) and also in the
pseudo-code fragment above, the evaluation of these two cases is the opposite of each other.

If any state of a controlling character exists in a description that makes the controlled charac-
ter applicable, the result is applicable. If any controlling character exists in a description that
makes the controlled character inapplicable, the result is inapplicable. In SQL, “or-ing” between
records using a combination of group-by and where clause is simpler than “and-ing” between
records (which usually also requires a comparison of counts).

If the execution speed of the queries is problematic, one may want to test omitting the group-
by clause (GROUP BY D1.ControlledCharID, D1.ControllingCharID, D1.DescrID)
from “CharApplicability_D2HavingStatesMakingApplicable” with a data set of realistic size. The
results of step 3 do not depend on an aggregation in step 2, because the aggregation in step 3 is
stronger than the one in step 2. Depending on the query optimizer of the DBMS, omitting the
group-by clause may be more or less effective.

Again, the following screenshots representing the SQL in the MS Access qbe editor may be help-
ful (Figs. 234-236):

Figure 234. CharApplicability_D1JoinDescription (step 1) in MS Access qbe-view. See text for
equivalent SQL.

Figure 235. CharApplicability_D2HavingStatesMakingApplicable (step 2) in MS Access qbe-
view. See text for equivalent SQL.

394 Appendix G. Hagedorn

Figure 236. CharApplicability_D3InapplicableChar (step 3) in MS Access qbe-view. See text for
equivalent SQL.

Notes: Both the terminology and the description SQL code shown deal with the evaluation of
multiple controlling characters, of a controlling character being unknown or having data, and in
the latter case with the evaluation of applicable-if and inapplicable-if rules.

Not included is the evaluation of exclusive inapplicable coding status values (those not ac-
companied by character data or other coding status values). An inapplicable controlling character
results in inapplicable controlled characters. In a simple case this can be done by separately test-
ing for characters that have no character data (character states) in a given description and where
“inapplicable” is the only coding status value. Note that a combination of “inapplicable” with
other coding status values (such as DELTA U or SDD values where data “Exist” or “May exist”;
compare Table 16, p. 75) should be evaluated such that the controlling character is potentially
applicable.

Furthermore, the issue of “Cascading character applicability rules” (p. 82) is not covered. A
dynamic evaluation of cascading applicability rules is complicated because standard SQL lacks
language constructs to handle recursions of unknown depth. Probably each database vendor pro-
vides methods to deal with this problem in stored procedures or using proprietary extensions of
SQL such as provided by p-SQL in Oracle databases.

An attractive alternative approach might be to preprocess the character applicability rules,
creating direct rules for each cascading indirect applicability rule. Such data may be stored in a
second internal table, containing data similar to those resulting from the terminology approach
(p. 390) and could be continuously updated through database triggers. Doing so not only makes
the evaluation of cascading applicability rules highly efficient. Without sacrificing the manage-
ment advantages of cascading definitions or the two forms of character applicability rules (in-
applicable-if and applicable-if), the evaluation logic could then be based on simpler rules.

10.3. Preferred, alternative, and rejected terms for
identification keys

The selection of certain terms like “computer-aided”, “interactive identification”, “branching”
and “multi-access” keys in this thesis is not based on a general consensus, and a critical discus-
sion of available alternative terms is necessary. Doing this has been deferred until now because it
was desirable to first fully introduce the various aspects of keys.

“Interactive identification”
Many software programs (e. g., CSIRO Intkey, Visual Key, Navikey, DAP, DAWI, or Polly-
Clave; but not CBIT Lucid) call themselves an “interactive key”. Previously, “interactive identifi-
cation” was defined as identification processes involving an intensive interaction between human
reasoning and knowledge and a – printed or digital – knowledge base, opposed to automatic
identification (“Levels of interaction”, p. 230).

G. Hagedorn Appendix 395

Printed multi-access keys (e. g., Fig. 129 on p. 250) do require a high degree of “interaction”
and the free selection of characters is based on interactions with the reasoning and experience of
the user very similar to that found in computer-aided multi-access keys. However, it is undisput-
ed that computer-aided keys provide much richer options for interaction than printed keys. The
choice of terminology in “Levels of interaction” could thus be revised in the future and the term
“interactive” reserved for the degree of interaction typically found only in computer-aided keys.
Unfortunately, in the context of “Levels of interaction”, “interactive” seems to be a more logical
antonym to “automatic” than the possible alternative “manual”. The latter seems odd for an iden-
tification process involving a computer and human knowledge and reasoning.

The greater problem with the term “interactive key” is that, because the majority of interactive
keys are multi-access keys, over time it seems to have become a synonym for such keys. In cur-
rent usage, the term thus not only excludes printed but also computer-aided branching keys. This
usage should be avoided. Branching keys on the web range from simple hyperlinked keys (e. g.,
Fig. 114 on p. 234) to quite complex presentations with hyperlinks to terminology or illustrations
(e. g., Figs. 125-126 on p. 247), sometimes reminding more of a web application than of a hyper-
linked sequence of web pages (e. g., Fig. 237, below).

As a consequence, use of “interactive key” or “interactive identification” in a general sense
may well be continued. Although the software authors may often understand it in a more narrow
sense, the software programs mentioned also fit a wider definition and the fact that computer-
aided identification is being discussed is clear from the context. “Interactive identification”
should be avoided when discussing aspects that are specific to multi-access keys and its use
should be carefully considered when discussing aspects that depend on the use of computers. The
term “computer-aided identification” is recommended when specifically discussing increased
efficiency of identification processes by using a computer (regardless whether a branching or
multi-access keys is being used). A suitable antonym may be “identification using printed keys”.

Figure 237. An example of an interactive dichotomous key, split into one question per page (key
to the species of the genus Ceuthophilus Scudder; accessible from “Orthoptera Species File
Online”, http://osf2x.orthoptera.org).

396 Appendix G. Hagedorn

Branching keys
Available terms for keys that completely guide users through the identification process in a pre-
defined sequence of questions are (based on discussions in the SDD group and an independent
survey):
■ Dichotomous/polytomous key: The first term is perhaps the most frequently used term. Its

major disadvantage is that it is explicit about the number of choices in the key, which, espe-
cially in the context of computer-aided identification, becomes secondary in nature. The term
polytomous key is usually understood to imply a key that is not dichotomous, and is only
rarely used. See also p. 234 for use of “polychotomous”. To refer to the generalized concept of
such keys, the combined term “Dichotomous / polytomous key” is sometimes used and proba-
bly generally understood, but are rather clumsy.

■ Bifurcating and multifurcating key: this is a Latin equivalent of dichotomous/polytomous
and only very rarely used (Google, 2005-04-13, 2 “bifurcating key”, 0 “multifurcating key”).

■ Branching key: The term seems to be somewhat common in British usage. On the web sev-
eral definitions can be found explaining the term as “a synonym of dichotomous key”. Some-
what contrary to the definition, the intuition behind the term does not exclude its use for poly-
tomous keys. It is here considered the most intuitive alternative to the use of “dichotomous /

polytomous key”.
■ Sequential key: This seems to be another appropriate term, highlighting an essential feature

of “dichotomous” or “polytomous” keys. It is currently very rarely used and could be found
on the web only in two glossaries (B. W. Coad & D. E. McAllister: “Dictionary of Ichthyolo-
gy”; www.briancoad.com/Dictionary/S.htm and
www.fishbase.org/Glossary/Glossary.cfm?TermEnglish=sequential%20key), one botanical
introduction to keys (“How to use keys”; http://protea.worldonline.co.za/key_how.htm), and
one introductory lecture (by Tosak Seelanan; http://www.sc.chula.ac.th/ botany/eClass/

2305313/ Taxonomy.htm).
■ Single-access key, single-entry key: These terms are occasionally used as an intuitive anto-

nym to multiple-access/multiple-entry key. They have the advantage of being logical anto-
nyms when used in discussions of the relative advantages of these two key types – and the
disadvantage of being probably not very intuitive when used alone.

■ Decision tree: This term is used by Morris & al. 2007 and appropriately describes the use of
identification keys. Strictly, branching keys with redirection are not trees but DAGs (p. 234),
but this needs not be preventive of its adoption.

■ Pathway key: This term is used in CBIT Lucid Phoenix (CBIT 2007b), a program specialized
in digitizing or building dichotomous or polytomous keys. It is clear that the intended picture
must be that of the potential paths to all results (regardless of technology, any successful iden-
tification will have a single path). Pathway key seems to be less illustrative of the structure of
these potential paths than “branching key”. A possible emendation could be “single-pathway
key”, which, in the case of keys with redirection or duplicate results, would be too strict.

■ Fixed path key: The term “fixed” refers to the static nature of the sequence and number of
user choices to reach an identification result. It was proposed during SDD discussions, but
participants were split whether to consider it appropriate and intuitive. It is unclear what qual-
ity shall be expressed by the adjective “fixed”. In multi-access keys the number of available
paths to a specific result is very large, whereas in branching keys only a single path (or a small
number of paths in keys with redirection or duplicate results) exists. In a sense, however, each
path is fixed (see “pathway key” above).

■ Predefined graph key: An available appropriate term, but probably not very intuitive to most
biologists.

G. Hagedorn Appendix 397

Terms that should be avoided when referring to the structure of branching keys are:
■ Guided key: this term was proposed by the author of the present work himself in previous

SDD sessions. It is confusing because the intuition is not that the key is “guided”, but “guid-
ing” the user. “Guiding key” would be possible, but because of the many forms of character
guidance (p. 267) available in both branching and multi-access keys, it seems to be inappro-
priate.

■ Authored key or designed key: Although the structure of classical dichotomous keys in taxo-
nomic monographs is usually under the control of an author, keys with an equivalent structure
may be the result of computer algorithms. Authored key is a useful term to denote this differ-
ence, but not to express the structural aspects of a branching key.

■ Analytical key (e. g., Leenhouts 1966) and Diagnostic key (e. g., Pankhurst 1991): These
equivalent terms are useful when talking about purposes, i. e., identification versus knowledge
representation (“natural key” in Leenhouts 1966, or “synoptic key” in Pankhurst 1991). Due to
the traditional dominance of branching keys, the terms are occasionally used as if restricted to
this key method. The purposes of analysis and diagnosis may, however, be equally well ful-
filled by multi-access keys (especially printed ones, see p. 249). These functional terms should
therefore not be used to denote the structure of a key.

Deciding on the best term for branching keys is especially difficult. It may be noted that all of
branching, sequential, or decision tree denote features that can also be found in multi-access
keys, if the perspective is that of a single instance of key-usage rather than key design or struct-
ure. When using a multi-access key, a decision tree, creating a branching pattern in a given se-
quence is created. The true difference between a multi-access key and a branching key is that the
sequence and branching of decisions is fixed by the author of the key, rather than selectable by
the user.

Couplet
The set of two or more (in dichotomous or polytomous keys, respectively) statements or answer-
ing options in each step in a branching key are usually called a couplet. Strictly, in English lan-
guage couplet and couple in most senses imply exactly two, which would make couplet applica-
ble to dichotomous keys only. The unspecific sense “a small number, a few, several” (as in “a
couple of oranges, a couple of species”) is listed, e. g., in CED (1992) only as sense “7b”. In con-
trast to other languages, for English speakers the term “couplet” may therefore by confusing and
an alternative term desirable. A possible term might be “branchlets”. In this thesis the term
“couplet” is upheld and used in the general sense as being inclusive of more than two alternative
propositions.

Multi-access keys
Terms found in current usage for multi-access keys are:
■ Multiple-access key or multi-access key: These terms are widely used and advocated, e. g.,

by Pankhurst (1991), Pankhurst (1998), and CBIT Lucid Phoenix (CBIT 2007b). It is accepted
in the current thesis as well.

