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Abstract
Acquiring comprehensive knowledge about the uptake of pollutants, impact on tissue integrity and the effects at the molecular 
level in organisms is of increasing interest due to the environmental exposure to numerous contaminants. The analysis of 
tissues can be performed by histological examination, which is still time-consuming and restricted to target-specific staining 
methods. The histological approaches can be complemented with chemical imaging analysis. Chemical imaging of tissue sec-
tions is typically performed using a single imaging approach. However, for toxicological testing of environmental pollutants, 
a multimodal approach combined with improved data acquisition and evaluation is desirable, since it may allow for more 
rapid tissue characterization and give further information on ecotoxicological effects at the tissue level. Therefore, using the 
soil model organism Eisenia fetida as a model, we developed a sequential workflow combining Fourier transform infrared 
spectroscopy (FTIR) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for chemi-
cal analysis of the same tissue sections. Data analysis of the FTIR spectra via random decision forest (RDF) classification 
enabled the rapid identification of target tissues (e.g., digestive tissue), which are relevant from an ecotoxicological point of 
view. MALDI imaging analysis provided specific lipid species which are sensitive to metabolic changes and environmental 
stressors. Taken together, our approach provides a fast and reproducible workflow for label-free histochemical tissue analyses 
in E. fetida, which can be applied to other model organisms as well.
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Introduction

Environmental toxicology describes the research on 
impacts and fate of chemicals introduced into the environ-
ment (Leblanc 2004). Such research avails itself of various 
model organisms with which toxicological experiments are 

conducted. Prominent examples are the aquatic model Danio 
rerio (zebrafish) (Nagel 2002) or earthworms such as Eise-
nia fetida as terrestrial models (Spurgeon et al. 2003; Molnár 
et al. 2012; Nayak et al. 2018; Tirado-Ballestas et al. 2020). 
The impact of toxicants, such as heavy metals (Ali et al. 
2020), herbicides or pesticides (Belsky and Joshi 2020), is 
thereby investigated on different levels. For instance, for 
earthworms, parameters such as body weight (Zhou et al. 
2013), immune system response (Alves et al. 2019), gene 
expression (Alves et al. 2019) or histological examination 
(Li et al. 2020) are utilized. Histological assessment, for 
example, is frequently used for investigation of lesions or 
malformations of the digestive system of earthworms after 
exposing these organisms to toxicants (Rodriguez-Seijo et al. 
2017; Nayak et al. 2018). This type of analysis requires a 
time-consuming embedding of conserved specimen in paraf-
fin and thin sectioning using microtomes followed by stain-
ing and optical examination under a microscope (Dempster 
1963; Sanderson et al. 1988).
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In recent times, histological analysis has been enhanced 
by chemical imaging analysis, which adds a different per-
spective to the analyzed tissue sections. Chemical imaging 
enables a detailed analysis, shedding light on the impact of 
pollutants at a high spatial resolution. In this context, various 
spectroscopic methods, including Fourier transform infrared 
spectroscopy (FTIR) (Giorgini et al. 2018) or mass spec-
trometry (MS) imaging (Liebeke et al. 2015), are applied.

FTIR is a state-of-the-art vibrational spectroscopic 
method (Diem 2015), which is frequently utilized for the 
noninvasive analysis of cells (Kimber et al. 2016) or imag-
ing of tissues for diagnosis of inflammatory processes 
(Movasaghi et al. 2008; Rodrigues et al. 2018). It provides 
a chemical fingerprint of the analyzed sample, enabling the 
classification of tissues (Wood et al. 2006) for diagnosis, 
for example benign versus malignant (Baker et al. 2014). 
Through correlation of molecular signatures with histologi-
cal features of an analyzed tissue section, it further allows for 
characterization of different tissue types (Großerueschkamp 
et al. 2015). This may be supported by algorithms such as 
machine learning (Nguyen et al. 2021), which provide the 
possibility for fast and reproducible analysis of the spectral 
data (Antora et al. 2019; Kedzierski et al. 2019).

