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Alpha and beta diversity 
patterns of macro‑moths reveal 
a breakpoint along a latitudinal 
gradient in Mongolia
Khishigdelger Enkhtur1*, Gunnar Brehm2, Bazartseren Boldgiv3,4 & Martin Pfeiffer1

Little is known about the diversity and distribution patterns of moths along latitudinal gradients. We 
studied macro‑moths in Mongolia along an 860 km latitudinal climatic gradient to gain knowledge on 
community composition, alpha, beta, and gamma diversity as well as underlying factors, which can be 
used as baseline information for further studies related to climate change. We identified 236 species 
of moths of ten families. Our study shows that the diversity of moths increased with the latitude, 
i.e., low species richness in the south and higher richness in the north. Moth community composition 
changed along the gradient, and we revealed a breakpoint of beta diversity that divided grassland and 
desert communities. In the desert, beta diversity was driven by species loss (i.e., nestedness), and few 
tolerant species existed with high abundance. In contrast, in the grassland, beta diversity was driven 
by species replacement with more unique species, (i.e., species which occurred only in one site). We 
found the lowest species diversity in the transitional zones dominated by few generalist species such 
as Agrotis ripae and Anarta trifolii. Low precipitation and an increasing number of grazing goats are 
drivers of species loss. We suggest different conservation strategies regarding the contrasting patterns 
of beta diversity in desert and grassland.

Biodiversity loss has become a pressing global issue in the last  decades1. Since biodiversity is crucial to maintain 
ecosystem functions, it is important to study the distribution of organisms and their response to climate change 
and human disturbance. Recently, a preponderance of studies reported strong declines in insect  diversity2–5. For 
example, in Germany’s protected areas flying insect biomass declined by more than 75% within only 27 years, 
however, the cause is still  unclear6.

As Simmons et al.3 stated, some “global” studies on insect decline should be cautiously interpreted because 
results based on particular locations do not represent a global scale. Robust insect diversity data representing all 
major biomes of the world are  required7. However, data availability is strongly biased across the world towards 
Europe and North America, especially regarding systematically collected long-term data. Tropical regions are 
poorly studied. The same is true for the most parts of central and eastern Asia, especially in regard to the diversity 
and distribution patterns of moths in eastern Russia, northern China and Mongolia. During a previous literature 
review of studies on geometrid moths, we found that long-term data were unavailable from these  regions8. This 
study is an important ”puzzle piece” in filling this gap for future research.

There are approximately 1550 species of Lepidoptera reported in  Mongolia9; however, there is no complete 
checklist available. In geometrid moths, a recent checklist reported 388 observed species, but species richness was 
estimated to be 663 ±  568. Recently, 21 new species have been recorded from western and central  Mongolia10 and 
the family Alucitidae was first time reported for Mongolian fauna in 2015 in the Mongolian Altai  Mountains11. 
Moreover, several species new for the fauna of Mongolia were reported in Sphingidae, Noctuidae, Cossidae, 
and  Ypsolophidae12–16. In the Global Biodiversity Information Facility (GBIF), 919 species of 30 families of 
Lepidoptera are recorded for  Mongolia17. This is certainly an underestimate, and not all occurrence data in the 
literature have been uploaded in GBIF. To summarize, data have been collected incompletely, non-continuously 
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with different efforts, at specific locations, published, and scattered in the literature, thus rendering it impossible 
to investigate the changes of moth diversity at temporal and spatial scales.

In response to this need, our study focuses on moth diversity and species composition across a latitudinal 
gradient. Biodiversity across latitudinal gradients is especially important to study as they are the largest and 
strongest climatic gradients globally. Alpha diversity is the diversity of local communities, while beta diversity is 
the spatial change in composition between local  communities18. Beta diversity links alpha and gamma diversity, 
i.e., large-scale diversity. To measure alpha diversity, we used Hill numbers: species richness, Shannon diversity 
and Simpson diversity. Hill numbers are a linear measure of diversity, which traditional indices are not, they 
have the same units and are comfortable to compare  sites19,20. They account for different levels of diversity and 
mirror species richness and evenness.

Measuring alpha diversity is vital for conservation purposes since it quantifies the biodiversity of a particular 
habitat through the baseline measure of species presence and abundance within a local community. Species rich-
ness (number of species present) of moths can reflect habitat quality and be an indicator of species sensitivity 
to environmental  changes21,22. Pronounced declines of species richness along the latitudinal gradient from the 
equator to the poles have been demonstrated for almost all taxa in different regions of the  world23–26. This gen-
eral trend of declining diversity and richness across latitudes is accompanied by environmental factors such as 
temperature along altitudinal gradients, land use, and  precipitation27. As precipitation increases with latitude in 
most parts of Central  Asia27,28, this could regionally superimpose patterns of moth richness and diversity patterns.

One crucial question is how species composition changes along latitudinal gradients, i.e., whether the change 
is due to species replacement or species loss/gain. Different types of measures for beta diversity are  available29–32. 
We applied the widely used method by Baselga et al.33, which partitions beta diversity into turnover and nested-
ness. Doing so enables us identifying the leading causes for the differentiation and is further useful for imple-
menting better conservation strategies. Turnover reflects the process of environmental filtering, while nestedness 
reflects colonization, such as the effects of a lack of available  resources34.

