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Abstract
Microscopic electric fields govern the majority of elementary excitations in condensed matter and drive electronics at
frequencies approaching the Terahertz (THz) regime. However, only few imaging schemes are able to resolve sub-
wavelength fields in the THz range, such as scanning-probe techniques, electro-optic sampling, and ultrafast electron
microscopy. Still, intrinsic constraints on sample geometry, acquisition speed and field strength limit their applicability.
Here, we harness the quantum-confined Stark-effect to encode ultrafast electric near-fields into colloidal quantum dot
luminescence. Our approach, termed Quantum-probe Field Microscopy (QFIM), combines far-field imaging of visible
photons with phase-resolved sampling of electric waveforms. By capturing ultrafast movies, we spatio-temporally
resolve a Terahertz resonance inside a bowtie antenna and unveil the propagation of a Terahertz waveguide excitation
deeply in the sub-wavelength regime. The demonstrated QFIM approach is compatible with strong-field excitation
and sub-micrometer resolution—introducing a direct route towards ultrafast field imaging of complex nanodevices in-
operando.

Introduction
The detection of radiation—including human vision—is

typically sensitive to the energy carried by an electro-
magnetic wave rather than its fields. Heinrich Hertz
succeeded to prove the existence of electromagnetic fields
by conversion into incoherent visible fluorescence1.
Today, electric waveforms can coherently be sampled
with ultrashort laser pulses2–4 to directly access the
temporal signatures of charge motion and quasi-particle
excitations in condensed matter systems up to the visible
spectrum5. Yet, relevant field distributions are often
confined to microscopic scales significantly below the
diffraction limit—arising from inhomogeneity of materi-
als, microstructures or intrinsic confinement of light-
matter excitations6–8. Only a few approaches spatially

resolve local electric near-field waveforms up to multi-
Terahertz frequencies, including raster-scanned photo-
conductive switches and electro-optic microscopy9–13.
Enhanced resolution is provided by scattering near-field
optical microscopy14–17, THz-driven scanning tunneling
microscopy18,19 and recently emerging ultrafast electron
microscopy20–22. THz-induced visible luminescence has
been employed for imaging spatial field distributions via
temporally cumulated effects of strong local fields23–26.
Sampling THz electric waveforms in the time-domain
using visible fluorescence appears highly desirable as it
bears numerous prospects including the access to nano-
scopic scales, 3D geometries, high-speed acquisition, and
compatibility with strong local fields inside active and
nonlinear-driven devices7,27–30.
Here, we demonstrate ultrafast far-field imaging of THz

electric near-fields using fluorescence microscopy. We
capture visible photons from local quantum dot probes
and acquire stroboscopic movies of electric near-field
evolutions. The scheme employs the quantum-confined
Stark effect (QCSE)31–33, encoding electric near-fields
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into far-field luminescence modulations via variations of
photo-absorption, illustrated in Fig. 1. THz-induced
quasi-instantaneous interactions were previously repor-
ted for diverse 0D-quantum systems26,34,35. Harnessing
this mechanism, we perform spatially resolved time-
domain spectroscopy, and demonstrate the imaging cap-
abilities by resolving the ultrafast electric waveforms of (a)
the localized THz resonance of a bowtie antenna and (b)
the propagating THz gap excitation inside a micro-slit
waveguide. Akin to plasmonics in the visible and near-
infrared spectrum, these highly localized excitations arise
from collective oscillations of the electron plasma con-
strained by sub-wavelength geometries.

Results
Our experiments are based on two-color excitation

using single-cycle Terahertz pulses to drive phase-stable
near-fields and visible fs-pulses to excite the quantum dot
probes, see Fig. 1a. The incident THz pulses at electric
field strengths up to 400 kV/cm are enhanced in litho-
graphically patterned gold structures. Colloidal CdSe-CdS
core-shell nanocrystals, similarly used in voltage sensing
applications36,37, are deposited as a homogeneous layer of
quantum-probes via drop-casting. Luminescence is exci-
ted via wide-field illumination in the image plane of a
fluorescence microscope with ~150 fs pulses at wave-
lengths around 500 nm. We acquire differential images of
the emission yield with a CCD camera in the presence and
absence of THz excitation. The difference signal, which
we refer to as the QFIM signal SQFIM in the following,
represents the crucial observable for instant local fields.
First, we follow the ultrafast near-field evolution inside a