Matrix-assisted laser desorption/ionization mass spec-
trometry (MALDI-MS) imaging allows for the analysis of 
proteins (Cazares et al. 2009; Huber et al. 2018), neuro-
peptides (Chen et al. 2009), lipids (Niehoff et al. 2014) and 
small molecules, even up to single-cell resolution (Römpp 
et al. 2010; Schober et al. 2012). MS imaging promotes an 
understanding of the molecular processes in different sam-
ples (Cornett et al. 2007) and has already been used, for 
example, for mapping and imaging of lipids in sections of 
whole organisms (Niehoff et al. 2014; Khalil et al. 2015). 
MS imaging has garnered increasing interest in studies on 
the effects of environmental pollution in different organisms. 
For example, zebrafish (D. rerio) were used to evaluate the 
impact of the insecticide fipronil, which mainly affected 
the eyes of the animals by disturbing the phospholipid 
metabolism (Liu et al. 2020). In addition to aquatic organ-
isms, rodent model organisms were used to demonstrate the 
adverse impact of the environmental pollutant bisphenol S 
on the kidney (Zhao et al. 2018). Zhang et al. (2020) also 
showed the application of MS imaging for the analysis of 
the effect of graphene nanoparticles at the metabolic level 
in E. fetida.

The impacts of pollutants on E. fetida are commonly 
assessed on a histological level via common histochem-
istry using target-specific staining methods (Lapied et al. 
2011; Molnár et al. 2012; Wang et al. 2015; Jiang et al. 
2020). The application of both described methods in a 
multimodal workflow connecting a fast fingerprinting 
approach (FTIR imaging) with molecular specificity 
(MS imaging) may facilitate the analysis of biochemical 

changes in distinct tissue types. However, a sequen-
tial multimodal approach combined with improved data 
acquisition and evaluation allowing for more rapid tissue 
characterization has not been applied for these soil model 
organisms.

Hence, we developed a sequential multimodal imaging 
approach combining FTIR and MS imaging on the same 
tissue sections of the ecotoxicological model organism E. 
fetida. FTIR and subsequent data analysis based on random 
forest classifiers was used for rapid tissue type identification. 
MALDI-MSI was applied for the analysis of lipids, as the 
various functions of lipids, for example in tissue integrity as 
membrane lipids (Dowhan and Bogdanov 2002) or storage 
(Welte and Gould 2017), renders them suitable markers for 
biological changes in earthworms in response to pollutants 
(summarized in (Solé 2020).

Methods

Cryosectioning of E. fetida

The E. fetida specimens and coconut fiber substrate were 
purchased from a local provider (https:// www. wurmw elten. 
de). The animals were held in a climate chamber at a con-
stant temperature of 25 °C ± 1.5 °C, humidity of 70% ± 5% 
and artificial day-night rhythm (12 h light/12 h darkness). 
The substrate was additionally spiked with oatmeal. For 
cryosectioning, adult worms were isolated and sedated 
with 7% magnesium chloride hexahydrate (Merck KGaA, 
Darmstadt, Germany) to prevent contraction of the digestive 
organs. Sedated worms were quick-frozen with liquid nitro-
gen and then placed on a brass plate, cooled with dry ice. 
Then they were cut, and segments of the individuals were 
embedded in 3% sodium-carboxymethylcellulose (CMC) 
(Merck KGaA, Darmstadt, Germany) and frozen on dry ice. 
Embedded specimens were stored at −80 °C until cryosec-
tioning. The preparation of the sections was performed using 
a Leica cryostat (Leica CM 1950, Leica Biosystems, Wet-
zlar, Germany) at a temperature of −19 °C and with carbon 
steel microtome blades (Feather C35 microtome blades, pfm 
medical AG, Cologne, Germany). Sections used for analysis 
were produced at a thickness of 20 µm. The sections for 
our workflow application were placed on calcium fluoride 
windows (⌀ 25 mm × 2 mm, Korth-Kristalle GmbH, Kiel, 
Germany). Reference sections that were used for staining 
or MS imaging only were placed on Superfrost glass slides 
(Carl Roth GmbH + Co. KG., Karlsruhe, Germany). Sec-
tions that were not immediately processed were stored at 
−80 °C. Prior to FTIR and MALDI-MSI measurements, sec-
tions were transferred directly from the −80 °C storage into 
a desiccator for 30 min.