In Mongolia, on the one hand, a latitudinal or climatic gradient can be one type of environmental filtering. 
Mongolia is located between 41°35′ and 52°06′ N. This climatic gradient is characterized by higher rainfall and 
lower temperature in the north and lower precipitation and higher temperature in the  south35.

On the other hand, grazing patterns represent another type of environmental filtering. In Mongolia, the domi-
nant land use type in the country is free-ranging livestock grazing, thus overgrazing can be the cause of coloniza-
tion or extinction from one habitat to  another36. Recently, the number of livestock is increasing, and nowadays, 
herders tend to be more sedentary than former herders, which causes local to regional pasture degradation. 
Moreover, the effects of climate change and overgrazing are accelerating each other in a positive feedback  loop36.

We tested the hypothesis that species diversity and species richness declines with latitude in Mongolia. 
Moreover, we hypothesized that precipitation positively influences diversity and richness, and that (over-) grazing 
negatively influences diversity and richness. These (and possibly other environmental variables) could region-
ally superimpose the expected large-scale latitudinal patterns, resulting in inverse latitudinal gradient patterns 
and/or breakpoints.

In addition, we investigated (without an a priori hypothesis), how moth species composition or beta diversity 
differed between sites, and if beta diversity was mainly influenced by spatial turnover (species replacement) or 
nestedness (species loss or gain). Moreover, our study provides new data on the regional species pool of Mongolia, 
i.e., how many and which moth species are present, and explores the gamma diversity of moths in Mongolia.

This is the first comprehensive study on macro-moths over large geographic scales in Mongolia and it forms 
the baseline for future studies. It is necessary to gain knowledge of moth diversity and distribution patterns at 
local and large-scale level (i.e., alpha and gamma diversity) and how local diversities are organized and vary at 
large-scale (beta diversity)37,38 to develop an effective conservation strategy for the Mongolian moth species and 
their habitats. Different conservation strategies are required depending on the beta diversity patterns (nestedness 
or turnover). For the areas with species loss, it is recommended to protect certain species-rich sites; in contrast, 
for the areas with species replacement, several large different types of sites are needed to be  protected33. Species-
poor sites usually hold only a subset of species-rich  sites39. In a study of birds and snails, habitat homogeneity was 
responsible for the nestedness of the animal  communities40,41. However, it must be noted that habitat simplifica-
tion can reduce local species richness, and the whole community would be similar, leading to  homogenization42,43. 
Thus, it is vital to see both, the smaller more detailed picture as well as the bigger picture in order to consider the 
fragmentation between the sites and successfully implement conservation plans, both locally and regionally. If the 
temperature keeps rising and livestock numbers keep increasing, even species-rich sites would be transformed 
into species-poor sites, making the whole community unable to sustain itself. Some species will disappear due to 
the loss of suitable habitat, and only species which have tolerance to the disturbance will be  left39,44. Moreover, in 
the face of climate change northern sites have the potential of becoming more similar to current day ecological 
conditions in southern sites. This could lead to homogenization, resulting in a less diverse assemblage. By tracking 
moth biodiversity along a latitudinal gradient, this study is using a space-for-time substitution (e.g., southern sites 
could predict future results for northern sites). Thus, our results not only provide necessary baseline reference 
data, but also essential insights on the future of biodiversity change in a warming world.

Results
Alpha diversity. In total, we caught 11,115 macro-moth individuals of 236 species of ten families: 7 Cossi-
dae, 3 Drepanidae, 35 Erebidae, 58 Geometridae, 6 Lasiocampidae, 108 Noctuidae, 7 Notodontidae, 1 Sesiidae, 
10 Sphingidae, and 1 Zygaenidae (see the full species list in Table S2 in the supplementary material). Estimated 
species richness was 461 (iChao1, SE: 22.96, lower 95%: 392, upper 95%: 581), therefore, our samples cover 
51% of the estimated species richness. The three most species-rich families were Noctuidae (45.8% of species), 
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Geometridae (24.6%) and Erebidae (14.8%) (Fig. 1). The other families together constituted 14.8% of all species 
and we combined them into one group (“Other”).

Noctuidae had the highest abundance represented with 8839 specimens, with the commonest species Agro-
tis ripae Hübner, with 5986 individuals collected at nine out of ten sites, especially dominating the sites in the 
desert. Moth family composition patterns changed along the latitudinal gradient. In the grassland sites, Erebidae, 
Geometridae, and Noctuidae (and “Other”) shared similar proportions whereas Noctuidae heavily dominated 
in all desert sites (Fig. 1). K-means clustering separated all sites into two groups of southern “desert” (1–5) and 
northern “grassland” (6–10) sites (see scree plot in Fig. S1 in supplementary material).

Overall, moth species richness (Fig. 2a), species diversity (Fig. 2b), and abundance (Fig. 2c), of the grassland 
sites (6–10) were significantly higher (p < 0.005) than those of the desert sites (1–5). Among the desert sites, 
species diversity at Site 2 was higher than in all other sites. The most species-rich site was site 8 (grassland), 
and the most species poor-site was Site 3 (desert). We investigated which functional group of vegetation was 
responsible for high species richness of moths. As a result of GLM, forb impacted the species richness of moths 
(LM: R2 = 0.55, p = 0.012).

