
Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1585–S1606
https://doi.org/10.1007/s00245-021-09805-4

ORIG INAL PAPER

Local Turnpike Analysis Using Local Dissipativity for
Discrete Time Discounted Optimal Control

Lars Grüne1 · Lisa Krügel1

Accepted: 29 June 2021 / Published online: 20 July 2021
© The Author(s) 2021

Abstract
Recent results in the literature have provided connections between the so-called
turnpike property, near optimality of closed-loop solutions, and strict dissipativity.
Motivated by applications in economics, optimal control problems with discounted
stage cost are of great interest. In contrast to non-discounted optimal control problems,
it is more likely that several asymptotically stable optimal equilibria coexist. Due to
the discounting and transition cost from a local to the global equilibrium, it may be
more favourable staying in a local equilibrium than moving to the global—cheaper—
equilibrium. In the literature, strict dissipativity was shown to provide criteria for
global asymptotic stability of optimal equilibria and turnpike behaviour. In this paper,
we propose a local notion of discounted strict dissipativity and a local turnpike prop-
erty, both depending on the discount factor. Using these concepts, we investigate the
local behaviour of (near-)optimal trajectories and develop conditions on the discount
factor to ensure convergence to a local asymptotically stable optimal equilibrium.

Keywords Discounted optimal control · Dissipativity · Turnpike

1 Introduction

In recent years, dissipativity as introduced into systems theory by Willems [20,21]
has turned out to be a highly useful concept in order to understand the qualitative
behaviour of optimally controlled systems. While related ideas were already present
in early works by Willems [19] in a linear quadratic setting, the approach has been
revived and extended to fully nonlinear problems motivated by the observation of the
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importance of dissipativity concepts inmodel predictive control [1,3,14,15] and for the
characterization of the turnpike property [8]. The turnpike property expresses the fact
that optimal (and possible also near-optimal) trajectories stay within a vicinity of an
optimal equilibrium for most of the time. It can be seen as a way to generalize asymp-
totic stability properties of optimal equilibria to finite- and infinite-horizon optimal
control problems. While the references just discussed addressed non-discounted con-
trol problems, the results from [4,5,10,12] show that central results from this theory can
be carried over to discounted optimal control problems and complement detectability-
based approaches such as [16,17] for analysing global asymptotic stability of equilibria
of discounted optimally controlled systems.

A crucial difference between discounted and non-discounted optimal control prob-
lems is that in discounted problems it is much more likely that several asymptotically
stable optimal equilibria coexist. Indeed, assuming complete controllability, in non-
discounted optimal control two optimal equilibria can only coexist for arbitrary long
(or infinite) horizons if they yield exactly the same optimal cost. Otherwise, for suf-
ficiently long time it will always be beneficial to steer the system from the more
expensive equilibrium to the cheaper one. In contrast to this, in discounted optimal
control, due to the discounting it may not be possible to compensate for the transition
cost from one equilibrium to the other with the lower cost of staying in the cheaper
equilibrium. Therefore, in the discounted case locally asymptotically stable equilibria
with different costs may coexist even for infinite horizon problems. In mathematical
economy, where discounted optimal control problems are an importantmodelling tool,
this is a well known fact at least since the pioneering work of Skiba [18] and Dechert
and Nishimura [2], and since then it was observed in many other papers, see, e.g., [13]
and the references therein.

It is the goal of this paper to show that a local version of the strict dissipativity
property for discounted optimal control problems can be used for obtaining local
convergence results to optimal equilibria.More precisely, we show that in the presence
of local strict dissipativity and appropriate growth conditions on the optimal value
functions there exist two thresholds for the discount factor β ∈ (0, 1), denoted by
β1 and β2, with the following properties: Whenever β ≥ β1, any optimal trajectory
that stays near a locally optimal equilibrium converges to this equilibrium. Whenever
β ≤ β2, any optimal trajectory that starts near this equilibrium will stay near the
equilibrium. Together, this yields an interval [β1, β2], which—provided that β1 ≤ β2
holds—contains the discount factors for which convergence of optimal trajectories to
the locally optimal equilibriumholds locally.We formalize this convergence behaviour
using the formalism from turnpike theory (see, e.g., [11]), because this provides a
convenient way to express these properties in a mathematically precise way also for
near-optimal trajectories and to link our results to the recent literature on the relation
between dissipativity and turnpike properties. We carry out our analysis in discrete
time because this simplifies some of our arguments, yet we think that conceptually
similar results can also be achieved for continuous time problems.

The remainder of this paper is organised as follows. In Sect. 2 we introduce the
precise problem formulation and notation. Section 3 summarises the known results
for globally strictly dissipative discounted problems. In Sect. 4 we show how this
result can be reformulated in case that only local strict dissipativity holds, provided the
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trajectories under consideration satisfy an invariance condition. In Sect. 5we then show
that this invariance condition is “automatically” satisfied under suitable conditions.
Section 6 then contains the main result by bringing together the two results from Sects.
4 and 5. In Sect. 7 we illustrate our results by several examples and the final Sect. 8
provides a brief concluding discussion.

2 Setting and Preliminaries

2.1 System Class and Notation

We consider discrete time nonlinear systems of the form

x(k + 1) = f (x(k), u(k)), x(0) = x0 (1)

for a map f : X × U → X , where X and U are normed spaces. We impose the
constraints (x, u) ∈ Y ⊂ X × U on the state x and the input u and define X :=
{x ∈ X | ∃u ∈ U : (x, u) ∈ Y} and U := {u ∈ U | ∃x ∈ X : (x, u) ∈ Y}.
A control sequence u ∈ U

N is called admissible for x0 ∈ X if (x(k), u(k)) ∈ Y

for k = 0, . . . , N − 1 and x(N ) ∈ X. In this case, the corresponding trajectory
x(k) is also called admissible. The set of admissible control sequences is denoted by
U

N (x0). Likewise, we define U
∞(x0) as the set of all control sequences u ∈ U

∞
with (x(k), u(k)) ∈ Y for all k ∈ N0. Furthermore, we assume that X is controlled
invariant, i.e. that U∞(x0) 	= for all x0 ∈ X. The trajectories of (1) are denoted by
xu(k, x0) or simply by x(k) if there is no ambiguity about x0 and u.

We will make use of comparison-functions defined by

K := {α : R+
0 → R

+
0 |α is continuous and

strictly increasing with α(0) = 0}
K∞ := {α : R+

0 → R
+
0 |α ∈ K, α is unbounded}

L := {δ : R+
0 → R

+
0 |δ is continuous and

strictly decreasing with lim
t→∞ δ(t) = 0}

KL := {β : R+
0 × R

+
0 → R

+
0 |β is continuous, β(·, t) ∈ K, β(r , ·) ∈ L}.