https://www.wurmwelten.de
https://www.wurmwelten.de
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FTIR imaging

FTIR imaging was applied because it preserves tissue integ-
rity while still enabling us to define regions of interest for 
subsequent MS imaging, which cannot be performed after 
classical histological staining such as hematoxylin and eosin 
(H&E).

The FTIR images were acquired using a focal plane array 
(FPA) detector-based micro-FTIR spectrometer: FTIR spec-
tra of the images were recorded using a ×3.5 IR objective 
on a Bruker HYPERION 3000 FTIR microscope (Bruker 
Corporation, Billerica, MA, USA) coupled to a TENSOR 
27 spectrometer. The FTIR measurement was conducted in 
transmission mode on the calcium fluoride windows in a 
wavenumber range of 3600–900  cm−1 with a resolution of 
8  cm−1 and co-addition of 32 scans. Background measure-
ment on the calcium fluoride window with a pure CMC layer 
was conducted with the same parameters. FTIR spectra were 
recorded with a liquid-nitrogen cooled 64 × 64 detector pixel 
FPA resulting in a spatial resolution of 11.05 µm per pixel. 
Measurements were obtained with Bruker OPUS software 
version 7.5 (Bruker Corporation, Billerica, MA, USA).

Data processing and analysis for FTIR measurements

Analysis of the generated FTIR data was performed using 
Epina ImageLab version 4.1 (EPINA GmbH). For the sepa-
ration of tissue types within the cross sections of E. fetida, 
a model based on random decision forest (RDF) classifica-
tion was established (Breiman 2001). First, tissue types were 
selected. Four tissue type classes were defined as follows: 
(1) background, consisting of data within the hyperspec-
tral image that described the embedding medium and the 
 CaF2 window; (2) body wall, consisting of data within the 
hyperspectral image that described the circular and longitu-
dinal muscles, the epidermis and the cuticle; (3) digestive 
system, consisting of data within the hyperspectral image 
that described tissue types belonging to the whole diges-
tive system (e.g., stomach and gut); and (4) other tissue, 
consisting of data within the hyperspectral image describing 
tissue and information that was not assigned to classes 2 or 3 
(e.g., coelomic fluids or chloragogenous tissue). For training 
of the model, five independent tissue sections of different 
worms were imaged and used for the preparation of five 
training data sets. For every tissue section, 30 data points 
(spectra) for each of the four classes were collected, result-
ing in a total data collection of 120 data points per train-
ing data set (overall total 600 data points). Using spectral 
descriptors (Hufnagl et al. 2019) in combination with itera-
tively reducing the number of variables based on the variable 
importance measure (Breiman 2001), the dimensionality of 
the data set was reduced from 700 to 215 descriptive vari-
ables. Test application was performed on independent tissue 

sections of E. fetida from different individuals. Finally, the 
performance of the model was validated with a statistical 
performance assessment.

Random forest statistical performance assessment

The classification performance of the RDF classifier was 
assessed by means of Monte Carlo cross-validation (Xu and 
Liang 2001), which is also known as random sub-sampling 
validation (Westad and Marini 2015). Cross-validation is a 
broadly applied methodology for evaluating machine learn-
ing models. It is applicable to both classification and regres-
sion tasks and comes with the advantage that no separate test 
data set is required.