■ Multiple-entry key (versus single entry): The term is used, e. g., by the MEKA program
(Meacham 2007); MEKA itself is an abbreviation of “Multiple-Entry Key Algorithm”. This
term multiple entry (and to a lesser extent multiple-access) may be misunderstood as referring
to the starting point of an identification process, rather than to the choice of questions avail-
able at each next step. A key that truly only has multiple initial entry points would be equiva-
lent to a branching key where the first couplet has many leads. A lesser problem is that a bran-
ching key may be entered at any couplet, if due to external knowledge the remaining taxa

398 Appendix G. Hagedorn

could already be excluded. Logically and intuitively, the term starting point is usually under-
stood to include only points from where all taxa keyed out may still be reached.

■ Multikey, polykey: These terms may be potentially misunderstood whether they refer to the
multiplicity of choice of characters or couplets or to multiple appearances of a key.

■ Polyclave: According to Pankhurst (1991), the term “polyclave” was introduced by Duke
(1969); it is the preferred term in Radford & al. (1974). Edwards & Morse (1995) state that it
is the name for paper-based punched card systems. A major disadvantage of this term is that it
is not a qualifier denoting the kind of key, but includes the term key itself. It is deceptive to
talk of a polyclave key (i. e., “multikey key”). On 2007-04-15, Google found 84 results for this.

■ Dynamic polyclave: Used by Radford & al. (1974) combining interactivity of a computer
program with the principle of a multi-access key.

■ Nonsequential or non-branching key: These would be the logical antonyms to sequential
and branching keys; the terms are considered clumsy by native speakers of English.

■ Random access key: The emphasis of “randomness” is misleading; no meaningful use of
such a key starts with random access points. The word random is probably used in analogy to
the term “Random Access Memory” (RAM) in computers. RAM itself is a misnomer. It is not
accessed randomly, but is a volatile storage location that can be accessed directly in a non-
sequential way. Indeed, the synonymous term “direct access memory” is occasionally pre-
ferred for RAM. As a consequence of the connotations of RAM, the term Random access key
is intuitive to technical users, but highly confusing to most biologists.

■ Direct access key: In analogy to renaming RAM to “direct access memory”, one might want
to consider this term for the key analogy as well. However, the sense of direct in the context
of a key seems to be rather ambiguous and perhaps intuitive to computer experts.

■ Dynamic path key: This is a possible antonym to fixed path key; compare the discussion
above.

■ Matrix key: The data structure behind multi-access keys is a relatively completely (although
not necessarily fully completely) filled matrix of characters or character states × items (see
Fig. 149 ff, p. 260 ff). One problematic aspect of using the term “matrix key” is that it can be
misunderstood for what is here called a “tabular key” (Fig. 146, p. 257).

Terms that should be avoided are:
■ Interactive key: The term is useful but does not correctly capture the difference between a

sequential and multi-access key; see the previous section for further discussion.
■ Synoptic key: The term has multiple contradictory definitions, see the following section for

further discussion.
Most multi-access keys allow the user to select among all available characters or key questions. It
may thus be surprising to see the prefixes multi- (Latin) or the equivalent poly- (Greek), both
indicating “many” instead of, e. g., omni- or toti- (both based on Latin for “all” and “entire”, re-
spectively). However, in certain styles it may indeed be beneficial to not display all characters,
especially not those for which only few of the remaining taxa are coded (compare “Progressive
revelation”, p. 270). The “many” is therefore appropriate. It will usually be understood to signify
a substantial choice of entry points.

“Synoptic key”, a confused term
The term synoptic key (or “synoptical key”; occurring in Google, 2005-05-03, at a frequency of
1.2% relative to synoptic) seems to be one of the more frequently used terms for identification
keys. Several text books (the oldest studied being Lawrence 1951) define the term as having the
structure of a branching key, but intended for knowledge representation rather than diagnosis.
Pankhurst (1991) defines synoptic keys as “like conventional keys, but […] intended to present a
classification, rather than to identify actual taxa. The classification may well have been simpli-
fied or idealised, so such a key should not be used to make identifications.” (p. 96).

G. Hagedorn Appendix 399

The difference between a diagnostic and a synoptic key (or simple “synopsis”, e. g., Metcalf
1954) in this sense may be explained in an example. If a family contains small herbs, woody
climbers, and shrubs, a “diagnostic key” would perhaps use these convenient characters at the
expense of keying out the family in three different places. In contrast, a “synoptic key” would
keep the family together at the expense of using inconvenient anatomical, embryological, ultra-
structural, etc. characters. Furthermore, even if these characters can be studied, a synoptic key
may not be able to key out all members of a taxonomic group, especially if some members are
extremely deviant or reduced.

The history of this sense of “synoptic key” could not be traced precisely. Certainly influential
is Gray’s “Synoptical flora of North America” (Gray 1878), which omits all artificial dichoto-
mous keys and arranges the descriptions from genus upwards in a concise manner that is structur-
ally similar to a nested key. It could be verified that a long tradition of using synoptic key in this
sense exists in zoology and botany. Lawrence 1951 from botany was already mentioned, further
examples are Lyon (1936, nested key of mammals), Smith (1943, linked key of ants), and Schu-
ster (1958, nested key to Hepaticae). These citations are certainly not the oldest: all imply that the
term “synoptic key” is commonly understood.

In contrast to these definitions, “synoptic key” in current usage frequently seems to be used as
a synonym for a multi-access key. The use of “synoptic key” in this sense for multi-access keys
was popularized and perhaps introduced) by Leenhouts (1966). The claim of current usage may
be supported by an informal case study analyzing the first 100 Google results for “synoptic key”
(on 2005-03-05). Of these, 39 results referred to a so-called alphabetically indexed glossary and
fact-sheet like structure in a publication by C. M. Boger on alternative medicine (“homeopathy”).
Several other items could not be assessed (broken or pay-for-view links). Of the 23 results that
could be analyzed, 18 referred to multi-access keys (78%), 2 to tabular branching keys (9%), and
3 to branching (dicho-/ polytomous) keys (13%).

A somewhat surprising aspect is that 12 of the 18 multi-access keys that are called “synoptic”
had mycological content (compare, e. g., Fig. 137, p. 254). This is out of proportion with the gen-
eral use of multi-access keys. The use of “synoptic key” for multi-access keys was probably
popularized in mycology by Korf (1972). Several lines of tradition seem to originate from there.
Korf and PezWeb (http:// mgd.nacse.org/ hyperSQL/ pezweb/ mainx.html) have the common topic
of Pezizales and in turn PezWeb uses tools (HyperSQL) that it shares with a “Lichenland” and a
“plant nematode key” called both “synoptic”. Trappe is collaborator in PezWeb and author of
Trappe (1982), which, being about mycorrhizal fungi, may lead to the mycorrhizal key “DDE”
(http:// dde.forrex.org /biodiversity /ecto /index_e.html), another mycorrhizal project. Another
widely used mycological publication is Sutton (1980; the printed multi-access key example in
Fig. 129, p. 250, is originally called “synoptic key” as well). Similarly to the Google search, a
bibliographic query for “synoptic key” returned several uses of “synoptic key” in the sense of
multi-access key; all of these were from mycology and after 1972.

Clearly, conflicting usage patterns for the term “synoptic key” exists. Furthermore, “synoptic
key” also fits well for tabular keys; on p. 256 the “synoptic qualities” of these keys were stressed.
For which sense should the term be reserved? Literally, the term “synopsis” means “viewing
together”. Examples of dictionary definitions are “a condensation or brief review of a subject;
summary” (CED 1992) and “a brief summary or general survey of something” (EB 2001). The
problem with the reception of synoptic key seems to be that this may be interpreted as referring
to:
■ a condensed organization of information that is meant to give an overview of information

content, especially features correlating with a taxonomic classification;
■ a structural representation, where the results of identification steps can be easily overlooked,

as in branching keys of the nested or tabular style;
■ a printed multi-access key, where both the character list and the resulting taxa may be viewed

together;

400 Appendix G. Hagedorn

■ a computer-aided multi-access key, where neither the content nor the results are synoptic, but
the list of characters from which the user must choose can be seen together.

The rationale for calling a printed or a computer-aided multi-access key “synoptic” is quite dif-
ferent, but as the examples show, current usage in Mycology uses the term “synoptic key” for
both forms of multi-access keys. In the light that two contradictory definitions of “synoptic key”
exist in biology, it is recommended to avoid the use of “synoptic key” for multi-access keys.

In view of the general terminological confusion, and given the different ways in which “syn-
opsis” may be interpreted, it is further recommended to avoid “synoptic key” altogether. Leen-
houts (1966) and Korf (1972) use the term “natural key” for the older sense of “synoptic key” as
a branching keys intended for knowledge representation rather than diagnosis. Other candidates
for a new term for this sense are “phylogenetic key”, “systematic key”, or “taxonomic key” (all
proposed here).

“Synoptic” may still be used to express that a given key is intended for a synopsis of a specific
aspect. It should, however, not be used in a sense of conveying information on a specific key
structure or on what kind of synopsis is intended.

10.4. SQL code for DiversityDescriptions 1.9
SQL Data Definition Language code to create a DiversityDescriptions 1.9 implementation. Note
that only Not Null and Default constraints are present in this code, further constraints may be
found in the “Data dictionary” (p. 339). SQL92 is used wherever possible. “National Character”
is the somewhat counterintuitive way of expressing “international character set” (i. e. Unicode) in
SQL92.

CREATE TABLE DD_CHAR (
 CID SMALLINT NOT NULL PRIMARY KEY,
 CharName NATIONAL CHARACTER VARYING(255) NOT NULL UNIQUE,
 Unit NATIONAL CHARACTER VARYING(255) NULL,
 Notes NATIONAL TEXT NULL,
 Type NATIONAL CHARACTER VARYING(2) NOT NULL DEFAULT 'UM',
 Mandatory BOOLEAN NOT NULL DEFAULT 0,
 MultiStateType TINYINT NOT NULL DEFAULT 1,
 Reliability FLOAT(7) NOT NULL DEFAULT 5,
 Availability FLOAT(7) NOT NULL DEFAULT 5,
 Fuzziness FLOAT(7) NOT NULL DEFAULT 0,
 FuzzinessIsPercent BOOLEAN NOT NULL DEFAULT 0,
 KeyStates NATIONAL CHARACTER VARYING(255) NULL,
 CharHeading SMALLINT NULL,
 HeadingLink SMALLINT NULL,
 CharWording NATIONAL CHARACTER VARYING(255) NULL,
 CharWording2 NATIONAL CHARACTER VARYING(255) NULL,
 UnitIsPrefix BOOLEAN NULL,
 FormatString NATIONAL CHARACTER VARYING(255) NULL,
 ParagraphLink INTEGER NULL DEFAULT 1,
 SentenceLink INTEGER NULL,
 CommaLink INTEGER NULL,
 UseComma2 BOOLEAN NULL,
 OmitFinalComma BOOLEAN NOT NULL DEFAULT 0,
 OmitValues NATIONAL CHARACTER VARYING(1) NULL,
 Emphasize BOOLEAN NULL DEFAULT 0,
 OmitPeriod BOOLEAN NULL DEFAULT 0,
 NumStates SMALLINT NOT NULL DEFAULT 2,
 CharID INTEGER IDENTITY NOT NULL UNIQUE
);

CREATE TABLE DD_CHAR_Translation (
 CharID INTEGER NOT NULL,
 Language NATIONAL CHARACTER VARYING(2) NOT NULL,

G. Hagedorn Appendix 401

 CharName NATIONAL CHARACTER VARYING(255) NOT NULL,
 CharWording NATIONAL CHARACTER VARYING(255) NULL,
 CharWording2 NATIONAL CHARACTER VARYING(255) NULL,
 Unit NATIONAL CHARACTER VARYING(50) NULL,
 UnitIsPrefix BOOLEAN NULL,
 Notes NATIONAL TEXT NULL,
 FormatString NATIONAL CHARACTER VARYING(255) NULL,
 PRIMARY KEY (CharID,Language)
);