Moreover, with Bε(x0) we denote the open ball with radius ε > 0 around x0.
In this paper we consider infinite horizon discounted optimal control problems, i.e.

problems of the type

min
u∈U∞(x0)

J∞(x0, u) with J∞(x0, u) =
∞∑

k=0

βk�(x(k, x0), u(k)). (2)

Herein, the number β ∈ (0, 1) is called the discount factor.
For such problems it was shown in [5] that if the optimal control problem is strictly

dissipative at an optimal equilibrium xβ , then for sufficiently large β ∈ (0, 1) all
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optimal trajectories converge to a neighbourhood of xβ . This neighbourhood shrinks
down to xβ when β → 1, cf. [5, Theorem 4.4]. Under slightly stronger conditions
on the problem data one can even show that the optimal trajectories converge to the
optimal equilibrium xβ itself and not only to a neighbourhood, cf. [5, Section 6]. We
will show in Theorem 3.4, below, that this result can be rewritten in the language of
turnpike theory, in which convergence is weakened to the property that the trajectories
stay in a neighbourhood of the optimal equilibrium for a (quantifiable) amount of time,
but not necessarily forever. While only the optimal trajectories satisfy convergence to
the optimal equilibrium, we will show that also near-optimal trajectories satisfy the
turnpike property.1

While this global turnpike result follows from a relatively straightforward mod-
ification of the arguments in [5], the main question that we want to address in this
paper is more difficult: assume that strict dissipativity does not hold globally but only
in a neighbourhood of a locally optimal equilibrium xβ

l . Can we still expect to see a

turnpike property of trajectories starting close to xβ
l ?

For the derivation of our technical results, we make frequent use of the dynamic
programming principle

V∞(x0) = inf
u∈U1(x0)

{�(x, u) + βV∞( f (x0, u))},

where

V∞(x0) := min
u∈U∞(x0)

J∞(x0, u)

denotes the optimal value function of (2). If u∗ ∈ U
∞(x0) is an optimal control

sequence for an initial value x0 ∈ X, i.e. if J∞(x0, u∗) = V∞(x0) holds, then the
identity

V∞(x0) = �(x0, u
∗(0)) + βV∞( f (x0, u

∗(0)))

holds. Proofs for these statements can be found, e.g., in [9, Section 4.2].
We denote optimal trajectories by x∗(k, x0) and we say that a set Xinv ⊂ X is

forward invariant for the optimally controlled system, if for each x0 ∈ Xinv it follows
that x∗(k, x0) ∈ Xinv for all k ≥ 0 and all optimal trajectories starting in x0.

3 The Global Discounted Turnpike Property

In this section we first consider the optimal control problem (2) assuming global strict
dissipativity.We show that under similar technical assumptions andwith a similar proof
technique as in [5] we can obtain a global turnpike result for near-optimal trajectories.

1 We note that the turnpike property can also be defined for finite horizon optimal control problems. Still,
we restrict ourselves to the infinite horizon case, since it was shown in [11] that under mild conditions on the
problem data the finite horizon turnpike property holds if and only if the infinite horizon turnpike property
holds.
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To this end, we first introduce discounted strict dissipativity and afterwards we use it
to conclude the turnpike property.

3.1 Global Discounted Strict Dissipativity

We denote an equilibrium of system (1) in the discounted case by (xβ, uβ) since the
equilibria are dependent on the discount factor β ∈ (0, 1).

Definition 3.1 Given a discount factor β ∈ (0, 1), we say that the system (1) is dis-
counted strictly dissipative at an equilibrium (xβ, uβ) with supply rate s : Y → R if
there exists a storage function λ : X → R bounded from below with λ(xβ) = 0 and a
class K∞-function α such that the inequality

s(x, u) + λ(x) − βλ( f (x, u)) ≥ α(‖x − xβ‖) (3)

holds for all (x, u) ∈ Y with f (x, u) ∈ X.

The following lemma is Proposition 3.2 from [12]. Since its proof is short and simple,
we provide it here for convenience of the readers. It shows that we can replace the
stage cost � by amodified—usually called rotated—stage cost �̃ that is positive definite
without changing the optimal trajectories.

Lemma 3.2 Consider the discounted optimal control problem (2) with discount factor
β ∈ (0, 1)andassume the system (1) is discounted strictly dissipative at an equilibrium
(xβ, uβ)with supply rate s(x, u) = �(x, u)−�(xβ, uβ) and bounded storage function
λ. Then the optimal trajectories of (2) coincide with those of the problem

min
u∈U∞(x0)

J̃∞(x0, u) with J̃∞(x0, u) :=
∞∑

k=0

βk �̃(x(k, x0), u(k)) (4)

with rotated stage cost

�̃(x, u) = �(x, u) − �(xβ, uβ) + λ(x) − βλ( f (x, u)) (5)

which is positive definite in xβ at (xβ, uβ), i.e. it satisfies the inequality �̃(x, u) ≥
α(‖x − xβ‖) with α ∈ K∞ from (3) for all (x, u) ∈ Y.

Proof We rearrange

J̃∞(x0, u) =
∞∑

k=0

βk �̃(x(k, x0), u(k)) =
∞∑

k=0

βk(�(x(k, x0), u(k))−

�(xβ, uβ) + λ(x(k, x0)) − βλ(x(k + 1, x0))
)

and a straightforward calculation shows that

J̃∞(x0, u) = J∞(x0, u) − �(xβ, uβ)

1 − β
+ λ(x0) − lim

k→∞ βkλ(xu(k)). (6)
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Since λ is bounded and β ∈ (0, 1), the last limit exists and is equal to 0. Hence,
the objectives differ only by expressions which are independent of U, from which the
identity of the optimal trajectories immediately follows. The positive definiteness of �̃
follows from its definition, using strict dissipativity and the fact that λ(xβ) = 0 implies
�̃(xβ, uβ) = 0. �
Remark 3.3 The requirement that �(xβ, uβ) = 0 is the reason for imposing
λ(xβ) = 0 as a condition in Definition 3.1. Readers familiar with dissipativity for
undiscounted problems will know that in the undiscounted case λ(xβ) = 0 can be
assumed without loss of generality, since if λ is a storage function then λ + c is a
storage function for all c ∈ R. In the discounted case, this invariance with respect to
addition of constants no longer holds.