THz antenna structure, shown in Fig. 2a, with sub-cycle
temporal resolution by acquiring a sequence of snapshot

images at increasing delays between THz and visible pul-
ses. Figure 2b shows nine exemplary frames out of a series
with temporal separation of Δτ = 30 fs (full movie in
Media 1). We observe a strong enhancement in the
antenna gap and close to the terminal bars (THz polar-
ization ~0° to the antenna axis). The signal is maximized at
the edge of each antenna leg and decays symmetrically
towards the center of the bowtie as apparent in the
snapshot at Δτ= 0 fs in Fig. 2c, demonstrating a spatial
resolution of ~2 µm (see Supplementary Information).
This pattern visually matches finite-element simulations of
the THz electric near-field, shown in Fig. 2d, and strongly
depends on the incident polarization (data for THz
polarization ~90° to the antenna axis in Supplementary
Information). Based on the simulated field enhancement
and the incident peak field of ~400 kV/cm, we estimate a
maximum near-field strength of ~10MV/cm.
Analyzing the QFIM signal inside the gap, we demon-

strate the extraction of local electric waveforms and
characterize the temporal response of the bowtie antenna.
As a prerequisite, we study the relation between the
maximum field strength F and the peak signal of SQFIM.
Measurements with varying incident field strengths yield
the dependence SQFIM ∝ F1.9 for the quantum dots used in
the experiment, as evident in the double-logarithmic
representation in Fig. 3b. Thus, the peak signal scales
nonlinearly with the maximum incoming field34.
Employing the rectifying relation and the incident far-field
waveform—obtained from calibrated conventional
electro-optic sampling (EOS)—, we simulate the local
near-field and the resulting QFIM signal using a finite-
element time-domain simulation of the structure and find
close agreement with the experimental QFIM trace, see
Fig. 3a. The comparison of the incident THz waveform
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Fig. 1 Quantum-Probe Field Microscopy (QFIM). a Imaging of THz electric near-fields in a fluorescence microscope using quantum dot (QD)
luminescence. The absorption of ultrashort visible sampling pulses (green) is modulated via the quantum-confined Stark effect in a layer of
nanocrystals (red). b The THz-induced change in the QD band structure can increase the absorption and translates to enhanced luminescence
emission, accessible by optical microscopy. The modulated fluorescence yield SQFIM= STHz−S0 encodes the instantaneous local electric field
and snapshot images resolve the spatio-temporally evolution of the near-field waveform
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and the simulated near-field evolution is shown in Fig. 3c
with corresponding spectra in Fig. 3d. Alternatively, a
reconstruction of the near-field in a resonator can be
obtained by adapting a single resonance model to the
QFIM data, as shown in the Supplementary Information.
Depending on the signal quality, direct extraction of

near-field waveforms appears feasible via recovery of the
polarity and reversal of the nonlinear QFIM signal.
The underlying mechanism enabling the QFIM scheme

relies on THz-driven modulations of the electronic band
structure in low-dimensional quantum systems31,32, i.e.,
the QCSE in semiconductor nanocrystals33. The altered
electron and hole wavefunctions induce a quasi-
instantaneous change of the optical transition dipole
moment. As a result, the photoabsorption may be reduced
or enhanced depending on the visible excitation fre-
quency and the accessed electronic states, as previously
resolved via transient absorption spectroscopy35. We
spatially map these changes via luminescence emission
microscopy. Specifically, we note that irrespective of
much longer luminescence lifetimes (~10 ns), the tem-
poral sampling resolution is exclusively governed by the
ultrafast absorption process. This quasi-instantaneous
absorption can alternatively be accessed via transient
absorption imaging of the antenna, as shown, e.g., for
Δτ= 0 fs in Fig. 2e, yielding a pattern complementary to
the QFIM signal.
Now, we demonstrate the field-resolved tracking of

propagating ultrafast THz excitations using the QFIM
scheme. Specifically, we spatio-temporally resolve a THz
wavepacket traveling along the subwavelength slit of a
gold waveguide, as depicted in Fig. 4a. We map the
temporal evolution of the QFIM signal along the gap in a
2D representation (x, Δτ) in Fig. 4b, resolving two distinct
features: First, the horizontal lines arise from the direct
field enhancement inside the gap extending over the THz
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Fig. 2 Evolution of THz near-fields in a resonant bowtie antenna. a Optical micrograph of the THz bowtie resonator. b A series of subsequent
microscopic snapshots at selected delays tracks the THz near-field with sub-cycle temporal resolution (incident THz polarization as indicated). c QFIM
snapshot at the peak local field at Δτ= 0 fs. d The simulated spatial near-field distribution at resonance in the gap region closely resembles the QFIM
signal in (c). e A snapshot acquired in transient transmission contrast (Δτ= 0 fs) corroborates the field-driven absorption modulation as the origin of
the QFIM signal
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Fig. 3 QFIM signal and near-field waveform inside a bowtie
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Heindl et al. Light: Science & Applications (2022)11:5 Page 3 of 6