CREATE TABLE DD_CHAR_Heading (
 HID SMALLINT NOT NULL PRIMARY KEY,
 HeadingName NATIONAL CHARACTER VARYING(255) NOT NULL UNIQUE,
 HeadingWording NATIONAL CHARACTER VARYING(255) NULL,
 Notes NATIONAL TEXT NULL,
 AutoGroup NATIONAL CHARACTER VARYING(255) NULL,
 ParentHeadingID INTEGER NULL,
 HeadingID INTEGER IDENTITY NOT NULL UNIQUE
);

CREATE TABLE DD_CHAR_Heading_Translation (
 HeadingID INTEGER NOT NULL,
 Language NATIONAL CHARACTER VARYING(2) NOT NULL,
 HeadingName NATIONAL CHARACTER VARYING(255) NOT NULL UNIQUE,
 HeadingWording NATIONAL CHARACTER VARYING(255) NULL,
 Notes NATIONAL TEXT NULL,
 PRIMARY KEY (HeadingID,Language)
);

CREATE TABLE DD_CHAR_Heading_Link (
 HID SMALLINT NOT NULL,
 CID SMALLINT NOT NULL,
 PRIMARY KEY (HID,CID)
);

CREATE TABLE DD_CS (
 CID SMALLINT NOT NULL,
 CS NATIONAL CHARACTER VARYING(16) NOT NULL,
 CharStateName NATIONAL CHARACTER VARYING(255) NOT NULL UNIQUE,
 Notes NATIONAL TEXT NULL,
 StateWording NATIONAL CHARACTER VARYING(255) NULL,
 StateFormatString NATIONAL CHARACTER VARYING(255) NULL,
 Implicit BOOLEAN NOT NULL DEFAULT 0,
 UseEdit BOOLEAN NULL DEFAULT 1,
 UseIdentify BOOLEAN NULL DEFAULT 0,
 UseDescr BOOLEAN NULL DEFAULT 0,
 UsePhylo BOOLEAN NULL DEFAULT 0,
 UseOther BOOLEAN NULL DEFAULT 0,
 MinValue FLOAT NOT NULL DEFAULT -1E+308,
 MaxValue FLOAT NOT NULL DEFAULT 1E+308,
 StateID INTEGER IDENTITY NOT NULL UNIQUE,
 PRIMARY KEY (CID,CS)
);

CREATE TABLE DD_CS_Translation (
 StateID INTEGER NOT NULL DEFAULT 0,
 Language NATIONAL CHARACTER VARYING(2) NOT NULL,
 CharStateName NATIONAL CHARACTER VARYING(255) NOT NULL,
 Notes NATIONAL TEXT NULL,
 StateWording NATIONAL CHARACTER VARYING(255) NULL,
 StateFormatString NATIONAL CHARACTER VARYING(255) NULL,
 PRIMARY KEY (StateID,Language)
);

402 Appendix G. Hagedorn

CREATE TABLE DD_MOD (
 Usage NATIONAL CHARACTER VARYING(255) NOT NULL,
 Modifier NATIONAL CHARACTER VARYING(255) NOT NULL PRIMARY KEY,
 Reliability TINYINT NOT NULL DEFAULT 5,
 MisinterpretationMarker BOOLEAN NOT NULL DEFAULT 0,
 Postfix BOOLEAN NOT NULL,
 UseBlank BOOLEAN NOT NULL DEFAULT 1,
 Operator TINYINT NOT NULL DEFAULT 0,
 Notes NATIONAL CHARACTER VARYING(255) NULL,
 LowerFreq FLOAT(7) NULL,
 UpperFreq FLOAT(7) NULL
);

CREATE TABLE DD_MOD_Translation (
 Modifier NATIONAL CHARACTER VARYING(255) NOT NULL,
 Language NATIONAL CHARACTER VARYING(2) NOT NULL,
 ModifierTranslation NATIONAL CHARACTER VARYING(255) NOT NULL,
 PRIMARY KEY (Modifier,Language)
);

CREATE TABLE DD_MOD_Link (
 CID SMALLINT NOT NULL,
 Modifier NATIONAL CHARACTER VARYING(255) NOT NULL,
 PRIMARY KEY (Modifier,CID)
);

CREATE TABLE DD_DEP (
 CID SMALLINT NOT NULL,
 CS NATIONAL CHARACTER VARYING(16) NOT NULL,
 InapplicableCID SMALLINT NOT NULL,
 PRIMARY KEY (CID,CS,InapplicableCID)
);

CREATE TABLE DD_ITEM (
 IID INTEGER NOT NULL PRIMARY KEY,
 ItemName NATIONAL CHARACTER VARYING(255) NOT NULL,
 ItemWording NATIONAL CHARACTER VARYING(255) NULL,
 Notes NATIONAL TEXT NULL,
 Abundance FLOAT(7) NOT NULL DEFAULT 5,
 CollUnit NATIONAL CHARACTER VARYING(255) NULL,
 LitRef NATIONAL CHARACTER VARYING(255) NULL,
 LitKey INTEGER NULL,
 LitRefDetail NATIONAL CHARACTER VARYING(255) NULL,
 ItemID INTEGER IDENTITY NOT NULL UNIQUE
);

CREATE TABLE DD_DESCR (
 IID INTEGER NOT NULL,
 CID SMALLINT NOT NULL,
 Modifier NATIONAL CHARACTER VARYING(255) NULL,
 CS NATIONAL CHARACTER VARYING(16) NOT NULL,
 X FLOAT NULL,
 TXT NATIONAL TEXT NULL,
 Notes NATIONAL TEXT NULL,
 SEQ INTEGER NULL,
 PRIMARY KEY (CID,CS,IID)
);

CREATE TABLE DD_RSC (
 ItemID INTEGER NULL,
 CharID INTEGER NULL,
 StateID INTEGER NULL,
 Resource NATIONAL CHARACTER VARYING(255) NOT NULL,
 Caption NATIONAL TEXT NULL,
 Language NATIONAL CHARACTER VARYING(2) NULL,
 Role NATIONAL CHARACTER VARYING(1) NOT NULL DEFAULT 'S',

G. Hagedorn Appendix 403

 ItemUsage NATIONAL CHARACTER VARYING(1) NULL,
 CharUsage NATIONAL CHARACTER VARYING(1) NULL,
 Notes NATIONAL TEXT NULL,
 DisplayOrder INTEGER NOT NULL DEFAULT 0,
 ResourceID INTEGER IDENTITY NOT NULL PRIMARY KEY
);

CREATE TABLE DD_PROPERTY (
 PropertyName NATIONAL CHARACTER VARYING(255) NOT NULL PRIMARY KEY,
 TextValue NATIONAL TEXT NULL,
 DateTimeValue DATETIME NULL,
 NumericValue FLOAT NULL,
 Language NATIONAL CHARACTER VARYING(2) NOT NULL DEFAULT 'en'
);

CREATE TABLE DD_CurrentLanguage (
 ID INTEGER NOT NULL PRIMARY KEY DEFAULT 1,
 Language NATIONAL CHARACTER VARYING(2) NOT NULL
);

ALTER TABLE DD_CHAR ADD
 FOREIGN KEY (CharHeading) REFERENCES DD_CHAR_Heading (HID)
 ON UPDATE CASCADE,
 FOREIGN KEY (HeadingLink) REFERENCES DD_CHAR_Heading (HID)
 ON UPDATE CASCADE
ALTER TABLE DD_CHAR_Translation ADD
 FOREIGN KEY (CharID) REFERENCES DD_CHAR (CharID)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_CHAR_Heading ADD
 FOREIGN KEY (ParentHeadingID) REFERENCES DD_CHAR_Heading (HeadingID)
 ON UPDATE CASCADE
ALTER TABLE DD_CHAR_Heading_Translation ADD
 FOREIGN KEY (HeadingID) REFERENCES DD_CHAR_Heading (HeadingID)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_CHAR_Heading_Link ADD
 FOREIGN KEY (HID) REFERENCES DD_CHAR_Heading (HID)
 ON UPDATE CASCADE ON DELETE CASCADE,
 FOREIGN KEY (CID) REFERENCES DD_CHAR (CID)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_CS ADD
 FOREIGN KEY (CID) REFERENCES DD_CHAR (CID)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_CS_Translation ADD
 FOREIGN KEY (StateID) REFERENCES DD_CS (StateID)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_MOD_Translation ADD
 FOREIGN KEY (Modifier) REFERENCES DD_MOD (Modifier)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_MOD_Link ADD
 FOREIGN KEY (CID) REFERENCES DD_CHAR (CID)
 ON UPDATE CASCADE ON DELETE CASCADE,
 FOREIGN KEY (Modifier) REFERENCES DD_MOD (Modifier)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_DEP ADD
 FOREIGN KEY (InapplicableCID) REFERENCES DD_CHAR (CID)
 ON UPDATE CASCADE ON DELETE CASCADE,
 FOREIGN KEY (CID,CS) REFERENCES DD_CS (CID,CS)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_DESCR ADD
 FOREIGN KEY (CID,CS) REFERENCES DD_CS (CID,CS)
 ON UPDATE CASCADE ON DELETE CASCADE,
 FOREIGN KEY (IID) REFERENCES DD_ITEM (IID)
 ON UPDATE CASCADE ON DELETE CASCADE,
 FOREIGN KEY (Modifier) REFERENCES DD_MOD (Modifier)
 ON UPDATE CASCADE ON DELETE CASCADE
ALTER TABLE DD_RSC ADD

404 Appendix G. Hagedorn

 FOREIGN KEY (CharID) REFERENCES DD_CHAR (CharID)
 ON UPDATE CASCADE ON DELETE CASCADE,
 FOREIGN KEY (StateID) REFERENCES DD_CS (StateID)
 ON UPDATE CASCADE ON DELETE CASCADE,
 FOREIGN KEY (ItemID) REFERENCES DD_ITEM (ItemID)
 ON UPDATE CASCADE ON DELETE CASCADE

Note: additional indexes, table and some field constraints are not shown here, compare section
“Data dictionary” (p. 339) for additional information on tables and fields.

10.5. Index of figures

Fig. Abbreviated caption Page

1 Estimated species diversity of major groups and proportion of known taxa .. 14
2 “… mycologists inadvertently redescribe already known species” .. 14
3 Elements of UML use case diagrams .. 24
4 UML use case dialects may use different symbols for system and business actors ... 24
5 Relationships in UML static class diagrams .. 25
6 Potential DiversityWorkbench components grouped by similarity ... 29
7 Relation of DiversityWorkbench components with DiversityDescriptions .. 29
8 Recognition of object parts is based on recognition of properties, life-cycle stage, and composition 37
9 Interpretation of the recognition of object parts as a heuristic cycle .. 37