In a Monte Carlo cross-validation experiment, the data 
set of reference spectra is split randomly into a training and 
a test data set following a certain splitting ratio. The training 
data is used for training an RDF model which is then used to 
predict the labels of the test data set. The process is repeated 
multiple times, where each random split creates a new train-
ing/test data set pair.

By collecting the number of correct and wrong predic-
tions for each training/test data set pair, a confusion matrix 
can be constructed which is shown in Fig. S1. The entries 
of the main diagonal represent the correctly classified cases, 
whereas the off-diagonal elements are the wrongly classified 
cases. In our case a splitting ratio of 0.9 was used to create 
20 training/test data set pairs where 90% of the references 
are used for deriving an RDF model whereas 10% are used 
for testing. Class-specific performance measures (Ballabio 
et al. 2018) are listed in Table S1. The overall classifica-
tion performance measures of total accuracy, Cohen’s kappa 
and the extended Matthew correlation coefficient were com-
puted as 0.9292, 0.9056 and 0.9064, respectively (Table S1). 
Accuracy corresponds to the ratio of correct classifications 
over the total number of samples. Though this measure is 
one of the most commonly used, it depends on the relative 
class sizes (meaning the number of training data in each 
class). Cohen’s kappa, on the other hand, compensates 
this issue. Consequently, the total accuracy is higher than 
Cohen's kappa as it is biased towards the performance of the 
larger classes. The extended Matthew correlation coefficient 
is another multi-class performance measure commonly used 
in chemometric studies. More detailed definitions of clas-
sification performance measures can be found in the paper 
by Ballabio et al. (2018) including MATLAB scripts for 
computing these measures.

Matrix application

Matrix application for MS measurements was carried out 
using a semi-automatic pneumatic sprayer system. All sec-
tions were coated with 4-nitroanilin matrix (pNA, ≥ 99%, 
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Sigma Aldrich Chemie, Taufkirchen, Germany) at 5 mg/
mL in 3:1 acetone/water. We chose pNA as a matrix for our 
measurement experiments since it is proven to be advanta-
geous for lipid analysis (Steven et al. 2013). On-tissue MS/
MS experiments were performed to confirm the identifica-
tion of lipids showing a spatial distribution within targeted 
tissue classes. Afterwards, data analysis combining our 
results of the FTIR and MALDI MSI measurements was 
performed.

MS imaging

MALDI-MSI measurements were performed on a Q 
Exactive™ HF Hybrid Quadrupole-Orbitrap mass spectrom-
eter (Thermo Fisher Scientific, Bremen, Germany), coupled 
to the atmospheric pressure MALDI imaging source AP-
SMALDI10 (TransMIT GmbH, Gießen, Germany). The ion 
source is equipped with a λ = 337 nm  N2 laser operating at a 
repetition rate of 60 Hz. Measurements were carried out in 
positive ion mode with one scanning event and 30 shots per 
pixel at a mass resolution of 240 k @ m/z 200 full width at 
half maximum (FWHM). All measurements were performed 
with a fixed C-trap injection time of 500 ms. Step sizes were 
set to 5 µm. Tentative identification of lipids from E. fetida 
sections was based on an online database search (Sud et al. 
2007) and on tissue MS/MS of lipids with a precursor isola-
tion window width of ±0.2 m/z.

Data analysis for MS imaging

Conversion of proprietary Thermo RAW files to imzML 
was performed using the Java-based open-access jimzML-
Converter software (Race et al. 2012). Ion images and RGB 
composite images were generated in MSiReader version 
1.0. Images were generated using a bin width of ±2.5 ppm. 
Mass deviations across imaging data sets are given as the 
root mean square error (RMSE) of the ∆m values in ppm of 
each individual spectrum containing the targeted ion within 
a window of ±4 ppm of the exact mass.