3.2 The Global Turnpike Property

In the non-discounted setting it is known that strict dissipativity (together with suitable
regularity assumptions on the problem data) implies that optimal as well as near-
optimal trajectories exhibit the turnpike property. In the discounted setting, it was
observed already in [11] that for merely near-optimal trajectories the turnpike property
can only be guaranteed on a finite discrete interval {0, . . . , M}. In this case M depends
on the deviation from optimality (denoted by δ in the following theorem) and tends
to infinity as this distance tends to 0. In fact, M and δ depend on each other, i.e. the
smaller we choose δ, the larger M becomes and, conversely, the larger we want M to
be, the smaller we need to choose δ. In the following theoremwe take this second point
of view, i.e. we fix M and choose δ > 0 accordingly. As the theorem shows, under the
assumption of global discounted dissipativitywe obtain precisely the turnpike property
in the form which is originally given in [11, Definition 4.2]. The corresponding proof
is a variation of the statement and proof of Theorem 3.1 and Corollary 4.3 in [5].
While in [5] only optimal trajectories were considered, here we extend the statement
to near-optimal trajectories. We provide the proof in an appropriate way such that we
can refer to it later in the proof of Theorem 4.3.

Theorem 3.4 Consider the infinite horizon optimal control problem (2) with discount
factor β ∈ (0, 1) and assume the system (1) is discounted strictly dissipative at an
equilibrium (xβ, uβ). Assume that the optimal value function Ṽ∞ of the modified
problem satisfies Ṽ∞(x) ≤ αV (‖x − xβ‖) and

Ṽ∞(x) ≤ C inf
u∈U �̃(x, u) (7)

for all x ∈ X, a function αV ∈ K∞, and a constant C ≥ 1 satisfying

C < 1/(1 − β). (8)

Then the optimal control problem has the following turnpike property (cf. [11,
Definition 4.2]):
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For each ε > 0 and each bounded set Xb ⊂ X there exist a constant P > 0 such
that for each M ∈ N there is a δ > 0, such that for all x0 ∈ Xb and u ∈ U

∞(x0)
with J∞(x0, u) ≤ V∞(x0) + δ, the set Q(x0, u, ε, M, β) := {k ∈ {0, . . . , M} |
‖xu(k, x0) − xβ‖ ≥ ε} has at most P elements.

Proof It follows from the proof of Lemma 3.2 that the inequality J∞(x0, u) ≤
V∞(x0)+δ implies J̃∞(x0, u) ≤ Ṽ∞(x0)+δ. Together with the dynamic programming
principle for Ṽ∞ this yields

δ ≥ J̃∞(x0, u) − Ṽ∞(x0)

= �̃(x0, u(0)) + β J̃∞(xu(1, x0), u(· + 1)) − inf
u∈U

{
�̃(x0, u) + β Ṽ∞( f (x0, u))

}

≥ �̃(x0, u(0)) + β J̃∞(xu(1, x0), u(· + 1)) −
(
�̃(x0, u(0)) + β Ṽ∞( f (x0, u(0)))

)

= β( J̃∞(xu(1, x0), u(· + 1)) − Ṽ∞( f (x0, u(0)))).

This implies J̃∞(xu(1, x0), u(· + 1)) ≤ Ṽ∞(xu(1, x0)) + δ/β, and proceeding induc-
tively we obtain

J̃∞(xu(k, x0), u(· + k)) ≤ Ṽ∞(xu(k, x0)) + δ

βk

for all k ∈ N. This implies

Ṽ∞(xu(k + 1, x0)) − Ṽ∞(xu(k, x0))

= 1

β

(
β Ṽ∞(xu(k + 1, x0)) − β Ṽ∞(xu(k, x0))

)

= 1

β

(
β Ṽ∞(xu(k + 1, x0)) − Ṽ∞(xu(k, x0)) + (1 − β)Ṽ∞(xu(k, x0))

)

≤ 1

β

(
β J̃∞(xu(k + 1, x0), u(· + k + 1)) − J̃∞(xu(k, x0), u(· + k)) + δ

βk

+(1 − β)Ṽ∞(xu(k, x0))
)

= 1

β

(
β J̃∞(xu(k + 1, x0), u(· + k + 1)) − J̃∞(xu(k, x0), u(· + k))

+(1 − β)Ṽ∞(xu(k, x0))
)

+ δ

βk+1

= 1

β

(
− �̃(xu(k, x0), u(k)) + (1 − β)Ṽ∞(xu(k, x0))

)
+ δ

βk+1

≤ 1

β

(
− 1

C
Ṽ∞(xu(k, x0)) + (1 − β)Ṽ∞(xu(k, x0))

)
+ δ

βk+1

= κ

β
Ṽ∞(xu(k, x0)) + δ

βk+1 (9)

where κ = (1 − β) − 1/C < 0 because of (8).
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Fig. 1 Illustration of the set
Q(x0, u, ε, M, β)

M

xβ
1

xβ
2

Elements of Q(x0, u, ε, M, β)

ε

ε

k

xu(k, x0)

Moreover, strict discounted dissipativity implies Ṽ∞(x) ≥ �̃(x, u) ≥ α(‖x − xβ‖).
Together with the upper bound Ṽ∞(x) ≤ αV (‖x − xβ‖) from the assumption this
yields that for fixed M ∈ N and k ∈ {0, . . . , M} the function Ṽ∞ is a practical
Lyapunov function. Using [7, Theorem 2.4] restricted to {0, . . . , M} and the fact that
Xb is bounded we can conclude that there is a sequence ηk → 0 (depending on Xb)
and a function γ ∈ K∞ with

‖xu(k, x0) − xβ‖ ≤ ηk + γ (δ/βk+1) ≤ ηk + γ (δ/βM )

for all k ∈ {0, . . . , M}. This implies the desired claim by choosing P ∈ N (depending
on ε and ηk , hence on Xb) such that ηk < ε/2 for all k ≥ P and δ > 0 (depending on
β, ε and M) such that γ (δ/βM ) < ε/2. �

For an illustration of the described turnpike property we refer to Fig. 1. We note
again that in the formulation of the discounted turnpike property the level δ which
measures the deviation from optimality of the trajectory xu(·, x0) depends on M . For
guaranteeing the turnpike property on {0, . . . , M}, δ → 0may be required ifM → ∞,
cf. also Remark 3.5 (iv).

The following remark discusses aspects of the assumptions of Theorem 3.4. For
the turnpike property to hold, it is obviously necessary that the state of the system can
be steered to xβ , at least asymptotically. This is made precise in part (i) of the remark.
Part (ii) shows that if the state can be steered to xβ fast enough, then a constant C
satisfying (7) for all β ∈ (0, 1) holds. Finally, part (iii) of the remark discusses how
inequality (7) can be relaxed if such a C cannot be found.