10 Additional dependencies on observation methodology and taxonomic diversity ... 38
11 Natural language descriptions are useful when comparing an existing object with a description, but often a

poor method to visualize objects or compare descriptions with each other .. 40
12 Example of an editing form and the corresponding natural language description ... 41
13 Comparison of informal presentation, UML object diagram and a corresponding class diagram 42
14 Abstract descriptive data information corresponding to the specific model shown in Fig. 13 43
15 A collection of objects that would require a refinement of the properties used in Fig. 13 45
16 Illustration of categorical measurement scales (unordered, ordered linear, tree, and cyclic) 50
17 Two-dimensional visualization of discrete or continuous reality and categorizations applied to it 54
18 Squares with rounded corners form a continuum of intermediate shapes between square and circle 65
19 Mapping of quantitative length measurements to fine and coarse categorizations ... 67
20 Mappings from measurement to categorical data may be based on confidence intervals 67
21 Symbolic presentation of a “value space” that is partioned into fine-grained categories and for which a

generalization mapping to coarse-grained categories is provided .. 68
22 Mappings may provide for ambiguity or error tolerance .. 68
23 Illustration of a potential tree-view user interface displaying ambiguously mapped categorical values 69
24 Multiple measurements may have fewer degrees of freedom than variables ... 72
25 Depending on measuring method, length measures may not be additive ... 72
26 Generalization hierarchy of character data and coding status values ... 75
27 Character applicability rule and complementary rule applied to the complementary set of states 79
28 Original applicable-if-semantics are difficult to preserve when new states are added to a character after the

original rule has been converted to the complementary inapplicable-if rule .. 79
29 The results of an inapplicable-if rule, and the results of the complementary applicable-if rule applied to

complementary states are identical ... 80
30 Character applicability rules for the same combination of controlling and controlled character may be explicitly

or implicitly contradictory ... 81
31 Character applicability rules may cascade several levels deep ... 82
32 Selection from a generalization hierarchy of statistical measures ... 86
33 Examples of multistate (= polymorphic) situations in a single individual at a single point in time 94
34 Compatibility of item descriptions .. 103
35 Illustration of the CSIRO DELTA Windows editor in grid view ... 111
36 Illustration of the DiversityDescriptions database editor .. 111
37 A flat character list may be organized under different aspects through multiple concept hierarchies 126
38 Multiple concept hierarchies (trees) may be defined for a character list .. 126
39 A sparsely filled matrix with 200 out of the 1000 potential combinations selected for data entry 127
40 In the SDD model, views (for data entry, report generation, sorting, etc.) may be added as another concept

tree; in the Prometheus model, a separate selection mechanism (called “pro-forma”) is used 127

G. Hagedorn Appendix 405

Fig. Abbreviated caption Page
41 Compositional and a methodological concept hierarchy associated with a flat character list 130
42 Multiple concept hierarchies may be combined, providing additional information wherever the primary

hierarchy contains multiple characters at a concept .. 130
43 Abstract example of an object composed of other objects (components) ... 132
44 An excerpt from a morphological composition hierarchy of human body parts ... 132
45 An inner, anatomical composition hierarchy aligned with the outer composition hierarchy 133
46 An excerpt from an anatomical composition hierarchy of humans showing a detailed hierarchy for lungs 133
47 Interference between morphology and anatomy at the example of the human respiratory system 134
48 Teeth of a dentate margin are usually not considered components, whereas hairs at the margin or on any

surface are often considered component objects .. 134
49 Object color may be due to surface structures, pigments, or soluble molecules ... 134
50 Ambiguous object decomposition .. 135
51 Recognition of “head” and “body” is based on other features if head and neck are becoming reduced 135
52 Examples of species with gradually changing leaf shapes, defying a strict classification 137
53 An abstract, generalized list of plant parts is filtered through a list of present/absent characters 138
54 In description models providing an explicit compositional hierarchy, hierarchy information may be inherited by

the actual composition for a specific taxon .. 138
55 Hierarchy attempting to use only generalized terms .. 140
56 Six instances of the leg class associated with a thorax instance of a particular insect ... 143
57 Static class diagram with an attempt to model an insect as a simple composition ... 144
58 Static class diagram extending Fig. 57 to include sample objects ... 144
59 Multiplicity may be expressed through quantitative properties and could replace the presence/absence filter 146
60 Static class diagram similar to Fig. 57, but expressing multiplicity through a “Quantity” attribute 146
61 Objects obtain an absolute orientation (e. g., top/bottom) through convention .. 147
62 Parts of composite objects may have relative orientation .. 148
63 Orientation of shapes may result in different shape categories (e. g., ovate / obovate) .. 148
64 Geometric composite object with bilateral symmetry ... 149
65 Minor variations may break strict symmetry, but an abstract concept of “approximate symmetry” remains 149
66 Density gradient ... 150
67 Rectangular parent object with multiple attached child objects of variable size .. 150
68 Three class diagrams attempting to model object adjacency .. 151
69 Class diagram of the insect example introducing a tentative association of “adjacent” stereotype 152
70 Class diagram showing an object generalization and composition model for geometric object 153
71 Class diagrams showing the nine major organ systems of the human body ... 154
72 Class diagram modeling the surface (e. g., of a plant leaf) .. 154
73 Class diagram adding a leaf context to the surface abstraction shown in Fig. 72 ... 155
74 Further detail added to the ontology already shown in Fig. 73 .. 161
75 Five different leaf shapes, all of which might be described as the abstract shape “elliptical” 165
76 Patterns that can either be described as object compositions or as named pattern categories 166
77 The concept of a pattern abstracts from concrete color to the ability to distinguish parts 166
78 Two populations (clouds) with four patterned objects each ... 167
79 Example for a dependency of shape and size properties .. 168
80 Orientation (upper/lower side) may be significant or insignificant when recording object properties 168
81 Measurements may result in different results depending on measurement procedures 169
82 Class diagram showing methods as a generalization of experiment and observation .. 171
83 Class diagram showing a selection from a generalization hierarchy of observation methods 172
84 Class diagram showing that properties can be observed only by specific methods .. 173
85 Class diagram showing that some methods may be combined to observe a property ... 174
86 Dependencies of object properties on “states” of the observation situation are structurally very similar to

dependencies among different properties ... 176
87 Class diagram attempting to outline a property/method/object-part/character model for the color example 177
88 Modified version of Fig. 87, adding an interpretation of the “basic property” concept ... 178
89 Simplified comparison of a character plus concept hierarchy model (DELTA, SDD), a character decomposition

model (Nemisys/Genisys), and a potential part-property-method decomposition model 179
90 Options for federating, modularizing, and extending descriptive terminologies .. 181
91 Use case diagram for some use cases involving external (federated) terminologies .. 182
92 Example for a hierarchy of terminology modules that follows a taxonomic hierarchy ... 184
93 Combining multiple terminologies (“character definitions”) can also be useful to combine characters defined

for different methods and add them to the current project as needed ... 184
94 External terminology may be copied or linked, the latter optionally with a local cache ... 185

406 Appendix G. Hagedorn

Fig. Abbreviated caption Page
95 Network namespace model for federated terminologies ... 186
96 Template model for federated terminologies ... 187
97 In the declarative model each term of the local terminology contains, among other data elements, an optional

reference to a standard terminology .. 188
98 Consensus terminology created by a join of multiple terminologies from multiple sites on the internet 189
99 Simplified comparison of DELTA- and SDD-like models in regard to modifiers and free-form text annotations ... 190

100 Excerpt from a scoring scheme for fungal spores ... 191
101 Simplified comparison of Lucid3 and Nemisys/Genisys in regard to modifiers and free-form text annotations 197
102 Three dimensions of spatial and temporal change resulting in 3 × 5 × 3 = 45 different specialized classes 201
103 Objects that belong to the same class may have variability .. 206
104 Treating sex similar to infraspecific taxon ranks .. 223
105 Visualization of the nested nature of the taxonomic hierarchy .. 223
106 Developmental life cycle stages run across the taxonomic hierarchy ... 223
107 Sex and stage arbitrarily nested inside the taxonomic hierarchy ... 224
108 The conceptual dimensions of sex and life cycle stages may be dependent and nested 224
109 Character × description matrix where development stages are expressed through separate sets of characters .. 225
110 Character × description matrix where spore stages of rust fungi are expressed through separate sets of

characters .. 225
111 Character × description matrix where development stages are designated using a secondary classifier

mechanism .. 226
112 Visualization of objects with taxon references that require a secondary classifier mechanism 227
113 The class references from class hierarchy (in biology = taxonomic hierarchy) to class definitions, and from

synonyms to class names do not require a secondary classifier mechanism ... 227
114 An example for a printable, hyperlinked dichotomous key .. 234
115 Principle of a branching key ... 235
116 A variant class of branching keys includes redirections (or “reticulations”) ... 235
117 Visualization of possible user interaction steps in a branching key ... 236
118 A polytomous key split into one question per page, image captions providing mnemonics (Electr. Field Guide) . 239
119 Example of analytical illustrations, detailing diagnostically relevant parts of the organism 241
120 Examples of the linked and nested styles of branching keys in lead style .. 244
121 Variant styles of branching keys (adding a/b and backtracking; displaying start of the lead text in bold) 244
122 Variants of branching keys; indentation present in linked and omitted in “indented” nested style 245
123 Branching keys in nested style, adapted for use with polytomous couplets .. 245
124 An example of a branching key in graphical style .. 246
125 An example for a printable, hyperlinked dichotomous key .. 247
126 An abbreviated example of an online dichotomous key, split into one question per page 247
127 A picture-based branching key with one question per page, tracking the history of previous statements 248
128 An example of CBIT Lucid Phoenix ... 249
129 An example of a printed multi-access key in “character-list style” ... 250
130 An example of a printed multi-access key in “character formula style” ... 250
131 An example of an Identify key running in DiversityDescriptions .. 252
132 An example of a CSIRO Intkey key running under Windows .. 252
133 An example of a Lucid 3 key running under Windows ... 252
134 CBIT Lucid 3 may also be used over the internet if Java is permitted ... 253
135 Navikey 4.09 Java applet running in an internet browser .. 253
136 Navikey 4.09 using a quantitative character .. 253
137 An example of a multi-access key that is limited to a few pre-selected characters ... 254
138 An example of a multi-access key using DeltaAccess-Perl (DAP) .. 254
139 An example of an X:ID key running in the web browser .. 254
140 An example of a multi-access key using ActKey ... 254
141 An example of a 3I web key ... 255
142 3i is multilingual, here displayed in Russian .. 255
143 An example of a SAIKS key in identification mode .. 255
144 An example of a SAIKS key in “show-character” mode ... 256
145 An example of a SAIKS key showing a subkey with back-reference to previous key ... 256
146 An example of tabular key combined with short diagnostic descriptions ... 257
147 An example of tabular key including illustrations ... 257
148 Multiple subkeys may follow a single lead (“result-and-continue pattern” or list of available keys) 259
149 Hierarchically linked keys .. 260
150 Scores recorded during identification may be transferred from one key to the other .. 260

G. Hagedorn Appendix 407

Fig. Abbreviated caption Page
151 Multi-access key with sub matrices designated for coding and “Not to be coded” coding status value 261
152 Multi-access key with areas relevant to subgroups described as item and character subsets 261
153 A branching key connected with a multi-access key ... 263
154 Illustration of equality criteria ... 265
155 Available options in Identify for specifying quantitative measurement obtained from the object to be identified .. 266
156 Effect of unevenness on H values ... 271
157 Area diagram illustrating three states with 0 to 100% overlap ... 273
158 Effect of overlapping p-values on H for 2 to 5 states with equal frequencies .. 273
159 Linear correction for missing data .. 273
160 Entropy function Hc, correcting overlap by dividing through sum-of-frequencies .. 273
161 Potential UML use case actors and their hierarchy ... 279
162 Use case diagram for project management ... 281
163 Use case diagram showing division into ontological and operational terminology .. 282
164 Use case diagram for the definition of ontological terminology ... 284
165 Use case diagram for the definition of operational terminology ... 285
166 Use case diagram showing inclusion and extension use cases for defining “label, abbreviations, wordings”,