Hill numbers were positively correlated with precipitation and forb cover, and negatively correlated with 
temperature, wind and number of goats (Table 1).

Species abundance and richness pattern. The ten most abundant species responded differently to 
annual temperature and annual precipitation. Agrotis ripae and Anarta trifolii showed a decelerating exponential 
response to increasing annual temperature (Fig. S3 in the appendix), whereas the abundance of Lithostege sp. 2 
was increasing with increasing annual precipitation. Hyles gallii, Lygephila lubrica and Isturga arenacaria were 
mainly present at the more humid northern sites. At low temperature and high precipitation all ten species coex-
isted, whereas at high temperature and low precipitation, only two species (Agrotis ripae, Anarta trifolii) formed 
the community alone (Fig. 3a,b). A linear regression model shows that species richness of moths was decreas-
ing with increasing annual temperature (R2 = 0.36, p < 0.001) and increasing with rising annual precipitation 
(R2 = 0.57, p < 0.001). In the grassland sites, species richness was higher than in the desert sites (Kruskal–Wallis 
Test: p < 0.001) (Fig. 3c,d).

We found 96 unique species in total, i.e., species which occurred only in one site. Overall, the unique species 
numbers of the grassland sites (n = 70) were higher than those of the desert sites (n = 26, Kruskal–Wallis Test: 
p < 0.005). Site 3 had only one unique species, whereas Site 10 had 27 unique species (see Fig. S4 in supplemen-
tary material).

Beta diversity. According to K-means clustering we classified the ten sites into two groups and performed 
a correspondence analysis based on the family matrix, which indicated clear distinction in the composition of 

Figure 1.  Study area with pie charts showing the percentage species composition of the main moth families: 
Erebidae, Geometridae, Noctuidae and all other families along the precipitation gradient. In group Other: 
These families are combined: Cossidae, Drepanidae, Lasiocampidae, Notodontidae, Sesiidae, Sphingidae, 
and Zygaenidae. Pie sizes correspond to species richness of the site (legend on the lower left side) See species 
richness and diversity of each site in Table S3 in supplementary material. Figure was produced using R software 
(version 3.6.3, R Core Team, https:// www.r- proje ct. org/).

https://www.r-project.org/
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major families in two groups (Fig. 4). Noctuidae and Cossidae were more abundant in the desert sites, while 
other families were remarkably abundant in the grassland sites. Distinction between these groups was significant 
(Permanova: R2 = 0.37, p < 0.006).

Venn diagrams show the species overlap between the moth composition of the desert and the grassland sites 
in four family groups. The highest overlap was in Noctuids, followed by Erebids and others, the lowest overlap 
was in Geometrids (see Fig. S5 in supplementary material).

Mean beta diversity of macro-moth species among the sites as calculated with Jaccard’s index was intermedi-
ate; βj = 0.82 (range = 0.78–0.86). The outer sites of the gradient with the more extreme environmental conditions 
had the highest average beta diversity, while sites in the middle had the lowest average beta diversity (Fig. 5a). A 
linear regression model indicated that with increasing distance Jaccard’s similarity decreases (R2 = 0.52 p < 0.001) 
(see Fig. S6 in supplementary material).

We checked the contributions of spatial turnover and nestedness to the result of mean beta diversity. Taken 
together, the contribution of spatial turnover (mean βt = 0.69; range = 0.60–0.77) was much higher than that of 
nestedness (mean βt = 0.13; range = 0.08–0.27), which means that species replacement was higher than species 
loss or gain.

Regarding pair-wise beta diversity, Sites 2 and 10 were significantly higher than other sites in terms of turnover 
(Fig. 5b). Only Site 3 was significantly higher in terms of nestedness (Fig. 5c), all other sites, except Site 8 were 
not significantly different. The sites with the highest and lowest average species replacement were the same as 
those with the highest and lowest beta diversity (Fig. 5a).

We found a breakpoint at 46°N as a result of the piecewise regression of Jaccard’s beta diversity, spatial turno-
ver, and spatial nestedness versus latitude (Fig. 6). The fit of the piecewise regression models was significantly 
higher than the simple linear regression models for all components: R2 increased from 0.02 to 0.16 (Anova: 
F2, 52 = 5.26, p < 0.001) for Jaccard beta diversity, from 0.01 to 0.19 (Anova: F2, 52 = 7.36, p < 0.001) for spatial 
turnover, and from 0.05 to 0.26 (Anova: F2, 52 = 8.50, p < 0.001) for spatial nestedness.

Figure 2.  Species richness, Shannon diversity and abundance of ten sites along the latitudinal gradient. 
Diversity metrics were compared with Wilcoxon test based on the sampling nights of each site. Different letters 
show significant differences between sites. See the further comparison of species richness, species diversity and 
abundance at the family level in Fig. S2, Tables S4, S5 and S6 of supplementary material.

Table 1.  Pearson correlation coefficients of Hill numbers with environmental variables.