focus. Subsequently, the tilted feature reveals the propa-
gation of a THz gap excitation with a velocity cprop below
c0 emerging from the left edge of the structure. Such
propagating plasmonic excitations are confined inside a
subwavelength slit and provide the basis for ultrafast
circuits—enabling the routing, nanofocusing, and
enhancement of infrared radiation12,38–42. We corrobo-
rate our finding with a time-domain electromagnetic
simulation of the ultrafast interaction (see “Materials and
methods”), yielding the launching of a THz wavepacket
from the edge with a propagation velocity cprop (white
solid line in Fig. 4b) in agreement with the experimental
QFIM dataset. This gap excitation manifests as a spatially
oscillating electric field distribution along the slit—in
contrast to the unidirectional field of the direct
enhancement, illustrated by the simulated fields at two
exemplary temporal delays (Δτ1= 0 ps, Δτ2= 1 ps) in Fig.
4d. In correspondence to Fig. 4b, c, we present the
simulated electric near-fields as a spatio-temporal map in
Fig. 4e. The simulation yields a phase velocity of the
waveguide excitation between the vacuum and the sub-
strate of cprop ~ c0/2. Moreover, we also reproduce the

experimentally observed interference of the direct and the
propagating pulses. We attribute the different propaga-
tion lengths of experiment and simulation to the idealized
homogeneous microstructure assumed in the model43.
Furthermore, the simulation yields a second gap excita-
tion at the opposite side of the THz waveguide. We
experimentally resolve this feature in a QFIM measure-
ment acquired at the right side of the waveguide in Fig. 4c.

Discussion
We introduce Quantum-probe Field Microscopy to

image ultrafast electric near-field waveforms in the time-
domain. Our approach utilizes the encoding of momentary
THz-fields onto the visible emission of nanocrystals and
far-field fluorescence imaging. The underlying THz field-
driven and quasi-instantaneous QCSE provides a direct
link between the luminescence observable and the local
electric fields. On this basis, we demonstrate the time-
resolved microscopy of near-field waveforms inside a
single bowtie antenna—a building block of ultrahigh-
frequency devices, metamaterials, and strong-field light-
matter interaction experiments27,28. Moreover, we observe
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THz propagation inside a gap deeply in the sub-
wavelength regime and, thus, introduce the ultrafast
sampling of propagating electric fields inside confined
structures in the time domain. These results motivate
the application of QFIM for imaging electric waveforms
of surface excitations, including THz phonon and
plasmon polaritons on bulk surfaces and 2D hetero-
structures44,45. In contrast to near-field scattering
microscopy based on nanotips, our scheme is compa-
tible with strong driving fields and we envision unpre-
cedented insights to THz-driven nonlinear dynamics,
such as interactions between polaritonic wavepack-
ets7,29. Finally, we highlight the prospect of QFIM for
imaging THz fields at the nanoscale using optical super-
resolution microscopy46, paving a promising way
towards ultrafast nanoscopy of strong electric fields
inside nonlinearly driven nanosystems.

Materials and methods
Ultrafast QFIM microscope
We generate high-field single-cycle THz pulses by the

tilted pulse front method47 in a MgO:LiNbO3 crystal
using pulses from an amplified 10 kHz Yb-laser system
(central wavelength 1030 nm, pulse energy 1mJ), see
Fig. S1 in the Supplementary Information. For the quantum
dot excitation, we employ laser pulses from an optical
parametric amplifier (OPA) at 530 nm or 480 nm wave-
length, optimized for QFIM signal strength. The vertically
polarized THz beam is focused on the sample with a
90°-off-axis parabolic gold mirror. We obtain a maximum
field strength of 400 kV/cm in the sample plane and a peak
frequency of ~0.9 THz via calibrated EO sampling using a
100 µm thick <110> GaP crystal. In addition, the THz field
strength can be varied by polarization rotation of the pump
pulses used for THz generation. The OPA beam provides
wide-field excitation in the sample plane. Luminescence is
collected by a microscope objective. We acquire lumines-
cence images with a cooled CCD camera. The pump pulses
used for THz generation are chopped at a few Hz, and we
capture synchronized luminescence images with and
without THz pumping. The consecutive image sequences
are digitally subtracted to obtain the THz-induced differ-
ence signal. Ultrafast temporal resolution in this pump-
probe scheme is obtained via scanning the temporal delay
Δτ between THz pump pulses and visible excitation pulses
via a mechanical delay stage.

Electromagnetic simulations
We employ a finite element solver (COMSOL Multi-

physics) to calculate the electric near-fields of the struc-
tures. The model for the bowtie resonator consists of the
gold antenna on a soda lime glass substrate48,49. For the
propagating THz waveguide excitation, we employ a model
consisting of two conducting metal bars (periodicity 50 µm,

length 700 µm, gap 2 µm) on a soda lime glass substrate.
We excite the structures using a plane wave single-cycle
THz pulse (polarization perpendicular to the gap, center
frequency 0.9 THz).
Details on the fabrication of gold microstructures, the

synthesis of CdSe-CdS quantum dots and the polarization
dependence of the bowtie antenna are presented in the
Supplementary Information.
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