“elaborate definitions”, and “associate terminology with media resources” ... 286
167 Use case diagram showing a modification of Fig. 166; association of media resources is now an extension 286
168 Inclusion of label and glossary use cases in operational terminology ... 286
169 Use case diagram showing the specific use cases of abstract “Associate with media resource” 287
170 Use case diagram showing options for defining coding status values and statistical measures 287
171 Use cases derived from “Record descriptive data” for individual objects and class descriptions 289
172 Use case diagram extending Fig. 171 by interactions derived from “Record published descriptive data” 290
173 Use case diagram showing various modes of recording character data ... 291
174 Example for a multi-description editor (DiversityDescriptions) .. 293
175 Use case showing markup of legacy descriptions and keys .. 294
176 Use case diagram showing an extension to the cases described in Fig. 175 .. 294
177 Use case diagram showing the recording of descriptive data in the context of identifications 296
178 Use case diagram showing recording of repeated original observation data .. 297
179 Use case diagram showing a sample of use cases that include language and audience selection 298
180 Use cases specializing the selection of a branching key ... 299
181 Use case diagram showing identification as a specialized use case of queries to find descriptions 300
182 All analysis use cases include the selecting of descriptive data in a query ... 301
183 Diagram showing a common cyclic sequence of analysis and editing use cases ... 301
184 Use case diagram for data quality analysis ... 302
185 Visualizations of character relationships may also be used for quality control .. 302
186 Example of a possible quality control report for quantitative characters ... 303
187 Diagram of potentially sequential process steps involved in character correlations analysis 304
188 Use case diagram showing the analysis of character correlations .. 305
189 Use case diagram showing the specific use cases of “Generalize or aggregate descriptions” 305
190 A possible cascade of use cases invoking other use cases to update information before aggregating it 305
191 Use case diagram showing the categorization of objects through data analysis .. 306
192 Use case diagram showing the review of character distribution superimposed on a phylogenetic hierarchy 307
193 Use case diagram showing the analysis of character distribution by tree correlation ... 307
194 Use case diagram showing creation of diagnostic subsets ... 307
195 Use case diagram showing the identification of an object through branching or multi-access keys 308
196 Extension of identification with lookup and report generation of terminological definitions 309
197 Use case diagram showing switching between different identification methods ... 309
198 Use case diagram showing the confirmation phase after an initially successful identification 310
199 Use case diagram showing potential methods to broaden the result set of an identification 310
200 Use case diagram showing the verification step after identification .. 311
201 Identification of potential taxon concepts viewed as a specialization of general name-based identification 311
202 Branching keys may be created automatically, assisted, fully manually, or through markup of legacy data 312
203 Creation of interactive or branching keys as a special case of object categorization .. 313
204 Phylogenetic categorization may be relevant in the creation of branching keys ... 314
205 Use case diagram showing that report generation includes finding/selecting descriptions to be reported 315
206 Use case diagram showing report generation of descriptive data and associated terminology 315
207 Use case diagram showing the case of diagnostic descriptions that are abbreviated to contain only characters

differentiating between members of a limited item/taxon group .. 316

408 Appendix G. Hagedorn

Fig. Abbreviated caption Page
208 Use case diagram showing the rendering of printable multi-access keys ... 317
209 Use case diagram showing the rendering of printable branching keys ... 318
210 Report generation for terminology and descriptions may involve the creation of indices or tables of content 318
211 Relation between descriptive data and other biodiversity data areas shown as a package diagram 320
212 Taxon pages are created combining descriptive information with other information sources 320
213 Use case diagram showing export of descriptive data .. 321
214 Partial or complete import of descriptive data, associated terminology, and project metadata 321
215 UML subsystem and package diagram for the descriptions model in DiversityDescriptions 1.9 324
216 Class diagram for major classes of the Terminology package .. 325
217 Conceptual class diagram showing subclasses for different kind of character data ... 326
218 Class diagram showing details of three different heading variants and attributes for the generation of natural

language descriptions .. 327
219 Diagram illustrating value-based link group attributes on characters in a natural language description 328
220 Diagram illustrating the hierarchical nature of link groups ... 328
221 Diagram illustrating how link groups may be translated into “report elements” defining delimiters 329
222 Class diagram illustrating character dependency .. 329
223 Class diagram showing the Descriptions package (left) and its relations to terminology 330
224 Class diagram showing the conceptual superclass/subclass design of the DESCR (Descriptions package) and

CS (Terminology package) .. 330
225 Class diagram illustrating the Resource entity and relations to entities from other packages 332
226 Project subsets; in DiversityDescriptions these are based on views, allowing both analysis and editing 334
227 Reduced entity relationship diagram of DiversityDescriptions 1.9 containing only the principal tables 335
228 The different character-grouping mechanisms in DELTA .. 336
229 Complete entity relationship diagram of DiversityDescriptions 1.9 (physical model) .. 337
230 Simplified Resource table and its relations with other packages ... 338
231 DiversityNavigator grid view editor for descriptive data ... 360
232 CharApplicability_T1ControlledControllingWithAllStates (step 1) in MS Access qbe-view 391
233 CharApplicability_T2ControlledControllingAllStateStatus (step 2) in MS Access qbe-view 391
234 CharApplicability_D1JoinDescription (step 1) in MS Access qbe-view ... 393
235 CharApplicability_D2HavingStatesMakingApplicable (step 2) in MS Access qbe-view .. 393
236 CharApplicability_D3InapplicableChar (step 3) in MS Access qbe-view ... 394
237 An example of an interactive dichotomous key, split into one question per page ... 395

10.6. Index of tables
Tab. Abbreviated caption Page

1 Common multiplicity indicators (i. e., ranges of allowable cardinalities) used in UML class associations 25
2 Generic data types used in ER-/UML-class diagrams .. 26
3 Overview of usage of terms in descriptive information models and computer science .. 34
4 Consequences of changing the terminology in an extended character/state model .. 45
5 Different implementation concepts for software based on an abstract model plus domain-specific terminology . 49
6 Interaction between continuous/discrete variation and measurement scales ... 51
7 Examples of different classes of categorical measurements .. 55
8 DELTA character types ... 61
9 “Basic morpho-anatomical properties” proposed in Diederich & al. (1997, 1998) .. 63

10 A modified basic-property-concept extended with a generalization hierarchy .. 64
11 Example for mixed (quantitative and categorical) data recording ... 67
12 Different scenarios depending on the data recording format used during identification and the format

available in the knowledge base used for comparison ... 70
13 Examples of potentially useful mappings of measurement characters to “calculated” characters 73
14 Example showing potential combinations of available measurements for leaf length measurements 74
15 Coding status values (= “pseudo-values”) in DELTA .. 74
16 Coding status values defined in SDD ... 75
17 Examples of evaluating applicable/inapplicable-if rules involving multiple states ... 78
18 Classifications of univariate statistical methods used in SDD .. 87
19 Aggregating statistical measures .. 89
20 Repeated quantitative and categorical measurements for independently measured data for a single object 91
21 Example data to test ‘and’ and ‘or’ statements on different aggregation levels .. 95
22 Values of the StateCollectionModelEnum in SDD .. 97

G. Hagedorn Appendix 409

Tab. Abbreviated caption Page
23 Enumerated values in the “DataOriginEnum” in SDD, documenting the origin of a descriptive data value 102
24 Character × entity matrix ... 104
25 Character state × entity matrix .. 105
26 Mixed model, using the character × entity matrix for “character 1” with exclusive states 106
27 Presentation of the matrix models as a list ... 106
28 Asymmetry of positive and negative state scores during aggregation (induction of knowledge “up the tree”) 109
29 Asymmetry in the intuitiveness of positive and negative scores inherited from higher to lower taxa 109
30 Examples of statistical measures in the list model .. 110
31 Comparison of statistical measures supported in descriptive software applications and exchange formats 112
32 Fundamental part/property model ... 118
33 An example based on the detailed Nemisys/Genisys model (including “name extensions” and “qualifiers”) 118
34 Examples of conventional characters that are difficult to decompose into property and object part 121
35 Cases that may be termed a “relational character” ... 122
36 Character decomposition based on the steps required to observe and record a value for a character 124
37 Examples of related characters that are distinguished by three parameters of a single method used 125
38 Comparison of the character decomposition and concept hierarchy models ... 128
39 Examples of ambiguous or competing classifications of plant parts ... 136
40 Examples of related object parts distinguished by placement or otherwise ... 140
41 Examples of location statements taken from biology .. 152
42 Examples from biology for generalizations of object parts under three different generalization concepts 155
43 Examples of competing classifications of spores and sporogenous cells in ascomycetes 159
44 Examples of dictionary and UML definitions for attribute, feature, and property .. 164
45 Examples of dictionary and UML definitions for “modifier” and “qualifier” .. 192
46 Excerpt from template modifier definitions in DeltaAccess/DiversityDescriptions 1.0 .. 194
47 Examples of use of name-extensions from Diederich & al. (1997) ... 195
48 Interpretation of the structure of relative modifiers, based on information in Pullan & al. (2005) 197
49 Enumerated modifier classes in SDD ... 198
50 Examples illustrating the diversity of spatio-temporal leaf spot locations ... 201
51 Three dimensions with 3 × 3 × 5 = 45 resulting characters or character/modifier combinations 202
52 Alternative classification systems and sources of intra-class variation in biology and musical instruments 216
53 Examples of different presentations of sex and life cycle stage classifiers .. 217
54 Examples of dictionary definitions for “identification” and “identify” .. 229
55 Character equality parameters (“Set Match”) in CSIRO Intkey ... 266
56 Information content H for binary/multistate characters, without/with overlap among state frequencies 272
57 Example calculation for overlap between result sets involving missing data .. 272
58 Possible combinations between object ID, naming/ identification, and publication status 290
59 Example of a quality control report for linearly ordered categorical characters .. 303
60 Statistical measures recognized by algorithms in DiversityDescriptions .. 356
61 Example data to illustrate SQL code for character applicability rules ... 390

10.7. Overview of collected requirements

1. The provision of free-form text natural language

descriptions (full or diagnostic) is desirable, for
example, during the identification process..............41

2. These may either be authored (including digitized
legacy descriptions) or automatically generated
from more structured descriptive data forms. A
number or data items is required for natural
language generation – these are not discussed
further in this thesis, but are present in the models
presented. ...42

3. For many purposes, natural language
descriptions are inadequate. Supplying more
structured forms of descriptions is highly
desirable..42

4. Although simple, taxon group and observation
methodology-specific information models for
structured descriptive information do have a

place, a more abstract and generalized
information model is desirable................................ 44

5. A descriptive terminology is required as mediator
between the abstract information model and the
concrete properties and observation methods in a
taxonomic group... 45

6. A dynamically evolving terminology that may be
changed while recording descriptive data is
possible and desirable.. 47

7. Standardizing terminology is desirable and the
information model should support this. 48

8. A stable and global identifier method for objects of
the descriptive terminology is required................... 48

9. Rigid standardization is no alternative to providing
support for a freely evolving terminological
schema evolution. .. 48

410 Appendix: Requirements collected G. Hagedorn

10. Different concepts exist to implement software
based on a combination of a generalized, abstract
base model plus domain-specific terminology.
The choice depends on available development
tools and is not part of the model requirements.49

11. The concept of measurement scales is an
important concept in statistical and phylogenetic
data analysis and should be reflected in the
descriptive data type system...................................50

12. The distinction between continuous and discrete
is relevant, but different perspectives exist when
using it for descriptive data. Depending on the
perspective, the distinction does or does not
interact with the concept of measurement scales.
It is, however, never nested within measurement
scales. ...52

13. The distinction between categorical and
quantitative data is a fundamental that should be
reflected in the descriptive data type system.53

14. In many object descriptions information about
variation underlying the categorization is implied.
A better agreed terminology seems to be
desirable to accurately express knowledge about
ordering, ranges, inclusiveness of border values,
and presence of intermediate values in an
unambiguous way. This topic requires further
study; the terminology presented in Fig. 17, in
Table 7 (both above) and 22 (p. 97) is intended
only as a first attempt. ...55

15. The matching of descriptive data types with those
implemented in specific processors, programming
languages or DBMS is not a requirement.56

16. However, commonly used data types (current
practice for other disciplines) may help to guide
priorities and are relevant when estimating the
cost of implementing a concept.56

17. Sequences or arrays of data types may be
desirable. Based on current practices (no existing
software implements sequences other than free-
form text), the requirement seems to be weak........56

18. A data type for unconstrained, free-form text is
desirable. The text may either be an extension of
more structured information (such as a character
state or quantitative value) or it may replace more
structured information. ..57

19. A free-form text extension mechanism (e. g.,
“comments”, “notes”) may be part of the
fundamental information model and always
available. ...57