Hill numbers Precipitation Temperature Forb cover Goat number Wind

Species richness 0.92*** − 0.76*** 0.99*** − 0.75*** − 0.91***

Shannon diversity 0.89*** − 0.73*** 0.96*** − 0.80*** − 0.87***

Simpson diversity 0.92*** − 0.76*** 0.92*** − 0.75*** − 0.88***



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15018  | https://doi.org/10.1038/s41598-021-94471-3

www.nature.com/scientificreports/

Jaccard’s beta diversity indices significantly differed above (slope = 0.004) and below 46°N (slope = − 0.09) 
and showed an opposing trend (R2 = 0.16 p < 0.001). Moreover, spatial turnover and nestedness responded in 
opposite directions with latitude and were significantly different in the desert and the grassland biomes. In the 
desert, species turnover showed a decreasing trend (slope = − 0.54) (R2 = 0.19, p < 0.001); in contrast, nestedness 
showed an increasing trend (slope = 0.45) (R2 = 0.26, p < 0.001). In the grassland, species turnover (slope = 0.03) 
and nestedness (slope = − 0.02) showed contrasting trends. In the desert sites, moth communities’ species loss or 
gain was dominant, while for the grassland sites, species replacement played the dominant role. The breakpoint 

Figure 3.  Species relative abundance and species richness impacted by environmental variables. X axes titles 
are printed only for the lower graphs. GAM shows (a) the relative abundance vs. mean annual temperature and 
(b) the relative abundance vs. mean annual precipitation. The general linear regression model demonstrates that 
moth species richness is impacted by (c) mean annual temperature and (d) mean annual precipitation. Species 
abbreviations: Agrotis ripae (Agroripa), Anarta trifolii (Anartrif), Biston betularia (Bistbetu), Euxoa ochrogaster 
(Euxoochr), Hyles gallii (Hylegall), Ipimorpha retusa (Ipimretu) Isturgia arenacearia (Istuaren), Lithostege sp2 
(Lithsp2), Lygephila lubrica (Lygelubr), Mythimna comma (Mythcomm).

Figure 4.  Correspondence analysis of the major families sampled from all sites separated markedly desert 
(yellow polygon) and grassland (green polygon) sites. Noctuidae and Cossidae were more associated with desert 
sites, whereas other families were associated with grassland sites. First two axes of the graph together explain 
76.2% of the variation.
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of beta diversity pattern was matched by an RDA analysis of plant communities (see Fig. S7 in supplementary 
material). We found also a breakpoint at 46° N as a result of the piecewise regression of precipitation (R2 = 0.96, 
p < 0.001) and temperature (R2 = 0.89, p < 0.001).

The next step was to test the correlation between environmental variables and beta diversity components, and 
environmental variables were affecting spatial turnover and spatial nestedness differently. Precipitation and veg-
etation cover were positively correlated with turnover, whereas negatively correlated with nestedness. In contrast, 
temperature, livestock number, and wind were negatively correlated with turnover, while positively correlated 
with nestedness (Table 2). In the desert, none of the environmental variables was significant for nestedness.

Using procrustes analysis we compared the distance matrix of moth species with distance matrices of vegeta-
tion and livestock. The matrix of moth species was highly significantly correlated with both matrices of vegetation 

Figure 5.  Mean pair-wise (a) Jaccard beta diversity, (b) spatial turnover, (c) spatial nestedness of the ten study 
sites. Diversity metrics were compared with Wilcoxon test based on the average diversity measures of each site. 
Different letters show significant differences between sites.

Figure 6.  Beta diversity measures along the latitudinal gradient: (a) Jaccard’s beta diversity along latitude, (b) 
spatial turnover along latitudinal gradient and (c) spatial nestedness along latitude. Desert sites (1–5), grassland 
sites (6–10).
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(r = 0.74, P = 0.001) and livestock number (r = 0.80, P = 0.002), thus corroborating their strong influence on moth 
community patterns.

In addition, we analyzed if there existed an interaction between environmental variables and biome types 
and the species richness and diversity of macro-moths (see the results of the negative binomial generalized 
regression and linear regression in Table S8 in the supplementary material). Interaction effects were only found 
for the livestock, wind, and elevation. Depending on the biome type species richness of macro-moths responded 
to livestock, wind, and elevation differently. In the grassland these factors affected the species richness of moths 
negatively, whereas in the desert there was no effect (Fig. S8).

Discussion
We studied alpha and beta diversity of macro-moths and associated environmental variables along a large-scale 
latitudinal gradient in Mongolia for the first time. Against our expectation, we detected two distinct moth com-
munities along the latitudinal gradient, which significantly changed between Site 5 (Dundgobi Aimag) and Site 
6 (Tuv Aimag) at 46° N. We assume that this distinction is driven by the pronounced climatic gradient, namely 
precipitation and temperature. In piecewise regression of diversity on the precipitation and temperature we dem-
onstrated this split at 46° N. As we hypothesized, we observed higher moth species richness and species diversity 
in the grassland sites than in the desert sites. In contrast, moth abundance was lower at grassland sites than in 
the desert sites. This contradicts with a study on darkling beetles in Mongolia in which species richness declined 
gradually with latitude. This contrast between moths and beetles could be explained by a higher temperature 
and desiccation tolerance observed in beetles’45. Our study results were in line with the study of Ahlborn et al.27, 
who studied plant communities. In both studies, species richness was low in Site 3 (Tsogtovoo Soum, Khetsuu 
khoshuu) indicating the need for extra conservation for these transitional sites. In terms of the moth population, 
our observation of higher species richness and lower abundance in the grassland could be explained by the theory 
of competitive exclusion. There is higher plant heterogeneity in the grassland, which could ultimately reduce 
competitive exclusion in the moth population, allowing for the maintenance of several species (high richness) 
at a similar proportion (similar abundance across species/high evenness). In contrast, lower species richness 
and higher abundance of certain tolerant species adapted to the few plant species growing in desert  prevail2.