Remark 3.5 (i) A necessary condition for the turnpike property to hold is that for
each ε > 0, each bounded subset Xb ⊆ X and each x0 ∈ Xb there exists a control
sequence u ∈ U

P+1(x0) with xu(k, x0) ∈ Bε(xβ) for some k ≤ P + 1, where P is
the constant from the turnpike property in Theorem 3.4. This is immediately clear,
because if such a control does not exist, then the number of points xu(k, x0) /∈
Q(x0, u, ε, M, β) is larger than P for all u.
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(ii) If a constant C satisfying (7) for all β ∈ (0, 1) exists, then (8) will hold for all
sufficiently large β ∈ (0, 1). A sufficient condition for the existence of such a C is
the following exponential stabilizability assumption of the cost at the equilibrium
(xβ, uβ): there are constants σ, λ > 0 such that for each x0 ∈ X there is u ∈
U

∞(x0) with

�̃(xu(k, x0), u(k)) ≤ σe−λk inf
û∈U

�̃(x0, û). (10)

Then, since �̃ ≥ 0 we obtain

Ṽ∞(x0) ≤
∞∑

k=0

βk �̃(xu(k, x0), u(k)) ≤
∞∑

k=0

�̃(xu(k, x0), u(k))

≤
∞∑

k=0

σe−λk inf
û∈U

�̃(x0, û) = σ

1 − e−λ
inf
û∈U

�̃(x0, û),

implying (7) with C = σ/(1 − e−λ). We note that (10) holds in particular if the
system itself is exponentially stabilizable to xβ with exponentially bounded controls
and �̃ is a polynomial.2 Exponential stabilizability of the system, in turn, follows
locally around xβ from stabilizability of its linearization in xβ . If, in addition,
the necessary condition from part (i) of this remark holds, then local exponential
stabilizability implies exponential stabilizability for bounded X. We refer to [5,
Section 6] for a more detailed discussion on these conditions. Note that if �̃ is
continuous, then infu∈U �̃(x, u) ≤ α�(‖x − xβ‖) holds for an appropriate α� ∈
K∞. In this case, (7) implies the assumed upper bound αV on Ṽ∞.

(iii) If a C meeting (8) and (7) for all x ∈ X does not exist, then we may still be able
to find a C satisfying (8) and (7) for all x ∈ X with ϑ ≤ ‖x − xβ‖ ≤ , for
parameters 0 ≤ ϑ < . In this case we can follow the reasoning in the proof
of Corollary 4.3 from [5] to conclude that we still obtain a turnpike property for
ε > ε0 and Xb = B�(xβ) ∩X, with ε0 → 0 as ϑ → 0 and � → ∞ as  → ∞.

(iv) Optimal trajectories, i.e., trajectories forwhich J∞(x0, u) = V∞(x0)holds, satisfy
the assumptions of Theorem 3.4 for each δ > 0. Hence, the assertion of the theorem
holds for each ε > 0 and each M ∈ N, implying that xu(k, x0) converges to xβ as
k → ∞ and thus xβ behaves similarly to an asymptotically stable equilibrium.
Whenever δ > 0, however, the trajectorywill typicallymove away from xβ for large
times. This is more similar to the classical turnpike phenomenon in optimal control
than to asymptotic stability, which is why we prefer this term over asymptotic
stability or practical asymptotic stability.

2 We could further relax this assumption to �̃ being bounded by C1P and C2P from below and above,
respectively, for constants C1 > C2 > 0 and a polynomial P .
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4 The Local Discounted Turnpike Property Assuming Invariance

In the previous section, we have shown that an equilibrium at which the system is
globally strictly dissipative has the turnpike property. Now,we consider an equilibrium
denoted by (xβ

l , uβ
l ) at which discounted strict dissipativity holds only locally, i.e., for

all x in a neighbourhood XN of xβ
l , in the following sense.

Definition 4.1 Given a discount factor β ∈ (0, 1), we say that the system (1) is locally
discounted strictly dissipative at an equilibrium (xβ

l , uβ
l ) with supply rate s : Y → R

if there exists a storage function λ : X → R bounded from below with λ(xβ
l ) = 0 and

a class K∞-function αβ such that the inequality

s(x, u) + λ(x) − βλ( f (x, u)) ≥ αβ(‖x − xβ
l ‖) (11)

holds for all (x, u) ∈ XN × U with f (x, u) ∈ X.
Further, we say that system (1) is locally discounted strictly (x, u)-dissipative at

the equilibrium (xβ
l , uβ

l ) with supply rate s : X × U → R if the same holds with the
inequality

s(x, u) + λ(x) − βλ( f (x, u)) ≥ αβ(‖(x − xβ
l ‖ + ‖u − uβ

l )‖). (12)

As in the global case we define the rotated stage cost by

�̃(x, u) := �(x, u) − �(xβ
l , uβ

l ) + λ(x) − βλ( f (x, u)). (13)

We note that this definition is local since we only require it for x ∈ XN . However, also
in this local version we require the dissipation inequalities to hold for all u ∈ U with
f (x, u) ∈ X, i.e. also for control values that drive the state out of the neighbourhood
XN of the equilibrium xβ

l . This property will be important in the proof of Lemma 5.2,
below.

Obviously, with this definition Lemma 3.2 remains valid. Moreover, for x ∈ XN
the function �̃ satisfies the same properties as in the globally dissipative case. This will
enable us to derive a local turnpike property, provided the neighbourhoodXN contains
an invariant setXinv ⊂ XN for the optimally controlled system. The following lemma
gives a consequence of this assumption for the modified optimal value function, which
will be important for concluding the local turnpike property.

Lemma 4.2 Consider the optimal control problem (2) with given discount factor β ∈
(0, 1) and assume that the system is locally strictly dissipative in (xβ

l , uβ
l ) ∈ XN ⊂ X.

Consider a subsetXinv ⊂ XN such that all optimal solutions x∗(k, x0)with x0 ∈ Xinv

satisfy x∗(k, x0) ∈ Xinv for all k ≥ 0.
Then the modified optimal value function Ṽ∞ satisfies

Ṽ∞(x) ≥ αβ(‖x − xβ
l ‖) (14)
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for all x ∈ Xinv .

Proof For all x ∈ XN and u ∈ U themodified cost satisfies �̃(x, u) ≥ αβ(‖x−xβ
l ‖) ≥

0. This implies

Ṽ∞(x0) =
∞∑

k=0

βk �̃(x(k, x0), u(k)) ≥
∞∑

k=0

βkαβ(‖x(k, x0) − xβ
l ‖) ≥ αβ(‖x0 − xβ

l ‖),

which shows the claim. �
The following now gives a local version of Theorem 3.4.

Theorem 4.3 Consider the infinite horizon optimal control problem (2) with discount
factorβ ∈ (0, 1) and assume that the system is locally strictly dissipative at (xβ

l , uβ
l ) ∈

XN ⊂ X. Consider a subsetXinv ⊂ XN such that all optimal solutions x∗(k, x0)with
x0 ∈ Xinv satisfy x∗(k, x0) ∈ Xinv for all k ≥ 0 and suppose that the assumptions of
Theorem 3.4 hold for all x ∈ Xinv .