20. Whether free-form text may replace more
structured information or not should be
controllable by the designers of the terminology.....57

21. It is desirable to provide support for multilingual
free-form text...57

22. Molecular sequence data are a specialized data
type that is highly relevant to current biological
research. ...58

23. Original sequences and sets of aligned
sequences are related, but different data types......58

24. The length of individual symbols may be assumed
to be constant throughout the sequence, but it
may be longer than one letter.58

25. Sequence positions with ambiguous data may be
expressed through special symbols rather than
requiring a separate syntax.....................................58

26. It is desirable to provide a mapping from
ambiguity symbols to the set of fundamental
symbols they represent. ..58

27. Although many characteristics of an object are
expressible through categorical variables, more
complex data types are often desirable for data

such as color or shape. Such data are often
expressed using multiple values. Depending on
the method the number and semantics of values
may be fixed or variable. The descriptive
information model should either provide a general
model for all conceivable complex data types or
should provide extension mechanisms to support
the addition of additional complex types. 60

28. It is desirable to support sequences or sets of
complex data values, e. g., to record shape
variation or a color polygon. 60

29. The data type systems implemented in current
descriptive software or exchange formats may
dictate secondary requirements where import or
export to these systems is intended. 62

30. Quantitative data may occur together with
categorical states like “few”, “many”, “large”, or
“very small”; a general “indefinite large” and
“indefinite small” may form a minimum
requirement. A more extensible method may be
desirable... 62

31. “Basic properties” according to the Nemisys /
Genisys model are a derived type system
optimized for morpho-anatomical data. The
simple system of 20 basic properties with one
level of hierarchy offers pragmatic guidance for
structuring such data, but is incomplete and not
suitable as a general information model for
descriptive data. The selection of quantitative
measures not subsumed under “Quantity” or
“Number”, and the selection of categorical
properties not subsumed under “Kind” may be
pragmatic for common morpho-anatomical data
but is not essential.. 66

32. A property classification, preferably with more
than one level of hierarchy, is desirable to
structure descriptive data. The model should be
able to cope with different generalization
hierarchies of properties, rather than fixing these. . 66

33. A generalized “property type” system is
conceivable, but will be complex and may be
expected to be under considerable terminological
evolution for an extended period. The information
model must be able to support property
information in a way that does not affect existing
applications relying on the information model. 66

34. The information model should provide means to
make description based on different terminologies
(using different property choices, different level of
decomposition of value types, such as shape)
comparable using machine-reasoning. 66

35. Mappings from univariate continuous data to
categorical data should be supported. 68

36. A mapping for a category may be based on a
single range with two limits, or a list of values or
ranges. ... 68

37. A mapping may be based on single values or
several statistical measures. The preferred source
for the mapping should be definable. 68

38. Mixed forms of data (some data are quantitative,
others are categorical with defined quantitative
limits, other categorical with no or ambiguous
definitions) should be supported. If fulfilled, this
covers automatically requirement 30 (p. 62). 68

39. Mappings from narrow to broad categories should
be supported. ... 69

40. Ambiguous mappings, where one narrow
category is mapped to more than one broad
category should be supported. 69

41. A hierarchy of categories within a single property
or character is expressible with a general

G. Hagedorn Appendix: Requirements collected 411

mapping mechanism and no additional support
needs to be added to the information model...........69

42. Special mapping mechanisms are desirable
where complex quantitative data are defined.70

43. A complex mapping may help applications
provide visualizations of the extent and variability
of categorical states to humans. It may therefore
be desirable even if no complex quantitative data
are actually recorded...70

44. The failure to define general mappings may point
to categorical definitions that are problematic or
context-dependent. Whether it is more desirable
to have multiple sets of states with exact
definitions, or a single set of “generalized” states
with multiple, context-dependent mappings
remains an open question.......................................70

45. It is desirable to express the relation between
free-form, unconstrained text and descriptive
terminology in a special form of mapping. This
mapping differs from those discussed so far in
that it is defined in descriptive data rather than in
terminology. This is more similar to a markup
process (like html) than to formalized,
mathematical mappings. ...71

46. It is desirable to be able to define a mapping
between an original form of free-form text and its
translations..71

47. Mappings that express the relationship between
complex characters (“typologies”) and multiple
basic or atomic characters are desirable.72

48. Support for calculated character values (based on
one or multiple values from other characters) is
desirable..74

49. A standardized support for calculations in a
descriptive information model is, however, highly
problematic, both because of possibly complex
dependencies and because notation systems for
formulas are either specific of certain
programming languages, or general but difficult to
implement in a wide variety of applications.
Support for calculated characters is not a priority. ..74

50. Support for coding status information in the
information model is a central requirement to
support knowledge management and
collaboration scenarios for descriptive data............76

51. The existence of categorical or quantitative data
as well as the lack of any data in a description for
a character that is defined in the terminology may
be considered implicit forms of coding status.76

52. A predefined list of coding status values is
desirable to support interoperability. The
hierarchical nature of coding status information
may be implicit and does not have to be
expressed in the data..76

53. Character dependency definitions are important
information items for data entry, character
management, and analysis purposes.83

54. A general form of value-dependency may predict
values in another character for some (but not all)
values of a controlling character. It may be
desirable to implement this, but it has not been
pursued in current models.......................................83

55. A special form of value-dependency is that some
values predict the applicability of another
character (character applicability rules). This is
highly desirable and implemented in several
descriptive models. ...83

56. It is desirable that the controlling character may
be of categorical or quantitative type. Current
models only implement categorical controlling
characters. ..83

57. Because of character evolution issues (adding
states to existing characters) and to improve the
clarity of expression, both positive and negative
character applicability rules (“Applicable-if”,
“Inapplicable-if”) are desirable................................ 83

58. Combinations of applicable-if and inapplicable-if
rules within a data set are desirable. However,
any combination of controlling and controlled
character may be covered only by one form of the
rule. .. 83

59. Support for the evaluation of cascading character
applicability rules is desirable. This may be
expressed in specialized graph structures in the
information model, but may also be supported
only during evaluation of rules................................ 83

60. Structured descriptive information models must
provide methods to describe properties of sets of
objects. ... 85

61. Both repeated sample data, and the results of
statistical and non-statistical data aggregation
methods should be supported. 85

62. Aggregation methods are required for
descriptions of classes. In biology, sets of
individuals form taxa, sets of taxa form higher
taxa. No difference could be detected between
aggregating from individual to lowest level class
and lower level class to higher level class. 85

63. Aggregation methods are also required for
descriptions of individuals, containing either
multiple parts or changing over time (discussed in
detail further down, p. 93)....................................... 85

64. The difference between a descriptive information
model for individuals (e. g., in a specimen
database) and taxonomic classes (e. g., in a
taxonomic database) with respect to aggregation
methods is negligible.. 85

65. Classes or sets of objects may be defined by non-
taxonomic means, e. g., through a geographic
scope (see also “Secondary classification
resulting in description scopes”, p. 215)................. 85

66. A fixed sequence of aggregation levels (such as
“object part, individual, taxon”) is covering only a
subset of aggregation cases and should not be
part of the information model.................................. 85

67. Support for range of univariate statistical
measures is required. The set of applicable
measures depends on data type and
measurement scale. ... 87

68. Most univariate statistical measures report only a
single value. ... 87

69. Some univariate statistical measures such as
percentiles or confidence interval limits are best
represented as a combination of a result value
and a method parameter. 87

70. In addition to exact measures, support for human
estimates such as “typical range” is required. 87

71. To support legacy data such as DELTA, support
for undefined measures is desirable (e. g., in
DELTA a value is known to be a central value, but
not whether it is a single measurement, a mean,
median, or mode). .. 87

72. Some standard descriptive statistics report a
collection of data items rather than a single value
for a statistical measure. Frequency distributions
and distinct value lists must be supported. A
distinct value list is a frequency distribution with
unknown frequency. ... 87

73. It is desirable to support two forms of frequency
distributions: with frequency values and with
frequency categories (i. e. frequency modifiers). ... 87

412 Appendix: Requirements collected G. Hagedorn

74. Character metadata informing about the expected
scope or recording level of a character may be
required. For genetic traits the scope is
summarized over the entire life-cycle, for
diagnostic purposes individual points in time may
be more appropriate..88

75. In addition, or perhaps alternatively, character
metadata informing about dependency of
observation on circumstances or temporal
development (and therefore the likeliness that
data recorded on individuals represent the entire
developmental cycle) may be required.88

76. Methods to aggregate aggregated data are highly
desirable and can be devised in certain cases.
Supporting all necessary data for this in the
information model is highly desirable.89

77. Where statistical measures cannot be aggregated
further, either access to sample data is required,
or the member values may be listed, or in certain
cases measures may be degenerated to lower-
quality measures that in turn can be aggregated....89

78. In the case of ranges, if the union of ranges has
considerable gaps, an aggregation as a set of
ranges is more desirable than combining the
ranges into a single range.......................................89

79. Structures for original sample data (sets of values
observed under the same conditions) are required
on individual object descriptions as well as on
class descriptions..90

80. Sample data may be associated with metadata
(conditions, time, place, etc.).90

81. The structure of multiple samples (each
containing multiple observations) should be
preserved. ...90

82. Repeated sample data should preserve the
sampling context and linking of observations
(multiple properties observed on the same part or
individual). ...91

83. Aggregation of data should be able to preserve
information on linked observations.91

84. Aggregation of data should be able to express the
lack of information on linked observations.91

85. “Raw data” is no absolute category that has
special properties. Data processing often occurs
in multiple steps, each of which may be called to
be based on data that are “raw” relative to the
results..93

86. Some data may not be intended for machine-
processing at all, but rather provided as
“information vouchers”. It may be desirable to
support this distinction through metadata, but it
may also be possible to let a processor assume
any data for which it cannot find aggregation or
analysis methods, to belong to this category.93

87. Special data aggregation methods may be
available for certain types of descriptive data,
either truly aggregating data into a new form, or
by selecting “representative” data items from the
full set. The information model should provide
both for linking base data and derived aggregated
data, and for selecting some from repeated data
as being representative (especially for media
data). ...93

88. The support for data aggregation methods should
be extensible, providing for future methods. It is
currently unclear how data structures that might
be necessary for specialized aggregation
methods can be anticipated in the information
model. ...93

89. Aggregation methods are required within
individual specimens where observations are
repeated over time or due to object parts

occurring multiple times. Generalizing from
specimen data to taxon data is only a special
case of these general aggregation methods. 94

90. Boolean operators connecting descriptive
statements that refer to the same property are
problematic because they interact with implied
semantics (knowledge whether an object part is
repeated or not), and the customary data
representation of a property. 97

91. The semantics of ‘and’ or ’or’ in natural language
descriptions or in DELTA data sets is often
ambiguous. It may be desirable to be able to
distinguish in the information model between an
“ambiguous or” in the sense of one of ‘and’, ‘or’,
and ‘xor’, and an ‘or’ defined in the sense of
Boolean logic.. 97

92. Boolean operators connecting descriptive
statements that refer to different properties have
similar problems to those mentioned under
requirement 90, p. 97. .. 99

93. Addressing all potential Boolean combinations in
a structured way easily leads to highly
complicated models. A simpler requirement may
be the support of multiple container levels with a
defined operator behavior between them. This
remains an open problem in current models. 99

94. For “data aggregation”/“data compilation” it may
be desirable to add a feature enabling the
documentation of aggregation / compilation
source. The model should be flexible enough to
provide machine-readable citations for data in the
same information system, human-readable
citations for external but citable sources, and
explicit options to inform on ignorance, perhaps
mixed with source references................................. 99

95. Support for data inheritance is desirable. Inherited
(automatically updated) data may have a different
level of reliability, and their nature must be
communicated to the data consumer. 99

96. A distinction between manually compiled
(aggregated and reviewed) aggregation data, and
inherited (i. e., automatically compiled)
aggregation data is desirable. This may be a
metadata item on the data.................................... 100