The differentiating species richness and species diversity of moths between the desert and the grassland 
sites could be explained by the biotic (plant species richness and livestock number) and abiotic (precipitation and 
wind) variables, which were significantly correlated with the diversity of moths as measured by Hill numbers. 
Since herbivorous insects rely on plants, both in larval and adult stages, as their food and habitat, it is logical to 
expect a higher moth species richness in areas with a higher plant species  richness46. Indeed, variable Forb was 
highly positively correlated with the Hill numbers. In contrast, variable Goat was the significant factor among 
all livestock types and negatively correlated with moth species richness. Herders raise high numbers of goats for 
income from cashmere, especially in Gobi desert, as one of the common export products of  Mongolia35. Water 
and energy (i.e. temperature) availability are the important factors determining overall species richness along 
the latitudinal gradient. Precipitation is the limiting factor for species diversity in the south, while temperature 

Table 2.  Pearson correlation coefficients between environmental variables and beta diversity measurements 
for total (along whole latitudinal gradient), above (> 46°) and below (< 46°) the 46° of latitude. Significant 
variables are shown in bold with stars indicating the level of significance.

Turnover Nestedness

Precipitation

Total 0.22 − 0.34**

 > 46° 0.60*** − 0.56**

 < 46° 0.18 − 0.19

Temperature

Total − 0.006 0.14

 > 46° 0.22 − 0.27

 < 46° 0.09 − 0.06

Vegetation cover

Total 0.41** − 0.45***

 > 46° 0.55** − 0.49**

 < 46° 0.36* − 0.34

Livestock number

Total − 0.40** 0.41**

 > 46° − 0.54** 0.50**

 < 46° − 0.23 0.22

Wind

Total − 0.11 0.25

 > 46° − 0.56** 0.52**

 < 46° 0.40* − 0.37

Altitude

Total − 0.05 0.18

 > 46° − 0.57** 0.57**

 < 46° 0.37 − 0.36
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is the limiting factor in the north in several  taxa24,25. In our study, only precipitation was a significant variable, 
positively correlated with the Hill numbers.

While variable Wind was negatively correlated with the Hill numbers and similar patterns were observed in 
other studies related to wind on moth  catches47. In the first year of the sampling period, strong wind negatively 
affected the southern sites’ catch successes.

In a study of moths in  Finland48 the authors observed a contrasting pattern with species that were expanding 
their ranges poleward due to global warming and were increasing in species richness and decreasing in abun-
dance over time in higher latitudes. The higher abundances in the desert sites in our case were, however, due to 
only the two heavily dominant Noctuidae species, namely Agrotis ripae and Anarta trifolii.

At almost all sites, Agrotis ripae and Anarta trifolii occurred; they were the most abundant species. A. ripae, 
which is called “sand dart moth”, lives mainly in sand dune areas; the caterpillars rest in the sand during the 
daytime and come out to feed at  night49. Habitats are characterized by bare ground with sparse vegetation. The 
study of Spalding et al.50 showed that bare ground is an essential factor for the sand dune moth species, such 
as Luperina nickerlii; disturbance could be helpful to create bare ground. Due to desertification and livestock 
trampling, the soil becomes more sandy and loose; this will create more suitable living conditions for A. ripae. 
Both A. ripae and A. trifolii can be regarded as generalists and highly migrant species. Their mobility increases 
with  temperature51. Thus, both species appear to be suitable indicators of global warming and desertification.

In the grassland sites, the number of unique species was higher than in the desert sites, which implies that in 
suitable habitats, like grassland sites, more specialists occurred that were adapted to specific habitats. In contrast, 
in harsher, more arid habitats like desert sites, more generalists occurred. Rabl et al.46 found only a small number 
of unique species in a relatively species-poor rainforest area (i.e., in a creek habitat). Similarly, Beitzholtz and 
 Franzen51 reported that specialists prefer suitable habitats; they are prone to stick to their habitats and vulner-
able to extinction. Species, such as generalists, are even benefiting disturbance, while specialists are  declining1,4. 
Moreover, the number of generalists and specialists are related to beta diversity. Beta diversity increases as the 
number of specialists  increase52,53.

Moth species’ host plant preferences could explain differences in major family composition in the desert and 
the grassland sites. In the desert sites, the moth assemblage composition mainly consists of Noctuids and Cossids, 
while proportions of Geometrids, Erebids, and others were low. In contrast, family ratios were almost the same 
in all grassland sites. Many Noctuids are not restricted to specific habitats and are generalists (or even cosmo-
politans) in comparison to members of other families (Common 1990). For example, A. ripae is  polyphagous54 
and usually, polyphagous species can better survive in disturbed areas.