Then the optimal control problem has the following turnpike property on Xinv:
For each ε > 0 and each bounded set Xb ⊂ Xinv there exist a constant P > 0

such that for each M ∈ N there is a δ > 0, such that for all u ∈ U
∞(x0) with

J∞(x0, u) ≤ V∞(x0) + δ and xu(k, x0) ∈ Xinv for all k ∈ {0, . . . , M}, the set
Q(x, u, ε, M, β) := {k ∈ {0, . . . , M} | ‖xu(k, x0)−xβ‖ ≥ ε} has atmost P elements.

Proof The proof proceeds completely identical to the proof of Theorem 3.4, using
the fact that all inqualities used in this proof remain valid as long as the considered
solutions stay inXinv which is guaranteed by the assumptions.We note that Lemma 4.2
is needed for establishing the lower bound on Ṽ∞ required from a practical Lyapunov
function. �
Remark 4.4 Instead of assuming the existence of the invariant set Xinv we could also
assume (14) for all x ∈ XN . Then by standard Lyapunov function arguments the
largest sublevel set of Ṽ∞ contained in XN is forward invariant for the optimal solu-
tions and can then be used as setXinv . Using (9) we can even ensure that this sublevel
set is also forward invariant for all solutions satisfying J∞(x0, u) ≤ V∞(x0) + δ

provided δ > 0 is sufficiently small. Hence, for this choice of Xinv the assumption
that xu(k, x0) ∈ Xinv for all k ∈ {0, . . . , M} in Theorem 4.3 would be automatically
satisfies if δ is not too large.

5 Optimal Trajectories Stay near a Locally Dissipative Equilibrium

Theorem 4.3 shows that the local turnpike property holds if the optimal solutions
stay in the neighbourhood of xβ

l in which the strict dissipativity property holds. In
this section we show that this condition is “automatically” satisfied for appropriate
discount factors. This will enable us to conclude a local turnpike property from local
strict dissipativity. To this end, we aim to show that there exists a range of discount
factors β for which it is more favourable to stay near the locally dissipative equilibrium
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than to move to other parts of the state space. The first lemma we need to this end
shows a property of trajectories that move out of a neighbourhood of xβ

l . In contrast
to the previous result, now we need the stronger (x, u)-dissipativity.

Lemma 5.1 Consider a discounted optimal control problem (2) subject to system (1)
with continuous f . Assume local strict (x, u)-dissipativity at an equilibrium (xβ

l , uβ
l )

according to Definition 4.1 and let ρ > 0 be such that Bρ(xβ
l ) ⊂ XN holds for the

neighbourhood XN from Definition 4.1. Then there exists η > 0 such that for each
K ∈ N and any trajectory x(·) with x0 = x(0) ∈ Bη(x

β
l ) and x(K ) /∈ Bρ(xβ

l ) there

is a M ∈ {0, . . . , K − 1} such that x(0), . . . , x(M) ∈ Bη(x
β
l ) and either

(i) x(M + 1) ∈ Bρ(xβ
l )\Bη(x

β
l ) or (ii) ‖u(M) − uβ

l ‖ ≥ η

holds.

Proof The continuity of f implies that there exists ε > 0 such that ‖ f (x, u)−xβ
l ‖ < ρ

for all (x, u) ∈ Y with ‖x − xβ
l ‖ < ε and ‖u − uβ

l ‖ < ε. We let Kmin be minimal with

x(Kmin) /∈ Bρ(xβ
l ), set η := min{ε, ρ}, and claim that this implies the assertion for

M = Kmin − 1.
We prove this claim by contradiction. To this end, we assume that for M = Kmin−1

neither assertion (i) nor assertion (ii) holds. This implies on the one hand that ‖x(M)−
xβ
l ‖ < η, since x(M) ∈ Bρ(xβ

l ) by minimality of Kmin and (i) is not fulfilled. On the

other hand, it implies ‖u(M) − uβ
l ‖ < η, because (ii) does not hold. Then, however,

since η ≤ ε, the continuity of f implies

‖x(Kmin) − xβ
l ‖ = ‖ f (x(M), u(M)) − xβ

l ‖ < ρ.

This means that x(Kmin) ∈ Bρ(xβ
l ), which is a contradiction to the choice of Kmin.

Hence, either assertion (i) or assertion (ii) must hold for M = Kmin − 1. �
The next lemma shows that the behaviour characterized in Lemma 5.1 induces

a lower bound for the rotated discounted functional J̃∞ from (4) along trajectories
that start in a neighbourhood of xβ

l and leave this neighbourhood. To this end, we
note that even if merely local strict dissipativity holds, the modified stage cost �̃

from (13) is well defined, since λ is defined for all x ∈ X. However, the inequality
�̃(x, u) ≥ αβ(‖x − xβ

l ‖ + ‖u − uβ
l ‖) and, more generally, positivity of �̃ are only

guaranteed for x ∈ XN .

Lemma 5.2 Let the assumptions of Lemma 5.1 hold. In addition, assume that λ from
Definition 4.1 is bounded and the stage cost � is bounded from below. Then, there
exists β� ∈ (0, 1) with the following property: for any β ∈ (0, β�) and any K ∈ N

there is σ(β, K ) > 0 such that for any trajectory x(·) with x0 = x(0) ∈ Bη(x
β
l ) and

x(P) /∈ Bρ(xβ
l ) for some P ∈ {1, . . . , K } the inequality

J̃∞(x0, u) ≥ σ(β, K ) (15)
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holds.

Proof First observe that boundedness from below of � and boundedness of λ imply
boundedness from below of �̃. Let �̃min := inf(x,u)∈Y �̃(x, u). Since �̃(xβ, uβ) = 0
it follows that �̃min ≤ 0. Moreover, local dissipativity implies that �̃(x, u) ≥ 0 for
all x ∈ XN and all u ∈ U with f (x, u) ∈ X. We note that it is important for the
remainder of the proof that this inequality holds for all these u ∈ U and not only when
f (x, u) ∈ XN .
Since the trajectory under consideration satisfies the assumptions of Lemma 5.1

with K = P, there exists M ∈ {0, . . . , P} such that either assertion (i) or assertion
(ii) of this lemma holds. Within the strict dissipativity, in case (i), we obtain that

�̃(x(M), u(M)) ≥ αβ(‖x(M) − xβ
l ‖) ≥ αβ(η)

and in case (ii) we obtain

�̃(x(M), u(M)) ≥ αβ(‖u(M) − uβ
l ‖) ≥ αβ(η).

Hence, we get the same inequality in both cases and we abbreviate δ := αβ(η) > 0.