Histological staining

H&E staining was performed after the application of the 
multimodal imaging approach for histological comparison 
with the MS imaging results. H&E staining was used to ret-
rospectively evaluate the results of FTIR and MS imaging 
during the establishment of the workflow, e.g., training of 
the model for the FTIR. Once validated, the FTIR analysis 
enables fast identification of regions of interest while pre-
serving the tissue integrity of the tissue sections for subse-
quent MS imaging analysis (which is not compatible with 
H&E-stained tissue sections).

Prior to H&E staining, the previously applied matrix 
for MALDI-MSI needs to be removed without excessive 
destruction of the tissue section. For matrix removal, ace-
tonitrile has proven to be an adequate solvent. After matrix 
removal, sections were rinsed in tap water and then stained. 
For H&E staining, Mayer's hemalum solution acid (Carl 
Roth GmbH + Co. KG., Karlsruhe, Germany) and 0.1% 
eosin G (Carl Roth GmbH + Co. KG., Karlsruhe, Germany) 
were used. Samples were stained for 10 min with hemalum 
solution (Carl Roth GmbH + Co. KG., Karlsruhe, Germany), 
washed in tap water for 10 min and then counterstained with 
0.1% eosin G for 2 min, followed by dehydration with con-
secutive increasing ethanol concentrations, isopropanol, 
xylene, and mounted with Eukitt (Kindler GmbH, Freiburg, 
Germany). Pictures were acquired with a digital microscope 
(Leica DVM6, Leica Biosystems) and LAS X version 3.0.8 
software (Leica Biosystems).

Results and discussion

Our study presents an analytical workflow for the analysis 
of tissue sections of the ecotoxicological model organism 
E. fetida combining FTIR and MS imaging techniques. 
Each step within this workflow is optimized to satisfy the 
demands of the implementation of both methods on a sin-
gle sample for a sequential analysis (Fig. 1). First, for the 

Fig. 1  Visualization of the schematic workflow for the multimodal imaging of E. fetida. Scale bar = 250 µm
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preparation of sample sections suitable for analysis, we used 
3% CMC as embedding medium to ensure tissue integrity. 
CMC is compatible with both measurement techniques, 
since it facilitates preparation of tissue sections which is a 
prerequisite for FTIR imaging and does not interfere with 
MS imaging analysis (Goodwin et al. 2012). Because sample 
thickness is a limiting factor for FTIR analysis (when data 
are acquired in transmission mode; reviewed in Tuck et al. 
2021), we made 20 µm-thick sections.

FTIR imaging and data analysis

The first step of the analytical workflow was FTIR imag-
ing. This method was applied first, as it delivers a rapid, 
noninvasive chemical overview of the analyzed section. 
Further, it makes it possible to define regions of interest 
within a tissue section for the subsequent analysis via MS 
imaging, which is not possible using classical histological 
staining such as H&E. Considering the anatomy of earth-
worms, there are two main tissue areas that first come into 
contact with possible pollutants and therefore are of special 
interest for further studies focusing on toxicology. These 
tissue areas are (1) the body wall, which includes the cuti-
cle, the epidermis and the circular and longitudinal muscles, 
building a functional unit in the Annelida, constituting the 
outer body barrier to the environment, and (2) the digestive 
system, which is in contact with ingested food and possi-
ble contaminants (Bilej et al. 2010). We applied a machine 
learning algorithm based on RDF on the FTIR data with the 
goal of visualizing these different tissue areas within the 
sections. RDF models have been proven capable of separat-
ing different groups within intricate data samples (Horning 
2010; Mayerich et al. 2014). We defined two main tissue 
classes, “body wall” and “digestive system,” and two addi-
tional classes, defined as “other tissue” and “background”. 
The RDF model assigns the class according to similarities 
or dissimilarities in the IR spectra of biological tissue, which 
are usually in the fingerprint region around 900–1450  cm−1 
(lipids, carbohydrates and nucleic acids, also contribution 
from proteins), 1500–1700  cm−1 (amide I and II region cor-
responding to proteins) and 2500–3500  cm−1 (mainly lipids) 
(Coates 2006; Movasaghi et al. 2008; Baker et al. 2014). The 
RDF was validated by Monte Carlo cross-validation (Xu and 
Liang 2001; Dubitzky et al. 2007). The results of the valida-
tion are presented as the sensitivity, specificity and precision 
with which the model correctly assigns a data point to the 
respective class (details on this approach can be found in 
Table S1, Fig. S1). The results of the classification model 
with an exemplary IR spectrum are displayed in Fig. 2. The 
different tissue types/classes (classes: 1 = background [blue], 
Fig. 2a; 2 = body wall [red], Fig. 2b; 3 = digestive system 
[green], Fig. 2c; 4= other tissue [orange], Fig. 2d) can be 
clearly differentiated based on the spectral data.