Most adults of Sphingidae, Geometridae, and Arctiinae usually feed on flower nectar, while most caterpillars 
of Notodontidae, Drepanidae, and Lasiocampidae mostly feed on the leaves of trees and  shrubs49. Several spe-
cies whose larvae feed on trees and undergrowth were found in Sphingidae, Geometridae, and Arctiinae in the 
grassland sites; thus, we suggest that surrounding forest and shrubs were also responsible for the higher species 
richness of these families in the grassland sites. In addition, the species richness of Arctiinae is high in areas with 
complex vegetation  types55. This can explain the high richness of Erebidae in the grassland sites. Venn diagrams 
(Figure S5) also showed that species overlap between the desert and the grassland sites of Noctuids, Erebids, and 
others were similar in percentage (20–27%); in contrast, the species overlap of Geometrids was very low with 
only four species in common (7.4%). Geometrid moths are sensitive to the environmental changes; thus, the low 
overlap of Geometrids could indicate better habitat quality in the grassland sites compared to the desert sites.

Beta diversity was mainly driven by species replacement rather than species nestedness. Average pair-wise 
beta diversity and spatial turnover were high in the external sites and gradually decreased towards the middle of 
the gradient; in contrast, average nestedness was high in the middle and low in the outer parts. The macro-moth 
assemblages at northern and southern sites were shaped by forest-steppe and desert, habitats that are distinct 
from each other. Habitat differences gradually decrease to the middle part, where the steppe runs in gently 
undulating terrain and becomes a transition zone between these habitats resulting in less difference among moth 
assemblages. The higher beta-diversity in the outer parts results from high species turnover, while nestedness 
or difference in species numbers played a less critical role. A similar diversity pattern was reported by Paknia 
et al.45 in Mongolian tenebrionid beetle communities. Generally, turnover is due to abiotic factors, while nested 
patterns may be attributed to species loss caused by high livestock numbers and low precipitation.

Intensive land use transforms habitats, making them more similar. The more similar habitats become, the 
less diverse species they can support. Relative to the larger pool of species found across more distinct habitats, 
this more homogeneous subset of species becomes capable of dispersing further in more homogeneous habitats. 
In addition to enhanced dispersal capabilities, more homogenous habitats can support more generalist species 
that have broad niches. Overall, such traits can decrease beta diversity. However, there is a nuanced caveat. Due 
to the homogeneity of the habitat, a few tolerant species may persist, leading to species loss which can result in 
higher beta diversity due to  nestedness37. In comparison, we observed species replacement happened in areas 
with high precipitation and high vegetation cover which increases the beta diversity.

Average beta diversity along the latitudinal gradient had a breakpoint, which was revealed at 46° N, indicat-
ing a change in moth communities between desert and grassland sites. In arid areas south of 46° N, turnover 
decreased, and nestedness increased. In contrast, in wet areas north of 46° N, turnover increased, and nested-
ness decreased. In arid areas species richness decreased, and beta diversity was due to species loss, indicating 
lower productivity within a harsh environment. The decreasing turnover in the southern sites thus mirrors the 
physical limiting factor (i.e., lower precipitation). This contrasting patterns of turnover and nestedness have been 
documented in several  studies23,52.

A breakpoint in both precipitation (mean annual precipitation: 193 mm) and temperature (mean annual 
temperature: 0.15 °C) was also found at 46° N. Since the breakpoints are overlapping, we predict that as global 
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temperatures continue to rise, the grassland sites will become more similar to desert sites. In turn, we predict 
that this trend towards habitat homogenization will lead to a more nested pattern of moth diversity.

Temperature had no significant effect on beta diversity patterns of moths along the latitudinal gradient, both 
above and below 46°N. Higher precipitation rate, and higher vegetation cover and diversity were responsible 
for the higher beta diversity in northern sites. Precipitation was also a significant variable for species richness.

The results of Procrustes analysis showed that vegetation structure and livestock composition determined 
the moth assemblage pattern. Along the whole gradient, the effects of precipitation, vegetation cover, and veg-
etation richness on the species richness and diversity of macro-moths did not change regardless of biome type. 
However, livestock, altitude and wind affected the species richness and diversity of moths differently, depending 
on the biome type. In the desert, the vegetation is scarce even without livestock grazing, and the climatic effect 
is stronger than the effect of livestock grazing. The dynamic equilibrium model could explain the insensitivity 
of macro-moths of the desert to the number of livestock. In the arid environment, the impact of precipitation 
overrides the influence of disturbance (in our case, livestock grazing)56. In the desert, decreasing species richness 
and diversity of moths with increasing altitude and wind speed can be attributed to their low ranges of thermal 
tolerance compared to the moths in the  grassland57. Thus, moths living in higher altitude arid environments are 
in more danger of becoming extinct due to global warming.

Our study shows how moth diversity changes in Central Asia from south to north over a long latitudinal 
transect and assesses the environmental factors responsible for those changes. Identifying the community com-
position pattern is useful for the conservation of not only moths, but also biodiversity in general. Our species list 
represents 51% of all estimated moth species along the latitudinal gradient in Mongolia; this result is the most 
up to date and systematically collected baseline data for future research.