In addition, Lemma 5.1 yields x(0), . . . , x(M) ∈ Bη(x
β
l ) ⊂ XN , which implies

�̃(x(k), u(k)) ≥ 0 for all k = 0, . . . , M − 1, and the lower bound on �̃ implies
�̃(x(k), u(k)) ≥ �̃min for all k ≥ M + 1. Together this yields

J̃∞(x0, u) = ∑∞
k=0 βk �̃(x(k, x0), u(k)

= ∑M−1
k=0 βk �̃(x(k, x0), u(k))︸ ︷︷ ︸

≥0

+βM �̃(x(M, x0), u(M))︸ ︷︷ ︸
≥δ

+∑∞
k=M+1 βk �̃(x(k, x0), u(k))︸ ︷︷ ︸

≥�̃min

≥ βMδ + βM+1

1 − β
�̃min = βM

1 − β

((
�̃min − δ

)
β + δ

)
.

We now claim that the assertion holds for σ = βK δ
2(1−β)

≤ βM δ
2(1−β)

. To this end, it is
sufficient to show the existence of β� with

βM

1 − β

((
�̃min − δ

)
β + δ

)
≥ βMδ

2(1 − β)

for all β ∈ (0, β�). This is equivalent to

βM

1 − β

((
�̃min − δ

)
β + δ

2

)
≥ 0 ⇔

(
�̃min − δ

)
β + δ

2
≥ 0,

since �̃min − δ < 0. This inequality holds for all β ∈ (0, β�) if β� = δ/(2(δ − �̃min)).
�
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Remark 5.3 The choice of the fraction 1
2 forσ in the proof of Lemma5.2 is arbitrary.We

can also use a more general fraction 1
k+1 with k ∈ N. Then, with the same calculation

as above we get that β� = k

k + 1

δ

δ − �̃min
.

Based on the estimate from Lemma 5.2 we can now conclude that near-optimal
solutions starting near xβ

l stay in XN for a certain amount of time.

Lemma 5.4 Consider a discounted optimal control problem (2) subject to system (1)
with f continuous and stage cost � bounded from below. Assume local strict (x, u)-
dissipativity at an equilibrium (xβ

l , uβ
l ) according to Definition 4.1 with bounded

storage function λ. Assume furthermore that there is γ ∈ K∞ and ˆβ ∈(0, 1] such
that Ṽ∞(x) ≤ γ (‖x − xβ

l ‖) for all x ∈ XN and all β ∈ (0, β̂]. Then there exists
β2 ∈ (0, 1) with the following property: for any β ∈ (0, β2) and any K ∈ N there
exists a neighbourhood Bε(β,K )(x

β
l ) and a threshold value θ(β, K ) > 0 such that

all trajectories with x0 ∈ Bε(β,K )(x
β
l ) and J∞(x0, u) < V∞(x0) + θ(β, K ) satisfy

x(k) ∈ XN for all k ∈ {0, . . . , K }.
Proof We choose β2 as the minimum of β� from Lemma 5.2 and β̂. We further use
σ(β, K ) > 0 from Lemma 5.2 to set ε(β, K ) := γ −1(σ (β, K )/2) and θ(β, K ) :=
σ(β, K )/2. Now consider a trajectory meeting the assumptions and observe that
since J∞ and J̃∞ differ only by a term that is independent of u(·), the assumption
J∞(x0, u) ≤ V∞(x0) + θ(β, K ) together with the assumption on x0 implies

J̃∞(x0, u) < Ṽ∞(x0) + θ(β, K ) < γ (ε(β, K )) + θ(β, K ).

The definition of θ and ε then implies

J̃∞(x0, u) < σ(β, K )/2 + σ(β, K )/2 = σ(β, K ).

Since by Lemma 5.2 any trajectory leaving XN (and thus also Bρ(xβ
l )) up to time K

has a rotated value satisfying

J̃∞(x0, u) ≥ σ(β, K ),

the trajectory under consideration cannot leave XN for k ∈ {0, . . . , K }. �
We note that Ṽ∞(x) ≤ γ (‖x − xβ

l ‖) can be ensured if we can locally steer the system
to xβ fast enough and �̃ is continuous. For a more detailed discussion see Remark
3.5(ii).

6 The Local Discounted Turnpike PropertyWithout Assuming
Invariance

With the preparations from the previous sections, we are now able to formulate our
main theorem on the existence of a local turnpike property.
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Theorem 6.1 Consider a discounted optimal control problem (2) subject to system (1)
with f continuous and stage cost � bounded from below. Assume local strict (x, u)-
dissipativity at an equilibrium (xβ

l , uβ
l ) according to Definition 4.1 with bounded

storage function λ. Assume furthermore that there is γ ∈ K∞ and ˆβ ∈(0, 1] such that
Ṽ∞(x) ≤ γ (‖x− xβ

l ‖) for all x ∈ XN and all β ∈ (0, β̂), and that there is an interval

[β1, β
�] of discount rates with β1 < β̂ and β� from Lemma 5.2, such that for each

β ∈ (β1, β
�) the assumptions of Theorem 3.4 hold for all x ∈ XN .

Then there is β2 ∈ (0, 1) such that for all β ∈ (β1, β2) there exists a neighbourhood
N of xβ

l on which the system exhibits a local turnpike property in the following sense:
For each ε > 0 there exist a constant P > 0 such that for each M ∈ N there is a

δ > 0, such that for all x0 ∈ N and all u ∈ U
∞(x0) with J∞(x0, u) ≤ V∞(x0) + δ,

the set Q(x, u, ε, M, β) := {k ∈ {0, . . . , M} | ‖xu(k, x0) − xβ‖ ≥ ε} has at most P
elements.

Particularly, if J∞(x0, u) = V∞(x0), i.e., if the trajectory is optimal, then for each
ε > 0 the set Q(x, u, ε,∞, β) := ⋃

M∈NQ(x, u, ε, M, β) has at most P elements,
implying the convergence xu(k, x0) → xβ as k → ∞.

Proof The idea of the proof is to use β2 from Lemma 5.4 and, for each β ∈ (β1, β2),
to construct a neighbourhood N of xβ

l and a δ > 0 such that all trajectories starting
in x0 ∈ N and satisfying J∞(x0, u) ≤ V∞(x0)+δ stay inN for all future times. Then
the turnpike property follows from Theorem 4.3 applied with Xinv = N .

To this end, we take β2 from Lemma 5.4, fix β ∈ (β1, β2), and consider the neigh-
bourhood Bε(β,1)(x

β
l ) and the threshold value θ(β, 1) from Lemma 5.4 for K = 1.