To prove the reproducibility of the model, we applied 
it on five different sections of three different individu-
als (worms), resulting in the same correlation with the 
respective tissue types (Fig. S1). The RDF enables rapid 
tissue type characterization (measurement of one sec-
tion ~ 20 min; application of our RDF model ~ 5–10 min). 
The relatively fast data acquisition technique has the 
advantage over common histopathology that fewer steps 
such as fixation or staining are needed (Tian et al. 2015). 
In addition, the application of an RDF model for data anal-
ysis reduces observer bias which might occur if tissue is 
analyzed solely by optical microscopic observation (Tian 
et al. 2015). In concordance with our study, Li et al. (2005) 
already showed that FTIR spectroscopy is suitable for the 
diagnosis and differentiation of healthy tissue, inflamma-
tion (gastritis) and malignancy (gastric cancer) in biopsies, 
using another algorithm that can be trained (supervised 
linear discriminant analysis) for multiple group classifi-
cations. In our study we used classification based on ran-
dom decision forests, which is said to be one of the most 
powerful machine learning algorithms (Rana et al. 2020). 
The advantage of the RDF used in our study is that RDF 
selects a random subset of features that enables increased 
variation among the trees constituting the model. This 
results in a higher percentage of accuracy in classification 
taking into account the low correlation across trees (Nur-
wulan and Selamaj 2020). In addition, RDF algorithms 
are highly capable in dealing with complex data systems 
(Santana et al. 2018), which in combination with cross-
validation offers a promising tool for the targeted (e.g. 
pollutant detection) data analysis of FTIR images (Hufnagl 
et al. 2019).

For future applications, one could include further RDF 
classes of tissues, or implement and extend RDF-based 
models with new classes for the detection of specific 
water-soluble or particulate pollutants, as recently shown 
in environmental samples (Hufnagl et  al. 2019). This 
might be promising for ecotoxicology, as it has already 
been shown that vibrational spectroscopy can be used for 
nondestructive and label-free tissue analysis (for detailed 
review refer to Prentice et al. 2017) and even for analysis 
of drug penetration within tissue, for example (Mendel-
sohn et al. 2003; Xiao et al. 2005; Jiang et al. 2008). As an 
example, Mendelsohn et al. (2003) used IR spectroscopy 
for the analysis of the penetration of dimethyl sulfoxide 
(DMSO) and propylene glycol into skin.

Overall, data analysis of the FTIR spectra via RDF clas-
sification facilitates the identification of regions of inter-
est in tissues which can then be further analyzed with a 
higher spatial and molecular resolution using a MS imag-
ing approach.
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MS imaging and data analysis

A high-resolution analysis step using MALDI-MSI was 
applied to assign specific lipids to target tissues (e.g., diges-
tive tissue) identified with FTIR analysis. Figure 3a shows 
the region of interest (ROI; target tissue) within the optical 
image of the tissue section. The outermost part of the tis-
sue section could be partly visualized by the distribution of 
lipid 1 (Fig. 3b). This lipid could be tentatively identified 
by accurate mass, confirmed by MS/MS (see Fig. S2) as 
phosphatidylcholine (PC-O-40:1) [M+K]+ (m/z 868.6556; 
RMSE: 1.2810 ppm, 1103 spectra). “Lipid 2” was tenta-
tively identified as PC (O-36:5) [M+Na]+ (m/z 788.5565; 