Moths of the desert Site 3 were more vulnerable to a decrease in species diversity because of low precipitation 
and high livestock numbers. The local reduction of alpha diversity may result in reduced gamma diversity on 
regional level. Since 1940, the temperature in the area has increased by 2 °C, while precipitation has decreased by 
7%. At the same time the number of goats increased from four million to 20 million, and large-scale fires occurred 
repeatedly. As a result, the desert in the south is expanding more and more to the northern part of  Mongolia58. 
The most negative effect of livestock is due to the high number of goats. Although cashmere from goats is one of 
the main export products of Mongolia, the government should stop its support of this unsustainable agricultural 
practice. Doing so could at least slow down the future consequences of climate  change37.

Moths are effective  bioindicators22. Their contrasting patterns of spatial turnover and nestedness in desert 
and grassland habitats imply that different conservation approaches are needed. Therefore, we suggest that the 
whole gradient of the grassland has conservation value. Decreasing the number of goats can improve the situ-
ation of pasture overall. However, local diversity patterns could scale up to regional; therefore, we recommend 
abandoning this transitional zone from grazing for recovery. In addition, Site 1 that exists at the highest elevation 
can function as a refuge area for biodiversity as mirrored by moths should deserve conservation management 
by excluding livestock grazing.

In contrast, the species richness of the desert sites is similar except for Site 3 (species poor site) and one (spe-
cies rich site). Thus, there is no exceptional management required for desert Sites 2, 4, and 5.

The high abundances of A. ripae and A. trifolii indicate that the process of desertification has already intensi-
fied and even at those sites some specialists could have already been extirpated before our study. In the future, we 
aim to study the co-effect of climatic variables and livestock grazing on moth communities at different latitudes. 
Specifically, we will aim to investigate whether A. ripae and A. trifolii are indicators of grazing. In addition, we 
aim to reveal latitude level indicator species, which could be used as reference species to study the migration of 
moths due to climate change.

Methods
Study area. Our study was conducted in the provinces of Umnugobi Aimag, Dundgobi Aimag, Tuv Aimag 
and Selenge Aimag in Mongolia, at ten study sites located along the latitudinal gradient from the Gobi Desert in 
the south to the Siberian forests in the north, covering various climatic  zones36. The southernmost site (43° N, 
104° E) is located in semidesert (annual precipitation 146 mm, mean annual temperature − 3.45 °C), while the 
northernmost site (50° N, 105° E) is located in forest steppe (annual precipitation 318 mm, mean annual tem-
perature − 0.56 °C) (Fig. 1). Livestock herding is one of the major economic sectors in Mongolia, with > 65 mil-
lion  animals36. Detailed information on the study sites is given in supplementary material Table S1. We followed 
the study design of Lang et al.59 and Ahlborn et al.27 and sampled seven of their original 15 study sites that were 
spread at a south–north gradient of 600 km. We added three further sites to this transect in northern direction, 
totaling in a transect length of 860 km.

Moth sampling. Moths were attracted with recently developed LED lamps (“LepiLED”, height ca. 88 mm, 
diameter ca. 62 mm, with four UV LEDs (365 nm), two blue (450 nm), one green (530 nm) and one cool white 
LED)60 in combination with Bioform light “towers” (large R. Müller light trapping tower, mesh size 1 mm, 70 cm 
diameter, 180 cm high) and EasyAcc 26 Ah power bank batteries. For moth collection, killing jars filled with 
CN were used. All samples were sorted to morphospecies level in the field and kept in glassine envelopes. Moths 
were sampled manually because the method usually better covers small species than automatic  traps61. Sampling 
took place from 9.00 to 12.00 p.m. To avoid temporal effects, specimens were collected in two consecutive years 
in 2018 (June–July) and in 2019 (July–August) at the peak of vegetation season leaving out nights dominated 
by full moon. This period covers the flight season of most nocturnal moth species in  Mongolia22. At each site 
and in each year, we sampled with three replicates (ten sites × two years × three nights = 60 sampling nights). 
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The southern five sites are located in desert and xeric shrublands biome (desert), and the northern five sites are 
located in temperate grasslands, savannas & shrublands biome (grassland).

Due to adverse weather conditions five catching nights were successful at some sites (Sites 1, 5, and 10). For 
analyses, all night samples of each site were aggregated. We brought all samples to Germany and mounted and 
identified specimens using identification  keys49 and online identification web sites for moths and  butterflies62,63. 
Afterwards, we submitted one or two specimens of each morphospecies for DNA barcoding to Canadian Centre 
for DNA Barcoding (CCDB) to corroborate our identification of morphospecies. The results on the creation of a 
DNA barcode library for the collected species will be published in a separate paper (in preparation). Superfamilies 
of Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuioidea are included 
in the clade of  macroheterocera64. In this study we also included Sesiidae, Zygaenidae and Cossidae because of 
their traditional assignment to the (non-monophyletic) macro-moths.

Environmental data. We included precipitation, temperature, wind, altitude, plant cover, plant species com-
position and the number of livestock as environmental variables. We obtained climatic variables from WorldClim 
 dataset65. To study vegetation structure, we measured vegetation cover and plant species richness in a 10 m × 
10 m area with five replications per site. Livestock droppings were counted in the plots to assess grazing pressure. 
We received vegetation data from Julian Ahlborn (Leibniz Centre for Agricultural Landscape Research) and 
Christine Römermann (University of Jena) for comparison and easier identification of our samples in the field. 
Botanist Tungalag Radnaakhand (National University of Mongolia) verified the identification of plant species 
from dried specimens of our herbarium. We obtained livestock abundance data for each site from the National 
Statistical Office of  Mongolia66 (Table S6). We measured coordinates and elevation of the sites with a Garmin 
Oregon 700 GPS.