97. Support for deductive data inheritance from
descriptions of higher classes to lower classes (or
individuals) is highly desirable.............................. 101

98. Support for deductive data compilation is not
desirable... 101

99. Information whether an information model does or
does not support data inheritance mechanisms
may be important to assess data quality,
especially whether data might have been copied
downwards to improve the operation of
identification tools... 102

100. Whether inheritance needs to be broken at the
source (e. g., “do not allow this to be inherited”) or
the destination (e. g., “do not inherit from above,
even if missing”) by means other than adding data
needs further study. It may be desirable, but
complicates the system and no good example
cases could be found. .. 102

101. Support for data inheritance and deduction
removes the need to support defining “implicit
states” in the terminology. Data using the “implicit
states” model are convertible into a hierarchical
data inheritance model. .. 103

102. For most purposes the “character matrix”,
“character state matrix”, or “character state list”
models are equivalent. For actual data exchange
(especially when considering federated relational

G. Hagedorn Appendix: Requirements collected 413

databases or XML formats) a list model may be
the most flexible choice...109

103. One area requiring different considerations in the
three models is coding status and character
dependency...109

104. Whether information that states are considered
“absent” or “false” should be preserved as data
(and aggregated or inherited along the taxonomic
hierarchy) is contentious. For the primary
purposes of representing the descriptive data this
is not necessary. However, a number of important
secondary purposes exist, under which
preserving this information may be valuable
(negative statements, collaboration and
discussion, evolution of terminology). In principle
such information may be stored in all three
models, but the state matrix model may be the
most intuitive for this purpose.109

105. If negative statements are supported, it may be
desirable to not support certainty modifiers on
these. ..109

106. Dependency rules or “do-not-code” (also called
“out-of-scope”) rules controlling single states
instead of entire characters are probably not
desirable..109

107. The number of statistical measures is large and
no general agreement exists on a small subset to
fit all purposes for which descriptive information
models are intended. The various existing
denormalized models all use different measures.
A flexible model able to store a larger number of
different statistical measures is desirable.113

108. The statistical measure model should extensible
and offer generalizations that allow applications to
support classes of statistical measures, rather
than only individual measures...............................113

109. The fundamental applicability of statistical
measures depends only on the data type
(measurement scale and continuous / discrete),
but not on individual characters. As a
consequence, no schema evolution issues exist
when new statistical measures are added to the
terminology..113

110. The designer of the terminology should be able to
limit the statistical methods available to data entry
personnel. This leads to more concise data entry
forms and can reduce errors.113

111. Statistical measures are fundamentally applicable
to all characters. If no data storage problems
prevent this, it may be desirable to view the
limitation of measures as a “recommendation” or
“secondary filter”, affecting only the primary data
entry form rather than data storage.113

112. No equivalent to explicit state-absent statements
(which may be desirable in categorical data, see
requirement 104) occurs with quantitative data. ...113

113. A general order of characters and a general order
of character states within a character are
meaningful for communication with humans, even
where it is not meaningful for machine
interpretation or analysis (e. g., states on the
nominal scale). ..116

114. For characters, multiple alternative ordering
definitions are desirable.116

115. Negative requirement: It is not necessary to
preserve, in a given description, the order in
which data relating to different characters have
been entered. ..116

116. In a given description and character, the order in
which multiple values or states have been entered
may have to be preserved. This is unequivocal for

repeated measurements in sample data, but
restricted to special situations in summary data. . 116

117. In a given description and quantitative character,
multiple occurrences of a statistical measure may
have to be preserved in sequence (some models
use this as a replacement for sample data). 116

118. In a given description and categorical character, it
may be desirable to provide a method to let data
set authors decide whether the sequence of
multiple states may be rearranged according to
the sequence in the terminology, or whether it is
to be preserved. ... 116

119. When reordering the states in a given description
and character, modifiers for which order has been
defined as semantic (ranked modifiers) may have
precedence over the state order. 116

120. It is desirable that the information model
encourages distinguishing sample data and
summary data in an unambiguous way, e. g., by
preventing unqualified repeated occurrences of
the same value or state in summary data. States
with different modifiers or annotations, however,
have to be accepted. .. 116

121. Summary statement: The Prometheus description
model has very special requirements on the
information model. It elaborates and modifies the
concepts of the Nemisys / Genisys model. It is
implemented and tested. The extent to which this
model is specific to certain kinds of data needs to
be assessed as experience with the model grows.122

122. Summary statement: The Prometheus description
model provides for the definition of a subset of all
possible object-part / property combinations for
data entry. For different projects, different sets of
“enabled” object-part / property combinations may
be defined. The union of all enabled selections is
roughly equivalent to characters in character or
character state matrix models. 122

123. A character may depend on more than one object
part or on more than one property. A possibility to
express this, either in descriptive terminology or in
descriptive data, is desirable. 123

124. Some “relational characters” may be viewed as
calculated characters. The multiple parts involved
may then simply be discovered by analyzing the
characters involved in calculations. However,
often only values for the calculated, but not the
base characters are available. The model should
thus support analysis of multiple part-relations
even if only the calculated character values are
present. .. 123

125. For many taxonomic groups the character
decompositions beyond object part and property
are desirable. Examples are experimental
conditions, measurements methods and
instrumentation, and information representation
(e. g., quantitative versus categorical
representations). .. 125

126. Concept hierarchies that are superimposed on a
flat list of character may be a desirable alternative
to strict character decomposition models. 130

127. The combination of concept hierarchies with a flat
character list is desirable when the support of
existing (“legacy”) data is a requirement. Concept
hierarchies may be modeled as an optional part of
the information model, whereas strict character
decomposition models require decomposition
information to be available to handle descriptive
information. Concept hierarchies provide a large
amount of the organizational and semantic
advantages of character decomposition models
without breaking compatibility with existing data.. 131

414 Appendix: Requirements collected G. Hagedorn

128. Multiple concept hierarchies are desirable to
express – in addition to object-part and property
classification – also aspects of methodology,
instrumentation, or simply arbitrary character
subsets / filters. ...131

129. Morphological object composition includes
aspects (multiplicity, adjacency, order) that are
not immediately included in a part-of hierarchy.
Support for these aspects is desirable.133

130. Anatomical (inward) composition hierarchies and
are not necessarily nested inside a morphological
(outward) composition hierarchy. They can
therefore not be displayed in a single tree and
support for multiple composition hierarchies is a
requirement. ..134

131. Mechanisms to express dependency relations
between multiple composition hierarchies may be
desirable..134

132. Whether physical objects should be considered
atomic or a composition depends on perspective
and conventions, and may depend in complex
ways on interaction with other compositions and
properties. It is desirable to add mechanisms that
help in communicating the perspective and
conventions between designer and consumer or a
descriptive terminology. ..136

133. An object composition may often be considered a
property of the parent object. The information
system needs mechanisms to relate (or “map”)
property and object composition expressions.......136

134. Multiple morphological concepts and
corresponding object composition hierarchies
may exist. It is desirable to support alternative
concepts of object parts and composition
hierarchy. ..137

135. The conventions whether something is
considered a property or a composition, or which
composition hierarchy should be preferred often
depends on context, especially taxonomic scope. 137

136. The object-part-composition of individuals and
classes may be expressed as part of the
description (using characters or properties,
depending on the description model).141

137. The classical requirement is to record in
descriptions whether a part is present. The
hierarchical relations of the part composition are
left to the terminology domain.141

138. Whether a generalized object-part-composition
hierarchy indeed belongs into the terminological
domain or may be better placed in the description
domain remains an open problem and needs
further research...141

139. In addition to object composition, the multiplicity
of a composition must be supported in the
information model..142

140. It is not required to support composition and
multiplicity information as part of the definitions of
object parts in terminology.142

141. Object-oriented practices to represent multiplicity /
cardinality in a composition cannot easily
represent variability of cardinality in a description
(e. g., “3-7 leaflets per leaf”)..................................143

142. Representing variability of multiplicity / cardinality
in a composition through a collection of instances
may require a huge number of instances, making
this probably impractical..143

143. In addition to quantitative expression of
multiplicity in object compositions, also
categorical expressions such as “many” or “≥ 20”
must be supported. ...144

144. This issue is not a question of class versus object
descriptions; the need for categorical multiplicity
ranges arises even in individual objects where the
composition is in principle countable.................... 144

145. Often more than one category is used (e. g., “few”
/ “some” / “many”)... 144

146. Object composition multiplicity may be a mix of
quantitative (1, 2, 3, …) and categorical
expressions. ... 144

147. Whereas a single category “beyond countability”
may relatively easily be supported by quantitative
data types, multiple categories with more or less
well-defined ranges require more complex data
structures.. 145

148. Expressing multiplicity of object composition
through a mixture of instance composition and
values of categorical properties requires complex
reasoning algorithms, interpreting values of
instance properties as well as the instance
multiplicity itself differently, depending on whether
categorical multiplicity properties are present or
not. ... 145

149. Methods to qualify multiplicity in object
compositions as being uncertain or express that
multiplicity is unknown are required. 145

150. Multiplicity in object compositions may be
expressed in attributes of child objects. These
have special semantics and metadata to
recognize them are desirable. 147

151. A combination of multiple child objects (if child
objects differ) and multiplicity attributes may be
desirable... 147

152. Concepts to fix the absolute orientation of
physical objects in space are an important means
to facilitate object recognition. 147

153. In object compositions the relative orientation of
physical objects is an important concept to
facilitate object recognition and should be
supported in the information model. 148

154. In object compositions, symmetry is an important
concept to facilitate object recognition and should
be supported in the information model. 149

155. Spatial gradients may interact with object
composition, depending on properties or
multiplicity of child objects (parts of main object). 150

156. Spatial gradients usually interact with absolute or
relative object orientation; the data or terminology
model must allow for this...................................... 150

157. Adjacency of object parts in a composition is an
important concept that is desirable to be
supported by the information model. 152

158. The concept of “object location” is a synthesis of
absolute and relative orientation, symmetry,
adjacency, and sequences................................... 152

159. Generalization and composition are distinct forms
of relations that have different properties and lead
to different conclusions. For physical objects
(parts of the described objects) the information
model must support both a composition and
generalization hierarchy. 155

160. Multiple generalization perspectives exist (e. g.,
phylogenetic, functional, morphological similarity,
or compositional similarity) and must be
supported in the model... 156

161. If generalization hierarchies support directed
acyclic graphs, a single graph may incorporate
the generalization hierarchies for multiple
perspectives. However, for the clarity of
expressions clearly labeled separate graphs may
be preferable. ... 156

G. Hagedorn Appendix: Requirements collected 415

162. The recognition of object parts and the preferred
name for these in biology depends in complex
ways on character properties, developmental
stages, and the taxonomic classification of the
organism. In an identification context this
information is often available only after
identification success (“post-recognition
problem”). Support for generalization concepts to
overcome this problem is required.159

163. Object recognition may fail in predictable patterns;
support for knowledge about common
misinterpretations of object parts is desirable.160

164. The taxonomic hierarchy itself is a generalization
hierarchy placing entire organisms in classes.
Generalizations of object parts and entire objects
are related. Even composition hierarchies of
organisms exist. However, despite the similarities,
a special data structure for the taxonomic
hierarchy is desirable because of the special role
taxa play in evolution itself and in the
management of biodiversity knowledge.162

165. In addition to the common composition (part-of)
and generalization (kind-of) relations, relations
expressing change over time (ontogenetic, life
cycle, evolutionary history) are desirable in
descriptive information models designed for
biological objects...163

166. What is considered a property is subject to
conventions. Complex properties exist that may
also be expressed as a set of more atomic
properties. A conversion / mapping functionality is
desirable..165

167. Patterns are especially problematic situations that
may be modeled through properties or
compositions. Patterns are highly relevant to the
description of biological objects and adequate
support for them is required.167