RMSE: 0.6530 ppm, 30,824 spectra) and shows a distri-
bution with high intensity in the digestive tissue (Fig. 3c). 
The tissue region between the outermost part of the body 
wall and the digestive tissue could be visualized by the 
distribution of lipid 3. This could be tentatively identified 
by accurate mass, confirmed by MS/MS as PC (O-34:0) 
[M+H]+ (m/z 748.6215; RMSE 0.5396 ppm, 55,232 spec-
tra) (Fig. 3d). The distribution of the lipids, and thereby the 
reproducibility of the measurements, was demonstrated in 
total in five different sections of two different individuals 
(worms) (Fig. S3).

Here we focused on the lipid distribution within dif-
ferent tissue parts of E. fetida, as lipids are the main 

Fig. 2  FTIR data analysis via random decision forest classification of 
a tissue section of E. fetida. a Result of the RDF application for class 
1 “background” as overlay over the optical image of the section and 
an exemplary IR spectrum representing this class; this class is repre-
sented with blue coloration. b Result of the RDF application for class 
2 “body wall” as overlay over the optical image of the section and 
an exemplary IR spectrum representing this class; this class is repre-

sented with red coloration. c Result of the RDF application for class 
3 “digestive system” as overlay over the optical image of the section 
and an exemplary IR spectrum representing this class; this class is 
represented with green coloration. d Result of the RDF application 
for class 4 “other tissue” as overlay over the optical image of the sec-
tion and an exemplary IR spectrum representing this class; this class 
is represented with orange coloration
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components of the tissue architecture and take part in 
the organisms’ function (Sparvero et al. 2012). Further, 
it is already known that E. fetida shows an altered lipid 
metabolism when exposed to toxicants. For instance, May-
ilswami et al. (2017) were able to show, by analysis of the 
transcriptome, that the lipid metabolism of E. fetida is 
impacted by pollutants such as benzo[a]pyrene. The lipid 
signatures can be used as a biological marker to detect 
physiological changes in tissue, as shown by Barbacci 
et al. (2017). Hence, this approach could be used to study 
the effects of environmental pollutants at the tissue level. 
Another aspect that might be of interest in studying the 
effects of pollutants is that the oxidation of molecules such 
as lipids can be found as a reaction to environmental stress 
in earthworms (reviewed in Solé 2020). Lipid oxidation in 
relation to a stress reaction in Eisenia is commonly studied 
by analysis of malondialdehyde, the final product of lipid 
peroxidation, as marker for oxidative damage (Zhang et al. 
2013; Song et al. 2018). Such an analysis usually involves 
the homogenization of tissue samples for the extraction 
and analysis of an analyte (Zhang et al. 2013; Zhou et al. 
2013; Shao et al. 2018). In contrast, MS imaging allows 
for label-free on-tissue lipid analysis and in addition ena-
bles the analysis of oxidative changes in lipids (Desbenoit 
et al. 2018). This allows us to extend the evaluation of 
lipid modifications with spatial information, which can 
also be linked to the underlying biological processes which 
are affected.