Data analysis. Prior to analyses, we checked all variables for normal distribution by using QQ plot. Depend-
ing on these results we chose the appropriate statistical tests or applied log-transformation to normalize data for 
calculation.

Alpha diversity. We quantified moth alpha diversity (Hill numbers) of each site, i.e., species richness (q = 0), 
Shannon diversity, the exponential of Shannon entropy (q = 1), and the reciprocal Simpson’s diversity (q = 2) 
using the R-package ‘vegan’67. We estimated species richness with iChao1 index using R-package SpadeR. This 
index is an improved version of Chao1. To estimate species richness, it uses rare species or the number of sin-
gletons. To compare species richness, species diversity, and abundances of all macro-moths of each site along 
the latitudinal gradient and explore the community pattern at the species and family levels, we used the non-
parametric Wilcoxon tests based on data from sampling nights. For comparison the number of unique species of 
desert and grassland, we used the non-parametric Kruskal–Wallis Test. To study how species richness changes 
along the climatic gradient, we applied two widely used climatic variables from WorldClim  dataset65: mean 
annual temperature (Bio1) and mean annual precipitation (Bio12). We determined niche structure of moth 
communities along the climatic gradient by analyzing coenoclines of the ten most abundant species. We applied 
generalized additive models (GAM) with Gaussian distribution and link function to produce the coenoclines. 
For coenoclines, we used the method of Hoffmann et al.32. A general linear model (GLM) was used to calculate 
the relationship between species richness and climatic variables. Pearson correlation was applied to correlate the 
Hill numbers of each site with environmental variables.

Beta diversity. To investigate the major family composition of communities we performed correspondence 
analysis using the R-package ‘vegan’28. K-means clustering of unsupervised learning algorithm was applied to ten 
sites to cluster them into groups based on their similarity. Clustering was conducted on major family matrices 
with Hellinger transformation. To study species composition differences between macro-moth communities, we 
applied permanova on species composition matrix (log + 1 transformation with Bray–Curtis similarity) using 
adonis function of the R-package ‘vegan’. To visualize species overlap between desert and grassland sites, we draw 
Venn diagrams by using the ‘ggvenn’  package68. Southern sites in desert biome are shown in yellow, northern 
sites in grassland biome are shown in green.

For calculating the pairwise beta diversity among sites and also species composition differences along the 
latitudinal gradient, we applied the Baselga’s33 approach with Jaccard’s dissimilarity index, which partitions beta 
diversity into two components: spatial turnover and  nestedness34,52. Partitioning beta diversity measurements 
are essential to understand the differences between communities; even if two sites have the same beta diversity, 
the difference can be due to species replacement or species loss or  gain23.

Spatial turnover is the replacement of some species by other species from one site to the next. Nestedness 
implies that the species assemblage of a species-poor site is the subset of a different species-rich site. We used the 
R package ‘betapart’69 to calculate beta diversity and its respective partitions. Sampling nights with only one spe-
cies were excluded from the analysis. We used non-parametric Wilcoxon tests to compare Jaccard’s beta diversity, 
spatial turnover and nestedness among sites based on data from sampling nights. Piecewise regressions were 
used to reveal a breakpoint of beta diversity between macro-moth communities along the latitudinal gradient. 
We examined breakpoints between 43° and 50° with a 1° interval and chose a breakpoint with the lowest residual 
standard  error70. We performed this procedure for the beta diversity components separately. We compared 
piecewise regression models with corresponding simple linear regression models with ANOVA to estimate the 
improvement of the model fit. To check the model fit, we also compared the  R2 of piecewise regression models 
with the  R2 of the simple linear regression models.
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We used Procrustes analysis in R package ‘vegan’ to compare the distance matrix of the moth community with 
distance matrices of the vegetation guild and livestock abundances at the sites. A significant result demonstrates 
the similarity of a matrix with a target matrix suggesting an interaction of the observed patterns. To study how 
the interaction between biome type and environmental variables affect the species richness and the diversity of 
macro-moths across the whole gradient, we applied generalized linear regression model with negative binomial 
family and linear regression, respectively. Negative binomial distribution is applied to avoid overdispersion. To 
fit the negative binomial generalized model, we used glm.nb function of ‘MASS’ package and to fit the linear 
regression lm function of ‘stats’ package were used. Precipitation, vegetation cover, vegetation richness, livestock, 
wind, and altitude were included in the model as a predictor variable, while species richness, Shannon diversity, 
Simpson diversity were response variables. For additive and interaction models, biome was used as a categorical 
variable. For each predictor variable we built three models: (1) using only a predictor variable without biome, (2) 
additive model: predictor variable + biome, (3) interaction effect: predictor variable × biome. For choosing the 
best model between these three models for each predictor variable, we used Akaike’s Information Criterion (AIC).

All analyses were performed using R version 3.6.371.

Data availability
Species list of all sites and other supporting information can be found in the Supplementary Material of this 
article.
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