168. Depending on property values, other properties
may or may not be applicable. Support for
character dependency rules is desirable. This
may be in the form of character applicability rules
(compare “Character applicability rules”, p. 76) or
more general property dependency rules (which
would be applicable to multiple objects).169

169. Values in different properties may be comparable
or not, depending on other property values.169

170. In addition to dependency definitions, analogous
renaming rules (making labeling dependent on
taxonomic scope) may be desirable; this requires
further study. ...169

171. Even seemingly trivial observations require a
definition of an observation method. Support for
defining this method – either as a complex
method description, or broken down into
components such as conditions, instrumentation,
operating procedures, and conversion and
recording procedures – is highly desirable.170

172. The separation between experimental conditions,
conditions under which material is sampled from
the natural environment, and conservation or
special sample processing conditions is not
always sharp. It may therefore be desirable to
support information in a generalized
“measurement conditions” category......................172

173. Support for “instrumentation” concepts, a highly
reusable part of methodology, is desirable.173

174. The concept of instrumentation may include basic
default operating procedures.173

175. Generalization and composition hierarchies of
instrumentation (such as “forestry field
instrumentation”) are desirable.173

176. Complex relations exist between instrumentation;
it may be desirable to model these dependency
relationships unless this leads to an overly
complicated information model............................. 173

177. In addition to generic concepts of measurement
conditions and instrumentation, support for
measurement procedures specific to object parts,
properties, and interactions with conditions and
instrumentation is required. 174

178. The form of data returned by a measurement
method may differ from the form expected in data
recording. Support to define and document
conversion and recording procedures is desirable.175

179. Dependencies between the observation
circumstances, conditions, instrumentation, etc.
and characters available for comparison and
identification is an important aspect of the use of
descriptive data. It is essential for branching
(e. g., dichotomous) keys, and beneficial for multi-
access keys.. 176

180. It may be desirable to record “observation
circumstances / conditions” as part of archiving
identification data. This may point to modeling the
method dependency as a character dependency
based on special “observation condition”
characters. (Alternatively, method dependency
may be modeled through the method concept
hierarchy / ontology.).. 176

181. Abstract properties and methods interact in
complex ways that should be addressed in the
information model. Whether a “Part-Property-
Method decomposition model” or multiple concept
hierarchies superimposed on fixed character
concepts are preferable needs further analysis
and testing.. 179

182. The information model should support
management and curation of the descriptive
terminology independently of the descriptive data
itself. ... 180

183. It is desirable to enable curation of different parts
of the terminology by different organizations, in
different systems. ... 180

184. Supporting managed federations is desirable.
This may require some data items supporting
management procedures. These are, however,
difficult to specify because they strongly depend
on local management practices............................ 181

185. It is desirable to support a combination of locally
defined and multiple externally defined
(standardized) terminology modules. 182

186. It is desirable to distinguish between locally
developed terminology modules proposed for
external use, and terminology modules that are
considered to be too instable or poorly developed
for such use.. 182

187. It is desirable to support extending external
standard terminology modules with local
information. The essential definition should not be
changed, but it may be extended through labels
or definition text in the local language.
Furthermore other information affecting
presentation or assumptions for analysis
purposes may be desirable to extend or change
locally. .. 183

188. It is desirable to express the scope of terminology
modules relative to the taxonomic hierarchy.
Application may use this information to manage
availability of terminology items for different taxa. 185

189. Terms in the terminology modules should be
identified by GUIDs. ... 188

190. It is desirable that the relation between locally
defined terms and external standard terminology

416 Appendix: Requirements collected G. Hagedorn

modules can be expressed through GUIDs. The
relation may be of several kinds: e. g., “copied
from template”, believed to be “similar” or
“essentially identical”...188

191. For biological objects, the primary classification of
organisms by taxonomic name needs to be
supplemented by additional concepts to describe
the scope of a descriptive data set. Lacking a
better concept, these may be called “secondary
classifiers”. Secondary classifiers summarize a
special form of correlated variation that is
independent of the taxonomic classification.227

192. Handling secondary classifiers as an extension of
the primary taxonomic hierarchy (i. e., below
infraspecific ranks) is theoretically possible, but
leads to severe artifacts and is not recommended.228

193. Secondary classifier concepts are not limited to
sex and life cycle, seasonal, or developmental
stages. Many further general concepts (castes of
social insects) or highly desirable “custom”
classifiers (like spore states of rusts) exists. A
generalized concept is required.228

194. Secondary classifiers are required in the following
contexts of an information model:
■ When defining the scope of a coded or natural
language description.
■ When defining the scope of an identification
key.
■ When defining the scope of an identification key
result (“keyed-out taxon”).
■ As part of a specimen identification information
in observation or collection databases..................228

195. Secondary classifiers are distinct from characters.
Classifier-related characters exist, but:
■ classifier-related characters can usually not be
calculated based on classifier values;
■ classifier-related characters require no special
handling in identification..228

196. Dependency relations between secondary
classifiers and characters exist:
■ Classifier-related characters may control the
valid values for classifiers (see heterostyly
example);
■ Classifiers may control characters (e. g., only
part of the life cycle stages may have sexual
differentiation). ..228

197. The presence of some secondary classifier
concepts (especially developmental stages)
depends on the taxonomic group (i. e., the
“primary classifier”)..228

198. Secondary classifier values of a given description
may be unknown. A description may either be
general (e. g., apply to both sexes) or the scope
may be unknown (e. g., it is unknown whether the
description applies to one or both sexes). Support
for coding status values or a similar concept is
desirable..228

199. Secondary classifiers require representations for
multiple audiences / languages.............................228

200. Although the analysis was limited to biological
objects, some secondary classifiers (e. g.,
geographical scope) may occur outside of biology
as well. Thus, although the priority may be lower
for non-biological applications, secondary
classifiers are required for all descriptive
information models..228

201. The information model needs special data
structures for branching keys. These are required
for authored (or “designed”) keys. They may also
be desirable to store (cache) algorithmically
generated branching keys for fast retrieval.258

202. Metadata supporting such a distinction between
authored and algorithmically generated keys may
be desirable, including information about last
update for algorithmically generated keys............ 258

203. Authored branching keys need certain metadata
like name, title, description, expected experience
level of user (untrained, generally trained,
specialist), and information on available
languages. The metadata for a branching and
multi-access key are generally identical with those
of a set of coded descriptive data. For key
operation, however, additional metadata may be
required (compare requirement 229, p. 276). 258

204. Dichotomous keys are a special case of
polytomous keys and may be stored in a model
for the latter. The author of a key may desire to
indicate that a key should remain strictly
dichotomous; this may be stored as metadata
item specific to branching keys. Key builder
applications (“editors”) may recognize and either
warn or prevent the user from adding more than
two leads. The distinction is, however, not
considered central enough to warrant
enforcement by the information model itself. 258

205. Combinations of broad branching keys and
groups of browsable descriptions / illustrations –
commonly found in field guides – can be modeled
as a special case of polytomous keys, with a high
number of lead choices at the end. However, the
information model must support empty lead text
and perhaps a metadata item requesting
“embedding” of descriptions or illustrations
instead of the usual linking. 258

206. Leads in branching keys may lead to other
couplets, entire keys (“subkeys”), or taxon names
/ descriptions. The choice is a strict alternative in
most cases (but see requirements 207 below and
220, p. 262). ... 258

207. The “result-and-continue pattern” (compare
p. 235) implies requirements that may lead to
either supporting both a taxon group and a
following couplet at the end of a lead, or
presentation metadata indicating that a subkey
shall be embedded in a higher-level key. Exactly
how to support this situation needs further study. 258

208. Branching keys may provide for redirection
(“cross-linking”, “reticulation”). As a consequence,
the information model cannot be limited to a tree,
but must support directed acyclic graphs (DAGs).258

209. It is desirable that branching keys may support
the question / answer and the lead style. The
question / answer style requires an additional
“question label” at each couplet. 258

210. The question / answer style may also occur in
multi-access keys, requiring an additional
“question label” for each character. This item is
separate from the question in branching keys,
because a couplet in branching keys may involve
multiple characters. .. 258

211. The text in branching keys (question / answer or
lead style) should be free-form text and provide
for minimal inline text formatting such as italics,
bold, sub- and superscript. 258

212. Multiple keys for a single set of taxa should be
supported (for a plant family, for example,
separate keys based on flowers, fruits, and
vegetative organs might be desirable). 258

213. Multilingual support for branching keys is
desirable, especially for complex keys intended
for ongoing revisions. Additional metadata on
default language, fall-back language etc. may be
desirable... 258

G. Hagedorn Appendix: Requirements collected 417

214. Media resources (images, etc.) are required at all
nodes in an identification key, not only on terminal
nodes. At higher nodes they may either illustrate
diagnostic features, or support the concepts of
“looks like” / “promorphs”.258

215. Media resources require context-dependent
captions. The same resource may be used at
different points in the key, illustrating different
character concepts or the entire resulting taxon. ..258

216. Presentation styles of branching keys may be
supported as stored preferences in the metadata,
but are not an issue of the required data
structures. ...259

217. Tabular keys may have additional requirements
(e. g., a fixed set of few characters and sequence
of characters determining the sort sequence) that
cannot be represented with the polytomous
branching key model. Whether this warrants an
independent model, or whether it can be included
in a model for character guidance needs further
study..259

218. The confirmation phase (computer-aided choice
of similar taxa) may be based on algorithmically
determined similarity, or it may be based on
manually entered lists of “easily confused taxa”. In
the latter case, data structures for this must be
presented in the information model.......................259

219. Both branching and multi-access keys may point
to another key (subkey) rather than to a taxon.
Subkeys often are associated with taxonomic
ranks (order family, genus keys) but may be
dominated by other scopes (e. g., “shrubs in
winter”, “broad-leafed trees”).................................262

220. More than one subkey may be desirable at a
single result-lead. ..262

221. Descriptive data for multiple algorithmically
created keys (branching or multi-access) may be
kept in a unified matrix; in addition support for
pointers from one key to independently developed
related keys is required. ..262

222. Support for transferring information between
branching and multi-access keys is desirable.......264

223. Optional support for coded data reflecting the
proposition made in the lead of a branching key is
desirable. This may have the form of markup of
the natural language lead text or of a coded
description associated with a lead.264

224. Support for Boolean operators and nesting is
required for both alternatives (markup of natural
language lead text or associated coded
descriptions). .. 264

225. Character-ranking metadata, expressing various
optimality criteria for identification or analysis, are
important data elements....................................... 270

226. Character-ranking metadata should be flexible to
support various ranking categories (or “topics”). .. 270

227. Both interoperable and application-specific
ranking metadata may be required. 270

228. Support for missing data in general, and
specifically coding status “not to be coded”, is
desirable to support guidance in character
selection. This supports requirement 50, p. 76. ... 270

229. It is desirable to store parameters of character
guidance algorithms (like DELTA VaryWt, Rbase,
Reuse) as key-metadata. These data are not
descriptive data, but specific to a given algorithm
and key (authored branching key or multi-access
key data set)... 276

230. It remains inconclusive whether the information
model must support metadata on taxa resulting in
a preferential treatment in a key. Such data could
express the intent that some taxa are keyed out
faster than others. If supported, the model should
allow different values for different audiences and
key algorithms. ... 276

231. Support for metadata on the level of data sets (or
“projects”) is desirable. This may include
intellectual property rights (IPR; including
authorship, ownership, copyright, and licenses),
coverage and scope (taxonomic group,
geographical range, perhaps seasonal
applicability), version numbers, initiation and
modification dates, etc.. 281

232. Some data-set-level metadata may be calculable
from individual objects (contributors, last
modification, coverage) others not (editors, scope,
etc.). Flagging data as having been, or to be
automatically updated may be desirable. 281

233. To improve communication about identification
processes, the detailed descriptive data created
during identification processes may be
permanently stored in “IdentificationBanks” and
made citable by issuing globally unique
“identification accession numbers”. 296