Multimodal imaging approach

Figure 4 shows the results obtained of the sequential work-
flow together with the optional H&E staining of the same 
tissue section which was used to evaluate the correlation 
of FTIR and MS imaging results with histological features. 
The sequence as shown in Fig. 1 was followed, since, for 
example, staining with H&E beforehand would make a 
measurement with MS imaging impossible, as the manda-
tory treatment of the section with ethanol and isopropanol 
extracts lipids. Hence, FTIR imaging, which ensures tissue 
integrity while still enabling us to define regions of inter-
est for subsequent MS imaging, was used in our workflow. 
The image obtained by applying the RDF model is shown 
as an overlay over the optical image in Fig. 4a, b. The tis-
sue classes (background, body wall, digestive system and 
other tissue) could be differentiated based on the spectral 
data corresponding to each tissue type. In comparison 
to the H&E-stained image (Fig. 4c, f), the class in red 
(“body wall”) matches with the cuticle, the epidermis and 
the circular and longitudinal muscles. The body wall was 
further differentiated by lipids identified in the MS imag-
ing experiments, (red; Fig. 4e; corresponding to single 
ion image Fig. 3b). The comparison to the H&E-stained 
image shows that the lipid colored in red corresponds to 
the epidermis of the earthworm (Fig. 4e, f). The RDF class 
referring to the digestive system matches the distribution 
of lipid 2 (Fig. 4d, e).

Fig. 3  Single ion images 
displaying different tissue areas 
in the analyzed E. fetida tissue 
section. a Optical image demon-
strating the region of interest 
measured by MS imaging. b 
Distribution of PC (O-40:1) 
[M+K]+ displaying the epi-
dermis of E. fetida. c Distribu-
tion of PC (O-36:5) [M+Na]+ 
displaying the distribution of 
this lipid in the digestive system 
of E. fetida. d Distribution of 
PC (O-34:0) [M+H]+ display-
ing the distribution of this lipid 
in the area of the coelomic 
fluid and muscle tissue. Scale 
bar = 250 µm
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The multimodal workflow enables rapid analysis of the 
FTIR imaging data by supervised machine learning algorithms 
such as the RDF, and its results can be used to facilitate the 
determination of regions of interest for more detailed measure-
ments using MS imaging. Our proposed workflow enables a 
targeted analysis of potential effects of pollutants in E. fetida. 
This is supported by the fact that multimodal imaging using 
FTIR and MS imaging is already applied in medical research. 
For instance, Rabe et al. (2018) used FTIR and MS imag-
ing for tumor localization in thin sections of mouse brain and 
were able to detect disease-specific lipid patterns. Hence, 
FTIR data analysis using algorithms like RDF open up the 
possibility for automated, time-saving, high-throughput tissue 
characterization and classification of specific regions of the 
tissue. Consequently, the combination of the two methods for 
an established model organism in ecotoxicological research 
represents an improved approach for investigating the effects 
of pollutants at the tissue level.

Conclusions

Our multimodal workflow enables the consecutive analy-
sis of sections of non-preserved specimen of the ecotoxi-
cological model organism E. fetida. FTIR-analysis with 
subsequent RDF application allows the quick classification 
of different tissue types within complex biological cross 
sections. It further excludes observer bias and enables a 
quick identification of regions of interest for subsequent 
analysis. To this, MS imaging adds molecular informa-
tion by correlating specific lipids with the different tis-
sue types. These lipids could be used to detect spatially 
resolved physiological modifications which are induced by 
environmental contaminants. Our workflow provides a first 
step to a time-saving tool for ecotoxicological research by 
offering a quick, non-invasive multimodal analysis of tis-
sues or cross-sections of E. fetida. Therefore, our approach 

Fig. 4  Result of the multimodal imaging approach. a Bright-field 
microscopic image of the analyzed tissue section of E. fetida; scale 
bar = 250 µm. b Overlay of the application of the RDF model as data 
analysis of the FTIR data and the bright-field microscopic image. c 
H&E staining of the section after FTIR and MALDI-MSI application; 
scale bar = 250  µm. d Results of the RDF model application of the 

FTIR data; zoomed in on the region imaged by MALDI-MSI, colors 
are according to the results of the RDF analysis. e Results of the 
MALDI-MSI analysis of the region of interest; the identified lipids 
are colored in red, blue and green; f H&E-stained section; zoomed in 
on the region analyzed by MALDI-MSI. Scale bars = 250 µm
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has the potential to improve toxicology targeting effects at 
the tissue level on terrestrial biota.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00418- 021- 02037-1.
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