We choose N as the largest sublevel set of Ṽ∞ that is contained in Bε(β,1)(x
β
l ) and

denote the level by μ > 0, i.e., N = {x ∈ XN | Ṽ∞(x) < μ}. We abbreviate
κ = (1−β)−1/C, observing that κ < 0 because of (8) (cf. also the proof of Theorem
3.4), and set

δ := βM min

{
θ(β, 1),−κμ

2β
,
μ

2

}
.

Now let x0 and u be as in the assertion, i.e., satisfying J∞(x0, u) ≤ V∞(x0) + δ, and
denote the corresponding trajectory by x(·). Then, just as in the first part of the proof
of Theorem 3.4, we obtain the estimate

J̃∞(x(k), u(· + k)) ≤ Ṽ∞(x(k)) + δ

βk

for all k ∈ N. By definition of δ this in particular implies

J̃∞(x(k), u(· + k)) ≤ Ṽ∞(x(k)) + θ(β, 1) (16)

for all k = 0, . . . , M.
Now we prove by induction that x(k) ∈ N for all k = 0, . . . , M. For k = 0 this

follows from the choice of x0. For k → k + 1, we make the induction assumption
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that x(k) ∈ N , i.e., Ṽ∞(x(k)) < μ. Then, because of (16) and N ⊆ Bε(β,1)(x
β
l ),

Lemma 5.4 (applied with initial value x0 = x(k) and control u(· + k)) implies that
x(k + 1) ∈ XN . Hence, all the (in)equalities leading to inequality (9) in the proof of
Theorem 3.4 are valid and, together with the definition of δ, yield

Ṽ∞(x(k + 1)) − Ṽ∞(x(k)) ≤ κ

β
Ṽ∞(x(k)) + δ

βk

≤ κ

β
Ṽ∞(x(k)) + min

{
θ(β, 1),−κμ

2β
,

μ

2

}
.

Now if Ṽ∞(x(k)) ≥ μ/2, then second term in the minimum defining δ implies

Ṽ∞(x(k + 1)) − Ṽ∞(x(k)) ≤ κ

β

μ

2
− κμ

2β
= 0,

implying Ṽ∞(x(k + 1)) ≤ Ṽ∞(x(k)) < μ and thus x(k + 1) ∈ N .
If Ṽ∞(x(k)) < μ/2, then the third term in the minimum defining δ implies

Ṽ∞(x(k + 1)) − Ṽ∞(x(k)) ≤ κ

β
Ṽ∞(x(k))

︸ ︷︷ ︸
≤0

+μ

2
≤ μ

2
.

Here we have used that Ṽ∞(x(k)) ≥ 0. This inequality follows since x(k) ∈ N : If the
optimal trajectory starting in x(k) stays in N , then it follows from strict dissipativity
on XN ⊃ N and if the optimal trajectory leaves N then it follows from Lemma 5.2.
This implies Ṽ∞(x(k + 1)) ≤ Ṽ∞(x(k)) + μ/2 < μ, i.e., again x(k + 1) ∈ N . This
proves the induction step and hence x(k) ∈ N for all k = 0, . . . , M.

Now the turnpike property follows from Theorem 4.3 applied with Xinv = N . �
Remark 6.2 We note that the interval (β1, β2) may be empty. This is because

(i) the condition (7) needed for proving the turnpike property for trajectories staying
near xβ

l may require sufficiently large β to hold

(ii) a trajectory starting near xβ
l will in general only stay near xβ

l for sufficiently small
β

More precisely, the lower bound in (ii) as identified at the end of the proof of Lemma
5.2 depends on the cost �̃ outside a neighbourhood of xβ

l and the cost to leave this
neighbourhood. The upper bound in (i), in turn, depends on the cost to reach the
equilibrium xβ

l from a neighbourhood. If this cost is high and, in addition, the cost to
leave the neighbourhood and the cost outside the neighbourhood are low, then the set
of discount rates for which a local turnpike behaviour occurs may be empty.

Remark 6.3 The attentive readermay have noted that we apply Lemma 5.4 with K = 1
in this proof, rather than with K = M, which might appear more natural given that we
want tomake a statement for {0, . . . , M}. This is because the size of the neighbourhood
Bε(β,K )(x

β
l ) delivered by Lemma 5.4 depends on K . Hence, if we applied Lemma 5.4

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1585–S1606 S1601

Fig. 2 Stage cost �(x)
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with K = M in order to construct the neighbourhood N , this neighbourhood may
shrink down to {xβ

l } as M increases. In contrast to this, the fact that Ṽ∞ is a (practical)
Lyapunov function allows us to construct a neighbourhood N that does not depend
on M.

7 Examples

We end our paper with a couple of examples illustrating our theoretical results.
All numerical solutions were obtained using a dynamic programming algorithm as
described in [6]. We start with two examples exhibiting a locally and a globally opti-
mal equilibrium.

Example 7.1 Consider the dynamics f (x, u) = x + u and the stage cost �(x, u) =
x4 − 1

4 x
3 − 7

4 x
2.

As visualized in Fig. 2, the stage cost � has a local minimum in x = 3−√
905

32 ,

a maximum in x = 0 and a global minimum in x = 3+√
905

32 . Following [12, Sec-
tion 4] we can calculate the storage function λ by using the optimality conditions
for optimal equilibria. We remark that the procedure for computing global storage
functions described in this reference also works for the local dissipativity in case of
local convexity which is given in this example, cf. also the discussion after Exam-
ple 7.2, below. Thus, by a straightforward calculation, we get the local equilibrium

(xβ
l , uβ

l ) = ( 3−
√
905

32 , 0) and the storage function λ ≡ 0. Inserting this, we get the

rotated stage cost �̃(x, u) = x4 − 1
4 x

3 − 7
4 x

2 − �(xβ
l , 0) and local discounted strict

(x, u)-dissipativity of the system f (x, u) = x + u at xβ
l for any β ∈ (0, 1). Thus, the

assumptions of Lemma 5.1 and Lemma 5.2 are fulfilled. Hence, following the proof of
Lemma 5.2 we can estimate β2 ≈ 0.67 with δ ≈ 1 and �̃min ≈ −0.42. Further, since∥∥∥�̃(x, u)

∥∥∥ is bounded for x in a neighbourhood Bε(x0), ε > 0, Theorem 6.1 can be

applied. For illustrating the theoretical results, we set U = [−0.75, 0.75].
On the left hand side of Fig. 3 we show the behaviour of the trajectory x and the

control u for different discount factors β. On the right hand side, we can observe
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Fig. 3 Example 7.1 with x0 = −0.8
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Fig. 4 Example 7.1 with β = 0.7 (left) and β = 0.6 (right) for different start values x0

the optimal feedback control values ux and therefore the domain of attraction of the
equilibria dependent on β. After a maximum of three time instants, the trajectory
reaches the global equilibrium for β large enough. In contrast, for β ≤ 0.67 we can
observe that it is more favourable to stay in a neighbourhood of the local equilibrium
xβ
l . We remark that is sufficient to depict β = 0.8 as a representative for all β ∈

(0.67, 1) since the behaviour of the trajectory, the control and the stage cost does not
change significantly. In this example β1 can be chosen arbitrarily close to 0, because
due to the absence of u-dependent terms in �̃ it is always cheaper to approach xβ than
to stay elsewhere in the neighbourhood of xβ .

Figure 4, for fixed β = 0.7we consider different initial values x0. As we can see, the
initial value determines to which equilibrium the trajectory converges. This underpins
the theoretical results of Theorem 6.1 and especially of Lemma 5.2. We note that
for a completely controllable system such a behaviour cannot occur in undiscounted
problems.

The following modified example illustrates the case that the interval (β1, β2) is
empty.

Example 7.2 Consider again the system f (x, u) = x + u, but now with stage cost
�(x, u) = x4 − 1

4 x
3 − 7

4 x
2 + γ |u| with γ 	= 0. As the added term has no influence on

the conditions of Theorem 6.1 we can again estimate β2 ≈ 0.67. Further, for γ = 0
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Fig. 5 Example 7.2 with γ = 10 for different discount factor β

we get the same stage cost as in Example 7.1 above. In contrast to Example 7.1, now
for γ large enough we can observe that (β1, β2) is empty. This fact is illustrated in
Fig. 5 for γ = 10. For the numerical results we use the same setting as in example
7.1.

In contrast, in the graph with γ = 10 we can clearly observe that independent of
the discount factor β we do not get convergence to the local equilibrium anymore. If we
introduce state constraints that restrict the optimal solutions to a neighbourhood of the
local equilibrium xβ

l , then we only get convergence to xβ
l for β ≈ 1. More precisely,

we have numerically determined the threshold of β1 ≈ 0.999. Without such state
constraints, already for β ≈ 0.95 we observe convergence to the optimal equilibrium,
which suggests that β2 ≤ 0.95 and thus (β1, β2) is empty.

In order to examine this behaviour in more detail we illustrate the behaviour of
different values of γ for fixed discount factors β in Fig. 6. For γ > 1 and β � 0.95 we
can observe that the trajectories stay near by the start value and do not move away.
In contrast, for β ≈ 1 the trajectories converge to the global equilibrium. Thus, we
do not get convergence to the local equilibrium anymore.

The two examples, above, have the particular feature that the dynamics is affine
and the stage cost � is strictly convex in a neighbourhood of the optimal equilibria.
In this case, similar arguments as used in the proof of Theorem 4.2 in [12] show that
local strict dissipativity always holds. More precisely, we can restrict the proof of
Theorem 4.2 in [12] to a bounded neighbourhood XN ⊂ X of the local equilibrium
xβ
l , e.g., Bε(x

β
l ), ε > 0, instead of X, and a local strict convex stage cost function �.

Following the proof, D�̃(xβ
l , uβ

l ) = 0 holds in the neighbourhood XN , which by the

local strict convexity of �̃ implies that (xβ
l , uβ

l ) is a strict local minimum. Together
with the boundedness of XN , this implies the existence of αβ ∈ K∞ and thus local
discounted strict dissipativity. We remark that the calculation of λ is the same as in
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Fig. 6 Example 7.2 with β = 0.7 (left) and β = 0.95 (right) for different γ

the global case and yields a linear storage function. In the special case of Example
7.1, above, it yields the storage function λ ≡ 0. In conclusion, local strict dissipativity
always holds if the dynamics is affine and the stage cost � is strictly convex near the
locally optimal equilibrium.

With this observation, our dissipativity based analysis provides a complementary
approach to the stable manifold based analysis carried out, e.g., in [13]. Particularly,
we can conclude that the model from this reference exhibits two equilibria at which
the local turnpike property holds, which explains why the optimal trajectories are
correctly reproduced by nonlinear model predictive control as shown in [10, Section
5.1].

Our final example demonstrates that strict convexity of � is not needed for obtaining
strict dissipativity, thus showing that a dissipativity based analysis allows for strictly
weaker assumptions than strict convexity of �.

Example 7.3 Consider the 1d control system

x+ = f (x, u) = 2x + u

with state constraints X = [−1, 1], control constraints U = [−3, 3], and stage cost

�(x, u) = −x2/2 + u2.

Obviously, the stage cost is strictly concave in x and strictly convex in u. Nevertheless,
we can establish discounted strict (x, u)-dissipativity in (x∗, u∗) = (0, 0) (in this
example even global) for β ≥ 3/5 with λ(x) = −x2. This follows from the fact that
with a = 2β/

√
1 + β and b = √

1 + β we have

�(x, u) + λ(x) − βλ( f (x, u)) = −x2/2 + u2 − x2 + β(2x + u)2

= (4β − 3/2)x2 + 4βxu + (1 + β)u2

= (ax + bu)2 +
(
4β − 3

2
− 4β2

1 + β

)
x2

≥ (ax + bu)2,

where the last inequality holds since the term in the large brackets is≥ 0 for β ≥ 3/5.
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Fig. 7 Optimal trajectories for Example 7.3 with β = 0.7 and x0 = 1 (left) and with β = 0.59 and
x0 = 0.004 (right)

Since the system is completely controllable in finite time, hence exponentially sta-
bilizable, Theorem 3.4 in conjunction with Remark 3.5 (ii) implies that for sufficiently
large β turnpike behaviour occurs at x∗ = 0. This is confirmed for β = 0.7 in the left
graph in Fig. 7. In contrast to this, the right graph in Fig. 7 shows that for β = 0.6
the turnpike behaviour for x∗ = 0 does not occur. Rather, the optimal solution con-
verges to the upper bound x = 1 of the state constraint set. In this example, the
numerical computations indicate that β = 3/5 = 0.6 is a relatively precise estimate
of the threshold for the occurrence of the turnpike property at x∗ = 0, although for
β decreasing from 0.7 to 0.6 the set of initial values around x∗ = 0 for which the
turnpike behaviour can be seen shrinks down rapidly.

8 Conclusion

In this paper we have shown that a local strict dissipativity assumption in conjunction
with an appropriate growth condition on the optimal value function can be used in order
to conclude a local turnpike property at an optimal equilibrium. The turnpike property
holds for discount factors from an interval [β1, β2], where β1 is determined by local
quantities while β2 is also determined by properties of the optimal control problem
away from the local equilibrium.Hence, local and global properties together determine
whether the interval is not empty. This is in accordance with other approaches for
analysing local stability of equilibria in discounted optimal control such as those
based on stable and unstable manifolds [13]. In contrast to other approaches, however,
the dissipativity based approach is not limited to (locally) strictly convex problems,
as our last example showed.
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